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“Joy does not come only from finding the discovery, but it is part of the search process.

And teaching and learning cannot take place out of search, out of beauty and joy.
(Paulo Freire)

“A alegria nao chega apenas no encontro do achado, mas faz parte do processo da busca.
E ensinar e aprender nao pode dar-se fora da procura, fora da boniteza e da alegria.
(Paulo Freire)



Resumo

Na busca para compreender a natureza e suas leis buscamos estudar a
matéria sob as mais diversas condi¢bes. Nesse contexto, anas brancas se mostram
um excelente laboratério de pesquisa, podendo apresentar temperaturas, pressoes
e campos magnéticos inatingiveis na Terra. Para entender melhor como esses trés
parametros fisicos interagem entre si e com outras caracteristicas estelares, nés de-
terminamos o campo magnético para 803 anas brancas ricas em hidrogénio. Fizemos
o ajuste aos espectros observados com o Sloan Digital Sky Survey usando modelos
atmosféricos que consideram o efeito Zeeman decorrente do campo magnético em
cada ponto do disco estelar. Além disso, determinamos o periodo de variabilidade
fotométrica para 380 dessas anas brancas observadas com o Transiting Fxoplanet
Survey Satellite e buscamos por correlagbes com as outras grandezas. Encontramos
que as anas brancas com campos magnéticos mais altos tendem a apresentar massas
mais elevadas, temperaturas mais baixas e processo de cristalizagdo ja iniciado, re-
forgando a hipdtese de o campo estar sendo gerado e/ou amplificado ja no processo
de resfriamento da ana branca. Nosso trabalho constitui a mais extensa determi-
nac¢do de campos magnéticos e periodos de rotacdo de anas brancas obtidos até o
presente.

Palavras-chaves:Anas Brancas. Campo Magnético.



Abstract

The way to understand nature and its laws is through the study of matter
under the most diverse conditions. In this context, white dwarfs prove to be an
excellent research laboratory, as they reach have temperatures, pressures, and mag-
netic fields that are unattainable on Earth. To better understand how these three
physical parameters interact with each other and with other stellar features, we de-
termined the magnetic field strength for 803 hydrogen-rich white dwarfs. We fitted
the spectra observed with the Sloan Digital Sky Survey using atmospheric models
that consider the Zeeman effect due to the magnetic field at each point in the stel-
lar disk. In addition, we determined the period of photometric variability for 380
of these white dwarfs observed with the Transiting Exoplanet Survey Satellite and
looked for correlations with the other quantities. We found that the white dwarfs
with higher magnetic fields tend to have higher masses, lower temperatures, and a
crystallization process that has already begun. This reinforces the hypothesis that
the field is being generated and/or amplified already in the cooling process of the
white dwarf. Our work constitutes the most extended determination of magnetic
fields and variation period of white dwarfs to the present day.

Key-words: White Dwarfs. Magnetic Field.
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1 Introduction

Since immemorial times, humanity has been intrigued by the lights in the sky.
This interest influenced the evolution of science, technology, and society as a whole. As
our knowledge of astronomical objects evolved, so did our perception of the physical laws
that influences our lives. This knowledge allowed us to build instruments to augment even

further our understanding of nature.

From the beginning of our learning journey to the present day, we have already
answered several questions such as where is the source of the light we see, what are these
objects made of, where do they come from, why do they shine, why some are brighter
than others, why they have different colors, will they always exist, and many others. As
we attained more information, we grouped objects in categories in search of new insights,

new answers, and new mysteries.

In this work, we delve into a particular subgroup of stars, the magnetic hydrogen-
rich white dwarfs. Some questions that we hope to address, at least to some extent, are how
frequent they are, where does the magnetic field come from, and how can it relate to other
stellar parameters. To achieve this, we must investigate a large statistically significant
sample of these stars. But before delving into these topics, it is necessary to understand

the previous evolution of this group of stars to better base our study.

1.1 Stars

A fundamental tool in the study of stars is the Hertzsprung-Russell diagram
(HRD). Developed independently with an observational and a theoretical approach by
Ejnar Hertzsprung and Henry Norris Russell, this diagram presents stellar absolute mag-
nitudes or luminosities versus their spectral classification/color index or effective temper-
atures. Not all regions of this diagram are populated equally, which led to the subdivision
into different categories depending on which region of the plot the star belonged to. Some
outstanding groups are the Main Sequence, the Red Giant Branch, the Asymptotic Giant
Branch, and the White Dwarfs, but different classes stand out depending on the sample

of stars under investigation.

Such classification proved to be fundamental for the understanding of stellar evo-
lution, especially with the analysis of globular clusters which are groups of stars that are
supposed to have the same age and metallicity by virtue of originating from the same
cloud. The study of these clusters throws light on our understanding of how the mass of

the star influences its evolution, which will be further discussed in the next section. One
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example of HRD is illustrated in Fig. 1.
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Figure 1 — Combined H-R diagram, based on ground- and space-based observations, for several globu-
lar clusters similar in overall composition to M80. The various evolutionary stages are visible. Note also
the blue stragglers— main-sequence stars that appear to have been “left behind” as other stars evolved
into giants. They are probably the result of mass transfer or merging binary systems or actual colli-
sions between stars of lower mass in dense stellar systems. Original figure by Chaisson, and McMillian
(2014)

1.2 Stellar Evolution

Stars are formed from huge clouds of dense gas. Clumps may start to form and
grow by the effect of gravity due to small inhomogeneities of the distribution of mat-
ter. These clumps can achieve stability because their inner pressure can compensate for
gravity. However, external perturbations may trigger a collapse, and, depending on the

circumstances, each group can form a different number of stars.

Each fragment gives rise to a protostar after gravitationally contracting. The pro-
tostar has to be massive enough to ignite stable core hydrogen burning to become a
star. That corresponds to roughly 0.08 M (solar mass) for gas with chemical composition

similar to that of the Sun’s atmosphere (approximately the solar metallicity).

Once core burning starts, the gravitational collapse will be compensated by the
energy released from these reactions, and the star will remain in equilibrium for a long

time (up to billions of years) until the hydrogen is exhausted from its core. This is one of
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the longest stages in the stellar evolution, resulting in an overpopulated region of the HR

diagram called Main Sequence. This stage is represented in the HRD in Fig. 2.
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Figure 2 — Evolutionary path and stages after the Main Sequence for a star similar to the Sun in mass
and metallicity. Figure adapted from Chaisson, and McMillian (2014)

The duration of core hydrogen burning depends upon the mass and metallicity of
the star. The more massive the star, the hotter it is going to be in its core. Hence, the
reactions will be more efficient and consume all the available fuel faster. The presence
of metals in the stellar atmosphere obscures the outflow of energy from the stellar core,

warming it up, and resulting in a similar effect of shortening this stage.

The effect of mass is evident in globular clusters. Since all stars have roughly the
same age and metallicity, only the more massive stars had time enough to finish core
hydrogen burning. This is seen in Fig. 1 as a “turn off point” of the main sequence and is

used to constrain the age of the cluster.

When hydrogen is exhausted in the nuclei of stars, the balance between gravity
and the pressure resulting from the energy released in nuclear reactions is lost. Therefore,
the core collapses under gravity and contracts. The layers around it, however, still have
hydrogen and a temperature high enough for fusion, so the nuclear reactions continue (on
a shell).
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The energy released by the contraction of the core partially contributes to heating
the core itself. If it reaches a temperature around 10% K (or, correspondingly, masses
around 0.45 My) the fusion of helium will occur. The other part of the energy is lost
to the next layer and enhances the temperature of the shell. This makes hydrogen fusion
more and more efficient, emitting increasingly more energy, which expands the outer layers
of gas. Furthermore, the helium resulting from the burning in the layer increases the core
mass. As the envelope becomes very extensive, the surface layer of the star cools, resulting
in a reddish coloration. Stars in this stage fill a region in the HR diagram called Subgiant
Branch.

The difference in temperature between the core and the surface gets high enough
to make radiative transfer an inefficient energy transport mechanism. So, an extensive
convective layer is formed. The star then starts to grow at almost constant effective
temperature and fills a region in the HR diagram called Red Giant Branch (RGB).

As the star continues to expand, the convective zone deepens, possibly reaching
the core and bringing heavier elements to the stellar surface. This phenomenon is known
as the first dredge-up, and stars undergoing this process can be seen in an HRD as an
overpopulated area of the RGB. The presence of metals in the atmosphere increases the
opacity, preventing light to get to the surface, consequently reducing stellar luminosity

and making the star stay on the same region of the diagram for a longer time.

The next stage of evolution is the core helium burning, which is different depending
on the initial mass of the star. Those that began their evolution with masses smaller than
2 Mgwill have inactive helium cores that grow in mass very slowly. The conditions in
density and pressure will force all the electrons in it to be in the lower energy state
possible, resulting in degeneracy pressure that opposes to the gravitational collapse. All
matter in this degenerate core has the same increasing temperature. In consequence, when
it reaches 10% K, a huge amount of helium is burnt in a very short timescale (of hours) in
an episode called the helium flash. This event triggers a high energy release in the core of
the star, causing it to expand and raising the degeneracy leading to a more stable fusion

of helium (triple-«).

When the nucleus expands, it moves the hydrogen-burning layer to an outer and
colder region of the star. Its productivity is reduced, resulting in a contraction of the star’s
surface layers. The radius contraction generates a decrease in the star’s luminosity and an
increase in surface temperature. This phenomenon is scaled by the mass and metallicity

of the star, thus forming a horizontal branch in the HR diagram.

In opposition, when more massive stars run out of hydrogen in their cores, it is
almost massive /hot enough to start helium burning. The triple-a starts before degeneracy

is established, resulting in a stable fusion, without the "flash".
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At this point, another bifurcation in evolution occurs. If the original mass of the
star was higher than approximately 10 My, it will attain a temperature high enough to
burn carbon and subsequent heavier atoms until iron. The fusion of iron is an endothermic
process that absorbs energy and causes a collapse of the star, called a Supernova. If the
star had a mass of less than about 25 Mg in the Main Sequence, the remnants of this

disruption will be a neutron star. Otherwise, it will become a black hole.

However, if the original mass of the star was lower than approximately 10 Mg, it
will never attain a temperature high enough to burn carbon. When the nuclei of the stars
run out of helium, they go through a new phase of growth of the outer envelope. This
process is similar to the one present in the RGB (with another possible dredge up), and
the region in the HRD is called the Asymptotic Giant Branch (AGB). Though, this time,
the star has two sources of energy, the layer that burns hydrogen into helium and the layer
that continues to burn helium into carbon, since the helium has depleted only in the core.
It is noteworthy that the specific mass that distinguishes these different processes depends

on the metallicity of the star and interactions with a possible close-by companion.

As the core is now inert, it gravitationally collapses, increasing its temperature and
the temperature of neighboring layers. This time, the helium-burning process is taking
place in the neighboring layer. Triple-a is even more temperature-dependent than the
hydrogen-burning process (CNO cycle). As a result, the envelope expands even more
than in the RGB with the energy coming from the burning in layers. This continuous

expansion process is known as “early AGB”.

The helium-burning layer becomes thinner as time passes. The dependence of the
triple-a reaction on temperature is so high that the efficiency of the reactions at the base
of the layer is much greater than that on the surface of the layer, causing the base to

move towards the surface.

The thin thickness of the helium-burning layer causes an unstable burning process
similar to the helium flash. However, the temperature continues to increase and feeds the
efficiency of the reactions, not due to the degeneration of the gas, as in the previous case,
but due to a geometric factor. This results in a large emission of energy in a short period

called a thermal pulse.

This process is stopped by the fact that about half of the energy released is used
in the expansion of the star. The result is an expansion of the layer in which helium burns
and the process becomes stable again. This mechanism significantly changes the star’s
luminosity cyclically and can be observed. For more massive stars, the characteristic time
can reach the order of 10 years. Despite the process being cyclical, the timescale is not
constant, since the chemical composition of the star changes between pulses, as well as

the mass, temperature, among other stellar features.
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The expansion of the star also generates a detachment of the hydrogen-burning
layer, which passes to colder regions. The conditions are no longer favorable to nuclear
fusion and the production of helium ceases. The reactions are resumed as the luminosity
decreases and the star contracts. In this process, there is also a strong loss of mass, as the
star starts to present such a large radius that the outer layers suffer little gravitational
influence when the contraction process starts, and part of this matter is no longer part of
the star.

Furthermore, with each pulse, the luminosity released by the burning of hydrogen
gets smaller, as the layer becomes more and more external, at lower temperatures. In
contrast, the luminosity of helium is increased, among other factors, due to the increase
in the carbon nucleus caused by the previous pulses. The contraction of the carbon nucleus

releases more energy, increasing the temperature and triple-« efficiency.

In the last pulse, there is a greater loss of mass due to winds, as the envelope
is already quite eroded due to previous pulses, and the energy released by the fusion of
helium is the most powerful. The envelope’s mass becomes too low to absorb all the energy
released in the pulse. After this last pulse, the pressure that the remaining envelope makes
on the inner layers is too low to maintain nuclear fusion conditions, and the reactions cease

to occur.

As these outermost layers are lost in the pulses, the AGB stars are responsible
for enriching the interstellar medium with heavy elements, along with supernovae. It is
noteworthy that these heavier elements are not limited to carbon and oxygen. Nitrogen
is produced in the dredge up process, taken to the nucleus, where it combines with an «
particle, generates an atom of magnesium, and releases a neutron. As the neutron flux
is low, there are processes of generation of heavier elements, possibly heavier than iron

(some elements are produced only through this process and not in supernovae).

The last thermal pulses are responsible for the formation of the planetary nebula.
The core that remains in the center of the system is exposed, has high temperatures
(typically in the order of 105 K), and emits radiation that ionizes the surrounding gas,

generating the visual effect that we detect.

The gas is slowly dispersed into the interstellar medium and the leftover hot core
is gradually exposed. Duo to this process, we perceive the temperature of the system
increasing. Later, the temperature drops due to the emission of energy. In this stage the
star is called a white dwarf and it is usual to count its age (cooling age) starting when
it achieves its maximum temperature. These objects have, in most cases, a C-O core and
varying size layers of helium and hydrogen. It should be noted that stars that can’t burn
helium are also going to generate white dwarfs, but with He-cores. However, the time it
would take for such low mass single stars to evolve out of the main sequence is bigger

than the age of the universe. Hence, the He-core white dwarf that exist today are results



Chapter 1. Introduction 15

of the evolution of interacting multiple systems.

The white dwarf is the last stage of the stellar evolution. But, despite no longer
having nuclear reactions in its core, the white dwarf still goes through several different
physical processes. Beyond the cooling process by virtue of its luminosity, it also cools
due to the emission of other particles, contracts its radius while at higher temperatures,
undergoes sedimentation of heavier elements, crystallizes its core at lower temperatures

among other phenomena.

The phenomenon of crystallization was first identified because when a star start to
solidify (crystallize) its core, its temperature remains roughly constant. The solidification
releases energy, slowing down the cooling process and making stars appear in a different
region of the H-R Diagram. This effect can affect the whole structure of the white dwarf
and can have a relation with the presence of magnetic fields, thus will be further investi-

gated in this study. For more detailed explanations on stellar evolution see, for example,
Erika (1992).

1.3  White Dwarfs

White dwarfs represent a good laboratory for studying matter under extreme con-
ditions because they have densities of roughly 1 tonne per cubic centimeter (about a
million times greater than the average density of the Sun) and may start with effective
temperatures as high as 200 000 K, as seen above. They are also relevant on a cosmological
scale since they represent the result of the evolution of all stars with an initial mass lower
than 7— 11 Mg, depending on the metallicity, which represents 97 % of all stars (Lauffer;
Romero; Kepler, 2018). In addition to the importance in absolute numbers, they stand
out for being used in establishing limits to the age of galaxies once the less massive ones

did not have time to cool down below our detection limits.

Despite having well defined major characteristics, white dwarfs can present very
different spectra and are subdivided into groups. To understand these classes it is useful

to comprehend the classification of stars in general.

Stars were classified according to the features apparent in their spectra since the
XIX century. Notwithstanding the huge contribution of the different classification systems
that have been developed over the years, most stars are currently classified under the
Morgan—Keenan (MK) system. This organization is based on roman capital letters O, B,
A, F, G, K, M sorted in order of decreasing temperature. In addiction to the MK system,
other complementary classification system were created to encompass star-like objects
that didn’t fit the classical system as is the case for white dwarfs that receive the letter

of identification D to denote that they are degenerate objects.
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The class of white dwarfs was further divided according to the main elements
present in the spectra: A for hydrogen, B for neutral helium, O for ionized helium, C for
no spectral lines, Q for carbon, Z for metals, or X for spectra with no clear information.
Besides the classification according to the atmospheric composition, another classification
is made to relate different features as E for emission lines, V for variability, and P or H for
magnetic field detection with or without polarization measurements. For more detailed
explanations on the classification of white dwarfs see, for example, McCook, and Sion
(1999).

We draw attention to the fact that not necessarily the spectra represent the atmo-
spheric composition of the star since some atoms don’t present observable lines at certain
temperatures. For example, when DBs achieve temperatures below (8000 K) the lines of
helium disappear and we may observe a DC even though the star has a helium-dominated

atmosphere.

As in this work we are interested in studying the magnetic field of a large sample
of white dwarfs and it is impracticable to carry out individual polarimetric measurements,
we choose to determine the magnetic field only based on spectra of the stars. In addition to
that, we limit our sample to hydrogen-rich white dwarfs since this represents a considerable

simplification for the models while maintaining 84% of the sample.

1.4 Magnetic Field

Electromagnetism is one of the fundamental forces of nature, and it has aroused
questions that are crucial to the understanding of our Universe. A historical moment in
which this was especially true was in 1896 when Pieter Zeeman observed a clear widening
of the sodium D-lines under the influence of a magnetic field. Hendrik Antoon Lorentz

developed a theory based on the existence of charged vibrating particles inside atoms.

He proposed that the observed widening was actually a splitting of the lines in
three components when observed in a direction perpendicular to the field. His work also
suggested that in a direction parallel to the field two lines would be visible, with opposite
circular polarizations. This prediction was experimentally verified and the assumption
made by Lorentz to his theory was corroborated, constituting the first indications of the

existence of a new charged particle, later known as the electron.

More than a decade later, this same phenomenon was used by George E. Hale to
demonstrate that sunspots were under the influence of magnetic fields. Regardless of its
use, this effect was only better understood with the advent of quantum mechanics. Not
only the quantization of atomic energy levels was necessary to explain the normal Zeeman
effect, but also the existence of spin is needed to explain the anomalous Zeeman effect

(splitting of the lines in more than three components).
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To have an idea of the effect of the magnetic field in the stellar spectra we can
look at a much simpler example, one hydrogen atom at low fields. If we do not consider
the effect of the spin we have the normal Zeeman effect. We can write the Hamiltonian
of the system starting with the Hamiltonian of the system without magnetic field and
adding a term that represents the effect of the magnetic field. The same happens with

the associated energy:

~ ~ B “
o =H,+ gBL

Enlm = Eg + mB,uBa

where pp is the Bohr magneton, L is the orbital angular momentum and n, ¢ and m are

quantum numbers.

Part of the degeneracy has been broken, in other words, levels that previously had
the same energy now have different energies. We observe this as a split in the lines of
absorption in the spectra since they reflect the difference in energy of the level between

which the electron transits. A schematic idea of this phenomenon can be seen in Fig. 3.

@1,1) 0
2,0,21) / 2,0,0),(2,1,0) ED
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. o-To+
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Figure 3 — Some energy levels of hydrogen without and with the action of a magnetic field. The colored
arrows symbolize the absorption lines observed in the spectrum. Image adapted from Zettili (2009).

These effects were already used to find magnetic fields of the order of hundreds of
millions of Gauss (MG) in white dwarfs, which are expected to last for millions of years.
In comparison, the strongest continuous magnetic field we can create on state-of-the-art

equipment on Earth are only of the order of a fraction of an MG.

1.5 Spectral Lines

As we will use spectral lines to estimate the magnetic field strength on the surface
of the white dwarfs, it is crucial to comprehend our current knowledge on the physical

process involved in its formation.

Our understanding of spectral lines has widened and deepened considerably since
it was first systematically studied for the Sun by Joseph von Fraunhofer in the early XIX

century. In addition to the more evident information about which elements are present in



Chapter 1. Introduction 18

the atmospheres of the stars, we can use spectra to estimate the effective temperature,
the surface gravity, the magnetic field. One can also study its companions through the
variation of the longitudinal velocity of the star or the difference between the spectra of

the star and the spectra during eclipses.

All this is achievable because we attain information not only from the wavelength
of the spectral line but also from its shape. If we were to consider only one atom, one
could imagine that the spectral line should be infinitely thin. Only photons with the exact
wavelength corresponding to the difference of energy of the level its transitioning to and
from would be absorbed, expressed by

EZIKC:Ef—Eiﬁ)\:th_CEi,
in which £y and E; are the energy of the final and initial states respectively.

But this is not observed because the uncertainty principle states that there must
exist a limited certainty in the energy, dependent on how long is the lifetime of an excited

state. That can be represented as

NN
2

in which AF is the uncertainty in the energy of a transition, At its lifetime and A the
Planck constant A divided by 27. As a result of this effect, the spectral line takes on the

shape of a Lorentzian profile. This is called natural broadening.

As we will study a gas, it is necessary to consider the velocity distribution of its
atoms once the observed spectral line will suffer a shift in wavelength A\ due to the
Doppler effect:

AN = Do,
c

in which v is the velocity of the transitioning atom with respect to the measurement
instrument which is much smaller than the velocity of light ¢. The original wavelength of

the transition is Ag.

A gas in thermal equilibrium has a Maxwell-Boltzman velocity distribution that

depends on the temperature:

m 1/2 o2
T 2kgT d
2wk3T> con

in which P(v) dv is the probability of one particle having velocity in the interval [v, v+dv],

P(v) dv = (

m is the mass of the particles, kg is the Boltzmann constant and 7T is the temperature.

As a result of this effect, even in thermal equilibrium, the spectral line takes on
the shape of a Gaussian profile, which gets wider as the temperature increases. This is

called the Doppler broadening.

Another source of broadening that can occur in stars is the rotation of the star

along its axis. Because we see the star as a source point, the light emitted from the
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different sides of the rotation axis will suffer contrasting shifts making the spectral line
broader. However, this effect in broad lines of white dwarfs is too small to be measured

with typical instruments, as was seen by Heber, Napiwotzki, and Reid (1997).

A further effect is pressure broadening, also known as collision broadening. When
particles collide with the transitioning system, the emission or absorption is altered. The
reduction in its characteristic time implies an augment in the uncertainty in the energy,
as discussed in the natural effect. This causes a broadening of the line, but it can also
introduce a wavelength shift of the center of the line, unlike the previously mentioned

effects.

Aside from line broadening and wavelength shift, the line can be split due to the
lifting of the atom’s degeneracy. This occurs when the atoms are submitted to electric
fields, Stark effect, or magnetic field, Zeeman effect. Even though these effects are in
reality splitting the line, it is possible that when in convolution to the other effects the

net outcome is a line broadening.

The Stark effect is usually the dominant one in white dwarfs and is employed
to build models that are used to estimate two main properties, effective temperature,
and surface gravity. However, the application of this method is not recommended for
magnetic white dwarfs since the Zeeman splitting can be unresolved and misinterpreted

as indication of a higher mass (Kepler et al., 2013).

1.6 Overview

The origin of magnetic fields in white dwarfs is an open question that has been
addressed with different approaches for the past decades, some are presented in Chapter
2. However, most studies concentrate on small samples of stars. We would like to throw

some light on this problem by building a large sample of magnetic white dwarfs.

To allow us access to data of many stars we choose spectroscopy (measuring the
Zeeman spliting in spectral lines) as a method (instead of spectropolarimety, that can
detect weaker magnetic fields but are available for much less stars). In addition to that
we choose to study only white dwarfs with atmosphere dominated by hydrogen, since they
are 84% of all white dwarfs and this simplifies a lot the estimation of the magnetic field

magnitudes. The sources of our data are presented in Chapter 3.

As we want to understand better the origin of magnetic fields we determine some
properties of the field in each star and its probable rotational period. Our methods are pre-
sented in Chapter 4 and our results can be seen in Chapter 5. We discuss the possible rela-
tion between magnetic field strength/incidence and stellar mass/temperature/crystalliza-

tion status in Chapter 6 and we present our conclusions in Chapter 7.
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2 Previous works

Magnetic fields of different orders of magnitude have been found in white dwarfs
depending on the technique used. Vanlandingham et al. (2005) identified fields between
1.5 - 1000 MG analyzing spectra, as we did in this work. Fields as low as 57 kG can be

measured if spectropolarimetry is applied, as was done by Landstreet et al. (2016).

Strong magnetic fields are common in white dwarfs rich in hydrogen (DAs). Kepler
et al. (2013) showed that at least 4% of all DAs observed with Sloan Digital Sky Survey
(SDSS) until Data Release 7 have magnetic fields greater than 1 MG. The authors in-
spected visually all DA spectra and found 521 stars with Zeeman splittings. A more robust
method to estimate the magnetic fields however was presented by Kiilebi et al. (2009),
who used least-squares minimization to find the best model of magnetic field geometry to
fit the observed data. They applied this technique to 141 magnetic white dwarfs rich in
hydrogen (DAH). In this work, we use this method to estimate the magnetic field of 803
DAHs.

This systematic study is crucial to the construction of a significant statistical
sample, and may help us better understand the origins of magnetic fields in white dwarfs,
which is still an open question after more than fifty years of the first discovery by Kemp et
al. (1970). The magnetic field could be formed in three different stages of the white dwarf

(WD) evolution: before it starts to form, during its formation, or the cooling process.

The main hypothesis of the first group corresponds to the fossil fields from Ap/Bp
stars (chemically peculiar and with stronger magnetic fields than classical A- or B-type
stars). When stars have an initial mass above 1.5 Mg, they have convective cores during
the main sequence in which a magnetic field can be formed through a dynamo process.
These fields usually are small, of the order of a few kG as first shown by Babcock (1947).
The magnetic field is boasted through conservation of the magnetic flux up to 100 MG
when the star gets stripped of its outer layers and its core gets exposed and starts to

contract.

This possible origin of the magnetic field is very attractive because the Ohmic
decay in degenerate matter suggests that these fields should last billions of years. However,
Wickramasinghe, and Ferrario (2005) concluded that the amount of magnetic Ap/Bp stars
that have been detected cannot account for the fraction of magnetic white dwarfs (MWD)

measured, so other mechanisms must be happening.

For the magnetic field to arise during the formation of the white dwarf, the system
may not be single. It can be due to the merger of two degenerate cores or it can be

formed during the interaction of the two components of the binary (common envelope)
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as presented by (Tout et al., 2008). However, this channel of magnetism formation would
lead to a much higher magnetic incidence among white dwarfs in close binaries than is
currently observed (Belloni; Schreiber, 2020).

Measuring the rotational period of MWD may help us distinguish different origins.
The ones descendant from mergers could show high speeds (P, ~ minutes) as suggested
by King, Pringle, and Wickramasinghe (2001). Extremely slow rotators (P, > years)
could be produced if the magnetic field locks the forming white dwarf to the escaping
envelope of its progenitor as proposed by Spruit (1998).

Using the Jacobus Kapteyn Telescope, Brinkworth et al. (2013) studied the pho-
tometry of 30 isolated magnetic white dwarfs. They derived periods for 5 of them (between
105 minutes and 6.68 hours) and detected variability in 9 others. Kawka (2020) joined
this data with other previously determined rotational periods in magnetic white dwarfs.
Including other methods like spectropolarimetry, she built a sample of 38 stars and found
that most of the magnetic white dwarfs have rotation periods shorter than 10 hours with

a distribution peaking at 2 - 3 hours.

In this work, we search for photometric variability in light curves observed with
Transiting Exoplanets Survey Satellite (TESS) and estimate a period of variability for 380
stars observed until sector 46, in December 2021. We don’t expect the same distribution
in periods as Kawka (2020) because most of our sample consists in 30 minutes cadence

data, biasing our results against short periods.

The possible origins mentioned so far are in agreement with the higher mass that
MWDs have when compared to the whole sample as presented by Kepler et al. (2013).
Nevertheless, there is evidence of yet another way of forming magnetic fields in white
dwarfs. Kepler et al. (2013) also stated that the distribution of the magnetic field strength
with temperature has a peak in lower temperatures, which means that the white dwarf

must be producing or enhancing the magnetic field.

When the white dwarf cools below 14 000 K, it develops a convective layer in which
the dynamo process can occur, giving a boost to the field. However, as the temperature
continues to drop, the kinetic energy of the envelope becomes larger and eventually the
convective cells mess up the magnetic field lines. This is coherent with the further drop

of magnetic field strength at even lower temperatures.

We could also mention other possibilities that could account for the magnetic field
in white dwarfs like the crystallization of its core (Isern et al., 2017) and the interaction
with orbiting planets (Schreiber et al., 2021). The first effect will be further studied in this
work, but we have yet no evidence to believe that the later effect is statistically significant

to the complete sample.
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3 Data

As mentioned in the previous sections, to better understand the nature of the
magnetic fields in white dwarfs, it’s crucial to have a sample large enough to allow sta-
tistical studies of its distribution and its relation to other physical quantities. As a result
of this, we need a large sample of spectra from which derive the magnetic field. This
was made possible by the advent of surveys that mapped the sky such as Sloan Digital
Sky Survey(SDSS) (Ahumada et al., 2020). SDSS has taken spectra for more than three
million astronomical objects among which more than thirty thousand have been identified

by Kepler et al. (2021) as white dwarfs rich in hydrogen, our group of interest.

Despite the possibility of using the spectroscopic data to determine other physical
parameters such as mass and temperature, we chose not to do so. There is a possibility
that the magnetic field could introduce systematic error as its effect over the spectral lines
is not taken into account by the models that derive these quantities from the spectra. In
stars with several components at the atmosphere, it may be possible to choose lines of
certain elements that are less sensitive to the magnetic field, but this cannot be done with
DAs, since they have the spectra dominated only by hydrogen lines, strongly affected
by the magnetic field. Instead, we opted for the parameters acquired based on precise
astrometry from GAIA by Gentile Fusillo et al. (2021).

GAIA is a space observatory of the European Space Agency (ESA) that mea-
sures the positions of stars with unprecedented precision and aims to observe the whole
sky (Gaia Collaboration et al., 2016). With this measurements it can be derived their
distances, and proper motions. Gentile Fusillo et al. (2021) calculated stellar parame-
ters (effective temperature, surface gravity, and mass) by fitting Gaia astrometry and
photometry with synthetic pure-H, pure-He, and mixed H-He white dwarf atmospheric

models.

Besides magnetic field, effective temperature, and mass we also want to study the
rotational period of the stars of our sample. To do so we needed photometric data. We use
data from TESS, an all-sky survey mission that searches for exoplanets around nearby
bright stars (Ricker et al., 2015).
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4 Stellar properties

4.1 Magnetic Field

When we study spectra in search of magnetic field information, we are investigating
the net effect caused by the field in all points of the visible stellar atmosphere. It is
important to note that the magnetic field is not constant for a given radius and can have

simple geometries or a more complex one.

The computational routines used in this work were developed by Kiilebi et al.
(2009) as a modified version of a code developed by Euchner et al. (2002) called Yet
Another White dwarf Program (YAWP). It accounts for magnetic field geometry by mul-
tipolar expansions of the field topology over the visible stellar hemisphere on the basis
of spherical harmonics. YAWP adds up appropriately weighted model spectra for a large
number of surface elements and then evaluates the goodness of fit to the observed spectra

with a least-squares quality function.

Based on synthetic atmospheric models described in Koester (2010), Kiilebi et al.
(2009) pre-computed a grid of models with log g = 8, effective temperatures ranging
between 7000 K and 50000 K in 14 steps, magnetic field strength ranging between 1
MG and 1200 MG in 1200 steps, and 17 different directions relative to the line of sight
(9 entries, equally spaced in cos ). It is noteworthy that YAWP fits only the lines, not
the continuum. The plot is multiplied by the continuum used in the normalization. The
strength of the lines is affected by the continuum and the limited effective temperature

and log ¢ grid.

We emphasize that YAWP uses a radiative transfer code for magnetized white
dwarf atmospheres developed by Jordan (1992) which considers Balmer lines from n = 3
to n = 7. These are not the only lines modeled in the literature, and an upgrade could be
made by adopting lines up to n = 15 presented by Schimeczek, and Wunner (2014). For
fields larger than around 30 MG, the n > 7 lines do affect the optical spectra.

As mentioned earlier, the Zeeman effect is not the only one affecting the absorption
line profile, and the Stark broadening must also be considered. However, the presence of
both magnetic and electric fields is not well understood for arbitrary strengths and angles
between the two fields. Consequently, the low-field regime < 5 MG, where the Stark
effect dominates, has high and unavoidable systematic uncertainties by the treatment of

the stark effect with a crude approximation as presented by Jordan (1992).
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4.1.1 Magnetic Field Geometry

Independently of the complexity of the field geometry, it is always possible to
represent it as a sum of spherical harmonics, but to utilize all the terms of this sum is not
computationally viable (Kiilebi, 2010). One could start by assuming the simplest model
and looking for systems that are not well described. The simplest magnetic field geometry

is a centered dipole.

From classical electrodynamics, it is widely known that the magnetic field gener-

ated by a dipole is given by

_ p3(m-F)F —m
B(T)—E r3 )

where m is the magnetic dipole moment centered at the origin of the system.

Carefully choosing the magnetic moment aligned with £ = cos ## — sin 68 we can

write the field components in spherical coordinates as

B(r,0) = Zom (2 cos 07 + sin 00).

s
On the pole, where 8 = 0 and at a unitary radius we have
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Bp — ?

We can rewrite the magnetic field in Cartesian coordinates as

A3
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Or, in terms of the components as
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When we compute the modulus of the magnetic field at any point in space we have
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in which there is a clear symmetry of rotation along the z-axis once the modulus does not
depend on x or y. In addition to this, there is another symmetry around the plan xy at

z = 0 that can be seen in the black line in Fig. 4.

Unfortunately, there are several stars for which a centered dipole does not explain
the profiles of the spectral lines. This is the case for the white dwarf SDSSJ113839.49-
014903.0, P-M-F = 3775-55207-0698 whose spectra is shown in Fig. 5.

30

25
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0.3

— Quadrupocle
pn { =—— Dipale

~100-075-050-025 000 025 050 075 100
z[R]

Figure 4 — Distribution of magnetic field modulus as a function of z for a centered dipole in black and
a centered quadrupole in red.

One could then consider the next term of the sum, represented by quadrupole
geometry, but the problem would persist since a centered quadrupole has the same sym-
metry as it is shown by the red line in Fig. 4 . Instead of adding more complex centered
terms, it is possible to consider simply an offset of the center of the dipole in relation to
the center of the star (Achilleos; Wickramasinghe, 1989).

It can be easily seen that to apply a displacement on the dipole is equivalent to
rewrite » — r — v’ which implies

Blr.r') = 4o [P S gy -

lr — 7|3

This allows much more complex distributions, the poles may have very different
magnetic fields for example, with the inclusion of only one parameter (the offset). A
representation of an offset dipole distribution is presented in Fig.6. However, the fit for the
observed spectra is still inappropriate as it can be seen with the offset of —0.2 R, presented

in Fig. 7.

In this context, it is relevant to consider that the stars more commonly are not

with their rotation axis perpendicular to our line of sight, making it necessary to consider
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Figure 5 — Observed SDSS spectrum of the star SDSSJ113839.49-014903.0 in black and YAWP model
in red considering a centered dipole. The central line of H, = 6564.6 A is well modeled, but the o lines
are misrepresented. The x? for this model is 2.38.

its inclination. With this one more parameter considered, the model fits almost all features
of the spectra, as shown in Fig. 8 so we decided to compute all magnetic fields with offset

dipole geometry.

4.2 Variability

There are several reasons why the brightness we measure of a star can vary. They
can be related to some physical changes at the star itself, of its environment, or the
circumstances of its measurement. The stellar brightness can vary due to pulsations, dark
spots, hot spots, thermal pulses, and others. Moreover, even when the stellar luminosity
is constant, we can measure a varying magnitude if a body occludes our line of sight such

as orbiting planets, comets, or even a companion star in cases of binary systems.

The information we have to try to distinguish between different types of variability
is the timescale in which they occur. As we are interested in finding the rotational period
of the stars in our sample we focus on periods of some hours or days. For this purpose,
a cadence data of 30 minutes is suitable since it won’t display quick variations coming
from pulsations. However, this creates a bias against fast rotators that may be overlooked.

Additionally, some close binary systems can also fit the range of periods considered.

Independently of the source of variation, we are interested in finding the periods,

or equivalently the frequencies, of these fluctuations. A traditional technique used in cases
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Figure 6 — Distribution of magnetic field modulus as a function of z for a centered dipole as a red dot-
ted line, for an offset quadrupole as a red dashed line, the sum of them both as full red line compared
to an offset dipole as a black line. Both offsets are of 0.5 R .

like this, and adopted in this work, is the Fourier Transform of the temporal photometric
data (light curves). This approach is based on the fact that any periodic function can be

written as an infinite sum of sinusoids with different weights, but we are interested only
in the dominant behavior.
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Figure 7 — Observed SDSS spectrum of the star SDSSJ113839.49-014903.0 in black and YAWP model
in red considering a dipole with an offset of —0.2 R, . A better model when compared to the centered
dipole model, which is confirmed by the smaller y? = 1.40, but the lines are yet not well modeled.
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Figure 8 — Observed SDSS spectrum of the star SDSSJ113839.49-014903.0 in black and YAWP model
in red considering a dipole with the same offset of -0.2 R, and an inclination of 55°. The x? = 0.547948
is the smallest when compared to the previous models and the lines are well modeled, both H, =
6564.6 A and Hp = 4861.35 A.
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5.1 Detection of magnetic fields in SDSS DR16 white dwarfs
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To build our sample, we visually investigated all DA spectra up to DR16 in search

of Zeeman splitting and concatenated the selected ones with the previously known until
DRY7, resulting in 803 stars. Then we used the code presented by Kiilebi et al. (2009) to

determine the strength of the magnetic fields. A part of our sample can be seen in Table

1, and Figure 9 presents three white dwarfs with magnetic fields of different orders of

magnitude that represent them. A complete table is presented in Appendix C.

Table 1 — The table presents effective temperatures estimated with non-magnetic models used as a
fixed input for YAWP and the effective temperature calculated with GAIA astrometry. Although in
some cases they differ a lot, this does not strongly affect the magnetic field estimation since the tem-
perature affect mostly the depth of the line and not its position, which is dominant in the estimation
of the magnetic field. In addition to the results from the spectroscopic analysis, the last but one col-
umn presents the period of highest amplitude from TESS photometry. And finally, the magnetic field

modulus resulted from the best YAWP model for each star.

PMF TIC Te YAWP (K) T GAIA (K)  P(h) B (MG)
0366-52017-0591 1400842448 11500 15000 164.56  25.60
0367-51997-0318 1271054357 30000 30000 18116  64.50
0367-51997-0461 1400761333 15000 25000 157.21  25.00
0406-51900-0490 630263660 9500 9500  352.35  21.60
0406-52238-0071 630251962 16500 16500  196.93  13.00
0413-51929-0313 649786561 30000 30000 21040  148.40
0415-51879-0485 453828065 9500 9500 111.83  717.10
0416-51811-0590 649819568 8000 9500 20828  25.00
0419-51879-0147 611261863 8000 9000  61.17  30.00
0437-51869-0369 141117787 9000 11000 6.71  453.80
0453-51915-0325 841143629 12000 18500  86.82  20.40
0459-51924-0002 651936432 9500 13500  259.49  13.00
0475-51965-0315 842119542 10500 14000 102.80  30.20
0476-52314-0597 842095343 24000 24000  182.39 2.58
0480-51989-0082 842138864 9000 16500  51.61  22.90
0480-51989-0251 842141925 9500 13000 14987  20.10
0483-51902-0296 802265153 15000 15000 170.00  24.70
0483-51924-0203 802348105 10000 10000  165.53  10.00
0489-51930-0079 900616508 18000 18000  175.62  195.00
0489-51930-0535 900624504 9500 12500 217.00  22.20
0490-51929-0205 900618725 18000 23000 1837.74  100.00
0501-52235-0077 842039397 40000 30000 7043 38.50
0547-52207-0019 801914894 22000 22000 118.68  20.20
0556-51991-0326 841061440 9000 188.97 2.26
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As already discussed, the magnetic field affects the line profiles, and we cannot
use them to estimate surface gravity directly. Thereby, the models used in the code are
calculated with log g = 8 for all the stars as an approximation. This value was originally
chosen considering that it is the mean value for white dwarfs. It has been acknowledged
that it is not the best value to represent magnetic white dwarfs once they are found to be
more massive than the non-magnetic ones. Unfortunately, these are the best models that
we have access to, constituting a very interesting way in which our work could be further

improved in the future.

The code also presents the possibility of searching for the temperature spectro-
scopically, together with the magnetic field parameters. But, due to the uncertainties,
we opted to use a previously estimated temperature acquired by comparing the observed
fluxes with hydrogen-rich atmospheric models. These models lead to a table of colors in
the bands u, g, r, and i used by SDSS for each temperature. One can compare this val-
ues, specially their differences (color index), to the values from the observed spectra thus
obtaining an estimated temperature. We chose not to use the i-band since it is observed

a lot of noise in the corresponding wavelengths.

Although the original range of temperatures varied from 6 000 K to 50000 K, we
only used temperatures between 8000 K and 40000 K when varying the magnetic field
due to convergence problems. This limits our capacity to model the magnetic field of
stars outside this range of temperature, as the models present deeper lines than those
observed in the SDSS spectra. The depth of the absorption lines however doesn’t have a
big impact on the determination of the magnetic field amplitudes which are predominantly

determined by the wavelength displacement and presence of splits.

This effect can be seen on the upper part of Figure 9, in which a WD with a
temperature below 8000 K is presented. The best model, in red, clearly has lines deeper
than the observed spectra but well represents the splitting on the H, = 6565 A and
Hp = 4861 A lines.

As the original data has many points and usually are noisy, we present them
after the application of a smooth function. Besides, the noise in the observed spectra is
dependent on the wavelength and is significantly higher above 7000 A. It is noticeable that
the absorption lines of hydrogen don’t spread to these high wavelengths in field regimes
below 25 MG (log B &~ 1.4), as visible in Figure 11 from Schimeczek, and Wunner (2014).
Thereby, we do not consider higher wavelengths in spectra of DAH with lower fields to

minimize the noise effect, which can be seen on the first two panels of Figure 9.

For some stars, YAWP did not find any plausible solution within reasonable com-
puting time (hours), and we resorted to a simpler visual analysis to estimate the magnetic
field, used it as a fixed input to the code, and allowed only the inclination and the offset

to vary. Some illustrative examples of the visual inspection can be seen in Fig. 10. The
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Figure 10 — Spectra of MWDs after applying the smooth function and normalizing by a third-degree
polynomial function for better display. From top to bottom we have MWDs with Plate-MJD-Fibre
5179-55957-0778, 0545-52202-0009, 0690-52261-0594, 1311-52765-0421, 3183-54833-0179, and magnetic
field equal to 85, 38, 8.5, 5, 2 MG respectively. The flux is fy / 10716 erg cm=2 571 A~1. The red lines
represent the magnetic field strength as a function of the wavelength as computed by Schimeczek, and
Wunner (2014). The blue vertical lines represent the position of absorption lines for hydrogen when no

magnetic field is applied.
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Figure 11 — Magnetic field strength as a function of the wavelength of the first 325 transitions in the
Balmer series, which emerge from the field-free Balmer transitions up to principal quantum numbers
n = 10. Colors were arbitrarily assigned to facilitate visualization.

best model computed with the magnetic field fixed for one of these MWDs is portrayed in
Fig. 12. The visual estimation was also used for stars with magnetic fields below 1 MG,
but not used as input since it is below the threshold of the first method. An example can

be seen in Fig. 13.

12 - [ —— smoothed observed SDSS spectrum
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Figure 12 — SDSS spectrum of the star with Plate-MJD-Fibre = 0690-52261-0594, B = 8.5 MG, S/N =
7.5 and Teg = 14000 K is presented in black. The model with the best least-squares fit to the observed
data with B = 8.5 MG is shown in red.
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Figure 13 — Spectra of the star with Plate-MJD-Fibre = 4868-55895-0730 after applying the smooth
function and normalizing by a third-degree polynomial function for better display. The flux is

fr /10716 erg em=2 s=' A=1. The red lines represent the magnetic field strength as a function of the
wavelength as computed by Schimeczek, and Wunner (2014).

The only geometry of magnetic field considered to our determinations was the
non-centered dipole, which is a good approximation for these objects. We emphasize that
if the offsets are large, the polar field strength is not representative of the global magnetic
field on the visible surface. Besides, the field difference between regions of a star can
get very high (orders of magnitude) as the polar field increases. This was illustrated in

subsection 4.1.1.

This effect can be seen in Fig. 14. The model that best reproduces the observational
data has a B = 61.2 MG. However, it can be seen in the second panel that the field over
the surface varies between 30 and 110 MG, being more expressive around 30 MG, the

value that would be found if the visual inspection was used.

Besides that intrinsic variation, we estimate that our precision cannot be lower
than 1 MG since the spectra are not precise enough due to resolution and signal-to-noise

ratios. Beyond these limitations, our errors are approximately 12% of the computed value.
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Figure 14 — Top panel showing the SDSS spectrum of the star with Plate-MJD-Fibre = 4568-55600-
0952, B = 61.2 MG, S/N = 63 and Tt = 13500 K is presented in black. The model with the best
least-squares fit to the observed data is shown in red. The blue lines represent the magnetic field
strength as a function of the wavelength as computed by Schimeczek, and Wunner (2014). Bottom
panel showing the distribution of magnetic field over the stellar surface due to the inclination of 29.35°
and Zofset Of -0.38 Ry delineated by the best model.
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5.2 Detection of Periodicity in TESS Full Frame Image

We made a cross-match of the list of DAH with measured magnetic field and the
TESS catalog and found correspondence to 785 white dwarfs. However, not all of them
have been observed until Sector 46. With the ones already observed, we constructed light
curves at 30 minutes cadence (up to sector 39) or 10 minutes cadence (after sector 40)
from the TESS full frame images (FFI) using the eleanor pipeline from Feinstein et al.
(2019). We extracted postage stamps of height=15, width=15, and a background size=31.
We did not use the eleanor features for removing light curve systematics using either the
point spread function or principal component analysis options. It is important to consider
that in the future TESS will provide 200 seconds cadence for all observed stars, which

will improve the possibility to detect high frequency variations.

We computed Fourier transforms (FTs) of the light curves to find periods of vari-
ability for all observed stars, concatenating different sectors when available. To minimize
systematic errors due to noise in the light curve, we compute a false alarm probability
(FAP). We randomly changed the order of the observations, recomputing the FT, and cal-
culating the amplitude at which there is a 0.1%= 1/1000 probability of any peak being
due to noise, as suggested by Kepler (1993). We report the higher amplitude frequency
above the 0.1 FAP threshold of 380 stars. A part of our sample can be seen in table 1.

Some of these stars have been already studied before, as it’s the case of TIC
141117787 which had a rotational period detected by Brinkworth et al. (2013). They
referred to the star as WD0756-+437 and found a period of 6.687093 h. We found a 6.71 h
variability period, which is consistent with their error margin. This star in particular has
2 minutes cadence available and is a good example to demonstrate how the 30 minutes
cadence can be useful when the 2 minutes is absent. Fig. 15 and Fig. 16 portray the folded
light curve and Fourier transforms for 2 minutes and 30 minutes data respectively. In both
cases, the highest peak in frequency is well above the detection limit and the pattern of

variability can be easily seen in the folded light curve.

In total, 29 stars in our sample also present 2 minutes cadence, and 2 of them
present 20 seconds cadence. Not all of them have a period above the FAP in the fast
cadence data and the ones that have aren’t all compatible with the first period determi-
nation. To be consistent in precision for all sample, we made our analysis only based on
the longer cadence. To assure that our results would be coherent we compared the periods

determined from different cadences and present them in Appendix A.

We emphasize that the period measured is not necessarily the rotational period.
Other possibilities are orbital period in binaries, pulsations, or variability due to multiple
spots on the stellar surface. To exemplify this we can look at Fig. 17 where is repre-

sented the folded light curve over twice the period of higher amplitude of the star with
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TIC800350281. It is easy to see two valleys of different depths most likely indicating the
two eclipses of a binary system. This is also noticeable if we analyze its F'T in Fig. 18. Since
eclipses are not well described by a sinusoidal function, a pattern of harmonic frequencies

appears.

We found only two other stars with these binary features, so we expect these
contaminants in rotational period to be low. In this cases, there is still a chance that the
period detected is indeed the rotational period since spin-orbit synchronization occurs by
tidal force dF oc M/d®, where M is the mass of the companion and d its distance. And
according to the third law of Kepler d® oc P2, where P is the orbital period.

Beyond the physical processes that could be generating variability there is a possi-
ble systematic origin of detected periods. Each TESS sector is 27 days long, with a pause
in observation in the middle, causing a false detection of periods around 160 hours (a

quarter of a sector).

Besides the DAH for which we determined a magnetic field, we detected photo-
metric variability in previously known DAHs and DAPs. We present a table of the periods
as extra information in Appendix B. It is noteworthy that this analysis was made upon
120 seconds cadences, or 20 seconds, when available, presenting a much lower detection

limit than the 30 minutes cadence data.
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Figure 15 — TESS 2 minutes cadence data of star with TIC 141117787. Top panel showing folded light
curve over twice the period of higher amplitude. Bottom panel showing Fourier Transform. The blue

line is the False Alarm Probability.
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Figure 16 — TESS 30 minutes cadence data of star with TIC 141117787. Top panel showing folded light
curve over twice the period of higher amplitude. Bottom panel showing Fourier Transform. The blue
line is the False Alarm Probability.



Chapter 5. Results 40

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Phase

Figure 17 — Folded light curve over twice the period of higher amplitude of the star with
TIC 800350281.
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Figure 18 — Fourier transform of the TIC 800350281 light curve, showing several harmonics of the
eclipse period.
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6 Discussion

Liebert, Bergeron, and Holberg (2003) propose that magnitude limited samples,
as the one studied in this work, have a bias against higher mass white dwarfs since for a
given temperature they have a smaller radius than those with less mass and consequently
a smaller luminosity. This would lead them to be detected less frequently. However, they
did not take into consideration that more massive white dwarfs take longer to cool down

because they have a smaller radius and start cooling at higher temperatures.

Since it is not straightforward which of these effects predominate at a given time,
we present Fig. 19 extracted from Bagnulo, and Landstreet (2021). It is clear that magni-
tude limited samples have a complex bias against or in favor of higher masses depending
on the stellar age. One can more rightly conclude that there is a bias in favor of younger

stars independently of their mass.
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Figure 19 — Cooling history of 1.2 Mg (black solid lines), 0.9 Mg (blue dotted lines), and 0.6 Mg (tick
red solid lines) WDs. Top panel: T versus cooling age 7; mid-panel: luminosity versus cooling age;
bottom panel: Johnson B absolute magnitude versus cooling age. Data from Montreal cooling curve
database.
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Bagnulo, and Landstreet (2021) found also that the frequency of magnetic white
dwarfs is substantially depressed in stars younger than 0.5 Gyr and that this difference
probably reflects the action of the mechanisms that produce magnetic fields in white

dwarfs.

Even though it favors younger stars, magnitude limited surveys especially with
low-resolution spectroscopy are the ones that can go deeper in magnitude and examine a
larger sample of stars. With this in perspective, we will discuss the distribution of magnetic
field strength, the relation between magnetic field and mass, effective temperature and

period, and some specific cases that stand out in our sample.

6.1 Distribution of magnetic field strength

The fraction of magnetic white dwarfs rich in hydrogen found in this work was
2.7%. A number far below the previous values presented in the literature. We call attention
to the strong bias present in our sample due to the chosen survey. The choice of which stars
are going to be observed by SDSS has changed over time, resulting in a smaller number
of magnetic white dwarfs in the latest data releases because white dwarfs in general were

not targeted.

We also note that the visual identification of Zeeman splittings is much more
efficient for magnetic fields below 60 MG when the effect is well behaved as can be
noticed in Fig. 11. With these reservations, we present the distribution of the magnetic
field strength of our sample in Fig. 20. A higher appearance of magnetic fields of strength
below 3 MG is noticeable.

As was mentioned in Section 1, the HR-Diagram is a fundamental tool to the
study of stellar evolution. Thus, we looked into the HRD with magnetic field amplitudes
in search of evidence of magnetic field interference in its star host. The HRD of our
sample in the form of CMD (Color-Magnitude Diagram) can be seen in Fig. 21, and it
is distinguishable that the more massive (Mg 2 12 ) white dwarfs display higher fields.
This could be a reflection of the fact that the mean mass of the DAH is significantly
higher than the non-magnetic ones or perhaps another effect is happening. We investigate
it further in the next section. Although it is not clear a relationship between effective
temperature and magnetic field in Fig. 21 due to the density of points, we dive deeper

into this analysis in section 6.3.
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Figure 20 — Magnetic field strength histogram for all magnetic white dwarf in our sample.
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Figure 21 — HR Diagram with data from GAIA for white dwarfs rich in hydrogen. Grey points repre-
sent DAs without a detected magnetic field and other colors indicate the logarithm of the magnetic
field strength in MG. It is evident the accumulation of higher magnetic fields at the more massive re-
gion of the diagram.
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6.2 Relation between mass and magnetic field

To further examine the possible relation between magnetic field and mass, we
made Fig. 22 to study the number of stars with magnetic fields and Fig. 23 to study the

connection between the absolute magnitude of the magnetic field and the star’s mass.
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Figure 22 — Histogram of mass calculated with GATA data for all DAs in red and only the magnetic

ones in blue.

1000
e o
L]
* . *
. .
L]
. .
n..
. (] .
100 4 . e e e . ¢
. * e % .
LY I
- . o f ..:;. 0-00:;. ° .
g L) . o b ..
; .. ..~ .. ..:... ....’ .-:. :.... . ¢
10 ¢ . e e P o,
* -.'. . ’ 'o ': s AL
e g0 * . o2 .co' ..'."
L .‘\\ ° -..p Ce A
R Q:M -aa,-:,:.- L
e ® 8,
14 . .
0.2 0.4 0.6 0.8 1.0 1.2 1.4

Figure 23 — Magnetic field versus mass calculated with GATA data showing a clear absence of highly
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It is perceptible that the distribution of mass of DAH can be approximated by a

Gaussian centered in 0.78 Mg with no further remarkable features. Meanwhile, Fig. 23
shows an evident lack of low mass DAH with strong fields.
6.3 Relation between effective temperature and magnetic field

In the search for a better understanding of the magnetic field origin, we investigate

its relation to the effective temperature of the inspected stars. Fig. 24 shows that the

magnetic field strength increases as the effective temperature decreases.
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Figure 24 — Magnetic field versus effective temperature calculated with GAIA data showing a clear
increase of highly magnetic white dwarfs with lower temperatures.

Not only do we find white dwarfs with stronger magnetic fields, but also we detect
more magnetic white dwarfs at lower temperatures. The second effect is naturally expected
because it is easier to detect white dwarfs at lower temperatures since they spend more
time cooling down. To consider this effect and check if there are really more magnetic
white dwarfs at lower temperatures, we study the fraction of DAH compared to the whole
sample of white dwarfs rich in hydrogen. This is illustrated by Fig. 25 and it is noticeable

that the fraction of magnetic stars is indeed increasing as the temperature decreases.

It is especially outstanding the rapid growth in magnetic fraction around effective
temperature of 25000 K (log T.ry ~ 4.4), temperature at which a convective zone of

helium is internally formed in the white dwarf that could be responsible for this increase.
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Figure 25 — The ratio of the number of DAHs to the number of DAs versus effective temperature show-

ing a peak of abundance near Teg = 25000 K. The blue vertical lines represent the standard errors for
each point.

We also call attention to the build-up in the magnetic fraction that starts around effective
temperature of 16000 K (log T.rr ~ 4.2). At this temperature, a convective zone of
hydrogen is formed in the white dwarf, and it could be responsible for the rise in the

magnetic fraction.

A question then arises: does the effect change depending on the stellar mass? To
answer this question we divided our sample in two at M = 0.8 Mgand at M = 1 Mgand

compared the results, which can be seen in the left and right panel of Fig. 26 respectively.

It is perceptible that the distribution of DAs doesn’t change much except for the
fact that there are considerably fewer stars with M>1 M. Differently, in the DAH there
is a significant variation of the distribution. We highlight the valley around 10000 K (log
Terr = 4.0) as being a consequence of convective mixing and dilution. They pollute the
stellar atmosphere with helium and thin the hydrogen layer, reducing the number of DAs
and augmenting the number of DABs or DBAs. This effect is constrained in temperature
in consequence of the disappearance of the lines of helium at lower temperatures, meaning
that the star may contain helium in its atmosphere, it is only not possible to observe it

through the spectra.
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Figure 26 — Both panels show the number of DAHs and DAs versus the effective temperature. The
sample was divided at 0.8 Mgand 1.0 Mg, represented in the upper panel and the lower panel re-
spectively. We divided the absolute number of DAs by ten to allow better visualization. It is evident
a change in behavior of the distribution of DAHs that is not accompanied by the distribution of DAs.

The magnetic DAs with mass above 0.8 Mzhave a similar double peak behavior,
even though it is more restricted in temperature. The magnetic DAs with mass above 1
Mgon the other hand have the second peak missing. Some mechanism must be inhibiting

the magnetic field for higher masses at temperatures around 16000 K (log T.ss ~ 4.2).
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This same effect is not observed for masses below 1 M. In fact, the exact opposite occurs,
and they show the second peak much higher than the first. The behavior of the lower mass
DAHs is exactly the one discussed earlier thus becoming necessary the understanding of

what could be suppressing the higher masses magnetic fields.

One very important physical process that is highly dependent on the white dwarf
mass is the crystallization of its core, and we suppose that it is the one holding the
magnetic field back. In the search for a better understanding of the relation between the
crystallization and the magnetic field, we divided the star in two groups (the ones that
have already started the crystallization process according to the models and the ones
that haven’t) and built Fig. 27. This figure was not very helpful since both groups present

various magnetic field intensities.
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Figure 27 — Magnetic field versus effective temperature calculated with GAIA data showing no clear
evidence of the influence of crystallization over the magnetic field strength.

To investigate this question even further, we built Fig. 28, in which one can see not
only if the star has started to crystallize its core, but also have an idea of how advanced
this process is. The further the star is from the crystallization line in the colder direction
more crystallized its core is. We emphasize that the crystallization line has an intrinsic

uncertainty to the models used to compute it.

It is recognizable that most of the stars with higher magnetic fields have started
the crystallization process, which goes against the hypothesis that crystallization is re-
sponsible for the lower fraction of magnetic DAs with higher masses. In fact, Isern et al.
(2017) proposed a mechanism of generation of magnetic fields of strengths of up to 0.1
MG by the dynamo in the convective region generated by the phase separation due to the
crystallization process. Ginzburg, Fuller, and Kawka (2022) found that these fields could
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Figure 28 — Mass versus effective temperature calculated with GAIA data. The colors black, blue, and
red represent magnetic fields below 10 MG, between 10-100 MG, and above 100 MG respectively. The
two red stars represent the most magnetic DAs with a magnetic field above 700 MG. The solid black
line represents the temperature of crystallization for the single evolution of white dwarfs of differ-

ent masses as presented by Romero et al. (2013), Horowitz, Schneider, and Berry (2010) and Lauffer,
Romero, and Kepler (2018). The crystallization increases to the right from the line.

go as high as 100 MG depending on the rotational period of the star and its mass.
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6.4 Relation between periodicities and magnetic field

The periods detected are well spread and not localized around 2-3 hours as seen
in Kawka (2020). Even though they are not necessarily the rotational periods, we looked
for a relationship between them, the strength of the magnetic fields measured and the

temperature of the star. We didn’t find any significant trend as shown in Fig. 29.

This absence in correlation is in agreement with Brinkworth et al. (2013), who

found no correlation between rotation period and mass, temperature, magnetic field, or

age.
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Figure 29 — Magnetic field versus variation period. The color of the dots indicates their respective tem-
peratures in K.
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6.5 Particular Stars

Some stars have more than one spectrum observed by SDSS in which it is possible
to look for variability in the line profiles as an indication of the rotational period. Besides
the inclination of the star in respect to the line of sight, which may allow us to see different
portions of the stellar surface as it rotates, the line profiles can also change due to the

misalignment between the magnetic field axis and the rotation axis.

Here we highlight the star SDSS J030407.40-002541.74 in which this effect is promi-
nent. In Fig. 30 we can see that the H, line varies between a deeper central line to equally
deep triplet components. It is also visible that the c— component of the Hg line appears

and disappears.
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0709-52205-0120 25/02/2008 18:36:05
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Figure 30 — Different spectra of SDSS J030407.40-002541.74 with their respective observation dates.
The two small vertical black segments mark the position of Hg and H,, lines.

This star has also been observed by TESS and we have 30 minutes data from
sectors 4 and 31. Unfortunately, no variation above the detection limit was identified,
which is understandable since it is very faint (GAIA Mag = 17.8528).

The same process that affects the SDSSJ030407.40-002541.74 Hpg lines could be
responsible for the Hg line profile of SDSSJ030407.39-002541.9 which is illustrated in Fig.
31. Kilic et al. (2021) argued that assuming a hydrogen atmosphere, an inclination, and
an offset dipole geometry the lines could not be reasonably reproduced. We found a very
good fit to the observed spectra except for the lateral components of the Hg line, which
is expected to change as shown for SDSSJ030407.40-002541.74.
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Kilic et al. (2021) assumed then a centered dipole as in Fig 31 lower panel and
explained the difference in the line depth between the model and the observed spectra
with the assumption of a non-pure hydrogen atmosphere. We believe that this additional

complexity is not needed to explain the data.
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Figure 31 — Observed spectrum of SDSSJ030407.39-002541.9. The model with the best least-squares fit
to the data is shown in red. We highlight that the line near 5500A is due to systematic error of join-
ing to different observations by SDSS. The upper panel shows a model with computed offset magnetic
dipole field geometry while the lower panel shows a model computed not inclined centered magnetic
dipole field geometry with the strength found in the previous calculation.
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7 Conclusions

In this work, we estimated magnetic field strength for 803 white dwarfs observed
from SDSS and the photometric variability of 380 white dwarfs observed with TESS. It
consists of the largest number of magnetic field and variation period determinations to
date. We searched for relations between magnetic field strength and stellar mass, effective

temperature, variation period, and crystallization status.

It was found that a considerable percentage of DAH have fields below 3 MG. This
is, to some extent, biased from our spectroscopic method but could also mean that lower
fields are more abundant in white dwarfs. This result is in opposition to Bagnulo, and
Landstreet (2021) which concluded that within the range of field strength found in the
20 pc volume, which extends between about 40 kG and 300 MG, the probability of fields

occurring is roughly constant per dex of field strength.

We found that the magnetic field strength increases as the effective temperature
decreases, together with an increase in the fraction of magnetic white dwarfs. This effect
corroborates with the surface magnetic field being generated or enhanced in the white

dwarf cooling phase.

We could also observe that the highest fields tend to occur in the more massive
stars, and that the mean mass was in general higher than the non-magnetic ones (0.78
Mgcompared to the usual 0.6 Mg). This does not give us any new information about the
origin of the magnetic field because many assumptions already consider a higher mass.
But a physical property closely related to the mass is the crystallization, and we found
that the most magnetic ones tend to be already crystallized. This is expected since DAH
have higher masses so they crystallize at higher temperatures but spend more time (easier

to detect) at lower temperatures (already crystallized).

Unfortunately, our investigation around the relation between magnetic field strength
and variation period resulted in no clear correlation found. This could be in the future
improved by identifying which periods are actually due to rotation and which are related
to other sources. So, no conclusion about the origin of the magnetic field can be derived

from variability.

The limitations of our work and how they could be improved are as follows:

1. - We considered log g = 8, which is a good approximation for white dwarfs in general
but not for the magnetic subgroup, that tends to be more massive. To advance the
research, one could consider a log g more representative of the magnetic sample or

augment it even further considering individually the log g for each star.
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2. - Only hydrogen transition lines up to level 7 were considered, even though there
are Balmer transitions up to principal quantum number n = 10 available in the lit-
erature. The results of our work could be slightly improved by adding these existing

models.

3. - It is not certain from the literature if DAHs are good representatives of the other
classes of magnetic white dwarfs, even though Bagnulo, and Landstreet (2021) sug-
gest that they are. To corroborate this conclusion it’s necessary a study of an ex-
tensive sample of other white dwarfs, for which it is crucial a better understanding
of the effect of magnetic fields over other atoms besides hydrogen. This is slowly

being achieved in the literature.
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Appendix

A) DAHs with 120 and 20 seconds TESS data

A comparison between the periods determined with 30 minutes cadence and 120/20

seconds cadence is presented in Table 2.

TIC 30 min period (h) 120/20s period (h)

82596432 270.42 289.69
87547997 106.81 236.70
137733927 79.04 35.25
141117787 6.71 6.70
141874000 190.95 19.16
165916724 89.26 0.09
188595599 166.62 135.18
306449009 58.15 66.85
357441103 166.97 63.57
453828065 111.83 110.87
471014089 153.41 58.88
900490689 172.10 173.86
1101159910 317.25 115.56
1205040141 106.03 77.99

Table 2 — The table presents the TIC and highest amplitude period of variability above the FAP for
the 30 minutes cadence and the 120/20 seconds cadence data.
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B) Previously known magnetic DAs with TESS

For the purpose of completeness we present the Table 3 with variational period
measured for previously known magnetic DAs. Between these star we highlight TIC
267166358 as an example of 20s cadence data and detection of short periods. It’s Fourier

transform is presented in Fig. 32.

TIC FAP  Period Classification References
55096188 4.326 2.75013h@5.102mma DAH 1]
85585141 5.043 5.952h@13.605mma DAH 2]
91329200 8.023  164307.90s@20.824mma DAH 3]

142871516  8.827 24.85987h@45.229mma DAH 3]
149767969  4.118  204599.84s@7.652mma DAH 3]
201892746  1.788  4.008h@3.407mma DAH 4]
274239484  0.991 6937.80s@6.42933 DAH [5]
283414280 18.871 114.304h@51.973mma DAH 6]
289712694  2.381  2650.7300s@3.404mma DAH [7]
301021757  2.740 342.45s@3.223mma DAH 8]
321159503 7.714 1677.1s@l1.11mma DAH [9]
345036441  6.542 5924.28s@11.597mma DAH 4]
376020501  47.109 547087.14s@97.708mma DAH [10]
471013547  6.251 42.49954h@18.272mma DAH [11]
1101327387 45.152 4699.455@217.279mma DAH 3]
453828065  4.759 110.87646h@20.319mma DAH [12]
115613388  1.354 2534.13s@1.730mma DAP [13]
229797408  0.165 153.50411h@0.406mma DAP [14]
267166358  0.922  725.725371677s@26.316mma DAP [15]
321979116  0.244 2.69517h@2.303mma DAP [13]
471013569 83.876 4.10h=14754.05s@88.937mma, DAP [15]

Table 3 — The table presents the TIC, False Alarm Probability, highest amplitude period of variability
above the FAP, together with the spectral classification and its respective reference. [1]-Euchner et al.
(2005); [2]-Kawka, and Vennes (2006); [3]-Kilic et al. (2020); [4]-Angel, Borra, and Landstreet (1981);
[5]-Greenstein (1974); [6]-Landstreet, and Bagnulo (2019); [7]-Bergeron, Ruiz, and Leggett (1992); [8]-
Achilleos, Remillard, and Wickramasinghe (1991); [9]-Tremblay et al. (2020); [10]-Raddi et al. (2017);
[11]-Kleinman et al. (2013); [12]-McCleery et al. (2020); [13]-Gianninas, Bergeron, and Ruiz (2011);
[14]-Wesemael et al. (1993); [15]-Wickramasinghe, Whelan, and Bessell (1977)
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Figure 32 — Fourier Transform for the 20 seconds cadence data of the star with TIC 267166358. The
blue line is the False Alarm Probability. The higher amplitude peak is 1379 p Hz or 725 s.

C) Complete table of determined magnetic fields

To compute the uncertainty in our measurements of magnetic field we used the
fact that when using x? if we have a minimum Y2 and change one parameter by d we
obtain a new value o Y?:

>~<2:><2+Ci2 - J:7d2
o N G
where ¢ is the uncertainty of the measurement. The mean value of this uncertainty is 3

MG, or in relative terms 12%.

To compute the uncertainty in our measurements of the photometric variability
we consider: . P
=— = df = —.
! P f P2
The biggest period that can be considered being the length of the data-set (7'), the
smallest step in frequency became dF = T—!. With this information we computed dP

and present it in Table 4. The mean value of this uncertainty is 16%.
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D) Resumo simplificado estilo nota de imprensa (press release)

Ajudando a entender a origem de Campos
Magnéticos em estrelas Anas Brancas

A dissertacao de Mestrado intitulada “Anas Brancas Magnéticas ricas em Hidrogénio"
da aluna Larissa Luciano Amorim, do Programa de Pés Graduagao em Fisica da Univer-
sidade Federal do Rio Grande do Sul, apresenta o maior catdlogo de estrelas anas brancas

com campo magnético determinado.

As anas brancas sao excelente laboratério de pesquisa na busca para compreender a
natureza e suas leis. Essas estrelas representam o estagio final de evolugao de mais de 97%
das estrelas e podem apresentar temperaturas, pressoes e campos magnéticos inatingiveis
na Terra. As altas pressoes sao decorrentes da concentracao de massas tao grandes como a
do Sol em espacos tao pequenos quanto o tamanho do nosso planeta. Outra caracteristica
relevante dessas estrelas é o fato elas emanarem calor muito lentamente, resfriando durante
bilhoes de anos. Assim, eventualmente, as temperaturas no nucleo sao suficientemente
baixas, que em conjunto com as altas pressoes, fazem com que este se torne um cristal.
Modelos teodricos nos informam se anas brancas com determinada temperatura e massa

ja devem ter iniciado ou nao seu processo de cristalizagao.

Ja com relacao ao campo magnético presente nessas estrelas, existem varias hipote-
ses de como podem ter surgido. As principais sdo: um campo magnético interno ja existia
em etapas anteriores da evolucao da estrela e foi apenas conservado e “exposto" quando
a estrela se torna uma ana branca; o campo magnético surge na formacao da ana branca,
quando esta interage com uma estrela companheira, em um sistema binario; o campo

magnético é formado durante o processo de resfriamento da ana branca.

Para entender melhor o campo magnético se origina nessas estrelas e afeta out-
ras caracteristicas estelares determinamos sua intensidade em 808 anas brancas ricas em
hidrogénio e o periodo de variabilidade temporal para 380 dessas estrelas. Além disso,
analisamos dados de temperatura e massa, determinando quais ja tinham iniciado a

cristalizacao.

A determinacao do campo magnético se baseou no fato de que as estrelas emitem
luz em cada cor(frequéncia) de maneira diferente, o que chamamos de espectro. Algumas
cores nao chegam até nds por serem absorvidas por atomos na atmosfera da estrela. Essa
absorcao maior em uma determinada cor é chamada de linha de absorcao. Ela se divide na

presenca de um campo magnético, fendomeno conhecido como Efeito Zeeman. Por exemplo,
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uma linha pode se dividir em trés e a separacao entre as linhas adicionais e a original
¢ proporcional a intensidade do campo magnético. Existem modelos tedéricos de como
essas linhas devem se comportar sob a influéncia de campos magnéticos de diferentes
intensidades. Esses modelos foram comparados com espectros reais de estrelas observados

com o telescépio Sloan Digital Sky Survey.

Ja a determinagao dos periodos de variabilidade se fundamentou na medida de toda
a luz da estrela observada a cada 30 minutos pelo telescopio espacial Transiting Fxoplanet
Survey Satellite. Com esses dados pode-se construir uma curva de como a luz varia com
o tempo e procurar variacoes ciclicas, determinando assim um periodo de variabilidade.

Esse periodo ¢ associado a rotagdo da estrela em torno do seu proprio eixo.

A andlise dos resultados levou a conclusdo de que as anas brancas com campos
magnéticos mais altos tendem a apresentar massas mais elevadas, temperaturas mais
baixas e processo de cristalizacdo ja iniciado, reforcando a hipotese de o campo estar

sendo gerado e/ou amplificado ja no processo de resfriamento da ana branca.



	Title page
	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	List of Figures
	Contents
	Introduction
	Stars
	Stellar Evolution
	White Dwarfs
	Magnetic Field
	Spectral Lines
	Overview

	Previous works
	Data
	Stellar properties
	Magnetic Field
	Magnetic Field Geometry

	Variability

	Results
	Detection of magnetic fields in SDSS DR16 white dwarfs
	Detection of Periodicity in TESS Full Frame Image

	Discussion
	Distribution of magnetic field strength
	Relation between mass and magnetic field
	Relation between effective temperature and magnetic field
	Relation between periodicities and magnetic field
	Particular Stars

	Conclusions
	Bibliography

