
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
ESCOLA DE ENGENHARIA

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

MAIK BASSO

A COOPERATIVE NAVIGATION
SYSTEM WITH DISTRIBUTED

ARCHITECTURE FOR MULTIPLE
UNMANNED AERIAL VEHICLES

Porto Alegre
2022



MAIK BASSO

A COOPERATIVE NAVIGATION
SYSTEM WITH DISTRIBUTED

ARCHITECTURE FOR MULTIPLE
UNMANNED AERIAL VEHICLES

Thesis presented to Programa de Pós-Graduação
em Engenharia Elétrica of Universidade Federal do
Rio Grande do Sul in partial fulfillment of the re-
quirements for the degree of Doctor in Electrical
Engineering.
Area: Control and Automation

ADVISOR: Prof. Dr. Edison Pignaton de Freitas

Porto Alegre
2022



MAIK BASSO

A COOPERATIVE NAVIGATION
SYSTEM WITH DISTRIBUTED

ARCHITECTURE FOR MULTIPLE
UNMANNED AERIAL VEHICLES

This thesis was considered adequate for the award-
ing of the degree of Doctor in Electrical Engineer-
ing and approved in its final form by the Advisor
and the Examination Committee.

Advisor:
Prof. Dr. Edison Pignaton de Freitas, UFRGS
PhD from Halmstad University, Sweden and Federal Univer-
sity of Rio Grande do Sul, Brazil

Examination Committee:

Prof. Dr. Paulo Fernando Ferreira Rosa, IME
PhD from Niigata University, NIIDAI, Japan

Prof. Dr. Edson Prestes e Silva Junior, UFRGS
PhD from Federal University of Rio Grande do Sul, Brazil

Prof. Dr. Carlos Eduardo Pereira, UFRGS
PhD from Technische Universitat Stuttgart, Germany

Coordinator of PPGEE:
Prof. Dr. Sérgio Luís Haffner

Porto Alegre, March 2022.



DEDICATÓRIA

Dedico esta tese em memória ao meu querido avô Adelino José Basso, cuja com o
qual eu tive a oportunidade de conviver, aprender e me inspirar. Vô Adelino, você sempre
estará vivo em minhas memórias!

Dedico esta tese em memória ao meu querido avô Alceu Cadoná, que apesar de ter
convivido pouco tempo comigo, sempre me alegrava e me divertia. Vô Alceu, tenho
certeza que deve estar muito feliz com todas as nossas conquistas.



AGRADECIMENTOS

Aos meus pais Devanir Giovani Basso e Eliane Marisa Cadoná Basso, que apesar de
todas as dificuldades estiveram sempre ao meu lado em todas as minhas escolhas, me
orientando e me motivando sempre com muito amor, carinho e compreensão.

Ao meu irmão Gabriel Cadoná Basso, ao qual consegue mesmo em tempos de dificul-
dade ter sempre um sorriso enorme no rosto, me motivando e me alegrando.

As minhas avós Ondina Piaia Basso e Delmiria Vanin Cadoná que sempre me deram
o apoio necessário para que eu conseguisse enfrentar os momentos difíceis.

À minha namorada Jéssica Andressa Kloster, por estar sempre ao meu lado, me
apoiando e acima de tudo compartilhando das angústias e alegrias que esta jornada pro-
porcionou nas nossas vidas.

Aos amigos e colegas, Carlos Felipe Emydgio de Melo, Túlio Dapper e Silva, Mar-
cos Rodrigues Vizzotto, Mateus Schein Cavalheiro Corrêa, David Rutherford Armstrong,
Lucas Bortolanza Grazziotim, Tiago Giacomelli Alves, Diego Alvim Stocchero, Pedro
Schnarndorf e Luíza Caetano Garaffa que participaram de partes desta tese, seja com
ideias ou me ajudando e dando apoio para que eu conseguisse superar todos os desafios.

Ao Programa de Pós-Graduação em Engenharia Elétrica (PPGEE), por me conceder
a oportunidade de realização desta pesquisa, e em especial à Miriam Rosek, pela disponi-
bilidade em me atender e me ajudar com a parte burocrática sempre que necessário.

Ao meu professor e orientador Edison Pignaton de Freitas, pelo tempo que dedicaste a
me orientar nesta tese, por me entusiasmar e não me deixar desistir dos objetivos mesmo
nos momentos mais complicados. Saiba professor que serei sempre grato pelas oportu-
nidades que colocastes na minha vida, por nossa amizade. Muito obrigado.

Ao professor e amigo Renato Ventura Bayan Henriques por possibilitar a realização
dos estágios docência na graduação.

À CAPES pela concessão de bolsa para a minha manutenção durante o período de
dedicação exclusiva a pesquisa contida nesta tese.

A todas as pessoas que se fizeram presentes nessa etapa da minha vida me apoiando
para que a conclusão deste curso fosse possível.

Por fim, agradeço à Deus, por estar sempre ao meu lado me guiando e me protegendo
em todos os momentos.



"Eu quero, eu sei, eu posso e eu consigo!"

Eliane Marisa Cadoná Basso



ABSTRACT

Unmanned aerial vehicles (UAVs) have been widely used in many applications due to,
among other features, their versatility, reduced operating cost, and small size. These appli-
cations increasingly demand that features related to autonomous navigation be employed,
such as mapping. However, the reduced capacity of resources such as, for example, bat-
tery and hardware (memory and processing units) can hinder the development of these
applications in UAVs. Thus, the collaborative use of multiple UAVs for mapping can be
used as an alternative to solve this problem, with a cooperative navigation system. This
system requires that individual local maps be transmitted and merged into a global map
in a distributed manner. In this scenario, there are two main problems to be addressed:
the transmission of maps among the UAVs and the merging of the local maps in each
UAV. In this context, this work describes the design, development, and evaluation of a
cooperative navigation system with distributed architecture to be used by multiple UAVs.
This system uses proposed structures to store the 3D occupancy grid maps. Furthermore,
maps are compressed and transmitted between UAVs using algorithms specially proposed
for these purposes. Then the local 3D maps are merged in each UAV. In this map merg-
ing system, maps are processed before and merged in pairs using suitable algorithms to
make them compatible with the 3D occupancy grid map data. In addition, keypoints ori-
entation properties are obtained from potential field gradients. Some proposed filters are
used to improve the parameters of the transformations among maps. To validate the pro-
posed solution, simulations were performed in six different environments, outdoors and
indoors, and with different layout characteristics. The obtained results demonstrate the
effectiveness of the system in the construction, sharing, and merging of maps. Still, from
the obtained results, the extreme complexity of map merging systems is highlighted.

Keywords: Multi-UAVs Applications, Cooperative Navigation Systems, 3D Occu-
pancy Grid Maps, 3D Mapping, Map Sharing, 3D Map Merging.



RESUMO

Os veículos aéreos não tripulados (VANTs) têm sido amplamente utilizados em muitas
aplicações devido, entre outros recursos, à sua versatilidade, custo de operação e tamanho
reduzidos. Essas aplicações exigem cada vez mais que recursos relacionados à navegação
autônoma sejam empregados, como o mapeamento. No entanto, a capacidade reduzida
de recursos como, por exemplo, bateria e hardware (memória e capacidade de processa-
mento) podem atrapalhar o desenvolvimento dessas aplicações em VANTs. Assim, o uso
colaborativo de múltiplos VANTs para mapeamento pode ser utilizado como uma alter-
nativa para resolver este problema, criando um sistema de navegação cooperativo. Este
sistema requer que mapas locais individuais sejam transmitidos e fundidos em um mapa
global de forma distribuída. Nesse cenário, há dois problemas principais a serem abor-
dados: a transmissão dos mapas entre os VANTs e a fusão dos mapas locais em cada
VANT. Neste contexto, esta tese apresenta o projeto, desenvolvimento e avaliação de um
sistema de navegação cooperativo com arquitetura distribuída para ser utilizado por múl-
tiplos VANTs. Este sistema usa estruturas propostas para armazenar os mapas de grade
de ocupação 3D. Além disso, os mapas são compactados e transmitidos entre os VANTs
usando os algoritmos propostos. Em seguida, os mapas 3D locais são fundidos em cada
VANT. Neste sistema de fusão de mapas, os mapas são processados antes e juntados em
pares usando alguns algoritmos adequados para torná-los compatíveis com os dados dos
mapas da grade de ocupação 3D. Além disso, as propriedades de orientação dos pontos-
chave são obtidas a partir de gradientes de campos potenciais. Alguns filtros propostos
são utilizados para melhorar as indicações dos parâmetros das transformações entre ma-
pas. Para validar a aplicação proposta, foram realizadas simulações em seis ambientes
distintos, externos e internos, e com características construtivas distintas. Os resultados
apresentados demonstram a efetividade do sistema na construção, compartilhamento e fu-
são dos mapas. Ainda, a partir dos resultados obtidos, destaca-se a extrema complexidade
dos sistemas de fusão de mapas.

Palavras-chave: Aplicações com Múltiplos VANTs, Sistemas de Navegação Coope-
rativos, Mapas de Grade de Ocupação 3D, Mapeamento 3D, Compartilhamento de
Mapas, Fusão de Mapas 3D.



LIST OF FIGURES

Figure 1 – The different fields of study in mobile robotics (localization, mapping
and motion control) and the problems originated by their overlapping
areas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 2 – Occupancy grid map example. White cells represent all free space.
The black cells represent the obstacles. Finally, the gray cells rep-
resent the unknown regions. All sets of gray cells completely sur-
rounded by obstacles are treated as non-accessible regions. . . . . . . 24

Figure 3 – Topological map example. . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 4 – Erosion filter example. . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 5 – Dilation filter example. . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 6 – FAST circle around p point. . . . . . . . . . . . . . . . . . . . . . . 32
Figure 7 – BRIEF samples example. . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 8 – Video surveillance in a disaster recovery scenario. . . . . . . . . . . 35
Figure 9 – ROS Publisher/Subscriber example. . . . . . . . . . . . . . . . . . . 37
Figure 10 – ROS Service example. . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 11 – UAV simulation on Gazebo interface. . . . . . . . . . . . . . . . . . 38
Figure 12 – Example of a cooperative navigation system application scenario. . . 40
Figure 13 – Two examples of exploration scenarios that require flight at different

altitudes (flight levels). . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 14 – Architecture of proposed cooperative navigation system for multiple

UAVs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 15 – System processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 16 – Mapping module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 17 – Mapping module execution flow. . . . . . . . . . . . . . . . . . . . . 60
Figure 18 – Data sharing module. . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 19 – Data sharing server execution flow. . . . . . . . . . . . . . . . . . . 62
Figure 20 – Data sharing client execution flow. . . . . . . . . . . . . . . . . . . . 62
Figure 21 – Map merging module. . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 22 – Map merging module execution flow. . . . . . . . . . . . . . . . . . 64
Figure 23 – The structure of 3D dynamic occupancy grid maps. . . . . . . . . . . 65
Figure 24 – The 3D dynamic occupancy grid map cell representation. . . . . . . . 66
Figure 25 – The possible map size increments. . . . . . . . . . . . . . . . . . . . 66
Figure 26 – The representation of map storage structures. . . . . . . . . . . . . . 67
Figure 27 – The HIMM algorithm operation. . . . . . . . . . . . . . . . . . . . . 69
Figure 28 – Data sharing scenario. . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 29 – First step: occurrences compression. . . . . . . . . . . . . . . . . . . 71
Figure 30 – Second step: sequences compression. . . . . . . . . . . . . . . . . . 72



Figure 31 – Map serialization protocol. . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 32 – Start transfer frame. . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 33 – Data frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 34 – Stop transfer frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 35 – Pairwise map merging flow. . . . . . . . . . . . . . . . . . . . . . . 76
Figure 36 – Proposed map merging system. . . . . . . . . . . . . . . . . . . . . 77
Figure 37 – Proposed system high-level building blocks architecture. . . . . . . . 90
Figure 38 – The virtual environments used to perform the proposed experiments. . 91
Figure 39 – Mean map compression time. . . . . . . . . . . . . . . . . . . . . . 94
Figure 40 – Mean map decompression time. . . . . . . . . . . . . . . . . . . . . 95
Figure 41 – Comparison of the maps’ size before and after compression. . . . . . 95
Figure 42 – Mean time to share maps with and without compression. . . . . . . . 96
Figure 43 – Mean time to preprocessing maps. . . . . . . . . . . . . . . . . . . . 97
Figure 44 – Comparison between keypoint detectors in keypoints output number. 98
Figure 45 – Comparison between keypoint detectors in mean time to detect. . . . 99
Figure 46 – Visual comparison between keypoint detectors applied to the map ID

= 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Figure 47 – Comparison between keypoint detectors submitted to random map

transformations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 48 – Mean filtered keypoints. . . . . . . . . . . . . . . . . . . . . . . . . 101
Figure 49 – Mean time to filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Figure 50 – Mean description time by descriptor size and 100 keypoints. . . . . . 102
Figure 51 – Mean description time by number of keypoints and descriptor size

ds = 256. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Figure 52 – Mean time to find correspondences by descriptors number. . . . . . . 103
Figure 53 – Mean time to find correspondences by descriptors size and 100 de-

scriptors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Figure 54 – Mean input and output correspondences number. . . . . . . . . . . . 105
Figure 55 – Mean true input and output correspondences number. . . . . . . . . . 105
Figure 56 – Mean false input and output correspondences number. . . . . . . . . 106
Figure 57 – Mean time to filter correspondences. . . . . . . . . . . . . . . . . . . 106
Figure 58 – Mean component execution time. . . . . . . . . . . . . . . . . . . . 107
Figure 59 – Mean time to merge each map pair. . . . . . . . . . . . . . . . . . . 108
Figure 60 – Maps acquired from bookstore environment. . . . . . . . . . . . . . 112
Figure 61 – Maps acquired from hospital environment. . . . . . . . . . . . . . . 113
Figure 62 – Maps acquired from maze environment. . . . . . . . . . . . . . . . . 114
Figure 63 – Maps acquired from racetrack environment. . . . . . . . . . . . . . . 114
Figure 64 – Maps acquired from small house environment. . . . . . . . . . . . . 115
Figure 65 – Maps acquired from small warehouse environment. . . . . . . . . . . 116
Figure 66 – Mean time to share all the maps on each UAV. . . . . . . . . . . . . . 117
Figure 67 – Mean time to merge all the maps on each UAV. . . . . . . . . . . . . 117
Figure 68 – Scalability test based on average time to complete application execu-

tion in each UAV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118



LIST OF TABLES

Table 1 – List of symbols used for state representation. . . . . . . . . . . . . . 23
Table 2 – Comparison with related works. . . . . . . . . . . . . . . . . . . . . 57
Table 3 – Rules for merging occupancy grid map cells, adapted from (MA et al.,

2016). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 4 – Maps Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 5 – List of map pairs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 6 – Pairwise map merging visual evaluation part 1. . . . . . . . . . . . . 110
Table 7 – Pairwise map merging visual evaluation part 2. . . . . . . . . . . . . 111



LIST OF ABBREVIATIONS

1D One-dimensional

2D Two-dimensional

3D Three-dimensional

6D Six-dimensional

AUV Autonomous Underwater Vehicle

BRIEF Binary Robust Independent Elementary Features

CG Center of Gravity

CSV Comma-Separated Values

DoF Degrees-of-Freedom

DSM Data Sharing Module

EKF Extended Kalman Filter

ESC Electronic Speed Controller

FAST Features from accelerated segment test

FCU Flight Control Unit

GB Gigabyte

GHz Gigahertz

GNSS Global Navigation Satellite System

GPS Global Positioning Systems

HIMM Histogramic In Motion Mapping

ID Identifier

IMU Inertial Measurement Unit

IP Internet Protocol

KF Kalman Filter

LIDAR Light Detection and Ranging

LTS Long-Term Support

MAS Multi-Agent System



MB Megabyte

MM Mapping Module

MMM Map Merging Module

MTM Map Transformation Matrix

MTP Map Transmission Protocol

ORB Oriented FAST and Rotated BRIEF

PSO Particle Swarm Optimization

RAM Random Access Memory

RANSAC Random Sample Consensus

rFAST Rotated features from accelerated segment test

RGB Red, Green, and Blue

RGB-D Red, Green, Blue, and Depth

RL Reinforcement Learning

ROS Robot Operating System

RPLIDAR RoboPeak Light Detection and Ranging

SIFT Scale Invariant Feature Transform

SITL Software In The Loop

SLAM Simultaneous Localization and Mapping

SSD Solid-State Drive

SURF Speeded Up Robust Features

SVD Singular Value Decomposition

TCP Transmission Control Protocol

UAV Unmanned Aerial Vehicle

UGV Unmanned Ground Vehicle



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.1 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 BACKGROUND CONCEPTS REVIEW . . . . . . . . . . . . . . . . . . 21
2.1 Navigation Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.1 State Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.2 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.3 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.4 Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.1.5 Map Merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.6 Simultaneous Localization and Mapping (SLAM) . . . . . . . . . . . . . 29
2.2 Computer Vision Techniques . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.1 Erosion and Dilation Morphological Operations . . . . . . . . . . . . . . 30
2.2.2 Keypoint Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.3 Binary Robust Independent Elementary Features (BRIEF) . . . . . . . . . 33
2.2.4 Random Sample Consensus (RANSAC) . . . . . . . . . . . . . . . . . . 34
2.3 Multiple UAV Cooperative Systems . . . . . . . . . . . . . . . . . . . . . 35
2.4 Implementation Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.1 Robot Operating System (ROS) . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.2 Gazebo Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4.3 PX4 Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 PROBLEM STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1 Application Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Mapping Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Communication Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Map Merging Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5 Hardware Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.6 Privacy Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 RELATED WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1 General Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Map Merging Specific Related Works . . . . . . . . . . . . . . . . . . . 51
4.3 Summary And Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 53



5 COOPERATIVE NAVIGATION SYSTEM ARCHITECTURE OVERVIEW 58
5.1 Mapping Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 Data Sharing Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3 Map Merging Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 3D OCCUPANCY GRID MAPPING . . . . . . . . . . . . . . . . . . . . 65
6.1 3D Dynamic Occupancy Grid Maps . . . . . . . . . . . . . . . . . . . . 65
6.2 Map Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3 Map Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7 SHARING 3D OCCUPANCY GRID MAPS . . . . . . . . . . . . . . . . 70
7.1 Map Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.2 Map Serialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.3 Map Transmission Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 73

8 3D OCCUPANCY GRID MAP MERGING . . . . . . . . . . . . . . . . . 76
8.1 Map Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
8.2 Keypoints Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
8.3 Keypoints Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.4 Keypoints Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
8.5 Keypoints Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.6 Computing Correspondences . . . . . . . . . . . . . . . . . . . . . . . . 85
8.7 Correspondences Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.8 Computing the Map Transformation Matrix (MTM) Parameters . . . . 87
8.9 Merging 3D Occupancy Grid Maps . . . . . . . . . . . . . . . . . . . . . 89

9 SOLUTION IMPLEMENTATION AND EVALUATION DESIGN . . . . . 90
9.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
9.2 Experiments Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

10 RESULTS AND DISCUSSIONS . . . . . . . . . . . . . . . . . . . . . . 94
10.1 Map Compression Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 94
10.2 Map Transmission Protocol Evaluation . . . . . . . . . . . . . . . . . . 96
10.3 Map Merging Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 97
10.3.1 Map Preprocessing Evaluation . . . . . . . . . . . . . . . . . . . . . . . 97
10.3.2 Keypoint Detector Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 98
10.3.3 Keypoint Filter Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 100
10.3.4 Keypoint Descriptor Evaluation . . . . . . . . . . . . . . . . . . . . . . . 102
10.3.5 Brute Force Descriptor Matcher Evaluation . . . . . . . . . . . . . . . . 103
10.3.6 Correspondences Filter Evaluation . . . . . . . . . . . . . . . . . . . . . 104
10.3.7 Pairwise Map Merging Time Evaluation . . . . . . . . . . . . . . . . . . 107
10.3.8 Pairwise Map Merging Visual Evaluation . . . . . . . . . . . . . . . . . . 109
10.3.9 Maps Visual Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . 112
10.4 Scalability Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116



11 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
11.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
11.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
11.2.1 3D Occupancy Grid Mapping . . . . . . . . . . . . . . . . . . . . . . . . 120
11.2.2 Map Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
11.2.3 3D Occupancy Grid Map Merging . . . . . . . . . . . . . . . . . . . . . 121

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122



16

1 INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are mobile robots that can be remotely guided or
can operate with varying degrees of autonomy. These vehicles can be disposable, when
they are designed to perform a non-return mission, such as battle vehicles, for example,
or reusable, such as those used in monitoring operations (NONAMI et al., 2013).

Economically, UAVs represent a great opportunity for the market of equipment manu-
facturers, investors, and service providers, among other businesses. According to a report
of a study of commercial applications of UAV technology made available by PWC (2016),
the emerging global market for services and businesses using UAVs is valued at over $
127 billion, being distributed across industries from agriculture to the film industries.

Thus, the use of UAVs is increasing due to the different desirable characteristics of
these platforms, such as versatility to be used in different applications, reduced cost and
embedded intelligence (AL-KAFF et al., 2018). They are used in different applications
in both the civilian (BASSO; DE FREITAS, 2020) and the military domain (ORFANUS;
DE FREITAS; ELIASSEN, 2016). In particular, the use of multiple UAV systems is
gaining increasing attention due to their ability to scale in challenging scenarios, such as
law enforcement support in urban areas (DE MORAES; DE FREITAS, 2020).

These applications increasingly demand that intelligent features related to navigation
autonomy be employed to facilitate mission control and even support autonomous naviga-
tion of these vehicles (BASSO; DE FREITAS, 2020; VISION IN INDOOR AND OUT-
DOOR DRONES, 2020). One of the most used practices to aid autonomous navigation is
the construction of virtual representations in the environment, known in mobile robotics
as occupancy grid maps (Birk; Carpin, 2006).

However, the reduced capacity of features such as battery lifetime and hardware
(memory and processing capacity) can be an obstacle for those applications that involve
UAVs in complex environments of considerable size. Thus, the collaborative use of multi-
ple UAVs can be an alternative to face the challenge imposed by these conditions (ZHAO;
LI; ZHANG, 2017; HAN et al., 2016), creating a cooperative navigation system. In these
systems, the mapping task is spread across multiple UAVs, making the application more
robust and reducing the time needed to build a map compared to single UAV systems.



17

In this way, each UAV component of the cooperative navigation system builds its vir-
tual representations in three dimensions and shares them with the UAVs within its com-
munication range. Then, each UAV that receives the environment virtual representation
of other UAVs performs the map merge in its embedded system.

In this sense, it is observed that the map merging is carried out in a distributed way
because, in addition to sharing the local maps, these vehicles share the parameters of the
previous merged maps already computed, avoiding that the complete merging process
has to be performed by the others UAVs of the network, distributing required battery
consumption and processing load.

In mobile robotics, the activity of building maps is covered by the study area known
as mapping. As can be seen in Figure 1. Furthermore, the mobile robots carrying out
the construction of maps need to self-localize and plan the future trajectory. These other
activities encompass the two other areas of study known as localization and path planning
or motion control.

In the scenario presented above, there are two problems which are: the transmission of
information between the UAVs and the merging of local maps in each vehicle. In mobile
robotics, these problems are popularly known as integrated approaches (Makarenko et al.,
2002), as demonstrated in Figure 1. These problems are so-called because they integrate
different research areas within mobile robotics.

The information transmission problem can be addressed by a communication problem.
Here, there is a large set of information to be completely transmitted in a short period.
The map merging problem, on the other hand, is addressed as a computer vision problem.
Here, the visual information must be used to fuse the information in the same data set.
This thesis addresses these two problems by proposing adequate solutions for both.

Figure 1 – The different fields of study in mobile robotics (localization, mapping and
motion control) and the problems originated by their overlapping areas.

path planning /
motion control

mapping localization

SLAM

exploration active localization

integrated
approaches

Source: Adapted from Makarenko et al. (2002).



18

The first step in solving these problems is to select the type of structure suitable for
storing the information gathered from the environment. The 3D occupancy grid maps
represent the environment by storing the probability of occupancy of each portion of the
real environment space captured by the sensors. Each of these parts of the environment is
called a cell, and the size of each cell is determined by the resolution of the map.

The use of 3D occupancy grid maps allows adequate mobility of UAVs in three di-
mensions and better operation of exploration systems, in addition to a more faithful repre-
sentation of the environment and better correction of estimates from the mapping systems
(SCHMUCK; SCHERER; ZELL, 2016).

The map transmission problem is addressed as a communication problem that deals
with data compression, formatting, and correct distribution using and high-level protocol.

However, the problem of merging 3D occupancy grid maps becomes more complex
due to the type of data, volume of information, and noise that can be accidentally gener-
ated from sensor data or by mapping algorithms. Also, conventional occupancy grid map
merge techniques cannot be applied as these algorithms are generally designed to process
images or data in two dimensions.

Generally, the map merging problem is associated with a highly complex system with
high computational cost, and great research efforts are carried out to make these systems
operate in real-time (Velásquez Hernández; Prieto Ortiz, 2020). This problem can be
divided into two basic steps: map matching and map merging (Yue et al., 2018). The
map matching step is responsible for identifying similar regions contained in local maps,
and obtaining matching points. The map merging step is responsible for using these
combinations to build transformations between the maps used to perform the merge. Also
at this stage, the information from the cells between the local maps is merged taking into
account predetermined rules for each of the states assumed in the occupation scale.

In this context, this thesis proposes a cooperative navigation system with distributed
architecture to be used by multiple UAVs. This system solution proposes structures to
store the 3D maps. Furthermore, maps are compressed and transmitted between UAVs
using algorithms designed for this purpose. Then local 3D maps are merged into each
UAV. In this map merging system, maps are firstly processed, then merged in pairs us-
ing suitable algorithms to make them compatible with the data of the 3D occupancy grid
maps. In addition, keypoint orientation properties are obtained from potential field gradi-
ents. Even so, some proposed filters are used to improve the indications of the parameters
used in the transformations between maps. To validate the proposed solution, simulations
were carried out in six distinct environments, outdoors and indoors, and with different
layout characteristics.

In the proposed application and state-of-the-art map merging applications, it is neces-
sary a minimum overlap region among the maps before the merge process. In this thesis,
the minimum overlap region is defined as a minimum set of five real matches identified



19

between the maps. No matter the size of the area in which these correspondences are
found on the maps.

Another important point about the solution presented in this thesis is the proposed
architecture considers that the processing load is allocated in a distributed way on the
embedded hardware of the UAVs. Also, these UAVs can be heterogeneous, having differ-
ent physical capabilities. Still, this thesis does not take into account the utilization of a
ground station to extend the processing capabilities. This definition aims to make the sys-
tem independent of modifications in the environment, in which UAVs can be completely
spread to unknown and unexplored locations. Another justification is that these sites may
be inaccessible by ground.

The energy consumption of the proposed application will not be evaluated in this the-
sis because it is dependent on the software, the hardware, the structure of the vehicles, the
environment, and the climatic conditions of the ecosystem in which the application will
be running. The UAV navigation speed is another point that can influence the updating
and construction of occupancy grid maps. The higher speeds may require faster process-
ing, but similarly to energy consumption, the evaluation depends on many factors specific
to each application’s scenario. The evaluation of battery consumption and UAV speed are
considered outside of the thesis scope.

Section 1.1 describes in a simplified way the hypotheses underlying the research
around this thesis. Section 1.2 shows the goals for this research. The most significant
contributions of this thesis are presented in Section 1.3. Section 1.4 then describes the
organization of this document.

1.1 Hypotheses

This thesis is based on three basic research hypotheses, which are:

a) It is possible to design a cooperative navigation system for multiple UAVs based on
the construction of 3D occupancy grid maps;

b) It is possible to share these maps with UAVs fast enough to support a cooperative
work among UAVs and without consuming too many resources;

c) It is possible to merge the 3D occupancy grid maps in each UAV.

1.2 Goals

The main goal of this thesis is to complete the design, implementation, and validation
of a cooperative navigation system for multiple UAVs with a distributed architecture.
Besides the main goal, it is possible to state the following specific goals:

• Develop the construction of 3D local occupancy grid maps;



20

• Develop the local maps sharing;

• Develo the merging process of the local maps obtained by each UAV in runtime;

1.3 Contributions

The most significant contributions of this thesis are:

• The definition of dynamic 3D occupancy grid map structures;

• The map compression and decompression method;

• The map serialization protocol;

• The map transmission protocol (MTP);

• The extension of the legacy 2D FAST algorithm (ROSTEN; DRUMMOND, 2006),
for detecting keypoints in 3D occupancy grid maps. This thesis proposes the 3D
version of the FAST algorithm;

• The proposal to use potential field gradients to obtain the orientation of keypoints;

• Adaptation of the BRIEF algorithm (CALONDER et al., 2010), to describe key-
points taking into account the characteristics of 3D occupancy grid maps;

• The modeling and proposal of a 3D correspondence filter, in 3D occupancy grid
maps, based on RANSAC and Homography concepts;

• Calculation of map transformation parameters taking into account the scale used in
the downsample process of the map preprocessing stage;

• Experiments based on simulations performed with multiple UAVs operating in a
distributed and cooperative scenario;

1.4 Thesis Organization

This thesis is organized as follows. First, Chapter 2 presents all the theoretical foun-
dations involving navigation systems for mobile robots, computer vision techniques used,
concepts of cooperative systems for multiple UAVs, and tools used for implementations
proposed in this thesis. The application scenario as well as the problems and difficulties
identified were detailed and explained in Chapter 3. Then, Chapter 4 presents a study on
related works, as well as a discussion and comparison with the present thesis. Chapter
5 presents the architecture of the navigation system proposed in this thesis and a brief
description of the functioning of each of the proposed software modules. Chapters 6 to 8
describe each of the previously presented modules in detail. The implementation details
and description of the experiments are described in Chapter 9. Chapter 10 presents the re-
sults of the proposed experiments, as well as an analysis and discussion of them. Finally,
the conclusions and indication of possible future works are presented in Chapter 11.



21

2 BACKGROUND CONCEPTS REVIEW

This chapter detail the concepts and techniques used throughout this thesis, providing
theoretical background. First, in Section 2.1, the main concepts around the navigation
systems are presented. Section 2.2 describes the main computer vision algorithms theory
used to develop this thesis. Section 2.3 discuss the main characteristics and problems
around the multiple UAVs cooperative systems. Finally, Section 2.4 explain the imple-
mentation tools used to develop this thesis.

2.1 Navigation Systems

Taking into account the original meaning of the word, the term navigation is applied to
the activity related to driving a ship to its destination. This process consists of three steps
performed sequentially: (a) determine the position of the ship on a chart as accurately as
possible; (b) relate your position to the destination, landmarks, and possible hazards; (c)
define the new course of the ship based on this information (FRANZ; MALLOT, 2000).

Levitt and Lawton (1990) define the navigation as a process that answers the following
three questions: (a) "Where am I?"; (b) "Where are other places with me?"; (c) "How do
I get to other places here?". This context relates to the ability of the navigator to self-
locate, know, interact and move through the environment in which it is inserted. This
environment is, in many cases, unknown to the robot.

In mobile robotics, navigation can be described as the process of determining a suit-
able and safe path between a starting point and a goal for a robot traveling among them
(SIEGWART; NOURBAKHSH; SCARAMUZZA, 2011; GALLISTEL, 1990). Naviga-
tion is a basic skill for autonomous robots (KRUSE et al., 2013).

Systems that use computer vision for navigation can be divided into those that need
prior knowledge (map, obstacles positions, free space) of the entire environment to which
they navigate and those that perceive the environment as they navigate through it (BONIN-
FONT; ORTIZ; OLIVER, 2008).

A navigation system for autonomous robots is composed of a vision system, which
from the sensors’ inputs of the robot is constructed a virtual representation of the environ-



22

ment. A system capable of generating the trajectory based on this virtual representation
was created.

Also, navigation systems must-have modules that avoid collision with obstacles, using
robust navigation strategies such as the minimum distance required to avoid obstacles or
stopping and waiting for behavior in conflict situations to ensure safety. The performance
of a good navigation algorithm is deeply associated with the precise estimated location of
the robot in the environment.

The type of vehicle that uses the navigation system can also affect performance, either
by limiting the hardware it can carry or by directly affecting its processing capacity, such
as a UAV navigation system. The UAVs can move in 3D space, they do not have the
limitations of ground robots, which often cannot overcome rocks, climb stairs, or gain
access to high places. However, navigation systems designed especially for UAVs have
their complexity increased by the addition of the third axis.

This section describes the main components and techniques related to and applied to
mobile robot navigation.

2.1.1 State Representation

To perform missions in real or simulated environments, autonomous UAVs collect
data from multidimensional sensors strategically positioned around their chassis. From
these data, these systems must be able to construct a virtual representation of the environ-
ment in which it is inserted. From this representation should it have the ability to navigate
autonomously, locating, and avoiding possible obstacles.

The construction of these virtual representations is based on the accumulation of all
possible states of the vehicle along its trajectory.

Table 1 presents the variables used in the state representation commonly used in mo-
bile robotics and which will be used in this thesis to introduce the concepts around navi-
gation systems (STACHNISS; LEONARD; THRUN, 2016; THRUN et al., 2005).

2.1.2 Mapping

One of the most common types of navigation systems used in mobile robots is those
that do not require prior knowledge of the entire environment to navigate. One of the
strengths of these systems is that the environment does not need to be changed, meaning
that cameras and other marks in the environment are not required. This type of system is
specially designed to operate in regions unknown to the robot.

Autonomous mobile robots with systems of this category, through the acquisition and
memorization of the experiences obtained along their path, need to maintain a model of
the environment in which they are inserted. This virtual environment model is known as
a map.

A map should contain representative information of the entire environment already



23

Table 1 – List of symbols used for state representation.
Symbol Meaning

xt Robot pose at the instant t. The pose vector is represented by the three
dimensional position and the three dimensional orientation. The robot
pose is given by xt = {x, y, z, α, β, θ}.

x0:t Represents the complete trajectory of the robot, and is given by x0:t =

{x0,x1, · · · ,xt}.
ut The command vector applied to move the robot pose xt−1 to xt.

u0:t Represents the history of all command vectors and is given by u0:t =

{u0,u1, · · · ,ut}.
zt Vector of measurements acquired by the robot at instant t and is given

by zt = {z1
t , z

2
t , · · · , zit}, where zit is the i-th observation at instant t.

z0:t The set of measurements acquired during the trajectory is given by zt =

{z1, z2, · · · , zt}.
mi

t The local map of robot i at the instant t.

Wt The global map at the instant t.

navigated, such as free space available for navigation, obstacles to be avoided, and also
borders with regions that have not yet been explored. Also, some map representations
may contain information about points or objects of interest to the system.

The mapping process consists of the construction of the virtual representation of the
environment, that is, of the map m, based on the acquisition of the correct estimation of
the robot’s xt pose by the odometer system and the readings zt of all sensors captured at
the same time t. Thus, a map m can be described basically as the correct representation
of all measurements z0:t of the sensors of the robot during its trajectory x0:t.

One of the most common problems that can affect proper map construction is due to
noise captured by sensors. Noise can insert obstacles, close narrow passages and com-
pletely deform the map obtained. Thus, the mapping technique adopted must be adequate
to the environmental requirements and the needs and limitations that the robot has. The
mapping process is a primary activity for these navigation systems, if it is performed
incorrectly, the entire system becomes flawed.

Map representations can be made in two-dimensional (2D) space, suitable for ground
robots’ map representation, and also in three-dimensional (3D) representations, suitable
for aquatic and aerial robots, such as UAVs, which do not have the same movement re-
strictions as terrestrial robots.

Map representations can be divided into two different proposals, either metric or topo-
logical (THRUN et al., 2002). Metric approaches seek to capture the geometric properties
of the environment for map construction. A classic example of this type of approach is



24

the occupancy grid mapping technique (Elfes; Matthies, 1987). An example of this type
of map can be observed in Figure 2. In this type of map, each cell represents the state of
a small part of the environment, whose size depends on the scale being computed. The
possible states for each cell are unexplored, free space, and occupied space. This type of
representation can consume memory in proportion to the size of the environment repre-
sented. On the other hand, the maps can be very detailed allowing the robot to navigate
as much free space as possible.

Figure 2 – Occupancy grid map example. White cells represent all free space. The black
cells represent the obstacles. Finally, the gray cells represent the unknown regions. All
sets of gray cells completely surrounded by obstacles are treated as non-accessible re-
gions.

Source: HOWARD; PARKER; SUKHATME (2006).

On the other hand, topological maps describe the environment through a list of key-
points (places) connected one to the other through arcs. They consist of maps with graph
representations. Keypoints describe specific features of a particular place, these charac-
teristics are specificities that can differentiate one place from another. The arcs determine
how free space connects between these places, thus allowing the robot to navigate from
one environment to another. Figure 3 shows an example of topological maps.

Graph maps take up less memory and may facilitate later path planning, while only a
path between two points is known to limit the robot’s navigation through this free space.

2.1.3 Localization

For an autonomous robot to be able to move around the environment, it must know
its pose. Knowing its location in the environment in which it is inserted, the robot can
move around avoiding obstacles, and interacting with the environment while performing
the task for which it was designed.

According to Drumheller (1987), localization can be treated as a process directly re-
lated to measuring the robot’s position relative to the environment. For Stachniss (2006)



25

Figure 3 – Topological map example.

Source: RANGANATHAN; DELLAERT (2011).

localization is the problem of estimating the robot’s pose xt at the time t relative to a map
m. To perform this estimation process, the robot’s sensor reading history z0:t is used as
well as its pose xt provided by an odometer when available. Algorithms aimed for esti-
mating robot localization can also use as inputs the history of control commands u0:t that
were used for moving the robot (LEONARD; DURRANT-WHYTE, 1991). All this data
is integrated into the function of time to estimate the correct robot pose.

According to Thrun et al. (2005), the localization problem can be simplified to a trans-
formation problem among coordinate systems. In this problem, the map can be described
as a global coordinate system independent of the robot coordinate system. Thus, localiza-
tion is the transformation determination process that matches the map coordinate system
with the robot coordinate system. The term localization may assume variations linked to
the specifics of the application to which this system is being applied.

The process of localization of mobile robots themselves can be classified into two cat-
egories, local localization, and global localization (THRUN et al., 2005). In the global
localization problem, the robot pose is unknown. In this process, it is needed to calculate
the position of the robot to the map representation or the real world, also known as the
absolute pose. The global localization process is considered a problem with higher diffi-
culty since the robot can be anywhere in the space of the environment. Moreover, in this
case, it is not possible to assume the problem as an uncertain local positioning.

The second approach is local localization, where the robot pose is known as a priori.
In this type of approach, the goal is to correctly estimate the robot pose in the robot
coordinate space, also known as the relative pose. However, this approach is more simple
than global localization because it assumes that the uncertainty about the robot pose is



26

characterized by small errors around the true local pose.

Thus, as in the case of mapping, sensor noise can strongly affect localization systems,
which in turn are dependent on the conditions imposed by the environment in which the
robot is inserted. In this context, environments are usually classified into two distinct
classes, namely static and dynamic environments. In a virtual representation of static
environments objects always remain in the same position, decreasing noise and extracting
information tends to be less uncertain.

Dynamic environments, in turn, have moving objects and structures, such as doors,
tables, and chairs. Depending on the time the robot comes to visit these structures, it
may close paths or open previously non-existent passages. This process can difficult the
operation of localization estimation systems.

2.1.4 Exploration

Every autonomous mobile robot must have the ability to make a decision and also
undertake some planning steps as to which path to follow. This planning step is often
strongly associated with the activity that the robot is being designed to perform. For
example, mobile robots intended to execute the exploration activity must have the ability
to choose the best path to achieve their goal. Also, in conjunction with this activity, it
should perform as much area coverage as possible to minimize the unexplored area. Also,
they must ensure that saving scarce resources, such as battery or fuel charge, are avoided,
and avoid collision with obstacles.

In summary, exploration can be defined as moving through an unknown environment
while building a map that can be used for subsequent navigation (YAMAUCHI, 1997).
This activity is performed without any prior map information. Thus, mobile robots need
to be equipped with some sensors to detect environmental characteristics. Based on the
sensor data, the exploration strategy then defines the best path to be followed by the robot.

There are different strategies to execute exploration activities. Generally, the different
exploration strategies can be summarized as an activity in which from the sensor readings
zt obtained at the instant of time t and the information previously stored in the local
map m, if available, makes it possible to generate a control command ut+1 responsible
for moving the robot pose xt to xt+1, causing the robot to always move to a region of
interest. This process is executed recursively generating the trajectory x0:t, which can be
considered the best path to be taken by the robot at that period.

One of the most reputable exploration strategies is frontier-based exploration (YA-
MAUCHI, 1997). This technique is proposed for exploring unknown environments. In
its logic, the mobile robot scan the environment using its sensors, such as a sonar, a laser
scanner, or a camera. From these readings, the robot moves to the frontier, which is the
boundary contained between an explored area and an unexplored area. From this, it per-
forms this task repeatedly, moving iteratively toward the frontiers. This way the robot can



27

explore an entire region while building a map.

Another highly-regarded exploration strategy is potential field-based exploration (SIEG-
WART; NOURBAKHSH; SCARAMUZZA, 2011; KOREN; BORENSTEIN, 1991). In
this strategy, the sensor data is first used to increment the current local map. Iteratively,
the algorithm copies the instance of this local map and based on the position of the ob-
stacles calculates a gradient of the same size as the current map. The robot accesses the
gradient cells relative to their current position on the map and then moves in the downward
gradient direction, ie to the lowest potential field cell value, visiting all unexplored and
accessible regions and avoiding all obstacles. This technique can be improved to soften
the movement of the robot and maintain a reasonable distance from obstacles (BOREN-
STEIN; KOREN et al., 1991a).

Finally, the Reinforcement Learning (RL) based exploration strategies (LEERINK;
SCHULTZ; JABRI, 1995; HESTER; LOPES; STONE, 2013). These strategies are often
bioinspired and seek to solve exploration problems based on dynamic environments. As
ants example, if their path from the nest to their food is not the best, they are wasting some
time and energy on exploring the environment. These techniques always try to maximize
the rewards involved in the execution of the activities. In this type of RL application,
there is a tradeoff between exploration (where the first task is to find the objective and
then optimize the path to it) and exploitation (use the best path and avoid obstacles).

2.1.5 Map Merging

In robust navigation systems, applied to autonomous mobile robots, it is common a
process of building several virtual maps to represent the same environment or to represent
different parts of this same environment. These maps can be created at different time
intervals, by the same sensor set, or even created at the same time by different sensor
sets arranged by the robot body, or by two different robots. These different virtual repre-
sentations of environments are extremely important to the navigation system, as each of
these representations describes one of the robot’s views of the environment in which it is
located.

Merging multiple maps into a single global map seeks to benefit navigation systems,
such as reducing the amount of information to be transmitted and stored, improving the
quality of information, and enabling better localization of robots. This activity of merging
different maps is known in mobile robotics as map merging (Birk; Carpin, 2006; JIANG
et al., 2019).

Birk and Carpin (2006) present in their work a formal definition of map merging that
can be applied in case maps are formatted by two-dimensional (2D) structures. From this
definition it is possible to extend it, in a general way, to exemplify the case where maps
are composed of three-dimensional (3D) structures.

Then, a map can be defined as a function represented by (1), where w, d, and h are



28

positive integers and represent the size of the three dimensions of the map, being width,
depth and height respectively. Each map cell can be accessed by m(x, y, z) and represents
the state corresponding to a region or a specific feature of the environment.

m : [0, w]× [0, d]× [0, h]→ R (1)

For purposes of illustration, it assumes that there are two distinct maps m1 and m2

with some regions in common.

Being (2), (3) and (4) matrices responsible for rotating around the x, y, and z axes ,
it is possible to define the function represented by (5) responsible by rotating a map cell
m(x, y, z) around the three axes simultaneously.

Rx =


1 0 0 0

0 cos(α) − sin(α) 0

0 sin(α) cos(α) 0

0 0 0 1

 (2)

Ry =


cos(β) 0 sin(β) 0

0 1 0 0

− sin(β) 0 cos(β) 0

0 0 0 1

 (3)

Rz =


cos(θ) − sin(θ) 0 0

sin(θ) cos(θ) 0 0

0 0 1 0

0 0 1 1

 (4)

Rxyz(x, y, z) = Rx ·Ry ·Rz ·


x

y

z

1

 (5)

Now, it is possible define a function represented by (6) which is a transformation
composed of translation and rotation operations.

Ttx,ty ,tz ,α,β,θ(x, y, z) : R3 → R3, (6)

and can be defined by:

Ttx,ty ,tz ,α,β,θ(x, y, z) =


1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1

 ·Rxyz(x, y, z). (7)



29

From the function represented in (6), it is possible to apply a transformation in m2,
recursively, until the perfect match between similar regions contained in the m1 and
m2 maps. This transformation matrix can also be called by Map Transformation Ma-
trix (MTM).

In summary, the map merging activity is intended to find the rotation and translation
and, in some cases scale, parameters responsible for matching the maps m1 and m2 to
merge them into a global map W . For cases where the number of maps is greater than
or equal to three, this activity should be performed sequentially to determine the trans-
formation parameters for all maps. This technique is popularly known in the literature as
pair-wise map merging.

Several methods can be used as a metric to measure how good the map merging is.
This merging quality metric is often used as a stopping condition for the map merging al-
gorithms. One of the most common methods is based on image similarity (Birk; Carpin,
2006). This technique is often used in combination with a heuristic to identify the align-
ment of overlapping regions among maps. Another approach found in the literature is
based on the idea of retrieving all global motions to merge maps from a set of relative
motions of different robots (JIANG et al., 2019). Also, maps can be merged using com-
puter vision techniques (Velásquez Hernández; Prieto Ortiz, 2020; FERRãO; VINHAL;
DA CRUZ, 2017).

2.1.6 Simultaneous Localization and Mapping (SLAM)

Simultaneous localization and mapping (SLAM) can be considered one of the most
challenging and important problems nowadays related to the construction of autonomous
mobile robots (Cadena et al., 2016; STACHNISS; LEONARD; THRUN, 2016). While
performing the activity of navigating the environment, the robot seeks to build a map
and at the same time needs to locate itself using this incomplete and often inaccurate
map. The problems addressed by SLAM can be motivated by two different fronts: the
first seeks to generate detailed environment models, and the second, seeks to maintain an
accurate sense of localization of a mobile robot.

A formalization for the SLAM problem is defined as follows: A mobile robot is de-
signed to navigate in an unknown environment, starting at a location denoted as the robot’s
initial pose x0. Its movement is produced by the u0:t control commands. This movement
is considered uncertain. At the same time, a sensing process is applied to the environment
by taking the readings z0:t used directly to construct the local map m. From this data, it
becomes possible to estimate the robot’s pose on the map. However, the uncertainty of
your current pose xt increases over time, making it gradually more difficult to determine
your current pose in the global coordinates with a certain level of accuracy.

The major difficulty surrounding the SLAM problem is related to the tight coupling
or simultaneity of the tasks employed. Thus, the problem can be described as a problem



30

similar to the approach to the chicken-egg problem (ENDRES et al., 2012). Looking at
the problem from this point of view, it is possible to perceive that a correct knowledge of
the robot pose is required to accurately construct a map, and on the other hand, a precise
map is also required to locate and correctly estimate the robot pose.

Even in robust navigation systems, after a certain amount of time performing an ex-
ploration activity, or even by the topology presented by an environment of appropriately
small proportions, it is likely that the robot will revisit a known region. Often, because
of the error in the robot pose estimation process, these revisited locations appear in other
locations of the map previously generated. This type of problem can distort the map, and
in the worst case, can overwrite some parts of it, producing an unusable map.

Loop closure detection is one of the key tools used by SLAM, helping the robot to
identify these intersections among map regions, and making corrections in the map based
on new intersections discovered by the robot over time (Cadena et al., 2016). Through
loop closures, the robot can interpret the actual topology of the environment and even
make it possible to find paths among previously visited locations.

A problem associated with possible corrections detected by loop closure algorithms is
known as a data association problem. In this problem, an algorithm is employed to merge
new data into the current map representation. SLAM algorithms require a reliable method
to estimate correspondences between your sensor measurements and observed reference
points. Incorrect associations between measurements and existing landmarks on the map
can often not be reviewed, resulting in incorrect estimates of map regions that may be
unrecoverable (BAILEY; DURRANT-WHYTE, 2006).

2.2 Computer Vision Techniques

This section describes the main computer vision algorithms theory used for the devel-
opment of this thesis.

2.2.1 Erosion and Dilation Morphological Operations

Erosion and dilation are two basic operators in the field of mathematical morphology
(GONZALEZ, 2008; JONKER, 2000).

These operators are applied to modify the structure of the images from the pixels in the
foreground, that is, from the edges evident in the image, generating the effect of erosion
and dilation. Both operators are applied to images through a process of convolution of a
kernel over an image.

An example of the erosion filter can be seen in Figure 4. As a basic effect of this filter,
the areas near the edges of the image decrease in size, and the holes within those areas
become larger.

Figure 5 demonstrates an example of the dilate filter. As a basic effect of this filter,



31

Figure 4 – Erosion filter example.

  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0

0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 0

0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0

0 0 1 1 1 1 1 0 0 0 0 1 1 1 0 0

0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1

1 1 1

1 1 1

Kernel

Input image Output image

Source: author.

the areas near the edges of the image increase in size, and the holes inside those areas
become smaller or even disappear.

Figure 5 – Dilation filter example.

  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0

0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 0

0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0

0 0 1 1 1 1 1 0 0 0 0 1 1 1 0 0

0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1

1 1 1

1 1 1

Kernel

Input image Output image

0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0

0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0

0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0

0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0

0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0

0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0

0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Source: author.

These filters when combined are excellent tools for removing noise in images. The
examples shown in Figures 4 and 5 can be reproduced through a basic implementation in
the repository1 git available.

2.2.2 Keypoint Detectors

Keypoints are regions of relevance that can be used to prevent computer vision al-
gorithms from having to perform processing in all regions of the image, significantly
speeding up processing. In this section, the main keypoint detectors are presented.

1https://github.com/maikbasso/mathematical_morphology_erode_dilate.git



32

2.2.2.1 Features From Accelerated Segment Test (FAST)

Features from accelerated segment test (FAST) (ROSTEN; DRUMMOND, 2006) is
the best performing corner detector among the best known. Originally the algorithm was
proposed for images in two dimensions.

The main idea of the algorithm is the application of rapid tests based on the difference
in intensities between the analyzed point and its neighbors. From the results of these tests,
identify the corners.

The keypoint selection process performed by the proposed algorithm can be seen in
Figure 6.

Figure 6 – FAST circle around p point.

Source: ROSTEN; DRUMMOND (2006).

First, a point p is selected to check whether it is of interest or not, its intensity being
defined by Ip. Afterward, an appropriately selected threshold t. Then a 16-point circle
around p is established.

From these selected points, a high-speed test is performed to exclude points that do
not correspond to corners. For this, the four points with index 1, 9, 5, and 13 (points
directly above, below, to the right, and the left respectively in Figure 6) are analyzed.

For p to be a corner, then at least three of these points must have an intensity greater
than Ip + t or less than Ip − t. Otherwise, the point p cannot be a corner.

If the quick test returns a positive value, it is checked if there is a sequence of at least
n continuous points where the points are more intense than Ip + t or less intense than
Ip − t, where n is a previously defined continuity parameter.

FAST also includes a filter to remove adjacent keypoints. Through the use of the Non-
Maximum Suppression filter, adjacent keypoints are then removed. In this filter, every
keypoint is assigned a score. After among a set of adjacent points, those with the lowest
score are removed. Finally, the algorithm returns a list with the most relevant keypoints.



33

2.2.2.2 Harris

Harris detector (HARRIS; STEPHENS, 1988) is a well-known keypoint detector al-
gorithm, one of the best known and used in computer vision applications.

The purpose of the detector is to use a combined edge and corner detection solution
because corners are regions in the image with a considerably high-intensity variation.

The algorithm consists of the task of finding the difference in intensity for a given
point (u, v) in all directions within a window of a predetermined size. This process is
performed by using (8) which corresponds to the local autocorrelation function of the
signal.

Ex,y =
∑
u,v

wu,v[Ix+u,y+v − Iu,v]2 (8)

where wu,v is the window function that weights the points within it, usually defined as a
Gaussian.

The next step of the algorithm consists of applying a Taylor Expansion on (9) to
maximize the detection of corners.

E(u, v) =
[
u v

]
M

[
u

v

]
(9)

where M is defined by (10).

M =
∑
x,y

w(x, y)

[
IxIx IxIy

IxIy IyIy

]
(10)

where Ix and Iy are derived from the image in the directions x and y respectively. Finally,
calculate the Harris response R, defined by (11).

R = det(M)− k(Tr(M))2 = λ1λ2 − k(λ1 + λ2)
2 (11)

By defining some limits to R, it becomes possible to determine whether or not there
is a corner in the analyzed region.

The original algorithm was proposed for two dimensions, in 2011 the algorithm re-
ceived an extension to work in three dimensions (SIPIRAN; BUSTOS, 2011).

2.2.2.3 Shi-Tomasi

Shi-Tomasi detector (SHI; TOMASI, 1994) was developed based on the algorithm
proposed by Harris. The main modification proposed was in the calculation of Harris’
response. In the new proposed version, R is obtained by (12).

R = min(λ1, λ2) (12)



34

The results obtained by the proposed modification demonstrate a great increase in the
performance of the algorithm to the original. The algorithm was also proposed for two
dimensions.

2.2.3 Binary Robust Independent Elementary Features (BRIEF)

Binary Robust Independent Elementary Features (BRIEF) (CALONDER et al., 2010)
is a powerful keypoint descriptor that was developed to be fast and considerably reduce
memory consumption. The proposed descriptor structure uses binary strings to describe
the keypoints instead of floating-point vectors.

The algorithm operation flow starts with the definition of a window of size S × S.
Within this window, nd(x, y) pairs of randomly distributed points are created inside this
window. This set of points is defined as a sample. Figure 7 demonstrates some examples
of sample distribution for sample composition proposed by the author.

Figure 7 – BRIEF samples example.

Source: CALONDER et al. (2010).

The defined sample is then positioned over the keypoint. Then, for each points pair
that makes up the sample, a binary test τ defined in (13) is defined.

τ(p;x, y) :=

{
1 if p(x) < p(y)

0 otherwise
(13)

where p(x) and p(y) are the pixel intensity of the corresponding point pair in the image
smoothed by a Gaussian filter.

BRIEF is then defined by a nd-dimensional binary test string (bitstring) as demon-
strated in (14).



35

fnd
(p) :=

∑
1≤i≤nd

2i−1τ(p;x, y) (14)

In the article, the author suggests using nd with values of 128, 256 or 512.
Finally, the corresponding bitstrings can be combined using Hamming Distance (HAM-

MING, 1950) to find possible matches between the analyzed keypoints.

2.2.4 Random Sample Consensus (RANSAC)

Random Sample Consensus (RANSAC) is a robust estimator of mathematical model
parameters (FISCHLER; BOLLES, 1981). It is considered a non-deterministic iterative
method, based on the principle of generating and verifying hypotheses.

The algorithm works from an observed data set that contains outliers. The main idea
of the algorithm is to retrieve the best parameters through the performed iterations, and
then return the best set corresponding to the data inliers.

The probability of success of the algorithm increases consecutively with the number of
iterations performed. The RANSAC algorithm can operate with a percentage of outliers
that can be greater than 50 % of the entire available dataset. This threshold is considered
as the limit for the proper functioning of the proposal (HUBER; M., 2009).

2.3 Multiple UAV Cooperative Systems

The increasing use of UAVs to perform previously unattainable tasks, such as deliv-
eries, search and rescue, is related to the number of proposed applications that use sensor
data and other multidimensional data integrated into the UAV control channel to enhance
their skills of navigation and orientation, trying to provide autonomy to these almost inde-
pendent systems. This makes it possible to develop autonomous (or semi-autonomous) air
systems capable of completing missions independently of human interaction (or with very
little human intervention) (AL-KAFF et al., 2018; KANELLAKIS; NIKOLAKOPOU-
LOS, 2017).

Missions consist of a set of tasks to be completed to fulfill one or more common
objectives. Each task requires some specific resources to accomplish it. These resources
can be provided by one or more systems that make up one or more UAVs. As a result,
the latest studies are starting to address systems with multiple UAVs and heterogeneous
resources (TRUJILLO et al., 2017).

Multiple UAV systems can perform missions in unstructured environments, such as
disaster scenarios (Figure 8), and achieve mission objectives with a reduced computa-
tional and temporal cost.

Compared to a single UAV system, multiple UAVs systems can benefit from greater
accuracy and efficiency due to their resource heterogeneity, as well as better accessibility
and robustness in the mission (ZHAO; LI; ZHANG, 2017). Besides, a multiple UAVs



36

Figure 8 – Video surveillance in a disaster recovery scenario.

Source: ZHAO et al. (2019).

system can be considered as a multi-agent system (MAS) in which an efficient consensus
scheme can be implemented to accommodate any number of agents for different scenario
configurations and applications (HAN et al., 2016).

However, in a mission with UAVs, the mission’s input parameters may be uncertain
because these devices operate in a dynamic and uncertain environment. Effective mission
control and guidance systems must be able to cope with environmental changes such as
wind, which have a major impact on UAV battery consumption, which can significantly
alter mission performance and progress (EVERS et al., 2014). These problems are even
more aggravating when it comes to systems with multiple UAVs.

The mission planning process for a team of UAVs involves the generation of tacti-
cal objectives, commanding structure, coordination, and schedule (RAMIREZ-ATENCIA
et al., 2017). In these cooperative systems, autonomous task allocation and planning are
carried out for heterogeneous UAV networks (COOPERATIVE MISSION PLANNING
FOR MULTI-UAV TEAMS, 2015). The proper functioning of these systems requires sta-
ble communication, and time synchronization between tasks and this is not always easy
to achieve.

In the middle of these points, it is evident in multiple UAVs applications that vehicle
navigation is considered a prime and essential point for the operation of these applica-
tions. There is a need for a robust navigation system capable of combining various UAV
experiences to build a cooperative and robust system.



37

2.4 Implementation Tools

This section describes, in general, the main tools and frameworks that will be used for
the development of this thesis.

2.4.1 Robot Operating System (ROS)

Robot Operating System (ROS) is a highly regarded framework that provides sup-
port for developing robot applications (QUIGLEY; GERKEY; SMART, 2015). ROS is
a pseudo operating system because it needs a host system, such as Linux, to be exe-
cuted. ROS has package management tools, simulators, and hardware abstractions that
can improve development. Also, applications developed using this framework are easily
extensible and can be used on low-cost embedded hardware.

Applications developed in ROS are distributed in the form of packages. Each package

consists of sets of programs and scripts used for execution, compilation, and simulation.
These programs are called nodes.

The communication infrastructure between nodes is provided by a server named roscore,
and enables the development of distributed applications. The simplest type of communi-
cation between nodes occurs through a scheme known as publisher-subscriber, as can be
seen in Figure 9.

Figure 9 – ROS Publisher/Subscriber example.

Source: MATHWORKS (2019).

In this type of interlace of communication, the nodes executing the publisher function,
publish data in topics on the server roscore either sporadically or continuously, without
worrying about how it will be consumed. The topics are reserved addresses for publish-
ing data on the server. Data is published in the form of structures known as messages.
Each message has a structure type that can either be standard of the framework or sim-
ply designed for use in a specific package. Each topic is set to accept a specific type of
message.

The nodes executing the subscriber function, receive the published data through call-
backs triggered by the publish event. Ideally, in this structure there is only one node

executing the publisher function while one or more nodes perform the subscriber func-



38

tion consuming the data for different purposes. Using more than one publisher node node
over the same topic is allowed, but not recommended.

Another type of interlace of communication provided by ROS is client-server and can
be seen in Figure 10.

Figure 10 – ROS Service example.

Source: MATHWORKS (2019).

In this communication model, the client node sends a request to a topic where this
service is available and then waits for a response. The server node receives the request
and performs the necessary processing. It then returns the response to the client node.
This communication model can be used in sporadic situations that do not require constant
data dissemination.

Through the presented resources, ROS was adopted as a base framework for the de-
velopment of all the applications proposed in this thesis.

2.4.2 Gazebo Simulator

The Gazebo is a 3D dynamic simulator with the ability to accurately and efficiently
simulate robots in complex environments (GAZEBO TUTORIALS, 2014). This simu-
lator has a similar structure to the mechanisms used in games, but Gazebo offers high
fidelity in the physical simulation, a set of sensors and interfaces for users and programs.

The Gazebo is designed to accurately reproduce the dynamic environments where a
robot might encounter. All simulated objects have mass, speed, friction, and various other
attributes that allow them to behave more realistically when pushed pulled, knocked over,
or transported. Robots are simulated as dynamic structures composed of rigid bodies
connected via joints. Forces, angular and linear, can be applied to surfaces and joints to
generate locomotion and interaction with the environment (Koenig; Howard, 2004).

Figure 11 demonstrates the interface presented by Gazebo during a UAV takeoff sim-
ulation.



39

Figure 11 – UAV simulation on Gazebo interface.

Source: author.

2.4.3 PX4 Firmware

PX4 is an open-source flight control hardware and software project for drones and
other unmanned vehicles (PX4 OPEN SOURCE AUTOPILOT, 2018). This project pro-
vides a huge set of tools and technologies to create custom solutions for these vehicles.

One of the most important tools in this package is known as software in the loop
(SITL), which is a set of software, including the firmware, that allows the simulation
of a flight controller unit (FCU) to be performed directly on the computer, without any
special hardware. In addition to this tool, the package has three-dimensional models
highly regarded and properly prepared for the integration and development of applications
for UAVs based on a package implemented in the ROS-Gazebo ecosystem.

In this thesis, a fork of a specific version of the PX4 software package2 is used as the
basis of the integration of all proposed software.

2https://github.com/maikbasso/Firmware



40

3 PROBLEM STATEMENT

The objective of this chapter is to explore, in a simplified way, the possible problems
surrounding the cooperative navigation systems, destined for multiple UAVs, based on
the construction, sharing, and merging of maps produced in a distributed way. The cen-
tral idea is to highlight the identified problems, analyze them, and propose alternative
solutions for each problem under concern, whenever possible.

Section 3.1 demonstrates the application scenario, as well as problems related to the
environment in which the system is inserted. Section 3.2 demonstrates the problems re-
lated to applying mapping in these environments. Section 3.3 highlights problems with
communication systems between UAVs. Section 3.4 addresses the specific problems of
applying map merging. Hardware limitation related issues are covered in Section 3.5.
Section 3.6 highlights some issues related to privacy that are hardly addressed but are
present in these systems.

3.1 Application Scenario

Figure 12 illustrates an example of a scenario for a navigation system composed of
multiple UAVs operating cooperatively.

Figure 12 – Example of a cooperative navigation system application scenario.

  

Source: author.



41

In this scenario, several UAVs are randomly placed in the environment. Each UAV
knows its local position, but it does not have an estimate of its global position nor of the
positions of its neighbors.

The UAVs move through the environment in a completely independent way through
an unknown area to perform the full recognition of the region and build a virtual rep-
resentation, which can be used by other applications or even for autonomously vehicle
navigation through the environment.

Whenever two or more UAVs are within communication range, they can share the
acquired information in the form of maps. These local maps received by each UAV, go
through a merging process in a fully distributed way, where each UAV tries to create and
share its global representation of the environment in which it is inserted.

In this context, there are several problems with this type of application. One of the
most obvious sets of problems is related to the environment. Generally, the environment
is unstructured, which means that it is unlikely to be virtually represented by known basic
geometric shapes.

The environments are also completely unknown and present numerous obstacles and
restrictions to mobility and accessibility. They can also be static or dynamic, that is,
present moving objects, such as doors, windows, people, or animals.

Additionally, these scenarios can be represented as indoor, outdoor, or both. Outdoor
environments are generally unstructured and are even susceptible to climatic variations.

Indoor environments, in turn, may have artificial lighting and narrow passages. In
these environments, it is also common for global positioning systems (GPS) to be partially
available or completely unavailable. These environmental variations and diversities can
generate great noise in the UAV sensors, making their operation difficult.

In this thesis, the navigation system is designed not to be concerned with the spe-
cific characteristics of each set of environments, that is, it can operate both indoors and
outdoors.

3.2 Mapping Problems

In this section, problems related to the mapping system are presented. The mapping
system is responsible for collecting the information coming from the sensors and building
the local virtual representations with a certain level of quality.

The first identified problem refers to the mapping technique, which in many cases is
used to generate representations of the environment in a two-dimensional format, ignoring
the possibility of mobility at different altitudes, whether in the air or hilly regions.

This is an important limitation, as can be seen in the examples of Figure 13. In
these examples, the UAV explores two environments where its possible trajectories re-
quire changing altitude to avoid obstacles and access regions in different positions.



42

Two-dimensional virtual representations cannot provide enough information for the
vehicle to navigate these gaps of free space. This type of approach can also prevent
navigation in steep areas in multi-floor environments.

Figure 13 – Two examples of exploration scenarios that require flight at different altitudes
(flight levels).

    

a) Small house example. b) Bookstore example.
Source: author.

The second issue is related to map quality. The accumulated error with pose and
sensor readings can somehow cause distortions in very large rectilinear regions, closing
passages and taking the UAV to possible collisions if the map is used as input to generate
its trajectory.

In this thesis, the maps are built in three dimensions to solve the first problem related
to the mobility model of UAVs. The map quality problem is partially solved in this thesis
by estimating the correct values of the inputs in two stages, in the first stage, the vehicle
pose is estimated by an Extended Kalman Filter (EKF) inside the vehicle. Then the sensor
data is refined using a simple Kalman Filter (KF) applied to each of the sensor data inputs.

3.3 Communication Problems

This section describes the problems directly related to communication among mem-
bers of the cooperative network composed of multiple UAVs. Despite presenting advan-
tages for the application as a whole, as already mentioned, the multiplicity of UAVs adds
some problems and difficulties to the navigation systems. Cooperative systems, for the
most part, require constant communication and synchronization between the tasks they
perform. In addition, they are more prone to collisions, as, in addition to being concerned
with environmental obstacles, they need to know their positions to avoid collisions with
each other.

Thus, constant communication is a key factor for the proper functioning of these sys-
tems. In this thesis, UAVs do not require constant communication and all processes occur
in a fully distributed way. Maps are shared whenever two or more vehicles approach
within an acceptable range of communication.



43

A frequent problem of distributed systems is the overload in the communication chan-
nel due to the high amount of transmitted data. In this thesis, the maps go through a
compression process to reduce the size and quantity of data to be shared. Also, maps are
only shared if they have some kind of updated information to be shared.

Route management and the use of a protocol based on multi-hop could contribute even
more to the good functioning of cooperative navigation systems, but in this thesis, these
points were not addressed.

3.4 Map Merging Problems

In addition to moving around and mapping their environment, the various UAVs need
to know how to gather information to create global representations of maps captured
individually by each vehicle. In this context, map merging techniques are employed.

This activity has some clear issues to address. The first refers to regions of minimal
overlap among two local maps. That is, although UAVs should avoid crossing the same
route too many times, they should create maps with overlapping regions of a minimum
acceptable size so that merge techniques can identify similarities and then generate ac-
ceptable parameters to create the virtual global representation.

The second problem concerns large maps or maps with many similar regions. They
can often have similarities across multiple locations, making it difficult for merging tech-
niques to estimate which is the best option to make the proper match.

These issues can be easily resolved using GPS data to calculate relative poses between
vehicles, but as shown, this feature is often unavailable (or partially available) depending
on the environment.

In this thesis, several filters are proposed and integrated into the merge system to deal
with problems with similar regions. The problem with the minimum overlap region is
directed to the mobility model adopted for vehicles, as this thesis does not deal with a
trajectory control system, if the map merging parameters are not found, the local maps
are simply not merged.

3.5 Hardware Limitations

Generally, UAVs have their hardware composed of a Flight Control Unity (FCU),
which has a processor connected to several sensors such as gyroscopes, accelerometers,
and barometers integrated to perform position and mission control. The hardware archi-
tecture also has Electronic Speed Controllers (ESCs) designed to receive input from the
FCU and correctly command each of the UAV motors. This set of hardware combined
with a frame, usually composed of plastic and carbon fiber, and a battery correspond to
the basic set of hardware for building a UAV.



44

This architecture can be enhanced with GPS, radio systems, to enable remote control,
and other sensors such as lasers, sonars, and cameras to aid navigation or simply collect
data from the mission environment. Some actuators like liquid sprays and manipulators
can also be used.

To execute more complex software applications, such as processing sensor data, con-
trolling actuators, and executing a complex navigation system, usually, a computer with
greater computational capacity is embedded and integrated into this entire system.

One of the most relevant points in this entire architecture is that usually more than
70 % of the weight of UAVs is made up of the battery that guarantees limited autonomy
to these systems. There is then a tradeoff between weight and autonomy. So the use of
hardware with high computational capacity is not always adequate, this type of hardware
usually has a significant weight that can affect the vehicle’s autonomy.

Finally, the biggest problems identified in the hardware architecture of these systems
are related to limitations involving autonomy and computational capacity. These limita-
tions can be overcome with a good balance of systems. Thus, the software of navigation
systems needs to be well designed, have its architecture optimized, using the hardware
resources as efficiently as possible.

To alleviate these problems and limitations, this thesis adopts a distributed architecture
composed of a cooperative navigation system composed of multiple UAVs. In this way,
the processing aimed at merging the maps is distributed among the vehicles.

3.6 Privacy Issues

This section addresses privacy issues related to navigation systems. These problems
are associated with the use of visual sensors that can almost faithfully store and restore
views of the environment in which the navigation system is inserted. In this context, some
problems regarding privacy can be identified.

Exposing data such as documents and visual information about people, such as their
faces, specific features, and even intimate parts, can be serious privacy issues. Through
this information, people can be tracked with a certain level of precision and in a way, as
an example, contribute to the construction of autonomous weapons.

Soon, these questions should be included in the most recent research, contributing to
the construction of ethical principles in mobile robotics. In this thesis, the information
obtained from the environment is used to compose occupancy grid maps with adequate
cell resolution, later these raw data are discarded, which somehow partially solves the
problems mentioned above.

Privacy issues will not necessarily have solutions proposed in this thesis, but they are
highlighted here to encourage the scientific community to address these problems in their
future research.



45

4 RELATED WORKS

In this chapter, related works are presented. First, Section 4.1 presents generally re-
lated works dealing with applications related to navigation systems. Then, in Section 4.2,
the related works to map merging applications are presented. Finally, Section 4.3 presents
a comparison between the related works presented, including a brief discussion about the
main problems, approaches, and possible solutions relating these works presented to the
solutions present in this thesis.

4.1 General Related Works

KOCH et al. (2016) describe in your work, a 2D Simultaneous Localization, and
Mapping approach applicable to multiple mobile robots. The strategy uses data from 2D
LIDAR sensors to build the representations based on Signed Distance Functions. The ap-
proach uses a joint map built-in parallel instead of occasional local map merging and the
limited drift localization which requires no loop closure detection. The software architec-
ture is multi-threaded and performs registration and data integration in parallel allowing
for drift-reduced pose estimation of multiple robots. The experiments were performed
on an Intel Core i7 quad-core with Ubuntu 14.04 LTS operating system and ROS Indigo.
Several sets of experiments were performed involving single and multiple robots, where
it was found that the application performs well on large maps. However, as the ground
truth experiments showed, the registration module has weaknesses, causing in some cases
problems such as erased walls.

A monocular-based cooperative SLAM approach for multiple UAV systems that can
operate in environments without GPS signal is presented by TRUJILLO et al. (2018).
According to the author, the main contribution of the work is to demonstrate that the
observability properties of the whole system are improved through the use of visual infor-
mation obtained from monocular cameras installed in air vehicles flying in formation. To
improve observability properties, this approach proposes that some relative distance mea-
surements, obtained from visual information between UAVs, be included in the system.
The approach has been validated in two ways through the implementation of the MAT-



46

LAB software. The first was theoretically utilizing a nonlinear observability analysis. In
the second stage, a set of computer simulations were performed. The author also points
out that from the results obtained the proposed system can provide a good estimate of the
position and orientation of air vehicles flying in formation.

Schmuck; Chli (2017) propose a centralized architecture for collaborative monocular
SLAM that can be used on various UAVs, making them act as agents. According to the
author, in this proposed architecture, each agent can explore the environment indepen-
dently by executing SLAM algorithms, simultaneously sending all collected information
to a central server, which is a ground station with enhanced computational resources. The
central server, in turn, is used for managing the maps of all agents, triggering loop closure,
map merging, optimization, and information distribution to agents. This approach allows
agents to incorporate observations from other agents into their runtime SLAM algorithm
estimates. Experiments were performed with up to four UAVs, and a Thinkpad T460s
notebook with a Core i7-6600U @ 2.60GHz quad-core and 20 GB RAM is used as the
server. Through the obtained results, it is possible to realize that agents can act coopera-
tively, and the trajectories of a single agent can be improved using a collaborative system.
However, according to the author, the size of accumulated server experiences is likely
to become the bottleneck, preventing effective collaboration between agents, especially
when the number of agents or regions explored grows.

Qin et al. (2019) present in their work a new autonomous exploration, mapping, and
navigation system using unmanned aerial vehicles (UAVs) and unmanned ground vehi-
cles (UGVs) collaboratively. The system is proposed to work in unknown environments
but makes use of GPS systems for localization. According to the author, the proposed
system implements an exploration strategy based on two main layers. The first layer uses
a UGV to perform rapid autonomous exploration and simultaneous location and mapping
to generate a rough environment model, which serves as a navigation reference for sub-
sequent complementary 3D thin mapping performed by a UAV, which in turn makes up
the second system layer. The two layers share a trajectory planning framework, which,
according to the author, provides optimal exploration paths and integrates collaborative
exploration and mapping efforts through a volumetric motion planning interface. The re-
sults were obtained in two stages, first simulations were performed and later experiments
were performed with real vehicles (a robot and a drone). The results show the ability of
the proposed system to perform collaborative (UAV and UGV) and heterogeneous explo-
ration as well as the structural reconstruction of the environments by SLAM algorithms.

A new vision-aided inertial navigation system approach is introduced by CHOWD-
HARY et al. (2013). According to the author, the proposed architecture efficiently com-
bines visual information from a monocular camera with inertial sensor measurements.
Where the inertial measurements are used to predict frame-to-frame the transition of se-
lected feature locations, and the difference between predicted and observed feature loca-



47

tions is used to bind the inertial measurement unit drift, and account for initial misalign-
ment errors. These estimates are used as a basis for managing the feature library and may
add or remove according to the confidence level obtained. The feature point database can
be considered as the map obtained by the mission. The algorithms were validated by au-
tonomous flight tests on extended closed-loop operation indoors and outdoor using UAVs.
According to the author, the results obtained are efficient and reliable to allow real-time
deployment in resource-constrained unmanned air vehicles.

A three-dimensional collaborative mapping system for use in an earthquake-damaged
building based on aerial and ground robots is presented by MICHAEL et al. (2012). The
main purpose of the proposed application, according to the author, was to enable the gen-
eration of three-dimensional maps that capture the layout of a multi-floor environment.
The experiments reported in the work took place on the first three floors of a structurally
compromised building at Tohoku University in Sendai, Japan, which was damaged dur-
ing the Tohoku earthquake in 2011. According to the author, one of the biggest problems
faced in the experiments was the communication bandwidth required to transfer data be-
tween the aerial and the ground vehicles and the base station, which performs the map
processing. The author complements the results discussion and firm that for operations
involving search and rescue in unknown regions and rugged territories the maps must be
more detailed to enable the navigation of vehicles and also possible detections related
directly to the application.

Extensive research involving the problems related to autonomous navigation of a UAV
in unknown, unstructured GPS-denied environments is presented by BACHRACH et al.

(2011). According to the author, one of the main challenges is that the system must be
able to estimate its position and speed by detecting an unknown environmental structure
with sufficient accuracy and low latency to control the vehicle stably. Among the pro-
posals presented in the paper are a data fusion filter, simultaneous high-level localization
and mapping, and a goal-oriented exploration module. The results obtained by the study
highlight the vehicle’s ability to navigate in various unknown large-scale environments,
indoors or outdoors in urban scenarios. Among the successful tasks performed by the
proposed system is the ability to autonomously enter a dangerous unknown environment
through a window, explore the internal structure without GPS and search for a visual
target.

A new method of simultaneous 6 degree-of-freedom (DoF) localization and visual
mapping based on the structural regularity of man-made environments is presented by
Zhou et al. (2015). The main idea presented by the work is the detection and later use of
the structure lines of buildings as features used for localization and mapping. According
to the author, the lines of the building’s structure encode global orientation information
that restricts the camera’s course over time, eliminating accumulated orientation errors
and reducing position deviation. The results were obtained with the use of a handheld



48

camera and show that the proposal presented improvements related to the reduction of
position and orientation errors that may harm the map formation.

Pi et al. (2014) present in their work a sparse visual SLAM system that focuses on
the use of stereo cameras to estimate the movement of autonomous underwater vehicles
(AUVs) and construct the feature map of the environment. The algorithm is based on
feature detection and matching using the Speeded Up Robust Features (SURF) algorithm.
After this process, the 3D coordinates of the identified features are calculated using the
stereo vision system’s disparity parameters. Finally, the map is generated by merging
feature coordinates and the AUV pose with the Extended Kalman Filter (EKF). According
to the author, the tests were performed based on raw data collected by the coupled system
in a submarine and the results show a good performance in system efficiency. However,
the author points out that sparse map representations are often insufficient for common
tasks such as path planning, and collision avoidance and that a dense map representation
is required.

A landmark-based heterogeneous visual navigation approach for a monocular mobile
robot is presented by Lu; Song (2015). In this approach, heterogeneous visual features
such as points, line segments, planes, and vanishing points are used for map construc-
tion, where internal geometric constraints are managed in a manner not supervised by a
multilayer feature graph. According to the results presented by the author, the proposed
method decreases the translational error in urban sequences where rectilinear structures
dominate the scene.

A new approach to improving the performance of a UAV navigation system in chal-
lenging GPS environments is presented by Vetrella; Fasano; Accardo (2016) and by AU-
TONOMOUS FLIGHT IN GPS-CHALLENGING ENVIRONMENTS EXPLOITING
MULTI-UAV COOPERATION AND VISION-AIDED NAVIGATION (2017). These pa-
pers explore relief measures for one or more cooperative UAVs flying under full GPS
coverage. For this, the work employs sensor fusion based on an EKF. In this process, in-
ternal inertial sensor and magnetometer measurements, available GPS pseudo-intervals,
position information from cooperative UAVs, and line of sight estimated by vision-based
tracking are used as inputs. One of the applications of the proposed techniques aims to
provide a pseudo GPS signal for vehicles that are in regions without a signal, for this, us-
ing the assistance of cooperative UAV systems. The system performance evaluation was
performed using covariance propagation techniques. According to the authors, the results
show that cooperative navigation has significant potential for safe flight in challenging
GPS environments, also in the absence of range measurements between vehicles.

A study on the implementation of Visual SLAM techniques for UAV images in par-
tially structured environments is presented by ARTIEDA et al. (2009). The proposed
approach is concerned with optimizing the system by solving the problems related to
the visual characteristics of objects in the scene, their distance to the UAV, and the im-



49

age acquisition system. The experiments were performed using a mini UAV in partially
structured environments. According to the authors, the results obtained for location are
compared based on flight GPS information and demonstrate that Visual SLAM provides
a reliable location and mapping for use in these systems.

A new hierarchical SLAM approach for use in a UAV using the output of an inertial
measurement unit (IMU) and bearing-only observations of an onboard monocular camera
is presented by WANG et al. (2013). A homography technique is used to calculate vehi-
cle motion by matching features in the image. The calculated motion per image, in turn,
is merged with inertial outputs using an EKF for attitude and velocity estimation. The
proposed approach also uses EKF to estimate vehicle position and feature location on
the map. According to the authors, the results obtained through simulations and experi-
ments demonstrate that the proposed system compared to GPS measurements can provide
reliable state estimation in GPS denied environments.

A monocular visual SLAM system with application in UAVs is proposed by URZUA;
MUNGUíA; GRAU (2017). The proposed method is based on sensory inputs that are
obtained from a downward-facing monocular camera, an ultrasonic range finder, and a
barometer. The proposed method is based on an observability analysis. According to
the authors, the use of monocular vision presents some technical difficulties, such as the
impossibility of directly recovering the metric scale of the world. Among the findings
highlighted in the paper, it was found that the metric scale can become observable by in-
cluding altitude measurements in the system and measuring the depth of a single reference
point can improve system observability. According to the authors, experimental results
with real data show that the proposed method can provide good results by recovering the
vehicle’s flight path and generating a map of the environment with low-cost hardware.

PEREZ-GRAU et al. (2018) present in their work a software architecture for au-
tonomous navigation of aerial robots in denied-GPS areas. This paper presents a lo-
calization approach based on visual odometry and Monte Carlo location, and a variant of
the Lazy Theta algorithm (NASH; KOENIG; TOVEY, 2010) for motion planning. Ac-
cording to the authors, the results of the extensive tests performed show that the proposed
approach guarantees localization and state estimation without any external positioning
system, autonomous navigation, collision avoidance with local obstacles, and local tra-
jectory planning.

An active SLAM solution with an active loop closure component, exploration, high
precision robot pose estimation, and complete environment mapping is presented by
LENAC et al. (2016). This proposal uses as an input to the SLAM algorithm, RGB-D
images, and odometry estimates obtained from the inertial measurement unit and wheel
encoders. The SLAM algorithm used in the proposal is based on the exactly sparse de-
layed state filter for real-time estimation of the robot’s trajectory, vision-based pose reg-
istration, and loop closure. The authors propose an active SLAM integration with the 2D



50

laser scanning algorithm that, according to the authors, ensures complete coverage of a
polygonal environment and detailed mapping. The results of the work demonstrate that
an active SLAM can maintain the location and accuracy of the map. One of the problems
identified is why an active SLAM is cut from the path planning process.

The work from Meng et al. (2017) presents an autonomous takeoff, target search,
task assignment, and tracking system using multiple fixed-wing UAVs in urban environ-
ments. According to the authors, the problem addressed in their research is how to design
the flight autonomy built into each UAV to enable autonomous flight coordination and
distributed tasks. The proposal focuses on control logic design based on a finite state
automaton model, integrating four modes of operation, take-off mode, area-to-area oper-
ation mode, search mode, and tracking mode. The experiments were performed in sim-
ulation, and from the results, according to the authors, the proposed solution is efficient
and can provide autonomy for fixed-wing UAVs.

An indirect cooperative relative localization method for estimating the position of
UAVs relative to their neighbors based solely on distance and displacement measurements
in GPS denied environments is presented by GUO et al. (2017). The proposed method
consists of two steps. First, each UAV solves an active 2D relative location problem to
obtain an estimate of its initial position relative to a hovering static quadcopter, which
is further refined by an EKF to account for noise in distance and displacement measure-
ments. In the second step, a strategy using EKF is employed for the case where all UAVs
move simultaneously, thereby enhancing the cooperative location. The proposal was valid
through simulations and experiments and, according to the author, obtained positive re-
sults in the estimation of relative location between vehicles.

An approach to mapping and exploring multiple distributed robots is presented by Fox
et al. (2006). This system approach allows teams of robots to explore environments from
different unknown locations. Robots use the estimation of their relative locations using a
personalized particle filter to ensure consistency by combining their data into shared maps
used to maximize exploration efficiency. The estimation of relative positions is integrated
into a theoretical multi-robot coordination decision strategy. Mapping and map merging
use a SLAM technique that models uncertainty by local probability constraints between
laser scanning locations. Shared maps are used to coordinate robots and estimate the
location of other robots. The proposed system was evaluated by four experiments where
the robots successfully explored the environment. According to the authors, all maps
generated during these experiments were virtually identical, indicating the high accuracy
and robustness of our system.

CHOUDHARY et al. (2017) propose, in their work, a multi-robot SLAM approach
that uses 3D objects (including planes and other geometric shapes) as landmarks for lo-
cation and mapping. According to the authors, the proposed technique is fully distributed
because there is no centralized server processing the information. Pose estimation, map-



51

ping, and other activities are processed locally by embedded computers, and information
exchange among robots occurs whenever they are over each other’s communication range.
Among the results obtained in the realization of the work, the authors highlight that rep-
resentations using landmarks reduce the memory consumption and information exchange
requirements among robots. Several experiments have been designed to ensure that the
system becomes robust and noise resistant when compared to centralized approaches.

A SLAM approach to solving the communication and computing problems that affect
multi-robot systems is presented by Lázaro et al. (2013). The proposed method uses con-
densed data to exchange map information between the various robots. These compressed
data are measurements that can represent, with a small data set, relevant parts of the lo-
cal maps of each robot. According to the authors, the proposed approach results show
a decrease in the data to be transmitted and processed by the robots, increasing the sys-
tem efficiency. According to the experiments performed, the proposed approach improves
performance but presents a little disadvantage in the accuracy of the proposed methods
for map generation.

A new navigation system to be used on multiple UAVs that perform missions moving
together but without forming is presented by Tang et al. (2019). In the proposed approach,
vehicles perform search and exploration missions and use two types of vision sensors,
day and thermal cameras, to measure relative motion between UAVs in different lighting
conditions without the need to use wireless communication. Vehicle grouping during
flight is performed by vision algorithms using an integrated tracking-learning-detection
framework based on the coded correlation filter for vehicle characteristics. According
to the authors, a flocking strategy was developed to deal with the cooperative flight of
multiple autonomous UAVs. The proposed navigation system also has a laser sensor used
for localization, mapping, and obstacle detection activities. According to the authors,
experiments were performed in internal and external scenarios, and these, in turn, prove
the effectiveness of the proposed visual algorithm for practical applications of multiple
UAV autonomous flights.

4.2 Map Merging Specific Related Works

Birk; Carpin (2006) present in their work a formal definition of the concept of merg-
ing occupancy grid maps. They propose the use of a particular similarity metric and a
stochastic search algorithm to find maximum overlap regions among the 2D occupancy
grid maps, merging them. The problem with this approach is its computational cost, in
addition, the metric used to compute the similarity between the maps can make the pro-
posed algorithm fall into local minimums and the fusion never happens, being ideal only
for maps with large regions of overlay.

The work presented by Velásquez Hernández; Prieto Ortiz (2020) demonstrates a new



52

technique for the robust and real-time merging of 2D occupancy grid maps. The proposed
technique consists of a corner detector, and a cylindrical descriptor, a matching technique
with filtering using the RANSAC algorithm. The author also mentions that the inclusion
of 3D information can improve the accuracy of the merging algorithm.

A qualitative and quantitative study with several algorithms for merging 2D (oc-
cupancy grid) and 3D (point cloud) maps is presented by BOKOVOY; MURAVIEV;
YAKOVLEV (2020). The work uses simulation data to compare different methods. The
obtained results demonstrate that the application of map merging does not have a general
solution, that is, numerous instances of problems remain unsolved by the latest generation
of merging algorithms. The author further concludes that this situation provides avenues
for future research, especially for merging 3D maps.

The work presented by JIAN et al. (2017) demonstrates an improvement of the ORB
algorithm for merging 2D occupancy grid maps. In this approach, map merging is inte-
grated as an image registration problem. The results demonstrate the good functioning of
this system.

A new technique for merging 2D maps is presented by PARK et al. (2016). The idea of
the proposed technique is to estimate the best-shared areas through rectangular features.
The information of dimensions and connections of maximum empty rectangles allows
the proposed algorithms to combine orientations and scales, allowing to find overlapping
points. One of the problems with this technique is that it does not take into account the
smallest details displayed on the maps, thus it requires that large overlapping free regions
exist for the merge to be possible.

The fusion of 2D maps based on a multi-hypothesis map merging algorithm with
sinogram-based particle swarm optimization (PSO) is proposed by LEE; ROH; LEE (2016).
According to the authors, the proposed algorithm presented a greater precision in the fu-
sion of maps than the existing techniques that use a single hypothesis.

A technique for merging 3D pose-graphs of point clouds is demonstrated in BO-
NANNI; DELLA CORTE; GRISETTI (2017). The central idea behind the proposed
solution is to locate the robot on a reference map using data from another map as observa-
tions. The solution is also able to eliminate inconsistencies resulting from distortions that
affect the inputs of mapping systems. The solution has been validated against a publicly
available dataset and the results demonstrate the complexity of the map merging task.

The work proposed by FERRãO; VINHAL; DA CRUZ (2017) presents a technique
for merging 2D occupancy grid maps that use Scale Invariant Feature Transform (SIFT)
(LOWE, 1999) to detect keypoints while calculating the transformations (rotation, trans-
lation, and scale) to merge the maps. The authors mention that although the solution
produces successfully merged maps, a fine-tuning process is needed in the obtained trans-
formations and also improvements in the selection of pivot keypoints.

A hierarchical probabilistic solution for merging 3D occupancy grid maps is presented



53

in YUE et al. (2018); Yue et al. (2018). In this solution, the maps are stored in octomaps
(HORNUNG et al., 2013). The solution consists of uncertainty modeling, map matching,
transformation evaluation, and map merging. According to the author, the algorithm suf-
fers from local minimum problems. Another problem is that many occupancy grid maps
are generated by algorithms that do not conserve probability values or rapidly converge
their cell values to their maximums and minimums, invalidating the application of the
proposed methods or reducing the effectiveness of the solution.

A new map merging algorithm for 2D occupancy grid maps generated by various
robots in structured environments is presented in SAEEDI et al. (2014). Here, map merg-
ing is performed by transforming individual maps into Hough space, thus creating an
abstract representation of the maps. The process of defining transformation parameters
between previously unknown maps is performed using the properties of the Hough trans-
form. According to the authors, the experimental results obtained in simulation and the
field with real robots demonstrate that the proposed approach is fast and accurate com-
pared to other approaches.

A 2D map merging approach using Reinforcement Learning is presented in Dinnis-
sen; Givigi; Schwartz (2012). According to the authors, in the proposed approach, a mo-
bile robot should decide how best to merge its maps with another robot in an encounter,
avoiding doing so immediately. For this, the approach uses a decision scheme based on
the current status of the mapping particle filters and the current status of the environment
in which the robots are inserted. From this, a model capable of defining the best time
to merge the maps is defined. The proposal was validated using data obtained through
simulations with multiple robots.

An approach to simultaneous merging of multiple grid maps by robust motion av-
eraging is presented in JIANG et al. (2019). The main idea of the paper, according to
the author of this approach, is to retrieve all global motions to merge maps from a set
of relative motions. To make it possible, this approach adopts its first step, the pair-wise
map merging method to estimate relative motions for grid maps. A graph-based sampling
scheme is utilized to remove unreliable relative motions obtained from the pair-wise map
merging. Finally, the accurate global motions can be recovered from the set of reliable
relative motions by the motion averaging. The proposed experiments were implemented
in MATLAB on a 3.6 GHz computer and four cores with 8 GB of memory. The local
grid maps to perform the tests were obtained by applying SLAM algorithms executed
by multiple robots. Experimental results demonstrate that the proposed approach can si-
multaneously merge multiple grid maps with good performances. One of the problems
with the approach, according to the author, is that if the map has low overlap percentages
with other maps, there is no way to integrate them. Also, according to the author, most
approaches proposed so far share this limitation.



54

4.3 Summary And Discussions

This thesis presents a project for the development and evaluation of a cooperative
navigation system for multiple UAVs. The project is based on an integrated approach,
the proposed system has a distributed architecture, where all members of the cooperative
system run the same software. The basis of the proposed system is divided into three main
activities, which are the construction of local three-dimensional occupancy grid maps, the
sharing of these maps among members of the cooperative system, and, later, the fusion of
local maps in each of the UAVs.

To compare the system presented in this thesis with the related works described above,
eight defined criteria were used, which are: vision sensor, GPS, map type, map sharing,
map merging, architecture, environment, and vehicle type. Table 2 presents in detail the
comparison of this proposal with related works. In this comparative table, the related
works are presented sorted by publication date, in ascending order, where the most recent
works are at the end of the table.

The first criterion refers to the type of vision sensor used. Choosing this criterion
implies defining the level of precision, detail, and cost of the application. Generally,
related applications that use laser sensors have greater accuracy compared to those using
RGB-D cameras and even higher when compared to those using RGB cameras. Laser
sensors are generally more expensive and cannot be carried by small UAVs. Furthermore,
they have moving parts in their structure, which can contribute to noise in the estimation
of the UAVs’ pose.

Some RGB-D cameras, on the other hand, are reduced in size, with no moving parts,
and can provide a depth map that can be easily converted to a point cloud, combined
with a color map that makes up an image. As RGB cameras do not have this capability,
data processing is required before building maps. For these reasons in this thesis, the
sensor defined for use was RGB-D cameras. The only problem with this type of sensor is
having the ability to capture information at a reduced angle of the environment, requiring
a greater movement by the UAVs for the construction of local maps. This limitation is
currently being overcome by the inclusion of more than one sensor of this type in the
same drone, by some manufacturers.

The next criterion used for comparison is the use of global positioning systems (GPS)
or Global Navigation Satellite System (GNSS). Although its use is beneficial for multiple
UAV systems, the choice of this criterion is highly linked to the signal conditions required
for its proper operation. As with most approaches, except for Vetrella; Fasano; Accardo
(2016), in this thesis, the idea is that the map merging happens without any previous
information about the environment or global location, so this sensor is not used. This
choice allows for the application of greater flexibility, allowing the system to be used in
various environments where GPS functionality is partially or unavailable.



55

Map type is the next criterion to be compared. This criterion defines how informa-
tion from the virtual representation of the environment will be created, stored, distributed,
or shared with various independent systems. The most used representations in the ana-
lyzed works are representations in the form of graphs (topological representations). This
type of representation can consume less memory and lower processing load compared to
occupancy grid representations.

On the other hand, occupancy grid maps represent the environment in more detail and
allow mobile robots to move beyond navigation along edges or simple lines. UAV naviga-
tion systems need to be adequate so as not to affect their ability to move, that is, represen-
tations must be made in three-dimensional (3D) space. Unlike most related works, this
thesis uses a virtual representation structure, for maps, the three-dimensional occupancy
grids. This approach ensures a detailed representation of the environment compared to
topological mapping. In this thesis, an approach is also employed to reduce the amount of
data to be processed and transmitted when compared to the other approaches described.

The next criterion to be analyzed is how the works propose communication and data
exchange between multiple robots. Among the works analyzed, only two are concerned
with this criterion (Lázaro et al., 2013; Schmuck; Chli, 2017). The work Schmuck; Chli
(2017) presents the use of the ROS infrastructure to exchange information between robots.
This practice may not be the most suitable for this type of application as it can overload
the communication channel with an enormous amount of information that is often just
discarded. On the other hand, the work Lázaro et al. (2013) proposes a kind of compres-
sion for exchanging pose graph information between robots. This approach is more suit-
able and ensures efficiency in this type of application. In this thesis, a map compression
technique combined with a map transmission protocol is used so that the communication
between the robots takes place as efficiently as possible. In this approach, maps are shared
between two or more UAVs whenever they are within a communication range.

The map merging technique is the next criterion to be analyzed. Based on the works
discussed above, it is possible to verify that the map merging is an open problem, with
multiple possible solutions, but with issues not yet addressed. Some authors mention
that the inclusion of three-dimensional information can make the application more robust
(Velásquez Hernández; Prieto Ortiz, 2020). Still, the fusion algorithms based on image
processing techniques generally present a better performance when compared to the other
applications observed. Based on the study of the related literature, this thesis explores in
depth the problem of merging 3D occupancy maps, proposing solutions and adjustments
in state-of-the-art algorithms to achieve the objectives of the proposal.

Another criterion used in comparison with the state of the art is the type of architec-
ture. This criterion implies how the system is implemented. Centralized systems con-
centrate the entire processing load on a single vehicle or even a server. This type of
architecture generally has a high computational capacity but requires an always-on com-



56

munication system. Another type of architecture is decentralized, which aims to divide
the processing load between one or more mobile robots connected in the same network.
In this thesis, the architecture used is distributed, where all UAVs will run the same soft-
ware, and data will be shared when one or more UAVs are in a communication range.
This approach reduces the required communication rate and distributes the processing
load among the UAVs.

The type of environment in which the system will be designed to function is also
a determining factor. The external environments, in theory, have more noise and are
disorganized and unstructured. Indoor environments can have controlled brightness, good
navigability, and structures with known geometric characteristics. The main idea of this
thesis is to produce a navigation system invariant to the type of environment.

As a final comparison criterion, the type and multiplicity of vehicles the system is
designed to work with. Single robot systems are less prone to communication problems,
generally having the most current version of the virtual representation in memory. Sys-
tems of multiple robots can, in turn, distribute the processing load, perform fractional
tasks, split them up, and execute them faster. On the other hand, they are more prone to
data synchronization and updating issues. The type of robot is a factor that directly affects
navigation applications. Unmanned ground vehicles (UGVs) can charge more robust sen-
sors, maintain their pose without wasting energy, and charge a large number of batteries
or fuels.

On the other hand, aerial vehicles can move in any direction, overcome obstacles
such as stairs, and access different floors and structures with ease of effort. However,
they are subject to controlled requirements, limited battery, and less accurate sensors.
Furthermore, these systems have six degrees of freedom, to have errors, just taking into
account their mobility model. Multiple robot systems are still subject to more frequent
collisions with each other or with the environment in which they operate. The proposal
presented in this article is based on the development of a cooperative navigation system
for multiple UAVs, directly benefiting from the mobility characteristics of this type of
robot, but having to deal with the disadvantages presented with caution.



57

Table 2 – Comparison with related works.
Reference Vision Sensor GPS Map Type Map Sharing Map Merging Architecture Environment Vehicle

Birk; Carpin (2006) - No 2D Occupancy Grid - Similarity metric and a stochastic search algorithm Centralized Indoor Multiple UGVs

Fox et al. (2006) Laser No 2D Occupancy Grid - Based on general constraint graphs Distributed Indoor Multiple UGVs

ARTIEDA et al. (2009) RGB Camera No 3D Graph - - - Outdoor UAV

BACHRACH et al. (2011) Laser No 3D Graph - - Centralized Indoor, Outdoor UAV

Dinnissen; Givigi; Schwartz (2012) - No - - Reinforcement Learning Centralized Indoor Multiple UGVs

MICHAEL et al. (2012) Laser, RGB-D Camera No 3D Occupancy Grid - Based on an initialization point Centralized Indoor UAV, UGV

CHOWDHARY et al. (2013) RGB Camera No Feature Point Database - - Centralized Indoor, Outdoor UAV

WANG et al. (2013) RGB Camera No 3D Graph - - Centralized Outdoor UAV

Lázaro et al. (2013) Laser No 3D Graph Wireless ad-hoc network Condensed measurements Distributed Indoor Multiple UGVs

SAEEDI et al. (2014) Laser No 2D Occupancy grid - Hough peak matching Centralized Indoor Multiple UGVs

Pi et al. (2014) Stereo RGB Camera No 3D Graph - - - Underwater AUV

Zhou et al. (2015) RGB Camera No 3D Graph - - - Indoor -

Lu; Song (2015) RGB Camera No 3D Graph - - - Outdoor Multiple UGVs

LENAC et al. (2016) Laser, RGB-D Camera No 2D Graph, 2D Occupancy Grid - - Centralized Indoor UGV

KOCH et al. (2016) 2D Laser No 2D Occupancy Grid - Signed distance functions Centralized Indoor UGV

Vetrella; Fasano; Accardo (2016) RGB Camera Yes - - - Centralized Outdoor Multiple UAVs

PARK et al. (2016) Laser No 2D Occupancy Grid - Connections of maximum empty rectangles Centralized Indoor UGV

LEE; ROH; LEE (2016) Laser No 2D Occupancy Grid - Multi-hypothesis, synogram-based, PSO Centralized Indoor Multiple UGVs

CHOUDHARY et al. (2017) RGB-D Camera No 3D Object Graph - - Distributed Indoor Multiple UGVs

JIAN et al. (2017) RPLIDAR No 2D Occupancy Grid - Improvement of the ORB algorithm Centralized Indoor UGV

Meng et al. (2017) RGB Camera No - - - Decentralized Outdoor Multiple UAVs

GUO et al. (2017) - No - - - Decentralized Outdoor Multiple UAVs

URZUA; MUNGUíA; GRAU (2017) RGB Camera No 3D Graph - - Centralized Outdoor UAV

BONANNI; DELLA CORTE; GRISETTI (2017) 2D laser, depth-camera No 3D Graph - Using a reference map Centralized Indoor, Outdoor Multiple UGVs

FERRãO; VINHAL; DA CRUZ (2017) - No 2D Occupancy Grid - SIFT Centralized Indoor -

Schmuck; Chli (2017) RGB Camera No 3D Graph ROS infrastructure Computing transform among two key frames Centralized Indoor, Outdoor Multiple UAVs

YUE et al. (2018); Yue et al. (2018) Laser No 3D Occupancy Grid - Hierarchical probabilistic solution Centralized Indoor, Outdoor Multiple UGVs

TRUJILLO et al. (2018) RGB Camera No 3D Graph - - Centralized - Multiple UAVs

PEREZ-GRAU et al. (2018) RGB-D Camera No 3D Occupancy Grid - - Centralized Indoor UAV

JIANG et al. (2019) - No 2D Occupancy Grid - Based on global and relative motions Centralized - UGV

Qin et al. (2019) Laser, Stereo Camera No 2.5D, 3D Occupancy Grid - - Centralized Indoor UAV, UGV

Tang et al. (2019) Laser, RGB Camera, Thermal Camera No 2D Occupancy Grid - - Decentralized Indoor, Outdoor Multiple UAVs

Velásquez Hernández; Prieto Ortiz (2020) Laser No 2D Occupancy Grid - Corner detector, cylindrical descriptor, RANSAC Centralized Indoor Multiple UGVs

BOKOVOY; MURAVIEV; YAKOVLEV (2020) Monocular, Stereo and RGB-D cameras No 2D Occupancy Grid, 3D Point Clouds - Comparison of some algorithms Centralized Indoor UGV, UAV

This thesis RGB-D Camera No 3D Dynamic Occupancy Grid MTP protocol over TCP sockets FAST3D, BRIEF3D, RANSAC and Homography Distributed Indoor, Outdoor Multiple UAVs
(-) Not applicable or unavailable information.



58

5 COOPERATIVE NAVIGATION SYSTEM ARCHITECTURE
OVERVIEW

This thesis demonstrates a complete approach from the development to the evalua-
tion of a cooperative navigation system suitable for use by multiple UAVs. The system
has a distributed architecture, where all UAV components of the cooperative navigation
system run the same software. Figure 14 demonstrates the proposed navigation system
architecture.

Figure 14 – Architecture of proposed cooperative navigation system for multiple UAVs.

  

UAV n: Cooperative Navigation System

UAV 0: Cooperative Navigation System

Pose

Input data

Sensor
data

Mapping

3D Occupancy
Grid

Data sharing

Compression

Serialization

Map transmission
protocol

Communication
channel

Map merging

Matching

Merging
Pose

offsets

Output data

Global
map

Source: author.

In this proposed architecture, all UAVs have additional hardware, an embedded com-
puter, an RGB-D camera, and a communication channel used for data synchronization
between vehicles. The embedded computer is responsible for running all the software
modules of the proposed system. In addition, a connection is made between the proposed
software and the flight controller to acquire UAV positioning estimates (odometry) and
send commands to mission control. The RGB-D camera is responsible for acquiring the
depth point clouds that will be used as input for the navigation algorithms.

In total, each UAV is equipped with three distinct proposed software modules. The
first is the mapping module described in Section 5.1, responsible for building the maps



59

based on the readings obtained from the UAV sensors. The second module is the data
sharing module, described in Section 5.2, which aims to efficiently distribute local maps
between vehicles within the communication range. The third and last module is the map
merging module, presented in Section 5.3, which is responsible for merging local maps
to generate maps with global representation within each UAV.

The execution of the proposed system in each of the UAVs generates three distinct pro-
cesses, as shown in Figure 15. Each of these processes corresponds to a system module.
These processes work independently and simultaneously to ensure the complete func-
tioning of the proposed system. In addition, there is no type of centralizing element and
all proposed applications can run online during the flight on each vehicle’s embedded
hardware.

Figure 15 – System processes.

  

System processes

Mapping

Stop

Data sharing Map merging

Start

Source: author.

The proposed architecture is designed to work with an increasing number of UAVs.
Furthermore, it is fully distributed, which means that each UAV by itself operates inde-
pendently, but if there are other UAVs within the range of the communication channel,
they tend to share their information and merge their experiences (maps). This approach
prevents UAVs from repeatedly traveling in the same regions of the environment.

The purpose of using multiple UAVs in this architecture is to maximize area coverage
and reduce the time needed to perform tasks such as exploring large areas. One of the
difficulties of this type of application is the lack of signal availability of global localiza-
tion systems (GPS) within certain environments. Under these conditions, estimating the
parameters for merging local shared maps at runtime becomes a complex task.

The final result of using the proposed system is global map instances that allow UAVs
and other mobile robots to access the regions contained in the map to perform some
necessary activities related to the mission objective they are intended to accomplish.



60

5.1 Mapping Module

The mapping module (MM) is responsible for concentrating all the experiences and
knowledge acquired by the mobile robot along its trajectory. Maps must have a certain
consistency and fidelity to enable mobile robots to navigate in free spaces. Figure 16
provides a simplified diagram of the mapping module.

Figure 16 – Mapping module.

MM
x̂t
zt

mt−1

mt

Source: author.

As input, the mapping module receives the best pose estimated of the robot x̂t at
instant t, the readings zt of the RGB-D sensor at time t and the last map representation
mt−1 generated at the previous time t− 1, if available.

From these input data, it becomes possible to construct the virtual representation of
the 3D occupancy grid map mt at instant t. The virtual representation mt, in turn, is com-
posed of all the representations obtained previously m0:t enhanced by the pose estimate
x̂t of the robot.

The choice of 3D occupancy grid structures to store maps is justified by the fact that, in
addition to storing environmental obstacles, it stores precious information about free areas
and possible paths for navigation. The choice for the use of three-dimensional structures
depends on the mobility model of these vehicles and the possibility of better describing
the environments.

The process execution flow generated by the mapping module can be seen in Figure
17.

Figure 17 – Mapping module execution flow.

  

Read sensor data

Stop

Start

Create new 
map structure

Update map

Publish map

Continue?
Yes

No

Source: author.



61

Upon module startup, it creates a new 3D occupancy grid map structure. After it loops
throughout its runtime. In this cycle of iterations, the system obtains the readings from
the sensors, updates the map, and publishes a new version of it at each new iteration. Map
structures and their construction process are fully detailed in Chapter 6.

5.2 Data Sharing Module

The proposed data sharing module (DSM) aims to carry out all actions involving com-
munication and data sharing between the UAVs of the team that make up the cooperative
system. This module is of great importance for the cooperation of the proposed system, as
it is through it that UAVs share their experiences (maps) and can then locate themselves
concerning their neighbors. This module is responsible for providing the distributed ar-
chitecture of the system, allowing the iteration between the UAVs and making them inde-
pendent, that is, if an individual system fails, the set will possibly not be affected. Figure
18 shows the data sharing module diagram.

Figure 18 – Data sharing module.

DSMm0
t

...

m1
t

mi
t

Source: author.

This module collects from the system the latest version of the map m0
t , at the instant

of time t, and prepares it for sharing. When any UAV component of the cooperative
system approaches within the communication range, this module detects and makes the
connection with the neighbor’s data sharing module. The current map is then shared. The
local maps of the other vehicles m1:i

t are received.

The execution process of the data sharing module then generates two new independent
processes. The first process has a server responsible for receiving maps. The server
execution flow is shown in Figure 19.



62

Figure 19 – Data sharing server execution flow.

  Stop

Start

Wait for
shared maps

Unpack data

Publish map

Continue?
Yes

No

Map received?

Yes

No

Decompress map

Source: author.

In this process, the system waits for shared maps, when a new map is received, the
data is unpacked and the map goes through a decompression process. Afterward, the map
is then published locally so that the other components of the system can access it.

The second process created is called the client process and is responsible for sending
the local map to other vehicles. The execution flow of the client process is shown in
Figure 20.

Figure 20 – Data sharing client execution flow.

  Stop

Start

Wait for 
nearby UAVs

Pack data

Share map

Continue?
Yes

No

Compress local map

Nearby
UAVs found?

Yes

No

Source: author.

The client process waits until any connection is made with neighboring UAV servers.
When the connection occurs, the local map is compressed and the data is packed. The
map is then sent to this UAV. If any sharing with this vehicle has already been done, the
local map is only shared if it receives any update to the previously shared map.



63

Map compression and serialization methods and also the transmission protocol used
are fully detailed in Chapter 7.

5.3 Map Merging Module

The map merging module (MMM) is responsible for merging all local maps shared
among the UAVs within the communication range. This module is present in all UAVs
and the global map instance obtained as a result of this module refers to all experiences
obtained by the mobile robot and the robots encountered during its journey. This way,
at the end of the mission, there may be more than one global map representing different
regions. The Figure 21 demonstrates the map merging module.

Figure 21 – Map merging module.

MMM...

m0
t

mi
t

Wt

x̂0
t

...

x̂it

Source: author.

This module receives as input several local maps mi
t obtained at the instant of time

t by two or more UAVs identified with index i. It is assumed for this module that the
map represented by the index i = 0 is the local map of the UAV that runs the module,
thus, mt = m0

t . If there are no shared maps, the representation of the local map is the
same as the global map, that is, m0

t = Wt. If there are shared maps, the module result
is corresponding to the merge of all local maps whenever possible, so m0:i

t = Wt. In
addition to the global map, as a result, this module publishes the pose estimate x̂it of each
of the UAVs to the global map. This result allows the other components of the system to
identify the position of the other UAVs to their position.

The process execution flow generated by the map merging module can be seen in
Figure 22.



64

Figure 22 – Map merging module execution flow.

  Stop

Start

Get local maps

Publish global map 
and pose offsets Merge maps

Continue?

Yes

No

Try to match
maps in pairs

Parameters 
found?

No

Yes

Source: author.

After starting the map sharing module, all available local maps are collected. Then
the algorithm tries to find the merge parameters through matching map pairs. If the re-
spective parameters are found, the local maps are merged and the global map and pose
estimates called offsets to the global map for each of the vehicles are published. The
module continues its execution until the end of the mission.

The full description of the map merging module, including match and merge algo-
rithms and the entire map merging system structure is available in Chapter 8.



65

6 3D OCCUPANCY GRID MAPPING

In this thesis, 3D occupancy grid maps are generated from point clouds obtained from
RGB-D cameras coupled in front of each of the UAVs. Section 6.1 introduces the concept
of dynamic maps and demonstrates in detail the structures that make up the 3D dynamic
occupancy grid maps. Section 6.2 demonstrates how 3D dynamic occupancy grid maps
are allocated in memory. Finally, Section 6.3 explains in detail how the construction of
maps takes place and presents the algorithms used.

6.1 3D Dynamic Occupancy Grid Maps

Occupancy grid maps are structures used to store the experiences collected from the
environment by mobile robots during their exploratory navigation process through an
unknown environment. In this thesis, these maps are produced in three dimensions to
adapt to the mobility model provided by the UAVs, enabling navigation both horizontally
and vertically. The basic structure of this type of map can be seen in Figure 23.

Figure 23 – The structure of 3D dynamic occupancy grid maps.

  

m
y

X

Y
Z

m
z

m
x

Source: author.

The cubic structure of this map m is conditioned by the variables mx, my and mz



66

representing the size of the map in the dimensionsX , Y and Z, respectively. Each portion
of this virtual representation of the environment is called a cell and its representation can
be seen in Figure 24.

Figure 24 – The 3D dynamic occupancy grid map cell representation.

  

m
r

X

Y
Z

m
r

m
r

Source: author.

The cells that make up the map have a size defined by the resolution of the map,
expressed by the parameter mr. Each cxyz cell represents the state of the environment
at the location x, y, and z in the map coordinate space. Possible values assumed by cxyz

can be: occupancy probability p, which can range from 0 (free space) to 100 (occupied
space); −1 to represent an unknown space; −2 representing an inaccessible space.

To fix coordinate system references, in this thesis, the concept of robot pose as a
world center is adopted, which places the robot in the map world coordinate system center
during the initialization of the map construction activity.

This thesis uses the concept of dynamic structures of 3D occupancy grid maps. Here
the "dynamic" concept refers to the structures that store the maps and not necessarily to
dynamic mapping. These maps can dynamically change their size as shown in Figure 25.

Figure 25 – The possible map size increments.

  X

Y

  X

Z

a) Horizontal size increments. b) Vertical size increments.
Source: author.



67

The size control of dynamic maps is done in two ways, horizontally and vertically,
always respecting a safety margin, in the number of cells, defined by the parameter msm.
The size change occurs whenever any of the other parts of the proposed software try to
access or enter information outside the regions supported by the map. The horizontal
size control has a fixed increment for the dimensions X and Y to ensure that the robot’s
starting point is always the center of the map.

Also, maps with dynamic structures can transform (rotate and translate), merge with
other maps (merge), quickly copy their content, and shrink their dimensions after a trans-
formation process is applied and many free regions remain on the map. These maps even
can compress and generate representations with relatively small sizes. These features will
be explored with a greater level of detail in the course of the text of this thesis.

6.2 Map Storage

In this thesis, the 3D dynamic occupancy grid maps are stored in memory as one-
dimensional (1D) structures through the use of an indexing method known as Row-major
order (LEE et al., 2005). A graphical representation of this structure conversion can be
seen in Figure 26.

Figure 26 – The representation of map storage structures.

  

X

YZ

c
0

c
1

c
2

c
3

c
4

c
5

c
6

c
7

c
8

c
9 ... c

N

Source: author.

In this 1D structure, the index i corresponding to each cell ci is obtained by (15).

i = z +mz ∗ (y +my ∗ x) (15)

where x, y and z represent the coordinates of the cell in three-dimensional space and
my and mz represent the size of the dimensions Y and Z of the three-dimensional map
respectively.



68

The maximum size of the 1D structure is defined by N and obtained using (16).

N = mx ∗my ∗mz (16)

6.3 Map Construction

The experiences collected by UAVs during their trajectory are stored in the form of
three-dimensional maps built using the Algorithm 1.

Algorithm 1 3D Mapping Algorithm
1: procedure Mapping3D(mt−1,mr,md, x̂t, zt)
2: mt ←mt−1

3: Rescale x̂t and zit according to mr

4: for zit in zt do
5: Create a line l = (x̂t, z

i
t)

6: Translate l to map center
7: Rotate l to robot orientation x̂t

8: Compute all cells in l, c = BresenhamLine(l)

9: for cj in c do
10: mtcj = HIMM(mtcj ,md)

11: end for
12: end for
13: return mt

14: end procedure

As input, this algorithm receives the latest available map version mt−1, the map reso-
lution mr in meters, the region distance parameter md, the best estimate of the robot pose
x̂t, in six dimensions (6D), and a point cloud zt obtained through an RGB-D camera.

First the algorithm initializes the current version of the map mt with the previous map
mt−1. Then it applies a scale conversion to the robot pose x̂t and the readings zt obtained
using the resolution of the map mr.

Afterward, for each point of the obtained point cloud, a straight line l is constructed,
where the origin point is the pose of the robot x̂t and, the destination point is the point
of the point cloud zit. A transformation consisting of rotation and translation is applied to
each of the lines, transforming them to the coordinate space of the map.

Then, Bresenham’s line algorithm (BRESENHAM, 1965) is used to calculate the set
of map cells c corresponding to the line l. For each one of the cells of the set c, the
Histogramic In Motion Mapping (HIMM) algorithm (BORENSTEIN; KOREN et al.,
1991b) is adapted and used to update the value corresponding to each cell. As input, this
algorithm receives the cell of the line to have its value modified mtcj and the parameter



69

for defining the distance between regions md. The operation of the HIMM algorithm can
be seen in Figure 27.

Figure 27 – The HIMM algorithm operation.

  

Region 2 Region 1

c
0

c
1

c
2

c
3

c
4

c
5

c
6

c
7

c
8

c
9 ... c

P

m
d

c
0

c
1

c
2

c
3

c
4

c
5

c
6

c
7

c
8

c
9 ... c

P

c
j
 = c

j
 - m

I-
c

j
 = c

j
 + m

I+

Source: author.

If the distance from the analyzed cell cj to the robot pose c0 is greater than the pa-
rameter defined by md, this region is defined as region 1 otherwise it is defined as region
2. All cells classified as region 1 receive an increment as defined in (17) and cells defined
as region 2 receive a decrement as defined in (18).

cj = cj +mI+ (17)

cj = cj −mI− (18)

where mI+ is the increment parameter and takes the value 10, and mI− is the decrement
parameter and receives the value 30.

At the end of the operation, the mapping algorithm returns the current map mt so that
it can be used by other components of the proposed system. In addition to the mapping
activity, a simple gap-filling algorithm is performed to fill isolated cells that can have their
values defined based on their neighbors, to guarantee the integrity and minimum quality
of the generated maps.

The mapping process is performed iteratively during the entire trajectory traveled by
the UAVs and gives rise to local occupancy grid maps in three dimensions.



70

7 SHARING 3D OCCUPANCY GRID MAPS

In this thesis, there is a need to share the 3D local occupancy grid maps produced
by each UAV component of the cooperative navigation system. Figure 28 demonstrates
the scenario in which four vehicles exchange their local maps to improve their navigation
experiences.

Figure 28 – Data sharing scenario.

  

lo
ca

l m
ap

s

lo
ca

l m
ap

s

local maps
local maps

local m
aps

local maps

Source: author.

In this scenario, maps are shared among vehicles whenever they receive new map
updates and two or more UAVs are in the communication range. In this way, the maps
can be merged in a distributed way and each of the UAVs in the network will have, at
the end of their mission, a version of the global map composed of their experiences in
combination with the experiences of the vehicles they encountered during their trajectory.

Data transmission and network management between mobile nodes have been fre-
quently explored in recent research (Dapper e Silva et al., 2019). Even so, it was not yet
possible to share maps efficiently and with a reduced computational cost between vehi-
cles. For this reason, this thesis proposes a set of algorithms that, when used together,
enable the sharing of these maps in the cooperative UAV network.

In this system, maps undergo a two-level compression process presented in Section



71

7.1. They are then serialized using a proposed protocol presented in Section 7.2. Then a
map transmission protocol (Section 7.3.) is used to share the maps in a fully distributed
way among the UAVs.

7.1 Map Compression

To significantly reduce the size of the maps and to speed up the sharing process, the
maps are subjected to a compression process. Different from conventional compression
methods, the proposed algorithm was specially designed for the compression of 3D occu-
pancy grid maps. The proposed compression process is divided into two stages. The first
step is occurrences compression and is shown in Figure 29.

Figure 29 – First step: occurrences compression.

  

-1 -1 100 100 100 100 100 0 -1 -1 -1 -1

Original Map

-1 -1 -10 100 5 0 -10 -1 4

Semi-Compressed Map

a) d) a)

a) Uncompressed space
b) Compression identifier character

a) b) c) b) c) d)

c) Repetition value
d) Number of occurrences

Source: author.

In this step, the one-dimensional vector of map data goes through the semi-compression
process. In this process, all occurrences of elements are identified and stabilized. All ele-
ments that have three or more occurrences are replaced by a set of three distinct elements
that represent the occurrences.

The first element of the set, represented in Figure 29 b, is the occurrence identifier and
has the initial value −10. The second element of the set, represented in Figure 29 c, is
the equivalent of the repeated element’s value. The third element of the set, represented
in Figure 29 d, is equivalent to the number of repetitions of the element of the occurrence
in question. The maximum number is limited by the type of data used. In this case, the
maximum number of repetitions is 127 because the data type used corresponds to an eight-
bit signed integer. If the number of occurrences is greater than the maximum number
allowed, two or more sets of occurrence representations are used for the representation.

The second step is sequence compression and is represented in Figure 30.



72

Figure 30 – Second step: sequences compression.

  

... -10 100 127 -10 100 127 0 -10 -1 4 ...

Semi-Compressed Map

... -11 100 2 0 -10 -1 4

Compressed Map

d) a)

a) Uncompressed space
b) Compression identifier character

b) c) b) c) d)

c) Repetition value
d) Number of occurrences

...

Source: author.

In this step, the semi-compressed map is subjected to compression again. First, all
sequences of sets of occurrences are identified. Then the accounting of all sets in the
sequence is performed. Then all sequences of identified sets of occurrences, which have
two or more repetitions, are replaced by a new set of three representative elements.

The first element of this set, represented in Figure 30 b, is the sequence identifier,
which is decremented to the value −11. The second element of the set, represented in
Figure 30 c, is the equivalent of the repeated element’s value. The third element of the
set, represented in Figure 30 d, is equivalent to the number of element repetitions of the
sequence in question. As in the previous step, the maximum number of repetitions is
limited by the type of data used. If the number of sequence repetitions is greater than
the maximum number allowed, two or more sets of sequence representations are used for
representation.

Then new iterations are performed to compress sequences. At each new iteration,
when substitutions occur, the sequence identifier is decremented until reaching the mini-
mum value. This process is then repeated until replacements are no longer possible.

After these two steps, the content of the maps is compressed and ready to be shared.
The contents of the compressed map cells cannot be accessed directly. For this, after
sharing, the maps are decompressed with an algorithm that reconstructs the map content
by replacing all the repetition sets with values corresponding to the original map. The
operation of the decompression algorithm is equivalent to the inverse process of the com-
pression.

The original map and the uncompressed map are identical, both in size and content.
Therefore, the proposed compression processes do not affect the quality of the maps in
any way. In addition, these algorithms significantly reduce the size of maps and help
speed up the information sharing process.



73

7.2 Map Serialization

Before transmitting maps, compressed map data and other related information need
to be organized in a way that allows for sharing. For this, a serialization protocol of map
information is used. The proposed serialization protocol can be seen in Figure 31.

Figure 31 – Map serialization protocol.

  

Bytes 0 1-4 5 6-9 10-13 14-17 18-21 22 23-26 27-N

Type int8_t int int8_t int int int float int8_t int int8_t

Description message 
Type

vehicle 
ID

map 
type x size y size z size map 

resolution
is 

compressed
data 
size data

Available 
options 0 - map 0 - 2d

1 - 3d
0 - no
1 - yes

Serialized map

Source: author.

This protocol is composed of 27 bytes of information plus N − 27 bytes of map data.
The byte order 0 refers to the message type. In this case, the value 0 is adopted for the
map type. New types can be added, but in this thesis, only maps are shared.

The bytes 1 to 4 represent a 32-bit integer equivalent to the identifier of the vehicle
sharing the map. The 5 byte represents the map type, which can be 0 for 2D maps and 1

for 3D maps. The 6 to 17 bytes represent three 32-bit integers that represent the size of
the three dimensions of the map to be transmitted. The map resolution is represented by
the 18 to 21 bytes equivalent to the float type. The byte 22 indicates whether the map is
compressed or not, with the option 0 for uncompressed and 1 for compressed.

Finally, the bytes 23 to 26 represent a 32-bit integer equivalent to the size in bytes of
the compressed map data array. The bytes 27 to N represent the map data to be shared,
where N − 27 defines the size of the map data.

After serialization, the data byte array is already formatted to be shared. The informa-
tion contained in the constructed message allows the reconstruction of data and facilitates
the sharing of this information.

7.3 Map Transmission Protocol

With the data to be transmitted properly formatted, these maps are then shared using
the proposed Map Transmission protocol (MTP). In this protocol, the data to be transmit-
ted is allocated into three distinct message types and then sent in blocks. The first message
defined in the protocol is the data transfer start frame and is represented by Figure 32.



74

Figure 32 – Start transfer frame.

  

Bytes 0 1 2-5 6-BS

Type int8_t int8_t int int8_t

Description
Frame 

identification 
byte

Frame 
type

Number of 
blocks

Block size 
complement

Available 
options

-128 0 - start 0

Start transfer frame

BS – Message block size

Source: author.

The purpose of this message is to signal the initiation of a map transfer. The message
is made up of BS bytes, where BS is the size of the message block predefined as a
parameter. The order byte 0 represents the identification character of a frame and has
a value equal to 128. This value is not used by the compression process nor for the
serialization process, being exclusive for the identification of a data transfer frame. The
1 order byte identifies the frame type, which in this case receives the value 0, signaling
a start frame. The bytes 2 to 5 represent a 32-bit integer equivalent to the number of
blocks to be transferred. The 6 toBS bytes are padded with zeros to build a message with
defined block size.

The second message is a data frame and is represented by Figure 33.

Figure 33 – Data frame.

  

Bytes 0 - BS

Type int8_t

Description Data

Available 
options -127 to 127

Data frame

BS – Message block size

Source: author.

In this message, bytes 0 to BS are filled with the data formatted in the map serializa-
tion process. This message is replicated until all data is covered. If the last frame does
not have the correct size BS, the remaining bytes are padded with zeros and ignored by



75

the receiver.
The last message signals the end of map transfer and is represented by Figure 34.

Figure 34 – Stop transfer frame.

  

Bytes 0 1 2-5 6-BS

Type int8_t int8_t int int8_t

Description
Frame 

identification 
byte

Frame 
type

Number of 
transferred

blocks

Block size 
complement

Available 
options

-128 1 - stop 0

Stop transfer frame

BS – Message block size

Source: author.

This message has a structure similar to the initialization message, but the byte order 1
that signals the frame type receives the value 1, indicating the end of a transfer. The bytes
2 to 5 represent a 32-bit integer equivalent to the number of blocks transferred.

Messages formatted according to the proposed protocol are then forwarded over a
TCP/IP connection via Sockets. It is worth noting that as this proposed protocol is of high
level, message delivery is guaranteed by the TCP/IP protocol, with no need to include
headers, for example, in data frames.

Each of the UAVs has a socket server responsible for receiving maps from its neigh-
bors. Furthermore, the defined range of IP addresses is scanned respecting a pre-defined
period to discover available servers. When a neighboring socket server is discovered, the
map sharing process is started in a new thread.

When the stop message is received, the size of blocks contained in the start message
and the stop message is compared, if these sizes are equal, the protocol can reconstruct
the vector of serialized data.

Finally, the messages are unpacked and the map in question is uncompressed, if nec-
essary. After that, the received local maps are available for the local merge process to be
applied.



76

8 3D OCCUPANCY GRID MAP MERGING

In this thesis, the local 3D occupancy grid maps collected from other vehicles that
compose the cooperative navigation system are merged in each embedded system of each
vehicle. For that, this system uses a technique of merging maps in pairs (Birk; Carpin,
2006). The purpose of this map merging system is to incorporate the collective navigation
experiences with the local experiences of each vehicle, making the mapping process faster
and more robust as it is performed in a distributed manner among several vehicles.

Figure 35 demonstrates the execution flow of merging several 3D occupancy grid
maps using the pairwise merging technique in each of the vehicles that compose the co-
operative navigation system.

Figure 35 – Pairwise map merging flow.

  

Map ( m0 )

Global Map ( Wt )

Map ( m1 ) Map ( m2 ) ...

Merging Merging

Map ( mn )

Merging

MTM 
Ok?

Yes

MTM 
Ok?

Yes

MTM 
Ok?

Yes

Source: author.

First, a list of local maps mt is obtained at instant t of the cooperative navigation
system. Each map in this list is represented by mi

t indicating that it was collected from
vehicle i. This way, m0

t represents the map of the vehicle that is performing the merging
process and is defined as a reference to the center of coordinates, by directly incorporating
it into the global map Wt defined at instant t.

After this process, the current global map Wt is merged with the local map m1
t which



77

is subsequent in the local maps list. If the merge process finds a valid Map Transformation
Matrix (MTM), m1

t is merged into Wt and the process repeats for all local maps collected.

The merging process occurs iteratively, and can merge maps by a sort of region in-
heritance. Taking for example a scenario with 3 UAVs, where it can have common areas
between the maps m0

t and m1
t , and between m1

t and m2
t , but not between m0

t and the
m2

t . However, when merging m0
t with m1

t , and m1
t with m2

t , after the first merge, m0
t

and m2
t will have common areas “inherited” from the first merge and from that point, they

will all have common areas. In this sense, there is no need to have common areas on all
maps.

Figure 36 demonstrates in a simplified way the proposed map merging system applied
for each pair of 3D occupancy grid maps.

Figure 36 – Proposed map merging system.

  

Map 0

Computing
Correspondences

Global
Map

P
re

pr
oc

es
si

n
g

   Correspondences
   Filtering    Computing MTM Merge Maps

K
ey

po
in

ts
 D

et
ec

tio
n

K
ey

po
in

ts
 F

ilt
e

rin
g

K
e

yp
o

in
t P

ro
pe

rt
ie

s

K
ey

po
in

ts
 D

e
sc

rip
tio

n

Map 1

P
re

pr
o

ce
ss

in
g

K
e

yp
oi

n
ts

 D
e

te
ct

io
n

K
e

yp
o

in
ts

 F
ilt

er
in

g

K
ey

po
in

t 
P

ro
pe

rt
ie

s

K
ey

po
in

ts
 D

e
sc

rip
tio

n

Map Matching Map Merging

Source: author.

The pairwise map merging is divided into two steps. The first step is Map Matching.
At this stage, the pair of local maps undergo a preprocessing process for noise removal
and size reduction to accelerate and turn the system more robust. The map preprocessing
process is detailed in Section 8.1. Afterward, a process to detect the keypoints is applied
(Section 8.2). The keypoints are then filtered (Section 8.3) and their fundamental prop-
erties are obtained (Section 8.4). The keypoints are then described (Section 8.5). The
correspondences between the keypoints of the two maps are computed (Section 8.6) and
then pass through a filter to remove false positives (Section 8.7), completing the first step
of the merge.

After, the second step called Map Merging is started. In this step, the MTM is ob-
tained from the set of best correspondences obtained at the end of the Map Matching
step (Section 8.8). Finally, the local maps are combined following the rules described in
Section 8.9.



78

8.1 Map Preprocessing

As in video and image processing, the preprocessing process aims to reduce noise,
improving the performance and reliability of the results of the subsequent steps of the
proposed algorithm. In this thesis, two steps are part of the preprocessing, filtering, and
size reduction.

The first step consists of filtering the map to prevent noise or any other unqualified
information from compromising the results of the proposed algorithm. In this step, the
maps are submitted to two filters based on dilate and erode morphological operations suc-
cessively applied to each map (GONZALEZ, 2008; JONKER, 2000). The kernel of these
two filters is a 3D cube with radius Dr and Er, for dilate and erode filters, respectively, to
suit the data type of the proposed maps. The radius parameters and the iteration numbers
Di and Ei of each of these filters can be configured before starting the algorithm.

After applying these filters, much of the noise information is eliminated. After that, to
equalize the information contained in the cells of the maps, a Gaussian filter with a radius
equal to 3 is applied to the map (GONZALEZ, 2008). This filter guarantees smooth state
transitions among map cells and improves the result of later steps of the algorithm. The
number of iterations Gi of the Gaussian filter can also be configured.

The second stage of the preprocessing module consists in reducing the size of the
maps, to significantly reduce the computational cost of the application. The size reduction
is done based on a downsampling grid filter (OPPENHEIM; SCHAFER; BUCK, 1999),
which based on a radius DSr, travels the entire length of the map averaging the cells
around the current cell, generating a new representation of the map with a reduced number
of cells. The radius DSr can be configured before starting the software, and default value
is DSr = 1.

8.2 Keypoints Detection

To detect keypoints in 3D occupancy grid maps, this thesis proposes some adaptations
to the Features from Accelerated Segment Test (FAST) algorithm (ROSTEN; DRUM-
MOND, 2006). The proposed modifications are presented in the Algorithm 2, and is
called FAST 3D. The contribution is the creation of the 3D version of the algorithm by
executing the quick tests proposed in the original algorithm in 2D views of three planes
in the coordinate space of the maps.

The proposed algorithm receives as input parameter a 3D occupancy grid map m, the
maximum number of continuous circular tests n, the mask radius r, the threshold th, and
the maximum radius of the neighborhood used to average the cells at a given space nr.

The functioning of the algorithm starts with the creation of the mask based on the
radius r (Algorithm 2, line 2). This mask is an array that contains the coordinates of the
cells that make up the circle of radius r around a cell to be analyzed. Then the step of



79

Algorithm 2 FAST 3D algorithm
1: procedure FAST3D(m, n, r, th, nr)
2: mk ← createMask(r)

3: s← r + 1

4: kp← []

5: for x from 0 to size(mx) do
6: for y from 0 to size(my) do
7: for z from 0 to size(mz) do
8: if mxyz 6= Unknown space then
9: Ip← getCellNhMean(m, x, y, z, nr)

10: Ixy ← []

11: Izx← []

12: Iyz ← []

13: for i from 0 to size(mk) do
14: Ixy ← getCellNhMean(m, x+mki0, y+mki1, z+mki2, nr)

15: Izx← getCellNhMean(m, x+mki2, y+mki0, z+mki1, nr)

16: Iyz ← getCellNhMean(m, x+mki1, y+mki2, z+mki0, nr)

17: end for
18: if rFAST (Ip, Ixy, s, th, n) then kp←mxyz end if
19: else if rFAST (Ip, Izx, s, th, n) then kp←mxyz end if
20: else if rFAST (Ip, Iyz, s, th, n) then kp←mxyz end if
21: end if
22: end for
23: end for
24: end for
25: return kp
26: end procedure



80

the mask s is calculated and an array of keypoints kp is defined. Then the algorithm goes
through all the cells in the map checking for cells that are not part of the unknown space
in the map (Algorithm 2, line 8).

For all cells of known space, the intensity of the neighborhood of radius nh of the
cell to be analyzed Ip is captured, and the intensity of the neighborhood of all cells in the
map that make up the circle contained in the mask mk for the plans XY , ZX and Y Z
represented by Ixy, Izx and Iyz, respectively.

The next step is to apply the FAST algorithm to the three planes captured in the pre-
vious step and return the list with the identified keypoints kp. With this objective, the
present thesis uses an adaptation of FAST called rFAST, presented in the Algorithm 3.
This version of the algorithm takes into account the rotation around the cell to be ana-
lyzed (cross-check test rotated).

Algorithm 3 rFAST algorithm
1: procedure rFAST (Ip, I, s, th, n)
2: for i from 0 to s do
3: c← 0

4: if (Ii − Ip) > th then c← c+ 1 end if
5: if (Ii+s − Ip) > th then c← c+ 1 end if
6: if (Ii+(s·2) − Ip) > th then c← c+ 1 end if
7: if (Ii+(s·3) − Ip) > th then c← c+ 1 end if
8: if c ≥ 3 then
9: c← 0

10: II ← concatenate(I, I)

11: for j from 0 to size(II) do
12: if (IIj − Ip) > th then
13: c← c+ 1

14: else
15: c← 0

16: end if
17: if c ≥ n then return true end if
18: end for
19: break
20: end if
21: end for
22: return false
23: end procedure

This proposed algorithm receives as a parameter the intensity of the region to be ana-
lyzed Ip, the vector of intensities of the neighborhood of the cells in the circle I , the mask



81

step s, the threshold th and the minimum number of continuous tests n for identification
of a keypoint.

The functioning of the proposed algorithm aims to apply the test of the FAST algo-
rithm by rotating the cross-check to extend the check to all possible directions (Algorithm
3, lines 4 to 7). As with FAST, if at least three of the tests are true, the continuous test
check applies (3, lines 8 to 20). In this step, the list I is then duplicated generating the
circular list II . A count is applied to check the maximum number of tests continuity, if
this count is greater than or equal to the n parameter, then the algorithm will return true
for a possible keypoint, otherwise, it will return false.

After the complete execution of the proposed algorithms, a list with all keypoints
kp corresponding to the map m is returned and can be used in the subsequent steps of
the map merging algorithm. Another important point to be highlighted is that thanks
to the separability of the proposed algorithm’s operations, it can be accelerated through
parallelism of processes to obtain better performance.

8.3 Keypoints Filtering

Depending on the size of the map or even the level of detail contained in this virtual
representation, it is common for a high number of keypoints to be detected, which can
significantly reduce the final performance of the algorithm. The solution to this problem
is to apply a filter capable of selecting the most significant keypoints around each detected
point of interest.

An important point to notice is that a considerable number of keypoints in the detected
set kp can be considered adjacent to the same point of interest. To solve this problem and
select only the keypoints that best describe each point of interest, this thesis uses the Non-
maximal Suppression filter (ROSTEN; DRUMMOND, 2006), adapting it to the case of
3D occupancy grid maps.

First, the score V is defined in (19) and calculated for all keypoints from the previously
detected set kp. The V score can be defined as the sum of the absolute differences among
the keypoints around a point of interest.

Vxyz =
x+KFr∑
i=x−KFr

y+KFr∑
j=y−KFr

z+KFr∑
k=z−KFr

|mxyz −mijk| (19)

where x, y and z represent the coordinates of the current keypoint and Vxyz the final score
value for this keypoint. The maximum radius of the cube for calculating the score around
each keypoint is represented by the parameter KFr. And, mxyz represents the probability
value contained in the map cell referring to the keypoint to be analyzed, and mijk the
probability of the cells around it.

Then, based on the Euclidean distance between the keypoints using the maximum



82

radius for adjacent keypoints KFar defined as a parameter, the set of filtered keypoints
fk with the highest score V within the radius KFar is obtained. KFr and KFar are
selected empirically.

The set of filtered keypoints fk has a size relatively smaller than the set kp without
necessarily being less representative for the processes of the map matching step. This
makes using fk in later steps to improve system performance considerably.

8.4 Keypoints Properties

For the next steps of the map matching process, the two sets of filtered keypoints ob-
tained from the two maps in the pairwise map merging process need to be combined in
some way. This process takes into account some information previously obtained from
each keypoint. Considering that the position information and the occupancy probability
value are not enough to carry out this combinatorial process, this thesis adds the orienta-
tion information of the point of interest as one of the properties of each keypoint.

Commonly in image processing, the intensity centroid method based on image mo-

ments is used to obtain the orientation of keypoints (RUBLEE et al., 2011; ROSIN, 1999).
This method is suitable for obtaining orientations in the 2D image plane, but in the case of
map merging it becomes an extra processing step. Rosin in (ROSIN, 1999) also presents
the method of gradient centroid, where it is possible to obtain the orientation based on
gradients. These methods have the advantage that, unlike the intensity centroid method,
no special care needs to be taken concerning light and dark points. In addition to pre-
senting results similar to the intensity centroid method, as in mobile robotics gradients
are computed for the construction of potential fields used in autonomous exploration sys-
tems, the use of these same gradients to obtain orientation becomes an ideal strategy to
avoid extra computational costs.

This thesis uses two approaches to obtain the orientations that can be configured at
the beginning of the software initialization. The first approach is called global. In this
approach, the potential field of maps is iterated over the entire range of maps and can be
shared with an exploration system. The second approach is called local. In this approach,
the radius KPr is used as a parameter for the construction of the potential field around
each keypoint. In both approaches, from the local maps mi

t(x, y, z) the gradient maps
Gi
t(x, y, z) are complete or partial obtained using the Gauss-Seidel method (SASAKI,

1998).

In the next step, the gradients Gi
t(x, y, z) are used to obtain the orientations of the

filtered keypoint sets fk according to (20).



83

α = atan2(Gi
t(x, y, z − 1)−Gi

t(x, y, z + 1),Gi
t(x, y − 1, z)−Gi

t(x, y + 1, z))

β = atan2(Gi
t(x− 1, y, z)−Gi

t(x+ 1, y, z),Gi
t(x, y, z − 1)−Gi

t(x, y, z + 1))

γ = atan2(Gi
t(x, y − 1, z)−Gi

t(x, y + 1, z),Gi
t(x− 1, y, z)−Gi

t(x+ 1, y, z))

(20)

where x, y and z are the coordinates of the current keypoint and α, β and γ are the Euler
angles (roll, pitch and yaw, respectively) obtained as a property of the current keypoint
Oi
t(x, y, z) = {α, β, γ}. Finally, the list of orientations Oi

t can be used to better describe
the set of filtered keypoints fk and enable the next phases of the map matching step.

The selection of local or global approaches to use should depend on the application
for which the system will be employed. If there is no intention to use the potential field for
exploration, then there is no need to use the global method, avoiding having to iterate the
potential field over the entire map and reducing the computational cost of the application
by iterating the potential field only around the keypoints region.

8.5 Keypoints Description

The main objective of map matching is to identify the regions that have combinations
in their characteristics and available information. These combinations are called keypoint
correspondences. To make these combinations possible, the information obtained from
the keypoints needs to be properly formatted and condensed. In this sense, a descriptor
algorithm needs to be applied.

For that, this thesis proposes some adaptations to the Binary robust independent ele-
mentary features (Brief) algorithm (CALONDER et al., 2010), making it compatible for
use in 3D occupancy grid maps. Also, the rotation component employed in (RUBLEE
et al., 2011) is adopted. The adapted version proposed in this thesis is called Steered

BRIEF 3D and is presented in the Algorithm 4. In the version proposed in this thesis, the
keypoints are 3D, the average of a cubic region around the keypoint is adopted for the
binary test and, the mask that applies the orientation parameters to the keypoints is also
3D.

The proposed algorithm receives by parameter the map mi
t obtained from the vehicle

i at the instant of time t, the set of filtered keypoints fkit corresponding to the map i, the
list of orientations Oi

t, the size of the descriptor ds in the number of binary tests, the size
of the window ws used to build the sample S, the seed ss of the random point generation
algorithm and the maximum radius of the neighborhood nr used to obtain the value of
each test point.

First the algorithm builds the 3D random sample based on the ss seed (Algorithm 4,
line 2). The sample is constructed around the origin (0, 0, 0) in a cube of radius ws/2
and is composed of ds ∗ 2 3D points. Then the vector of descriptors is created dit. For
each keypoint k in the filtered keypoint vector fkit, the rotation matrix is created based



84

Algorithm 4 Steered BRIEF 3D algorithm
1: procedure SteeredBRIEF3D(mi

t, fk
i
t, O

i
t, ds, ws, ss, nr)

2: S ← makeSample3D(ds, ws, ss)

3: dit ← []

4: for each k in fkit do
5: Rθ ← createRotationMatrix(Oi

t(x, y, z))

6: s = S ·Rθ

7: kpd← []

8: j ← 0

9: while j < size(s) do
10: c1 ← getCellNhMean(mi

t, kx + sx,j, ky + sy,j, kz + sz,j, nr)

11: c2 ← getCellNhMean(mi
t, kx + sx,j+1, ky + sy,j+1, kz + sz,j+1, nr)

12: if c1 ≤ c2 then
13: Add 1 to kpd
14: else
15: Add 0 to kpd
16: end if
17: j ← j + 2

18: end while
19: Add kpd to dit
20: end for
21: return dit
22: end procedure



85

on the rotation parameters of the respective keypoint Oi
t(x, y, z) and applies to sample S

generating the transformed sample s (Algorithm 4, line 5 and 6).

Then for each pair of points in the transformed sample, obtain the result of the binary
test that compares the value of the average set of cells c1 and c2 within a radius nr. The
set of binary tests was obtained to compose the descriptor kpd representing the current
keypoint and added to the list of descriptors dit. Finally, the list of descriptors dit is returned
and contains the set of binary tests that represent the set of filtered keypoints fkit. The list
of descriptors dit is then used to calculate the correspondences in Section 8.6.

8.6 Computing Correspondences

With d0t and d1t being two lists of binary descriptors obtained from the maps m0
t and

m1
t , respectively. The list of correspondences C is obtained from the comparison of the

respective descriptors.

In this thesis, binary descriptors are combined using the brute force comparison method
(SINGLA; GARG, 2012). The algorithm receives by parameter the limit number of the
acceptable distance CCd to validate a combination and the maximum number of compar-
isons per thread CCn to which the combination process will be divided.

First the comparison loops are allocated in the tn = (size(d0t )·size(d1t ))/CCn threads.
The parallelization of compare loops ensures reduced RAM consumption due to memory
frees at the end of each reduced scope.

Then the Hamming distance (HAMMING, 1950) is computed for each pair of de-
scriptors. Then add to the correspondence vector C all pairs of points where the com-
puted distance is less than or equal to the parameter CCd. The list of correspondences C
represents the possible match points between the two maps and will go through a filtering
process presented in Section 8.7 to remove false-positive correspondences.

8.7 Correspondences Filtering

To build a robust keypoint correspondences filter suitable for 3D spaces, RANSAC
(FISCHLER; BOLLES, 1981) and Homography (CHUM; PAJDLA; STURM, 2005) are
applied together.

Homography is the relation among two views of the same point or set of points in the
space. A point in 3D space can be defined as a vector with three coordinates and a scale
parameter. Consider a point x = (x, y, z, 1) in a view and x′ = (x′, y′, z′, 1) in another
view. The homography is a matrix 4×4 and relates the pixel coordinates in the two views
if x′ = Hx.

To find the homography H matrix, it is necessary to solve (21),



86

PH = 0 (21)

where P is a 16× 16 matrix represented in (22) and composed by two sets of points, each
point set representing a view.



−x1 −y1 −z1 −1 0 0 0 0 0 0 0 0 x1x
′
1 y1x

′
1 z1x

′
1 x′1

0 0 0 0 −x1 −y1 −z1 −1 0 0 0 0 x1y
′
1 y1y

′
1 z1y

′
1 y′1

0 0 0 0 0 0 0 0 −x1 −y1 −z1 −1 x1z
′
1 y1z

′
1 z1z

′
1 z′1

−x2 −y2 −z2 −1 0 0 0 0 0 0 0 0 x2x
′
2 y2x

′
2 z2x

′
2 x′2

0 0 0 0 −x2 −y2 −z2 −1 0 0 0 0 x2y
′
2 y2y

′
2 z2y

′
2 y′2

0 0 0 0 0 0 0 0 −x2 −y2 −z2 −1 x2z
′
2 y2z

′
2 z2z

′
2 z′2

−x3 −y3 −z3 −1 0 0 0 0 0 0 0 0 x3x
′
3 y3x

′
3 z3x

′
3 x′3

0 0 0 0 −x3 −y3 −z3 −1 0 0 0 0 x3y
′
3 y3y

′
3 z3y

′
3 y′3

0 0 0 0 0 0 0 0 −x3 −y3 −z3 −1 x3z
′
3 y3z

′
3 z3z

′
3 z′3

−x4 −y4 −z4 −1 0 0 0 0 0 0 0 0 x4x
′
4 y4x

′
4 z4x

′
4 x′4

0 0 0 0 −x4 −y4 −z4 −1 0 0 0 0 x4y
′
4 y4y

′
4 z4y

′
4 y′4

0 0 0 0 0 0 0 0 −x4 −y4 −z4 −1 x4z
′
4 y4z

′
4 z4z

′
4 z′4

−x5 −y5 −z5 −1 0 0 0 0 0 0 0 0 x5x
′
5 y5x

′
5 z5x

′
5 x′5

0 0 0 0 −x5 −y5 −z5 −1 0 0 0 0 x5y
′
5 y5y

′
5 z5y

′
5 y′5

0 0 0 0 0 0 0 0 −x5 −y5 −z5 −1 x5z
′
5 y5z

′
5 z5z

′
5 z′5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1





h1

h2

h3

h4

h5

h6

h7

h8

h9

h10

h11

h12

h13

h14

h15

h16



=



0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1



(22)

The RANSAC-Homography keypoint correspondences filter algorithm is presented in
Algorithm 5.

This algorithm receives as a parameter the set of correspondences to be filtered C, the
number of iterations k, and the tolerance of the maximum Euclidean distance expressed
by t. A set of best correspondences BC is then defined. Afterward, in each iteration, a
random set composed of five correspondences rc is obtained. From this set, the matrix P
is constructed.

To solve (21) and compute the homography matrix H , the matrix P is decomposed
using singular value decomposition (SVD) algorithm S, U, V = svd(P ) (VAN LOAN,
1976), where the last column of V matrix is the matrix H .

After for each correspondence of the input dataset, the corresponding points p1 and p2
are obtained. The homography is then applied to bring p2 to the view of p1 using p′2 =

H∗p2. The Euclidean distance d is then calculated between the points p1 and p′2. If d is less
than the tolerated distance t then c is added to the set of acceptable correspondences AC.
At the end of each iteration, the amount of acceptable correspondences AC is verified to
be greater than the amount of best correspondences BC, if true BC = AC. At the end of
execution only the set with the best correspondences BC is returned.

8.8 Computing the Map Transformation Matrix (MTM) Parameters

After obtaining the best set of correspondence pointsBC among two maps, it becomes
possible to calculate the Map Transformation Matrix (MTM), used to merge the maps



87

Algorithm 5 RANSAC-Homography keypoint correspondences filter algorithm
1: procedure RANSACHOMOGRAPHYFILTER(C, k, t)
2: BC ← []

3: i← 0

4: while i < k do
5: rc← getRandomSubset(C)

6: H ← computeHomography(rc)

7: AC ← []

8: for c each in C do
9: p1, p2 ← c

10: p′2 ← H ∗ p2
11: d← EuclideanDistance(p1, p

′
2)

12: if d ≤ t then
13: Add c in AC
14: end if
15: end for
16: if size(AC) > size(BC) then
17: BC ← AC

18: end if
19: i← i+ 1

20: end while
21: return BC
22: end procedure



88

into a single global map. The calculations proposed here to obtain the MTM are based on
(KJER; WILM, 2010).

The set of best correspondences BC is composed of two ordered point clouds repre-
sented by (23) and (24).

A =
[
pa1 pa2 ... pan

]
(23)

B =
[
pb1 pb2 ... pbn

]
(24)

where pa1 is a corresponding point of pb1, p
a
2 is a corresponding point of pb2, successively.

The MTM is the composition of parameters related to translation, rotation, and scale.
For the calculation of scale parameters, the technique of building a pyramid of scales to
obtain these parameters is commonly used. This thesis takes into account that all maps
are on the same scale, so this parameter is omitted, accelerating the computation process
and allowing the use of the software in embedded hardware.

To obtain the other parameters, first, it is necessary to calculate the center of gravity
(CG) between each of the point clouds. The center of gravity is equal to the average of
the coordinates of all points in each point cloud and is calculated based on (25) and (26).

CGa =
1

n
·

n∑
i=1

pai (25)

CGb =
1

n
·

n∑
i=1

pbi (26)

After obtaining the center of gravity of each point cloud, they are taken to the origin
by subtracting their corresponding center of gravity from their coordinates, using (27) and
(28).

Ao = A− CGa (27)

Bo = B − CGb (28)

From the point clouds at its center of gravity, the matrix P is obtained using (29).

P = Ao ·Bo
T =

n∑
i=1

pai · pbi
T
=

n∑
i=1

[
xai yai zai

]
·

x
b
i

ybi

zbi

 (29)

Then, the matrix P is decomposed using singular value decomposition (SVD) algo-
rithm (VAN LOAN, 1976), according to (30).

S, U, V = svd(P ) (30)



89

The rotation matrix R is obtained by (31).

R = V · UT (31)

There is a specific case of reflection that must be dealt with. When the determinant of
(R) is less than zero, the reflection must be reversed by multiplying the last column of V
by −1.0 and then recalculating R using (31).

The translation vector can be obtained using (32).

t = −R · CGa + CGb (32)

In a way, matrix calculation is relatively more computationally costly than perform-
ing individual calculations in line. This way the translation and rotation parameters are
decomposed using (33).

tx = −t00
ty = −t10
tz = −t20

α = atan2(R12, R22)

c2 =
√
R2

00 +R2
01

β = atan2(−R02, c2)

s1 = sinα

c1 = cosα

γ = atan2((s1 ·R20)− (c1 ·R10), (c1 ·R11)− (s1 ·R21))

(33)

where tx, ty and tz are the translation parameters and α, β and γ are the Euler angles
(Roll, Pitch and Yaw, respectively), used for rotation.

Due to the downsampling process applied to the original maps during the preprocess-
ing process presented in Section 8.1 the translation parameters need to be adjusted to the
original proportions using (34).

Sx = m0
t x/(2.0 ·DSr)

Sy = m0
t y/(2.0 ·DSr)

Sz = m0
t z/(2.0 ·DSr)

tx = (tx + (Sx − int(Sx))) · 2.0 ·DSr
ty = (ty + (Sy − int(Sy))) · 2.0 ·DSr
tz = (tz + (Sz − int(Sz))) · 2.0 ·DSr

(34)

where m0
t x, m0

t y and m0
t z are the original fixed local map dimensions size, DSr is the

downsample radius parameter and int(Sx), int(Sy) and int(Sz) are the integer part of
Sx, Sy and Sz. Finally, these parameters must be applied to the map corresponding to the
point cloud B to enable the merging of the maps.



90

The calculated parameters are the best map merge parameters for the current scenario
and the application settings. Perhaps, by the wrong parameters definition or low level of
overlap, the calculated parameters are not adequate. To the best knowledge, there are no
techniques available to adequately evaluate an MTM without any ground truth or global
positioning system information. So an accurate evaluation method of MTMs still needs
to be explored to improve the accuracy of the application.

8.9 Merging 3D Occupancy Grid Maps

In the process of merging occupancy grid maps by pairs, the map of a vehicle that
is performing the embedded merge must be fixed as the center of the coordinate space
and then the transformation parameters are discovered for the other maps. The merging
process begins by applying the already computed MTM to all points of maps. After
transformation, the transformed maps must be superimposed on the map identified as a
virtual world center.

This process consists of merging the maps by copying all the relevant information
to a single map. As cells represent occupancy states of different views of the environ-
ment, maps cannot be simply overlaid assuming the cell state of the complementary map
because important information about obstacles that are part of the scene may be lost.

Table 3 demonstrates the rules used in the process of merging the occupancy grid map
cells.

Table 3 – Rules for merging occupancy grid map cells, adapted from (MA et al., 2016).

Wt

mi
t Unknown Free Occupied

Unknown Unknown Free Occupied
Free Free Free Occupied

Occupied Occupied Occupied Occupied

The first column shows the state corresponding to the map cell fixed as world center
Wt at the instant t. The first line shows the state of the cell corresponding to the trans-
formed complementary map mi

t of the vehicle i at the time instant t. The rest of the
table shows the status that should be assigned to the new cells for each of the possible
combinations in the process of merging the maps.

After the merge process, the global map Wt is incremented with the global experi-
ences and it is available for the vehicle’s navigation system and other systems.



90

9 SOLUTION IMPLEMENTATION AND EVALUATION DE-
SIGN

This chapter presents the implementation details (Section 9.1) and the design of the
experiments (Section 9.2) performed to evaluate the presented solutions.

9.1 Implementation Details

The architecture of the proposed system is schematized and presented in Figure 37.

Figure 37 – Proposed system high-level building blocks architecture.

  

Operating System (OS)

Robotic Operating System (ROS)

Gazebo
Simulator

Robotic Operating System (ROS)

PX4 Firmware

Simulated vehicles

UAVn

UAV2

UAV1

UAV0

Proposed Software
...

Source: author.

A notebook with Intel Core i7-4510U 2.00 GHz x 4 processor, 8 GB RAM, 240 GB
SSD, and 2 GB dedicated GeForce 710M graphics card was used. The operating system
used as the base was Ubuntu 20.04.3 LTS 64-bit.

As a basis for the proposed implementations, the Robotic Operating System (ROS)
was used (QUIGLEY; GERKEY; SMART, 2015). For the simulation of three-dimensional
virtual environments and their dynamics, the Gazebo Simulator was used (GAZEBO TU-
TORIALS, 2014). A PX4 Firmware1 fork was used to enable simulation of multi-UAVs

1https://github.com/maikbasso/Firmware



91

(PX4 OPEN SOURCE AUTOPILOT, 2018). Each of the simulated vehicles had attached
an RGB-D camera from which point clouds were collected to build the 3D occupancy
grid maps.

All proposed software was implemented in C++11 language using only the Eigen
library for complex matrix calculations. Due to the modularity provided by ROS and the
PX4 Firmware architecture, the proposed software can be used both in simulation and in
real UAV embedded hardware.

The source codes for the implementations, simulations, experiments, text, and presen-
tations are available at <https://github.com/maikbasso/phd-thesis>.

9.2 Experiments Setup

To evaluate the proposed applications in this thesis, six different scenarios were used
to carry out simulations. Figure 38 shows a top view of each of the used three-dimensional
simulation environments.

Figure 38 – The virtual environments used to perform the proposed experiments.

    

a) Maze environment. b) Bookstore environment.

    

c) Hospital environment. d) Racetrack environment.

    

e) Small house environment. f) Small warehouse environment.
Source: author.

https://github.com/maikbasso/phd-thesis


92

The first environment called Maze (Figure 38a), was developed to be used in the
demonstrations of the visual results proposed in this thesis, this environment has only 1

m of altitude so it allows the visualization of the data in two dimensions is suitable for
inclusion and visualization in this thesis. Still, this environment represents the worst test
case due to a large number of similar regions and a low level of detail in the environment
structure.

The other environments used (Figure 38b to 38f), were taken from the repository of the
AWS RoboMaker2 project on GitHub. These environments represent indoor and outdoor
regions, with considerable extension, level of detail, and acceptable textures for carrying
out simulations.

In these environments, the UAVs were dispersed in different regions to explore partial
regions but with overlapping to allow the merge of maps. In the environments represented
by the Figures 38b, 38c and 38e, three distinct UAVs were used. In the environments rep-
resented in Figures 38a, 38d and 38f, two UAVs were used. In total, fifteen 3D occupancy
grid maps were acquired, which were used to carry out the experiments in this thesis. The
specifications of each of these acquired maps are presented in Table 4.

Table 4 – Maps Information.

ID Environment UAV Resolution (m)
Axes size (cells)

Cells number
Data Size

(MB)
Exploration time

(seconds)x y z
0 bookstore 0 0.1 250 250 100 6250000 5.96 149

1 bookstore 1 0.1 190 190 100 3610000 3.44 127

2 bookstore 2 0.1 190 190 100 3610000 3.44 148

3 hospital 0 0.1 730 730 100 53290000 50.82 1091

4 hospital 1 0.1 500 500 100 25000000 23.84 691

5 hospital 2 0.1 620 620 120 46128000 43.99 547

6 maze 0 0.1 230 230 100 5290000 5.04 292

7 maze 1 0.1 320 320 100 10240000 9.77 412

8 racetrack 0 0.1 670 670 100 44890000 42.81 308

9 racetrack 1 0.1 1050 1050 100 110250000 105.14 508

10 small house 0 0.1 250 250 100 6250000 5.96 336

11 small house 1 0.1 310 310 100 9610000 9.16 384

12 small house 2 0.1 230 230 100 5290000 5.04 288

13 small warehouse 0 0.1 340 340 100 11560000 11.02 267

14 small warehouse 1 0.1 270 270 100 7290000 6.95 261

The information presented in Table 4 is the size of the maps in the number of cells
and megabytes, the environment name, the number of the UAV that acquired the map, the
exploration time spent to build each map and the resolution of the maps are described.
The resolution of the maps in this thesis was set to 0.1 m, this value was defined by the
wide use in the related works evaluated.

After acquiring the maps, they were stored in files so that they could later be used to
carry out the tests proposed in this thesis. Table 5 presents the identifying number of all

2https://github.com/aws-robotics



93

possible pairs of maps used to execute the proposed tests.

Table 5 – List of map pairs.
Pair ID Map 0 ID Map 1 ID Pair ID Map 0 ID Map 1 ID

0 0 1 6 6 7
1 0 2 7 8 9
2 1 2 8 10 11
3 3 4 9 10 12
4 3 5 10 11 12
5 4 5 11 13 14

Then, the acquired maps were submitted to sharing and merging tests to obtain the
data used to generate the results. All proposed tests were written in C++ language and
used the std::chrono library to acquire the execution times for each part of the proposed
application. The data obtained for each of the proposed tests were stored in CSV files for
further processing.

After the CSV files data were processed using Python language in a Jupyter Notebook

environment, thus generating a graphic presentation of the results that are discussed in
Chapter 10.



94

10 RESULTS AND DISCUSSIONS

This chapter presents in detail the results and discussions of the experiments to val-
idate the main components of the proposed system. Section 10.1 present the results to
evaluate the map compression component. The map transmission protocol is evaluated in
Section 10.2. The complete map merging system is evaluated in Section 10.3. Finally, the
application scalability is evaluated in Section 10.4.

10.1 Map Compression Evaluation

To evaluate the compression and decompression algorithms, each map in the test set
was submitted to 100 compression and decompression iterations. The average time taken
to compress each map is shown in Figure 39.

Figure 39 – Mean map compression time.

Source: author.

The average time taken to decompress each map is shown in Figure 40.
The size comparison of maps before and after the compression process is shown in

Figure 41.



95

Figure 40 – Mean map decompression time.

Source: author.

Figure 41 – Comparison of the maps’ size before and after compression.

a) Comparison of original and compressed maps size.

b) Original size. c) Compressed size.
Source: author.



96

Observing the obtained results, it is possible to see that the maximum time spent
on the compression is around 1 s and the maximum time spent on the decompression was
around 2 s. Taking into account the significant reduction in the size of the maps presented,
the time spent on the compression and decompression processes is justified and directly
benefits the map sharing algorithm.

10.2 Map Transmission Protocol Evaluation

To evaluate the map transmission protocol, the test set was subjected to 100 sharing
iterations for each of the maps. In this experiment, the transmission time of maps with and
without compression was evaluated. The average time taken to share each of the maps is
shown in Figure 42.

Figure 42 – Mean time to share maps with and without compression.

a) Comparison of uncompressed and compressed maps share time.

b) Sharing time of uncompressed maps. c) Sharing time of compressed maps.
Source: author.

The maximum time spent sharing the largest map was 200 s for uncompressed maps
and 1.75 s for compressed maps. Taking into account the times presented in Section
10.1 for compression and decompression, it can be concluded that the maximum time



97

to share compressed maps with an area of up to 100 m2 is around 3.75 s, proving the
good performance of the solutions and reducing significantly the time to share the maps
presented in this thesis.

10.3 Map Merging Evaluation

This section presents in detail the results and discussions of the experiments to val-
idate the map merging system component. Sections 10.3.1 to 10.3.6 present the results
from specific components of the proposed system. The complete evaluation of the entire
system for the test maps set is presented in Section 10.3.7. The visual evaluation of a map
merge performed by the proposed system using maps acquired in the maze environment
is presented in Section 10.3.8. Finally, the global maps obtained after fusion for all test
environments used to perform simulations are presented in 10.3.9.

10.3.1 Map Preprocessing Evaluation

The average preprocessing time obtained for each of the maps is shown in Figure 43.
In this experiment, 100 iterations were performed. These results were obtained consid-
ering one iteration for dilation (Di = 1), erosion (Ei = 1), downsampling and Gaussian
filter (Gi = 1). Also, is considered the radius measure equal to 1 for dilation (Dr = 1),
erosion (Er = 1) and downsampling (DSr = 1).

Figure 43 – Mean time to preprocessing maps.

Source: author.

The results show that the preprocessing time grows considerably when the map size
increases. As already described in this thesis, this step is essential to remove noise and
speed up the subsequent steps of the algorithm, so one of the alternatives to reduce these



98

times is the introduction of more UAVs so that smaller local maps can be produced since
the map that presented the longest processing time was the number 9 and it has more than
100 m in length. Another alternative would be to disable the erosion and dilation filter,
but for this to be possible, the map construction algorithm needs to be more robust and
produce more accurate maps with fewer continuity failures.

10.3.2 Keypoint Detector Evaluation

The experiments with the keypoint detector were carried out comparing the proposed
detector, FAST 3D, with the Harris 3D and Shi-Tomasi 3D algorithms. The Harris 3D
and Shi-Tomasi 3D algorithms had their 2D versions extended by a project for an under-
graduate thesis in the laboratory where this thesis is being developed. This work is part
of the research group that is related to this thesis. The work aimed to extend the 2D to
3D algorithms and apply them to 3D occupancy grid maps. The FAST 3D algorithm also
emerged from this research, but this thesis received several improvements.

In this experiment the maps were subjected to keypoint detection divided into 100

iterations. The parameters used for the proposed algorithm were continuity n = 9, radius
r = 3, threshold th = 80 and neighborhood radius nr = 0. The parameters used for
Harris were k = 0.05, window size ws = 5 and threshold th = 9000.0. The parameters
used for Shi-Tomasi were window size ws = 5 and threshold th = 15.0.

Figure 44 shows the average number of keypoints detected by each of the algorithms
for each of the maps.

Figure 44 – Comparison between keypoint detectors in keypoints output number.

Source: author.

As the tests on the different maps were carried out without the variation of the param-
eters, it is clear that the proposed algorithm retrieves several keypoints similar to the other
algorithms, but it is clear that it is more sensitive to internal environments, recovering a



99

greater number of keypoints under these conditions.
The average time taken to detect keypoints is shown in Figure 45.

Figure 45 – Comparison between keypoint detectors in mean time to detect.

Source: author.

These results demonstrate that the proposed algorithm has a performance equal to or
greater than the other solutions, even recovering a greater number of keypoints than the
other algorithms.

Figure 46 presents the keypoints detected by the proposed algorithm in comparison
with Harris 3D and Shi-Tomasi 3D.

Figure 46 – Visual comparison between keypoint detectors applied to the map ID = 6.

a) Proposed FAST 3D. b) Harris 3D. c) Shi-Tomasi 3D.
Source: author.

It is possible to observe in these visual results that the keypoints retrieved by the
proposed algorithm represent all corners and edges of the environment, disregarding flat
regions with low interest. The problem with Harris 3D and Shi-Tomasi 3D is that there is
a tradeoff between recovering all edges and corners and reducing the number of keypoints
detected in the 3D occupancy grid maps. In this example, if the parameters are refined to



100

retrieve a reduced number of keypoints only the most obvious corners are retrieved. Also,
the concentration of keypoints in corners is very high, while in the proposed algorithm
few points describe the corners and edges for each level of the map.

To prove the stability of the proposed detector, the same map of the previous exper-
iment was submitted to 100 random transformations in the six degrees of freedom. For
each of the transformations, the number of keypoints was acquired and the results are
shown in Figure 47.

Figure 47 – Comparison between keypoint detectors submitted to random map transfor-
mations.

Source: author.

It is possible to observe that the proposed method retrieves an almost similar number
of keypoints for each of the iterations with a small variation resulting from the error of
the algorithm that applies the transformations in the maps. The other evaluated algorithms
present abrupt changes in the number of detected keypoints, which can cause a sudden
variation in the algorithm performance in the later stages. Thus, the proposed method
proves to be more efficient for the detection of keypoints in 3D occupancy grid maps.

10.3.3 Keypoint Filter Evaluation

Figure 48 presents the average number of filtered keypoints obtained from the experi-
ment presented in Section 10.3.2. The parameters used in the filter were radius KFr = 1

and the minimum radius for adjacent keypoints KFar = 1.0.
It is possible to observe that by the number of keypoints after the filtering process

compared to the total number of keypoints previously obtained that the proposed algo-
rithm can retrieve more significant keypoints or with a higher score compared to the other
algorithms, this is evident by observing the results referring to the map ID equal to 9.

The average time taken to perform the filtering process is shown in Figure 49.
The keypoint filtering time grows exponentially to the number of detected keypoints,

so the fine-tuning of the detector parameters for each type of environment makes more



101

Figure 48 – Mean filtered keypoints.

Source: author.

Figure 49 – Mean time to filter.

Source: author.



102

relevant keypoints retrieved and thus significantly reducing the filtering time. Thus, the
use of this filtering process is optional in the execution of the algorithm, but its use is
recommended to speed up later steps of the algorithm.

10.3.4 Keypoint Descriptor Evaluation

To test the proposed descriptor algorithm, an experiment considering a set of 100

keypoints was performed. The objective of this experiment was to verify the impact on
execution time caused by the size of the descriptor selected as a parameter. The descriptor
sizes evaluated were 128, 256, 512, 1024 and 2048. The other parameters used in the
experiment were window size ws = 31, sample seed ss = 42 and neighboring radius
nr = 0. Figure 50 presents the results obtained with the experiment.

Figure 50 – Mean description time by descriptor size and 100 keypoints.

Source: author.

Observing the obtained results, it is possible to report that the time to create a descrip-
tor depends totally on the size of the selected descriptor. In the merge tests applied in
this thesis, it was observed that descriptors with size ds > 128 present a good result for
merging maps, and descriptors with size ds > 512 do not present so much difference for
the maps used in the tests. The selection of ds = 256 was adopted to perform the other
map fusion tests.

Figure 51 shows the average time to create the descriptors of a set of keypoints be-
tween 0 to 1000 keypoints.

The description time for a set of keypoints increases in proportion to the number of
keypoints in the set. Thus, this step can be accelerated by choosing the correct detector
parameters and descriptor size. Nevertheless, the proposed descriptor presented a per-
formance close to 0.1 second for the description of 1000 keypoints under the presented
circumstances.



103

Figure 51 – Mean description time by number of keypoints and descriptor size ds = 256.

Source: author.

10.3.5 Brute Force Descriptor Matcher Evaluation

Figure 52 presents the average time to identify correspondences between two sets of
descriptors of size 0 to 500 descriptors. In this experiment 100 iterations were performed,
the descriptor size was set to ds = 256 and the maximum distance was set to CCd = 20.

Figure 52 – Mean time to find correspondences by descriptors number.

Source: author.

In this test, it is observed that the time of identification of correspondences grows
exponentially with the size of the set of descriptors. As mentioned before, obtaining a
smaller set of descriptors should speed up this step of the algorithm.

In Figure 53 a set of experiments with 100 repetitions were performed to identify the



104

impact of descriptor size on the correspondences identification algorithm for a set of 100
descriptors.

Figure 53 – Mean time to find correspondences by descriptors size and 100 descriptors.

Source: author.

As expected, the algorithm presents increasing linear time related to the size of the
used descriptor. Then, based on the obtained results, the descriptor size was set at ds =

256.

10.3.6 Correspondences Filter Evaluation

To evaluate the proposed correspondences filter, 100 iterations were applied to filter a
set of 500 correspondences. In this experiment, a random number of true correspondences
ranging from 40 % to 80 % of the correspondences in the input set were inserted in
each iteration. The parameters used in the proposed algorithm were number of iterations
k = 1000 and distance threshold t = 3.0.

Figure 54 presents the average number of input correspondences to the average num-
ber of true correspondences applied as an input in the tests proposed in this experiment.

Figure 55 shows the number of true correspondences input into the algorithm and the
number of true correspondences retrieved after filtering.

Observing the obtained result, it can be seen that the algorithm is capable of recovering
almost all true correspondences applied as input to the algorithm. Figure 56 presents the
average of false correspondences added as an input to this experiment, relative to the
number of false correspondences present in the output of the algorithm.

It is possible to notice that the number of retrieved false correspondences is practically
null when the number of incoming correspondences is greater than 10. For the proposed
filter based on RANSAC to work correctly, it is necessary to have more than 8 correspon-



105

Figure 54 – Mean input and output correspondences number.

Source: author.

Figure 55 – Mean true input and output correspondences number.

Source: author.



106

Figure 56 – Mean false input and output correspondences number.

Source: author.

dences and that more than 50 % of these are true, under these conditions the filter can
properly retrieve the true correspondences.

Figure 57 shows the average time for filtering the set of correspondences for this
experiment.

Figure 57 – Mean time to filter correspondences.

Source: author.

As expected, the filtering time grows linearly with the increase in the number of corre-
spondences. Being close to 4 seconds for a set of 500 correspondences, when the proposed
parameter set is used.



107

10.3.7 Pairwise Map Merging Time Evaluation

To evaluate the complete proposal of a pairwise map merging system, the set of test
map pairs was submitted to merging using the parameters defined in the previous exper-
iments. In this experiment, 100 iterations were performed. For each of the iterations,
the pairs of maps are randomly ordered and the average time for the execution of each
component of the proposed system during the merge can be seen in Figure 58.

Figure 58 – Mean component execution time.

a) Mean execution time in seconds. b) Mean execution time in percentage.
Source: author.

Observing the presented results, it can be seen that the preprocessing component and
the matcher component are the most significant in terms of processing time. As men-
tioned, the preprocessing component is directly impacted by erosion and dilatation filters.
The guaranteed inclusion of maps with higher continuity quality and accuracy can be a
reason to disable these filters and speed up the process. As for the correspondence cal-
culation algorithm, this thesis does not fully explore all the technologies available in this
component, so the use of any solution that does not use brute force can significantly speed
up the correspondence computation process.

Still, the time for calculating the orientations includes the time of iterations to build
the potential field maps. In navigation systems that use these maps for exploration, this
map must be available in advance so this processing time can be significantly reduced.

Keypoint and correspondences filters have their performance changed by the amount
of input data and also by the parameters used. A refinement of the parameters for each of
the maps could significantly reduce these times, but the idea of this experiment is precise
to evaluate the behavior of the parameters used for different sets of maps with different
characteristics.

The proposed detector and descriptor algorithms, in turn, present a good performance
considering the average size of the maps used in the tests. In turn, the algorithm responsi-
ble for calculating the MTM parameters has the least representative execution time in the



108

proposed system. The execution time of the algorithm that merges the maps are related
to the transformation time of all points and copying this information to a new global map
structure.

Finally, the average merge execution time for each of the map pairs is shown in Figure
59.

Figure 59 – Mean time to merge each map pair.

Source: author.

Observing the execution times for each map pair it is possible to notice that the size
of the maps has a significant impact on the system performance. Furthermore, indoor en-
vironments generally have more corners in their construction so the number of keypoints
increases, and consequently the processing time becomes higher. This can be easily evi-
denced by comparing the hospital (indoor) with the racetrack (outdoor) results.

Taking into account all the obtained results, it is difficult to address all the problems
found since all system components are interdependent. Furthermore, the mapping algo-
rithm can produce maps in different views or ways directly affecting map merging tasks.
The way vehicles are driven through the environment, that is, the way the exploration
algorithm drives vehicles through the environment, also directly affects the performance
of map merging.

Furthermore, the map merging problem is related to the amount of information over-
lapping between maps. The larger the overlap region, the greater the likelihood that the
merger will take place. The problem of merging maps does not have a general solution,
but adequate solutions for each situation. Even so, applications involving fusion using
image processing techniques have better results than other solutions.

In this sense, the development of two auxiliary components of the proposed system
can help to improve the solution’s performance. The first is an algorithm capable of



109

evaluating the quality or error present in the MTM parameters, without taking into account
any type of ground true or previous information, only the MTM parameters, and the
available maps. A second component could use these measures to estimate the algorithms’
input parameters.

10.3.8 Pairwise Map Merging Visual Evaluation

The two-dimensional visualization of three-dimensional information is a challenge
and becomes almost unfeasible in the case of 3D occupancy grid maps. Thus, this the-
sis uses a map with reduced altitude for this purpose. Tables 6 and 7 present a visual
evaluation of each of the steps of the algorithm.

As already mentioned, this map represents one of the worst cases for performing the
merge as it has a lot of similarities between the regions of the map. Also, this map presents
a reduced level of detail which makes the fusion activity an arduous activity.

As can be seen in Table 6, the original maps have small flaws and distortions that can
affect the map merging. In this example, the map 1 has 180 degrees of rotation around the
Z-axis and 9 m translation for the X and Y axes relative to the 0 map. To make viewing
easier and more intuitive, the map 1 has been rotated.

The preprocessed maps have reduced size compared to the original maps due to the
applied downsampling process. Still, in these maps, the continuity problem (edges and
corners) is solved by applying the proposed filters.

Also, in Table 6 the detected keypoints can be visualized. The filtered keypoints
represent the points of greatest relevance among the detected keypoints. As evidenced,
the most significant keypoints are positioned across the entire length of the maps.

In Table 7 the orientations obtained by the proposed local orientation calculation
method can be evidenced. Comparing the orientation obtained in similar regions between
the two maps, it is possible to observe that there is a similarity between different regions
of the maps.

To solve the region similarity problem, it is proposed to adjust the window size of
the descriptor to accommodate the maximum size of the region that contains occupied
cells in the maps. Thus, it is possible to retrieve the most significant correspondences in a
prominent region on the maps.

Correspondences identified in keypoints that compose vertical or horizontal regions
are relatively a problem for the correspondence calculation algorithm. Fortunately, as
the requirements for the smooth functioning of the correspondences filter have been met,
false matches are removed in this step.

Finally, the MTM parameters are calculated. Parameter scaling correction is applied.
The map 1 is then transformed and the merge step is applied. At the end of the execution
of the algorithm, the global map of this environment is available.

The final merge result still has some errors from the mapping algorithm, such as a



110

Table 6 – Pairwise map merging visual evaluation part 1.
MAP 0 MAP 1

O
ri

gi
na

lm
ap

s
Pr

ep
ro

ce
ss

ed
m

ap
s

FA
ST

3D
ke

yp
oi

nt
s

Fi
lte

re
d

ke
yp

oi
nt

s



111

Table 7 – Pairwise map merging visual evaluation part 2.
MAP 0 MAP 1

K
ey

po
in

to
ri

en
ta

tio
ns

C
or

re
sp

on
de

nc
es

Fi
lte

re
d

co
rr

es
po

nd
en

ce
s

M
er

ge
d

m
ap

s



112

lack of continuity and distortions in some regions. In this thesis, no technical approaches
for estimating corrections or distortions in maps are addressed, so such problems do not
affect the obtained results.

10.3.9 Maps Visual Presentation

In this section, all maps obtained during the proposed experiments are presented, to
provide a visual analysis of the results obtained. For ease of viewing, only occupied space
cells are displayed. For each environment, the local maps obtained from each vehicle in
different portions of the environment are presented, together with the global map resulting
from the fusion process of these maps.

Figure 60 shows the maps obtained in the bookstore environment. In this environ-
ment, the round reception table, the corner of the wall to the right of this table, and the
larger shelves were fundamental elements present in the local maps that enabled the merge
process.

Figure 60 – Maps acquired from bookstore environment.

  

a) Global map.

      

b) UAV 0 map. c) UAV 1 map. d) UAV 2 map.
Source: author.

Figure 61 shows the maps obtained in the hospital environment. In this scenario, the
lounge of reception and the well-defined corners of the long corridors made it possible to
merge. Another important point was the position of the identified features on the ceiling.
When the ceiling was present, as, in the case of this environment, the altitude reference
points contribute to the correspondence filtering process.

Figure 62 shows the maps obtained in the maze environment. As already mentioned,
the labyrinth environment was the most challenging case to perform the fusion due to the
high similarity between the characteristics of the captured points of interest. As demon-



113

Figure 61 – Maps acquired from hospital environment.

  

a) Global map.

      

b) UAV 0 map. c) UAV 1 map. d) UAV 2 map.
Source: author.

strated in Section 10.3.8, the entrance corridor to the maze was the only element that made
it possible to merge the local maps in this environment. How the proposed keypoint de-
tector retrieved the points of interest without losing vertical corner edge detail contributed
to the successful merge process.

Figure 63 shows the maps obtained in the racetrack environment. In this environment,
the list of keypoints detected in the straight horizontal corridors of the runway was funda-
mental for merging. A feature that enabled the local maps to merge in this environment
was the constructive and detailed differences present in the two curves (left and right). In
case these differences did not exist, the merging algorithm would probably overlap the
two curves, needing more details for the correct merge process. The possibility of adjust-
ing the descriptor window according to the dimensions of the map, as proposed, was also
one of the elements that contributed to the final result obtained.

Figure 64 shows the maps obtained in the small house environment. In this environ-
ment, the elements present in the central room of the house to the edges of the walls
enabled the merge of local maps. Within these elements, the sofa, the central table, and
the different dimensions of the access doors to the different rooms of the house stand out.
In addition, the other different elements in each room enabled were key elements that
enabled the correspondences filter to eliminate false positives.

Figure 65 presents the maps obtained in the small warehouse environment. In this
environment, the different types of shelves present on the upper and lower sides of the
environment made it possible to align the maps horizontally. The correct altitude for
vertical alignment of the maps was only obtained thanks to the edges of the boxes stacked



114

Figure 62 – Maps acquired from maze environment.

  

a) Global map.

    

b) UAV 0 map. c) UAV 1 map.
Source: author.

Figure 63 – Maps acquired from racetrack environment.

  

a) Global map.

    

b) UAV 0 map. c) UAV 1 map.
Source: author.



115

Figure 64 – Maps acquired from small house environment.

  

a) Global map.

      

b) UAV 0 map. c) UAV 1 map. d) UAV 2 map.
Source: author.

in the middle of the environment to the points of interest detected on the edges of the
lower corners.

In general, map merging is a challenging problem, dependent on the characteristics of
the environment in which it is being performed. The presented results were possible to be
obtained because the proposed algorithms were able to recover good sets of correspon-
dences between the presented local maps. This happens because the proposed keypoint
detector can recover not only corners but also edges, vertical and horizontal, that connect
these corners, composing points of interest with a greater semantic significance for the
merging process. The proposed filters also helped to eliminate false positives. Without
filtering processes, such as proper parametric adjustment for these filters, it is impossible
to perform any occupancy grid map merging process.

Another element that contributed to the merge process was the proper overlapping of
areas on the presented local maps. Without enough overlap to capture common features,
correct merging becomes impossible, which makes the local map merging process highly
dependent on the way UAVs route their trajectories through the environment.

Although the activity of merging local maps is challenging and does not have a sin-
gle solution, the solutions proposed in this thesis showed good performance and through
them, it was possible to merge the local 3D occupancy grid maps for all environments
proposed under the conditions mentioned. In contrast, the dependence on parametric ad-
justment was a problem not explored in this thesis, and it can be solved by concentrating
research on parameter estimation through artificial intelligence or machine learning.



116

Figure 65 – Maps acquired from small warehouse environment.

  

a) Global map.

    

b) UAV 0 map. c) UAV 1 map.
Source: author.

10.4 Scalability Evaluation

To evaluate the scalability of the proposed system, an experiment was carried out
varying the number of UAVs used in each scenario. In this experiment, the aim is to
evaluate the average system execution time for an increasing number of UAVs.

This way, it is assumed that each of the UAVs has acquired its partial map. Not
necessarily all acquired maps have overlapping regions, but for each map, there is at least
one overlapping region to another local map. In addition, the local maps obtained by each
of the UAVs have different sizes. Also, it is assumed that all UAVs are in an adequate
communication range.

From these conditions, a statistical analysis was performed to calculate the number of
repetitions (samples) necessary for the experiment. Then a significance level α = 0.05

was defined, which results in a confidence interval equal to 1 − α = 0.95 = 95 %. The
standard deviation for the experiment was σ ≈ 2.92 seconds. Afterward, the minimum
number of repetitions for the experiment was calculated at n = 11. Then, 33 repetitions
were performed taking into account different local maps and different regions distributed
within the proposed environments.

In the first stage of the experiment, the UAVs shared their local maps. The average
time for full sharing of all local maps among all UAVs can be seen in Figure 66.

It is observed that for a scenario containing 10 UAVs, the average time for full sharing
of all local maps for all UAVs was around 6 seconds. This time in a real scenario can be
relatively shorter because not all UAVs will always be in an acceptable communication



117

Figure 66 – Mean time to share all the maps on each UAV.

Source: author.

range, thus some sharing will occur by inheritance of global maps merged by their neigh-
bors. In this proposed scalability test, the obtained time refers to the total sharing of all
maps without considering possible shares by inheritance among neighbors.

After sharing the maps, they are merged. The average time for merging all local maps
in each of the UAVs can be seen in Figure 67.

Figure 67 – Mean time to merge all the maps on each UAV.

Source: author.

The average time for merging all local maps into a system containing 10 UAVs, taking
into account the variability in map size and/or presence of overlapping regions, was close
to 340 seconds. This time is the runtime taken for the complete generation of the global



118

map on each UAV, containing each of the local map representations of all the 10 UAVs.
Finally, the final average time of complete execution of the proposed system for each

test scenario, taking into account the variability in the number of UAVs components of
the distributed navigation system, is presented in Figure 68.

Figure 68 – Scalability test based on average time to complete application execution in
each UAV.

Source: author.

The average run time of the system is an accumulated time for the transmission and
merging of local maps in each of the UAVs. In this proposed experiment, the average
system execution time in an application with 10 UAVs was close to 350 seconds for a
scenario composed of 10 drones.

It is worth noticing that these tests represent the maximum time in a scenario where
each UAV would have to carry out all the merging processes by itself. In a real scenario,
the parameters obtained in the merger and the partial global maps could be shared, thus,
there is no need to merge all the maps in each of the UAVs. This fact would significantly
reduce the fusion time for the generation of the overall global map of the system. Thus,
the results here are presented to demonstrate the worst-case situations that the system
could reach.

Another important aspect to mention in the obtained results is that the linearity of the
average execution times allows estimating the approximate time of execution of the sys-
tem for a larger set of UAVs. Still, it demonstrates that the system scales still keeping the
execution times within acceptable time limits. Despite these results, it is also important to
highlight that for the type of applications this type of system is targeting, it is not expected
that a very large number of UAVs is used (Schmuck; Chli, 2017; Tang et al., 2019). So,
a short scalability range analysis as the one here presented is enough to provide evidence
that the system scales considering the scope of its desirable usage.



119

11 CONCLUSIONS

This chapter presents the final considerations from the performed research presented
and discusses possible directions for future work.

11.1 Concluding Remarks

This thesis presented the design, development, and evaluation of a cooperative navi-
gation system, with distributed architecture, to be used for multiple UAVs. This system is
based on three basic activities: construction of three-dimensional occupancy grid maps,
compressing and sharing maps between UAVs, and merging the local maps to create the
global representation of the environment on each of the UAVs.

A solution based on HIMM was adopted to build the maps by reading the sensors
and RGB-D camera of the simulated UAVs. These maps were stored in the 3D dynamic
occupancy grid maps structures presented in this thesis.

The map compression system was specifically designed to reduce the size of maps
before sharing. Then, the map transmission protocol (MTP) was proposed to identify
nearby UAVs and then share the local maps as proposed.

The proposed map merging solution consists of the extension and adaptation of some
components of the ORB algorithm to make them compatible for application in 3D occu-
pancy grid maps. The proposed merging solution comprises a detector and descriptor, in
addition to filters for keypoints and correspondences. In addition, keypoint orientation
properties are obtained from potential field gradients. This solution also uses image pro-
cessing techniques to preprocess the maps and remove noise and deformation from the
mapping step to better calculate the best MTM parameters.

Several experiments were performed and the evaluation of the proposed solution was
presented. The compression system proved to be efficient in reducing the size of maps.
The transmission protocol can transmit maps with high dimensions in a few seconds.

To evaluate the map merging system, first, each component was evaluated and the
quantitative results were presented and discussed. Then, the results of the complete pair-
wise map merging solution were presented and discussed. Finally, the functioning of the



120

proposed system is shown through a visual evaluation using a pair of 3D maps suitable
to visualize the results in two dimensions. Then the local and global maps resultant from
the execution of the proposed system are presented in a top view.

The main conclusion of this thesis is that the task of merging 3D occupancy grid maps
is complex and does not have a trivial solution, but rather adequate solutions for each
situation. Also, adding new information like colors to maps can somewhat improve the
accuracy of the merging algorithms. In this area of research, there are still many other
open problems to be explored.

11.2 Future Works

This section presents the possible future works. The future works regarding the map-
ping activity are presented in Section 11.2.1. Section 11.2.2 presents possible future
works regarding the map sharing system. Finally, Section 11.2.3 presents the possible
advances and ideas that can become future research involving 3D occupancy grid map
merging systems.

11.2.1 3D Occupancy Grid Mapping

In this thesis, maps are generated based on point clouds obtained from RGB-D cam-
eras. These are practical sensors to be integrated into the system and allow it to capture
the details of the environment. However, its use in the construction of maps requires the
vehicle to rotate around its central axis, during the exploration, to obtain readings from
several different positions and orientations. With this, it becomes common to get an in-
creased error in the construction of maps. Also, as this rotational movement causes the
vehicle to waste a little time in exploration, if this is a system requirement it can be a
problem. Therefore, in future works in the construction of maps, there is the addition of
multiple RGB-D sensors to each vehicle or also the use of laser sensors such as 3D laser,
to improve the estimates and obtain a total view of the environment in which the vehicle
is inserted. Sensor fusion of readings from all these sensors is also an alternative to these
problems.

11.2.2 Map Sharing

The map transmission protocol proposed in this thesis takes into account only the map
data to decide when to share information between vehicles. For this reason, this is a high-
level protocol. In future work, there is the integration of the protocol with information
from the network layers in the system, intending to contribute to a better distribution of
packets in the network, avoiding retransmission and congestion of this channel when the
number of vehicles becomes higher. This integration would also allow information to
travel along defined routes, avoiding retransmission of information already transmitted.



121

In this thesis, TCP/IP was used to guarantee the delivery of messages between UAVs.
Another point of study could be the utilization of UDP to speed up the information trans-
mission process, perhaps creating a stream for the distribution of maps.

11.2.3 3D Occupancy Grid Map Merging

In the proposed map merging system, the descriptor needs to be improved so the sys-
tem can be used in distinct environments without the need to adjust parameters. The use
of machine learning can be employed to solve this problem and estimate the input param-
eters. The algorithm for calculating the correspondences can be improved to reduce the
computational cost. Furthermore, a robust way of evaluating MTMs needs to be devel-
oped, without taking into account previous information from the environment or any kind
of ground truth. Furthermore, it is believed that the inclusion of global location systems in
the application can contribute to reducing the need for overlapping between map regions.
An efficient system capable of evaluating the availability of processing hardware in each
of the UAVs to better distribute the merge tasks can contribute to reducing the energy
consumption of the application.



122

REFERENCES

AL-KAFF, A. et al. Survey of computer vision algorithms and applications for
unmanned aerial vehicles. Expert Systems with Applications, [S.l.], v. 92, n.
Supplement C, p. 447 – 463, 2018.

ARTIEDA, J. et al. Visual 3-D SLAM from UAVs. Journal of Intelligent and Robotic
Systems, [S.l.], v. 55, n. 4, p. 299, Jan 2009.

VETRELLA, A. R. et al. Autonomous Flight in GPS-Challenging Environments
Exploiting Multi-UAV Cooperation and Vision-aided Navigation. [S.l.: s.n.], 2017.

BACHRACH, A. et al. RANGE–Robust autonomous navigation in GPS-denied
environments. Journal of Field Robotics, [S.l.], v. 28, n. 5, p. 644–666, 2011.

BAILEY, T.; DURRANT-WHYTE, H. Simultaneous localization and mapping (SLAM):
part ii. IEEE robotics & automation magazine, [S.l.], v. 13, n. 3, p. 108–117, 2006.

BASSO, M.; DE FREITAS, E. P. A UAV Guidance System Using Crop Row Detection
and Line Follower Algorithms. J. Intell. Robotic Syst., [S.l.], v. 97, n. 3, p. 605–621,
2020.

Birk, A.; Carpin, S. Merging Occupancy Grid Maps From Multiple Robots. Proceedings
of the IEEE, [S.l.], v. 94, n. 7, p. 1384–1397, July 2006.

BOKOVOY, A.; MURAVIEV, K.; YAKOVLEV, K. Map-Merging Algorithms for Visual
SLAM: feasibility study and empirical evaluation. In: ARTIFICIAL INTELLIGENCE,
2020, Cham. Proceedings [. . . ] Springer International Publishing, 2020. p. 46–60.

BONANNI, T. M.; DELLA CORTE, B.; GRISETTI, G. 3-D Map Merging on Pose
Graphs. IEEE Robotics and Automation Letters, [S.l.], v. 2, n. 2, p. 1031–1038, 2017.

BONIN-FONT, F.; ORTIZ, A.; OLIVER, G. Visual Navigation for Mobile Robots: a
survey. Journal of Intelligent and Robotic Systems, [S.l.], v. 53, n. 3, p. 263,
May 2008.



123

BORENSTEIN, J.; KOREN, Y. et al. The vector field histogram-fast obstacle avoidance
for mobile robots. IEEE transactions on robotics and automation, [S.l.], v. 7, n. 3, p.
278–288, 1991.

BORENSTEIN, J.; KOREN, Y. et al. Histogramic in-motion mapping for mobile robot
obstacle avoidance. IEEE Transactions on robotics and automation, [S.l.], v. 7, n. 4,
p. 535–539, 1991.

BRESENHAM, J. E. Algorithm for computer control of a digital plotter. IBM Systems
Journal, [S.l.], v. 4, n. 1, p. 25–30, 1965.

Cadena, C. et al. Past, Present, and Future of Simultaneous Localization and Mapping:
toward the robust-perception age. IEEE Transactions on Robotics, [S.l.], v. 32, n. 6, p.
1309–1332, Dec 2016.

CALONDER, M. et al. Brief: binary robust independent elementary features. In:
EUROPEAN CONFERENCE ON COMPUTER VISION, 2010. Proceedings [. . . ]
[S.l.: s.n.], 2010. p. 778–792.

CHOUDHARY, S. et al. Multi Robot Object-Based SLAM. In: INTERNATIONAL
SYMPOSIUM ON EXPERIMENTAL ROBOTICS, 2016., 2017, Cham. Proceedings
[. . . ] Springer International Publishing, 2017. p. 729–741.

CHOWDHARY, G. et al. GPS-denied Indoor and Outdoor Monocular Vision Aided
Navigation and Control of Unmanned Aircraft. Journal of Field Robotics, [S.l.], v. 30,
n. 3, p. 415–438, 2013.

CHUM, O.; PAJDLA, T.; STURM, P. The geometric error for homographies. Computer
Vision and Image Understanding, [S.l.], v. 97, n. 1, p. 86–102, 2005.

VALAVANIS, K. P.; VACHTSEVANOS, G. J. (Ed.). Cooperative Mission Planning for
Multi-UAV Teams. Dordrecht: Springer Netherlands, 2015. p. 1447–1490.

Dapper e Silva, T. et al. STFANET: sdn-based topology management for flying ad hoc
network. IEEE Access, [S.l.], v. 7, p. 173499–173514, 2019.

DE MORAES, R. S.; DE FREITAS, E. P. Multi-UAV Based Crowd Monitoring System.
IEEE Transactions on Aerospace and Electronic Systems, [S.l.], v. 56, n. 2, p.
1332–1345, 2020.

Dinnissen, P.; Givigi, S. N.; Schwartz, H. M. Map merging of Multi-Robot SLAM using
Reinforcement Learning. In: IEEE INTERNATIONAL CONFERENCE ON SYSTEMS,
MAN, AND CYBERNETICS (SMC), 2012., 2012. Proceedings [. . . ] [S.l.: s.n.], 2012.
p. 53–60.



124

Drumheller, M. Mobile Robot Localization Using Sonar. IEEE Transactions on
Pattern Analysis and Machine Intelligence, [S.l.], v. PAMI-9, n. 2, p. 325–332,
March 1987.

Elfes, A.; Matthies, L. Sensor integration for robot navigation: combining sonar and
stereo range data in a grid-based representataion. In: IEEE CONFERENCE ON
DECISION AND CONTROL, 26., 1987. Proceedings [. . . ] [S.l.: s.n.], 1987. v. 26, p.
1802–1807.

ENDRES, F. et al. An evaluation of the RGB-D SLAM system. In: ICRA, 2012.
Proceedings [. . . ] [S.l.: s.n.], 2012. v. 3, n. c, p. 1691–1696.

EVERS, L. et al. Robust UAV mission planning. Annals of Operations Research,
[S.l.], v. 222, n. 1, p. 293–315, Nov 2014.

FERRãO, V. T.; VINHAL, C. D. N.; DA CRUZ, G. An Occupancy Grid Map Merging
Algorithm Invariant to Scale, Rotation and Translation. In: BRAZILIAN
CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2017., 2017. Proceedings
[. . . ] [S.l.: s.n.], 2017. p. 246–251.

FISCHLER, M. A.; BOLLES, R. C. Random Sample Consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Commun. ACM,
New York, NY, USA, v. 24, n. 6, p. 381–395, June 1981.

Fox, D. et al. Distributed Multirobot Exploration and Mapping. Proceedings of the
IEEE, [S.l.], v. 94, n. 7, p. 1325–1339, July 2006.

FRANZ, M. O.; MALLOT, H. A. Biomimetic robot navigation. Robotics and
Autonomous Systems, [S.l.], v. 30, n. 1, p. 133 – 153, 2000.

GALLISTEL, C. R. The organization of learning. [S.l.]: The MIT Press, 1990.

GAZEBO Tutorials. [Online; accessed 22-November-2019],
http://gazebosim.org/tutorials/.

GONZALEZ, R. Digital image processing. 3. ed. Upper Saddle River, N.J: Prentice
Hall, 2008.

GUO, K. et al. Ultra-wideband based cooperative relative localization algorithm and
experiments for multiple unmanned aerial vehicles in GPS denied environments.
International Journal of Micro Air Vehicles, [S.l.], v. 9, n. 3, p. 169–186, 2017.

HAMMING, R. W. Error detecting and error correcting codes. The Bell System
Technical Journal, [S.l.], v. 29, n. 2, p. 147–160, 1950.

http://gazebosim.org/tutorials/


125

HAN, L. et al. Circular formation tracking control for time-delayed second-order
multi-agent systems with multiple leaders. In: IEEE CHINESE GUIDANCE,
NAVIGATION AND CONTROL CONFERENCE (CGNCC), 2016., 2016. Proceedings
[. . . ] [S.l.: s.n.], 2016. p. 1648–1653.

HARRIS, C.; STEPHENS, M. A combined corner and edge detector. In: IN PROC. OF
FOURTH ALVEY VISION CONFERENCE, 1988. Proceedings [. . . ] [S.l.: s.n.], 1988.
p. 147–151.

HESTER, T.; LOPES, M.; STONE, P. Learning exploration strategies in model-based
reinforcement learning. In: AUTONOMOUS AGENTS AND MULTI-AGENT
SYSTEMS, 2013., 2013. Proceedings [. . . ] [S.l.: s.n.], 2013. p. 1069–1076.

HORNUNG, A. et al. OctoMap: an efficient probabilistic 3d mapping framework based
on octrees. Autonomous robots, [S.l.], v. 34, n. 3, p. 189–206, 2013.

HOWARD, A.; PARKER, L. E.; SUKHATME, G. S. The SDR experience: experiments
with a large-scale heterogeneous mobile robot team. In: Experimental Robotics IX.
[S.l.]: Springer, 2006. p. 121–130.

2RD (Ed.). Robust statistics. [S.l.]: Hoboken, NJ: Wiley, 2009.

JIAN, L. et al. Vision Feature Extraction Algorithm for Occupancy Grid Maps Merging.
In: INTERNATIONAL CONFERENCE ON COMMUNICATION AND
INFORMATION SYSTEMS, 2017., 2017, New York, NY, USA. Proceedings [. . . ]
Association for Computing Machinery, 2017. p. 290–293. (ICCIS 2017).

JIANG, Z. et al. Simultaneous Merging Multiple Grid Maps Using the Robust Motion
Averaging. Journal of Intelligent & Robotic Systems, [S.l.], v. 94, n. 3, p. 655–668,
Jun 2019.

JONKER, P. P. Morphological Operations on 3D and 4D Images: from shape primitive
detection to skeletonization. In: DISCRETE GEOMETRY FOR COMPUTER
IMAGERY, 2000, Berlin, Heidelberg. Proceedings [. . . ] Springer Berlin Heidelberg,
2000. p. 371–391.

KANELLAKIS, C.; NIKOLAKOPOULOS, G. Survey on Computer Vision for UAVs:
current developments and trends. Journal of Intelligent & Robotic Systems, [S.l.], v.
87, n. 1, p. 141–168, Jul 2017.

KJER, H. M.; WILM, J. Evaluation of surface registration algorithms for PET
motion correction. 2010. B.S. thesis — Citeseer, 2010.



126

KOCH, P. et al. Multi-Robot Localization and Mapping Based on Signed Distance
Functions. Journal of Intelligent & Robotic Systems, [S.l.], v. 83, n. 3, p. 409–428,
Sep 2016.

Koenig, N.; Howard, A. Design and use paradigms for Gazebo, an open-source
multi-robot simulator. In: IEEE/RSJ INTERNATIONAL CONFERENCE ON
INTELLIGENT ROBOTS AND SYSTEMS (IROS) (IEEE CAT. NO.04CH37566),
2004., 2004. Proceedings [. . . ] [S.l.: s.n.], 2004. v. 3, p. 2149–2154 vol.3.

KOREN, Y.; BORENSTEIN, J. Potential field methods and their inherent limitations for
mobile robot navigation. In: IEEE INTERNATIONAL CONFERENCE ON ROBOTICS
AND AUTOMATION, 1991., 1991. Proceedings [. . . ] [S.l.: s.n.], 1991. p. 1398–1404.

KRUSE, T. et al. Human-aware robot navigation: a survey. Robotics and Autonomous
Systems, [S.l.], v. 61, n. 12, p. 1726 – 1743, 2013.

LEE, H.; ROH, B.; LEE, B. Multi-hypothesis map merging with sinogram-based PSO
for multi-robot systems. Electronics Letters, [S.l.], v. 52, n. 14, p. 1213–1214, 2016.

LEE, M.-J. et al. Adaptive row major order: a new space filling curve for efficient spatial
join processing in the transform space. Journal of Systems and Software, [S.l.], v. 78,
n. 3, p. 257–269, 2005.

LEERINK, L.; SCHULTZ, S. R.; JABRI, M. A. A reinforcement learning exploration
strategy based on ant foraging mechanisms. In: SIXTH AUSTRALIAN CONFERENCE
ON NEURAL NETWORKS, 1995. Proceedings [. . . ] [S.l.: s.n.], 1995. p. 217–220.

LENAC, K. et al. Fast Active SLAM for Accurate and Complete Coverage Mapping of
Unknown Environments. In: INTELLIGENT AUTONOMOUS SYSTEMS 13, 2016,
Cham. Proceedings [. . . ] Springer International Publishing, 2016. p. 415–428.

LEONARD, J. J.; DURRANT-WHYTE, H. F. Mobile robot localization by tracking
geometric beacons. IEEE Transactions on robotics and Automation, [S.l.], v. 7, n. 3,
p. 376–382, 1991.

LEVITT, T. S.; LAWTON, D. T. Qualitative navigation for mobile robots. Artificial
Intelligence, [S.l.], v. 44, n. 3, p. 305 – 360, 1990.

LOWE, D. Object recognition from local scale-invariant features. In: SEVENTH IEEE
INTERNATIONAL CONFERENCE ON COMPUTER VISION, 1999. Proceedings
[. . . ] IEEE, 1999.

Lu, Y.; Song, D. Visual Navigation Using Heterogeneous Landmarks and Unsupervised
Geometric Constraints. IEEE Transactions on Robotics, [S.l.], v. 31, n. 3, p. 736–749,
June 2015.



127

Lázaro, M. T. et al. Multi-robot SLAM using condensed measurements. In: IEEE/RSJ
INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS,
2013., 2013. Proceedings [. . . ] [S.l.: s.n.], 2013. p. 1069–1076.

MA, L. et al. Merging grid maps of different resolutions by scaling registration.
Robotica, [S.l.], v. 34, n. 11, p. 2516–2531, 2016.

Makarenko, A. A. et al. An experiment in integrated exploration. In: IEEE/RSJ
INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS,
2002. Proceedings [. . . ] [S.l.: s.n.], 2002. v. 1, p. 534–539 vol.1.

MATHWORKS, I. Mathworks Examples. Accessed: 2019-09-09,
https://www.mathworks.com/help/robotics/examples/.

Meng, W. et al. Decentralized Multi-UAV Flight Autonomy for Moving Convoys Search
and Track. IEEE Transactions on Control Systems Technology, [S.l.], v. 25, n. 4, p.
1480–1487, July 2017.

MICHAEL, N. et al. Collaborative mapping of an earthquake-damaged building via
ground and aerial robots. Journal of Field Robotics, [S.l.], v. 29, n. 5, p. 832–841, 2012.

NASH, A.; KOENIG, S.; TOVEY, C. Lazy Theta*: any-angle path planning and path
length analysis in 3d. In: TWENTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL
INTELLIGENCE, 2010. Proceedings [. . . ] [S.l.: s.n.], 2010.

NONAMI, K. et al. Autonomous control systems and vehicles. Intelligent Systems,
Control and Automation: Science and Engineering, [S.l.], v. 65, 2013.

OPPENHEIM, A. V.; SCHAFER, R. W.; BUCK, J. R. Discrete-time signal processing.
2. ed. Upper Saddle River, N.J.: Prentice Hall, 1999. 168-169 p.

ORFANUS, D.; DE FREITAS, E. P.; ELIASSEN, F. Self-Organization as a Supporting
Paradigm for Military UAV Relay Networks. IEEE Communications Letters, [S.l.], v.
20, n. 4, p. 804–807, April 2016.

PARK, J. et al. Map merging of rotated, corrupted, and different scale maps using
rectangular features. In: IEEE/ION PLANS 2016, 2016. Proceedings [. . . ] [S.l.: s.n.],
2016. p. 535–543.

PEREZ-GRAU, F. J. et al. An architecture for robust UAV navigation in GPS-denied
areas. Journal of Field Robotics, [S.l.], v. 35, n. 1, p. 121–145, 2018.

Pi, S. et al. Stereo visual SLAM system in underwater environment. In: OCEANS 2014 -
TAIPEI, 2014. Proceedings [. . . ] [S.l.: s.n.], 2014. p. 1–5.

https://www.mathworks.com/help/robotics/examples/


128

PWC. Global market for commercial applications of drone technology valued at
over $127bn. [Online; accessed 24-December-2019], https://pwc.blogs.com/.

PX4 Open Source Autopilot. [Online; accessed 22-November-2019],
https://px4.io/.

Qin, H. et al. Autonomous Exploration and Mapping System Using Heterogeneous
UAVs and UGVs in GPS-Denied Environments. IEEE Transactions on Vehicular
Technology, [S.l.], v. 68, n. 2, p. 1339–1350, Feb 2019.

QUIGLEY, M.; GERKEY, B.; SMART, W. Programming Robots with ROS: a
practical introduction to the robot operating system. [S.l.]: O’Reilly Media, 2015.

RAMIREZ-ATENCIA, C. et al. Solving complex multi-UAV mission planning problems
using multi-objective genetic algorithms. Soft Computing, [S.l.], v. 21, n. 17, p.
4883–4900, Sep 2017.

RANGANATHAN, A.; DELLAERT, F. Online probabilistic topological mapping. The
International Journal of Robotics Research, [S.l.], v. 30, n. 6, p. 755–771, 2011.

ROSIN, P. L. Measuring corner properties. Computer Vision and Image
Understanding, [S.l.], v. 73, n. 2, p. 291–307, 1999.

ROSTEN, E.; DRUMMOND, T. Machine Learning for High-Speed Corner Detection.
In: COMPUTER VISION – ECCV 2006, 2006, Berlin, Heidelberg. Proceedings [. . . ]
Springer Berlin Heidelberg, 2006. p. 430–443.

RUBLEE, E. et al. ORB: an efficient alternative to sift or surf. In: INTERNATIONAL
CONFERENCE ON COMPUTER VISION, 2011., 2011. Proceedings [. . . ] [S.l.: s.n.],
2011. p. 2564–2571.

SAEEDI, S. et al. Map merging for multiple robots using Hough peak matching.
Robotics and Autonomous Systems, [S.l.], v. 62, n. 10, p. 1408 – 1424, 2014.

SASAKI, S. A practical computational technique for mobile robot navigation. In: IEEE
INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS (CAT.
NO.98CH36104), 1998., 1998. Proceedings [. . . ] [S.l.: s.n.], 1998. v. 2, p. 1323–1327
vol.2.

Schmuck, P.; Chli, M. Multi-UAV collaborative monocular SLAM. In: IEEE
INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA),
2017., 2017. Proceedings [. . . ] [S.l.: s.n.], 2017. p. 3863–3870.

https://px4.io/


129

SCHMUCK, P.; SCHERER, S. A.; ZELL, A. Hybrid Metric-Topological 3D Occupancy
Grid Maps for Large-scale Mapping. IFAC-PapersOnLine, [S.l.], v. 49, n. 15, p.
230–235, 2016. 9th IFAC Symposium on Intelligent Autonomous Vehicles IAV 2016.

SHI, J.; TOMASI. Good features to track. In: PROCEEDINGS OF IEEE
CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, 1994.,
1994. Proceedings [. . . ] [S.l.: s.n.], 1994. p. 593–600.

SIEGWART, R.; NOURBAKHSH, I. R.; SCARAMUZZA, D. Introduction to
autonomous mobile robots. [S.l.]: MIT press, 2011.

SINGLA, N.; GARG, D. String matching algorithms and their applicability in various
applications. International journal of soft computing and engineering, [S.l.], v. 1, n.
6, p. 218–222, 2012.

SIPIRAN, I.; BUSTOS, B. Harris 3D: a robust extension of the harris operator for
interest point detection on 3d meshes. The Visual Computer, [S.l.], v. 27, p. 963–976,
11 2011.

STACHNISS, C. Exploration and mapping with mobile robots. 2006. Tese
(Doutorado em Engenharia Elétrica) — Citeseer, 2006.

STACHNISS, C.; LEONARD, J. J.; THRUN, S. Simultaneous Localization and
Mapping. In: SICILIANO, B.; KHATIB, O. (Ed.). Springer Handbook of Robotics.
Cham: Springer International Publishing, 2016. p. 1153–1176.

Tang, Y. et al. Vision-Aided Multi-UAV Autonomous Flocking in GPS-Denied
Environment. IEEE Transactions on Industrial Electronics, [S.l.], v. 66, n. 1, p.
616–626, Jan 2019.

THRUN, S. et al. Robotic mapping: a survey. Exploring artificial intelligence in the
new millennium, [S.l.], v. 1, n. 1-35, p. 1, 2002.

THRUN, S. et al. Probabilistic Robotics. [S.l.]: MIT Press, 2005.

TRUJILLO, A. C. et al. Using Natural Language to Enable Mission Managers to Control
Multiple Heterogeneous UAVs. In: ADVANCES IN HUMAN FACTORS IN ROBOTS
AND UNMANNED SYSTEMS: PROCEEDINGS OF THE AHFE 2016
INTERNATIONAL CONFERENCE ON HUMAN FACTORS IN ROBOTS AND
UNMANNED SYSTEMS, JULY 27-31, 2016, WALT DISNEY WORLD®, FLORIDA,
USA, 2017, Cham. Proceedings [. . . ] Springer International Publishing, 2017. p.
267–280.

TRUJILLO, J.-C. et al. Cooperative Monocular-Based SLAM for Multi-UAV Systems in
GPS-Denied Environments. Sensors, [S.l.], v. 18, n. 5, 2018.



130

URZUA, S.; MUNGUíA, R.; GRAU, A. Vision-based SLAM system for MAVs in
GPS-denied environments. International Journal of Micro Air Vehicles, [S.l.], v. 9, n.
4, p. 283–296, 2017.

VAN LOAN, C. F. Generalizing the singular value decomposition. SIAM Journal on
numerical Analysis, [S.l.], v. 13, n. 1, p. 76–83, 1976.

Velásquez Hernández, C. A.; Prieto Ortiz, F. A. A real-time map merging strategy for
robust collaborative reconstruction of unknown environments. Expert Systems with
Applications, [S.l.], v. 145, p. 113109, 2020.

Vetrella, A. R.; Fasano, G.; Accardo, D. Cooperative navigation in GPS-challenging
environments exploiting position broadcast and vision-based tracking. In:
INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS
(ICUAS), 2016., 2016. Proceedings [. . . ] [S.l.: s.n.], 2016. p. 447–456.

BASSO, M.; DE FREITAS, E. P. Vision in indoor and outdoor drones. [S.l.]:
Institution of Engineering and Technology, 2020. p. 261–280. (Control, Robotics &
Sensors).

WANG, C.-L. et al. Bearing-only Visual SLAM for Small Unmanned Aerial Vehicles in
GPS-denied Environments. International Journal of Automation and Computing,
[S.l.], v. 10, n. 5, p. 387–396, Oct 2013.

YAMAUCHI, B. A frontier-based approach for autonomous exploration. In: CIRA,
1997. Proceedings [. . . ] [S.l.: s.n.], 1997. v. 97, p. 146.

Yue, Y. et al. Hierarchical Probabilistic Fusion Framework for Matching and Merging of
3-D Occupancy Maps. IEEE Sensors Journal, [S.l.], v. 18, n. 21, p. 8933–8949, 2018.

YUE, Y. et al. Probabilistic Fusion Framework for Collaborative Robots 3D Mapping.
In: INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION),
2018., 2018. Proceedings [. . . ] [S.l.: s.n.], 2018. p. 488–491.

ZHAO, W.; LI, R.; ZHANG, H. Finite-time distributed formation tracking control of
multi-UAVs with a time-varying reference trajectory. IMA Journal of Mathematical
Control and Information, [S.l.], p. dnx028, 2017.

ZHAO, Z. et al. Software-defined unmanned aerial vehicles networking for video
dissemination services. Ad Hoc Networks, [S.l.], v. 83, p. 68 – 77, 2019.

Zhou, H. et al. StructSLAM: visual slam with building structure lines. IEEE
Transactions on Vehicular Technology, [S.l.], v. 64, n. 4, p. 1364–1375, April 2015.


	Introduction
	Hypotheses
	Goals
	Contributions
	Thesis Organization

	Background Concepts Review
	Navigation Systems
	State Representation
	Mapping
	Localization
	Exploration
	Map Merging
	Simultaneous Localization and Mapping (SLAM)

	Computer Vision Techniques
	Erosion and Dilation Morphological Operations
	Keypoint Detectors
	Binary Robust Independent Elementary Features (BRIEF)
	Random Sample Consensus (RANSAC)

	Multiple UAV Cooperative Systems
	Implementation Tools
	Robot Operating System (ROS)
	Gazebo Simulator
	PX4 Firmware


	Problem Statement
	Application Scenario
	Mapping Problems
	Communication Problems
	Map Merging Problems
	Hardware Limitations
	Privacy Issues

	Related Works
	General Related Works
	Map Merging Specific Related Works
	Summary And Discussions

	Cooperative Navigation System Architecture Overview
	Mapping Module
	Data Sharing Module
	Map Merging Module

	3D Occupancy Grid Mapping
	3D Dynamic Occupancy Grid Maps
	Map Storage
	Map Construction

	Sharing 3D Occupancy Grid Maps
	Map Compression
	Map Serialization
	Map Transmission Protocol

	3D Occupancy Grid Map Merging
	Map Preprocessing
	Keypoints Detection
	Keypoints Filtering
	Keypoints Properties
	Keypoints Description
	Computing Correspondences
	Correspondences Filtering
	Computing the Map Transformation Matrix (MTM) Parameters
	Merging 3D Occupancy Grid Maps

	Solution Implementation and Evaluation Design
	Implementation Details
	Experiments Setup

	Results and Discussions
	Map Compression Evaluation
	Map Transmission Protocol Evaluation
	Map Merging Evaluation
	Map Preprocessing Evaluation
	Keypoint Detector Evaluation
	Keypoint Filter Evaluation
	Keypoint Descriptor Evaluation
	Brute Force Descriptor Matcher Evaluation
	Correspondences Filter Evaluation
	Pairwise Map Merging Time Evaluation
	Pairwise Map Merging Visual Evaluation
	Maps Visual Presentation

	Scalability Evaluation

	Conclusions
	Concluding Remarks
	Future Works
	3D Occupancy Grid Mapping
	Map Sharing
	3D Occupancy Grid Map Merging


	References

