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Abstract
We derive a generalized Hamiltonian formalism for a modified suscepti-
ble–infectious–recovered/removed (SIR) epidemic model taking into account
the population V of vaccinated persons. The resulting SIRV model is shown
to admit three possible functionally independent Hamiltonians and hence three
associated Poisson structures. The reduced case of vanishing vaccinated sector
shows a complete correspondence with the known Poisson structures of the SIR
model. The SIRV model is shown to be expressible as an almost Nambu sys-
tem, except for a scale factor function breaking the divergenceless property. In
the autonomous case with time-independent stationary ratios k and b, the SIRV
model is shown to be a maximally super-integrable system. For this case we test
the accuracy of numerical schemes that are suited to solve the stiff set of SIRV
differential equations.
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1. Introduction

Since their original development by Kermack and McKendrick [1] and refinement by Kendall
[2] compartment models of epidemics have been widely used (for reviews see Hethcode [3],
Keeling and Rohani [4], Estrada [5]) as they describe successfully the temporal evolution of
epidemic outbreaks and also allow well-founded predictions on the hospitalization and death
rates of such outbreaks (for a recent application to the Covid-19 virus see Kröger and Schlick-
eiser [6]). The simplest compartment model is the susceptible–infectious–recovered (SIR)
model where persons from a considered population are assigned to the three compartments
S (susceptible), I (infectious) and R (recovered/removed). The infection and recovery rates
then regulate the transition probability between the compartments. Later refinements of the
SIR-model such as the SEIR [7, 8], SIRD [9] and SIRS [10–12] have introduced additional
compartments.

Recently, two of us [13] extended the standard SIR epidemic model by introducing a fourth
compartment V of vaccinated persons and the vaccination rate v(t) that regulates the rela-
tion between susceptible and vaccinated persons. The vaccination rate v(t) competes with
the infection (a(t)) and recovery (μ(t)) rates in determining the time evolution of epidemics.
Exact analytical inverse solutions t(Q) for all relevant quantities Q ∈ [S, I, R, V] of the resulting
SIRV-model in terms of Lambert functions were derived for the semi-time case with time-
independent ratios k = μ(t)/a(t) and b = v(t)/a(t) between the recovery and vaccination rates
to the infection rate, respectively. These inverse solutions can be approximated with high accu-
racy yielding the explicit time-dependence Q(t) by inverting the Lambert functions. It was
demonstrated that the values of the two ratios k and b as well as the initial fraction of infected
persons η � 1 completely determine the reduced time evolution the SIRV-quantities Q(τ ),
where the reduced time defined by τ =

∫ t
0 dt′ a(t′) accounts for any given time-dependence

of the infection rate.
The existence of a generalized Hamiltonian formalism, also called Poisson structure, is

an important property of dynamical systems. For instance, it allows the nonlinear stability
analysis of stationary solutions in terms of the energy-Casimir method [14]. Three-dimensional
Poisson structures have attracted some attention, being the lower dimensional case where a
Hamiltonian description is not symplectic [15–21]. Historically the Poisson structure comes
in an attempt to generalize canonical Hamiltonian mechanics while preserving its essential
geometric properties.

In the case of the SIRV model, it is a four-dimensional (4D) dynamical system. Related to
the SIRV model, the Hamiltonian structure of compartmental epidemiological models has been
discussed [22]. However, the analysis presented here is more general as it holds for arbitrary
time-dependent infection rates whereas the earlier study [22] is restricted to constant station-
ary infection rates. This generalization is important because non-pharmaceutical interventions
generate time-varying infection rates during an pandemic outbreak. The study of 4D Poisson
structures from a general point of view was done in references [23, 24] and for Ermakov sys-
tems in reference [25]. Five [26], six [27–29] or generic N-dimensional Poisson structures
have been also discussed [30–34].
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This work is organized as follows. In section 2 the SIRV equations and the basic properties
of generalized Hamiltonian systems are reviewed. The three possible Hamiltonians for the
SIRC model are derived, together with the analysis of the reduced, SIR model limit without a
vaccinated population. Section 3 considers the stationary case where the system is not explicitly
time-dependent. Here we investigate the applicability of numerical solvers. Section 4 shows
some properties of the third Hamiltonian of the SIRV system, which appears in an integral form
not expressible in terms of elementary functions. Section 5 discusses the multi-Hamiltonian
structure of the SIRV model and section 5.4 shows the lower-dimensional SIR reduction of
these structures dropping the vaccinated population. Section 6 is reserved to the conclusions.

2. Multi-Hamiltonian structure of the SIRV model

We start with the dynamical SIRV equations [13] modeling the fraction of susceptible (S),
infected (I), recovered/removed (R), and vaccinated (V) population in the course of time t,

dS
dt

= −a S I − v S,
dI
dt

= a S I − μ I,

dR
dt

= μ I,
dV
dt

= v S, (1)

where a = a(t), μ = μ(t), and v = v(t) are time-dependent transition rates. The SIRV model
distinguishes between vaccinated and non-vaccinated individuals. The vaccinated individuals
are assumed to be completely immune to the virus and proceed with rate v(t) to the compart-
ment of recovered individuals. In contrast, the non-vaccinated individuals can get infected with
the rate a(t), and thus contribute to the fraction of new infections J̇(t) = a(t)S(t)I(t) that deter-
mine the hospitalization and death rates. In the absence of vaccination, v = 0, and the SIRV
model reduces to the SIR model introduced a century ago [1, 2]. Although not strictly neces-
sary, it is convenient to eliminate one of the time-dependent parameters in equation (2) using
the reduced time

τ =

∫ t

0
dt′ a(t′), (2)

so that

dS
dτ

= − S I − b S,
dI
dτ

= S I − k I,

dR
dτ

= k I,
dV
dτ

= b S, (3)

where k = k(τ ) = μ/a and b = b(τ ) = v/a. We emphasize that in the following we allow the
ratios k(τ ) and b(τ ) to be time-dependent.

2.1. Generalized Hamiltonian formalism

In a generalized Hamiltonian formulation [18, 22] the dynamical system is written as

dxi

dτ
= {xi, H} = Ji j∂ jH, (4)

where H = H(xi, τ ) is the Hamiltonian function and the Poisson bracket {, } is defined by
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{A, B} = ∂iA Ji j ∂ jB, (5)

where A, B are generic functions and the structure functions Ji j = −J ji are the components of
an antisymmetric two-tensor. Summation convention is being employed, and ∂i = ∂/∂xi.

In order to ensure the Jacobi identity {A, {B, C}}+ {B, {C, A}}+ {C, {A, B}} = 0, the
equation

Ji j∂iJ
kl + Jik∂iJ

l j + Jil∂iJ
jk = 0, (6)

must be satisfied.
For a 4D dynamical system with xi = (x1, x2, x3, x4), equation (6) amounts to

Ji1∂iJ
23 + Ji2∂iJ

31 + Ji3∂iJ
12 = 0, (7)

Ji1∂iJ
24 + Ji2∂iJ

41 + Ji4∂iJ
12 = 0, (8)

Ji1∂iJ
34 + Ji3∂iJ

41 + Ji4∂iJ
13 = 0, (9)

Ji2∂iJ
34 + Ji3∂iJ

42 + Ji4∂iJ
23 = 0. (10)

Moreover, the Hamiltonian must satisfy

dxi

dτ
∂iH = ∂iH Ji j ∂ jH = {H, H} = 0. (11)

Therefore

dH
dτ

=
∂H
∂τ

, (12)

so that if H is not explicitly time-dependent it is a constant of motion (or first integral).

2.2. Three Hamiltonians for the SIRV model

For the SIRV model, it is useful to define (S, I, R, V) = (x1, x2, x3, x4) = (x, y, z,w), so that
equation (3) read

dx
dτ

= − x y − b x,
dy
dτ

= x y − k y,

dz
dτ

= k y,
dw
dτ

= b x. (13)

According to equation (11) a Hamiltonian for the SIRV model then solves the partial
differential equation

−(xy + bx)
∂H
∂x

+ (xy − ky)
∂H
∂y

+ ky
∂H
∂z

+ bx
∂H
∂w

= 0. (14)

Using the method of characteristics, equation (14) is equivalent to the Pfaff system

− dx
xy + bx

=
dy

xy − ky
=

dz
ky

=
dw
bx

, (15)

so that H is a constant on characteristics. It is possible to solve equation (14) for three inde-
pendent functions. One of them, which we call H = H1, is a distinguished first integral of the
SIRV equations, namely
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H1 = H1(x, y, z,w) = x + y + z + w. (16)

As H1 does not explicitly depend on time τ , it is a constant of motion which reflects the well-
known sum constraint requirement [35] if combined with the semi-time initial conditions [13]
x(0) = 1 − η, y(0) = η and z(0) = w(0) = 0.

A second function which can play the role of Hamiltonian is

H2 = H2(x, y) = x − k ln x + y + b ln y

= S + I − k(τ ) ln S + b(τ ) ln I, (17)

as can be verified by a posteriori resubstitution. In the general case of time-dependent ratios
k(τ ) and b(τ ) the function H2 is not a constant of motion; only in the case of stationary values
of these ratios H2 is a first integral of motion.

2.3. Third Hamiltonian

The derivation of the third Hamiltonian function is more involved. We consider the third
characteristic equation (15) reading

dz = − k y dx
x y + b x

, (18)

and express y in terms of x along characteristics by inverting equation (17) written as

y + b ln y = H2 − x + k ln x. (19)

With y = e−Y equation (19) becomes

e−Y = b

(
Y +

H2 − x
b

+
k
b

ln x

)
, (20)

with the solution

Y =
x − H2 − k ln x

b
+ W[ξ(x)] = − ln(bξ) + W(ξ), (21)

in terms of the Lambert function defined by [36, 37]

W(ξ)eW(ξ) = ξ, (22)

and

ξ = ξ(x) =
xk/b exp

(H2−x
b

)
b

. (23)

Consequently we obtain for the solution of equation (19)

y = e−Y = bξe−W(ξ) = bW(ξ), (24)

where we used equation (22) in the last step. Inserting equation (24) then provides for
equation (18)

dz
dx

= − kW[ξ(x)]
x{1 + W[ξ(x)]} = −kξ(x)

x
dW
dξ

, (25)
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where we made use of Lambert’s differential equation

dW
dξ

=
W(ξ)

ξ[1 + W(ξ)]
. (26)

At this stage W can be either the principal Lambert function (W0 � −1) or the second branch
(W−1 � −1). The Lambert functions W(ξ) are real valued for ξ � −1/e ≈ −0.37 which
presently is always satisfied since x � 0, b > 0.

Integrating equation (25) yields

H̃ = z + k
∫ x dxξ

x
dW
dξ

= z + k
∫ x dxξ

x dξ
dx

dW
dx

= z + k
∫ x dx

x d ln ξ
dx

dW
dx

. (27)

With

ln ξ =
k
b

ln x − ln b +
H2 − x

b
, (28)

we obtain

x
d ln ξ

dx
=

k − x
b

, (29)

along characteristics, that is, with H2 constant. With equation (29) inserted equation (27) yields

H̃ = z + kb
∫ x dx

k − x
dW
dx

, (30)

as a possible Hamiltonian. While the form (30) is quite acceptable, it is more convenient to
consider

H3 = H1 − H2 − H̃

= w + k ln x − b ln y − bk
∫ x dx

k − x
dW
dx

, (31)

to have a more clear reduction to the SIR case. We emphasize that in the treatment of
equation (31) one has W = W(ξ(x)) where ξ(x) is given by equation (23), parametrically
dependent on H2, but after integration one replaces H2 therein by its expression (17). Using
equations (26) and (29) we also have

H3 = w + k ln x − b ln y − k
∫ x dx

x
W(ξ)

1 + W(ξ)
(32)

= w + k ln x − b ln y − k
∫ x dq

q
Q(x, y, q)

1 + Q(x, y, q)
,

where

Q(x, y, q) = W(ξ) = W

[
y
b

(q
x

)k/b
exp

(
x + y − q

b

)]
. (33)

We emphasize that the existence of this third Hamiltonian (31) has been missed in the earlier
analysis of reference [22].
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2.4. Limiting SIR-case

The SIR model [1] is a 3D dynamical system with (x1, x2, x3) = (x, y, z) = (S, I, R) obtained
from equation (13) in the absence of vaccination, i.e., upon setting w = 0, b = 0,

dx
dτ

= − x y,
dy
dτ

= x y − k y,
dz
dτ

= k y. (34)

Its generalized Hamiltonian formulation was analyzed some time ago [18–21], also possess-
ing a multi-Hamiltonian structure, in this case a bi-Hamiltonian structure, becoming max-
imally super-integrable in the autonomous case. We can select the possible Hamiltonians
H1 = x + y + z, which is the reduced version (w = 0) of the universal constant of motion
for the SIRV model, and H2 = x − k ln x + y, which is the reduced version of H2 given by
equation (17) for b = 0. In this singular limit situation equation (18) reads

dz
dx

+
k
x
= 0, (35)

yielding upon integration

H̃ = z + k ln x = H1 − H2 �= 0, (36)

when w = 0, b = 0 instead of equation (30) with the Lambert function, so that correctly

HSIR
3 = H1 − H2 − H̃ = 0, (37)

in the SIR limit. Any choice, different from equation (37), would give a SIR reduction with a
third non-zero Hamiltonian function being functionally dependent on the remaining H1,2.

3. Stationary ratios k and b

In the case when k, b are time-independent, which was treated in detail in reference [13], we
have H2,3 from equations (17) and (32) as additional constants of motion reading

H2 = 1 − k ln(1 − η) + b ln η,

H3 = k ln(1 − η) − b ln η − k
∫ 1−η dq

q
Q(1 − η, η, q)

1 + Q(1 − η, η, q)
, (38)

using again the initial conditions of the semi-time SIRV-model [13] x(0) = 1 − η, y(0) = η
and z(0) = w(0) = 0.

3.1. Time asymptotics

As argued in reference [13], with b > 0 and assuming z residing in the finite interval [0, 1],
one has x∞ = x(τ = ∞) = 0. The existence of three constants of motion allows some precise
predictions for the time asymptotics as τ →∞. For definiteness, suppose x∞ = 0. To keep H2

constant, then it is necessary that y∞ = y(τ = ∞) = 0 too, but according to

y∞ = A xk/b
∞ , A =

e1/b η

(1 − η)k/b
. (39)

7
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In this context, to keep a constant H1 one then needs z∞ + w∞ = 1, where z∞ = z(τ = ∞)
and w∞ = w(τ = ∞). Actually it is possible to manage H3 in this limit, to derive

z∞ = k
∫ q=1−η dq

q
Q(1 − η, η, q)

1 + Q(1 − η, η, q)
− k

∫ q=0 dq
q

Q∞(q)
1 + Q∞(q)

, (40)

where

Q∞(q) = W

[
y∞
b

(
q

x∞

)k/b

exp

(
x∞ + y∞ − q

b

)]

= W

[
η exp[(1 − q)/b]qk/b

b(1 − η)k/b

]
. (41)

Finally, one has w∞ = 1 − z∞.

3.2. SIR-case

In the limiting SIR-case with b = 0 clearly

H2 = x + y − k ln x = S + I − k ln S, (42)

is the only constant of motion besides the sum constraint H1 = 1. As demonstrated before [6,
13] for stationary ratio k the exact analytical solution of the SIR-model as a function of the
reduced time (2) is given by

x(τ ) = S(τ ) = 1 − J(τ ),

y(τ ) = I(τ ) = 1 + kε − x(τ ) + k ln x(τ ),

z(τ ) = R(τ ) = −k[ε+ ln x(τ )], (43)

in terms of the cumulative fraction of new cases J(τ ) obeying the integral

τ =

∫ J

η

dψ
(1 − ψ)[ψ + kε + k ln(1 − ψ)]

, (44)

with η = 1 − e−ε and the initial condition I(0) = η. By direct insertion it is straightforward to
prove that the solution (43) indeed obeys the constant of motion (42).

3.3. Application: accuracy of numerical solvers

In practice, the SIR and SIRV model equations with time-independent ratios k and b are
commonly solved numerically, while some analytic approximants exist. However, the SIRV
equations constitute a stiff differential set of equations, for which certain numerical methods
for solving the equation are numerically instable.

Having explored the Hamiltonian structure we can restrict ourselves to the autonomous
case to test the accuracy of numerical solvers. The ideal solver should keep all the Hamilto-
nians unchanged during the course of time. To make sure our results are reproducable, and
the underlying methods well documented, we subjected a large number of methods offered by
the commercial software packages MathematicaTM and MatlabTM to our test [38, 39]. Because
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Table 1. For a large number of methods available in MathematicaTM 1238 and MatlabTM

R2019a [39] we here provide representative results for the decadic logarithm of the
mismatch ΔH j = |H j(t = 100) − H j(t = 0)| for j ∈ {2, 3} using SIRV parameters
k = b = 0.5, η = 0.1. For all MathematicaTM routines we used the specified working
precision (WorkingPrecision equal to PrecisionGoal). Remaining methods available in
MatlabTM for non-stiff differential equations do not produce any result.

log10 ΔH2 log10 ΔH3 Precision Software Name of method

−7.6304 −7.8309 20 MathematicaTM 12 Adams, MaxDifferenceOrder → 10
−6.2650 −6.4622 20 MathematicaTM 12 BDF
−5.9661 −6.1608 20 MathematicaTM 12 Adams, MaxDifferenceOrder → 2
−4.5892 −4.7877 10 MathematicaTM 12 ExplicitModifiedMidpoint
−3.9041 −4.1018 10 MathematicaTM 12 LinearlyImplicitMidpoint
−3.8239 −3.9838 10 MathematicaTM 12 Adams, MaxDifferenceOrder → 10
−3.3633 −3.5612 10 MathematicaTM 12 ExplicitMidpoint
−2.9477 −3.1377 10 MathematicaTM 12 Adams, MaxDifferenceOrder → 2
−2.9253 −2.9941 10 MathematicaTM 12 LinearlyImplicitModifiedMidpoint
−1.9612 −2.1605 10 MathematicaTM 12 ExplicitRungeKutta, DifferenceOrder → 2
−0.5624 −0.7999 10 MathematicaTM 12 ImplicitRungeKutta, DifferenceOrder → 2
−0.2633 −0.3985 10 MathematicaTM 12 BDF
−0.0351 −0.3670 20 MathematicaTM 12 ImplicitRungeKutta, DifferenceOrder → 10
−0.1636 −0.3314 — MatlabTM R2019a ode15s
0.1166 −0.0815 — MatlabTM R2019a ode23t
0.1539 −0.1066 — MatlabTM R2019a ode23tb
0.1969 0.9437 10 MathematicaTM 12 ImplicitRungeKutta, DifferenceOrder → 10
1.7008 1.6548 10 MathematicaTM 12 ExplicitRungeKutta, DifferenceOrder → 10
1.7008 1.6548 10 MathematicaTM 12 IDA, ImplicitSolver → FixedPoint
1.7008 1.6548 20 MathematicaTM 12 ExplicitRungeKutta, DifferenceOrder → 10
2.8889 0.6104 10 MathematicaTM 12 ExplicitEuler, variable step size
2.8976 −0.0007 10 MathematicaTM 12 LinearlyImplicitEuler
3.0376 3.0720 20 MathematicaTM 12 LinearlyImplicitMidpoint
3.0605 3.0968 20 MathematicaTM 12 ImplicitRungeKutta, DifferenceOrder → 2
4.4480 4.5197 20 MathematicaTM 12 ExplicitModifiedMidpoint
4.7576 4.8286 20 MathematicaTM 12 ExplicitMidpoint
4.7628 4.8323 20 MathematicaTM 12 ExplicitRungeKutta, DifferenceOrder → 2
9.4727 9.5026 20 MathematicaTM 12 LinearlyImplicitModifiedMidpoint
9.5362 1.1878 — MathematicaTM 12 ExplicitEuler, fixed step size 0.01
9.5355 7.0437 — MathematicaTM 12 ExplicitEuler, fixed step size 0.001
10.2583 10.2906 20 MathematicaTM 12 ExplicitEuler, variable step size
10.2583 10.2906 20 MathematicaTM 12 LinearlyImplicitEuler

results are seen to not depend qualitatively on the choice of initial conditions, we have per-
formed benchmark tests at the classical semi-time SIR initial conditions mentioned earlier:
x(0) = 1 − η, y(0) = η, using η = 0.1, while z(0) = w(0) = 0. As both ratios k, b are semi-
positive and usually residing on the interval [0, 1], we have used k = b = 0.5 for the tests to be
reported here. With these choices, the initial values for Hamiltonians are H1(0) = 1, H2(0) =
1 − ln(3) ≈ −0.0986, and H3(0) ≈ 0.8516 according to equation (32) with equation (33).

For each of the methods collected in table 1 we then measured the absolute deviations
ΔH j(t) = |H j(t) − H j(0)| for j ∈ {1, 2, 3} as function of time, up to t = 100. Actually, we

9
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Figure 1. Time evolution of the mismatch ΔH2(t) = |H2(t) − H2(0)| and ΔH3(t) =
H3(t) − H3(0) for selected numerical solvers, cf, table 1. The predictor–corrector Adams
solver implemented in MathematicaTM turned out to best keep both Hamiltonians at their
initial values of order unity.

tested many more settings (order 105), as several of the methods have additional parameters
than can be varied to tune the algorithm. In this sense, table 1 contains representative, and
to our opinion, the most relevant results. It offers an assessment of both explicit and indirect
methods, methods for stiff and non-stiff ordinary differential equations, methods with constant
and adaptive time steps, predictor- and corrector steps, and results for different choices of the
numerical precision employed.

Selected time series are shown in figure 1. As the deviations tend to be most pronounced
at the end of the time interval, we collect in table 1 only the final values ΔH j(100) for all the
algorithms. We do not include the values for ΔH1, because all methods succeed in keeping the
sum constraint H1(t) = 1 intact to very high precision.

We find the 10th order predictor–corrector Adams method works perfectly fine. Adam’s
method is a numerical method for solving first-order ordinary differential equations of
the SIRV form dx/dt = f (x, t), that combines the explicit Adams–Bashforth and implicit
Adams–Moulton steps. Let Δt = tn+1 − tn be the step interval, and consider the Maclau-
rin series of x about tn, xn+1 = xn + (dx/dt)n(t − tn) + (1/2)(d2x/dt2)n(t − tn)2 +O(t − tn)3

and (dx/dt)n+1 = (dx/dt)n + (d2x/dt2)n(t − tn)2 +O(t − tn)3. Here, the derivatives of x are
given by the backwards differences [38]. For first-order interpolation, the method proceeds
by iterating the expression xn+1 = xn + f (xn, tn)Δt. The method is extended to arbitrary
order using the finite difference integration formula from Beyer [40]. On the other end, the
explicit or implicit Euler methods should not be used, such as xn+1 = xn + f (xn, tn)Δt or
xn+1 = xn + f (xn+1, tn)Δt, respectively. It is also worthwhile noticing that all methods avail-
able in MatlabTM do not perform very well. Table 1 mentions three out of the seven Matlab
methods that produce a numerical (as opposed to not-a-number) result up to t = 100 for our
benchmark case. The ones that work are all designed for stiff (ode15s) or moderately stiff
(ode23t, ode23tb) ordinary differential equations.

4. Analytic properties of the third Hamiltonian (32)

It is not very commonplace to have a constant of motion in terms of a definite integral as is the
case of H3 in equation (32). Hence it is convenient to provide a recipe for partial derivatives of
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such class of functions. We note

∂

∂x

∫
dx f (x, c) =

∂

∂x

∫ x

dx′ f (x′, c(x, y)) = f (x, c(x, y)) +
∂c
∂x

∫ x

dx
∂ f
∂c

, (45)

∂

∂y

∫
dx f (x, c) =

∂

∂y

∫ x

dx′ f (x′, c(x, y)) =
∂c
∂y

∫ x

dx
∂ f
∂c

, (46)

where f (x, c) and c = c(x, y) are arbitrary functions of the indicated arguments. One then finds

∂H3

∂x
=

kb
x(y + b)

− k
b

(
1 − k

x

)∫ x dx W(ξ)
x[1 + W(ξ)]3

, (47)

∂H3

∂y
= − b

y
− k

b

(
1 +

b
y

)∫ x dx W(ξ)
x[1 + W(ξ)]3

, (48)

which together with ∂H3/∂z = 0, ∂H3/∂w = 1 shows that H = H3 indeed solves
equation (14). For the derivation of equations (47) and (48), one starts from H3 in equation (32)
applying the identities in equation (45) with

f (x, c) =
1
x

W(ξ)
1 + W(ξ)

, c = H2(x, y), (49)

with ξ = ξ(x) from equation (23), parametrically dependent on H2. A final step uses W(ξ) =
y/b according to equation (24).

5. Poisson structures

The existence of three possible Hamiltonians allows us to write

dxi

dτ
= A εi jkl ∂ jH1 ∂kH2 ∂lH3, (50)

where εi jkl is the 4D Levi-Civita symbol, which equals 1 for even permutations of {1, 2, 3, 4},
−1 for odd permutations and zero otherwise, and where A = A(x, y, z,w, t) is a scale factor
to be determined. The form (50) shows that equation (11) is immediately satisfied, due to the
anti-symmetry of εi jkl. In the case of the SIRV model, a direct calculation yields

A = x y. (51)

It can be observed that a dynamical system in the form (50) is almost a Nambu system [41],
which in the 4D case is given by

dxi

dτ
=

∂{xi, H1, H2, H3}
∂{x, y, z,w} , (52)

where ∂{xi, H1, H2, H3}/∂{x, y, z,w} denotes the four-dimensional Jacobian matrix. Nambu
mechanics is known as a possible generalization of Hamiltonian mechanics preserving the
divergenceless property, see [42] for a recent review. The SIRV model is not exactly a Nambu
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system since it is not divergenceless, which reflects in the scale factor A �= 1 in equation (51).
Nevertheless one has

∂

∂xi

(
1
A

dxi

dτ

)
= 0. (53)

In this context the scale function A is also termed inverse Jacobi multiplier [17]. Alternatively,
the case with a scale factor A �= 1 is also known as non-canonical Nambu system, which has
applications in the motion of three point vortices in the plane [43]. With a dynamical rescaling
of time τ → τ ′ where dτ ′ = Adτ , then the SIRV model can be cast in the form (52) (with τ
replaced by τ ′) which becomes divergenceless. This could—formally at least—allow building
a local canonical symplectic structure thanks to Darboux’s theorem [17].

In equation (50) there is no special role of any of the functions H1,2,3, all of them with
the status of a Hamiltonian, in spite of the pivotal character of H1 which is always a first
integral and which is known to be conserved from the very beginning. Therefore one has a
multi-Hamiltonian structure with an associated generalized Poisson bracket, as will be readily
proven. In this regard, within a given Poisson structure, it is relevant to know its Casimir func-
tions. A Casimir function C by definition is a function in involution with any other function on
phase space. Therefore it satisfies

Ji j∂ jC = 0. (54)

We are now in a position to enumerate the Poisson structures of the SIRV model, as follows.

5.1. Poisson structure I

From comparison between equations (4) and (50) one can chose

H = H1, Ji j = A εi jkl ∂kH2 ∂lH3, A = xy. (55)

It can be shown that such antisymmetric tensor always satisfies the Jacobi identities (7)–(10),
for arbitrary differentiable functions A and H2,3. Therefore one has an admissible Poisson
structure with H1 playing the role of Hamiltonian, while H2,3 are readily seen to be Casimir
functions, immediately satisfying equation (54). More explicitly, one has

J12 = 0, J23 = (x − k)y, J31 = x(y + b)

J14 = 0, J24 = 0, J34 = −bx, (56)

with the remaining components given by antisymmetry.

5.2. Poisson structure II

In the same spirit, one has the Poisson structure

H = H2, Ji j = xy εi jkl ∂kH3 ∂lH1, (57)

which also reproduces the equations of motion and satisfies the Jacobi identities. In this case
H1,3 are the Casimir functions. More explicitly, one has

12
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J12 = −xy,

J23 = −xy +
bky

y + b
− k

b
(x − k)y

∫
dx
x

W(ξ)
[1 + W(ξ)]3

,

J31 = −xy − bx − k
b

x(y + b)
∫

dx
x

W(ξ)
[1 + W(ξ)]3

,

J14 = −bx − k
b

x(y + b)
∫

dx
x

W(ξ)
[1 + W(ξ)]3

,

J24 = − bky
y + b

+
k
b

(x − k)y
∫

dx
x

W(ξ)
[1 + W(ξ)]3

,

J34 = bx +
bky

y + b
+

k
b

(bx + ky)
∫

dx
x

W(ξ)
[1 + W(ξ)]3

,

(58)

which can be checked to satisfy the Jacobi identities.

5.3. Poisson structure III

Finally, one can chose H = H3 as the Hamiltonian, in which case

Ji j = xy εi jkl ∂kH1 ∂lH2, (59)

with H1,2 playing the role of Casimirs. More explicitly,

J12 = 0, J23 = −(x − k)y,

J31 = −x(y + b), J14 = −x(y + b),

J24 = (x − k)y, J34 = bx + ky, (60)

with the remaining structure functions following from the antisymmetry.
In passing we note that the autonomous situation has a formal solution thanks to the com-

plete integrability, or super-integrability in this case. A n-dimensional dynamical system pos-
sessing (n − 1)-first integrals is known as a maximally super-integrable system [44]. The SIRV
model is therefore maximally super-integrable in the autonomous case. An exact solution can
then be found as follows. One can at least formally select one of the dynamical variables (say, x)
to express the remaining in terms of it. Namely, from equations (23) and (24) one has y = y(x).
In the continuation one has w = w(x) from equations (31) or (32) and finally z = z(x) from
equation (16). The trajectories so obtained do not take into account the temporal dynamics, as
done in earlier work [13].

5.4. Poisson structures for the limiting SIR-case

For the limiting SIR model we selected already the possible Hamiltonians H1 = x + y + z, and
H2 = x − k ln x + y. It is almost immediate to write

dx
dτ

= xy∇H1 ×∇H2, x = (x, y, z), (61)

or

dxi

dτ
= xyεi jk ∂ jH1 ∂kH2, (62)
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where εi jk is the 3D Levi-Civita symbol. Therefore one has the two Poisson structures I and II,
related to H1 and H2. As remarked before, the SIRV Poisson structure III collapses in the SIR
limit, due to H3 = 0 in this case.

(a) If the Hamiltonian is H = H1, the Jacobian is given by

Ji j = xyεi jk ∂kH2, (63)

with Casimir H2. Explicitly,

J12 = 0, J23 = (x − k)y, J31 = xy. (64)

This corresponds to the Poisson structure I of the SIRV model setting b = 0, together with
Ji4 = 0.

(b) If the Hamiltonian is H = H2, one has

Ji j = −xy εi jk ∂kH1, (65)

with Casimir H1. Explicitly,

J12 = J23 = J31 = −xy. (66)

This corresponds to the Poisson structure II of the SIRV model setting b = 0, together
with Ji4 = 0, and omitting the integrals with the Lambert function. These integrals do not
play any role in the SIR limit, since the characteristic equation (18) with b = 0 does not
involve the Lambert function, as remarked.

6. Conclusion

The partial differential equation (14) for the Hamiltonian function of the SIRV model is exactly
solvable, yielding three possible functionally independent Hamiltonians. While two of them
(H1 and H2) are expressible in terms of elementary function, the third one (H3) involves an
integral containing the Lambert function, a somewhat unusual circumstance. Our analysis of
the Hamiltonian properties of the SIRV-model is more general than earlier work as it holds for
arbitrary time dependent infection rates due to the introduction of the reduced time. Neverthe-
less, the result allows to express the SIRV model as a non-canonical Nambu system, directly
associated to three Poisson structures. The corresponding structure functions Ji j defining the
generalized Poisson bracket have been determined, and verified to be in accordance with the
Jacobi identity. The Poisson structure class II also depends on integrals of the Lambert function,
in spite of the Hamiltonian H2 to be a simpler function of the dynamical variables. The corre-
sponding Casimir functions commuting with all phase space functions have been determined
for the three generalized Hamiltonian descriptions. The derivation of the third Hamiltonian
H3 shows the SIRV model to be completely integrable in the autonomous, or stationary case.
The reduction to the lower-dimensional case where the vaccinated population is absent shows
a complete correspondence between the extended Poisson structures I and II of SIRV model
with the previously known Poisson structures of the SIR model, while the Poisson structure
class III of SIRV collapses in this case, as it should. In a sense the Poisson structure I of the
SIRV model is privileged since it is the only where both the Hamiltonian and the structure
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functions do not have integrals unevaluated in terms of elementary functions. However, one of
its Casimir functions (namely H3) involves an integral containing the Lambert function. As a
side-result we find that Adam’s predictor–corrector scheme appears most suitable to integrate
the stiff system of ordinary differential SIRV equations.
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