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NOMENCLATURA 

 

Símbolos   

𝑓 Activation function  

ℎ𝑗  Hidden Unit  

𝑛 Flow index  

𝑁 Number of observation  

𝑤𝑖𝑗 
Weight of the j-th hidden unit to the 

i-th input neuron 
 

𝑤𝑗𝑘 
Weight of the k-th output neuron to 

the j-th hidden unit 
 

𝑥𝑖 Input Neuron  

𝑦𝑘 Output Neuron  

𝑧 Observated value  

�̂� Predicted value  

   

Símbolos gregos   

𝛼𝑘 Bias of the k-th output neuron  

𝛼𝑗 Bias of the j-th hidden unit  

𝜆 Regularization Parameter  

𝜅 Consistency [Pa.sn] 

𝜇𝐵 Plastic Viscosity [Pa.s] 

𝜏 Shear Stress [Pa] 

𝜏0 Yield Stress [Pa] 

�̇� Sheat Rate [s-1] 
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Abstract. Debris flows are geological phenomena that can represent serious threats to life and 

property. They are fast mass movements of water-sediment mixtures, saturated with sediments 

that scale from smaller than 2 µm to up to 2 cm. Debris flow has heavy bulk densities and can 

travel at speeds up to 30 kph. They have high erosive capacity and can carry large items such 

as rocks (up to 1 m), trees, and cars. To assess the occurrence susceptibility and hazard risk 

of these phenomena, the evaluation of constitutive laws for the debris flow materials is 

required. Phenomenological models that describe these materials' behavior by fixed 

rheometric parameters, such as yield stress and consistency, had been attested as an effective 

alternative. Thus, the evaluation of these material rheological parameters plays a key role in 

this rheology framework. The objective of this study is to develop a predictive model using 

artificial neural networks to identify the mixture's rheological properties (yield stress, 

consistency, and flow index), based on the mixture solid concentration and the sediment grain-

size distribution. 178 data points obtained from previous studies were used to build the model. 

Three single-hidden layer neural networks were built to predict each rheological property. The 

models showed that the prediction of these rheological properties based on mixture 

composition is feasible but needs further efforts to improve the model’s accuracy and 

precision. 

 

Keywords: Debris flow, Neural Networks, Bingham fluid, Herschel–Bulkley fluid, Predictive 

Modeling. 
 

Resumo. As corridas de detritos são fenômenos geológicos com grande potencial de causar 

prejuízos e danos a vida humana. Esses fenômenos são rápidos escoamentos de um fluido 

composto por uma mistura de água saturada com sedimentos, de alta densidade e que pode 

alcançar velocidades de mais de 30km/h. As corridas de detritos têm alto poder erosivo e são 

capazes de arrastar grandes objetos como árvores e carros. Para avaliar as áreas sujeitas a 

esses fenômenos e estimar seus impactos, é necessário conhecer as equações constitutivas que 

governam os fluidos desses fenômenos. Uma eficiente alternativa é o uso de modelos que 

descrevem o comportamento desses fluidos com base em parâmetros reométricos fixos, como 

a tensão limite de escoamento e a consistência, o que torna crítica a mensuração destes 

parâmetros reológicos. O objetivo deste trabalho é desenvolver um modelo utilizando o 

método de redes neurais para prever propriedades reológicas desses fluidos com base na sua 

composição sedimentar. 178 observações coletadas de estudos já publicados foram 

empregadas na construção e validação do modelo. Três redes neurais, uma para cada 

propriedade reológica, foram construídas. Os resultados mostraram que é possível usar dessa 

tecnologia para prever as propriedades reológicas com base na composição sedimentar. Mais 

estudos, porém, são necessários para melhorar a precisão e acurácia desses modelos. 
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Palavras-chave: Corridas de detritos, Redes neurais, Fluido de Bingham, Fluido de Herschel–

Bulkley, Modelagem preditiva. 

 

1. INTRODUCTION 

 

Debris flows are a type of mass movement in which a fast-moving saturated mixture of 

water, sediments, and debris flows down slopes attracted by gravity forces. These geological 

phenomena happen in regions with steep inclinations and occasional rainfalls. Most debris 

flows start from static, nearly rigid masses of sediments, usually located on unstable slopes. 

When water from rainfalls infiltrates these masses, it increases the soil weight and decreases 

the soil strength. At some point, this sediment-water mixture transforms in a liquid-like state, 

which triggers the mass movement (IVERSON, 1997; JAKOB; HUNGR, 2005). 

Debris flows distinguish themselves from other related events (e.g., rock avalanches or 

mudflows) because both solid and fluid forces influence these mass movement's dynamics. 

Rock avalanches, for example, are dominated only by solid grain forces, whereas in mudflows 

the fluid forces are the main driver of the event's physics. These combination of solid and fluid 

forces gives debris flow events a unique destructive power. Debris flows can travel long 

distances, have bulk densities comparable to rock avalanches, and flow with velocities peaking 

up to 10 m/s. These velocities are high enough to make bulk inertial forces relevant, given these 

mass movements enough energy to exert huge loads on objects in the flow path (IVERSON, 

1997). 

The prediction and prevention of debris-flow events are in the interest of the engineers, given 

the threat these mass movements represent to life and property. To perform this hazard 

assessments, it is necessary to understand the dynamics of debris flow.  Debris flow phenomena 

are traditionally modeled as a homogeneous fluid and constitutive models are applied to predict 

somehow its viscoplastic behavior (COUSSOT; PIAU, 1994; PHILLIPS; DAVIES, 1991). 

Some of these models are Herschel-Bulkey, Bingham, among others (IVERSON, 1997). 

In this frame, the bulk debris flow is assumed to be controlled by the rheologic properties of 

the fluid matrix (i.e., the debris flow mixture of water and sediments in suspension) (COSTA, 

1984), where the particle size distribution and solid volumetric concentration could be used to 

characterize the fluid behavior (ANCEY, 2001; COUSSOT; PROUST; ANCEY, 1996). 

The literature reports experimental studies showing the effects that water content and grain 

size distribution have in rheological parameters (KAITNA; RICKENMANN; 

SCHATZMANN, 2007; MALET et al., 2003; PELLEGRINO; SCOTTO DI SANTOLO; 

SCHIPPA, 2015; SCOTTO DI SANTOLO; PELLEGRINO; EVANGELISTA, 2010; ZEGERS 

et al., 2020). However, the experimental measure of rheological parameters for natural debris 

flow is a challenging task where similarity criteria is hard to achieve (TURNBULL; 

BOWMAN; MCELWAINE, 2015). 

In this context, the present study aims to explore the use of predictive models, in this case 

artificial neural networks (ANN), to predict debris flow rheological parameters. One of the 

major advantages of ANN methods is their ability to approximate any existing nonlinear 

relationship between input and output parameters (WASZCZYSZYN, 1999). This 

characteristic suit the debris flow rheological parameter prediction, given the problem 

complexity. More specifically, the present work aims to: 

• identify a collection of data presenting similar input and output variables; 

• train an existing ANN model; 

• understand how database could be better equipped to enhance the model’s response; 

• explore the possible advantages and drawbacks of the approach. 

  



3 

 

2. FUNDAMENTALS 

 

2.1. Debris flow rheology 

 

Typical debris flows are hazardous mass movements characterized by being dense, poorly 

sorted solid-fluid mixtures with constituent particles that range widely in size, from smaller 

than 2 micrometers clay particles to gravel particles, that have up to 2 cm diameter sizes 

(MAJOR; PIERSON, 1992). The understanding of the flow dynamics of these phenomena is 

key to the risk assessment of these events. The evaluation of constitutive laws to model these 

solid-fluid mixtures is crucial to allow the use of the continuous mechanics' framework (i.e., 

Cauchy momentum equation) to describe the dynamics or the kinematics of these events. 

Debris flow phenomena are traditionally modeled as a homogeneous fluid. That is, the 

poorly sorted mixture is regarded as one medium when moving, and its flow behavior is 

presumed to be controlled by the rheologic properties of the ‘matrix’. This matrix is a mixture 

of fine sediment and water in which coarse particles are dispersed (COSTA, 1984; SCOTTO 

DI SANTOLO; PELLEGRINO; EVANGELISTA, 2010). 

Due to the high variability of matrix compositions, no generally applicable model is yet able 

to cover the full range of possible flow behaviors. 

 

2.1.1. Rheologic Models 

 

Coussot et al. (1996), proposed a simplified classification criterion to separate the models 

applied to describe the ‘rheologic’ properties of the debris flow matrix based on the interaction 

of solid and fluid forces. Beyond a critical solid volumetric concentration the mixture typically 

behaves like a non-Newtonian, viscoplastic fluid (PARSONS; WHIPPLE; SIMONI, 2001; 

PELLEGRINO; SCHIPPA, 2013). A viscoplastic fluid has a yield stress under which it will not 

deform. That is, it is necessary to apply a shear stress that overcomes the material yield stress 

to induce the flow. 

The mentioned approaches do not provide a unique rheological formula for the solid-fluid 

composite. Phenomenological models that employ a fixed rheology of debris flows material 

mixtures, such as the Bingham or the generalized Herschel-Bulkley models have been used to 

effective describe these mixtures' rheological behavior (ANCEY, 2007; PELLEGRINO; 

SCHIPPA, 2013). In this frame, the flow is characterized by relating shear stress to shear rate 

and by material parameters using viscosity and yield stress. 

 

2.1.1.1. Bingham Model 

 

The simplest viscoplastic model is the Bingham model. The shear stress 𝜏 by the Bingham 

law is given in the Equation 1: 

 

𝜏 =  𝜏0 + 𝜇𝐵�̇�    (1) 

 

where the shear stress is a linear function of the shear rate �̇� and the constant material parameters 

yield stress 𝜏0 and plastic viscosity 𝜇𝐵. 

For many natural debris flows, the Bingham model provides a rough approximation of the 

flow behavior, but with good representativity over large shear rate values. For some range of 

mixture parameters, such as grain size distribution, the linear relationship between shear rate 

and shear stress fails to describe the mixture rheological properties (KAITNA; 

RICKENMANN; SCHATZMANN, 2007), specially at low shear rate. 
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2.1.1.2. Herschel Bulkley 

 

The Herschel Bulkley is a generalized Bingham model. Here, the shear stress 𝜏 law is given 

by the Equation 2: 

 

𝜏 =  𝜏0 + 𝜅𝛾�̇�    (2) 

 

where the shear stress is a non-linear function of the shear rate �̇�, with the addition of the flow 

index 𝑛 exponent, and the constant material parameters yield stress 𝜏0 and consistency 𝜅. 

The flow behavior is still viscoplastic, which means that a certain level of stress is necessary 

to induce the shearing into the flow. The difference remains in the flow index exponent. 

Experiments showed that for most mudflows and debris flow matrix 𝑛 is lower than the unit, 

given a shear thinning behavior for the flow (COUSSOT; PROUST; ANCEY, 1996; KAITNA; 

RICKENMANN; SCHATZMANN, 2007). 

 

2.1.2. Debris flow rheological parameters measurement 

 

The experimental measure of rheological parameters for natural debris flow is a challenging 

task. The main difficulty of these measurements remains in replicating the field scale of these 

events. Analogue experiments of large-scale phenomena need to satisfy at least a relevant 

amount of similarity criteria to be trustworthy. However, this is hard to achieve for debris flow 

(TURNBULL; BOWMAN; MCELWAINE, 2015). 

Different experimental approaches that achieve similarity for a limit set of parameters were 

develop through the years to deal with this scale challenge. The evaluation of the material 

parameters yield stress and consistency (or plastic viscosity) is key to rheological models such 

as Bingham and Herschel Buckley. The determination of these rheological parameters has been 

attempt with a variety of equipment’s such as penetrometers, vane testers, viscosimeters, 

conventional rheometers and large-scale rheometers (ANCEY, 2001; PELLEGRINO; 

SCHIPPA, 2013; PHILLIPS; DAVIES, 1991). 

These methods are not suitable for the complete flow and are mostly limited to specific 

operating conditions, often governed by the granular material size (PHILLIPS; DAVIES, 

1991). Any generally applicable method would need to be able to accommodate reasonable 

large ranges of grain-sizes to produce conditions similar to an actual debris flow material. 

The rheological parameters, yield stress and consistency (or plastic viscosity), are strictly 

related to grain characteristics and can be assessed from the particle size distribution and solid 

volumetric concentration (BAGNOLD; A, 1954; COUSSOT; PROUST; ANCEY, 1996; 

PELLEGRINO; SCHIPPA, 2013). Experimental studies showing the effects that water content 

and grain size distribution have in rheological parameters have been reported for specific ranges 

of grain size composition (KAITNA; RICKENMANN; SCHATZMANN, 2007; MALET et al., 

2003; PELLEGRINO; SCOTTO DI SANTOLO; SCHIPPA, 2015; SCOTTO DI SANTOLO; 

PELLEGRINO; EVANGELISTA, 2010; ZEGERS et al., 2020). 

 

2.2. Predictive Modeling 

 

Predictive modeling is the process of developing a model to try to generate accurate 

predictions (KUHN; JOHNSON, 2013). A simple example of a prediction model is the ordinary 

linear regression, which provides a numeric response for a linear combination of its predictors. 

In general terms, the approach to build a predictive model consists of the following steps: 

obtain representative data, pick a modeling technique, plug in data, and generate a prediction. 

However, a good understanding of the data and the scope of the aimed problem is necessary to 
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develop a trustworthy model to give accurate predictions for new samples (KUHN; JOHNSON, 

2013).  

The problem scope will point between a classification model and a regression model. To 

predict categorical outcomes, classification methods are necessary. To predict numerical 

continuous outcomes, regression methods are the best fit. The understanding of the data 

characteristics gives insights to choose between a linear and a non-linear model, for example. 

It also gives hints about the necessary data pre-processing treatments. 

 

2.2.1. Artificial neural networks 

 

Artificial Neural Networks are powerful nonlinear regression techniques. The roots of these 

methods rely in a scientific effort to replicate the human's decision-making approach. The 

decision-making processes of humans are related to the recognition of patterns which led to an 

interchange between engineers and psychologists. This interchange gave birth to powerful 

mathematical methods: the perceptron in the late 1950s, and neural networks in the 1980s. Even 

though both studies quickly departed from their biological roots to reach the potential of 

mathematical techniques, the psychological approach heavily influenced the name of these 

methods (RIPLEY, 1996). 

 

2.2.1.1. Artificial neuron (AN) model  

 

The concept borrowed from the nervous system is how a neuron receives electrical signals 

and reacts to these stimulations. A neuron will transmit information (i.e., an electrical signal) 

only if receives a charge superior to a specific threshold (WASZCZYSZYN, 1999). The AN 

model, shown in Fig. 1, mimics the biological neuron's ability to receive signals from several 

neurons, process these signals, and decide whether to send a signal forward or not. 

 

Figure 1 – Generic artificial neuron model receiving information from 3 input neurons. 

 
To the AN model, the numerical values inputs act as electrical signals from other neurons. 

The weights and the bias are variables to allow to change how the artificial neuron will interpret 

different neuron signals (i.e., numerical values) from previous AN. The AN model activation 

function 𝑓, which can work as a switch, is a way to evaluate whether a signal must go forward 

or not. One classical example of the activation function is the binary step, or Heaviside function. 

Mathematically, the AN model sums the product of the input neurons and its relative weights 

to the bias associated with the neuron. Then, it applies the activation function to this sum. For 

the Heaviside function, for example, the neuron will transmit information (i.e, assume the value 

1) only if the sum is greater than 1. 

Sum
Activation

Function
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2.2.1.2. Feed-forward neural network 

 

A neural network is an assembly of connected neurons aggregated in at least three layers. 

The simplest but most common architecture of neural network is an input layer, one hidden 

layer and an output layer. Feed-forward means that the signals are transmitted in one direction 

only (i.e., from inputs to outputs). The Figure 2 shows the architecture of a generic single-

hidden layer neural network. 

The mathematical formulation for one output neuron 𝑦𝑘 in a single hidden-layered neural 

network is given in the Equation 3: 

 

𝑦𝑘 = 𝑓𝑘 (𝛼𝑘 + ∑ 𝑤𝑗𝑘ℎ𝑗

𝑗→𝑘

)    

(3) 

 

where the hidden neuron ℎ𝑗  is given by the Equation 4: 

 

ℎ𝑗 = 𝑓𝑗𝑘 (𝛼𝑗 + ∑ 𝑤𝑖𝑘𝑥𝑖

𝑗→𝑘

)  

(4) 

 

and 𝑖 are the input neurons indexes, 𝑗 are the hidden units indexes, 𝑘 the output neurons indexes, 

𝑤𝑖𝑘 and 𝑤𝑗𝑘 are the neurons weight, and 𝛼 is the neuron bias. 

 

Figure 2 – Generic single-hidden layer neural network with 4 input neurons, 3 hidden units 

and 3 output layers. 

 

 
 

From the Eq. (3), is easy to understand that the sum is relative to the interaction between the 

input neurons (𝑥𝑖) and the hidden units’ weights (𝑤𝑖𝑗) associated to each input neuron. The sum 

of the Eq. (4) is the product of the hidden units ℎ𝑗  and the associated 𝑘-th output neuron weights 

𝑤𝑗𝑘. The output neuron, then, is the value returned by the activation function applied to this 

sum plus the output neuron bias 𝛼𝑘. 

Neural networks are capable of massive parallel processing of information. This 

characteristic implies that these methods have low sensitivity to errors cause by noisy 

Input 

layers

Hidden

layer

Output 

layer
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information. Another feature of ANN is plasticity (i.e., adaptivity to new information). ANN 

methods are not programmed, but instead they are trained. This means that the weights and bias 

for an ANN are oriented by examples (patterns) taken from experimental labeled data (i.e., data 

with the expected predict values) (WASZCZYSZYN, 1999). 

 

2.2.1.3 Supervised learning 

 

The supervised learning problem is, for a given approximation function (i.e., regression) 

called model, to find the optimal parameters that minimize the distance between a known 

observed-value (training data) and the prediction (i.e., approximation) made by this model 

(BONETTO; LATZKO, 2020). The collection of algorithms design to solve this problem are 

usually known as machine learning or artificial intelligence techniques. 

For neural networks, one of these algorithms is the back-propagation algorithm. It is a highly 

efficient method that works with calculus concepts (i.e., derivatives) to search the optimal 

parameters for a neural network (KUHN; JOHNSON, 2013). 

Due to its large number of variable parameters, ANNs have the tendency to over-fit the 

model parameters to a given set of training data. To avoid this issue, a penalization parameter 

(𝜆), known as regularization parameter or weight decay, is introduced to these models. For large 

regularization values, the fitted model becomes more smooth and less likely to over-fitting. 

This regularization parameter is a given parameter for a neural network architecture, same as 

the number of hidden layers and units (KUHN; JOHNSON, 2013). The introduction of the 

regularization parameter in the networks demand that the predictor (i.e., input data) is on the 

same scale. 

 

2.2.2. Data pre-processing 

 

Data pre-processing are a group of manipulation techniques that transform a given set of 

data. This stage of the modeling is crucial to the model final predictive ability. One 

straightforward and common data transformation is to center scale the all the predictor variables 

(KUHN; JOHNSON, 2013). The ‘centering’ part of the method subtracts from each predictor 

value the average of the predictor, resulting in a zero mean. The ‘scaling’ part divide each value 

for the predictor standard deviation, leading to a common standard deviation of one.  

 

2.2.3. Performance metrics 

 

The metrics chosen to measure the model’s predictive performance play an important role 

in the predictive modeling process. For regression models, accuracy measures are usually 

employed to evaluate the effectiveness of the models. There are many methods to measure 

accuracy, which should be chosen accordingly to the application (KUHN; JOHNSON, 2013). 

The choice of the appropriate method to measure predictive performance is critical to 

understand the quality of the model regarding its purpose. 

 

2.2.3.1. Root mean squared error (RMSE) 

 

The RMSE is a common method to evaluate a model’s predictive capabilities. This metric 

can be interpreted as how far, on average, is the distance between the observed values and the 

model predictions. The 𝑅𝑀𝑆𝐸 is given by the Equation 5: 
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𝑅𝑀𝑆𝐸 = √
∑|𝑧𝑖 − �̂�𝑖|2

𝑁
    

(5) 

 

where 𝑧 is 𝑖-th observed value, �̂� is 𝑖-th predicted value and 𝑁 is the number of measurement 

predictions. 

The RMSE is an adequate prediction performance metric when the model is predicting 

values within the same scale.  

 

2.2.3.2. Mean absolute percent error (MAPE) 

 

The MAPE is an alternative metric to evaluate predictive capabilities when the model needs 

to predict values that are in different scales. The 𝑀𝐴𝑃𝐸 is given by the Equation 6: 

 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝑧𝑖 − �̂�𝑖

𝑧𝑖
|    

(6) 

 

where 𝑧 is 𝑖-th observed value, �̂� is 𝑖-th predicted value and 𝑁 is the number of measurement 

predictions. 

The MAPE needs to be interpreted carefully hence it troubles to deal with near-zero values. 

Also, this performance metric cannot be used for datasets with zero values. 

 

3. METHODOLOGY 

 

Artificial neural networks can model complex nonlinear relationships such as the one 

between the debris flows mixture's composition and its rheological properties. ANNs can be 

built by learning from a set of input data which is the best value for its internal weights and 

bias, method known as supervised learning. 

The reliability of ANNs models built through supervised learning methods rely heavily on 

the data (i.e., training data) they learned from. The architecture parameters of the networks (i.e., 

number of hidden layers and hidden units) are another key performance component. The metrics 

used to evaluate the prediction performance (i.e., MAPE, RMSE, R-squared) of the models also 

play a role in obtaining reliable models from a supervised learning process. 

This section shows the study’s methodology used to gather the training and test set process. 

It also presents the iterative process used to identify the best network architecture for a chosen 

set of data points. In the last subsection, a methodology to select which data points will 

participate in the training and testing data sets are also presented. 

 

3.1. The data set 

 

The dataset was built through a review of previous works in the literature with experimental 

studies on the relation of geomechanical characteristics (i.e., grain size distribution) and 

rheological characteristics (i.e., yield stress) of the natural mixtures. Six studies were chosen to 

compose the dataset. The common characteristics in these works were the presence of a 

geomechanical characterization of the soil, rheometrical measures for different soil volumetric 

concentrations in the mixture, and the indication of the flow index used to model the mixture's 

flow behavior.  

Six datasets were chosen, and a brief description of each work is presented: 

A) Major et al. (1992) performed rheology measurements in sediments from a natural debris 

flow deposit sampled from the North Fork Toutle River located in Washington, United States. 
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The material rheological properties were evaluated using a concentric cylinder viscometer 

designs and calibrated by the authors. 

B) Coussot et al. (1994) studied industrial clay, natural clay from Grenoble in France and 

seven different debris flows samples using a stress-controlled and a strain-rate-controlled 

rheometer in the experiments. 

C) Malet et al. (2003) tested deposits from seven mass movement events and three 

weathered soils, all originated from the French Alps. The article shows the rheological 

characterization and rheometric tests of natural mixtures and artificial mixtures (i.e., mixtures 

of soil made by the authors). The tests were carried out in rotation rheometers with different 

geometries such as parallel-plates and coaxial cylinders.  

D) Kaitna et al. (2007) studied materials taken from the Scalära torrent in Eastern 

Switzerland. The studied used a ball measuring system implemented in a Paar Physica MCR 

300 rheometer to measure torque and rotational speed which later were translated as rheological 

parameters. 

E) Santolo et al. (2009) performed rheometrical measurements on three debris flows that 

originated from the Campania region in southern Italy. A rotational rheometer was used to test 

the mixture of soils sampled from the debris flow events.  

F) Del Galdio et al. (2018) studied the rheological properties of clay-silt and sand-silt 

artificial mixtures. The rheological characterization was carried out with a Anton Paar MCR301 

rheometer with a vane rotor geometry. 

A total of 176 observations were collected. The collection of data from all datasets is shown 

in Figures 3 and 4. Fig. 3 presents the yield stress observations for the five predictors (i.e., solid 

volumetric percent concentration and the percentage of clay, sand, silt, and gravel). Fig. 4 

presents the consistency  (or plastic viscosity) observations for the five same predictors. 

 

Figure 3 – Yield Stress training set with its five predictors: solid volumetric concentration and 

soil percent content of clay, gravel sand, and silt. 
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Figure 4 – Consistency (plastic viscosity) training set with its five predictors: solid volumetric 

concentration and soil percent content of clay, gravel sand, and silt. 

 
The data set obtained from previous articles shown in Fig. 3 and Fig. 4 shows a very 

heterogeneous collection of data. It contains several spaces with sparse amounts of 

representative data points which can be misleading for neural network models. The percent of 

clay particles in the soil, for example, contains almost 95% of the observations in the range of 

concentrations between 0 and 0.20, with the last 5% of the observations between the 

concentrations range of 0.20 and 0.70. 

All the possible combinations between the studies were tested as candidates of training and 

test data to address the heterogeneous nature of the dataset. For the yield stress and consistency 

(or plastic viscosity) neural networks, the study by Malet et al. (2003) had to be present in every 

combination because it was the work with the most data points (117) between the studies. For 

the flow index, the study by Major et al. was the one included since it was the work with most 

flow index data points (23). 

 

3.2. The neural network models 

 

Three averaged neural network models were attempted to be built in this work. Each model 

was built to predict one specific rheological parameter, which were the yield stress, the 

consistency (or plastic viscosity), and the flow index of debris flow fluids using the Herschel-

Bulkley rheological model.  

This study chose to build single hidden-layered architecture networks which is the simples 

but most common form of neural networks (VENABLES; RIPLEY, 2002). All the networks 

have five neurons in the input layer, with each neuron allocating the values of one of the five 

predictors. The networks have only one neuron in the output layer, which gives the rheological 

propriety value (i.e., yield stress) for the combination of the five predictors. The number of 

units in the single hidden layer was one of the architecture parameters chosen to be modified 

for prediction performance improvement. The networks were built following the algorithm 

proposed by Venables et al. (2002). 
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A single architecture of a neural network has an optimized value for its weights and bias 

that better fits the given training data. The best fit for a single architecture may, or may not, 

produce the best prediction performance for a given data set. 

Two network parameters were modified to identify the best architecture for a given data set: 

the number of units in the hidden layer and regularization parameter γ. The number of units in 

the hidden layer was tested between 1 and 15 for each network. The regularization parameter 

(i.e., penalization parameter to prevent model overfitting) was tested with values between 0.1, 

0.01, and 0.001. 

For each rheological parameter, 45 neural networks, one per combination of these two 

parameters, was build and evaluated for a prediction performance metric. The neural network 

with the best performance measure was chosen as the final model. 

As data pre-processing, in each model built, both the predictors and outcomes were centered 

and scaled, leading to the dataset having a mean equal to zero and standard deviation equal to 

one. 

The mean average percent error metric was chosen to evaluate the prediction performance 

of the yield point and consistency (or plastic viscosity) models. Since the yield point and the 

consistency  (or plastic viscosity) observations have an exponential behavior, this metric is more 

adequate to evaluate the performance of these models. For the flow index, the root mean square 

error metric was chosen, as the flow indexes in the dataset are in the same unit. 

 

4. RESULTS 

 

4.1. Data set 

 

A total of 26 combinations of studies for each rheological parameter was experimented. For 

each combination, 45 neural networks, one for ANN architecture, were fitted and had their 

prediction performance measured. Tables A.1, A.2, and A.3, in the appendix, show the 

complete results of the tests. 

For the yield stress, the MAPE metric was within 17.73% and 123.96%. For the consistency 

parameter, the MAPE metric was between 18.68% and 704.52%. For the flow index, the lowest 

RMSE was 0.233, and the highest 0.724. 

The final choice of studies for the yield stress and consistency (or plastic viscosity) was the 

ones performed by Malet et al. (2003), Kaitna et al. (2007), and Santolo et al. (2010). For the 

flow index, the lowest RMSE was reached with Major et al. (1992), Malet et al. (2003) and 

Kaitna et al. (2007). 

The diversity of rheometers used by different authors could explain the performance 

contrast between studies data set combinations. Malet et al. (2003) show that the relative error 

between different methods for yield stress determination fluctuates around a mean value close 

to 15%. 

 

4.2. Yield stress (τ0) neural network model 

 

The single-hidden-layer neural network model with the best performance (i.e., the model 

with the smallest mean percentage error) was obtained with 7 units in the hidden layer with a 

regularization parameter of 0.001. For this set of parameters, the performance metrics for the 

training set was a mean average percent error of 13,29% with a standard deviation of 24.23% 

and a determination coefficient of 0.980. Figure 5 shows the MAPE metric for all the parameter 

combinations experimented during the model training process. 
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Figure 5 – MAPE profiles for the yield stress neural network model. 

The best model used 𝜆 = 0.001 and 7 hidden units. 

 
The model's performance improvement by increasing the units in the hidden layer was 

ceased, or only marginal, after the seven units. The effects of the regularization parameter on 

the performance were similar for values of 0.01 and 0.1. 

By the proposed methodology, the best parameters were 7 hidden units with a regularization 

parameter of 0.001. Yet, the results indicate that a single-hidden-layer neural network with 

seven hidden units and regularization parameter of 0.01 and 0.001 were also good choices for 

ANN regression models fitted on this dataset. 

The performance of the model measured by out-of-bag predictions showed a mean average 

percent error of 22.40% with a standard deviation of 27.85%. Figure 6 shows the out-of-bag 

predictions (i.e., model predictions for data points not included in the training process) and the 

percentage error for each prediction made by the model. 

 

Figure 6 – Diagnostic plots of the test set results for the yield stress model. 

 

 
 

The out-of-bag predictions of the yield stress ANN, in general, showed reasonably good 

accuracy with low precision. The predictions for higher values of yield points associated with 

high percentage errors are indicatives of bad precision for these ranges. 
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4.3. Consistency (or plastic viscosity) neural network model 

 

The best single-hidden-layer model for the consistency (or plastic viscosity) property was 

constituted by 10 units in the hidden layer with a regularization parameter of 0.001. The 

performance with the training data set for these parameters showed a mean percent error of 

54.41% with a standard deviation of 138.80% and a determination coefficient of 0.953. Figure 

7 shows the MAPE metric for all the parameter combinations experimented during the model 

training process. 

 

Figure 7 – MAPE profiles for the consistency (or plastic viscosity) neural network model.  

The best model used 𝜆 = 0.001 and 10 hidden units. 

 

 
The improvement in the model's performance by adding units in the hidden layer did not 

increase or was marginal after nine units. The variation in the number of hidden units showed 

similar behavior to the yield stress ANN. 

 

Figure 8 – Diagnostic plots of the test set results for the consistency (or plastic viscosity) 

model. 
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The model's performance for out-of-bag predictions was a mean average percent error 

of 20.38% with a standard deviation of 22.09% and a coefficient determination of 0.991. Figure 

8 shows the predictions the percentage error for each prediction for the test dataset and. 

The single-hidden-layer for the consistency (or plastic viscosity) parameter showed 

general good accuracy and precision results. MAPE metrics are known to show distortions for 

close to zero prediction values, which can mislead the interpretation about the model precision. 

The model predict consistency (or plastic viscosity) values in a range between 0 and 150 Pa.s 

with a mean absolute error of 2.46 Pa.s. 

 

4.2. Flow index (𝒏) neural network model 

 

The lack of data points for flow index in the database led to poor ANNs for this rheological 

parameter, and it was chosen to not include the flow index ANNs in the present work. The flow 

index is an exponential parameter of the fluid’s constitutive model. Even with the lowest RMSE 

network, the error is still large to provide useful predictions for this parameter. The lowest 

RMSE achieved during the training process was 0.233 and the flow indexes in the collected 

data set have values between 0.255 and 1, with a mean of 0.634. 

There are documented works that successfully predict fluid flow index with single-hidden-

layer neural networks for specific fluids. Gowida et al. (2019) predict flow index for calcium 

chloride brine-based drilling fluids with a MAPE of 2.4%. One of the reasons for the lack of 

prediction performance of the flow index ANN model developed can be the wide scope of 

debris flow materials used in the present work. 

 

5. CONCLUSION 

 

The use of neural networks to parametrize general non-linear functions is well known, with 

several authors showing that is possible to approximate any continuous functions by these 

methods (CYBENKO, 1989; FUNAHASHI, 1989; VENABLES; RIPLEY, 2002). Neural 

networks also were successfully applied to predict the rheology parameters of specific, well 

behaved, mixtures (ALSABAA et al., 2021; GOWIDA et al., 2019; ROOKI, 2015; WANG; 

HUANG; CUI, 2003).  

In this study, three single-hidden-layered neural network models were built to describe the 

yield stress, the consistency (or plastic viscosity), and the flow index of mixtures based on the 

soil granulometric distribution and volumetric concentration in the debris flow mixture. The 

models obtained by the study showed that the prediction of these rheological properties from 

the five proposed predictors (i.e., clay, silt, sand, and gravel percent content and the water-soil 

ratio) with artificial neural networks is feasible but needs further studies. 

The lack of data from a single methodology of experimental tests, the great diversity of soil 

samples, and the low number of data points made it difficult to identify which was the main 

cause for the lack of prediction performance for the models trained in the collected dataset. The 

addition of different predictors could also improve the model's performance. One example is 

the temperature which is known to influence these rheological parameter values. 

Further efforts to build a large data set, with soil samples from a wider range of 

granulometric distributions, and with an established experimental methodology (i.e, fixed vane 

rotor geometry or temperature) would provide an ideal framework to develop these 

technologies. A dataset from such controlled experiment would allow to distinguish between 

the issues mentioned above which one is limiting the models' predictions power. 
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APPENDIX 

 

Table A.1 – Yield Stress neural network performance metrics and architecture parameters for 

different dataset combinations. The indexes A, B, C, D, E, F stands for the studies of Malet et 

al. (2003), Kaitna et al. (2007), Del Gaudio et al. (2018), Coussot et al. (1994), Major et al. 

(1992) and Santolo et al. (2010) respectively. 

 

Study Index MAPE SDPE Hidden Units Regularization Parameter 

ABDE 0.177 0.219 10 0.001 

ABCDF 0.221 0.190 12 0.001 

ABF 0.224 0.278 7 0.001 

ADEF 0.226 0.256 10 0.001 

ADE 0.236 0.287 9 0.001 

ABCD 0.243 0.264 15 0.01 

ACF 0.246 0.233 8 0.001 

ABE 0.248 0.264 9 0.001 

ABCF 0.249 0.184 8 0.01 

ABD 0.254 0.423 8 0.001 

ABEF 0.255 0.305 9 0.001 

AEF 0.266 0.252 12 0.001 

ABCE 0.267 0.392 9 0.001 

ABC 0.271 0.285 15 0.01 

ACE 0.288 0.257 9 0.001 

ACD 0.327 0.688 8 0.001 

ACDF 0.342 0.458 11 0.01 

ACEF 0.351 0.441 10 0.001 

ABDF 0.370 0.503 11 0.001 

ABCDE 0.391 0.853 10 0.001 

ABDEF 0.405 0.675 8 0.001 

ADF 0.479 0.992 8 0.001 

ACDE 0.485 1.046 9 0.001 

ACDEF 0.492 1.111 10 0.001 

ABCEF 0.667 1.280 8 0.001 

ABCDEF 1.240 5.175 12 0.001 
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Table A.2 – Consistency (or plastic viscosity) neural network performance metrics and 

architecture parameters for different dataset combinations. The indexes A, B, C, D, E, F 

stands for the studies of Malet et al. (2003), Kaitna et al. (2007), Del Gaudio et al. (2018), 

Coussot et al. (1994), Major et al. (1992) and Santolo et al. (2010) respectively. 

 

Study Index MAPE SDPE Hidden Units Regularization Parameter 

ABC 0.187 0.219 10 0.001 

ADF 0.200 0.199 11 0.001 

ABF 0.204 0.221 10 0.001 

ABDF 0.217 0.204 9 0.001 

ABD 0.240 0.223 15 0.001 

ACF 0.256 0.483 10 0.001 

ABCD 0.558 1.591 11 0.001 

ABE 0.628 1.471 13 0.001 

ABCDF 0.826 3.405 15 0.001 

ACDF 1.078 4.888 14 0.001 

ACDE 1.200 2.418 9 0.001 

ABCE 1.543 3.125 5 0.1 

ABDE 1.567 4.971 9 0.001 

ACDEF 1.680 4.683 15 0.01 

AEF 1.900 7.590 8 0.01 

ACD 1.949 9.999 13 0.001 

ABCF 2.416 12.296 15 0.001 

ADE 2.733 7.497 8 0.01 

ABEF 4.876 26.417 11 0.01 

ABCEF 7.691 20.942 15 0.01 

ABDEF 14.271 76.997 11 0.001 

ABCDE 27.903 106.238 15 0.001 

ADEF 34.934 150.720 13 0.001 

ACE 39.464 217.166 12 0.01 

ACEF 70.452 280.846 13 0.01 
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Table A.3 – Flow index neural network performance metrics and architecture parameters for 

different dataset combinations. The indexes A, B, C, D, E, F stands for the studies of Malet et 

al. (2003), Kaitna et al. (2007), Del Gaudio et al. (2018), Coussot et al. (1994), Major et al. 

(1992) and Santolo et al. (2010) respectively. 

 

Study Index RMSE R² Hidden Units Regularization Parameter 

EAB 0.233 0.588 1 0.1 

EBCD 0.291 0.793 5 0.01 

EACDF 0.335 0.534 14 0.1 

EDF 0.375 0.249 1 0.1 

EABC 0.408 0.664 7 0.01 

EABDF 0.456 0.324 1 0.1 

EAC 0.478 0.337 6 0.01 

EBCDF 0.494 0.330 4 0.1 

EABCF 0.501 0.263 7 0.01 

EBCF 0.502 0.208 14 0.1 

EACD 0.516 0.211 13 0.1 

ECDF 0.523 0.280 15 0.1 

EABCD 0.537 0.277 15 0.01 

EBD 0.567 0.164 1 0.1 

EBDF 0.595 0.169 1 0.1 

EACF 0.617 0.296 1 0.1 

EABD 0.626 0.140 1 0.1 

EADF 0.626 0.001 10 0.1 

EABF 0.627 0.077 1 0.1 

EAF 0.640 0.183 1 0.1 

ABCDEF 0.656 0.204 7 0.01 

EAD 0.658 0.224 1 0.1 

ECF 0.675 0.165 10 0.1 

ECD 0.707 0.093 14 0.1 

EBF 0.708 0.106 5 0.01 

 


