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Abstract: Mosquito-borne infections are increasing in endemic areas and previously unaffected
regions. In 2020, the notification rate for Dengue was 0.5 cases per 100,000 population, and for
Chikungunya <0.1/100,000. In 2019, the rate for Malaria was 1.3/100,000, and for West Nile Virus,
0.1/100,000. Spatial analysis is increasingly used in surveillance and epidemiological investigation,
but reviews about their use in this research topic are scarce. We identify and describe the methodolog-
ical approaches used to investigate the distribution and ecological determinants of mosquito-borne
infections in Europe. Relevant literature was extracted from PubMed, Scopus, and Web of Science
from inception until October 2021 and analysed according to PRISMA-ScR protocol. We identified
110 studies. Most used geographical correlation analysis (n = 50), mainly applying generalised linear
models, and the remaining used spatial cluster detection (n = 30) and disease mapping (n = 30),
mainly conducted using frequentist approaches. The most studied infections were Dengue (n = 32),
Malaria (n = 26), Chikungunya (n = 26), and West Nile Virus (n = 24), and the most studied ecological
determinants were temperature (n = 39), precipitation (n = 24), water bodies (n = 14), and vegetation
(n = 11). Results from this review may support public health programs for mosquito-borne disease
prevention and may help guide future research, as we recommended various good practices for
spatial epidemiological studies.

Keywords: vector-borne diseases; spatial analysis; geographic distribution; GIS; Europe

1. Introduction

Due to climate change, deforestation, environmental degradation, urbanisation, hu-
man mobility, globalisation, and changes in public health practices, the incidence of vector-
borne infectious diseases has been increasing [1]. This upsurge is not only due to these
factors but also to genetic alterations found in infectious agents and to greater resistance
acquired by the vectors to insecticides [2]. In addition, some of these factors explain the
emergence of vectors and vector-borne diseases in new regions, namely in areas of the
northern hemisphere, and a growing incidence in endemic areas [1].

Vectors transmit parasites, viruses, and bacteria that cause human diseases which are
vector-borne diseases. The pathogens of humans or animals to humans can be transmitted
by mosquito vectors [2]. Mosquitos ingest disease-producing microorganisms from an
infected host (human or animal) during a blood meal as they are blood-sucking insects
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and transmit them to a new host after the pathogen has been replicated. When a mosquito
becomes infectious, it can transmit the pathogen for the rest of its life [3].

The transmission of mosquito-borne diseases in recent decades has increased [4] due to
the diversity of mosquito-borne pathogens [5] and the reduction in vector control efforts [6].

Worldwide, Malaria, Dengue, Zika, Chikungunya, and other mosquito-borne diseases
infect more than one billion people, meaning more than one million deaths each year [3].

Mosquitoes are dipterous insects from the Culicidae family [7]. They are one of the
most important vectors because, more than any other group of organisms, they are the
biggest indirect cause of morbidity and mortality among humans [1]. Among the mosquito-
borne diseases, their importance in Europe and as emerging zoonoses, a few stand out:
Dengue, Chikungunya, Yellow Fever, and Zika, caused by viruses; and Malaria, caused by
protozoan parasites [1]. Since the 70′s, mosquito-borne pathogens have spread to previously
infection-free areas and have caused an increase in the number of infections in endemic
areas. Viruses transmitted by Aedes aegypti mosquitoes and Aedes albopictus pose a danger
to a large percentage of the world′s population and so they are becoming a greater public
health issue [8].

Invasive mosquitoes are recognised by their ability to colonise new territories. Since
the 1990s, it has been noticed an increase in the spread of invasive mosquitoes in Europe,
being an example of this is the introduction of Aedes aegipty in Madeira, Portugal, in the 20th
century; the presence of Aedes albopictus in most parts of southern Europe; the distribution
of Anopheles mosquito from Portugal to south-eastern Sweden; and the propagation of
Culex pipiens mosquito all over Europe [9]. Consequently, local cases of infection have
been reported, namely the local autochthonous transmission of Malaria in France and
Greece; localised cases of Dengue, Zika, and Chikungunya virus diseases occurred in
the EU; and the West Nile virus continues to rise in Europe, reaching counties like the
Netherlands and Germany [10]. In fact, in December 2021, the ECDC (European Centre
for Disease Prevention and Control) stated that recently “Europe has faced changes in
the epidemiological situation of vector-borne diseases” and that “to mitigate the impact
of vector-borne diseases, a comprehensive approach to vector control is needed”, which
involves, among other aspects “collaboration between several disciplines ( . . . ) for effective
surveillance, adequate risk assessment, early detection, communication ( . . . ) and the
pathogens they transmit” [10].

Spatial analysis tools and Geographic Information Systems (GIS) are increasingly used
in surveillance and epidemiological investigation. Spatial modelling of invasive species
has been a particularly relevant research topic recently, as the prevalence of vector-borne
diseases has expanded considerably due to the intensification of human mobility and
intercontinental trade [11]. However, despite the recognition of the extreme importance
of geographical factors (for example, urban agglomerations, land use, fauna and flora,
climatic conditions, etc.), spatial analysis has only been considered a fundamental tool for
the study and investigation of invasive species since the second half of the last decade [12].

Spatial analysis allows different ways of approaching the problem, namely: mapping
areas of susceptibility, vulnerability, and risk; studying habitat adaptability or disper-
sion patterns; crossing multi-source information and integrating it in predictive models;
identifying and visualising spatio-temporal co-occurrence across multiple clusters [13–15];
and estimating the dynamics of vector-borne diseases [16], such as disease spread rate,
cyclical pattern, direction, intensity and risk of spreading to new regions [15]. Ultimately,
spatio-temporal analysis can facilitate surveillance of vector-borne diseases by allowing
decision-makers to allocate resources to fight outbreaks [15].

With the growing number of public health research studies, new spatial analysis meth-
ods have been developed specifically to be applied in epidemiological studies [17]. How-
ever, despite this being an emergent and promising research topic, reviews summarising the
studies that have applied spatial analysis on mosquito-borne diseases research are scarce
and focus primarily on specific mosquito-borne diseases, more precisely on Dengue [17–20].
Therefore, the identification and systematisation of the spatial analysis methods, software,
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and ecological variables employed in mosquito-borne disease investigation will be useful
to geographers, epidemiologists, and biologists, among other researchers.

Under this background, the objective of the present scoping review is to identify and
describe the methodological approaches used in investigations of the spatial variation of
mosquito-borne diseases and its potential influencing ecological factors (e.g., environmental,
socioeconomic, and healthcare-related) within the existing literature. This scoping review
will focus on studies from Europe because it is a territory of completely different features
than African, South American, and Asian countries (where mosquito-borne diseases are
more burdensome and endemic). In addition, as previously mentioned, Europe has faced
changes in the epidemiological situation of vector-borne diseases due to urbanisation [10],
climate change, and human mobility, which led to a recent reintroduction of the mosquitoes
and affected the dynamics of many mosquito-borne diseases.

2. Materials and Methods

The scoping review followed the methodology proposed by Arksey and O’Malley [21],
which is organized into five steps: (1) identifying the research question and (2) the rel-
evant studies; (3) selecting the studies according to inclusion criteria; (4) charting and
interpreting data; (5) summarising and reporting of results. Results will be reported
according to PRISMA-ScR (PRISMA extension for Scoping Reviews) [22]. The study pro-
tocol can be found at: https://zenodo.org/record/6758947#.YrmaIXbMKUk, accessed
on 30 September 2021. The PRISMA-ScR can be found in Supplementary Table S4–
Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping
Reviews (PRISMA-ScR) Checklist.

2.1. Identifying the Research Question

This review is centred around the following main research question: ′which spatial
analysis methods are used to investigate the spatiotemporal variation of mosquito-borne
diseases in Europe and the biotic and abiotic factors that may relate to its presence?′.

2.2. Identifying the Relevant Studies

Searches were conducted using PubMed (http://www.ncbi.nim.nih.gov/pubmed, ac-
cessed on 30 September 2021), Scopus (https://www.scopus.com/, accessed on
30 September 2021), and Web of Science (https://www.webofknowledge.com/, accessed
on 30 September 2021) from inception until October 2021.

We used the following set of keywords related with the methodological approach—
“Spatial analysis”, “mapping”, “space-time”, “geographic information system”, “spatial
cluster*”, “spatio-temporal”, “spatiotemporal”, “geographic distribution”—a second set
of keywords related with the disease, infection and/or vector—“encephalitis”, “malaria”,
“dengue”, “yellow fever”, “West Nile”, “Chikungunya”, “Zika”, “filariasis”, “Sindbis”,
“Pogosta disease”, “Karelian fever”, “Ockelbo disease”, “tularemia”, “Mosquito”—and
a last set of keywords to restrict the search to studies that included European countries
(ECDC (European Centre for Disease Prevention and Control) definition)—“Europe”,
“Austria”, “Belgium”, “Bulgaria”, “Croatia”, “Cyprus”, “Czechia”, “Denmark”, “Estonia”,
“Finland”, “France”, “Germany”, “Greece”, “Hungary”, “Iceland”, “Ireland”, “Italy”,
“Latvia”, “Liechtenstein”, “Lithuania”, “Luxembourg”, “Malta”, “Netherlands”, “Norway”,
“Poland”, “Portugal”, “Romania”, “Slovakia”, “Slovenia”, “Spain”, “Sweden”, “UK”,
“United Kingdom”. The entire search strategy was adapted to the syntax of the individual
database from the following conceptual structure and is provided in the supplementary
material (Table S1).

A reference management software (EndNote 20, Clarivate Analytics (Philadelphia, PA,
USA)) was used to import and organise the references and remove duplicates [23].

https://zenodo.org/record/6758947#.YrmaIXbMKUk
http://www.ncbi.nim.nih.gov/pubmed
https://www.scopus.com/
https://www.webofknowledge.com/
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2.3. Selecting the Studies According to Inclusion Criteria

We selected studies that focused on mosquito-borne diseases and used spatial analysis
methods. Studies were excluded hierarchically based on the following exclusion crite-
ria: (1) study type (reviews, reports, abstracts, editorials, comments); (2) not written in
Portuguese, Spanish, Italian, French, German, or English; (3) not about mosquito-borne
diseases/infections or their vectors; (4) no spatial analysis was conducted. No temporal
restrictions were imposed.

Two examiners (SM and AIR) analysed titles and abstracts to detect studies that
did not meet the inclusion criteria or that did not have full texts. Then, full texts were
read and those that did not meet the inclusion criteria were removed. When the two
reviewers disagree, the final decision was made by a third examiner (JR). Forward and
backward citation tracking of articles included in the review was performed to identify
additional papers.

The study selection process is represented in the PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses) flowchart [24] from Figure 1. Out of
1755 eligible studies, after reading the abstracts and keywords, 156 were selected in the
second step and finally, 110 studies were selected in the last stage after a thorough reading
and analysis of the full paper.
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2.4. Charting and Interpreting Data

The results were structured by general characteristics (e.g., country/region, year of
publication); by themes according to the diseases and/or mosquitoes studied; by the scale
of analysis (size of the spatial units) and geographic extent (global, continental, regional or
local); type of outcome data used (notification or survey); the methodology used for spatial
analysis; studied ecological determinants.
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Regarding the type of outcome data used, notifications correspond to data on dis-
eases/infections that, by statutory requirements, must be reported to the public health
authority whenever a case is detected, while surveys are typically sample-based and de-
signed for research purposes or to assess the prevalence of infection/disease within a
particular territory [25]. The spatial analysis methodology was divided into three main
groups proposed by Elliot and Wartenberg—disease mapping, geographic correlation
studies, and disease clusters and clustering [26]. Disease mapping studies commonly mea-
sure morbidity or mortality for small geographic areas through smoothed or unsmoothed
maps (e.g., graduated colour maps, graduated symbol maps, heatmaps, etc.). Geographic
correlation studies investigate geographic variations across population groups in exposure
to ecological factors relating them to health outcomes measured on a particular geographic
scale. Finally, disease clusters and clustering studies consist of the investigation of excess
events above a background rate either in time and/or in space.

Regarding the determinants, these were grouped into two categories: biotic and abiotic.
Biotic factors are related to, or caused by living organisms, and abiotic factors are related to
or caused by the non-living part of an ecosystem that shapes its environment. To name a
few, as biotic factors, we have vector abundance, host abundance, and population density;
and as abiotic factors, we have climatic and socioeconomic factors.

2.5. Collating, Summarising, and Reporting Results

We synthesised the information from the papers using the previously described re-
search question and scope of the investigation. Tables and figures were created to system-
atise and summarise the information. Counts and proportions were used to summarise
study findings and characteristics.

The main software used was EndNote for reading, organizing, and selecting studies.
In addition, Excel 365 and ArcGIS software were also used to create tables and graphs and
to map the geographic distribution of the studies.

3. Results
3.1. General Characteristics

A total of 110 studies were included in the present review. More details on the charac-
teristics of the included studies can be found in the Supplementary Material (Table S2). The
years 2020, 2017, and 2014 concentrated the highest number of studies, with 14, 13, and
11 publications, respectively. The timeline from Figure 2 shows that the number of studies
on the topic has grown over time.
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Figure 2. Number of studies by year of publication (1995–2021). Figure 2. Number of studies by year of publication (1995–2021).

Examining the map of the geographic distribution of the studies, a total of 16 European
countries have studied at supranational, national, regional, or local levels. Italy is the
country with the most scientific studies (n = 18), followed by Germany (n = 10) and Spain
(n = 9) (Figure 3).
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3.2. Studied Vectors and Infections/Diseases

The most investigated vectors are those of Dengue, Malaria, Chikungunya, and West
Nile Virus, with 32 (24%), 26 (19%), 26 (19%), and 24 (18%) studies, respectively. With
a smaller number of studies, 6% of studies focused on Zika, and the remaining studies
analysed all mosquito communities, Rift Valley fever virus, Tularemia, Encephalitis, and
others (Dirofilaria/dirofilariosis; Xylella fastidiosa and Hemoparasites and ectoparasites
(acari and dipterans)) with 5%, 3%, 2%, 2%, and 2% of studies respectively (Figure 4). Italy
is the European country where the most studies have been carried out, where eight studies
focused on Chikungunya, another eight on West Nile Virus, and five on Dengue. Germany
is the country where Malaria is most frequently studied with six studies. In the UK and
in Spain the most commonly studied infections were Tularemia (n = 2) and Zika (n = 1),
respectively (Figure 4).
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3.3. Data Used, Type of Data, Geographical Extent, and Spatial Scale

Studies were conducted at different scales, with the study unit size ranging from
0.0005 km2 to 400 km2 (median 4 km2, IQR 8 km2) and the mean population per area
ranging from 1738 inhabitants to 60,000,000 inhabitants (median 28,048 inhabitants, IQR
662,501 inhabitants).

Studies have very different geographical extents: 42 (38%) were carried out at the
national level, 24 (22%) at the global level (i.e., covering the entire world), 21 (19%) at the
continental level, 19 (17%) at the regional level, and four (4%) at the local level. Regarding
the type of data, 47 studies obtained data from notifications and 63 studies collected data
using surveys.

3.4. Studied Biotic and Abiotic Factors

The abiotic variables most used to analyse the relationship with infections and to
estimate probability and risk were temperature in first place, in 35% of the studies, followed
by precipitation in 22% and water bodies in 13% (Figure 5). Regarding the biotic factors, the
most studied variables were the human population data or ratio (5%), population density
(3%), and animals in farms (3%) (Figure 6).
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3.5. Spatial Analysis Methods

Nearly half (46%) of the studies used geographic correlation analyses, and in the rest,
in equal parts, clustering and surveillance analyses (27%), and disease mapping (27%) were
used (Table S1). The three most widely used software for the analyses were: R Core Team
software (37%), ArcGIS Desktop: Release 10. Environmental Systems Research Institute
(ESRI), Redlands, CA (33%) and QuantumGis (QGIS) (9%) (the complete list can be found
in Supplementary Table S3).

3.6. Disease Mapping

Disease mapping studies reported and mapped the geographic distribution of the
occurrences of the diseases under investigation and analyse the geographic distribution
of different mosquito species. They represented the incidence or abundance of mosquito-
borne infections and mosquitoes using statistical or descriptive mapping techniques. Many
created suitability maps or maps with the predicted distribution of individual species
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or species complexes. They also used predictive analysis methods based on ecological
variables to identify and map risk areas suitable for transmission.

The most used methods in this spatial analysis group were the risk maps (n = 32), rate
maps (n = 31), and case count maps (n = 14).

3.7. Clusters, Clustering, and Surveillance

The studies that applied clusters, clustering, and disease surveillance performed a
geographic analysis of the location of cases to detect high-risk areas, such as outbreaks,
and conducted a statistical analysis of spatiotemporal patterns through point density and
modelling to study the dynamics of mosquitoes.

The most used methods were Kernel Density Estimation (n = 6), Mahalanobis Distance
Analysis (n = 3), GetisOrd statistic (hotspot analysis) (n = 3) and Autocorrelation I Moran′s
(n = 2).

Most studies using cluster analysis focused on single infections and/or vectors, while
a few explored co-clusters of more than one infection/vector [27]. To cite a few examples:
in Italy, Dengue clusters tended to be located in coastal and urban areas [28–30]; in Greece,
central Greece emerged as an important hotspot of Malaria, especially in districts with
more water bodies [31]; in Sweden, hotspots of Malaria were concentrated around big
inland lakes and in southernmost Sweden [31,32]; at a more global extent, France and
the UK constitute critical Malaria hotspots with the highest number of cases, more than
4000 imported cases per year on average [33].

3.8. Geographic Correlation Studies

The geographic correlation studies analysed the correlation between ecological vari-
ables and the breeding and propagation of mosquito vectors. Investigations under this
category produced maps that described the spatial patterns of ecological and sociodemo-
graphic determinants and the effects of environmental changes and investigated the spatial
and temporal structure of disease transmission caused by those determinants, mainly by
temperature. Additionally, they fitted simulation models that incorporated the principal
mechanisms of the vector transmission cycle and combined them with fine spatial and
temporal resolution data to study the time-series of factor suitability for transmission
throughout time [34]. These studies found significant relationships between the habitat
pattern and the pattern of mosquito clusters and biotic and abiotic factors [35]. A consider-
able amount also examined the potential global distributions of vectors in relation to global
climate variation.

The most used methods were generalized linear models (GLM) (n = 20), spatial
prediction (n = 16), ecological niche model of occurrence (n = 12), conventional logistic
(n = 10), regression models with spatial terms (n = 9), Bayesian models (n = 8), generalized
additive models (GAM) (n = 7), Pearson’s correlation (n = 5) and kriging estimation (n = 4)
(Table 1).

Table 1. Spatial methods used in spatial analysis of Mosquito-Borne Diseases in Europe (n = 110).

Method Category Method Number References

Disease mapping

Risk map 32 [31,34,36–65]

Rate map 31 [31,32,34,38–40,42,44–47,50,53,54,56,58–
61,64,66–76]

Case counts maps 14 [28,42,68,75,77–85]
Temporal trend map 10 [32,34,43,45,59,60,66,75,86,87]

Distance map 10 [43,50,54,64,66,78,81,82,88,89]
Predictive map 9 [31,37,43,45,55,57,62,64,90]

Travel/time map 8 [81,82,85,91–95]
Suitability map 6 [37,43,51,56,57,96]

Dot map 3 [88,97,98]
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Table 1. Cont.

Method Category Method Number References

Clusters, clustering, and
surveillance

Kernel density map 6 [31,32,49,96–98]
GetisOrd statistic (Hotspot analysis) 3 [29,31,32]

Mahalanobis Distance Analysis 3 [43,54,77]
Autocorrelation I Moran’s 2 [94,99]

Kulldorff’s spatial scan statistic 1 [88]
Mann-Kendall Test 1 [89]
Ripley′s K Function 1 [66]

Geographic correlation

Generalized linear models (GLM) 20 [30,38,41,48,56,61,66,88,93–95,100–108]
Spatial prediction 16 [31,43,49,50,54,55,57,61,65,73,75,96,109–112]

Ecological niche models of occurrence 12 [49,50,52,53,55,70,73,87,96,111–113]
Conventional logistic 10 [44,46,50,57,65,80,104,114–116]

Regression models with spatial terms 9 [47,57,62,64,65,81,88,95,108]
Bayesian models 8 [41,66,75,99,110,111,117,118]

Generalized Additive Models (GAM) 7 [29,30,41,50,74,100,103]
Pearson′s Correlation 5 [32,35,38,106,115]

Kriging estimation 4 [36,46,47,58]

Table 2 summarises the results from the correlation studies for each of the studied
ecological factors.

The factors that were more frequently significantly associated with the studied out-
comes were temperature (n = 39), precipitation (n = 22), water bodies (n = 14), vegetation
(n = 11), land use (n = 8), and altitude (n = 8).

On the other hand, some studies found non-significant associations with precipitation
(n = 2), urbanisation, and relative humidity (n = 1).

Table 2. Predictors of the presence of vector-borne mosquito species.

Variable Non-Significant
Association Positive Association Negative Association

Abiotic factors

Precipitation [80,115] [38,46,56,87,89,98,102,103,107,119–124] [30,32,86,96,102,104,107,125,126]

Temperature
[30,32,34,38,46,47,56,58–

61,71,80,86,89,96,98,99,101–
107,115,116,119–123,125–129]

[68,96,102,103,124]

Wind speed [103] [116,126]

Altitude [56,61,101,102,130] [80,96,105]

Land Use [30,38,46,64,80,105,107,125]

Water bodies [30,35,38,46,56,64,89,99,105,107,126,
130,131] [80]

Water depth [99,125] [125]

NDWI (Normalized difference water index) [107]

Vegetation [30,35,38,61,80,86,105,107,119,131] [30,124]

Rice fields [64,86]

Soil water content [116]

Frost day frequency [124]

Urbanization [96] [30,61,105,107] [124]

Wealth [124]

Life expectancy [124]
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Table 2. Cont.

Variable Non-Significant
Association Positive Association Negative Association

Accessibility [119]

Relative Humidity [102] [119,120,125] [115,116]

Greenhouse gas emissions [71]

Light Intensity [103]

Mean sunshine duration [125]

Direction at ground level [103]

Geocoded Twitter data-Geolocated activity
data and computed mobility patterns of users [127]

GDP-Gross domestic product [124]

Agriculture [80] [61]

Biotic factors

Population Density [107,119] [46]

Mobility [81,94] [94]

Human Population Data/Ratio [30,71,104,106,126]

Ditch shrimp of the genus Palaemonetes and
Fish as predators [99]

Birds [80]

Horses [80]

Animals in farms [56,61,63]

To cite a few examples, in Europe as a whole, geographical accessibility, absolute
humidity, and annual minimum temperatures were the strongest predictors for the presence
of Aedes vectors [119]. In addition, the best environmental predictors of West Nile Fever
outbreaks in Europe were climatic (maximum temperature of the warmest month and
annual temperature range), human-related (rain-fed agriculture, density of poultry and
horses), and topo-hydrographic variables (presence of rivers and altitude) [80]. In the
Netherlands, higher elevation, precipitation, day and night temperature, and vegetation
indices were important predictors of the occurrence of An. plumbeus [48]. In Hungary,
wetlands were important target areas for mosquito control [132]. In Italy, Ae. albopictus
was mostly found near areas with a human presence and urban landscape [38], while Culex
pipiens had a more scattered distribution and could be found in wilder and less urbanised
areas [100]. Finally, in Spain, unsuitable areas for Culex pipiens were located at higher
altitudes and in colder regions [96].

4. Discussion

This scoping review has demonstrated that investigations apply various spatial anal-
ysis techniques to studying mosquito-borne infections in Europe. Most studies used
geographical correlation analysis with a wide range of spatial modelling techniques im-
plemented in specialised statistical software. The remaining studies used spatial clus-
ter detection methods and disease mapping, mostly done using frequentist approaches
in GIS software such as the ArcGis (ESRI), GRASS GIS, R software, QuantumGis, and
GeoDa [27,29,36,45,49,66,76,88]. The most frequently studied infections were Dengue,
Malaria, Chikungunya, and West Nile Virus, and the most widely studied ecological de-
terminants were temperature and precipitation, as well as water bodies and vegetation.
Studies were predominantly conducted at a global or a continental level and in particular
countries such as Italy, Germany, and Spain.

Overall, spatial analysis studies applied to mosquito-borne infections and vectors in
Europe have increased over the last two decades. While most approaches are based on
classical frequentist statistical methods, such as generalised linear models, recent advances
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in computing, statistical methodology, and the availability of high-resolution, geograph-
ically referenced databases led to the use of new techniques such as Bayesian Models,
geostatistical methods such as Kriging estimation and ecological niche models. These
methods should be used to the detriment of the previous ones because they account for
spatial dependency and other analytic challenges, such as spatial confounding and small
number problems [26]. Innovative analytical and pioneering skills and tools in spatial
statistics should be employed to analyse existing data allowing to inform policymakers
and other stakeholders better. For that, and to overcome the complexity of spatial analysis
and spatial data management, it is important to invest in the development of intuitive
and ready-to-use software for spatial epidemiological analysis. In fact, in the last years,
many examples have emerged. For instance, many sophisticated analytical tools suitable
for Big Data (e.g., Mann-Kendall space-time trend analysis, convolutional neural network
approaches [133,134], image classification) are now implemented in commercial software
like ArcGIS Pro, while at the same time many researchers and developers have created and
updated open-source apps and software to facilitate spatial analyses (SaTScan, GeoDA,
Crimestat, among others).

According to the studies included in this review, the threat of viruses to Europe is
low but uncertain, justifying the need to keep monitoring from areas of greatest predicted
environmental suitability of mosquito-borne infections, especially in the Mediterranean
and central Europe. The results of some studies have verified where there is a risk of
introducing and spreading the infectious diseases under study and also showed that
the temporal variation in the number of publications over the years is driven by the
fluctuating topicality of mosquito-borne diseases in the medium and large-scale climate
conditions [126]. Air temperature and, to a lesser degree, relative humidity, soil water
content and wind speed seem to significantly affect the epidemiology of mosquito vectors
in Europe [116]. Many studies identify clusters of infections and vectors covering specific
localities and regions within certain European countries [36,66,83,97,98,114]. In these areas,
the risk of disease transmission should be reduced by reducing mosquito-human contact
by reducing mosquito populations and eliminating breeding sites.

Spatial analysis, through the use of innovative tools like the ones referred above, has
the potential to help identify target areas, biotic and abiotic ecological determinants, and
assess the risk of emergence or re-emergence of vectors and mosquito-borne infections,
as demonstrated by various studies [27,64]. In fact, the implementation of the spatial
analysis techniques substantially helped to improve the results of the mosquito abatement
programs [131]. In addition, the results of these analyses provide relevant information for
surveillance activities aiming to identify where the local transmission is higher and where
is the potential for the vector-borne introduction [66].

4.1. Strengths and Limitations

This is the first review to provide the range and depth of published studies using spa-
tial analysis techniques to analyse the geographical distribution of mosquito and mosquito-
borne diseases in Europe and associated biotic and abiotic determinants. Our search
strategy was exhaustive and transparent, in accordance with the scoping reviews’ method-
ological guidelines, covered a period of circa 25 years, and provided an evidence base for
future spatial epidemiology studies on the topic. This scoping study began at the end of July
2021 and the selected studies were retrieved in October 2021 for analysis, as defined in the
study protocol found at: https://zenodo.org/record/6758947#.YrlkAnbMKUk (accessed
on 9 August 2021).

However, some limitations of this scoping review must be discussed. Firstly, the
studies that were not indexed in the searched databases or (if they were) not available in
the included languages were omitted. Secondly, the scoping review methodology has some
inconveniences despite being the most suitable for the purpose of our study. For example,
no restrictions were placed on the included studies to guarantee homogeneity because it
does not allow for the meta-analysis of the associations between ecological factors and

https://zenodo.org/record/6758947#.YrlkAnbMKUk
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outcomes. Even so, the meta-analysis would not be feasible due to the fact that research on
this topic is recent, heterogeneous, and sparse. In addition, our literature review, like others,
is subject to publication bias; it is recognised that the studies most likely to be published
are those with significant associations.

4.2. Evidence Gaps and Recommendations

The present scoping review allowed us to identify evidence gaps that should be ad-
dressed in future studies on the topic. One of the weaknesses in this scoping review is the
lack of investigations carried out at the finer scales using local geographical extents. It is
fundamental in precision public health (PPH) and in the efficient allocation of resources,
using finer scales to identify clusters of cases/vectors and inequalities to monitor disease
variation. Additionally, few studies explored the issue of the Modifiable Areal Unit Problem
(MAUP) in spatial analyses which affects the study conclusions due to the number and
the size of the scale used to define the same areas [89,135]. As part of sensitivity analysis,
we recommend that studies consider using multiple geography levels to assess how ro-
bust the results are to the chosen geographies. We also found that there are no studies in
some countries located in northern Europe due to the lower influx of vectors. However,
it is essential to highlight that with climate change, it is advisable to monitor changes in
biodiversity and climate in these areas to anticipate a future introduction of vectors. Thus,
more studies should be conducted in northern European regions. The results also highlight
the difficulties in modelling climate and viruses. It is difficult to predict the incidence of
infectious diseases, despite the predicted changes that result in the distribution of the vector.
The local temperature adaptation, vector-pathogen interactions, and human-derived land-
scape changes are distinctive processes that may have important roles in creating future
dynamics of pathogen transmission. Therefore, more complex study designs (e.g., system
approach, agent-based models) should be used to capture such dynamics. Despite the
growing recognition of One Health, few studies explicitly addressed the entire triad of
animals-humans-environment in their analysis [136]. Finally, while the included studies
addressed a wide range of biotic and abiotic factors, the role of socioeconomic factors
has been insufficiently addressed. However, they are well-established determinants of
communicable and non-communicable human and animal diseases [137–139]. Since, to
prevent and control the dissemination of infection in both humans and animals, sanitation
and enhancement of hygiene practices are very important, socioeconomic factors may
constitute major determinants of mosquito-borne disease [137]. However, as demonstrated
by a recent literature review [140], focused on endemic countries, the association between
socioeconomic conditions and vector-borne diseases is unclear and may be highly situation-
ally dependent. Thus, by adding to the current body of literature other continents, namely
Europe—where socioeconomic conditions are better but socioeconomic inequalities in
health and pockets of poverty persist—may help to better understand the directionality of
the associations between mosquito-borne infections and socioeconomic factors and design
tailored interventions according to the socio-economic profile of the communities. Hence,
future studies should explore the direct and indirect associations between socioeconomic
factors (e.g., area level deprivation, population literacy, education, housing conditions) and
mosquito-borne infections.

5. Conclusions

In the contemporary context of globalisation and climate change, the spatial analysis
of mosquito-borne infections and their vectors constitutes an essential component for
understanding the present and future burden of these emerging diseases in Europe. Our
review described the spatial analysis approaches and potential predictors used in mapping
mosquito-borne infection risk. Results from this review may help guide researchers aiming
to conduct spatial epidemiological studies of mosquito-borne infections and may support
public health and territorial planning policies and programs towards vector control and
mosquito-borne disease prevention in Europe.
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