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“If you torture the data long enough, it will confess”
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Resumo Alargado

O crescimento geral dos dados e a melhoria da acessibilidade relativa aos registos de saúde eletrónicos

(RSE) exigem um nível idêntico de progresso da comunidade de investigação em relação aos modelos

clínicos. O uso de técnicas de aprendizagem automática é fundamental para este desenvolvimento, e por

isso estão a ser cada vez mais utilizadas em grandes bases de dados médicas com o objetivo de criar

soluções que funcionem para pacientes específicos, independentemente da tarefa ou da doença.

A insuficiência renal aguda (IRA) é uma doença definida por mudanças abruptas na função renal, e

apresenta alta morbidade e mortalidade, com especial incidência em pacientes em estado crítico. O risco

de aparecimento da doença é maior no caso de pacientes com idades mais avançadas (65 anos ou mais),

especialmente com um historial anterior de complicações renais, ou igualmente para pacientes expostos

a fatores predisponentes tais como sepsis ou grandes cirurgias. Para além das graves implicações a curto

prazo, a ocorrência de IRA está associada também a mortalidade a longo prazo, e mesmo os pacientes

que sofreram da doença com menor gravidade estão associados a uma maior mortalidade, dado que a

reincidência da doença pode acontecer. Nos casos dos pacientes que sobreviveram à ocorrência de IRA,

estudos indicam que 41.2% não conseguiram recuperar as funções renais na totalidade, e cerca de 60%

desses pacientes acabaram por morrer, um número três vezes superior comparando com os casos de

pacientes que recuperaram na totalidade as suas funções renais. Outras repercussões, tais como o aumento

do risco cardiovascular, estão também associadas a IRA.

Estas consequências graves demonstram a necessidade de agir rápido por parte dos profissionais de

saúde, e isso pode acontecer se existir uma previsão acertada do agravamento da doença no paciente.

Uma rápida tomada de decisão pode ser uma questão de vida ou de morte, sendo que a melhor solução é

a iniciação da terapia de substituição da função renal (TSFR).

Dada a sensibilidade da doença, nos primeiros estudos realizados houve uma disparidade muito

grande relativamente aos resultados obtidos, onde tanto a nível de previsão da ocorrência da doença

como a nível da mortalidade se sentiam variações conforme as definições escolhidas para a identificação

do estágio. Vários sistemas de classificação diferentes foram sendo utilizados ao longo do tempo, até a

escolha se ter fixado no sistema de classificação KDIGO (Kidney Disease: Improving Global Outcome)

para a maioria dos estudos mais recentes. Este sistema de classificação, bem como os outros anterior-

mente utilizados, foca-se nos valores de creatinina (SCr) e de produção de urina (UO) para determinar o

estágio da doença no paciente.

Dados da base de dados MIMIC-III foram usados para recolher informações sobre os pacientes.

MIMIC-III contém informação referente a pacientes admitidos no Beth Israel Deaconess Medical Center

(BIDMC) em Boston, e é uma base de dados pública cuja utilização está apenas sujeita ao preenchi-

mento de um requerimento. Tendo em conta o potencial que dados hospitalares possuem, especialmente

referente à capacidade de acompanhar o paciente e de prever possíveis agravamentos ao ponto dos profis-

sionais de saúde poderem atuar a tempo, MIMIC-III é vista como capaz de elevar a comunidade de inves-

tigação. A falta de reprodutibilidade nos estudos relacionados com a saúde sempre foi uma crítica feita
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pela comunidade científica, e para além do facto de ser de acesso gratuito, a grande variedade de infor-

mação sobre os pacientes nesta base de dados abre as portas a diversos tipos de estudos, possibilitando

um progresso na investigação científica.

Com o propósito de selecionar pacientes elegíveis para o estudo em questão, foram aplicados critérios

de exclusão detalhados. Esses critérios envolveram a idade dos pacientes, tempo da estadia nos cuidados

intensivos e principalmente medições tanto de creatinina (SCr) como de produção de urina (UO). Após

a exclusão de pacientes, foi igualmente feito um longo processo de exclusão para as variáveis presentes

nos pacientes. Missing Data imputation foi aplicado nos dados de maneira a ter informação de hora a

hora para cada variável, possibilitando a extração de diversas sequências de treino através da sequência

completa da estadia do paciente, com o número de horas de acordo com a sua estadia na UCI. Foram

extraídas sequências de 6h, 12h e 24h de duração.

As previsões neste trabalho foram feitas utilizando duas variações do sistema de classificaçãoKDIGO:

uma onde apenas os valores de SCr foram considerados para determinar o estágio de IRA do paciente

(denominado como sistema de classificação sCr para facilitar a escrita), e outra onde tanto SCr como UO

foram utilizados (denominado 2B). Embora a maioria dos estudos que abordam IRA apenas usarem os

valores de SCr para determinar a condição da doença dos pacientes, os resultados obtidos por ambas as

aproximações foram comparados. Esses pacientes foram avaliados em termos de estágios de IRA, com

o objetivo de prever o próximo valor do estágio da doença uma hora após a sequência de informação

alimentadas ao modelo. Para além de prever o estágio exato da doença, é também analisada a capacidade

do modelo não só em prever o agravamento da doença, como também a capacidade de prever a ocorrência

de IRA em pacientes sem a doença diagnosticada na hora da previsão.

Mecanismos de self-attention foram utilizados para fazer as previsões, através de uma adaptação

para séries temporais multivariadas construída a partir de modelos usados com sucesso em tarefas de

processamento de linguagem natural (PNL). Para além dos bons resultados em tarefas de PNL, o modelo

de self-attention usado neste estudo produziu bons resultados em estudos clínicos, ultrapassando assim

os resultados obtidos por redes neurais recorrentes (RNNs) em ambas as situações. Comparativamente

com RNNs, a quantidade de computação que é feita em paralelo utilizando o modelo de self-attention

permite um treino muito mais rápido, juntando ao facto de obter melhores resultados.

Nas experiências finais, para todas as experiências exibidas, foi utilizada uma arquitectura diferente da

original devido a uma melhoria nos resultados. Para além de haver a comparação de resultados conforme

o tamanho de sequências usado, outros pormenores foram testados, com maior foco para o número de

variáveis. Para cada um dos sistemas de classificação utilizados, sCr e 2B, as 10 featuresmais importantes

foram identificadas através do uso de Feature Importance, e foram testados os resultados com o modelo a

usar todas comparativamente com apenas as 10 melhores. Os resultados obtidos para 2B forammelhores,

obtendo 68.05% de eficácia no que toca à previsão de um episódio de IRA, comparado com os 66.67%

de eficácia obtidos em sCr. Para ambos os casos, os resultados foram superiores ao estado da arte.

Este trabalho teve como propósito estudar o desenvolvimento da lesão renal aguda na hora seguinte e

compreender a capacidade demodelos de self-attention em fazer essas previsões com a eficácia necessária

dada a sua importância no contexto do problema, tendo em conta o seu potencial no que toca a problemas

relacionados com saúde. A utilização de modelos de self-attention bem como as previsões feitas com

a definição do estágio de IRA utilizando medidas de SCr e UO podem vir a ter um grande impacto no

futuro em estudos de controlo e previsão da doença, sabendo que ataca tão rapidamente.

Palavras Chave: Insuficiência Renal Aguda; Prognóstico; MIMIC-III; Self-Attention; Feature Im-

portance
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Abstract

The general growth and improved accessibility to electronic health records demands an identical level of

progress in terms of the research community regarding clinical models. The usage of machine learning

techniques is key to this development, and so they are increasingly being used in large medical databases

with the purpose of creating solutions that work for specified patients, no matter the task or the disease.

Acute kidney injury (AKI) is a broad disease defined by abrupt changes in renal function. AKI has

a high morbidity and mortality, with an increased focus on critically ill patients. The main goal of this

thesis is to study the development of AKI within a patient’s stay in the intensive care unit (ICU).

Data from the MIMIC-III database was used to collect information regarding the patients. After a

detailed exclusion criteria, those were evaluated in terms of AKI stages, with the purpose of predicting the

next value of AKI stage one hour after the sequence of information fed to the model. This can suggest the

capacity of the model at predicting the aggravation of a patient’s AKI condition. The sequences used have

hourly information for every feature, and were used sequences of 6h, 12h and 24h length. Self-attention

mechanisms were used to make the predictions, using an adaptation for multi-variate time series built

from the successfully used models on natural language processing (NLP) tasks.

The predictions on this work were made for two variations of the KDIGO classification system: one

where only the serum creatinine (SCr) criteria was taken into account to determine the patient’s AKI

stage, and other where both SCr and urine output (UO) were considered. While most works addressing

AKI only tend to use SCr values to determine the patient’s AKI condition, the results were compared

using both approaches and were better when using both SCr and UO. For those experiments, the model

achieved up to 68.05% accuracy predicting an episode of AKI, compared to the 66.67% accuracy achieved

using only SCr values, which outperformed state-of-the-art results for both cases.

Feature importance was also used for each dataset associated with the two variations of KDIGO

classification system to identify what were the most important features. Furthermore, final results were

compared when using all features versus only using the most 10 important ones.

Keywords: Acute Kidney Injury; Prognostic Prediction; MIMIC-III; Self-Attention; Feature Impor-

tance
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Chapter 1

Introduction

In today’s world, we live in the age of data. Everything around us is connected to data sources, and a

considerable amount in our lives is digitally recorded. Different data sources provide different types of

information, such as structured and unstructured data. Structured data from relational databases, when

the information is highly organized and easily accessed, and unstructured data when working with in-

formation collected from sensors, which tend to be much more difficult to capture, process and analyze

[4]. Some data types can be labelled as business data, cybersecurity data, smartphone data, social me-

dia data, health data etc., and with the abundance of available data generated, researchers and analysts

are challenged to create and develop procedures capable of augmenting the value of the information at

display. Smart city, for example, is a concept where a technologically modern urban area collects spe-

cific data through the use of electronic devices, with the ultimate goal of improving operations across

the city. Collecting information from citizens, devices or buildings, fed to a well structured integration

network [5], would allow an optimized management of several community services, one of them being

healthcare [6]. With the continuous increase of population in high density metropolitan areas, the need

for health related services to have infrastructures and digital systems capable of dealing with the demand

is vital. Thus, getting the most out of the electronic health records (EHRs) at disposal is key, providing

real time patient-centered records that make information available instantly and securely to authorized

users. Besides containing the complete information, including medical history, diagnoses, medications,

treatment plans, immunization dates, allergies, radiology images, and laboratory and test results for each

patient, EHRs also allow access to evidence-based tools that providers can use to make decisions about

a patient’s care [7]. This shows the importance of data management tools, as they have the capacity of

extracting insights and present useful knowledge from data in an intelligent way, potentially making our

everyday life easier.

In parallel to the increase of data availability, the computational area is consequently evolving. Ma-

chine learning is growing rapidly in regards to data analysis, providing systems with the ability to learn

and enhance from experience automatically without any specific programming. To get the best out of

real-world applications, machine learning algorithms are used to intelligently analyze the data. It is possi-

ble to see machine learning in everyday-life applications such as: e-mail spam filters that separate e-mails

based on its importance, fraud detection by banks where they alert the client if some suspicious trans-

action happened, music streaming apps that suggest specific playlists based on the previous songs and

genres the user consumed before, and the several features from social media services, where users have

personalized ads, completely customized explore pages (or similar concept, depending on the platform)

based on the content the user watched before, and face recognition, either on using filters to take photos,

where the face features are instantly recognized, or by the platform automatically identifying people in
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the photo based on the user’s friend list.

The potential of machine learning is endless, thus it is being used on critical areas such as the health

field, where the use of machine learning approaches to target clinical problems is set to revolutionize

clinical decision making [8]. The success of these applications depend on the understanding of the intrin-

sic processes used during the classical pathway by which clinicians make decisions in routine practice.

Thus, the real value is on the conjugation of both standard clinical decision making with the machine

learning tools. Those tools can have an impact at the levels of: data acquisition, by extracting standard-

ized, high quality information with the less computational cost possible. Feature extraction, by getting

the most out of the raw measurements collected by the healthcare practitioners, while also reducing the

dimensionality of the data. There’s also an impact at the interpretation level, as the machine learning

tools can enhance the understanding of patient’s clinical status through the handling of complex data.

Decision support is where the gold might be, with the ability to predict clinical outcomes and responses

to specific treatments, while recommending procedures that could help the clinicians massively on their

real-time decision task [8]. The desire of taking advantage of the large amount of medical data that is

currently accessible is to build prediction models, using computational intelligence, in order to improve

patient care, as these models are able to interpret information, learn rules, or link variables that may not

have an obvious correlation.

Accurately predicting the course of a disease opens a window of opportunity for the caretaker to inter-

vene before it progresses. In order to achieve good discrimination capacity to predict patient outcomes, it

is important that the models are trained with subsets of patients similar to the patients of interest. There-

fore, it is common practice to train several models over several cohorts of patients that share important

characteristics, instead of training one single model with a pool of potentially very distinct patients [9].

The information measured on clinical data can be analyzed as time series data. Using multiple time

series to predict clinical related tasks is not easy, as multiple measurements are collected with distinct

time intervals and can influence the overall accuracy if not addressed [10]. Initially developed for natural

language processing (NLP), self-attention is capable of achieving state-of-the-art performance for several

clinical prediction tasks, while outperforming other deep neural networks in terms of computation costs

[3]. Capable of capturing complicated non-linear dependencies across the multiple time series and their

time steps [11], the promising results using self-attention mechanisms make this a reliable option for

tackling health related tasks. Also, it will be interesting to follow the constant evolution of self-attention

architectures by the research community in the near future. The release of new architectures will certainly

push the state-of-the-art performance for several clinical related tasks.

1.1 Context and Motivation

Acute kidney injury (AKI) is a broad disease defined by abrupt changes in renal function. Although

being a robust organ, kidneys are capable of enduring several levels of abuse. However, when under

severe pressure together with some other clinical issues for patients with adverse prognosis there can be

an abrupt decrease in renal function [12]. AKI has a high morbidity, with an increase focus on critically ill

patients [13], and its development is not directly related to having kidney problems at admission, showing

the importance of tracking the patient to avoid worse prognosis. Those who develop AKI have a higher

mortality rate, a higher requirement of renal replacement therapy (RRT) and a general longer hospital

stay comparing with patients without AKI [12]. The adverse outcomes of having AKI are still dangerous
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even when mild events happen, as there is an increase in a 10 years long mortality rate [14]. Besides that,

the hospital costs associated with AKI patients are also a problem, as it is known that in the USA the

costs for AKI patients double the costs compared to patients who did not develop AKI, and in the UK 1%

of all the health and social care budget is related with AKI and its consequences [15, 14]. Knowing this,

being capable of identifying the patients set to have the worse possible outcomes before the condition

progresses is a an important task. An earlier detection of the condition would grant a much more careful

focus on patients of higher risk, allowing the clinicians to adjust treatments while improving resource

division [12].

The vast majority of studies regarding AKI address the mortality aspect, specifically the studies con-

ducted by Cunha et al. [16], Correia et al. [17] and Silva et al. [18]. The first studied mortality prediction

on short and long-term for patients that survived AKI, the second studied which physiological variables

are most predictive of mortality within ICU patients that develop AKI, and the latter developed a model

capable of predicting which patients are at larger risk of death, allowing a more efficient use of hospital

resources. More detail on these studies will be provided on the related work section (section 2.1.3).

Instead of studying when or how the patient died, the main goal of this thesis is to accurately predict

the aggravation of AKI for patients in the ICU, while also determine if self-attention mechanisms can be

a valuable asset to procedures like the one used in this work, not only for AKI but for general clinical

tasks. The ultimate goal is to improve patient care by supplementing clinicians on information of what

could happen and let them decide of whether they should act differently, knowing what is expectable to

happen in the following hours.

1.2 Contributions

• This work uses a self-attention model to predict the stage of AKI in a continuous way, working

with sequence length data, with the purpose of exploiting the attention mechanism’s capacity to

deal with multivariate time series. This thesis is, to the best of our knowledge, one of the first

works to use self-attention mechanisms to specifically predict the progression of AKI severity for

patients in the ICU. The results achieved in this work outperformed the state-of-the-art results when

predicting an episode of AKI for patients in the ICU.

• The self-attention model was tested with the original architecture and with different experiments

regarding the several architectural details. The results ended up being better using parameters

different from the original architecture and were used across all experiments displayed in this work.

• The predictions were made for two different classification systems: one generally used by the

community, where the staging criteria only uses the serum creatinine (SCr) values for the staging

(labeled as the sCr classification system), and the other one was generated using both SCr and urine

output (UO) values (labeled as the 2B classification system). The procedure used to obtain 2B was,

to the best of our knowledge, developed for the first time in this work, and produced better results

comparing to sCr. This shows that the usage of UO regarding AKI stage aggravation can be an

improvement and should be considered on future works.
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1.3 Thesis Outline

Chapter 2 gives an insight into AKI and the attention mechanisms. Regarding AKI, a definition of the

disease and a literature review of studies are given, not only from AKI, but also studies on other diseases

with interesting approaches that could be somewhat replicated in the context of AKI. There is an overview

of the burden of AKI in society and the evolution of the staging systems used throughout. An explanation

of how attention mechanisms were introduced in machine learning tasks is addressed. Also, the theoret-

ical definition of concepts like encoder-decoder and self-attention are given associated with examples

of architectures that were progressively improving the landscape of attention models for diverse areas.

Chapter 3 details the model that is used in this thesis, its architecture, and the alterations from the original

model. Chapter 4 describes the data. It explains some specifications chosen and criteria used to extract

the data and the processing tasks made to reach the final cohort. The procedure to get the data the way it

fits the model is shown, as well as the reasons behind the dataset selection for the different approaches.

Chapter 5 details the process of discovering the most important features for the different approaches. It

also addresses the problem of having an unbalanced dataset. Chapter 6 summarizes the main results and

compares the different approaches. Results using the two variations of the KDIGO classification system,

also comparing the results when using different lengths of sequences and the number of features. Chapter

7 concludes this work, showing the goals achieved. The limitations are declared and directions for future

work in this area are presented.
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Chapter 2

Background

2.1 Acute Kidney Injury

Acute Kidney Injury (AKI) is a common episode within patients in the Intensive Care Unit (ICU). Before

being called AKI, it was known as Acute Renal Failure (ARF), and was considered to be a high incidence

illness associated with increased risk of death. Because there was no standard definition, the studies on

ARF presented quite inconstant results: its incidence would vary between 1% to 25% and the mortality

rate from 28% to 90% [19]. This disparity result-wise made the studies difficult to compare due to

different definitions used, which altered the number of occurrences. In cases that the criteria for ARF

definition was more conservative, the incidence decreased, but the correspondent mortality rate increased

[20].

Based on evidence from previous studies, it was published the first consensus definition and staging

criteria [19], called RIFLE. As this classification system includes the entire spectrum of acute changes in

renal function from mild to severe stages, the term AKI took the spotlight [19, 12, 21]. Since then, some

other updated classification systems were created, like the AKIN and KDIGO criteria.

AKI is a syndrome, some say even a group of syndromes [22], defined by an abrupt loss of kidney

functionalities, specifically an abrupt decrease in glomerular filtration, meaning a general increase in

serum creatinine levels (SCr). This syndrome is also highly associated with morbidity, mortality and high

costs, as an occurrence of AKI may lead to the development of chronic kidney disease (CKD) or even

end-stage renal disease (ESRD), and because of the increasing incidence of AKI, its impact on long-term

health and costs is greater than it was expected [23, 24]. That increasing incidence of AKI is similar across

countries, with no significant difference between high-income and the low-to-middle-income countries,

although the renal replacement therapy (RRT) ends up more widely used on the high-income ones [25].

The risk of having AKI is higher on ICU patients due to their already fragile state. Besides that, the

risk is also higher for patients of higher age (65 and above) with a previous record of kidney diseases, or

patients that have been exposed to predisposing factors, such as sepsis and major surgeries [25]. Early

implementation of RRT is an important asset, as it significantly reduced mortality and enhanced renal

recovery at 1 year on patients with KDIGO stage 2 and 3 [26].

Another important topic to address is the fact that an episode of AKI is definitely not only associated

with short-term outcomes, as it is also proven to have an impact on long-term survival. Even the patients

in the lower stages of the disease are associated with a reduction in survival, remaining detectable for

10 years or more [27]. A study analysed recovery patterns for patients after AKI, where it showed that
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41.2% of those patients did not fully recover their renal function before hospital discharge. Out of those,

1-year age-adjusted mortality was nearly 60%, which is more than three times compared to patients who

did recover fully. Furthermore, 1-year mortality was lowest (10%) in the group of patients (26.6% of

the cohort) whose AKI reversed within 7 days and remained stable until discharge [28]. AKI survivors

have an increased risk of developing CKD or ESRD, and even though it hasn’t before, it is now widely

accepted, but still not well appreciated for other specialties, besides nephrology [29]. Increasing risks

of gastrointestinal bleeding, organ fibrosis are also diseases associated with AKI [30, 31] as well as an

increased cardiovascular risk observed in patients after AKI [32, 33, 34]. So it is possible to see the

repercussions of AKI not only in the present, but also in the near and distant future.

2.1.1 AKI Staging Systems

Each individual patient in the ICU has its own level of severity in terms of AKI, so, detecting AKI in a

patient implies the usage of classification methods capable of doing so in the most accurate way possible,

using the (sometimes limited) information it disposes. The three main criteria used are RIFLE, AKIN

and KDIGO, which base their predictions on levels of serum creatinine and urine output. This can be

used to place them within other patients with close characteristics, easing future medical procedures, as

it is possible to act similarly for patients on the same stage of AKI. Although others (like CK) have also

been used before, with interesting results regarding mortality [35], the usual main options are the three

mentioned before.

Urine output values tend to decrease with the severity of the disease stage. The opposite happens

with SCr values, which is seen as an insensitive marker of kidney dysfunction, particularly in patients

without underlying CKD, because a normal kidney has considerable excess filtration capacity. Even

health kidney donors might show very small changes in SCr concentration, meaning that losing large

renal mass does not necessarily increase SCr levels.

It is reported the difficulties of predicting the exact stage of the critically ill patients, which as ex-

pected, turns out to be more difficult than simply predicting the occurrence of AKI [36]. Depending

on the choice for the classification system, the results will come out different due to some patients be-

ing selected into distinct groups, therefore creating different cohorts, making it hard and less viable to

specifically compare results when applying different classification systems.

Based on Ulger et al.’s work [35], where several AKI classification systems were compared, a sum-

mary of the SCr criteria for the different classification systems is shown in Table 2.1, making it clear and

simple to see the differences between them, contrarily to the UO criteria, since it’s pretty much equal

across all of them.

2.1.1.1 RIFLE Classification

In 2004, RIFLEwas introduced to the AKI work line, being the first classification system to get consensus

within the community [19]. RIFLE is an acronym for the 3 AKI stages defined by this criteria: Risk,

Injury and Failure, and also 2 other outcomes: Loss and End-stage Kidney Disease.

This criteria consists on the reduction of glomerular filtration rate (GFR) according to baseline value,

which is associated with an increase of serum creatinine levels, and also urine output.
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Classification System Stage Serum Creatinine criteria Urine Output criteria

Risk To ≥1.5 times baseline <0.5ml/kg/hr for >6 hr

RIFLE Injury To ≥2 times baseline <0.5ml/kg/hr for >12 hr

Failure
To ≥2 times baseline or ≥0.5 mg/dl
increase to at least 4.0 mg/dl

<0.3ml/kg/hr for >24 hr or Anuria for >12 hr

1 Increase of ≥0.3 mg/dl or to 1.5-1.9 times baseline <0.5ml/kg/hr for >6 hr

AKIN 2 To ≥2-2.9 times baseline <0.5ml/kg/hr for >12 hr

3
To ≥3 times baseline or ≥0.5 mg/dl
increase to at least 4.0 mg/dl or RRT

<0.3ml/kg/hr for >24 hr or Anuria for >12 hr

1 Increase of ≥0.3 mg/dl within 48hr or to 1.5-1.9 times baseline <0.5ml/kg/hr for 6-12 hr

KDIGO 2 To ≥2-2.9 times baseline <0.5ml/kg/hr for ≥12 hr
3 To ≥3 times baseline or at least 4.0 mg/dl or RRT <0.3ml/kg/hr for ≥24 hr or Anuria for ≥12 hr

Table 2.1: Diagnosis criteria of AKI according to each classification system

2.1.1.2 AKIN Classification

The Acute Kidney Injury Network proposed in 2007 a revised classification criteria, hence the name, that

was based on the RIFLE criteria with particular belief that smaller SCr increases are of prognostic value

and takes into account the increase in mortality in the R stage of RIFLE.

Although also being based in SCr and urine output, and divided in 3 stages, their nomenclature was

altered to 1, 2 and 3 with increased severity. In AKIN, the GFR measure is no longer relevant, mostly

due to GFR not being easily measured and usually estimated using SCr values. So, the definition given

only by SCr levels is enough, also making the AKI classification more homogeneous. Another alteration

was the time window in which changes had to occur. It was reduced from 7 days to 48 hours during a

patient hospital stay.

2.1.1.3 KDIGO Classification

In 2012, the Kidney Disease : Improving Global Outcome published a new classification system, merg-

ing both RIFLE and AKIN systems, as an effort to standardize the approaches for AKI diagnostic and

treatment. Again, it uses SCr and urine output although with changes in the baseline.

Nowadays, KDIGO tends to be the classification system more used due to its higher capability of

accurate prediction of AKI incidence.

2.1.2 Baseline Estimations

Working with AKI implies constantly determining the disease severity for every patient, and as we saw

before, all of the three main classification systems use SCr and UO in their criteria. The usage of SCr

ends up being more relevant, due to the lack of information regarding the urine output on ICU patients.

Since the baseline value is usually missing, there is a need to estimate it, so, defining the baseline for

SCr may turn out important because some patients can shift their stage of AKI depending on the baseline

chosen. AKI incidence is correlated with the baseline value, which means that patients with higher levels

of baseline have more risk of developing AKI, where a poor estimation may lead to a delayed diagnostic

[37].

There are several methods for baseline SCr estimation, such as baseline equal to the SCr value at

admission [38], equal to the lowest value of SCr [39] or even baseline equal to the lowest value of the

7



Chapter 2 Background

first three measures of SCr[13], and the latter is also used in Silva et al. [18], Correia et al. [17] and

Cunha et al.’s [16] studies.

2.1.3 Related Work on AKI

Working with critically ill patients under the AKI work line is not particularly a recent working case.

There have been several articles and thesis tackling this issue. Using the same dataset that will be used in

this work, MIMIC III [40], a few articles addressed this topic with similar approaches within them. Cunha

et al.’s [16] aim was to develop predictive models by exploring the outcomes of AKI in ICU patients and

on short and long-term mortality among patients who survived their ICU encounter. In this study, the

methods used were Fuzzy modeling, more specifically Takagi-Sugeno (TS) fuzzy models that consist

of fuzzy rules where each one of them describes a local input output relation. The approach was based

on the Fuzzy c-means (FCM) and Gustafson-Kessel (GK) clustering algorithms to compute the fuzzy

partition, with the number of rules, antecedent fuzzy sets and its parameters being determined using fuzzy

clustering. A 10-fold cross validation was used, and the results, in general, obtained with the Gustafson-

Kessel algorithm outperformed the ones generated using FCM. The fuzzy models implemented are able

to predict one-year mortality with an AUC of 0.75 from the moment of the admission, and an AUC of

0.76 with an accuracy of 0.69 for 24-hour ahead prediction.

One year later, Correia et al.’s [17] thesis studied which physiological variables are most predictive

of mortality within ICU patients that develop AKI. For that, the authors used sequential forward selection

(SFS) and fuzzy modeling to construct a mortality prediction model for each of the 5 cohorts, since the

authors divided the data for each stage of AKI, one for all patients with AKI and another for all patients

using data from the first and the last day. Just like in the previous study, this one also used TS and FCM,

as well as cross validation. The models were also generated with and without sequential forward selection

in order to evaluate its influence, and the results of mortality predictions indicated that using SFS had

very little impact. Fuzzy models achieved very good results, in general, but the best ones were achieved

using information of the last day. For those, the best was for patients with stage 3 with a score of 0.92 ±
0.05 for AUC, 0.83 ± 0.07 accuracy, 0.82 ± 0.08 for sensitivity and 0.84 ± 0.08 for specificity, which

does mean a significant improvement compared to Cunha et al.’s article.

The last one is Silva et al. [18], that developed a model capable of predicting which patients are at

larger risk of death, allowing a more efficient use of hospital resources. When using the mean values

for time series the model achieved AUC values of up to 0.92 in patients with stage 3 AKI, and 0.86

for the general population, showing the potential of using this type of predictive applications for human

resources scheduling, as well as management of monetary resources on critical patients according to their

need for attention and treatment. Just like the 2 latter studies, cross validation, TS and FCM were used,

as the data was also divided into 5 cohorts. The later fuzzy models built were modelled twice, with and

without SFS, which did not represent significant alterations in the maximum values obtained since the

values were all approximately 0.9. Once again showing that SFS had very little impact on the final results

performance, besides being a good option to apply when looking for building models with less variables.

In a brief comparison between the three studies, all of them used both TS and FCM, but only the first

one also used GK. The inclusion-exclusion criteria was different between the first study and the latter

two, and it is noticeable when looking at the number of features kept for modeling, which were 8, 32

and 28, respectively per chronological order. The different discretization methods used are also relevant

to the final results, since the best results obtained in the 2 latter studies were through the use of mean
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values for the time series. The first one did not had into account the mean values, as it only focused on

the median. This shows the importance of trying different approaches to ensure we get the best results,

as it happened in the works of Correia et al. and Silva et al., that tried the mean and last value, besides

the median used in Cunha et al.’s study.

In a brief comparison between the three studies, all of them used both TS and FCM, but only the first

one also used GK. The inclusion-exclusion criteria was different between the first study and the latter two,

and it is noticeable when looking at the number of features kept for modeling, which were 8, 32 and 28,

respectively per chronological order, and equally relevant to the final results joint with the discretization

method, since the best results obtained in the 2 latter studies were through mean values, the first one did

not had into account the mean values, only focusing on the meaning it is important to obtain values for

the median, mean and last value to ensure we get the best results and the ability to compare them, which

happened in the works of Correia et al. and Silva et al., while in Cunha et al.’s study only the median

was used.

Another common aspect between the 3 studies is that all of them used the AKIN classification, which

means the most recent classification system, the KDIGO classification system, was excluded or maybe

not taken into account. Also, it is noticeable the upgrades and small changes from one study to the next,

chronologically wise, availing the good things done before while striving to find better results with their

own small changes.

The study by Ulger et al. [35] evaluates the effects of AKI development on mortality in critically ill

trauma patients followed in the ICU, from a turkish hospital, with four different classification systems:

RIFLE, AKIN, CK and KDIGO. Out of the 198 patients included in the study, when investigated upon an

existence of AKI, 74.2% of the patients were identified as having AKI according to the KDIGO criteria,

followed by AKIN with 72.2%, RIFLE with 69.7%, and at last CK with 59.1%, that also indicated a

significant increase in mortality in patients with AKI diagnosed on the first day. In this study, as expected,

the compatibility between RIFLE, AKIN and KDIGO was higher than with CK, but, with an agreement

between all four classification systems, the presence of AKI was found to be an independent risk factor

in the development of in-hospital mortality.

Sonia Yaqub [41] also compared the three stand-out criteria for their ability to predict all-cause mor-

tality and morbidity after isolated coronary artery bypass graft (CABG) surgery. In general, patients with

AKI were older and more likely to be diabetic and hypertensive, and out of the total 1508 Pakistanis:

33.7% were classified as having AKI by the AKIN criteria, 34.4% by the KDIGO criteria and 57.5% by

the RIFLE criteria (based on change in estimated GFR, abbreviated to eGFR). AUC for 30 day mortality

was 0.786 for AKIN, 0.796 for KDIGO and 0.844 for RIFLE, however, discrimination power for mor-

bidity was low (below 0.7), making it undesirable. This means that AKIN and KDIGO are comparable

to estimate AKI, while RIFLE (eGFR based) overestimates its incidence, but has a better discriminatory

power in terms of mortality prediction compared to the other two classification systems.

Tomašev et al.[42] developed a deep learning approach for the continuous risk prediction of future

AKI in patients. The model was able to predict 55.8% of all inpatient episodes of acute kidney injury,

and with a lead time of up to 48h, and a ratio of 2 false alerts for every true alert, the model also predicted

correctly 90.2% of all AKI patients that required subsequent administration of dialysis. Besides that, the

model provides confidence assessments and a list of clinical features that stand out in each prediction,

alongside predicted future trajectories for clinically relevant blood tests. The proposed system is a re-

current neural network (RNN) that sequentially runs over individual electronic health records (EHRs),

processing the data one step at a time, building an internal memory that keeps track of the relevant in-

formation seen up until that specific point. At each time point, the model outputs a probability of AKI
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occurring at any stage of severity within the following 48h, alongside an associated degree of uncertainty

for each timestamp in that window. Results wise, sensitivity was high in patients who went on to develop

lasting complications following their AKI episode. The model successfully early predicted 84.3% of

episodes in which dialysis was required within 30 days of the AKI occurrence (any stage), for in-hospital

and outpatients, and also predicted the administration of dialysis scheduled within 90 days for regular

outpatients, with 90.2% of success. When only applied to stage 3 AKI, the model correctly predicted

84.1% inpatients up to 48h in advance, higher than the 71.4% when predicting both AKI stages 2 and 3,

and also higher than the 55.8% for any AKI stage as seen before, this three results were obtained with

a precision of 33% (rate of two false-positives for each true-positive). Analysis of the false-positives

alerts indicated that 24.9% were positive predictions that were made even earlier than the 48h window,

in patients that later developed AKI. Out of these, 57.1% occurred in patients with pre-existing chronic

kidney disease, thus being at higher risk of developing AKI. Of the remaining false-positive alerts, 24.1%

were trailing predictions that occurred after the window of prediction. Besides the early and trailing pre-

dictions, the model detected that 88% of the patients who did not experience AKI during the admission

where the model predicted it to happen were patients with severe renal impairment, known renal pathol-

ogy or evidence in the EHR that the patient required clinical review. As the authors refer, these alerts can

be filtered out during clinical practice.

The data used in their work included medical records registered up to ten years before each patient’s

ICU admission date, and up to two years after being discharged from the ICU. Whenever available, they

were optionally used later as historical features. The final dataset consisted of 707,782 patients, randomly

divided into training (80% of observations), validation (5%), calibration (5%) and testing (10%) sets.

Each day was broken into four six-hour periods, meaning every patient was represented by a sequence of

events, with each one providing information recorded within a six-hour period, grouping together records

that have occurred within the same six-hour period. This available data mixed with additional summary

statistics and augmentations formed a feature set that was used as input to the predictive models. Each

clinical feature was mapped onto a corresponding high-level concept, such as: procedure, diagnosis,

prescription, laboratory tests, and many more. In total, 29 high-level concepts were in the data. With the

purpose of predicting the risk of developing AKI easily, some features were provided, such as the median

yearly creatinine baseline and the minimum 48h creatinine as numerical features, which were used as the

baseline values for the KDIGO criteria. Regarding the historical features, 3 historical aggregate feature

representations were considered: one for the past 48h, one for the past 6 months and another for the past

5 years. All were optionally provided to the models, and the decision on which combination of historical

data to include was based on the model performance on the validation set.

The patient AKI were computed at each time step on the basis of the KDIGO criteria, and out of

the three definitions of AKI this classification system accepts (seen on the previous section), only the

definitions involving baseline creatinine levels were used to provide ground-truth labels for the onset

of AKI, due to the lack of urine output values. Using the KDIGO criteria three AKI categories were

obtained: ‘all AKI’ (KDIGO stages 1, 2 and 3), ‘moderate and severe AKI’ (KDIGO stages 2 and 3),

and ‘severe AKI’ (KDIGO stage 3). A baseline of median annualized creatinine was used when previous

measurements were available, and when these measurements were not present, the modification of diet

in renal disease (MDRD) formula was applied to estimate baseline creatinine. The AKI stages were

computed every time a serum creatinine measurement was available in the sequence, and then copied

forward in time until the next creatinine measurement, where the ground-truth AKI state was updated

accordingly. The prediction target at each point in time is a binary variable that is positive if the AKI

category of interest (for example, all AKI) occurs within a chosen future time horizon. If no AKI state was
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recorded within the chosen horizon, this was interpreted as a negative. A total of 8 future time horizons

were used(6-h, 12-h, 18-h, 24-h, 36-h, 48-h, 60-h and 72-h ahead), all available at each time point.

The model itself makes predictions by first transforming the input features using an embedding mod-

ule. This embedding is fed into a multi-layer recurrent neural network, the output of which at every time

point is fed into a prediction module that provides the probability of future AKI at the time horizon for

which the model will be trained. To provide useful predictions, an ensemble of predictors are trained

to estimate the confidence of the model, and the resulting ensemble predictions are then calibrated us-

ing isotonic regression to reflect the frequency of observed outcomes. The embedding layers transform

the high-dimensional and sparse input features into a lower-dimensional continuous representation, mak-

ing subsequent prediction easier. A deep multilayer perceptron was used with residual connections and

rectified-linear activation, and L1 regularization on the embedding parameters to prevent overfitting and

to ensure that the model focuses on the most-salient features. Recurrent neural networks run sequentially

over the electronic health record entries and are able to implicitly model the historical context of a patient

by modifying an internal representation (or state) through time. A stacked multiple-layer recurrent net-

work with highway connections between each layer is used, which at each time step takes the embedding

vector as an input. The RNN architecture was a simple recurrent unit network, with tanh activations,

chosen from a broad range of alternative RNN architectures that did not provide significant improve-

ments, such as: long short-term memory, update gate RNN and intersection RNN, simple recurrent units,

gated recurrent units, the neural Turing machine, memory-augmented neural network, the Differentiable

Neural Computer and the relational memory core.

After that, the output of the RNN is fed to a final linear prediction layer that makes predictions

over all eight future prediction windows (6h windows up until 72h ahead). Each of the resulting eight

outputs provides a binary prediction for AKI severity at a specific time window and is compared to the

ground-truth label using the cross-entropy loss function (Bernoulli log-likelihood). Besides that, a set of

auxiliary numerical predictions were made, where at each step there was a prediction of the maximum

future observed value of a set of laboratory tests over the same set of time intervals used to make the

future AKI predictions. The laboratory tests predicted are the ones that are known to be relevant to

kidney function, such as: creatinine, urea nitrogen, sodium, potassium, chloride, calcium and phosphate.

The overall improvement observed for including the auxiliary task was close to 3% area under precision-

recall curve in most cases. The overall loss function was the weighted sum of the cross-entropy loss from

the AKI predictions and the squared loss for each of the seven laboratory-test predictions. Training-

wise, it was used an exponential learning-rate decay, and the best validation results were achieved using

backpropagation through time windows. The best performing RNN architecture used a cell size of 200

units per layer and 3 layers, and besides that, an extensive hyperparameter exploration of dropout rates

for different kinds of dropout was conducted to determine the best model regularization. Input dropout,

output dropout, embedding dropout, cell-state dropout and variational dropout were all tested, but none

of them led to improvements, meaning that dropout was not included in the model.

A curated set of clinically relevant features was chosen using existing AKI literature and consensus

opinion of six clinicians, along that, 36 of the most-salient features discovered by the deep learning model

that were not in the original list were also included, making the final curated dataset contain 315 base

features. Also, a set of manually engineered features were computed, as well as a representation of the

short-term and long-term history of a patient, resulting in a total of 3,599 possible features for the baseline

model.

The best models were evaluated on the independent test set that was retained during model develop-

ment, and the models selected on the validation set were recalibrated on the calibration set in order to
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further improve the quality of the risk predictions. Deep learning models with softmax or sigmoid output

trained with cross-entropy loss are prone to miscalibration, so recalibration ensures that consistent prob-

abilistic interpretations of the model predictions can be made. As addressed before, AKI episodes that

occur later during in-hospital stay can be predicted earlier than an AKI episode that occurs immediately

upon admission, so, to better assess the clinical applicability of the proposed model, the AKI episode

sensitivity was computed for different levels of step-wise precision. And since the models were designed

for continuous monitoring and risk prediction, the evaluation happened at each 6h time step within all of

the admissions for each patient except for the steps within AKI episodes. To gauge uncertainty on the

performance of a trained model, 95% confidence intervals were calculated with the pivot bootstrap esti-

mator, by sampling the entire validation and test dataset with replacement 200 times, and to quantify the

uncertainty on model predictions (versus overall performance), an ensemble of 100 models was trained

with a fixed set of hyperparameters and different initial seeds. The prediction confidence was assessed

by inspecting the variance over the 100 model predictions from the ensemble.

Another interesting subject addressed by this study is the subgroup analysis, which is available on

the Supplementary Information. This approach is helpful in understanding the performance of predictive

models on different clinical sub-populations, as they’re not uniform across all population. The different

subgroups can be divided in patient demographics, where different age groups, ethnicities and gender

are evaluated, in admissions, where the duration of the admission is studied, in patients with chronic

kidney disease (CKD), where each CKD stage is evaluated. It also can be divided in a group with other

at risk patients, such as diabetic patients and even patients who did not survive after 7 or 30 days upon

admission. Besides exploring model performance across the different subgroups, error regression was

employed, meaning that for every observation the expected error was computed through logarithmic

loss, and fitted a linear regression of the error as an endogenous variable, and population subgroups as

exogenous variables. Looking at the results, it is proven that the effect of subgroups on the magnitude of

errors is jointly significant.

2.1.4 Related Work on other diseases

Even though each disease has its own progression rate, some of the methods used can also be appropriate

to use in the AKI context. Pires et al.[43] worked with Amyotrophic lateral sclerosis (ALS) patients,

and in this study it was proposed an approach to stratify the patients in three groups according to their

progression rate: Slow, Neutral and Fast, with the purpose of enabling the creation of specialized learning

models capable of predicting the need of non-invasive ventilation (NIV), used to prevent respiratory

insufficiency as well as proven to improve survival chances onALS patients. Thosemodels would predict

the need of NIV within a time window of 90, 180 and 365 days of their current medical appointment.

The models are built using a collection of classifiers and cross validation, while also using FS to test

which features are more relevant to the outcome prediction. The progression groups are created from

the whole population of patients using information regarding their first symptoms and their first visit.

The classifiers are trained for each progression group to predict if a patient will need NIV in k days, and

after the models are trained, every time a new patient comes to an appointment the only thing needed

is to compute its progression rate in order to identify the corresponding progression group, where the

patient’s data is used by the specialized model to predict the desired target. The three best classfiers

were Naive Bayes (NB), Random Forest (RF) and Linear Regression (LR). Results wise, the number of

snapshots (a summary of the patient condition around that time) decreased with the increasing of k, due to
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the reducing number of patients. In terms of the feature selection between groups there are differences,

with slow progressors needing more features to build good prognostic models, while fast progressors

seem to rely on less features. Slow progressors tend to reduce the number of features with increasing

time windows, the exact opposite happens with fast progressors, while the neutral seem to maintain the

number of features for all time windows. Knowing the selected features in each progression group is

important to clinicians, offering the knowledge of which test and exam is the most important for each

patient, leading to resource and time optimization, which can lead to a better prognosis. The results

achieved up to 0.91 value for AUC for slow progressors in 365 days, and were generally better when

using the progression groups compared to the results using with all patients, hence the authors appealing

to the usage of patient stratification when studying heterogeneous diseases.

In Pereira et al.’s [44] study, the focus was Alzheimer’s disease (AD), known as the most common

form of dementia, and also known as non-reversible disease since there is no treatment capable of re-

verting the progression of the disease [45, 46]. When patients meet criteria for dementia, the brain has

already suffered sufficient damage causing severe impact on cognition and autonomy, hence the need to

accurately predict beforehand the progression of the disease. Again, like Pires et al.’s study, one of the

approaches from this work was the use of supervised learning based on time windows to predict con-

version to dementia, labelled as MCI-to-AD conversion (MCI standing for Mild Cognitive impairment),

learning from patients stratified on those time windows. The first step of the approach consists in cre-

ating the learning examples using time windows, after that, the model and parameters are tuned under a

cross-validation scheme, and finally validated using an independent validation set. The model predicts

whether a patient diagnosed with MCI at baseline converts to dementia (or if it remains MCI) at time

baseline + k (in years), with k corresponding to the considered time window and ranging from 2 to 5.

The innovative strategy used to build learning examples outperformed the common used strategy,

named as First Last approach. While the latter used all patients to learn the models, the author’s ap-

proach grouped patients based on their clinical information, whether they converted (converter MCI) or

remained MCI (stable MCI) within a specific time window. The prognostic model used neuropsycholog-

ical data and was able to predict dementia conversion as early as five years before happening. Besides

that first approach, it was also proposed a methodology to address short and long-term (2 and 2-4 years)

progression on AD combined with reliability, with the purpose of identifying the trustworthy prognostic

models. This second approach consists on a two-step supervised learning, which starts by predicting

MCI-to-AD conversion, within a given level of confidence, followed by the prediction of the most likely

time window of conversion (once again using short and long-term conversion), using Conformal Predic-

tion. As mentioned by the authors, despite the exploratory results being promising, the small number

of examples for long-term converting patients available for training ended up being a setback, thus they

pretend to repeat the study whenever more data is available.

Some studies addressed in this section were initially considered as basis for some procedures but

ended up not following through, and are explained in the Future Work section (Section 6).

2.2 Attention mechanisms

In psychology, attention is the cognitive and behavioral process of selectively concentrating on one or a

few discrete aspects of informationwhile ignoring others. The sameway a neural network is considered to

be an effort to reproduce and mimic human brain actions in a simplified manner, an attention mechanism
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is also an attempt to implement the same action of selectively directing the focus on a few relevant things,

paying greater attention to certain factors when processing the data, while ignoring others in deep neural

networks [47, 48].

Originally introduced and designed by Bahdanau et al. [49] in 2014, in the context of Neural Machine

Translation using Sequence-to-Sequence (Seq2Seq) Models, this mechanism in now used in other tasks

besides natural language processing, e.g computer vision [50]. Considered as a natural extension of their

previous work on the Encoder-Decoder model [51], this paper laid the foundation of the famous paper

”Attention is All You Need” by Vaswani et al. [2], on transformers that revolutionized the deep learning

arena with the concept of parallel processing of words instead of processing them sequentially. This latter

publication is at the basis of the article that designed and presented the model that is used in this work,

as will be addressed in the section 3.

Still regarding the publication by Bahdanau et al., the core idea is each time the model predicts an

output word, it only uses parts of the input where the most relevant information is concentrated instead

of the entire sequence, meaning it only pays attention to some input words [52]. This happens as the

attention component of the network maps the important and relevant words from the input sentence and

assigns higher weights to these words, enhancing the accuracy of the output prediction [47].

The introduction of the attentionmechanism improved the performance of the encoder-decoder model

for machine translation. The idea behind the attention mechanism was to permit the decoder to utilize

the most relevant parts of the input sequence in a flexible manner, by a weighted combination of all the

encoded input vectors, with the most relevant vectors being attributed the highest weights. This way,

the bottleneck problem that emerges with the use of a fixed-length encoding vector is addressed, where

the decoder would have limited access to the information provided by the input. That was specifically

problematic for long or complex sequences, as the dimensionality of their representation would be forced

to be the same as shorter or simpler sequences [53].

2.2.1 Encoder-Decoder

A Seq2Seq model is a model that receives a sequence of items as input, such as words, letters or time se-

ries, and outputs another sequence of items. These models are generally composed of an encoder-decoder

architecture, where the encoder processes the input sequence and compresses (encodes) the information

into a context vector of fixed length, as said before, and collected in the form of a hidden state vector of

any size [1]. This representation is anticipated to be a good summary of the complete input sequence.

The decoder is then initialized with this context vector, using which it starts producing the transformed

or translated output [52].

In the case of Neural Machine Translation, because the tasks are sequence based, both the encoder

and decoder tend to use some form of RNN or Long-Short Term Memory (LSTM). By design, RNNs

need two inputs in order to produce an output, meaning that the output at time step t depends on the

representation of the previous and current input. The sequential information is preserved in a hidden

state of the network and used in the next instance. The encoder, consisting of RNNs, takes the sequence

as an input and generates a final embedding at the end of the sequence, that will be used as an input by

the decoder. The decoder also uses the previous hidden state to predict the next instance until the end of

the sequence, as can be seen in Figure 2.1.

As was addressed before, the size of the sequences is a limitation and that is why attention was

introduced. Attention is an interface connecting the encoder and decoder that provides the decoder with
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Figure 2.1: Encoder-Decoder model for Seq2Seq modelling (without attention)(extracted from [1])

information from every encoder hidden state, shown in Figure 2.2, instead of just the hidden state from the

last encoder instance. Besides that, the other important aspect regarding attention is the context vector,

which is generated for every time instance in the output sequences. At every step, the context vector is

the weighted sum of the input hidden states (Figure 2.3a).

The generated context vector is combined with the hidden state vector through concatenation (Figure

2.3b), and this new attention hidden vector is used for predicting the output at that time instance. This

new attention vector is generated for every time instance in the output sequence, replacing the hidden

state vector .

Figure 2.2: Encoder-Decoder model with Attention (extracted from [1])

(a) Context Vector

(b) Attention hidden state

Figure 2.3: Attention component in the Seq2Seq model (extracted from [1])

Regarding the attention scores, these are the output of the alignment model, and score how well an

input (represented by its hidden state) matches with the previous output (represented by the attention
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hidden state) and does this matching for every input with the previous output. The final step is the usage

of a softmax over all these scores, and the resulting values are the attention scores for each input (Figure

2.4. These final values indicate which segment of the input is the most important for each of the instances

in the output sequence. The final representation is shown in Figure 2.5.

Figure 2.4: Attention scores (extracted from [1])

Figure 2.5: Encoder-Decoder model with Attention (extracted from [1])

2.2.2 Transformers

Firstly introduced by Vaswani et al. [2], Transformer-based architectures adopt an encoder-decoder ar-

chitecture that uses self-attention mechanisms as its main feature to collect global dependencies between

inputs and outputs, while completely discarding the use of any recurrence, that was used in former at-

tention mechanisms. Already successfully used in a variety of tasks such as reading comprehension,

abstractive summarization, textual entailment and learning task-independent sentence representations

[54, 55, 56, 57], self-attention is an attention mechanism that relates to different positions of a single
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sequence in order to compute a representation of the full sequence. Comparatively to recurrent and con-

volutional layers commonly used, the self-attention layers end up needing less total computational com-

plexity per layer, as well as a higher capacity of parallelizable computations, measured by the minimum

number of sequential operations required.

Regarding its architecture (Figure 2.6), both encoder and decoder are composed by a stack of N

identical layers. In the paper, the authors stackN = 6 layers on top of each other for both cases, although

nothing is specified about the choice, meaning that using other number would probably be acceptable.

Besides being identical in structure, all encoder layers don’t share weights, with each layer divided into

two sub-layers: a multi-head self-attention mechanism followed by a feed-forward neural network. The

encoder inputs go through the self-attention layer, and its outputs are fed to a feed-forward neural network,

that is applied independently to each position. The decoder has the same two sub-layers, but between them

there is another multi-head attention layer, with a task similar to what attention offers in the Seq2Seq

models, meaning it helps the decoder target the relevant parts of the encoder stack output. Also, the

self-attention sub-layer is modified in order to prevent it from attending to earlier positions in the output

sequence. This is called masking, and on both encoder and decoder sub-layers it’s employed residual

connections, followed by layer normalization.

As the authors mentioned, ”An attention function can be described as mapping a query and a set of

key-value pairs to an output, where the query [Q], keys [K], values [V ], and output are all vectors. The

output is computed as a weighted sum of the values, where the weight assigned to each value is computed

by a compatibility function of the query with the corresponding key.”. This definition makes it easier to

understand the Scaled Dot-Product Attention used in the attention layers, whose matrix of outputs is

computed as:

Attention(Q,K, V ) = softmax(QKT

√
dk

)V (2.1)

The input consists of queries and keys of dimension dk, and values of dimension dv. A dot product

of the query with all keys is computed, before dividing each by
√
dk, and applying a softmax function

to obtain the weights on the values. In practice, the attention function is computed on a set of queries

simultaneously, packed together into a matrix Q. The keys and values are also packed together into

matricesK and V .

The multi-head attention was implemented as the authors found beneficial to linearly project the

queries, keys and values 8 times, and on each of those projected versions the attention function was per-

formed in parallel. This procedure allows the model to attend to information from different representation

subspaces at different positions, expanding the model’s ability to focus on different positions. It can be

represented as:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O,

where headi = Attention(QWQ
i ,KWK

i , V W V
i )

(2.2)

Where the projections are parametermatricesWQ
i ∈ Rdmodel×dk ,WK

i ∈ Rdmodel×dk ,W V
i ∈ Rdmodel×dv ,

WO
i ∈ Rhdv×dmodel , with h being the number of parallel attention layers (heads). Regarding those heads,

the dimensions for each one were defined by dividing the full dimensions by h, meaning that the total

computational cost is similar to what a single-head attention with full dimensionality would have.
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Multi-head attention is used in the Transformer in three different locations in its architecture, as can

be seen in Figure 2.6, and the authors explained the purpose of each one as:

Figure 2.6: Architecture of the Transformer model (extracted from [2])

• In the ”encoder-decoder attention” layers the queries come from the previous decoder layer, and

the keys and values come from the output of the encoder, allowing every position in the encoder

to attend over all positions in the input sequence.

• The self-attention layer in the encoder gets its keys, values and queries from the output of the

previous layer in the encoder, with each position in the encoder having the ability to attend all

positions in the previous layer of the encoder.

• In the decoder, the self-attention layers allow each position in the decoder to attend all positions

up to (and including) that position. As already mentioned, this is made through the use of masking

inside the attention function.

Also, because the model does not contain any recurrence or convolution, there is a need to inject in-

formation about the relative or absolute position of the tokens in the sequence. Those are called positional

encodings and are added to the input embeddings at the bottom of both encoder and decoder stacks. The

users decided to use sine and cosine functions of different frequencies:

PE(pos, 2i) = sin(pos/100002i/dmodel)

PE(pos, 2i+ 1) = cos(pos/100002i/dmodel)
(2.3)
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where pos is the position and i is the dimension with 0 ≤ i ≤ dmodel
2 , meaning that each dimension of

the positional encoding corresponds to a sinusoid. The wavelengths form a geometric progression from

2π to 10000 · 2π. The authors chose this function because they ”hypothesized it would allow the model

to easily learn to attend by relative positions, since for any fixed offset k, PEpos+k can be represented as

a linear function of PEpos”.

In the final step of the architecture, the decoder stack outputs a vector of floats, that go through a final

linear transformation (layer), followed by a softmax layer. The Linear layer is a fully connected neural

network that projects the vector of stacked decoders into a larger vector called a logits vector, that later

enters the softmax layer and transforms those scores into probabilities. Each cell has a probability (as

they all add up to 1), so the cell with the highest probability is chosen, resulting in the word associated

with it being the prediction output for that time step [58].

2.3 Chapter summary

This chapter describes the AKI problem and gives an introduction to attention mechanisms and Trans-

formers. Regarding AKI, besides the complications associated with the disease, there’s an overview

of the most used staging systems and the most common baselines adopted. On the related work, stud-

ies addressing AKI and other clinical tasks were mentioned. The studies tackling other diseases were

acknowledged for displaying several methodologies that can be applied to AKI tasks.

The section tackling attention mechanisms gives an introduction to the concepts of encoder-decoder,

Transformers and self-attention. Encoder-decoder is directly related to Transformers, as it is used in its

architectures to collect global dependencies between inputs and outputs, while completely discarding the

use of any recurrence that was used in former attention mechanisms. Transformers use self-attention

across different locations in its architecture, and were at the basis of the model architecture used in this

thesis.
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Self-Attention Model

With the purpose of creating the first attention based sequence modeling architecture for multivariate

time-series data, in 2017, Song et al. [3] took inspiration in the Transformer model by Vaswani et

al.[2]. Solely relying on self-attention mechanisms, the Simply Attend and Diagnose (SAnD) archi-

tecture, named by the authors, discards any recurrence or convolutions for sequence modeling, as they

have computational restraints, such as the inability to be trained in parallel.

The Transformer [2] follows the overall architecture of an encoder-decoder structure. Since attention

mechanisms have produced good results on transduction tasks in NLP - which in machine translation

indicates the production of sequences of words in a target language given examples in a source language

-, and specifically self-attention has been used successfully in a variety of NLP tasks, as seen in the

latest section, the authors approach focused on studying their effectiveness in clinical diagnosis for sev-

eral tasks. In this chapter, the several components of the SAnD architecture will be explained. Some

implementation details regarding the model will be in the end of the chapter.

3.1 Architecture

The Transformer architecture [2] receives a sequence of symbol representations (x1, x2, . . . , xT ), such

as words when performing on machine translation benchmarks, later transformed into a continuous rep-

resentation z by the encoder, followed by the decoder, that produces the output sequence of symbols

(y1, y2, . . . , yT ). In the context of working with EHR/clinical data, the input sequence for SAnD [3] is a

sequence of clinical measurements (x1, x2, . . . , xT ), xt ∈ IRR whereR denotes the number of variables,

with the objective of generating a sequence-level prediction for any specific task, as it can be denoted

as a discrete scalar y for multi-class classification, a discrete vector y for multi-label classification or a

continuous value y for regression problems.

Figure 3.1: Overview of the proposed approach for clinical time-series analysis (designed by Song et

al.[3]).

Just like in the Transformer scheme, the attention module consists in N identical layers, with each
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one containing the attention mechanism and a feed-forward sub-layer, along with residue connections.

3.1.1 Input Embedding

The first step of this architecture is similar to the input embedding step in most NLP architectures, where

the mapping of words from a sentence originates a high-dimensional vector space that helps facilitate

the actual sequence modeling [59]. Given the R measurements at every time step t, an embedding that

captures the dependencies across different variables is generated, without considering any temporal in-

formation. A 1D convolutional layer with kernel size 1 is employed to obtain the d-dimensional (d > R)

embeddings for each t. Denoting the convolution filter coefficients as w ∈ IRT×h, where h is the kernel

size, we obtain the input embedding: w · xi:i+h−1 for the measurement position i.

3.1.2 Positional Encoding

As addressed in Section 2.2.2, each word in a sentence goes through the Transformer’s encoder/decoder

stack, with the model itself not having any sense of position for each word.

The authors way of fixing the lack of information about the order of the sequence was through the

addition of positional encodings to the input embeddings of the sequence, which provides information on
the relative or absolute position of the time-steps in the sequence. In this work specifically, this encoding

is achieved through mapping time step t to the same randomized lookup table during both training and

prediction. The d-dimensional positional embedding are then added to the input embedding with the

same dimension. As the authors mentioned, using sinusoidal functions like the original Transformer [2]

is an alternative to this approach.

3.1.3 Attention Module

As said before, SAnD’s architecture focuses almost entirely on self-attention mechanisms. In detail,

it’s used a restricted self-attention that imposes causality, meaning it only considers information from

previous positions where the analysis is occurring.

Self-attention is designed to capture dependencies of a single sequence, and in this model, the range

of dependency is a specified parameter that indicates how far the attention model can look into the past in

order to obtain the representation for each position. This is named as masked self-attention by the authors,

and is important due to different tasks requiring longer range dependencies than others, i.e phenotyping

tasks require longer range dependencies compared to mortality prediction [3], both used in their study.

In general, as mentioned in Section 2.2.2, an attention function can be defined as mapping a query q
and a set of key-value pairs k, v to an output o. For each position t, the attention weighting is computed
as the inner product between qt and keys at every other position in the sequence (within the restricted

set) {k′
t}

t−1
t′=t−r , where r is the mask size. Using these attention weights,o is computed as weighted

combination of the value vectors {v′
t}

t−1
t′=t−r and pass o through a feed-forward network to obtain the

vector representation for t. Mathematically, it can be expressed as follows:

Attention(Q,K,V) = softmax
(

QKT
√
d

)
V (3.1)
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where Q,K,V are the matrices formed by query, key and value vectors respectively, and d is the

dimension of the key vectors. This mechanism is the same scalar dot-product attention used in the original

Transformer architecture. Since only self-attention is used, Q,K,V all correspond to input embeddings

of the sequence (with position encoding). Additionally, as said before, the sequence is masked to specify

how far the attention models can look into the past for obtaining the representation for each position.

Also, this architecture also uses the multi-head attention similar to the Transformer. With the purpose

of creating multiple attention graphs 8 heads are used, and the resulting weighted representations are con-

catenated and linearly projected to obtain the final representation. As the authors explain: ”implicitly,

self-attention creates a graph structure for the sequence, where edges indicate the temporal dependen-

cies. Instead of computing a single attention graph, we can actually create multiple attention graphs

each of which is defined by different parameters. Each of these attention graphs can be interpreted to

encode different types of edges and hence can provide complementary information about different types

of dependencies”. The second component in the attention module is 1D convolutional sub-layers with

kernel size 1, similar to the input embedding. Internally, two 1D convolutional sub-layers are used with

ReLU (rectified linear unit) activation in between. Besides that, residue connections are included in both

the sub-layers. Since the attention module is stacked N times, the actual prediction task occurs using

representations obtained at the final attention module.

3.1.4 Dense Interpolation for Encoding Order

Unlike transduction tasks, predictions are not made at each time step in all cases. Consequently, there is a

need to create a concise representation for the entire sequence using the learned representations, which is

done through the use of a dense interpolated embedding scheme, that encodes partial temporal ordering.

The simplest approach to obtain a unified representation for a sequence, while preserving order, is

to simply concatenate embeddings at every time step. However, in this case, it can lead to a very high-

dimensional, “cursed” representation which is not suitable for learning and inference. Instead of simply

using the embeddings at each time step tomake predictions, just like what happens on transduction tasks, a

concatenation of all the embeddings for each time step would be required in this case. Dense interpolation

prevents that high-dimensional representation for a sequence, compressing the embedding at every step

into a single vector representation. In this architecture, the pairing of dense interpolation embeddings with

the positional encoding module, are highly effective in capturing enough temporal structure required to

challenge clinical prediction tasks.

This means that embeddings outputted from the multi-headed-attention module are taken and used in

a manner that is useful for capturing syntactic and structural information. As demonstrated by Russell et

al. [60], dense interpolated embeddings not only provides a concise representation (of the sequence), but

also found that encoded word structures are more useful in detecting syntactic features.

The pseudo-code to perform dense interpolation for a given sequence is shown in Figure 3.2. Denoting

the hidden representation at time t, from the attention model, as st ∈ IRd, the interpolated embedding

vector will have dimension d×M , whereM is the dense interpolation factor. Note that whenM = T , it

reduces to the concatenation case. The main idea of this scheme is to determine weights w, denoting the

contribution of st to the positionm of the final vector representation u. As the algorithm iterates through

the timesteps of a sequence, s is obtained, the relative position of time step t in the final representation u
and w is computed as w =

(
1− |s−m|

M

)2
. In Figure 3.3 there’s a view of the dense interpolation process

in an example with T = 5;M = 3. The larger weights in w are indicated by darker edges while the lighter
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Figure 3.2: Dense interpolation embedding with partial order for a given sequence

edges indicates lesser influence. In practice, dense interpolation is implemented efficiently by caching

w’s into a matrix W ∈ IRT×M and then performing the following matrix multiplication: U = S × W,

where S = [s1, . . . , st]. Finally, u is obtained as a result of stacking columns of U.

Figure 3.3: Visualization of the dense interpolation module, when T = 5 and M = 3

3.1.5 Linear and Softmax layers

In the end, just like in the Transformer architecture, the single vector representation acquired before is

fed through a linear layer to obtain the logits, using a linear layer, which feeds a specific layer depending

on the task. Here, the authors used a softmax layer for the binary classification problems, a sigmoid layer

for multi-label classification since the classes are not mutually exclusive and a ReLU layer for regression

problems.

In this study, the decision was to use Pytorch’s CrossEntropyLoss[61], which is a combination of the

library’s LogSoftmax and NLLLoss (negative log likelihood loss), suggested when working on classifica-

tion problems with C classes (where C > 2). The loss function is:

loss(x, class) = − log

(
exp(x[class])∑

j exp(s[j])

)
= −x[class] + log (exp(s[j]))

(3.2)
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Also, it’s possible to assign weight to each of the classes, which is useful when working with an

unbalanced training set, that seems to be the case in this work, as will be addressed in Section 5.3.

3.1.6 Regularization

During training, the regularization on this architecture happens at the sub-layer level, and in the attention

weights of the module. Regarding the former, dropout [62] is applied to the output of each sub-layer in

the attention module prior to residual connections, followed by a normalization of the outputs. Also, an

additional dropout layer is included after the addition of the positional encoding to the input embeddings.

Besides the regularization in the layers during the forward pass, it’s also performed attention dropout,

similar to the Transformer architecture, after computing the self-attention weights.

3.1.7 Complexity

Working with long-range dependencies is a tough task for many sequence modeling tasks, and that chal-

lenge is well expressed by the computational complexity revolving around them. One notion of com-

plexity is the amount of computation that can be parallelized, measured as the minimum number of se-

quential operations required. Recurrent models requireO(T ) sequential operations with a totalO(T·d2)

computations in each layer. In comparison, the proposed approach requires a constant O(1) sequential

operations (entirely parallelizable) with a total O(T·r·d) computations per layer, where r denotes the

size of the mask for self-attention. In all implementations the mask size will be far from the value of d,

meaning that r � d. As a result of that, it’s possible to see that this approach is significantly faster than

using RNN training.

3.2 Implementation details

Due to the original code from the article not being shared publicly, there was a need to use an unofficial

adaptation from the original model, developed by Hirotaka Kawashima [63]. Consequently, compared to

SAnD, this architecture varies in small details, i.e. its implementation does not use the same Positional

Encoding method, because in the article there was no detailed description of random lookup tables at

all. So, as an alternative approach, Kawashima used the Transformer-style Positional Encoding used in

Vaswani et al.’s [2] work. As said before, its architecture used sinusoidal functions to produce a sense of

order in the sequence, providing information about the position of each element in the sequence through

the inclusion of the positional encoding on top of the actual embeddings. In the end, this alteration to

the model shouldn’t change much the final results, because the goal of position encoding is to teach the

model information about time, which is met by both methods. The sinusoidal functions are:

PE(pos, 2i) = sin(pos/100002i/dmodel)

PE(pos, 2i+ 1) = cos(pos/100002i/dmodel)
(3.3)

As said before in Chapter 3.1.5, the loss function used in this approach is different than the ones used

in the original article, and the decision was to use pytorch’s CrossEntropyLoss.
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With the purpose of better tracking themodel results, its hyperparameters, and also taking into account

the capacity of reproducibility from themodels, Comet.ml was used. It is a platform created to ”provide[s]

insights and data to build better, more accurate AI models while improving productivity, collaboration

and visibility across teams” [64]. Using Comet.ml makes it specially easier to compare results, while

also evidencing the hyperparameters/metrics for each instance. The usage of Comet.ml was already

implemented in the code by Khirotaka, but some functions were added in order to automatically calculate

the metrics:

• Sensitivity (Recall);

• Specificity;

• Precision;

• F-score;

• ROC Curves and their respective AUC scores.
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Data

4.1 MIMIC-III

In this study, the data used is from the MIMIC-III database [40], an acronym for the Medical Information

Mart for Intensive Care, a large database with information regarding de-identified ICU patients admitted

from 2001 to 2012 to the Beth Israel Deaconess Medical Center (BIDMC) in Boston, Massachusetts.

MIMIC-III is a public database, available on the PhysioNet website [65], only subject to a formally re-

quired request in order to maintain the appropriate care and respect to the detailed information it contains.

The request includes completing an online human-subjects training course, and the signing of a data use

agreement, allowing an unrestricted data analysis upon acceptance.

There has been a concerted move towards the adoption of digital health record systems in hospitals

in the recent years. In the US, for example, the number of non-federal acute care hospitals with basic

digital systems increased from 9.4 to 75.5% over the 7 year period between 2008 and 2014 [66]. Despite

this advance, interoperability of digital systems remains an open issue, leading to challenges in data

integration. As a result, the potential that hospital data offers in terms of understanding and improving

care is yet to be fully realized. In parallel, the lack of reproducibility of studies is increasingly coming

under criticism within the scientific research community [67].

Knowing these issues, that’s where MIMIC-III are set to make a difference and elevate the research

community. MIMIC-III supports a diverse range of analytic studies spanning epidemiology, clinical

decision-rule improvement, and electronic tool development. Being freely available to researchers world-

wide, owning a diverse and very large population of ICU patients in which containing highly granular

data, including vital signs, laboratory results, and medications. Also, due to the increasing usage of the

previous major releases, MIMIC-III is expected to be widely used internationally in academic and in-

dustrial research areas. Thus, the open nature of the data allows clinical studies to be reproduced and

improved in ways that would not be possible otherwise.

The data itself consists in over 40,000 distinct patients, with information sparse through 26 tables,

including demographics, vital signmeasurementsmade at the bedside (∼1 data point per hour), laboratory
test results, procedures, medications, caregiver notes, imaging reports, and mortality in the ICU and after

being discharged (if it happened)[40, 65]. The patients in the database can be divided in 2 groups based

on their age, with patients under 1 year old labelled as neonates, and the rest as adults, starting at the age

of 14. The MIMIC-III database was populated with data that had been acquired during routine hospital

care, so there was no associated burden on caregivers and no interference with their workflow.
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Before data was incorporated into theMIMIC-III database, it was first deidentified in accordance with

Health Insurance Portability and Accountability Act (HIPAA) standards using structured data cleansing

and date shifting. The deidentification process for structured data required the removal of all eighteen of

the identifying data elements listed in HIPAA, including fields such as patient name, telephone number,

address, and dates. In particular, dates were shifted into the future by a random offset for each individual

patient in a consistent manner to preserve intervals, resulting in stays which occur sometime between the

years 2100 and 2200. Time of day, day of the week, and approximate seasonality were conserved during

date shifting. Dates of birth for patients aged over 89 were shifted to obscure their true age and comply

with HIPAA regulations: these patients appear in the database with ages of over 300 years.

Despite all that, as explained in Correia et al.’s study [17], one of the problems of dealing with

MIMIC-III was the fact that data is not consistently available for all the patients, due to it being orig-

inated from two different systems, CareVue and MetaVision, where the same measure can have many

different codes, complicating the task of reproducing the time series with all of the variables. In her study,

a semi-manual identification of the repeated data wasmade, checking eachmeasurement code, which also

turned out useful on merging values with different measuring units to the same unit. This shows the im-

portance of the data preprocessing task, which will be addressed in the next section, requiring attention

to several details regarding the different measures and labels of each variable.

4.1.1 Table Selection

As said before, MIMIC-III is a relational database containing tables of data relating to patients who stayed

in the ICU. Out of the 26 tables, MIMIC-III gathers detailed information of patient’s stays scattered

across 6 of them, such as information regarding hospital admissions, ICU stays, patient demographics

and details about the clinical services, as well as its location within the hospital. During the exclusion

criteria in section 4.2.1, there was a need to combine several of these tables to have information about,

for example, the first ICU stay for patients with more than one ICU stay.

The selected data used in this studywas only collected on the tables CHARTEVENTS andLABEVENTS,

as they’re the two biggest tables regarding time series type of data from the patient in the ICU. The for-

mer contains all the charted data available for a patient across it’s ICU stay, while the latter contains in-

formation regarding laboratory based measurements, not only including measurements from in-hospital

scenarios, but also out of hospital laboratory measurements from other clinics, thus referred to as ”out-

patients”. In this work, only data collected within a patient’s ICU stay is considered, so every outpatient

data was discarded.

Also, the Urine Output records used in the staging criteria are collected within another table - OUT-

PUTEVENTS, which contains information on fluids that have been excreted by the patient -, but because

those collected values were only used in the staging criteria, and the UO features later used in this work

are calculated using records from this table, their origin in the list of features in Appendix A will be

labelled as calculated.

Linking the patient’s information tables with their associated dictionary table was also needed to

obtain the label for every measurement during all this process.
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4.2 Data Preprocessing

In this section, some choices were based on the work from Correia et al.[17], mainly due to the positive

results obtained in her work. Both studies have different goals and approaches, which is why the usage

of this study as groundwork will only turn out useful for some of the sections, more specifically, in the

sections involving data preprocessing.

4.2.1 Exclusion Criteria

MIMIC-III only contains information of neonates, children below 1 year old, and patients over 15 years

old. Just like in Correia et al.’s study, this study will also focus on adults, making it necessary to remove

the patients whose age is below 14. For that, the age is calculated using the difference between the earliest

admission data and the date of birth (DOB), except for patients older than 89 years old - that show up

in the database as 300 years old - due to being considered a vulnerable group of patients. Their DOB is

shifted to mask their age and comply with HIPAA [68].

As said before, because there is no specific feature information regardingAKI development during the

ICU stay, there is a need to calculate the stage of the disease regularly, based on the patient’s physiologic

information. For that, Correia et al. decided to use the AKIN classification system, following the criteria

addressed in the sections before (See Table 2.1), except for about 35% of patients with lack of data on

UO. In those cases, the AKI stage was only calculated using the SCr values. Those particular choices

will be different in this study, besides the choice to use the KDIGO classification system, and will be

addressed in the section 4.2.4.

Despite that variation, other common exclusion criteria amongst the studies included the removal of

patients that did not stay at least 24 hours in the ICU, had a minimum of three measures of SCr and one

measure of UO at every 6 hours. Also, for the patients that were admitted more than once in the ICU,

only the first event of AKI was considered, avoiding biased assessments. Discarding patients with no

Weight records was also needed, because otherwise it wouldn’t be possible to calculate the UO staging

criteria. The flowchart of that process is in Figure 4.1.

Figure 4.1: Flowchart of the number of patients in the cohort when applying the exclusion criteria

After applying all the stipulated criteria for the patients, the next step was to collect all the data

from the tables mentioned before and proceed to clean it. By this time, 11636 patients remain in the

cohort with a total of 571 different ID codes. Each ID code represents a measure for one of the two

information systems. Most of them do not have a clear label name, making it difficult to understand the

exact measure for every Item ID (ID code). Besides that, within the same information system several

measures are sparse through different ID codes, as they’re collected from different sensors. For a better

way to deal with those different ID codes and label them correctly, two similar data extraction resources

shared by the MIMIC-III community were combined to get the maximum variables possible [69, 70].
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Those consist in groupings of Item ID’s into variables, with also information regarding the normal value

ranges for every variable extracted.

Using the two benchmarks referenced before, 410 of the 571 Item ID’s were grouped into 82 different

variables. The rest of them were manually dealt with, some were labelled and included in the variables

when easily identifiable or deleted if they were duplicates or unidentifiable. After this long process, 147

variables were identified and processed.

Also, the following features were added to the feature list, directly derived from the KDIGO criteria

used to calculate the AKI stage:

• From the SCr criteria:

– SCr;

– Lowest SCr value from the last 48 hours;

– Lowest SCr value from the last 7 days.

• Because the UO criteria is calculated through the rate, using a sum of several sensors (sum of

different Item ID’s related to UO), these were the obtained variables:

– UO rate for the last 6 hours;

– UO rate for the last 12 hours;

– UO rate for the last 24 hours.

Cleaning each feature/code values was another procedure that had to be done manually. Not only re-

moving errors and null values, but the categorical data also needed to be dealt with. Categorical variables

were handled in a way to make them ordinal, ordering them by symptoms severity, e.g., Urine Appear-

ance had 5 different labels and was ordered as: Clear = 1 , Cloudy = 2 , Sediment = 3 , Sludge = 4, Clots =

5. Another particular example is the Glasgow Coma Scale (GCS), a practical scale described as a way to

communicate about the level of consciousness of patients with an acute brain injury [71]. The GCS total

score has values between 3-15 and is achieved with the sum of the behavioral response of the patient’s

eye movement, verbal and motor response. Besides GCS total score, identified as a numerical feature, the

three behavioral responses are also used in this work as categorical features. All the categorical features

labels and values can be seen in the Appendix A, where each feature is identified by their origin, with the

features derived by the KDIGO criteria identified as calculated features.

Regarding discrete features, race and gender will be discarded from the features. Age will also not be

included in the features used in the prediction, but will be used for patient stratification. Patient’s height

will also not be taken into account, as the priority was to keep features whose values change through time.

In this work, the choices made were based on an attempt to keep the coherence on initial goals, such

as to recreate, by the point of view of a health specialist, the prediction of the patient’s health situation

simply looking at its feature measures. Besides that, the self-attention model has the capacity to analyse

the sequence over time in a feature, so there was no win scenario in having fully simulated values for

an entire feature in a patient. To fight that, the decision here was to only work with patients that have

values for every feature, which consequently tends to reduce significantly the cohort with the increasing

number of features selected. The decision was to choose the first 80 features present in more patients, and

further keep only the patients with values in all of those selected features, and as expected, the number

of patients was drastically removed to 393.
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Next step was to remove values from every feature that was out of the normal value range, as well

as null values. As said before, the features created using both data extracting resources had the normal

value ranges for every variable, which means that the variables that were manually grouped had not.

Those normal range values were decided based on looking at the histogram of values for every variable.

Also, there was more than one different unit of measure in the records for both the selected variables and

the originated from the community benchmarks, so there was a need to understand what were the most

coherent units of measure to use between the Conventional and the SI Units [72]

Keeping only the measurements within each feature’s normal range meant some features got reduced

to the point where there were not values in every patient. Thus, the number of patients and features got

reduced to 375 and 64, respectively (including the calculated features derived from the KDIGO criteria).

This whole process is shown in Figure 4.2

Figure 4.2: Flowchart of the data preprocessing process with the number of patients and features through-

out

When in doubt of the relevance of some features during this whole process, particularly the variables

that were manually selected, finding studies that used them to study AKI (or other renal disease) was the

trigger to decidewhether to keep them or not, e.g Basophils, in whichMack&Rosenkranz [73] studied the

affect on immune responses and discussed implications for renal diseases. Other variable examples that

required studies or articles in order to be selected were Base Excess (arterial and venous) [74], Calcium

and Creatine Phosphokinase (CPK) [75], Central Venous Pressure (CVP) [76], Urine color and appear-

ance [77] and Ectopy Frequency [78]. Some features were selected based on their presence in studies on

AKI and were later discarded, due to the lack of records after the data cleaning, e.g. Vancomycin, an

antibiotic often associated with nephrotoxicity, was tested on its direct responsibility in the occurrence of

vancomycin-associated nephrotoxicity (VANT) for fragile patients with multiple risk factors for AKI in

Filippone et al.’s study [79]. Other examples were Nitric Oxide [80], Serum Osmolality [81] and Serum

Uric Acid [82].

4.2.2 Repeated data

As already addressed in the Data section (Section 4.1), MIMIC-III requires an identification of the re-

peated data, due to it having several different codes for the same measures. Each measurement or concept

has a specific and unique code called Item ID (e.g. Item ID = 211, describes measurements of heart rate

(HR)). Nonetheless, there are duplicated codes for each concept (e.g. HR has two codes assigned: Item

ID = 211 and Item ID = 220045), associated from the fact that the information comes from two distinct

critical care information systems and also because of the free text nature of data entry in the older system.

The process to counter that started with text search to look for codes with identical names, then inves-

tigate whether the selected codes were measuring the same things, and later checking the range of values

through the use of box plots for each code, to see if the range of values was similar, and consequently

comparable.
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The benchmark created by Yereva et al. [69] deals with the same measurement for both information

systems. The variables originated from it were not changed, just the manually selected features were

required to have a code identification process with the purpose of collecting the most amount of informa-

tion possible. Also, the benchmark has the normal range of values for each of their recognized variables,

meaning that the particular process of understanding the range of values was not needed for every Item

ID, thus being only used in the codes and variables manually selected.

4.2.3 Baseline Estimations

Regarding the baseline of serum creatinine, this study will use the lowest value of the first three measures

of SCr, basing this choice on the studies that used the same data set (MIMIC-III) [16, 17, 18], as seen

in the Related Work section (Section 2.1.3). The SCr records used for the staging were only from the

ID code 50912, from the LABEVENTS table, just like the research community uses in the MIMIC code

repository [83]. The remaining records for other codes associated to SCr will be used in the final dataset

as the feature Serum Creatinine (scr).

Both the UO and the SCr baseline values were generated with scripts from theMIMIC code repository

[83], and followed the criteria from the KDIGO classification system shown in Table 2.1, which has

the criteria regarding SCr and UO. In this work, RRT initiation and Anuria were not used in the AKI

classification.

4.2.4 Classification systems

The limitation of information regarding the measurements used for the staging classification (SCr and

UO) was addressed in Correia et al.’s study [17], using mainly SCr values to calculate the AKI stage

(when both weren’t available), not discarding the patients when the UO data was not enough to be useful

on the AKI staging. Different from what was done in Tomašev et al’s study [42], as the authors only

worked with stages originated from SCr values. In this thesis, two distinct classification systems will

be tested: one using only SCr values to calculate the AKI stage, and the other that uses both SCr an

UO criteria. For the latter, this means that for each record of either SCr or UO, there is an AKI stage

calculated. Thus, and because both AKI staging criteria are not associated by any means, some values

might be in disagreement. Both measures have different registry frequencies, with UO generally being

recorded hourly and SCr more in a random pattern, meaning that in the space of an hour the predicted

AKI stage can change meaningfully.

In order to fight that, some alterations were made in the full timeline of the AKI staging criteria,

looking for a more coherent sequence. Those alterations were made only when the discording values

were originally from different classification systems, and are illustrated in Figure 4.3:

• The discording value was between 4 values identical from the same classification system. In that

case, the discording value was changed to be the same as those other 4 (Figure 4.3a);

• The values before and after were different, and the discording value also different from both of

them. In that case, the lowest of the neighbours is taken (Figure 4.3b).

To facilitate the flow of the sentences the classification systems used will be abbreviated to:

• sCr - classification system that only uses SCr values for the evaluation;
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(a) Example 1 (b) Example 2

Figure 4.3: Examples of the creation of 2B

• 2B Raw - classification system with the SCr and UO evaluation, following the criteria;

• 2B - classification system generated through the alterations from 2B Raw with the purpose of

providing coherence within the sequences.

This creation of 2B was not developed with the purpose of being groundbreaking, it was mainly to

replicate the way a specialist would look at the sequence and evaluate the patient. Assuming the raw

output of the sequence (2B Raw) is the real AKI development in a patient, it wouldn’t be legitimate to

bounce between having no AKI (stage 0) to, for example, stage 2, within the space of an hour. This

example is displayed in Figure 4.3a.

In section 5, there’s a result comparison between 2B and 2B Raw, to test and evaluate any differences

in the prediction results between them. This means that there will be 3 different classification systems

considered for the next section, with the purpose of also using them in the final results.

4.2.5 Missing Data Imputation

One important task regarding the data was the need of reshaping the full dataset in a way that would fit the

model. Due to SAnD not dealing with any missing values, and because the goal was to specifically work

with data in hourly time stamps, reshaping was necessary to facilitate the selection of sequences for the

predictions. Also, because not every patient has values for each feature in every hour, either because the

regular extracting time does not happen on an hourly basis for every feature, or due to the data cleansing

process removing some records, missing data imputation occurred.

A function that runs through the whole dataset was created, with each record having an identification

for the patient, the feature and the time it was recorded in the format of hours since admission. In the

first step of the function, a complete representation for each patient in a table like way is generated. The

number of rows for each patient’s table depends on the length of its stay in the ICU, while the columns

are the features. Having that, all values are inserted into the table using the hour, H, and the feature, F,

like coordinates, (H, F). There were some cases where more than 1 record was recorded in the same hour

for the same feature, thus the following procedure took place:

• If those values were duplicates, keep only one of them;

• For the categorical features, the last record is the set value for the hour;

• For the numerical features, the set value is the average of those records;
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• When there was no record for the previous/next hour, the first/last value filled it. When both are

missing, both are completed with the same ’rule’, while the value for the original hour is set as the

last recorded value.

As said before, because there are not values for every feature in every hour, the following methods

were applied:

• Last observation carried forward (LOCF) to fill in missing values from left to right, until another

value is recorded or until the end of the sequence;

• Next observation carried backward (NOCB) to complete the missing values that take place before

the first value for a feature is recorded.

This process is shown in Figure 4.4, where in Figure 4.4a is an example of the table creation for a

patient with the input of all its available measures, and Figure 4.4b displays the application of LOCF and

NOCB, indicated with blue and red, respectively.

(a) Table with all patient values (b) Application of the LOCF and NOCB methods

Figure 4.4: Example of the input missing data process for a patient

Here, the methods used could be different, e.g, using interpolation to input the missing data, specially

on discrete data, but the main idea, again, was to complete the patient table in a way comparable to what

a specialist would see. Since SAnD takes into account the variance of values for every feature during

the full training sequence, different interpolation methods would probably payoff in better results, which

will be addressed in the future work section, on section 7.

The function also generates the data sequences, so one last parameter of the function created is the

length of the training sequences. Thus, after each patient’s table is fully completed, each table results in

t − l training sequences with size l, with t being the number of hours in the table for that patient. This

process is best illustrated in Figure 4.5.

4.2.6 Descriptive Statistics of the selected patients

From the 375 patients cohort, there’s a clear tendency for patients closer to elderly ages. Only 60 from

the total patients are of age 50 or below (16%), while 173 ( about 46.2 % ) are 70 or older. This comes as

no surprise, due to the usual tendency of the elderly to stay longer in the ICU, meaning there was more
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Figure 4.5: Example of training sequences extracted out of an 8 hour sequence, with a length of 5 hours

chances of being measured for every feature considered, which was the main requirement of the patient

selection, as mentioned in the previous sections. By looking at the length of stay average (in days) per

age in Figure 4.6, with the context of the reduced number of patients in younger ages, means that the few

younger patients in the cohort were very specific cases of patients that stayed for longer in the ICU.

Figure 4.6: LOS average (in days) per age

The patient distribution by age shows that it is possible to stratify the patients and study the age factor.

It is harder to infer the statistical relevance of race since the cohort was very imbalanced, with 279 out

of the 375 patients being white (74.4%) and only 19 black (5.1%), in contrast to the 57 not specified

(15.2%), the remaining patients were 8 latino, 7 asian and 5 other ethnicity non specified (2.1%, 1.9%

and 1.3% respectively). In terms of gender the cohort was better balanced, males represent the majority

with 52.3%, counting 196 against the 179 females in the patients taken into account in this study.

4.2.7 Time Windows

As addressed in the related work on other diseases (Section 2.1.4), where the studies analysed focused

on using time windows with the purpose of building their predictive models [43, 42], the same will

happen in this study, where the goal is to utilize supervised learning based on time windows to predict

the progression of AKI, learning through patients with consistent information on those time windows.
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(a) Race distribution (b) Gender distribution

Figure 4.7: Demographics from the patient cohort

The approach in this study is quite similar to the approach by Tomašev et al. [42] in the sense of

working with continuous time windows, with information for every hour. Several sequence lengths will

be used, this way we’ll be capable of studying the constant progression of the patients and test what

sequence lengths end up producing better results. The length of sequences used will be 6h, 12h and 24h.

A higher sequence length won’t be addressed because one of the exclusion criteria was to keep patients

that have been at least 24h in the ICU, thus some of the patients in the final cohort didn’t stay in the ICU

for much longer than that.

For every patient, this approach will continue as far as there is data capable of doing so, meaning that

probably the prediction will only stop when the patient dies, or is discharged.

4.2.8 Patient Stratification by age

Due to the general performance of predictive models not being uniform across the entire population,

knowing the differences across the different subgroups can be important regarding future practicalities

on those patients. Having that in mind, and based on the approach by Tomašev et al. [42], evaluating

the model performance across different clinical subgroups can be interesting. Those different subgroups

were created based on the patient demographics, more specifically through age groups.

The subgroups selected were:

• Patients aged below 40 (Young);

• Patients aged between 40 and 60 (Middle age);

• Patients aged between 60 and 80 (Older age);

• Patients aged over 80 (Elder).

As can be seen in Table 4.1, the class imbalance is evident. Thus, we will not study and compare

the progression of the disease along the subgroups. The low percentage of some stages will not enable
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Stage distribution (%)

Number of patients Sample size Stage 0 Stage 1 Stage 2 Stage 3

Young 23 9523 61.58 23.12 9.78 5.52

Middle age 94 36851 83.62 6.60 5.90 3.88

Older age 177 60798 76.37 14.74 6.90 1.99

Elder 81 22348 73.89 19.13 3.97 3.01

Table 4.1: Sample size of the target class for each age group, using the sCr classification system with

24h sequences

making legitimate comparisons, meaning there won’t be any valuable conclusions as the results on those

stages will be considerably worse.

4.3 Chapter summary

In this chapter, the full data prepocessing pipeline was described, including the several procedures and the

thoughts behind each choice made. In the end, the final cohort consists of 375 patients with information

regarding 64 features (including the calculated features, the group of features originated from the criteria

used to define the patient’s AKI stage), as the list of features can be seen in the Appendix A.

The data collected from the patients was then processed into sequences with hourly measures for

every feature. These sequences will be used in the final section, as we will test the results when using

sequences of 6h, 12h and 24h length.

The AKI classification systems chosen to work with were addressed and explained: 2B, 2B Raw and

sCr. Later, in the next sections, there will be a comparison between them based on their results.
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Feature Importance using Random Forest

In this section we’ll focus on analyzing the individual importance for every feature when predicting the

patient’s AKI Stage. Using the preprocessed data, each hourly timestampwas used as training data for the

two types of predictions that were made: predicting the AKI stage on the current exact hour and predicting

the AKI stage of the following hour. Within those predictions, several experiments with different sets of

features occurred. We tested predicting with and without the features originated from the classification

systems, to examine the performance of the remaining features. Despite using sequences with several

hours in the model, the results obtained in this section withstand as legitimate because the whole point of

predicting the current and the next point in time was to analyze the possible differences or similarities of

the feature importance results between them. If a feature is seen as important while predicting both cases,

there’s a reasonable assumption that it would also be an important feature to use in predictions when it’s

fed into a sequence based model.

5.1 Feature Importance

Feature importance refers to techniques that assign a score to input features based on how useful they are

at predicting a target variable [84]. Those scores play an important role in a predictive modeling project,

including providing insight into the data, better understanding the model, and the basis for dimensionality

reduction and feature selection, that can improve the efficiency and effectiveness of a predictive model

on the problem.

Feature importance scores can be calculated for problems that either involve predicting a numeri-

cal value or problems that involve predicting a class label - which is this case-, called regression and

classification respectively.

Most importance scores are calculated by a predictive model that has been fit on the dataset and

can provide insight into it, as the relative scores can highlight which features may be most relevant to

the target, and contrarily, which features are the least relevant to the model when making a prediction.

Knowing what features to select or keep can simplify the problem that is being modeled, speed up the

modeling process (working with less features means less complexity), and in some cases, improve the

performance of the model. This is a type of model interpretation that can be performed for those models

that support it.

There are several types and sources of feature importance scores, although popular examples include

statistical correlation scores, coefficients calculated as part of linear models, decision trees, and permu-

tation importance scores.
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In this work, scores were calculated using decision trees, more specifically through fitting the dataset

into a Random Forest model with 100 trees. Permutation Importance was also considered in the initial

testing stage for this section, but because the results were not conclusive of anything different from the

Feature Importance the initial plan using both was discarded.

The goal here is not to achieve some ground breaking results such as finding a new feature that helps

the AKI stage prediction in a general way. The idea is just to understand what are the significant features

for this specific dataset, and compare the model’s performance when using variable selection by focusing

only on the important features.

With knowledge of the significant features for every case, the accuracy of predicting the AKI Stage

in the current hour and the next was assigned into Random Forest classifiers (RF) and Naive Bayes

classifiers (NB). Those classifiers were fed the dataset with a reduced number of features, using only the

x most important features - with x being the predefined number of features to select and test -, taking

into account the importance scores order achieved before. This testing started with the 5 most important

features and went all the way up to the point of including all features, this way it’s possible to compare

the accuracy of both models when dealing with different numbers of features. Thus, knowing the optimal

number of features to use in order to obtain good results means there is less testing to do with the final

model, as we can exclude testing results with irrelevant features. Random Forest with 100 number of

trees and Gaussian Naive bayes with scikit learn’s default var_smoothing value of 1e−9 were used.

5.2 Experiments using all patients

In this section, the cohort for all patients considered is the cohort of 375 patients drawn in the previous

data preprocessing segment. As said before, some tests were made in this section, and besides analyzing

the results when predicting the current and next hour, it was also tested the results with the following

selections of features:

• In the current hour:

– All features (excluding AKI Stage);

– All features (excluding AKI Stage and the calculated features).

• In the following hour:

– All features;

– All features (excluding AKI Stage);

– All features (excluding AKI Stage and the calculated features).

5.2.1 Feature Importance

The feature importance scores between current and following hour prediction were very similar, with the

slight exception of some features who got small variations and because of that changed their positions

in the ordered feature ranking, but because those importance scores were so low those changes of order

were not significant. Thus, only the scores of the following hour predictions will be analyzed here.
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As expected, when using all features the most important feature on the 3 classification systems is AKI

Stage, followed by the 3 calculated UO features on both 2B and 2B Raw, or followed by the 3 calculated

sCr features on the sCr classification system. The remaining features have close scores, with very low

values (figures 5.1 and 5.2). Because the results in this section were similar between 2B and 2B Raw,

only the results for 2B will be displayed, but the Feature Importance scores for all classification systems

considered can be seen in the Appendix B.

Although the classification systems use different criteria, some of the features with the highest feature

importance scores were common to all the prediction models, such as Weight, Prothrombin Time (PT)

or Platelets. Without the calculated features, all these remaining scores were residual with no standout

values, as the highest score out of the 3 classification systems was Serum Creatinine (sCr) with 0.057 in

the sCr classification system.

At the bottom of these importance score rankings were the categorical features. Out of those, only

Urine Color got a better placement in 2B, in the sCr classification system none of those were significant

to the prediction models. This may happen due to the tendency of this method to favor numerical features

and categorical features with high cardinality [85].

(a) Using all features (b) Using all features except the calculated features

Figure 5.1: FI scores for the 2B classification system when predicting the following hour

(a) Using all features (b) Using all features except the calculated features

Figure 5.2: FI scores for the sCr classification system when predicting the following hour
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5.2.2 Model efficiency using different number of features

The next step was to actually test the results when using those different set of features. Here, the features

were selected based on their respective importance scores, from best to worst. The results used in the

figures 5.3 to 5.5 are in the appendix D in a table format.

The results were generally better when using a Random Forest classifier compared to using Naive

Bayes, as can be seen in the figures 5.3 to 5.5. As expected, the overall accuracy of the prediction models

decreases when the calculated features are not included. Also, looking at the figures it’s possible to

visualize that the results were progressively worse as the number of features included in the model were

higher. The only exception were the RF models with no calculated features, as they increased nearly 10%

in accuracy using all features in the set, compared to using the 5 most important ones.

(a) Accuracy when predicting the current hour (b) Accuracy when predicting the following hour

Figure 5.3: Using 2B to evaluate the predictions, while also showing its accuracy for different sets of

features selected

(a) Accuracy when predicting the current hour (b) Accuracy when predicting the following hour

Figure 5.4: Using 2B Raw classification system to evaluate the predictions, while also showing its accu-

racy for different sets of features selected

Despite the good results in general, specially using RF models, more important than the overall ac-

curacy was knowing the efficiency when predicting every class. By looking at the confusion matrices

from the predictions made (with all features) for the following hour (Figures 5.6 and 5.7), it’s clear that

there is a struggle to correctly predict stages 1, 2 and 3, which can be explained by the imbalance of the
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(a) Accuracy when predicting the current hour (b) Accuracy when predicting the following hour

Figure 5.5: Using sCr classification system to evaluate the predictions, while also showing its accuracy

for different sets of features selected

classes, and will be addressed in the next section. Still, 2B shows slightly better results both in RF and

NB, compared to 2B Raw, while both have low accuracy on predicting stage 1 occurrences. When using

all stages, results for the sCr classification system are nearly immaculate, and stays that way across all

RF predictions. Across the 3 classification systems using the NB classifier, sCr does predict stages 1, 2

and 3 with a higher precision, and as expected, the accuracy of predicting those 3 stages is worse when

excluding the calculated features.

(a) 2B: Using all features (b) 2B Raw: Using all features (c) sCr: Using all features

(d) 2B: No calculated features (e) 2B Raw: No calculated features (f) sCr: No calculated features

Figure 5.6: Confusion matrices when predicting the following hour with RF

5.3 Dealing with class imbalance

As mentioned in the former section, the general low accuracy when predicting AKI stage 1, 2 and 3

was alarming and needed to be addressed. The AKI stage classification values for every hour is counted

and presented in Table 5.1, where the high class imbalance stands out, for both types of classification
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(a) 2B: Using all features (b) 2B Raw: Using all features (c) sCr: Using all features

(d) 2B: No calculated features (e) 2B Raw: No calculated features (f) sCr: No calculated features

Figure 5.7: Confusion matrices when predicting the following hour with NB

Stage

Number of patients 0 (%) 1 (%) 2 (%) 3 (%)

2B

375
83 4 10 3

2B Raw

sCr 78 13 5 4

Table 5.1: Class imbalance for all patients selected

systems used. When using the SCr classification system from KDIGO, the frequency of each stage was

approximately 78%, 13%, 5% and 4%, from stage 0 to stage 3 respectively, and approximately 83%, 4%,

10% and 3% when using both 2B classification systems. This shows the discrepancy between classes

and helps understand the difficulties to predict the less frequent stages. Despite the good results in terms

of overall accuracy, specially using the calculated features, testing the outcome when using training data

with more balanced classes is important, specifically to understand the capability to correctly predict the

remaining stages.

Originally, the process of balancing the classes was thought out in two different ways: either remove

hourly records without looking at the patients and get the perfect balance of 25% for every class, or

remove the patients with more recordings of stage 0 and try to balance the classes the best way possible.

The latter option was taken into account, because later we’ll be working with sequences from the same

patients, so this same patient selection can be further used. Patients were removed (in a descending way)

by the proportion of stage 0 in the total of stage values, until the frequency of stage 0 values drops to at

least 50%, preferably stopping before removing patients with a reasonable amount of stages 2 and/or 3.

This process had to be done individually for each classification systems, and in the end, the final class

frequency turned out to be approximately 50%, 8%, 29% and 13% (from stage 0 to 3, respectively) for

both 2B and 2B raw, and 30%, 26%, 26% and 18% for the sCr classification system (Table 5.2).
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Stage

Number of patients 0 (%) 1 (%) 2 (%) 3 (%)

2B 53 49 8 29 14

2B Raw 61 50 8 29 13

sCr 66 30 26 26 18

Table 5.2: Class imbalance after removing patients

5.4 Experiments with balanced classes

5.4.1 Feature Importance

Comparing to the former section, when looking at the Feature Importance using the reduced patient cohort

(Appendix C) a slight alteration is visible in terms of orders of the features, in general, but also detail that

those feature scores did not actually change significantly. This means that the non-calculated features

continue to show a lack of significance on the predictions, exhibiting the lack of individual importance

that these features actually have in the predictions.

Both in 2B and in the sCr classification systems the scores did not change toomuch, thus some features

topped the list with the reduced cohort as well. In the sCr classification system, Serum Creatinine, CPK

and Weight were the most relevant features in common between both cohorts, while in the 2B and 2B

raw Heart Rate, Temperature, Systolic Blood Pressure and Mean Blood Pressure stayed relevant for both

cohorts, with, once again, equal feature importance scores.

The same output happened within current hour and following hour prediction, where the scores re-

mained pretty much identical, meaning that an assumption can be made that these most relevant features

will stay being relevant independently of the point in time of the prediction, so we will assume that each

important feature will be important in general.

The only difference between cohorts is that the score of AKI Stage decreased from approximately

0.51 to 0.33, which indicates that AKI Stage has less weight on the final prediction when predicting

the following hour. In 2B and 2B Raw AKI Stage also lost importance, but the scores only decreased

approximately 0.02 on both.

As expected, the categorical variables had low feature importance scores, just like what happened

before, with exception of Urine Color that actually got a good placement in the list on the 2B and 2B raw

classification system.

These results show that besides the calculated features, there are no features that have significant

relevance in the prediction. Thus, there’s no point in trying the final model with feature sets without

those calculated features, as it is expected to produce worse results without them.

5.4.2 Model efficiency using different number of features

Once again, the results used in the figures 5.10 to 5.12 are in the appendix E in a table format. No

significant changes occurred when comparing to the cohort with all patients. Again, the results were

generally better when using RF compared to NB, the overall accuracy of the prediction models decreased

when the calculated features were not included. Also, with this reduced cohort the results continued to

get progressively worse as the number of features included in the model got higher.
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(a) Using all features (b) Using all features except the calculated features

Figure 5.8: FI scores for the 2B classification system when predicting the following hour using the re-

duced cohort

(a) Using all features (b) Using all features except the calculated features

Figure 5.9: FI scores for the sCr classification system when predicting the following hour using the

reduced cohort

The accuracy of correctly predicting stage 1, 2 and 3 was better in this reduced cohort, in pretty

much every case for every classification system. Stage 1 was where the biggest improvements happened,

showing the importance of balancing the stages to improve the accuracy in every feature. Again, 2B

shows slightly better results both in RF and NB, compared to 2B Raw, but not close to the results that the

sCr classification system got (Figures 5.13 and 5.14).

5.5 Final conclusions

Across all of this section it’s possible to see that the sCr classification systems produces better results

than both 2B and 2B raw. So it is expected to have better accuracy not only generally, but also better

accuracy predicting stage 1, 2 and 3.

Reducing the number of patients and consequently balancing the stage proportions within the cohort

produced the results we wanted to see. Both using RF and NB, the accuracy of predicting the stages with

AKI occurrence ( stages 1, 2 or 3) increased when predicting the 2B and 2B raw classification systems,

although there was still some trouble predicting stage 1, which can be explained by the low proportion
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(a) Accuracy when predicting the current hour (b) Accuracy when predicting the following hour

Figure 5.10: Using 2Bwith the reduced cohort to evaluate the predictions, while also showing its accuracy

for different sets of features selected

(a) Accuracy when predicting the current hour (b) Accuracy when predicting the following hour

Figure 5.11: Using 2B Raw with the reduced cohort to evaluate the predictions, while also showing its

accuracy for different sets of features selected

of stage 1 values in the model. For NB, the accuracy of stages with AKI occurrence after removing

the calculated features is really low, and, in general, RF resulted in better results compared to NB. The

predictions of the sCr classification system barely changed, as it already had accuracy close to 1 in every

stage.

As said before, this section was also used to compare 2B and 2B raw, and exclude the one with worst

results of the final model tests. Using NB produced better results on 2B in every set of features tested,

while RF drew better results for 2B only when using all features. In the other cases there was a slight

increase in 2B raw, although not anything significant, but because the calculated features are going to be

included in the final model tests, the assumption that 2B will produce better results than 2B Raw can be

made, as it outperformed in almost every cases.

Having that, the decision to keep on using 2B on the final section was made, and consequently ex-

cluding 2B raw from now on. Also, because the reduced patients cohort produced better results in terms

of accuracy in predicting stages with AKI occurrence, it was decided that the tests in the next section will

only happen using those reduced cohorts. No clear evidence suggested that a high number of features

should be used when working with SAnD. So, we’ll consider the optimal number of features to use is 10.
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(a) Accuracy when predicting the current hour (b) Accuracy when predicting the following hour

Figure 5.12: Using sCr with the reduced cohort to evaluate the predictions, while also showing its accu-

racy for different sets of features selected

(a) 2B: Using all features (b) 2B Raw: Using all features (c) sCr: Using all features

(d) 2B: No calculated features (e) 2B Raw: No calculated features (f) sCr: No calculated features

Figure 5.13: Confusion matrices when predicting the following hour with RF

(a) 2B: Using all features (b) 2B Raw: Using all features (c) sCr: Using all features

(d) 2B: No calculated features (e) 2B Raw: No calculated features (f) sCr: No calculated features

Figure 5.14: Confusion matrices when predicting the following hour with NB on the reduced cohort
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Results

6.1 Model Assessment

6.1.1 Classification metrics

The real output data (the target data) is non-binary, since the AKI stage can vary from 0 to 3, depending in

the severity of the disease. This means that we have a 4 by 4 confusion matrix, and because the majority

of classification metrics are defined for binary cases we can break down this multiclass problem into

several binary ones. The prediction of each AKI stage will be a different task, such as:

• AKI stage 0: stage 0 vs. not stage 0 (stage 1, 2 and 3)

• AKI stage 1: stage 1 vs. not stage 1 (stage 0, 2 and 3)

• AKI stage 2: stage 2 vs. not stage 2 (stage 0, 1 and 3)

• AKI stage 3: stage 3 vs. not stage 3 (stage 0, 1 and 2)

This way, the predicted outputs and the target values can be plotted in a binary confusion matrix.

Having that, the performance metrics used in this work are:

Overall Accuracy - ratio between the number of correct predictions and the total number of predictions

made.

Specificity - ratio between the number of correct negative predictions and the total number of negative

points. It gives the power of the model to correctly predict other stages than the AKI stage in matter.

Specificity =
TN

TN + FP
(6.1)

Sensitivity (Recall) - the ratio between the number of correct positive predictions within the total

number of real positive points. It gives the power of the model to predict the exact AKI stage among

those stage predictions.

Recall =
TP

TP + FN
(6.2)

Precision - the ratio between the number of correct positive predictions within all positive predicted

points. It gives the proportion of actual positive AKI stage predictions are correctly classified within all

positive predictions.
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Stage distribution (%)

Number of patients Sequence length Sample size Stage 0 Stage 1 Stage 2 Stage 3

sCr 66

6 27672 29.54 26.01 26.16 18.29

12 27276 28.64 26.27 26.54 18.55

24 26484 27.33 26.32 27.27 19.08

2B 53

6 18032 48.60 8.11 29.57 13.72

12 17714 48.71 7.97 29.37 13.95

24 17078 49.49 8.02 28.79 13.70

Table 6.1: Sample size for the reduced cohorts

Precision =
TP

TP + FP
(6.3)

F-score (F1 score) - harmonic mean of precision and recall. If either precision or recall have low

values the F1 score will suffer and result in a lower score. This means that a high F1 score indicates low

rates of false positives and false negatives.

F1score = 2 · precision · recall
precision+ recall

(6.4)

AUC - area under the receiver-operating characteristic (ROC) curve gives a good assessment of the

balance between sensitivity and specificity, two important scores when dealing with imbalanced datasets.

It is a performance rate that is easily understandable by caretakers, and is frequently used in medical

literature, making it possible to compare methods and models easily.

6.1.2 Sample size and stage distribution

After several experiments, the data was partitioned in 60% for the training set, and 20% for both validation

and test sets. These sets were originated using a fixed random seed across all experiments, with equal

proportions of stage distribution across them.

The stage distribution of the different data used in the experiments is displayed in table 6.1. While the

stage distribution is not considerably unbalanced for the data associated to sCr, it is for the data associated

with 2B. Thus, the class weights are fed to the loss function.

6.1.3 Hyperparameters and architecture choices

As said earlier, the authors from the Transformer did not specify why they decided to use 6 stacks of

attention blocks, so in this study several N number of attention blocks were tested, and the final choice

ended up being to work withN = 10. Regarding other network hyperparameters, the dense interpolation

factor was manually set to 4 after testing the results with different values. The number of heads in the

multi-head attention was set to 8, just like in the original architecture, since the results achieved in the

experiments with other number of heads in the attention module didn’t produce significant changes. Just

like in the original architecture, the Adam optimizer with parameters β1 = 0.9, β2 = 0.98 was used,

with a learning rate of 0.00025. Regarding the attention and residue dropout regularizations, the dropout
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probability was set to 0.2, and the batch and embedding sizes were set to 256. Also, the number of epochs

during training was set to 100 for all experiments in this section.

6.2 Experiments

6.2.1 Using the sCr classification system

6.2.1.1 All features

The performance of the model was similar across the different sequence lengths used. The best results

were achieved when working with 24h sequences, achieving higher scores in pretty much every metric

used, as can be seen in Table 6.2. The overall accuracy was 98.2%, with F1 scores of 0.981, 0.975, 0.985

and 0.986 for stages 0 to 3, respectively. Only the F1 score for AKI stage 0 was higher when using a

sequence length of 12h, achieving a score of 0.982. The AUC scores for the 24h sequences were 0.993,

0.978, 0.983 and 0.995 for stages 0 to 3, respectively, shown in Figure 6.1 along with the ROC curves.

sCr classification system

Sequence length AKI Stage Overall Accuracy Specificity Sensitivity Precision F1 score

6

0

0.969

0.980 0.992 0.954 0.973

1 0.990 0.947 0.972 0.959

2 0.995 0.959 0.985 0.971

3 0.993 0.982 0.973 0.977

12

0

0.975

0.989 0.991 0.974 0.982

1 0.990 0.960 0.972 0.966

2 0.995 0.957 0.987 0.972

3 0.992 0.995 0.966 0.980

24

0

0.982

0.996 0.972 0.990 0.981

1 0.990 0.976 0.973 0.975

2 0.994 0.986 0.985 0.985

3 0.994 0.995 0.977 0.986

Table 6.2: Results of the model using the sCr classification system

51



Chapter 6 Results

Figure 6.1: ROC curves using 24h sequences

6.2.1.2 10 most important features

The 10 most important features for the sCr classification systems obtained in section 5.4 (shown in Ap-

pendix C) are used in these experiments, and shown in Table 6.3. Contrarily to when using all features,

the performance of the model this time ended up being slightly better when using sequences of 6h and

12h (shown in Table 6.4). The overall accuracy was 96.3% on both, and the best F1 scores were 0.972,

0.957, 0.965 and 0.974, for stages 0 to 3 respectively. The scores for stages 0 and 1 were achieved using

sequence lengths of 6h, and stage 2 and 3 achieved using sequence lengths of 12h. The AUC scores for

the 24h sequences were 0.997, 0.961, 0.944 and 0.996 for stages 0 to 3, shown in Figure 6.2 along with

the ROC curves. Despite the better overall performance of the model when using all features, the AUC

scores were similar comparing to the scores when using only 10 features.

Feature Score

AKI Stage 0.334

Creatinine - Baseline value 0.103

Creatinine - Baseline value: Lowest 7 days 0.061

Creatinine - Baseline value: Lowest 48hr 0.051

Weight 0.036

Serum Creatinine 0.035

Creatine Phosphokinase (CPK) 0.025

Red Blood Cell Distribution Width (RDW) 0.020

Blood urea nitrogen 0.018

Alkaline phosphatase 0.017

Table 6.3: Feature importance scores for the sCr classification system
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sCr classification system

Sequence length AKI Stage Overall Accuracy Specificity Sensitivity Precision F1 score

6

0

0.963

0.993 0.962 0.983 0.972

1 0.986 0.954 0.960 0.957

2 0.989 0.949 0.969 0.958

3 0.982 0.997 0.931 0.963

12

0

0.963

0.988 0.964 0.970 0.967

1 0.985 0.939 0.956 0.947

2 0.987 0.968 0.962 0.965

3 0.991 0.988 0.963 0.974

24

0

0.944

0.998 0.907 0.993 0.948

1 0.969 0.935 0.915 0.925

2 0.980 0.952 0.946 0.949

3 0.980 1 0.921 0.959

Table 6.4: Results of the model using the sCr classification system and the 10 most important features

Figure 6.2: ROC curves using 24h sequences and 10 features

6.2.1.3 Results when predicting a stage alteration

The scores achieved were high, although including cases where the last value of the AKI stage in the

sequence is the same as the target AKI stage. Using sequence lengths of 24 hours, when looking at the

samples whose last AKI stage of the sequence is different from the target, we found out that only 163 from

the 26484 total sequences have target values different from the last AKI stage value of the sequences.

After the data splitting, only 29 out of the 5297 samples from the test set have different targets and last

values of AKI stage in the sequences.

Despite the low proportion of samples with stage alteration, the model using all features is capable

of predicting the exact stage in nearly 51.72% of predictions. The accuracy of predicting the exact AKI

stage when the patient’s diagnosis gets worse was 57.89%, which was the same accuracy for the model

to predict if the patient’s diagnosis was going to aggravate (correctly predicting the aggravation of the

patients AKI condition, instead of simply looking at the correct AKI stage). The model can also predict

53



Chapter 6 Results

the occurrence of episodes of AKI (for patients that were not diagnosed with the disease) with an accuracy

of 50%. Table 6.5 displays those predictions, showing the last AKI value of the sequence, the target AKI

value and the output produced by the model.

The model performance when using 10 features achieved 41.38% accuracy when predicting the exact

stage, 57.89% accuracy predicting the exact AKI stage when the patient’s condition worsens, and 63.16%

accuracy predicting the aggravation of the patient’s AKI condition. The accuracy predicting episodes of

AKI for patients with stage 0 by the time of prediction achieved 66.67%. Those predictions are displayed

in Table 6.6.

LS-T-P Count LS-T-P Count LS-T-P Count

0-1-0 2 1-0-1 2 2-1-2 1

0-1-1 1 1-2-1 4 2-3-3 3

0-2-0 1 1-2-2 5 3-0-3 1

0-2-2 2 1-3-1 1 3-1-3 1

1-0-0 3 2-0-0 1 3-2-3 1

Table 6.5: Predictions regarding stage alteration using sCr with all features. (LS - last AKI stage value

in the sequence; T - target value, P - prediction output)

LS-T-P Count LS-T-P Count LS-T-P Count

0-1-1 3 1-2-1 5 2-3-3 3

0-2-0 2 1-2-2 4 3-0-3 1

0-2-1 1 1-3-3 1 3-1-3 1

1-0-1 4 2-0-0 1 3-2-3 1

1-0-2 1 2-1-2 1

Table 6.6: Predictions regarding stage alteration using sCr with 10 features. (LS - last AKI stage value

in the sequence; T - target value, P - prediction output)

6.2.2 Using the 2B classification system

After realizing the very limited number of samples to predict the accuracy of the model regarding stage

changing using sCr, there was a need to find that number of samples in the datasets used in the experiments

associated with 2B. As seen in Table 6.1, whenworkingwith sequence lengths of 24 hours there are 17078

samples. This time, the number of samples whose last AKI stage of the sequence is different from the

target was 1306, almost 10 times more samples compared with sCr. After the data splitting, 253 out of

the 3416 total samples from the test set have a change in the AKI stage.

6.2.2.1 All features

The performance of the model was similar across the different sequence lengths used, but slightly better

when using 24h sequences. The best overall accuracy was 87.6%, and was achieved when using 6h and

24h sequences (Table 6.7). The best F1 scores were divided across the experiments, with values of 0.931,

0.609, 0.893 and 0.936 for stages 0 to 3, respectively. The best scores for stage 0 was achieved using
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sequence lengths of 12h, stage 1 and 3 using sequence lengths of 24h, and stage 2 using sequence lengths

of 6h. The AUC scores for the 24h sequences were 0.920, 0.860, 0.920 and 0.990 for stages 0 to 3,

respectively, shown in Figure 6.3 along with the ROC curves. It’s important to highlight the struggle of

the model when predicting stage 1 occurrences, which can be explained by the low proportion of AKI

stage 1 in the cohorts regarding the 2B classification system, with only nearly 8% of the samples (Table

6.1).

Regarding the performance of predicting stage alterations (Table 6.8), the model accurately predicts

the exact AKI stage in 32.70%, this value increases to 42.58% when looking at the accuracy of predicting

the exact stages when the AKI stage increases. Also, the accuracy was 48.39% when predicting the

aggravation of the patient’s AKI condition, and 53.61% predicting episodes of AKI for patients with

stage 0 by the time of prediction.

2B classification system

Sequence length AKI Stage Overall Accuracy Specificity Sensitivity Precision F1 score

6

0

0.876

0.967 0.873 0.961 0.915

1 0.930 0.770 0.491 0.599

2 0.963 0.876 0.909 0.893

3 0.982 0.958 0.899 0.928

12

0

0.859

0.954 0.912 0.951 0.931

1 0.918 0.767 0.448 0.566

2 0.965 0.761 0.894 0.822

3 0.980 0.918 0.885 0.901

24

0

0.876

0.956 0.868 0.951 0.908

1 0.952 0.679 0.552 0.609

2 0.926 0.929 0.835 0.880

3 0.994 0.912 0.962 0.936

Table 6.7: Results of the model using the 2B classification system

Figure 6.3: ROC curves using 24h sequences
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LS-T-P Count LS-T-P Count LS-T-P Count

0-1-0 40 1-0-2 1 2-1-0 1

0-1-1 34 1-2-0 1 2-1-1 3

0-1-2 6 1-2-1 22 2-1-2 4

0-2-0 5 1-2-2 18 2-3-2 12

0-2-1 3 2-0-0 5 2-3-3 5

0-2-2 9 2-0-1 2 3-0-0 1

1-0-0 4 2-0-2 58 3-2-2 7

1-0-1 16 2-0-3 2 3-2-3 4

Table 6.8: Predictions regarding stage alteration using 2B with all features. (LS - last AKI stage value in

the sequence; T - target value, P - prediction output)

6.2.2.2 10 most important features

The 10 most important features for the 2B classification systems obtained in section 5.4 used in these

experiments are shown in Table 6.9. The performance of the model here was once again better when

using 24h sequences (Table 6.10). It produced overall accuracy of 89.2%, and better F1 scores for stages

1, 2 and 3 with only stage 0 having a better score while using 12h sequences. The scores were 0.935,

0.664, 0.890 and 0.947 respectively for stages 0 to 3, and the performance was generally better comparing

with the experiments working with all features. The AUC scores were 0.945, 0.741, 0.803 and 0.992 for

stages 0 to 3 (Figure 6.4), meaning the AUC scores for stages 1 and 2 were worse working with only 10

features.

Regarding the performance of predicting stage alterations (Table 6.11), the model accurately predicts

the exact AKI stage in 17.49%, this value increases to 28.39% when looking at the accuracy of predicting

the exact stages when the AKI stage increases. Also, the accuracy was 30.97% when predicting the

aggravation of the patient’s AKI condition and only 28.87% predicting episodes of AKI for patients with

stage 0 by the time of prediction.

Feature Score

AKI Stage 0.265

Urine Output Rate: 12hr 0.167

Urine Output Rate: 6hr 0.157

Urine Output Rate: 24hr 0.135

Heart Rate 0.011

Systolic Blood Pressure 0.011

Mean Blood Pressure 0.010

Diastolic Blood Pressure 0.010

Respiratory Rate 0.009

Temperature 0.009

Table 6.9: Feature importance scores for the 2B classification system
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2B classification system

Sequence length AKI Stage Overall Accuracy Specificity Sensitivity Precision F1 score

6

0

0.862

0.975 0.844 0.969 0.902

1 0.924 0.790 0.477 0.595

2 0.963 0.854 0.908 0.880

3 0.966 0.980 0.822 0.894

12

0

0.889

0.970 0.904 0.968 0.935

1 0.932 0.798 0.503 0.617

2 0.967 0.861 0.909 0.885

3 0.990 0.945 0.941 0.943

24

0

0.892

0.950 0.891 0.945 0.918

1 0.968 0.679 0.650 0.664

2 0.933 0.935 0.849 0.890

3 0.994 0.932 0.962 0.947

Table 6.10: Results of the model using the 2B classification system and the 10 most important features

Figure 6.4: ROC curves using 24h sequences and 10 features

LS-T-P Count LS-T-P Count LS-T-P Count

0-1-0 57 1-0-2 5 2-1-2 7

0-1-1 22 1-2-1 22 2-3-2 16

0-1-2 1 1-2-2 19 2-3-3 1

0-2-0 12 2-0-0 1 3-0-3 1

0-2-1 3 2-0-2 65 3-2-2 2

0-2-2 2 2-0-3 1 3-2-3 9

1-0-1 16 2-1-1 1

Table 6.11: Predictions regarding stage alteration using 2B with 10 features. (LS - last AKI stage value

in the sequence; T - target value, P - prediction output)
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6.2.2.3 Using different learning rates

While the experiments using the sCr classification system were consistent in terms of results. This didn’t

happen when working with the 2B classification system, as the learning rate value had implications not

only on the overall performance but also on the accuracy of stage alteration occurrences. The experiments

before showed that, in general, the model produced better results when using 24h sequences. Thus, the

experiments in this section only work with 24h sequences.

Comparing both experiments, the reduced number of features produced better overall accuracy and

better F1 scores for stages 0 and 1, while the model using all features produced better scores for stage 2

and 3.

Regarding the model performance of predicting stage alterations in these experiments (Tables 6.13

and 6.14), the model achieved better performance using only 10 features, as it achieved 32.50% accu-

racy predicting the exact AKI stage, 60.65% accuracy predicting the exact stages when the AKI stage

increases, and 63.26%when predicting the aggravation of the patient’s AKI condition. Using all features,

those values dropped down to 32.32%, 45.16% and 54.84%, respectively. Contrarily to that, the perfor-

mance of the model predicting AKI episodes for patients without the condition at the time of prediction

was better using all features: 64.95% versus the 56.70% achieved by the model using only 10 features.

As addressed before, the performance using a lower learning rate resulted in a worst general perfor-

mance of the model, but a much higher accuracy predicting the stage alteration of the patient.

2B classification system

AKI Stage Overall Accuracy Specificity Sensitivity Precision F1 score

All features

0

0.795

0.958 0.765 0.947 0.846

1 0.899 0.642 0.357 0.459

2 0.919 0.811 0.801 0.806

3 0.962 0.957 0.799 0.871

10 features

0

0.814

0.966 0.801 0.959 0.873

1 0.940 0.606 0.470 0.530

2 0.910 0.808 0.785 0.796

3 0.941 0.991 0.727 0.839

Table 6.12: Results of the model using the 2B classification system using a learning rate value of 0.0001

58



Chapter 6 Results

(a) All features (b) 10 features

Figure 6.5: ROC curves

LS-T-P Count LS-T-P Count LS-T-P Count

0-1-0 30 1-0-1 14 2-1-0 2

0-1-1 43 1-0-2 2 2-1-2 6

0-1-2 6 1-2-0 2 2-3-2 6

0-1-3 1 1-2-1 28 2-3-3 11

0-2-0 4 1-2-2 11 3-0-3 1

0-2-1 7 2-0-0 9 3-2-2 1

0-2-2 5 2-0-1 6 3-2-3 10

0-2-3 1 2-0-2 45

1-0-0 5 2-0-3 7

Table 6.13: Predictions regarding stage alteration using 2B with all features and a learning rate of 0.0001.

(LS - last AKI stage value in the sequence; T - target value, P - prediction output)

LS-T-P Count LS-T-P Count LS-T-P Count

0-1-0 34 1-0-2 12 2-1-2 7

0-1-1 44 1-2-1 12 2-3-2 3

0-1-2 2 1-2-2 28 2-3-3 14

0-2-0 8 1-2-3 1 3-0-3 1

0-2-1 1 2-0-2 59 3-2-2 1

0-2-2 8 2-0-3 8 3-2-3 10

1-0-1 9 2-1-1 1

Table 6.14: Predictions regarding stage alteration using 2B with 10 features and a learning rate of 0.0001.

(LS - last AKI stage value in the sequence; T - target value, P - prediction output)
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6.3 Experiments with more focus on predicting stage alteration

Despite the really low proportion of examples where the AKI stage changes from the last value of the

sequence into the target value, the model is capable of accurately predicting when it happens, and even

if the exact stage is not correct, the model can still predict when the patient’s condition gets worse.

In these following experiments, the training samples used will be more representative of alterations

regarding the patient’s AKI stage. This task is focused on understanding the model’s capacity when

working with a much more balanced dataset in that regard. Also, the experiments in this section were

tested with 10 and all features, but since the model produced better results using all features only those

experiments will be displayed.

For the dataset associated with sCr, since only 163 data samples were cases where the AKI stage did

change, the dataset used consisted in those 163 samples mixed with 50 samples from each stage when

the AKI stage remained the same. This means the dataset used will have 363 samples, with pretty much

half of them being samples with stage alteration. Regarding 2B, since 1306 samples had stage alteration,

those samples were mixed with 500 examples for each stage that did not change stage, ending up with a

dataset of 3306 samples.

After splitting the datasets with the same methodology as in the first experiments, the test sets had

stage alteration samples of 34 out of 73, and 250 out of 662, for sCr and 2B respectively. The batch size

was decreased following the reduction of samples for both datasets regarding each classification system.

For sCr the batch size selected was 32, and 64 for 2B.

6.3.1 sCr classification system

The overall performance in these experiments were worse, as expected. The model achieved an overall

accuracy of 52.1%, and F1 scores of 0.545, 0.400, 0.468 and 0.667 for stages 0 to 3 respectively (Table

6.15). The sensitivity was really low for stage 1, with a score of 0.286, contrarily to stage 3 as it reached a

score of 0.800. The performance of the model was generally better for stage 3 predictions, also supported

by the AUC scores in Figure 6.6. The AUC score for stage 3 was 0.830, clearly higher compared to the

other stages: 0.695, 0.727 and 0.607 respectively for stages 0 to 2.

Regarding the performance of predicting stage alterations (Table 6.16), the model accurately predicts

the exact AKI stage in 29.41%, this value increases to 31.81% when looking at the accuracy of predicting

the exact stages when the AKI stage increases. Also, the accuracy of predicting the aggravation of the

patient’s AKI condition was 59.09%, and 66.67% when predicting AKI episodes for patients without the

condition.

sCr classification system

AKI Stage Overall Accuracy Specificity Sensitivity Precision F1 score

0

0.521

0.860 0.563 0.529 0.545

1 0.942 0.286 0.667 0.400

2 0.712 0.524 0.423 0.468

3 0.845 0.8 0.571 0.667

Table 6.15: Results of the model using 24h sequences and the sCr classification system
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Figure 6.6: ROC curves 24h sequences and sCr

LS-T-P Count LS-T-P Count LS-T-P Count

0-1-0 2 1-0-2 2 2-3-0 1

0-1-1 1 1-2-0 1 2-3-1 1

0-1-2 4 1-2-1 1 2-3-3 1

0-1-3 1 1-2-2 1 3-0-0 1

0-2-0 2 1-3-0 2 3-0-3 1

0-2-2 1 1-3-3 1 3-1-0 1

0-2-3 1 2-0-2 2

1-0-0 2 2-1-2 4

Table 6.16: Predictions regarding stage alteration using 24h sequences and sCr. LS - last AKI stage value

in the sequence; T - target value, P - prediction output

6.3.2 2B classification system

Once again different learning rates were tested, and the best overall performance was achieved using

the lowest value (Table 6.17). It managed to produce an overall accuracy of 55.9%, and the higher F1

scores for stages 0, 1 and 3 (0.521, 0.521 and 0.792) while the higher learning rate achieved higher F1

score for stage 2 (0.502). The performance of the model was once again better for stage 3 predictions,

also supported by the AUC scores in Figure 6.7. The AUC score for stage 3 was over 0.950 for both

experiments, clearly higher compared to all the other stages which have scores below 0.800.

Contrarily to the overall performance of the model, the performance regarding stage alteration was

better using the higher learning rate (Tables 6.18 and 6.19). The model achieved 33.20% accuracy pre-

dicting the exact stage, 44.12% accuracy predicting the exact stage when the AKI condition worsens, and

58.82% of accuracy predicting the aggravation of the patient’s AKI condition. The lower learning rate

achieved 31.60%, 36.76% and 44.85%, respectively, for the metrics addressed before. The performance

predicting AKI episodes for patients without the condition was also better using the higher learning rate,

achieving 68.05% accuracy, higher than the 62.50% produced by the model using the lower learning rate.
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2B classification system

Learning Rate AKI Stage Overall Accuracy Specificity Sensitivity Precision F1 score

0.00025

0

0.559

0.864 0.476 0.575 0.521

1 0.810 0.534 0.508 0.521

2 0.802 0.462 0.469 0.465

3 0.927 0.880 0.720 0.792

0.0005

0

0.544

0.908 0.373 0.611 0.463

1 0.853 0.438 0.523 0.477

2 0.696 0.604 0.430 0.502

3 0.925 0.880 0.715 0.789

Table 6.17: Results of the model using 24h sequences and the 2B classification system

(a) Learning rate of 0.00025 (b) Learning rate of 0.0005

Figure 6.7: ROC curves using 24h sequences and the 2B classification system

LS-T-P Count LS-T-P Count LS-T-P Count LS-T-P Count

0-1-0 20 1-0-2 4 2-0-3 4 3-0-3 1

0-1-1 31 1-0-3 1 2-1-0 2 3-1-2 1

0-1-2 9 1-2-0 6 2-1-1 2 3-2-0 1

0-2-0 7 1-2-1 35 2-1-2 5 3-2-1 2

0-2-1 2 1-2-2 10 2-1-3 1 3-2-2 4

0-2-2 3 2-0-0 19 2-3-2 7 3-2-3 8

1-0-0 3 2-0-1 9 2-3-3 6

1-0-1 17 2-0-2 29 3-0-0 1

Table 6.18: Predictions regarding stage alteration using 2B and a learning rate of 0.00025. (LS - last AKI

stage value in the sequence; T - target value, P - prediction output)
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LS-T-P Count LS-T-P Count LS-T-P Count LS-T-P Count

0-1-0 19 1-0-1 13 2-0-1 1 2-3-3 9

0-1-1 23 1-0-2 8 2-0-2 38 3-0-2 1

0-1-2 18 1-0-3 2 2-0-3 8 3-0-3 1

0-2-0 4 1-2-0 2 2-1-0 1 3-1-2 1

0-2-1 2 1-2-1 27 2-1-1 3 3-2-1 1

0-2-2 6 1-2-2 22 2-1-2 6 3-2-2 4

1-0-0 2 2-0-0 14 2-3-2 4 3-2-3 10

Table 6.19: Predictions regarding stage alteration using 2B and a learning rate of 0.0005. (LS - last AKI

stage value in the sequence; T - target value, P - prediction output)
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6.4 Chapter discussion

In this chapter, several experiments regarding the model were made. Starting with the architecture, differ-

ent parameters were tested, including the original from Song et. al [3], and the architecture that achieved

better results was used across all experiments in this chapter. The performance of the model was tested

with different sequences lengths, and in general, the best results were achieved using longer sequences.

The number of features used in the experiments seemed to affect the performance of the model. Using

the sCr classification system, the model produced better overall results when using all features, but got

the best results regarding stage alteration when using only 10 features. When using the 2B classification

system, using 10 features achieved better results overall and regarding stage alterations, comparing to

the experiments with all features. Also, although experimenting with distinct learning rate values did not

show major differences when using the sCr classification system, it did influence the experiments using

2B.

The overall performance of the model was better using the sCr classification system, which comes as

no surprise knowing the low number of samples whose stage actually changes. The data associated with

2B has a higher proportion of samples with stage alterations and achieved lower scores in the metrics,

showing that the model performs well predicting the continuity of the same stage.

The specificity values were high across all experiments in this section, which comes as no surprise

knowing that there are a lot more true negatives due to merging the samples for 3 stages.

In the end, despite experimenting with reduced samples the best performance achieved by the model

for both classification systems was through working with the cohort from the initial experiments. Look-

ing at the metrics used across the experiments, and knowing that the proportions of samples with stage

alterations are lower, it’s clear that the model is able to correctly predict when the patient’s AKI stage

remains the same. Regarding the stage alteration performance, the best results achieved up to 63.16%

accuracy predicting the aggravation of the patient’s AKI condition using the sCr classification system,

and 63.26% using 2B. Also, the model was able to achieve 32.50% accuracy predicting the exact AKI

stage, 60.65% accuracy predicting the exact stages when the AKI stage increases using 2B, as well as

41.38% and 57.89% for those same metrics using the sCr classification system.

The model had difficulties predicting the exact AKI stage across all experiments, achieving 33.30%

of accuracy as its best score using 2B, and 51.72% using sCr. When predicting the occurrence of an AKI

episode for patients with stage 0 at time of prediction, the best results achieved were 68.05% accuracy

using the 2B classification system, and 66.67% using sCr. While the best performance for sCr was exactly

the same in the initial experiments and the experiments with reduced data, the model using 2B achieved

better scores with a much more balanced dataset regarding samples with stage alteration and stages that

stayed the same. All the confusion matrices for the experiments in this chapter can be seen in Appendix

F
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Conclusions

This thesis set out to study the progression of AKI on ICU patients using a self-attention model. While

studying the progression of the disease, two distinct variations of the KDIGO classification system were

tested. One only focusing on serum creatinine values of the patient to define its AKI stage, which was la-

belled as sCr, while the other used the criteria regarding both serum creatinine and urine output. The latter

was labelled as 2B, and the procedure associated with it in this work was, to the best of our knowledge,

the first time it was used.

Along the development of this work, some decisions were made with the thought process of replicat-

ing how a caretaker would look at the problem. One example of that is the choice of including features

that were drawn by the KDIGO criteria for both serum creatinine and urine output, as the caretaker can

realistically have access to that information and decide to use it. Another example is the methods used

during the missing data imputation segment, where last observation carried forward and next observation

carried backward were chosen over other interpolation methods.

The self-attention model used in this work was tested using different parameters when comparing

to the original architecture. The original architecture uses N = 6 stacks of attention blocks, and since

the performance of the model was better using 10 all the experiments were made using N = 10. While

the number of heads was kept at 8 just like the original architecture, the dense interpolation factor was

manually set to 4 after testing the results with different values.

Besides the details about the architecture, there were other interesting topics to address, such as the

performance of the model when using different sequence lengths and also if the number of features af-

fected the results. While the overall performance and accuracy predicting stage alterations was better

working with the longer sequences, the different number of features seems to influence the performance

in some predictions. The best accuracy predicting the occurrence of an AKI episode was achieved using

all features for both stages, and predicting the aggravation of the patient’s AKI condition was achieved

using only 10 features.

Comparing the best results for each classification system, 2B achieved better results regarding the

predictions of stage alterations. The accuracy predicting the occurrence of an AKI episode for patients

without AKI at time of prediction reached 68.05% using 2B and 66.67% using sCr. Both of those scores

were achieved during the experiments with reduced samples, which used all features. This showed that

themodel has higher performance predicting the occurrence of anAKI episode when there’s more balance

between samples whose stage change and samples that maintain the AKI stage, for both classification sys-

tems. The model’s best performance predicting the aggravation of the patient’s AKI condition achieved

63.26% and 63.16% for 2B and sCr, respectively, both using 10 features. The performance using 2B

might be better than sCr due to the extremely low number of samples with stage alterations, meaning
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there are more training examples with the alterations possible such as going from stage 0 to stage 2, or

the other way around.

The work from Tomašev et al. [42] studied the continuous prediction of AKI using RNNs, with

the goal of predicting the occurrence of AKI episodes within 48 hours of the time of prediction. Using

an extensive cohort of 703,782 patients, with information regarding the patients prior to their ICU stay,

the authors used the KDIGO classification system only focusing on the values of serum creatinine to

determine the AKI stages. The model was able to predict 55.80% of all episodes of AKI for patients in

the ICU, with a lead time of up to 48 hours.

Although not comparing directly the results from both studies, since this study focused on predicting

the patient’s AKI stage in the following hour, the results achieved in this work indicate that the self-

attention model joint with the methods used ends up having a higher performance when predicting of the

occurrence of AKI in patients that were not diagnosed with the disease at the time of prediction. Also,

the model’s capability to correctly predict the aggravation of a patient’s AKI condition is interesting and

indicates that not only the model may be able to replicate the results when focusing on predicting the

occurrence of AKI within the following 48 hours, but also predict the aggravation of the AKI condition

within several hours in advance.

In the paper from the self-attention model used in this work, Song et. al [3] proved that using their

self-attention model outperformed state-of-the-art RNNs. Since the work from Tomašev et al. used a

RNN architecture, along with the fact that 2B achieved higher performance than sCr, which was used in

their work, also gives an idea that the methods and self-attention model used in this work can outperform

those results.

7.1 Limitations

One of the limitations of this study is in terms of the database. MIMIC-III is a very large database, and as

it was explained in the Data Pre-Processing chapter (Chapter 4) it consists of two different information

systems. Each system has their own ID code for their measures, meaning that the same measure can have

a lot of different codes, making it particularly hard to have the entire time series of all the variables. Some

of the ID codes had unclear labels, making it very difficult to determine what measures were collected

under those ID codes. A noticeable example is Urine Output (UO), as it was a main variable in this

work. With over a hundred ID codes associated with it, only the ID codes with more data were used. By

not using all the codes, some measures may be missing from the time series making the time difference

between measures appear longer than they in fact were. Since this measure uses the time difference, it

is possible that it was assigned a value of urine volume per hour smaller than the real value, which can

influence the AKI stage. Even though two data extraction resources were used, there was still a need to

manually deal with the remaining ID codes. This process ended up being extremely lengthy, and due to

the unclear label names some measures that could add some value to the model may have been excluded.

The data format necessary to feed the model can be seen as a limitation, as it demands information for

every feature. The consequence of this led to the decision of only using features with records for every

patients, which limited the number of features available to use.

Still regarding the database, after the full pre-processing task, the patient cohort kept did not have

balanced classes. In regards to the task of working with age groups, it wasn’t possible to balance the

target classes, and because some classes had extremely low proportions we did not proceed to study the

performance of the model across different age groups.
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In the experiments, despite the low number of samples where the last AKI value of the sequence

fed to the model changed compared to the AKI stage in the target, the model did achieve good results

regarding those stage alterations. More samples with stage alterations could mean higher performance

for the model. It would be interesting to make a deeper analysis, evaluating the model performance by

changing from one AKI stage to another (for example stage 0 to stage 3, and vice versa) but that would

require more data.

7.2 Future Work

As addressed in the related work section, both Pereira et al. [44] and Tomašev et al. [42] used confidence

level prediction for each of the AKI prediction made. This is an important asset, as it means that the

prognostic predictions will have a given uncertainty level associated, solving the trustworthiness issue

around the prognostic prediction, that exists in a lot of prognostic models, thus it is appropriate and

valuable to use in studies regarding clinical issues.

The same study could be replicated using different baseline values for the SCr segment of the KDIGO

classification system, as the choice for this work ended up following the baselines from the works of Silva

et al., Correia et al. and Cunha et al. [18, 17, 16], that used the lowest value of the last three measures

of SCr. The other two different baselines addressed in the Baseline Estimations section (Section 2.1.2)

were the baseline value equal to the sCr value at admission [38] and also the baseline being equal to the

lowest value of SCr during the whole stay [39].

Also talked about in the related work section, Pires et al’s study [43], the patients were stratified

within their own disease progression rate. In the AKI context, this approach idea could be done when

using the SCr baseline as the lowest value of the past 7 days, and taking into account the two KDIGO

criteria that involve SCr levels alteration through time. The patients positive predicted of having AKI

through the 48h criteria being labeled as ’Fast progressors’, while the patients indicated with the disease

through the 7 day criteria being labeled as ’Slow progressors’. Both sets of patients identified with their

AKI stage, and later split into groups of patients with ’AKI stage 1’ and ’AKI stage 2 & 3’ [42], where

the progression of the disease could be studied for every 48h period. With this approach, the goal is to

compare results between slow and fast progressors, and also to evaluate the progression within the AKI

stages.

In the missing data imputation section (section 4.2.5), the usage of interpolation methods could be

used with the goal of best using the model’s ability to value the variability within features in the training

sequences. Testing the results using Linear or Spline interpolation would be interesting, because while

Linear is the simplest method of interpolation, Spline (particularly Cubic Spline Interpolation) is a flexible

alternative to polynomial interpolation, reducing the order of the polynomials used, as it fits several

smaller-degree polynomials instead of only one complex polinomyal, making it simpler and closer to

reality [86].

Some other topics that could be taken into account in future work include the usage of patients data

from outside the ICU. Using information prior the patient’s entry in the ICU might be interesting. Also,

using data from other tables in MIMIC might be valuable, particularly information regarding medication

administered to the patient, on the INPUTEVENTS table.

As already addressed, in this thesis only the prognostic of the following hour is considered. With

positive results in this procedure, the next step is to study the samemethodology but predicting for several

hours ahead, such as trying to predict the AKI stage of a patient 24h later, when training the model with
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sequences whose length could also be larger than the 24h used in this work. Replicate the approach

by Tomašev et al. [42] would be interesting, in terms of predicting up to 24h, 48h or 72h ahead the

occurrence of AKI, where a comparison between the results produced by the RNN used in their work

and the self-attention architecture used in this could be analyzed, knowing that SAnD produced better

results on the clinical tasks for the developers of the model, compared to RNNs. One problem with this

approach could be the limitation of the data provided by MIMIC-III, as the cohort used by Tomašev et al.

consisted in 703,782 patients, against the 44,476 patients provided by MIMIC-III (before the exclusion

criteria).
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Appendix A

List of the Variables Extracted

* a) MIMIC-III Community; b) Manually selected c) Calculated

Variable Label Origin* Units

Time Series

1 Alanine aminotransferase

(ALT)

a)
[IU/L]

2 Alkaline phosphatase (ALP) a)
[IU/L]

3 Anion Gap (AG) a)
[mmol/L]

4 Arterial Base Excess (aBE) b)
[mmol/L]

5 Arterial CO2 b)
[mmol/L]

6 Arterial Partial Pressure CO2

(PaCO2)

a)
[mmHg]

7 Arterial Partial Pressure O2

(PaO2)

a)
[mmHg]

8 Arterial pH a) No units

9 Asparate Aminotransferase

(AST)

a)
[IU/L]

10 Basophils b)
[x109 cells/L]

11 Bicarbonate a)
[mmol/L]

12 Bilirubin (BR) a)
[mg/dL]

13 Blood urea nitrogen (BUN) a)
[mg/dL]
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14 Calcium b)
[mg/dL]

15 Central Venous Pressure (CVP) b)
[mmHg]

16 Chloride a)
[mmol/L]

17 Creatine Phosphokinase (CPK) b)
[U/L]

18 Creatinine - Baseline value

(Creat)

c)
[mg/dL]

19 Creatinine - Baseline value:

Lowest 48hr (Creat48h)

c)
[mg/dL]

20 Creatinine - Baseline value:

Lowest 7 days (Creat7d)

c)
[mg/dL]

21 Diastolic Blood Pressure

(D-BP)

a)
[mmHg]

22 Glasgow Coma Scale Total

(GCS)

b)
[3-15]

23 Glucose a)
[mg/dL]

24 Heart Rate (HR) a)
[beats pm]

25 Hematocrit a)
[%]

26 Hemoglobin a)
[g/dL]

27 Lactate a)
[mg/dL]

28 Lactic Acid b)
[mmol/L]

29 Magnesium a)
[mg/dL]

30 Mean Blood Pressure (M-BP) a)
[mmHg]

31 Mean Corpuscular Hemoglobin

(MCH)

b)
[pg/cell]

32 Mean Corpuscular Hemoglobin

Concentration (MCHC)

b)
[g/dL]

33 Mean Corpuscular Volume

(MCV)

b)
[fL]
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34 Partial Thromboplastin Time

(PTT)

a)
[s]

35 Peak Inspiratory Pressure (PIP) a)
[cmH2O]

36 Phosphate a)
[mmol/L]

37 Phosphorous b)
[mmol/L]

38 Platelets a)
[x109/L]

39 Positive end-expiratory pressure

(PEEP)

a)
[cmH2O]

40 Potassium a)
[mmol/L]

41 Prothrombin Time (PT) a)
[s]

42 Red Blood Cell Count (RBC) b)
[x1012 cells/L]

43 Red Blood Cell Distribution

Width (RDW)

b)
[%]

44 Respiratory Rate (RR) a)
[breaths pm]

45 Saturation of O2 (SpO2) a)
[%]

46 Serum Albumin (ALB) a)
[g/dL]

47 Serum Creatinine (sCr) a)
[mg/dL]

48 Sodium a)
[mmol/L]

49 Systolic Blood Pressure (S-BP) a)
[mmHg]

50 Temperature a)
[ºC]

51 Urine Output Rate: 6hr (UO6hr) c)
[mL]

52 Urine Output Rate: 12hr

(UO12hr)

c)
[mL]

53 Urine Output Rate: 24hr

(UO24hr)

c)
[mL]

54 Venous Base Excess (vBE) b)
[mmol/L]
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55 Venous Partial Pressure O2

(PvO2)

b)
[mmHg]

56 Weight a)
[kg]

57 White Blood Cells Count

(WBC)

a) [x109 cells/L]

58 AKI Stage c) [0 to 3]

Categorical Variables

59 Ectopy Frequency b)
None = 0 / Rare = 1 / Occasional = 2 / Frequent = 3

/ Has Ventricular Tachycardia(V-Tach) = 4]

60 GCS Eye Opening b)

[No Response = 1 / To Pain = 2 / To Speech = 3

/ Spontaneously = 4]

61 GCS Motor Response b)

[No Response = 1 / Abnormal Extension = 2

/ Abnormal Flexion = 3/ Flex to withdraw from pain = 4

/ Moves to localize pain = 5 / Obeys commands = 6]

62 GCS Verbal Response b)

[No Response = 1 / Incomprehensible sounds = 2

/ Inappropriate words = 3 / Confused = 4

/ Oriented to time, person and place = 5]

63 Urine Appearance b)

[Clear = 1 / Cloudy = 2 / Sediment = 3 / Sludge = 4

/ Clots = 5]

64 Urine Color b)

[Light Yellow = 1 / Yellow= 2 / Icteric = 3

/ Amber = 4 /Orange = 5 / Pink = 5

/ Red = 6 / Brown = 7]
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Appendix B

Feature Importance Scores for all patients

Table B.1: Feature Importance Scores using all features with 2B

Feature Score

AKI Stage 0.285009

Urine Output Rate: 12hr 0.184183

Urine Output Rate: 6hr 0.173600

Urine Output Rate: 24hr 0.114086

Systolic Blood Pressure 0.010027

Mean Blood Pressure 0.009850

Heart Rate 0.009611

Diastolic Blood Pressure 0.009301

Respiratory Rate 0.008150

Temperature 0.007122

Weight 0.006702

Glucose 0.006430

Saturation of O2 0.006082

Urine Color 0.005734

Central Venous Pressure 0.005217

Arterial Partial Pressure O2 0.004377

Prothrombin Time 0.004299

Hematocrit 0.004236

Platelets 0.004192

Partial Thromboplastin Time 0.004140

Creatinine - Baseline value 0.004078

Red Blood Cell Count (RBC) 0.004018

Serum Creatinine 0.003989

Peak Inspiratory Pressure 0.003982

White Blood Cells Count (WBC) 0.003961

Arterial pH 0.003932

Asparate Aminotransferase 0.003911

Red Blood Cell Distribution Width (RDW) 0.003893

Venous Partial Pressure O2 0.003787
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Table B.1 continued from previous page

Blood urea nitrogen 0.003745

Bicarbonate 0.00372

Mean Corpuscular Hemoglobin 0.00367

Mean Corpuscular Hemoglobin Concentration 0.00367

Hemoglobin 0.00363

Arterial Partial Pressure CO2 0.003601

Alkaline phosphatase 0.003597

Arterial CO2 0.003526

Potassium 0.003472

Venous Base Excess 0.003454

Arterial Base Excess 0.003445

Phosphorous 0.003397

Calcium 0.003332

Phosphate 0.003329

Sodium 0.003256

Chloride 0.003216

Alanine aminotransferase 0.003198

Mean Corpuscular Volume 0.003168

Creatine Phosphokinase (CPK) 0.003160

Creatinine - Baseline value: Lowest 7 days 0.003158

Lactic Acid 0.003023

Lactate 0.002995

Serum Albumin 0.002984

Magnesium 0.002938

Bilirubin 0.002923

Creatinine - Baseline value: Lowest 48hr 0.002813

Glasgow Coma Scale Total 0.002711

Anion Gap 0.002630

Urine Appearance 0.001984

Positive end-expiratory pressure (PEEP) 0.001892

Ectopy Frequency 0.001582

Basophils 0.001438

Glasgow Coma Scale Eye Opening 0.001430

Glasgow Coma Scale Motor Response 0.001292

Glasgow Coma Scale Verbal Response 0.000719

Table B.2: Feature Importance Scores using no calculated features with 2B

Feature Score

Weight 0.036468

Heart Rate 0.035039

Temperature 0.032072

Systolic Blood Pressure 0.030230

Mean Blood Pressure 0.029822
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Table B.2 continued from previous page

Glucose 0.029752

Diastolic Blood Pressure 0.028170

Respiratory Rate 0.023741

Urine Color 0.022156

Platelets 0.021321

Central Venous Pressure 0.020664

Peak Inspiratory Pressure 0.020631

Prothrombin Time 0.020490

Mean Corpuscular Hemoglobin 0.019693

Saturation of O2 0.019533

Asparate Aminotransferase 0.019525

Serum Creatinine 0.019330

Blood urea nitrogen 0.019044

White Blood Cells Count (WBC) 0.018950

Partial Thromboplastin Time 0.018813

Red Blood Cell Distribution Width (RDW) 0.018712

Hematocrit 0.018694

Red Blood Cell Count (RBC) 0.018552

Alkaline phosphatase 0.018162

Mean Corpuscular Hemoglobin Concentration 0.017444

Arterial Partial Pressure O2 0.017339

Arterial pH 0.016800

Alanine aminotransferase 0.016478

Bicarbonate 0.015995

Mean Corpuscular Volume 0.015954

Hemoglobin 0.015944

Creatine Phosphokinase (CPK) 0.015893

Venous Partial Pressure O2 0.015797

Arterial Partial Pressure CO2 0.015781

Potassium 0.015719

Phosphorous 0.015407

Arterial CO2 0.015314

Calcium 0.014912

Phosphate 0.014852

Chloride 0.014711

Serum Albumin 0.014453

Sodium 0.014298

Bilirubin 0.014281

Venous Base Excess 0.014057

Lactate 0.013963

Lactic Acid 0.013531

Glasgow Coma Scale Total 0.013307

Arterial Base Excess 0.013294

Anion Gap 0.013241
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Table B.2 continued from previous page

Magnesium 0.013149

Positive end-expiratory pressure (PEEP) 0.010307

Urine Appearance 0.008413

Glasgow Coma Scale Eye Opening 0.007872

Basophils 0.006697

Glasgow Coma Scale Motor Response 0.006395

Ectopy Frequency 0.005554

Glasgow Coma Scale Verbal Response 0.003288

Table B.3: Feature Importance Scores using all features with sCr

Feature Score

AKI Stage 0.509471

Creatinine - Baseline value 0.063913

Creatinine - Baseline value: Lowest 7 days 0.057625

Creatinine - Baseline value: Lowest 48hr 0.038382

Serum Creatinine 0.023816

Creatine Phosphokinase (CPK) 0.022658

Weight 0.020595

Bilirubin 0.020299

Partial Thromboplastin Time 0.016286

Alkaline phosphatase 0.011447

Asparate Aminotransferase 0.011236

Alanine aminotransferase 0.010826

Blood urea nitrogen 0.010374

Serum Albumin 0.010319

Prothrombin Time 0.010145

Mean Corpuscular Hemoglobin 0.008142

Mean Corpuscular Volume 0.007800

Red Blood Cell Distribution Width (RDW) 0.007788

Platelets 0.006803

Lactate 0.006603

Lactic Acid 0.006301

Peak Inspiratory Pressure 0.006122

Basophils 0.005681

Red Blood Cell Count (RBC) 0.005178

Urine Output Rate: 24hr 0.005169

White Blood Cells Count (WBC) 0.005112

Phosphorous 0.004776

Phosphate 0.004551

Arterial Partial Pressure CO2 0.004392

Hemoglobin 0.004377

Central Venous Pressure 0.004100

Positive end-expiratory pressure(PEEP) 0.004030
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Table B.3 continued from previous page

Arterial CO2 0.003922

Hematocrit 0.003844

Mean Corpuscular Hemoglobin Concentration 0.003742

Bicarbonate 0.003629

Chloride 0.003495

Sodium 0.003392

Calcium 0.003143

Urine Output Rate: 12hr 0.002953

Anion Gap 0.002757

Arterial pH 0.002756

Arterial Base Excess 0.002606

Venous Partial Pressure O2 0.002549

Magnesium 0.002497

Urine Output Rate: 6hr 0.002299

Arterial Partial Pressure O2 0.002223

Heart Rate 0.002089

Venous Base Excess 0.002000

Glasgow Coma Scale Total 0.001831

Potassium 0.001663

Temperature 0.001493

Diastolic Blood Pressure 0.001365

Mean Blood Pressure 0.001275

Systolic Blood Pressure 0.001263

Glucose 0.001204

Glasgow Coma Scale Motor Response 0.001042

Respiratory Rate 0.001021

Saturation of O2 0.000738

Glasgow Coma Scale Eye Opening 0.000723

Ectopy Frequency 0.000644

Urine Color 0.000504

Urine Appearance 0.000306

Glasgow Coma Scale Verbal Response 0.000279

Table B.4: Feature Importance Scores using no calculated features with sCr

Feature Score

Serum Creatinine 0.057755

Weight 0.057478

Bilirubin 0.053069

Creatine Phosphokinase (CPK) 0.049827

Partial Thromboplastin Time 0.041221

Alkaline phosphatase 0.033444

Asparate Aminotransferase 0.033382

Alanine aminotransferase 0.032885
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Table B.4 continued from previous page

Prothrombin Time 0.032151

Serum Albumin 0.031165

Blood urea nitrogen 0.030761

Red Blood Cell Distribution Width (RDW) 0.026779

Platelets 0.024591

Mean Corpuscular Volume 0.024179

Mean Corpuscular Hemoglobin 0.022583

Phosphorous 0.020293

Lactic Acid 0.020137

Lactate 0.019367

Peak Inspiratory Pressure 0.018737

Red Blood Cell Count (RBC) 0.018417

White Blood Cells Count (WBC) 0.017879

Arterial Partial Pressure CO2 0.016860

Chloride 0.016858

Basophils 0.016698

Phosphate 0.016553

Sodium 0.016069

Hematocrit 0.015987

Hemoglobin 0.015889

Mean Corpuscular Hemoglobin Concentration 0.015295

Central Venous Pressure 0.015123

Bicarbonate 0.015027

Arterial pH 0.013720

Calcium 0.013366

Positive end-expiratory pressure (PEEP) 0.013206

Arterial CO2 0.012044

Magnesium 0.011796

Anion Gap 0.011688

Venous Partial Pressure O2 0.010205

Arterial Base Excess 0.009633

Arterial Partial Pressure O2 0.009102

Venous Base Excess 0.009097

Potassium 0.008179

Heart Rate 0.007245

Glasgow Coma Scale Total 0.005844

Temperature 0.005213

Glucose 0.004956

Glasgow Coma Scale Motor Response 0.004314

Diastolic Blood Pressure 0.003189

Systolic Blood Pressure 0.003035

Respiratory Rate 0.002946

Mean Blood Pressure 0.002922

Glasgow Coma Scale Eye Opening 0.002644
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Table B.4 continued from previous page

Urine Color 0.002378

Glasgow Coma Scale Verbal Response 0.001812

Saturation of O2 0.001787

Ectopy Frequency 0.001765

Urine Appearance 0.001453

Table B.5: Feature Importance Scores using all features with 2B Raw

Feature Score

AKI Stage 0.227644

Urine Output Rate: 12hr 0.197727

Urine Output Rate: 6hr 0.185722

Urine Output Rate: 24hr 0.109157

Systolic Blood Pressure 0.012061

Mean Blood Pressure 0.011935

Heart Rate 0.011678

Diastolic Blood Pressure 0.011305

Respiratory Rate 0.009717

Temperature 0.008277

Glucose 0.007528

Saturation of O2 0.007377

Weight 0.007361

Central Venous Pressure 0.006238

Urine Color 0.005422

Arterial Partial Pressure O2 0.005138

Platelets 0.004842

Partial Thromboplastin Time 0.004842

Peak Inspiratory Pressure 0.004718

Hematocrit 0.004666

White Blood Cells Count (WBC) 0.004601

Serum Creatinine 0.004522

Venous Partial Pressure O2 0.004514

Arterial pH 0.004458

Prothrombin Time 0.004416

Mean Corpuscular Hemoglobin 0.004384

Mean Corpuscular Hemoglobin Concentration 0.004349

Arterial Partial Pressure CO2 0.004341

Red Blood Cell Count (RBC) 0.004329

Asparate Aminotransferase 0.004316

Creatinine - Baseline value 0.004304

Red Blood Cell DistributionWidth (RDW) 0.004283

Blood urea nitrogen 0.004191

Alkaline phosphatase 0.004182

Arterial CO2 0.004148
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Table B.5 continued from previous page

Hemoglobin 0.004080

Phosphorous 0.004066

Phosphate 0.004065

Potassium 0.004058

Calcium 0.003986

Creatinine - Baseline value: Lowest 7 days 0.003854

Bicarbonate 0.003791

Chloride 0.003700

Creatine Phosphokinase (CPK) 0.003698

Sodium 0.003689

Alanine aminotransferase 0.003665

Mean Corpuscular Volume 0.003591

Venous Base Excess 0.003561

Anion Gap 0.003551

Magnesium 0.003518

Lactate 0.003498

Arterial Base Excess 0.003487

Serum Albumin 0.003412

Lactic Acid 0.003333

Glasgow Coma Scale Total 0.003190

Bilirubin 0.003149

Creatinine - Baseline value: Lowest 48hr 0.003094

Positive end-expiratory pressure (PEEP) 0.001983

Glasgow Coma Scale Eye Opening 0.001825

Ectopy Frequency 0.001748

Urine Appearance 0.001748

Basophils 0.001716

Glasgow Coma Scale Motor Response 0.001416

Glasgow Coma Scale Verbal Response 0.000855

Table B.6: Feature Importance Scores using no calculated features with 2B Raw

Feature Score

Heart Rate 0.037282

Weight 0.036084

Systolic Blood Pressure 0.033101

Temperature 0.033073

Mean Blood Pressure 0.032924

Diastolic Blood Pressure 0.031078

Glucose 0.030213

Respiratory Rate 0.025866

Saturation of O2 0.021169

Platelets 0.020940

Central Venous Pressure 0.020927
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Table B.6 continued from previous page

Urine Color 0.020663

Peak Inspiratory Pressure 0.020486

Prothrombin Time 0.020431

Mean Corpuscular Hemoglobin 0.019391

White Blood Cells Count (WBC) 0.018837

Partial Thromboplastin Time 0.018723

Asparate Aminotransferase 0.018590

Blood urea nitrogen 0.018461

Serum Creatinine 0.018349

Hematocrit 0.018268

Red Blood Cell Distribution Width (RDW) 0.018169

Red Blood Cell Count (RBC) 0.017755

Alkaline phosphatase 0.017416

Mean Corpuscular Hemoglobin Concentration 0.017411

Arterial Partial Pressure O2 0.017098

Arterial pH 0.016521

Alanine aminotransferase 0.015960

Hemoglobin 0.015871

Venous Partial Pressure O2 0.015811

Potassium 0.015741

Mean Corpuscular Volume 0.015435

Arterial Partial Pressure CO2 0.015432

Bicarbonate 0.015371

Arterial CO2 0.015330

Phosphate 0.014812

Phosphorous 0.014812

Calcium 0.014693

Chloride 0.014471

Creatine Phosphokinase (CPK) 0.014470

Serum Albumin 0.014388

Bilirubin 0.014080

Sodium 0.013946

Lactate 0.013655

Lactic Acid 0.013537

Glasgow Coma Scale Total 0.013449

Anion Gap 0.013208

Magnesium 0.012980

Arterial Base Excess 0.012905

Venous Base Excess 0.012823

Positive end-expiratory pressure (PEEP) 0.009889

Urine Appearance 0.007954

Glasgow Coma Scale Eye Opening 0.007868

Basophils 0.006655

Glasgow Coma Scale Motor Response 0.006157
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Table B.6 continued from previous page

Ectopy Frequency 0.005646

Glasgow Coma Scale Verbal Response 0.003428
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Appendix C

Feature Importance Scores for the

reduced patient cohort

Table C.1: Feature Importance Scores using all features with 2B

Feature Score

AKI Stage 0.264740

Urine Output Rate: 12hr 0.166912

Urine Output Rate: 6hr 0.157392

Urine Output Rate: 24hr 0.134967

Heart Rate 0.010969

Systolic Blood Pressure 0.010804

Mean Blood Pressure 0.010038

Diastolic Blood Pressure 0.009764

Respiratory Rate 0.008857

Temperature 0.008564

Glucose 0.007815

Urine Color 0.007566

Arterial pH 0.007376

Saturation of O2 0.006699

Blood urea nitrogen 0.006169

Central Venous Pressure 0.005662

Bicarbonate 0.005526

Hematocrit 0.005277

Platelets 0.005248

Peak Inspiratory Pressure 0.005140

Asparate Aminotransferase 0.005080

Arterial CO2 0.005070

Arterial Partial Pressure O2 0.004906

Red Blood Cell Count (RBC) 0.004742

Partial Thromboplastin Time 0.004686

White Blood Cells Count (WBC) 0.004602

Serum Creatinine 0.004589
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Table C.1 continued from previous page

Venous Partial Pressure O2 0.004389

Creatinine - Baseline value 0.004377

Mean Corpuscular Hemoglobin 0.004326

Mean Corpuscular Hemoglobin Concentration 0.004250

Potassium 0.004220

Hemoglobin 0.004120

Phosphorous 0.004010

Phosphate 0.003977

Red Blood Cell Distribution Width (RDW) 0.003951

Prothrombin Time 0.003950

Lactate 0.003949

Arterial Base Excess 0.003931

Chloride 0.003773

Arterial Partial Pressure CO2 0.003769

Calcium 0.003762

Venous Base Excess 0.003658

Glasgow Coma Scale Total 0.003609

Alanine aminotransferase 0.003601

Bilirubin 0.003586

Anion Gap 0.003563

Mean Corpuscular Volume 0.003533

Weight 0.003502

Sodium 0.003482

Creatinine - Baseline value: Lowest 48hr 0.003228

Alkaline phosphatase 0.003195

Creatine Phosphokinase (CPK) 0.003116

Magnesium 0.003058

Lactic Acid 0.002971

Serum Albumin 0.002772

Positive end-expiratory pressure (PEEP) 0.002052

Urine Appearance 0.002014

Creatinine - Baseline value: Lowest 7 days 0.001964

Glasgow Coma Scale Eye Opening 0.001913

Ectopy Frequency 0.001665

Basophils 0.001640

Glasgow Coma Scale Motor Response 0.001120

Glasgow Coma Scale Verbal Response 0.000854

Table C.2: Feature Importance Scores using no calculated features with 2B

Feature Score

Temperature 0.036204

Heart Rate 0.035290

Glucose 0.033326
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Table C.2 continued from previous page

Systolic Blood Pressure 0.031361

Mean Blood Pressure 0.029542

Diastolic Blood Pressure 0.028462

Blood urea nitrogen 0.027602

Urine Color 0.025182

Respiratory Rate 0.024391

Platelets 0.023244

Peak Inspiratory Pressure 0.023199

Saturation of O2 0.021125

Central Venous Pressure 0.020874

Arterial pH 0.019868

White Blood Cells Count (WBC) 0.019138

Hematocrit 0.018958

Arterial Partial Pressure O2 0.018772

Red Blood Cell Distribution Width (RDW) 0.018659

Venous Partial Pressure O2 0.018150

Bicarbonate 0.017927

Partial Thromboplastin Time 0.017686

Arterial CO2 0.017393

Phosphorous 0.017287

Potassium 0.017275

Mean Corpuscular Hemoglobin Concentration 0.017231

Serum Creatinine 0.017169

Arterial Partial Pressure CO2 0.017095

Red Blood Cell Count (RBC) 0.016889

Asparate Aminotransferase 0.016886

Sodium 0.016690

Mean Corpuscular Hemoglobin 0.016468

Prothrombin Time 0.016375

Glasgow Coma Scale Total 0.016290

Hemoglobin 0.015968

Calcium 0.015961

Weight 0.015610

Phosphate 0.015581

Chloride 0.015317

Alanine aminotransferase 0.014652

Creatine Phosphokinase (CPK) 0.014222

Bilirubin 0.014217

Lactate 0.014153

Mean Corpuscular Volume 0.013933

Magnesium 0.013121

Arterial Base Excess 0.012962

Anion Gap 0.012930

Venous Base Excess 0.012817
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Table C.2 continued from previous page

Lactic Acid 0.012155

Alkaline phosphatase 0.011384

Serum Albumin 0.010779

Urine Appearance 0.010024

Positive end-expiratory pressure (PEEP) 0.009550

Glasgow Coma Scale Eye Opening 0.008938

Basophils 0.007606

Glasgow Coma Scale Motor Response 0.006256

Ectopy Frequency 0.005593

Glasgow Coma Scale Verbal Response 0.004259

Table C.3: Feature Importance Scores using all features with sCr

Feature Score

AKI Stage 0.334449

Creatinine - Baseline value 0.102637

Creatinine - Baseline value: Lowest 7 days 0.061051

Creatinine - Baseline value: Lowest 48hr 0.050543

Weight 0.035537

Serum Creatinine 0.034810

Creatine Phosphokinase (CPK) 0.024888

Red Blood Cell Distribution Width (RDW) 0.019818

Blood urea nitrogen 0.018374

Alkaline phosphatase 0.017137

Prothrombin Time 0.015007

Partial Thromboplastin Time 0.014949

Asparate Aminotransferase 0.014335

Bilirubin 0.013154

Mean Corpuscular Volume 0.012559

Alanine aminotransferase 0.012298

Peak Inspiratory Pressure 0.011178

Serum Albumin 0.011148

Hematocrit 0.010028

Lactic Acid 0.010028

Lactate 0.009813

Red Blood Cell Count (RBC) 0.009645

Platelets 0.009371

Mean Corpuscular Hemoglobin 0.009158

White Blood Cells Count (WBC) 0.008658

Hemoglobin 0.007803

Phosphorous 0.007128

Central Venous Pressure 0.007084

Phosphate 0.006823

Bicarbonate 0.005894
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Table C.3 continued from previous page

Positive end-expiratory pressure (PEEP) 0.005890

Anion Gap 0.005290

Urine Output Rate: 24hr 0.005250

Basophils 0.004930

Mean Corpuscular Hemoglobin Concentration 0.004756

Chloride 0.004663

Arterial Partial Pressure CO2 0.004642

Arterial CO2 0.004397

Calcium 0.004349

Sodium 0.004310

Urine Output Rate: 12hr 0.003622

Venous Base Excess 0.003080

Magnesium 0.003014

Arterial Base Excess 0.002947

Heart Rate 0.002708

Potassium 0.002609

Arterial Partial Pressure O2 0.002601

Glasgow Coma Scale Total 0.002453

Urine Output Rate: 6hr 0.002408

Temperature 0.002241

Venous Partial Pressure O2 0.002196

Arterial pH 0.002156

Glasgow Coma Scale Motor Response 0.001724

Diastolic Blood Pressure 0.001719

Glucose 0.001658

Systolic Blood Pressure 0.001641

Mean Blood Pressure 0.001472

Glasgow Coma Scale Eye Opening 0.001277

Respiratory Rate 0.001124

Urine Color 0.000862

Saturation of O2 0.000805

Glasgow Coma Scale Verbal Response 0.000756

Urine Appearance 0.000635

Ectopy Frequency 0.000524

Table C.4: Feature Importance Scores using no calculated features with sCr

Feature Score

Serum Creatinine 0.076758

Weight 0.052745

Creatine Phosphokinase (CPK) 0.051706

Blood urea nitrogen 0.046112

Alkaline phosphatase 0.040331

Partial Thromboplastin Time 0.034188
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Table C.4 continued from previous page

Red Blood Cell Distribution Width (RDW) 0.033814

Bilirubin 0.031066

Asparate Aminotransferase 0.028934

Alanine aminotransferase 0.028625

Platelets 0.028054

Prothrombin Time 0.027635

Serum Albumin 0.027199

Mean Corpuscular Volume 0.026977

Red Blood Cell Count (RBC) 0.023519

Lactic Acid 0.023180

Lactate 0.022922

Peak Inspiratory Pressure 0.022485

Mean Corpuscular Hemoglobin 0.022444

White Blood Cells Count (WBC) 0.021264

Hematocrit 0.020658

Phosphate 0.019123

Hemoglobin 0.018775

Phosphorous 0.018005

Basophils 0.016668

Arterial Partial Pressure CO2 0.014956

Chloride 0.013670

Positive end-expiratory pressure (PEEP) 0.013588

Central Venous Pressure 0.013316

Bicarbonate 0.013050

Sodium 0.012976

Mean Corpuscular Hemoglobin Concentration 0.012720

Arterial CO2 0.012454

Calcium 0.011236

Anion Gap 0.010744

Arterial Base Excess 0.009594

Magnesium 0.008710

Venous Base Excess 0.007829

Arterial pH 0.007688

Glasgow Coma Scale Total 0.007322

Arterial Partial Pressure O2 0.007069

Potassium 0.006981

Venous Partial Pressure O2 0.006937

Heart Rate 0.006468

Temperature 0.004612

Glasgow Coma Scale Motor Response 0.004604

Glucose 0.004155

Glasgow Coma Scale Eye Opening 0.003798

Mean Blood Pressure 0.003501

Diastolic Blood Pressure 0.003462
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Table C.4 continued from previous page

Systolic Blood Pressure 0.003112

Respiratory Rate 0.002777

Urine Color 0.002401

Glasgow Coma Scale Verbal Response 0.002349

Urine Appearance 0.001791

Saturation of O2 0.001543

Ectopy Frequency 0.001396

Table C.5: Feature Importance Scores using all features with 2B Raw

Feature Score

AKI Stage 0.251922

Urine Output Rate: 12hr 0.190764

Urine Output Rate: 24hr 0.129226

Urine Output Rate: 6hr 0.124667

Heart Rate 0.013305

Systolic Blood Pressure 0.012967

Mean Blood Pressure 0.012088

Diastolic Blood Pressure 0.011896

Respiratory Rate 0.010440

Temperature 0.009451

Glucose 0.008919

Saturation of O2 0.008252

Urine Color 0.007649

Central Venous Pressure 0.006685

Arterial pH 0.006645

Peak Inspiratory Pressure 0.005675

Arterial Partial Pressure O2 0.005471

Platelets 0.005375

Blood urea nitrogen 0.005355

Bicarbonate 0.005288

White Blood Cells Count (WBC) 0.005234

Hematocrit 0.005107

Partial Thromboplastin Time 0.005072

Arterial CO2 0.005039

Potassium 0.005036

Red Blood Cell Count (RBC) 0.005006

Serum Creatinine 0.004893

Venous Partial Pressure O2 0.004821

Hemoglobin 0.004729

Red Blood Cell Distribution Width (RDW) 0.004634

Phosphorous 0.00455

Asparate Aminotransferase 0.00452

Phosphate 0.00448
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Table C.5 continued from previous page

Sodium 0.00446

Chloride 0.004344

Calcium 0.004344

Arterial Partial Pressure CO2 0.004303

Bilirubin 0.004293

Mean Corpuscular Hemoglobin Concentration 0.004263

Prothrombin Time 0.004216

Mean Corpuscular Hemoglobin 0.004211

Weight 0.004068

Creatinine - Baseline value 0.004059

Venous Base Excess 0.004025

Mean Corpuscular Volume 0.004008

Glasgow Coma Scale Total 0.003986

Alanine aminotransferase 0.003862

Arterial Base Excess 0.003728

Creatinine - Baseline value: Lowest 48hr 0.003701

Alkaline phosphatase 0.003648

Lactate 0.003600

Anion Gap 0.003553

Lactic Acid 0.003455

Magnesium 0.003348

Serum Albumin 0.003339

Creatine Phosphokinase (CPK) 0.003240

Positive end-expiratory pressure (PEEP) 0.002448

Creatinine - Baseline value: Lowest 7 days 0.002324

Urine Appearance 0.002051

Glasgow Coma Scale Eye Opening 0.002011

Ectopy Frequency 0.001895

Basophils 0.001658

Glasgow Coma Scale Motor Response 0.001433

Glasgow Coma Scale Verbal Response 0.000964

Table C.6: Feature Importance Scores using no calculated features with 2B Raw

Feature Score

Heart Rate 0.037868

Temperature 0.036524

Glucose 0.034735

Systolic Blood Pressure 0.034343

Mean Blood Pressure 0.032548

Diastolic Blood Pressure 0.030956

Respiratory Rate 0.026172

Blood urea nitrogen 0.023179

Peak Inspiratory Pressure 0.022729
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Table C.6 continued from previous page

Saturation of O2 0.022611

Platelets 0.022517

Urine Color 0.021889

Central Venous Pressure 0.021441

Arterial pH 0.019879

Hematocrit 0.019134

Red Blood Cell Distribution Width (RDW) 0.018949

White Blood Cells Count (WBC) 0.018867

Arterial Partial Pressure O2 0.018542

Prothrombin Time 0.018244

Venous Partial Pressure O2 0.018128

Arterial Partial Pressure CO2 0.017821

Partial Thromboplastin Time 0.017682

Mean Corpuscular Hemoglobin Concentration 0.017638

Potassium 0.017577

Arterial CO2 0.017524

Red Blood Cell Count (RBC) 0.017076

Bicarbonate 0.017037

Serum Creatinine 0.016908

Mean Corpuscular Hemoglobin 0.016883

Calcium 0.016830

Sodium 0.016662

Hemoglobin 0.016651

Weight 0.015982

Chloride 0.015707

Phosphorous 0.015644

Glasgow Coma Scale Total 0.015634

Phosphate 0.015092

Bilirubin 0.013995

Asparate Aminotransferase 0.013698

Mean Corpuscular Volume 0.013624

Creatine Phosphokinase (CPK) 0.013568

Lactate 0.012952

Alanine aminotransferase 0.012763

Magnesium 0.012393

Arterial Base Excess 0.012139

Anion Gap 0.012122

Lactic Acid 0.012080

Alkaline phosphatase 0.011748

Venous Base Excess 0.011706

Serum Albumin 0.011464

Positive end-expiratory pressure (PEEP) 0.009878

Urine Appearance 0.009735

Glasgow Coma Scale Eye Opening 0.009390
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Table C.6 continued from previous page

Basophils 0.006552

Ectopy Frequency 0.006218

Glasgow Coma Scale Motor Response 0.006004

Glasgow Coma Scale Verbal Response 0.004368

98



Appendix D

Results for All Patients

Table D.1: 2B: Predicting the current hour (mean ± standard deviation)

Number of features

5 10 20 30 40 50 57 (All) 60 63 (All)

Full Dataset

(No Stage)

RF
0.9914

± 0.0003

0.9909 ±
0.0005

0.9919

± 0.0008

0.9924

± 0.0006

0.9925

± 0.0004

0.9924

± 0.0006
-

0.9925

± 0.0007

0.9926

± 0.0006

NB
0.9039

± 0.0016

0.9013

± 0.0018

0.8996

± 0.0021

0.8944

± 0.0022

0.8915

± 0.0025

0.8865

± 0.0028
-

0.8824

± 0.0028

0.8816

± 0.0030

No Stage & Baselines
RF

0.8852

± 0.0018

0.9119

± 0.0013

0.9378

± 0.0013

0.9439

± 0.0016

0.9452

± 0.0017

0.9467

± 0.0014

0.9476

± 0.0012
- -

NB
0.8191

± 0.0015

0.8057

± 0.0014

0.7842

± 0.0021

0.7764

± 0.0031

0.7674

± 0.0030

0.7471

± 0.0025

0.7395

± 0.0022
- -
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Table D.2: 2B Raw: Predicting the current hour (mean ± standard deviation)

Number of features

5 10 20 30 40 50 57 (All) 60 63 (All)

Full Dataset

(No Stage)

RF
0.9987

± 0.0011

0.9881 ±
0.0012

0.9900

± 0.0012

0.9904

± 0.0011

0.9904

± 0.0010

0.9903

± 0.0010
-

0.9902

± 0.0011

0.9902

± 0.0011

NB
0.7938

± 0.0045

0.7958

± 0.0041

0.7964

± 0.0029

0.7952

± 0.0025

0.7937

± 0.0031

0.7984

± 0.0024
-

0.7950

± 0.0027

0.7948

± 0.0032

No Stage & Baselines
RF

0.8590

± 0.0011

0.8693

± 0.0011

0.9286

± 0.0015

0.9349

± 0.0014

0.9361

± 0.0016

0.9371

± 0.0022

0.9390

± 0.0016
- -

NB
0.8156

± 0.0017

0.8101

± 0.0018

0.7809

± 0.0023

0.7733

± 0.0036

0.7657

± 0.0037

0.7447

± 0.0038

0.7373

± 0.0035
- -

Table D.3: Creat: Predicting the current hour (mean ± standard deviation)

Number of features

5 10 20 30 40 50 57 (All) 60 63 (All)

Full Dataset

(No Stage)

RF
0.9999

± 0.0000

1.0 ±
0.0000

0.9999

± 0.0000

0.9999

± 0.0000

0.9999

± 0.0000

0.9999

± 0.0000
-

0.9999

± 0.0000

0.9999

± 0.0000

NB
0.7532

± 0.0024

0.7267

± 0.0031

0.7366

± 0.0036

0.7258

± 0.0041

0.7148

± 0.0033

0.7009

± 0.0041
-

0.6996

± 0.0037

0.6983

± 0.0039

No Stage & Baselines
RF

0.9992

± 0.0003

0.9999

± 0.0000

0.9999

± 0.0001

0.9999

± 0.0001

0.9999

± 0.0001

0.9999

± 0.0001

0.9999

± 0.0001
- -

NB
0.7668

± 0.0024

0.7445

± 0.0022

0.7342

± 0.0028

0.7258

± 0.0035

0.7060

± 0.0035

0.7044

± 0.0035

0.6951

± 0.0034
- -

Table D.4: 2B: Predicting the next hour (mean ± standard deviation)

Number of features

5 10 20 30 40 50 59 (All) 60 65 (All) 66 (All)

Full Dataset
RF

0.9573

± 0.0013

0.9610

± 0.0016

0.9595

± 0.0015

0.9579

± 0.0015

0.9570

± 0.0015

0.9563

± 0.0014
-

0.9558

± 0.0017
-

0.9561

± 0.0017

NB
0.9475

± 0.0024

0.9268

± 0.0028

0.9239

± 0.0024

0.9173

± 0.0028

0.9126

± 0.0029

0.9054

± 0.0031
-

0.8953

± 0.0034
-

0.8942

± 0.0032

Full Dataset

(No Stage)

RF
0.9530

± 0.0022

0.9544

± 0.0019

0.9555

± 0.0016

0.9549

± 0.0018

0.9545

± 0.0015

0.9543

± 0.0015
-

0.9546

± 0.0016

0.9547

± 0.0015
-

NB
0.8243

± 0.0030

0.8255

± 0.0032

0.8371

± 0.0040

0.8337

± 0.0039

0.8315

± 0.0042

0.8244

± 0.0049
-

0.8220

± 0.0049

0.8214

± 0.0047
-

No Stage & Baselines
RF

0.8665

± 0.0014

0.9005

± 0.0014

0.9369

± 0.0015

0.9436

± 0.0016

0.9452

± 0.0019

0.9468

± 0.0015

0.9479

± 0.0020
- - -

NB
0.8185

± 0.0019

0.7961

± 0.0026

0.7841

± 0.0022

0.7703

± 0.0023

0.7655

± 0.0024

0.7460

± 0.0038

0.7392

± 0.0033
- - -

Table D.5: 2B raw: Predicting the next hour (mean ± standard deviation)

Number of features

5 10 20 30 40 50 57 (All) 60 63 (All) 64 (All)

Full Dataset
RF

0.9452

± 0.0015

0.9491

± 0.0016

0.9469

± 0.0014

0.9451

± 0.0020

0.9439

± 0.0015

0.9433

± 0.0016
-

0.9431

± 0.0014
-

0.9434

± 0.0016

NB
0.9415

± 0.0011

0.9092

± 0.0028

0.8949

± 0.0016

0.8892

± 0.0028

0.8800

± 0.0041

0.8696

± 0.0053
-

0.8565

± 0.0048
-

0.8556

± 0.0050

Full Dataset

(No Stage)

RF
0.9456

± 0.0013

0.9473

± 0.0017

0.9468

± 0.0019

0.9459

± 0.0015

0.9447

± 0.0018

0.9444

± 0.0015
-

0.9445

± 0.0014

0.9441

± 0.0015
-

NB
0.7713

± 0.0038

0.7680

± 0.0040

0.7927

± 0.0029

0.7989

± 0.0032

0.7912

± 0.0044

0.7883

± 0.0047
-

0.7836

± 0.0044

0.7833

± 0.0041
-

No Stage & Baselines
RF

0.8604

± 0.0012

0.8704

± 0.0015

0.9290

± 0.0018

0.9348

± 0.0019

0.9364

± 0.0017

0.9376

± 0.0015

0.9394

± 0.0018
- - -

NB
0.8151

± 0.0013

0.8094

± 0.0009

0.7798

± 0.0025

0.7673

± 0.0030

0.7631

± 0.0034

0.7438

± 0.0040

0.7371

± 0.0027
- - -
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Table D.6: Creat: Predicting the next hour (mean ± standard deviation)

Number of features

5 10 20 30 40 50 57 (All) 60 63 (All) 64 (All)

Full Dataset
RF

0.9968

± 0.0004

0.9967

± 0.0003

0.9966

± 0.0004

0.9956

± 0.0005

0.9960

± 0.0004

0.9962

± 0.0005
-

0.9965

± 0.0004
-

0.9965

± 0.0004

NB
0.9960

± 0.0005

0.9940

± 0.0007

0.9917

± 0.0010

0.9914

± 0.0010

0.9913

± 0.0010

0.9910

± 0.0011
-

0.9909

± 0.0010
-

0.9909

± 0.0010

Full Dataset

(No Stage)

RF
0.9968

± 0.0004

0.9967

± 0.0004

0.9963

± 0.0005

0.9955

± 0.0005

0.9956

± 0.0005

0.9959

± 0.0005
-

0.9963

± 0.0004

0.9963

± 0.0004
-

NB
0.7529

± 0.0014

0.7382

± 0.0022

0.7316

± 0.0035

0.7273

± 0.0023

0.7158

± 0.0024

0.7007

± 0.0028
-

0.7049

± 0.0024

0.6978

± 0.0030
-

No Stage & Baselines
RF

0.9959

± 0.0004

0.9966

± 0.0004

0.9962

± 0.0005

0.9960

± 0.0005

0.9956

± 0.0005

0.9961

± 0.0004

0.9962

± 0.0004
- - -

NB
0.7666

± 0.0012

0.7526

± 0.0017

0.7432

± 0.0019

0.7265

± 0.0019

0.7065

± 0.0024

0.7044

± 0.0025

0.6948

± 0.0028
- - -

101





Appendix E

Results for Reduced Patients

Table E.1: Reduced 2B: Predicting the current hour (mean ± standard deviation)

Number of features

5 10 20 30 40 50 57 (All) 60 63 (All)

Full Dataset

(No Stage)

RF
0.9814

± 0.0026

0.9841

± 0.0032

0.9844

± 0.0033

0.9847

± 0.0037

0.9840

± 0.0030

0.9847

± 0.0032
-

0.9844

± 0.0033

0.9847

± 0.0033

NB
0.8550

± 0.0092

0.8586

± 0.0091

0.8386

± 0.0112

0.8161

± 0.0121

0.8010

± 0.0116

0.7709

± 0.0120
-

0.7550

± 0.0146

0.7544

± 0.0156

No Stage & Baselines
RF

0.6378

± 0.0105

0.8202

± 0.0087

0.8779

± 0.0062

0.8829

± 0.0069

0.8859

± 0.0078

0.8870

± 0.0089

0.8887

± 0.0090
- -

NB
0.4908

± 0.0042

0.5223

± 0.0095

0.5066

± 0.0108

0.4887

± 0.0147

0.4125

± 0.0168

0.3967

± 0.0198

0.4065

± 0.0167
- -

103



Table E.2: Reduced 2B Raw: Predicting the current hour (mean ± standard deviation)

Number of features

5 10 20 30 40 50 57 (All) 60 63 (All)

Full Dataset

(No Stage)

RF
0.9730

± 0.0036

0.9761

± 0.0038

0.9781

± 0.0025

0.9782

± 0.0031

0.9787

± 0.0029

0.9781

± 0.0027
-

0.9781

± 0.0028

0.9779

± 0.0032

NB
0.8134

± 0.0063

0.8171

± 0.0079

0.8151

± 0.0069

0.7942

± 0.0045

0.7886

± 0.0064

0.7675

± 0.0065
-

0.7509

± 0.0073

0.7483

± 0.0051

No Stage & Baselines
RF

0.6262

± 0.0089

0.7865

± 0.0090

0.8639

± 0.0086

0.8677

± 0.0084

0.8713

± 0.0070

0.8719

± 0.0072

0.8748

± 0.0066
- -

NB
0.4991

± 0.0025

0.4908

± 0.0053

0.5194

± 0.0079

0.5151

± 0.0092

0.5088

± 0.0105

0.4718

± 0.0115

0.4749

± 0.0107
- -

Table E.3: Reduzed Creat: Predicting the current hour (mean ± standard deviation)

Number of features

5 10 20 30 40 50 57 (All) 60 63 (All)

Full Dataset

(No Stage)

RF
1

± 0

0.9999

± 0.0001

0.9999

± 0.0001

0.9999

± 0.0001

0.9999

± 0.0001

0.9999

± 0.0001
-

0.9998

± 0.0002

0.9998

± 0.0002

NB
0.4694

± 0.0135

0.5003

± 0.0108

0.4609

± 0.0087

0.5118

± 0.0095

0.5403

± 0.0048

0.5453

± 0.0.0065
-

0.5713

± 0.0056

0.5741

± 0.0045

No Stage & Baselines
RF

0.9998

± 0.0002

0.9999

± 0.0001

0.9998

± 0.0002

0.9998

± 0.0002

0.9997

± 0.0005

0.9997

± 0.0005

0.9997

± 0.0005
- -

NB
0.4364

± 0.0108

0.4677

± 0.0094

0.4166

± 0.0079

0.5121

± 0.0065

0.5287

± 0.0064

0.5349

± 0.0071

0.5554

± 0.0066
- -

Table E.4: Reduced 2B: Predicting the next hour (mean ± standard deviation)

Number of features

5 10 20 30 40 50 57 (All) 60 63 (All) 64 (All)

Full Dataset
RF

0.9078

± 0.0047

0.9183

± 0.0044

0.9135

± 0.0043

0.9110

± 0.0048

0.9092

± 0.0057

0.9094

± 0.0049
-

0.9076

± 0.0052
-

0.9069

± 0.0055

NB
0.9129

± 0.0034

0.9032

± 0.0027

0.8780

± 0.0085

0.8762

± 0.0119

0.8620

± 0.0148

0.8264

± 0.0211
-

0.8095

± 0.0229
-

0.8123

± 0.0207

Full Dataset

(No Stage)

RF
0.9019

± 0.0076

0.9075

± 0.0062

0.9091

± 0.0062

0.9073

± 0.0064

0.9065

± 0.0056

0.9059

± 0.0069
-

0.9063

± 0.0064

0.9057

± 0.0070
-

NB
0.7813

± 0.0077

0.7785

± 0.0084

0.7877

± 0.0072

0.7554

± 0.0171

0.7264

± 0.0193

0.7087

± 0.0173
-

0.6871

± 0.0233

0.6886

± 0.0243
-

No Stage & Baselines
RF

0.6362

± 0.0055

0.8116

± 0.0074

0.8789

± 0.0073

0.8836

± 0.0084

0.8884

± 0.0067

0.8882

± 0.0074

0.8922

± 0.0069
- - -

NB
0.4878

± 0.0057

0.5189

± 0.0081

0.5078

± 0.0062

0.5138

± 0.0106

0.4488

± 0.0234

0.4294

± 0.0284

0.4364

± 0.0250
- - -

Table E.5: Reduced 2B raw: Predicting the next hour (mean ± standard deviation)

Number of features

5 10 20 30 40 50 57 (All) 60 63 (All) 64 (All)

Full Dataset
RF

0.8865

± 0.0082

0.8974

± 0.0082

0.8942

± 0.0086

0.8900

± 0.0090

0.8885

± 0.0084

0.8866

± 0.0079
-

0.8865

± 0.0091
-

0.8863

± 0.0092

NB
0.8828

± 0.0059

0.8725

± 0.0071

0.8657

± 0.0064

0.8411

± 0.0102

0.8446

± 0.0093

0.8184

± 0.0122
-

0.8050

± 0.0131
-

0.8058

± 0.0119

Full Dataset

(No Stage)

RF
0.8873

± 0.0064

0.8949

± 0.0067

0.8938

± 0.0077

0.8912

± 0.0091

0.8899

± 0.0086

0.8890

± 0.0098
-

0.8872

± 0.0091

0.8887

± 0.0090
-

NB
0.7667

± 0.0104

0.7618

± 0.0132

0.7763

± 0.0118

0.7476

± 0.0125

0.7490

± 0.0115

0.7194

± 0.0144
-

0.7142

± 0.0126

0.7123

± 0.0115
-

No Stage & Baselines
RF

0.6305

± 0.0073

0.7747

± 0.0075

0.8639

± 0.0074

0.8673

± 0.0069

0.8709

± 0.0059

0.8724

± 0.0070

0.8759

± 0.0045
- - -

NB
0.4963

± 0.0039

0.4852

± 0.0074

0.5236

± 0.0060

0.5118

± 0.0103

0.4916

± 0.0143

0.4764

± 0.0132

0.4797

± 0.0130
- - -
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Table E.6: Reduced Creat: Predicting the next hour (mean ± standard deviation)

Number of features

5 10 20 30 40 50 57 (All) 60 63 (All) 64 (All)

Full Dataset
RF

0.9930

± 0.0019

0.9929

± 0.0018

0.9926

± 0.0018

0.9908

± 0.0021

0.9899

± 0.0021

0.9915

± 0.0018
-

0.9921

± 0.0018
-

0.9921

± 0.0017

NB
0.9925

± 0.018

0.9925

± 0.018

0.9900

± 0.0024

0.9901

± 0.0023

0.9899

± 0.0023

0.9897

± 0.0021
-

0.9894

± 0.0022
-

0.9891

± 0.0023

Full Dataset

(No Stage)

RF
0.9930

± 0.0018

0.9928

± 0.0018

0.9918

± 0.0016

0.9900

± 0.0022

0.9900

± 0.0021

0.9908

± 0.0015
-

0.9917

± 0.0018

0.9919

± 0.0017
-

NB
0.4665

± 0.0104

0.4990

± 0.0114

0.4632

± 0.0103

0.4949

± 0.0099

0.5284

± 0.0107

0.5448

± 0.0125
-

0.5632

± 0.0108

0.5738

± 0.0094
-

No Stage & Baselines
RF

0.9928

± 0.0018

0.9927

± 0.0018

0.9916

± 0.0017

0.9912

± 0.0016

0.9901

± 0.0020

0.9912

± 0.0018

0.9915

± 0.0015
- - -

NB
0.4352

± 0.0094

0.4682

± 0.0070

0.4469

± 0.0085

0.5069

± 0.0111

0.5279

± 0.0104

0.5373

± 0.0119

0.5547

± 0.0098
- - -
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Appendix F

Confusion Matrices

F.1 sCr classification system

F.1.1 All features

(a) Standard confusion matrix (b) Confusion matrix with percentage by row

Figure F.1: Confusion matrix using 6h sequences

(a) Standard confusion matrix (b) Confusion matrix with percentage by row

Figure F.2: Confusion matrix using 12h sequences
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(a) Standard confusion matrix (b) Confusion matrix with percentage by row

Figure F.3: Confusion matrix using 24h sequences

F.1.2 10 most important features

(a) Standard confusion matrix (b) Confusion matrix with percentage by row

Figure F.4: Confusion matrix using 6h sequences
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(a) Standard confusion matrix (b) Confusion matrix with percentage by row

Figure F.5: Confusion matrix using 12h sequences

(a) Standard confusion matrix (b) Confusion matrix with percentage by row

Figure F.6: Confusion matrix using 24h sequences

F.2 2B classification system

F.2.1 All features
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(a) Standard confusion matrix (b) Confusion matrix with percentage by row

Figure F.7: Confusion matrix using 6h sequences

(a) Standard confusion matrix (b) Confusion matrix with percentage by row

Figure F.8: Confusion matrix using 12h sequences

(a) Standard confusion matrix (b) Confusion matrix with percentage by row

Figure F.9: Confusion matrix using 24h sequences
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F.2.2 10 most important features

(a) Standard confusion matrix (b) Confusion matrix with percentage by row

Figure F.10: Confusion matrix using 6h sequences

(a) Standard confusion matrix (b) Confusion matrix with percentage by row

Figure F.11: Confusion matrix using 12h sequences
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(a) Standard confusion matrix (b) Confusion matrix with percentage by row

Figure F.12: Confusion matrix using 24h sequences

F.2.3 Different learning rate

(a) Standard confusion matrix (b) Confusion matrix with percentage by row

Figure F.13: Results using a learning rate of 0.0001 with all features
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(a) Standard confusion matrix (b) Confusion matrix with percentage by row

Figure F.14: Results using a learning rate of 0.0001 with 10 features

F.3 Focusing on stage alterations

F.3.1 sCr classification system

(a) Standard confusion matrix (b) Confusion matrix with percentage by row

Figure F.15: Results using the sCr classification system

F.3.2 2B classification system
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(a) Standard confusion matrix (b) Confusion matrix with percentage by row

Figure F.16: Results using the 2B classification system with learning rate of 0.00025

(a) Standard confusion matrix (b) Confusion matrix with percentage by row

Figure F.17: Results using the 2B classification system with learning rate of 0.0005
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