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Resumo Alargado

A investigação biomédica gera um enorme fluxo de dados anualmente, com uma tendência crescente.
A única forma de analisar esta quantidade de dados de forma rápida e eficiente é utilizando métodos
digitais, contudo dados biomédicos são gerados em linguagem natural, que na sua forma não tratada, não
é compatível com computação. Uma das características da linguagem natural que é de difícil tradução é
o significado das palavras. Para guardar a informação de forma correta, sinónimos, por exemplo, têm de
ser considerados como semelhantes apesar das palavras poderem ser totalmente diferentes.

As ontologias biomédicas reúnem as condições necessárias para o armazenamento de dados biomédi-
cos de forma acessível a homem e máquina, por isso são muito usadas para resolver este problema. Téc-
nicas de semelhança semântica utilizam as características inerentes da ontologia, como hierarquia, para
retornar um valor numérico que reflete a proximidade de significado entre conceitos. As ontologias são
utilizadas também para anotar dados, ou seja, associar entidades com as classes presentes na ontologia,
incluindo informação sobre esta, as evidências consideradas, quem a criou e quando. As anotações têm
diversas aplicações e motivaram o desenvolvimento de novas ferramentas para estruturar conhecimento
e analisá-lo.

Apesar das anotações serem cruciais no desenvolvimento da bioinformática, as ontologias biomédi-
cas continuam incompletas num aspeto chave, na presença de anotações negativas. Usualmente as ano-
tações baseiam-se em associar um facto com uma entidade – anotação positiva - mas as anotações que
descrevem que um facto não está associado com uma entidade, ou anotações negativas, são raras nas
maiores ontologias biomédicas. O número de anotações negativas é teoricamente muito maior do que o
número de anotações positivas, contudo anotações negativas são raras em bio-ontologias. O problema
é que as ontologias não estão a considerar a Open World Assumption, onde a falta de uma anotação
não pode ser interpretada como sendo uma anotação negativa. Os métodos existentes para o cálculo
de semelhança semântica normalmente ignoram as anotações negativas e utilizam apenas as anotações
positivas para evitar esta limitação. Contudo, devido à dificuldade em distinguir informação negativa de
informação desconhecida, a geração de exemplos negativos para metodologias que precisam deles, como
aprendizagem automática, fica comprometida.

Para compreender o impacto desta limitação, neste trabalho as medidas de semelhança semântica
pairwise Best-Match Average(BMA) e Resnik foram adaptadas para desenvolver PolarBMA e PolarRes-
nik. Estas utilizam tanto anotações positivas como negativas para o cálculo de semelhança semântica.
Uma metodologia foi desenvolvida, em que ambas as medidas são usadas em combinação. A PolarRes-
nik é utilizada para obter a semelhança de classes e em seguida a PolarBMA utiliza essa semelhança para
calcular a semelhança semântica final. A dificuldade em incorporar anotações negativas no cálculo de
semelhança semântica é causada pela herança das anotações negativas ser oposta à das anotações posi-
tivas. Enquanto que, para as anotações positivas, anotação a uma dada classe implica anotação a todas
as superclasses, para as anotações negativas anotação a uma classe implica anotação a todas as suas sub-
classes. A medida PolarResnik considera esta informação no cálculo de semelhança de classes, e depois
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a PolarBMA utiliza estes valores e calcula a semelhança semântica penalizando os pares de entidades
com polaridades opostas.

Estas medidas foram testadas em duas aplicações muito importantes para a área de bioinformática,
a previsão de interação proteína-proteína e previsão de doença. Para o primeiro caso, foram escolhidos
pares de proteínas de um dataset curado com uma score de interação, de forma a que se soubesse se
os pares são compostos por proteínas que interagem ou que não interagem. As proteínas foram depois
enriquecidas com anotações retiradas da Gene Ontology para que cada uma possa ser representada como
um conjunto das suas anotações. Devido à raridade de anotações negativas presentes na ontologia, foram
geradas anotações negativas, com diferentes níveis de frequência e para cada ramo da Gene Ontology:
Componente Celular, Função Molecular e Processo Biológico.

Para a previsão de doença, foram selecionadas trinta e três doenças mendelianas, e 50 pacientes
sintéticos foram criados para cada uma. Os fenótipos associados às doenças têm diferentes penetrâncias,
que dependem da frequência com que esses fenótipos se manifestam. A penetrância varia com o sexo, por
isso foi gerado, com igual probabilidade, um género para cada paciente. Estes foram depois enriquecidos
com anotações dos fenótipos consoante os da doença descritos na Human Phenotype Ontology, e a
penetrância de cada um. Foram também geradas anotações negativas para cada paciente a partir das
anotações negativas existentes nas doenças. Foram ainda adicionadas, em diferentes experiências, ruído
e imprecisão. O ruído consiste na adição de anotações que são aleatórias e não relacionadas com a
doença, para representar sintomas que pacientes podem reportar, mas que são apenas coincidências. A
imprecisão surge quando são anotados sintomas mais gerais ou imprecisos do que o sintoma original.
Foram ainda adicionadas mil doenças aleatórias da Human Phenotype Ontology para dificultar a tarefa
de classificação e mimicar condições reais.

Para avaliar o desempenho das medidas que consideram a polaridade das anotações, foram utilizadas
as medidas originais BMA e Resnik para comparação, medidas que têm um bom desempenho numa
generalidade de aplicações. A metodologia foi a mesma que a utilizada para PolarResnik e PolarBMA
mas sem a utilização de anotações negativas para o cálculo da semelhança.

Foi então calculada a semelhança semântica para todas as experiências, utilizando as medidas po-
lares e as medidas originais. Para o caso de previsão de interação proteína-proteína, foi computada a
semelhança semântica entre as proteínas de cada par, enquanto que, para a previsão de doenças, foi
determinada a semelhança entre os pacientes e as doenças candidatas.

Foi então verificado se as semelhanças obtidas pelas diferentes medidas estavam a permitir prever
corretamente se as proteínas interagiam, ou se os pacientes sintéticos sofriam de uma doença específica
previamente determinada. Fez-se um ranking de frequência cumulativa para os 10 primeiros lugares,
correspondentes às 10 doenças mais prováveis ou as 10 proteínas com maior probabilidade de interagir
com uma proteína alvo, para cada medida. Esta medida foi escolhida devido a aplicação da previsão de
doenças para ajuda de diagnóstico, onde é preferível ter uma lista das doenças mais prováveis para depois
um profissional de saúde poder fazer a decisão final. Também foi calculada a curva de Precision-Recall
e ROC AUC para as experiências de interação proteína-proteína, assim como a Average Precision para a
previsão de doenças. Estas são medidas de avaliação mais utilizadas tendo em conta as propriedades dos
dados.

No caso das proteínas, as medidas polares tiveram um desempenho semelhante às medidas originais,
exceto no ramo de Função Molecular e numa experiência de Componente Celular, o que indica que as
anotações negativas podem ter uma maior importância na função da proteína e onde na célula a proteína
tem a sua função, do que nos processos a que pertence. No caso da previsão de doença, as medidas
polares tiveram uma melhoria de 10 por cento no seu desempenho, comparativamente às medidas não
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polares. Até nos casos em que não foram adicionadas anotações negativas aos pacientes, as medidas
polares tiveram uma melhor performance porque utilizavam as anotações negativas das doenças, o que
dá enfase à importância das ontologias terem anotações negativas. É de salientar que o número de
anotações negativas, até com a adição de anotações geradas, continuou a ser um número muito reduzido
quando comparado com o número de anotações positivas. Assim sendo, se até a introdução de um
número reduzido de anotações negativas teve impacto na previsão de doenças, é possível concluir que as
anotações negativas têm impacto na semelhança semântica e é um tópico que carece de mais estudo.

Palavras chave: Semelhança Semântica, Ontologia biomédica, Anotação negativa, Previsão Inter-
ação Proteína-Proteína, Previsão de doença
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Abstract

Classical Semantic Similarity Measures did not consider negative annotations in similarity compu-
tation, and the impact that these annotations can have in this data mining technique is not well studied.
As such, this work aims to understand how the addition of negative annotations impacts semantic sim-
ilarity. To do so, two pairwise similarity measures, Best-Match Average and Resnik, were adapted to
create the polar measures PolarBMA and PolarResnik. These were evaluated in two currently relevant
scopes: protein-protein interaction prediction and disease prediction against the original measures. Pairs
of proteins where the proteins were known to interact or not were taken from STRING and enriched with
positive and negative annotations from the Gene Ontology. Synthetic patients were created as sets of
annotations taken from the Mendelian diseases they were designed to have, as well as possible noise or
imprecise annotations. Then semantic similarity was computed with both polar and non-polar measures
between proteins in pairs and between patients and candidate diseases including the Mendelian diseases,
as well as random diseases taken from the Human Phenotype Ontology.

To evaluate if the polar measures performed well in comparison to the baseline, a ranking according
to semantic similarity was made for each measure and scope for evaluation and the rank cumulative
frequencies were plotted. ROC AUC and Precision-Recall curves were also determined for the Protein-
Protein interaction(PPI) prediction, as well as average precision for the disease prediction dataset. In
PPI prediction, polar measures had an increased performance in the Molecular Function branch for both
experiments where negative annotations were added and also in one of the experiments with the Cellular
Component branch. In the disease prediction scope, polar measures had an improved performance of
approximately ten percent. This improvement was verified in all disease prediction experiments, even
with the addition of noise and imprecision. Considering the results obtained, this work concludes that
negative annotations have an impact on semantic similarity, but the amplitude of this impact requires
further study.

Keywords: Semantic Similarity, Biomedical Ontologies, Negative Annotation, Protein-Protein In-
teraction Prediction, Disease Prediction
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Chapter 1

Introduction

1.1 Motivation

Unlike other scientific fields, in life sciences knowledge is usually expressed in natural language,
which is very ambiguous and heterogeneous so it can not be easily reduced to mathematical form, thus
becoming difficult to compute (Bodenreider et al., 2006). One way to translate facts from natural lan-
guage into data that can be computed is by using ontologies. These represent knowledge in conceptual
schema, with classes and relationships, that can be compared, enriched with metadata and with specific
properties that allow for computation, such as axioms (Hoehndorf et al., 2015). These have gained pop-
ularity in the biomedical field in recent years and have become an area of international effort and interest
(Hoehndorf et al., 2015).

Ontologies can be used to describe data through ontology-based annotation which associates an en-
tity with a class, combining this assertion with information, including the evidence considered and who
created it. Data mining has a wide range of limitations in the biomedical field because classical machine
learning algorithms can not interpret the meaning of the information they process. Semantic similarity is
a data mining technique that tackles this problem, because semantic similarity measures return a numer-
ical value that reflects the closeness in meaning between entities (Pesquita, Faria, Falcão, et al., 2009).
Semantic similarity measures, when used in ontologies for data mining, take advantage of the axioms
and definitions to find the similarity between annotated entities. This is extremely useful and has been
widely applied to the diagnosis of disease based on phenotype similarity (Hoehndorf et al., 2015).

Most annotations used in biomedical ontologies are positive annotations, these are the standard an-
notations that state the fact that a biomedical entity is described by an ontology class. For the Human
Phenotype Ontology (HPO) (Köhler, Gargano, et al., 2020), for example, diseases have positive annota-
tions that associate the phenotypes with the disease that causes them. In the case of the Gene Ontology
(GO) (Ashburner et al., 2000; Consortium et al., 2020), proteins are positively annotated with the molec-
ular functions they are known to carry out, biological processes and cellular components they belong
to. However the annotation sets available for these ontologies are incomplete when it comes to negative
annotations, i.e., annotations that indicate that a biological entity is not described by an ontology class.
This is important because oftentimes the absence of a positive annotation causes confusion because it is
not explicit if there is no knowledge about the annotation or if the annotation is indeed negative. Since
biomedical knowledge is very incomplete, biomedical ontology annotations reside under the open world
assumption (OWA), where the lack of an annotation between an entity and a class cannot be interpreted
as evidence for that annotation to be false. This makes it impossible to distinguish between cases where
there is true lack of a property versus cases where there is no knowledge of about it. Explicit negative
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1. INTRODUCTION

annotations for when there is such evidence would mitigate this issue.
Usually the computation of semantic similarity uses only positive annotations to determine similarity,

e.g., two patients suffer from tongue atrophy, so they are similar. However, this method ignores relevant
information, since classes can be similar if they share negative annotations, such as two patients that
are similar if they don’t suffer from tongue atrophy, a feature that is treated as missing data by existing
semantic similarity algorithms. Negative annotations can help complete the semantic representation of
biological entities and thus potentially support more insightful and relevant semantic similarity measures.

Theoretically the number of negative annotations present in an ontology should be significantly
higher that the number of positive annotations, so the study of their influence in semantic similarity
applications is key to estimate how important negative annotation are for data mining techniques.

1.2 Objectives

This work aimed to investigate if considering negative semantic annotations in biomedical semantic
similarity computation influences the performance of semantic similarity applications for protein-protein
interaction (PPI) prediction and disease prediction. These are areas of the biomedical field that can
benefit greatly from data mining techniques to save resources and help physicians. Previous related work
identified the need to use automated techniques for PPI prediction, as well as the limitations in GO caused
by the small number of negative semantic annotations present in the ontology (Youngs et al., 2014). As
for disease prediction, the utility of data mining tools as well as ontologies has been identified(Masino
et al., 2014), but negative annotations’ impact on these techniques has not been studied in depth.

1.2.1 Research questions

This project was structured to answer three research questions:

1. How can negative semantic annotations be considered in semantic similarity computation? Taxo-
nomical semantic similarity measures do not consider negative semantic annotations. This work
will develop a novel approach to tackle this limitation.

2. How does the addition of negative semantic annotations influence Protein-Protein interaction pre-
diction based on semantic similarity? This work will evaluate if the results obtained from addition
of negative semantic similarity improves protein-protein prediction. Evaluation will be made by
ranking results according to ground truth and analysing how they relate.

3. How does the addition of negative semantic annotations influence disease prediction based on
semantic similarity? This work will evaluate if the results obtained from addition of negative
semantic similarity improves the patient’s disease prediction. Evaluation will be made by ranking
results according to ground truth and analysing how they relate.

1.3 Document Structure

This document is structured as follows:

• Chapter 2 describes the state of the art, that introduces the concepts necessary to understand the
methodology, as well as related work.
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1.3 Document Structure

• Chapter 3 is the about Methods and Data, and focuses on the development of PolarResnik and
PolarBMA, and on the creation of the PPI prediction and disease prediction datasets.

• Chapter 4 is about the experimental design, and precises how the negative annotations were gen-
erated and further characterizes how the datasets were designed. It also includes the dataset char-
acteristics and evaluation metrics description.

• Chapter 5 presents and discusses the results obtained.

• Finally, Chapter 6 revolves around the conclusions, as well as contributions and future work.
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Chapter 2

State of the art

This chapter describes the concepts and techniques that are required to understand the context of this
work. It is structured as follows:

• Section 2.1 defines ontologies and specifies their 4 key features, structure and applications. Here
the two ontologies used for this dissertation, the Gene Ontology and the Human Phenotype Ontol-
ogy, are described in more depth.

• Section 2.2 focuses on semantic annotations and their key components on the Gene Ontology, as
well as in the introduction of negative semantic annotations.

• In 2.3 semantic similarity is introduced in an ontology context. The concept of Information Con-
tent is defined and Node based and edge based approaches are discussed. Pairwise similarity
measures are distinguished from group wise semantic similarity measures, and Resnik and BMA
are reviewed.

• Finally, 2.4 is dedicated to related work that developed methodologies related to the main problem-
atic addressed on this dissertation, inclusing the scopes of disease and protein-protein interaction
prediction, and semantic similarity use with ontologies.

2.1 Ontology

An ontology is a set of logic axioms that form a model of a portion of reality (Bodenreider et al.,
2006), and it can be used to represent and share knowledge about a domain by modelling it and the
relationships within (Hoehndorf et al., 2015). Functionally, ontologies possess four key features:

1. Classes and Relations: The main components of an ontology, representing entities of the domain
and the relationships between them. Can be uniquely identified by IRI’s which allow for data
integration across platforms.

2. Domain Vocabulary: Labels are associated to classes and relations to represent them beyond their
identifiers. Provides terms, such as synonyms, that cover the domain so that natural language
processing can be achieved.

3. Metadata and Descriptions: Specifies the meaning of classes and relates these classes to informa-
tion on other data sources. Guarantees that classes can be understood and described by experts
consistently.
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4. Axioms and Formal Definitions: allow computation and automation because they can be accessed
through software. Ontologies can be represented in OWL or other similar languages and then
processed to extract domain knowledge.

Ontologies have important applications, including data integration to Natural Language Processing
(Rubin et al., 2007). Biomedical ontologies are historically represented in the Open Biomedical Ontolo-
gies (OBO) language, designed specifically for the characteristics of biomedical ontologies and focuses
on being readable by humans and machines, as well as easily used (Dessimoz et al., 2017). However, the
Web Ontology Language (OWL), a more powerful language in terms of logical statements and reasoning
support which is considered the standard in Computer Science, started growing within the Biomedical
Ontologies community.

Figure 2.1: Example of a class and axiom from the Gene Ontology written in OWL

Most biomedical ontologies are organized as directed acyclic graphs, with ’child’ classes (sometimes
referred to as terms), that are specific instances or components of ’parent’ or ’ancestor’ classes which are
more general. It is not a rigorous hierarchy because child classes can have one or more parent classes.
This structure resembles a hierarchy in a sense that a child class possesses all the properties of parent
classes (Dessimoz et al., 2017).

2.1.1 Gene Ontology

The Gene Ontology is the most adopted ontology by the biomedical field, it contains information
about genes and their products. It was created to standardize terms that can then be used to annotate
different Model Organism Databases (MOD) in an unambiguous manner (Ashburner et al., 2000; Con-
sortium et al., 2020). Each gene or gene product is annotated with a set of GO-terms, in a process called
ontology-based annotation. A GO-annotation describes how and where a gene functions, as well as what
processes it contributes to(Rubin et al., 2007).

For this purpose GO is divided into three branches:

1. Biological Process: the process that a gene product’s activity contributes to, like ’DNA repair’.

2. Cellular Component: where in a cell is a gene product’s activity, an example is ’ribosome’.

3. Molecular Function: molecular activities of a gene product, such as ’catalysis’. These activities
can be performed by a gene product or a molecular complex of gene products.

2.1.2 Human Phenotype Ontology

The HPO describes phenotypes and human disease, with the purpose of integrating this knowledge
across scientific fields and platforms. HPO includes several subontologies, ranging from ’Phenotypic
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Figure 2.2: Schematic view of an excerpt of the gene ontology

abnormality’ to ’Mortality’, with the ’Mode of inheritance’ being of interest to this work because it
describes if a disease has Mendelian inheritance (Köhler, Gargano, et al., 2020).

In this ontology, annotations work as HPO phenotypic profiles, so patients can be described very
specifically as a set annotations, which will allow several applications such as personalized medicine and
diagnosis. Another point of interest is that for the Mendelian diseases, there is a degree of penetrance
for each phenotype depending on the sex of the patient. This is very useful for generating synthetic
patients that allow studies of rare diseases that would not have enough patients otherwise. (Pesquita,
Faria, Falcao, et al., 2009)

Figure 2.3: Schematic view of a Mendelian disorder (Huntington’s disease) and its HPO annotations. Each annotation of the
disease has a specific frequency and patients are represented as sets of annotations.
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Figure 2.3 shows a representation of Huntington disease, a Mendelian disorder with Autosomal dom-
inant inheritance, with several annotation terms in HPO. These terms, such as Rigidity (with the term
identifier HP:0002063), describe the symptoms that patients can present, so patients, shown in different
colours in the image, can be seen as sets of annotations. Annotations have different frequencies accord-
ing to penetrance, and this is evident in Figure 2.3, as Rigidity that is an occasional annotation, is shown
in one patient, while Clumsiness is a Frequent annotation, and Mental deterioration, a very frequent
symptom of Huntington disease, is present in every patient in the sample.

2.2 Semantic Annotation

One of the main uses of bio-ontologies is for the annotation of data, which captures information
about classes in a way that can be accessed by computers and understood by humans (Hill et al., 2008).
Ontology-based annotations associate an entity with a class, combining this assertion with information
including the evidence considered and who created it (Hoehndorf et al., 2015). Annotation can be per-
formed manually by curators or by automatic processes, the first option generates high quality annota-
tions but cannot keep up with the amount of data high-throughout technologies produce, while the second
option is faster but still struggles to achieve the same quality (Couto et al., 2006). Semantic annotations
focus on providing meaning so that it can be incorporated into computation.

GO annotations are structured with four key components: Gene Product, GO-term, Reference and
Evidence. Additional optional information can be added, such as qualifiers or date. One example of a
GO annotation in the format Gene Product | GO-term | Reference | Evidence can be:

• LIG1 | lagging strand elongation | PMID:21873635 | IBA

LIG1 is the Gene Product code for DNA ligase, that in this example is annotated with the GO term
lagging strand elongation. IBA is the code for Inferred from Biological aspect of Ancestor evidence.

Annotations can be inferred through:

• Experimental evidence means that experiments directly support the annotation.

• phylogenetic evidence infer relationships among genes by reconstructing evolutionary events or
by branch positions in phylogenetic trees.

• Computational analysis stems from sequence or other data analysis.

• Automatically generated data

(Hill et al., 2008)
In the case of positive annotations, the true-path rule applies, whereby an annotation to a given class

implies annotation to all of its superclasses. In Figure 2.4, DNA ligase is annotated with the molecular
function lagging strand elongation, this annotation is positive so it is known that DNA ligase has this
function. Since this annotation is positive it implies annotation to DNA strand elongation and DNA
metabolic process, but not to lagging strand initiation, because it is a child class, not a superclass.

Negative semantic annotations are distinguished from positive annotations by the presence of the
’NOT’ qualifier, and share the same main structure as positive annotations. An example of a negative
annotation in the format Gene Product | Qualifier | GO-term | Reference | Evidence can be:

• CAPN6 | NOT | proteolysis | PMID:21873635 | IBA
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Figure 2.4: Schematic view of positive and negative GO annotations for the DNA ligase and Calpain 6 proteins.

CAPN6 represents Calpain 6, that is annotated with NOT participating in proteolysis. For negative
annotations, inheritance is actually reversed, a negative annotation to a given class implies annotations
to all of its subclasses. The Calpain 6 negative annotation to proteolysis is represented in Figure 2.4, and
since it is a negative annotation it will imply annotation only to Self proteolysis and Calcium dependent
self proteolysis. The superclasses are not considered so the process is the opposite of the path shown for
positive annotations.

2.3 Semantic Similarity

To mine information from the semantic annotations in an ontology, it is important to measure how
similar entities are to each other. To compare a set of annotations it is necessary to compute their similar-
ity value in a manner that conveys meaning. Semantic similarity measures use semantic representations
afforded by ontologies to compare the meaning of concepts or entities. This similarity is then represented
in numerical form. Figure 2.5 shows two proteins that are similar in the fact that both perform the same
function of iron ion binding, but differ due to one having lyase activity while the other performs ATP
binding.

The semantic representations allows us to for instance distinguish between concepts with similar
names and different meanings. If the meaning of a concept is not taken into account, ’Apoptosis’ and
’Apoplexy’ are more similar than ’Apoptosis’ and ’Programmed cell death’, however if meaning is con-
sidered and semantic similarity is used, then ’Apoptosis and ’Programmed cell death’ are more similar.

Most semantic similarity measures consider only taxonomic relationships when evaluating similarity
and explore the concept of the ’true-path´ rule, whereby an annotation to a given class, implies annotation
to all of its superclasses. However, considering negative annotations, requires different procedures when
this type of reasoning is applied, since the ’true-path´ needs to be reversed (Vesztrocy et al., 2020).

Semantic similarity measures fall into two categories: measures for class similarity and measures for
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Figure 2.5: Schematic view of an excerpt of the gene ontology with protein annotations.

annotated entity similarity.

2.3.1 Class similarity

Semantic similarity can be employed to measure the similarity between two classes defined in the
same ontology. Since ontologies are structured as graphs, ontology classes are defined as nodes and rela-
tions as edges. When calculating semantic similarity one may use node-based or edge-based approaches.

Edge-based methods are relation oriented and count the edges in the path that connects the two
classes that are being considered (see Figure 2.6, red path) and define it as the distance between entities.
Classes that are closer are determined to be more similar than distant classes. Node-based approaches
use the properties of the classes, as well as their ancestors (see Figure 2.6) and descendants to compute
similarity. (Wu et al., 2013)

Node based methods consider node properties. Several node-based similarity measures exist, with
one of the most popular being Resnik’s (Resnik, 1995). Given two concepts u and v, Resnik’s similarity is
calculated by obtaining the common ancestor that maximizes the IC between u and v - Most Informative
Common Ancestor (MICA) (Harispe et al., 2015).

simResnik(u,v) = IC(MICA(u,v))

(Harispe et al., 2015)
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Figure 2.6: Schematic view of an excerpt of the gene ontology describing node-based (green box) and edge-based (red path)
approaches.

2.3.1.1 Information Content

To measure similarity between two ontology classes one must first determine how informative the
classes and their ancestors or descendants are. According to Information Theory , a concept with a greater
specificity conveys more information(Resnik, 1995). Knowing that a protein has a binding function gives
less information than specifying a copper ion binding function, for example. Similarity must reflect this
principle, so similarity measures can use the Information Content (IC) of classes to determine how much
information they share. IC was originally defined in Resnik 1995 (Resnik, 1995) , and is inversely
proportional to the probability to encounter an instance c in a set of instances.

The IC of a concept c is then quantified as:

ICResnik =−logP(c)

This formula indicates that as the probability of c increases, the more general it is so the IC is smaller.
If c is rare, then its probability decreases and IC increases.

Another method to quantify the IC is Seco2004, which assumes that concepts with more hyponyms
are less informative since they require further differentiation. Otherwise, concepts that are leaf nodes are
very specific and hence more informative (Seco et al., 2004). Formally:

ICSeco = 1− log(hypo(c)+1)
log(maxwn)

(Seco et al., 2004) where hypo returns the number of hyponyms of a concept c, and

maxwn
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is the constant associated to the maximum number of concepts in the taxonomy. (Seco et al., 2004)

2.3.2 Entity Similarity

Entity similarity measures fall into two groups: pairwise and groupwise approaches.

2.3.2.1 Pairwise Similarity

Pairwise approaches are based on pairwise comparisons of the two sets of classes that annotate each
entity to compare. Popular approaches include taking the average or maximum of all pairwise similari-
ties. The Best-Match Average (BMA) has shown good results. (Pesquita, Faria, Bastos, et al., 2008)

To compute semantic similarity using BMA, given 2 classes c1 and c2 and their respective set of
annotations annot(c1) and annot(c2), the average similarity of each term t1 in annot(c1) and its most
similar term t2 in annot(c2) are calculated and then averaged with their reciprocal as is shown in 2.1

SimBMA(c1,c2) =
∑t1∈Annots(c1) sim(t1, t2)

2|Annots(c1)|
+

∑t2∈Annots(c2) sim(t1, t2)
2|Annots(c2)|

(2.1)

2.3.3 Groupwise Similarity

Groupwise similarity measures compare more than 2 concepts simultaneously. Three approaches
can be used: set, graph and vector. In the set-based approach, direct annotations are organized into term
sets to represent an entity, then set similarity techniques are used (Pesquita, Faria, Falcão, et al., 2009;
Teng et al., 2013). Approaches can be further described as direct or indirect, depending on whether the
sets are compared to their information characterised in taxonomy or if pairwise measures are used as an
intermediate step (Harispe et al., 2015).

SimGIC is a straightforward and well performing method of this type and is defined in equation 2.2:

SimGIC(e1,e2) =
∑c∈{Annots(e1)∩S(e2)} IC(c)

∑c∈{Annots(e1)∪S(e2)} IC(c)
(2.2)

2.4 Related Work

2.4.1 Protein-Protein Interaction Prediction

Proteins have a ubiquitous influence in biological processes of a living cell and in the cellular systems
of all organisms.To understand how proteins work, it is essential to study how they interact with each
other, since proteins have very complex pathways. The prediction of protein-protein interactions is
shedding light into how these networks work to regulate and allow the functioning of an organism.

The process of validating which proteins interact and how is very resource-intensive when done
in wet-lab experiments (Mohamed et al., 2010), as well as sensitive and time consuming since few
complexes can be studied at a time (Gonzalez et al., 2012). It has been estimated that 300.000 PPI exist
in humans (Hart et al., 2006) and the number of experimentally proven interactions is much smaller
(McDowall et al., 2008).
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For these reasons, and with the rapid growth of computation in the life sciences, it became clear that
PPI prediction with automated methods would be a cost-effective and fast alternative to lab experimen-
tation. Computational methods are usually based on structure, sequence and expression data (Gonzalez.
Kann 2012). Databases, such as STRING, were created to store and predict PPI based on annotations
and experimental information (McDowall et al., 2008). Machine Learning (ML) methods have gained
popularity since ML algorithms have been applied for PPI prediction using the existing labelled data
from lab experiments to train, as well as indirect information from GO and sequence data (Mohamed
et al., 2010).

The Critical Assessment of protein Function Annotation algorithms is a global effort to improve
computational annotation of protein function. This initiative has improved protein function prediction ,
however the CC GO-branch annotations remain illusive (Zhou et al., 2019).

2.4.1.1 Protein-Protein Interaction Prediction in Biomedical Ontologies

The use of the Gene Ontology has become a powerful tool to predict PPI, especially when coupled
with semantic similarity. Jain and Bader, 2010, developed the Topological Clustering Semantic Sim-
ilarity algorithm, that computes similarity between GO-terms to accurately distinguish true from false
protein interactions (Jain et al., 2010). Wu et al., 2013 attempted to tackle that same limitation, with an
Edge-based and IC-based hybrid methodology. Both methods improved PPI prediction and solidified the
role of semantic similarity and GO in PPI prediction.

2.4.2 Negative Annotations in Biomedical Ontologies

Negative examples, which in the PPI scope indicate that a protein does not have a certain function for
example, are essential for ML algorithms, however ontologies and databases are incomplete and focus
mostly on positive examples. Youngs et al., 2014 designed two algorithms to predict negative examples,
which then populated the general use NoGO database. Fu et al., 2016 then developed a novel approach
to select negative examples of a protein in a protein-protein interaction context, taking advantage of
the hierarchical semantic similarity between GO terms and GO hierarchy. Both of these methodologies
tackled the problem of the lack of negative annotations in GO, since even though ML algorithms need
negative examples of proteins to predict PPI, GO is very incomplete in negative annotation. The number
of functions that a protein has are logically smaller than the number of functions it does not have, so
theoretically the number of negative annotations in GO should be several degrees of magnitude larger
than the number of positive annotations. Still, negative annotations are somewhat rare and difficult to
confirm in lab conditions, so techniques like NegGOA can tackle that limitation.

Vesztrocy et al., 2020 targeted the limitation that OWA must be taken into consideration to avoid
underestimation of precision due to lack of negative annotaions, especially in Critical Assessment of
protein Function Annotation (CAFA) challenges. To tackle this issue, a benchmark was created to include
a balanced set of curated positive and negative annotations.

2.4.3 Disease Prediction

Human disease is a very complex topic, not only in identifying but also choosing the best treatment
for a specific ailment. To help physicians, ontologies like the HPO have been created and machine
learning algorithms trained to predict disease presence or characteristics (Dahiwade et al., 2019), since
oftentimes the symptoms can be to cryptic for a doctor to find the cause early.
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Heart disease is one of the leading causes of death today, and to diagnose it early and efficiently
is challenging due to the complex structure of risk factors and symptoms (Mohan et al., 2019). Various
machine learning methodologies have been designed for a better prediction of heart disease and its extent
(Mohan et al., 2019; Palaniappan et al., 2008; Kohli et al., 2018).

Another ailment that is significant in mortality statistics and needs early detection and urgent treat-
ment is cancer. Often it is difficult to correctly determine the malignity of clump cells early, and ML
algorithms have been trained to do this task according to parameters about the cell characteristics (Kohli
et al., 2018).

A different application for machine learning algorithms in disease prediction is to determine the pro-
gression rate. Amyotrophic Lateral Sclerosis, for example, has a progression rate that varies greatly
among patients, so studies have been conducted to try to find a pattern, through machine learning al-
gorithms, that can predict how fast the disease progresses for a more personalised medical treatment
(Teixeira, 2019).

As medicine evolves digitally and more knowledge is found, ontologies and data mining techniques
are becoming more valuable tools, so it is of interest to know if the addition of negative annotations can
improve disease prediction

2.4.4 Semantic Similarity Measures in the Human Phenotype Ontology

Köhler, Schulz, et al., 2009 developed the Phenomizer, a tool to help experts in the differential diag-
nostic process. This was evaluated using synthetic patients, with HPO terms, and noise and imprecision
conditions to simulate clinic conditions and give a significance score to candidate diseases. Masino et al.,
2014 had a similar methodology, and used HPO to create synthetic patients as sets of HPO annotations
of a given Mendelian disease and created an algorithm that ranked genes from HPO according to se-
mantic similarity. This was then evaluated by determining the rank of the causal gene of the Mendelian
disease associated with a given synthetic patient. An interesting characteristic of these methodologies is
that noise and imprecision were added to the patient annotations to mimic real world conditions. This
is important because real patients can be ambiguous in their description of phenotype, or even add un-
related symptoms to their description, and clinical reports can be incomplete or imprecise. The latter
study found that semantic similarity is effective in ranking the causative gene of a disease as long as
imprecision is mitigated.
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Chapter 3

Methods and Data

This chapter focuses on the development of PolarResnik and PolarBMA, semantic similarity mea-
sures that take into consideration negative annotations, and the data used for their evaluation, as well as
how the semantic similarity was calculated. It is organized in the following manner:

• 3.1 is an overview of this work’s methodology.

• 3.2 describes the challenge of adapting Resnik1995 to include annotation polarity, as well as how
the adapted measure PolarResnik works.

• The section 3.3 is dedicated to PolarBMA, and has a similar structure to section 3.2, specific to
BMA’s adaptation to consider negative semantic annotation. This section also includes the pseudo-
code of PolarBMA.

• 3.4 describes protein-protein interaction data, its manipulation and inclusion of generated negative
annotations. This section also covers how the semantic similarity between proteins in a pair was
calculated.

• 3.5 introduces the disease prediction dataset, how synthetic patients were created, and negative
annotation generation, as well as semantic similarity calculation between patients and diseases.

3.1 Overview

The goal of this work was to determine if the incorporation of negative semantic annotations can
improve semantic similarity applications. To do so, a semantic similarity measure that considers neg-
ative annotations into the computation of semantic similarity had to be designed, as well as datasets
that included a suitable number of negative and positive semantic annotations. The classical measures
BMA and Resnik perform very well in varied applications so they were adapted to include negative
annotations as a novel semantic similarity measure, composed of PolarBMA which introduces negative
semantic annotations into BMA, coupled with PolarResnik, that takes into consideration the polarity of
annotations. To test whether these measures were effective, two scenarios were designed, using BMA
with Resnik1995 as comparison. The first scenario was to predict protein-protein interaction, and the
second to predict the disease of synthetic patients.
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Figure 3.1: Overview of the 6-step methodology: 1 - Creation of a PPI annotated dataset; 2 - Creation of an annotated Disease
Prediction Dataset; 3 - Development of a novel semantic similarity measure; 4- Semantic Similarity computation; 5- Prediction;
6 - Evaluation
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3.2 PolarResnik

PolarResnik is a novel class similarity measure that takes into consideration the polarity of the an-
notations made with each class being compared. The biggest challenge to create this measure was to
determine how to calculate shared IC between annotations of different polarity. For negative annotations
it does not make sense to use the most informative common ancestor, since negative annotations have an
inverse inheritance in comparison to positive annotations. For instance, the annotation ’upper limb pain’
inherits relations from the ancestors, while ’NOT upper limb pain’ inherits them from the descendants.
Upper limb pain is a limb pain, but if a patient doesn’t have upper limb pain he might still have limb
pain, but she won’t have hand pain, or finger pain.

For this reason, to calculate similarity using PolarResnik, descendants are considered for negative
annotations, while ancestors are used to positive annotations. Considering classes c1 and c2, there are
four possible scenarios:

1. Both classes are positive annotations. Then the similarity is calculated as in usual Resnik1995:

simResnik(c1,c2) = IC(MICA(c1,c2))

2. Both classes are negative annotations. Then the similarity will be calculated using the common
descendant with the highest IC - Most Informative Common Descendant (MICD):

simPolarResnik(c1,c2) = IC(MICD(c1,c2))

3. c1 is a positive annotation and c2 is a negative annotation. Then the ancestors of c1 and descen-
dants of c2 are gathered and similarity is calculated using the common class with the highest IC -
Most Informative Common Class (MICC):

simPolarResnik(c1,c2) = IC(MICC(c1,c2))

4. c1 is a negative annotation and c2 is a positive annotation. Then the descendants of c1 and an-
cestors of c2 are gathered and similarity is calculated using the common class with the highest IC
-Most Informative Common Class:

simPolarResnik(c1,c2) = IC(MICC(c1,c2))

3.3 PolarBMA

PolarBMA is an entity similarity measure of the pairwise type that takes into consideration the po-
larity of the annotations made to the two entites it compares. To create PolarBMA, the biggest challenge
was to determine how to integrate negative semantic similarity without introducing bias, while obtaining
satisfactory results. To do this, one must consider how polarity influences similarity. A given pair of
terms will be more similar if they share polarity. For example, if two patients are annotated with ’upper
limb pain’, similarity will be 1, while if one patient has ’upper limb pain’ and another patient has ’NOT
upper limb pain’, they will be opposites.

To overcome this challenge, for each pair of entities (A,B), positive annotations from A were paired
up with positive annotations from B, to create a list of all possible pairs of positive annotations (PtoP).
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Negative annotations from A were paired with negative annotations from B to create a list of all pairs
of negative annotations (NtoN). Finally, positive annotations from A and negative annotations from B
were paired, as well as negative annotations from A and positive annotations from B, to create two sets
of all possible mixed polarity pairs, depending on the order of the negative/positive annotation in the pair
(PtoN and NtoP).

Pairwise similarity was calculated using PolarResnik, depending on the polarity of the pair. For each
entity pair, four matrices were computed, one for each polarity - PtoP, NtoN, PtoN and NtoP - containing
the annotations’ pairwise similarities. Then the best match for each annotation was found and if the
polarity of the pair with the best match was mixed, then the score was inverted. This was done to reflect
the opposition of polarity in the similarity score. At last, the best matches average was computed and
averaged with its reciprocal.

The pseudo-code for PolarBMA is as follows:

Algorithm 1 PolarBMA pseudo-code
1: Pairs← All combinations between annotations of entity A and entity B, including their polarity
2: simMatrix← To store all similarities between annotations in A x B
3: bestMatches
4: for pair(cA,cB) in Pairs do
5: sim(cA,cB)← PolarResnik(cA,cB)
6: simMatrix.add(sim(ca,cB), polarity(cA,cB)

7: for cA in simMatrix do
8: bestMatch← pair(cA,cB)withmax(sim)
9: maxScore← sim(bestMatch)

10: if pol == "equal" then
11: bestMatches.add(maxScore)
12: else
13: bestMatches.add(−maxScore)
14: for cB in simMatrix do
15: bestMatch← pair(cB,cA)withmax(sim)
16: maxScore← sim(bestMatch)
17: if pol == "equal" then
18: bestMatches.add(maxScore)
19: else
20: bestMatches.add(−maxScore)
21: interimScore = (sum(bestMatches)/len(bestMatches))
22: scores.add(interimScore)
23: score = sum(scores)/2

3.4 Protein-Protein Interaction

3.4.1 Data

To predict protein-protein interaction using semantic similarity, the first step was to make a repository
of proteins. Pairs of proteins were taken from a curated STRING dataset, and proteins from pairs with a
score higher than 950 out of 1000 were selected. The proteins were then enriched with their annotations
out-of the Gene Ontology so that proteins can then be represented as sets of semantic annotations.

Semantic annotations in GO have the qualifier ‘NOT’ if the annotation is negative, meaning that a
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gene product has been experimentally proven not to carry out a specific activity, or lost that function
(i.e., it would be expected for the gene to carry out that function given its phylogeny, but function was
lost). Hence, the annotations that possess this qualifier were classified as negative while the annotations
without it were considered as positive. Proteins that did not have at least one positive annotation were
discarded from the data. Two annotation files for the same set of proteins were created, one with both
positive and negative annotations and another only with positive annotations. The first file was used to
compute similarity with polar semantic similarity measures(SSM), so it contained the proteins and their
semantic annotations with an added ’+’ or ’-’, according to the presence or absence of the NOT qualifier.
The second annotation file was required to calculate similarity with traditional SSM, so it contained the
same proteins, however negative semantic annotations or any kind of polarity were not considered.

3.4.2 GO-branches

GO annotations can be classified into 3 branches: Molecular Function (MF), Cellular Component
(CC), and Biological Process (BP). It can be of interest to study the branches separately so negative
annotations for each protein were separated according to their GO branch, then proteins were placed in
groups according to the branch of their negative annotations. Since proteins can have negative annota-
tions of different branches, it was possible for a protein to belong to more than one branch group.

The previously selected pairs from STRING were considered as pairs of proteins that interact, be-
cause of the high similarity score, so the dataset was scanned to find pairs where both proteins were of
the same group of annotation branch. These pairs were defined as the interacting pairs, then 10000 pairs
of proteins of the same branch group were randomly generated and the pairs that did not have a score
higher than 950 or were not present in the STRING dataset were defined as pairs that do not interact.

Pairs of proteins that interact and pairs that do not were joined, according to the branches to which
their negative annotations belonged, and three datasets were created MF, CC and BP. So a pair was
assigned to the dataset MF if both proteins had at least one negative annotation that belonged to the MF
GO branch. Then a forth dataset was generated as the union of pairs from the first three datasets: ALL.
This is important to evaluate the impact of negative annotations in specific branches, but also in the whole
picture.

3.4.3 Semantic Similarity

To calculate the semantic similarity of pairs from the four datasets without considering negative
annotations, the annotation files without negative annotations or polarity indication were used. First, a
dictionary with the protein pairs and their IC values was computed using Seco 2004 or Resnik1995, then
the pairwise similarity between pairs of annotations was calculated with Resnik1995 and BMA.

The same pairs were then used to calculate polar semantic similarity, using annotation files with
negative annotations and indication of polarity. To do so, the IC values were computed as previously,
however, PolarResnik was used for class similarity calculation and PolarBMA was chosen to compute
entity similarity. The obtained score was then used for PPI prediction. Higher similarity scores indicated
a higher probability that a pair interacts, so for each protein, pairs were ranked by semantic similarity.
For simplicity, and because in both baseline and polar measures, both BMA and Resnik are used in
combination with each other, the Resnik and BMA experiments will be called BMA, and the PolarResnik
and PolarBMA combination will be called PolBMA.
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3.5 Disease Prediction

3.5.1 Data

To predict which disease a synthetic patient was labelled with, the methodology from Masino et al.,
2014 was adapted. 33 Mendelian diseases were taken from related work (Masino et al., 2014), and a
file was made with phenotypes from Human Phenotype Ontology for each disease. It is possible for an
illness to have an absent phenotype, which is a negative annotation from HPO that includes ’NOT’, that
indicates that a disease does not cause that phenotype. On the positive annotations of the disease, which
are the phenotypes without the ’NOT’, the penetrance of the phenotype is also present. Penetrance
indicates the likelihood that a patient that suffers from a given disease presents a specific symptom.
50 synthetic patients were then generated for each disease. To create the patients, the presence of a
phenotype on a patient depended on the disease’s penetrance and the gender of the patient, defined
randomly with an equal probability to both genders. Negative phenotypes do not have penetrance so to
decide if a patient would be assigned a negative annotation, a probability N was defined (N=[0,0.25,0.5]).
Three datasets were created with patients as sets of positive and negative annotations, according to N.
For example, ’Aarskog-Scott syndrome’ is annotated with ’Ptosis’, which has a penetrance of 0.5061,
so approximately half of the synthetic patients, generated for this disease will present this symptom.
It is also annotated with ’NOT Decreased fertility’, so that disease is know to not decrease fertility.
Depending on the dataset, a patient generated with that illness will have a probability N to have that
negative annotation.

1000 diseases were taken randomly from HPO to mix with the original diseases and add complexity
to the disease prediction. These were enriched with their positive and negative annotations and annota-
tion files were made, according to whether it would be used for polar semantic similarity or not-polar
traditional semantic similarity computation. Each file contained the 33 Mendelian diseases and their
annotations, 1000 random diseases and their annotations, and finally 1650 generated patients and their
generated annotations. For the calculation of polar semantic similarity, the annotations had ’+’ or ’-’ to
indicate their polarity, while for the non-polar similarity, the negative annotations were removed and no
indication of polarity was included. Disease annotations include all available annotations for the disease,
both positive and negative.

3.5.2 Semantic Similarity

Semantic similarity was calculated between each of the 1650 patient and the 1033 possible diseases.
The calculation followed the same steps as the protein-protein interaction semantic similarity.
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Chapter 4

Experimental Design

To evaluate the polar similarity measures, the chosen baseline was computed using Resnik1995 or
Seco2004 for IC calculation, then Resnik1995 and BMA for pairwise semantic similarity. The measures
were evaluated in two different scenarios that are significant to the biomedical field: Protein-protein
interaction prediction and disease prediction. This chapter is divided into the following sections:

• 4.1 describes the different datasets and how they were created for the Protein-Protein Interaction
data. It specifies how negative annotations were generated and the final datasets characteristics.

• The next section, 4.2, evaluates the developed measures in the disease prediction scope. It focuses
on the parameters that add real world conditions to the dataset: the negative annotation generation
and the noise and imprecision addition.

• 4.3 is dedicated to which evaluation metrics were chosen and why.

4.1 Protein-Protein Interaction

4.1.1 Negative Semantic Annotations Generation

Since negative annotations are rare in GO, to investigate the impact of a higher proportion of nega-
tive annotations, more negative annotations were automatically generated using the probabilistic method
proposed by NegGOA (Fu et al., 2016).

To find probable negative annotations, all proteins and annotations from GO were gathered, and a
dictionary was made containing annotations as keys, with the value of other annotations that were present
in the same proteins. For clarity, consider three proteins with 2 annotations each:

• P1: A1, A2

• P2: A2, A3

• P3: A1, A2

A1 appears in the same protein as A2 in P1 and P3, A2 shares P1 and P3 with A1 and P2 with A3, and
finally A3 shares a protein with A2. This information is saved in a dictionary:

• A1:[A2,A2]

• A2:[A1,A3,A1].

21
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• A3:A2

Then, for every possible pair protein-annotation, the keys of the dictionary contained in the set of an-
notations of the protein, excluding the annotation in the pair, were retrieved and the frequency of the
annotation was calculated for each entry. Afterwards, the total number of proteins in which the anno-
tation appears was counted. Finally, the probability that the annotation was not negative is equal to the
average of the frequencies divided by the total. For example, for the pair P1-A1, the frequency of A1 in
A2’s dictionary entry is 2/3 and in A3’s entry is 0. A1 appears in 2 proteins, so the probability that A1 is
not a negative annotation of P1 is the average of 0.33 and 0: 0.17.

An annotation A was considered to be a negative annotation for a protein P if the probability calcu-
lated in the previous step for the pair P-A was lower than a given threshold.

Negative annotations can be generated with different thresholds, representing the probability that an
annotation will not be negative, and different thresholds will produce datasets with higher quality anno-
tations or larger less specific datasets. The chosen thresholds were 0.05 and 0.1, so two annotation files
were created per threshold, one with polarity and one without. The process of protein pair selection was
repeated for each threshold and 4 datasets were created according to threshold: ALL0.1 and ALL0.05.
Then 6 more files were created to evaluate both threshold and GO branch: MF 0.1, CC 0.1, BP 0.1,
MF 0.05, CC 0.05 and BP 0.05. So a pair would be added to CC 0.1, if both proteins had a negative
annotation for the CC GO branch after the generation of negative annotations with a 0.1 threshold.

4.1.2 Final Dataset Characteristics

In Table 4.1, the mean and median number of annotations per protein is shown for each dataset. For
the datasets that do not contain generated negative annotations the mean and median number of anno-
tations per protein is similar between different GO-branches. However, when generated annotations are
taken into consideration, in dataset 0.05, the GO-branches CC and MF has significantly less annotations
than the other branches while the BP GO-branch has more annotations. This difference stems from the
number of positive annotations in each protein that appears to get lower in CC and MF when negative
annotations are generated. It seems counter intuitive that as negative annotations are generated, the mean
number of positive annotations decreases. This happens because, since only proteins with at least one
negative annotation are included, when these are generated the number of eligible proteins increases.
These new proteins had a lower mean number of annotations so the overall mean decreases.

Table 4.1: Number of annotations in the PPI Dataset

Annotations Positive Annotations Negative Annotations

All mean 18.54 17.32 1.22
All mean 18.54 17.32 1.22
CC mean 20.79 19.35 1.44

CC median 15 14 1
MF mean 19.6 18.19 1.43

MF median 14 13 1
BP mean 20.40 19.01 1.38

BP median 15 13 1
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Table 4.2: Number of annotations in the PPI Dataset 0.05

Annotations Positive Annotations Negative Annotations

All mean 17.98 16.68 1.30
All median 13 12 1

CC mean 13.57 12.40 1.17
CC median 9.5 8.5 1

MF mean 15.46 14.15 1.31
MF median 10 9 1

BP mean 20.38 19.08 1.30
BP median 15 14 1

Table 4.3: Number of annotations in the PPI Dataset 0.1

Annotations Positive Annotations Negative Annotations

All mean 18.08 16.78 1.32
All median 13 12 1

CC mean 16.74 18.43 1.31
CC median 10 8.5 1

MF mean 17.52 16.15 1.37
MF median 12 10 1

BP mean 20.80 19.48 1.32
BP median 15 14 1

4.2 Disease Prediction

To evaluate PolarResnik and PolarBMA on whether they can be generalized with satisfactory results,
the synthetic patients data was used with different parameters.

4.2.1 Negative Annotation Generation

First, the probability of adding a negative annotation to the patient was defined. This was tested in
three thresholds, 0, 0.25 and 0.5 because, even though negative phenotypes do not have penetrance so
they should be present with a probability of 1, an issue with negative annotations is their confusion with
missing annotations. When a physician fills a patient file, for example, the patient is usually annotated
with his symptoms so negative annotations are not added, however it cannot be assumed that a missing
annotation is a negative annotation. When questionnaires are used, it is more likely that negative annota-
tions will be generated since the options include ’NO’ when a patient does not present a symptom. With
all that in consideration 3 thresholds were chosen to try to mimic real life conditions.

4.2.2 Noise and imprecision

To add more realism to the synthetic patients test, noise and imprecision were added. Noise attempted
to mimic symptoms that are not related to the patient’s pathology but coincidentally appear at the same
time. To add it to the annotations, the methodology from Masino et al., 2014 was followed and a number
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(half of the total annotations of a given patient) of random annotations were added to each patient.
Six more annotation files were created following the same process described in the methodology, but
containing noise annotations.

Imprecision tackled the lack of detail provided in symptom description, like cases where a phenotype
would be described as a less specific symptom, for example a patient that would have ’foot pain’ instead
of ’ankle pain’ in their file. The methodology to add imprecision to the annotations was changed from the
original paper, as half of each patient’s annotations were replaced by an annotation from a parent node,
in case of a positive annotation, or from a child node, if the annotation was negative. The methodology
was changed because originally all annotations were replaced by any superclass, which is too severe of a
change to be realistic. Then six more annotation files were created in the same manner as the six original
files, but including imprecision annotations.

Finally six files were created combining imprecision with noise, to simulate real life conditions. The
noise annotations were added to the imprecision files, as per Masino et al., 2014 methodology. In total
24 datasets were created to test polar measures, considering the value of N and if the conditions were
optimum (without noise nor imprecision), with noise, imprecision, or both.

4.2.3 Final dataset characteristics

In Tables 4.4 and 4.5, the mean and median number of annotations for each disease is shown.
Mendelian diseases have a greater number of positive annotations than the randomly chosen ailments
from HPO.

As for Tables 4.6 through 4.9, they contain information about the number of annotations of patients
for each dataset depending on the value of the negative threshold and the presence of noise or/and impre-
cision. Within each table the number of annotations is consistent with the number of negative annotations
increasing with the Negative threshold as expected. In 4.7 and 4.9, the number of negative annotations
with the null negative threshold is not zero, which is unexpected, but easily explained by the fact that the
noise introduced was chosen from a pool that contained both positive and negative noise annotations.

Table 4.4: Number of annotations in the Mendelian diseases

Annotations Positive Annotations Negative Annotations

Mean 49.03 48.9 0.13
Median 47.5 47 0

Table 4.5: Number of annotations in the other diseases

Annotations Positive Annotations Negative Annotations

Mean 18.68 18.57 0.1
Median 14 14 0
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Table 4.6: Number of annotations in the synthetic patients without noise or imprecision.
NAP:negative annotations probability

NAP Measure Annotations Positive Annotations Negative Annotations

0
Mean 7.83 7.83 0

Median 7 7 0

0.25
Mean 7.89 7.84 0.03

Median 7 7 0

0.5
Mean 7.94 7.88 0.06

Median 7 7 0

Table 4.7: Number of annotations in the synthetic patients with noise.
NAP:negative annotations probability

NAP Measure Annotations Positive Annotations Negative Annotations

0
Mean 13.04 13.01 0.03

Median 11 11 0

0.25
Mean 13.11 13.04 0.07

Median 11 11 0

0.5
Mean 13.18 13.08 0.09

Median 11 11 0

Table 4.8: Number of annotations in the synthetic patients with imprecision.
NAP:negative annotations probability

NAP Measure Annotations Positive Annotations Negative Annotations

0
Mean 7.60 7.60 0

Median 7 7 0

0.25
Mean 7.66 7.62 0.03

Median 7 7 0

0.5
Mean 7.72 7.66 0.06

Median 7 7 0

Table 4.9: Number of annotations in the synthetic patients with noise and imprecision.
NAP:negative annotations probability

NAP Measure Annotations Positive Annotations Negative Annotations

0
Mean 16.44 16.41 0.03

Median 14 14 0

0.25
Mean 14.66 14.58 0.08

Median 13 12 0

0.5
Mean 14.92 14.82 0.10

Median 13 13 0
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4.3 Evaluation metrics

To evaluate how the developed measures performed against the baseline in PPI, different evaluation
metrics were used. The most commonly used metrics are precision and recall. Recall is the proportion
of true positives cases that are correctly classified (Hossin et al., 2015), and is defined by the following
equation:

Recall =
t p

t p+ tn

Where tp stands for true positives and tn for true negatives, a true positive happens when a true
positive class is correctly classified as positive, and true negatives are true negative classes that are
correctly predicted as negative. Precision measures the positive cases that are predicted correctly from
the total predicted cases of the positive class(Hossin et al., 2015), and is defined by:

Precision =
t p

t p+ f p

Fp is the false positive cases, where a true positive class is wrongly assumed to be negative. F-
Measure is the harmonic mean between precision and recall(Hossin et al., 2015) and is represented by:

F−Measure =
2∗Precision∗Recall

Precision+Recall

Since the results from the Semantic Similarity computation are continuous and a threshold to separate
positive cases from negative cases is necessary, a precision-recall curve was chosen. The PR curve is a
good choice for binary classification with continuous values because it displays performance for a range
of thresholds(Boyd et al., 2013).

Receiver Operator Characteristic (ROC) curves show how the True positive rate varies with the false
positive rate. Since there are only two classes and the positive class is not imbalanced with the negative
class(Davis et al., 2006) in this work, then this evaluation metric is adequate. The True Positive Rate and
False Positive Rate are calculated as follows:

T PR =
t p

total positives

FPR =
f p

totalnegatives

(Davis et al., 2006)
After drawing the curve, it is useful to calculate the Area Under the Curve (AUC), which is a value

closely related to the quality of the classification(Cortes et al., 2003). It is determined by the following
formula:

AUC =
∑

m
i=1 ∑

n
j=1 1xi>y j

mn
,

where x1 through xm is the output of a classifier on the positive examples and y1 through yn its
output on the negative examples (Cortes et al., 2003).

For disease prediction, since it is a multiclass classification, a common precision and recall measure
to use is Average Precision. It is easy to use and returns a numerical value that can be quickly interpreted
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without needing a range of thresholds or plots. It can be thought of as the area under the Precision vs
Recall curve and is given by the following formula:

AP =
∫

Precision(t)d[Recall(t)]

(Su et al., 2015)
It is important to consider other existing measures depending on the context used. For the case

of disease prediction, for example, it is of interest to determine a top of probable diseases to help the
decision making of health professionals. With that in consideration, an interesting metric to use is the
rank cumulative frequency(Masino et al., 2014). The evaluation using rank was done to include the
10 most likely diseases of a patient or the 10 proteins that a given protein is more likely to interact,
depending on the scenario of the evaluation.

To do this, for every patient or protein, a ranking was made according to the value of semantic
similarity, where the highest value of similarity was ranked first in the ranking and the lowest was last.
This ranking was made once for PolBMA and once for BMA. Then, the number of times a given rank
appeared in the list of all patients ranks was counted, so that each ranking could have a frequency. For
example, if BMA computed the highest similarity for the correct disease for 50 patients out of 100, Rank
1 would have a frequency of 0.5. Once all the Rank frequencies were known, ranks 1 through 10 were
organized in an ascending order to create a rank cumulative frequency display.
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Chapter 5

Results and Discussion

This chapter shows the results of the evaluating the methodology according to the experimental
design. It is structured to consider each prediction scope individually, with section 5.1 focusing on PPI
prediction results, section 5.2 on disease prediction results and section 5.3 discussing the overall results.

5.1 Protein-Protein Interaction Prediction

A first step in the evaluation was the computation of ROC and Precision-Recall curves. Figure 5.1
displays the ROC curves for the different PPI datasets. Plots in the first column correspond to results
obtained without generating negative annotations and BMA consistently performs better than PolBMA.
When negative annotations are introduced,PolBMA performs better in the MF branch for the negative
annotations threshold at 0.05 and 0.1, and on the CC branch for 0.05. AUC values are shown in Table
5.1. Figure 5.2 shows the Precision-recall curves for the same datasets and it corroborates the results of
the ROC curves.

Table 5.1: Protein-Protein interaction AUC ROC for IC Seco2004

Negative Annotations Threshold
GO SSM 0 0.05 0.1

ALL
BMA 0.920 0.904 0.903
PolBMA 0.780 0.852 0.862

MF
BMA 0.921 0.938 0.931
PolBMA 0.854 0.957 0.969

BP
BMA 0.920 0.881 0.872
PolBMA 0.831 0.806 0.816

CC
BMA 0.857 0.861 0.894
PolBMA 0.793 0.929 0.835

However, ROC and Precision and Recall are global metrics, which are well suited to evaluate per-
formance over a dataset as a whole, but that fail to capture more fine-grained aspects. To support a
more specific evaluation, one that is more suitable to cases where prioritization is a goal, rank cumu-
lative distribution curves were calculated for the top 10 predictions. Figures 5.3 and 5.4 show the rank
cumulative distribution with IC Seco2004 and IC Resnik1995 respectively. In the first column of either
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Figure 5.1: Protein-Protein interaction ROC curves for IC Seco2004
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2

Figure 5.2: Protein-Protein interaction precision-recall curves for IC Seco2004
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figure, no generated negative annotations were considered, and there was no significant improvement
in PPI prediction in any of the GO branches when using PolBMA, the results were similar to the base-
line. However in the experiment PPI 2 ALL with IC Seco2004, where branches were not discriminated
showed an improvement in rank PPI prediction.

In the second and third columns, negative annotations were generated with a threshold of 0.05 and
0.1 respectively, and an improvement was seen in the CC branch of both thresholds in Figure 5.3, while
the other experiments showed similar results with the baseline.

When IC Resnik1995 was used, the results were generally similar, except for the MF and CC GO-
branches. For CC, the results got a less marked improvement, as it only showed a small difference against
the baseline in PPI CC 2 0.05 and a significant improvement only after rank 3 in PPI CC 2 0.1. As for
MF, the results improved with Resnik1995, as in PPI MF 2 0.05 and PPI MF 2 0.1 the polar SS measure
was significantly better between ranks 4 and 7. PPI BP 2 0.05 had a small but consistent improvement
over the baseline in Figure 5.4.

Figure 5.3: Protein-Protein interaction Rank Cumulative Frequency for protein pairs that interact, IC Seco2004
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Figure 5.4: Protein-Protein interaction Rank Cumulative Frequency for protein pairs that interact IC Resnik1995
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5.2 Disease Prediction

Figures 5.5 and 5.6 show the results of the Disease Prediction evaluation using IC Seco and IC Resnik
respectively. In each of the figures, the first column represents the cumulative frequency of 4 different
experiments for the PolBMA and the baseline for 3 negative annotation datasets, and the second column
shows the same information but in a zoomed-in perspective. The results were consistent for every IC
measure and threshold, the polar SSM was significantly better than the baseline, by approximately 10
percent. The best result, with about 0.92 frequency of correct disease prediction was PolBMA, then
PolBMA imprecision, BMA, PolBMA Noise, BMA imprecision, PolBMA imprecision and noise, BMA
noise and BMA imprecision and noise. Tables 5.2, 5.3 and 5.4 show the same cumulative frequencies,
but in a numerical form to show the results in precise values.

It is relevant to note that even when patients do not have negative annotations, PolBMA still outper-
forms BMA because PolBMA takes into account the negative annotations of diseases when computing
the semantic similarity.

Finally, Table 5.5 shows the results for the Average Precision for the different disease prediction
datasets. PolBMA has an improved performance of 0.05 to 0.14 in comparison to the baseline, and the
greatest difference was in the experiment with a negative threshold of 0.5 and no noise or imprecision.

Table 5.2: Disease Rank Cumulative Frequency for N=0.0

Rank BMA PolBMA BMA imp PolBMA imp BMA noise PolBMA noise

1 0.83 0.92 0.76 0.84 0.69 0.76
2 0.87 0.96 0.83 0.93 0.75 0.83
3 0.88 0.97 0.85 0.94 0.80 0.88
4 0.88 0.97 0.86 0.95 0.81 0.89
5 0.89 0.98 0.87 0.96 0.82 0.90
6 0.89 0.98 0.87 0.96 0.82 0.90
7 0.89 0.98 0.87 0.96 0.83 0.91
8 0.89 0.98 0.88 0.96 0.84 0.93
9 0.89 0.98 0.88 0.97 0.84 0.93

10 0.89 0.98 0.88 0.97 0.85 0.93
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Figure 5.5: Disease Rank Cumulative Frequency using Seco004 as IC measure: Each line of graphs represents cumulative
frequencies of a given negative annotations threshold, first on a y scale of 0 to 1, followed by a zoomed version with a y scale
from 0.7 to 1
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Figure 5.6: Disease Rank Cumulative Frequency using Resnik 1995 as IC measure: Each line of graphs represents cumulative
frequencies of a given negative annotations threshold, first on a y scale of 0 to 1, followed by a zoomed version with a y scale
from 0.7 to 1
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Table 5.3: Disease Rank Cumulative Frequency for N=0.25

Rank BMA PolBMA BMA imp PolBMA imp BMA noise PolBMA noise

1 0.83 0.90 0.77 0.85 0.69 0.75
2 0.88 0.96 0.83 0.92 0.75 0.83
3 0.88 0.97 0.85 0.94 0.78 0.86
4 0.88 0.97 0.86 0.95 0.80 0.88
5 0.89 0.98 0.87 0.96 0.81 0.89
6 0.89 0.98 0.88 0.97 0.82 0.90
7 0.89 0.98 0.88 0.97 0.83 0.92
8 0.89 0.98 0.88 0.97 0.84 0.92
9 0.89 0.98 0.88 0.97 0.84 0.93

10 0.89 0.98 0.88 0.97 0.85 0.93

Table 5.4: Disease Rank Cumulative Frequency for N=0.5

Rank BMA PolBMA BMA imp PolBMA imp BMA noise PolBMA noise

1 0.83 0.92 0.76 0.84 0.69 0.76
2 0.88 0.97 0.83 0.92 0.75 0.83
3 0.89 0.98 0.86 0.95 0.78 0.86
4 0.89 0.98 0.87 0.96 0.80 0.88
5 0.89 0.98 0.87 0.96 0.80 0.89
6 0.89 0.98 0.88 0.97 0.82 0.90
7 0.89 0.98 0.88 0.97 0.83 0.91
8 0.89 0.98 0.89 0.97 0.83 0.92
9 0.89 0.98 0.89 0.98 0.84 0.93

10 0.90 0.99 0.89 0.98 0.85 0.94

Table 5.5: Average Precision

Measure NegThreshold=0 NegThreshold=0.25 NegThreshold=0.5

PolBMA 0.78 0.7 0.79
BMA 0.65 0.65 0.65

Measure NegThreshold=0 Noise NegThreshold=0.25 Noise NegThreshold=0.5 Noise

PolBMA 0.5 0.51 0.52
BMA 0.43 0.42 0.42

Measure NegThreshold=0 Imprecision NegThreshold=0.25 Imprecision NegThreshold=0.5 Imprecision

PolBMA 0.61 0.62 0.64
BMA 0.51 0.50 0.52

Measure NegThreshold=0 Both NegThreshold=0.25 Both NegThreshold=0.5 Both

PolBMA 0.53 0.54 0.56
BMA 0.45 0.45 0.45
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5.3 Discussion

Results from the PPI evaluation in the GO show that a polar measure is only significantly and con-
sistently better than a non polar measure in the MF branch and the CC branch for the 0.05 threshold.
This could indicate that negative annotations have a greater impact on where a protein is active, and what
function it performs rather than on what processes it participates in. However, when looking at the dataset
properties, the CC and MF branches have a smaller ratio of positive to negative annotations. In average,
proteins of the CC and MF datasets with generated negative annotations have 12 to 14 positive annota-
tions and 1 negative annotation in the 0.05 threshold and MF has 16 positive to 1 negative annotation in
the 0.1 threshold, while the other branches have 16 to 19 positive annotations to 1 negative annotation
in the first case, and 18 to 20 positive annotations to 1 negative annotation in the second threshold. This
could mean that negative annotations improve results when they are more common.

As for the disease prediction evaluation, PolBMA consistently improves prediction. Both Average
precision and rank cumulative frequency show an improvement in performance of about 10%. For about
10% of the patients, BMA would classify the target illness with a very low rank, while PolBMA did not.
This could be due to similar illnesses where a key negative annotation provided the needed evidence to
tell them apart. The presence of negative annotations in the diseases has a bigger impact on the increased
performance of PolBMA than the different thresholds of negative annotations on the patients, which
gives emphasis to the limitations associated with incomplete ontologies. From related work, noise was
expected to have a significant impact on the disease prediction, and it did decrease the ranking cumulative
frequency performance in about 15%. This impact was similar in PolBMA and BMA. Imprecision
also decreased the performance in about 10%. Imprecision did not impact the results as much as noise
because the semantic similarity measures take advantage of the taxonomic relationships between terms
to determine that imprecise classes are still similar to the original symptoms. In the experiment that
considers both noise and imprecision, results were slightly better than noise and worse than imprecision.
This result was unexpected because noise and imprecision both negatively impact performance, but it
appears imprecision is able to mitigate some of the noise induced limitations.

In the disease prediction dataset characteristics, Mendelian diseases have more annotations then the
random ailments that were added from HPO to cause noise. The greater number of annotations could
introduce bias toward the thirty-three Mendelian diseases, however this was introduced in both polar and
non polar measures so it shouldn’t impact their comparison and patterns, only the cumulative frequency
values could be overestimated.

Disease prediction showed a more consistent improvement when negative annotations were used in
Disease prediction than PPI prediction. Human disease has a more pressing need for negative annota-
tions, probably because similar diseases can be differentiated by a key negative phenotype that is not
considered in conventional semantic similarity measures.

38



Chapter 6

Conclusions

This work tested whether the addition of negative semantic annotations to semantic similarity mea-
sures would impact semantic similarity. To do so, BMA and Resnik pairwise semantic similarity mea-
sures were adapted to incorporate negative annotation in their computation, and PolBMA and Polar
Resnik were developed. To evaluate these, and to determine if negative annotations had an impact on
semantic similarity, PPI prediction and disease prediction datasets were created.

Results show that because of the scarcity of negative annotations in mainstream ontologies, common
evaluation measures might overlook their impact, however when negative annotations are generated to
PPI and disease prediction datasets, semantic similarity measures that consider them can have better per-
formance than conventional baselines. Even though the PPI dataset did not show consistent improvement
in PPI prediction when polar semantic similarity measures were used, the disease prediction dataset had
a 10 percent improvement in performance when negative annotations were added to semantic similarity
computation. The results lead to the conclusion that negative annotations have an impact on semantic
similarity, that depends on the scope of the research and on the amount of negative annotations consid-
ered. The magnitude of this impact required further study to be better understood. Nevertheless, this
study has highlighted the impact that negative annotations can have in semantic similarity applications.

6.1 Contributions

This work produced the following contributions:

• development of two semantic similarity measures: PolBMA for annotated entities and PolarResnik
for single classes, that that into account both positive and negative annotations.

• creation of datasets populated with negative annotations in two relevant biomedical scopes:
protein-protein interaction prediction and disease prediction.

• an evaluation on the impact of negative annotations in semantic similarity applications.

6.2 Future work

This dissertation determined that negative annotations impact semantic similarity, and highlighted
the limitation of the lack of negative annotations in biomedical ontologies. The magnitude of the impact
requires further study, and to do so the main points of study can include:
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• Performing studies with a higher proportion of negative annotations. Thus can both stem from gen-
erating more automated negative annotations or perform an ablation on the positive annotations.
The number of negative annotations should be theoretically higher than the number of positive
annotations, but in this dissertation, they still accounted for one to three order of magnitude less
than the positive annotations

• Improve negative annotation generation, so that these can be generated faster, more efficiently and
in greater numbers.

• Application to other semantic similarity applications, such as gene-disease association prediction
or gene function prediction.
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