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Abstract

In optical instrumentation it is necessary to have an accurate knowledge of the performance of the
tools used to displace and align optical components, particularly of translation stages, therefore a high
accuracy calibration is fundamental. The objective of this thesis was to study, design, implement and test
an optical metrology instrument capable of performing such high accuracy calibrations. The technique
that guarantees high accuracy in the calibration of displacements is optical metrology with interferometry.

In order to achieve the objective of developing and building an interferometer the work was divided
in several phases. We start with a brief review about the theory necessary to understand the functioning
of an interferometer reviewing also the state of the art of interferometry, afterwards we study the uncer
tainty model to determine the requirements of the interferometer’s components and of the ones to monitor
atmospheric conditions. To finish the theoretical part of the work we define possible optical setups for
the interferometer, concluding with the necessary signal processing.

Preceding the assembly of the interferometer a prototype was developed. During this phase a few
problems were corrected and the displacement of a translation stage was analysed, then a 3D model of
the interferometer was built, a crucial step for the following engineering part of the thesis. The systemwas
calibrated, achieving an uncertainty level under 50 nanometers for displacements under 100 millimeters
and 1 micrometer for displacements under 4 meters. Following the calibration of the system several tests
were conducted that serve as an example to the possible uses of the measurement system.

The performance of the implemented system was capable of going beyond the initial requirements
achieving an accuracy of:

Ud[m] = (6.3×10−9 + 2.7×10−7×d)[m] (1)

It was also possible to perceive the importance of a high accuracy measurement system in the char
acterization of positioning systems.

Keywords: Length Metrology, Optics, Interferometry, Quadrature, Polarization
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Resumo

Em instrumentação ótica é crucial ter um conhecimento exato não só da posição, mas também do
deslocamento dos componentes óticos. As ordens de grandeza necessárias vão desde os milímetros até
aos nanometros. De modo a posicionar e deslocar os componentes com a melhor exatidão e precisão
possíveis não o podemos fazer à mão, é necessário recorrer a mesas de translação. Existem inúmeros
tipos de mesas de translação motorizadas com gamas de funcionamento diferentes, para deslocamentos
inferiores ao milímetro as mesas de translação recorrem a elementos piezoelétricos e para deslocamentos
superiores ao milímetro as mesas de translação recorrem a motores de passo ou de corrente contínua.

O principal problema destes instrumentos é a falta de conhecimento sobre as suas verdadeiras capaci
dades. Muitas das vezes o fabricante atribui uma incerteza ao modelo de mesas de translação que oferece,
contudo, esta incerteza representa o pior dos casos possível o que significa que o produto adquirido pode
ter melhor desempenho. Para resolver este problema e conhecer corretamente o comportamento de uma
mesa de translação é necessário realizar uma calibração. Para além de fundamentais para as mesas de
translação, as calibrações também beneficiam outros instrumentos óticos, tais como os sensores de deslo
camento. Estes sensores também são genericamente caracterizados pelo fabricante, portanto sofrem do
mesmo problema que as mesas de translação. Para tirar partido de todo o potencial de um sensor de
deslocamento será necessário, mais uma vez, realizar uma calibração.

Visto que as calibrações são um aspeto recorrente surge a necessidade de ter um instrumento capaz de
as realizar. Existem imensas maneiras de obter deslocamentos pequenos, é possível atingir o regime dos
nanometros com, por exemplo, sensores capacitivos ou piezoelétricos, no entanto a gama dinâmica destes
sensores é bastante limitada, a técnica que tem a maior gama dinâmica e é frequentemente utilizada em
metrologia de precisão é a interferometria. Hoje em dia existem várias técnicas e inúmeras configurações
possíveis em interferometria, o que nos permite ajustar o sistema de medição de acordo com as nossas
necessidades, otimizando o desempenho do interferómetro e mantendo a complexidade do sistema o
menor possível.

De acordo com a uso típico de mesas de translação em projetos de instrumentação em astrofísica
e considerando as mesas de translação disponíveis no mercado, definiramse os requisitos de incerteza
que o interferómetro tem de cumprir. De modo a construir um interferómetro que cumpra os objetivos
propostos este trabalho foi dividido em sete partes distintas.

Na primeira parte a interferometria é introduzida, em seguida abordamos a relevância de cadeias de
rastreabilidade e passamos para a revisão dos conceitos básicos da radiação eletromagnética que nos per
mitem compreender o fenómeno da interferência, tal como a equação do campo elétrico e as diferentes
polarizações que este campo pode ter. Uma vez abordada a radiação eletromagnética introduzimos a
notação de Jones de modo a facilitar a manipulação das várias equações necessárias, o que nos vai fi
nalmente levar à explicação da interferência e às condições necessárias para que aconteça. Para concluir
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revemos o estado da arte das três componentes fundamentais de um interferómetro: a fonte de luz uti
lizada, o índice de refração do ar e o tipo de deteção do interferómetro, atribuindo especial atenção a este
último aspeto.

Na segunda parte é abordado o problema da incerteza do modelo introduzido previamente, o que
implica a definição dos requisitos mínimos para a incerteza dos três módulos do interferómetro. A fonte
de luz é limitada pelo comprimento de coerência e definimos que necessitamos de um laser de HeNe
estabilizado. Quanto ao índice de refração e ao modulo de deteção fazemos um balanço de incerteza de
modo a equilibrar a incerteza destas duas componentes de igual forma, o que nos leva a concluir que
para o modulo de deteção necessitamos de quadratura. Relativamente ao índice de refração obtemos as
incertezas com que temos de determinar as suas três componentes: a pressão, a temperatura e a humidade
relativa do ar.

Na terceira parte estudamos a quadratura. Após definido o método de deteção existem várias con
figurações possíveis para o interferómetro, pelo que quatro configurações relevantes são analisadas e em
seguida comparadas de acordo com as suas vantagens e desvantagens. No final a escolha da melhor con
figuração não passa só por uma questão ótica, mas também mecânica, uma vez que as componentes têm
de ser posicionadas e ajustadas manualmente e todos estes alinhamentos são complexos.

Na quarta parte analisamos o processamento de sinal necessário para extrair a diferença de fase dos
dois feixes que estão em quadratura. Começamos por caracterizar e corrigir os sinais detetados, em
seguida explicamos como não é necessário ter uma diferença de fase de 90◦ para obtermos a quadratura
e passamos para a otimização de alguns aspetos do processamento de sinal explicado inicialmente. Para
concluir abordamos o processo do desdobramento da fase e as implicações que este tem na frequência de
amostragem.

Na quinta parte realizamos a montagem do interferómetro. Começamos por testar o modelo com um
protótipo, o que nos permitiu concluir que as retrorreflexões e a divergência do laser eram um problema.
De modo a corrigir as retrorreflexões introduzimos um isolador de Faraday na montagem e quanto à
divergência do laser utilizamos um expansor de feixe. Após ter corrigido estes dois problemas testámos
o protótipo com uma mesa de translação para verificar se o processamento de sinal estava corretamente
implementado, os resultados obtidos indicam que os problemas que surgem devido ao processamento
de sinal eram mínimos e tratamos de os corrigir de imediato. Em seguida passamos para o desenho
do interferómetro a montar, entre os vários esquemas que consideramos escolhemos o que facilitava a
montagem e otimizava a área disponível para o posicionamento os componentes. Nesta fase percebemos
também como lidar com diversos problemas damontagem tal como o facto do feixe passar duas vezes pelo
polarizador e o posicionamento do divisor de feixe polarizado no seu suporte. Após definir um esquema
realizouse ummodelo 3D emSolidWorks para visualizar melhor amontagem e o posicionamento de cada
componente. Quanto à montagem abordamos duas técnicas de alinhamento de feixes laser e concluímos
com uma explicação detalhada do posicionamento de cada componente no interferómetro. Finalmente
explicamos uma implementação simplificada do processamento de sinal utilizado em LabVIEW.

A sexta parte compreende não só a calibração do interferómetro, mas também a sensibilidade do
sistema a perturbações exteriores. Relativamente à sensibilidade do interferómetro percebemos que o
sistema de estabilização da mesa utilizada é ótimo na atenuação dos ruídos exteriores e concluímos tam
bém que as condições ideais para a realização da calibração seriam durante a noite pois desejamos es
tar nas melhores condições possíveis para compreender os limites de funcionamento do interferómetro.
Verificamos também que existe alguma deriva no sistema, no entanto os valores obtidos não excediam
meia franja, contudo é prudente que as medições sejam efetuadas no menor intervalo de tempo possível.
Quanto à calibração do interferómetro concluímos que a menor incerteza possível do instrumento é de
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6.2nm, no entanto este valor foi limitado pela mesa de translação utilizada para a calibração. Com a
calibração verificamos que estas incertezas são melhores do que os requisitos propostos no início e con
seguimos obter a incerteza do interferómetro para qualquer deslocamento que pode ser aproximada pelo
seguinte ajuste linear:

Ud[m] = (6.3×10−9 + 2.7×10−7×d)[m] (2)

Para concluir, na sétima parte o interferómetro foi utilizado na calibração de váriasmesas de translação.
Estas calibrações passam primeiro pela determinação da repetibilidade da origem e em seguida pela
repetibilidade de deslocamentos ao longo do percurso das mesas de translação. Uma vez que o erro de
deslocamento é conhecido (e linear) podemos corrigilo ao ajustar o fator de conversão tensão/deslocamento
dos controladores das mesas, otimizando assim o desempenho destas para condições ainda melhores que
as especificadas pelo fabricante.

Palavraschave: Metrologia de Comprimento, Ótica, Interferometria, Quadratura, Polarização
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Chapter 1

Introduction

1.1 Motivation

In optical instrumentation it is crucial to have a very accurate knowledge of the position and the dis
placement of optical components, the orders of magnitude necessary range from the millimeters to the
nanometers, one million times smaller. To effectively place and move components with such high accu
racies it is necessary to resort to motorized translation stages, instruments that have multiple operating
ranges. For submillimetric displacements the stages use piezoelectric elements that expand or contract
to cause a displacement, while for supermillimetric displacements the translation stages use stepper or
DC motors.

The primary obstacle when using any translation stage is the lack of knowledge about it’s specifica
tions, usually the manufacturer will attribute an uncertainty to a model of translation stages even though
this uncertainty represents the “worst case scenario” and the product acquired can have a better per
formance. To resolve this problem and better estimate the uncertainty of the acquired instrument it is
necessary to calibrate the stage. Besides translation stages, displacement sensors aren’t optimally char
acterized by the manufacturers, to take full advantage of the sensor’s measuring capabilities and reach
the maximum performance possible the information indicated by the manufacturer is never enough, a
calibration must be performed.

Considering calibrations are a fundamental aspect of displacement measurements, there arises the
need to have an instrument capable of performing such tasks. There are many ways to perform sub
millimetric displacement measurements, it is possible to reach the nanometer regime using, for example,
capacitive sensors or piezoelectric sensors, among many other options [2], however the dynamic range
of these instruments is very limited. The technique that has the largest dynamic range and is widely used
in precision metrology is interferometry.

There already exist countless possible interferometer configurations and that allows us to tailor the
measurement system to our needs in order to optimize the instrument’s performance while keeping the
complexity as small as possible. The innovation provided by this work is not a new interferometrymethod
but a detailed study of the theory, system modelling and uncertainty determination in order to build the
best possible interferometer according to our needs.
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1.2 Objectives

In light of the typical usage of translation stages in projects related to instrumentation in astrophysics,
particularly in the instrumentation group of the Instituto de Astrofísica e Ciências do Espaço (IA), and
taking into consideration the uncertainty of typical translation stages provided by regular suppliers [3,
4], the uncertainty requirements for the interferometer were defined and are present in table 1.1 and
represented in figure 1.1. In uncertainty and traceability chains it is common to consider a margin of an
order of magnitude between the uncertainty of the measurement instrument and the equipment to calibrate
so the requirements defined were set accordingly.

Table 1.1: Uncertainty requirements for the interferometer, one decade smaller than the working range
of the average translation stage used in astronomy and astrophysics.

Displacement [mm] 0.1 0.5 10 25 100 500 1000 4000
Uncertainty [µm] 0.01 0.025 0.01 0.025 0.1 0.5 1 5

Figure 1.1: Graphical representation of the uncertainty requirements for the interferometer, present in
table 1.1.

In order to build an interferometer that complied with the uncertainty requirements of table 1.1 several
steps were required, ranging from the study of the physics of interferometry to the engineering of the
system comprising the design, integration, assembly and testing. This thesis reflects every stage required
to build the interferometer.
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1.3 Structure

This work is organized in 9 chapters:

▷ Chapter 1  Introduction

Thesis motivation, objectives and structure.

▷ Chapter 2  Interferometry

Brief review about fundamental concepts of interferometry.

▷ Chapter 3  Uncertainty Model for Length Measurements with a Michelson Interferometer

Study about the uncertainty model for a Michelson interferometer and estimation of the necessary
uncertainties to comply with the requirements.

▷ Chapter 4  Evaluation of Optical Configurations

Comparison of multiple optical configurations and definition of the one to be assembled.

▷ Chapter 5  Signal processing

Detailed explanation of the signal processing necessary to calculate the displacement.

▷ Chapter 6  System Design, Implementation and Integration

Preliminary studies performed on a prototype followed by the assembly of the final interferometer
with a brief overview of an implementation of the signal processing in LabVIEW.

▷ Chapter 7  Interferometer Calibration

Interferometer sensitivity to external perturbations and calibration.

▷ Chapter 8  Translation Stage Calibration

Calibration of the homing mechanism and displacement of multiple translation stages.

▷ Chapter 9  Conclusions

Important aspects of all the work done.
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Chapter 2

Interferometry

Interferometry, as the name suggests, is a technique used to measure based on the interference phe
nomenon, in this case displacements will be measured. Interference takes place when two coherent waves
overlap and interact with each other, in this work the interference between two electromagnetic waves
was studied.

2.1 Michelson’s Interferometer

When trying to prove the existence of amedium for light to propagate, the famous ether [5], Michelson
developed an interferometer that would later inherit his name. This was the first interferometer developed
used later for displacement metrology and the principle of operation is still the same that is currently used.

Beamspli�er

Compensa�ng
Plate

d

Source

Screen

Reference
Mirror

Measurement
Mirror

Figure 2.1: Michelson’s interferometer schematic.

Although the physics behind interferometry is detailed in section 2.6 we can see in figure 2.1 that
by splitting the light beam into two different paths, Michelson controlled the phase difference of the two
beams by displacing one of the mirrors. It is possible, according to equation 2.19, to know the phase
difference by counting the number of fringes displayed on the screen. This conclusion yields an equation
that relates the mirror’s displacement with the number of fringes:

d =
∆φ

2π

λ

2n
=
Nf

2

λ

n
(2.1)
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Where d represents the displacement of the mirror, ∆φ the phase difference between the electric fields
of both interferometer arms, λ the wavelength of the laser source in use, n the refractive index of air and
Nf the number of fringes displayed on the screen.

It is important to note that using this method only relative displacements can be measured, absolute
measurements are impossible with this approach.

2.2 Traceability

In order for the measurements performed with interferometry to be universally acceptable, they need
to be traceable to the International System of Units (SI). The Bureau International des Poids et Mesures,
BIPM, is responsible for defining and maintaining the units of the SI and has defined the unit of length,
the meter, as:

“The fixed numerical value of the speed of light in vacuum c to be 299 792 458 when expressed in
the unit m s−1, where the second is defined in terms of the caesium frequency∆νCs”[6]

Considering that the meter is defined by the speed of light and it is possible to relate the speed of light
to the wavelength of a laser using c = λf , any interferometer can perform a traceable measurement by
knowing the wavelength of the radiation source in use [7], as the speed of light has no uncertainty [8].

2.3 Electromagnetic Radiation

Nowadays it is known that visible light is only a small part of the electromagnetic spectrum, specifi
cally corresponding to the radiation with a wavelength between 380nm and 750nm. It is composed of an
electric and a magnetic field oscillating orthogonally to the axis of propagation, which implies that light
is a traverse wave. Although both fields propagate together it is usually enough to refer only the electric
field [9], which as proved by Arago and Fresnel, is composed of two orthogonal components that do not
interfere [10]. It follows that the electric field of a light wave propagating along the z axis has both x and
y components.

To obtain an equation for the electric field it is necessary to solve the wave equation:

∇2⃗E(⃗r, t) =
1

c2
∂2⃗E(⃗r, t)
∂t2

(2.2)

Although the electric field is a real quantity it is often convenient to express the solution using a
complex notation, so we have the following expressions for one component of the electric field vector:

Ex = Re
[
E0xe

i(ωt⃗k·⃗r+ϕx)

]
= E0x cos(ωt− k⃗ · r⃗+ ϕx) (2.3)

Another important aspect of the wave equation is linearity. Due to this property we can conclude
that the electric field obeys the superposition principle, that is, the sum of two solutions is also a valid
solution, which means the total electric field can be composed of multiple superposed electric fields.
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2.4 Polarization

Polarization is a property of traverse waves, it indicates the direction in which the net electric field
oscillates. As was studied in Chapter 4, polarization plays a very important role in interferometry.

When dealing with multiple superposed waves one can say light is not polarized since there is no
apparent pattern to the net electric field oscillations, but when dealing with one single electromagnetic
wave there are few possibilities for the polarization, these are called degenerate polarization states:

→ Ex = 0 or Ey = 0

If the electric field has only one component then the polarization can be either vertical (figure 2.2a) or
horizontal (figure 2.2b).

→ E0x ̸= 0 and E0y ̸= 0 and ∆ϕ ∈ {0◦; 180◦}

If both components exist and are in phase then the polarization will have a certain degree (figure 2.2c).
There is the particular case when both fields have the same amplitude (figure 2.2d).

→ E0x = E0y ̸= 0 and ∆ϕ ∈ {−90◦; +90◦}

If both components have the same amplitude and the phase difference is either −90◦ or +90◦ the polar
ization is left circular (figure 2.2e) or right circular (figure 2.2f), respectively.

When none of the above cases apply we are left with elliptical polarization:

→ E0x = E0y ̸= 0 and ∆ϕ /∈ {−90◦; +90◦} ; E0x ̸= E0y ̸= 0 and ∆ϕ /∈ {0◦; 180◦}

If the amplitudes are equal but the phase difference is not ±90◦ the polarization will be elliptical with a
tilt (figure 2.2g). Otherwise if the amplitudes are different and the phase difference is neither 0◦ nor 180◦

the polarization will always be elliptical (figure 2.2h), with or without a tilt.

(a) Vertical polarization. (b) Horizontal polarization. (c) 76◦ polarization. (d) 45◦ polarization.

(e) Left circular polarization. (f) Right circular polarization. (g) Elliptical polarization
with 45◦ phase difference.

(h) Elliptical polarization
with different amplitudes.

Figure 2.2: Electric field polarizations.
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The polarization of the electric field can be changed in two different ways, either by filtering the
desired linear polarization with a polarizer or by delaying one component of the electric field with a
waveplate.

Polarizers are essential when dealing with nonpolarized electric fields because the transmitted elec
tric field will only have the components aligned with the polarizer’s axis, this means these components
can also be used to filter linear polarizations from circularly or elliptically polarized electric fields. Po
larizers operate either by absorbing the electric fields not aligned with its axis, or by splitting the two
polarization components spatially by means of a reflection.

Waveplates are useful when the electric field is already polarized. In addition to being the main tool
to achieve circular or elliptical polarizations these components also allow rotations of linear polarizations
without the losses of a polarizer. There are different types of waveplates varying on the delay given to the
polarizations, half waveplates are used to rotate linear polarization while quarter or octadic waveplates
are used to delay one component of the electric field, delay which depends on the angle between the
optical axis and the waveplate’s fast and slow axis.

2.5 Jones Notation

When characterizing any optical setup it is convenient to use a proper notation to facilitate the calcu
lations. Several notations have been developed, however, considering the radiation in study is completely
polarized and coherent, Jones Notation was used [11].

In Jones matrix calculus the electric field vector is represented by a 2×1 matrix, where the (1,1)
component is the x electric field and the (2,1) component is the y electric field:

E⃗ =

[
Ex

Ey

]
=

[
E0xe

iϕx

E0ye
iϕy

]
=

[
E0x

E0ye
i∆ϕ

]
(2.4)

Any optical component is represented by a 2×2 matrix, with each jij element depending on the type
of component:

J =

[
j11 j12

j21 j22

]
(2.5)

When light passes through the optical component the resulting electric field vector is given by the
left multiplication of the component matrix by the incident electric field vector:

E⃗out = J⃗Ein (2.6)

If light passes through multiple components, for example components 1, 2 and 3 with Jones matrices
J1, J2 and J3, respectively, the resulting electric field vector after all three components is given by:

E⃗out = J3J2J1⃗Ein (2.7)

Usually the electric field vectors and the Jones matrices are normalized, thus the electric field vector
is given by:

E⃗(ψ,∆ϕ) =

[
cosψ

ei∆ϕ sinψ

]
(2.8)

Where ψ is the angle between the x axis and the net electric field (ignoring the phase difference) and
∆ϕ is the phase difference between both components of the electric field, defined as:

∆ϕ = ϕy − ϕx (2.9)
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Using equation 2.8 we can calculate the Jones vectors for the degenerate polarization states:

E⃗LHP =

[
1

0

]
E⃗L+45P =

1√
2

[
1

1

]
E⃗L45P =

1√
2

[
1

−1

]

E⃗LVP =

[
0

1

]
E⃗RCP =

1√
2

[
1

i

]
E⃗LCP =

1√
2

[
1

−i

]

The Jones matrix for a linear polarizer at an η angle with the x axis is:

JPOL(η) =

[
cos2 η sin η cos η

sin η cos η sin2 η

]
(2.10)

The Jones matrix for any type of waveplate with its fast axis at an η angle with the x axis is:

JWP(η; ξ) =

[
cos ξ

2 + i sin ξ
2 cos 2η i sin ξ

2 sin 2η

i sin ξ
2 sin 2η cos ξ

2 − i sin ξ
2 cos 2η

]
(2.11)

Where the type of waveplate is defined by the ξ parameter. For a half waveplate we have ξ = π, for a
quarter waveplate ξ = π/2 and for an octadic waveplate ξ = π/4.

The Jones matrix for an ideal 50/50 beamsplitter is:

JBS =
1√
2

[
1 0

0 1

]
(2.12)

For an ideal polarizing beamsplitter we have two different Jones matrices, one for each output beam:

JPBSx =

[
1 0

0 0

]
JPBSy =

[
0 0

0 1

]
(2.13, 2.14)

Finally, it is also possible to express the phase difference corresponding to the optical path difference
of light (δ):

JOPD = eiδ

[
1 0

0 1

]
(2.15)

2.6 Interference and Irradiance

Interference is a phenomenon and cannot be measured directly, it does nonetheless affect the irradi
ance of the electromagnetic radiation, defined as the radiant energy flux per unit area (W/m2 ):

I =
cε0
2

|⃗Enet|2 (2.16)

If the net electric field is composed of two superposed electric fields we have from equation 2.16:

I =
cε0
2

|⃗E1 + E⃗2|2 =
cε0
2

(|⃗E1|2 + |⃗E2|2 + 2⃗E1 · E⃗2) (2.17)

In the last term of equation 2.17 we can express the dot product as:

E⃗1 · E⃗2 = |⃗E1||⃗E2| cos(∆φ) (2.18)

Simplifying equation 2.17 with equation 2.18 yields:

I = I1 + I2 + 2
√
I1I2 cos(∆φ) (2.19)
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The last term of equation 2.19 is designated interference term due to its dependence on the phase
difference between both overlapped electric fields. Varying this phase difference it is possible to obtain
a minimum and a maximum of irradiance, each minimummaximum pair correspond to a fringe.

Using Jones notation the irradiance can be calculated (aside from constants) by:

I = E⃗∗
net⃗Enet (2.20)

Where ∗ is the conjugate transpose operator.

2.7 Coherence

For two light beams to interfere it is not only necessary that they are overlapped but also that they are
coherent. Coherence is a property that correlates two waves spatially and temporally, if the waves are not
correlated in both ways the interference pattern will not be uniform.

Spatial coherence is defined as the ability of two source points to interfere when there is no time delay
[12]. This means that if the source’s directionality is good then spatial coherence will not be a problem
for interference.

Temporal coherence is the time span that a wave continues to resemble a sinusoid of a single frequency
[12]. Since there is a certain time interval for coherence it is possible to define the maximum length over
which light is coherent. This length is correlated to the power spectrum of the source and can be defined
based on the spectral width at fullwidth at halfmaximum (FWHM) [13]:

Lc =
2ln(2)

πn

λ2

Uλ
=

2ln(2)

πn

c

Uf
(2.21)

Where Lc is the coherence length, λ the wavelength of the laser source in use, n the refractive index of
air, c the speed of light, Uλ the uncertainty of the wavelength and Uf the uncertainty of the frequency of
the laser source in use.

2.8 The Michelson Interferometer as a Displacement Sensor

Ever since Michelson’s first steps in interferometry several improvements have been made, not only
to the components themselves but also to the techniques applied. At the time Michelson used a white
light source for his experiment because he required a small coherence length, but the need for higher
coherence lengths led to the development of lasers. Ever since 1960 lasers were optimized and were later
adopted for interferometry because of the fine wavelength properties they possess.

For the refractive index, as is detailed in section 3.3, several mathematical models have been de
veloped to determine its value (for air) based on multiple variables such as temperature, pressure and
humidity.

The feature that splits interferometry in two different fields is the detection of the number of fringes.
There is a homodyne detection method that uses a single frequency laser and there is a heterodyne detec
tion method that requires a two frequency laser.

Several different interferometric configurations have been developed using homodyne or heterodyne
detection [14, 15, 16], so the approach to any problem requiring an interferometer should be to first
determine the requirements and afterwards to choose a configuration optimized for such requirements.
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2.8.1 Homodyne Detection

Using a single frequency source the detection is done by counting the number of fringes, like Michel
son did, although nowadays it is possible to use detectors for this purpose. The conversion from number
of fringes to phase difference is as simple as a multiplication by 2π:

∆φ = 2πNf (2.22)

This is the simplest type of detection and it leads to some of the most basic interferometric configu
rations. Another advantage this detection reveals is that the detector can be singlepoint with the goal of
detecting the increase or decrease of the irradiance in the center of the interference pattern, this allows
for fast processing when compared to a CCD array. The problem with such a simple setup is the lack
of directional sensitivity, it is very complicated, and occasionally impossible, to know in which direc
tion the measurement mirror is moving. Another concern with this detection method is the fact that any
fluctuation on the source’s intensity is mistakenly reflected in a measurement of displacement.

Since the detection is simply done by evaluating the irradiance, thus counting an integer number of
fringes, the resolution of this detection method is usually limited at one fringe.

2.8.2 Quadrature

To resolve the directional sensitivity problem of simple homodyne detection the quadrature of the
electric field needs to be performed, which requires polarization manipulation, unlike the last case.

By taking advantage of the two different polarizations of light, it is possible to detect the direction
of the motion by delaying one of the polarizations 90◦ and then detecting the two polarizations in two
separate detectors. For simplicity lets assume the irradiance is a perfect cosine of amplitude R that
depends only on the phase difference introduced in the measurement arm of the interferometer (δ):

I = R cos(δ) (2.23)

By delaying the vertical polarization 90◦ and detecting both polarizations separately we would have:

Ix = R cos(δ) Iy = R cos
(
δ − π

2

)
= R sin(δ) (2.24, 2.25)

The direction of the displacement becomes evident when comparing both signals, if the displacement
is positive, δ will be positive and we will detect the following signals:

V x = R cos(δ) V y = R sin(δ) (2.26, 2.27)

If the displacement is negative, δ will be negative and we will detect:

V x = R cos(|δ|) = R cos(|δ|) V y = R sin(|δ|) = R sin(|δ|) (2.28, 2.29)

This translates graphically into figures 2.3a and 2.3b, respectively.
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(a) Detected signals for a positive displacement (δ > 0)
with R=1.

(b) Detected signals for a negative displacement (δ < 0)
with R=1.

Figure 2.3: Quadrature schematics.

To calculate the value of δ we can use equations 2.24 and 2.25:

Iy
Ix

=
R sin(δ)
R cos(δ) = tan δ ⇒ δ = arctan Iy

Ix
(2.30)

There are many ways to achieve the 90◦ offset with different combinations of optical components,
this inevitably leads to different ways to achieve quadrature. Another advantage this method reveals
over simple homodyne detection is the smaller impact of laser fluctuations, but, due to the increased
complexity, this interferometer requires more optical components and a minimum of two detectors.

As for resolution this method proves to be better than simple homodyne detection because there is
access to the phase of the interfering light beams. This gives a resolution of some tenths to hundredths
of a fringe.

2.8.3 Heterodyne Detection

When the polarizations of the used laser have a slightly different frequency, f1 and f2, the interference
term of equation 2.17 becomes:

2⃗E1 · E⃗2 ∝ 2 cos(f1) cos(f2) = cos(f1 + f2) + cos(f1 − f2) (2.31)

Since optical frequencies are too fast to be processed by the existing electronics, any term that has
an optical frequency (|⃗E1|2, |⃗E2|2 and the term associated to cos(f1 + f2)) becomes an average. The
remaining term is detectable because the difference of the optical frequencies of the laser is of some
MHz, thus the irradiance is proportional to:

I ∝ I0 cos(2π(f1 − f2)t+ δ) (2.32)

In this case directional sensitivity is inherent to the method because of the Doppler shift induced
by the moving mirror. By creating a reference before the interferometer it is possible to know if the
shift in frequency was positive or negative which determines if the mirror is moving in one or the other
direction. The main disadvantage of heterodyne detection is the complexity involved, there is the need
for a heterodyne laser source, the detection and signal processing involved require high speeds and the
components are expensive.

Considering that the phase of the interfering beam is knownwith more accuracy than in the quadrature
method, heterodyne detection is the most accurate measurement reaching the thousandths of a fringe.
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Although it has the highest resolution it is not always a better choice over the other detection methods
because measuring a long displacement with a heterodyne interferometer can induce errors and will take
a long time, due to the high resolution. When a homodyne interferometer has enough resolution and
complies with every requirement it is always better to choose the less complex option.

2.9 Chapter Conclusions

Having reviewed all the theory necessary to comprehend interferometry and the state of the art of the
technologies available, it is now possible to define the requirements for each component of the interferom
eter in order to comply with the uncertainty requirements of figure 1.1. This can be done by performing a
detailed analysis of the uncertainty of equation 2.1 and afterwards balancing the three crucial parameters
of the interferometer: the wavelength, the refractive index and the detection of the number of fringes.
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Chapter 3

Uncertainty Model for Length
Measurements with a Michelson
Interferometer

An excellent mathematical model for a first approach to the uncertainty problem is expressed in
equation 2.1, repeated below:

d =
Nf

2

λ

n
(3.1)

WhereNf represents the number of fringes, λ the wavelength of the used laser source and n the refractive
index of air. In order to comply with the requirements of figure 1.1 the uncertainties of these three
quantities needs to be estimated.

According to the Guide to the expression of Uncertainty in Measurement (GUM) [1] and to the Eval
uation of the Uncertainty of Measurement in Calibration (EA4/02) document [17], the uncertainty is
given by:

Ud =

√√√√[ λ
2n

]2
U2

Nf
+Nf

2

([
Uλ

2n

]2
+

[
−λUn

2n2

]2)
(3.2)

Equation 3.2 reveals that the uncertainties of figure 1.1 will depend on the uncertainty of the three
variables: the number of fringes (UNf

), the wavelength (Uλ) and the refractive index (Un). It is also
possible to conclude that the uncertainty of the number of fringes is not affected by the changes in the
displacement, contrary to the other two variables, this implies the uncertainty of the number of fringes
will have more impact on small displacements, while the other two uncertainties will dominate bigger
displacements. The process to determine the maximum possible values of UNf

, Uλ and Un is to first
evaluate any critical limitations to the system (such as the coherence length), and then maximize the
remaining variables evenly.

3.1 Laser Source Restrictions

As mentioned in chapter 1 the interferometer must operate at a distance of 4m, this implies the coher
ence length must be greater than four meters. Equation 2.21 reveals the relation between the coherence
length and the frequency stability of the source, thus it is possible to determine the frequency uncertainty.

Uf =
2 ln(2)

π · 1.000271
299792458

8
≈ 17MHz (3.3)
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By evaluating what manufacturers offer we concluded that there were two options for an homodyne
detection system: either a nonstabilized or a stabilizedHeNe laser. As an example, the HNL series of red
HeNe lasers offered by ThorLabs [3] has a frequency stability that ranges from 1090MHz (HNL008LB
model) to 250MHz (HNL210LB model). The frequency stabilized laser has a frequency stability of 2
MHz.

Since the need is for less than 17MHz, nonstabilized lasers were not an option. To convert frequency
uncertainty to wavelength uncertainty, knowing that the wavelength of the stabilized laser is 632.991nm,
we have:

Uλ = Uf
λ2

c
≈ 2.7 fm (3.4)

3.2 Number of fringes and refractive index

To estimate the uncertainties of the number of fringes and the refractive index an uncertainty budget
was calculated for every displacement of figure 1.1. For all the displacements the uncertainties of the
two variables were iteratively lowered until the total uncertainty was lower than the requirement, while
ensuring UNf

and Un contributed evenly to the total uncertainty. The results obtained are represented in
table 3.1.

Table 3.1: Estimation of the maximum uncertainties required for the number of fringes and the refractive
index. The total uncertainty obtained and the required uncertainty are also represented for comparison.

d [mm] UNf
Un × 10−7 Udobt [µm] Udreq [µm]

0.1 0.02 700 0.0094 0.01
0.5 0.055 350 0.025 0.025
10 0.02 7 0.0094 0.01
25 0.055 7 0.025 0.025
100 0.22 7 0.099 0.1
500 1.1 7 0.49 0.5
1000 2.2 7 0.99 1
4000 11 8.5 4.9 5

Table 3.1 reveals that the uncertainties of the number of fringes and the refractive index vary according
to the displacement. The target uncertainty for the number of fringes and the refractive index was defined
as theminimumvalues displayed in table 3.1, thus the uncertainty of the number of fringesmust be smaller
than 0.02 and the uncertainty of the refractive index must be smaller than 7×10−7.

In figure 3.1 we can see the requirements already defined previously in figure 1.1, the optimized
value of the uncertainty for each displacement, where all the components of the uncertainty have the same
weight (corresponding to table 3.1), and the final value of the uncertainty where the critical displacement
of the optimized case (10mm) fixed the minimum value of the uncertainty for every displacement.
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Figure 3.1: Estimated uncertainty of the interferometer.

3.3 Refractive index mathematical model

The refractive index is a function of temperature, pressure and relative humidity. Several improve
ments of its estimation have been done over the years [18]. Such complex mathematical models are too
intricate for a simple approach so NIST developed a simplified version, the NIST Shop Floor refractive
index calculation [19]:

n = 1 +
7.86×10−4P

273 + T
− 1.5×10−11RH(T 2 + 160) (3.5)

Where T is temperature in ◦C, P is pressure in kPa and RH is relative humidity in percentage (between
0 and 100).

Knowing the required uncertainty for the refractive index (Un = 7×10−7) the uncertainties of the
temperature, pressure and relative humidity were estimated while trying to maintain the weight of each
component equal, as was done in section 3.2. For the uncertainty calculations it was considered T =

20 ◦C, P = 101.3 kPa and to avoid measuring relative humidity it was assumed RH = 50% ± 50%,
with these conditions we obtained UT = 0.4 ◦C and UP = 150 Pa and it was also possible to balance
these uncertainties evenly, in a way that each component contributed approximately 33% to the total
uncertainty of the refractive index.

3.4 Chapter Conclusions

Considering the direction of the displacement must be known, and the necessary accuracy in the
number of fringes was 0.02, simple homodyne detection was excluded. The two remaining options were
quadrature or heterodyne detection. As mentioned before, one of the disadvantages of heterodyne detec
tion is when a long displacement needs to be measured, so the natural choice for the detection method
was quadrature.

For the laser source it was already demonstrated that any nonstabilized laser does not have enough
coherence length for the interferometer to operate at a distance of 4m so the only possibility was a stabi
lized laser.
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Finally, to calculate the refractive index the temperature and pressure must be measured and stable
during the measurements. To achieve the uncertainties required (UT = 0.4 ◦C and UP = 150 Pa)
a common laboratory thermometer and barometer are enough. As for stabilization, pressure is usually
stable in the time interval needed formeasurements and for temperature one possible solution is to average
its value at the beginning and at the end of the measurement and use the variation as the uncertainty. With
respect to the relative humidity, although it can be measured and used for the calculations it doesn’t need
to be considered because using RH = 50% ± 50% is enough to achieve the required uncertainty on the
refractive index.

Having concluded that quadrature is necessary the next step was to defined an optical configuration
for the interferometer.
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Chapter 4

Evaluation of Optical Configurations

It was already mentioned that quadrature can be accomplished in many different ways, this leads
to a large number of optical configurations, each one with advantages and disadvantages. Four different
optical configurations were studied due to their peculiarities [20, 21, 22, 23], with the intent of defining the
one that would be assembled. To correctly evaluate each configuration first there is the need to evaluate
if the phase difference introduced between each polarization totals 90◦, this is easily proven using Jones
notation, and is detailed in appendixA. After knowing that the configurations function as intended one can
consider the advantages and disadvantages each configuration possesses and the physical/optomechanical
limitations.

4.1 Quadrature with two polarizing beamsplitters

The Field Guide to Displacement Metrology [20] proposes a unique configuration that uses two po
larizing beamsplitters.

Laser

d

PBS

Detector 1

Detector 2
PBS

QWP
45°

s polariza�on

p polariza�on

POL
22.5°

Figure 4.1: Schematic of a quadrature Michelson interferometer using two polarizing beamsplitters.

Besides the use of two polarizing beamsplitters, another interesting aspect of this configuration is
that the 90◦ offset between polarizations is given by two consecutive components: the polarizer and the
waveplate. By analysing the optical configuration with Jones notation it is possible to conclude that the
offset between the two irradiances (equation A.5) is indeed 90◦.

17



Although it proves quite simplistic there is a critical disadvantage in this configuration, equation A.5
reveals that the amplitude of the irradiance is quite small which is a problem since it would affect the
detection efficiency.

4.2 Quadrature with a nonpolarizing beamsplitter

Bai et al. [21] present a quadrature configuration that uses a nonpolarizing beamsplitter.

d

BS

PBS

Detector 1

Detector 2

POL
45°

QWP
45°

Laser

s polariza�on

p polariza�on

Figure 4.2: Schematic of a quadrature Michelson interferometer using a nonpolarizing beamsplitter.

In spite of the different optical component positioning this configuration also proves relevant because
there are no elements between the two beamsplitters, so the detection module (composed by the final
polarizing beamsplitter and the two detectors) is independent from the rest of the interferometer.

Equation A.9 proves that the phase difference is the desired 90◦ and we can also conclude that the
amplitude of the irradiance increased 2.6 times, which is significant.

4.3 Quadrature with two quarter waveplates

The University ofMinnesota reveals an optical configuration that does not use polarizers [22] thus the
following configuration will not suffer the unnecessary attenuation of the last two cases. Due to the light
beam passing twice through a beamsplitter the minimum attenuation possible is 1/4 of the initial value.
Equation A.13 confirms this statement, proving that the excessive attenuation of the previous cases was
only due to the presence of a polarizer.

The positioning of the quarter waveplates in this configuration is not ideal, experimentally the area to
build the interferometer was limited and having to position a quarter waveplate between two components
twice would inevitably increase the size of the assembly.
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Figure 4.3: Schematic of a quadrature Michelson interferometer using two quarter waveplates.

4.4 Quadrature with an octadic waveplate

Gregorčič et al. propose a simple configuration that only requires one octadic waveplate.

Laser

d

BS

PBS

Detector 1

Detector 2

s polariza�on

p polariza�on

OWP
0°

Figure 4.4: Schematic of a quadrature Michelson interferometer using an octadic waveplate.

Equations A.13 and A.17 are identical thus the irradiance is exactly the same as in the last case.
The fact that there is only the need for one optical component to apply the 90◦ offset is excellent when
comparing this configuration with all the previously studied, but despite the ease of assembly of the
configuration the octadic waveplate is not a common component and often times must be custom made.
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4.5 Configuration Evaluation

After comparing the amplitude of the irradiances, the first configuration (figure 4.1) was excluded
considering that the other three cases have amplitudes 2.6 to 3.4 times bigger. In the remaining cases
the irradiance gain was not significant enough to exclude the second configuration. Since the octadic
waveplate was not available the last configuration (figure 4.4) was also excluded.

Between the second and the third configurations the optomechanical parts are a key point of the selec
tion. In figure 4.3 there exists a component between both beamsplitters that is not present in the second
configuration, figure 4.2, where the detection module is independent from the rest of the interferometer.
The fact that the second configuration allows more flexibility in the positioning of the detection module,
which will make the interferometer smaller, was the reason why the third configuration was excluded,
even though it had a 32% irradiance gain.

4.6 Chapter Conclusions

Defining an optical configuration is not only an optical problem but optomechanical concerns must
also be taken into account. There is always an experimental side to the assembly of an instrument that
must not be forgotten and the necessary alignments need to be very carefully and accurately done, which
is no simple task. The only missing subject of the interferometer, before the assembly, is the signal
processing necessary to count the number of fringes.
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Chapter 5

Signal Processing

The signal processing required to extract the number of fringes from two quadrature signals was di
vided in three different sections. Initially the acquired signals must be stripped of all offsets, turning into
perfect sinusoidal functions, the method used for the corrections was proposed by Peter L. M. Heyde
mann [24] in 1981 and later explored by Wu et al. [25] in 1996. Using the corrected signals the phase
difference introduced by the optical path difference between the two arms of the interferometer is calcu
lated, afterwards the phase is unwrapped to become a continuous value and the calculation of the number
of fringes follows by dividing the unwrapped phase by 2π, as equation 2.22 suggests.

5.1 Detected Signals

The acquired signals at the detectors differ from equations 2.26 and 2.27. The discrepancies include
offsets, different gains, the phase difference applied will never be exactly 90◦ and these differences vary
with time. The detected signals V d

x and V d
y can be expressed as:

V d
x = R cos(δ) + p V d

y =
R

r
sin(δ − α) + q (5.1, 5.2)

Where R represents the amplitude of the sinusoids, r the different gain of each detector, α the phase
difference error to 90◦ and p and q the different offsets of each signal.

Graphically, by displaying the Lissajous figure of each signal (figures 5.1a and 5.1b), the parameters
are easily visualized. It is fundamental that these effects are corrected, otherwise the phase difference
cannot be extracted by directly correlating the two signals as equation 2.30 revealed.

5.2 Signal Correction

The ideal signals can be expressed as a function of the detected signals by inverting equations 5.1 and
5.2:

V x = V d
x − p V y =

1

cosα [(V
d
x − p) sinα+ r(V d

y − q)] (5.3, 5.4)

To determine the r, α, p and q parameters an elliptical fit must be performed over the detected signals.
Since the ideal signals describe a circumference of radius R, we have:

V 2
x + V 2

y = R2 (5.5)
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(a) Lissajous figure of the ideal signals 2.26 and 2.27 with
R=3.
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(b) Lissajous figure of the detected signals 5.1 and 5.2 with
R=3, p=6, q=5, r=1.5, α=10◦.

Figure 5.1: Lissajous figures of ideal and detected signals.

Using equations 5.3 and 5.4 we get:

(V d
x − p)2 +

[
(V d

y − q)r + (V d
x − p) sinα

cosα

]2
= R2 (5.6)

Which can be expressed as the equation of an ellipse:

V d
x

2
+BV d

y

2
+ CV d

x V
d
y +DV d

x + EV d
y + F = 0 (5.7)

With the following change of variables:

B = r2 (5.8a)

C = 2r sinα (5.8b)

D = −2p− 2qr sinα (5.8c)

E = −2qr2 − 2pr sinα (5.8d)

F = p2 + q2r2 + 2pqr sinα−R2 cos2 α (5.8e)

Using equations 5.8a, 5.8b, 5.8c and 5.8d we can now calculate r, α, p and q:

r =
√
B (5.9a)

α = arcsin
(

C

2
√
B

)
(5.9b)

q =
2E −DC

C2 − 4B
(5.9c)

p =
DC2 − 2EC

2C2 − 8B
− D

2
(5.9d)

Since equation 5.7 describes an ellipse, to estimate the parameters B, C, D and E we can use the
least squares method. The objective of this method is to minimize the difference between the predictions
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of the determined model and the actual value used to estimate it, the residual. Knowing that the fit will
not be perfect, equation 5.7 will not equal zero, but for each V d

xi, V d
yi pair it will equal its residual (ϵi), so

for N acquired samples we have:

V d
xi

2
+BV d

yi

2
+ CV d

xiV
d
yi +DV d

xi + EV d
yi + F = ϵi i ∈ [1, N ] (5.10)

The estimated parameters need to be chosen so that the sum of the squared residuals is as small as
possible, which is achieved if the gradient of the sum of the squared residuals is null:

∂

∂xj

N∑
i=1

ϵ2i = 0 xj = B,C,D,E, F ; i ∈ [1, N ] (5.11)

From equation 5.11 result 5 different equations with 5 different variables that can be expressed by the
following system of equations:

XXT


B

C

D

E

F

 = −X
N∑
i=1

V d
xi

2
X =



∑N
i=1 V

d
yi

2∑N
i=1 V

d
xiV

d
yi∑N

i=1 V
d
xi∑N

i=1 V
d
yi

N

 (5.12)

5.2.1 Phase Difference Error

Correcting the phase difference error and assuming the desired 90◦ is incorrect considering the ex
perimental error is not being altered and errors would be introduced in the displacement. To solve this
problem a different approach was taken, this does not affect the calculation of the parameters explained
previously.

If the signals are corrected with the exception of the phase difference error we have:

V c
x = R cos δ V c

y = R sin (δ − α) (5.13, 5.14)

By using the same reasoning as in equation 2.30 we get:

V c
y

V c
x

=
sin (δ − α)

cos δ ⇒ δ = arctan
(

1

cosα
V c
y

V c
x

+ tanα
)

(5.15)

Two new terms related to the phase difference error appear in the equation. This suggests that it is
possible to achieve quadrature without having a 90◦ phase difference between each polarization, although
being close to 90◦ is desired due to the effect of α on the equation being minimal, while when the phase
difference tends to 0◦ (α tends to 90◦) its effect is critical and a miscalculation of the parameter would
introduce bigger errors.

5.3 Arctangent Function Limitations

When the argument of the arctangent function is a quotient there is a problem with the cancellation
of signals. This means that there is no possible way to distinguish the cases when V x and V y are both
positive or negative, and also the cases when both signals are different, these redundancies are detailed
in figure 5.2.
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Figure 5.2: Graphical representation of the arctangent function range limitation and ambiguities.

To span the four quadrants and have no redundancy there is the need to use a function appropriate to
this case. The four quadrant inverse tangent, also known as atan2, is defined as:

atan2(y, x) =



arctan
( y
x

)
if x > 0,

arctan
( y
x

)
+ π if x < 0 and y ≥ 0,

arctan
( y
x

)
− π if x < 0 and y < 0,

π
2 if x = 0 and y > 0,

π2 if x = 0 and y < 0,

undefined if x = 0 and y = 0

(5.16)

Figure 5.3: Graphical representation of the four quadrant inverse tangent function.
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As figure 5.3 shows, the atan2 function has a range of 2π, spanning the four quadrants and also
overcoming the previous redundancies. This indicates that the atan2 function is an ideal substitute for the
arctangent function. We can now rewrite the phase as:

δ = atan2(V c
y + V c

x cosα sinα, V c
x cosα) (5.17)

5.4 Phase Unwrapping

Phase unwrapping consists on the accumulation of the total phase, which is particularly important
when dealing with functions with a limited range such as the atan2 function. Without accumulating the
total phase it would be impossible to have displacements bigger than a fringe because the phase would
be limited to ]− π;π].

Figure 5.4: Comparison of the wrapped and unwrapped atan2 functions.

Figure 5.4 emphasizes the wrapped phase’s discontinuities. It follows that a simple way to unwrap the
phase is to use an algorithm that adds or subtracts 2π every time the phase difference changes more than
π. One possible definition for such an algorithm operating over an array of phases (δ) with N elements
is:

δu[i] =

 δ[i]−
⌊
δ[i]− δu[i1]

2π + 0.5

⌋
× 2π if 1 ≥ i ≥ N − 1,

δ[i] if i = 0
(5.18)

5.4.1 Implications of phase unwrapping in the sampling frequency

Although equation 5.18 proves to be a simple solution to unwrap the phase it creates concerns over
the number of samples per fringe. Figure 5.5 reveals that if the number of samples per fringe is smaller
than two it is impossible to know if there was a change in the direction of the movement.
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Figure 5.5: The unwrapping of figure 5.4 is repeated but with a small amount of samples. It is possible
to see that the algorithm cannot correctly unwrap the phase and assumes the wrong direction for the
movement.

Using equation 3.1, the stage’s velocity in fringes per second is:

vfringes/s =
2n

λ
vm/s (5.19)

Since the number of samples per fringe needs to be bigger than two the sampling frequency is given
by:

fs > 2× 2n

λ
vm/s (5.20)

5.5 Chapter Conclusions

Although the signal processing to extract the number of fringes from two quadrature signals already
existed, several improvements were done, namely the correction of the phase difference error. Another
very important aspect that we take from this chapter is the limitation of the sampling frequency imposed
by the phase unwrapping (equation 5.20) because it defines the necessary sampling frequency for the
interferometer to operate correctly.

Having discussed all the critical aspects of the system the assembly of the interferometer can now be
considered.
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Chapter 6

System Design, Implementation and
Integration

Before projecting the interferometer a prototype was assembled to test some important aspects of
the laser source in the chosen configuration. Once the prototype was tested and a stage was studied, the
system was projected and different ways to assemble the chosen configuration were studied according
to the available materials. After defining the position of every element of the interferometer with the
use of a 3D model the system was assembled. Finally, the data acquisition and signal processing were
implemented in LabVIEW.

6.1 Preliminary Design

Before designing the interferometer a prototype was assembled (figure 6.1) according to the configu
ration chosen in chapter 4. This first step was crucial because it was possible to verify that the configura
tion worked as intended experimentally and the prototype also allowed the study of critical aspects of the
interferometer, such as retroreflections and the beam divergence. After all these factors were corrected
the movement of a translation stage was studied in order to test the signal processing of chapter 5.

6.1.1 Retroreflections

The first conclusion noted during the assembly of the prototype was the impact of the retroreflections
in the alignment of any optical component. Every surface will reflect the incident light to some degree, in
the particular case when the optical surface is normal to the incident beam the reflection will be coincident
with the incident beam, which becomes a serious concern because the reflection will fall into the laser
cavity destabilizing the laser, not only changing its wavelength but also damaging the laser itself.

The solution to this problem is the introduction of a Faraday Isolator immediately after the laser. A
Faraday Isolator uses Faraday rotators to change the polarization of light, this change in polarization is
nonreciprocal, unlike in polarizers or in waveplates, so the direction of the beam influences the change
in polarization. With a Faraday Isolator after the laser, aligned in a way that its own reflections do not
fall into the laser cavity, any retroreflection in the interferometer that is incident on the Faraday Isolator
is filtered while the laser beam passes through the component “unaffected”, ensuring the stability of the
laser.
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Figure 6.1: Assembled prototype to study the chosen configuration. 1Laser; 2Faraday Isolator; 3
Quarter Waveplate; 4Beamsplitter; 5Measurement Retroreflector; 6Polarizer; 7Reference Retrore
flector; 8Wollaston Prism; 9Vertical Polarization Detector; 10Horizontal Polarization Detector.

6.1.2 Divergence

By using a stabilized HeNe laser we guaranteed that even with an optical path difference of 8m
interference can still be detected, however the beam emitted by the laser is not collimated, it had a di
vergence that although small (1.8mrad) was a problem for long optical paths. The diameter of the laser
beam after the cavity was 0.5mm, but at the end of the 4m measurement arm the diameter of the beam
grew to be 16mm. This was a problem due to the detectors being 3.6mm sided squares and also because
the two interfering beams had extremely different wavefront curvature radii.

Using a Beam Expander with a magnifying power of 4 times the divergence of the laser beam was
reduced at the cost of increasing its diameter, a disadvantage overcame by placing the beam expander
as close to the laser source as possible. As figures 6.2a and 6.2b reveal, with the beam expander it was
possible to reduce the laser beam diameter at the end of the measurement arm (4m) from the previous 16
mm to 4mm, it was also possible to adjust the beam expander in a way that the laser beamwas collimated,
which ensured it mostly fit inside both detectors’ windows.
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16mm

(a) Beam divergence without
the beam expander.

16mm

4mm

(b) Beam divergence with
the beam expander.

Figure 6.2: Comparison of the beam divergence with and without the beam expander, 4m away from the
interferometer.

After guaranteeing that the laser beam’s diameter was close the detectors’ window size a study was
conducted about the interference pattern created in the detector plane, detailed in appendix B, in order to
evaluate the possible advantages of using a diaphragm to limit the number of fringes. The conclusions
revealed that there would only be benefits to using a diaphragm for displacements over 1.5m, which did
not justify the use.

6.1.3 Prototype Testing

Once the prototype was assembled and the problems with the retroreflections were corrected, the
piezoelectric element in figure 6.1 that had a maximum displacement of 13µm was replaced by a trans
lation stage with a maximum displacement of 25mm. Four different measurements were recorded for
two different velocities (0.1mm/s and 1mm/s) and accelerations (1mm/s2 and 10mm/s2) in order to
test the signal processing of chapter 5 and to study the effects of different velocities and accelerations on
the displacement. The acquired data is represented in figures 6.3 through 6.6 and also in table 6.1.

In figure 6.3 the effect of increasing the acceleration is quite evident, figure 6.4 shows that with a
smaller acceleration the defined velocity of 1mm/s is reached further in time, the same happens with
the deceleration. Although figure 6.5 reveals that the change in acceleration for a smaller velocity has
no impact the beginning of the movement is more abrupt, this situation is better comprehended when
considering the velocity graph, figure 6.6. The first steps of the stage cause the velocity to increase past
the desired quantity, while in the other case this problem does not arise.

Table 6.1: Displacement error (in µm) to the stage’s indicated value of 25mm.

v [mm/s]
a [mm/s2]

10 1

1 2.7 1.8
0.1 0.45 0.9

The four different displacements of table 6.1 indicate that for high velocities the displacement is
further away from the indicated value by the stage’s software, this suggests that at this point the signal
processing was not being correctly implemented because there should not be an impact of the velocity of
the stage on the displacement measured. Although there are discrepancies in themeasurement these errors
represent less than 0.02% of the total displacement, when considering that the measurements were done
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without much rigour and with a prototype we can conclude that the properly assembled interferometer
can only have better results.
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Figure 6.3: Displacement measurements for a velocity of 1mm/s while changing the acceleration of the
translation stage.
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Figure 6.4: Calculation of the velocity by differentiating the displacement arrays of figure 6.3 and apply
ing a moving average of 1000 elements.
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Figure 6.5: Displacement measurements for a velocity of 0.1mm/s while changing the acceleration of
the translation stage.
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Figure 6.6: Calculation of the velocity by differentiating the displacement arrays of figure 6.5 and apply
ing a moving average of 1000 elements.
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6.2 Optomechanical System Design

When designing the system, the limitations imposed by the available materials were taken into con
sideration. The optical table used in the interferometer was a 460mm×300mm rectangle, so the laser (a
400mm long cylinder) could not be aligned with the rest of the interferometer. This constraint imposed
the use of at least one mirror to redirect the laser beam. Following the definition of the components to
be used in the assembly of the interferometer, the height of the laser beam was defined according to the
height of the highest component, the Faraday Isolator, whose optical axis was 100mm above the surface
of the table. Once the optical axis’ height was defined, two spacers were made to raise the laser and the
mirrors 50mm and a block was used to raise the beamsplitter’s support 30mm, the rest of the optical
components were placed on vertically adjustable supports.

After all the necessary materials to be used in the assembly were defined multiple schematics were
planned for the disposition of the components on the optical table, shown in figure 6.7.

M
irro

r

Faraday Isolator

B
eam

 
Sp

li�
er

QWP

P
B

S

D
ET

DET

P
O

L

R
R

Beam 
Expander

M
irro

r

(d)

Laser

Farad
ay Iso

lato
r

M
irro

r Laser

B
eam

 
Sp

li�
er

R
R

P
O

L

P
B

S

D
ET

DET

Q
W

P

Beam 
Expander

M
irro

r

(b)

M
irro

r

Faraday Isolator

M
irro

r

M
irro

r

B
eam

 
Sp

li�
er

QWP

P
B

S

D
ET

DET

R
R

P
O

L

B
eam

 
Exp

an
d

er
M

irro
r

(a)

Laser

Faraday Isolator

B
eam

 
Sp

li�
er

Q
W

P

POL

R
R

P
B

S

D
ET

DET

M
irro

r
B

eam
 

Exp
an

d
er

(c)

Laser

Figure 6.7: Four different schematics considered for the assembly of the interferometer. The representa
tions are all up to scale (approximately 2/125).

Of every proposed schematics it was considered that figure 6.7b was the easiest to implement, not
only because of the optimization of the available area but also because of the easy cable management
allowed by the position of the detectors and the laser.

In every configuration the beam passes twice through the polarizer, which had 20mm diameter, while
the beam had 4mm diameter, as is shown in figure 6.8. The ideal distance between the center of the two
beams is 10mm, thus when positioning the retroreflectors it was fundamental to introduce a 10mm lateral
displacement.
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10cm

4cm 4cm

Figure 6.8: Schematic of the ideal distance between both passages of the beam through the polarizer.

Another constraint imposed by the material was the position of the polarizing beamsplitter in its
support, as is clarified in figure 6.9. When placing the polarizing beamsplitter the rods holding the vertical
support must not be in the path of the reflected beam while always ensuring that the PBS is sturdily
mounted.

Figure 6.9: Positioning of the polarizing beamsplitter in its support.

Considering all these restrictions and the schematic of figure 6.7b a 3D model of the interferometer
was built. Another schematic up to scale 3/100 is represented in figure 6.10 for ease of interpretation of
figure 6.11.
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Figure 6.10: Schematic of the 3D model of the interferometer shown below, scaled 3/100.

Figure 6.11: 3D model of the interferometer to be assembled.
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6.3 Optomechanical System Implementation

Before describing the assembly of the interferometer it is essential to understand how the alignment
of laser beams can be done experimentally, afterwards each step of the assembly is detailed. These
are critical and complex steps that must be performed carefully in order to not introduce errors in the
interferometer, particularly when verifying the polarization.

6.3.1 Laser Beam Alignment

In air a laser beam is not visible, which makes its alignment a complicated task. Knowing that a light
beam always travels in a straight line it is possible to guarantee that the beam is aligned as desired in two
different ways by using simple concepts of geometry.

The first alignment method used consists of determining the inclination of the beam by means of
two longitudinal measurements. By placing an obstacle in the optical path of the beam and marking the
position where it hits, we can verify if the beam is misaligned by displacing the obstacle in the direction
of the alignment. If the beam does not hit the marked position it means that it is indeed misaligned,
as is exemplified in figure 6.12a. As the distance between the two measurements increases so does the
alignment error decrease, when performing this alignment it is ideal to measure the two positions as far
apart as possible.

The second alignment method used is based in a phenomenon already discussed. If the reflections
of an optical component are not superposed with the incident beam this means that the component is not
perpendicular to the beam, as is exemplified in figure 6.12b. This method is easier to apply over short
distances because the intensity of the reflections can be quite small.

The alignment of components that alter the beam’s path such as the mirrors, the beam expander or the
beamsplitter was done using the first method because it proved to be easier. However the alignment of
components that do not alter the beam’s path such as the polarizer or the quarter waveplate is impossible
using the first method, so the second method was used for these components.

Δh

1 2

(a) Alignment through displacement.

Δh

(b) Alignment through reflection.

Figure 6.12: Two different methods to align a laser beam experimentally.

6.3.2 Interferometer Assembly and Integration

The first step towards assembling the interferometer, before placing the mechanical components, was
ensuring that all the materials were ready to be assembled, this included the cutting of screws and also
of the 50mm height block to raise the mirrors and the laser. Once these tasks were done the block, the
laser and mirror supports were secured to the optical table. To ensure in the following alignments that
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the optical table and the laboratory table were parallel they were screwed together.
Once the foundations had been placed it was possible to start introducing optical components in the

assembly, beginning by placing the laser in its support. After tightening the laser and ensuring it was
properly fixed the first alignment was performed to guarantee that the beam was parallel to the optical
table. It was possible to conclude that the laser was tilted 0.4◦ upwards, as figure 6.13 shows.

0.4°

Figure 6.13: Alignment of the laser using washers to level the support. The tilt represented is exaggerated
for better comprehension.

Since the length between the two extremes of the laser support is 200mm it was calculated that the
backside of the support needed to be raised 1.4mm, but the washers available were 1.5mm thick which
was not ideal. Repeating the alignment showed that at the same distance the laser had a 1mm height
difference, which was not a problem because this inclination was corrected during the alignment of the
mirrors.

The only concern when placing the mirrors was to guarantee that they were placed between two holes
of the table, so that the reflected beam was also centered between two holes. After placing each mirror
the first alignment was performed to ensure that there were no vertical or horizontal inclinations, the
measured errors were corrected using the mirror support, shown in figure 6.14.

Figure 6.14: Mirror alignment using its support.
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After both mirrors were positioned the Faraday Isolator was placed between them and was slightly
tilted sideways so that the retroreflections would not fall into the laser cavity, as is shown in figure 6.15.
Once the isolator was placed, with the help of a polarimeter the polarization was measured after the
reflection on the mirror to ensure that it was vertical and finally the screw on top of the isolator was
turned until a peak of irradiance was detected.

Figure 6.15: Alignment of the Faraday Isolator.

To place the reference arm’s retroreflector it was necessary to guarantee that there was no height
change in the laser beam and that the horizontal displacement was 10mm so that the reflected beam was
aligned with the holes of the table. To achieve this a cardboard sheet was placed after the mirror and two
horizontal holes were made 10mm apart, figure 6.15, to ensure that the beam was passing in the desired
positions.

Figure 6.16: Alignment of the reference retroreflector.

There were a lot of degrees of freedom in the placement of the beamsplitter on the support. The first
step to ensure a safe and sturdy placement was to guarantee the beamsplitter was positioned against the
extremity of the support. To ensure that the incident beam was normal to the beamsplitter the second
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alignment was performed to confirm that the retroreflection was coincident with the incident beam. Af
terwards the beamsplitter was displaced laterally along the edge of the support until the emerging beam hit
the detector window, these steps are highlighted in figure 6.17. Finally, the first alignment was performed
to correct the tilt of the measurement arm.

Figure 6.17: Alignment of the beamsplitter.

For the polarizations of the interferometer to be studied it was only necessary to assemble the mea
surement arm. This is the most important alignment since every time a new stage needs to be calibrated
the measurement arm needs to be reassembled. At this point of the assembly with only one detector in
place it was not possible to have much rigour in the placement of the measurement arm’s retroreflector,
but the only objective was to be able to measure the polarizations of each arm of the interferometer so the
retroreflector was simply placed in a way that the emergent beam coincided with the detector’s window
and with the emergent beam of the reference arm.

Figure 6.18: Introduction of the measurement retroreflector on a fixed external support.
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The quarter waveplate and the polarizer used have a circular scale that was very helpful since the opti
cal axis of the components cannot be seen with the naked eye. In order to know which angles in the scale
of the quarter waveplate and the polarizer correspond to 0◦ and 45◦, respectively, both components were
tested and the conclusion was that the quarter waveplate’s scale needed to be at 101◦ and the polarizer’s
scale at 220◦.

After placing the quarter waveplate and the polarizer and performing the second alignment for both
components to ensure that they were normal to the beam, the polarimeter was placed before the detection
module to evaluate the polarization of both interferometer’s arms. The measurements with the polarime
ter presented some unexpected results, which indicated that the polarization was being changed by the
beamsplitter and the retroreflectors so a study was made in order to understand how these components
were altering the polarization of the light beam and how to minimize the effects, it is detailed in appendix
C. After knowing the optimal components the retroreflectors were replaced and the beamsplitter was
placed correctly in order to minimize the impact on the 45◦ polarization of the reference arm. Finally, the
quarter waveplate was rotated until the beam of the measurement arm had a 90◦ phase difference after
passing through the beamsplitter, the polarizations of the interferometer are shown in figure 6.19.

Figure 6.19: Polarizations along the interferometer in order to achieve quadrature.

Once the polarization was correctly defined, the polarizing beamsplitter was placed and aligned using
the secondmethod to correct the rotation and tilt of the support and ensure that it was normal to the incident
beam. Finally, the last detector was placed in the path of the reflected beam from the PBS.

To complete the interferometer the beam expander was carefully placed, centered on the light beam,
figure 6.20. To guarantee that it was not altering the beam’s path the measurement arm was pointed at a
target 4.5m away and the beam expander was removed from the interferometer in order to confirm that
the beam still hit the target in the same position.
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Figure 6.20: Placement and alignment of the beam expander.

6.4 Data Processing Software

The data acquisition and signal processing of chapter 5 was implemented in LabVIEW according to
the block diagram represented in figure 6.21.

Variable Defini�on

Measure
Displacement 

Calcula�on
Data Acquisi�on

Data Correc�onPhase Calcula�on

TRUEFALSE

Figure 6.21: Implemented signal processing block diagram.

The LabVIEW code of figure 6.22 is an example of a simple data acquisition and signal processing
tool using the NI 6366 data acquisition board, it is detailed below. Note that although the final version
of the interface is essentially based on the following steps to calculate the displacement, many different
tools were developed to ease the alignment of the measurement arm and to analyze the acquired data.
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Variable Defini�on

Data 
Correc�on

Phase Unwrapping

Phase Accumula�on in While Loop

Displacement 
Calcula�on

Figure 6.22: Simple implementation of the signal processing in LabVIEW.

6.4.1 Variable Definition and Data Acquisition

Before starting the measurements every system variable must be defined. This not only includes the
atmospheric conditions (temperature, pressure and relative humidity) for the calculation of the refractive
index, but also the sampling parameters, such as the channels in use, the maximum voltage, the sampling
frequency and the data buffer size since the data is transferred in packages. After defining the variables
the data is continuously acquired in a while loop until the user manually stops it.

This method to acquire the data continuously revealed a big disadvantage: if the calculations fol
lowing the data acquisition take longer than the time necessary to acquire one data buffer then some
information is lost. One solution to this problem is increasing the buffer size, this proved to be effective
in chapter 8.

6.4.2 Data Corrections

With a 2D data array, where each dimension corresponds to the voltage of each detector, the signal
processing was implemented. First, using equation 5.12 the elliptical fit is done over all the buffer data.
Afterwards the ellipse parameters B, C, D and E are converted into our offset parameters r, α, q and p
using equations 5.9a, 5.9b, 5.9c and 5.9d respectively. Finally using the calculated corrections the same
data buffer is corrected and the phase is calculated with equation 5.15.

Since the offset parameters change with time the calculations need to be repeated every iteration of
the loop. However, to recalculate the parameters over every data buffer it is necessary to guarantee that
the amount of data in each buffer is significant, this means that in every data buffer there must be at least
one full ellipse so that the elliptical fit is correctly calculated.

6.4.3 Phase Unwrapping

The phase unwrapping can be implemented according to equation 5.18 using the predefined functions
in LabVIEW. The fact that these calculations were implemented in a loop created concerns with respect
to the continuity of the phase because it must be continuous between iterations. This problem was solved
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by inserting the last element of the unwrapped phase array into the new wrapped phase array, and after
performing the unwrapping this element is removed. To handle the first iteration of the loop a case was
defined to set the first element as 0.

6.4.4 Displacement Calculation

The calculation of the displacement is given by equation 3.1. By knowing that the relationship be
tween the number of fringes and the unwrapped phase is:

Nf =
δu
2π

(6.1)

We can transform the array of unwrapped phases into an array of number of fringes.
It is now only necessary to calculate the refractive index of the air, using equation 3.5, to turn the

array of number of fringes into an array of displacements.

6.5 Chapter Conclusions

Starting with the assembly of a prototype to test the model to be assembled was excellent, otherwise
the complications that were noticed in the prototype would have to be solved in the interferometer itself,
which would have been complicated. It was also a very important stage in the debugging of the developed
LabVIEW code. The assembly of the interferometer was a very strenuous process that took several days
to accomplish, especially due to the unexpected problems that happened with the polarization. In spite
of the difficulties, the developed 3D model helped considerably to understand and plan the alignment of
several components.

After implementing and verifying the data processing software was working correctly the interfer
ometer needed to be calibrated in order to determine the uncertainty of the measurements.
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Chapter 7

Interferometer Calibration

In the tests performed before the calibration of the interferometer, when multiple translation stages
were being used to test the developed LabVIEW code, the α parameter of the elliptical fit was varying
with the velocity of the translation stages. The study of this effect is detailed in appendix D, where we
ensured that the variations in the α parameter do not affect the measurements.

Several tests were performed to understand how external perturbations affected the interferometer
and to evaluate if the stabilization of the system, after the attenuation of such perturbations, was affected.
Once the perfect conditions to measure were defined the calibration of the interferometer was performed
to determine the uncertainty of the number of fringes.

7.1 Interferometer Sensitivity to External Perturbations

For the calibration to be as correct as possible it was fundamental to comprehend how any external
perturbation affected the system in order to know the ideal conditions to perform the calibration. There
were two concerns when testing the interferometer, the first one was understanding how efficient the
stabilization system of the optical table was in attenuating external perturbations. The second concern
was understanding how high frequency noise affected the system. In all of the tests performed it was
always necessary to have an initial displacement, defined as 20µm, to determine the best elliptical fit to
the data, after the parameters were calculated theywere never updated again and the external perturbations
were recorded during 60 seconds.

To test the attenuation of “normal” external perturbations two measurements were performed, one
during the day without using the optical table stabilization system, another during the night using the
stabilization system, figure 7.1.
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Figure 7.1: Testing of the stabilization system when subjected to external perturbations during the day
(in blue) and when no perturbations were applied during the night (in orange).

In figure 7.1 the perturbations during the day are evident, this was caused by closing doors and drag
ging chairs on the floor above the laboratory. Considering this the calibration needed to be performed
during the night when there were no people in the building.

To test the effects of high frequency noise two measurements were done with and without using the
optical table attenuation system, where the optical table was tapped every five seconds, figures 7.2 and
7.3, respectively. When comparing the two figures it is evident that the attenuation system is good at
eliminating low frequency noise, but high frequency noise is always present. Figure 7.3 also shows that
the system did not stabilize on the same distance, which is incorrect. The frequency of the perturbation
exceeded the sampling rate, causing the unwrapping algorithm to “skip” some fringes, thus it is essential
that no collisions with the optical table occur during the measurement.
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Figure 7.2: High frequency noise recorded by tapping the optical table while the attenuation system was
not used.

Figure 7.3: High frequency noise recorded by tapping the optical table while the attenuation system was
in use.

During the measurements in the absence of perturbations the displacement drifted as the time in
creased, 14 measurements were performed to study this phenomenon, represented in figure 7.4.
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Figure 7.4: 14 measurements without applying any external perturbation to the system. Each color rep
resents a different measurement.

These deviations are inherent to the system and tend to increase with time, but never exceed half
a fringe, which was confirmed with a five minute measurement. The cause of these oscillations is not
related to the system itself but to the atmospheric conditions because even with the optical table in study
turned off there still existed some drift. This indicates that the measurements should be performed as
quickly as possible to ensure that the high performance of the measurement instrument is not impaired
by changes in the atmospheric conditions.

7.2 Calibration

The calibration of the interferometer had the purpose of determining the only unknown uncertainty
in the system: the number of fringes. The uncertainty model represented in equation 3.2 reveals that
the uncertainty of the number of fringes (UNf

) is dominant in smaller displacements (under 100mm),
because it is not multiplied by the number of fringes, contrary to the two uncertainties (Un and Uλ) that
dominate bigger displacements (over 100mm). This suggested that for the calibration to be as correct
as possible the optical path difference between both arms of the interferometer needed to be as small as
possible.

To correctly determine the uncertainty of the number of fringes not only was it necessary to have a
small optical path difference between both arms of the interferometer, but it was also critical to know
every other variable of the system. To monitor the ambient conditions the PCETHB 40 thermo hygrom
eter barometer was used along with the Hart Scientific 1521 thermometer to have more rigour in the
temperature measurement since it is an unstable parameter. The wavelength of the used laser, Model
117A of SpectraPhysics, was specified by the manufacturer and to ensure it was not varying during the
measurements using a wavelength meter the wavelength was monitored for 10 minutes without noticing
any changes. Finally, as a displacement standard the PI P621.CD piezoelectric stage was used. To de
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termine the uncertainty of the displacement the standard deviation of the measurements performed must
be calculated.

7.2.1 Displacement Setup

The piezoelectric element used for the calibration had a maximum displacement of 100µm, however
due to problems with impedance matching between the piezoelectric controller and the DAQ device used
to inject the signal, we decided to limit the displacement at 80µm in order not to damage the equipment
and to ensure that the displacements were as precise as possible. The 80µm were divided in 16 steps
where measurements were performed.

Given that the relationship between the phase and the detector’s voltage is not linear but an arctangent
we had to ensure that the phase in each displacement corresponded to different positions in the range of
the arctangent function, that is, each displacement was such that the [0,2π] range was uniformly sampled.
Since the measurement range was divided in 16 intervals, each displacement was defined as an integer
multiple of a fringe plus 1/16 of a fringe.

Another concern was the monitoring of the atmospheric conditions during the measurements. It was
defined that the pressure, temperature and relative humidity used for the calculations was the average
between the start and the end of the measurements and that the respective uncertainties were half of
the oscillation amplitude. If the atmospheric conditions did not vary then only the uncertainty of the
measuring instrument was used. Although we attempted to mitigate the impact of fluctuations in the
atmospheric condition in themeasurements performed, the refractive index of the air will always fluctuate
along the interferometer so it is wise to round the calculated uncertainty up as a safety measure.

50 measurements were executed with both interferometer arms having approximately with the same
size (12.5cm) in order to determine the uncertainty of the number of fringes.

7.2.2 Results

Figure 7.5 shows that the different steps performed by the piezoelectric stage have a Gaussian distri
bution, note that 9 outliers were excluded (values with a deviation to the mean over 3σ).

Since the standard deviation of all the measurements was 3.1nm, which for a confidence interval of
95% represents an expanded uncertainty of 6.2nm, the initial uncertainty budget was used to estimate the
necessary uncertainty of the number of fringes to achieve an uncertainty of 6.2nm for the displacement.
This process revealed that the uncertainty of the number of fringes is 0.0196 (almost 1 part in 50) for a
95% interval of confidence (2σ).

According to the piezoelectric manufacturer the typical bidirectional repeatability of the stage is 1nm
(1σ) which would translate to an uncertainty of 0.006 (2σ) fringes. The uncertainty determined experi
mentally for the number of fringes of the interferometer was only 3 times bigger than the repeatability of
the stage used so we were clearly influenced (but not limited) by the piezoelectric stage in the calibration.
Nonetheless, since we did not have any better means to calibrate the system the uncertainty of 0.020 for
the number of fringes was used, even though the interferometer can have a better performance, because
this value was more than enough for the requirements defined in figures 1.1 and 3.1.
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Figure 7.5: Histogram of each of the 791 displacements performed during the calibration.

Once all the uncertainties of the measurement system were determined the displacement uncertainty
was be estimated as a function of themeasuring distance, represented in figure 7.6, assuming the following
ambient conditions:

▷ P = (100.500 ± 0.014) kPa

▷ T = (20.00 ± 0.28) ◦C

▷ RH = (50.0 ± 1.1) %

Figure 7.6: Experimental displacement uncertainty of the interferometer. We can also compare the re
quirements of figure 1.1 and the estimations of figure 3.1.
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Figure 7.6 shows that the measurement uncertainty of the interferometer is even better than the esti
mations done in chapter 3, which is due to the uncertainty of the atmospheric conditions being smaller
than was assumed.

7.3 Chapter Conclusions

Under normal conditions the system is not very sensitive to external perturbations, because walking
around the optical table did not seem to affect the measurements, although care must be taken not to
collide with the table otherwise the measurements are rendered useless. Outside vibrations and the echo
provoked by loud noise in the laboratory do affect the system, but to a negligible degree when compared
to the repeatability of the stages to be calibrated. Overall the calibration went better than expected, the
piezoelectric stage used was only partially limiting the performance of the interferometer. However, as
was mentioned, this is not a problem for the requirements set and that can be confirmed in figure 7.6.

Having the measurement system calibrated and ready to operate the only remaining task was to cali
brate the translation stages available in the laboratory.
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Chapter 8

Translation Stage Calibration

Having defined the uncertainties related to themeasurement, to calibrate any translation stage only the
repeatability must be determined. In order to represent the vast range of translation stages available in the
market, several stages with a different travel range and performance were calibrated. There are two steps
to calibrate any translation stage: first and foremost, the repeatability of the origin (or home position)
needs to be determined to understand if there will be problems once the stage is restarted. Secondly
the repeatability of displacements along the stage’s course needs to be determined and should always be
bigger than the origin’s repeatability.

The home position is often times defined by an optical or magnetic sensor in the translation stage
designed for this sole purpose. The error of the home position is given by the difference between any
displacement forward and backward to the home position (not to the 0 position, otherwise the mag
netic/optical sensor is not used), by repeating this test multiple times the origin repeatability is given by
the standard deviation of the difference between both displacements. To characterize the displacements
along the stage’s course we defined that each stage should be divided in 10 steps, each one a multiple
of one tenth of the stage’s range. For each of this steps the measurements were repeated 25 times in
both directions to have an estimate of the bidirectional repeatability and to verify if there existed any
hysteresis.

To display the displacement of any stage we chose to represent the error, defined as the difference
between the measured displacement and the expected displacement, as a function of the expected dis
placement for better visualization of the stage’s characteristics. Since the measurements were performed
forward and backward (relative to the home position) we acquired positive and negative displacements,
respectively. After the displacement error of each stage was known this quantity was minimized by ad
justing the stage’s encoder by 1 plus the slope of a linear fit to the error (the slope is summed by one
because we do not display displaying the measured displacement in the figures). To further minimize the
errors and completely eliminate the systematic errors of the stages a lookup table could be made for each
stage.

Besides the calibration, some stages were also subjected to load tests in order to understand how the
effect of having weight over the stage affected the displacement. Another stage was also subjected to
velocity tests, not only to test the impact of the increase in velocity in the displacement, but also to test
the limits of the data acquisition system of the interferometer.
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8.1 PI’s P621.CD piezoelectric stage

In the calibration of the piezoelectric element used to characterize the uncertainty of the number of
fringes we were limited by the uncertainty of the measurement, however we did verify that there were
offsets between the expected position and the measured position. Since the signal that controlled the
movement was being injected externally in the stage’s controller for this particular case the home position
corresponded to 0V, the same as the 0µm position, thus only the bidirectional repeatability was analysed.

On the following graph and in all the performed tests we display the repeatability in red (random
uncertainty), the interferometer measurement uncertainty in green (systematic uncertainty) and the final
uncertainty in blue. In the calculation of the final uncertainty the repeatability is reduced by averaging,
according to [1] and [17]. All the uncertainties correspond to a confidence interval of 95% (2σ).

The displacements of figure 8.1 were performed 25 times in multiples of 10µm at a velocity of 10
µm/s, forward and backward.

Figure 8.1: Displacement error of the P621.CD stage. The linear fit is: Error[nm] = d[µm] (0.99±0.08)

Figure 8.1 shows that the error increases with the displacement and it is not symmetric, to better
visualize this phenomenon we can mirrored the backward displacement and overlapped both directions
of the movement, represented in figure 8.2, where hysteresis can be observed.
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Figure 8.2: Overlapped error of the P621.CD stage, similar to figure 8.1 but the backward displacement
is mirrored to visualize the hysteresis. The linear fit is: Error[nm] = d[µm] (0.99± 0.08)

By performing a linear fit to the data, which is forced to intercept the origin, we determined the
relationship between the stage’s displacement and the expected displacement. To reduce the error the
stage’s encoder value must be multiplied by 1 plus the slope of the linear fit. For this stage, the encoder
value must be multiplied by 1.00099, which would yield the corrected error represented in figure 8.3.

Figure 8.3: Displacement error of the P621.CD stage after applying the corrections to the stage’s encoder.
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Although the error of figure 8.1 was not exactly linear, we reduced themaximum error from 125nm to
37nm. Gathering all the acquired data we can compare the measured parameters with the manufacturer’s
specifications in table 8.1

Table 8.1: Comparison of the measured parameters of PI’s P621.CD piezoelectric stage and the values
specified by the manufacturer.

Measured Manufacturer
Repeatability [nm] 23 1
Largest Error [nm] 125 ± 7 

Conversion Factor Correction 1.00099 
Largest Error with Correction [nm] 37 ± 9 

As we can see in table 8.1 we did not have much information about the translation stage, only the
repeatability was known. Although the worst measured repeatability was 23nm this was an outlier be
cause during the calibration of the interferometer the repeatability near 80µm was 7nm, which would
have been the repeatability of the stage (excluding the outlier). Figure 8.1 reveals, as expected, that the
uncertainty was limited by the interferometer and not by the repeatability of the stage, this was the only
translation stage where we this problem surged.
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8.2 Newport’s MFACC stage

This translation stage was used in Inês Leite’s master’s thesis [26] in which the uncertainty of the
methods used was partially limited by the absolute accuracy and repeatability of the translation stage. By
performing a displacement of 1mm and sending the stage back to the origin 25 times, we verified that
the home repeatability was 76nm, which is much smaller than the 2.5µm indicated by the manufacturer.

The measurements of figure 8.4 were performed 25 times for each of the 10 steps, at a speed of 1
mm/s.

Figure 8.4: Displacement error of the MFACC stage. Note that the error bars are considerably small and
cannot be represented in the lower graph. The linear fit is: Error[µm] = d[mm] (0.099± 0.009)

Although the error shown in figure 8.4 is not exactly linear we can see that both directions of the
movement have a symmetric error. The maximum error is 2.4µm, which is still within the manufacturer’s
specifications (3µm), nonetheless by multiplying the encoder value by 1.000099 we can still reduce the
error and obtain the new values represented in figure 8.5.

After the corrections the maximum error becomes 1.2µm, which is half of the previous error and
approximately 3 times better than the value specified by the manufacturer.
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Figure 8.5: Displacement error of theMFACC stage after applying the corrections to the stage’s encoder.

Table 8.2: Comparison of the measured parameters of Newport’s MFACC stage and the values specified
by the manufacturer.

Measured Manufacturer
Home Repeatability [nm] 76 2 500

Repeatability [nm] 223 750
Largest Error [nm] 2 428 ± 32 

Conversion Factor Correction 1.000 099 
Largest Error with Correction [nm] 1 170 ± 37 3 000

As we can see in table 8.2 the stage performed much better than specified by the manufacturer, not
only on the home repeatability but also on the absolute accuracy and repeatability of the displacements.
With this new knowledge of the accuracy and precision of the movement the uncertainty of the method
used by Inês would have been smaller.
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8.3 PI’s VT80 stage

The VT80 stage was used in Guilherme Roque’s master’s thesis [27] and will be integrated in an
international project. During Guilherme’s work and in the following calibration some irregularities were
noted in the movement of the stage, we concluded later that this problem was related to the fact that this
stage was loosened in order to work properly in dry conditions with low accuracy requirements. Now that
the stage is operating at “normal” atmospheric conditions it was too loose which caused some wobbling.
To better diagnose this condition another stage of the same model was calibrated in order to confirm
that the measurement instrument was not introducing any error in the measurements. To distinguish both
stages named them according to their serial number (SN): the one used by Guilherme had a SN 81 and
the other one had a SN 79.

Regarding the origin repeatability, the measurements were performed between the origin and the 20
mm at a velocity of 10mm/s, and were repeated 25 times for each stage. The values obtained for the
origin repeatability were 0.4µm for the stage SN 79 and 0.6µm for the stage SN 81. The calibration
was also performed at 10mm/s and every step was repeated 25 times. After doing the usual 10 steps we
decided to measure 12 more displacements closer to the origin to better characterize the increase in the
error that is shown in the “RR in corner” plot of figures 8.6 and 8.7.

Figure 8.6: Displacement error of the VT80 SN 79 stage.
The linear fit is: Error[µm]=d [mm] (0.32±0.01)
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Figure 8.7: Displacement error of the VT80 SN 81 stage.
The linear fit is: Error[µm]=d [mm] (0.50±0.01)

After some consideration we decided to repeat these measurements with the retroreflector centered
above the stage instead of it being fixed to a corner, and afterwards by applying half the maximum load
over the stage (2.5kg), which is represented in the “Centered RR” and “2.5kg” plots of figures 8.6 and
8.7. The different positions and conditions of the measurements are shown in figures 8.8a, 8.8b and 8.8c.

(a) RR in corner. (b) Centered RR. (c) 2.5kg.

Figure 8.8: Different conditions of the measurements performed in figures 8.6 and 8.7.
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The data represented in figures 8.6 and 8.7 suggests that the weight distribution over the stages is
more important than the amount of cargo. As we can see the error is almost linear when the retroreflector
was centered above the stage, so using the slope of both linear fits we can correct the encoder value and
achieve the errors displayed in figures 8.9 and 8.10.

Figure 8.9: Displacement error of the VT80 SN 79 stage after applying the corrections to the stage’s
encoder.

Figure 8.10: Displacement error of the VT80 SN 81 stage after applying the corrections to the stage’s
encoder.
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After the corrections to the encoder values the maximum error of both stages is about 10µm (when
considering the uncertainties), with a repeatability of 9.3µm for the SN 79 stage and 7.1µm for the SN
81 stage.

Table 8.3: Comparison of the measured parameters of PI’s VT80 stages and the values specified by the
manufacturer. The values of the largest error are relative to the “Centered RR” plots of figures 8.6 and
8.7.

SN 79 SN 81 Manufacturer
Home Repeatability [nm] 378 567 

Repeatability [nm] 9 288 7 073 10 000
Largest Error [nm] 72 210 ± 590 96 400 ± 1 800 

Conversion Factor Correction 0.999 68 0.999 50 
Largest Error with Correction [nm] 6 200 ± 3 900 7 600 ± 3 200 

When evaluating both stage’s specifications we can once again see that the knowledge we had about
the performance of this model of stages was scarce. Due to all the irregularities of these stages they
were very hard to align with the interferometer, nonetheless we still managed to conclude that even
after loosening the stages they still comply with the repeatability indicated by the manufacturer. This
calibration was interesting because even though we were executing longitudinal measurements we can
see that the angular behaviour of the stage (wobbling) was not ideal due to the changes of the position of
the retroreflector over the stage during the displacement.
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8.4 Newport’s MIMS300PP stage

This stage from Newport was the best stage available in the laboratory because it allowed accelera
tions of up to 400mm/s2, velocities of 100mm/s, displacements of 300mm and it also supports a load
of 60kg. Due to these extraordinary capabilities this stage was a candidate for ESA’s Athena project, so
it needed to be calibrated as best as possible.

It is important to mention that the maximum displacement allowed by the stage’s controller was 293
mm so the calibration was performed in steps multiple of 29mm instead of 30mm. 24 measurements
were performed between the origin and the 29mm and the obtained origin repeatability was 93nmwhich
is more than 5 times better than the origin repeatability indicated by the manufacturer (±0.5µm). For
the calibration, after repeating each step 25 times at 10mm/s the displacement error displayed in figure
8.11 was obtained.

Figure 8.11: Displacement error of the MIMS300PP stage.
The linear fit is: Error[µm]=d [mm] (0.418±0.003)

Although the error on the extreme positions is considerable for a stage of this quality, we can see that
the displacement error is almost linear which suggests that the encoder value was not defined correctly.
Multiplying it by the adjusting factor given by the slope, 1.000418, gives us the corrected error displayed
in figure 8.12, where the displacement error is reduced from 130µm to 5µm.

As an example of another analysis the same measurements were repeated with a load of 10kg, which
gives us figure 8.13.
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Figure 8.12: Displacement error of the MIMS300PP stage after applying the corrections to the stage’s
encoder.

Figure 8.13: Displacement error of the MIMS300PP stage with a load of 10kg.
The linear fit is: Error[µm]=d [mm] (0.078±0.002)
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The reduction of the displacement error from +100µm to 20µm is quite significant, we can also
see that the error was inverted becoming negative for positive displacements and symmetric in the other
direction. Assuming the displacement error change with the load is linear this test suggests that the
calibration performed by the manufacturer was done with a load of about 8kg. Using the new linear fit
we can correct the error and obtain figure 8.14, where we can see that the corrected error is an attenuation
of figure 8.12.

Figure 8.14: Displacement error of the MIMS300PP stage with a load of 10kg after applying the cor
rections to the stage’s encoder.

Curiously, with one sixth of the maximum load, figure 8.13 is the symmetric of one sixth of figure
8.11. This suggests that with the maximum cargo figure 8.11 is inverted, so we can guarantee that the
maximum error of this stage will never exceed the calibration, independently of the load applied. This
test was very important because we saw that the manufacturer’s specification depend on the load applied,
so it is fundamental to test the stage with the final load it will have. These effects are only visible on
stages with a good performance. All the calibration information is gathered in table 8.4.

Table 8.4: Comparison of the measured parameters of Newport’s MIMS300PP stage and the values
specified by the manufacturer.

Without Load With Load Manufacturer
Home Repeatability [nm] 93  500

Repeatability [nm] 503 207 1 250
Largest Error [nm] 125 400 ± 160 19 680 ± 120 

Conversion Factor Correction 1.000 418 0.999 922 
Largest Error with Correction [nm] 4 200 ± 780 3 250 ± 570 5 000
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Analyzing the overall performance of the stage we can see that the home repeatability and the dis
placement’s repeatability is better than the manufacturer indicated and after applying the corrections to
the encoder the largest error can also be within the absolute accuracy indicated by the manufacturer.
The increased measurement uncertainties observed in figure 8.11 and 8.13 were due to the length of this
translation stage, at this distance from the interferometer the uncertainty of the refractive index starts to
overcome the uncertainty of the number of fringes. The absurd measurement uncertainty of the ±50µm
of figure 8.13 was due to an increase in the ambient pressure during the measurements, which was only
detected after performing the calibration.

Finally, considering that the stage allowed velocities higher than all the other calibrated stages we de
cided to test not only the effects of the velocity on the displacement but also the limits of the measurement
system. 10 measurements to the 150mm were performed for 12 different velocities, the obtained results
are represented in figure 8.15. In order for the unwrapping to be done correctly the sampling frequency
was progressively increased from 50kHz to 1.4MHz because there always need to be at least 4 samples
per fringe, as a precaution. Even at the higher frequencies the signal processing never raised any issues,
all samples were acquired correctly.

Figure 8.15: Displacement error of the MIMS300PP stage with different velocities.

According to figure 8.15 the increase in velocity does change the displacement error. Although the
error is varying around the expected value and is smaller than the stage’s absolute accuracy determined
in figure 8.12, it is still important to execute the calibration with the velocity the stage will use after the
calibration. When the maximum performance possible of the stage is necessary, the calibration must be
done under the desired load and velocity the stage will be subjected to.

The velocity measurements also unveiled new insight on the variation of the α parameter with the
displacement’s velocity, detailed in appendix D.
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Chapter 9

Conclusions

An instrument capable of measuring displacements with a repeatability of a few nanometers was
built, it reached an uncertainty level under 50 nanometers for displacements under 100 millimeters and 1
micrometer for displacements under 4 meters. The uncertainty budget led to an uncertainty estimate that
can be approximated by the following linear fit:

Ud[m] = (6.3×10−9 + 2.7×10−7×d)[m] (9.1)

This work went over main fundamental aspects in the development of an interferometer, from an
analysis of the theoretical aspects to the calibration of four different translation stage models, resulting
in a “turnkey” system ready to be used along with its user manual (not included in this thesis due to its
size).

The following steps are the usage of the interferometer in projects that require high accuracy, its
use is already planned for the characterization of translation stages for the ESAAthena project (an XY
translation of 400mm range). The studies of the theory, uncertainty modeling, optical configurations,
polarization and above all the experimental practices detailed in this work serve as key starting points for
the development of other interferometers tailored to specific needs.

In terms of the developed work and personal experience it was extremely interesting to conjugate so
many different areas in the same project. Starting from an intensive study of the theory behind interfer
ometry that led us to several simulations, to the modeling and construction of mathematical models that
allowed us to develop an uncertainty model, from where we extracted the requirements for each of the
components. The engineering aspect of this work where we did the simulations, designed and built the
interferometer proved to be an exceptional challenge and overcoming the difficulties that arose was very
gratifying. Finally, creating and tuning the user interface was also a very satisfying part of this work be
cause the intention in building this instrument is that any colleague from the laboratory can, by consulting
the interferometer’s user manual and this work, use the interferometer.

This measurement tool was fully described and characterized, evaluating the main parameters that
contributed with significant relevance to the uncertainty budget. The system can be considered ready
for integration in new projects, in particular, in the characterization and estimation of the measurement
errors of other tools, with high accuracy and measurement stability. This system is particularly useful
in applications where the knowledge of the performance of the tools used to displace and align optical
components is fundamental.
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Appendix A

Jones Computation of Irradiances

The evaluation of each optical configuration is done in the following three steps:
First there is the need to define the Jones equations for each arm of the interferometer, which yields

two different electric fields, one corresponding to the reference arm (⃗Eref) and another corresponding
to the measurement arm (⃗Emeas). Note that these equations only describe the electric fields before the
detection module.

Secondly, according to the superposition principle the total electric field before the detection module
is given by:

E⃗net = E⃗ref + E⃗meas (A.1)

Finally, the irradiance is given by equation 2.20.

A.1 Quadrature with two polarizing beamsplitters

For the configuration represented in figure 4.1, the two electric fields are:

E⃗ref = JWP

(
45◦;

π

2

)
JPOL(22.5◦)JPBSyJPBSy E⃗0 (A.2)

E⃗meas = JWP

(
45◦;

π

2

)
JPOL(22.5◦)JPBSxJOPDJPBSxE⃗0 (A.3)

After computing the sum of the last two equations, the net electric field is approximately given by:

E⃗net ≈ 0.19

[
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7π
8 + ei(δ

3π
8
)
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8
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]
(A.4)

Finally, using equation 2.20, we have:

I ≈ 0.072

[
1 + sin

(
δ + π

4

)
1 + sin

(
δ + 3π

4

)] (A.5)

A.2 Quadrature with a nonpolarizing beamsplitter

For the configuration represented in figure 4.2, the two electric fields are:

E⃗ref = JBSJPOL(45◦)JPOL(45◦)JBSJWP

(
45◦;

π

2

)
E⃗0 (A.6)
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E⃗meas = JBSJOPDJBSJWP

(
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2

)
E⃗0 (A.7)

After computing the sum of the last two equations, the net electric field is given by:
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Finally, using equation 2.20 the irradiance is approximately:

I ≈ 0.19
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)] (A.9)

A.3 Quadrature with two quarter waveplates

For the configuration represented in figure 4.3, the two electric fields are:

E⃗ref = JWP
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E⃗meas = JWP
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)
JBSJOPDJBS⃗E0 (A.11)

After computing the sum of the last two equations, the net electric field is given by:
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Using equation 2.20 the irradiance is:

I = 0.25
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)] (A.13)

A.4 Quadrature with an octadic waveplate

For the configuration represented in figure 4.4, the two electric fields are:

E⃗ref = JBSJWP
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)
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)
JBS⃗E0 (A.14)

E⃗meas = JBSJOPDJBS⃗E0 (A.15)

After computing the sum of the last two equations, the net electric field is given by:

E⃗net =
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(A.16)

Using equation 2.20 the irradiance is:

I = 0.25

[
1 + sin

(
δ + π

4

)
1 + sin

(
δ + 3π

4

)] (A.17)
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Appendix B

Interference Pattern

An interference pattern is composed by a large number of fringes. Although equation 2.19 expresses
the irradiance at the center of the interference pattern, the detected signal is not equal to this equation
because the detector will not detect only the center of the pattern. In our case the detector window was a
3.6mm sided square, but we will assume for simplicity that it was a circle of radius 1.8mm.

The output of the detector is proportional to the average of the detected irradiance, which is never
equal to equation 2.19, in fact, as the number of fringes detected increases, the impact of the interference
term is more and more attenuated, to the point of no interference being detected. With some geometric
approximations it is possible to calculate if there is more than one fringe inside the detector window,
allowing us to estimate the total irradiance on the detector and determine the modulation of the signal.

B.1 Spherical Wavefronts with Different Radii

Since a laser emits spherical waves and there is a difference in the optical paths of the interfering
waves, the radius of curvature of the twowavefronts differs. This phenomenon is important because when
the distance between the two wavefronts becomes bigger than one wavelength another fringe appears, as
is exemplified in figure B.1.

λ

2λ

λ

2λ

Op�cal
Wavefronts

Figure B.1: Interference pattern schematic explaining the appearance of more than one fringe.

A new term corresponding to the distance betweenwavefronts appears in the phase difference between
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the two waves. We can rewrite equation 2.19 as:

I = I1 + I2 + 2
√
I1I2 cos(∆φOPD +∆φWF) (B.1)

Where ∆φOPD corresponds to the phase difference introduced by the optical path difference in the in
terferometer arms and ∆φWF corresponds to the phase difference introduced by the distance between
wavefronts, which is related to the distance between wavefronts (d′WF) by:

d′WF =
∆φWF

2π

λ

n
(B.2)

The distance between the two wavefronts can be expressed as a function of the distance to the optical
axis (d′OA) and of the two different radii (R′

1 and R′
2), according to the notation in figure B.2, as:

d′WF = R′
1 −R′

2 +
√
R′2

2 + d′2OA −
√
R′2

1 − d′2OA (B.3)

d’WF

R’2

d’OA

x

R’1

Op�cal Axis

Wavefronts

R’1-x-d’WF

Figure B.2: Schematic for the calculation of the distance between two spherical waves.

B.2 Calculation of the Radius of Curvature of the Wavefronts

To estimate the size of the two different radii the center of curvature of the laser beam waves must
be determined. By knowing the laser beam divergence (θ = 1.8mrad) and the beam radius (d′OA0 =

0.25mm) it is possible to calculate the center of curvature, according to figure B.3 the distance from the
center of curvature of the waves to the opening of the laser cavity (d′LC) is:

d′LC =
d′OA0

tan θ
≈ 0.14m (B.4)

Any distance beyond the laser, summed by d′LC, equals the radius of curvature of the wavefront.
Since the beam expander increases the curvature radius four times, with the distances in figure B.4 we
have:

R′
ref ≈ 2.67m R′

meas ≈ 2.78m + 2d′OPD (B.5, B.6)
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Figure B.3: Schematic of spherical wavefronts produced by a laser.
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Figure B.4: Optical path distances in the chosen configuration.

B.3 Mathematical Model for the Interference Pattern

To simplify the model in equation B.1 we can normalize the irradiance by assuming I1 = I2 = 0.25.
Finally, the Gaussian profile is attained by multiplying the model by an adequate Gaussian function:

I = [0.5 + 0.5 cos(∆φWF +∆φOPD)]e
−d

′2
OA

2πλ (B.7)

Using equations B.7, B.6, B.5 and B.3 the interference pattern for any optical path difference can be
calculated. To test the developed model, an interferometer was built according to figure B.4 and at three
different optical path differences (20cm, 1m and 4m) the observed interference pattern was in agreement
with the simulation.

B.4 Signal Modulation Evaluation

By simulating the detected irradiance for an optical path difference of 4m with different detection
radii, figure B.5 shows that the irradiance is attenuated with the increase of detection radius.

71



Figure B.5: Simulation of the detected irradiance as the detection radius increases, for an optical path
difference of 4m.

Since the ideal signal is normalized the modulation of the detected signals is defined as simply the
amplitude of the signal. In figure B.5 with a diaphragm of radius 0.9mm the modulation is 88.7% while
without a diaphragm the modulation is 40.1%. This reveals that with an optical path difference of 4m it
is better to use a diaphragm to reduce the number of fringes detected.

Repeating this process for multiple distances and for various diaphragm radii offers a better under
standing of how the modulation of the signal varies with the diaphragm radius.

Figure B.6: Simulation of the detected irradiance modulation for different diaphragm radii and for mul
tiple sizes of the measurement arm.

As expected, figure B.6 reveals that for longer optical path differences the modulation tends to be
worse, which suggests the use of a diaphragm. Although for smaller distances the change is negligible.
We can also conclude that the ideal length for the measurement arm is 0.125mm, when the optical path
difference is null, because both wavefronts have the same radius of curvature.
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Appendix C

Component Polarization Studies

While assembling the interferometer some polarization changes that did not agree with the theoretical
model were observed after the beamsplitter. This suggested that either the beamsplitter or the retrore
flectors were altering the polarization of the incident radiation. To better comprehend this phenomenon
two different studies were done to understand how the beamsplitter and the retroreflectors altered the
polarization of incident radiation and how to minimize this effect to guarantee quadrature.

C.1 Retroreflectors

The changes in polarization caused by retroreflectors have been a subject of interest since 1985 [28,
29, 30]. Depending on the incident sextant of the retroreflector, or even on the coating, the reflected light’s
polarization can be changed. With the goal of maintaining the polarization of the incident radiation every
retroreflector available was characterized.

To test every retroreflector’s behaviour to the relevant polarizations (45◦ and RCP) a configuration
that directly measures the polarization of the radiation reflected by the retroreflector, figure C.1, was
assembled.

Polarimeter

Lase
r

Mirror
POL

RR

Figure C.1: Schematic of the configuration used tomeasure the polarization changes in the retroreflectors.
The polarizer was replaced by a quarter waveplate to create circular polarization.

By rotating the retroreflector every sextant was tested, the conclusions are presented in figures C.2
and C.3.
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(a) First Retroreflector. (b) Second Retroreflector. (c) Third Retroreflector.

(d) Fourth Retroreflector. (e) Fifth Retroreflector. (f) Sixth Retroreflector.

Figure C.2: Reflected polarization of each retroreflector’s sextant when the incident radiation is right
handed circularly polarized. In black we have the incident radiation and the colored plot represents the
reflected polarization in each sextant.

Although the fifth and the sixth retroreflectors proved to be good choices for both polarizations,
they could not be used because the mirrors were not properly fixed to the retroreflector frame and as
a consequence oscillated, this would introduce errors in the measurement since the movement of the
translation stage would perturb the mirrors. Only the first four retroreflectors are viable candidates.

As we can see in figure C.2, the first, second and third retroreflectors alter circular polarization con
siderably, independently of the incident sextant, so the only possible choice for the measurement arm is
the fourth retroreflector.

For the measurement arm it was not essential that the polarization was maintained because the ra
diation passed through the polarizer after being reflected, although if the polarization is changed by the
retroreflector then unnecessary losses of irradiance would happen at the polarizer. Excluding the retrore
flector necessary for the measurement arm and the last two cases, figure C.3 shows that the best option
was the second retroreflector. For the placement of this retroreflector it was necessary to have particular
attention to the incident sextant, because as we can see in figure C.3b not all sextants maintain the 45◦

polarization.
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(a) First Retroreflector. (b) Second Retroreflector. (c) Third Retroreflector.

(d) Fourth Retroreflector. (e) Fifth Retroreflector. (f) Sixth Retroreflector.

Figure C.3: Reflected polarization of each retroreflector when the incident radiation is polarized at 45◦.
In black we have the incident radiation and the colored plot represents the reflected polarization in each
sextant.

C.2 Beamsplitter

Beamsplitters have a preferential side for incident radiation, usually marked with a dot. Since both
sides of the beamsplitter were used to transmit and reflect radiation it was important not only to charac
terize the dotted side of the beamsplitter, but also the nondotted side. For the characterization of trans
missions and reflections through both sides of the beamsplitter a simple setup was assembled according
to figure C.4.

After measuring the changes of transmitted and reflected right handed circular polarization (figure
C.5) we concluded that maintaining circular polarization after two passes through the beamsplitter was
impossible because after the first pass the polarization was no longer circular. The focus of the beam
splitter positioning was on maintaining the 45◦ polarization.

For the 45◦ polarization it was only important that the last reflection on the beamsplitter maintained
the polarization. Figure C.6 indicates that a reflection in the dotted face of the beamsplitter alters the
polarization more than a reflection on the nondotted face, so the beamsplitter needed to be placed in a
way that the last reflection happened on the nondotted face.

For quadrature to happen it was essential that the phase difference between both polarizations of the
radiation in the measurement arm was as close to 90◦ as possible. This does not imply the polarization
needed to be circular, which we have already concluded cannot happen. If the amplitudes of both polar
izations are not equal, a 90◦ offset will represent a vertical ellipse. By rotating the quarter waveplate it
was possible, with the nonlinear effects of the beamsplitter, to achieve the 90◦ offset.

75



Laser Polarimeter
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Figure C.4: Schematic of the configuration used to measure the polarization changes in the beamsplitter.
The polarizer was replaced by a quarter waveplate to create circular polarization and the beamsplitter was
rotated 180◦ to test the nondotted face.

Δφ = 83°

(a) Transmission through the
dotted face.

Δφ = 112°

(b) Reflection through the
dotted face.

Δφ = 78°

(c) Transmission through the
nondotted face.

Δφ = 80°

(d) Reflection through the
nondotted face.

Figure C.5: Lissajous figure of the reflections and transmissions of the beamsplitter when the incident
radiation is right handed circularly polarized. In black we have the incident polarization and in red the
corresponding transmitted/reflected polarization.

Δφ = 23°

(a) Reflection through the
dotted face.

Δφ = 9 °

(b) Reflection through the
nondotted face.

Figure C.6: Lissajous figure of the reflections and transmissions of the beamsplitter, when the incident
radiation has a phase difference of 45◦. In black we have the incident polarization and in red the reflected
polarization.
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Appendix D

Phase Difference Variation with Velocity

During the development and improvement of the LabVIEW interface we noticed that the phase dif
ference was being altered during the movement of the translation stages, which translates into a variation
of the α parameter of the elliptical fit. In order to diagnose this variation of the α parameter we started
by testing all the available translation stages. With this we noticed that the variation of α was positive
in one direction (when the movement was away from the interferometer) and negative in the other. We
also realized that this problem was not related with the alignment of the translation stages, or the stages
themselves, because the effect was equal for any of the three used stages.

To characterize the variation of α with the stage’s speed we decided to register the mean value of α
during the movement for 40 different velocities, because the value of α did not change significantly once
the movement is uniform. For this purpose, two different translation stages were used, one with a maxi
mum displacement of 25mm for velocities under 1mm/s and another with a maximum displacement of
200mm for velocities over 1mm/s, the results are presented in figures D.1 and D.2 and the respective
linear fits are repeated below:

α = (1.322± 0.006)v − 0.42± 0.04 (D.1)

α = (1.34± 0.04)v − 0.29± 0.03 (D.2)

We can see that for the smaller displacement the linear fit is worse, this is due to α being the average
of less samples than for the longer displacement. However, when considering the uncertainty of both
slopes we can conclude that the slopes intersect which confirms that the problem was not related to the
stages in use since the fits overlap for different stages. Note that the different intersections of the y axis
represent the two different alignment errors of each stage
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Figure D.1: Phase difference variation for speeds under 1mm/s.

Figure D.2: Phase difference variation for speeds over 1mm/s.
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D.1 Doppler Effect

We decided to study the impact of the Doppler Effect on the system to ensure that the variations of α
were not related to this effect.

As was mentioned on chapter 2 when considering the Doppler Effect the irradiance is proportional
to:

I ∝ I0 cos(2π(f1 − f2)t+ δ(t)) (D.3)

Where f1 represents the frequency of the measurement arm and f2 the frequency of the reference arm.
According to the Doppler Effect, if the stage is moving away from the interferometer with velocity vs,
f2 can be related to f1 by:

f2 =
c

c+ vs
f1 (D.4)

In equation D.3 it is also important to notice that δ is a function of time because the number of fringes
is directly related to the displacement of the stage, which can be represented as a function of the velocity
using d=vst. So we have:

δ(t) =
Nf (t)

2π
+ δ0 =

vs
π

n

λ
t+ δ0 (D.5)

Where δ0 represents the initial phase of the movement.
We can now rewrite equation D.3 as:

I ∝ I0 cos
[(

2π
vs

c+ vs

c

λ
+
vs
π

n

λ

)
t+ δ0

]
(D.6)

As we can see in equation D.6 there isn’t a single term of vs that does not depend on the time, so the
Doppler effect does not justify a constant phase difference change with vs. However, the new frequency
of the signal is worth considering because of possible restrictions over the sampling frequency. For small
velocities the frequency of the signal becomes:

f =
1

2π

2π2 + n

πλ
vs (D.7)

If we compare this new frequency with the criteria defined in equation 5.20 we can conclude that the
sampling frequency criteria already imposed forces the sampling frequency to be almost 4 times bigger
than the new frequency of the signal, this implies that there is no problem with the Doppler effect.

D.2 Further Studies With Higher Velocities

When calibrating the last translation stage, detailed in section 8.4, we had the opportunity of testing the
interferometer’s performance when the stage’s velocity was as big as 100mm/s. To better characterize
the α parameter’s variation with the translation stage’s velocity we measured 20 more velocities in order
to confirm the linearity demonstrated in figures D.2 and D.1, the results are represented in figure D.3.
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FigureD.3: Phase difference variation for speeds over 10mm/s. We can now see that the phase difference
variation is not linear with the velocity of the translation stage.

As we can see the phase difference variation is quasilinear for velocities under 10mm/s but the tests
performed show that this variation is not at all linear, achieving a maximum value of 31◦ at 50mm/s.

D.3 Conclusions

As we saw the cause of the phase difference variation with the velocity of the translation stages was
not the Doppler Effect, after all the tests we placed the reference retroreflector on a translation stage
and inverted the interferometer’s arms, which also did not resolve the problem. Considering that some
components that are altering the polarization undesirably, as was shown in appendix C, it is possible that
the cause of this problem is related to these components, in particular with the beamsplitter because it is
not specifically coated for 633nm but is instead a broadband component.

Nonetheless, the changes in phase difference along the movement are not a problem with the way the
signal processing is implemented, because as was shown in chapter 5 it is not necessary to have a phase
difference of exactly 90◦ to achieve quadrature.
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