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que ultrapassaria todos os obstáculos que me foram postos, e estarei para sempre mais do
que grato.
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Resumo

Esta dissertação foca-se no desenvolvimento de uma framework capaz de avaliar a
qualidade dos dados externos que são recolhidos, e processados em tempo real. Fazendo
parte do projecto SATO (Self Assessment Towards Optimization ), um projecto que am-
biciona integrar sistemas de gestão de dados na cloud, e computação de recursos obtidos
através ferramentas BIM(Building Information Modelling), sensores IoT e dispositivos
presentes num determinado edifı́cio, de forma a obter uma plataforma de avaliação e
otimização energética.

Um objectivo para a implementação do projecto SATO é integrar e desenvolver uma
SEF(Self Assessment Framework) que usa análise de dados e machine learning para re-
portar performance energética, comportamento e ocupação do edifı́cio, e falhas no equipa-
mento. Como tal, é neste contexto que está inserido o desenvolvimento de uma framework
de dependabilidade e qualidade de dados.

No âmbito das novas plataformas de IoT(Internet of Things), existe uma correlação
entre a eficácia e eficiência da plataforma, com a qualidade dos dados disponı́veis para
processamento e tomada de decisões. O processo torna-se de extrema importância, quando
nos deparamos com um cenário de recolha de dados, recolhidos de diferentes tipos de sen-
sores, presentes em vários dispositivos que se encontram distribuı́dos ao longo do edifı́cio,
e cujos dados serão essenciais para o controlo das atuações.

Tendo em vista os objectivos da plataforma SATO, este projecto focou-se na construção
de uma framework adaptável que seja capaz de assegurar aspectos de dependabilidade e
qualidades de dados, como tal, deve ser capaz de conter todas as funcionalidades ne-
cessárias.

Para que a framework consiga cumprir estes propósitos, a metodologia ANNODE
foi adotada. ANNODE é uma metodologia que visa a deteção de outliers, verificação de
qualidade de cada uma das medidas recebidas, e substituição de valores que não obedeçam
a limites mı́nimos de qualidade. Cada uma destas medidas está sujeita a estimativas, com
o intuito de verificar a proximidade destas novas entradas, ao que seria esperado de uma
progressão de valores num determinado ambiente.

Para sustentar a metodologia ANNODE, foi criada uma framework de estrutura cen-
tralizada capaz de gerir várias funcionalidades distintas. Devido a abstrações criadas e
à forma como a comunicação intraprocesso se dá, a integração de novas funcionalidades
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torna-se fácil e facilmente monitorizável. Sendo que esta entidade gestora tem acesso a
cada uma das funcionalidades, e aos produtos de cada uma delas, a monitorização de cada
um dos flows inseridos na framework, dá-se também em tempo real, e são transmitidos
para a plataforma SATO.

Após analisar a metodologia ANNODE, e os objectivos inerentes à construção da
plataforma SATO, definiu-se que a framework de qualidade de dados ficasse dividida nas
seguintes atividades: Recepção de dados e análise de factores de qualidade, Deteção de
outliers e avaliação da qualidade, Construção de modelos de redes neuronais, e por fim, a
Unidade de monitorização.

Após a recepção de um registo na framework, antes deste ser inserido no sistema,
primeiro cada secção desse registo será verificado, para averiguar se obedece aos padrões
conhecidos daquele tipo de dados, depois de passar a análise representacional, segue para
o componente do sistema responsável pela deteção de outliers.

Para que cada registo sujeite a deteção de outliers, são criados modelos de redes neu-
ronais Keras a partir de uma configuração com as especificidades pretendidas para o mo-
delo. Esta configuração é recebida no sistema, e encaminhada para uma Process Pool,
que é responsável por gerir a construção dos vários modelos que dão entrada no sistema,
mas também por verificar se a configuração obedece aos requisitos necessários para que
seja processada. Esta unidade confere a possibilidade de criação de múltiplos modelos
em simultâneo, que podem ser integrados no sistema.

Cada registo que entra na unidade de deteção de outliers, é sujeito a várias estimativas,
utilizando conjuntos distintos de valores recolhidos previamente, durante a execução do
sistema. Através destas estimativas e de quanto distam do valor registado, é possı́vel
verificar com um determinado grau de incerteza, se estamos perante um outlier, ou uma
ocorrência comum no sistema. Após a identificação de um outlier, dá-se a substituição do
valor registado, caso não exista a identificação de um outlier, é atribuı́do um coeficiente
de qualidade à medição em análise. Independentemente do caso, a medição é inserida no
sistema para ser utilizada em análises de registos futuros.

Sendo que a framework desenvolvida, faz parte de uma plataforma que está em cons-
tante comunicação com os vários componentes, necessita de transmitir informações sobre
as circunstâncias em que se está a dar o processamento, e os resultados de cada processa-
mento, como tal, foi implementada uma estrutura que regista o tempo de processamento
de cada secção do software, que permite monitorizar a execução no programa em tempo
real. Ao mesmo tempo, a presença de objectos que se encontram presentes desde o mo-
mento da chegada de um registo, até ao fim do seu processamento, levam ao reporte de
condições associadas ao registo e ao seu processamento, e modificações que foram feitas,
nas etapas critı́cas do processo.

Os pontos fulcrais deste projecto detêm-se com a implementação de conceitos e noções
de dependabilidade, numa framework já direcionada para a deteção de outliers e mitigação
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de falhas, e em que devido às condições impostas pelo ambiente, performance e monitorização
das operações se tornam fundamentais, e portanto, extremamente importantes.

Palavras-chave: Internet das Coisas, qualidade dos dados, deteção de falhas, mitigação
de falhas, IoT
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Abstract

In the domain of IoT(Internet of Things), there is a correlation between the efficiency
and effectiveness of a platform, and the quality of the data available for processing and
decision making. When a scenario of data collection from different types of sensors,
integrated into several devices that are distributed alongside the building, is presented.
And, considering that data is essential to monitor and control the level of actuation in the
building, the process becomes a matter of extreme importance.

To achieve this, ANNODE’s methodology is adopted for quality verification of each
measurement that arrives to the framework. The construction and utilization of neural net-
works are crucial points of this project, as well as, the correct application of dependability
concepts, and notions of efficiency in processes of outlier detection and fault mitigation.

Keywords: Internet of Things, data quality, fault detection, fault mitigation, IoT
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Chapter 1

Introduction

In today’s world, there is an increasingly higher need to control resources in a way that
allows a thoughtful consumption, and try to reduce as much waste as possible. Alongside
with this mindset, there has also been a recurrent trend in trying to adapt traditional com-
mon appliances and technology to a large system that comprehends all the information
regarding all those appliances, in order to control, manage and apply different types of
resources so human, energetic and structural demands are met.

Internet of Things is the term used for the technological branch responsible for the
development of techniques that explore data acquisition on a real-world environment,
analyzing that same data and inferring the state of the surrounding environment, with the
objective of deciding a valid approach to control or affect the system.

In SATO (Self Assessment Towards Optimization) project, the main goal is to assess
the energy consumption of each appliance contained in a building, as well as the energy
consumption of the overall building, so it can improve the energetic efficiency of a build-
ing, by coordinating the resources during execution.

To achieve such coordination, data-based methods are utilized to interpret sensor’s
readings and infer the overall energetic state of the building, and to proceed to follow the
best course of action.

As part of the SATO project, this thesis will address the quality of the data that arrives
to a pre-processing unit, and the mechanisms of fault detection, fault classification and
fault mitigation.

1.1 Motivation

From the sensors placed on all electrical outputs, by means of communication protocols,
data is sent to another system’s component that is responsible for cleaning the data, and to
process it, to facilitate and upgrade the process of decision making based on the data that
it receives. At the same time, the data received doesn’t always obey all quality standards,
as it may appear with some wrong or nonexistent values, some records missing, or some

1



Chapter 1. Introduction 2

different aspects, that will affect the performance of all algorithms and system’s actions
that depend on this data.

Since the algorithms lose valuable properties when they are trained and implemented
in a poor quality data environment, the probability of making a good decision, of getting
a good reading from that, decreases. As we are to optimize the efficiency of the system,
and the data is shared amongst various components, every dataset should be interpreted,
and ”improved” before being used to create systems dynamics, or any decision regarding
the system.

Furthermore, there might emerge a major issue derived from a decision, if it was based
on inaccurate data, faults that went unnoticed, faults that had longer term consequences.
The need of fault diagnosis and a strategy to handle those faults, is essential to an efficient
and reliable system.

In the context of SATO(Self Assessment Towards Optimization) project, where a plat-
form has as one of the main objective of having full knowledge of all the appliances, so it
can regulate power supply based on power consumption, data quality is a major concern.

To achieve optimal control in smart systems, good quality data and fault mitigation
strategies should be implemented.

1.2 Objectives

This thesis is part of the SATO project which intends to implement a platform, that enables
the assessment and optimization of energy consuming equipment, in a given building. It
was placed in the work package WP3, with the task T3.2, and is described as development
of data quality and sensor/device failure assessments for fault tolerance.

The purpose of this work is to correctly develop a system capable of detect faults and
data quality issues from the data received from the sensors placed inside the building. The
main objectives of my work is to correctly develop a system capable of detect faults and
data quality issues from the data received from the perceptions of the sensors placed in the
building. A complementary objective is to mitigate the effects of the faults that naturally
occur in the system, and use predictions to make a good assumption of what a real value
would look like.

The research will be done according to the following steps:

• Ensure, assess and evaluate data quality standards in a given dataset

• To study, apply and analyze different approaches and techniques in fault detection

• Develop fault mitigation component in case of faults, or missing data

• Implement a User Interface Dashboard, and Data Visualization methods to overview
the whole process
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1.3 Contributions

The main contribution of this work is the implementation of a system that enables quality
evaluation, fault detection and fault mitigation for the SATO project.

1.4 Document Structure

The remaining sections of this document are organised as follows:

• Chapter 2 - ”State of Art”

• Chapter 3 - ”Context and Design Decisions”

• Chapter 4 - ”Implementation”

• Chapter 5 - ”Results”

• Chapter 6 - ”Conclusion and Future Work”
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Chapter 2

State of Art

SATO Quality was thought out as continuation of a previous implemented project, where
the focus was to ensure good quality results over certain datasets, the project that served
as a starting point for SATO Quality is the ANNODE project [16],[24]. The ANNODE
project created a methodology that is designed as an ensemble of supervised learning
methods, which required an offline initial training phase for each MLP model construc-
tion. Furthermore, the methodology contemplates 4 more blocks, all of them capable of
performing in runtime, and for each new received measurement from each target sensor.
The blocks are the following:

• Prediction (P) – When a new measurement is received, its quality must be assessed.
Since, the true environmental value of the measurement is unknown, through pre-
diction methods, one or more estimates of that ground truth are obtained to be used
in subsequent processing blocks with the objective of evaluating the quality and
determining a replacement value with better quality.

• Failure Detection (FD) – Intends to identify possible failure behaviors in the dataset.
By characterizing a measurement as normal or abnormal, can determine the exis-
tence of a failure situation. However it should take in account apparent anomalies
cause by real environmental events, thus not signaling the measurement as faulty.

• Quality Evaluation (QE) – Using the outcome of the previous blocks, a quality
coefficient for the measurement can be determined. If a measurement is considered
faulty, this coefficient is set to 0. Otherwise, it will take a value that may be at most
1.

• Measurement Reassessment (MR) – This block aims to mitigate the detected fault
by determining an estimate of the expected value of the measurement with suffi-
ciently good quality. If a measurement is faulty, it should not be used further, as it
can affect estimates, and degrade the quality evaluation of future measurements.
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At the end of this project, some guidelines were given by [16], and [24] in order to
improve the framework, for further utilization:

• Evaluation of the proposed dependability-oriented methodology and developed strate-
gies for prediction, failure detection and measurement reassessment in other sce-
narios featuring different datasets (containing monitored variables with different
characteristics), and considering other types of failures.

• Development of a software tool to support an easy instantiation of the methodology
to already deployed and working sensor networks.

• Study of the feasibility and performance of strategies based on different machine
learning techniques, namely for the Prediction and the Failure Detection blocks.

• Generalization of the Failure Detection strategies to any number of nodes in the
sensor network.

• Definition of improved strategies for implementing the Quality Evaluation block.

2.1 Data quality

Data quality is defined as a qualitative assessment of data. In other words, is the degree of
satisfaction that a given dataset presents, relative to the purpose to which such data will
be used. As it cannot be defined as a simple concept, it has to be decomposed in several
categories, which do change within literature.

To achieve the most understanding, of data quality of a system, particularly in this
project, data quality is described according to four categories[27]:

• Intrinsic: Category that characterizes data itself.(The level of completeness of the
data set, the degree of which the data is accurate)

• Contextual: Category that concerns with the external state surrounding the produc-
tion of data

• Representational: Category responsible for the format and structure in which data
is presented

• Accessibility: Category that describes the difficulty of accessing the data

Each category aggregates specific dimensions, which will serve as guidelines for what
it’s going to be further implemented, and also transformed to quantitative measurement to
evaluate each data set.
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2.1.1 Intrinsic
Accuracy

Data Accuracy is one of the most important components to understand when talking about
quality of data. It refers to the correctness of data values stored in an object. Another
explanation is the degree to which values truthfully represent real world values. In order
to have a qualitative assessment of a dataset, the following equation [27] is used:

qac(pi) =
1

m

m∑
j=1

((1 −
noj

npj

)woi + (1 − espi)wei) (2.1)

qac(pDB) =
1

n

m∑
j=1

(qac(pi) (2.2)

Where npj is the number of entries, noj is the number of outliers, in the entries of pi
in the data set dsj and esp is the maximum specified error for the same parameter. woi and
wei are weights, that follow the constraint:

woi + wei = 1

The task to ensure the accuracy isn’t as simple or straightforward as wished. Inconsis-
tencies can occur at any given time, due to direct changes in system’s recording process
or granularity, or even real world factors, like hardware degradation or malfunctions.

Issues regarding elements of a dataset are common. Each element of a data is com-
posed by information coming from different sources, alongside with the possibility of an
element not be recorded, there’s also the very real possibility that some values won’t be
recorded. The absence of a value may induce an incorrect decision, and consequently cre-
ating a value when it’s not necessary. Other faults that can occur are data outliers. Data
outliers are present when there’s a value that is illogically distant compared to the average
values over periods of time.

Consistency

Consistency is the dimension in which validity and integrity are evaluated. Data is said to
be consistent if there are no conflicts between the values, or if there at most, one single
object/value for every instance that was measured. ([8] [27])

It can have many implementations as it depends on the rules considered, and they
depend on the business, and field in which is going to be implemented, also depends on
the features that are retrieved during data collection. However, to classify the dataset we
will use a broad term ncj , referring to the number of conflicting instances, npj the number
of entries, in the partition pi of dsj .

qcons(DS) =
1

m

1

n

n∑
i=1

m∑
j=1

(1 −
ncj

npj

) (2.3)
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Completeness

Dimension that measures the plenitude of values within a dataset. A dataset would be
considered incomplete if there’s null values. To qualify the completeness of a dataset, the
following calculation is produced:

qcom(DS) =
1

m

1

n

n∑
i=1

m∑
j=1

(1 −
nmj

npj

) (2.4)

Where npj is the number of entries, and nmj
is the number of missing entries, in the

partition pi of dsj .
To mitigate the lack of a single value, there are techniques that use past and future val-

ues to come up with a more or less precise value to replace the missing value. Regression
strategies are a reliable solution for these situations. Depending on how many values are
missing, other strategies should be used. [10] As errors accumulate through time, over
some period the error could be of such an high order, that strategies that use historical
patterns may be more reliable.

2.1.2 Contextual

Timeliness

Timeliness refers to features that are strongly related to time, other way to interpret it is,
the degree to which data are up-to-date.

Timeliness analysis has to be done according two main dimensions [29]:

• Currency - How distant in time is the value to the record’s last update.

• Volatility - How fast is the collecting new data, when working. It can be measured
as the frequency of updates in the system, or the time period length between two
updates.

Some issues that can occur in this context are, skewed timestamps. Those errors might
just present themselves because later data attribution between different devices, however
when analyzing, can have as consequence wrong computations. Comparing data from
different devices can be a strategy to detect and correct timing issues.

Measurement Rate

Measurement Rate can be defined as the rate at which deployed hardware is sampled.
Although some authors, interpret this dimension as a qualitative measurement, in which,
measurement rate arrives from a formula that uses comparison real-sampling and desired-
sampling ([27]). Personally, find it to be more useful, if used as a quantitative value that
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derives from the formula:

qMs(DS) =
1

m

m∑
j=1

(I(j)) (2.5)

Where I(j) is interval of time, j, in seconds, that takes the system to measure two different
entities are sampled.

Appropriate Amount of Data

The amount of data refers to the degree to which the quantity and volume of data is enough
to deliver a reliable result of a given task. It will be calculated based on:

qAA =
1

n

1

m

n∑
i=1

m∑
j=1

(1 −
npj

ndj

) (2.6)

Where npj refers to the number of fields that have a valid value in entity j, ndj is the
desired number of valid fields in entity j.

2.1.3 Representational
Interpretability

Dimension that considers the appropriateness of the notation used to represent informa-
tion. Occasionally data values are inserted under a wrong field, or with characters that
either are not supported, or do not conform with rules of representation.

Representational Consistency

Degree to which the format and structure conforms to either declared standards, or previ-
ously stored values. It concerns with homogeneity throughout the dataset.

2.1.4 Accessibility
Availability

Availability can be addressed as the capability of the data to be available, with a state such,
that allows the utilization. Implies the ability to perform within boundaries quantified to
meet what’s considered an acceptable performance.

To measure accessibility, are used performance measurements such as:

• MTBF - Mean Time between failures

MTBF =
∑ ∆Uptime

number of failures

• MDT - Mean downtime

MDT =
∑ ∆Downtime

number of failures
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• MTTR - Mean time to repair

MTTR =
∑Mean Time to Repair

number of failures

Security

The extent to which data is protected against unpermitted accesses, or write operations,
and if the data that was received passes the verification tests. Data points in smart in-
frastructures are prone to attacks, usually exploring authentication issues, but can also be,
false data injections attacks that provide data injections as real recorded data.

2.2 Fault Detection

Faults can be described as unintended, unwanted deviations of a system’s property. Con-
sequently, data records related to that property will present values that are further from
what is considered a standard, or an acceptable condition. Faults may present themselves
in two categories:

• Failure - Permanent interruption of a system’s ability to perform a required function
under some specified operating conditions. [14]

• Malfunction - Irregularity that presents itself with an intermittent behaviour while
a system’s operating.

When implementing automation based on data, there is the need to achieve high levels of
data quality so it can be utilized for precise decisions throughout the system. To ensure
data quality, there are some areas where we have to intervene so that information can be
processed accordingly, and so that errors can be detected and treated accordingly. Error
propagation in decision making process must be avoided.

Fault detection is responsible for determining the occurrence of fault in a monitored
system. Takes advantage of inputs from the different processes, actuators and sensors,
in a system, and using its dependencies, can infer if there is a fault present, and in some
cases, inform the location of such fault, and how to solve it.

To produce that knowledge of the system, the majority of detection systems follows
one of three main approach[4]:

• Models that use communication protocols to perceive when some component stops
working correctly.

• Models that use data analysis, to infer if there was an fault occurrence in the system.

• Models that study the workflow of the system at each step, by the use of a model
that’s parallel to the system tries to predict and make some type of estimations.
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2.2.1 Network-level Approach

Network approaches are effective when trying to find failures in the system, but lack the
granularity to be able to detect malfunctions on the system. Because of it, is efficient to
quickly detect serious issues on the system, but fails to prevent or detect small flaws in
the data gathering.

Some of the strategies used, are:

• Packet monitoring to detect problematic sensors

• Markov models to estimate anomaly-free probabilities from past observation traces
and derives optimal anomaly detection rules for sensor failure detection [4]

2.2.2 Homogeneous Approach

Homogeneous approach consists in utilizing sensor redundancy to identify if a sensor
shows some anomalous behavior. The principle is a faulty sensor will display an awkward
behavior when compared to functioning ones. And using comparison algorithms such as
majority voting between common sensors.

Time-series analysis model such as, Auto Regressive Integrated Moving Average
which compares the predicted measurement with the reported measurement. Homoge-
neous approaches take advantage of the redundancy gain from deploying multiple sensors
of the same type spatially close to each other increases the cost of deployment[22]. Find-
ing an optimal threshold isn’t actually very easy, as it can decrease the accuracy of the
system.

2.2.3 Heterogeneous Approach

Systems that use an heterogeneous approach for fault detection, are systems that use dif-
ferent types of sensor data to detect faults in each components. They can have three types
of heterogeneous models[29]:

• Knowledge based Models

• Data based Models

• Process Based Models

2.2.4 Knowledge-based Models

Knowledge based models rely on rule based methods that infer the occurrence of a fault.
These rules may be defined by an expert, that describes what should be considered a fault.
Obviously, besides making the system vulnerable to new types of faults, and its efficiency
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Figure 2.1: Scheme for Models based on data

depends on the expertise of the specialist, it is prone to problematic assessments, and
demands periodic management of the rules in a long run.

Fuzzy logic systems are also knowledge based system[14], as it uses rule based infer-
ence to make decisions. The difference being, the fuzzification of inputs and, the output
of such function instead of being binary, returns the fault severity.

Data based Models

For fault detection in data based models, the main focus is to monitor significant variations
in data compared to the common oscillations in the system. This may happen using a
simple verification of a given field of a given machine in several records to detect a sensor
failure, or full analysis of several sensor’s readings.

There are different types of models that use data analysis to detect faults. Some mod-
els use signal analysis, others exploit historical data to find thresholds for maximal and
minimal values, or to use as an input to parametric equations to understand the fluctuation
of signal through time.

Pattern recognition is also a valid option to discover some abnormality in data. For
that, neural networks has accomplish significant results. Unsupervised learning has been
a proved solution to achieve accurate results.

• Spectrum analysis and parametric models

• Pattern recognition

Usually, signal analysis[22] uses techniques such as bandpass filtering, fourier analysis,
or some analytics regarding wavelet, spectrum, or correlation between dependant vari-
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Figure 2.2: Scheme for Process-based Models

ables. There are also techniques that use estimation of parameters (parametric spectral
estimation, ARMA parameter estimation).

Process-based Models

The idea behind this type of models is to have a parallel process, usually takes the form of
a prediction model that simulates the actual process, receives the same inputs and, when
both processes are finished is expected to have similar results.

• Parity Equations - Through the use of mathematical equations that model the com-
ponents in analysis, assesses possible errors that occurred in inputs, outputs, and
deviations from the equation model to the actual process.

• State Observers and State Estimation - Reconstructs the outputs of a system from
the inputs, with the integration of observers, by estimating the error involved in the
process, or the residual error between actual process, and the simulation component.
[13]

• Parameters Estimation - Estimation of parameters based on relationships between
faults and changes in physical parameters(such as voltage, resistance, friction, in-
ductance, capacitance, etc.)
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2.3 Fault Imputation

In an IoT context, Imputation is the process of replacing missing data or incorrect values,
by inserting an estimation value, to be able to process data in a effective manner. The
value that comes from an estimation, intends to be as close as possible, to the value that
was not registered.

To replace those values, there are different models that try estimate the missing value,
and can be categorized as the following [20]:

• Information-based Models

• Similarity-based Models

• Error-based Models

• Probability-based Learning

2.3.1 Information-based Models

Information-based models are models take advantage of data quantification techniques to
infer which are the more influential features to determine the value of a target feature, this
way producing an estimate. Entropy, information gain or frequency of a single value, are
some of the measurements that are common when implementing these types of models.

Models that use information extraction from data to make predictions, have a similar
approach to decision trees. Although, these models are commonly applied to categor-
ical data prediction, some adaptations allow to extend its reach, and allow, continuous
features.

2.3.2 Similarity-based Models

Similarity-based models are models that utilize feature spaces, and measures of similarity
between previous instances, to be able to predict new incoming values in a dataset. By
computing distances between instances, it is capable of attributing a value in target classi-
fication. An algorithm that uses similarity principles is the Nearest Neighbor Algorithm.

2.3.3 Probability-based Models

To make a prediction, these types of models use fundamentals of probability theory,
namely conditional probabilities, the probability chain rule and the Theorem of Total
Probability, in order to make a prediction on the most likely value. A model that uses this
type of approach is Naive-Bayes Model.
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2.3.4 Parametrized Models

Parametrized Models are models for algorithms that performs a search for a set of param-
eters in order to fulfill the objective of minimizing the sum of errors gathered from the
predictions.

Some algorithms that distinguish themselves:

• Support Vector Machine

• Multivariable Linear Regression Models

• Non linear Regressions

• ISTM (Incremental Spatial-Temporal Model) [23]

• Neural Networks



Chapter 2. State of Art 16



Chapter 3

Context and Design Decisions

3.1 Context

As part of SATO’s project, the work that will be developed, focuses on aspects of Data
Quality and Dependability. The data comes from a network of sensors, and can’t take
various formats, types and ranges of values.

This project follows the ANNODE methodology standards:

• The usage of multiple estimates using Multilayer Perceptrons(MLPs) to predict real
world environment behaviours.

• The attribution of a quality evaluation of sensor measurements.

• Utilize the MLPs estimates to identify faulty behaviours in sensors measurements.

Figure 3.1: ANNODE methodology[17]

When the architecture started to be formed, there was an intention of building a struc-
ture that can easily fulfill the objectives of providing a platform able to correctly detect
outliers, treat data so it can reach other parts of the project to be processed. It is the

17
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first step of SATO’s operation, and should secure a quality standard for all the following
operations.

Because of the early stage in the project, the platform was designed with notions of
modularity and efficiency, facilitating the integration of other incoming features. Because
of it, creating an ”open” platform was also a priority in implementation.

Having the goal of becoming a full functioning system as soon as possible. Some
adaptations had to be made, taking in account the differences between environments, and
differences in constraints of both projects.

Main concerns arose from the changes between the amount of sensors that an instance
is going to serve and between types of sensors necessary to monitor aquatic environments
such as rivers, and to monitor all energetic appliances, as well as environmental condi-
tions, that are placed inside and outside a building.

Consequently, if ANNODE’s goal was to achieve a high level of accuracy, for SATO
Quality, the goal is to reach the high values of accuracy achieved by ANNODE, in addition
of having a framework capable of dealing with an high volume of data arriving into the
system. A Black-box approach to the development was suggested, because of it, every
input, output, and variations on the system behaviour should be easily accessible, to be
monitored further in SATO operation. This approach should also apply, by requiring
minimal interference on the normal execution, which translates to decisions that allow the
maintenance of platform, ideally during

The data quality and dependability framework was idealized as a component of a
larger project, which as the goals to ensure the correction of faulty measurements, that are
retrieved by the sensors. There were some extra concerns during the conceptualization of
the structure of the project, namely:

• Since its a project at an early stage, changes, replacements or the inclusion of certain
features are expected. Because of this modular structure of easy management is
necessary, a simple, flexible structure that allows these type of changes without the
need of implement major changes to already implemented flows and objects

• Achieving efficient and fast execution, since the speed and throughput capacity of
the framework will dictate the number of sensors that will be attributed to system,
and the overall implementation and configuration of the rest of the SATO system.

• There will be an unknown variety of sensor types that will be processed on this
system, therefore, every step of the data quality inference should be founded on
common characteristics present in sequential data analysis.

• Use a black box approach, where it should be possible to understand how the system
is operating by monitoring the inputs injected, and the outputs that are triggered
consequently.
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3.2 Framework Structure

To be able achieve those targets, the structure is implemented as a decentralized structure
in which modules are appended, according to the necessity of having different function-
alities.

The modules are called Components, as each of them has different tasks, require-
ments and interactions with the system and other components, some subclasses were im-
plemented to ensure that particular specifications of a module would not overload the
generality of other components.

The data quality framework core structure is then composed by an instance Manager,
and several instances of the superclass component. On top of that, classes, files, configu-
rations are stored in order to be utilized by different modules across the project.

Figure 3.2: Framework Architecture
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3.2.1 Manager

The class responsible for managing the different components in the system, giving indirect
access to the resources of the system, mediating the message passing between Component
instances, and also has direct access to each running instance of Component class.

Decides, in which terms each Component is going to be implemented in the context of
the running application. Has access to all the data stored in the system, and Employs the
notion of state in all the components, and is able to restore and save system’s state. It can
be considered the Main of the project, as it is responsible for starting all the Components
in the system.

Each Component is stored under a name, that can be used to get the properties that
characterize the object. This allows to add components to the system, without having
majors changes, in the code.

3.2.2 Component

Component is the class that structures the instances to be added to the Manager instance,
that manages the platform . Each instance that derives from Component class, is expected
to perform some type of task, that is going to be called when the platform is running.
Adding to this run() method, there are methods to save and load files, and attributes that
should be in every Component instance.

Since, the Component class is such a simple abstraction, and adding more features
would result in instances having a lot of useless methods. There was the need to specify
further the types of Components that should be added to the platform.

IOComponent

The communication products arrive to the manager through IOComponents. IOCompo-
nents act as interfaces between the SATO’s system, and external sources of information.
The IOComponent structure should serve as a way to standardize inputs for the manager
to redirect or act accordingly, this will occur not only by dictating the type of format that
should enter the system, but has the job of associating each incoming message, to a certain
flow inside the system.

Since, the SATO Quality framework should be used as an opaque structure, it’s struc-
turally important to specify communications interfaces that act on the same level as all the
different modules, and not be implemented as the main starting point of all operations.

Communication structures are prone to error. If for any reason, the communications
structures are down, other parts of the Quality process cannot be at risk, or dependant.
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WorkComponent

WorkComponents are the most common subclass of Components instances. As all mod-
ules share common restrains, methods and implementation similarities between them, the
creation of an abstract class facilitates major changes that influence multiple models at
the same time. This abstraction serves the aspect of maintainability, as it allows complex
modifications to be made simple for the programmer to implement.

To perform any given task, all the methods, classes and information should be found
in a single place, hence the creation of workcomponents. To be able to communicate
between them, have a FIFO queue is needed, and to perform the task given, each work-
component should also have a thread associated.

3.2.3 Intra-Component Communication

Since the manager has a mapping of all the running components, if a component has to
send data to perform a given task, that component will just have to create a new Message
object to be passed. This message encapsulates two objects:

• a Task object, which contains the task to perform, and the identity of the component
who requested it

• a data object, taking the format of a JSON, or a Dataunit object

This gives all the information needed to perform a task, where to redirect the informa-
tion after task is finished. As it mediated by the manager, security restrictions can be
implemented easily based on the type of Component that initiated the communication

3.3 Data Flow

3.3.1 Data Handling

Each entry enters through the system by means of an IOComponent. In this project scope,
the main method of fetching data is by means of a Kafka consumer. This Kafka con-
sumer is going to consume messages of designated topics. After those messages reach
the system, they are task categorized and redirected to the corrected part of the system,
where they’ll be processed.

Messages that are destined to be subjected to quality evaluation and outlier detection,
proceed to be stored, and reach the first stage in quality evaluation. Contextual and Rep-
resentational standards should be looked at the earliest stage. Does the new entry has the
right amount data to be stored in the system? Does it qualify? Representational standards
such as format consistency, can be looked by comparing the format of the newly arrived
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message relative to the standard format of previous messages, and see if they share the
same fields, and if they share the same type of value.

In terms of contextual standards, Timeliness is something that must be looked at this
stage, how much is the new message distances itself, in the time space, from the last entry?
Did it respect the standard distance? Was it early, late? Was there any measurement that
should arrive before this?

Before, the entry should be inserted in the outlier detection cycle, it is necessary to
check if the entry respects the notions of data quality, and, signalize what problems have
been encountered when it arrived.

3.3.2 Outlier Detection

For each entry, two matrix are formed, one with the values, for instance, Temperature
values and the second, containing every timestamp, with the same time period constraint.
Both matrix are then subjected to some operations, in order to gather the exact amount of
data to serve as input to a multilayer perceptron, which will output an estimate/prediction
for that particular time instance.

To detect a outlier, the system requires three ANN estimates: ”self” that uses only
input values from the main sensor, ”neighbours” that uses input values that come from all
the neighbours sensors, and ”all” that uses values from all the sensors(main and neighbour
sensors).

For all estimates, an error is obtained relative to the value registered by the sensor.
This error is used to obtain a probability of being a outlier.

If two or more estimates have considerable errors, this meaning have a probability that
exceeds the confidence margin, then the measurement is marked as an outlier, and the raw
value should be replaced by an weighted average of those estimates.

If the entry in the system is not considered an outlier, a quality index is obtained
through a calculation based on the errors.

After the processing is complete a new entry is integrated in the system as processed
data, and a Dataunit object is sent by a kafka producer to predesignated topic, and beyond
the scope of the project.

3.4 Model Flow

A model configuration is received in json format, with details regarding the whole process
of building a keras model. That should contain:

• Layer configuration

• Optimizer, loss function, metrics



Chapter 3. Context and Design Decisions 23

• Model construction specifics, such as number of epochs, loss function or when to
store checkpoints

• Data specifics such as period length, skip period, save path

• Options related to model training

3.4.1 Layer Configuration

Each layer of the model must be described, it should follow the configuration’s guidelines
of the Keras Layers API, however it is necessary to add layer type information.

Initializers, regularizers, shape of inputs, activation function, and constraints are dis-
criminated here. Each layer has a configuration associated, and it will be inserted in the
model by order of declaration.

Figure 3.3: Model Configuration:Layer Configuration

3.4.2 Data Configuration and Model Specifics

To be able to setup data, ready to be inserted in a keras model, there’s the need to specify
some construction parameters that can differ, depending on what physical property is
being measured and the way it changes across time. The number of sensors that have
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some correlation and will be utilized to predict one’s future value, must be placed in this
configuration as well.

Figure 3.4: Configuration:Model Specifics

• What percentage of data should be used in training, and for testing

• Number of epochs

• Keras optimizer

• Keras metrics

• Loss function

• Main sensor identification

• Takes account values from the main sensor, from the neighbours, or all of them

3.4.3 Communications

The main protocol of communication utilized is MQTT communication protocol. It’s not
part of Data Quality project, but it is part of the SATO project.

The MQTT communication in this project is done by means of a cluster of Kafka
server, more specifically a cluster of kafka brokers.

Distributed, highly scalable, fault tolerant and secure, each Kafka broker stores event
streams under different topics, each topic can have multiple partitions, and replicate data
across a set of brokers. The topics can afford to have multiple clients writing to them,
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and reading from them, The events are sent to the broker by what’s designated as Kafka
Producer, whereas the client reading from the broker, it’s called a Consumer.

Figure 3.5: Kafka:Event based Communication[6]

Since, SATO Quality requires both receiving and sending events, both entities (Con-
sumer and Producer) have to be implemented.

3.5 Monitoring

In order to oversee the normal execution of the program, some structure is needed to make
periodic assessments. This assessments should describe as accurately as possible, how is
program working during runtime.

Since, each execution implies multiple activities running at the same time, a way that
this can be seen, is by record the time that takes each part of the flow to complete a single
passage, identify each record accordingly, and either store them in a easily accessible
place, or redirect those records to a specialized unit to process them and send an external
entity to handle the arriving information.
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Chapter 4

Implementation

4.1 Datasets

The source of the data used comes from SATURN Observation Network, in which data
was gathered from a set of sensors placed along an estuary-river system from the river
Columbia, located in the United States of America, between the states of Washington
and Oregon, and is connected to the Pacific Ocean. This part of the river is monitored
by CMOP Science and Technology Center monitoring network. The dataset consists of
6 sets, from different periods in time. Each set is composed of temperature and salinity
measurements, with associated timestamps from 4 different sensors. For the study, only
readings from the temperature sensors, were used.

The different time periods present in the dataset are:

A 1/July/2009 - 16/July/2009

B 21/July/2009 - 18/October/2009

C 11/November/2009 - 5/June/2010

D 20/August/2010 - 10/October/2010

E 2/October/2010 - 5/October/2010

F 1/October 2013 - 31/December/2013

Small sets of data, or sets that are included within other sets, such as A), E) were
not used at all. F) was used to evaluate the development, while B), C) and D) were used
strictly to train models.

Each dataset contains information about 4 different stations:

• Jetty A (jettya)

• Lower Sand Island Light (sandi)

27
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• Desdemona Sands Light (dsdma)

• Tansy Point (tansy)

4.2 Modules

4.2.1 MQTT

The MQTT module allows the framework to exchange events with a kafka broker, it
hold an instance of a kafka Consumer and an instance of kafka Producer. It’s the main
IOComponent for the project. The library used to implement this exchange it’s the Kafka-
Python library[19].

Consumer

By reading a configuration, the Consumer connects himself to a list servers, and sub-
scribes to defined topics. For this operation to continue, is necessary to set ”group.id” and
”client.id” that were set as ”SATO”, and ”SATO Quality”, respectively. The most im-
portant configurations that were set, were ”auto offset reset”, that defines which resetting
policy to use in case of OffsetOutOfRange errors, was set to ”latest”, in order to move to
the most recent offset, so that the same message won’t enter the system multiple times.

It permits the deserialization of both key, and values from the new unit arriving the
system in JSON format.

The Consumer is the ”start” of each flow, consumes a ”max records” number of
records in each iteration, in this case set with the value of 100 messages, classifies each
message based on the TopicPartition, and sends them either to a DataHandler instance, to
be processed as a measurement received from the sensors, or to the Prediction module, to
be treated as a configuration.

Producer

The Producer instance is also defined at the MQTT module, also receives a similar con-
figuration that sets itself to given servers, and, which serialization functions to use, for
both keys and values.

Contrary to the Consumer instance, the Producer is only called at the end of each flow,
and is responsible for reporting each operation of the framework back.

4.2.2 DataHandler

DataHandler is a Component that holds objects of type ”DeviceData”, that receives, han-
dles and submits entries to outlier detection and quality assessment. The receiving data
operation, consists in comparing the new entry to the known sensors, if it’s the first entry
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of a sensor it creates a new DeviceData for that sensor, if not, forwards the arriving entry
to be compared with the data stored.

DeviceData

DeviceData is the object that has all the data of a given sensor. Data can be separated in
three parts:

• Buffer - First 60 entries of that device, is used to state sensor standards(data format,
measurement rate) .

• Raw Data - Data that arrived to the system, without any type of processing.

• Data - Data that has already been processed.

Pandas was the python library chose to store all the values, being a well constructed,
flexible library, easily integrated, as it is the case, of libraries such as Dask[7], Vaex[30] or
PySpark[2], and being to store large quantities of data, while achieving high performances
in operations, such as filtering, or calculating statistical properties of a dataset. It’s a
starting point for any efficient data handling python program.

Pandas Dataframes were used in Buffer, Data and Raw Data. There was however a
slight change added to store Raw Data, since this type of data is rarely used during the
execution, and each append operation in pandas Dataframe always involves the creation of
a new object with a new entry appended, a object named Frame was created. It is mainly
a pandas Dataframe, and list object, where incoming data is first stored in the list. When
that list reaches a certain length, or is called with getData() method is concatenated along
with the Dataframe, and the execution proceeds. This allows a much faster appending
speed, for attributes that are mainly used to store values, and are subjected to very few
calls.

Quality Operations

After appending the new entry to Raw Data, each entry is subjected to representational
consistency and timeliness verification. After checking if the data format is consistent
with the standard data format, it will check if the time difference between the arriving
entry and the last entry stored in the system.

If the time difference exceeds, or is below, a tolerance factor from the standard time
difference, it is reported. If the time difference is considerably different from what was
expected, it calculates how many entries didn’t reach the system. Those created entries
are labeled as missing values, and the quality evaluation is stated with 0. Both, new entry
and created entries are then passed to the outlier detection module. The created entries are
treated as an outlier, and it’s value is calculated from the estimates of the keras models.
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4.3 Outlier Detection and Quality Evaluation

When initiating an instance of this module, all the keras models available in a folder are
loaded. Based on the sensor identification, dimension (”self”,”neighbours” or ”all”), mod-
els are chosen for each existing identification, and using the testing evaluation score that
was produced during training, the best ones are chosen to be used during the execution.

Relative to ANNODE’s algorithm to create inputs for the ANN model predictions,
some changes had to be made. Many features were kept, the size of the inputs for each
dimension and, principles behind both algorithms are still the same.

The number of inputs per dimension, ”self”= 60 values, ”neighbours”= 60 values
and ”all” = 120 values. Each set of data used to find these inputs, is a subset of all the
timestamps stored present in each correlated set of sensors. This subset of data is a result
of

In AQUAMON’s each ANN input, was a result of applying a function that selected
certain indices, from a preprocessed set of data, and limited to a range of 750min from the
newly arrived measurement. The ”neighbours” inputs are obtained from the concatenation
of 20 values from each sensor, ”self” utilizes 60 values from the main sensor, and ”all”
is composed by the other two dimensions.(60 values of the main sensor + (20 + 20 + 20)
from each neighbour sensor.

The algorithm to select data suffered a change in terms of implementation, the old
implementation, was simply not efficient in a building environment, where it is expected
a greater amount of sensors per division. Even if multiple instances of project were placed
inside a building, it would be nearly impossible to maintain the speed of response neces-
sary for the user to be satisfied.

Where Times MS is the time column for the main sensor. As you can see, the algo-
rithm complexity in Big O notation, can be classified as, in best case scenario, O(Ds0 ∗
Ns ∗ log2(DNs)), where Dsi refers to the dimension of time table for the sensor Si, with
i = 0, 1, .., n, and Ns the total number of sensors correlated.

The solution was to implement an algorithm that would be capable of detecting the
nearest timestamp(per sensor) relative to the main sensor. The fastest way and most se-
cure way to perform this task, is by creating a matrix formed by the timestamps of all
the sensors, computing the module of the differences from a main sensor timestamp and
retrieving the indices where the distance is minimum. By computing this matrix for a
range of number, and selecting the first solution where the sum of minimum distances is
minimal, the result will be the set of indices closer to each other, under a range of number.
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Algorithm 1 AQUAMON’s Implementation
1: Get fst (first common time in dataset)
2: With time t ε T imes MS
3: for time t = fst, . . . , last index do
4: for sensor = 0, . . . , number of sensors do
5: s1) Find closest time relative to time t (Bisection Search)
6: if Conditions are met then
7: s2) Gets Index, time difference and timestamp
8: else if Conditions not are met then
9: s3) Do not continue process

10: end if
11: end for
12: end for
13: s4) Determine which indices will be used
14: for sensor = 0, . . . , number of sensors do
15: s5) Find Initial time (Bisection Search)
16: for number of inputs = 0, . . . do
17: s6) Append wanted value
18: end for
19: end for
20: Return inputs for each dimension

Algorithm 2 Optimal Distance Algorithm
1: s1) Filtering data based on 750min from arriving timestamp and skip period
2: if length of Data < number of inputs then
3: Store value. Not subjected to processing. Signaled as unprocessed
4: end if
5: s2) Establish indices to use as inputs for the main sensor.
6: for Is = 0, . . . , n inputs do
7: for Precision = 0, . . . ,min(2, f(n inputs, data length)) do
8: Compute Differences Matrix DMs

9: Get indices of minimum distance (per sensor)
10: Convert indices to values
11: Store values, and sum of distances
12: end for
13: Get minimum cost index inds
14: Increment by inds all further Is except I(n inputs)
15: Remove appended indices from further iterations
16: end for
17: for sensor = 0, . . . , number of sensors do
18: if sensor= main sensor then
19: s3) Picks number of inputs per neighbour sensor
20: end if
21: end for
22: Return inputs for each dimension
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4.4 Model Construction

The model configuration is received as a Dictionary object, in the Prediction system. The
Prediction system consists mainly on a Process Pool Executor that can launch multiple
processes in parallel, during runtime, having a defined maximum of 3 processes that can
run simultaneously.

To keep the Process Pool available (a single exception on a process will result in
a crash in the Process Pool), all the verification and validations concerning the model
configuration, must be done before the submission of such configuration in the process
pool.

Subsquently, a set of configuration is submitted, having each configuration converted
into an object that has all the methods necessary to run an ANN building process. Such
object is then converted to a Future, and the process is launched.

Depending on a configuration option build (a boolean property), the construction can
either build a new set of inputs and targets to be used in running, or this step can be
skipped, in such case the model will either retrieve inputs and targets with the given
information, or if there is no inputs sets that fulfill the characteristics of the configuration,
it will ignore the option, and force the building of those inputs by fetching all datasets that
are placed under data path.

In case of multiple datasets, after all data gathered from the different datasets, the
inputs and targets are concatenated, and following ANNODE’s model training system,
are subjected to a permutation and split according to a percentage for training and testing,
and the model training starts.

When the training finishes the result of the evaluation using the testing set is stored in
a file.

In the final stage of the process, a Cumulative Distribution Function(cdf) is described
from the errors of the all the predictions. This distribution is what is enables to situate an
error, result of an outlier detection estimate, giving him a probability of being an error.

4.5 Monitoring

To be able to understand the framework is behaving, three types of information should be
present:

• A timestamp to situate the report across time

• Information related with the final outputs of the operation

• Reports of intermediate operations that occur in the system, and that are not repre-
sented in the outcome
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The next figure is an example of a report done during runtime.
Has a basic timestamp, in this case, time measured from the starting of the program.

Figure 4.1: Monitoring Example

By measuring the time that took to complete a single passage, for each significant
intermediate operation, we can have a deep knowledge of what’s happening in the system.
If some part of the process is down, slow, or if a new implementation is not doing what is
supposed to, it is reflected on the analysis.

To analyze the validity of the operation, data is gathered from the results of process,
in this case, only the number of outliers detected per sensor, however, since each dataunit
contains the all results from intermediate steps of the operation, it could be interesting
to obtain the average quality evaluation, or the number of missing entities that have been
processed. That information, although not used, is all available for future analytical infer-
ence.

Additionally, the system works with two loggers, one for interprocess communica-
tions, such as Kafka communications, where all the entries that enter and exit the system
are signaled, and another that reports every operation done, during the processing of a
measurement. These loggers are setup automatically, when associating a given Com-
ponent to the Manager, and they’re differentiated based on being a IOComponent, or a
WorkComponent.
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Chapter 5

Results

To open the possibility of comparing the differences between the previous approach of the
algorithm, and SATO’s approaches, the dataset utilized was the same. The temperature
dataset from the time period of ”1/October 2013 - 31/December/2013”.

Two approaches were considered, given the intention to make an analysis on the con-
veniences and concerns, in utilizing the ANN models to estimate the value of missing
entry. Because of it, a set of tests was created for SATO without creation of entries, and
with creation of entries.

Also, as a start for a quality comparison, there are represented the plots for raw values
of each sensor, and the outlier detection results previous to SATO.

To each of the approaches, the main goal was to analyze the capability of each detect
outliers and how were they affected with different confidence intervals. On top of that,
two statistical concepts are used to make a qualitative assessment of the outliers detected:
Detection Rate(DR) and False Positive Rate(FPR).

DR = #TruePositives
#TruePositives + #FalseNegatives

FPR = #FalsePositives
#FalsePositives + #TrueNegatives

Given the changes in the objectives of the work, it was also included a performance
analysis. Comparing both SATO to AQUAMON was essential, since the quality analysis
is not sufficient, to consider dependability factors.

To determine the performance of the AQUAMON project accurately, the section of
the RPC communication was removed, so there is not the necessity of delaying messages
and to eliminate the influence of this section in the rest of this project. To highlight the
actual performance of that project, the dataset was fully loaded before the initiation of
time measuring, and all the performance data was saved when all the queues of process
were empty. At worst case scenario, the last entry of the dataset might not be covered at
the last section(Quality Assessment), in both performance and quality analysis.

The average speed of each part of the Data flow process was reported, under three
phases:

• Receiving Data

35



Chapter 5. Results 36

• Outlier Detection

• Quality Assessment

Following that, it is also reported how much time each framework takes at processing a
dataset with 85753 entries, how many of them pass through each phase of the process,
and long it takes for each of phase to complete.

Figure 5.1: Plots for Unprocessed Data:Sandi and Desdemona.

Figure 5.2: Plots for Unprocessed Data:Tansy and Jettya

Sensor Jetty A Desdemona Tansy Lower Sd

Real Outliers 0 44 11 1

Detected DR FPR Detected DR FPR Detected DR FPR Detected DR FPR

0.98 4 0% 0.129% 52 100% 0.0422% 9 81.82% 0% 2 100% 0.053%

0.99 - - - - - - - - - - - -

0.995 1 0% 0% 48 100% 0.0211% 9 81.82% 0% 2 100% 0.053%

0.997 0 100% 0% 47 100% 0.0158% 9 81.82% 0% 1 100% 0%

0.998 0 100% 0% 45 100% 0.0158% 9 81.82% 0% 1 100% 0%

0.999 0 100% 0% 45 100% 0.0158% 9 81.82% 0% 1 100% 0%

Table 5.1: AQUAMON’s Results

5.1 Quality

For the lower intervals of confidence, 0.98, 0.99, we can see a disparity between the
results obtained previously.



Chapter 5. Results 37

SATO performs worse under this conditions, much likely due to the less accurate
models created. It is possible to verify this, by looking to the Tansy sensor plot, and see
that the predictions for missing values are too distant from the processed values.

However, as the intervals of confidence become increasingly larger, it is possible to
see that gap in results vanishes. For the sensors Jetty A, and Lower Sd, all the outliers are
correctly detected for bigger intervals of confidence larger than 0.99.

Sensor Lower Sd Tansy

Real Outliers 1 11

SATO without Creation SATO with Creation SATO without Creation SATO with Creation

Detected DR FPR Detected DR FPR Detected DR FPR Detected DR FPR

0.98 1 100% 0% 1 100% 0% 8 72.73% 0% 27 100% 0.05%

0.99 1 100% 0% 1 100% 0% 7 63.64 0% 17 100% 0.032%

0.995 1 100% 0% 1 100% 0% 6 54.54 0% 11 100% 0%

0.997 1 100% 0% 1 100% 0% 6 54.54 0% 9 81.82% 0%

0.998 1 100% 0% 1 100% 0% 6 54.54 0% 9 81.82% 0%

0.999 1 100% 0% 1 100% 0% 6 54.54 0% 9 81.82% 0%

Table 5.2: Outlier Detection:Lower Sd and Tansy

Sensor Jetty A Desdemona

Real Outliers 0 44

SATO without creation SATO with creation SATO without creation SATO with creation

Detected DR FPR Detected DR FPR Detected DR FPR Detected DR FPR

0.98 26 0% 0.129% 199 0% 0.922% 56 73.21% 0.075% 61 100% 0.079%

0.99 0 100% 0% 66 0% 0.306% 47 87.23% 0.03% 51 100% 0.028%

0.995 0 100% 0% 0 100% 0% 47 87.23% 0.03% 51 100% 0.028%

0.997 0 100% 0% 0 100% 0% 47 87.23% 0.03% 51 100% 0.028%

0.998 0 100% 0% 0 100% 0% 47 87.23% 0.03% 51 100% 0.028%

0.999 0 100% 0% 0 100% 0% 47 87.23% 0.03% 51 100% 0.028%

Table 5.3: Outlier Detection:Jetty A and Desdemona

For the sensors Desdemona and Tansy, if we compare with AQUAMON’s approach,
the quality has slightly decreased. However, when looking at FPR values for both of
SATO’s approach, the creation of entries influences positively this parameter by increas-
ing the number of true negatives. And, by being able to detect more correct outliers, it



Chapter 5. Results 38

Figure 5.4: Plots for SATO(ME) at 0.999: sensors Tansy and Jettya.

does indicate that there are fewer time periods where the quality evaluation cannot be
implemented.

Missing Data restricts the outlier detection process as some entries are not being pro-
cessed, consequently, many outliers are not detected.

By comparison, executing the framework with creation of entries, increases DR, and
consequently FPR as well, however, by creating accurate enough models of prediction,
the increase of the FPR can be mitigated.

Meanwhile, when estimating entries for long periods of missing values, small errors
are being added cumulatively over time. These types of events result in weaker esti-
mations, but it also may trigger an erroneous detection of some outliers. Because of it,
creating entries without any time limit is not beneficial, as it may cause a quality decay
for several estimations.

Figure 5.3: Plots for SATO(ME) at 0.999: sensors Desdemona and Sandi.

The comparison between SATO without the creation of entries, and the previous
project is conclusive in regards to which one performs better at quality evaluation. Prepar-
ing inputs to an ANN, with an algorithm dependant of a limited search range, will never
be better than another that uses brute force search. This can be overcome by creating
entries, when data is missing. Having a dataset where the time distance is always below a
fixed limit, will get the same results, using the same ANN models.

Utilizing SATO’s alternative with creation of entries enables better results in quality
evaluation and outlier detection, as it is able to process more entries overall, and as a
consequence it provides a tighter control of the system. On top of that, only the sensor
Desdemona presented a slight decrease of quality, when compared to the AQUAMON’s
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solution. SATO has been able to preserve most of the quality achieved by AQUAMON,
while being able to introduce new principles of data quality and dependability to the
system.

5.2 Performance

To obtain performance evaluations from both projects, data was gathered from several
executions in a machine provided by LASIGE. That machine has 2 processors with 12
core each (with hyperthreading), with 128GB of RAM memory and operates with an
Ubuntu software.

For each section of each project, data was constructed measuring partial time, refer-
ring to the each part of the system that composes the data flow, parallel to this approach
the global time of a single execution is also measured. Partial time measuring focuses on
the time it takes for a single passage in a given section of the system, this section can be
a function, or an entire flow of the framework. This type of analysis allows to understand
how much time each passage takes, how many times each function was called, and the
overall time spent in the program.

Also, was measured the time that each framework took at processing a full dataset.

Action Count Mean Std Min 25% 50% 75% Max

Receiving Data (in secs) 39991.0 0.000080 0.004119 0.000013 0.000035 0.000038 0.000043 0.596375

Outlier Detection (in secs) 39601.0 0.624052 0.254832 0.143781 0.397501 0.602951 0.821559 1.611712

Quality (in secs) 39600.0 0.415414 0.273044 0.009051 0.174863 0.396609 0.617513 2.844010

Table 5.4: Performance:Previous Implementation

In this implementation, for it to be able to process a full dataset with 85753 measure-
ments, it would took some time in between of 10 hours and, 10 hours and 30 minutes.
For the SATO implementation to process the same dataset with 85753 measurements, the
implementation processed the dataset in less than 1 hour and 30 minutes, in all tests that
were done.

The next table shows the worst performance of all the tests. This particular run took
1 hour, 28 minutes and 20 seconds.

Also, from a dataset with 85753 measurements, was able to insert 1286(1046 + 240
from the initial buffer) more entries than what as arrived to the system, and 8028 more
entries from what would be expected from SATO without the creation of data (78971
entries that finished the flow), as a result from filling missing data.
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Action Count Mean Std Min 25% 50% 75% Max

Receiving Data (in secs) 85753.0 0.119351 0.200350 0.000056 0.086107 0.117431 0.135010 21.620503

Outlier Detection (in secs) 86799.0 0.060601 0.031380 0.026029 0.042936 0.059010 0.069046 2.823217

Quality (in secs) 86799.0 0.000168 0.000151 0.000086 0.000115 0.000161 0.000197 0.026281

Table 5.5: Performance:SATO’s implementation

In terms of performance, from the results it is possible to notice a big gap between
implementations. SATO’s implementation offers much better results in terms of speed,
thus a greater capacity in handling multiple sensors data inputs.

Both partial and full time measurements have presented improvements, on Outlier
Detection and Quality Assessment there was a decrease on time average by a factor of 10
and 2500. At the same time on a global time analysis, a single execution on SATO spends
less than 7x the time that an AQUAMON execution.

However, if we consider the speed for receiving data for SATO, even ignoring the
outlier of 21.63 seconds, has considerably a lower speed, when compared with other
sections, this arises from the cost of utilizing Pandas Dataframes, and the operations to
determine missing values, and creating new entries in the system. It is the most costly
flow of the sytem, although the necessity of having organized data, and ensuring that it
can detect lost measurements, this section of program should be worked on, as it is (now)
the critical point, performance speaking, of all data quality operation.
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Conclusion and Future Work

6.1 Conclusion

This platform fulfills the standards defined in the ANNODE’s methodology. The separa-
tion between, phases of Data Quality Assessment are defined, and most of the principles
are either included, or easily employable.

The organization of the project allows a consistent and reliable monitoring of internal
state of the framework.

Even though there wasn’t a significant change in terms of accuracy in detecting out-
liers, it does allow the flexibility needed to progress the development of the framework,
in a transparent and organized manner.

The main improvement of this implementation can be found in dependability aspects,
such as Currency, and Volatility, the last one being the most improved. The framework
has principles and creative space to be improved much further. Personally, I think it can
be considered as an great starting point, of what’s going to be a fully optimized, accurate
quality framework.

6.2 Future Work

Although, the quite satisfactory results, in future versions of the framework, there is still
a lot room for improvements.

The most important section that needs a well thought approach, is the capability of in-
tegrating multiple types of sensors from multiple locations. The data system despite being
correctly implemented, is still does not take in account the integration of different sources
of data, in order to be a full functioning system. How to relate different sources of data
with different timestamps, even before it reaches any step of data quality, is something
yet to be implemented.

At this moment, the system creates missing entries by estimating how many entries
should have received since by calculating the time difference from the last timestamp
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present in the system. This is too late of a solution, as many measurements still can’t be
processed. There is still the need for an approach, that can act at smaller time interval
than the approach that’s currently being used.

In terms of quality, getting the exact entries to serve the ANN predictions is a subject
that needs study, mainly what type of inputs should be delivered in the ”all” dimension.
Is it better to use a combination of the two other dimensions, or should be use a similar
approach to the calculation of the ”neighbour” dimension.

The Prediction Component, the component responsible for the triggering parallel
training of models, still needs to be improved, studied and correctly tested. Despite per-
forming well for several incoming configurations, it does lack a proper understanding of
it’s limitations, and how should be used. Attached to the Manager instance, or imple-
mented separatel and connected to the Manager instance.

One other aspect that wasn’t addressed during my implementation was security, the
framework is still quite prone to unsafe interactions with the system, that can jeopardize
the veracity and integrity of the values that are send this framework.





Chapter 6. Conclusion and Future Work 44



Bibliography

[1] Python Software Foundation: Python 3.7. https://docs.python.org/3.7/. November
2020.

[2] Apache. http://spark.apache.org/docs/latest/api/python/. 2021.

[3] Barun Basnet, Hyunjun Chun, and Junho Bang. An intelligent fault detection model
for fault detection in photovoltaic systems. Republic of Korea, June 2020.

[4] Jiwon Choi, Hayoung Jeoung, Jihun Kim, Youngjoo Ko, Wonup Jung, Hanjun Kim,
and Jong Kim. Detecting and identifying faulty iot devices in smart home in con-
text extraction. In 48th Annual IEEE/IFIP International Conference on Dependable
Systems and Network, Pohang, Korea, 2018.

[5] Ronald Christensen. Advanced linear modeling statistical learning and dependent
data. In ACM SIGMOD Record, Edinburgh, Scotland, August 2019.

[6] Confluent. In Kafka Streams Documentation, August 2021.

[7] Dask. https://dask.org/. 2021.

[8] Wenfei Fan. Data quality: Theory and practice. In ACM SIGMOD Record, Edin-
burgh, Scotland, August 2012.

[9] Jerry Gao, Pengcheng Zhang, and Fang Xiong. Data quality in big data processing:
Issues, solutions and open problems. August 2017.

[10] Mouzhi Ge, Stanislav Chren, Bruno Rossi, and Tomas Pitner. Data quality manage-
ment framework for smart grid systems. Brno, Czech Republic, August 2012.

[11] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
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