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I 

Resumo 

 

Desde o início dos anos 70, com o aparecimento do vírus Creeper, surge uma das maiores ameaças a 

indivíduos e as organizações por todo o Mundo. São diferentes as motivações que levam à criação de 

um malware, desde a demonstração de vulnerabilidades ou conceitos, aos com intuito malicioso onde o 

objetivo se foca no roubo de informação com a finalidade de obter um bem maior. 

Os ataques de malware têm sido um dos maiores riscos na área da cibersegurança nos últimos 

anos. A cada semana, aumenta o número de vulnerabilidades reportadas na comunidade. Uma das 

principais causas do crescimento exponencial, é o fato dos atacantes introduzirem alterações por forma 

a evitar a deteção. O que leva a que ficheiros maliciosos de uma mesma família de malware, com o 

mesmo comportamento malicioso, sejam constantemente modificados ou ofuscados através de técnicas 

para que aparentem ser diferentes.  

O e-mail tornou-se rapidamente num dos principais vetores de ataque contra as organizações, 

deste modo colocando o servidor de e-mail, como uma das partes integrantes mais críticas de qualquer 

organização. Estes, não foram desenhados na sua base tendo em conta a segurança, encontrado-se 

dependentes de outros softwares, tais como os antivírus ou antispam. 

Atualmente, a detenção de software malicioso é efetuada com recurso a métodos baseados em 

assinaturas, heurísticos e também através da análise comportamental, no entanto incapazes de 

acompanhar o crescimento exponencial de malware. A aprendizagem automática é uma das áreas de 

tecnologias de informação em maior crescimento, tirando partido da estatística e inteligência artificial 

(IA), por forma a fornecer aos sistemas a capacidade de aprender e melhorar autonomamente. Sendo 

amplamente utilizada em aplicações científicas que requerem a análise de grandes volumes de dados. 

A aprendizagem automática surge assim como nova abordagem na categorização de malware, 

através da análise de padrões presentes no código binário ou engenharia inversa. No entanto, a existência 

de múltiplos padrões dificulta o desenvolvimento de métodos genéricos, que abranjam a grande 

variedade de cenários possíveis. 

Por forma a avaliar e categorizar toda a informação presente nos padrões, é necessário dividir 

em grupos e proceder à identificação de famílias com base no mesmo comportamento ou características. 

O código binário do software potencialmente malicioso, é convertido para uma representação em 

imagem monocromática, possibilitando a identificação de alterações subtis, sem que estas afetem a 

estrutura global da imagem. A identificação dos padrões é efetuada através de modelos de aprendizagem 

automática, estes compostos por três camadas, Convolutional, Pooling e Fully Connected. Os modelos 

tradicionais de aprendizagem automática como o ResNet-50, VGG16 e Google Inception V3, foram 

dimensionados e treinados tendo em consideração a classificação de imagens como um dos principais 

objetivos, utilizando bases de dados como a da ImageNet no seu treino e avaliação. As imagens que 

compõem estas bases de dados, apresentam principalmente objetos distintos e bem definidos. Ao 

contrário das imagens abstratas produzidas pela transformação do código binário, que apresentam um 

elevado nível de ruído devido ao processo de conversão.  

Com base nos resultados obtidos pelas redes neuronais no desafio ImageNet, esta dissertação 

apresenta uma abordagem de aprendizagem automática agnóstica, na classificação eficaz de malware 
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em famílias, com base na identificação dos padrões gerados nas imagens. Neste sentido, esta dissertação 

propõe um modelo com foco na avaliação de um elevado número de parâmetros nas imagens, a fim de 

capturar o máximo de semelhanças possíveis, ao mesmo tempo, tenta minimizar a captura de parâmetros 

que constituem o ruído causado pela transformação. Por forma a alcançar o melhor resultado possível 

com o menor número de camadas e o menor tempo de treino. 

A base de dados utilizada no Microsoft Classification Challenge, foi usada na análise e avaliação 

dos modelos. O modelo proposto alcançou uma eficácia semelhante ao melhor modelo dos testes, 

atingindo-a em um terço do tempo de treino. Complementarmente ao estudo, as imagens foram cifradas 

homomorficamente e geradas as novas representações em imagens, com intuito de proceder à 

identificação dos mesmos padrões. Desta forma, a privacidade é garantida, mantendo os dados 

analisados pelas redes neuronais seguros contra terceiros. No entanto, os resultados demonstram a 

necessidade de substituir a camada de saída dos modelos tradicionais por funções que consigam avaliar 

polinômios. 

O modelo proposto foi implementado, na solução Malwizard também apresentada nesta 

dissertação. O Malwizard consiste numa solução Python adaptável para empresas ou utilizadores finais, 

que tem como objetivo oferecer uma solução rápida na identificação automática de malware. Nós 

acreditamos até onde sabemos, ser a primeira implementação de uma ferramenta automatizada de 

deteção de malware, baseada em aprendizagem automática, direcionada para a análise de malware em 

e-mails. Esta, constituída por dois serviços, uma extensão para o Microsoft Outlook e um serviço de 

API para plataformas de Orquestração, Automação e Resposta de incidentes (SOAR). O Malwizard foi 

projetado tendo em vista dois requisitos funcionais e nove não funcionais. A solução disponibiliza dois 

modos de análise, o não cifrado onde a imagem em análise pode ser revertida para o ficheiro original, e 

o cifrado onde a imagem é cifrada homomorficamente garantindo a privacidade e a irreversibilidade da 

mesma para o ficheiro original. 

Considerando a extensão para o Microsoft Outlook, esta pode ser instalada através da loja do 

Office, apartir do URL ou directamente do XML disponibilizado pelo Malwizard. Após configurada, 

ficará disponível se o Outlook detetar um anexo presente no e-mail que o utilizador esteja a consultar. 

O Malwizard converte o código binário dos anexos presentes no e-mail, numa representação em imagem 

e envia-a para a unidade de processamento de aprendizagem automática para ser analisada. Na 

implementação através da API, o utilizador tem a possibilidade de criar ou adaptar a solução para um 

propósito específico, como a implementação numa ferramenta de segurança como o TheHive. A API é 

de código aberto, permitindo deste modo adaptar-se às necessidades dos clientes ou de ferramentas 

especificas. 

A unidade de processamento de aprendizagem automática, é onde o modelo de inteligência 

artificial se encontra. O servidor recebe a representação em imagem do ficheiro e entrega ao modelo 

para análise. Por fim, este, retorna o nível de confiança da análise, e se for maior que uma determinada 

percentagem a definir pelo utilizador, a amostra é considerada para análises futuras e identificada como 

malware. Caso contrário, é marcada como contendo sinais de malware e informa o utilizador que deverá 

proceder com cautela. 

A solução como um todo foi alvo de testes e de análise de desempenho, comparando os dois 

modos de funcionamento diponíveis, cifrado e não cifrado. A criptografia aplicada a imagens é um 

enorme desafio computacional, uma vez que cada pixel da imagem é cifrado individualmente, 

aumentando o tempo de processamento. O tamanho das chaves de cifra é um dos fatores que influência 

diretamente o tempo de cifra, no entanto, este pode ser reduzido se existirem outros mecanismos de 
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segurança adicionais. Desta forma, tornando possível a utilização do modo cifrado em tempo real, 

considerando a utilização de um modelo capaz de analisar imagens cifradas. A adoção da solução 

Malwizard aplicada na análise diária de e-mails, tanto de empresas como de utilizadores finais, 

apresenta-se como uma componente adicional na prevenção de malware e como um forte contributo 

para a comunidade da cibersegurança. 

No fim desta dissertação, encontram-se as conclusões obtidas com este trabalho, possíveis 

trabalhos futuros, além do apêndice com as interfaces e tutoriais de utilização do Malwizard. 

 

Palavras-chave: Aprendizagem Automática, Visualização de malware, Deteção de malware, Redes 

neuronais convolucionais, Criptografia Homomórfica.  
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Abstract 

 

Malware attacks have been one of the most serious cyber risks in recent years. Almost every week, the 

number of vulnerability reports is increasing in the security communities. One of the key causes for the 

exponential growth is the fact that malware authors started introducing mutations to avoid detection. 

This means that malicious files from the same malware family, with the same malicious behaviour, are 

constantly modified or obfuscated using a variety of technics to make them appear to be different. 

Characteristics retrieved from raw binary files or disassembled code are used in existing machine 

learning-based malware categorization algorithms. The variety of such attributes has made it difficult to 

develop generic malware categorization methods that operate well in a variety of operating scenarios. 

To be effective in evaluating and categorizing such enormous volumes of data, it is necessary 

to divide them into groups and identify their respective families based on their behaviour. Malicious 

software is converted to a greyscale image representation, due to the possibility to capture subtle changes 

while keeping the global structure helps to detect variations. Motivated by the Machine Learning results 

achieved in the ImageNet challenge, this dissertation proposes an agnostic deep learning solution, for 

efficiently classifying malware into families based on a collection of discriminant patterns retrieved 

from its visualization as images.  

In this thesis, we present Malwizard, an adaptable Python solution suited for companies or end-

users, that allows them to automatically obtain a fast malware analysis. The solution was implemented 

as an Outlook add-in and an API service for the SOAR platforms, as emails are the first vector for this 

type of attack, with companies being the most attractive targets. 

The Microsoft Classification Challenge dataset was used in the evaluation of the noble 

approach. Therefore, its image representation was ciphered and generated the correspondent ciphered 

image to evaluate if the same patterns could be identified using traditional machine learning techniques. 

Thus, allowing the privacy concerns to be addressed, maintaining the data analysed by neural networks 

secure to unauthorized parties. 

Experimental comparison demonstrates the noble approach performed close to the best analysed 

model on a plain text dataset, completing the task in one-third of the time. Regarding the encrypted 

dataset, classical techniques need to be adapted in order to be efficient.  

 

Keywords: Machine learning, Malware visualization, Malware detection, Convolutional neural 

network, Homomorphic Encryption. 
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Chapter 1 

Introduction 

Malicious software, commonly known as malware, is a continuous problem that has been growing 

considerably in the last few years. Almost every week, the number of vulnerability reports is increasing 

in the security communities, which may be seen as a failure. However, due to more advanced and 

specialized attacks, the current methods of detection are too slow or ineffective on real-time analysis. 

The huge development of Machine Learning (ML) technologies over different domains [1]-[4] appears 

as an innovative approach to the detection of more advanced threats through deep learning. This 

dissertation proposes to assess a faster and efficient method, utilizing ML and Convolutional Neural 

Networks (CNNs) on malware fingerprint analysis. 

 

1.1 Context and Motivation 

Malware is an expression to define different types of malicious software, such as adware, spyware, 

viruses, worms, trojans, and ransomware, designed to harm or exploit any programmable devices, 

service, or network. Since the early 1970s, when the Creeper Virus appeared, there has been a lingering 

threat to individuals and organizations all over the world. Different motivations may lead to malware 

creation, some are created to show vulnerabilities or concepts, while others have been used to steal 

information and take some kind of profit or used for blackmail extorsion. 

According to European Network and Information Security Agency (ENISA) Threat Landscape 

2020 report [5][6], email and phishing messages have become the primary malware infection vector, 

placing malware at the first position of the top 15 trending threats. Between 2019 and 2020, it is involved 

in 30 percent of all data breach incidents, from which 46.5 percent were detected in email messages 

found in Docx file type documents. Also, 71 percent of organizations experienced malware activity that 

spreads from one employee to another. A more recent study by Kaspersky [7] showed that at least 19.8 

percent of computers in the world were subject to at least one malware attack over the last year. 

The recent explosion of the Internet of Things (IoT) devices has led to the widespread 

implementation of a large quantity and variety of systems. Companies are pressured to try to be the first 

to launch new products over competitors, which justifies why it has been more common to see so many 

products with software flaws, resulting in more vulnerabilities and dramatically increasing the attack 

surface. Most of these devices have or allow to access a large amount of sensitive data, becoming an 

attractive target for malicious parties. 

Nowadays, the detection of malicious software is done mainly with Signature and Heuristic-

based methods, but also through Behavioural analysis. However, these methods struggle to keep up with 

the malware evolution. As opposed to Signature-based analysis, which utilizes signatures databases that 

uniquely identify known malware, Heuristic-based methods rely on rules and known patterns to detect 

known and new forms of malware. The Behavioural analysis helps to define and understand the malware 

capabilities, by tracking the behaviour and looking for suspicious activity in the system. Once the 

algorithm detects a malware, it places the suspect file in quarantine or subsequently deletes it. While 

viruses share common behaviours between their families, which allow the creation of a single generic 



 

 

 
2 

signature for them, on the malware side, cybercriminals try to stay a step ahead of antivirus (AV) 

software, by developing polymorphic and metamorphic malware that does not match with the known 

signatures. 

Therefore, AV vendors tend to use hybrid analysis, by combining both signature-based and 

heuristic-based methods to deal with unknown malware. But, they also perform Behavioural analysis 

through Static Analysis (by examining its code) or by Dynamic Analysis (through the execution in a safe 

environment).  

The Static Analysis method is based on the analysis of code or patterns to detect signatures, 

byte-sequences, or operation code’s frequency distribution, without executing the program. However, it 

is dependent on reverse engineering to obtain the original code. The Dynamic Analysis is based on the 

behaviour analysis during the execution of the malicious program in a controlled and secure environment 

(e.g., virtual machine, emulator, sandbox, etc.). Compared to the static analysis, it is more precise and 

does not need code analysis. However, it needs more time and resources when performing on a large 

scale. Besides, the controlled environment is different from the real environment, where the behaviour 

of the malware may be only triggered under certain conditions, such as a specific system, command, or 

sequence of actions. Also, the attackers have implemented protections to detect the environment where 

it is running, showing a different behaviour and making it hard to detect in a virtual environment. 

Machine learning is one of the fastest-growing areas of computer science, using statistics and 

artificial intelligence (AI) to provide the systems with the ability to automatically learn and improve. It 

has become widely used in scientific applications that require big volumes of data analysis. People are 

surrounded by machine learning technologies, such as personal assistance applications on smartphones 

with voice recognition or face identification, search engines to learn how to provide the best results, 

antispam software to filter email messages, or on credit card transactions secured by software that learns 

to detect frauds. In recent years, due to the cheaper computing power, researchers are able to study more 

complex models and apply them to larger datasets. As a result, AV vendors start to adopt machine 

learning classifiers to address problems related to logistic regression [8], neural networks [9], and 

decision trees [10]. In order, to accomplish a new faster reliable method independent of the code or 

secure environment analysis, but able to detect, analyse and classify malware by family according to the 

content and behaviour. 

1.2 Background of the Problem 

An email server is a critical part of any organization, affected by the increasing security issues associated 

with business email compromise (BEC), phishing, data leakage, and privacy protection, among others. 

These risks motivate organizations to ensure a secure email environment.  

Email servers were not designed to have security as their main concern. Apart from the 

combined utilization of antispam and antivirus applications, they are limited to grey lists [11], to the 

Sender Policy Framework (SPF) [12] / Domain Keys Identified Mail (DKIM) [13], and to the Domain-

based Message Authentication, Reporting, and Conformance (DMARC) [14] mechanisms. These 

mechanisms are very effective in detecting forged sender addresses and protecting the domains from 

unauthorized use, although they are ineffective in detecting malicious content inside the email messages.  

Antispam and antivirus applications can perform content analysis. However, if an email 

message has nothing suspicious, (e.g., a known signature or triggered a heuristic rule), it ends in the 

inbox after a quarantine analysis. The quarantine period is specified by the organization, taking into 
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account the delay in the message analysis until receiving them into the inbox, which most of the time is 

not enough to classify malicious content with a high level of confidence. Increasing the quarantine time 

is not a valid option since there is a huge gap between the detection and when the signatures are 

available.  

Hence, the Human factor is one of the biggest challenges for any organization. Cybercriminals 

take advantage of people’s curiosity to generate phishing emails that raise interest among users.   

A more effective method, capable of detecting unknown malware present in zero-day attacks 

and able to minimize the dependence on the Human factor to identify malicious content in emails, 

represents some of the challenges that can be improved with a machine learning solution. 

 

1.3 Problem Statement 

Performing and managing security at the email server level, dependent on third-party apps to perform 

malware analysis, creates a dependency on the security levels, as well as the level of awareness in 

information security of the user. All these dependency factors, which are also points of failure, represent 

exposure to several threats that pose different risks to the people and organizations. 

Cases of malware attacks targeting large companies and demanding huge payments are 

becoming more common in the news. Despite all the implemented methods, they are still not enough to 

prevent some attacks from succeeding, leading to permanent data loss, as well as reputational and 

financial consequences. 

 

1.4 Aims and Objectives 

The purpose of this dissertation is to present a novel approach model and an application service to deal 

with the malware classification problem. Inspired by experiments and conclusions of Nataraj et al. [15] 

work, in which, through the analysis of the greyscale images arising from the binary code transformation 

of known malware samples, it was inferred that the images from the same malware family were similar. 

With the introduction of Convolutional Neural Networks by Gibert et al. [16] to the Nataraj et 

al. approach, it was possible to derive local and invariant features from the image, finding the patterns 

independently of their position. Thus, allowing the network to detect patterns of known malware present 

on an image. 

This thesis aims to better identify the presence of unknown malware in email content at runtime, 

decreasing the reliance on known signatures and reducing the assessment and quarantine times. By 

applying and improving the findings of Gibert et al. [16], through the analysis and integration of a high-

power predictive model in a similar CNN infrastructure. 

Additionally, the development of an application that, as far as we know, is the first 

implementation of an automated email malware detection tool for the Microsoft Outlook add-in, as well 

as an API service, that can be used by risk-based Security Orchestration, Automation, and Response 

(SOAR) platforms such as TheHive [17]. 
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1.5 Contributions 

This dissertation's contribution is to identify, define, and assess the characteristics for developing a novel 

ML model with a set of criteria that will allow a CNN to quickly and accurately recognize and categorize 

unknown malware. In addition, the CNN will be integrated into a Microsoft Outlook add-in and an API 

service for SOAR systems, reducing dependency on known signatures and shortening assessment and 

quarantine times in the email content evaluation. 

 

1.6 Research Method 

The research method followed in this dissertation is the Design Science Research methodology, which 

comprises six activities [18]: 

1. Identification of the Problem and Motivation: The goal of this dissertation is to propose a 

solution for automatically and quickly analyse files, such as email attachments, to detect the 

presence of malware. This is accomplished through the application of machine learning. 

 

2. Define Objectives for a Solution: The objective is to find an ML model that gives the best overall 

performance, taking into account the balance between training time and prediction results. It 

will be implemented as a Microsoft Outlook add-in and API service solution. 

 

3. Design and Development: A novel ML model will be proposed and evaluated in comparison to 

other existing community models that will be implemented using the Scikit-learn and Keras ML 

libraries. Simultaneously, the Microsoft Outlook add-in and API service, as well as the 

supporting infrastructure, will be developed. 

 

4. Demonstration: To determine which model provides the highest overall performance, the 

unique suggested model will be compared to the community models. In addition, the Proof-of-

Concept for the Microsoft Outlook add-in and API service solution will be presented in this 

thesis. 

 

5. Evaluation: The performance of the developed model, as well as the community models, will 

be evaluated using machine learning metrics such as F1-Score, K-Fold tests and Receiver 

Operating Characteristics (ROC) curves. 

 

6. Communication: The mentioned objectives will be accomplished through the completion of this 

dissertation, which contains the discussion and report of the findings and difficulties 

encountered during the study and implementation of the solution. 
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1.7 Description of Thesis Organisation  

This dissertation is organized as follows to represent the various stages of the work: 

The following chapter, "Chapter 2: Background on Deep Learning", will dive deep into Machine 

Learning concepts such as Artificial Neural Networks and Convolutional Neural Networks, as well as 

pre-trained models and most common evaluation mechanisms and metrics. 

In “Chapter 3: State of the Art”, the literature is described, starting with the background on 

malware analysis as images and how to ensure privacy, to the frameworks used with Neural Networks. 

"Chapter 4: Malware Classification" describes the dataset utilized throughout the study's 

execution and conclusion, the architecture of the proposed model, and compares the results to other 

machine learning algorithms that were assessed to decide which produced the best results. In addition 

to model testing, the experimental work detailed in this chapter aims to assess if it is possible to evaluate 

encrypted malware images with a traditional Neural Network approach while maintaining privacy 

during the evaluation process. 

"Chapter 5: Malwizard" presents the implementation of the models in Chapter 4 in an Outlook 

add-in and an adaptable API backend service. Furthermore, it includes the requirements analysis, 

specifications, design, development, and components for the solution. 

Finally, “Chapter 6: Conclusions” summarises the study and draws final conclusions and 

recommendations for future research. 
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Chapter 2 

Background on Deep Learning 

Neural networks mimic human brain function, allowing computer programs to discover patterns and 

solve common challenges in AI, ML, and deep learning. Deep Learning is the leading topic in the AI 

and ML communities and refers to the set of techniques used for learning in Neural Networks. This 

chapter describes the essential concepts behind deep learning. 

 

2.1 Artificial Neural Networks 

Artificial Neural Networks (ANN) emerged as a computer-based technique inspired by the concept of 

human biological neural networks, such as the nervous system and the brain, which process information 

and allow a machine to learn from data. There are various types of NNs, but only two of them are 

covered in this thesis: Feedforward Neural Network (FNN) and Convolutional Neural Network (CNN).  

The fundamental unit of every neural network is called a neuron or a processing unit. These are 

organized into layers, where each neuron acts based on the local information, and transmits its output to 

the neurons at the same layer (intralayer connections), to another layer (interlayer connections), or to 

both intralayer and interlayer, to accomplish recognition tasks. 

Human beings are able to make mental patterns on their biological neural networks from 

different input data (e.g. text, pictures, sounds), through the sensory mechanisms of vision, sound, touch, 

smell and taste. Similarly, neural networks recognize data patterns in the data features of the input. 

ANNs architecture is based on interconnected neurons, where each neuron consists of a 

summing unit followed by an output unit. Like Humans, the summing unit receives the input data from 

the sensory mechanisms (unit), weighs each value, and computes a weighted sum. The sum result also 

called the activation value, is passed to the output unit to produce a signal. 

In order to understand how a neural network operates, it is important to understand what neurons 

are and how they learn and transfer knowledge to each other. Sections 2.1.1 and 2.1.2 present two main 

representations of a neuron, the Perceptron and the Sigmoid model. 

2.1.1 Perceptrons 

In 1958, Rosenblatt proposed an artificial neuron representation, the perceptron model. It was the earliest 

supervised learning1 algorithm of binary classifiers, being the main structure for the Artificial Neural 

Networks (ANN). 

The perceptron model introduces the adjustable weights (w1-wm) into the ANNs inputs to 

minimize the error from the actual binary output to the desired output, Figure 1. The weights of a neuron 

implicitly determine which features are more significant, and if a feature is more relevant, the output 

will be influenced by it. Each neuron connection has its own weight, which starts at a fixed or random 

 
1 The type of ML used to learn models from training data, allowing output prediction for future or unseen data. 
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amount and is then updated during the model's training. The output is also influenced by the bias term 

(), which defines the sensitivity of the sensory inputs. Some types of data may have a large dynamic 

range. For example, an object in an image has different reflections depending on the exposure to dim 

light or bright light. It is necessary to define the sensitivity of the neuron. If it is too sensitive to smaller 

values of inputs, its output signal will saturate for large input values. However, if it is too sensitive to 

large values of the input, its activation value becomes insensitive to small values of the input. 

 

Figure 1: Rosenblatt's perceptron model of a neuron - Basics of Artificial Neural Networks [19]. 

The binary perceptron output that leads to a signal is the f(x) result, which can be 0 or 1, determined by 

the weighted sum x = ∑ 𝑤𝑖𝛼𝑖 + 𝜃𝑀
𝑖=1  is less or greater than 0. 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑓(𝑥) {
1, 𝑖𝑓 𝑥 > 0
0, 𝑖𝑓 𝑥 ≤ 0

 

Due to the binary output, a single layer of perceptron only handles linearly separable features 

in space. To perform any pattern classification task, a multi perceptron layer is necessary. In fact, 

Artificial Neural Networks (ANNs) are composed of multiple layers of perceptron’s, while a perceptron 

is a single ANN layer representation. 

2.1.2 Sigmoid 

The main difficulty with a multilayer perceptron network is that it is very difficult to adjust the weights 

and bias. Small changes in them can drastically change the output, switching from 0 to 1 or vice versa, 

which will influence the behaviour of the network. With the introduction of Sigmoid neurons, the 

problem was solved. Based on the perceptron model, the output function is much smoother. Instead of 

returning a binary output, it returns a real value between 0 and 1 that can be interpreted as a probability. 

The sigmoid function is defined as: 

𝑓(𝑥) =  
1

1 + 𝑒−𝑥
 

As a result, the difference between the perceptron and sigmoid neuron is the activation function, 

in which the output of the sigmoid neuron is:  

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑓(𝑥) =  
1

1 + 𝑒−(∑ 𝑤𝑖𝛼𝑖+𝜃𝑀
𝑖=1 )

 

Thus, activation functions are used for standardizing the output values of each neuron. The most 

commonly used activation functions are the Sigmoid, and the Rectified Linear Unit (ReLu) [20] 

described in Section 2.5.1. 
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2.1.3 Cost / Loss Function 

A loss function is used to measure the performance of a neural network with a single training sample, 

while a cost function, is the average over the entire training dataset. The Cost Function quantifies the 

error between the algorithm’s prediction and the expected values, in a real number. To minimize the 

cost/loss function, it is necessary to find the balance between weights and biases using an optimization 

algorithm. 

2.1.4 Backpropagation 

Feed-forward networks flow in only one direction, from input to output. The backpropagation algorithm, 

inverts the flow, changing each weight in the network. It takes into account the proportion of the overall 

error, which allows to adjust and fit the algorithm appropriately. Each iteration results in a reduction of 

weight’s error, which will eventually lead to weights that produce good predictions. 

 

2.2 Optimization Algorithms 

Optimization algorithms are used during the training process, to iteratively estimate the network 

parameters that lead to the minimum cost function value. Gradient Descent, Root Mean Square 

Propagation (RMSProp), and Adam are some of the optimization methods discussed in this section. 

Gradient Descent is the most basic method for optimizing a neural network, while RMSProp and Adam 

variants are generally quicker to converge to the global minimum of a function. 

2.2.1 Gradient Descent  

Gradient Descent (GD) is a popular optimization approach for finding the local minimum or the smallest 

value of a loss function whose gradient is null [21]. The algorithm starts with random initialization of 

weight and bias in the NN. Then, it iteratively derives the gradient descent at each step until it finds the 

bottom of the graph. Hopefully, it finds the minimum, where the error is the lowest (Figure 2 Left). This 

means the model was tuned for the data and predictions are more accurate. 

Sizing the step is called the learning rate, shown in Figure 2 Right. A low rate is more precise 

since it recalculates gradient frequently, but it is more time-consuming, which will take more time to 

get to the bottom. High learning rates cover more steps, but there is a risk of overshooting the lowest 

point since the slope of the hill is constantly changing, getting stuck at worse values of loss over epochs2.  

 

Figure 2: Left: Representation of the gradient, defined as the slope of the curve and the derivative of 

the activation function. Right: Effects of different learning rates. 

 
2 Dataset cycles with training data, to teach the neural network.  
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2.2.2 Root Mean Square Propagation  

Root Mean Square (RMSProp) propagation is another optimization method widely used in machine 

learning (ML). Its behaviour is based on the Gradient Descent [21]. It restricts the oscillations in the 

vertical direction, which increases the learning rate and the algorithm can take larger steps in the 

horizontal direction converging faster to the local minimum [22]. 

The minimum or global optimum is represented by the Local Optima point in Figure 3. A global 

minimum is the best local minimum/optima that can be achieved. When starting the GD, a line that 

began at point 'A,' may wind up at position 'B,' the other side of the ellipse, after one iteration. Then 

another GD step could get stopped at point 'C.' As a result, getting to the minimum will take a long time, 

increasing the chances of Gradient Descent becoming stuck in a local optimum rather than reaching the 

global optimum. 

 

Figure 3: Comparison of Gradient Descent and RMSProp [22]. 

Slower learning in the vertical direction and faster learning in the horizontal direction are 

necessary to avoid becoming stuck in a local optimum. RMSProp uses the idea of the Exponentially 

Weighted Average (EWA) of the gradients, which allows the algorithm to forget early gradients and 

focus on the most recently observed partial gradients found during the search progress. 

As demonstrated in Figure 3, extracted from [22], learning in the vertical direction has been 

slowed and the accomplishment of the local minimum is quicker. 

2.2.3 Batch, Stochastic and Mini-batch 

Depending on the amount of data, it may be better to have an accurate weight update instead of a shorter 

time to perform an update. There are three gradient descent variants, depending on the amount of data 

that is used to measure the gradient of the objective function. 

Batch Gradient Descent 

Computes the average of the gradients for the whole training dataset and then uses this mean gradient 

to update the weights, performing just one update (step) in one epoch. However, it is unreliable for big 

datasets, where it can be slow and intractable if it does not fit in the memory. 

Stochastic Gradient Descent 

Computes the gradient for each example in the training dataset and updates the weights. Since it 

considers just one example at a time, the cost can fluctuate over the training examples, which can 

complicate to convergence to the exact local minimum. 

Mini-batch Gradient Descent 

While Batch Gradient Descent converges directly to the local minimum and Stochastic Gradient Descent 

converges faster for larger datasets, although both have limitations, the only suitable for small datasets 

or computes one example at a time, respectively. The Mini-batch takes advantage of both approaches 

bases the computation on a batch with a fixed number of training examples, called mini-batch. It 

calculates the mean gradient of the mini-batch and updates the weights frequently, also allowing a 

vectorised implementation for faster computations. 
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2.2.4 Adam  

Adam combines all the previous techniques into a single, efficient algorithm. As one might expect, this 

algorithm has grown in popularity as one of the most reliable and effective optimization algorithms for 

deep learning. It is computationally efficient, requires low memory, is invariant to gradient diagonal 

rescaling, and is well suited for problems with a lot of data or parameters. The method is also suitable 

for non-stationary objectives and problems involving very noisy or sparse gradients, where the network 

is unable to tune its weights due to a lack of strong signals [23]. 

 

2.3 Convolutional Neural Networks 

Convolutional Neural Networks (CNN) is a type of feedforward NN, very effective in image recognition 

and similar tasks. The main difference between them is the neuron arrangements in the layer. CNNs 

have neurons arranged in three dimensions (width, height, and depth). Also, each neuron inside the 

convolutional layer is connected to only a small region on the next layer. This is arranged in three 

different types (Convolutional, Pooling and Fully Connected), which is also distinct from feedforward 

neural networks. 

In general, CNN implementations can be defined as involving the following process [24], Figure 4: 

1. Convolve several small filters on the image and apply ReLU activation to the matrix. 

2. Perform pooling to subsample and reduce the dimensionality size. 

3. Repeat steps 1 and 2 until as many convolution layers as enough to have high-level features. 

4. Flush the output and feed it into a Fully Connected Layer. 

5. Output the class using an activation function such as sigmoid or softmax (described in 

Section 2.5.2) to classify the images. 

 

Figure 4: Typical CNN architecture [24]. 

2.3.1 Convolution Layer 

The Convolution layer is the core of the CNN and is the first layer to extract features from an input 

image [25]. The layer consists of a set of learnable filters, which learn the image features using small 

squares of input data, producing a 2-dimensional activation map of the filter, Figure 5. As a result, the 

activation map triggers when it detects some criteria learned through the filters on some spatial position 

in the input. 

Stacking multiple layers of filters allows to perform operations such as edge detection, blur, 

sharpen, colour, gradient orientation, etc. It also increases the capturing for low levels of detail, although 

at the cost of more computational power. 
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Figure 5: Feature Map Output [25]. 

 

 

2.3.2 Pooling Layer 

A Pooling layer is responsible for subsampling or downsampling the spatial size of the convolved 

feature [25]. This dimensional reduction of each map, retaining important information, decreases the 

amount of computation in the network and controls the overfitting. There are a few non-linear functions 

to implement pooling, such as the minimum, maximum and average, whoever, the most common is the 

maximum or max pooling. 

A maximum or maximum pooling is a pooling operation, which returns the largest element of 

the rectified resource map portion and uses it to create a downsampled (pooled) resource, which 

implicitly reduces the data and calculations in the network, Figure 6. 

 

Figure 6: Max pooling [25]. 
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2.3.3 Fully Connected Layer 

The convolution layers output high-level features data, while the fully connected layer learns non-linear3 

combinations of these features, which flattens and connects to the output layers. Therefore, the flattened 

output is fed into a feed-forward neural network and backpropagation is applied to every iteration of 

training. Over a succession of times, the model is able to distinguish and classify between high and low-

level characteristics in the pictures. 

2.4 Overfitting 

Overfitting occurs when a model seeks to predict a pattern in too noisy data, which leads to an inaccurate 

model since the trend does not reflect the reality present in the data. A model that produces good results 

on a training dataset but performs poorly on the unseen data, is a sign that the model is overfitting. 

Making correct assumptions from a set of training data to any data from the domain problem, which was 

never seen before, is the main goal of any ML model. This section describes the most common 

techniques to prevent overfitting while training large networks. 

2.4.1 Data Augmentation 

The data augmentation method consists of increasing the size of training data. Some of the easy 

techniques to artificially expand data are flipping, translation, rotation, scaling and transposing. These 

techniques are used on the most common training datasets for CNNs, such as CIFAR-10 [26]. Adding 

more data, forces the model to generalize, becoming unable to overfit all the samples. 

2.4.2 Regularization 

Regularization is a technique that adds an extra term to the loss function, in a way to penalise or impose 

a cost on weights, making the network choose smaller weight matrices leads to simpler models, which 

reduces the overfitting. 

2.4.3 Dropout 

Dropout is based on the idea of modifying the network into different networks, through randomly neuron 

drops from NN in each interaction during the training, preventing neurons from co-adapting. The 

different networks will be overfitted in different ways, hopefully, resulting in an overfitting reduction 

as an effect on the network. 

In each iteration of the process, a percentage of neurons are randomly and temporally 

disconnected, except those who belong to the input and output layer. Then, the input is propagated 

through the modified network and the result as well. The weights and biases are updated, and the process 

is repeated by restoring the dropped neurons and choosing a new random subset of neurons to 

disconnect. 

Finally, by reducing neurons co-adaptations, a neuron cannot rely on another neuron, being 

forced to learn more features in detail, which is useful in combination with other random subsets of 

neurons. The output result of the Dropout process can be seen as the average of a large number of 

networks. 

 

 
3 Not straight-line or direct relationship 
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2.5 Deep Learning 

Deep Learning, as described at the beginning of the chapter, refers to the set of techniques used for 

learning in multi-layer neural networks (Deep Neural Networks (DNN)). Therefore, the “deep” in deep 

learning is associated with the depth of layers in a network and is a subset of ML algorithms.  

While supervised ML is dependent on human interaction to label the datasets to understand the 

differences between data inputs, Deep learning does not need labelled datasets. Instead, it can learn 

through unstructured or unlabelled data. By observing patterns in the data, a deep learning model will 

need more data points to improve its accuracy, which means more computer power, whereas an ML 

model depends on less data due to the underlying data structure. 

 In DNN, the Vanishing Gradients are one of the biggest problems that can lead to unpredictable 

behaviour during the training phase. Which is defined by the inability of NN to propagate gradient 

information from the output back to the lower layers of the model. The gradients control how much the 

network learns during the training phase. If the gradients are close to zero, the model improves very 

slowly and it is also possible that training stops. This may cause the inability of models with many layers 

to learn on a given dataset or converge to poor predictive performance. 

2.5.1 ReLU units 

The Vanishing Gradients problem can be solved by using rectified linear units Rectified Linear Unit 

(ReLU) as the activation function. The function returns 0 if it receives any negative input, and the input 

itself for any positive input, f(x) = max(0, x) (Figure 7 (n) - “relu”).  

The gradient of the sigmoid function described in Section 2.1.2, squishes a large input space 

into a small input space between 0 and 1 (Figure 7 (a) – “sigmoid”). Therefore, a large change in the 

input of the sigmoid function will cause a small change in the output. Hence, the derivative becomes 

small (Figure 7 (a) – “grad of sigmoid”), contributing to the vanishing gradient problem. 

The ReLU gradient can only be 0 or 1, which after many layers tend to stabilize. So, the overall 

gradient is not too small or not too high (Figure 7 (b) – “grad of relu”), thus controlling the learning rate. 

Furthermore, it is simpler to calculate and its derivative consumes less computational resources than the 

sigmoid function [27]. 

 

Figure 7: Sigmoid and ReLU comparison of activation function and derivative [27]. 

a) Sigmoid activation b) ReLU activation 

 



 

 

 
14 

2.5.2 Softmax 

The sigmoid activation function is used for the two-class logistic regression, whereas the softmax 

function is used for the multiclass logistic regression. Softmax normalizes an input value into a vector 

of values that follow a probability distribution with a total sum of one. It is used as an activation function 

similar to ReLU (Section 2.5.1) but applied to the last layers rather than the middle layers. To normalize 

the output of NN models for multiclass classification problems, where a class association is required in 

more than two class labels [28]. 

A standard structure of an NN model with softmax as output is shown in Figure 8. 

 

Figure 8: Softmax layer within a Neural network. 

2.6 Pre-trained Models 

Pre-trained models can be applied to neural networks, pre-trained networks, which includes layers, 

features, weights, and biases that have been adjusted to the feature values of the dataset for which they 

were trained [29]. The vast majority of pre-trained networks are trained on a subset of the ImageNet 

database [30], which is used in the ImageNet Large-Scale Visual Recognition Challenge 

(ILSVRC) [31]. These networks have been trained on over a million images and can classify images 

into 1000 different object categories. Using a pre-trained network with transfer learning is typically 

much faster and easier than training a network from the ground up, which makes them widely used. 

This section goes over ResNet-50, VGG16, and Google's Inception, three pre-trained CNN 

models that are frequently used for transfer learning. Transfer learning (TL) is a machine learning (ML) 

technique that focuses on storing and transferring knowledge gained while solving one similar problem 

to another. 

Pre-trained models, like the ones mentioned above, can be adapted to a new problem by 

swapping their fully connected network layers while keeping the convolutional and pooling layers. As 

a result, in a transfer learning process, only fully connected network layers must be trained, which can 

save significant time during network training. 

2.6.1 ResNet-50 

The Residual Network, also known as ResNet, is a model that uses the residual module rather than 

attempting to learn features. ResNet has numerous variations that employ the same concept but varies 

in the amount of layers in its architecture. ResNet-50 refers to the variant with 50 neural network layers. 
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It was created by Microsoft researchers [32] and has since become extensively used for image 

classification [33]. 

 

Figure 9: Residual Network [33]. 

ResNet skip connections to propagate information over layers. In Figure 9 from [33], the link 

labelled as "identity" allows the network to learn the identity function and sends the input through the 

block without going through the other weight layers. The output value of F(x) + x is obtained by adding 

the value x from the previous layer to the output of the layer ahead, F(x). This is advantageous because 

it allows creating a deeper network, which can pass over layers that the model considers to be less 

relevant. 

2.6.2 VGG16 

VGG16 is a convolutional neural network model created by K. Simonyan and A. Zisserman that scored 

92.7 percent in ImageNet's top-5 accuracy test [34]. The network's input is limited to 224 × 224 RGB 

pictures that are subjected to a stack of layers, with the filters set to an extremely tiny receptive field 

size of 3 × 3. 

The network employs three completely linked layers, which are common in this sort of network, 

with the softmax layer serving as the final layer. Figure 10, presents the architecture of the VGG16. 

 

Figure 10: VGG16 Architecture [34]. 

 

https://keras.io/api/applications/vgg/#vgg16-function
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2.6.3 Google’s Inception 

GoogLeNet (or Inception V1) is a 22-layer deep convolutional neural network that is a variant of the 

Inception Network, a DNN developed by Google in 2014 [35], to help with image processing and object 

identification. Inception V3 is the third iteration of GoogLeNet NN, which achieved 78.1 percent 

accuracy on the ImageNet dataset during the ILSVRC [36]. 

Based on the original work “Rethinking the Inception Architecture for Computer Vision” by 

Szegedy, et al. [37], the model represents the result of numerous concepts explored by various 

researchers over the years. It was designed to allow for deeper networks while still limiting the number 

of parameters to around 25 million, as compared to 138 million for VGG16 [29].  Convolutions, average 

pooling, max pooling, concats, dropouts, and fully connected layers are among the symmetric and 

asymmetric building blocks in the architecture (Figure 11). 

 

Figure 11: Inception v3 Architecture [37]. 
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Chapter 3 

State of the Art 

Recently, ML methods have been used as an approach to the detection and analysis of malware. The 

growth in the number of cases of malware attacks, the decrease in the cost of processing power and the 

advances made in the field contributed to new proposals in the literature to improve malware analysis. 

Meanwhile, privacy has emerged as a big concern. Its preservation in the context of ML is significantly 

different from traditional data privacy protection. Therefore, most existing solutions only address 

privacy problems during the ML process. As a result, it is important to continually invest in research on 

privacy issues and ML. 

 

3.1 Malware as an Image 

L. Nataraj et al. [15], proposed to characterize and evaluate malware based on its visualization as 

greyscale images. Through the transformation of the malware binary to be interpreted as an 8-bit array. 

The bit is the most fundamental unit of information in computers and digital communications since it 

represents a binary integer. A group of 8 bits, 1 byte, contains 28 different values, where the range of 

integer values that can be recorded in 8 bits varying depending on the integer format selected. The two 

most popular representations are the ranges -128 (-1 × 27), to 127 (27 - 1), for representation as two's 

complement, and from 0 to 255 (28 - 1), for representation as unsigned, which is the same value range 

that a pixel is represented in a greyscale image, Figure 12. 

By reshaping the 8-bit array into a matrix and vieweing it as a greyscale image, revealed 

important visual correlations in the image texture of malware belonging to the same family. It can be a 

consequence of the widespread method of reusing the code to build new malware variants. 

 

Figure 12: Visualizing Malware as an Image[15]. 

To compute texture features in the malware images, it was used GIST [38], which uses a wavelet 

decomposition, to extract features from the global structure of the image. These elements are used to 

perform a comparison against previously identified malicious patterns. Finally, the k-nearest neighbors 

with Euclidean distance carried out the malware classification, achieving a classification accuracy of 

97.18 percent for a dataset composed of 25 malware families. 

Although an image rendered based on a global structure features is vulnerable to structural 

changes, cybercriminals that are aware of this technique can avoid detection, by relocating sections of 

code or adding dummy data. 
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Gibert et al. [16] suggest a different approach to solve the countermeasure employed by cybercriminals. 

Using Convolutional Neural Networks (CNNs) to extract local and invariant features from an image, 

finding the patterns independently of their position. Thus, it allows the network to detect patterns of 

known malware present on an image. Figure 13 shows the structure of Gibert’s CNN. 

 

Figure 13: Gibert’s CNN for classification of malware represented as greyscale images [16]. 

To assess CNNs approach, two publicly available data sets were used: the same one used by 

Nataraj et al. [15], which included 9,458 samples from 25 different malware families, and a second from 

the Microsoft Malware Classification Challenge (presented in Section 4.1). 

In the following images of malware representation, it is possible to detect small changes, while 

maintaining the overall structure of samples belonging to the same family. However, they are distinct 

from the malware images of other families, Figure 14. 

 

Figure 14: Greyscale images of malicious software belonging to various families – Microsoft 

Dataset [16]. 
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The overall classification accuracy achieved by CNN (Figure 13) to the dataset with the same 25 

malware families was higher than the approach of Nataraj et al. [15], achieving 98.48 percent of 

accuracy. For the Microsoft dataset, it achieved 97.3 and 97.5 percent accuracy, and 92.7 and 94 percent 

of F1-Score macro average, in the 5-fold and 10-fold cross validation tests, respectively. 

Although the proposed solution has a range of benefits that enable malicious programs to be 

detected in a real-time context, this strategy has issues for certain samples that have been compressed 

or encrypted, which may have a completely different overall structure. 

3.2 Image Privacy 

The article “When Machine Learning Meets Privacy” [39] tried to find answers to the topic “What are 

the privacy challenges and solutions associated with ML”. This study attempts to provide the first 

comprehensive survey on privacy in ML, by investigating different scenarios/applications of privacy 

and ML, such as private machine learning, machine learning aided privacy protection, and machine 

learning-based privacy attack and corresponding protection schemes.  

With a focus on private ML, the study presents several private ML schemes, such as encryption, 

obfuscation, and aggregation. The encryption or cryptography-based methods applied to the CNN data, 

take advantage of homomorphic cryptography, where calculations are represented as Boolean or 

arithmetic circuits, which can be preserved after encryption, making it possible to compute over the 

encrypted data without knowing the secret key. Another method proposed is to encrypt the ML model 

by using homomorphic encryption on the gradients. 

The two main demonstrations of the use of neural networks over data encrypted with 

homomorphic encryption (HE) are presented by Dowlin et al. [40], who proposed CryptoNets, and 

Hesamifard et al. [41], who presented CryptoDL. Both show how to efficiently convert learned neural 

networks to make them applicable to encrypted input data. 

Overall, training neural networks, particularly DNNs, over encrypted data remains 

computationally challenging. Even when trained in plain text, the network is slow. When HE is added 

to a process, it slows it down by at least an order of magnitude. 

Lastly, obfuscation strategies can be used for both the data and the model, reducing the accuracy 

of both. This is accomplished by adding noise to the model parameters or the original dataset. 

CryptoNets 

Dowlin et al. [40] propose a method for converting trained neural networks into CryptoNets, which are 

neural networks that can be applied to encrypted data. This enables a data owner to communicate their 

data to a server in an encrypted format. Because the server does not have access to the keys needed to 

decode the data, encryption ensures that it stays private. Furthermore, the neural network's encrypted 

predictions can be transmitted back to the owner of the secret key, who is the only person capable of 

decrypting them. 

YASHE [42] is a fully homomorphic encryption (FHE) scheme used to improve the efficiency 

of the regular schemes, where the encryption scheme's parameters are selected such that arithmetic 

circuits of a specified depth may be assessed. It implies knowing the topology of the neural network, 

including the activation functions. As a result, it was possible to achieve 99.9 percent accuracy for 

optical character recognition tasks using the MNIST [43] dataset. 
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CryptoDL 

Hesamifard et al. [41] approach focuses on operations inside neurons. All other operations in a neural 

network, aside from activation functions, are additions and multiplications, which can be performed on 

homomorphically encrypted data. Although activation functions cannot be utilized in HE schemes, it is 

necessary to firstly design methods for approximation of the activation functions commonly used in 

CNNs (i.e. Sigmoid, ReLU, and Softmax) with low degree polynomials which is essential for efficient 

homomorphic encryption schemes. Then, it trains convolutional neural networks with the approximation 

polynomials instead of original activation functions.  

Their proposed solution consists of a polynomial approximation, based on the derivative of the 

activation function ReLU due to its impact on error calculation and weight updating. It was applied to 

several neural networks, and the models' performance was evaluated using approximation polynomials 

rather than actual activation functions. Figure 15 shows the structure of CNN, which was used to 

accomplish 99.52 percent on the MNIST optical character recognition challenges, proving that 

CryptoDL provides efficient, accurate, and scalable privacy-preserving predictions. 

 

 

Figure 15: CNN model with Polynomial Activation Function [41]. 

3.3 Deep Learning Frameworks 

The problem of malware identification and recognition is a very challenging task with no perfect 

solution. This challenge culminated in several framework implementations with distinct benefits in 

specific sub-areas of deep learning [44]. Some of the well-known frameworks are listed below: 

TensorFlow 

Developed by Google Brain Team, is an open-source machine learning framework written in Python on 

top of a C/C++ engine, offering high performance with large datasets [44]. As a result, it is well-suited 

for developing and experimenting models with deep learning architectures. Furthermore, it supports 

mobile platforms, such as iOS and Android. 

Keras 

Built on top of TensorFlow with an emphasis on user experience, it is a framework that easily scales up, 

through data parallelism and hence, it can process massive volumes of data while accelerating the 

training time for the models [44]. It is considered one of the most popular frameworks, offering 

consistent and straightforward APIs while reducing the number of user actions required for typical use 

cases, providing clear and actionable error messages. 
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PyTorch 

Based on the Torch library and developed by Facebook with the primary purpose of speeding up the 

entire process from research and prototyping to production deployment [44]. It operates with a 

dynamically updated graph, which allows making improvements to the model design during the training 

phase. It is ideal for preparing, developing, and launching small projects and prototypes. 

Sonnet 

DeepMind's Sonnet is a Tensorflow-based system for integrating neural networks [44]. It is based on 

the development and creation of Python objects to describe components of the neural network. 

Encapsulating neural network elements, such as models, allows being combined multiple times into a 

data flow chart while helping to simplify the design of high-level architectures. 

MXNet 

Apache MXNet is an open-source deep learning framework, although similar to TensorFlow, which 

achieves a faster training speed and offers better performance on data-intensive tasks [44]. While 

MXNet performs better on processing tasks, it offers fast context switching and optimized computing. 

Compared to TensorFlow, MXNet also has a smaller open-source community. 

3.4 Class Balancing 

Imbalanced data is a common challenge problem when training Machine Learning models, which means 

the dataset classes are not equally represented. There are two popular approaches to deal with it, in order 

to establish the balance, and each class starts to have the same weight consideration to the model. 

Class Weighting 

Class weights directly affect the loss function by imposing a greater (or lower) penalty on classes with 

more (or fewer) weights. In effect, by intentionally adjusting the model bias to favour more accurate 

predictions in the higher weight class, losing some ability to predict the lower weight class (the majority 

class in unbalanced datasets) [45]. 

Oversampling and Undersampling 

Oversampling methods essentially give more weight to specific classes, through the duplication of 

observations, giving them more influence in the model fit. However, this might lead to the model being 

overfitted. Undersampling methods, on the other hand, remove samples from the majority class, which 

can lead to the loss of crucial information for a model [45]. 
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Chapter 4 

Malware Classification 

The problem of malware identification and recognition is a very challenging task with no perfect 

solution. The malware industry has become a well-organized market involving large amounts of money. 

It has led to massive investments in technologies and resources built to evade traditional protections, 

representing one of the biggest challenges to the security community. 

In order to explore the problem, this chapter introduces the Microsoft Malware Classification 

Challenge, which has one of the largest and newest publicly available datasets for the Big Data 

Innovators Gathering Cup (BIG 2015) [46][47]. Additionally, the VirusShare.com repository, 

considered one of the main sources of malware in providing samples, to security researchers, incident 

responders, forensic analysts, or merely curious people, access to samples of live malicious code [48]. 

The use of a robust dataset, such as Microsoft or Virusshare, composed of a large and diverse 

number of samples, is insufficient for accurate malware detection. To ensure that the ML model is 

accurate, metrics must be identified and established to evaluate its performance. This chapter describes 

some of the most frequent assessment measures used to evaluate deep learning architectures. 

Finally, a novel CNN model will be introduced for the malware email analysis component in 

order to attempt better results compared to the work done by Nataraj et al. [15] and enhanced by Gibert 

et al. Following the performance analysis and evaluation of the novel model, along with a comparison 

to pre-trained models (Section 2.6). 

 

4.1 Microsoft Malware Classification Challenge 

In 2015, Microsoft conducted a Kaggle competition [46][47] with the aim of classifying malware into 

families based on its content and characteristics. Microsoft provided a dataset of 21741 samples for this 

competition divided into 10868 samples for training and 10873 for testing purposes, totalling almost 

half a terabyte of uncompressed data. The dataset is organized into 9 different families of malware. Each 

sample contains an identifier, a 20-character hash value that uniquely identifies the file, and a class label, 

which is an integer representation of the malware family name to which the malware belongs: (1) Ramnit 

[Worm], (2) Lollipop [Adware], (3) Kelihos_ver3 [Backdoor], (4) Vundo [Trojan], (5) Simda 

[Backdoor], (6) Tracur [TrojanDownloader], (7) Kelihos_ver1 [Backdoor], (8) Obfuscator.ACY [Any 

kind of obfuscated malware], (9) Gatak [Backdoor]. The distribution of classes in the training data is 

not standardized, and the number of instances of certain families outnumbers other families, Figure 16. 
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Figure 16: Malware Classification Challenge – Dataset. 

Each malware sample is provided with a file containing the hexadecimal of the file's binary content, and 

a metadata file generated by the IDA disassembler tool with extracted data from binary, such as 

assembly instructions, function calls, arguments, variables and registers used, etc. 

4.1.1 Bytes File 

The bytes file contains the malware's binary content in its raw hexadecimal form, Figure 17. The 

following image shows a snapshot of a Rammit malware sample bytes file. 

 

Figure 17: Byte’s file of a Rammit sample. 

A hexadecimal record is composed of six fields: 

• Byte Count, two hex digits which indicate the number of bytes in the data field. 

• Address, four hex digits to represent the data's 16-bit beginning memory address offset. 

• Record Type, two hex digits to define the meaning of the data field, from 00 to 05 representation 

(Data, End Of File or Extended Segment, Start Segment, Extended Linear, Start Linear 

Address). 

• Data, a data sequence of n bytes represented by 2n hex digits. 

• Checksum, two hex digits, a calculated value used to ensure the record is error-free. 
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4.1.2 ASM File 

The ASM file is a metadata manifest, which is a log containing metadata information, such as function 

calls, memory allocation, and variable manipulation (Figure 18). The following image shows the 

content of the ASM file snapshot of the previous Rammit bytes file. 

 

Figure 18: Assembly file of a Rammit sample. 

An assembly program has three main sections: 

• The data section is used to declare initialized data or constants that do not change during 

runtime, such as constant values, file names, or buffer size. 

• The bss section is used for declaring variables, such as uninitialized data. 

• The text section is where the actual code is placed. 

Aside from the previous sections, there may be additional sections such as: 

• The rsrc section contains all the resources for the program.  

• The rdata section is used to store data that does not fall into the data or bss section. This is also 

only readable data, which contains literal strings, constants and the debug directory information. 

• The idata section contains information about the imports, such DLLs of the program, including 

the Import Directory and Import Address Table. 

• The edata section contains the information about the names and addresses of exported functions, 

includes the export directory that provides the address and offset of the functions to programs 

that import the DLL. 

• The reloc section holds a table of base relocations. A base relocation is a change to an instruction 

or an initialized variable value that is required if the loader is unable to load the program. 

 

Other parts can also appear as a result of using polymorphic or metamorphic techniques to hide the 

actual code. In some malware transformations, the different binary fragments can be seen, and the 

assembly section of the malware can be identified by the different textures in the images. The following 

Figure 19 shows a Rammit sample transformation. 
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Figure 19: Image of binary Fragments of a Rammit sample. 

4.2 VirusShare Repository 

VirusShare repository [48] is a service hosted and maintained by Corvus Forensics, which provides 

digital forensics, data breach and cyber-crime incident response, malware analysis, and strategic 

advisory services. It is considered one of the main sources of malware samples, providing them globally. 

It has joined efforts and successfully contributed to the global research security community, 

with more than 35 million live malware samples daily update. It allows searches by malware families, 

retrieving files where they are presented, which could include different MIME types, such as (pdf, exe, 

xlsx, etc..). The result is presented, with each sample containing the following Indicators of 

Compromise (IoC): MD5, SHA1, and SHA256 hashes, as well as ExIF data and whether or not the 

malware was found by some AV. 

4.3 Tools and Libraries 

This section briefly describes the primary machine learning tools and libraries used for the work on this 

dissertation: the deep learning framework, the Scikit-learn Python library, and the assessment metrics. 

As described in Section 3.3, TensorFlow has been widely adopted, mostly because it has a 

Python API, which was recently enhanced in TensorFlow 2.0. It is well known and endorsed by a broad 

community that it is constantly developing it. However, Keras was chosen because it is built on 

TensorFlow and is a high-level framework that allows the abstraction of TensorFlow complexity, 

making it more user-friendly. It was designed to scale up, and its support for distributed computing 

makes it ideal for analysing new malware types emerging on a daily basis.  

4.3.1 Scikit-learn 

Scikit-learn (Sklearn) is a Python library that provides simple and effective prediction implementation 

methods, such as statistical modelling, classification, regression, clustering, and dimensionality 

reduction [49]. Also, it comprises the implementation of numerous traditional machine learning 

methods. This mostly Python-written package is based on NumPy, SciPy, and Matplotlib. 

.text 

.rdata 

.data 

.idata.

.rsrc 

.reloc 
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4.3.2 Assessment Metrics 

The performance of machine learning algorithms can be measured through various techniques. An 

assessment metric function is used to evaluate the performance of a model. This section goes over a few 

of them. 

Mean Square Error 

Mean squared error (MSE) is the average sum of the squared difference between the actual value and 

the predicted or estimated value. It is also termed as mean squared deviation (MSD). The squaring is 

necessary to remove any negative signs, which also gives more weight to larger differences. It is called 

mean square error, as it is the process of finding the average of a set of errors. The smaller the MSE, the 

narrower the regression line (Figure 20) and the better the prediction. Figure 20 shows the best 

regression / data-fitted line [50]. 

 

Figure 20: Mean Square Error [50]. 

Pearson Correlation Coefficient 

Pearson Correlation Coefficient measures the intensity of connection and the direction of the association 

between two variables. The correlation coefficient has a value between -1 and +1 depending on the 

strength of the association. A value of 1 shows that the two variables are perfectly associated. As the 

correlation coefficient value approaches zero, the link between the two variables weakens. The sign of 

the coefficient shows the direction of the relationship; a + sign indicates a positive relationship and a - 

sign indicates a negative link. Figure 21 (a) illustrates a situation in which the variables are highly 

correlated (homoscedasticity) and Figure 21 (b) shows a case in which the correlation is low 

(heteroscedasticity) [51]. 

 

 

Figure 21: Heteroscedasticity vs homoscedasticity [51]. 

a) Homoscedasticit

y 

b) Heteroscedasticity 
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Accuracy, Precision and Recall 

Accuracy, Precision and Recall are well known metrics used on classification problems in machine 

learning. They are extremely important when it comes to statistical hypothesis testing. When dealing 

with classification problems, we are attempting to predict a binary outcome, like “Is it malware or not?” 

and “Does the malware belong to this family or not?”. Where it is important to consider the number of 

predictions that have been falsely classified as positive and falsely classified as negative, especially 

considering the context of what is intended to be predicted. Therefore, correctly classified samples are 

designated by True Positives (TP) or True Negatives (TN), depending on the class to which they belong. 

Misclassified samples are referred to as False Positives (FP) if the actual class is negative, but the 

predicted class is positive, and False Negatives (FN) otherwise [52]. 

The accuracy is the ratio of correct predictions divided by the total number of executed predictions, 

computed as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
  

 

Precision is the ratio between the correct predictions for a given class and its number of samples, which 

represents the percentage of relevant results: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝐴𝑐𝑡𝑢𝑎𝑙 𝑅𝑒𝑠𝑢𝑙𝑡𝑠
 𝑜𝑟 

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall is characterized as the percentage of relevant results that are correctly classified by the model: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑅𝑒𝑠𝑢𝑙𝑡𝑠
 𝑜𝑟 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1-Score 

The F1-Score metric takes both precision and recall into account to measure the accuracy of the model. 

False positives and false negatives can be critical depending on what is being predicted, but true 

negatives are frequently less important. The F1-Score attempts to adjust for this by assigning more 

weight to false negatives and false positives while excluding large numbers of true negatives from the 

prediction. 

𝐹1 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

Confusion Matrix 

A confusion matrix is a technique for describing the performance of a statistical classification model. 

Classification accuracy alone can be misleading if the number of observations in each class is not the 

same (e.g., imbalanced dataset), or if the dataset has more than two classes. Calculating a confusion 

matrix can provide a better understanding of the classification model's correct behaviour and help to 

identify the errors that can be made. 

The number of accurate and erroneous predictions is summarized with count values and divided 

by class. A binary confusion matrix representation is illustrated in Figure 22 (a), while a multiclass 

confusion matrix is shown in Figure 22 (b) [53]. 
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Figure 22: Binary / Two-class(Left) and Multi class Confusion Matrix [53]. 

 

4.4 CNN Architecture 

Malware identification and recognition are incredibly complex topics, where there is no one-size-fits-

all solution. As a result, AV vendors focus on hybrid approaches that combine conventional signature-

based, heuristic-based, and machine learning methods with human analysis. 

In this thesis, we propose a novel approach to classify malicious software present in emails 

attachments through their transformation into greyscale images and taking advantage of Convolutional 

Neural Networks to learn a features hierarchy from pixels to the layers of the classifier. Furthermore, 

we adapted the proposed method to preserve users privacy by encrypting their email attachment images 

representation with homomorphic encryption, which enables classifying images without decrypting 

data [40], [41]. Finally, the performance and evaluation of the novel model will be compared to the more 

complex models mentioned in Section 2.6 and the Gibert et al. [16] model described in Section 3.1. 

 

4.4.1 Neural Network 

The traditional ML models (Section 2.6) were dimensioned and trained considering image 

classification from the ImageNet database [30] as one of the key goals. The images that comprise it are 

mainly composed of distinct and well-defined objects. Unlike abstract pictures produced by the 

transformation of binary code, which features a lot of noise due to the conversion process. In this sense, 

the proposed model considers a large number of features (Section 2.3) in order to catch as many 

similarities as possible, while attempting to eliminate noise caused by the transformation through 

dropouts, to achieve the best possible result with the fewest number of layers and at a lower training 

time.   

The proposed model has not been subjected to the rigorous tests that have evaluated traditional 

models from the ML community over the years, but it is intended to test a different model structure, 

more focused on abstract image analysis and compare it with traditional models already tested and 

proven. An NN model based on Gibert et al. [16] work was developed, containing an input shape form 

of 256 × 256 pixels images, five convolutional layers of 32, 64, 128, 256, and 512 neurons each with 

ReLU activation functions and a learning rate of 0.001 deployed on the Adam optimizer. Finally, a 

Categorical Crossentropy loss function was applied, used in multiclass classification problems to find 

the class with the highest correspondence among all potential classes. 

a) Binary Confusion Matrix b) Multiclass Confusion Matrix 

c) y 
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We propose an NN model containing four dense layers, four dropouts, and an output layer with 

softmax activation function. The dropout layer was utilized with a factor of 0.5, which means that half 

of the neuronal connections are discarded and neurons that enter the dropdown leave with half of the 

connections. Figure 23 shows the architecture of the NN, where it achieves 41,946,377 trainable 

parameters with the Microsoft dataset (Section 4.1). 

 

Figure 23: Proposed CNN model architecture. 
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4.4.2 Model’s Performance and Evaluation 

The architecture of the proposed model was described in the previous section. Using the Microsoft 

dataset, this section presents an empirical evaluation of the proposed model's performance in comparison 

to popular models (Section 2.6) and the Gibert et al. (Section 3.1) model. The goal of this performance 

analysis is to find the best overall model for the Malwizard solution by achieving the highest accuracy 

percentage while minimizing training time. All aspects about Malwizard will be covered in Chapter 5, 

including the solution performance. 

To minimize possible interferences in the tests, all experiments were performed in the same 

environment, a single computer with the following hardware specification: 

• CPU: AMD Ryzen 9 3900x (12 Cores)  

• Memory: 32 GB RAM  

• GPU: AMD Vega 56 (8GB VRAM) 

• GPU API: ROCm 4.1.1 

• OS: Ubuntu 20.04 LTS (5.4.0-54 kernel) 

• ML Implementation: Keras and Tensorflow 2.4.2 

 

Due to the highly unbalanced classes in the Microsoft dataset, where the number of samples in one class 

far outnumbers the number of instances in another, it is required to uniformize the model such that all 

classes are taken into account equally.  For this approach, Class Weighting (Section 3.4) was chosen to 

balance the nine classes on the Microsoft dataset due to the large sample discrepancy between the 

classes. The class with the highest number of samples has 2942 entries, while the one with the lowest 

number has 42. 

The model was trained and verified using a data random split of 80 percent for training and 20 

percent for testing. Before the test, all the images were resampled to 256 × 256 pixels using area 

interpolation, which resamples based on the relation of surrounding pixels [54]. The training phase was 

performed for 200 epochs, which represents the number of times the model was trained using the training 

data, with the default Keras batch size of 32. To maintain a uniform distribution, the weights for 

balancing the sample were derived using the following formula: 

 

𝐶𝑙𝑎𝑠𝑠 𝑊𝑒𝑖𝑔ℎ𝑡 =  
1

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝐶𝑙𝑎𝑠𝑠
×

𝑇𝑜𝑡𝑎𝑙 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑚𝑖𝑙𝑖𝑒𝑠
 

 

Figure 24 presents the results during the training (Train) and validation processes (Val). The 

train line in the Recall graph (c) does not alter significantly from epoch 50 in the training curve, and the 

validation curve remains in the 0.9 recall range. Furthermore, the loss ((a) loss graph) in the validation 

curve grows, implying that the longer the model is trained, the greater the loss in the validation is. 

Contrarily, the loss in the training curve tends to decrease. The model also appears to be over-fitting in 

training since the accuracy (b), precision (d), and recall (c) curves are unstable and all tend to one. On 

the other side, this also might occur as a result of the excessively imbalanced data. 
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Figure 24: Variation of the main metrics for evaluating the model as the number of epochs grows. 
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Finally, the learned model was used to make predictions on the training data, achieving an F1-Score 

average (avg) of 96.19 percent. The model’s confusion matrix, shown in Table 1, shows how this NN 

reacts in the predicted malware classes. It can accurately predict all classes, except the ones that have 

fewer samples. Even with weight balancing, increasing samples in these classes or reducing the gap to 

a more manageable level with the aid of class balancing is critical for increasing and uniformizing 

accuracy. 

 

K-fold Cross Validation 

K-fold cross validation is a method used to measure the generalization performance, which helps to 

validate the overall results obtained in Table 1. The data is divided into K folds of equal size. A single 

subsample from the K subsamples is kept as validation data for testing the model, this being 20 percent, 

while the others are utilized as training data, 80 percent. This technique is done as many times as the 

number of folds, with each of the K folders serving as validation data exactly once [55].  

The results of the 5-fold and 10-fold tests for the proposed model are presented in Table 2 and Table 3. 

Malware Family Precision Recall F1-Score Support 

Gatak 0.917874 0.989583 0.952381 192 

Kelihos_ver1 0.908046 0.975309 0.940476 81 

Kelihos_ver3 0.991843 0.996721 0.994276 610 

Lollipop 0.983299 0.971134 0.977178 485 

Obfuscator.ACY 0.974249 0.900794 0.936082 252 

Ramnit 0.955479 0.914754 0.934673 305 

Simda 0.666667 0.888889 0.761905 9 

Tracur 0.890909 0.960784 0.924528 153 

Vundo 0.952941 0.941860 0.947368 86 

Accuracy    0.961804 (96.18%) 2173 

Macro avg 0.915701 0.948870 0.929874 (92.99%) 2173 

Weighted avg 0.963139 0.961804 0.961909 (96.19%) 2173 

Table 1: Confusion Matrix of the Proposed Model. 

5-Fold Test Accuracy Macro AVG F1-Score Weighted AVG F1-Score (min) 

1 0.940230 (94.02%) 0.853941 (85.39%) 0.939520 (93.95%) 

2 0.956322 (95.63%) 0.841059 (84.10%) 0.953014 (95.30%) 

3 0.940092 (94.00%) 0.808700 (80.87%) 0.938738 (93.87%) 

4 0.928571 (92.86%) 0.876935 (87.69%) 0.928945 (92.89%) 

5 0.933180 (93.31%) 0.811034 (81.10%) 0.932164 (93.22%) 

Total (avg) 0.939679 (93.97%) 0.838334 (83.83%) 0.938476 (93.85%) 

Table 2: Performance 5-Fold test for classification of Microsoft dataset. 
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As can be seen in Table 2 and Table 3, the overall weighted average of the F1-Score on the k-fold tests 

does not differ much from the overall result (96.1 percent). The existing discrepancy occurs due to the 

fact that the dataset was split, which results in a lesser number of samples in each test, decreasing the 

final result. This confirms that the model is accurate, and the precision of 96.19 is valid. 

Before proceeding with model comparisons, the Gibert model in Figure 13 must be generated 

in Keras, the same framework that was used to generate the traditional models and to develop the novel 

model. Despite the findings of the Gibert et al. model were made public, the test environment is not the 

same. Furthermore, the F1-Score was not implemented in Tensorflow 1.9, which was utilized in their 

study, since it was introduced in Tensorflow 2.0 [56]. This shows that a non-standard F1-Score function, 

which is not included in the public code [57], was used to evaluate the model. To obtain the best results 

with the least amount of interference, all models must be tested under the same conditions. 

The following code snippet (Figure 25) represents the implementation of Figure 13 in Keras: 

 

Figure 25: Gibert’s Keras implementation. 

10-Fold Test Accuracy Macro AVG F1-Score Weighted AVG F1-Score (min) 

1 0.940367 (94.04%) 0.902099 (90.21%) 0.940637 (94.06%) 

2 0.912844 (91.28%) 0.779254 (77.93%) 0.910203 (91.02%) 

3 0.930876 (93.09%) 0.810115 (81.01%) 0.928611 (92.86%) 

4 0.912442 (91.24%) 0.791727 (79.17%) 0.912438 (91.24%) 

5 0.912442 (91.24%) 0.792789 (79.28%) 0.911164 (91.11%) 

6 0.926267 (92.63%) 0.902182 (90.22%) 0.926554 (92.66%) 

7 0.936111 (98.61%) 0.903654 (90.37%) 0.936424 (93.64 %) 

8 0.917051 (91.71%) 0.774705 (77.47%) 0.919697 (91.97%) 

9 0.912037 (91.20%) 0.784986 (78.50%) 0.907264 (90.73%) 

10 0.921296 (92.13%) 0.775749 (77.58%) 0.918941 (91.89%) 

Total (avg) 0.922173 (92.22%)  0.821726 (82.17%)  0.921193 (92.12%) 

Table 3: Performance 10-Fold test for classification of Microsoft dataset. 
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Table 4 presents the findings of the empirical performance evaluation for the different models, 

comparing the trainable parameters, weighted F1-Score attained, epoch average time and overall 

training time. The epoch average time represents the average time in each training iteration over the 200 

epochs, while overall training time is the total duration of the process. 

The VGG16 and Gibert models had the lowest accuracy in the tests, with one of the key reasons being 

the large number of parameters assessed, which are considered a lot of the noise present in the images 

making it difficult to identify the most important features. The ResNet-50, on the other hand, has one of 

the best F1-score. However, the time to train is 23 percent higher than InceptionV3 developed by 

Google. Although Google’s NN achieved the best F1-Score (97.80 percent) of all four models, the 

proposed model achieved a close value on F1-Score at less than one third of the training time with 

double of the training parameters. 

Keras results for Gibert's model are vastly different compared with what they published in the 

study. The total accuracy attained in Keras implementation was 81.36 percent (Table 4). Reaching 52.26  

(Table 6) and 54.59 (Table 7) percent for the 5-fold and 10-fold cross validation tests respectively, much 

lower than the 97.3 and 97.5 percent published [16]. Because the dataset must be split, the accuracy in 

the k-fold tests tends to be lower than overall accuracy, as a consequence of the lower number of samples 

in each test. Table 5 shows the model confusion matrix for Gibert’s Keras implementation. 

Model Params Accuracy F1-Score 
Epoch Time 

(sec/avg) 

Time to Train 

(min) 

ResNet-50 23 546 761 97.52% 97.52% 1350s 4509.538 

VGG16 165 753 545 93.56% 93.68% 130s 434.983 

InceptionV3 21 786 217 97.79% 97.80% 58s 189.333 

Gibert’s Model 245 386 489 81.36% 80.95% 29s 99.440 

Proposed Model 41 946 377 96.18% 96.19% 16s 54.387 

Table 4: Models performance comparison for classification of Microsoft dataset. 

Malware Family Precision Recall F1-Score Support 

Gatak 0.589286 0.515625 0.550000 192 

Kelihos_ver1 0.931507 0.839506 0.883117 81 

Kelihos_ver3 0.986928 0.990164 0.988543 610 

Lollipop 0.746141 0.896907 0.814607 485 

Obfuscator.ACY 0.872510 0.869048 0.870775 252 

Ramnit 0.743772 0.685246 0.713311 305 

Simda 0.000000 0.000000 0.000000 9 

Tracur 0.582734 0.529412 0.554795 153 

Vundo 0.868852 0.616279 0.721088 86 

Accuracy   0.813622 (81.36%) 2173 

Macro avg 0.702414 0.660243 0.677360 (67.74%) 2173 

Weighted avg 0.811368 0.813622 0.809535 (80.95%) 2173 

Table 5: Confusion Matrix of the Gibert Model. 
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The results of the 5-fold and 10-fold tests for the Gibert’s model are presented in Table 6 and Table 7. 

 

Another important metric is the weighted average of F1-Score values, which takes dataset balancing 

into account and is the most commonly used metric for evaluating model accuracy with imbalanced 

datasets. However, the Gibert's study only presents the macro average, which yields the average without 

taking into account the proportion for each class in the dataset. Additionally, they did not stated if it was 

used any approach to balance the dataset that allows the macro average metric to be considered. 

Since it is not indicated, comparing the macro average value in Table 5, 67.74 percent is 

considerably lower than what was achieved in the Gibert’s study: 92.7 percent for the 5-fold test and 94 

percent for the 10-fold test [16]. Additional metrics such as epoch time, training time, and ROC 

assessment, could be used to evaluate the performance of the model and help to find the best model, but 

they were not made public. Taking into consideration the findings and information supplied by 

Gibert et al. [16], the novel model outperforms theirs in all metrics.  

By observing Figure 26, which depicts the F1-Score variation for the complex three models (ResNet-

50, VGG16, InceptionV3) and the novel model, it can be seen that all of the models tend to overfit, 

5-Fold Test Accuracy Macro AVG F1-Score Weighted AVG F1-Score (min) 

1 0.528736 (52.87%) 0.432769 (43.28%) 0.486894 (48.69%) 

2 0.526437 (52.64%) 0.419545 (41.95%) 0.484018 (48.40%) 

3 0.532258 (53.23%) 0.422431 (42.24%) 0.499228 (49.92%) 

4 0.529954 (53.00%) 0.401976 (40.20%) 0.484921 (48.49%) 

5 0.495392 (49.54%) 0.381608 (38.16%) 0.458928 (45.89%) 

Total (avg) 0.522555 (52.26%) 0.411666 (41.17%) 0.482798 (48.28%) 

Table 6: Gibert’s model performance 5-Fold test for classification of Microsoft dataset. 

10-Fold Test Accuracy Macro AVG F1-Score Weighted AVG F1-Score (min) 

1 0.660550 (66.06%) 0.457428 (45.74%) 0.595371 (59.54%) 

2 0.536697 (53.67%) 0.446229 (44.62%) 0.483920 (48.39%) 

3 0.456221 (45.62%) 0.425299 (42.53%) 0.448255 (44.83%) 

4 0.493088 (49.31%) 0.411959 (41.20%) 0.443503 (44.35%) 

5 0.506912 (50.69%) 0.428766 (42.88%) 0.436272 (43.63%) 

6 0.493088 (49.31%) 0.414958 (41.50%) 0.432534 (43.25%) 

7 0.490741 (49.07%) 0.392032 (39.20%) 0.440053 (44.01%) 

8 0.488479 (48.85%) 0.436586 (43.66%) 0.457958 (45.80%) 

9 0.657407 (65.74%) 0.451765 (45.18%) 0.585097 (58.51%) 

10 0.675926 (67.59%) 0.469577 (46.96%) 0.601491 (60.15%) 

Total (avg) 0.545911 (54.59%)  0.433446 (43.34%)  0.492445 (49.24%) 

Table 7:  Gibert’s model performance 10-Fold test for classification of Microsoft dataset. 
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indicating that they do not improve the accuracy over 100 epochs. Thus, it allows to establish the training 

boundary and fit the models to avoid overfitting during the training phase. 

 

                    
 

                   

Figure 26: Models variation of the F1-Score.  

 

Receiver Operating Characteristics  

The Receiver Operating Characteristics, also known as ROC graph, is often used in binary classification 

to analyse the output of a classifier. It is another common approach to measure the model's performance. 

To apply the ROC curve to multi-label classification, the result must be binarized [58]. Each class is 

represented by a distinct curve in the ROC graph, as well as two additional curves: macro-average and 

micro-average. A macro-average curve computes the metric separately for each class and then averages 

it (therefore treating all classes equally), whereas a micro-average curve aggregate all class contributions 

to computing the average metric.  

Figure 27 shows the proposed model findings. The Area Under the ROC Curve (AUC) value 

varies between 0 and 1, 0 and 100 percent respectively, with the Lollipop curve being the 

poorest, 46 percent. AUC provides an aggregate measure of performance across all possible classes, 

reflecting the likelihood that the network will identify one class over the others. In this situation, the 

network had a harder time to successfully identify the Lollipop malware samples than the other types, 

which can lead to misclassifying the samples as Lollipop instead of the correct class. 

c) InceptionV3 

 

a) ResNet-50 

 

b) VGG16 

 

d) Proposed Model 

 



 

 

 
37 

To evaluate the obtained AUC values of the proposed model, it was compared with the model 

that hit the best F1-Score value in the tests. Figure 28 shows the ROC curves for the InceptionV3 model, 

where the same behaviour is observed in the Lollipop class (56 percent) having similar results in the 

other classes. As a result, it demonstrates that the proposed model produced comparable results while 

taking less time during the training phase. 

 

Figure 27: Proposed Model ROC curve all classes. 

 

 

Figure 28: InceptionV3 ROC curve all classes. 
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Encrypted Dataset 

Machine learning's popularity and success have made it possible to utilize ML models in a range of 

online applications. Companies are making use of machine learning's ability to handle enormous 

volumes of their customers' data, forcing the need to ensure that the data stays secure and private. 

Homomorphic cryptography (HE) appears as a solution to the ML privacy problem, allowing 

computation on encrypted data. The training data is encrypted and then ML uses the encrypted data to 

directly produce an encrypted prediction that only the owner could decrypt. Since the most common 

NNs and the proposed model were shown to be successful in a malware classification, an HE 

implementation called Paillier Homomorphic Encryption (PHE) was used to protect the privacy of 

malware images generated from the Microsoft dataset. 

The combination of the PHE and CNN is depicted in the process shown in Figure 29. Data is 

encrypted using a public key during pre-processing and cannot be decrypted without knowing the private 

key. As a result, the CNN-based model can only access encrypted data (cipher-images). Instead of 

training malware images, the focus is now on cypher-images data, which is made possible by the Paillier 

encryption scheme's partly homomorphic characteristic [59]. The process involves encrypting each pixel 

in an image and applying a modulo 256 operation to return values between 0 and 255, allowing a 

ciphertext to be represented as an image.  

Following the training phase, the model is tested using the new cypher-images data that has 

been encrypted with the same public key as the training procedure. As a result, data privacy is protected 

during both training and testing, ensuring that image data processing is secure and unauthorized parties 

are unable to decrypt data. 

 

 

Figure 29: Paillier Homomorphic Encryption CNN workflow. 

 

When an image is homomorphically encrypted, noise is produced in the ciphertext that is directly 

proportional to the cypher key size, which is often bigger than the input data. Security Best Practices 

[60] recommend 2048-bit keys for asymmetric encryption. However, in order to reduce noise during the 

tests and test the performance, 128-bit keys were used to determine if it is feasible to analyze encrypted 

data using the models examined in Section 4.4.2. Note that weak (e.g., 128-bit) keys are instantly 

breakable, making their use unacceptable in a real-world environment. 
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The images were resampled to a 256 × 256 shape and encrypted with the 128 bits keys. Table 8, shows 

the results obtained for the four models under analysis, based on the training of 50 epochs: 

The F1-Score values obtained in Table 8 highlight the problem that as expected, it is not the best practice 

to utilize the traditional CNN approaches to analyse ciphered datasets. Aside from activation functions, 

all operations in a NN are additions and multiplications, which can be performed on homomorphically 

encrypted data. However, to analyse the output, the last layer, the softmax function, should be replaced 

with one that can evaluate polynomials, as suggested by Hesamifard et al. [41].  

In a future study, it would be interesting to be able to evaluate and compare the behaviour of 

polynomial functions applied to the analysis of encrypted malware. To determine which factors can 

impact due to noise present in images and try to get better performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model Params F1-Score Epoch Time (sec/avg) Time to Train (min) 

ResNet-50 23 546 761 15.88% 1350s 1127.31 

VGG16 165 753 545 0.3% 130s 109.15 

InceptionV3 21 786 217 1.2% 58s 49.28 

Proposed Model 41 946 377 0.3% 16s 13.30 

Table 8: Models performance comparison for classification of Microsoft encrypted dataset. 
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Chapter 5 

Malwizard 

Malwizard is an adaptable Python solution suited for companies or end-users, that allows them to 

automatically obtain a fast malware analysis. This chapter describes the solution specifications, as well 

as its design, development, and components. Its security mechanisms are presented, and Malwizard's 

performance is evaluated with and without the use of cryptography in the sample to be analysed, 

regardless of the model used. A tutorial on how to use Malwizard is available in Appendix A.  

 

5.1 Requirement Analysis 

5.1.1 Functional Analysis 

The biggest challenge for Malwizard is to achieve a high level of confidence in malware identification 

at a reduced evaluation cost. The first functional requirement, the automated extraction of suspicious 

malware files from the emails and convert them into greyscale images, could be solved by an add-in for 

Microsoft Outlook and an API service in a way to adapt into different email applications or any incident 

response platforms. Then, images are sent to the ML processing unit of the Malwizard to be evaluated. 

The second functional requirement is the malware identification process with Malwizard, which 

receives the image from the add-in or API, extracts the features from the image, and test the potential 

malicious intent. In order to solve this requirement, a CNN model with regular updates and a diverse 

training set is essential. As a result, a good foundation for identifying malware is built to detect threats 

in advance and help to prevent zero-day attacks. 

In terms of information management, Malwizard must only access the email attachments in 

order to convert their binary code into images. A privacy option is also provided for testing purposes as 

it needs to be tested and adapted so that in the future models that apply polynomial functions can be 

used. It applies homomorphic encryption into greyscale images on the client-side, before sending them 

to the ML processing unit, which prevents a reverse engineer attack on the images to obtain the original 

file. Furthermore, the ML processing unit stores the image analysis to enhance the model, as well as a 

small amount of mandatory data. This information data is part of the ML processing unit, related to the 

communication layer and services execution. 

5.1.2 Non-functional Analysis 

Compliance. In order to comply with the General Data Protection Regulation (GDPR) requirements, no 

sensitive information is collected, and all gathered information is subject to the bare minimum 

requirements. 

Correctness. A correct CNN model can be characterized as given a set of training data with respective 

classification classes, identifies the correct class with a high level of confidence, when an unknown 

sample is presented. Therefore, the correctness of malware identification is directly correlated to the 

training sample. If users do not have a diverse and reasonable size training set, the Malwizard cannot 

guarantee an accurate malware identification. 
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Documentation. All classes in Malwizard code must be documented in order to help users to understand 

the methods, as well as encourage them to develop and improve the work. 

Extensibility. Malwizard provides an API, which receives the image to be analysed. As a result, users 

can create new middleware layers to connect with various applications, such as email applications or 

incident response frameworks, without having to change the ML processing unit. 

Licensing. Malwizard source code is proprietary. However, it offers an open-source API that allows the 

development of customized middleware for specialized applications. 

Maintainability. In order to detect new types of malware, high maintainability is a mandatory function. 

Malwizard must support continuous sample updates, which can be with data gathered in each analysis 

or through sample modules, in order to improve the detection performance over time. 

Scalability. The ML processing unit must maintain the minimum amount of necessary data collected in 

each training sample in order to remain scalable in the face of the large amounts of data that are needed 

to achieve a high level of confidence. 

Security. An SSL certificate provides security by authenticating the HTML/XML Malwizard pages and 

the API identification, as well as enabling an encrypted connection. Also, when the privacy option is 

enabled, the greyscale photos are ciphered on the client-side before being transferred to the ML 

processing unit, preventing reverse engineering on the image to obtain the original file. To address 

external attacks, the backend server includes mechanisms that lock traffic if there are more than 500 

requests per day or hour and more than 100 requests per minute from the same origin. 

Usability. Malwizard must focus on being user friendly, taking into account being the least intrusive 

while presenting the data succinctly to the end-user. 

5.1.3 Architectural Analysis 

Malwizard is positioned in the architectural analysis as a component that can be implemented into any 

email client or email server that conducts message processing, as well as any SOAR platform via the 

API supplied. Although AVs are generally responsible for detecting malware in attachments, basing 

detection on fingerprints can lead to long quarantine periods, especially when considered zero-day 

attacks and, in addition, the large number of emails that companies receive every day. Such analysis can 

be optimized, reducing the impact times through ML malware analysis. Malwizard must be an add-

in/API that could be instantiated by clients, sysadmins into the email servers or incident response 

platforms to become responsible for the emails attachments analysis. Therefore, it must be responsible 

for generating alerts according to the result of the analysis and enabling them to be exported to a SIEM 

platform. Diagram (b) in Figure 30 shows a potential Malwizard placement to client software and 

malware detection. Malwizard's internal components are described and discussed in the following 

sections. 

 

Figure 30:Malwizard positioning. 

b) with Malwizard 

 

a) without Malwizard 
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5.2 Implementation 

All the components present in Figure 31 will be presented in detail, which includes the two types of 

implementations suggested in this thesis, the Microsoft Outlook Add-in developed using HTML and 

JavaScript languages, and an API/backend Python service, which can be used by the risk-based Security 

Orchestration, Automation and Response (SOAR) platforms, like TheHive [17]. 

 

 

 

Figure 31:Malwizard flow diagram. 

 

 



 

 

 
43 

5.2.1 How does it work? 

User-friendly and Simplicity are the words that best describe Malwizard. The process to analyse the 

intended malware samples is composed of three parts: Microsoft Outlook Add-In, API, and ML 

processing unit (containing the machine learning model). 

Malwizard workflow is directly correlated with client configuration, which may be either an end-user 

or a backend implementation. 

Starting with Microsoft Outlook (an end-user application), clients are responsible to install the add-in, 

through the Office store by adding the Outlook manifest.xml URL, hosted on the Malwizard. Once, the 

initial configuration is finished, Malwizard appears if the Outlook detects an attachment present in the 

email that the user is viewing. Malwizard converts it into a binary image representation and sends it to 

the ML processing unit to be analysed in one of the five machine learning models addressed in 

Section 4.4. 

In an API implementation like to TheHive, clients are responsible for creating calls or adapting the 

middleware developed for the TheHive to communicate with the ML processing unit. Since the 

middleware is open source, it can be customized to suit the needs of the clients or the applications. 

The ML processing unit, where the machine learning model is running, receives the image file 

representation and applies the convolution process, which extracts the features and exposes them to 

trigger filters. After all filters have been applied and the fully connected layer has returned the 

confidence identification level, if this is greater than 95 percent, the sample will be considered for future 

analysis and reported to the middleware as malware. Otherwise, it will be marked as containing signs of 

malware, and caution should be taken. This percentage can be changed by the user to suit its needs. 

5.2.2 Design and Components 

A diagram with Malwizard’s flow is presented in Figure 31. The following descriptions are dedicated 

to explaining each step, which in the source code are represented by Python functions. 

Microsoft Outlook Add-In and API 

Microsoft Outlook Add-In and API are the interfaces from which Malwizard ML processing unit will 

receive the potential malicious files to be analysed. It contains the component responsible to convert the 

files into image representations and generate encrypted images based on these representations if the 

privacy flag is instantiated. Then the base64 of the images, a binary-to-text encoding scheme that 

represents binary data in an ASCII string format [61], with the flag are sent to Malwizard. 

Microsoft Outlook Add-In Page 

Microsoft Outlook Add-In Page is the front-end page of the Malwizard for Outlook, the interface where 

the user can select the privacy option, start an attachment analysis, and view the ML conclusion of the 

files in analysis. 

Microsoft Outlook Manifest 

Microsoft Outlook Manifest is the XML manifest file that allows the add-in to be installed through the 

Office store, through a Malwizard URL or by loading this file locally.  
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Plain Text and Encrypt 

Plain Text and Encrypt options are available to the user by a toggle button on the Microsoft Outlook 

Add-In and by a parameter on the API call, which tells the ML processing unit which type of image 

needs to be analysed. 

Malwizard 

Malwizard is the backend server of the solution. It can be deployed in a Cloud Service or On-Premises, 

provides all public interfaces for the add-in and API clients, and reports the file analysis results. This is 

also where the ML processing unit, CNN AI, is located. 

CNN AI 

CNN AI or ML processing unit is responsible for calling the loading, training, compiling and fitting 

functions that interact with the machine learning model. 

Model Load 

Model Load loads the ML model progress when the server is initiated or migrate to a new one. 

Additionally, allows loading external models from the community. 

Model Fit 

Model Fit trains the ML model for a predetermined number of epochs (default is 100). This is also where 

the Class Balancing weights are passed to the model. 

Model Auto Fit 

Model Auto Fit is responsible for starting the Model Fit to retrain the ML model after collecting a 

determined number of samples which achieved a determined level of accuracy on the running model, 

where both are defined by the user. 

Verify Balance 

Verify Balance verifies if the training dataset is balanced. If it is not, it applies the class weighting and 

calculates them to pass to the Model Fit. 

Model Save 

Model Save saves the ML model progress after training, avoiding long training times when restarting or 

migrating the server. 

Plot Metrics 

Plot Metrics generates the ML model training report which includes metrics like accuracy, precision, 

recall, and F1-Score. In addition, it calls the Scikit-learn Python module to generate the confusion 

matrix. 

ROC (AUC) 

ROC (AUC) generates the ML model ROC curve graph, which allows understanding the likelihood that 

the network will identify one class over the others. 
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5.2.3 Performance and Evaluation 

Malwizard performance and rating are presented in this section, to simulate normal usage comparing 

the encrypted and plain text modes. 

To evaluate the performance, the proposed model was used due to the best overall results obtained in 

Section 4.4.2. In the model comparison, the softmax activation function was utilized in the last layer, 

since the Microsoft database contains only malware and each one belongs to only one class. However, 

on daily basis, some files are legitimate and cannot be classified as malware. In this sense, it is necessary 

to have an extra class that represents the legitimate files to apply the softmax function, since it 

normalizes the output and attempts to discover the class that has the most similarities with the sample 

under analysis. Another alternative is to use the sigmoid activation function in the last layer, which 

allows the probability to be calculated individually and represents the maximum probability for each 

class. Using the sigmoid function can reduce the degree of accuracy, but it does not require a large and 

diversified set of legitimate file samples. 

Table 9 shows the model confusion matrix for the proposed model with Sigmoid output. 

As expected, the weighted mean of F1-Score 83.85 percent (Table 9) is lower than with the softmax 

function, 96.19 percent (Table 1). The Simda class is the worst due to the lowest available samples. 

However, the other classes achieve a relatively high F1-Score value, enough for the model to be able to 

distinguish between malware and non-malware samples, without knowing what a legitimate file is. As 

a result, the sigmoid activation function calculates the highest probability of identical characteristics in 

the sample under consideration. 

 

 

 

Malware Family Precision Recall F1-Score Support 

Gatak 0.509485 0.979167 0.670232 192 

Kelihos_ver1 0.896552 0.962963 0.928571 81 

Kelihos_ver3 0.996522 0.939344 0.967089 610 

Lollipop 0.957606 0.791753 0.866817 485 

Obfuscator.ACY 0.715789 0.539683 0.615385 252 

Ramnit 0.970464 0.754098 0.848708 305 

Simda 0.380952 0.888889 0.533333 9 

Tracur 0.616114 0.849673 0.714286 153 

Vundo 0.951220 0.906977 0.928571 86 

Accuracy   0.830649 (83.07%) 2173 

Macro avg 0.777189 0.845838 0.785888 (78.59%) 2173 

Weighted avg 0.873736 0.830649 0.838520 (83.85%) 2173 

Table 9: Confusion Matrix of the Proposed Model with Sigmoid Output. 
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The performance tests were carried out ten times each with a file size of 20 MB, which is the maximum 

attachment default size authorized in Microsoft Outlook [62]. Table 10 depicts the baseline timings 

when no encryption type was used, showing the request processing time ("Plain Text Time") and the 

overall time to obtain the prediction from the ML model ("Overall Request Time"). 

The Plain Text Time (Table 10) includes the resampling process of images made by the Open Source 

Computer Vision (OpenCV) library developed in C / C ++ [63]. For the Microsoft Outlook add-in, we 

used OpenCV.js, which extends the OpenCV language binding by providing a JavaScript interface. 

However, as it runs at a higher level of abstraction, due to the Javascript language, it tends to be slower, 

1.192 seconds. Unlike the Python OpenCV implementation, which consists of a wrapper around the 

original C/C++ code, which makes it faster (0.070 seconds) due to C/C++ being a lower-level 

programming language than javascript, running closer to the machine level instruction set. 

Table 11 compares the HE performance between Javascript (Microsoft Outlook Add-In) and Python 

(API) implementation.  

Image encryption is a considerable computational challenge, as each pixel in the image must be 

encrypted, increasing processing time. Using a 128-bit key to process homomorphic encryption 

on 256 × 256 images takes about 83 seconds for the Javascript-based Microsoft Outlook add-in. If the 

key is increased to the recommended values, 2048 bits [60], it takes 336 minutes, which is not feasible 

for real-time processing. The same goes for the API implemented in Python, it takes 21 seconds with a 

128-bit key, but 85 min for the 2048-bit key.  

However, because of the 128-bit keys security weakness, strong keys (e.g., 2048-bit keys) are highly 

recommended, despite the fact that their poor performance prevents our solution from being used in 

production. 

 

 

 

 

 

 

 Plain Text Time (sec) Overall Time Request (sec) 

Microsoft Outlook Add-In 1.192 1.502 

Middleware - API 0.070 1.160 

Table 10: Plain Text performance comparison. 

Table 11: Encrypt Javascript and Python performance comparison. 

 Key Size Encrypt Time (sec) Overall Time Request (sec) 

Microsoft Outlook Add-In 128-bits 83.975 (≈ 1.40 min) 86.062 (≈ 1.43 min) 

Middleware - API 128-bits 21.186 (≈ 0.35 min) 23.294 (≈ 0.39 min) 

Microsoft Outlook Add-In 2048-bits 20 189.884 (≈ 336 min) 20 191.324 (≈ 336 min) 

Middleware - API 2048-bits 5 093.693 (≈ 85 min) 5 095.798 (≈ 85 min) 
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Chapter 6 

Conclusions 

6.1 Final Remarks 

The main goal of this thesis was to provide a new approach for assessing malware, in comparison to 

existing ones that rely on known signatures and quarantine assessment. This broad goal resulted in two 

major contributions: a proposal for a novel ML model and its implementation in Malwizard, a malware 

analysis solution for Microsoft Outlook and an API for the Orchestration, Automation, and Security 

Response (SOAR) platforms using machine learning analysis. 

Regarding the first contribution, a proposal for a novel ML model, it was analysed the 

transformation of malware files into greyscale images, which allows an ML to assess the patterns 

contained in them. A novel model was designed and customized to achieve the goal while being more 

efficient than traditional models known in the community. In addition, the idea of applying standard 

models in the evaluation of encrypted images was explored. However, the negative outcomes reinforce 

the necessity to replace the output layer of traditional models with functions that can evaluate 

polynomials, as Hesamifard et al. recommended [41]. 

The tests were carried out with the help of the Keras framework, which offered efficient 

implementations for the majority of traditional ML classification models. Then, it was used to create the 

novel ML model with the goal of outperforming the existing models in the malware analysis. To evaluate 

the performance of the models the Scikit-learn library was used, which validated the 96.18 percent 

accuracy attained by the novel model in one third of the time when compared to the best accurate model, 

which reaches 97.79 percent. 

The Microsoft Malware Classification Challenge dataset, one of the largest and newest publicly 

accessible initiatives datasets, as part of the Big Data Innovators Gathering Cup (BIG 2015), was used 

to test the models presented in this thesis.  The dataset comprises a variety of malware files organized 

into training and validation datasets classified into families. However, the large discrepancy in the 

number of samples in the classes was an important factor to take into consideration, due to easily leading 

to overfitting the ML models. Also, due to the high memory usage and runtime challenges caused by 

many of the tests requiring long training periods, several improvements were made to the final solution 

and some tests were executed again. 

Concerning the second contribution, Malwizard’s solution was developed, which consists of a 

Microsoft Outlook Add-in developed in Javascript, an API and an ML processing unit server developed 

in Python. These components were designed considering two functional requirements and nine non-

functional. In addition, Malwizard internal composition is explained, as well as the Microsoft Outlook 

add-in and API service. Two analysis modes are provided, the sample into the analysis can be plain text 

where it is possible to revert to the original file or homomorphically encrypted which ensures that is not 

possible to revert to the original file. However, the encrypted mode has only been tested with 

conventional ML models, which have been shown not to be able to make inferences on encrypted 

images. 
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A performance evaluation analysis was provided, giving proof that the Malwizard 

implementation can be considered on a daily basis malware analysis, actively contributing to 

cybersecurity. We believe that many other ML models can be applied to malware analysis, each one 

depending on the intended analysis objective, which can influence the structure and analysis functions 

in the model. Our focus was to prove that it is possible to have an easy to use solution that makes quick 

automatic analysis in emails content, but also have the possibility to be applied to other tools through 

the Malwizard API. 

Malwizard evolution and continuity were also this thesis concerns, since Malwizard operates 

independently of the ML model, malware assessment can be continually enhanced by employing more 

efficient models as well as models specialized to encrypted images analysis. We hope this solution may 

contribute to the detection and prevention of new malware forms, securing companies and end-users, 

and helping to fill some of the open problems in the ML malware analysis. 

6.2 Future Work 

In this section, we present some opportunities of continuity on Malwizard development and ML 

encrypted images analysis improvements. The first possible step is to develop new extensions using the 

Malwizard API in order to extend the integration with more security tools.  

Regarding component extensions, the second possible future work is one of the most important, 

which is the use of models capable of analysing encrypted images, in order to maintain privacy during 

the malware analysis. The ML computing analysis is a growing market, where more players are entering 

the field. With this in mind, we identify the need to reduce the encryption time of the suspicious files in 

analysis, which can be accomplished by improving the homomorphic encryption methodology or by 

employing more efficient cypher algorithms that preserve the structure of the samples as homomorphic 

encryption does. To become a helpful solution as well as a reference for industry products. 

The third possible future step encompasses the image resampling process, it is necessary to find 

a method to downsample the malware representation images. When applied, it is capable of identifying 

noise in the images and disregarding it, thereby keeping the vital information. This is extremely 

important for Malwizard, in order to downsize the image in analysis to reduce de file size, minimize the 

encrypted time when applying the privacy mode, and to better identify the presence of malware. 

The last future work is identifying a legitimate file dataset to create the legitimate class, so that 

the ML model used in Malwizard can train beyond the malicious files. Having the class of legitimate 

files allows the use of functions that normalize the output and attempt to discover the class that has the 

most similarities with the sample under analysis, such as the softmax. Thus, improving the accuracy in 

identifying malicious files. 
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Appendix A 

Malwizard public interfaces 

The Malwizard public interfaces are explained in this appendix. 

A.1 Initialising Malwizard Service 

There are three main ways to initialize the Malwizard service. The first one is using the simplest 

command, without any argument, as follow:  

 

The Malwizard starts and initiates the model training process, once completed, the service is ready to 

receive files for analysis. 

The second is bypassing a “-l” flag with an argument to load a model located in the main “models” 

directory. This directory stores the progress of Malwizard models for when the server is started or 

migrated to a new instance. In addition, it allows uploading external models from the community. The 

command, in this case, is as follows: 

 

The third is related to the automatic relearning feature "-a", where it is necessary to pass an integer with 

the total of new samples (totalOfNewSamples) needed to start the new training process and the minimum 

precision (minAccuracy) for the samples to be considered for further analysis. 

 

After Malwizard initialisation, the Outlook Add-In or middlewares with API clients can start using it 

for malware analysis. 

A.2 Malwizard Outlook Add-In 

In the Outlook Add-In interface, there are two padlocks, one unlocked and one locked, which represent 

respectively the plain text and encrypted modes (Figure 32). Information about the modes and the 

percentages of the levels that Malwizard uses to identify (Figure 33) are available through the info icon 

in the upper right corner. 

The “SCAN” button, starts the analysis for the files in the attachment, then the user is redirected to the 

waiting screen until the Malwizard processing unit predicts all the attachments, Figure 34. Finally, the 

analysis results are displayed in a table (Figure 35), with the name of the attachment, a shield to facilitate 

the identification of the Malwizard forecast and a preview with the transformation of the file into an 

image. 

python malwizard.py  

python malwizard.py -l model_to_load 

python malwizard.py -a totalOfNewSamples minAccuracy 
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Figure 32: Malwizard Outlook Add-In. 
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Figure 33: Outlook Add-In information menu. 
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Figure 34: Outlook Add-In waiting screen. 
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Figure 35: Outlook Add-In analysis results. 
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A.3 Malwizard Middleware - API 

The Middleware with API integration can be initialized in two ways. In order to integrate with another 

tool, the tool must be able to make Python calls. The first option is to start in plain text mode, as follows: 

 

To enable the encrypted method it is necessary to add the “-e” flags to the command. This informs the 

Malwizard processing unit that the image under analysis is encrypted and an AI template that supports 

image encryption analysis must be applied. 

 

The results returned by the Middleware are in JSON, however, it can be adapted to return in another 

format if it is necessary. 

 

The Middleware with API integration is available at https://github.com/escamudo/Malwizard  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

python malwizard_api.py -a 127.0.0.1 -p 5000 -f malware 

python malwizard_api.py -a 127.0.0.1 -p 5000 -f malware -e 

python malwizard_api.py -a 127.0.0.1 -p 5000 -f malware 

 

--- 0.09502148628234863 seconds --- 

{"file": "0A32eTdBKayjCWhZqDOQ.bytes", "prediction": 95.69253921508789} 

https://github.com/escamudo/Malwizard
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