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Resumo

O avanço das tecnologias de informação e o crescimento da utilização de sistemas de software a nı́vel

mundial levantam várias questões relacionadas com a segurança do software utilizado. O uso diário de

dispositivos de software tem aumentado significativamente ao longo dos anos. Na nossa vida quoti-

diana, recorremos a vários dispositivos cujo funcionamento assenta e depende do software, tais como

smartwatches, smartphones, computadores, entre outros. Todos estes dispositivos estão em constante

desenvolvimento e evolução, procurando sempre proporcionar novas funcionalidades e uma melhor ex-

periência de utilização aos seus utilizadores. O software tem vindo a tornar-se mais robusto e complexo

para fornecer estas novas caracterı́sticas. No entanto, o aumento da complexidade e do tamanho do seu

código favorecem o aparecimento de bugs, uma vez que este se torna mais difı́cil de analisar e de assegu-

rar de que está correto. Sob certas condições a que os sistemas são submetidos, estes bugs podem causar

o aparecimento de vulnerabilidades exploráveis que conduzem à corrupção do sistema. A exploração

de uma vulnerabilidade pode ter efeitos catastróficos, dependendo do tipo de sistema que a contém. Se

for um sistema de segurança crı́tico, como o de um automóvel autónomo, a sua corrupção pode causar a

perda de um valor monetário considerável para os fabricantes, ou mesmo pior, conduzir à perda de vidas

humanas.

A existência de bugs nos sistemas ocorre devido à utilização de linguagens de programação insegu-

ras e à inserção de erros não intencionais pelos programadores. Muitos destes erros foram cometidos

no passado, quando a segurança não era um conceito tão importante e onde, ainda, não existia muita

literatura sobre princı́pios de programação segura. Embora hoje em dia exista esta preocupação com a

segurança do software, as linguagens de programação inseguras ainda são amplamente utilizadas e er-

ros continuam a ser cometidos, os quais continuam a ser um dos principais problemas na construção de

sistemas seguros.

Uma vez que os sistemas são construı́dos pelos humanos e cometer erros faz parte da natureza hu-

mana, existirão sempre erros, por muito pequenos que sejam. O aparecimento destes erros pode estar

relacionado com o facto de os programadores terem um tempo limitado para realizar os projetos de soft-

ware que lhes são atribuı́dos ou com falta de conhecimento/informação sobre conceitos de segurança

e programação segura. Como o desenvolvimento dos projetos de software têm limitações de tempo e

recursos, por vezes não existe a possibilidade de testar o software adequadamente, deixando alguns bugs

no código, os quais podem estar na base de possı́veis vulnerabilidades que, se encontradas por atacantes,

podem ser exploradas. Algumas linguagens de programação contêm funções que podem ser utilizadas

para evitar a introdução de vulnerabilidades e, assim, invalidar ataques. No entanto, os programadores

podem não conhecer tais funções, nem saber como as utilizar corretamente.

Atualmente, existe uma grande procura de ferramentas que ajudem a desenvolver software seguro
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para ultrapassar as dificuldades acima mencionadas. No entanto, tais ferramentas são usualmente difı́ceis

de utilizar e reportam vulnerabilidades que não são reais, ou seja, falsos positivos. Por esta razão, muitas

destas ferramentas exigem que os programadores analisem manualmente os seus resultados, o que lhes

consome uma quantidade significativa de tempo, onde este muitas vezes é gasto a verificar vulnerabili-

dades inexistentes no código.

A existência de ferramentas capazes de detetar e corrigir automaticamente vulnerabilidades facili-

taria as tarefas dos programadores e diminuiria o tempo necessário para escrever código seguro. No

entanto, existem poucas ferramentas disponı́veis com estas capacidades, e as que existem têm algumas

limitações, nomeadamente a produção de código sintaticamente incorreto ou a não verificação da eficácia

das correções geradas.

A linguagem de programação C é uma das mais utilizadas para o desenvolvimento de software de

produtos de diversas áreas, tais como sistemas operativos, controladores de hardware, e sistemas incor-

porados. Mesmo com o aparecimento de novas linguagens, o C continua a ser uma das mais utilizadas.

Simultaneamente, a linguagem C carece de mecanismos de proteção, deixando toda a responsabilidade

da gestão correta da memória e dos recursos para o programador. Devido a estes aspetos, existem muitas

vulnerabilidades nos programas desenvolvidos em C. De acordo com o ”Top 25 of the most dangerous

weaknesses”criado pela Common Weakness Enumeration (CWE), as vulnerabilidades mais próximas do

topo relacionadas com a linguagem C dizem respeito a buffer overflows. Por conseguinte, é necessário

encontrar formas de corrigir estas vulnerabilidades, removendo-as do código, para tornar o código de-

senvolvido com esta linguagem de programação mais seguro. Além disso, é também necessário, por um

lado, confirmar a existência das vulnerabilidades encontradas para reduzir os falsos positivos e, por outro

lado, verificar se as correções geradas estão corretas e se são eficazes na remoção das vulnerabilidades.

O principal objetivo desta dissertação é criar uma ferramenta capaz de detetar automaticamente as

vulnerabilidades de buffer overflow em programas escritos em C, corrigindo as vulnerabilidades encon-

tradas, e verificando a eficácia das correções geradas. Para desenvolver esta ferramenta, dividimos o

objetivo principal em três sub-objetivos: O primeiro consiste no estudo das vulnerabilidades de buffer

overflow na linguagem de programação C, as diferentes funções disponı́veis nesta linguagem que são

consideradas inseguras contra este tipo de vulnerabilidades, as versões destas funções tipicamente con-

sideradas seguras e como utilizá-las corretamente, e como criar novas formas de proteção. O segundo

consiste no estudo de técnicas de deteção de vulnerabilidades no código fonte, gerando casos de teste

para confirmar tais vulnerabilidades e o código que será inserido para as remover. O último consiste

na conceção e implementação da ferramenta desejada e na realização de uma avaliação experimental do

protótipo desenvolvido para analisar o seu desempenho.

A solução proposta combina técnicas de análise estática com fuzzing para identificar vulnerabilida-

des com maior precisão. A solução analisa o código fonte de um programa através de uma ferramenta

de análise estática (Flawfinder), para procurar potenciais vulnerabilidades relacionadas com buffer over-

flows. A partir dos resultados desta análise são gerados pequenos programas que contêm as potenciais

vulnerabilidades encontradas. Estes programas são exercitados com um fuzzer (AFL), que gera casos

de teste destes pequenos programas e os executa nestes, visando filtrar as potenciais vulnerabilidades

e verificar quais são exploráveis (ou seja, vulnerabilidades reais), providenciando os seus exploits (os

casos de teste que as exploraram). De seguida, os programas das vulnerabilidades reais são processados
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e analisados estaticamente, para identificar os locais no código onde elas existem e recolher informações

necessárias para gerar as respetivas correções. Através desta informação, as correções são geradas e apli-

cadas nos respetivos programas. Posteriormente, os programas são novamente exercitados com o fuzzer,

utilizando os exploits, que anteriormente exploravam as vulnerabilidades existentes nestes programas,

em conjunto com outros novos gerados a partir de mutações destes, com a finalidade de verificar se as

correções foram geradas e inseridas corretamente e se são eficazes, ou seja, se estão sintaticamente cor-

retas e removem as vulnerabilidades com sucesso. Finalmente, quando termina todo este processo de

validação, as correções sintaticamente corretas e eficazes são inseridas no código do programa recebido

inicialmente, resultando numa versão nova e corrigida do programa original.

Para avaliar o protótipo desenvolvido, utilizámos um conjunto de 1075 pequenos programas escritos

em C, recolhidos do Software Assurance Reference Dataset (SARD), para medir o desempenho da fer-

ramenta e validar as suas capacidades. Para além disso, utilizámos seis aplicações reais, retiradas do site

SourceForge, e ainda um driver de um subsistema de controlo de propulsão ferroviário, disponibilizado

por um parceiro do projeto XIVT, do qual faz parte este trabalho. Estas aplicações permitiram analisar

e avaliar o comportamento da ferramenta com código real. Os resultados experimentais mostram que a

ferramenta foi capaz de detetar vulnerabilidades relacionadas com buffer overflow e corrigi-las eficaz-

mente. Foram identificadas 6 vulnerabilidades de dia-zero nas seis aplicações reais. Todas as correções

aplicadas pela ferramenta foram geradas corretamente, o código gerado estava sintaticamente correto, e

as vulnerabilidades existentes foram removidas com sucesso.

Com base nestes resultados, concluı́mos que a nossa solução satisfaz os objetivos propostos para este

trabalho e pode ser uma mais-valia para trabalhos relacionados com a correção automática de código.

Além disso, pode ser uma ferramenta útil para melhorar a qualidade do código e a segurança de software

que venha a ser desenvolvido no futuro.

Palavras-chave: Vulnerabilidades de Buffer Overflow, Análise Estática, Fuzzing, Correcção de Código,

Segurança de Software
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Abstract

Currently, embedded systems are present in a myriad of devices, such as Internet of Things, drones,

and Cyber-physical Systems. The security of these devices can be critical, depending on the context

they are integrated and the role they play (e.g., water plant, car). C is the core language used to develop

the software for these devices and is known for missing the bounds of its data types, which leads to

vulnerabilities such as buffer overflows. These vulnerabilities, when exploited, cause severe damage and

can put human life in danger. Therefore, the software of these devices must be secure.

One of the concerns with vulnerable C programs is to correct the code automatically, employing

secure code that can remove the existing vulnerabilities and avoid attacks. However, such task faces

some challenges after finding the vulnerabilities, namely determining what code is needed to remove

them and where to insert that code, maintaining the correct behavior of the application after applying the

code correction, and verifying that the generated code correction is secure and effectively removes the

vulnerabilities. Another challenge is to accomplish all these elements automatically.

This work aims to study diverse types of buffer overflow vulnerabilities in the C programming lan-

guage, forms to build secure code for invalidating such vulnerabilities, including functions from the C

language that can be used to remove flaws. Based on this knowledge, we propose an approach that

automatically, after discovering and confirming potential vulnerabilities of an application, applies code

correction to fix the vulnerable code of those vulnerabilities verified and validate the new code with

fuzzing/attack injection.

We implemented our approach and evaluated it with a set of test cases and with real applications. The

experimental results showed that the tool detected the intended vulnerabilities and generated corrections

capable of removing the vulnerabilities found.

Keywords: Buffer Overflow Vulnerabilities, Static Analysis, Fuzzing, Code Correction, Software

Security
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Chapter 1

Introduction

The advancement of technologies and the growth in the use of software systems globally raises several

questions related to the security of the software used. The usage of software devices daily has grown

significantly over the years. In our everyday life, we use several devices whose operation depends on

the software they use, such as smartwatches, smartphones, computers, and others. All these devices

are in constant development and evolution, always searching for bringing new features and a better user

experience. The software becomes more robust and complex to provide these new features. The increase

in complexity and size favors the appearance of bugs in code since it becomes harder to analyze and

ensure that it is correct. Under certain conditions to which systems are submitted, these bugs can cause

the appearance of exploitable vulnerabilities leading to the corruption of the system. The exploitation

of a system can have catastrophic effects depending on its type. If it is a critical safety system like an

autonomous car, its corruption can cause the loss of large amounts of money for manufacturers, or even

worse, lead to the loss of human lives.

The existence of bugs in systems occurs due to the usage of insecure languages and unintentional

errors introduced by programmers. Many of these mistakes were made in the past when security was not

such an important concept. There was not much literature on safe programming principles yet. Although

today there is this concern with software security, unsafe programming languages are still widely used,

and errors continue to be made and are one of the main problems in building secure systems.

Since systems are made by humans and making mistakes is part of human nature, there will always

be errors, however small they may be. The appearance of these errors could be due to the limited

time that developers have to carry out the projects or the lack of knowledge or defective information

about concepts of security and secure programming. As projects have time and resource limitations,

sometimes there is no possibility to test the software properly, leaving some bugs to be found and possible

vulnerabilities to attackers exploit. Some programming languages contain functions that can be used to

remove vulnerabilities and invalidate attacks. However, some developers have no knowledge of these

functions or do not even know how to use them.

Currently, there is a great demand for tools that help the development of secure software to overcome

the difficulties mentioned above. However, such tools can be hard to use and can report vulnerabilities

that are not real, i.e., false positives. For this reason, many tools require developers to manually analyze

the reported results, which consumes a significant amount of developers’ time. Moreover, this time is

ineffective when they look for inexistent vulnerabilities in the source code.
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The existence of tools capable of automatically detecting and fixing vulnerabilities would make de-

velopers’ tasks easier and decrease the time needed to write secure code. However, there are few tools

available with these capabilities [38][51], and those that exist have some limitations, such as producing

syntactically incorrect code or not verifying that the generated fixes are effective [28][50].

1.1 Motivation

The use of software daily has become inevitable nowadays. Almost every tool we use in our daily lives

depends on software, whatever the area, such as medicine or telecommunications. The C programming

language is one of the most used languages for developing software for products in diverse areas, such

as operating systems, drivers, and embedded systems. Even with the appearance of new languages, it

remains one of the most used, as stated in Tiobe Index [15].

At the same time, C lacks protection mechanisms, leaving the entire responsibility to the developer

for the correct management of memory and resources. Because of these aspects, there are many vulner-

abilities in programs developed in C. According to the ”Top 25 of the most dangerous weaknesses” from

the Common Weakness Enumeration (CWE), the C language vulnerabilities closest to the top relate to

buffer overflows [6]. Therefore, it is necessary to find appropriate ways to remove these vulnerabilities by

correcting the code and thus making the code developed with this programming language more secure.

Furthermore, it is also necessary, on the one hand, to confirm the existence of the vulnerabilities found

for the reduction of false positives and, on the other hand, to verify the correctness and effectiveness of

the corrections made.

This dissertation focuses on studying buffer overflow vulnerabilities in the C language, the functions

available in this language considered insecure against these vulnerabilities and its deemed secure ver-

sions, and the ways of writing secure code for invalidating those vulnerabilities. Moreover, it focuses

on the development of a tool capable of automatically detecting and confirming buffer overflow vulner-

abilities in C programs and removing them by correcting the code of the programs and checking such

corrections. Hopefully, helping to make the software more secure.

1.2 Objectives

The main objective of this dissertation is to create a tool capable of automatically detecting buffer over-

flow vulnerabilities in C programs, correcting the vulnerabilities found, and verifying the effectiveness

of the corrections. To develop such a tool, we can divide this main objective into three sub-objectives:

• The first objective is to study buffer overflow vulnerabilities in the C language, the different func-

tions available in this language considered insecure against these vulnerabilities, the versions of

these functions considered secure and how to use them correctly, and how to create new forms of

protection.

• The second objective is to study techniques for searching for vulnerabilities in source code, gener-

ating test cases to confirm such vulnerabilities and the code that will be inserted to remove them.
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• The last objective is to design and implement the desired tool based on the information gathered

in the previously mentioned studies and to conduct an experimental evaluation of the developed

prototype to analyze its performance.

1.3 Contributions

The main contributions of this dissertation are the following:

• A study on buffer overflow vulnerabilities in the C programming language, the different functions

available in this language considered insecure against these vulnerabilities, the versions of these

functions considered secure, and the situations where they should or should not be used.

• An approach for searching for potential buffer overflow vulnerabilities based on static analysis

and their confirmation based on the generation of test cases derived from fuzzing. In addition, the

approach includes the automatic creation of fixes to remove the vulnerabilities, their application,

and assessment of their effectiveness.

• A tool capable of detecting and confirming buffer overflow vulnerabilities in programs written

in C, correcting the vulnerabilities found, and verifying the effectiveness of the corrections in an

automated way.

• An experimental evaluation of the tool, using synthetic test cases and real applications, to assess

its performance.

This research led to a fast abstract, for now, entitled Effectiveness on C Flaws Checking and Removal,

in the 52nd IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’22) [34].

1.4 Document Structure

This document has the following structure:

• Chapter 2 analyzes some related work and main concepts relevant to the focus of this dissertation,

namely a study on vulnerabilities, vulnerability detection, and automatic software repair.

• Chapter 3 explains our proposed solution to detect and correct vulnerabilities, the challenges it

faces, and how we address them. It also describes the solution’s architecture and its main compo-

nents. In addition, it presents the way components interact among them.

• Chapter 4 presents our solution’s implementation in detail.

• Chapter 5 illustrates the evaluation and validation of the implemented prototype. It also discusses

the results obtained.

• Finally, Chapter 6 presents our conclusions about this work and possible directions for future work.





Chapter 2

Context and Related Work

This chapter presents some context that serves as the basis for this work and discusses relevant related

work. Section 2.1 presents a study on vulnerabilities in general and a more detailed study on the vul-

nerabilities addressed in this work. Also, it introduces a description of how these vulnerabilities occur

and how they can be corrected and prevented. Section 2.2 analyzes vulnerability detection techniques,

namely static and dynamic analysis, fuzzing, and machine learning approaches. Finally, Section 2.3

looks at some tools and techniques used in the subject of automatic software repair.

2.1 Vulnerabilities

Vulnerabilities are the root cause of security problems in software systems. A vulnerability can be

described as a flaw or weakness in a system, which can be exploited or triggered by a threat source

resulting in a security breach or a violation of the system’s security policy [9][10][16]. Vulnerabilities

can arise at different stages of a system life cycle but usually result from introduced flaws in the software

during the development phases. This issue becomes more evident when programming languages are

used that offer more freedom to the programmer and are more error-prone, as is the case with the C

programming language. C is a very flexible language that facilitates access to memory in an invalid and

unchecked manner. These characteristics lead to a large number of security flaws because programmers

assume that the language handles certain aspects when, in fact, it does not. C is very popular and is the

language of choice for many applications, although it has characteristics that are commonly misused,

resulting in many vulnerabilities in the systems.

Although there are many classes of vulnerabilities to explore and study, the focus of this work is

on buffer overflows since they are the root of a large percentage of severe security problems that have

emerged over the years [2][3][4][5].

2.1.1 Buffer Overflow

Buffer overflow is probably one of the best-known forms of software security vulnerability. A buffer

overflow occurs when a program performs operations outside of the boundaries of the memory allocated

to a particular data structure (buffer).

The sample code in Listing 2.1 demonstrates a simple buffer overflow that is often caused by the

scenario in which the code relies on external data to control its behavior. The code uses the gets

function to read an arbitrary amount of data into a buffer. The safety of the code depends on the user to

5
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always enter fewer characters than BUFSIZE because there is no way to limit the amount of data read

by this function.

1 #include <stdio.h>
2 #define BUFSIZE 20
3
4 int main(int argc, char *argv[]) {
5 char buffer[BUFSIZE];
6 gets(buffer);
7 return(0);
8 }

Listing 2.1: Buffer overflow example.

Not all buffer overflows lead to software vulnerabilities. However, if an attacker can manipulate

user-controlled inputs to exploit a buffer overflow, it can lead to a vulnerability. Even if a buffer overflow

cannot be exploited maliciously, it can have unwanted effects on a program. Depending on the size of

the overflow and the memory location, a buffer overflow can go unnoticed but can corrupt data, cause

erratic behavior, cause the execution of malicious code, or terminate the program abnormally.

The root cause of most buffer overflows is the combination of memory manipulation and wrong

assumptions about the size or composition of data. Buffer overflow vulnerabilities usually involve vi-

olating the assumptions made by the programmers when using memory manipulation functions that do

not perform bounds checking on the buffers on which they operate. Even bounded functions, such as

strncpy, can cause vulnerabilities when used incorrectly.

Most software developers know what a buffer overflow is, but buffer overflow vulnerabilities are still

quite common. Part of the problem is due to the wide variety of ways buffer overflows can occur and the

utilization of programming languages like C that are susceptible to them. These programming languages

do not perform implicit bounds checking, contain standard functions difficult to use securely, and define

strings as null-terminated arrays of characters, which contributes to the susceptibility to the emergence of

these vulnerabilities. Some languages have protections that prevent access to memory areas outside of ar-

rays. In the case of Java, when this happens, the exception ArrayIndexOutOfBoundsException

is raised. With this kind of exception, it is possible to know that there is some operation in the code

accessing the memory outside the array, and it becomes easier to find the errors to correct them.

Buffer overflows are not easy to discover, and although they are often easy to correct, they are gen-

erally hard to exploit. Nevertheless, attackers have managed to identify buffer overflows in a wide range

of software and take advantage of these to perform several types of buffer overflow attacks.

Buffer Overflow Attacks

Buffer overflow attacks can be carried out through different operations and memory areas. It is necessary

to know how the memory is arranged to perform this type of attack. The exact organization of process

memory depends on the operating system used, but, generically, it is organized into code, data, heap,

and stack segments, as shown in Figure 2.1. The code or text segment includes code instructions and

read-only data. Typically, this segment is marked read-only, and any attempt to write to it will result

in a segmentation fault. The data segment contains initialized data, uninitialized data, static variables,

and global variables. The heap is used for dynamically allocating process memory. The stack is a Last
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In, First Out (LIFO) data structure used to support process execution by maintaining information that

reflects the execution state of the process.

Data

Code/Text

Heap

Stack

Free Memory

Lower Memory 

Addresses

Higher Memory 

Addresses

Figure 2.1: Generic process memory organization.

There are a number of different buffer overflow attacks which employ various strategies and target

distinct memory areas and pieces of code. However, most of these attacks have their genesis in the two

most well-known types:

• Stack-based buffer overflow - This is the most common type of buffer overflow attack and in-

volves overflowing a buffer on the call stack. The stack-based approach occurs when an attacker

sends malicious data to a program, which it stores in an undersized stack buffer. This operation

overwrites the data on the call stack, including the function’s return pointer, which is modified by

the malicious data so that when the function returns, it transfers control to the attacker’s malicious

code.

• Heap-based buffer overflow - This type of attack targets the heap data and is harder to carry out

than a stack-based approach. The heap-based approach occurs when an attacker overflows a buffer

that overwrites a pointer to an object allocated in the heap and points it to a virtual table generated

by the attacker so that when the program executes it, it runs the code controlled by the attacker.

These are the most common attacks when it comes to buffer overflows, and there are several studies

and books that address these attacks and provide detailed explanations of how they can be executed

[44][24][17][48]. There are other types of attacks that can be directly or indirectly related to these, such

as format string, integer overflow, and off-by-one error attacks [57].
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Buffer Overflow Protections

There are different solutions for protecting against buffer overflows. Programmers can prevent buffer

overflows by building security measures into their code, such as avoiding standard library functions

that do not perform bounds-checking and never trusting user input. Regularly testing code and using

programming languages that include built-in protection can be other measures that help mitigate these

vulnerabilities. However, the latter may not be feasible as some languages are more suitable for certain

purposes than others.

Currently, modern operating systems have runtime protections and exist some mechanisms that en-

able additional security against buffer overflows, such as the following ones:

• Canaries - Allow the detection of stack corruption. The canaries are special values placed be-

fore (or after) the memory locations intended to protect. When accessing the protected memory,

the canaries are checked to confirm that the value did not change and the memory has not been

corrupted.

• Address Space Layout Randomization (ASLR) - ASLR randomly rearranges the starting ad-

dress of the address space segments. Typically, buffer overflow attacks need to know where the

executable code is located, and randomizing address spaces makes this nearly impossible.

• Data Execution Prevention (DEP) - DEP marks certain memory areas as either executable or

non-executable, preventing an exploit from running code found in a non-executable area.

• Structured Exception Handler Overwrite Protection (SEHOP) - SEHOP helps stop malicious

code from attacking the Structured Exception Handler (SEH), a built-in system for managing

hardware and software exceptions. Attackers may look to overwrite the SEH by performing a

stack-based overflow attack to overwrite the exception registration record, which is stored on the

program’s stack.

These are just a few protections that can be used to protect against buffer overflow attacks. There

are many others, some that are inspired by these methodologies and some that implement innovative

methods. Younan et al. [57] performed a survey on C and C++ code injection. In this study, the authors

analyzed buffer overflow vulnerabilities and the attacks that can be executed to exploit them. Also,

they explain several existing countermeasures that can be used against different types of buffer overflow

attacks. Piromsopa et al. [45] also conducted a survey in which they addressed various protection

approaches against buffer overflows and categorized the approaches into different categories.

Even though all these protections exist, they are not enough. New buffer overflow vulnerabilities

continue to be discovered and exploited. When new vulnerabilities are discovered, the engineers or the

companies must react quickly to patch the affected software and ensure that the users access the patch

and use it.

2.2 Vulnerability Detection

The vulnerability detection process is difficult to perform and requires a large amount of time. The search

for processes that can help programmers accomplish this task easier and faster is a major focus of research



Chapter 2. Context and Related Work 9

today. The number of studies to create automatic methods to achieve this goal has increased significantly

in recent years, and a variety of techniques are being used, such as static and dynamic analysis and

fuzzing. In addition, some research seeks to use machine learning techniques to find vulnerabilities

in the code, taking advantage of models to predict where vulnerabilities may exist and thus make the

detection process faster.

2.2.1 Static Analysis

Static analysis has the objective of analyzing the source code of an application to find bugs. Static

analysis methods allow the analysis of code without any execution of it. Thus, it is possible to use these

methods at any stage of an application development process, even if it is not complete.

Static analysis tools are widely used to help in software development because manual code auditing

becomes very time-consuming and usually infeasible when the size of the source code increases, so an

automatic process helps a lot. This type of tools allow to analyze the code faster than manual auditing and

obtain some level of abstraction. Some only detect vulnerabilities in some functions, others anywhere in

the code. Some do their analysis one function at a time; others analyze a complete program.

Although it has many qualities, this kind of analysis cannot solve all problems. These tools analyze

the code looking for patterns that may indicate vulnerabilities. There must be an update of the rules and

patterns they should look for to find new vulnerabilities. If the rules are not updated, there may be many

vulnerabilities that are not found, i.e., there are a high number of false negatives. There may also be false

positives because of problems that can be detected that are not vulnerable. For this reason, one of the

problems with these methods is their imprecision. Therefore, it is necessary to audit the results manually

to solve these problems and improve the accuracy of the results.

Within static analysis, there are different types of mechanisms. The most known are the following

ones:

• Lexical analysis - The lexical analysis approach compares resulting tokens from a preprocessing

and tokenization of source files with some known vulnerable constructs. This approach produces

plenty of false positives due to the lack of knowledge of the target’s semantics.

• Control flow analysis - The control flow analysis methods try to follow the control path of the

program through rule checks and control graphs that are generated for the functions.

• Data flow analysis - Data flow analysis methods try to understand how data moves within pro-

grams, namely from the moment they enter the program to the places where they are used, possibly

in dangerous instructions. In this category, the most common is the method of taint analysis, which

uses type qualifiers – tainted and untainted – to perform taint analysis. This method uses type in-

ference rules to detect vulnerabilities through function annotations that determine whether they

return tainted data or require untainted data.

Boudjema et al. [19] presented a tool based on static analysis methods, more specifically, abstract

interpretation extended with security vulnerability property checks to detect security vulnerabilities in

C applications automatically. They verify the properties by analyzing the language specification and

documentation of the main language libraries. To locate the vulnerabilities, they define properties related
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to different classes of vulnerabilities, namely format string, command execution, and buffer and memory

vulnerabilities. They present a detailed description of the properties and possible attack scenarios that

can be performed to exploit the vulnerabilities addressed. Although some of the proposed properties do

not have many test cases, they have shown that it is possible to detect vulnerabilities in an automated

way through the described properties with an acceptable number of false positives and false negatives.

J. J. Kronjee [36] explored machine learning and static code analysis techniques to detect vulnera-

bilities in PHP applications. The work presents a detailed study of several vulnerabilities and machine

learning methods. He used control flow graphs and abstract syntax trees to extract features for use in

machine learning modules. Also, he used taint analysis to determine possible vulnerable paths. He con-

structed a data set by combining mined samples from the National Vulnerability Database and used it to

train and test the classifiers. He demonstrated that machine learning techniques in combination with fea-

tures extracted from control flow graphs and abstract syntax trees can be used for vulnerability detection

in PHP applications.

Flynn et al.[27] used alerts from multiple static analysis tools to develop a classifier to reduce analyst

effort and remove flaws. They used multiple static analysis tools to generate outputs about the inspected

code. Then they used an enhanced version of an existing tool to aggregate and evaluate the previous

results. This version of the toll produced alerts that were mapped to a CERT Secure Coding Rule [12]

to facilitate auditing of the alerts. After the alert’s consolidation, a group of auditors classified it to

determine the false or true positives. This analysis, alongside other coding rules, was processed into a

training data set that was used to construct prediction models. The results showed that it is difficult to

consolidate different data to use in the classifiers, which limits their performance.

Yamaguchi et al. [56] proposed a method for assisted discovery of vulnerabilities in source code.

Their goal was to create a method to make manual auditing more effective, helping and guiding the

inspection of the source code. They created a method that places the code in a vector space so that typical

Application Programming Interface (API) usage patterns can be determined automatically. To capture

API usage patterns and transfer these known vulnerability patterns to other pieces of code, they combined

static code analysis and machine learning techniques. These patterns implicitly capture the semantics of

the code and allow extrapolating known vulnerabilities, identifying potentially vulnerable code with

similar characteristics. This extrapolation process serves as a guide for the analyst and facilitates the

inspection of the source code. Many vulnerabilities can be captured by API usage. However, there are

also cases where the code structure is more relevant for auditing.

2.2.2 Dynamic Analysis

Dynamic analysis, opposingly to static analysis, analyzes programs while they are running. For dynamic

program analysis to be effective, the target program must be executed with sufficient test inputs to cover

all the possible outputs. Dynamic code analysis tools allow to perform an analysis and identify potential

issues that arise during the actual execution of the program and impact its reliability.

Haugh et al. [33] presented a tool, STOBO, for testing C programs for buffer overflows using dy-

namic analysis. This tool analyzes some functions considered functions of interest that can cause buffer

overflows. The idea is to verify if the buffers are static or dynamic allocated. Then verify if the call to

the functions that use those buffers is safe, checking if they follow some rules regarding the size of the
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buffers. The tool generates different warnings depending on the buffers allocation method. This tool

only detects vulnerabilities that may derive from the misuse of library functions. The results showed that

the tool can find vulnerabilities but generates some false positives.

Yun et al. [58] presented an automatic tool to discover heap exploitation primitives, ARCHEAP.

The main idea of ARCHEAP is to explore spaces automatically by specifying a set of modern designs

and the root causes of vulnerabilities as models, using heap operations and attack resources as actions.

Their goal is that, during execution, ARCHEAP checks whether the given combinations can be used

to build primitive exploits, such as arbitrary write or overlapped chunks. They analyze several heap

allocators, current exploits, and the types of associated bugs. Their solution uses an American Fuzzy

Lop (AFL) extension to perform the random heap actions. The results showed that they were able to find

new exploration techniques, which shows that the methodologies used perform well in discovering new

exploits.

Another approach that can be used to try to increase the number of vulnerabilities found and speed up

the process is to combine several tools. Vorobyov et al. [54] conducted a study to compare three different

runtime verification tools for the C language. They aimed to give a realistic comparison between the

tools and focus on testing runtime tools. Another criterion of choice was tools with different approaches,

so they chose a formal semantic-based tool, a formal specification verifier, and a memory debugger to

evaluate the detection power of these. They intended to find the cumulative detection ratio of the tools

used together, the detection ratio of each one of the tools, and find if they are complementary to each

other in finding vulnerabilities. The results of the tests showed that the tools used together can find even

more vulnerabilities because they complement each other.

2.2.3 Fuzzing

Fuzzing is a popular software testing method that injects random inputs into a system to reveal software

defects and vulnerabilities. A fuzzing tool injects these inputs into the system and then monitors for

exceptions such as crashes or information leakage.

Most fuzzers differ in many significant ways, but, in general, they all follow a simple procedure.

They receive an initial input and run the program with it. After running the program with that input, they

mutate it to generate new input, which might lead to different paths coverage when it is executed. Some

fuzzers also use the information gathered in the execution to help generate better program inputs. If the

program input is deemed interesting, it is saved to be further mutated to uncover different paths in the

program. This process is repeated until something ends the execution of the fuzzer, which is generally

accomplished by a timeout or by reaching a certain number of discovered bugs, with the ultimate goal of

trying to find inputs to make the program crash. In the end, these inputs are returned to the user, which

can use them to reproduce the crash.

Fuzzers can be categorized according to the following criteria:

• Method of input generation;

• Awareness of input structure;

• Awareness of program structure.
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Depending on whether inputs are generated, a fuzzer can be generation-based or mutation-based.

The generate-based fuzzer generates the input data from scratch without relying on previous inputs. The

mutation-based fuzzer generates the input data based on defined patterns by mutating the provided seeds.

In terms of the awareness of input structure, if the fuzzer has no awareness of the format of the input

data, it is considered a dumb fuzzer. Dumb fuzzers produce random input that does not necessarily match

the correct format. If the fuzzer is aware of the format of the input data, it is considered a smart fuzzer.

A smart fuzzer leverages the input model to generate a greater proportion of valid inputs.

Regarding the awareness of program structure, a fuzzer can be one of the following types:

• Black-Box - The fuzzer treats the program as a black box, i.e., without having any knowledge

about the source code of the program. It can execute several hundred inputs per second, can be

easily parallelized, and can scale to programs of arbitrary size. However, it can take an extremely

long time to find deeply nested bugs due to the random nature of the input generation, which

provides limited coverage and so the testing can be inefficient.

• White-Box - The fuzzer has access to the program’s structure and symbolically executes the pro-

gram under test, gathering constraints on inputs from conditional branches encountered throughout

the execution. It has a greater coverage when compared with other types. However, the time used

for analysis can become excessive.

• Gray-Box - The fuzzer uses lightweight instrumentation to obtain information program structure

without requiring any previous analysis. This may cause a significant performance overhead but

increases the code coverage as a result.

Since fuzzing was introduced, it is used for security testing and quality assurance proposes [43][52].

Several studies have been conducted, and new techniques have been discovered while others are being

improved. There is a great diversity of work related to fuzzers and the different types of fuzzers. Woo

et al. [55] developed an analytical framework using a mathematical model of black-box mutational

fuzzing. Bounimova et al. [20] showed the results of the white-box fuzzer, SAGE [30]. They describe

the challenges with running the fuzzer in production and show data on the performance of constraint

solving and dynamic test generation. Chen et al. [21] described a directed gray-box fuzzer, Hawkeye,

that combines static analysis and dynamic fuzzing. More recently a new approach to using fuzzers has

emerged. Chen et al. [22] studied the performance of an ensemble fuzzing approach. The results obtained

were very promising since trough this work it was possible to discover several new vulnerabilities. Haller

et al. [32] created Dowser, a guided fuzzer that combines taint tracking, program analysis, and symbolic

execution to find buffer overflow and underflow vulnerabilities.

LibFuzzer [11] is a coverage-guided, evolutionary fuzzing engine to test C/C++ software. LibFuzzer

works by implementing a fuzz anchor. An anchor is a program written in C or C++ that allows the

tester to specify a fuzzing entry point. This entry point is a function that accepts data and the size of

the data. With this function, the tester can direct the fuzzer to whatever desired function, where it will

then execute the fuzz target. This type of fuzzers require some sample inputs for the program under test.

LibFuzzer generates random mutations based on the input given originally. If the fuzzer discovers new

and interesting test cases, they are saved for later usage or mutation. Honggfuzz [8] is a similar fuzzer.

It is a security-oriented, feedback-driven, evolutionary fuzzer.
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2.2.4 Machine Learning

Machine learning approaches are being used to automate many different tasks. Recent advances in

this area have resulted in a wave of interest in their application for automatic vulnerability detection.

Existing work that attempts to achieve this goal is usually based on a process that involves performing the

following tasks: extracting training data from available source code, using this data to train a classifier,

and finally, using this trained classifier to predict where vulnerabilities may exist in new test cases. Below

is some related work that uses machine learning techniques to detect vulnerabilities.

Russell et al. [46] presented machine learning techniques for automated detection of vulnerabili-

ties in C/C++ source code. They built a source code dataset with functions from GitHub and Debian

repositories. Additionally, they made a lexer to create a representation of source code ideal for machine

learning training. To label the vulnerabilities, they used static analyzers because of the better perfor-

mance compared with dynamic analysis and commit-message-based labeling. Their approach combines

neural feature representation with a random forest classifier. The methods presented do not require code

to be compiled to look for vulnerabilities and perform better than other static analysis tools. A disad-

vantage of this machine learning method could be that it does not provide clear information about the

localization of the vulnerabilities in the code.

Grieco et al. [31] conducted a study to predict if a test case is likely to discover software vulnerabil-

ities by using lightweight static and dynamic features implemented using machine learning techniques.

They do this mostly by analyzing binary programs according to some procedure to perform the vul-

nerability discovery. The goal was to train a classifier through these features and supervised learning

techniques. The procedure for detecting vulnerabilities comprises two components: a fuzzer that mu-

tates the test cases and a module that dynamically detects exploitable memory errors. Their proposed

methodology works in two phases. A training phase in which they train the tool, and the collection phase

in which a trained classifier is used to predict whether or not new test cases will find bugs, which can

then be prioritized for further analysis. The evaluation results show that by analyzing a small percentage

of the test set pointed as potentially interesting, the tool can predict with reasonable accuracy which

programs contain a vulnerability, which results in a significant increase in the fuzzing speed.

Li et al. designed and implemented a deep learning-based vulnerability detection system called

VulDeePecker [37]. The authors discuss some guiding principles for using deep learning techniques

to achieve the intended objectives, such as the representation of the programs, the determination of

granularity in which the detection process should be conducted, and the selection of specific neural

networks for vulnerability detection. They propose the use of code gadgets, a few lines of code that are

semantically related to each other and can be vectorized as input for deep learning to represent programs.

Their approach goes through two distinct phases. The first one is the learning phase, where patterns of

vulnerabilities are generated. The second phase consists of the detection phase that uses the patterns

acquired in the previous phase to determine whether a program is vulnerable or not and indicate the

localization of the vulnerability, if any. The results obtained showed that the VulDeePecker could achieve

a lower false-negative rate than other vulnerability detection systems and was able to find vulnerabilities

that other systems could not.

Dahl et al. [25] explored machine learning techniques for vulnerability detection. They used neural

networks to identify the presence of potential stack-based buffer overflow vulnerabilities in assembly
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code. They assumed that code could be treated as a form of language and processed it using recurrent

neural networks based on long short-term memory cells.

Zhou et al. [59] proposed Devign, a general graph neural network-based model for graph-level

classification through learning on a rich set of code semantic representations. It was inspired by the

fact that vulnerability patterns manually crafted with the code property graphs, integrating all syntax and

dependency semantics, have been proved to be one of the most effective approaches to detecting software

vulnerabilities. Devign automates this process on code property graphs to learn vulnerable patterns using

graph neural networks.

2.3 Automatic Software Repair

Automatic software repair is one of the most widely discussed topics nowadays. It consists of auto-

matically finding a solution to fix software bugs without human intervention. This subject is of great

importance, as it can help solve many problems, which are becoming more and more common due to

the growth of software usage daily. However, it is a very challenging topic because fixing bugs is not an

easy task. Several techniques have been extensively investigated as solutions for efficiently repairing and

maintaining software in the last few years. Recent work gathered and organized the body of knowledge

about automatic software repair [29][41].

2.3.1 Repair Approaches

Automatic software repair approaches detect software failures and perform corrective adjustments over

the targeted program to fix them, i.e., software repair or restore its normal execution. They are divided

into two main approaches:

• Software Healing (or State Repair) - Software healing consists in changing the state (e.g., stack,

heap) of the program under repair.

• Software Repair (or Behavioral Repair) - Software repair consists in changing the program’s

behavior by altering the code. It can be done offline or at runtime.

These approaches perform two distinct processes:

• Healing process - It is composed of two steps that might be executed iteratively. The first one

is the healing step which consists of executing a healing operation that can prevent or mitigate a

failure that has been detected. The second one is the verification step which consists of checking

if the application is running as expected after the healing operation has finished.

• Repairing process - It is composed of three steps that might be executed iteratively. The first one

is the localization step, which identifies the locations where a fix could be applied. The second

one is the fix step, which generates fixes that modify the software in the code locations returned

by the localization step. The third one is the verification step, which checks if the synthesized fix

has actually repaired the software.
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2.3.2 Repair Techniques

The repair techniques are categorized into generate-and-validate and semantics-driven approaches. The

generate-and-validate approaches define a search space that is explored for potential solutions. The

semantics-driven approaches encode the problem of repairing a program as a formula whose solutions

correspond to the possible fixes of the program under repair or as an analytical procedure whose outcome

is a fix.

Software repair techniques have been evaluated in many diverse contexts, including papers presenting

new approaches and independent empirical evaluations. The following are some tools that are somehow

related to automatic software repair.

PASAN [51] is a technique designed to repair buffer overflow vulnerabilities. It works by first detect-

ing the inputs used in control-hijacking attacks and then using these inputs to generate fixes that remove

the vulnerabilities exploited in the attacks. PASAN instruments the application under repair to extract

information about the size of static arrays and dynamically allocated buffers. It uses different strategies

to produce a candidate fix. PASAN attempts to find the library function or the loop that originated the

problem and change it by introducing appropriate checks in the code. The generated fix is tested by

replaying the attack against the fixed program.

AutoPAG [38] aims at reducing the time needed for software patch generation. It first instruments

the application to detect the variables that overflow and thus identify the tainted sets of statements and

variables. The fix generator works on these tainted sets using different fix templates: redirecting an

out-of-bound read within the buffer boundary, replacing a call to a function that allows out-of-bound

writes with a call to a safe function, and simply skipping the statement that causes the out-of-bound

violation. The fixed application is then tested against the same out-of-bound exploit that triggered the

repair process.

Code Phage [50] targets buffer overflow problems. It uses a set of donor programs to extract the

conditions that should be added to the program under repair to prevent the buffer overflow. The set of

donor programs must be programs that implement the same functionality of the program under repair.

This repair technique assumes that there might exist a donor program that contains the check that is

missing in the faulty program. Then it can repair the fault by copying the check from the donor to the

program under repair.

Gao et al. [28] presented, BovInspector, a tool that uses static analysis and symbolic execution

to analyze buffer overflow vulnerabilities and suggests fixes by applying the following three change

strategies: add boundary checks, replace danger function calls with calls to safer functions, and modify

buffer instantiation. The specific change to be applied to each function call is based on a set of patterns.

Ding et al. [26] characterized buffer overflow vulnerabilities in the form of four patterns and proposed

ABOR, a framework that integrates and extends existing techniques to remove buffer overflow vulner-

abilities. ABOR consists of two modules: vulnerability detection and vulnerability removal. ABOR

works iteratively: once the vulnerability detection module captures a vulnerable code segment, the seg-

ment is fed to the removal module; the fixed segment will be patched back to the original program.

ABOR repeats the above procedure until the program is buffer overflow-free.

Shahriar et al. [49] proposed a set of general rules to address the mitigation of buffer overflow

vulnerabilities for C/C++ programs. The authors developed a set of rules to identify vulnerable code and
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how to make the code vulnerability free. They proposed 12 patching rules to replace vulnerable code

and remove buffer overflows at the application unit level. The proposed rule-based approach addresses

both simple and complex forms of code that can be vulnerable to buffer overflows ranging from unsafe

library function calls to pointer usage in control flow structures. The results showed that the proposed

rules could identify previously known buffer overflow vulnerabilities and also find new ones.

Angelix [40] is a semantics-driven repair technique that aims at synthesizing multi-line fixes while

preserving scalability. To generate multiline fixes without sacrificing scalability, Angelix exploits the

concepts of angelic path and angelic forest. An angelic path encodes part of the repair problem as a set

of triples each one containing an instance of a suspicious expression, its angelic value, and its angelic

state. Angelix paths are extracted using symbolic execution. An angelic forest fully encodes the repair

problem as a set of angelic paths. The angelix forest is fed to a fix synthesis engine to produce multi-line

fixes.

Morgado et al. [42] proposed an approach for automatic code correction of PHP web applications.

They focused on the study of injection vulnerabilities and the existing forms of sanitization for these

cases and their defects. The developed tool can determine the most suitable correction for each type of

bug and where to apply it. Their approach aims to fix applications by inserting new lines of code at the

entry points to validate inputs that are used later in sensitive sinks. To know which correction to apply

and where to apply it, they combine taint analysis techniques with variable simulation to keep track of

the variables. To test the developed tool, they used real applications vulnerable to the functions covered

in the study. The results showed that it was able to apply a safe correction in most cases, preserving the

validity and correct behavior of the programs.

In recent years, advancements in machine learning brought a wave of progress within the field of

software repair. This trend leads to the appearance of different repair techniques named data-driven

approaches. A data-driven approach is when decisions are based on analysis and interpretation of hard

data rather than on observation. A data-driven approach ensures that solutions and plans are supported

by sets of factual information. Below we present some of the related work that uses machine learning

approaches to repair software.

Chen et al. [23] explored and developed an approach to perform code repair that automatically gen-

erates patches for security vulnerabilities. To achieve this objective, they used a sequence-to-sequence

(seq2seq) machine learning technique with byte pair encoding that learns the mapping between two token

sequences of source code. They used data collected from GitHub commits that presented the vulnerable

and corrected code to create the training dataset, in which they chose C functions that the seq2seq al-

gorithm could use and divided them by different sizes. Their results showed that the seq2seq algorithm

performance is low, fixing general vulnerabilities and depends a lot on the size of the inputs used in the

tests. However, they proved that it is possible to fix vulnerabilities in an automated way.

Bader et al. [18] presented Getafix, an approach that aims to produce human-like corrections and,

at the same time, be able to propose corrections in time proportional to what would take to obtain static

analysis results. The approach first divides a certain set of example corrections into Abstract Syntax Trees

(ASTs). Then it extracts correction patterns from these ASTs, based on a new hierarchical clustering

technique that produces a hierarchy of correction patterns ranging from very general to very specific

corrections. Finally, given a bug to correct, Getafix finds appropriate correction patterns, classifies all
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candidate corrections, and suggests the main solutions for the developer. As a check during the third step,

Getafix validates each suggestion through a static analyzer to ensure the correction removes the warning.

Getafix uses a simple but effective classification technique that uses the context of a code change to

select the most appropriate fix for a given bug. The idea is that the tool learns through previously created

corrections to create new ones. The results showed that the tool can perform well and accurately predicts

fixes for several bugs, reducing the time developers spend fixing recurring bugs.

Vasic et al. [53] presented an approach that jointly learns to localize and repair bugs. The model

classifies the program as faulty or correct, locates the bug when the program is faulty and applies a fix to

it. To solve the problem of classification, location, and repair, they used a multiheaded pointer network

architecture where one pointer head points to the faulty location and another to the location where the

correction should be made. They compared a pointer network on top of a neural network to a graph neural

network and observed that their solution achieved better results. Also, compared the jointly model with

an enumerative approach, and the results showed that the model outperformed the enumerative approach

by using a model that can predict a fix given the location of a bug. They concluded that the solution,

despite its limitations, can perform well compared to some approaches for similar purposes.

Sawadogo et al.[47] proposed an approach to catch security patches as part of an automatic mon-

itoring service of code repositories. This work was motivated by the delay between the release of a

security patch and its application. To differentiate between security patches and others, they used com-

mit log and code analysis to collect data for the binary classification task. After that, they carried out

a feature engineering step in which they reduced the volume of data collected only to the essential and

transformed this data into numerical vectors to use in the learning algorithms. They opted for the use of

a co-training algorithm because of the lack of labeled data, which proved to be the best option once the

proposed approach demonstrated high precision and recall presenting a significant improvement over the

state-of-the-art.

Lutellier et al. [39] proposed CoCoNuT, a new generate-and-validate technique that uses ensemble

learning on the combination of convolutional neural networks and a new context-aware neural machine

translation architecture to automatically fix bugs in multiple programming languages. They introduced

a new context-aware neural machine translation architecture that represents the buggy source code and

its surrounding context separately. CoCoNuT also takes advantage of the randomness in hyperparam-

eter tuning to build multiple models that fix different bugs and combines these models using ensemble

learning to fix more bugs.

Jiang et al. [35] presented CURE, a neural machine translation-based technique with three major

novelties. First, CURE pre-trains a programming language model on a large software codebase to learn

developer-like source code. Second, CURE designs a new code-aware search strategy that finds more

correct fixes by focusing on compilable patches and patches that are close in length to the buggy code.

Finally, CURE uses a subword tokenization technique to generate a smaller search space that contains

more correct fixes.





Chapter 3

Proposed Solution

This chapter describes the main challenges for identifying and fixing buffer overflow vulnerabilities in C

programs and verifying the effectiveness and correctness of the fixed code in an automated manner. Also,

it presents our proposed approach to address these challenges. Section 3.1 explains the challenges this

work faces and the reasoning behind how we want to manage them. Section 3.2 presents an overview of

the proposed solution architecture and a brief description of its modules. Section 3.3 describes in detail

the key modules of the architecture. Finally, Section 3.4 specifies and analyzes the sensitive sinks related

to buffer overflows addressed by our approach.

3.1 Challenges

This section introduces some problems from which arose a set of challenges that must be solved to create

an automated vulnerability discovery and repair process, validating the results obtained for each phase.

Additionally, we present the key ideas that emerged to address these challenges and their reasoning.

3.1.1 How to find vulnerabilities and ensure that they are exploitable?

One of the problems related to the identification of vulnerabilities in code through static analysis tools is

the existence of false positives. Many tools generate several false positives, making it difficult to locate

real vulnerabilities in the source code. False positives can derive from a wrong inspection of the code

made by static analysis tools and from a correct identification of a vulnerable execution path, which

starts at some entry point and ends at a sensitive sink, but there is no input able to exploit such alleged

vulnerability. Therefore, it is necessary to ensure that the vulnerabilities found statically are actually

exploitable, giving evidence of such by providing one exploit at least.

Our idea to overcome this problem is to analyze the code of a program through static analysis to

discover vulnerabilities, whose results will be candidate vulnerabilities, and so can have false positives.

Next, we will use fuzzing techniques to filter these results and check whether these techniques can exploit

the identified candidate vulnerabilities, producing their exploits.

3.1.2 How to generate executable and compilable code slices from vulnerabilities found
statically?

Fuzzing techniques to exercise the program under test demands that the program is running, so an ex-

ecutable file of it is required. On the other hand, static analysis tools do not provide executable or

19
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compilable code as output for vulnerabilities they report. Most of them only output the line of the code

where an entry point reached the sensitive sink. Very few tools return the complete slice of the vulner-

able code, i.e., the lines of the vulnerable execution path that starts at an entry point and ends at a sink,

but this code is neither compilable nor executable. Therefore, the challenge here is how to capture all

the code needed for each candidate vulnerability reported by static analysis and make it compilable and

executable to be exercised by fuzzing.

The main idea is to generate a small program for each potential vulnerability found, composed of

the slice of the vulnerable code and all the other code necessary to make it compilable and executable,

such as the main function, libraries, and variables declaration. For that, we will employ code parsing

techniques over the output of static analysis and the files of the program under test to capture all code

required.

3.1.3 Where and how to correct the code?

One of the main challenges of automatic code correction is to decide where the code for removing the

vulnerability – fix – should be inserted. This decision is difficult because a slight change in the code

may alter the program’s logic, which its effect needs to be avoided to maintain the correct program’s

behavior. In our case, since we want to fix vulnerabilities associated with buffer overflows, which are

usually related to sensitive sinks, our focus will be on fixing the lines of these sinks. Hence, we propose

the insertion of fixes in these lines or close to them.

Another challenge associated with code correction is to decide what type of correction to apply in

each case, since a given vulnerability class can be expressed in the code in different forms, even for the

same sensitive sink. Moreover, as there is no universal fix for all cases and each sensitive sink is used

differently with distinct arguments, it makes the process of correction more difficult. Our idea is to fix the

issues associated with specific sensitive sinks. For some sensitive sinks, the fix may be to replace them

with their secure version (e.g., strncpy for strcpy), but some may have no possibility of doing this

because they do not have a safe version (e.g., scanf). But in both cases, our approach will capture the

sinks’ arguments and whether they need some validation before using them in the sinks, and determine

the correct amount of bytes that must be used by the fixes.

In sum, our conception to solve these two challenges is to construct a set of fix templates that will be

used dynamically when the vulnerable code is being inspected to determine what is necessary to fix and

where the fix will be inserted. Based on these inspections, the fix template is selected and generated the

final fix. Some fixes will replace sensitive sinks with their safer version if they exist. Otherwise, fixes

will modify the sink statement or insert code instructions close to it to ensure that the sensitive sink is

used correctly and safely.

3.1.4 How to know that the fix applied is effective?

An issue associated with automatic code correction approaches existing in the literature is that there is

no automated process to verify the effectiveness of the fix once it is applied, i.e., if it does not spoil the

correct behavior of the program and its logic, and if it actually removed the vulnerability. This process

has to be done manually by programmers.
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We propose to automate this validation process by using the exploits generated in the fuzzing task

during the vulnerability verification process. The validation process will use these exploits that break

the functioning of the original program to verify that the fix works, i.e., if it cannot crash the program’s

operation, it means that the applied fix effectively removed the vulnerability and, hence, corrected the

code. Also, if it cannot hang the program’s behavior and logic, it means that the fix was correctly

generated syntactically and inserted in the right places in the code. In addition, our validation process

will generate new test cases to try to circumvent the fix and spoil the program’s behavior.

3.2 Approach Overview

This section describes the architecture of our approach to identify vulnerabilities, fix them, and verify the

fixes’ effectiveness. The key idea is to combine static analysis with fuzzing to identify real vulnerabilities

with higher precision and evidence of their exploitation, and validate the correction made. Also, since

fuzzing has the goal of covering all code of the application, which task can take a considerable amount of

time, we opt for fuzzing small programs for each potential vulnerability found by static analysis. These

small programs will only contain an execution path that will be quickly exercised by fuzzing. Figure 3.1

illustrates the approach’s architecture with its main modules. The architecture consists of the following

elements:

• C/C++ Program - The C/C++ program files that we want to test and correct, which can contain

one or more vulnerabilities.

• Vulnerability Identifier - This module is responsible for identifying possible candidate vulner-

abilities in the received program. It uses static analysis techniques to collect information about

potential vulnerabilities and their location in the program, namely the respective line number in

the file. Using this information, it generates slices of the vulnerable code from the entry point to

the sensitive sink.

• Executable Generator - This module receives the vulnerable slices of code from the previous

module. To generate an executable file for each candidate vulnerability found, it uses the slice

received and adds from the program files other instructions needed to obtain a compilable file.

Afterward, this file is compiled, instrumentalized, and generated its executable that is forwarded

to the Program Validator.

• Program Validator - This module uses fuzzing techniques for validating the code received from

the Executable Generator in two distinct phases. Validation is performed in the first phase to exploit

the candidate vulnerabilities found by the vulnerability identifier and generate thus the exploits for

them. For those vulnerabilities it cannot exploit, they are marked as possible false positives. The

remaining ones, i.e., the exploitable vulnerabilities, are signalized as such and their exploits stored

for the second phase. The second phase uses the previously generated exploits to verify if the fixes

applied are effectively safe. Also, it mutates the exploits to check if there are new exploits that can

break the fixes and that the application does not hang.
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Figure 3.1: Overview of the approach’s architecture.

• Vulnerability Corrector - This module analyzes the received code from the Program Validator

(first phase), identifies the existing sensitive sinks, and determines the variable sizes of the argu-

ments of the sinks. After this analysis, it checks for the possibility of buffer overflows through the

size of the variables used in the sensitive sinks. If it verifies that such a possibility exists, it uses

the fix template indicated for that sensitive sink to create a fix for that vulnerability and applies

it to the code. Also, it attests if the code signalized as possible false positive or as exploitable is

it, reporting as false positive the former and proceeding with the code correction for the latter. In
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addition, the corrected code follows to the Executable Generator to produce its executable and then

to the Program Validator to proceed with the second phase of validation.

• Program Release Generator - This module is responsible for applying the resulting and validated

fix to the respective lines of the original program files. The output of this module is a new release

of the program with its files containing the corrected code, i.e., with the vulnerabilities fixed.

• Fixed Program Released - New version of the program files with the vulnerabilities fixed.

3.3 Main Modules

This section describes in more detail how the main modules of the approach’s architecture work and how

they interact with each other.

3.3.1 Vulnerability Identifier

The first fundamental process to build a tool for our purpose is to locate the potential vulnerabilities,

and the Vulnerability Identifier is the module responsible for performing that action. It receives a C/C++

program to be analyzed and scans it for potential vulnerabilities related to sensitive sinks with known

problems associated with buffer overflow risk. It works in two steps to identify possible candidate vul-

nerabilities and extract their vulnerable code slices. A slice is an execution path that starts at an entry

point and ends at a sensitive sink. Between the entry point and the sensitive sink, the slice contains all

instructions and variables dependent on them.

First, it scans the source code of the program under test, looking for sensitive sinks that possible

entry points can reach. This scan results in a list of hits that contain the potential vulnerabilities and their

location in the file, i.e., the line of the code where the sinks’ instructions are.

In the second step, for each hit, it generates the slice containing all instructions associated with it.

The slice starts with the hit instruction, i.e., the sink instruction. Next, it analyzes this instruction and

collects information about the variables used in the sink. After knowing which variables are used, the

received program is parsed to gather the lines associated with these variables. To do so, after the parsing

of the source code, the Vulnerability Identifier performs a bottom-up approach for tracking the variables

and the ones dependent on them to where they are declared and initialized, and then extracts all lines

associated with them. The resulting lines of code are combined with the sensitive sinks’ line, generating

a slice, which is stored in a file and forwarded to the next module.

Listing 3.1 shows a buffer overflow example of a hypothetical program to be analyzed.

When scanning this code, the Vulnerability Identifier outputs line 6 as being a potential buffer over-

flow. Next, it obtains the variable argument from the scanf sink, i.e., the buffer variable, and then goes

up along the code until finding line 4, where the buffer variable is declared. At the end of this process,

these two lines are combined, generating the slice of vulnerable code that is stored in a file. Listing 3.2

illustrates the slice of code generated from the code of Listing 3.1.

At the end of this module, we will have a set of slice files according to the number of vulnerabilities

found by the static analysis phase. The objective of having this set is to expedite the way of exploiting

the vulnerability by fuzzing (see Program Validator - Section 3.3.3).



Chapter 3. Proposed Solution 24

1 #include <stdio.h>
2
3 int main(int argc, char *argv[]) {
4 char buffer[15];
5 printf("Enter a string\n");
6 scanf("%s", buffer);
7 printf("Entered string: %s\n", buffer);
8 return(0);
9 }

Listing 3.1: Example of a C program containing a buffer overflow.

1 char buffer[15];
2 scanf("%s", buffer);

Listing 3.2: Slice of code vulnerable to buffer overflow extracted from Listing 3.1.

3.3.2 Executable Generator

The goal of this module is to create a complete program syntactically correct and compilable, for each

slice file that contains a potential vulnerability that we intend to correct. Hence, besides holding the

vulnerabilities, each file has to be completed in order to be compilable and executable to be used in

the subsequent phases of the approach pipeline. Therefore, it is possible to divide this module into two

sub-modules: File Generator and File Compiler.

File Generator

This sub-module receives the slices of code generated by the Vulnerability Identifier, but this code is

neither compilable nor executable. It parses the received slices of code and collects information about

the sensitive sinks and variables used. Next, it statically analyzes the code of the original program to

extract other necessary data, namely constants, directives, and other needed functions, intending to get a

functional program file. Once this information is obtained, it is added to the previously received slices,

which then contain the lines required to make the slices conform to the language’s syntax.

After this task, the resulting file contains a main function to be executed, the necessary libraries,

and the slices with all the required information for the file to be compiled. In addition, this sub-module

registers the line numbers of the original file corresponding to the slice lines to be used later by the

Program Release Generator (see Section 3.3.5). Finally, this new file is passed to the File Compiler sub-

module to proceed to the next stage of the process. Listing 3.3 illustrates the file generated from the slice

of code shown in Listing 3.2.

As we can observe, the slice of Listing 3.2 was completed by adding the main function, the stdio.h

library, and the return instruction turning thus the file compilable.

File Compiler

This sub-module produces the executable file of each potential vulnerability file, completed by the pre-

vious sub-module, and, therefore, prepares this file for the validation process. It works in two distinct
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1 #include <stdio.h>
2
3 int main(int argc, char *argv[]) {
4 char buffer[15];
5 scanf("%s", buffer);
6 return(0);
7 }

Listing 3.3: File generated from the slice example from Listing 3.2.

phases in our approach, since the Program Validator module performs two distinct tasks with two differ-

ent versions of slices under test. Section 3.3.3 describes these validation phases in more detail.

Although the File Compiler works in distinct phases, the tasks it performs are always the same. It

compiles and instrumentalizes the previously generated file according to the requirements for using the

fuzzing techniques in the validation process. However, in the first phase, the file it compiles contains the

potential vulnerability we want to test and fix, while in the second phase, the file it receives is the one

that fixes the vulnerability, which we intend to validate in runtime.

3.3.3 Program Validator

This module is responsible for two main tasks in the validation process done in two distinct phases. The

first is to check whether the potential vulnerabilities found by the Vulnerability Identifier are exploitable

or not. The second is to check whether the fixes applied by the Vulnerability Corrector are effective or

not. To better understand how this module works, we divided it into two sub-modules: Vulnerability

Checker and Code Validator.

Vulnerability Checker

This sub-module performs the first validation phase, where it uses fuzzing techniques to try to exploit

the potential vulnerabilities found by the Vulnerability Identifier. To proceed with this task, it fuzzes the

executable file generated earlier by the Executable Generator with inputs produced by mutation. The

fuzzing starts with a standard input (e.g., a string) to trigger the loop of input mutation and test it. The

fuzzing process is active for a given short period of time to try to produce an input capable of exploiting

the vulnerability under test in a fast way. Note that as a slice only contains a single vulnerable execution

path, it is expected that its exploitation does not take much time. During this process, the successful

exploits are stored to be used later, in the second validation phase.

The potential vulnerabilities not exploited during the fuzzing period are marked as possible false

positives (PFP). On the other hand, the exploitable ones are marked as such. This sub-module sends the

tested files to the Vulnerability Corrector to analyze them when it finishes the fuzzing task.

Code Validator

The second validation phase of checking whether the fix applied by the Vulnerability Corrector is effec-

tive is performed by this sub-module. As in the first phase, it uses fuzzing techniques to try to exploit

the file, but this time it uses the previously generated exploits stored that were able to exploit the vulner-
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ability under processing. Furthermore, during the fuzzing process, these exploits are mutated to try to

discover new exploits that break the applied fix.

If all exploits, i.e., the stored and the new ones, fail to break the fixed code, the applied fix is validated

and considered effective. After this validation, this sub-module passes the code fixed to the Program

Release Generator module (see Section 3.3.5).

3.3.4 Vulnerability Corrector

This module is responsible for one essential task in the approach pipeline, the correction of vulnerabil-

ities. It is divided into three sub-modules: Variable and Sink Matcher, Fix Generator and Fix Applier.

Each sub-module is responsible for performing different tasks required in the correction process.

Variable and Sink Matcher

This process starts by parsing the received file to locate the sensitive sinks associated with the vulner-

abilities to be fixed, identify the variables used and register the sizes associated with them. At the end

of the Variable and Sink Matcher execution, this collected information is passed to the Fix Generator to

support the generation of the fixes for the determined cases in that correction will occur. The sensitive

sinks related to buffer overflows that we handle are documented by family in Table 3.2 (columns one and

two). In Section 3.4, we present a more detailed discussion about these functions.

After collecting this information, the Variable and Sink Matcher checks if the variable sizes are in

accordance with their use in the sensitive sinks. There are four possible scenarios in this situation and

actions to take, depicted in Table 3.1 and explained next.

When the variable size is in accordance, and the file was signalized as a possible false positive (PFP),

it will be marked as a real false positive (RFP) and reported as such, and no correction is made. On the

other hand, if the file was flagged as exploitable, the file is corrected by prevention. This case can happen

if there is a problem with variable size checking, so the file is corrected to avoid the possible production

of false negatives (FN).

When the variable size is not in accordance, and the file has been flagged as a PFP, it will be corrected

on a precautionary basis because the period given for fuzzing may not have been enough to generate an

exploit. On the other side, if the file has been marked as exploitable, it is considered that the file contains

a real vulnerability, and it goes to the correction process.

Table 3.1: Variable and Sink Matcher possible outputs.

File signalized as

PFP Exploitable

Variable size in accordance
Yes RFP reported Prevention

No correction Correction

No Prevention Vulnerable
Correction Correction
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Table 3.2: List of target sensitive sinks related to buffer overflow vulnerability.

Family Insecure Functions Safer Functions Correction

Input gets gets(char *buffer);
fgets(char *buffer, int
num, FILE *stream);

Use the safer function
with the size of the tar-
get buffer

Input scanf family

scanf(const char *for-
mat, ...);

–

Insert the maximum
number of characters to
be read in the format
string, which
corresponds to the
dimension of the target
buffer minus one

sscanf(const char *s,
const char *format, ...);

fscanf(FILE *stream,
const char *format, ...);

vscanf(const char *for-
mat, va list arg);

vsscanf(const char *s,
const char *format,
va list arg);

vfscanf(FILE *stream,
const char *format,
va list arg);

Output

sprintf(char *s, const
char *format, ...);

snprintf(char *s, size t
n, const char *format,
...);

Use the safer function
with the maximum
number of characters to
be written, according to
the capacity of the
target buffer

vsprintf(char *s, const
char *format, va list
arg);

vsnprintf(char *s, size t
n, const char *format,
va list arg);

String copy strcpy(char *dst, const
char *src);

strncpy(char *dst, const
char *src, size t n);

Use the safer version
with the number of
characters to be copied,
according to the capac-
ity of the target buffer

String concatenation strcat(char *dst, const
char* src);

strncat(char *dst, const
char *src, size t n);

Use the safer version
with the number of
characters to be con-
catenated, according to
the available capacity
of the target buffer

Fix Generator

When the file enters to the correction process, the Fix Generator sub-module analyzes the sensitive sinks’

instructions to understand what type of correction should be applied in that case. These sensitive sinks

instructions correspond to the functions documented in Table 3.2 (column two). Each sensitive sink

works differently and can be used differently, so several correction possibilities exist. However, the fixes

generated by the Fix Generator are based on the analysis of the functions described in Section 3.4.
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It is necessary to analyze the sinks used and correctly calculate the sizes of the variables they use

to generate the fixes. This analysis and the subsequent size calculation are based on the information

received from the Variable and Sink Matcher module. In addition, the fixes mentioned are generated

with the help of templates containing the instructions that correspond to the safe uses of the sensitive

sinks with generic parameters. For each case, these generic parameters are modified by those specific to

that case.

In Table 3.2 we can observe the safe version of the functions used in the corrections and a summary

of the fixes applied for each case (columns three and four).

Finally, after generating all the fixes for the sensitive sinks present in the file, this sub-module makes

a mapping between the generated fixes and the line of code where they should be applied in the file. This

mapping is then sent to the Fix Applier, as well as the vulnerable file and the fix to be applied.

Fix Applier

Using the mapping received from the Fix Generator, the Fix Applier identifies which lines should be

modified and what changes should be made to those lines. It reads the lines from the file to be fixed and

copies them to a new file. The lines that are present in the mapping, before being copied to the new file,

are modified according to the fix received. This way it is created a new file with the applied fixes that is

next transmitted to the File Compiler to be compiled and generate a new executable file.

3.3.5 Program Release Generator

When the second phase of the validation process (Section 3.3.3) ends without any exploit (the previously

generated and new ones) breaking the fixes, and it is found that the applied fix does not spoil the pro-

gram’s functioning, it means that the fix is effective and can be used to correct the original program. The

Program Release Generator module is responsible for performing this correction, i.e., for integrating the

correction produced and validated in the original files.

It receives the original program files, the corrected slices containing the generated fixes, and the

original line numbers associated with the slices. By mapping the lines between the original program

and the slices, it inserts the fixes in the respective places in the original program, thus resulting the final

program with the applied fixes, which will be a new and corrected version of the original program.

Listing 3.4 shows the example file with the applied correction that results from the execution of this

module. As we can observe, in line 6 of the original file (Listing 3.1) the "%s" argument of scanf was

corrected to "%14s" to only be read fourteen characters to the buffer variable since this last can only

store fifteen. We recall that the fifteenth position of the buffer is reserved for the null character ("\0"),

and hence we can only occupy the first 14 positions with data. In this way, the existing buffer overflow

is removed and the code correctly fixed.

3.4 Sensitive Sinks

In this section, we discuss the functions presented in Table 3.2, which correspond to the sensitive sinks

we want to address, and how these should be used.
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1 #include <stdio.h>
2
3 int main(int argc, char *argv[]) {
4 char buffer[15];
5 printf("Enter a string\n");
6 scanf("%14s", buffer);
7 printf("Entered string: %s\n", buffer);
8 return(0);
9 }

Listing 3.4: Example file fixed.

3.4.1 Input gets

The gets function is very hard to use safely. It has only one parameter, a pointer to a buffer. It reads

a line from the standard input and stores it in the target buffer without checking its size. The problem

is that it is impossible to know, in advance, the amount of data that the function will receive if there

are no restrictions. For this reason, it is recommended to use the fgets function, which has another

parameter that specifies the maximum number of characters to be read. This function reads at least one

less character than the size specified to leave space for the terminating null character, which is appended

automatically after the copied characters.

The fix for the gets function consists of replacing its instruction with a similar one using the fgets

function and specifying the maximum number of characters to read, corresponding to the size of the target

buffer variable. The size is calculated by the Fix Generator and applied to the template corresponding

to the fgets function, which is modified so that the arguments match those received in the original

instruction. In this way, the new instruction that will replace the previous one is generated with the

correct size and arguments.

Listing 3.5 shows an example of how to use the fgets function. In the example, the function has

specified 15 characters, but the function will read 14 characters and fill the last one with the terminating

null character. Therefore, there is no need to add it as the last character, but it is necessary to consider

this when passing the right size in the parameter. In the example, the red instruction corresponds to the

insecure and problematic sensitive sink we want to address, while the green line is the instruction that

will replace the red one, i.e., the fix we will apply.

1 #include <stdio.h>
2
3 int main(int argc, char *argv[]) {
4 char buffer[15];
5 gets(buffer);
5 fgets(buffer, 15, stdin);
6 printf("Buffer Content: %s\n", buffer);
7 return(0);
8 }

Listing 3.5: Usage of function fgets.
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3.4.2 Output functions

The functions sprintf and vsprintf send formatted strings as output to a buffer. They take an

argument, a format string that contains the text to write to the buffer. It can contain conversion specifica-

tions that are replaced by the values specified and formatted as requested. For instance, a format string

containing ”%s” is replaced by a string. Its size must be considered when writing to the buffer. One way

to do this is to specify a precision with a string conversion specification (e.g., ”.5%s”). This way, only the

first characters of the string up to the given value are considered (in the example, the first 5 characters).

Even using the precision specification, it is necessary to be careful with the limit placed because it is

essential to consider the size of the target buffer and, in particular, the terminating null character. Format

strings may have different conversion specifications, which makes them difficult to use and favors the

appearance of errors if the sizes are not well calculated. Therefore, it is necessary to be very careful

when using the specifications and calculating the buffer size.

Functions snprintf and vsnprintf are equivalent to sprintf and vsprintf, respectively,

but they have an extra argument – n – which specifies the maximum number of characters that may write

to the buffer, including the terminating null character. If n is too small to accommodate the complete

output string, then the function writes only the first n-1 characters of the output, followed by a null

character, and discards the rest. Because of this, they are considered less dangerous and easier to use.

When the sprintf and vsprintf functions are identified as vulnerable, the fix is to modify the

instruction that corresponds to them by an equivalent one but using the snprintf and vsnprintf

versions, respectively. Also, it is needed to determine the n value that is passed in the parameter corre-

sponding to the maximum number of characters that could be written to the buffer. After the value is

calculated, it is applied to the template for these functions, and the new instruction is generated with the

fix applied.

Listing 3.6 shows an example of a program vulnerable to buffer overflow in the red line 6. The

sprintf function is used without checking the number of characters copied. In the green line 6, the

solution generated by our approach using the snprintf function is shown.

1 #include <stdio.h>
2
3 int main(int argc, char *argv[]) {
4 char buffer[15];
5 char *str = "Buffer Overflow String";
6 sprintf(buffer, "%s", str);
6 snprintf(buffer, sizeof(buffer), "%s", str);
7 printf("Buffer Content: %s\n", buffer);
8 return(0);
9 }

Listing 3.6: Example of sprintf correction.

3.4.3 Input scanf family

The functions scanf, sscanf, fscanf, vfscanf, vsscanf, like the previous ones, also receive

a format string as a parameter. However, in these functions, the format string indicates how to read and

interpret the input data, to place in some additional arguments that the function may expect. The number
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of these arguments should be the same as the number of tags specified in the format parameter. Once

again, it is necessary to be careful with the size of the buffers that will receive the input data. Since the

size of the input is usually not known before being read, it is always better to put the size of the destination

buffer in the format string. The functions of this family, such as fgets function, automatically place

the terminating null character.

The process to correct the scanf family functions is more complex because there is no safe version

of these functions, and it is not possible to add another parameter containing the target buffer size.

The only way to correct the use of these functions is to modify the format string to take into ac-

count the size of the target buffer. To generate the instruction correctly, it is necessary to know exactly

the size of the buffer used, i.e., it is not possible to use expressions such as sizeof(buffer) or

strlen(buffer), inside the format string. This peculiarity makes it very difficult to correct the cases

where it is not possible to know the exact buffer size through static analysis, namely when a buffer is

dynamically allocated, and the size depends on the result of function execution. The solution to correct

this case is to create a variable that stores the result of the function execution. This variable is then used

to make the allocation and will be used to generate a new format string with the correct buffer size. In

this case, it will be the variable’s value minus one to leave space for the terminating null character.

Another complicated situation is when a buffer is passed as a parameter to a function and used within

that function. To correct such cases, the function declaration and call are modified to receive an additional

parameter that corresponds to the size of the buffer that is passed. This new parameter with the size is

then used to generate a new format string that contains the correct value. In this case, it will be the value

passed minus one to leave space for the terminating null character. The old format string is replaced by

the new one in the function, and, thus, a new corrected instruction is generated.

In cases where it is possible to determine the exact buffer size through static analysis, the correc-

tion consists of modifying the format string present in the instruction by adding the correct number of

characters to be read, counting the space for the terminating null character.

Listing 3.7 shows a way how to use correctly the scanf function. As we can notice, the buffer size

is 10, but in the format string in the second line 5, the maximum number of characters that can be read is

9 because it is necessary to leave space for the terminating null character.

1 #include <stdio.h>
2
3 int main(int argc, char *argv[]) {
4 char buffer[10];
5 scanf("%s", buffer);
5 scanf("%9s", buffer);
6 printf("Buffer Content: %s\n", buffer);
7 return(0);
8 }

Listing 3.7: Usage of the scanf function with a wrong format string and the respective correction.

3.4.4 String Copy

The strcpy function has two parameters, a destination buffer and a string to be copied to that buffer.

When using this function, care must be taken with the size of the parameters. It is necessary to verify the
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string size to check if it fits in the buffer. Besides checking the size, an alternative to solve this problem

can be to allocate enough memory to the buffer dynamically. Another way is to use the strncpy func-

tion, which has one more parameter that receives the number of characters to be copied. Although this

function is considered safe, care must be taken because there are some situations where problems may

exist. There may be a risk that the string will not have the terminating null character if it is longer than

the buffer. Such a situation can cause problems in program execution because there are functions whose

correct operation depends on the presence of the terminating null character (e.g., strlen function).

When using the strncpy function, you must put the terminating null character in the last position of

the buffer.

The correction adopted for the strcpy function is to use the strncpy version instead. The Fix

Generator needs to determine the correct number of characters that can be copied into the target buffer

to use this function correctly, with the help of the information it receives. After doing the calculation, it

uses the appropriate template for this function and modifies it to consider the value calculated.

In addition to modifying the strcpy function statement by the new strncpy function statement,

it inserts a new statement that adds the terminating null character to the last position of the target buffer.

It uses the size calculated before and a template specific to this instruction to generate this statement.

The strcpy function could be corrected in another way by adding an if statement with the variable

size check before the strcpy instruction. However, we chose the first correction because, in this way,

no more execution paths are generated than the ones that already existed, which keeps the file as original

as possible.

Listing 3.8 shows an example of the correct use of the strncpy function. Note that in line 8, it

is ensured that the last position of the buffer contains the terminating null character. The first line 7

corresponds to the incorrect usage of the strcpy function. The second line 7 and line 8 correspond to

the correction generated for this case.

1 #include <stdio.h>
2 #include <string.h>
3
4 int main(int argc, char *argv[]) {
5 char buffer[10];
6 char *str = "Example string";
7 strcpy(buffer, str);
7 strncpy(buffer, str, sizeof(buffer) - 1);
8 buffer[sizeof(buffer) - 1] = ’\0’;
9 printf("Content of buffer: %s\n", buffer);

10 return(0);
11 }

Listing 3.8: Example of strcpy fix using the strncpy function.

3.4.5 String Concatenation

The strcat function is similar to the strcpy function. However, the string to be copied is appended

to what is in the destination buffer. In this case, it is necessary to check if the buffer is big enough to

contain what already has plus the string that will be added. This function also has a secure version,

strncat, which unlike strncpy, adds the null character at the end of the buffer. In this case, the
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concern in its use is the size that is passed as a parameter. This one must contemplate the size of what

already exists in the buffer, plus what will be added, and the space for the null character.

As in the previous case, the correction adopted for the strcat function uses the strncat version

for the same reasons mentioned above. Again, it is necessary to calculate the correct number of characters

that can be copied, considering the variable’s sizes, their content, and the space for the terminating null

character. Once again, the value is used jointly with the template resulting in the new instruction to

substitute the old one.

In Listing 3.9 we can see an example program where the first line 7 is vulnerable to buffer overflow

due to incorrect usage of the strcat function. The second line 7 represents the fix generated by our

approach for this case using the strncat function. When executing the program with the first line 7 an

error appears, and the program crashes. On the other side, with the second line 7, the instruction in line 8

would print the result Hello wor, because only three characters are copied from the src buffer. This

happens because the dst buffer is of size ten and already contains six characters, leaving space for four

characters, but is necessary space for the terminating null character, so only three characters are copied.

1 #include <stdio.h>
2 #include <string.h>
3
4 int main(int argc, char *argv[]) {
5 char src[10] = "World";
6 char dst[10] = "Hello ";
7 strcat(dst, src);
7 strncat(dst, src, sizeof(dst)-strlen(dst)-1);
8 printf("Destination string : %s", dst);
9 return(0);

10 }

Listing 3.9: Incorrect usage of the strcat function and the respective correction.
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Implementation

This chapter describes the implementation of the proposed solution that supports the approach presented

in Section 3.3. The prototype developed was implemented in Python, and some tools were used to

facilitate the realization of some specific phases of the tool pipeline. Section 4.1 describes the tools used

to assist the implementation of our solution. Section 4.2 presents the main algorithms of the tool and

explains how they work.

4.1 Tools used

This section describes the tools used in the implementation of some tasks performed in the pipeline of

our solution.

4.1.1 Flawfinder

Flawfinder [7] is a static analysis tool that scans C/C++ source code and reports potential security flaws.

It works by using a built-in database of C/C++ sensitive functions with well-known problems, such as

the strcpy function associated with buffer overflow risks, and then takes the source code for matching

it against the name of those functions. In such match case, it hits the instructions of the source code as

potential flaws, i.e., vulnerabilities. These instructions contain some sensitive functions from its database.

In the end, it produces a list of hits, i.e., a list of potential security flaws, sorted by risk. It was chosen

to help detect vulnerabilities because the functions we want to address are present in its database of

vulnerable functions. Therefore, Flawfinder is used in our Vulnerability Identifier module to detect

buffer overflows. In addition, it is a simple tool that is easy to use, install, and integrate.

4.1.2 American Fuzzy Lop (AFL)

American Fuzzy Lop (AFL) [1] is a fuzzer for C/C++ programs to discover vulnerabilities they have,

producing the test cases that exploit them. It mutates an input seed given at the start of fuzzing to

generate new test cases, which could lead to the discovery of new execution paths of the program under

test. It interacts with the target program’s binary while processing the input passed and monitors what

segment of code was triggered, i.e., it keeps track of code paths being triggered. Based on these paths,

it mutates the seed files to discover new execution paths. Simultaneously, it checks if the test cases

are able to exploit some existent vulnerability in those paths. This tool was chosen to be used in the

35
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Program Validator module to confirm the existence of the potential vulnerabilities and to validate the

fixes generated by our approach due to its ability to detect vulnerabilities derived from the clever way it

modifies seeds.

4.1.3 Pycparser

Pycparser [14] is a parser for the C language, written in Python. It is a module designed to be easily

integrated into applications that need to parse C source code. Pycparser aims to support the full C99

language, and some features from C11 are also supported. It parses C code into an Abstract Syntax Tree

(AST). This AST contains nodes built by Pycparser that correspond to the different constituents of the

program (e.g., variable declarations, function calls). Pycparser was chosen as the parser to be used in

different modules of our solution, namely the Vulnerability Identifier, the Executable Generator, and the

Vulnerability Corrector, in which it is necessary to parse the code under analysis.

4.2 Algorithms

This section presents the algorithms in pseudo-code that describe the implementation of the main func-

tions of the tool and explains how they work.

4.2.1 Main algorithm

Input: Path to C/C++ program files
Output: Fixed Program

1 Function Main(path):
2 corrections← [];
3 origLines← [];
4 slices← identifyVulnerabilities(path);
5 for slice in slices do
6 file,lines← generateFile(slice, path);
7 origLines.append(lines);
8 executable← createExecutable(file);
9 exploits,hasExploit← checkVulnerabilities(executable, seed);

10 fileFixed,fixes← correctVulnerabilities(file, hasExploit);
11 if fileFixed then
12 newExecutable← createExecutable(fileFixed);
13 exploits,hasExploit← checkVulnerabilities(newExecutable,

exploits);
14 if not hasExploit then
15 corrections.append(fixes);
16 end
17 end
18 end
19 if corrections then
20 generateProgramRelease(path, corrections, origLines);
21 end
22 End

Algorithm 1: Main algorithm.

Algorithm 1 describes the highest level steps performed by the tool, i.e., the main algorithm. It starts

by initializing two lists, corrections where the generated fixes will be saved and origLines that
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will store the mapping between the original lines of the program under test and the corresponding lines

in the new files generated for the respective slices. Next, it calls the identifyVulnerabilities

function, which runs Flawfinder on the received program to identify potential vulnerabilities and then

generates slices of code for the potential vulnerabilities found (see Algorithm 2).

Once the slices are generated, for each one of them, the function generateFile is called to create

a file that contains that slice and all the information needed for the file to be compilable (see Algorithm

3). This step not only creates the new file but also creates the mapping between its lines and the lines

of the original file, which is appended to the origLines list. Afterwards, the createExecutable

function is called, which compiles the file generated using the AFL compiler to instrumentalize the

program so that the generated binary can be executed by the AFL. After the binary has been generated,

the checkVulnerabilities function is called, which runs AFL to fuzz the previously generated

binary. After this execution, the function returns the exploits generated by AFL and the flag that identifies

the file as a possible false positive or exploitable (see Algorithm 4). Subsequently, the file and the flag are

passed to the correctVulnerabilities function, which analyzes the file and checks if it needs

to be corrected. If the file needs to be corrected, the necessary fixes are generated and applied to the

code, and a new file is created with the new corrected code (see Algorithm 5). If a new file is generated,

then that file is compiled in the way explained above, again using the createExecutable function

to generate a new binary. This new binary is then passed to the checkVulnerabilities function

along with the exploits generated in the previous run of this function. This time the function runs AFL

to fuzz the new binary and returns some possible exploits and the hasExploit flag resulting from

fuzzing it. This flag is checked, and if it has the value False, then it means that no exploits were found,

and therefore, the previously generated fixes have been validated and are added to the corrections

list.

After iterating over all slices, a validation is made to check if the corrections list is empty. If

it is not, it means that we have a list with all the validated fixes and another list with the mapping of

the original lines and the lines where fixes were generated. Finally, these lists are passed along with the

original program to the generateProgramRelease function, which applies the fixes to the original

code and creates new files with these modifications, resulting in a new fixed program (see Algorithm 6).

4.2.2 Vulnerability Identifier algorithm

Algorithm 2 is responsible for scanning the received program for potential vulnerabilities. It starts by

initializing an empty list slices, where the slices of each possible vulnerability found will be stored.

Next, the function runFlawfinder is called, which runs Flawfinder on the received program files,

which results in a list of hits of all the weaknesses found, with information about the line and the file

they are. This list is filtered to contain only the hits related to the sensitive sinks we want to address.

Next, the getFileLines function is called, which goes through the filtered list to identify the files

and lines of the hits, then reads those files and copies the respective lines to a list that will contain all the

lines of the hits found and their file. For each line in this list, the parseLine function is called, which

uses the Pycparser to parse the line to identify and store the variables present in the line.

Afterwards, the parseFile function is called, which uses the parser to generate the AST of the

file where the line under analysis is located. The AST is processed to identify the variable statements



Chapter 4. Implementation 38

Input: Path to C/C++ program files
Output: List of code slices

1 Function identifyVulnerabilities(path):
2 slices← [];
3 hits← runFlawfinder(path);
4 lines← getFileLines(hits, path);
5 for line in lines do
6 variables← parseLine(line);
7 slice← parseFile(path, variables, line) ;
8 slices.append(slice);
9 end

10 return slices;
11 End

Algorithm 2: Algorithm performed by the Vulnerability Identifier.

identified earlier and these statements are stored in a list together with the line. This junction forms a

slice that is added to the slices list with the identification of which file that slice belongs to. Finally,

after all the lines have been analyzed, the slices list is returned containing the slices of all the hits.

4.2.3 File Generator algorithm

Input: Code slice; Path to C/C++ program files
Output: File with the code slice; Mapping of the file’s lines

1 Function generateFile(slice, path):
2 variables,sinks← parseSlice(slice);
3 instructions← parseFile(path, variables, sinks);
4 file,mapLines← createFile(slice, instructions);
5 return file, mapLines;
6 End

Algorithm 3: Algorithm performed by the File Generator.

Algorithm 3 is applied by the File Generator and corresponds to the operations performed to generate

a compilable file containing the slice received. It starts by calling the parseSlice function, which uses

Pycparser to generate the AST representing the slice. The AST is processed to identify the variables and

sensitive sinks used in the slice. Subsequently, the parseFile function is called, which uses the parser

to generate the AST of the file to which the slice is associated. It then analyzes this AST in a bottom-up

approach by processing the instructions to identify those that use or depend on the variables and sinks

used in the slice. In this way, it is possible to identify the instructions that need to be added into the file to

have a complete execution path and to the file can be compiled. These instructions include the directives

needed to compile the code and other variables or function calls/declarations needed, as well as the line

where they are in the file.

After determining which additional instructions are needed, the createFile function is called,

which opens a new file and writes to it the directives, the function declarations determined previously,

and, finally, the main function containing the remaining instructions and the slice. Each time this func-

tion writes an instruction to the new file, it saves in a list the correspondence between the line number of

the instruction in the original file and the value corresponding to the line number of the instruction in the
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new file. This value is obtained from a counter incremented when a new line is written to the file. This

is how the mapping between the line numbers of the original file and the new file is done. The execution

of this function results in creating a compilable and executable file containing the slice with the potential

vulnerability and a mapping between the line numbers of the original file and the new file.

4.2.4 Program Validator algorithm

Input: Executable file; Input seeds
Output: Generated exploits; Has exploit tag

1 Function checkVulnerabilities(executable, seeds):
2 hasExploit = False;
3 exploits← runAflFuz(executable, seeds);
4 if exploits then
5 hasExploit = True;
6 end
7 return exploits, hasExploit;
8 End

Algorithm 4: Algorithm performed by the Program Validator.

Algorithm 4 describes how the Program Validator works in checking potential vulnerabilities and

validating the fixes generated by the Vulnerability Corrector. It starts by initializing a boolean variable to

false that serves as a flag to indicate whether the file is exploitable or not. Next, the function runAflFuz

is called, which runs a subprocess where AFL runs over the binary generated from the file under test for a

given period of time. Some seeds are passed in as input for AFL to start executing and making mutations

from those seeds. When the subprocess execution time is over, AFL is stopped, and the folder where

the generated exploits are stored is analyzed to verify if any exploits were generated or not. If there are

exploits, they are stored in a list. Otherwise, it remains empty. Afterwards, it is verified if the list has

exploits. In the affirmative case, the previously initialized flag becomes true. Finally, the list of exploits

and the flag are returned. This algorithm works the same way in both Program Validator execution

phases. However, in the second phase, i.e., in the validation of the fixes, the seeds given as input contain

not only the seed passed in the first phase but also the exploits generated in that phase.

4.2.5 Vulnerability Corrector algorithm

Algorithm 5 represents the general execution of the Vulnerability Corrector module. It starts by initial-

izing the list fixes, where will be stored the generated fixes with the indication of the file they belong

to and the lines where they should be inserted. Next, the parseFile function is called, which uses

Pycparser to generate the AST of the received file, which is processed to identify which variables exist

and store the relevant information about them, namely their names and sizes. In addition to the variables,

function calls are also processed to identify the desired sensitive sinks and check which variables they

use and how.

After collecting this information, the checkFunctions function is called to analyze the usage

of the variables in the respective sensitive sink. This analysis consists in verifying if the sink correctly

uses the variables considering their sizes, i.e., verify if there is a correspondence between the way the

variable was used and the size of that variable respecting the aspects discussed in Section 3.4. If this
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Input: File to correct; Has exploit tag
Output: Fixed file; List of fixes

1 Function correctVulnerabilities(file, hasExploit):
2 fixes← [];
3 variables,sinks← parseFile(file);
4 hasMatch← checkFunctions(variables, sinks);
5 if hasMatch and not hasExploit then
6 return fixes;
7 else
8 for sink in sinks do
9 fix← createFix(variables, sink, templates);

10 fixes.append(fix);
11 end
12 end
13 fileFixed← applyFixes(file, fixes);
14 return fileFixed, fixes;
15 End

Algorithm 5: Algorithm performed by the Vulnerability Corrector.

correspondence exists, it returns the variable hasMatch with the value true and otherwise with the

value false. If the variable hasMatch is true and the variable hasExploit is false, it means that no

real vulnerabilities were identified. In that case, the execution ends with the return of the fixes list that

is empty because no fixes were generated. Otherwise, the function enters a loop for each sensitive sink

in the code, calling the createFix function, which receives the previously collected information and

the templates of the fixes to apply for each sink.

These templates are strings that represent the correct usage of the respective sensitive sink with de-

fault parameters. The createFix function identifies the sink, the variables used and the template

corresponding to that sink. Then calculates the sizes that should be used and replaces the default pa-

rameters in the template with the variables identified and the right sizes. This process generates the

correction that consists of a new instruction with the correct usage of the identified sensitive sink. After

the correction is generated, it is added to the fixes list with the file and line where it should be inserted.

When this process is finished for all the sensitive sinks identified, the applyFixes function is called

and receives the file and the list of fixes. This function reads all the file’s lines and stores them in a list.

It then iterates over the list of fixes and takes the line number where the fix should be inserted. Next,

it modifies the position in the list of lines corresponding to that line with the proper fix. At the end of

the iteration, the list of lines contains all the corrections generated. Afterwards, the file is rewritten with

these new lines, resulting in a new file with all the corrections applied. Finally, this new file and the list

of fixes are returned.

4.2.6 Program Release Generator algorithm

Algorithm 6 shows the procedures performed by the Program Release Generator to correct the program

initially received. It starts by iterating over the received files and calls the readFile function, which

opens the file and reads all its lines into a list. It then iterates over the fixes list and the origLines

list corresponding to that file to find the line from the original file that matches the line from the file

generated during testing. When it finds that match, it inserts the fix into the given index of the lines
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Input: Path to C/C++ program files; Fixes generated; Original lines
Output: Fixed Program

1 Function generateProgramRelease(path,fixes,origLines):
2 for file in path do
3 lines← readFile(file);
4 for fix in fixes[file] do
5 for origLine in origLines[file] do
6 if fix.line == origLine.new then
7 lines[origLine.old] = fix.correction;
8 break;
9 end

10 end
11 end
12 writeLines(lines);
13 end
14 End

Algorithm 6: Algorithm performed by the Program Release Generator.

list. At the end of the file iteration, it calls the function writeLines, which opens a new file and writes

the lines list into it. This process is repeated for all files, thus generating a new version of each one

containing all the fixes generated by the tool.
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Evaluation

This chapter describes the evaluation process performed to evaluate our tool and discusses the results

obtained. Section 5.1 describes the evaluation setup and identifies the metrics used for the evaluation.

Sections 5.2 and 5.3 present and discuss the evaluation with, respectively, a synthetic dataset and real

applications, both comprising C programs.

To evaluate the tool, it is necessary to reason about the challenges identified in Section 3.1 and

the solutions we proposed to solve them. Based on that information, there are four main aspects that we

should evaluate in the tool: its ability to find vulnerabilities, its ability to build compilable and executable

files, its ability to correct vulnerabilities, and the effectiveness of the generated fixes. Considering these

aspects, we defined the following questions:

Q1 Is the tool capable of detecting potential vulnerabilities associated with the functions addressed?

Q2 Can the tool create correct code slices for the potential vulnerabilities found?

Q3 Is the tool capable of generating compilable and executable files for the slices created?

Q4 Can the tool confirm that the potential vulnerabilities found are really exploitable?

Q5 Is the tool capable of correcting the vulnerabilities?

Q6 Are the fixes generated by the tool effective?

Q7 Is the tool capable of processing real applications and fix vulnerabilities?

With the intent of answering these questions, the evaluation process was conducted as described in

the upcoming sections.

5.1 Evaluation Setup and Metrics

To evaluate the tool’s capabilities more thoroughly, we divided the evaluation into two parts. Firstly,

we used a synthetic dataset of test cases (small C programs) taken from Software Assurance Reference

Dataset (SARD) [13] to evaluate the tool’s performance and validate its capabilities.

The test cases that are part of the dataset were previously classified as vulnerable or not vulnerable,

serving as the ground truth for comparison with the results obtained by the tool. With this data, it is
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Table 5.1: General confusion matrix.

Tool classification Total
Vulnerable Not Vulnerable

Ground Truth Vulnerable TP FN TP + FN
Not Vulnerable FP TN FP + TN

Total TP + FP FN + TN TP + FN + FP + TN

possible to create a confusion matrix like the one presented in Table 5.1, from which we calculate the

values of True Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives (FN).

Once these values are determined, it is possible to calculate some evaluation metrics to have statistical

data to assess the tool’s performance. Next, we describe the metrics we decided to use, their meaning in

the context of our evaluation, and the respective formulas from which we can calculate their values.

Accuracy (ACC): Measures the percentage of correct decisions made by the tool.

ACC =
TP + TN

TP + FP + TN + FN
(5.1)

False Negative Rate (FNR): Measures the percentage of vulnerable test cases missed by the tool.

FNR =
FN

FN + TP
(5.2)

False Positive Rate (FPR): Measures the percentage of not vulnerable test cases incorrectly identified

as vulnerable by the tool.

FPR =
FP

FP + TN
(5.3)

Precision (Pr): Measures the percentage of vulnerable test cases correctly identified by the tool.

Pr =
TP

TP + FP
(5.4)

Recall or True Positive Rate (TPR): Measures the percentage of vulnerable test cases the tool identi-

fied as such.

TPR =
TP

TP + FN
(5.5)

Specificity or True Negative Rate (TNR): Measures the percentage of not vulnerable test cases that

the tool identified as such.

TNR =
TN

TN + FP
(5.6)

F-Score: It is the harmonic mean of precision and recall.

F − Score = 2 ∗ Pr ∗ TPR

Pr + TPR
(5.7)

Finally, in the second phase, we used some applications written in C taken from SourceForge repos-

itory and from a XIVT’s partner to test the tool’s capabilities to process real programs. At this stage, the

metrics presented above were not calculated because there is no classification of the application files to

compare with the results obtained by the tool.
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5.2 Evaluation with SARD dataset

SARD is a dataset maintained by the National Institute of Standards and Technology (NIST). It con-

tains several thousand test cases for different types of vulnerabilities in a wide variety of programming

languages. Since our work is focused on C, we are only interested in test cases for that programming

language.

We gathered a total of 1075 test cases from SARD. All these test cases contain some of the functions

that we want to address and were manually analyzed and classified as vulnerable or not vulnerable. We

classified 560 as vulnerable and 515 as not vulnerable. Table 5.2 summarizes the number of test cases

collected for each function type.

Table 5.2: Summary of test cases collected from SARD.

Function Total test cases

Input

gets 33
scanf 120
sscanf 120
fscanf 120
vscanf 30
vsscanf 30
vfscanf 30

Output sprintf 56
vsprintf 30

String copy strcpy 115

String concatenation strcat 115

Multiple Functions 276

Total 1075

During the evaluation, the tool processed all test cases and generated all slices and executable files

correctly. Based on the classification we made manually and the results obtained with the tool, we built

the Table 5.3, representing the confusion matrix of the Vulnerability Identifier, Program Validator, and

Vulnerability Corrector modules. Using the values from this table, we calculated the metrics defined in

Section 5.1 for each module. Table 5.4 shows these metrics, from which it is possible to visualize the

evolution throughout the tool’s pipeline. Note that the Program Validator values shown in the table are

relative to the first execution of this module in the tool’s pipeline, i.e., the confirmation of vulnerability

existence.

Table 5.3: Confusion matrix of the modules evaluated.

Tool Classification

Vulnerability Identifier Program Validator Vulnerability Corrector

Vulnerable Not Vulnerable Vulnerable Not Vulnerable Vulnerable Not Vulnerable

Ground Truth Vulnerable 560 0 560 0 560 0
Not Vulnerable 515 0 0 515 30 485

Total 1075 0 560 515 590 485
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Table 5.4: Summary of the calculated evaluation metrics.

Metric Vulnerability Identifier Program Validator Vulnerability Corrector

Accuracy (ACC) 0.52 1.00 0.97
False Negative Rate (FNR) 0.00 0.00 0.00
False Positive Rate (FPR) 1.00 0.00 0.06
Precision (Pr) 0.52 1.00 0.95
Recall or True Positive Rate (TPR) 1.00 1.00 1.00
Specificity or True Negative Rate (TNR) 0.00 1.00 0.94
F-Score 0.69 1.00 0.97

Based on the data in Table 5.3, we can see that the Vulnerability Identifier module identified all test

cases as vulnerable. Since all test cases have a function that we want to address, then this shows that the

module can identify these functions. Furthermore, by analyzing the recall value of this module stated in

Table 5.4, we can observe that all the vulnerable files were identified as such. Therefore, based on these

two results, we can answer affirmatively to question Q1.

Regarding the Executable Generator module, we can conclude that it fulfilled its role. It was able

to generate compilable and executable files correctly. An indicator of this result is that the tool was

able to process all test cases. All modules processed all test cases, as we can see in Table 5.3. In

addition, we can observe that the Program Validator module detected and exploited all vulnerable cases

correctly, which shows that the executable files generated were correctly built and contain the slices with

the vulnerabilities. Furthermore, the module has the capacity of invalidating the false positives generated

by the Vulnerability Identifier. Therefore, even though this last module has the highest FPR, the Program

Validator achieves null FNR and FPR, i.e., a precision, recall, and F-Score equal to 100 %. This answers

questions Q2 and Q3 since the two are related.

The results obtained by the Program Validator depicted in both tables show that this module was able

to correctly identify all vulnerable test cases, as well as the not vulnerable test cases. These results serve

to answer the Q4 question since this module detected all the real vulnerabilities.

As mentioned before, the results of the Program Validator shown in these tables are relative to the

first execution of this module in the tool’s pipeline. In the second execution of this module, all test

cases were classified as not vulnerable since the module did not find any problems during the execution.

This result indicates that the Vulnerability Corrector module was able to generate correct syntactically

and effective corrections as they removed the existing vulnerabilities. With this result, we can answer

question Q5 because the tool was able to generate the right corrections and question Q6. After all, the

generated corrections proved to be effective.

It is possible to observe in both tables that the Vulnerability Corrector module presented some false

positives, i.e., it corrected some test cases that were not vulnerable. The reasons for the existence of false

positives are discussed next.

One of the reasons for the existence of false positives is due to a limitation of static analysis. Some

test cases contain dynamic arrays whose size is calculated based on the result returned by executing

some function. In that cases, it is not possible to statically determine the size of the array. Therefore,

we decided that in this situation, a correction would always be generated, for prevention, to avoid false

negatives. Listing 5.1 shows an example of this type of situation. In this example, the function fgets
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reads some text provided by the user and writes it into the array userstr (line 8). Then, the length

of this text is determined and stored in the integer variable size plus one character (line 9). Using this

value, the program allocates memory to the char pointer userstr copy, to which the content of the

array userstr is copied (lines 10 and 11). In this example, there is no buffer overflow because the

userstr copy was created with enough size to store the contents of the array userstr. However,

through static analysis, it is not possible to determine the size value because it is calculated at runtime.

Therefore, it is not possible to compare the strcpy function parameters to check whether or not there

is a buffer overflow, which leads the Vulnerability Corrector module to fix this code.

1 #include <stdio.h>
2 #include <string.h>
3 #include <stdlib.h>
4 #define MAXSIZE 40
5
6 int main(int argc, char **argv) {
7 char userstr[MAXSIZE];
8 fgets(userstr, MAXSIZE, stdin);
9 int size = strlen(userstr) + 1;

10 char *userstr_copy = malloc(sizeof(char) * size);
11 strcpy(userstr_copy, userstr);
12 puts(userstr_copy);
13 free(userstr_copy);
14 return(0);
15 }

Listing 5.1: Example of the first reason for false positives.

1 #include <stdio.h>
2 #include <string.h>
3 #define MAXSIZE 40
4
5 char *shortstr(char *p, int n, int targ) {
6 if(n > targ)
7 return shortstr(p+1, n-1, targ);
8 return p;
9 }

10
11 void test(char *str) {
12 char buf[MAXSIZE];
13 str = shortstr(str, strlen(str), MAXSIZE-1);
14 strcpy(buf, str);
15 printf("result: %s\n", buf);
16 }
17
18 int main(int argc, char **argv) {
19 char userstr[100];
20 fgets(userstr, sizeof(userstr), stdin);
21 test(userstr);
22 return(0);
23 }

Listing 5.2: Example of the second reason for false positives.

Another situation that results in false positives for the Vulnerability Corrector is when some string

is truncated by some function before being used in the strcpy or strcat functions. Through static



Chapter 5. Evaluation 48

analysis, it would be very difficult to calculate the length of the string after going through a function

that modifies its size, so we decided that in these situations, a correction would also be generated, once

again for prevention. Listing 5.2 depicts a program in which this situation occurs. The program reads a

string entered by the user, which is copied into the array userstr and can have a size up to 100 bytes.

This string is copied in the test function into the buf array which has size of 40 bytes. In case the

user-entered string is bigger than 40 bytes, there would be a buffer overflow. However, the string is not

copied directly; it is used in the shortstr function, which will truncate the string to a size less than 40

bytes so that it can be copied without problems. So this program has no buffer overflow.

Overall, the Vulnerability Corrector had a recall of 100 % and a precision of 95 %.

5.3 Evaluation with Real Applications

SARD dataset allowed the evaluation of the tool’s capability to deal with all the functions addressed and

to measure its performance. However, SARD’s test cases might not represent real applications accurately.

Therefore, we obtained six applications in pre-alpha and beta versions from SourceForge to test our tool

with real code. Besides these applications, we also tested a railway driver software made available by a

partner of the project in which this work is inserted.

Table 5.5 presents a summary of the applications that were collected. The table includes the version

of the application, the number of files it contains, the number of lines of code (LoC), and a brief descrip-

tion of the application. Regarding the code provided by the partner, it is a driver of a Propulsion Control

Subsystem (PCS) of a railway, which contains 20 files with 5483 lines of code. In total, the tool analyzed

209 files, corresponding to 132,209 lines of code.

Table 5.5: Summary of the applications used in the evaluation.

Application Version No. Files No. LoC Description

Zervit 0.4 17 1014 Http portable server
Macgen 1.1 1 15 Random MAC address generator
sSocks 0.0.14 30 3477 Socks5 Server
Tiny HTTPd 0.1 3 765 Simple webserver
LIBPNG 1.6.37 88 57075 Library for supporting the PNG format
Intel Ethernet Drivers 2.17.4 50 64380 Linux kernel drivers for all Intel Ethernet adapters
PCS’s Driver - 20 5483 Driver of a PCS of a railway

Table 5.6 summarizes the results obtained by the tool when testing these applications. The symbol

(-) in the table means that the tool could not finish its entire process. Note that some of these applications

are early-stage development versions and sometimes present some problems or even are incomplete. In

this case, it was necessary to modify some files manually because some include directives were incorrect.

For the sSocks application, the tool was able to detect 10 potential vulnerabilities but was unable to

proceed with the process because the parser could not parse some files due to problems with includes that

were not provided with the program. In the case of Intel Ethernet Drivers, the tool detected 1 potential

vulnerability but was unable to process the file for the same problem.

In the case of the LIBPNG and Macgen applications, the tool did not find any potential vulnerabilities

associated with the addressed functions. Therefore, it did not generate any fixes.
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Table 5.6: Summary of the evaluation of the applications.

Application Potential Vulnerabilities Fixes Generated

Zervit 6 4
Macgen 0 0
sSocks 10 (-)
Tiny HTTPd 38 2
LIBPNG 0 0
Intel Ethernet Drivers 1 (-)
PCS’s Driver 4 0

For the Zervit and Tiny HTTPd applications, the tool detected 6 and 38 potential vulnerabilities,

respectively. For the 6, it generated 4 fixes, and for the 38, it generated 2 fixes. These fixes were

manually verified, and we concluded that they were necessary and correctly removed the vulnerabilities

found. This result shows that it was possible to discover 6 vulnerabilities that were not yet reported for

these versions of the applications, i.e., the tool discovered 6 zero-day vulnerabilities. The remaining 38

potential vulnerabilities found were in fact not vulnerable, which the Program Validator confirmed, thus

invalidating the 38 false positives provided by the Vulnerability Identifier.

Regarding the PCS’s driver (the partner code), the Vulnerability Identifier detected 4 potential vul-

nerabilities. However, the Vulnerability Corrector did not generate any fixes because it did not consider

these hits real vulnerabilities, as well as the Program Validator. Again we checked these results manually,

and indeed all 4 hits were not vulnerable.

Given these results, we can positively answer Q7.
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Conclusion

In this work, we studied examples of buffer overflow vulnerabilities in C programs and examined some

functions from the C language considered insecure against this class of vulnerabilities. We also analyzed

secure versions of these functions and solutions for creating secure code using them, considering aspects

for their correct use. In addition, we analyzed several tools and work done related to vulnerability

detection and exploitation and automatic software repair. With this analysis, we realized that some of

the tools available for detecting vulnerabilities and correcting code generate corrections and apply them

to the code without verifying if they are correct and safe. Thus, we proposed a fully automated solution

to detect vulnerabilities, confirm their existence, fix the real vulnerabilities, and verify that the fixes

generated are effective.

We implemented a prototype of the proposed solution in combination with using two open-source

tools, Flawfinder and AFL, which helped the implementation of two modules.

The developed prototype was evaluated using a dataset generated with test cases collected from

SARD and real applications collected from SourceForge and a partner of the project this work is inserted.

The experimental results showed that the tool was able to detect vulnerabilities related to buffer

overflows and correct them effectively. All the fixes applied by the tool were correctly generated, the

code was syntactically correct, and the existing vulnerabilities were successfully removed.

Based on these results, we conclude that our solution satisfies the objectives proposed for this work

and could be an asset for work related to automatic software repair. Furthermore, it can be a helpful tool

for improving code quality and software security.

6.1 Future Work

In this section, we present some aspects that could be improved in the tool and future directions for

continuing the work.

An aspect that could be improved would be to increase the parsing capability of the tool to cover

the more complex data structures in the language, which would increase the ability to detect and fix

vulnerabilities.

Another aspect would be to improve the tool’s output to make it easier for the user to find the prob-

lematic places in the files and help perceive existing problems.

A direction for future work would be to add a feature to check if there is any use of the functions

that are considered safe (e.g., strncpy) and verify if these functions are used correctly to avoid the
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problems that we discussed in the analysis of these functions.

Another direction for future work would be to add more sensitive sinks associated with buffer over-

flows to increase the scope of functions covered by the tool.
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