UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE GEOLOGIA

Reacções álcalis-carbonato em betão: caracterização mineralógica e química

João Artur de Sousa Pinto

Mestrado em Geologia Económica

Especialização em Prospecção Mineral

Relatório de Estágio orientado por: Maria Isabel Gonçalves Fernandes Maria Amélia Alves Rangel Dionísio

Agradecimentos

A realização deste estudo não teria sido possível sem o auxilio prestado por numerosas pessoas, que estiveram presentes e que de alguma forma contribuíram para a sua materialização, a quem estou eternamente grato. Peço desculpa no caso de não citar todos os indivíduos envolvidos nesta fase da minha vida, mas saibam que estou grato pela ajuda oferecida, sob que forma tenha sido.

Agradeço em primeiro lugar às minhas orientadoras, Professora Doutora Isabel Fernandes (FCUL) e Professora Doutora Amélia Dionísio (IST), por todo o auxílio, orientação e disponibilidade demonstrada para discutir e me orientarem durante as diferentes fases de trabalho que levaram ao estudo apresentado. Quero também agradecer à Professora Doutora Ana Jesus, ao Professor Doutor Jorge Figueiras por todo o auxílio prestado no tratamento petroquímico dos dados deste trabalho, e pela paciência demonstrada nas inúmeras discussões longas realizadas no decorrer dos trabalhos. Outro agradecimento à Professora Doutora Ana Azerêdo, Professor Doutor Mário Gonçalves e Doutor Fernando Barriga pela disponibilidade demonstrada para ajudarem a esclarecer e fornecer algum do apoio bibliográfico quando necessitei de apoio no entendimento dos carbonatos estudados, assim como para os restantes professores da área de Recursos Minerais que me auxiliaram ao longo deste mestrado. Agradeço também ao Professor Doutor Benoit Fournier, que foi quem forneceu as amostras provenientes da região de Ontário (Canadá), o que permitiu a realização do estudo, assim como todo o auxílio prestado no decorrer dos trabalhos com informação valiosa e apoio bibliográfico.

Mostro o meu reconhecimento ao Doutor Pedro Rodrigues, pela sua contribuição nas análises com microssonda electrónica, e à Doutora Vera Lopes, por todo o apoio na realização das diferentes metodologias de selecção e tratamento das amostras.

A todos os colegas que conheci desde a minha entrada na FCUL, os que me acompanharam no ano de licenciatura e com quem tive grandes desabafos no decorrer deste estudo, por me terem apoiado e incentivado a continuar a trabalhar. Quero deixar um agradecimento especial à minha namorada, Leonor Figueirinhas, por todo o apoio e paciência que demonstrou durante este período. Outro grande agradecimento aos meus colegas de mestrado, João Correia, Eduardo Soares, Ivo Martins e André Cravinho pelos cafés, brincadeiras, conversas e conselhos.

Por fim, quero deixar um grande agradecimento à minha família, aos meus pais por terem sido sempre compreensivos a me terem apoiado em todo o meu percurso, à minha irmã e ao meu cunhado por serem meus confidentes e conselheiros, às minhas sobrinhas por estarem sempre tão preocupadas com o trabalho do tio e por fim, à minha avó Rosária por ser a minha maior apoiante e um grande apoio em tudo aquilo a que me predisponho a fazer.

Resumo

A reacção alcális-carbonato (ACR) é uma das reacções alcális-agregado (AAR) mais sujeitas a

debate mundialmente, correspondendo a uma reacção expansiva em betão envolvendo rochas

carbonatadas dolomíticas impuras como agregado. As pedreiras de Kingston e Spratt (Canadá) foram

ambas identificadas, desde a década de 50, como produtoras de agregado altamente reactivo quando

incorporado em betão. O agregado de Spratt apresenta grandes quantidades de sílica reactiva dispersa

na sua matriz, originando a reacção alcális-sílica (ASR), enquanto que o agregado de Kingston não

aparenta originar produtos de reacção que expliquem a expansão observada.

O presente estudo envolve duas aproximações ao problema: o estudo de agregados de rocha; a

análise de danos e o estudo de prismas de betão ensaiados segundo o procedimento normativo CSA

A23.2-14A (2014). Para a petrografia dos agregados de rocha, os grãos individuais foram separados em

fracções de acordo com a cor e texturas observadas, levando à produção de superfícies polidas, assim

como a produção das mesmas para cada prisma de betão disponível. Usando microscopia óptica,

microscopia electrónica de varrimento e microssonda electrónica foram obtidas as composições

químicas das diferentes mineralogias dos agregados de rocha, a composição de produtos de reacção

identificados e a sua possível relação com a mineralogia identificada.

No agregado de Kingston observou-se a presença de um processo metassomático, de baixa

temperatura, que levou à silicificação e feldspatização da rocha carbonatada, assim como ao

desenvolvimento da matriz dolomítica acompanhada de ilite e celestite. Não foram identificados

produtos de reacção danosos nos prismas de betão com agregado de Kingston, embora a reacção entre

o quartzo, feldspatos, filossilicatos, sulfatos (celestite) e sulfuretos (pirite) observados possa muito

possivelmente levar à formação de reacções previamente conhecidas como danosas em betão, como é o

caso da ASR ou da formação retardada de ettringite (DEF), levantando mais questões no que toca à

ACR.

Palavras-chave: ACR; Petrografia; MEV; Agregado de rocha; Prisma de betão.

II

Abstract

Alkali-carbonated reaction (ACR) is one of the most discussed and studied alkali-aggregate reactions (AAR) world-wide. It involves impure carbonate rocks containing dolomite, leading to an expansive reaction inside concrete. Spratt and Kingston quarries have been identified some decades ago as the origin of strongly alkali reactive aggregates. Spratt aggregate contains free dispersed silica, and it experiences most probably an alkali-silica reaction (ASR) whilst the Kingston aggregate is classified as alkali-carbonate reactive, although no deterious products have been identified in deteriorated concrete. In the present study two approaches were used, giving emphasis on the petrographic characterization: the study of the rock aggregates; the analysis of concrete prisms manufactured for laboratory expansion tests, after performing the CSA A23.2-14A (2014) test.

For the petrographic study of these rock aggregates, the crushed grains were split accordingly to their colour and texture under binocular microscope and thin sections were produced from each fraction, as well from the concrete prism available for the study. Optical microscope, scanning electron microscope and electron probe micro-analysis were used to obtain the mineralogical composition of the aggregates, chemical composition of the reaction products and possible relationship with the aggregate minerology.

From the petrographic analysis of the Kingston aggregates, it was identified a low temperature metassomatic process, leading to the silicification and feldspatization of the carbonate rock, as well as the development of the dolomitic matrix accompanied with illite and celestite formation. No reaction products were observed in the concrete manufactured with the Kingston aggregate, although the presence of quartz, feldspars, sulphates (celestite) and sulphides (framboidal pyrite) in contact with the typical pore fluids in concrete, could lead to some previously known harmful reactions, such as ASR or delayed ettringite formation, leaving new questions regarding ACR.

Keywords: ACR; Petrography; SEM-EDS; Rock aggregate; Concrete prism.

Índice

AGRADE	CIME	ENTOS I	
RESUMO		II	
ABSTRAC	T	III	
ÍNDICE		IV	
ÍNDICE D	E FIC	GURASVI	
ÍNDICE D	E EC	QUAÇÕESXIV	
ABREVIA	TUR	ASXV	
і. ОВЈЕСТ	ΓΙνο	S DO ESTÁGIO1	
II. ESTAD	O D	A ARTE2	
III. INTRO	DDU	ÇÃO TEÓRICA4	
III.1	Pro	OPRIEDADES E TIPOS DE AGREGADOS	4
III.2	REA	ACÇÕES DE DETERIORAÇÃO INTERNA DO BETÃO	е
III.2	.1	Reacção álcalis-sílica (ASR)	7
III.2	.2	Reacção álcalis-carbonato (ACR)	7
III.2	.3	Reacção sulfática	8
111.2	.4	Carbonatação	9
IV. ENQU	JADF	RAMENTO GEOLÓGICO10	
V. MATE	RIAIS	S11	
VI. METC	DOI	OGIAS	
VI.1	ME	TODOLOGIAS PARA ESTUDO DE AMOSTRAS DE ROCHA	14
VI.1	1	Separação granulométrica	14
VI.1	2	Descrição macroscópica à lupa binocular	14
VI.2	ME	TODOLOGIAS PARA ESTUDO DOS PRISMAS DE BETÃO PRÉ-ENSAIADOS	14
VI.2	2.1	Determinação do Damage Rating Index (DRI)	14
VI.3	PRO	DDUÇÃO DE LÂMINAS POLIDAS	18
VI.4	Mid	CROSCOPIA DE LUZ TRANSMITIDA E REFLECTIDA	18
VI.5	Mid	CROSCOPIA ELECTRÓNICA DE VARRIMENTO (MEV)	19
VII. RESU	ILTA	DOS19	
VII.1	Av	aliação de danos em betão — Damage Rating Index	19
VII.2	РЕТ	ROGRAFIA DE AGREGADOS DE ROCHA	24
VII.2	2.1	Descrição macroscópica	24

VII.2.2	Descrição microscópica	28
VII.3 PET	TROGRAFIA DE PRISMAS DE BETÃO	39
VII.3.1	Descrição microscópica	39
VII.4 Qu	ÍMICA MINERAL	46
VII.4.1	Agregado "Kingston" (Kingston, Ontário)	46
VII.4.2	Agregado "Spratt" (Ottawa, Ontário)	55
VII.5 Qu	ÍMICA MINERAL DE PRISMAS DE BETÃO	62
VII.5.1	Prisma Ki_B1	62
VII.5.2	Prisma Spr_B1	68
VIII. DISCUSS	ÃO DE RESULTADOS E CONCLUSÕES	71
VIII.1	Evolução geológica da rocha de Pittsburg (Kingston, Ontário)	71
VIII.2	Evolução geológica da rocha de Spratt (Ottawa, Ontário)	73
VIII.3	Reacções de deterioração de betão	74
VIII.4	Conclusões	76
IX. TRABALH	OS FUTUROS	77
X. BIBLIOGRA	AFIA	79
ANEXOS		84

Índice de Figuras

Figura IV.1 - Mapa geológico das maiores estruturas geológicas presentes na região de Ontário
Canadá (as pedreiras de Spratt e Pittsburg encontram-se assinaladas com um círculo a verde). Adaptado
de Rogers (2000)
Figura VI.1 - Organograma das metodologias realizadas sobre os diferentes materiais
estudados: amostras de agregado da pedreira de Pittsburg e Spratt; prismas de betão pré-ensaiados 13
Figura VII.1 Síntese dos resultados de DRI obtidos para os diferentes prismas de betão
analisados segundo a metodologia de Sanchez et al. (2015) e normalizados para 100 cm2
Figura VII.2. – Imagens obtidas à lupa binocular de danos observados no prisma de betão Ki_B1
(DRI). (A) três partículas de agregado, duas delas com preenchimento das interfaces com a pasta de
cimento por carbonatação (seta verde) com fissuras fechadas no seu interior (seta vermelha), que se
estendem para a pasta com preenchimento (seta preta); (B) partícula de agregado com halo mais claro
(seta verde) e fissuras abertas no seu interior sem preenchimento (seta vermelha); (C) três partículas de
agregado semelhantes ao apresentado em (A), com fissura aberta na pasta sem preenchimento (seta
azul). Note-se que a partícula superior apresenta-se descolada da pasta e que a fissura na pasta contém
produtos de reacção; (D) fissura aberta na pasta sem preenchimento (seta azul) que atravessa a partícula
de agregado e que comunica com vazios na pasta (seta amarela), apresentando um pequenc
preenchimento na zona inferior da partícula (seta preta); (E) partícula de agregado com halo mais claro
(seta verde), em comunicação com fissura da pasta com preenchimento (seta preta), que comunica com
outra partícula (em baixo) também fissurada (seta vermelha); (F) fissura aberta de grandes dimensões
na pasta, sem preenchimento (seta azul).
Figura VII.3 Imagens obtidas à lupa binocular de danos observados nos prismas de betão
Ki_B2 (A, B, C) e Ki_B3 (D, E, F) (DRI). (A) três partículas de agregado com preenchimento das
interfaces com a pasta de cimento por carbonatação (seta verde); (B) partícula de agregado com halo
espesso, quase que a corroer a partícula (seta verde); (C) duas partículas de agregado comunicando entre
si através de uma fissura aberta na pasta, sem preenchimento (seta azul). Note-se que a partícula à
esquerda se apresenta descolada da pasta por acção da fissura; (D) fissura aberta não preenchida a
descolar a partícula de agregado (seta azul) e a comunicar com vazio na pasta (seta amarela). Todas as
partículas apresentam halos de reacção pouco desenvolvidos (seta verde); (E) partícula de agregado de
grandes dimensões com halo de reacção pouco desenvolvido (seta verde). Apresenta um cluster de Py
oxidada no canto inferior esquerdo (seta roxa); (F) fissura aberta que descola a partícula de agregado
presente no canto superior esquerdo, sem preenchimento (seta azul). As três partículas apresentam halos
de reacção pouco desenvolvidos (seta verde)
Figura VII.4 Imagens obtidas à lupa binocular de danos observados nos prismas de betão
Spr_B1 (A,B,C) e Spr_B2 (D,E,F) (DRI). (A) Fissura aberta no interior de agregado com preenchimento

(seta preta), com uma bifurcação na parte superior; (B) vazio na pasta com acumulação de gel silico-

Figura VII.5. – Diferentes fracções seleccionadas da amostra de agregado grosso de Kingston (Pitt-16) à escala macroscópica (A-D), com legenda de cor, e ocorrências minerais de interesse (E,D): (A) Grãos representativos da fracção Ki_R1; (B) Grãos representativos da fracção Ki_R2; (C) Grãos representativos da fracção Ki_R3; (D) Grãos representativos da fracção Ki_R4; (E) Dois grãos de pirite bem desenvolvidos num agregado de Ki_R1; (F) Planos estilolíticos em grão da fracção Ki_Rb após impregnação em resina epóxi, corte e polimento.

Figura VII.6. - Diferentes fracções da amostra de agregado grosso de Spratt à escala macroscópica (A,B), com legenda de cor, e elementos figurados (C-F) e minerais de interesse (G,H): (A) Grãos de agregado representativos da fracção Spr_R1 com legenda de cor; (B) Grãos de agregado representativos da fracção Spr_R2 com legenda de cor; (C,D) Exemplo dos bioclastos carbonatados encontrados essencialmente na fracção Spr_R1; (E,F) Exemplo de bioclastos negros de mineralogia desconhecida observados em ambos as fracções de agregados; (G) Filonete de calcite em Spr_R1; (H) Exemplo de sulfuretos (essencialmente oxidados) observados em ambos as fracções de agregados... 27

Figura VII.8. - Imagens ao microscópio óptico da fracção Ki_R2. (A-D) Fotos ao microscópio de luz transmitida em NX / (E,F) Fotos ao microscópio de luz reflectida em N//; (A,C) Exemplo da matriz de Ki_R2 onde se observa uma abundância de bioclastos substituídos por sparite (Cal); (B) Exemplo da matriz de Ki_R2 com dolomite (Dol) abundante e uma sequência de fissuras em echelon preenchidas por sparite (Cal); (D) Exemplo de plano estilolítico com reconcentração das mineralogias insolúveis (Qz, Fsp e filossilicatos «Phyll»); (E) Exemplo da ocorrência de pirite framboidal (frmbPy)

Figura VII.9. - Imagens ao microscópio óptico da fracção Ki_R3. (A,B,C,D,F) Fotos ao microscópio de luz transmitida em NX / (E) Foto ao microscópio de luz transmitida em N/; (A) Exemplo da matriz micrítica típica de Ki_R3, correspondente à grande maioria da amostra proveniente da pedreira de Pittsburg; (B) Exemplo do efeito dos fenómenos de recristalização possivelmente potenciados pela geração de planos estilolíticos, dando origem a pequenos níveis microsparíticos, assim como um raro bioclasto substituído por sparite (Cal); (C) Exemplo de zona rica em calciclastos, bioclasto e quartzo (Qz) numa zona mais microsparítica da matriz, possivelmente devido a fenómenos de recristalização da matriz carbonatada; (D) Alternância entre níveis sparíticos (Cal) e micríticos na matriz (recristalização controlada por planos pré-existentes(?)); (E,F) Zona da matriz com grande densidade de grãos de quartzo e feldspatos (Qz + Fsp), à semelhança do observado em Ki_R1, com dois bioclastos recristalizados. 34

Figura VII.12. - Imagens ao microscópio óptico da fracção Spr_R2. (A,C,E) Fotos ao microscópio de luz transmitida em N// (B,D,F) Fotos ao microscópio de luz transmitida em NX; (A,B) Exemplo da matriz típica de Spr_R2, microsparítica dolomítica rica em bioclastos e conteúdo argiloso; (C) Zona da matriz onde se podem observar dois níveis com conteúdos argilosos distintos (zona mais argilosa a topo), separadas por um fino plano estilolítico; (D) Exemplo da substituição interna de

Figura VII.15. - Imagens ao microscópio óptico do prisma Ki_B2. (A,C,E,G) Fotos ao microscópio de luz transmitida em N// / (B,D,F,H) Fotos ao microscópio de luz transmitida em NX; (A,B) Fissura aberta em torno de agregado grosso (zona superior) e fechada no interior da pasta, acompanhada de dois vazios (vazio da esquerda encontra-se preenchido por material resultante da produção da lâmina polida) e carbonatação intensa da pasta em torno dos agregados grossos; (C,D) Exemplo de fissura aberta originada no interior de grão de agregado grosso que se ramifica e comunica com uma segunda fissura aberta em torno do agregado e no interior da pasta de cimento, acompanhadas de carbonatação na pasta; (E,F) Fissura aberta e ramificada no interior de agregado grosso, fazendo uso localmente da granularidade da mineralogia presente para se desenvolver (lado esquerdo); (G,H) Fissura aberta na zona de contacto entre nível muito rico em argila (castanho escuro) e um nível intermédio mais carbonatado que é cortado, acabando por comunicar com a fissura aberta em torno do agregado....... 43

Figura VII.16. - Imagens ao microscópio óptico do prisma Ki_B3. (A,C,E,G) Fotos ao microscópio de luz transmitida em N// (B,D,F,H) Fotos ao microscópio de luz transmitida em NX; (A,B) Fissura aberta em torno de vazio na pasta, com carbonatação quase inexistente quer em torno do vazio quer em torno dos grãos de agregado grosso; (C,D) Fissura fechada em torno de agregado grosso de matriz micrítica, com carbonatação pouco intensa da pasta em torno do agregado; (E,F) Fissura aberta

Figura VII.22 – Imagens de electrões retrodifundidos da matriz carbonatada de Ki_R1, composta por proto dolomite + calcite + celestite ± quartzo ± feldspatos. (A) Imagem em electrões

Figura VII.26 - Diagrama ternário Cal-Mgs-Sd para os carbonatos analisados nas diferentes fracções de agregado grosso da pedreira de Spratt (Ottawa). Dois conjuntos bem definidos de calcites e dolomites, com a leitura de uma calcite magnesiana rica em magnésio (HMC) na fracção Spr_R1.... 56

Figura VII.28 - Imagem de electrões retrodifundidos da matriz carbonatada de Spr_R1, composta por calcite + proto dolomite ± sílica criptocristalina. (A) Imagem de electrões retrodifundidos obtida em MEV/ (B-F) mapas composicionais dos respectivos elementos identificados no canto inferior esquerdo. Exemplo do resultado do processo de silicificação da rocha de Spratt, com vários bioclastos que se apresentam parcialmente substituídos por sílica criptocristalina (D,E), com alguma pirite dispersa (G,H).

Figura VII.29 - Imagem de electrões retrodifundidos da matriz carbonatada de Spri_R2,
$composta \ por \ calcite + dolomite + quartzo \pm francolite. \ (A) \ Imagem \ de \ electr\~oes \ retrodifundidos \ obtida$
em MEV / (B-F) mapas composicionais dos respectivos elementos identificados no canto inferior
esquerdo. Matriz dolomítica bem desenvolvida de Spr_R2 com bioclasto bem preservado e substituído
por francolite no centro da figura (com a presença de pequenos fragmentos de outros bioclastos também
substituídos pelo mineralóide). Note-se a relação entre a presença de dolomite e o quartzo disperso na
matriz carbonatada (E,F).
Figura VII.30 – Diagrama ternário Cal-Mgs-Sd dos carbonatos analisados nas lâminas de betão
com agregado de Kingston (Ontário). Observa-se a presença de dois grupos bem definidos de calcites e
proto dolomites, com a presença de uma calcite magnesiana pobre em magnésio (LMC) em Ki_B1_B .
63
Figura VII.31 - Imagem de electrões retrodifundidos do prisma de betão Ki_B1_A,
apresentando um agregado grosso carbonatado (à esquerda) em contacto com pasta de cimento (à
direita), com dolomite zonada no canto superior direito. (A-B) Imagem de electrões retrodifundidos
$obtida\ em\ MEV\ /\ (C-F)\ map as\ composicionais\ dos\ respectivos\ elementos\ identificados\ no\ canto\ inferior$
esquerdo. O grão de agregado grosso em Ki_B1_A (A) exibe uma matriz dolomítica bem desenvolvida
$(C+D+F), com \ grande \ quantidade \ de \ quartzo \ (E+F), \ feldspatos \ e \ filossilicatos \ (E+F+G+H) \ associados,$
$com\ gr\~{a}o\ dolom\'{t}ico\ zonado\ (ampliado\ em\ B).\ Podem\ observar-se\ sinais\ de\ Mg\ e\ O\ na\ pasta\ de\ cimento$
que poderá corresponder a brucite dispersa. Note-se a ausência de silicatos em zonas da matriz mais
calcítica vs. a abundância de silicatos na matriz mais dolomítica
Figura VII.32 - Diagrama ternário Or-Ab-An para os feldspatos analisados nos agregados
grossos de Kingston (Ontário), quando incorporados em betão nas lâminas Ki_B1_A e Ki_B1_B 65 $$
Figura VII.33 - Imagem de electrões retrodifundidos do prisma de betão Ki_B1_A,
apresentando uma fissura aberta no interior da pasta de cimento, preenchida por uma mistura de
$carbonato\ de\ c\'alcio\ e\ silicatos\ do\ cimento.\ (A)\ Imagem\ de\ electr\~oes\ retrodifundidos\ obtida\ em\ MEV\ /$
$(B-F)\ map as\ composicionais\ dos\ respectivos\ elementos\ identificados\ no\ canto\ inferior\ esquerdo\ de\ (A).$
Fissura aberta em pasta de cimento com preenchimento de carbonato de cálcio (B+D+E+F), sendo
possível identificar-se brucite na pasta de cimento envolvente (C+F). Descolamento do preenchimento
de calcite no lado esquerdo da fissura indica diferentes fases de abertura por parte da rede de fissuras
no interior do betão
Figura VII.34 – Gráfico resultante da projecção das razões atómicas Ca/Si e (Na+K)/Si para as
duas formas de produto silico-alcalino identificadas no prisma de betão Spr_B1_A 69
Figura VII.35 - Imagem de electrões retrodifundidos do prisma de betão Spr_B1_A,
apresentando uma fissura bifurcada no interior de agregado grosso carbonatado, preenchida por produto α
silico-alcalino cristalino (SiGc), típica da ASR. (A) Imagem de electrões retrodifundidos obtida em
MEV/(B-F)map ascomposicionaisdosrespectivoselementosidentificadosnocantoinferioresquerdo.
70

Índice de Tabelas

Tabela V.1 Denominação adoptada para os diferentes prismas de betão pré-ensaiados, mediante
a percentagem de expansão volumétrica, obtida no ensaio ASTM C 1293 e a origem dos agregados
incorporados no seu fabrico.
Tabela VI.1 - Massas das diferentes fracções granulométricas separadas para as amostras de
agregado de rocha provenientes das pedreiras de Pittsburg (Kingston, Ontário) e Spratt (Ottawa,
Ontário)
Tabela VI.2 - Características petrográficas a identificar na determinação do DRI com
correspondentes ponderações e abreviaturas (Sanchez et al., 2015)
Tabela VI.3 - Chave de classificação do DRI proposta por Villeneuve et al. (2012) para a
deterioração interna de betão provocada pela ASR
Tabela VII.1 – Fórmulas empíricas para os carbonatos analisados nas diferentes fracções de
agregado grosso da pedreira de Pittsburg (Kingston)
Tabela VII.2 – Resultados wt%, em óxidos, da composição dos grãos de quartzo analisado nas
fracções de agregado Ki_R1 e Ki_R3
Tabela VII.3 – Resultados wt% da composição dos cristais de pirite analisadas nas fracções de
agregado Ki_R1 e Ki_R2
Tabela VII.4 - Fórmulas empíricas dos carbonatos analisados nas diferentes fracções de
agregado grosso da pedreira de Spratt (Ottawa)
Tabela VII.5 - Resultados (wt%), em óxidos, das formas de quartzo analisados nas diferentes
fracções de agregados de Spratt (Ottawa)
Tabela VII.6 – Resultados wt%, em óxidos, das francolites analisados no conjunto de agregados
de Spratt, com razões CaO/P ₂ O ₅ e F/P ₂ O ₅ (wt%)
Tabela VII.7 - Fórmulas empíricas dos carbonatos analisados nos diferentes prismas de betão
ensaiado com agregado grosso da pedreira de Pittsburg (Kingston)
Tabela VII.8 - Valores estatísticos (wt%) das espécies minerais, que compõe a matriz
carbonatada dos conjuntos de agregados de Kingston (Ontário), quando incorporados nos prismas de
betão Ki_Bi_A e Ki_Bi_B
Tabela VII.9 – Resultados wt%, em óxidos, para grãos de quartzo analisados no interior de grãos
de agregado grosso em Ki_B1_A e Ki_B1_B
Tabela VII.10 - Resultados wt%, em óxidos, para grãos de feldspatos analisados no interior de
grãos de agregado grosso em Ki_B1_A e Ki_B1_B
Tabela VII.11 - Valores mínimo e máximo da média (wt%) dos dados obtidos da análise de gel
silico-alcalino, sob a forma amorfa (SiG), e valores estatísticos (wt%) dos dados obtinos da análise de
produto silico-alcalino, sob a forma cristalina (SiGc) presentes nos danos presentes em Spr_B1_A, em
óxidos.

Tabela VII.12 - Valores estatísticos (mol) das razões atómicas Ca/Si e (Na+K)/S	i para as
diferentes formas de produto silico-alcalino identificadas no prisma de betão Spr_B1_A	69
Índice de Equações	
Equação III.1. Formação de gel silico-alcalino	7
Equação III.2. Desdolomitização	8
Equação III.3.Reacção entre sulfato de sódio e cal hidratada	8
Equação III.4.Reacção entre sulfato de sódio e aluminato de cálcio hidratado	9
Equação III.5.Reacção entre sulfato de magnésio e silicato de cálcio hidratado	9
Equação VI.1. Cálculo do DRI	17

Abreviaturas

AAR Reacção alcális-agregado ∨ *Alkali-aggregate reaction*ACR Reacção alcális-carbonato ∨ *Alkali-carbonate reaction*

Ab Albite

Ag Agregado grosso

ASTM American Society for Testing and Materials

ASR Reacção alcális-sílica ∨ Alkali-silica reaction

Cal Calcite

Cc Carbonato de cálcio

CemSil Silicatos e aluminatos que compõe o cimento Portland

Clt Celestite

CSA Canadian Standards Association

DEF Formação de ettringite retardada \(\textit{ Delayed ettringite formation} \)

Dol Dolomite

DRI Damage Rating Index

EDS Energy Dispersive X-ray Spectroscopy

FrmbPy Pirite framboidal

Fsp Feldspato

G Gel silico-alcalino

LMC / HMC Low magnesium calcite / High magnesium calcite

MEV Microscopia Electrónica de Varrimento

mSs Mistura da solução sólida

NP EN Norma PortuguesaNX Nicóis cruzadosN// Nicóis paralelos

Or Ortóclase Olg Oligóclase

Pc Pasta de cimento
Phyll Filossilicatos

Py Pirite
Qz Quartzo
Sd Siderite
Sa Sanidina

SiG Gel silico-alcalino sob a forma amorfa

SiGc Produto silico-alcalino cristalino

I. Objectivos do estágio

Problemas relacionados com reacções de degradação interna de betão são observadas globalmente e acabam por ter um impacto severo na durabilidade das estruturas afectadas. Assim sendo, o estudo e a determinação dos processos envolvidos na degradação deste material, tão largamente utilizado na construção civil em projectos de grande envergadura não só à escala económica como social (pontes, barragens, túneis), ganha cada vez mais lugar de destaque para as sociedades modernas no século XXI (Sims & Poole, 2017b).

Este trabalho de investigação tem por objectivo debruçar-se sobre a denominada reacção álcalis-carbonato (ACR) em betão, uma reacção identificada nos anos 50 do século XX, distinta da reacção álcalis-sílica (ASR), actuando de forma destrutiva e célere no betão afectado (abordado com mais detalhe nos Capítulos II e III deste relatório). Pretende-se com este relatório abordar o estudo desta reacção do ponto de vista mineralógico, uma vez que a abordagem tecnológica (*e.g.* realização de ensaios físico-mecânicos e químicos do betão) do problema, embora necessária, não foi ainda capaz de identificar claramente a origem exacta do mecanismo que origina esta reacção.

Fazendo uso das rochas exploradas nas pedreiras de Pittsburg e Spratt (Ontário), tidas como exemplos de referência de rochas associadas à típica reacção álcalis-carbonato (ACR) e reacção álcalis-sílica (ASR) respectivamente, este trabalho propõe-se a estudar e comparar, se possível, as semelhanças e diferenças entre ambas as reacções, em termos mineralógicos e químicos. Para a realização do estudo desta reacção foram utilizados agregados de rocha de ambas as pedreiras e prismas de betão préensaiados com agregado de cada pedreira (materiais estão descriminados com mais pormenor no Capítulo V deste relatório). O estudo desta reacção, com objectivos de caracterização do ponto de vista mineralógico, químico e também tecnológico da reacção ACR, irá fazer uso dos seguintes ensaios (explicados ao pormenor no Capítulo VI deste relatório):

- Determinação do Damage Rating Index (DRI);
- Análise macroscópica com lupa de mão e à lupa binocular dos agregados de rocha e dos prismas de betão pré-ensaiados;
- Análise petrográfica à lupa binocular e ao microscópio óptico de polarização de luz transmitida e reflectida dos agregados de rocha e dos prismas de betão;
- Análise por microscopia electrónica de varrimento (MEV) com análise qualitativa por espectroscopia de raio-X por dispersão de energia (EDS), dos agregados de rocha e dos prismas de betão.

II. Estado da arte

As primeiras reacções alcális-agregado (AAR) documentadas em Ontário, no Canadá, foram estudadas por Swenson na década de 50 (Swenson, 1957), tendo sido observada a ocorrência de AAR com uma variedade de rochas exploradas em território canadiano nos quarenta anos que se seguiram.

A reacção inicialmente documentada por Stanton (1942), mais tarde estudada por Gillott (1975), como reacção alcális-sílica (ASR) foi observada em várias rochas da região, na presença de uma ou várias formas de sílica reactiva nas agregados empregues em betão. Mais tarde, Dolar-Mantuani (1969) realizou estudos nas diferentes infraestruturas afectadas à data por esta reacção (várias barragens construídas no início do século XX em várias bacias hidrográficas em Ontário), tendo observado que o agregado empregue correspondia de forma geral a litologias como argilitos, arenitos, grauvaques e siltitos. Documentou também que ao realizar o ensaio ASTM C 227-10, Standard Test Method for Potential Alkali Reactivity of Cement-Aggregate Combinations (Mortar-Bar Method) (abandonado em 2018), no qual prismas de argamassa são submetidos a uma atmosfera controlada húmida a 38 °C durante o período de um ano, os prismas apenas apresentavam expansões danosas (> 0,10%) após o primeiro ano do ensaio, o que indica que embora se trate de ASR, a reacção observada é mais lenta que a documentada por Stanton (1942), tendo surgido a necessidade de novos métodos para uma identificação mais rápida do potencial reactivo de um agregado. A identificação de rochas com potencial reactivo para ASR em Ontário passou a ser feita não só através de ensaios tecnológicos (ASTM C 227; ASTM C 289; CSA A23.2-14A; ASTM C 1293; ASTM C 441; ASTM C 1260; CSA A23.2-25A) mas também através do estudo petrográfico de rocha (ASTM C 295 e CSA A23.2-15A) dado ter sido observado que rochas propensas a este tipo de reacção apresentavam formas de sílica reactiva (p. ex. calcedónia ou quartzo deformado) e que, quando expostas às condições de pH alcalino do betão (pH ≥ 13) sofrem dissolução e formam gel silico-alcalino, que consequentemente levara à expansão danosa observada através da captura de água e expansão do gel. Rochas com este tipo de potencial reactivo estão presentes por toda a região, estando relacionadas com diferentes formas de sílica (SiO₂).

Distinta da reacção ASR, uma reacção com efeitos muito mais acelerados e danosos foi também observada na região de Ontário na década de 50, na construção do Quartel de Barryfield onde foi empregue agregado dolomítico proveniente da pedreira de Pittsburg (Kingston, Ontário). Após observada a completa degradação da infraestrutura dois anos após a sua construção, várias instituições estatais acabaram por colaborar entre si (Departamento da Defesa Canadiano, Centro Nacional de Investigação Canadiano, Departamento das Auto-estradas de Ontário e Ontario Hydro) para o estudo da reacção observada. Esta parceria gerou a produção de vários relatórios e artigos científicos (p. ex. Swenson & Gillott, 1964; Smith, 1974; Wollenberg & Smith, 1964; Dolar-Mantuani, 1964) relativos à reactividade destes agregados dolomíticos. Os estudos realizados geraram um grande interesse na comunidade científica sobre esta reacção de deterioração do betão desconhecida para esta litologia de agregados, para qual os ensaios tecnológicos utilizados para a identificação de rochas com potencial

para ASR não forneciam respostas válidas (Swenson, 1957). Durante a descoberta e investigação desta nova reacção, foram observados em diversas estruturas danos resultantes da utilização deste tipo de agregado carbonatado, sendo o caso mais antigo a ponte Hurdman, construída em Ottawa em 1906 e demolida em 1987, assim como muitas outras obras de engenharia construídas com rochas oriundas da província de Ontário, que apresentavam danos severos que colocaram a sua integridade em causa (Rogers et al., 2000). Os danos observados nas estruturas eram intensos e geralmente irreversíveis, tendo como elo comum as rochas carbonatadas provenientes da província de Ontário (Canadá), o que levou à necessidade de estudos e uma caracterização detalhada da causa da reactividade destes agregados.

Swenson & Gillott (1964) descreveram pela primeira vez a reacção como reacção álcaliscarbonato (ACR), caracterizada por produzir uma expansão acelerada do betão, comparativamente à observada na ASR, quando eram utilizadas rochas carbonatadas dolomíticas impuras, ou seja, com maior teor de argilas, como agregado grosso. Os mesmos autores (Swenson & Gillott, 1960) haviam constatado que o uso de um cimento com baixo teor de álcalis demonstrava resultados promissores no controlo da expansão observada, em ensaios ASTM C 227 analisando o grau de expansão de provetes de argamassa após exposição a uma atmosfera húmida. Desde a descoberta inicial desta reacção, muitas foram as hipóteses sugeridas para explicar o fenómeno, assim como abordagens e estudos realizados. Foi inicialmente sugerido (Swenson & Gillott, 1964; Gillott & Swenson, 1969) que a reactividade destas rochas se devia à reacção de desdolomitização observada, que por sua vez permitiria a hidratação de filossilicatos do grupo da esmectite. Esta afirmação era baseada na libertação de catiões resultante da desdolomitização (Equação III.2), catiões esses que em solução iriam ser adsorvidos pelos filossilicatos formando uma camada dupla que por sua vez iria permitir a adsorção de água, levando à expansão observável.

Foi mais tarde demonstrado, no entanto, que a adsorção de água por estes minerais é limitada, assim como a sua quantidade nas rochas carbonatadas reactivas, nas quais não excedem tipicamente os 6% em peso, não sendo o suficiente para explicar as expansões observadas, superiores a 1% em ensaios de expansão em cilindros de rocha. Katayama et al. (2011) testou esta teoria ao secar prismas de betão. Assumindo que a expansão observada se deveria à hidratação dos filossilicatos, no cenário onde o prisma de betão é seco, deveriam ser observáveis durante a secagem fracturas de retracção consequentes da desidratação dos minerais hidratados, o que não se verificou. Outra teoria, sugerida por Zhang et al. (1996), é que a reacção de desdolomitização seria a causa directa da expansão observada. Nos estudos realizados o autor observou que rochas com uma textura dolomítica em mosaico, quando desdolomitizadas, apresentavam halos de reacção compostos por calcite e brucite e em alguns casos microfissuras na pasta de cimento em tornos dos grãos reagidos. Destas observações o autor concluiu que a reacção teria um carácter expansivo e que seria suficiente para explicar o problema observado. Grattan-Bellew et al. (2010) demonstraram que embora a calcite possua um volume unitário superior ao da dolomite, a reacção de desdolomitização em betão difere da observada na natureza, dado que na natureza ocorre a transformação de dolomite em calcite sem a formação de brucite. Esta reacção em

betão corresponde a uma reacção de dissolução e precipitação, o que não conduz a variações volumétricas. Outros autores sugeriram que a brucite seria a causa da expansão, tendo sido descartada por estudos de prismas de betão com três anos de idade, danificados por ACR, onde os agregados grossos carbonatados dolomíticos não apresentavam sinais de desdolomitização apesar da expansão volumétrica do betão continuar a prosseguir (Grattan-Bellew & Lefebvre, 1987).

Actualmente a teoria mais aceite, e também mais discutida, é a que sugere que a ACR é na realidade uma combinação entre desdolomitização dos agregados e ASR de formas de sílica criptocristalina presentes nestas rochas, sendo proposta por vários trabalhos (Katayama, 2004; Katayama & Sommer, 2008; Katayama, 2010; Katayama et al., 2016). Katayama et al. (2016) sugerem que a reacção de desdolomitização é uma reacção presente, embora inócua no que toca à deterioração do betão, servindo apenas como uma máscara, dado que ocorre em simultâneo com a ASR, a real fonte do problema. Estes autores observaram prismas de betão com agregado proveniente de Kingston (Ontário), onde identificaram gel silico-alcalino no interior de halos de reacção entre agregados e pasta de cimento, o que originou a sua proposta de explicação para os fenómenos de degradação observados. Grattan-Bellew et al. (2010) realizaram a dissolução de agregado grosso das pedreiras de Pittsburg e Spratt, com uso de HCl a 10% por volume, tendo chegado à conclusão que a rocha de Kingston apresenta um teor de resíduo insolúvel superior à rocha de Spratt, sendo a maioria dessa fracção insolúvel correspondente a sílica, em quantidades muito superiores às observadas para a rocha de Spratt, conhecida pela ASR. A partir destes resultados, e da observação de quantidades ínfimas de gel silicoalcalino em betões contendo o agregado carbonatado de Kingston (Katayama & Sommer, 2008), os autores concluíram que a rocha de Kingston apresenta uma forma de reacção alcalis-sílica, tendo consequentemente afirmado que "ACR=ASR". Ainda assim, os trabalhos de Milanesi et al. (2020) observaram que num agregado dolomítico extraído na Argentina é possível a observação do fenómeno de desdolomitização do agregado carbonatado grosso associado à expansão observada em prismas de rocha, o que demonstra que a ACR poderá ser uma reacção tão real quanto a ASR.

III. Introdução teórica

III.1 Propriedades e tipos de agregados

A aplicação de apenas pasta de cimento na construção civil, embora possível, traz desvantagens a nível monetário, dado que o preço do cimento Portland é elevado à escala de projectos de construção civil, e em termos das características físico-mecânicas possíveis de ser obtidas com a aplicação exclusiva da pasta de cimento, dado que é um material de fluência e índice de retracção elevados. Uma forma de colmatar estes problemas é adicionando à pasta um elemento que elimine essas desvantagens: os agregados. Agregado de rocha é um material consideravelmente mais barato do que a pasta de cimento e confere ao betão uma maior estabilidade volumétrica, uma vez que reduz a fluidez e a retracção do betão. O agregado escolhido geralmente terá de ser inerte, ou seja, as suas características físico-químicas e térmicas não deverão afectar o desempenho do betão, embora se trate de um material natural o que

impossibilita assegurar por completo estas condições. Existe uma grande variedade de litologias que podem ser usadas como agregado, sendo a disponibilidade geográfica destes recursos o factor decisivo na sua utilização, uma vez que este material é comercializado a preços que não são praticáveis caso a exploração seja feita a uma escala diferente da local.

Uma vez que os agregados resultam da extracção e britagem de matérias naturais, as suas propriedades estão intimamente ligadas às características da litologia de onde foram extraídos, e.g. composição química/mineralógica, dureza, cor. Contrariamente, propriedades que influenciam a potencialidade de um agregado dentro do betão, e.g. adsorção, textura superficial, morfologia das partículas, podem não ser atribuídas à litologia de onde o mesmo foi extraído, mas sim ao processo de transformação (britagem) da rocha em agregado (Smith & Collis, 2001). Na realidade, a potencialidade de um agregado de rocha no produto final diz respeito à qualidade do agregado, que se encontra dependente de características intrínsecas e extrínsecas à litologia explorada, assim como a relação entre o mesmo e a mistura de cimento onde será integrado. Assim sendo, a potencialidade de um agregado para a produção de um betão de qualidade, mesmo que o agregado apresente propriedades consideradas óptimas para esse fim, pode não ser verificada, embora um agregado com fraca potencialidade por mais de um motivo irá provavelmente dar origem a um betão de má qualidade. Em alternativa existem agregados de origem artificial, o que permite um controlo e manipulação da potencialidade do mesmo, apesar de nem a origem artificial assegurar que o material será inerte quando incorporado no betão. De forma a minimizar os efeitos nefastos que se possam verificar, estudos mineralógicos e químicos são imperativos na previsão da reactividade de um determinado agregado quando incorporado em betão (Smith & Collis, 2001; Neville, 2011; Poole & Sims, 2016). Na produção de betão é costume adicionarse dois tipos de agregado à pasta de cimento. O primeiro é um agregado fino (normalmente areia), que geralmente não excede os 4 mm (em secção) e o segundo um agregado grosseiro, comummente denominado por brita, com dimensão em secção mínima de 4 mm, sendo que ambos os materiais são escolhidos com base na sua adequação e disponibilidade local (Neville, 2011), como referido anteriormente.

A fracção fina é geralmente obtida através da exploração de depósitos recentes de areia, ou seja, depósitos mal consolidados resultantes de actividade fluvial ou glaciar passada, sendo em alguns casos extraída de depósitos consolidados. Actualmente os principais problemas relativos a este componente, estão relacionados com a disponibilidade física do recurso. Isto porque a escala da procura actual, consequência do mercado da construção civil, começa a causar sérios problemas de escassez que levam à proliferação de explorações predatórias pelo globo, destruindo ecossistemas e também danificando a economia dos países envolvidos em alguns casos (Naveen Saviour, 2012; Chevallier, 2014; Birch, 2016; Dan Gavriletea, 2017; Torres et al., 2017). A fracção grosseira de agregado pode provir de uma grande variedade de litologias, sendo a sua exploração determinada pela capacidade do agregado produzido ser inerte em termos químicos, físicos e térmicos (Smith & Collis, 2001; Neville, 2011).

A mistura destas duas fracções é determinada através de uma curva granulométrica conjunta das duas fracções, embora seja possível a determinação da curva da mistura a partir das curvas individuas de cada fracção, sendo a sua mistura com o betão que vai influenciar a sua compacidade (e.g. para um betão com uma razão água/cimento (a/c) fixa, com igual quantidade das diferentes fracções de agregado: (1) para uma mistura de agregados onde a fracção grosseira apresente a sua dimensão máxima, esse betão irá apresentar uma diminuição da resistência quando comparado com outro (2) com uma mistura onde existem as mesmas quantidades das restantes fracções com dimensões uniformemente distribuídas. Este efeito é ainda mais intenso para betões com uma razão a/c baixa (Neville, 2011) (abordado no Anexo 1).

III.2 Reacções de deterioração interna do betão

As reacções de deterioração interna no betão relacionadas com os agregados (AAR) são, quase sempre, potenciadas pela presença de álcalis e pela intensidade de reacção dos mesmos com o anião OH derivado do processo de hidratação do cimento (Neville, 2011) (abordado no Anexo 2). Estes estão presentes no cimento Portland sob a forma de óxidos (K₂O e Na₂O), e a sua quantidade tem efeitos diversos na durabilidade do betão, mas podem também estar presentes como parte do agregado utilizado na manufactura do betão, e.g. em aluminossilicatos ou em filossilicatos. A presença do anião OH leva à formação de hidróxidos alcalinos em solução nos poros internos do betão, dando origem ao fluidos intersticiais que por sua vez irão reagir com os elementos mais sensíveis dos agregados, nomeadamente com formas de sílica criptocristalina dando origem a produtos de reacção nefastos como é o caso do gel silico-alcalino (Poole & Sims, 2016; Sims & Poole, 2017).

Estudos da influência destes óxidos no betão mostram que a presença de Na₂O_{eq}. (Na₂O_{equivalente} = Na₂O+0,658(K₂O)) inferior a 0,4% reduz a probabilidade de ocorrência da reacção alcális-sílica (ASR). Outra influência destes óxidos no betão mostra que no processo de endurecimento e presa para cimentos comerciais é observado um ligeiro aumento da resistência do betão, no período de 3 a 28 dias, consequência da presença de K₂O (solúvel em água). O efeito destes compostos na durabilidade de um betão é complexo, dependendo não só da sua quantidade como da forma de ocorrência dos mesmos, podendo por vezes ser incorporados nos silicatos cálcicos hidratados ou dar origem a espécies sulfatadas (Neville, 2011). De forma geral é correcto afirmar que um cimento com elevada quantidade de álcalis irá apresentar um aumento rápido da sua resistência em fases inicias e uma diminuição da mesma em fases mais avançadas (Osbæck, 1984). Na presença de agregados com potencial reactivo é habitual o uso de cimentos com baixo teor em álcalis, limitado aos 0,6% de Na₂O_{eq}. À reacção entre os álcalis na pasta de cimento e os agregados dá-se o nome de reacção álcalis-agregado (AAR), que pode ser de dois tipos: reacção álcalis-sílica (ASR) e reacção álcalis-carbonato (ACR). A distinção entre as duas deve-se essencialmente ao tipo de agregado empregue na produção do betão. Existem outras reacções no betão como é o caso da carbonatação (reacção de origem externa) ou a reacção sulfática (Neville, 2011).

III.2.1 Reacção álcalis-sílica (ASR)

A ASR corresponde à mais comum e bem entendida reacção de deterioração interna de betão, originando a formação de gel silico-alcalino, de carácter expansivo. Para tal é necessária a presença de sílica reactiva no agregado, presente em diversas litologias sob diferentes formas: quartzo micro e/ou criptocristalino, quartzo deformado, cristobalite, tridimite, calcedónia, opala e vidro vulcânico. Litologias como grauvaques, quartzitos, filitos, argilitos, granitos, gneisses e granodioritos podem apresentar formas de sílica reactiva. Estando presente sílica reactiva, esta vai ser atacada pelos álcalis presentes na pasta de cimento, dando origem à reacção apresentada na Equação III.1. (Stanton, 1942; Gillott, 1975; Neville, 2011).

Equação III.1. Formação de gel silico-alcalino

(III. 1. a)
$$2(Na \lor K)OH + SiO_2 + H_2O \rightarrow Na_2SiO_3$$
. $2H_2O[gel\ silico-alcalino]$
(III. 1. b) Na_2SiO_3 . $2H_2O[gel\ silico-alcalino] + H_2O \rightarrow expansão$

Com a formação de gel silico-alcalino nos interstícios do betão, o mesmo vai absorver a humidade disponível e expandir, levando à fissuração interna do betão, o que por sua vez fornece mais humidade passível de ser absorvida pelo gel silico-alcalino. A expansão de um betão nesta reacção dependerá da quantidade e tipo de sílica reactiva presente, sendo que formas de sílica como a opala são mais reactivas que outras formas como a sílica microcristalina. O gel pode apresentar-se no betão em duas formas distintas: gel amorfo e produto silico-alcalino cristalino. De acordo com Leemann et al. (2016, 2020), a forma amorfa deste produto de reacção apresenta uma razão Na/K superior à sua forma cristalina.

III.2.2 Reacção álcalis-carbonato (ACR)

A segunda AAR conhecida, ACR, corresponde à reacção entre os álcalis e agregados carbonatados. Esta reacção é a menos compreendida das duas, existindo ainda um debate activo sobre quais os mecanismos por detrás dos efeitos de deterioração observados em betões com estes agregados. É possível afirmar que esta reacção geralmente ocorre quando são aplicados agregados carbonatados como calcários dolomíticos impuros, ou seja, maior componente argilosa, e que se processa através de um conjunto alargado de reacções químicas, nem todas conhecidas e/ou responsáveis pela deterioração observada. Dos mecanismos propostos para explicação deste problema, a desdolomitização (Equação III.2) foi uma das reacções inicialmente apontadas para a fonte do problema (Hadley, 1961). Hadley (1961) observou uma expansão de cerca de 0.15% num cristal de dolomite após um banho de 100 dias em 3M de NaOH e concluiu que esta taxa de expansão seria suficiente por si só para explicar os danos observados em estruturas de betão. Mais tarde uma série de autores (Gillott & Swenson, 1969; Walker, 1978; Min & Mingshu, 1993; Grattan-Bellew & Katayama, 2017) não conseguiram reproduzir o ensaio e concluíram que o processo de desdolomitização não só não é expansível, como é possível observar

casos onde o betão ainda está a sofrer expansão apesar da dolomite se apresentar totalmente reagida para calcite, ou seja, é estável quimicamente, tendo sido confundida com a causa do problema. A mesma traduz-se na Equação III.2., e dá origem a calcite e brucite como produtos de reacção, observados sob a forma de halos em torno do agregado dolomítico.

Equação III.2. Desdolomitização

(III. 2.)
$$CaMg(CO_3)_2 + 2(AOH) \rightarrow Mg(OH)_2 + CaCO_3 + A_2CO_3$$
,
 $A - elemento alcalino (Na^{2+} p. ex.)$

Outra possível explicação para as reacções de deterioração foi atribuída ao carácter expansivo de algumas espécies de filossilicatos, e.g. ilite ou esmectites, presentes em rochas impuras como as descritas anteriormente. Esta explicação faz uso da reacção de desdolomitização natural do agregado como facilitador à acção da água sobre filossilicatos expansivos, tentando explicar os danos observados. Outra teoria (Walker, 1978) afirma que a presença de filossilicatos aumenta a reactividade do agregado dando origem a uma reacção onde a dolomite em conjunto com os silicatos de cálcio hidratados da pasta de cimento irão dar origem a brucite, gel silico-alcalino e calcite, correspondendo a um acréscimo de 4% em volume. Katayama (2004) e Katayama & Sommer (2008) apresentaram o termo "so-called ACR", resultado da observação de gel silico-alcalino em fissuras de betão afectado por ACR, indicador do envolvimento da reacção ASR na expansão observada e não uma reacção completamente distinta da descrita por Swenson (1957). Mais ainda, a presença conhecida de gesso na rocha de Pittsburg (Kingston) poderá também ter um papel nos danos observados no betão com agregado desta pedreira (Grattan-Bellew & Katayama, 2017).

III.2.3 Reacção sulfática

Espécies sulfatadas estão presentes em muitas litologias, solos e até em águas minerais. De forma geral estas espécies não causam problemas à durabilidade do betão, mas caso se encontrem presentes em solução poderão levar a reacções danosas (Neville, 2004; Neville, 2006; Neville, 2011; Poole & Sims, 2016; Sims & Poole, 2017). As espécies sulfatadas mais comuns são as de cálcio, sódio, potássio e magnésio, presentes em solos e águas minerais. Podem também estar presentes devido à oxidação de sulfuretos, e.g. pirites podem oxidar na presença de matéria orgânica, presentes nos agregados. A origem dos sulfatos leva a problemas distintos, podendo assumir-se que a sua presença em solução leva às reacções mais danosas observadas. Estas reacções prejudicam a durabilidade do betão especialmente devido ao incremento volumétrico das espécies sulfatadas produzidas. As reacções mais comuns são apresentadas a seguir (Equação III.3; Equação III.4; Equação III.5).

Equação III.3.Reacção entre sulfato de sódio e cal hidratada

(III. 3.)
$$Ca(OH)_2 + Na_2SO_4$$
. $10H_2O \rightarrow CaSO_4$. $2H_2O + 2NaOH + 8H_2O$

Equação III.4.Reacção entre sulfato de sódio e aluminato de cálcio hidratado

(III. 4.)
$$2(3CaO.Al_2O_3.12H_2O) + 3(Na_2SO_4.10H_2O)$$

 $\rightarrow 3CaO.Al_2O_3.3CaSO_4.32H_2O + 2Al(OH^-)_3 + 6NaOH + 17H_2O$

Equação III.5.Reacção entre sulfato de magnésio e silicato de cálcio hidratado (III. 5.) $3CaO.2SiO_2.aq + 3MgSO_4.7H_2O \rightarrow 3CaSO_4.2H_2O + 3Mg(OH)_2 + 2SiO_2.aq + xH_2O$

Da reacção descrita na Equação III.5 resulta gesso, que poderá mais tarde reagir com gel silicoalcalino presente nos interstícios do betão, dando origem a danos mais severos que os provocados por
outras espécies de sulfatos. Outra possível fonte de deterioração do betão, sem que tenha uma
causa/fonte externa de sulfato, é a reacção denominada de formação retardada de ettringite (DEF), que
corresponde à formação de ettringite no interior do betão devido à recristalização de elementos presentes
nos fluidos intersticiais do betão (SO₄²⁻, Al³⁺ e Ca²⁺) de origem primária do cimento (Batic et al., 2000).
A formação de ettringite é potenciada pela ocorrência de outras reacções de degradação do betão, como
a composição inicial do cimento Portland usado e devido ao efeito de ciclos gel-degelo e ASR sobre o
betão, uma vez que geram fissuração que potencia esta reacção.

III.2.4 Carbonatação

A carbonatação é um fenómeno natural na evolução/maturação de um betão, o que implica que esta reacção não gera deterioração destrutiva sempre que presente. Este fenómeno ocorre devido à presença de CO₂ no ar, mais especificamente ácido carbónico, H₂CO₃, uma vez que o CO₂ é inerte. A intensidade da carbonatação experimentada por um betão está directamente ligada com a abundância do gás, tornando o betão aplicado em áreas urbanas especialmente sensível a este problema (Neville, 2011), sendo a permeabilidade do betão o principal factor determinante da susceptibilidade do mesmo a este processo. O componente mais reactivo e de interesse no problema da carbonatação é a cal hidratada ou portlandite, Ca(OH)2, ainda que outros compostos possam reagir dando origem a sílica hidratada, alumina e óxidos de ferro. Este fenómeno natural leva a problemas no betão quando a sua intensidade é tal que conduz a mudanças importantes no pH da pasta, o que consequentemente dará origem a novos problemas. A reacção de carbonatação irá levar o pH de uma pasta de cimento, normalmente entre 12,6 e 13,5, a descer para valores de cerca de 9 (Neville, 2011), podendo chegar a valores tão baixos como 8,3 quando toda a cal tenha reagido. Os problemas relacionados com a durabilidade do betão vêem de seguida, uma vez que a descida de pH leva à acidificação da água intersticial do betão. Caso a frente da reacção de carbonatação, e a consequente descida de pH, entre em contacto ou se encontre próxima do aço aplicado no interior de betão armado, o betão poderá ficar severamente danificado. Isto porque o aço possui uma camada de óxidos na sua superfície, denominada de camada de passivação, que o protege do avanço da oxidação para o seu interior. Na presença de fluidos intersticiais acidificados esta camada é removida, tornando o aço susceptível a oxidação que por sua vez levará à sua deterioração e consequente deterioração do betão.

IV. Enquadramento geológico

Os dois tipos de amostras de rocha estudadas nesta tese são oriundos de Ontário (Canadá) e provenientes de duas pedreiras distintas: pedreira de Pittsburg (Kingston) e pedreira de Spratt (Ottawa) (Figura IV.1). As pedreiras escolhidas correspondem a locais de exploração de rocha carbonatada para agregado, com o qual no passado se observaram problemas relacionados com a ACR e ASR, de Pittsburg e de Spratt respectivamente, tendo sido estudadas desde então e tidas como exemplos-chave destes tipos de reacções (Swenson, 1957; Rogers et al., 2000; Grattan-Bellew et al., 2010; Poole & Sims, 2016; Sims & Poole, 2017a). Em linhas gerais podem ser identificadas três grandes estruturas tectónicas nesta região: a plataforma Central de Saint Lawrence, a plataforma Ocidental de Saint Lawrence e o Arco Frontenac (Johnson et al., 1992). Ao arco Frontenac corresponde a estrutura tectónica de maior importância, assim como ao pacote aflorante de rochas mais antigas, do soco Pré-Câmbrico. Esta estrutura apresenta uma direcção E-W, encontra-se topograficamente elevada, com elevação que pode chegar aos 375 metros na zona NW de Kingston, e foi tectonicamente activa durante o Paleozóico. É composta por rochas plutónicas de várias litologias, por rochas metamórficas de alto grau e por rochas metassedimentares. A pedreira de Pittsburg produz rocha carbonatada identificada como pertencendo à Formação de Gull River. Esta formação encontra-se descrita na literatura como apresentado: um membro inferior composto por intercalações entre bancadas de calcários, calcários dolomíticos siltíticos, por vezes em gradação com siltitos, xistos argilosos de espessura variável e escassas bancadas de arenitos quartzosos; um membro superior composto por calcários micríticos de grão fino. A identificação de gesso nesta formação indicia que a deposição ocorreu em regime marinho pouco profundo, existindo evidências que a deposição deu inicialmente origem a um calcário que mais tarde foi dolomitizado, com uma fracção detrítica arenosa observável (Katayama, 2010; Grattan-Bellew & Katayama, 2017). Está datada do Ordovícico superior, idade Blackriveana.

A amostra estudada desta formação foi extraída da bancada Pitt-16 da pedreira de Pittsburg, correspondente à bancada classificada como mais reactiva quando incorporada como agregado em betão (Swenson & Gillott, 1964; Rogers & Macdonald, 2012).

A pedreira de Spratt, de onde foram obtidas as amostras da mesma denominação, produz rocha carbonatada identificada como fazendo parte da Formação de *Bobcaygeon*. Esta formação encontra-se descrita como uma intercalação de bancadas micríticas a grosseiras de calcários fossilíferos, com conteúdo argiloso variável, de colorações variáveis. As bancadas apresentam foliação, por vezes, ondulada. Texturas como "bird-eyes" ocorrem nas bancadas mais finas e estruturas sedimentares como *ripples*, laminações cruzada e horizontal são também observadas. As bancadas mais grosseiras apresentam bioturbações e estilólitos. Esta formação está datada da idade Blackriveana a Trentoniana e apresenta contacto planar a gradual com a formação de *Gull River*.

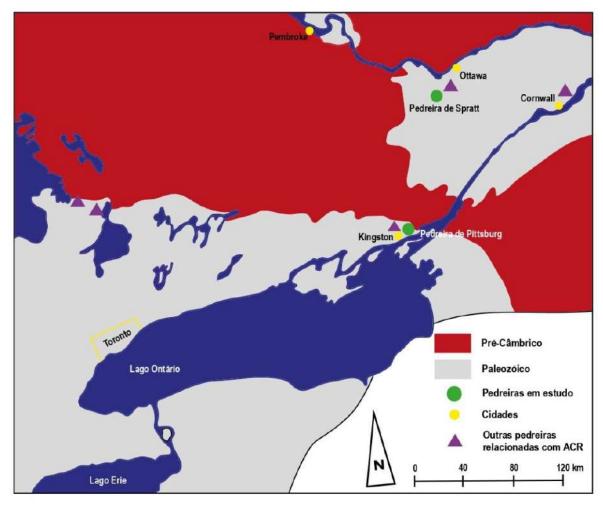


Figura IV.1 - Mapa geológico das maiores estruturas geológicas presentes na região de Ontário, Canadá (as pedreiras de Spratt e Pittsburg encontram-se assinaladas com um círculo a verde). Adaptado de Rogers (2000).

V. Materiais

Os materiais estudados neste estágio são compostos por dois grupos de amostras: amostras de agregado de rocha (R) e de trechos de prismas cilíndricos de betão pré-ensaiados (B) em ensaios de expansão em laboratório. As amostras de agregado de rocha (R_n) são provenientes de duas pedreiras canadianas: pedreira de Pittsburg (Ki) e pedreira de Spratt (Spr). As amostras de agregado grosso provenientes da primeira pedreira foram identificadas como Ki_R_n (Kingston, Ontário) e as segundas como Spr_R_n (Spratt, Ottawa), mediante os diferentes grupos de partículas (R_n) identificados dentro de cada amostra durante a fase de observação macroscópica dos agregados (Capítulo VII.2.1). A amostra de agregado proveniente da pedreira de Pittsburg corresponde à cominuição de um bloco de rocha, de cerca de 7 kg, retirado da bancada carbonatada identificada como "Pitt-16" (Swenson & Gillott, 1964; Rogers & Macdonald, 2012). A amostra de agregado proveniente da pedreira de Spratt teve origem na pilha de material cominuído para venda presente na pedreira, sem qualquer tipo de amostragem específica.

Os prismas de betão pré-ensaiados (B_n) (Anexo 3) incorporam agregados de rochas provenientes das duas pedreiras referidas, tendo sido designadas como apresentado na Tabela V.1, mediante a proveniência dos agregados incorporados nos mesmos e a expansão volumétrica observada após a realização do ensaio CSA A23.2-14A (2014). Este ensaio, também conhecido por ASTM C 1293, consiste na introdução de um prisma de betão de dimensões 75 x 75 x 250 mm, num compartimento mantido a 38 °C e com uma humidade relativa superior a 95%, durante um ano.

Tabela V.1 Denominação adoptada para os diferentes prismas de betão pré-ensaiados, mediante a percentagem de expansão volumétrica, obtida no ensaio ASTM C 1293 e a origem dos agregados incorporados no seu fabrico.

Provetes de betão	Expansão	
pré-ensaidados	volumétrica (%)	
Ki_B1	0.500	
Ki_B2	0.208	
Ki_B3	0.051	
Spr_B1	0.200	
Spr_B2	0.049	

VI. Metodologias

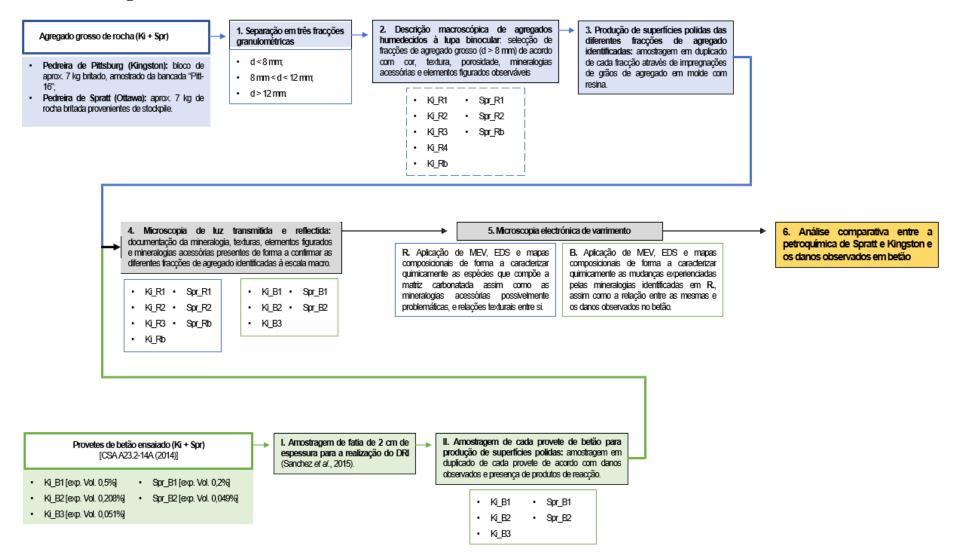


Figura VI.1 – Organograma das metodologias realizadas sobre os diferentes materiais estudados: amostras de agregado da pedreira de Pittsburg e Spratt; prismas de betão pré-ensaiados.

VI.1 Metodologias para estudo de amostras de rocha

VI.1.1 Separação granulométrica

Partindo das amostras de agregado de ambas as pedreiras foi realizada uma separação em três fracções granulométricas (d < 8mm; 8-12mm; d > 12 mm) (Anexo 4). A separação foi realizada utilizando 150g de agregado em cada operação, num agitador eléctrico a 15000 rotações/minuto, 15 minutos por operação. As massas das diferentes fracções granulométricas obtidas encontram-se discriminadas na Tabela VI.1.

Tabela VI.1 - Massas das diferentes fracções granulométricas separadas para as amostras de agregado de rocha provenientes das pedreiras de Pittsburg (Kingston, Ontário) e Spratt (Ottawa, Ontário).

	d < 8 mm (g)	8-12 mm (g)	d > 12 mm (g)	Total (g)
Kingston	1428.55	1288.00	4242.60	6959.15
Spratt	1286.10	2748.95	3203.05	7238.10

VI.1.2 Descrição macroscópica à lupa binocular

Fazendo uso de duas das fracções granulométricas de agregado de rocha (d > 8 mm), realizouse uma descrição macroscópica das partículas e a identificação dos diferentes tipos de fácies de rocha carbonatada. A selecção foi realizada com o objectivo de isolar diferentes fracções de agregado, p.ex. fácies, bancadas, níveis com diferentes graus de alteração, para uma descrição o mais precisa possível das mineralogias presentes nas diferentes fracções identificadas. A descrição teve por base a enumeração e descrição de todas as ocorrências de interesse presentes em cada grão de agregado individual, dando origem a várias fracções de agregados dentro de cada amostra, de forma a garantir a existência das mesmas fracções no estudo por microscopia de luz transmitida e reflectida. A selecção teve de ser realizada em duas fases, consequência do grande número de partículas em cada amostra:

- Separação inicial das diferentes fracções de agregado com base na textura, cor e elementos figurados observáveis. Recorreu-se a uma lupa de mão, com ampliações de 8x e 15x, e as partículas foram humedecidas de forma a aumentar o contraste e facilitar a observação.
- Descrição e documentação detalhada de cada fracção de agregado separada à lupa de mão, de forma a tornar cada fracção de agregado o mais homogénea e robusta possível, recorrendo a uma lupa binocular Olympus SZH10, com ampliação máxima de 140x.

VI.2 Metodologias para estudo dos prismas de betão pré-ensaiados

VI.2.1 Determinação do Damage Rating Index (DRI)

O Damage Rating Index (DRI) foi desenvolvido por Grattan-Bellew (1995) e por Grattan-Bellew & Danay (1992), com o objectivo de permitir uma quantificação da acção dos agregados nos processos de degradação interna de betão para barragens afectadas pela reacção álcalis-sílica (ASR). A metodologia para a determinação do DRI (Fournier et al., 2015; Sanchez et al., 2015) implica o corte de uma fatia na superfície de maior área de cada prisma de betão (Anexo 5), obtida normalmente por um corte longitudinal dos prismas com serra diamantada. Para tal foi utilizada a serra de corte diamantada

para o corte inicial e a serra diamantada de precisão para o acerto de relevos e/ou irregularidades na fatia obtida. Após a obtenção das fatias destinadas ao DRI, as mesmas foram polidas com discos de borracha diamantados, partindo do disco de *grit* mais grosseiro para o mais fino, na seguinte ordem: 50#, 100#, 200#, 400#, 800# e 1500#. Terminado o polimento todas as fatias foram fotografadas, e de seguida projectada uma quadrícula de 1x1cm sobre as mesmas.

A determinação do DRI consiste na observação das fatias de betão polidas, à lupa binocular com uma ampliação entre 16x e 18x, ou seja, ampliação adequada para a observação da totalidade de cada quadrícula de 1 cm² individualmente, e identificação de indícios que se encontrem relacionados com o processo de deterioração interna do betão. Os indícios a observar estão previamente definidos e a cada um está associada uma ponderação (Fournier et al., 2015; Sanchez et al., 2015), tal como indicado na Tabela VI.2. Para a realização desta análise é necessária a observação de um mínimo de 150 cm², idealmente 200 cm², normalizando-se posteriormente o valor obtido para 100 cm² (Sanchez et al., 2015).

As sete características petrográficas indicadas na Tabela VI.2 são definidas da seguinte forma, sempre à escala indicada anteriormente (Fournier et al., 2015; Sanchez et al., 2015):

Tabela VI.2 - Características petrográficas a identificar na determinação do DRI com correspondentes ponderações e abreviaturas (Sanchez et al., 2015).

Características petrográficas	Ponderação	Abreviatura
Fracturas em agregado grosso fechadas sem produtos de reacção	0.25	CCA
Fracturas em agregado grosso abertas ou rede de fracturas sem produtos de reacção	2	OCA
Fracturas em agregado grosso abertas ou rede de fracturas com produtos de reacção	2	OCRPA
Fracturas na pasta de cimento sem produtos de reacção	3	CCCP
Fracturas na pasta de cimento com produtos de reacção	3	OCRPCP
Partículas de agregado descoladas da pasta	3	DP
Partículas de agregado desagregadas ou corroídas	2	RP

- Fissuras em agregado grosso fechadas sem produtos de reacção (CCA): pequenas fissuras fechadas sem indícios da existência de produtos de reacção no seu interior. Estas fissuras podem ser geradas antes da incorporação dos agregados no betão devido aos processos de extracção e cominuição da rocha ou a processos naturais de alteração in situ da rocha que deu origem ao agregado. Fissuras correspondentes a contactos entre grãos/cristais no interior do agregado não são consideradas;
- Fissuras em agregado grosso abertas ou rede de fissuras sem produtos de reacção (OCA): fissuras com abertura observável e/ou conjuntos densos de pequenas fissuras que indiquem um estado mais avançado de fissuração, sem produtos de reacção observados no seu interior;

- Fissuras em agregado grosso abertas ou rede de fissuras com produtos de reacção (OCRPA): depósitos de produtos de reacção observáveis no interior das partículas de agregado. Estes produtos resultam dos vários processos de degradação interna de betão [e.g. brucite + calcite como resultado do processo de desdolomitização] carecendo a sua composição, e consequente origem, de confirmação através de outros métodos como DRX ou microscopia electrónica de varrimento;
- **Fissuras na pasta de cimento sem produtos de reacção (CCCP):** fissuras na pasta de cimento sem a ocorrência de produtos de reacção;
- Fissuras na pasta de cimento com produtos de reacção (OCRPCP): depósitos de produtos de reacção que preencham total ou parcialmente fissuras na pasta de cimento. Como referido anteriormente, a sua composição e origem devem ser confirmadas através de outros métodos de análise;
- Partículas de agregado descoladas da pasta (DP): partículas de agregado que apresentem ao longo de uma extensão considerável do contacto com a pasta de cimento fissuras abertas e/ou fissuras total a parcialmente preenchidas por produtos de reacção;
- Partículas de agregado desagregadas ou corroídas (RP): partículas de agregado que apresentem indícios de degradação como consequência da interacção do agregado-pasta de cimento [e.g. dissolução dos bordos do grão].

Foram registadas as observações de outras características petrográficas, mas não contabilizadas para o cálculo, tais como:

- Halos de reacção: partículas de agregado podem apresentar um halo de reacção, normalmente mais escuro, na sua periferia. Ainda assim, uma vez que não é possível determinar com certeza que a partícula em si corresponde a um agregado britado ou apenas a um pequeno fragmento de rocha préexistente, passível de ter sido exposto o suficiente a fenómenos de alteração que tenham dado origem ao halo identificado, optou-se por identificar, mas não utilizar estas ocorrências para o cálculo;
- Vazios preenchidos por produtos de reacção: produtos de reacção podem por vezes preencher os
 espaços presentes no betão. É necessário determinar através da utilização de MEV ou DRX que os
 produtos observados correspondem efectivamente a produtos de reacção e não a resíduos provenientes do processo de polimento das fatias de betão;
- Pasta de cimento impregnada por produtos de reacção: corresponde à acumulação de produtos de reacção em torno de partículas de agregado ou nos espaços vazios.

Obtidas as contagens das diferentes características petrográficas descritas é realizado o cálculo do DRI através do somatório da multiplicação do número de contagens de cada característica petrográfica (x_i) multiplicado pela ponderação correspondente p_j — Equação VI.1). Os valores obtidos são depois normalizados para uma área de 100 cm^2 . Finalizado o cálculo do DRI para as fatias de betão, o dano das mesmas é classificado de acordo com os valores propostos por Villeneuve et al. (2012) para os danos causados pela ASR (Tabela VI.3).

Equação VI.1. Cálculo do DRI

$$(VI.\,1.\,)\;DRI = \sum x_i * p_i$$

- i Característica petrográfica
- x nº de contagens
- p ponderação

Tabela VI.3 - Chave de classificação do DRI proposta por Villeneuve et al. (2012) para a deterioração interna de betão provocada pela ASR.

Grupo	DRI	Degradação
1	< 200/250	Vestigial
2	200/250 - 400	Vestigial a moderada
3	400 - 700/750	Moderada a intensa
4	> 700/750	Intensa a muito intensa

A classificação proposta por Villeneuve et al. (2012), apresentada na Tabela VI.3, baseia-se na descrição petrográfica detalhada de 75 amostras de betão, oriundas de pilares de uma ponte severamente afectada pela ASR. Essa classificação foi inicialmente realizada com base nos critérios propostos por Grattan-Bellew & Danay (1992), tendo sido recalculados os parâmetros em Villeneuve et al. (2012) e dado origem à seguinte descrição (Tabela VI.3):

Grupo 1: Betão em boas condições, sem sinal de danos à escala macroscópica e poucos indícios de danos à escala microscópica (escala utilizada para a determinação do DRI). Os danos observados à escala microscópica nas partículas de agregado correspondem essencialmente a fissuras fechadas (resultado dos processos de extracção e cominuição da rocha para agregado), podendo encontrar-se por vezes (mas raramente) preenchidas por produtos de reacção que por sua vez podem estender-se para a pasta de cimento. Características petrográficas como halos de reacção são escassos e difíceis de identificar positivamente. Na pasta de cimento pode observar-se uma fissuração pouco marcada (d < 0.02 mm), geralmente isolada. Produtos de reacção presentes nos vazios da pasta são escassos e correspondem a ettringite, no grupo de amostras analisadas por Villeneuve et al. (2012);

Grupo 2: Betão em boas condições, com danos vestigiais observáveis à escala macroscópica e danos vestigiais a moderados à escala microscópica. Os danos microscópicos observados nas partículas de agregado correspondem a fissuras finas parcialmente preenchidas por produtos de reacção, especialmente nos de carácter mais margoso no estudo de Villeneuve et al. (2012). Observam-se raros casos onde essas fissuras se estendem para a pasta de cimento. Na pasta de cimento, a fissuração é vestigial a moderada (d < 0.02mm com casos isolados que podem chegar aos 0.05mm) e as fissuras podem ocasionalmente apresentar produtos de reacção. Ocorrências como halos de reacção são observados na maioria das partículas de agregado, em especial nas de carácter mais margoso. O preenchimento de vazios na pasta por produtos de reacção é moderadamente comum, sendo ettringite o produto secundário mais comum para os betões avaliados por Villeneuve et al. (2012);

Grupo 3: Betão com indícios de deterioração moderada à escala macro e degradação intensa à escala microscópica. À escala microscópica, as partículas de agregado apresentam fissuração na grande maioria dos agregados, sendo que a generalidade das mesmas se apresenta preenchida por produtos de reacção. É comum que as fissuras se estendam das partículas de agregado para a pasta de cimento, podendo em certos casos conectar partículas desagregadas ou corroídas. Na pasta de cimento, a fissuração varia de média a intensa (d < 0.02mm com casos isolados que podem chegar aos 0.05mm), sendo que as fissuras mais largas se encontram preenchidas por produtos de reacção. Ocorrências como halos de reacção são observadas na grande maioria das partículas de agregado assim como depósitos de produtos de reacção em vazios da pasta são bastante comuns, correspondendo a ettringite e/ou gel silico-alcalino;

Grupo 4: Betão com sinais intensos de degradação à escala macro e microscópica. A descrição da degradação de betões deste grupo é em tudo semelhante à apresentada no Grupo 3, embora mais intensa à escala macroscópica. A fissuração das partículas de agregado e da pasta, assim como o preenchimento das mesmas por produtos de reacção, é facilmente observável à escala macroscópica.

VI.3 Produção de lâminas polidas

Após a divisão em diferentes grupos de agregado de rocha (Ki_R1 a Ki_R4 e Ki_R_b; Spr_R1, Spr_R2 e Spr_R_n) foram seleccionados grãos suficientes para a produção de duas lâminas polidas por grupo. As amostras de agregado foram impregnadas sob vácuo com resina epóxi, de forma a consolidar as partículas. Os agregados com a terminação R_b (Spr_R_b e Ki_R_b), correspondendo a grãos com estruturas de orientação preferencial, como estilólitos ou bandados deposicionais, e foram impregnados de forma a obter uma exposição na lâmina polida o mais perpendicular possível às estruturas, maximizando a exposição das mesmas. Para as amostras de betão pré-ensaiado, à semelhança da metodologia para a determinação do DRI, foram cortadas fatias de 2 cm de espessura de cada prisma, posteriormente seccionadas em taliscas com dimensões aproximadas de 2x3.5x2.5 cm. Obtidas as taliscas de partículas de rocha impregnadas e de betão, procedeu-se à colagem das mesmas em lâminas de vidro e o corte na serra de precisão de forma a obter uma espessura de cerca de 1mm da talisca impregnada, agora colada. De seguida procedeu-se às várias fases de desgaste e polimento com pastas diamantadas sucessivas (14, 6, 3 e 1 μm) até a lâmina atingir a espessura ideal para a a análise petrográfica (30 μm) (Moreland, 1968).

VI.4 Microscopia de luz transmitida e reflectida

A microscopia das amostras de rocha foi realizada tanto em luz transmitida como reflectida, devido à abundância relativa de espécies minerais opacas nas rochas em estudo. A análise das rochas à luz transmitida foi realizada usando um microscópio Leica DM750P com câmara acoplada Leica ICC50 HD para obtenção de microfotografias, tanto em luz natural (N//, nicóis paralelos) como em luz polarizada (NX, nicóis cruzados). A análise à microscopia de luz reflectida foi realizada usando um microscópio Olympus BX60 com uma fonte de luz Olympus TH3, onde também se realizou a recolha

fotográfica dos diferentes tipos de ocorrências de minerais opacos das fracções de agregado estudadas (definidas no Capítulo VII.2). Esta metodologia foi realizada com o objectivo de descrever texturas e mineralogias potencialmente reactivas nos agregados grossos estudados, assim como a descrição dos danos observados nos prismas de betão ensaiados e possíveis relações entre as observações realizadas nos agregados de rocha e os danos observados em betão.

VI.5 Microscopia electrónica de varrimento (MEV)

Do total de 26 lâminas polidas estudas petrograficamente, foram seleccionadas 10 lâminas para a caracterização química e petrográfica de detalhe: 7 superfícies polidas de agregado de rocha e 3 superfícies polidas de prismas de betão. As análises químicas pontuais foram executadas na Microssonda Electrónica JEOL JXA 8200, equipada com quatro espectrómetros WDS, seis cristais analisadores (LIF, LIFH, PET, PETH, TAP, LDE2) e detectores de electrões secundários e retrodifundidos, além de um espectrómetro de dispersão de energia (EDS). As condições analíticas para cada grupo mineral consistiram em um feixe de diâmetro de 5 μm e potencial de aceleração de 15 kV para todas as fases minerais, com intensidade de corrente de 1×10⁻¹⁰ A (amperes) para sulfatos, silicatos e carbonatos e 2.5× 10⁻⁸ A para sulfuretos e fosfatos. Esta metodologia foi realizada com o objectivo de descrever quimicamente as espécies minerais observadas na fase de descrição petrográfica, assim como os produtos de reacção identificados em lâminas polidas de betão reagido. Foram também realizados mapas composicionais ao MEV com o objectivo de identificar a dispersão elementar dentro de agregados de rocha e ao longo da pasta de cimento.

VII. Resultados

VII.1 Avaliação de danos em betão – Damage Rating Index

A avaliação de danos nos provetes de betão deu origem a um vasto conjunto de dados, que se apresentam nos Anexo 6 a Anexo 11, e cujos resultados estão sintetizados na Figura VII.1. Os resultados obtidos encontram-se normalizados para uma área de 100 cm², sendo apresentada graficamente na Figura VII.1 a contribuição percentual de cada característica petrográfica observada para o cálculo do valor final obtido para cada prisma de betão.

Avaliando os valores obtidos, os prismas de betão que utilizam agregado proveniente da pedreira de Pittsburg (Ki_B1/B2/B3) apresentam os valores mais elevados de deterioração interna quando comparados com os betões que usam agregado proveniente da pedreira de Spratt (Spr_B1/B2). De acordo com a classificação proposta por Villeneuve et al. (2012) para os valores de DRI, a totalidade dos prismas com agregado de rocha proveniente da pedreira de Pittsburg recaem no grupo 4 ("Betão com sinais intensos de degradação à escala macro e microscópica..."). Nos prismas de betão que incorporam o agregado proveniente da pedreira de Pittsburg, a degradação dos mesmos está relacionada essencialmente com a intensa fissuração presente na pasta de cimento acompanhada por um aparente preenchimento das fissuras por produtos de reacção (Figura VII.2; Figura VII.3). A fissuração no interior

das partículas de agregado, assim como o seu aparente preenchimento por produtos de reacção, é tanto maior quanto maior a expansão observada nos prismas. Do que foi possível observar os produtos de reacção presentes correspondem a halos em torno das partículas de agregado e/ou sob a forma de preenchimento de fissuras na pasta de cimento.

Os prismas com agregado proveniente da pedreira de Spratt apresentam-se dentro do grupo 1 ("Betão em boas condições, sem sinal de danos à escala macroscópica e poucos indícios de danos à escala microscópica...") e grupo 3 ("Betão com indícios de deterioração moderada à escala macro e degradação intensa à escala microscópica..."), para o prisma de betão com menor e maior valor de expansão volumétrica, respectivamente. No que toca à degradação dos prismas de Spratt, a degradação ocorre através de uma intensa fissuração das partículas de agregado que se estende para a pasta, aliada ao aparecimento de produtos de reacção, essencialmente no interior dentro das partículas de agregado (Figura VII.4.). No prisma Spr_B2, cerca de 20 dias após a avaliação do DRI, observou-se o aparecimento de um produto de reacção transparente com fendas de retracção na superfície da fatia de betão avaliada. Foi realizada uma raspagem deste produto, colocada em fita de carbono e realizada uma análise qualitativa em MEV/EDS, tendo sido identificando o produto de reacção como sendo gel silico-alcalino que exsudou da fatia de betão analisada (Anexo 8).

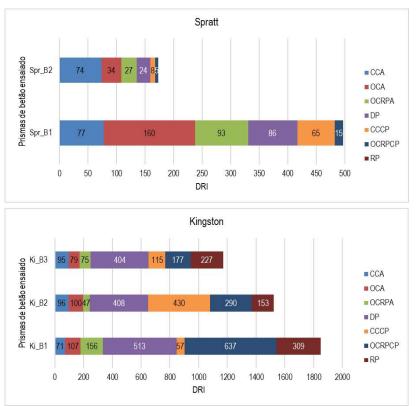


Figura VII.1. – Síntese dos resultados de DRI obtidos para os diferentes prismas de betão analisados segundo a metodologia de Sanchez et al. (2015) e normalizados para 100 cm².

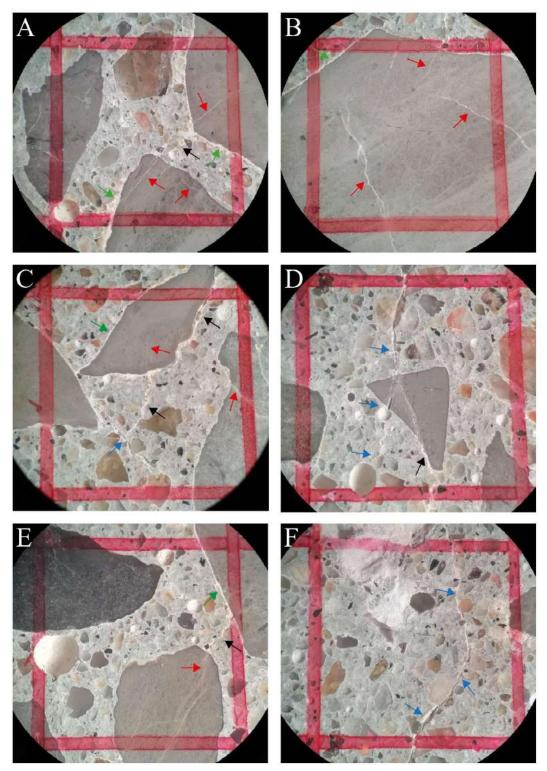


Figura VII.2. — Imagens obtidas à lupa binocular de danos observados no prisma de betão Ki_B1 (DRI). (A) três partículas de agregado, duas delas com preenchimento das interfaces com a pasta de cimento por carbonatação (seta verde) com fissuras fechadas no seu interior (seta vermelha), que se estendem para a pasta com preenchimento (seta preta); (B) partícula de agregado com halo mais claro (seta verde) e fissuras abertas no seu interior sem preenchimento (seta vermelha); (C) três partículas de agregado semelhantes ao apresentado em (A), com fissura aberta na pasta sem preenchimento (seta azul). Note-se que a partícula superior apresenta-se descolada da pasta e que a fissura na pasta contém produtos de reacção; (D) fissura aberta na pasta sem preenchimento (seta azul) que atravessa a partícula de agregado e que comunica com vazios na pasta (seta amarela), apresentando um pequeno preenchimento na zona inferior da partícula (seta preta); (E) partícula de agregado com halo mais claro (seta verde), em comunicação com fissura da pasta com preenchimento (seta preta), que comunica com outra partícula (em baixo) também fissurada (seta vermelha); (F) fissura aberta de grandes dimensões na pasta, sem preenchimento (seta azul).

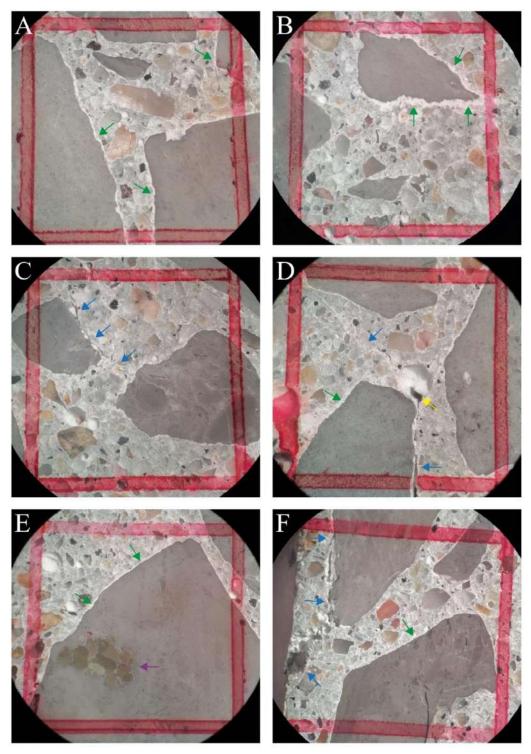


Figura VII.3. - Imagens obtidas à lupa binocular de danos observados nos prismas de betão Ki_B2 (A, B, C) e Ki_B3 (D, E, F) (DRI). (A) três partículas de agregado com preenchimento das interfaces com a pasta de cimento por carbonatação (seta verde); (B) partícula de agregado com halo espesso, quase que a corroer a partícula (seta verde); (C) duas partículas de agregado comunicando entre si através de uma fissura aberta na pasta, sem preenchimento (seta azul). Note-se que a partícula à esquerda se apresenta descolada da pasta por acção da fissura; (D) fissura aberta não preenchida a descolar a partícula de agregado (seta azul) e a comunicar com vazio na pasta (seta amarela). Todas as partículas apresentam halos de reacção pouco desenvolvidos (seta verde); (E) partícula de agregado de grandes dimensões com halo de reacção pouco desenvolvido (seta verde). Apresenta um cluster de Py oxidada no canto inferior esquerdo (seta roxa); (F) fissura aberta que descola a partícula de agregado presente no canto superior esquerdo, sem preenchimento (seta azul). As três partículas apresentam halos de reacção pouco desenvolvidos (seta verde).

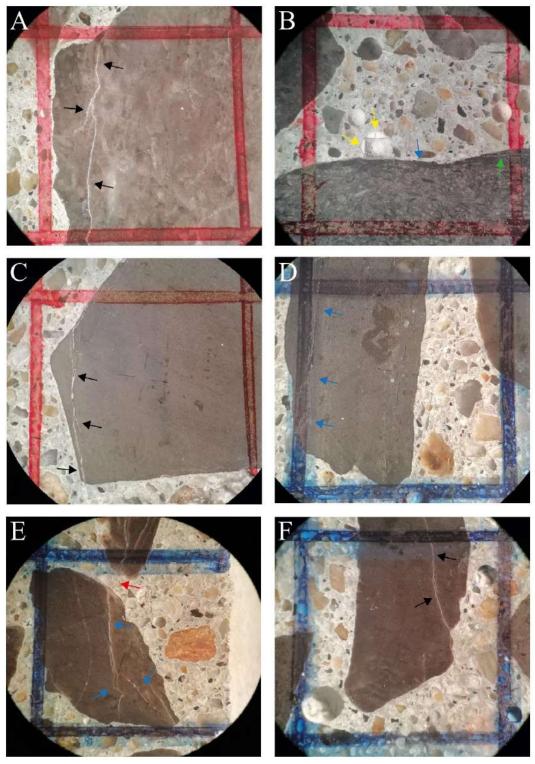


Figura VII.4. - Imagens obtidas à lupa binocular de danos observados nos prismas de betão Spr_B1 (A,B,C) e Spr_B2 (D,E,F) (DRI). (A) Fissura aberta no interior de agregado com preenchimento (seta preta), com uma bifurcação na parte superior; (B) vazio na pasta com acumulação de gel silico-alcalino (seta amarela), alimentado por fissura aberta que se estende do interior do agregado (seta verde) e o descola (seta azul); (C) Fissura aberta no interior de agregado com preenchimento (seta preta), com extensas bifurcações; (D) Fissura aberta no interior de agregado sem preenchimento (seta azul), com várias bifurcações, fazendo uso de descontinuidades presentes no agregado, que se estende para a pasta na parte inferior; (E) fissuração intensa e extensa de agregado, com preenchimento (seta azul), comunicando com o agregado mais acima de forma muito discreta (seta vermelha); (F) Fissura aberta no interior de agregado com preenchimento (seta preta), de grandes dimensões com uma bifurcação na parte intermédia (seta preta), limitada ao agregado.

VII.2 Petrografia de agregados de rocha

VII.2.1 Descrição macroscópica

Para esta fase do estudo, como mencionado anteriormente, o autor realizou a separação e determinou as diferentes fracções fazendo uso de características como a cor, textura e elementos figurados presentes na superfície de cada agregado grosso (d > 8 mm) analisado à lupa binocular. Assim sendo, é necessário explicitar que as fracções de agregados identificadas e separadas nesta fase do estudo necessitam de confirmação na análise à microscopia de luz transmitida para que possam constituir uma fracção real e distinta das restantes fracções de grãos de agregado da amostra, especialmente na tipologia dos elementos figurados observados em alguns dos agregados e mineralogia da matriz carbonatada.

VII.2.1.1 Agregado "Kingston" (Kingston, Ontário)

A amostra de agregado proveniente da pedreira de Kingston (Ontário) foi retirada da bancada carbonatada classificada como a mais reactiva - Pitt-16 (*e.g.* Rogers & Macdonald, 2012; Swenson & Gillott, 1964). Esta amostra consiste, na generalidade, em agregados cinzentos escuros de aspecto margoso, tendo sido necessário humedecer cada partícula individualmente de forma a aumentar o contrataste e retirar a abundante cobertura de fracção fina das partículas. Da observação das partículas de maior dimensão (d > 8 mm) desta amostra foi possível a separação de cinco fracções distintas com base em cor, textura e presença de elementos figurados observáveis (Figura VII.5): Ki_R1 a Ki_R4 e Ki_Rb.

A fracção Ki_R1 corresponde a uma fracção relativamente homogénea de partículas de cor esverdeada, com textura maioritariamente microcristalina e uma fase de ligação microsparítica, de aspecto pouco margoso, quando comparada com os restantes grãos desta amostra, e bastante porosa uma vez que, quando humedecidos, os agregados absorvem a água com relativa rapidez. Apresentam na sua maioria ocorrências de sulfuretos (pirite), massas de carbonatos cristalinos bem desenvolvidos e de grandes dimensões, quando comparados com a maioria da amostra deste agregado de rocha.

A fracção Ki_R2 corresponde a uma fracção de partículas mais homogéneas do que Ki_R1, de cor negra, também porosas com base no critério descrito para Ki_R1, com aspecto margoso, suaves ao toque, com fase de ligação sparítica. Apresentam como elementos figurados grãos de sulfuretos (pirite) e bioclastos.

A fracção de partículas Ki_R3 corresponde à grande maioria das partículas de agregado disponíveis, sendo identificada como o agregado "típico" de Kingston. Esta fracção é a que apresenta maior heterogeneidade, mostrando-se geralmente porosa, de cor acinzentada e criptocristalina com uma fase de ligação microsparítica, tipicamente. Apresenta como elementos figurados grãos de sulfuretos (pirite), acículas e/ou massas milimétricas de um material negro de brilho não metálico e bioclastos(?). A fracção Ki_R4 corresponde ao que aparenta ser o agregado "típico" descrito anteriormente, como uma densidade de acículas e/ou massas milimétricas de um material negro de brilho não metálico muito superior ao observado em Ki R3. Embora na grande maioria estes grãos sejam em tudo iguais a Ki R3,

alguns apresentam uma coloração cinzenta clara distinta e uma homogeneidade superior da matriz carbonatada, o que motivou a sua classificação como uma fracção de agregados distintos de Ki_R3; Ki_R4 mostra ainda a presença bem marcada da mineralogia negra de brilho metálico.

A fracção Ki_Rb corresponde a todas as partículas da amostra onde foi possível observar-se algum tipo de bandado. Esta fracção de grãos foi separada independentemente das características gerais do agregado de forma a permitir o estudo mais detalhado não só da fracção insolúvel presente nos vários estilólitos identificadas como das possíveis variações composicionais que possam ter dado origem a outros tipos de bandado.

VII.2.1.2 Agregado "Spratt" (Ottawa, Ontário)

Da amostra de agregado proveniente da pedreira de Spratt (Ontário), após a observação e descrição da fracção mais grosseira (d > 8 mm), foram identificadas três fracções distintas (Figura VII.6): Spr_R1,e Spr_R2 e Spr_Rb.

A fracção Spr_R1 corresponde a partículas de cor cinza-acastanhada, porosas, de textura microcristalina a grosseira e com fase de ligação aparentemente microsparítica. Como elementos figurados apresentam uma grande variedade de moldes e contramoldes de bioclastos, sendo aquela que apresenta a maior densidade deste tipo de elementos figurados das diferentes fracções de agregado de rocha identificadas, para além da presença de grãos de sulfuretos e óxidos/hidróxidos de ferro. Esta fracção é a mais heterogénea das identificadas.

A fracção Spr_R2 corresponde a grãos mais homogéneos do que Spr_R1, de cor cinza-escuro a negra, porosos e de matriz fina. Como elementos figurados apresentam grãos de sulfuretos, óxidos de ferro e raros moldes e contramoldes de bioclastos.

A fracção designada Spr_Rb corresponde a todos os grãos de agregado de Spratt onde, tal como os de Kingston, foi possível observar-se bandados. Esta fracção de grãos foi separada independentemente das características gerais do agregado de forma a permitir o estudo mais detalhado não só da fracção insolúvel presente nos vários estilólitos, como possíveis variações composicionais que possam ter dado origem a outros tipos de bandados que não os referidos anteriormente.

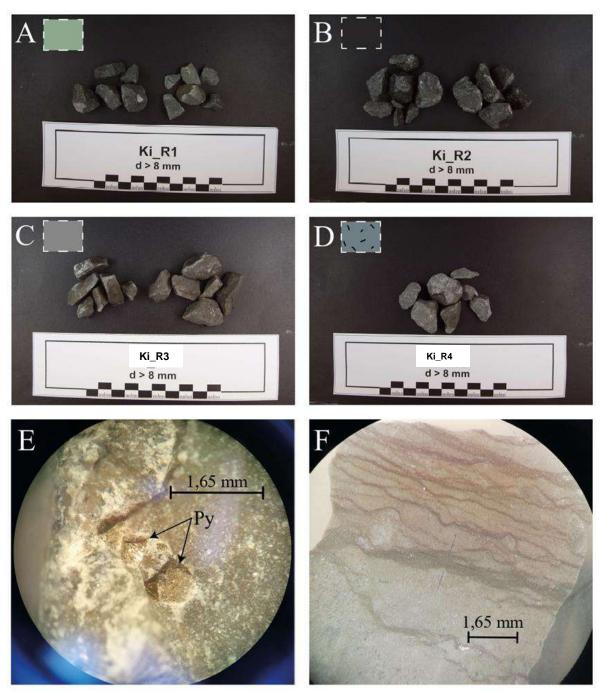


Figura VII.5. — Diferentes fracções seleccionadas da amostra de agregado grosso de Kingston (Pitt-16) à escala macroscópica (A-D), com legenda de cor, e ocorrências minerais de interesse (E,D): (A) Grãos representativos da fracção Ki_R1; (B) Grãos representativos da fracção Ki_R2; (C) Grãos representativos da fracção Ki_R3; (D) Grãos representativos da fracção Ki_R4; (E) Dois grãos de pirite bem desenvolvidos num agregado de Ki_R1; (F) Planos estilolíticos em grão da fracção Ki_Rb após impregnação em resina epóxi, corte e polimento.

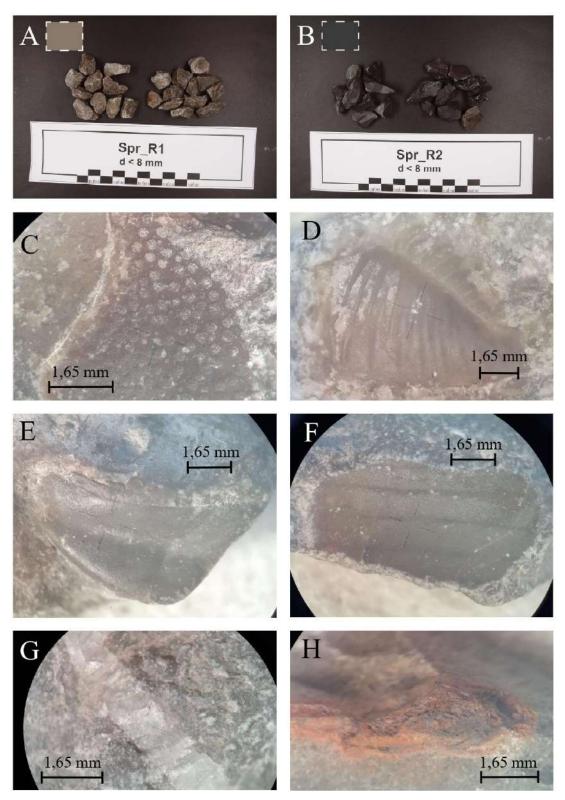


Figura VII.6. - Diferentes fracções da amostra de agregado grosso de Spratt à escala macroscópica (**A,B**), com legenda de cor, e elementos figurados (**C-F**) e minerais de interesse (**G,H**): (**A**) Grãos de agregado representativos da fracção Spr_R1 com legenda de cor; (**B**) Grãos de agregado representativos da fracção Spr_R2 com legenda de cor; (**C,D**) Exemplo dos bioclastos carbonatados encontrados essencialmente na fracção Spr_R1; (**E,F**) Exemplo de bioclastos negros de mineralogia desconhecida observados em ambos as fracções de agregados; (**G**) Filonete de calcite em Spr_R1; (**H**) Exemplo de sulfuretos (essencialmente oxidados) observados em ambos as fracções de agregados.

VII.2.2 Descrição microscópica

VII.2.2.1 Agregado "Kingston" (Kingston, Ontário)

A descrição petrográfica por observação ao microscópio óptico das lâminas delgadas polidas permitiu a confirmação das fracções previamente seleccionadas, à excepção da fracção Ki_R4, que foi integrada na fracção Ki_R3, dada a ausência de diferenças revelantes entre as duas fracções, quando observadas em microscopia de luz transmitida.

VII.2.2.1.1 Ki R1

Esta fracção apresenta uma matriz essencialmente microsparítica rica em dolomite (*calcitic dolomite*), com alguma sparite disseminada. A granularidade da dolomite presente varia desde pequenos grãos sub-euédricos até grandes cristais euédricos, em alguns casos zonados. Em zonas muito ricas em dolomite, observa-se por vezes textura em mosaico, podendo afirmar-se que esta fracção apresenta a matriz dolomítica mais desenvolvida. Apresenta grande abundância de pequenos grãos de quartzo dispersos na matriz carbonatada, alguns dos grãos observados aparentam evidenciar extinção ondulante, por vezes com alguns minerais opacos inclusos, de dimensão demasiado fina para a identificação ao microscópio de luz reflectida, possivelmente óxidos de ferro. Foi também observada, não tão abundante mas sempre associada ao quartzo, a presença de grãos de feldspato de dimensões muito reduzidas (Figura VII.7A e Figura VII.7B). Foram ainda observados grandes cristais euédricos de celestite, indicando cristalização em espaço aberto (Figura VII.7C) e, em alguns casos, massas de grandes dimensões deste mineral com calcite grosseira associada (Figura VII.7D). Este mineral foi observado sempre no interior ou associado à matriz dolomítica bem desenvolvida, na grande maioria com textura em mosaico.

A mineralogia opaca observada corresponde a pirite e alguns óxidos de ferro, em grãos opacos com cores cinzentas, demasiado pequenos para uma distinção clara entre espécies. A pirite observada, na grande maioria sob a forma de grãos sub-euédricos a euédricos (Figura VII.7F), encontra-se especialmente concentrada no interior e/ou nos bordos de grandes cristais de celestite, apresentando crescimentos para o interior dos cristais (Figura VII.7E), o que indica mineralização contemporânea, ou em fases tardias da geração destas mineralogias. O conteúdo fossilífero desta fracção é muito escasso, não tendo sido observado na grande maioria dos grãos estudados. Foi observado também um mineral singular, tabular, de relevo superior ao do quartzo que foi identificado em microssonda electrónica como zircão, de origem detrítica, tendo sido descartado como possível mineral de interesse para este estudo.

VII.2.2.1.2 Ki R2

Rocha com matriz essencialmente microsparítica fina, pontualmente micrítica, com zonas muito ricas em dolomite sempre associadas a sparite (Figura VII.8B). De entre todas a fracções estudadas é aquela que apresenta a maior densidade de bioclastos, principalmente pelóides e alguns molúsculos, com recristalização interna intensa, onde se observa a maioria da sparite identificada, quer no interior

dos bioclastos, quer na envolvência dos mesmos (Figura VII.8A e Figura VII.8C). Observa-se uma concentração mais intensa de grãos finos de quartzo e feldspatos nas zonas de matriz microsparítica.

Outros elementos figurados como calciclastos de matriz micrítica foram identificados, alguns dos quais com grande quantidade de minerais opacos muito finos no seu interior, correspondendo possivelmente a óxidos de ferro e sulfuretos, como pirite. Minerais opacos estão presentes de forma dispersa (Figura VII.8F), pirite e óxidos de ferro finos essencialmente, tendo sido identificadas zonas com grande abundância de pirite framboidal (Figura VII.8E), especialmente presentes nas mais zonas ricas em dolomite.

Em alguns dos estilólitos observou-se uma concentração muito elevada de pirite, provavelmente de origem biológica/framboidal. Os estilólitos não permitiram a distinção dos filossilicatos presentes, devido à dimensão demasiado fina, tendo de qualquer forma reconcentrado outras espécies minerais insolúveis tais como quartzo, feldspatos potássicos e/ou plagióclases (Figura VII.8), cuja distinção também não é clara devido à reduzida dimensão dos grãos.

VII.2.2.1.3 Ki R3

Rocha com matriz microsparítica a micrítica com sparite dispersa (Figura VII.9A e Figura VII.9B). Apresenta dolomite em abundância variável, tendencialmente mais comum e desenvolvida nas zonas microsparíticas, embora ocorra de forma dispersa em zonas onde a matriz é micrítica. A associação de dolomite em zonas mais sparíticas pode indiciar uma origem epigenética da mesma. Apresenta uma grande variedade de bioclastos (Figura VII.9C), quer em dimensão, espécies e abundância, que são tendencialmente mais abundantes nas zonas mais cristalinas da matriz, na grande maioria oóides. Outros elementos figurados como calciclastos foram observados, essencialmente de matriz micrítica, assim como quartzo e feldspatos de tamanho reduzido, dispersos na matriz. Alguns dos grãos de quartzo aparentam ter extinção ondulante, embora a abundância deste mineral em associação com os feldspatos finos possa levar à interpretação de quartzo no lugar de pequenos feldspatos maclados (Figura VII.9E e Figura VII.9F). A sparite observada corresponde a bioclastos recristalizados, escassos filonetes de calcite ou cristais bem desenvolvidos no interior da matriz. Esta fração apresenta maior densidade de planos estilolíticos, alguns deles com grandes quantidades de quartzo e materiais finos no seu interior, assim como possíveis grãos de feldspatos. Os minerais opacos identificados correspondem essencialmente a pirite, de forma dispersa e pouco abundante na matriz, quando comparada com as restantes fracções desta amostra.

A população identificada originalmente como Ki_R3 corresponde a uma rocha de matriz micrítica, comparativamente mais pobre em elementos figurados. A população identificada originalmente como Ki_R4 corresponde aos grãos mais ricos em bioclastos, recristalizados quase na totalidade, em alternância com vazas de matriz micrítica. Observou-se num dos grãos de agregados alternância entre planos sparíticos e planos micríticos bastante argilosos (Figura VII.9D), possível

indício da ocorrência de uma deposição alternada entre um cimento carbonatado mais puro e rico em bioclastos e vazas carbonatadas mais argilosas.

VII.2.2.1.4 Ki Rb

Esta fracção foi seleccionada com base na presença de algum tipo de bandado ou plano, como estratificação, planos estilolíticos ou outros (Figura VII.10), sem que as partículas tenham sido alocadas a qualquer das fracções descritas anteriormente. Nestes grãos observou-se uma grande variedade e densidade de planos estilolíticos assim como intercalações entre níveis micríticos e sparíticos, possivelmente resultantes da deposição de vazas carbonatadas com conteúdo argiloso variável.

A fracção de partículas Ki_Rb, tendo sido seleccionadas com base em estruturas orientadas observáveis, engloba grãos de todas as fracções, tal como mencionado anteriormente no Capítulo VII.2.1.1. Do que foi observado pode afirmar-se que os planos estilolíticos são mais comuns em zonas de matriz microsparítica a sparítica com dolomite abundante.

VII.2.2.2 Agregado "Spratt" (Ottawa, Ontário)

VII.2.2.2.1 Spr_R1

Rocha de matriz sparítica muito grosseira a microsparítica, com conteúdo argiloso reduzido quando comparada com Spr_R2. Apresenta uma grande diversidade e quantidade de bioclastos, total a parcialmente recristalizados (Figura VII.11A e Figura VII.11B). Foram observados níveis microsparíticos, mais pobres em conteúdo fossilífero e com paralelismo entre si, o que sugere que a recristalização terá sido mais intensa nas zonas mais heterogéneas, resultado de diferentes graus de permeabilidade no interior da rocha, possivelmente.

Nas zonas mais intensamente recristalizadas com sparite grosseira mais abundante foram identificados cristais de dolomite, por vezes muito bem desenvolvidos, embora pouco abundantes. Alguns dos bioclastos apresentam-se recristalizados por outra espécie mineral, possivelmente sílica criptocristalina (Figura VII.11D), no que parecem ser antigos espaços dentro do corpo fossilizado, espaços naturais ou resultantes da erosão no transporte dos bioclastos, com hábito em pente, muito possivelmente calcedónia. Alguns bioclastos apresentam uma coloração acastanhada em nicóis paralelos e mostram-se extintos em nicóis cruzados, tendo sido identificada a mineralogia que os substitui como francolite, mineral da família da apatite comum em fosforitos sedimentares, correspondendo a uma apatite com substituição de PO₄ por CO₃ (Figura VII.11E). Os bioclastos observados correspondem essencialmente a conchas de molúsculos, oóides, corais e alguns equinodermes. Minerais opacos presentes correspondem essencialmente a pirite, fina, com concentrações superiores em níveis mais finos da matriz e/ou no interior de alguns bioclastos. Foram observadas estruturas em harmónio com uma abundância mais elevada de pirite, correspondendo possivelmente a grandes molúsculos de concha ondulada, observados em secção transversal. Algumas dessas estruturas apresentam, no que poderia ser identificado como a charneira de uma dobra, uma concentração de sílica criptocristalina assim como alguma pirite (Figura VII.11F).

VII.2.2.2.2 *Spr_R2*

Rocha de matriz micrítica, rica em fracção argilosa, com sparite. A sparite ocorre essencialmente sob a forma de bioclastos recristalizados (Figura VII.12A e Figura VII.12B), dispersos e menos abundantes nas zonas de matriz micrítica, ou sob a forma de pequenos filonetes sparíticos. Observa-se dolomite dispersa, normalmente associada a zonas mais grosseiras da matriz (Figura VII.12A, Figura VII.12B, Figura VII.12E e Figura VII.12F), indicando o possível carácter diagenético desta mineralogia.

A matriz micrítica apresenta um conteúdo argiloso variável (Figura VII.12C e Figura VII.12D), podendo observar-se o arrancamento da matriz nas zonas especialmente ricas em filossilicatos como consequência do processo de manufactura das lâminas polidas. Bioclastos são abundantes e com uma grande variedade de espécies, apresentando os exemplos melhor preservados de entre as duas fracções de agregado seleccionadas. Bioclastos substituídos por francolite foram observados com maior frequência dentro desta fracção do agregado, e também bioclastos preenchidos e/ou substituídos por sílica microcristalina (Figura VII.12D).

Mineralogia opaca corresponde essencialmente a pirite, fina e dispersa na matriz micrítica, sem indícios de zonas com reconcentrações desta mineralogia. Outros elementos figurados como grãos de quartzo e calciclastos foram observados (calciclastos de matriz micrítica argilosa), mas de forma escassa.

VII.2.2.2.3 *Spr_Rb*

Esta fracção do agregado foi seleccionada com base na presença de algum tipo de bandado ou plano presente nos grãos (Figura VII.13), sem que os grãos tenham sido alocados a nenhum das fracções descritas anteriormente. Nos grãos de agregado seleccionados observaram-se essencialmente planos estilolíticos (com menor expressão que os observados em Ki_Rb) e algumas intercalações entre níveis mais carbonatados e outros mais argilosos (Figura VII.13E e Figura VII.13F). Porém, foi identificado um grão essencialmente dolomítico com dois níveis distintos: um primeiro onde a matriz é composta exclusivamente por sílica criptocristalina com cristais bem desenvolvidos de dolomite e um segundo onde a matriz é microsparítica com cristais de dolomite menos desenvolvidos (Figura VII.13A, Figura VII.13B, Figura VII.13C e Figura VII.13D). Este grão veio confirmar que as ocorrências de sílica criptocristalina não se limitam à substituição/preenchimento parcial de elementos figurados da rocha, podendo corresponder a uma substituição completa da matriz carbonatada original, associada à formação de dolomite. A sua identificação permitiu assim determinar o carácter epigenético deste tipo de sílica e da dolomite presentes na rocha.

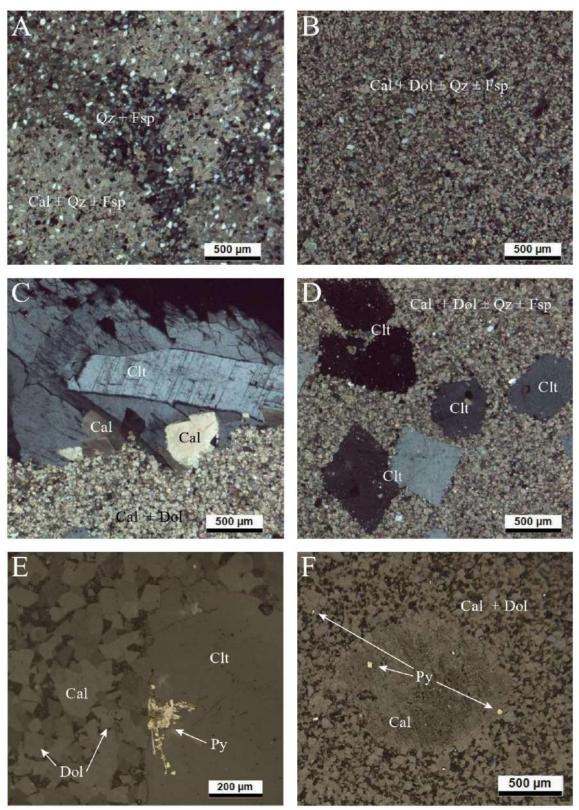


Figura VII.7. - Imagens ao microscópio óptico da fracção Ki_R1. (A-D) Fotos ao microscópio de luz transmitida em nicóis cruzados (NX)/(E,F) Fotos ao microscópio de luz reflectida em nicóis paralelos (N//); (A) Exemplo da matriz de Ki_R1 onde a concentração de quartzo (Qz) e feldspato (Fsp) é muito elevada; (B) Exemplo da matriz de Ki_R1, composta por calcite (Cc), dolomite (Dol), quartzo (Qz) e feldspato (Fps); (C) Grande massa de cristais de celestite (Clt) e sparite (Cal) em contacto com a matriz; (D) Múltiplos cristais euédricos de celestite (Clt) dispersos na matriz; (E) Exemplo do crescimento de pirite (Py) nos bordos dos cristais de celestite (Clt) para o seu interior ao longo dos planos de clivagem; (F) Calciclasto micrítico na matriz de Ki_R1 com pirite (Py) dispersa (um dos grãos de pirite dentro do calciclasto apresenta secção quadrada o que indica um desenvolvido em espaço aberto).

Figura VII.8. - Imagens ao microscópio óptico da fracção Ki_R2. (A-D) Fotos ao microscópio de luz transmitida em NX / (E,F) Fotos ao microscópio de luz reflectida em N//; (A,C) Exemplo da matriz de Ki_R2 onde se observa uma abundância de bioclastos substituídos por sparite (Cal); (B) Exemplo da matriz de Ki_R2 com dolomite (Dol) abundante e uma sequência de fissuras em echelon preenchidas por sparite (Cal); (D) Exemplo de plano estilolítico com reconcentração das mineralogias insolúveis (Qz, Fsp e filossilicatos «Phyll»); (E) Exemplo da ocorrência de pirite framboidal (frmbPy) numa matriz dolomítica grosseira (dolomite epigenética); (F) Exemplo da presença de pirite dispersa e framboidal (Py+frmbPy) numa matriz essencialmente microsparítica e rica em bioclastos (apenas na zona central inferior é observada a presença de dolomite «Dol»).

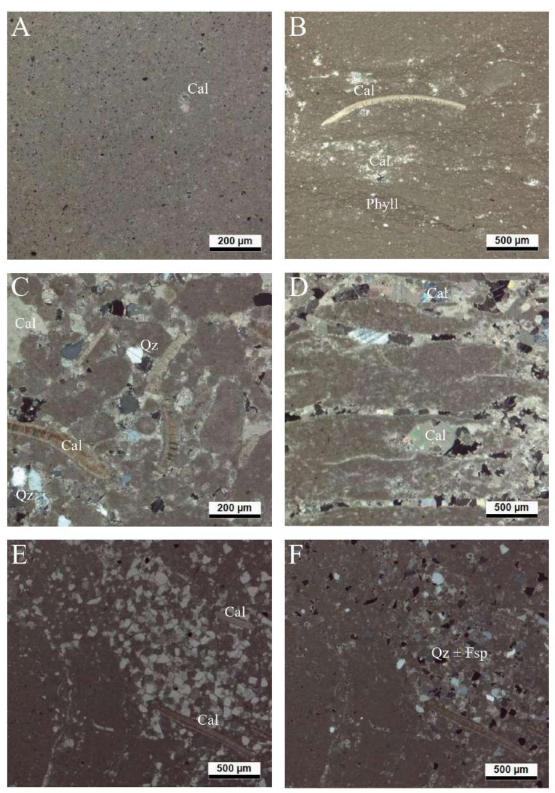


Figura VII.9. - Imagens ao microscópio óptico da fracção Ki_R3. (A,B,C,D,F) Fotos ao microscópio de luz transmitida em NX / (E) Foto ao microscópio de luz transmitida em N/; (A) Exemplo da matriz micrítica típica de Ki_R3, correspondente à grande maioria da amostra proveniente da pedreira de Pittsburg; (B) Exemplo do efeito dos fenómenos de recristalização possivelmente potenciados pela geração de planos estilolíticos, dando origem a pequenos níveis microsparíticos, assim como um raro bioclasto substituído por sparite (Cal); (C) Exemplo de zona rica em calciclastos, bioclasto e quartzo (Qz) numa zona mais microsparítica da matriz, possivelmente devido a fenómenos de recristalização da matriz carbonatada; (D) Alternância entre níveis sparíticos (Cal) e micríticos na matriz (recristalização controlada por planos pré-existentes(?)); (E,F) Zona da matriz com grande densidade de grãos de quartzo e feldspatos (Qz + Fsp), à semelhança do observado em Ki_R1, com dois bioclastos recristalizados.

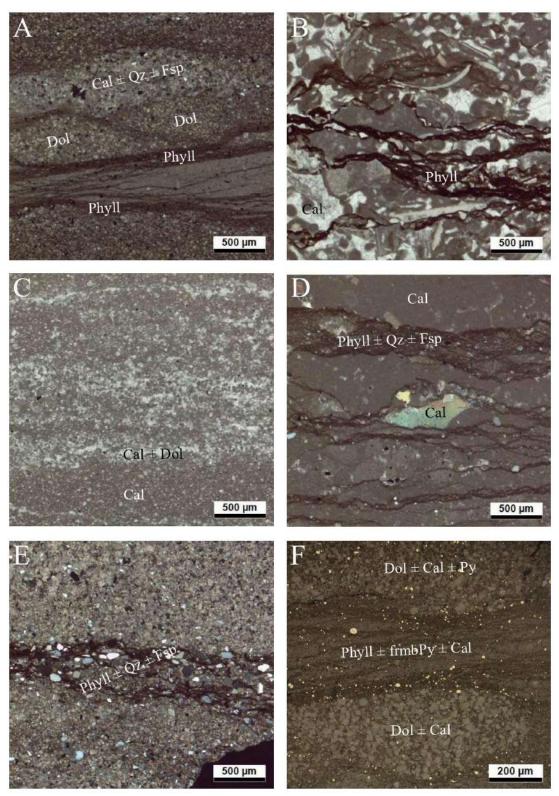


Figura VII.10. - Imagens ao microscópio óptico da fracção Ki_Rb. (A,D,E) Fotos ao microscópio de luz transmitida em NX / (B,C) Fotos ao microscópio de luz transmitida em N// (F) Foto ao microscópio de luz reflectida em N//; (A) Planos estilolíticos com pequenas lentes de dolomite (Dol), resultado de possível recristalização da matriz originalmente micrítica; (B) Planos estilolíticos com filossilicatos (Phyll) em zona rica em bioclastos; (C) Alternância entre níveis mais carbonatados (Cal+Dol) e outros mais argilosos (micríticos); (D) Zona com alternância entre planos estilolíticos (Phyll+Qz+Fps) e a matriz micrítica, com algumas massas sparíticas pontuais (Cal); (E) Plano estilolítico em matriz carbonatada dolomítica, com grande reconcentração de mineralogias insolúveis (Phyll+Qz+Fps); (F) Plano estilolítico com lentes de dolomite (Dol) grosseira com grande abundância de pirite framboidal (frmbPy) dispersa.

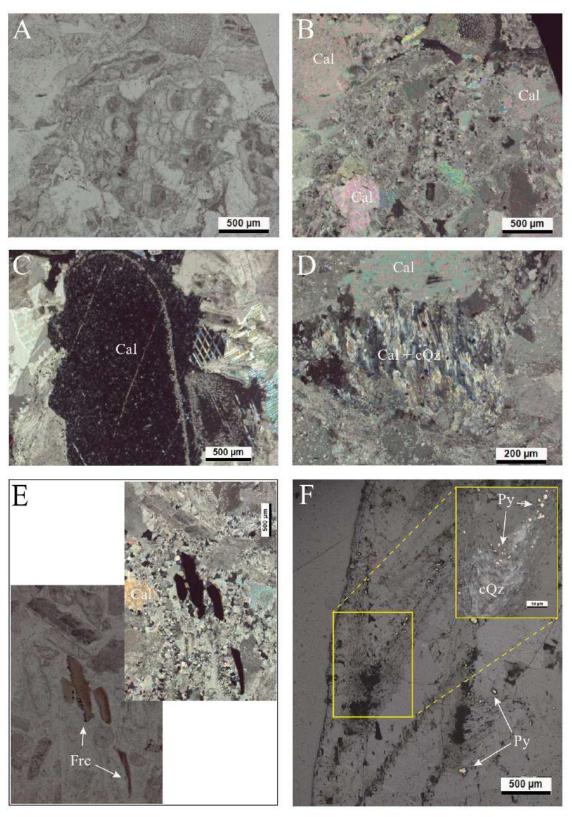


Figura VII.11. - Imagens ao microscópio óptico da fracção $Spr_R1.$ (B,C,D) Fotos ao microscópio de luz transmitida em NX/(A) Foto ao microscópio de luz transmitida em N/(E) Fotos ao microscópio de luz transmitida em N/(E) Fotos ao microscópio de luz transmitida em N/(E) Foto ao microscópio de luz reflectida em N/(E) Exemplos da matriz típica de Spr_R1 com grande abundância de bioclastos (A,B) e calciclastos (C) substituídos por sparite (Cal); (D) Exemplo da substituição interna de bioclasto por sparite (Cal) e sílica criptocristalina (Spr_R1) em pente; (E) Exemplo de bioclastos substituídos por francolite (Spr_R1); (F) Exemplo de corte transversal da concha ondulada de um molusco(?) ao longo da qual se concentra pirite e sílica criptocristalina (Spr_R1) nas "charneiras".

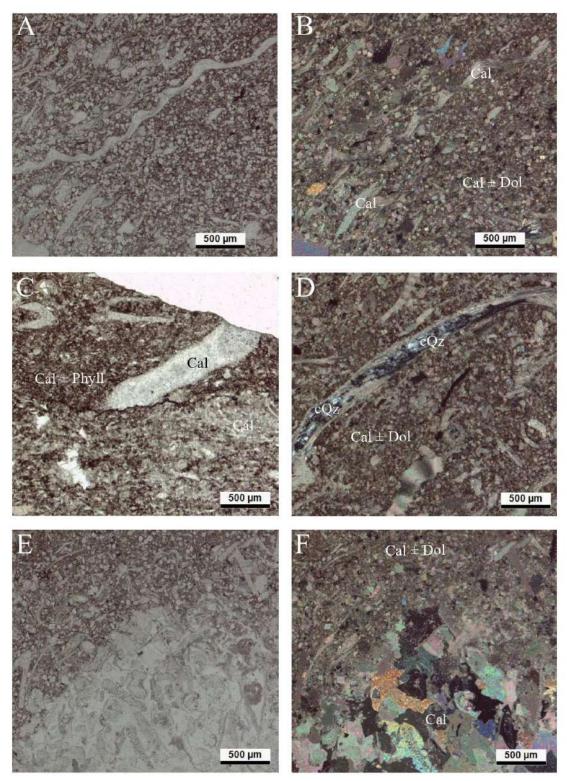


Figura VII.12. - Imagens ao microscópio óptico da fracção Spr_R2. (A,C,E) Fotos ao microscópio de luz transmitida em N// (B,D,F) Fotos ao microscópio de luz transmitida em NX; (A,B) Exemplo da matriz típica de Spr_R2, microsparítica dolomítica rica em bioclastos e conteúdo argiloso; (C) Zona da matriz onde se podem observar dois níveis com conteúdos argilosos distintos (zona mais argilosa a topo), separadas por um fino plano estilolítico; (D) Exemplo da substituição interna de bioclasto por sparite (Cal) e sílica criptocristalina (cQz); (E,F) Zona de contacto entre o que aparenta ser a matriz típica de Spr_R1 (em baixo) e a matriz mais argilosa de Spr_R2 (em cima).

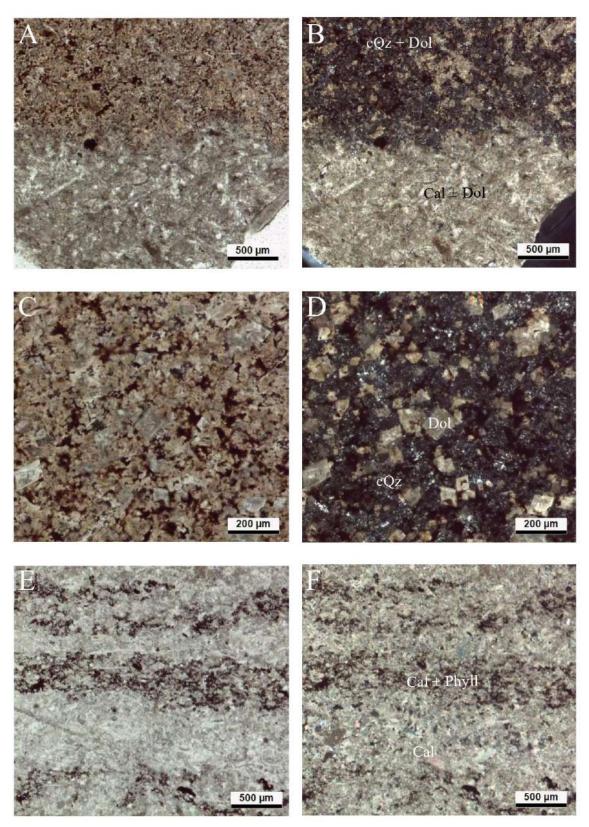


Figura VII.13. - Imagens ao microscópio da fracção Spr_Rb. (A,C,E) Fotos ao microscópio de luz transmitida em N// (B,D,F) Fotos ao microscópio de luz transmitida em NX; (A,B) Zona de contacto entre a matriz composta por sílica criptocristalina com dolomite (cQz+Dol) (em cima) e a matriz microsparítica carbonatada (Cal+Dol) (em baixo); (C,D) Fotos de maior detalhe da matriz composta por sílica criptocristalina e dolomite euédrica bem desenvolvida (cQz+Dol); (E,F) Exemplo da ocorrência de níveis mais ricos em argila em alternância com a matriz microsparítica.

VII.3 Petrografia de prismas de betão

VII.3.1 Descrição microscópica

Foram produzidas duas lâminas polidas para cada um dos cinco prismas de betão, de forma a permitir uma identificação e caracterização o mais completa possível da influência dos agregados nos danos no betão. A fracção de areia dos prismas de betão estudados é bastante semelhante, mesmo comparando os prismas com agregado proveniente da pedreira de Pittsburg (Kingston) e Spratt (Ottawa), sendo no agregado grosso dos prismas de betão que reside a grande diferença entre os dois conjuntos de prismas de betão analisados. O agregado fino dos prismas de betão corresponde a grãos sub-rolados a sub-angulosos de plagióclases, com mirmequites e argilização pouco intensa comuns, quartzo, apresentando pontualmente inclusões de óxidos de ferro e/ou titanite, e anfíbolas. Depreendese que a litologia original terá sido um gabro, sendo os efeitos de argilização observados nas plagióclases o resultado da exposição a fenómenos meteóricos, *in situ*, ou após a britagem da rocha.

VII.3.1.1 Agregado "Kingston" (Kingston, Ontário)

VII.3.1.1.1 Ki_B1 (expansão volumétrica de 0,50 %)

Para o prisma de maior expansão volumétrica, os danos observados correspondem essencialmente a fissuração intensa, na grande maioria partindo do interior dos grãos de agregado de rocha em direcção à pasta ou ao longo do contacto entre os grãos de agregado e a pasta. As fissuras estão na grande maioria abertas e com preenchimento, sendo que em pequenos troços se apresentavam fechadas (Figura VII.14A). As fissuras, salvo raras excepções, alongam-se para o interior da pasta, acabando eventualmente por comunicar com outros agregados. A pasta de cimento é densa e homogénea, não tendo sido identificadas zonas especialmente porosas. Foram observadas diferentes tipologias de fissuras: fissuras que fazem uso de planos presentes no interior dos agregados de rocha, como p. ex. estratificação, planos estilolíticos ou planos de contacto entre mineralogias mais grosseiras; fissuras discordantes dos elementos figurados e/ou granularidade mais grosseira, que deveria influenciar a fissuração segundo direcções preferenciais (Figura VII.14B e Figura VII.14C). Outro factor que aparenta influenciar positivamente o grau de fissuração dos agregados é a sua heterogeneidade interna, com maior presença de elementos figurados ou variações texturais bem marcadas, embora tenham sido identificadas excepções, como referido anteriormente. Associada a estas fissuras observou-se carbonatação intensa da pasta, mais marcada quanto maior a proximidade às fissuras. Esta reacção foi também observada, de forma geral, em torno da maioria das partículas de agregado, especialmente os descolados da pasta (Figura VII.14D). A presença de vazios na pasta intensificou localmente esta reacção e observou-se também o aproveitamento desses vazios por parte das fissuras, o que levanta dúvidas quanto à relação temporal entre a reacção e alguma da fissuração observada. Uma relação observada entre a carbonatação e os grãos de agregado envolvidos é a intensidade da mesma em relação directa com o carácter mais argiloso do agregado, sendo que em agregados onde os bordos do grão são mais cristalinos a carbonatação aparenta ser menos intensa. A natureza dos halos resultante da reacção entre o agregado e o cimento, presentes em torno dos agregados e fissuras, necessita de confirmação química na fase de microscopia electrónica de varrimento das superfícies polidas em estudo. Outra observação, embora necessite de mais estudo, é a aparente tendência para as fissuras de maior dimensão e com maior intensidade de AAR estarem associadas a feldspatos da fracção fina do betão, em especial os que apresentem algum grau de argilização interna (Figura VII.14E, Figura VII.14F, Figura VII.14G e Figura VII.14H). Não foi identificado qualquer tipo de produto de reacção no interior e/ou nos bordos de fissuras ou dentro de vazios, além dos resultantes da carbonatação da pasta, permanecendo indeterminada a causa dos danos observados a esta escala de observação.

VII.3.1.1.2 Ki_B2 (expansão volumétrica de 0,208 %)

Os danos observados para este prisma são em tudo semelhantes aos de Ki_B1, embora a uma escala mais reduzida (Figura VII.15A e Figura VII.15B). A pasta de cimento é também homogénea e sem indícios de zonas com um grau de porosidade acima do normal. Os danos correspondem na maioria a fissuras abertas relativamente extensas e a uma carbonatação persistente associada às mesmas e em torno das partículas de agregado. A presença de troços de fissuras fechados é também mais numerosa neste prisma do que no anterior, o que espelha a expansão inferior quando comparado com o prisma Ki_B1. Em certos casos foi possível observar fissuração mais intensa que em Ki_B1, embora não tenha influenciado a sua expansão, sob a forma de ramificações, e também uma maior presença de interfaces abertas em torno dos grãos de agregado (Figura VII.15C, Figura VII.15D, Figura VII.15E e Figura VII.15F). À semelhança do prisma Ki_B1, observou-se que a fissuração não apresenta uma influência directa de factores pré-existentes, embora tenham sido observados em maior número casos onde tal acontece, como fissuras que acompanham planos estilolíticos ou limites entre zonas mais e menos margosas p.ex. (Figura VII.15G e Figura VII.15H), e que a intensidade da AAR é superior nestas zonas intensamente fissuradas, apresentando-se assim a questão temporal levantada anteriormente. A aparente influência por parte dos feldspatos constituintes da fracção fina do betão parece também estar presente, embora necessite de confirmação química na análise MEV. À escala da observação não foi possível a identificação de produtos de reacção, tanto em fissuras como em vazios, além dos descritos para Ki_B1.

VII.3.1.1.3 Ki_B3 (expansão volumétrica de 0,051 %)

No prisma que apresentou menor expansão volumétrica, verifica-se que os danos observados são muito discretos. A pasta de cimento, como nos prismas descritos anteriormente, tem um carácter homogéneo, denso e é pouco porosa. A fissuração observada está quase totalmente associada às interfaces das partículas de agregado, sendo que as fissuras identificadas no interior de grãos estão muitas vezes relacionadas com a presença de planos bem demarcados que permitiram a sua propagação no interior da rocha, embora apresentem dimensões reduzidas e sejam normalmente fechadas (Figura VII.16A, Figura VII.16B e Figura VII.16E). Foram também observadas pequenas fissuras associadas a vazios na pasta, raramente em comunicação com as partículas de agregado (Figura VII.16A e Figura VII.16B). A carbonatação, tal como nos restantes prismas, é observável nos bordos das partículas de

agregado de rocha, mas a uma escala muito inferior à observada nos prismas anteriores, sendo por vezes, em certas áreas das superfícies polidas, inexistente (Figura VII.16C, Figura VII.16D, Figura VII.16G e Figura VII.16H). Foi possível ainda assim observar-se que a AAR é tanto mais intensa quanto maior o teor argiloso do agregado grosso (Figura VII.16E e Figura VII.16F). Não foi identificado qualquer tipo de produto de reacção nas lâminas produzidas deste prisma, além dos descritos para Ki_B1.

VII.3.1.2 Agregado "Spratt" (Ottawa, Ontário)

VII.3.1.2.1 Spr_B1 (expansão volumétrica de 0,20 %)

Os danos observados neste prisma de betão são severos e diversos. A fissuração presente é intensa, extensa e com produtos de reacção associados. Foi possível observar desde fissuração na pasta de cimento (Figura VII.17A e Figura VII.17B), a fissuração apenas no interior de uma partícula de agregado ou fissuração que liga diferentes grãos de agregado. A fissuração é tendencialmente aberta, muito possivelmente preenchida por gel silico-alcalino (Figura VII.17G e Figura VII.17H). Em alguns casos foi possível observar-se o que parecem ser pequenas acumulações de gel silico-alcalino num dos lados de fissuras abertas em pequenos troços das mesmas. O tipo de fissuração é também mais diverso do que o observado nos prismas com agregado grosso proveniente na pedreira de Pittsburg, observandose fissuração em echelon (Figura VII.17A e Figura VII.17B) e uma maior influência do carácter mais heterogéneo da rocha de Spratt, com grande conteúdo fossilífero assim como variações mais bruscas da granularidade da matriz (Figura VII.17E, Figura VII.17F, Figura VII.17G e Figura VII.17H). A carbonatação na pasta, embora presente, é muito reduzida e muitas das vezes apenas observável em torno de vazios na pasta de cimento apenas (Figura VII.17B). Foram observados casos onde se identificou gel silico-alcalino no interior de fissuras em comunicação com vazios na pasta, que por sua vez apresentam, por vezes, preenchimentos pelo mesmo produto de reacção (Figura VII.17C e Figura VII.17D).

VII.3.1.2.2 Spr_B2 (expansão volumétrica de 0,049 %)

Para o prisma de betão utilizando agregados de Spratt e para o qual se verificou menor expansão volumétrica, os danos observados são reduzidos. A fissuras apresentam aberturas reduzidas embora possam ter uma extensão considerável (Figura VII.18A e Figura VII.18B), chegando a comunicar entre a pasta de cimento e grãos de agregado, embora raramente; a presença de fissuras com bifurcações é comum. A carbonatação é quase inexistente, podendo ser observada, em raras situações, associada a vazios. À escala de observação não foi identificado produto de reacção, embora tenham sido detectados grãos de agregado contendo sílica criptocristalina.

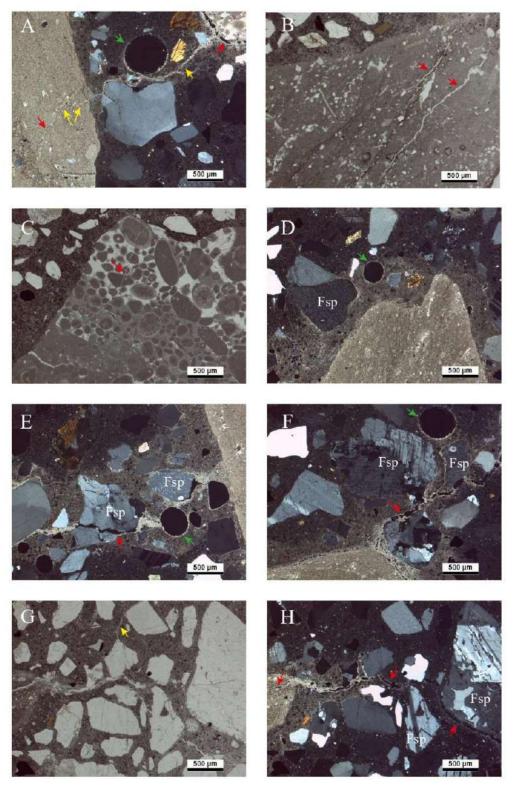


Figura VII.14 - Imagens ao microscópio óptico do prisma Ki_Bl. (**B,C,G**) Fotos ao microscópio de luz transmitida em N// (**A,D,E,F,H**) Fotos ao microscópio de luz transmitida em NX; (**A**) Fissura aberta (setas vermelhas) que comunica entre dois grãos de agregado grosso, com troços fechados (setas amarelas), passando perto de um vazio na pasta (seta verde), acompanhada de carbonatação da pasta em toda a sua extensão; (**B**) Duas fissuras abertas que se iniciam no agregado e estendemse para a pasta, fazendo uso de planos estilolíticos presentes; (**C**) Fissura aberta no interior de grão de agregado, fissurando elementos figurados (oóides); (**D**) Exemplo da carbonatação observada em torno dos agregados grossos, aparentemente mais intensa nos troços do bordo do feldspato identificado; (**E,F**) Fissura aberta na pasta de cimento e carbonatação intensa associada a vários grãos de feldspatos (ligeiramente argilizados); (**G,H**) Fissura aberta originada no interior do agregado grosso em continuidade para a pasta, fissurando um grão de feldspato (canto inferior direito) e circundando um segundo com indícios de argilização (canto direito), acompanhada de carbonatação.

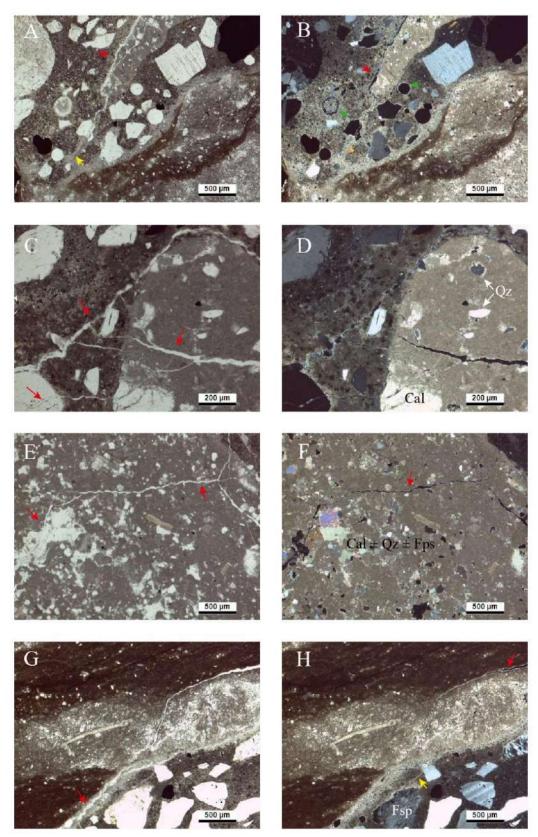


Figura VII.15. - Imagens ao microscópio óptico do prisma Ki_B2. (A,C,E,G) Fotos ao microscópio de luz transmitida em N//(B,D,F,H) Fotos ao microscópio de luz transmitida em NX; (A,B) Fissura aberta em torno de agregado grosso (zona superior) e fechada no interior da pasta, acompanhada de dois vazios (vazio da esquerda encontra-se preenchido por material resultante da produção da lâmina polida) e carbonatação intensa da pasta em torno dos agregados grossos; (C,D) Exemplo de fissura aberta originada no interior de grão de agregado grosso que se ramifica e comunica com uma segunda fissura aberta em torno do agregado e no interior da pasta de cimento, acompanhadas de carbonatação na pasta; (E,F) Fissura aberta e ramificada no interior de agregado grosso, fazendo uso localmente da granularidade da mineralogia presente para se desenvolver (lado esquerdo); (G,H) Fissura aberta na zona de contacto entre nível muito rico em argila (castanho escuro) e um nível intermédio mais carbonatado que é cortado, acabando por comunicar com a fissura aberta em torno do agregado.

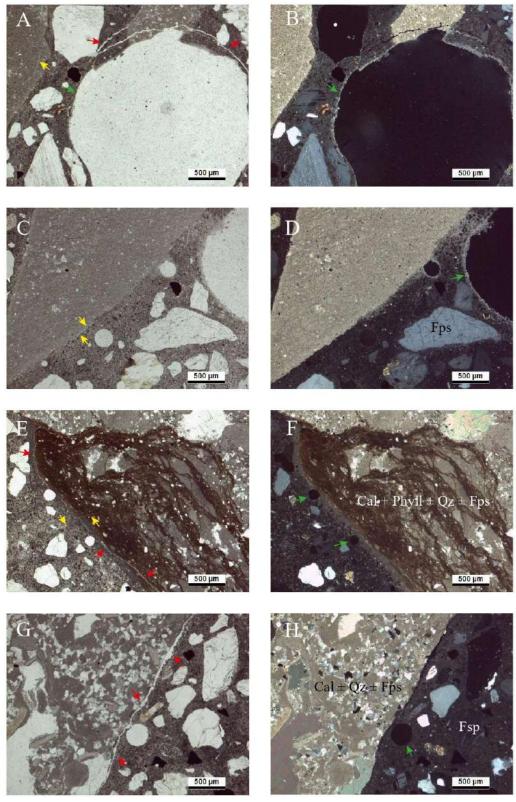


Figura VII.16. - Imagens ao microscópio óptico do prisma Ki_B3. (A,C,E,G) Fotos ao microscópio de luz transmitida em N// (B,D,F,H) Fotos ao microscópio de luz transmitida em NX; (A,B) Fissura aberta em torno de vazio na pasta, com carbonatação quase inexistente quer em torno do vazio quer em torno dos grãos de agregado grosso; (C,D) Fissura fechada em torno de agregado grosso de matriz micrítica, com carbonatação pouco intensa da pasta em torno do agregado; (E,F) Fissura aberta em torno de agregado com elevado teor argiloso e perpendicularmente uma fissura fechada originada no interior do agregado grosso continuando para a pasta. Note-se que a carbonatação da pasta, embora leve, é mais acentuada no bordo do grão onde o teor argiloso está presente, sendo menos intensa quando a matriz em contacto com a pasta é apenas micrítica (canto superior esquerdo); (G,H) Fissura aberta em torno de agregado grosso microsparítico com carbonatação quase inexistente ao longo do contacto com a pasta e vazio na pasta (seta verde) nas proximidades do grão.

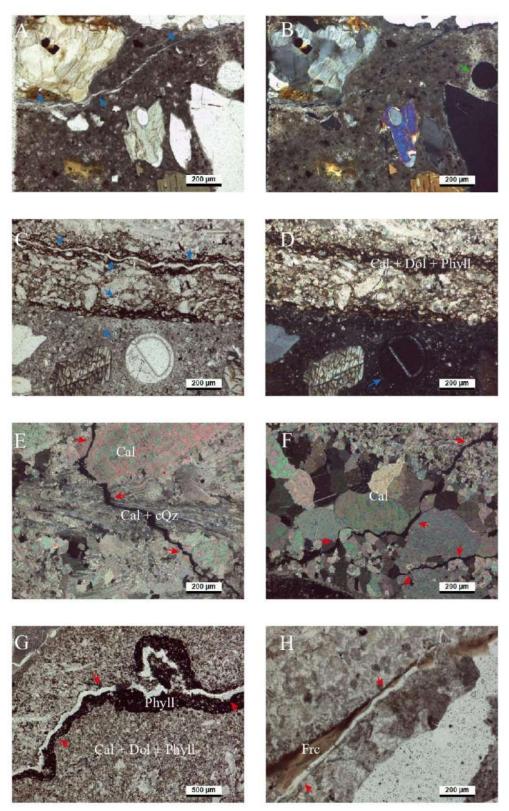
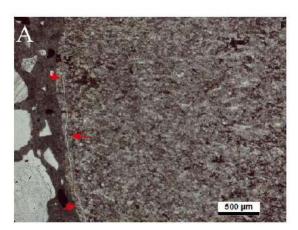



Figura VII.17. - Imagens ao microscópio óptico do prismas Spr_B1. (A,C,E,G) Fotos ao microscópio de luz transmitida em N// (B,D,F,H) Fotos ao microscópio de luz transmitida em NX; (A,B) Fissura em echelon preenchida por gel silico-alcalino (seta azul) no interior da pasta, com ligeira carbonatação da pasta em torno de vazio (seta verde); (C,D) Fissuração aberta que faz uso de planos estilolíticos de agregado grosso em contacto com fissura aberta de menor expressão que comunica com a pasta de cimento, com gel silico-alcalino nos bordos das fissuras. Por sua vez essas fissuras alimentam um vazio na pasta com os produtos de reacção, observável em D; (E,F,G,H) Diferentes tipologias de fissuração: (E) fissuração aberta que aproveita a morfologia de bioclasto e a presença de sílica criptocristalina em agregado sparítico; (F) fissuração aberta utilizando a granularidade da mineralogia interna de agregado grosso sparítico; (G) fissuração aberta extensa que faz uso de plano estilolítico no interior de agregado grosso mais argiloso, sem a presença de gel silico-alcalino; (H) fissuração aberta que faz uso de bioclasto substituído por francolite, sem a presença de gel silico-alcalino.

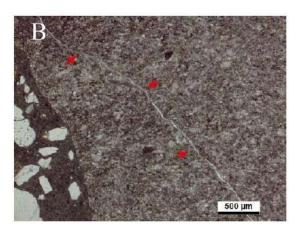


Figura VII.18. - Imagens ao microscópio óptico do prisma Spr_B2. (**A,B**) Fotos ao microscópio de luz transmitida em N//; (**A,B**) Fissuras abertas de grande extensão e pequena largura no interior de agregados micríticos argilosos. Aparentam ser fissuras em echelon que acabaram por comunicar entre si dando a extensão observável à fissura final.

VII.4 Química mineral

VII.4.1 Agregado "Kingston" (Kingston, Ontário)

VII.4.1.1 Matriz carbonatada

A matriz carbonatada dos diferentes conjuntos foi analisada e identificada como apresentado na Tabela VII.1 (resultados completos no Anexo 12). Para todos os conjuntos de agregados analisados observou-se que a matriz carbonatada é composta de proto dolomites no interior de uma matriz calcítica. A fracção Ki_R1 apresentou valores de fecho inferiores ao normalmente aceite (98-102%) mas foram tidas como válidas, mediante os devidos cuidados. As calcites analisadas apresentam quantidades superiores de Mg, Fe e Mn na fracção Ki_R1, sendo que nas restantes fracções se observa um aumento em Ca com diminuição daqueles catiões. A matriz dolomítica dos conjuntos, composta por proto dolomites, foi identificada com base nos valores fornecidos por Stanienda-Pilecki (2018). Ao longo do tratamento da química mineral este termo refere-se a carbonatos romboédricos com uma desordem catiónica, mais ricos em Ca, segundo a definição dada por Gaines (1977).

Como descrito no Capítulo VII.2.2.1, a fracção Ki_R1 (Anexo 13) apresenta a matriz dolomítica mais desenvolvida de todas as fracções, matriz essa correspondente a proto dolomites com os valores mais baixos de Ca e com os valores mais elevados de Mg e Fe na sua composição. As proto dolomites analisadas em Ki_R2 (Anexo 14) encontram-se na grande maioria em conjunto ou na proximidade de pirite framboidal, apresentando valores de Mg e Fe superiores aos da matriz de Ki_R3 (Figura VII.19 e Figura VII.20), possivelmente resultado da transferência dos elementos a partir da pirite. Foi também analisada uma calcite singular na fracção Ki_R3 (Figura VII.19), considerada como uma calcite rica em Mg (high magnesium calcite - HMC), de acordo com o trabalho de Stanienda-Pilecki (2018). As fórmulas empíricas dos minerais carbonatados analisados nas diferentes fracções encontram-se na Tabela VII.1. Observou-se nas zonas da matriz mais dolomítica e/ou rica em quartzo e feldspatos, a presença de interstícios abertos entre os diferentes minerais carbonatados presentes, o que confere um carácter esboroado à matriz. Esta relação entre a presença de dolomite na matriz carbonatada, o seu

aspecto esboroado, assim como a presença de espécies como quartzo e feldspatos, melhor observado em Ki_R1, motivou também a análise dessas espécies minerais de forma a tentar compreender melhor a sua possível influência no estado/desenvolvimento da matriz carbonatada (Capítulos VII.4.1.2 a VII.4.1.6). No interior dos interstícios observaram-se sinais da acumulação de filossilicatos, o que motivou uma análise mais cuidada dos interstícios (Capítulo VII.4.1.6) uma vez que uma das possíveis causas sugeridas para a ACR apontava para a quantidade e tipo de filossilicatos presentes no agregado grosso (Gillott & Swenson, 1969; Goodhue et al., 2019).

Tabela VII.1 – Fórmulas empíricas para os carbonatos analisados nas diferentes fracções de agregado grosso da pedreira de Pittsburg (Kingston).

Fracção de agregado grosso	Fórmula empírica
Ki_R1 [Cal]	Cal ₉₇₋₉₈ Mgs ₁₋₂ Sd ₁₋₁
Ki_R1 [ProtoDol]	Cal ₅₃₋₅₆ Mgs ₄₃₋₄₅ Sd ₀₋₃
Ki_R2 [Cal]	Cal ₉₈ Mgs ₁₋₂ Sd ₀₋₁
Ki_R2 [ProtoDol]	Cal ₅₅₋₅₇ Mgs ₄₂₋₄₄ Sd ₀₋₂
Ki_R3 [Cal]	Cal ₉₈₋₉₉ Mgs ₁₋₂ Sd ₀
Ki_R3 [ProtoDol]	Cal ₅₇₋₆₀ Mgs ₄₀₋₄₂ Sd ₀₋₁
Ki_R3 [Cal Mg - HMC]	Cal ₆₄ Mgs ₃₄ Sd ₂

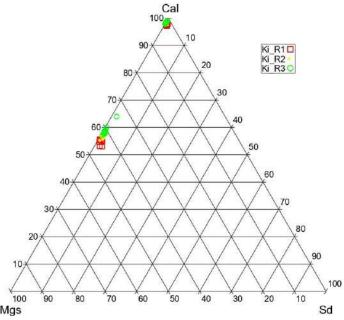


Figura VII.19 - Diagrama ternário Cal-Mgs-Sd para os carbonatos analisados nas diferentes fracções de agregado grosso da pedreira de Pittsburg (Kingston, Ontário). Observam-se dois conjuntos bem definidos de calcites e proto dolomites, assim como a existência de uma calcite rica em magnésio (HMC) na fracção Ki_R3.

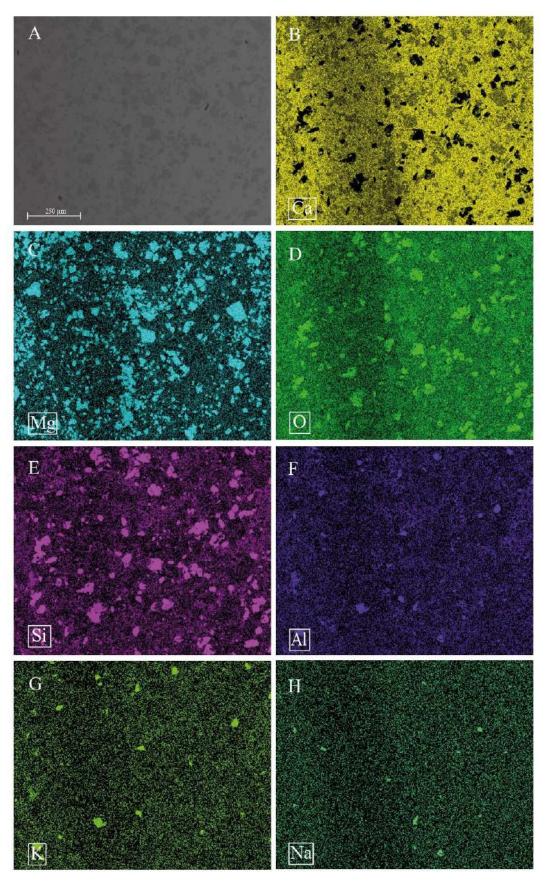


Figura VII.20 – Imagens de electrões retrodifundidos da matriz carbonatada de Ki_R3, composta por calcite \pm dolomite \pm quartzo \pm feldspatos \pm filossilicatos. (A) Imagem de electrões retrodifundidos obtida em MEV / (B-H) mapas composicionais dos respectivos elementos identificados no canto inferior esquerdo. A observação dos mapas D a H, parece indicar a presença de filossilicatos muito finos dispersos pela matriz, compostos essencialmente por Si, Al, K e O.

VII.4.1.2 Quartzo

Das espécies minerais insolúveis bem desenvolvidas identificadas no estudo petrográfico, quartzo é um dos minerais mais abundantes e em cristais bem desenvolvidos. Os valores wt% dos grãos minerais analisados encontram-se na Tabela VII.2 (resultados completos no Anexo 15). O quartzo observado apresenta-se sob a forma de pequenos grãos arredondados no seio da rocha (Figura VII.20D e Figura VII.20E), sem que tenham sido observadas inclusões de minerais opacos ou outros no seu interior. Além do quartzo descrito anteriormente, foi identificado em Ki_R2 um conjunto de grãos euédricos no interior de uma matriz essencialmente calcítica (Anexo 16 e Anexo 17), sendo que alguns desses grãos contêm inclusões da matriz carbonatada. Estes grãos apresentam na sua envolvência pequenos agregados de sílica, correspondentes à fase inicial de formação de um novo grão de quartzo, indicando um possível carácter epigenético do quartzo disperso observado na rocha carbonatada. Mais ainda, no canto superior direito do Anexo 16D/E/F observou-se um feldspato de forma sub-euédrica que poderá resultar do mesmo processo epigenético envolvido na formação do quartzo, o que motivou a análise dos feldspatos presentes na amostra de agregado grosso de Kingston.

Tabela VII.2 – Resultados wt%, em óxidos, da composição dos grãos de quartzo analisado nas fracções de agregado Ki_R1 e Ki_R3.

wt%	Ki_R1					Ki_R3				
	min	média	Máx	DP	med	min	média	Máx	DP	med
CaO	0.000	0.037	0.128	0.038	0.029	0.090	0.144	0.219	0.044	0.134
F	0.000	0.021	0.079	0.029	0.000	0.000	0.031	0.073	0.027	0.028
SiO2	99.347	99.963	100.773	0.488	100.000	99.196	100.150	100.924	0.653	100.277
Rb2O	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TiO2	0.000	0.004	0.013	0.006	0.000	0.000	0.006	0.010	0.005	0.009
Na2O	0.000	0.003	0.008	0.003	0.001	0.000	0.005	0.015	0.005	0.004
CI	0.000	0.005	0.016	0.006	0.002	0.000	0.003	0.013	0.005	0.000
K20	0.000	0.016	0.059	0.022	0.005	0.000	0.002	0.008	0.003	0.000
Cr2O3	0.028	0.051	0.073	0.013	0.053	0.039	0.056	0.078	0.014	0.049
MgO	0.000	0.009	0.041	0.013	0.002	0.000	0.000	0.001	0.000	0.000
Cs2O	0.000	0.011	0.033	0.013	0.002	0.000	0.007	0.034	0.014	0.000
BaO	0.000	0.025	0.093	0.030	0.019	0.000	0.014	0.050	0.019	0.010
MnO	0.000	0.009	0.031	0.011	0.003	0.001	0.012	0.031	0.012	0.004
Al2O3	0.000	0.045	0.164	0.068	0.010	0.000	0.004	0.014	0.005	0.002
NiO	0.000	0.016	0.051	0.017	0.011	0.000	0.026	0.042	0.017	0.037
FeO	0.008	0.025	0.053	0.013	0.022	0.000	0.012	0.040	0.015	0.008

VII.4.1.3 Feldspatos

Foram identificadas e analisados dois tipos de feldspatos, ortóclase e albite, estando os valores completos (wt%) apresentados no Anexo 18, assim como os valores estatísticos em átomos por unidade de forma (a.p.f.u.). À semelhança do quartzo, os feldspatos presentes nos conjuntos de Kingston apresentam-se de forma dispersa por toda a matriz carbonatada, ainda que em menor quantidade que o quartzo, como pode ser observado nos Anexo 19 e Anexo 20. Tratando-se de uma solução sólida, os termos ortóclase e albite usados são uma simplificação, uma vez que espécies intermédias da solução foram analisadas (Figura VII.21). De forma geral, as ortóclases analisadas apresentam uma composição média Or₉₀₋₉₈ Ab₁₋₉ An₀₋₁₆. A associação

observada entre feldspatos e quartzo, indicada previamente, associada à química dos feldspatos analisados (Anexo 20), uma vez que a albite é um mineral mais susceptível à influência de processos meteóricos e de transporte, o que geralmente leva à sua destruição, indicam uma possível neo-formação do quartzo e feldspatos observados no interior da rocha de Pittsburg. Esta possibilidade foi confirmada onde se identificou a formação de quartzo e ortóclase não só na matriz dolomítica que bordeja calciclastos matriz carbonatada original, como no interior da mesma.

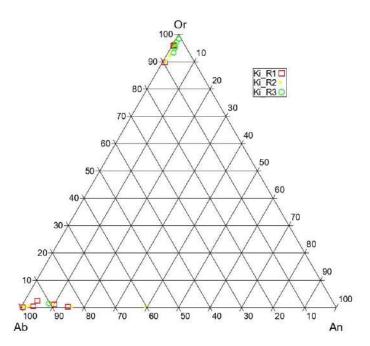


Figura VII.21 - Diagrama ternário Or-Ab-An para os feldspatos analisados nas diferentes fracções de agregado grosso da pedreira de Pittsburg (Kingston, Ontário). Observam-se dois conjuntos de feldspatos na rocha de Kingston, o primeiro corresponde a ortóclase e o segundo a albite, embora exista uma maior dispersão no extremo Na-Ca das plagióclases analisadas.

VII.4.1.4 Sulfuretos

Os dados estatísticos para esta espécie mineral encontram-se apresentados na Tabela VII.3. As principais diferenças encontram-se nos valores mais elevados de Pb, W, Ni, Co, Mn, Zn e Ag (wt%) para as pirites framboidais presentes em Ki_R2, quando comparadas com as restantes (resultados completos apresentados no Anexo 21). Como observado na petrografia das diferentes fracções de agregado grosso de Kingston, a pirite encontra-se geralmente presente de forma dispersa e fina, à excepção das fracções Ki_R1 e Ki_R2. As pirites analisadas em Ki_R1 encontram-se na grande maioria associadas à formação e desenvolvimento dos cristais de celestite, enquanto no conjunto Ki_R2 são na quase totalidade pirites framboidais (ver Capítulo VII.2.2.1) (Anexo 22 e Anexo 23). Foram também observados microcristais de sulfuretos, ou sulfatos, no interior de planos estilolíticos na análise de Ki_Rb (Capítulo VII.4.1.6), não tendo sido possível realizar análises sobre os mesmos.

Tabela VII.3 – Resultados wt% da composição dos cristais de pirite analisadas nas fracções de agregado Ki_R1 e Ki_R2.

wt%			Ki_R1					Ki_R2		
	min	média	Máx	DP	med	min	média	Máx	DP	med
Bi	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.031	0.009	0.000
Ga	0.000	0.000	0.000	0.000	0.000	0.000	0.004	0.027	0.009	0.000
Pb	0.069	0.109	0.161	0.036	0.103	0.000	0.146	0.668	0.182	0.074
Au	0.005	0.017	0.037	0.012	0.014	0.000	0.009	0.058	0.017	0.000
Ag	0.000	0.005	0.019	0.008	0.000	0.000	0.011	0.067	0.021	0.000
Ge	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cd	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mo	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
In	0.000	0.000	0.000	0.000	0.000	0.000	0.005	0.020	0.008	0.000
As	0.000	0.004	0.015	0.006	0.000	0.000	0.004	0.027	0.008	0.000
Sn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
S	52.732	53.194	53.442	0.276	53.300	52.005	52.536	53.133	0.392	52.505
Ni	0.000	0.015	0.041	0.017	0.009	0.000	0.043	0.108	0.032	0.036
Se	0.000	0.001	0.003	0.001	0.000	0.000	0.003	0.016	0.005	0.000
Zn	0.000	0.020	0.079	0.034	0.000	0.000	0.019	0.073	0.027	0.000
Fe	46.944	47.036	47.101	0.063	47.049	45.727	46.320	47.112	0.383	46.316
Sb	0.000	0.003	0.010	0.004	0.000	0.000	0.002	0.014	0.005	0.000
Mn	0.000	0.003	0.010	0.004	0.001	0.000	0.021	0.087	0.028	0.011
Co	0.000	0.017	0.051	0.021	0.009	0.000	0.026	0.061	0.022	0.025
W	0.000	0.042	0.089	0.042	0.039	0.000	0.068	0.268	0.089	0.036
Te	0.000	0.000	0.000	0.000	0.000	0.000	0.011	0.069	0.020	0.000
Cu	0.000	0.006	0.025	0.011	0.000	0.000	0.010	0.038	0.012	0.007

VII.4.1.5 Sulfatos

Os sulfatos analisados foram apenas identificados no conjunto de Ki_R1 (como referido no Capítulo VII.2.2.1.1), associados a uma matriz proto dolomítica bem desenvolvida. A composição desta mineralogia mostra tratar-se de celestite, com uma composição média Clt₉₈₋₉₉ Brt₀₋₂ Cal₀₋₁ (Figura VII.22) (resultados completos wt%, valores estatísticos wt% e a.p.f.u. no Anexo 24). É possível observar-se localmente zonas dos cristais de celestite enriquecidos em Ba, sem que o mineral presente seja barite (Figura VII.22F). Minerais como gesso ou anidrite não foram observados.

VII.4.1.6 Filossilicatos

Os mapas composicionais apresentados para os filossilicatos deste conjunto de agregados foram obtidos através da análise do conjunto Ki_Rb, tendo sido observado um sinal persistente de K, Mg, Si, Al e Fe em estruturas como planos estilolíticos (Figura VII.23; Figura VII.24). Elementos como Na e Ca não apresentam sinais relevantes no interior de planos estilolíticos, sendo expectável que as espécies minerais presentes sejam essencialmente moscovite, glauconite, caulinite, flogopite e/ou biotite. Observou-se, em certas zonas da matriz carbonatada menos ricas em sparite (Ki_R1 e Ki_R3), um carácter esboroado (Capítulo VII.4.1.1), consequência da presença de interstícios abertos entre os diferentes minerais presentes com sinais elementares semelhantes aos observados nos planos estilolíticos, o que indica a presença de uma quantidade considerável de filossilicatos dispersa nesta litologia (Figura VII.22; Anexo 19; Anexo 20). A matriz de Ki_R2, sendo mais pobre em proto dolomite, não apresenta sinais de uma grande quantidade de filossilicatos, mas nos casos em que proto dolomite

estão presentes, observam-se interstícios abertos assim como os sinais correspondentes à presença de filossilicatos (Anexo 23). Devido à granularidade muito reduzida da fracção argilosa deste conjunto, não foi possível a obtenção de análises químicas que permitam uma identificação precisa das espécies minerais presentes, quer dentro de planos estilolíticos ou nos interstícios da matriz. Ainda assim foram realizadas algumas tentativas de análises pontuais em SEM (Anexo 25), devido ao sinal de S no interior de planos estilolíticos (Figura VII.25), como referido no Capítulo VII.4.1.4, podendo corresponder a sulfatos ou sulfuretos, uma vez que não foi possível a obtenção de análises químicas quantitativas.

Figura VII.22 – Imagens de electrões retrodifundidos da matriz carbonatada de Ki_R1, composta por proto dolomite + calcite + celestite ± quartzo ± feldspatos. (A) Imagem em electrões retrodifundidos obtida em MEV / (B-F) mapas composicionais dos respectivos elementos identificados no canto inferior esquerdo. Matriz de Ki_R1 com a presença de grandes cristais de celestite, assim como pequenas exsoluções de barite. Setas brancas servem para identificar grãos de quartzo detrítico presente na matriz carbonatada, e realizar a sua distinção dos sulfatos presentes uma vez que o sinal elementar de Sr e Si se sobrepõem no espectro.

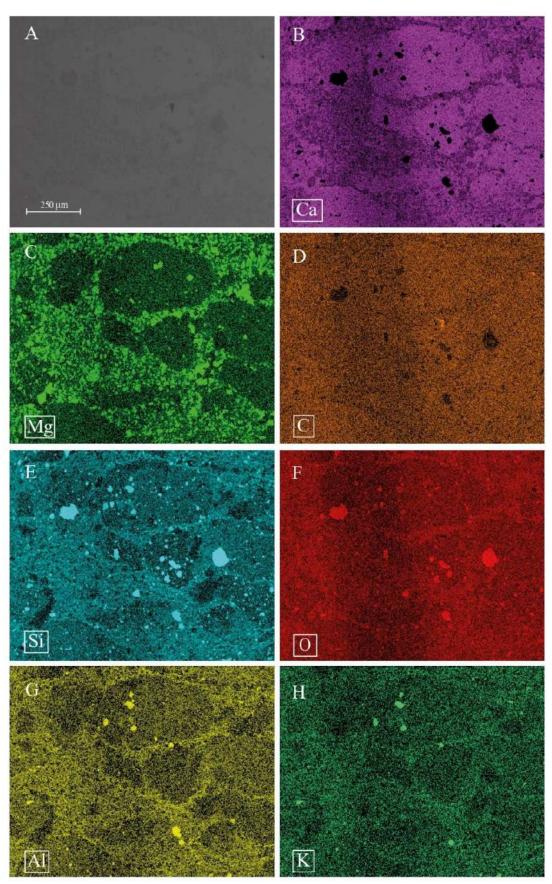


Figura VII.23 — Imagens de electrões retrodifundidos da matriz carbonatada de Ki_R3, com grandes calciclastos bordeados de proto dolomite, associada a uma grande concentração de filossilicatos (**E-H**). (**A**) - Imagem de electrões retrodifundidos obtida no MEV / (**B-H**) mapas composicionais dos respectivos elementos identificados no canto inferior esquerdo. Associado à posição da matriz dolomítica (**B-D**) observa-se o sinal elementar de Al, Si e K (**E-H**), indício da presença de filossilicatos dispersos na matriz, assim como a presença grãos de feldspato e quartzo.

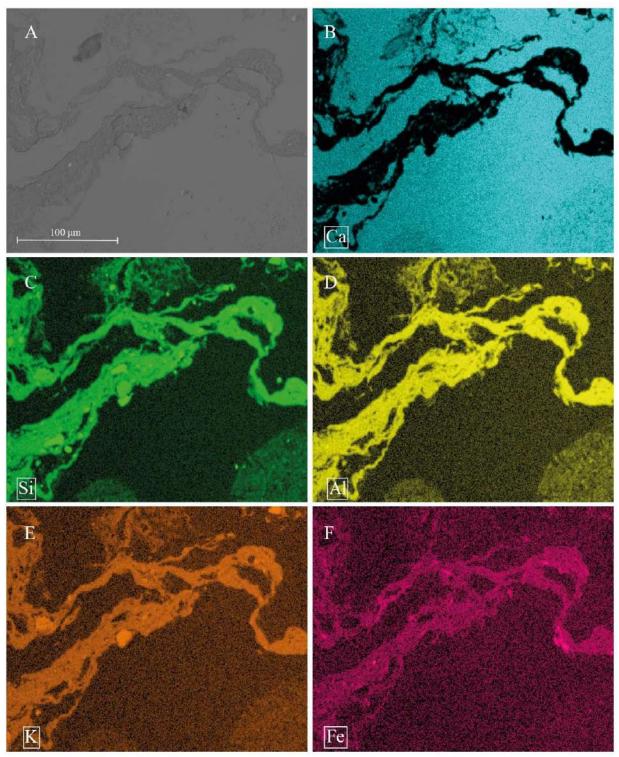


Figura VII.24 – Imagens de electrões retrodifundidos de planos estilolíticos observados em Ki_Rb. (A) Imagem de electrões retrodifundidos em MEV/ (B-F) mapas composicionais dos respectivos elementos identificados no canto inferior esquerdo; Conjugação do sinal de K (E) associado ao sinal de Fe e Al, D e F respectivamente, que permite a identificação da presença de espécies de filossilicatos nestes planos, assim como nos interstícios da matriz carbonatada.

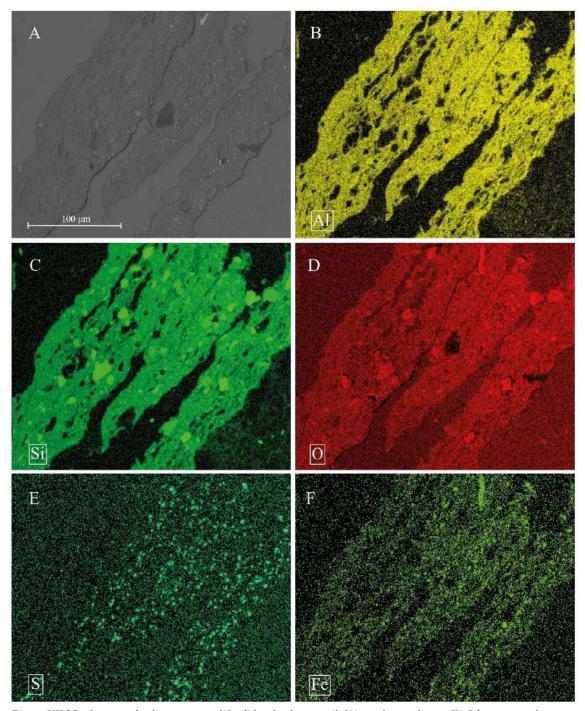


Figura VII.25 – Imagens de electrões retrodifundidos de planos estilolíticos observados em Ki_R3, com grande quantidade de pirite microcristalina dispersa no interior do plano estilolítico. (A) Imagem de electrões retrodifundidos obtida em MEV/ (B-F) mapas composicionais dos respectivos elementos identificados no canto inferior esquerdo. Observa-se no interior do plano estilolítico (B-D) uma grande dispersão de pequenos grãos do que aparenta ser pirite devido ao sinal intenso de S e Fe (E-F).

VII.4.2 Agregado "Spratt" (Ottawa, Ontário)

VII.4.2.1 Matriz carbonatada

A identificação das diferentes espécies de carbonatos foi realizada com base nos dados fornecidos por Stanienda-Pilecki (2018). As calcites de Spr_R1 apresentam valores de % massa de Ca e Mg semelhantes a Spr_R2, sendo que as dolomites apresentam valores de Ca e Mg menores, quando

comparadas com Spr_R2 (Figura VII.26) (dados completos wt% e valores estatísticos wt% no Anexo 26). Na fracção Spr_R1 foram identificados três tipos de carbonatos, calcite, dolomite e calcites magnesianas, tendo sido analisados apenas dois tipos de carbonatos em Spr_R2. A presença de dolomite em Spr_R1 (Figura VII.27) é menos expressiva que em Spr_R2 (Anexo 27), resumida à ocorrência de grandes cristais isolados ou cristais pouco desenvolvidos e dispersos, correspondendo à maior diferença entre estes conjuntos. As calcites magnesianas analisadas apresentam valores de superiores de Mg e inferiores de Ca, comparativamente às calcites analisadas em Spr_R1, correspondendo a HMC. As fórmulas empíricas dos diferentes conjuntos de carbonatos analisados encontram-se na Tabela VII.4, com os valores projectados na Figura VII.26.

À semelhança da matriz de Kingston, a matriz carbonatada de Spratt apresenta também um aspecto esboroado em zonas mais dolomíticas e/ou heterogéneas, e por isso mais frequente no conjunto de agregados Spr_R2, exclusivamente devido à maior abundância da matriz dolomítica com minerais de grão mais reduzido que em Spr_R1 (abordado em mais detalhe no Capítulo VII.4.2.5). Foi também observada uma grande quantidade de sílica criptocristalina dispersa por toda a rocha de Spratt, sob a forma de acumulações nos interstícios da matriz carbonatada ou em substituição parcial a completa de bioclastos e outros elementos figurados, o que motivou a sua análise (Figura VII.27; Anexo 27).

Tabela VII.4 - Fórmulas empíricas dos carbonatos analisados nas diferentes fracções de agregado grosso da pedreira de Spratt (Ottawa).

Fracção de agregado grosso	Fórmula empírica
Spr_R1 [Cal]	Cal ₉₈₋₁₀₀ Mgs ₀₋₂ Sd ₀
Spr_R1 [Dol]	Cal ₅₁₋₅₃ Mgs ₄₄₋₄₉ Sd ₀₋₃
Spr_R1 [Cal Mg - HMC]	Cal ₉₈₋₁₀₀ Mgs ₀₋₂ Sd ₀ Cal ₅₁₋₅₃ Mgs ₄₄₋₄₉ Sd ₀₋₃ Cal ₆₈ Mgs ₃₂ Sd ₀ Cal ₉₈₋₉₉ Mgs ₁₋₂ Sd ₀ Cal ₅₂₋₅₅ Mgs ₄₅₋₄₇ Sd ₀₋₂
Spr_R2 [Cal]	Cal ₉₈₋₉₉ Mgs ₁₋₂ Sd ₀
Spr_R2 [Dol]	Cal ₅₂₋₅₅ Mgs ₄₅₋₄₇ Sd ₀₋₂
Cal	0 Spr R1□

Figura VII.26 - Diagrama ternário Cal-Mgs-Sd para os carbonatos analisados nas diferentes fracções de agregado grosso da pedreira de Spratt (Ottawa). Dois conjuntos bem definidos de calcites e dolomites, com a leitura de uma calcite magnesiana rica em magnésio (HMC) na fracção Spr_R1.

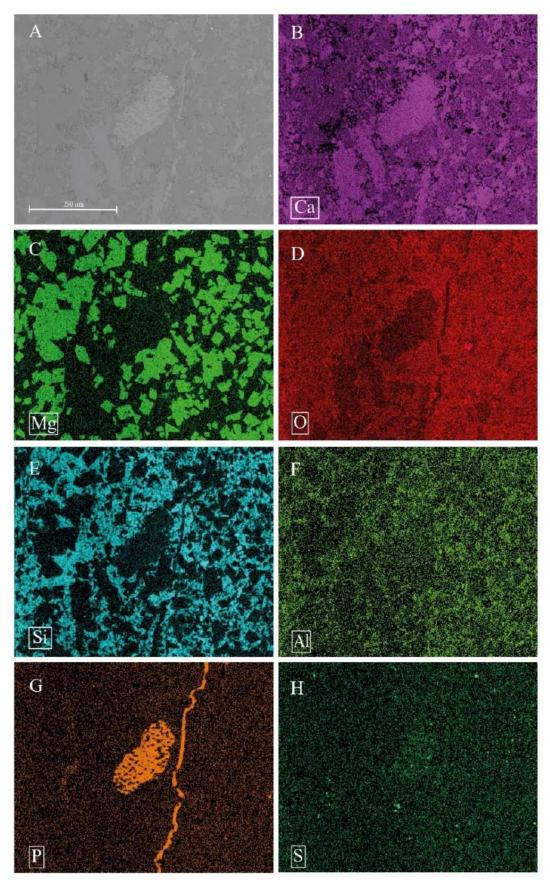


Figura VII.27 – Imagem de electrões retrodifundidos da matriz carbonatada de Spr_R1 , composta por calcite \pm dolomite \pm sílica criptocristalina \pm francolite \pm pirite. (A) Imagem de electrões retrodifundidos obtida em MEV / (B-H) mapas composicionais dos respectivos elementos identificados no canto inferior esquerdo. Observe-se em (E) a substituição parcial da matriz carbonatada por sílica criptocristalina, independente da espécie de carbonatos presentes.

VII.4.2.2 Quartzo

Os valores estatísticos (wt%) da forma de quartzo presente no agregado de Spratt apresentamse na Tabela VII.5 (dados completos no Anexo 28). Foi possível observar, na análise petrográfica
efectuada, que o agregado de Spratt apresenta uma forma de sílica criptocristalina, geralmente presente
através de uma substituição parcial a total dos elementos figurados presentes (bioclastos e calciclastos
essencialmente) (Figura VII.28; Anexo 29), possivelmente reactivo e consequentemente responsável
pela reacção de deterioração observada em betão fabricado com esta rocha. Após a observação em SEM
verifica-se que a generalidade da matriz carbonatada apresenta esta forma de sílica, associado
especialmente a zonas ricas em elementos figurados. A rocha aparenta ter sofrido um processo de
silicificação na sua evolução, que levou à impregnação da sua matriz por sílica criptocristalina. Indícios
desse processo foram identificados na lâmina polida Spr_Rb (Anexo 30 e Anexo 31), onde foi possível
observar uma frente de reacção deste processo.

Tabela VII.5 - Resultados (wt%), em óxidos, das formas de quartzo analisados nas diferentes fracções de agregados de Spratt (Ottawa).

		9	Spr_R1 : Q	Z		Spr_R2 : Qz				
wt%	min	média	Máx	DP	med	min	média	Máx	DP	med
CaO	0.066	0.152	0.205	0.049	0.160	0.066	0.144	0.266	0.064	0.140
F	0.000	0.021	0.048	0.022	0.015	0.000	0.020	0.085	0.030	0.000
SiO2	98.801	99.713	100.596	0.600	99.680	98.508	100.126	101.385	0.835	100.121
Rb2O	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TiO2	0.000	0.004	0.017	0.006	0.001	0.000	0.005	0.015	0.007	0.000
Na2O	0.031	0.057	0.087	0.019	0.052	0.000	0.018	0.035	0.013	0.022
CI	0.001	0.087	0.138	0.056	0.115	0.000	0.025	0.094	0.034	0.008
K20	0.010	0.015	0.021	0.004	0.015	0.000	0.006	0.019	0.006	0.006
Cr2O3	0.014	0.064	0.108	0.027	0.064	0.016	0.039	0.076	0.018	0.038
MgO	0.000	0.005	0.015	0.006	0.001	0.000	0.006	0.019	0.008	0.000
Cs2O	0.000	0.006	0.020	0.007	0.003	0.000	0.002	0.017	0.006	0.000
BaO	0.000	0.021	0.038	0.015	0.025	0.000	0.025	0.055	0.022	0.025
MnO	0.000	0.007	0.032	0.012	0.000	0.000	0.003	0.012	0.004	0.002
Al2O3	0.033	0.107	0.208	0.060	0.089	0.000	0.033	0.134	0.050	0.003
NiO	0.000	0.030	0.062	0.025	0.032	0.000	0.023	0.075	0.027	0.015
FeO	0.000	0.006	0.021	0.007	0.003	0.000	0.013	0.038	0.014	0.010

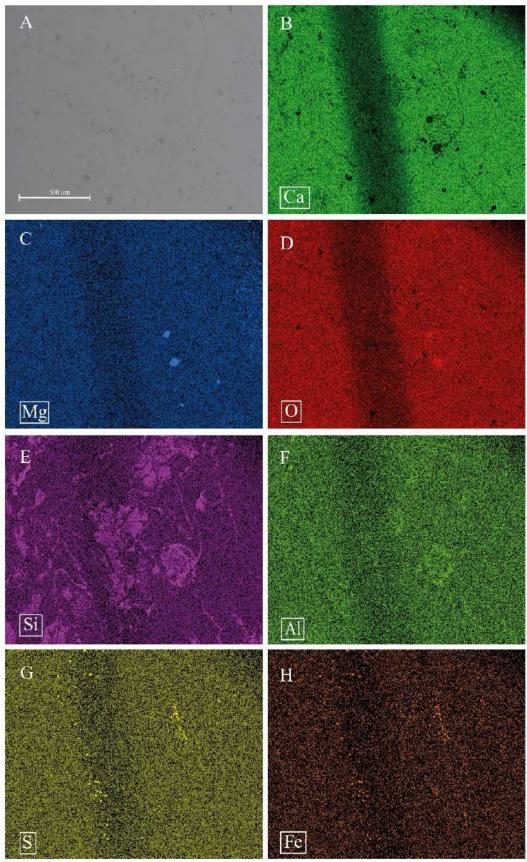


Figura VII.28 - Imagem de electrões retrodifundidos da matriz carbonatada de Spr_R1 , composta por calcite + proto dolomite \pm sílica criptocristalina. (A) Imagem de electrões retrodifundidos obtida em MEV/(B-F) mapas composicionais dos respectivos elementos identificados no canto inferior esquerdo. Exemplo do resultado do processo de silicificação da rocha de Spratt, com vários bioclastos que se apresentam parcialmente substituídos por sílica criptocristalina (D_rE), com alguma pirite dispersa (G_rH).

VII.4.2.3 Fosfatos

No estudo petrográfico das fracções de agregado de Spratt foi observado uma mineralogia, geralmente associada a bioclastos, de coloração castanha. Após a análise em SEM deste mineral concluiu-se que se trata de francolite. Este mineralóide é um produto da acção biológica, podendo possuir uma grande variedade de composições químicas (McArthur, 1985). Os dados obtidos vão de encontro à definição dada por Sandell et al. (1939) para este mineralóide (fluorapatites carbonatadas que contenham mais de 1% de F e quantidades apreciáveis de CO₂, onde a substituição CO₃/PO₄ é balançada por uma substituição adicional), embora não tenha sido possível obter-se leituras de CO₂, que ajudariam a tentar perceber melhor os processos diagenéticos e/ou metamórficos envolvidos no seu desenvolvimento. Dos dados estatísticos wt% obtidos (Tabela VII.6), segundo McClellan (1980), pode interpretar-se que a rocha de Spratt esteve sujeita a algum grau de metamorfismo (baixo) devido aos valores de F observados em alguns dos espécimes analisados (dados completos no Anexo 32). Este mineralóide foi observado em ambas as fracções de agregado de Spratt, substituindo principalmente bioclastos (Figura VII.29), mas também de forma dispersa ou em preenchimento de fissuras (Anexo 33). A razão F/P₂O₅ é usado por McArthur (1985) para analisar o grau de substituição CO₂ na estrutura do mineralóide, uma vez que a substituição entre PO₄ é feita por (CO₃²⁻ + F) numa razão de 1:1, sendo que o F excedente vai corresponder directamente à quantidade de CO₂ presente na estrutura. A razão CaO/P₂O₅ tem por objectivo avaliar o grau de substituição de Ca e PO₄ no mineral, sendo que neste caso o PO₄ encontra-se em menos quantidade ou mais substituído por (CO₃²⁻ + F).

Tabela VII.6 – Resultados wt%, em óxidos, das francolites analisados no conjunto de agregados de Spratt, com razões CaO/P_2O_5 e F/P_2O_5 (wt%).

		S	Spr_R1 : Fr	c		Spr_R2 : Frc				
wt%	min	média	Máx	DP	med	min	média	Máx	DP	med
P2O5	10.239	35.278	41.391	5.413	35.999	17.688	34.195	38.453	6.188	36.371
F	1.419	2.640	3.140	0.333	2.729	1.473	2.713	3.240	0.462	2.826
CaO	46.000	51.469	58.235	2.769	51.761	50.311	53.968	58.577	2.142	54.088
CaO/P2O5	1.272	1.578	5.688	0.825	1.404	1.404	1.679	3.312	0.566	1.431
F/P2O5	0.058	0.077	0.139	0.014	0.076	0.071	0.080	0.090	0.006	0.080
SrO	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Na2O	0.068	0.228	0.544	0.089	0.228	0.109	0.255	0.425	0.100	0.260
MgO	0.036	0.095	0.255	0.046	0.092	0.036	0.234	0.837	0.188	0.186
La2O3	0.000	0.016	0.080	0.025	0.000	0.000	0.013	0.062	0.018	0.000
Nd2O3	0.000	0.008	0.065	0.019	0.000	0.000	0.014	0.063	0.020	0.000
Ce2O3	0.000	0.064	0.227	0.068	0.037	0.000	0.057	0.244	0.069	0.037
MnO	0.000	0.012	0.073	0.021	0.000	0.000	0.015	0.049	0.018	0.006
CI	0.021	0.108	0.208	0.051	0.108	0.018	0.090	0.159	0.049	0.099
FeO	0.000	0.134	0.729	0.188	0.054	0.000	0.119	0.419	0.133	0.047

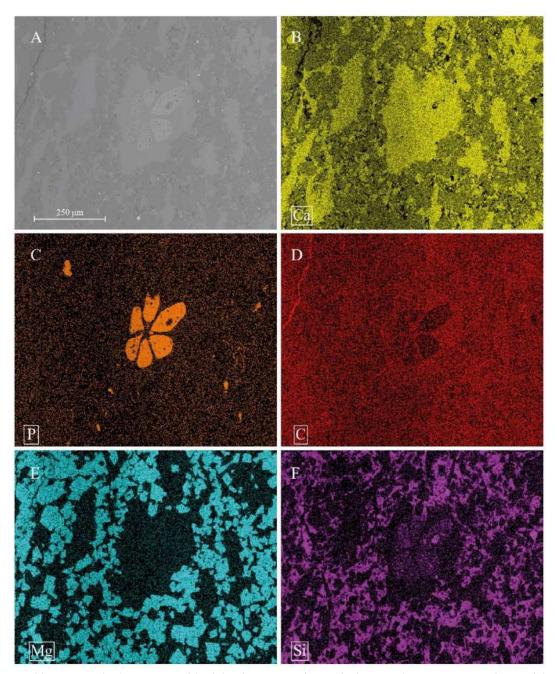


Figura VII.29 - Imagem de electrões retrodifundidos da matriz carbonatada de Spri_R2, composta por calcite + dolomite + quartzo ± francolite. (A) Imagem de electrões retrodifundidos obtida em MEV / (B-F) mapas composicionais dos respectivos elementos identificados no canto inferior esquerdo. Matriz dolomítica bem desenvolvida de Spr_R2 com bioclasto bem preservado e substituído por francolite no centro da figura (com a presença de pequenos fragmentos de outros bioclastos também substituídos pelo mineralóide). Note-se a relação entre a presença de dolomite e o quartzo disperso na matriz carbonatada (E,F).

VII.4.2.4 Sulfuretos

A presença deste grupo de minerais resume-se a pequenas ocorrências dispersas (especialmente em Spr_R2) e muito finas, não tendo sido possível a obtenção de análises químicas representativas para ambas as fracções de agregado analisadas (dados completos no Anexo 34). Observou-se, no entanto, uma relação directa entre a presença e densidade desta mineralogia quando estão presentes bioclastos(?) em Spr_R1, onde se observou uma acumulação/génese preferencial de pirites (Anexo 35). Esta acumulação preferencial pode dever-se possivelmente a uma maior disponibilidade elementar, de

elementos como S ou Fe p.ex., no interior destes elementos figurados quando comparados com os restantes presentes na matriz carbonatada, levando a que os mesmos se comportem como uma armadilha geoquímica para a sua formação.

VII.4.2.5 Filossilicatos

Como foi referido na descrição petrográfica das fracções de agregado de rocha de Spratt, ambos os conjuntos apresentam uma ausência de planos estilolíticos, havendo menor conteúdo de filossilicatos do que observado em Kingston. Observou-se nos interstícios da matriz carbonatada um sinal intenso de Si, resultado do processo de silicificação que impregnou a matriz, com a detecção de elementos que sugerem a presença minerais do grupo das argilas pouco intensos (Figura VII.27), embora mais intensos na fracção de agregado Spr_R2, ao contrário do observado no agregado de Kingston.

VII.5 Química mineral de prismas de betão

VII.5.1 Prisma Ki_B1

VII.5.1.1 Matriz carbonatada e fenómenos de desdolomitização

De forma a averiguar a presença de desdolomitização, e sua possível influência nos danos observados no betão, foi realizada uma análise das mineralogias carbonatadas presentes nos grãos grossos do betão em estudo (Figura VII.30), assim como a realização de alguns perfis ao longo de cristais dolomíticos que apresentassem bandados (possivelmente devido à acção do processo de desdolomitização) (Figura VII.31B). Da análise da matriz carbonatada foi possível confirmar a presença dos diferentes tipos de carbonatados identificados no Capítulo VII.2.2.1, e retirar alguma informação relativamente às mudanças experienciadas por essa matriz carbonatada quando em contacto e em possível reacção com o cimento. Observou-se que a totalidade dos grãos grossos de agregado correspondem à fracção de agregado Ki_R3, ou seja, conjunto que perfaz a quase totalidade da amostra de Kingston, não tendo sido possível uma análise e correlação entre as diferentes fracções de agregados identificados e a possível reactividade dos minerais carbonatados que as compõem. Observou-se que para ambos os prismas de betão analisados, a matriz carbonatada está em tudo de acordo com os valores que definem a matriz carbonatada de Ki_R3 à excepção das calcites, que apresentam valores superiores de MgO e inferiores de CaO (Tabela VII.7 e Tabela VII.8; valores completos dos carbonatos analisados apresentados no Anexo 36). Os carbonatos analisados apresentam um incremento na quantidade de NaO, quando comparados com os analisados em agregado de rocha, possível consequência da porosidade elevada do agregado que facilita a interacção com os fluidos intersticiais do betão, enriquecendo os mesmos em alcalinos. À semelhança do que foi observado e analisado nas lâminas de rocha de Kingston, espécies carbonatadas intermédias estão também presentes, sendo a existência de uma calcite magnesiana pobre em magnésio (low magnesium calcite - LMC) em Ki_B1_B a maior diferença observada. Constatou-se que os bandados observados nas dolomites não se traduzem em variações elementares que indiciem a presença de um fenómeno como o de desdolomitização (Figura VII.31C e Figura VII.31D). Observando a pasta de cimento em torno dos grãos de agregado é possível identificarse o que aparenta ser o produto deste fenómeno, brucite, através de sinais intensos de Mg e O, sob a forma de pequenas gotículas, quando realizados mapas composicionais (Figura VII.31D e Figura VII.31F; Anexo 37; Anexo 38;). Os sinais elementares de Mg e O sob a forma de gotículas foram observados ao longo de toda a pasta de cimento, em ambos os prismas analisados. Desta forma, e tendo sido identificadas proto dolomites como parte da matriz de Kingston, os zonamentos observados podem ser atribuídos à natureza deste mineral, que corresponde a uma forma intermédia da solução sólida calcite-dolomite, e não ao processo de desdolomitização, ainda que existam evidências fortes da presença de um dos subprodutos desta reacção.

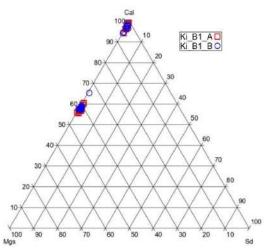


Figura VII.30 – Diagrama ternário Cal-Mgs-Sd dos carbonatos analisados nas lâminas de betão com agregado de Kingston (Ontário). Observa-se a presença de dois grupos bem definidos de calcites e proto dolomites, com a presença de uma calcite magnesiana pobre em magnésio (LMC) em Ki_B1_B.

Tabela VII.7 - Fórmulas empíricas dos carbonatos analisados nos diferentes prismas de betão ensaiado com agregado grosso da pedreira de Pittsburg (Kingston).

Provete de betão ensaiado	
Ki_B1_A [Cal]	Cal ₉₄₋₉₉ Mgs ₁₋₅ Sd ₀₋₁ Cal ₅₆₋₆₀ Mgs ₃₉₋₄₄ Sd ₀₋₁ Cal ₉₄₋₉₈ Mgs ₁₋₆ Sd ₀₋₁ Cal ₅₇₋₅₉ Mgs ₄₀₋₄₂ Sd ₀₋₁
Ki_B1_A [ProtoDol]	Cal ₅₆₋₆₀ Mgs ₃₉₋₄₄ Sd ₀₋₁
Ki_B1_B [Cal]	Cal ₉₄₋₉₈ Mgs ₁₋₆ Sd ₀₋₁
Ki_B1_B [ProtoDol]	Cal ₅₇₋₅₉ Mgs ₄₀₋₄₂ Sd ₀₋₁

Tabela VII.8 - Valores estatísticos (wt%) das espécies minerais, que compõe a matriz carbonatada dos conjuntos de agregados de Kingston (Ontário), quando incorporados nos prismas de betão Ki_Bi_A e Ki_Bi_B.

			Ki_B1_A : Cc			Ki_B1_A : ProtoDol				
wt%	min	média	Máx	DP	med	min	média	Máx	DP	med
CaO	49.427	53.008	56.046	1.650	53.399	32.405	34.104	35.421	0.76877476	34.143
MgO	0.275	0.959	1.955	0.413	0.914	16.406	17.912	18.944	0.70602109	17.973
FeO	0.044	0.234	0.393	0.118	0.212	0.289	0.662	1.068	0.24130928	0.623
MnO	0.000	0.024	0.093	0.028	0.012	0.000	0.030	0.069	0.02265176	0.031
CO2 (teórico)	41.171	42.804	44.458	0.912	42.945	44.965	46.748	47.834	0.71833107	46.784
	Ki B1 A:Cc					Ki_B1_A : ProtoDol				
wt%	min	média	Máx	DP	med	min	média	Máx	DP	med
wt% CaO	min 51.599	média 53.195	Máx 55.525	DP 1.099	med 52.924	min 33.601	média 34.552	Máx 35.744	DP 0.558	med 34.625
CaO	51.599	53.195	55.525	1.099	52.924	33.601	34.552	35.744	0.558	34.625
CaO MgO	51.599 0.574	53.195 1.077	55.525 2.217	1.099 0.529	52.924 0.851	33.601 17.218	34.552 17.757	35.744 18.516	0.558 0.327	34.625 17.689

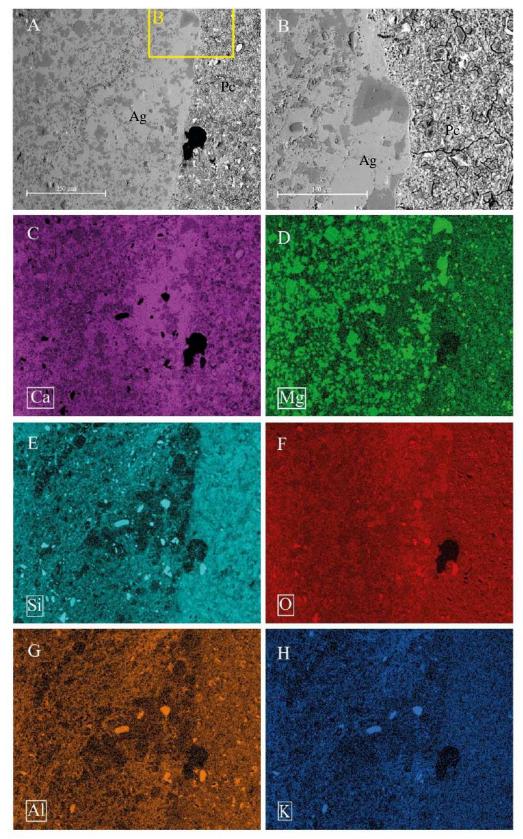


Figura VII.31 – Imagem de electrões retrodifundidos do prisma de betão Ki_Bl_A, apresentando um agregado grosso carbonatado (à esquerda) em contacto com pasta de cimento (à direita), com dolomite zonada no canto superior direito. (A-B) Imagem de electrões retrodifundidos obtida em MEV / (C-F) mapas composicionais dos respectivos elementos identificados no canto inferior esquerdo. O grão de agregado grosso em Ki_Bl_A (A) exibe uma matriz dolomítica bem desenvolvida (C+D+F), com grande quantidade de quartzo (E+F), feldspatos e filossilicatos (E+F+G+H) associados, com grão dolomítico zonado (ampliado em B). Podem observar-se sinais de Mg e O na pasta de cimento que poderá corresponder a brucite dispersa. Note-se a ausência de silicatos em zonas da matriz mais calcútica vs. a abundância de silicatos na matriz mais dolomítica.

VII.5.1.2 Quartzo e feldspatos

Na análise ao SEM dos prismas de betão confirmou-se a presença de quartzo e feldspatos dispersos na matriz de Ki_R3, que se considera o conjunto representativo do agregado de Kingston. Comparativamente aos valores obtidos para estas espécies minerais nas fracções de agregado de rocha, os valores obtidos para o quartzo não aparentam apresentar uma grande distinção das leituras realizadas em agregado de rocha (Tabela VII.9; dados completos no Anexo 39). Os feldspatos analisados foram identificados como ortóclase na totalidade das leituras, indicador de uma maior quantidade desta mineralogia quando comparada com a albite, com a fórmulas químicas médias identificadas Or₉₅₋₉₄ Ab₄₋₃ An₂₋₁ para Ki_B1_A e Or₉₇₋₉₂ Ab₇₋₂ An₃₋₁ para Ki_B1_B (Tabela VII.10; Figura VII.32; dados completos no Anexo 40).

Tabela VII.9 – Resultados wt%, em óxidos, para grãos de quartzo analisados no interior de grãos de agregado grosso em Ki_B1_A e Ki_B1_B.

' '-										
		k	(i_B1_A : Q	Z		Ki_B1_B : Qz				
wt%	min	média	Máx	DP	med	min	média	Máx	DP	med
CaO	0.155	0.329	0.701	0.201	0.278	0.000	0.266	0.841	0.188	0.237
F	0.000	0.043	0.098	0.038	0.058	0.000	0.034	0.125	0.045	0.000
SiO2	99.867	100.504	101.731	0.648	100.237	0.000	91.999	100.944	26.571	99.710
Rb2O	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TiO2	0.000	0.000	0.000	0.000	0.000	0.000	0.006	0.028	0.009	0.000
Na2O	0.000	0.008	0.015	0.006	0.009	0.000	0.013	0.081	0.021	0.006
CI	0.000	0.009	0.018	0.008	0.012	0.000	0.008	0.078	0.021	0.001
K20	0.003	0.020	0.032	0.010	0.022	0.000	0.031	0.255	0.065	0.010
Cr2O3	0.014	0.029	0.048	0.012	0.024	0.000	0.055	0.079	0.021	0.059
MgO	0.000	0.134	0.393	0.163	0.012	0.000	0.041	0.202	0.062	0.015
Cs2O	0.000	0.005	0.024	0.010	0.000	0.000	0.013	0.046	0.015	0.009
BaO	0.000	0.004	0.013	0.005	0.000	0.000	0.012	0.037	0.012	0.011
MnO	0.000	0.006	0.016	0.008	0.000	0.000	0.016	0.049	0.015	0.021
Al2O3	0.000	0.018	0.051	0.017	0.015	0.000	0.086	0.938	0.247	0.010
NiO	0.000	0.032	0.071	0.026	0.038	0.000	0.011	0.042	0.015	0.000
FeO	0.010	0.031	0.054	0.015	0.032	0.000	0.042	0.149	0.035	0.040

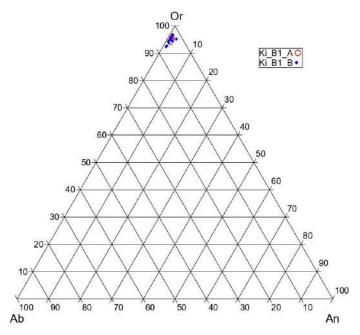


Figura VII.32 - Diagrama ternário Or-Ab-An para os feldspatos analisados nos agregados grossos de Kingston (Ontário), quando incorporados em betão nas lâminas Ki_B1_A e Ki_B1_B.

Tabela VII.10 – Resultados wt%, em óxidos, para grãos de feldspatos analisados no interior de grãos de agregado grosso em Ki_B1_A e Ki_B1_B.

	Ki_B1_A: Or					Ki_B1_B:Or				
wt%	min	média	Máx	DP	med	min	média	Máx	DP	med
SiO2	64.389	64.836	65.265	0.358	64.853	63.505	64.683	65.305	0.428	64.747
Na2O	0.356	0.406	0.490	0.060	0.373	0.214	0.445	0.744	0.152	0.428
BaO	0.250	0.320	0.380	0.053	0.329	0.000	0.502	1.778	0.469	0.307
K20	16.056	16.176	16.256	0.086	16.215	15.154	16.004	16.428	0.322	16.021
CaO	0.239	0.289	0.331	0.038	0.296	0.155	0.261	0.601	0.119	0.217
MgO	0.000	0.006	0.011	0.005	0.008	0.000	0.031	0.325	0.085	0.005
TiO2	0.000	0.016	0.033	0.014	0.014	0.000	0.009	0.053	0.015	0.003
SrO	0.000	0.022	0.058	0.026	0.007	0.000	0.072	0.334	0.092	0.049
AI2O3	17.654	17.854	17.959	0.141	17.949	17.704	18.007	18.522	0.210	17.973
MnO	0.000	0.012	0.035	0.016	0.000	0.000	0.021	0.092	0.032	0.000
FeO(t)	0.012	0.021	0.027	0.006	0.023	0.000	0.058	0.272	0.066	0.048

VII.5.1.3 Danos e produtos de reacção

Foram analisadas as orlas de massas resultantes da carbonatação em torno de agregados grossos, assim como no preenchimento de fissuras, de forma a tentar identificar produtos de reacção como gel silico-alcalino disperso na frente de reacção, mas sem sucesso, não tendo sido observado sob nenhuma das suas formas (amorfo ou cristalino), ou qualquer outro produto de reacção expectável nos danos observados (i.e. ettringite devido à presença de sulfatos e pirite framboidal no agregado grosso). As análises obtidas do carbonato de cálcio correspondem à mistura deste produto com os silicatos que compõe o cimento, não tendo possível a obtenção de leituras de boa qualidade (Anexo 41). Quando analisadas as fissuras e os produtos de reacção presentes, confirmou-se a presença de carbonatação intensa na quase totalidade das fissuras observadas em Ki_B1_A, preenchendo parcial a totalmente a rede de fissuras (Figura VII.33). Observaram-se em algumas das fissuras indícios de aberturas sucessivas de fissuras, acompanhada por carbonatação. Na Figura VII.33D pode observar-se um sinal de Si ao longo da fissura aberta entre a pasta de cimento (à esquerda) e a massa de carbonato de cálcio deslocada (à direita), o mais frequente em danos como fissuras abertas com várias aberturas, tendo sido interpretado como resquícios de material da pasta de cimento na massa de carbonato de cálcio previamente formada. A carbonatação está também presente em Ki_B1_A e Ki_B1_B, tendo sido observado em Ki_B2_A uma fissuração aberta mais discreta, fazendo uso de planos estilolíticos incipientes no interior de partículas de agregado grosso ou no contacto entre o agregado e a pasta (Anexo 42; Anexo 43). No prisma em que se verificou maior expansão, à semelhança do que foi observado petrograficamente, identificou-se a presença de carbonato de cálcio em torno de agregados grossos, sendo que a sua abundância aparenta estar directamente relacionada com o seu conteúdo dolomítico, e consequentemente argiloso (Capítulo VII.4.1.1). Outra constatação diz respeito à aparente carbonatação preferencial na proximidade de feldspatos, pertencentes à fracção de areia no betão (Anexo 44).

Como referido no Capítulo VII.4.2.1, brucite parece ter sido observada na pasta de cimento, quer em torno de fissuras associadas a carbonatação quer em fissuras abertas sem preenchimento (Figura

VII.33; Anexo 37; Anexo 38; Anexo 43 - Anexo 46), sendo um produto de reacção observado com grande distribuição espacial na pasta, proporcional à intensidade dos danos presentes.

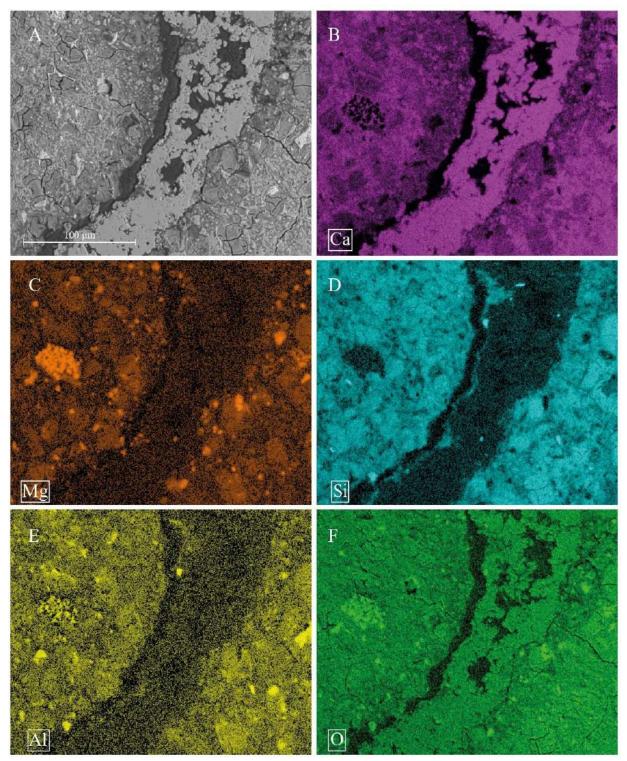


Figura VII.33 - Imagem de electrões retrodifundidos do prisma de betão Ki_Bl_A , apresentando uma fissura aberta no interior da pasta de cimento, preenchida por uma mistura de carbonato de cálcio e silicatos do cimento. (A) Imagem de electrões retrodifundidos obtida em MEV/(B-F) mapas composicionais dos respectivos elementos identificados no canto inferior esquerdo de (A). Fissura aberta em pasta de cimento com preenchimento de carbonato de cálcio (B+D+E+F), sendo possível identificar-se brucite na pasta de cimento envolvente (C+F). Descolamento do preenchimento de calcite no lado esquerdo da fissura indica diferentes fases de abertura por parte da rede de fissuras no interior do betão.

VII.5.2 Prisma Spr_B1

VII.5.2.1 Fissuração e produto silico-alcalino

Os danos observados na lâmina Spr_B1_A correspondem ao observado e descrito no Capítulo VII.3.1.2, tendo sido possível em MEV distinguir produtos de reacção silico alcalinos sob duas formas distintas: forma amorfa (SiG) e cristalina (SiGc) (Peterson et al., 2006; Leemann et al., 2016; Leemann et al., 2020). Foram analisadas as diferentes formas deste produto de reacção, forma amorfa (SiG) ou cristalina (SiGc) (Anexo 47), tendo sido analisados em separado de forma a tentar perceber-se as diferenças composicionais (Tabela VII.11; Figura VII.34). As fissuras observadas apresentam muitas vezes uma forma de ramos bifurcados, previamente observada em petrografia, estando muitas vezes associadas às formas cristalinas do produto silico-alcalino (Figura VII.35). Foram também observadas fissuras com gel silico-alcalino amorfo, geralmente mais extensas e rectilíneas no interior de grãos de agregado ou na pasta de cimento, assim como acumulações deste produto em vazios na pasta quando em comunicação com fissuras (Anexo 48) e expressões intermédias de fissuração com produtos de reacção (Anexo 49). Observando os valores apresentados na Tabela VII.11 verifica-se que os valores da média (wt%) parecem evoluir, da forma SiG para SiGc, através de um empobrecimento em CaO e MgO, acompanhado de um enriquecimento em SiO, K2O e Na2O. Esta evolução química é facilmente observada através da variação das razões de Ca/Si e (Na+K)/Si, utilizadas por Leemann et al. (2016), que deram origem à Figura VII.34 e Tabela VII.12. Foi realizado um perfil na pasta de cimento, perpendicularmente ao limite entre a pasta e um agregado grosso, de forma a tentar averiguar a presença deste produto de reacção disperso na pasta na proximidade de agregado grosso, mas os resultados obtidos foram inconclusivos, tendo sido abandonados.

O prisma Spr_B1_B foi também analisado, mas não apresentava a escala de dano e densidade de produtos de reacção observados no prisma previamente descrito. Ainda assim foi possível observar muito bons exemplos do fenómeno de silicificação da matriz carbonatada em Spratt, assim como a presença de sulfuretos ao longo de bioclastos de formato ondulado e outros, o que confirma a relativa afinidade desta mineralogia com a disponibilidade elementar de determinados espécimes de bioclastos (Anexo 50; Anexo 51). É de notar que estes produtos contêm uma percentagem elevada e variável de água, dificultando a determinação da fórmula química.

Tabela VII.11 - Valores mínimo e máximo da média (wt%) dos dados obtidos da análise de gel silico-alcalino, sob a forma amorfa (SiG), e valores estatísticos (wt%) dos dados obtinos da análise de produto silico-alcalino, sob a forma cristalina (SiGc) presentes nos danos presentes em Spr_B1_A, em óxidos.

wt%		SiG				SiGc_1					SiGc_2		
W L 70		Média	l	min	Média	Max	DP	med	min	Média	Max	DP	med
CaO	25.618	-	32.922	10.267	15.493	23.894	4.483	14.185	11.856	12.627	13.690	0.618	12.446
F	0.037	-	0.116	0.000	0.032	0.122	0.045	0.000	0.000	0.061	0.156	0.064	0.039
SiO2	36.951	-	48.289	36.646	49.223	56.925	5.942	50.756	51.144	54.172	57.204	1.845	54.163
Rb2O	0.000	-	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TiO2	0.000	-	0.004	0.000	0.004	0.028	0.008	0.000	0.000	0.003	0.021	0.006	0.000
Na2O	0.330	-	0.839	0.609	1.108	2.036	0.364	0.949	0.619	0.799	0.977	0.104	0.788
CI	0.007	-	0.084	0.117	0.223	0.357	0.061	0.204	0.140	0.213	0.352	0.058	0.199
K20	0.696	-	3.014	2.703	7.379	8.962	1.516	7.969	7.415	8.360	8.897	0.416	8.486
Cr2O3	0.044	-	0.070	0.007	0.060	0.086	0.020	0.062	0.020	0.059	0.090	0.020	0.064
MgO	0.434	-	0.707	0.063	0.181	0.420	0.093	0.177	0.045	0.115	0.329	0.073	0.083
Cs2O	0.000	-	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
BaO	0.035	-	0.055	0.000	0.016	0.083	0.027	0.000	0.000	0.010	0.065	0.018	0.000
MnO	0.007	-	0.040	0.000	0.020	0.069	0.020	0.019	0.000	0.017	0.046	0.017	0.010
Al2O3	0.190	-	1.326	0.200	0.383	1.088	0.225	0.311	0.041	0.070	0.108	0.021	0.078
NiO	0.007	-	0.014	0.000	0.018	0.068	0.021	0.011	0.000	0.006	0.045	0.013	0.000
FeO	0.012	-	0.106	0.010	0.430	5.905	1.463	0.035	0.000	0.020	0.039	0.010	0.020

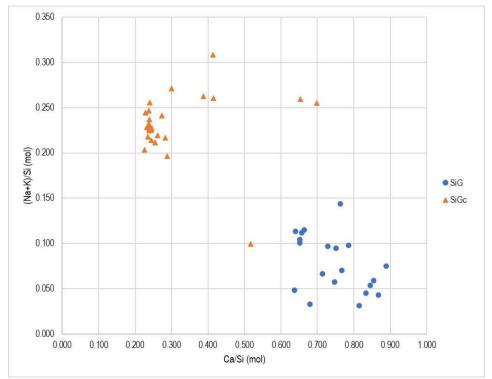


Figura VII.34 — Gráfico resultante da projecção das razões atómicas Ca/Si e (Na+K)/Si para as duas formas de produto silico-alcalino identificadas no prisma de betão Spr_B1_A.

Tabela VII.12 – Valores estatísticos (mol) das razões atómicas Ca/Si e (Na+K)/Si para as diferentes formas de produto silicoalcalino identificadas no prisma de betão Spr_B1_A.

	5	SiG	SiGc			
mol	Ca/Si	(Na+K)/Si	Ca/Si	(Na+K)/Si		
min	0.638	0.032	0.225	0.100		
média	0.747	0.078	0.305	0.231		
Máx	0.888	0.144	0.699	0.308		
DP	0.081	0.031	0.124	0.034		
med	0.748	0.073	0.244	0.228		

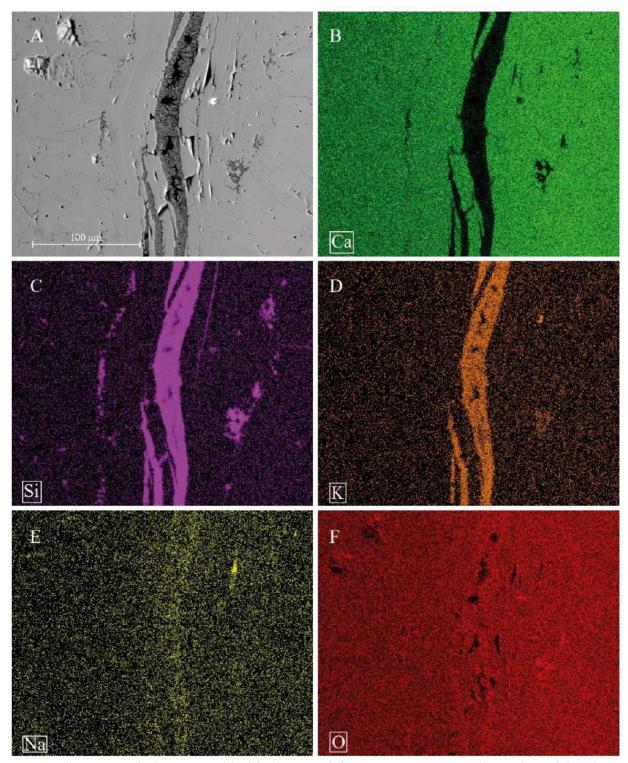


Figura VII.35 — Imagem de electrões retrodifundidos do prisma de betão Spr_B1_A , apresentando uma fissura bifurcada no interior de agregado grosso carbonatado, preenchida por produto silico-alcalino cristalino (SiGc), típica da ASR. (A) Imagem de electrões retrodifundidos obtida em MEV/(B-F) mapas composicionais dos respectivos elementos identificados no canto inferior esquerdo.

VIII. Discussão de resultados e conclusões

De forma a discutir as observações realizadas na análise petrográfica e os resultados da química mineral da rocha de Kingston é necessário analisar a escala de amostragem da mesma, de forma a esclarecer as elações realizadas na discussão que se segue. Assim sendo, é importante indicar que como descrito no Capítulo V e VI deste relatório, a amostra de Kingston correspondeu inicialmente a perto de 7 quilogramas de agregado britado proveniente de um bloco de rocha retirado da bancada classificada como a mais reactiva da pedreira de Pittsburg, denominada de Pitt-16. Da amostra inicialmente disponível foi realizada uma separação granulométrica em três fracções distintas, tendo sido usados 79 % da amostra total de agregado (d > 8 mm). As lâminas delgadas polidas usadas para o estudo petrográfico e de química mineral correspondem a uma porção ínfima de cada fracção de agregado grosso distinguida na fase de análise macroscópica à lupa binocular. Assim sendo, as observações realizadas recaíram sobre uma fracção possivelmente não representativa da amostra da bancada Pitt-16, e do agregado produzido pela pedreira de Pittsburg como um todo. Desta forma, todas as observações realizadas neste estudo padecem de uma escala espacial no que toca a texturas, mineralogias e processos geoquímicos presentes, à excepção do que é possível observar dentro de cada agregado grosso estudado. Por outro lado, esta ausência de correlação espacial entre factores geológicos, embora essencial num estudo geológico, não anula as conclusões do estudo das diferentes fracções de agregado grosso definidas no Capítulo VII.2.1, apenas limita as observações e possíveis conclusões em termos de evolução geológica e química da rocha de Kingston.

VIII.1 Evolução geológica da rocha de Pittsburg (Kingston, Ontário)

Os trabalhos de petrografia e química mineral realizados neste estudo permitiram identificar mineralogias desconhecidas na rocha de Pittsburg (Kingston), descrita inicialmente como "calcário dolomítico impuro" (Rogers et al., 2000), originadas como consequência de um aparente processo metassomático. Dos trabalhos realizados determinou-se que a rocha de Kingston é composta por Cal + Dol ± Qz ± Or ± Ab ± Ilt ± Clt ± Py, sendo que os silicatos e restantes mineralogias acessórias identificadas são consequência ou encontram-se relacionadas com um fenómeno metassomático de baixa temperatura experienciado pela rocha, para além da matriz dolomítica que aparenta ser de génese epigenética. Uma vez que a ocorrência de silicatos e o desenvolvimento da matriz dolomítica aparentam estar intimamente relacionados, entende-se que a génese epigenética destas espécies minerais seja contemporânea. Entre os silicatos observados, os filossilicatos são o único conjunto de minerais silicatados que se encontram bem presentes no que aparenta ser o protólito de Kingston (Ki_R3), sendo que a sua forte presença em zonas metassomatizadas poderá corresponder à co-formação de novos filossilicatos ou a fenómenos de reconcentração destes minerais na rocha, ou ambos. Como referido no Capítulo VII.4.1.1, associado à matriz proto dolomítica e à abundância de filossilicatos observou-se um aspecto esboroado/poroso da rocha, o que poderá potenciar o acesso dos fluidos intersticiais do betão

ao interior das partículas de agregado grosso (abordado no Capítulo VII.3), possível responsável pelo incremento de alcalinos nos carbonatos de agregados grossos em betão (Capítulo VII.5.1).

O autor interpreta que a fracção que mais se aproxima do protólito de Kingston é rocha carbonatada de matriz micrítica muito impura correspondente à fracção de agregado grosso Ki_R3, sendo que a fracção Ki_R1 representa o expoente máximo do processo metassomático experienciado em Kingston, com uma matriz proto dolomítica bem desenvolvida associada à existência de silicatos e sulfatos dispersos (quartzo, ortóclase e albite; celestite), com grande concentração de filossilicatos nos interstícios da matriz. A transição entre o protólito original e a rocha metassomatizada é apresentada na Figura VII.23, onde se observa a perversão da matriz originalmente micrítica por uma matriz dolomítica bem desenvolvida. Observam-se ainda filossilicatos, assim como a geração de quartzo e ortóclase disseminadas. O que originalmente foi entendido como calciclastos no interior de uma matriz dolomítica deverá corresponde na realidade a resquícios do protólito consumido por acção do processo metassomático. O quartzo e a ortóclase são comummente observados em rochas sedimentares carbonatadas impuras como parte da fracção detrítica da mesma, o que não é completamente descartado. Ainda assim, a propagação de uma matriz dolomítica, francamente epigenética, acompanhada de uma maior abundância destes minerais e outros, como albite e filossilicatos, implica que parte, senão a totalidade, destes silicatos se deva ao processo metassomático experienciado pelo protólito (Anexo 19).

A presença de pirite na rocha de Kingston não se prende com uma fracção específica, ao contrário da presença de celestite apenas observada na fracção Ki_R1. Mais ainda, a presença de pirite framboidal está apenas presente na fracção Ki_R2, tida como uma fracção do agregado de Kingston que aparenta ter sofrido algum efeito por parte do processo metassomático, embora o mais diminuto das três fracções de Kingston estudadas, devido à presença escassa de dolomite, geralmente bem desenvolvida mas escassa, e restantes espécies de origem metassomática. Poderá também dever-se à existência de matéria orgânica nesta fracção de agregado (Ki_R2), tendencialmente de coloração negra. Outro factor a ter em conta é a dispersão do que aparenta ser pirite microcristalina no protólito de Kingston, especialmente elevada no interior de planos estilolíticos devido ao fenómeno de acumulação (Figura VII.25).

No que toca aos filossilicatos presentes na rocha, tratando-se o protólito de uma rocha carbonatada impura, poderá ter ocorrido uma reconcentração dos filossilicatos dispersos no protólito para as zonas mais intensamente metassomatizadas, dando origem ao sinal intenso de Al, Si e K, observados em associação com zonas da matriz mais dolomíticas, e consequentemente de aspecto mais poroso/esboroado. A geração de filossilicatos, como ilite, pode resultar do processo metassomático. Comparando o sinal elementar correspondente a estes minerais observados no protólito micrítico (Ki_R3 e Ki_R2), parece existir uma contribuição metassomática para a abundância das mesmas, exclusivamente pela intensidade dos elementos que constituem estes minerais observados nas zonas mais alteradas da rocha. Desta forma, o autor atribui uma contribuição do protólito através de fenómenos de

reconcentração dos filossilicatos originalmente presentes na rocha, acompanhados de uma possível génese epigenética de novos filossilicatos como consequência do metassomatismo.

Da mineralogia observada no agregado grosso de Kingston, parece ter havido um incremento em elementos como potássio (K), sódio (Na), silício (Si), alumínio (Al), estrôncio (Sr), assim como magnésio (Mg) e ferro (Fe) possivelmente. A fonte do ião sulfato pode também corresponder ao processo metassomático observado, embora a presença de sulfatos na rocha de Pittsburg seja conhecida sob a forma de gesso (Sims & Poole, 2017), que mais tarde possa ter sofrido dissolução e remobilização como consequência do processo metassomático, dando origem à celestite observada.

VIII.2 Evolução geológica da rocha de Spratt (Ottawa, Ontário)

Os trabalhos realizados permitiram identificar um fenómeno de metassomatismo de baixa temperatura na rocha proveniente de Spratt, responsável por uma silicificação extensa da matriz carbonatada e dos elementos figurados presentes na mesma, semelhante ao observado em Kingston. Isto porque a silicificação da rocha de Spratt aparenta ser contemporânea, ou pelo menos relacionada, com o desenvolvimento da matriz proto dolomítica. Por outro lado, os chertes negros descritos para esta rocha não foram observados (Rogers & Macdonald, 2012), possivelmente devido à dimensão reduzida da amostra analisada e da heterogeneidade da pedreira. Assim sendo, à semelhança da rocha de Kingston, o fenómeno metassomático que levou à silicificação da rocha de Spratt parece ser acompanhado pelo desenvolvimento da matriz dolomítica. Nestas zonas os bioclastos e elementos figurados apresentam uma silicificação mais intensa, quando comparada com zonas tendencialmente mais sparíticas, mais pobres em dolomite. Ao contrário da rocha de Kingston, a sílica que permeou a matriz de Spratt não deu origem a grãos de quartzo individuais, tendo essencialmente substituído elementos figurados quando possível, assim como preencher espaços vazios presentes no protólito, p.ex. aberturas no interior de bioclastos, dando origem à sílica criptocristalina em pente observada no preenchimento de bioclastos (Capítulo VII.2.2.2.1), possivelmente correspondendo a calcedónia descrita previamente como presente na rocha de Spratt (Rogers & Macdonald, 2012). Não foram identificados outros silicatos, como feldspatos p.ex., em consequência do processo de silicificação experienciado pela rocha, ou como fracção detrítica desta rocha, à excepção dos filossilicatos que aparentam fazem parte da matriz do protólito, tanto mais abundantes quanto maior o desenvolvimento da matriz proto dolomítica, à semelhança do que foi observado na rocha de Kingston, em especial na fracção Spr_R2 (Figura VII.27).

Os fosforitos observados (francolite) não tinham sido identificados nesta rocha, embora não aparentem ter qualquer influência na reactividade potencial aos álcalis do betão. A génese deste mineralóide aparenta ser singenética uma vez que o único veio observado do mineralóide se apresenta cortado pelo desenvolvimento de cristais da matriz dolomítica, epigenética e aparentemente contemporânea do processo de silicificação. A identificação deste mineralóide poderá trazer novas

implicações no que diz respeito às condições de formação do protólito de Spratt, que se encontram fora dos objectivos deste estudo.

VIII.3 Reacções de deterioração de betão

A reactividade de um agregado encontra-se dependente de vários factores, internos e externos, que podem afectar gravemente a viabilidade de uma rocha para uso como agregado em betão. No caso do agregado grosso de Spratt, constata-se a silicificação generalizada da matriz carbonatada, assim como a presença de uma matriz dolomítica bem desenvolvida, que aparenta estar associada a uma maior porosidade do agregado. O facto de as zonas mais silicificadas de Spratt apresentarem a matriz proto dolomítica, associada a uma porosidade aparentemente superior do agregado, resulta no acesso dos fluidos do betão a um mineral potencialmente reactivo, em especial nas fracções identificadas em Spratt mais ricas em sílica.

Em Spratt a sílica criptocristalina reage com os fluidos intersticiais de um cimento, em condições de pH fortemente alcalinas (Rasheeduzzafar et al., 1991), com pH a variar entre os 12 e os 14 e, com uma elevada concentração de iões de Na₂O e K₂O, do cimento (Anexo 1), resultando num produto silico-alcalino (Capítulo III.2.1) que causa os danos identificado nos prismas de betão ensaiados e nas estruturas de betão fabricado com este agregado. A solubilização da sílica reactiva depende do grau de cristalização do mineral e da presença de defeitos no mesmo (Ponce & Batic, 2006), assim como da quantidade de alcalinos presentes nos fluidos intersticiais, sendo que a solubilização pode ocorrer a valores de aproximadamente 3.0 kg/m³ Na₂Oeq a superiores a 5.0 kg/m³ Na₂Oeq (Thomas et al., 1991; Thomas et al., 2017). Outro factor a ter em conta é o incremento da porosidade interna dos agregados grossos que pode levar à diminuição das características físicas do agregado, o que por sua vez coloca a integridade do betão em causa (Capítulo III.1).

No agregado de Kingston, observa-se o metassomatismo de um possível protólito micrítico, dando origem a uma matriz proto dolomítica bem desenvolvida, associada à presença de formas de sílica potencialmente reactivas. Os danos observados nos prismas de betão podem ser resumidos a uma fissuração intensa do betão (tanto na pasta como no interior e até conectando agregados grossos) acompanhada de uma carbonatação intensa. A carbonatação da pasta encontra-se directamente dependente da abundância de CO_2 e do nível de saturação dos poros no cimento, uma vez que se a saturação for muito elevada a quantidade de CO_2 disponível no interior do betão será limitada (Verbeck, 1958).

A presença de vários silicatos epigenéticos, associados a uma matriz proto dolomítica aparentemente mais porosa, coloca as mesmas questões levantadas na discussão das reacções presentes em Spratt. Da observação do Anexo 16 e Anexo 17, constata-se que não só está presente uma forma de sílica potencialmente reactiva na rocha de Kingston, como a mesma se depositou em regime de espaço aberto, indicando grande porosidade e perversão do processo geológico, existindo em pequena dimensão dispersa pela matriz (Anexo 17). Assim sendo, a possibilidade da hidrólise desta forma de quartzo, e

possivelmente dos restantes silicatos presentes, e a presença de uma reacção alcalis-sílica com este agregado não pode ser descartada (Grattan-Bellew et al., 2010). No estudo realizado não foi, contudo, observado qualquer tipo de gel silico-alcalino, mas como referido no Capítulo VII.3.1.1, os agregados grossos observados nas amostras de betão ensaiado não apresentavam os sinais do processo de metassomatismo intenso encontrados nas amostras de rocha, reduzindo a quantidade de material reactivo e a oportunidade de observação de produtos de reacção como os observados por Grattan-Bellew et al. (2010). E apesar da diminuição de pH resultante do processo de carbonatação, valores de pH e concentrações de Na₂O e K₂O iniciais são capazes de levar à hidrólise dos feldspatos e até dos filossilicatos presentes (Ponce & Batic, 2006), fornecendo sílica para uma possível reacção e alcalinos que por sua vez apenas intensificarão a reacção entre os fluidos intersticiais e as espécies reactivas presentes. Uma vez que a abundância de silicatos em Kingston é muito superior à observada em qualquer umas das fracções de agregado seleccionadas de Spratt (embora inferior no quartzo), aliados à elevada porosidade do agregado, que influencia positivamente uma reacção entre estes minerais e os fluidos do betão, a reactividade deste grupo mineral não é descartada. Estas observações poderão ser um indicador de quantidades elevadas de sílica e alcalinos, possivelmente reactivas, que talvez possa explicar a intensidade e severidade dos danos expostos no Capítulo VII.3. Mais ainda, a possibilidade da ocorrência de uma reacção como DEF não pode ser afastada, uma vez que a presença de sulfatos em Kingston é conhecida (Capítulo IV), e dado ter sido identificada celestite e pirite fina e dispersa na matriz, que poderá por sua vez oxidar e dar origem à reacção indicada. Mais ainda, segundo o trabalho de Goodhue et al. (2019), parece existir uma relação entre a oxidação de pirite e o excesso de filossilicatos < 63 µm e a presença de pirite framboidal. Tal como se verifica relativamente à presença de sílica e inexistência de produtos de reacção nas fissuras, não foi observado qualquer tipo de reacção entre sulfatos no interior dos prismas de betão estudados ou a ocorrência de produtos de reacção, como a ettringite.

No que toca à desdolomitização da matriz carbonatada, a observação dos agregados grossos em betão forneceu poucos indícios de qualquer tipo de reacção estar presente à excepção de alguns grãos de dolomite apresentarem algum tipo de bandado concêntrico, embora estes não se tenham traduzido em variações composicionais que provem o a presença da reacção. Apenas observando a pasta de cimento em torno de zonas com carbonatação observada foi possível a detecção de várias massas compatíveis com brucite. Este produto de reacção ocorre de forma natural na pasta de cimento, mas aliada à presença de agregados com matriz dolomítica bem desenvolvida e com alguns bandados observáveis, a possibilidade desta reacção estar a ocorrer no interior do agregado grosso de Kingston não é afastada. Mais ainda, observando as leituras dos carbonatos analisados na fracção Ki_R1 é perceptível que o valor de fecho das leituras é inferior ao das restantes fracções (Anexo 12). Esta diferença de fecho nas leituras poderá corresponder à presença de outros elementos na malha cristalina dos carbonatos que são voláteis quando analisados, dando origem às diferenças observadas. Esta teoria poderia ajudar a alocar parte da responsabilidade dos danos observados à reacção de desdolomitização,

assumindo que ao sofrer desdolomitização os carbonatos poderão estar a libertar para o sistema elementos potencialmente reactivos como é o caso dos alcalinos, que por sua vez intensificarão a AAR. Outra possibilidade prende-se com a influência da carbonatação na descida do pH e a possibilidade da transformação dos filossilicatos presentes (ilite provavelmente) em espécies como vermiculites ou esmectites, independentemente da disponibilidade de Al no sistema (Vicente et al., 1977), que por sua vez poderão expandir como consequência da adsorção de água após a transformação.

Desta forma, a identificação das características intrínsecas ao agregado de Kingston descritas pode explicar a deterioração observada e medida no Capítulo VII.1, sem que se possa definir um responsável directo uma vez que não foram observados produtos de reacção atribuídos a reacções de deterioração no interior de betão. De qualquer forma, o aparente elevado teor de alcalinos no interior do agregado grosso carbonatado de Kingston indica que a possibilidade de ocorrência e intensidade de danos em betão com este agregado é no mínimo provável.

VIII.4 Conclusões

Das observações retiradas deste relatório é possível realizar um paralelismo entre os processos geológicos experienciados pelas rochas de Spratt e Kingston, um metassomatismo de baixa temperatura que originou um enriquecimento comum em Si e Mg dos protólitos, com desenvolvimento da dolomite associada ao enriquecimento em sílica livre e silicatos, responsável pela sua reactividade potencial. A reactividade da sílica livre é óbvia e está bem presente quando se observa o produto da reacção de deterioração de betão com agregado grosso proveniente de Spratt, um produto silico-alcalino sob ambas as formas conhecidas (SiG e SiGc), em vários locais distintos. Embora não tenha sido observado qualquer tipo de gel silico-alcalino no betão ensaiado com agregado grosso de Kingston, as observações em MEV mostram que além do quartzo granular bem desenvolvido, existem pequenos núcleos de cristalização de quartzo dispersos, o que leva a crer que estes núcleos poderão corresponder a uma forma de sílica reactiva no interior da rocha de Kingston, resultado da sua abundância, dispersão e área específica elevada. A reactividade desta forma de sílica é ainda mais provável considerando as condições de elevado pH presentes nos fluidos intersticiais do betão, capazes de solubilizar a sílica presente em Kingston e dar origem a gel silico-alcalino, a que se acrescenta e alta concentração em alcalinos. De forma geral é possível afirmar que alguma reacção além da carbonatação observada tem de estar presente para a escala dos danos observados, apoiada pela presença de múltiplos agentes reactivos, e que o próprio fenómeno de carbonatação poderá estar até certo nível a mascarar outras reacções uma vez que ocorrendo de forma a colmatar aberturas na pasta de cimento, a observação deste produto não permite a determinação do preenchimento de dito espaço de forma total ou parcial, podendo assim estar presentes outros tipos de produtos de reacção nos interstícios colmatados pelas massas de carbonato de cálcio resultante da carbonatação

Trabalhos como o realizado por Grattan-Bellew et al. (2010), onde foi identificada a fracção metassomatizada de Kingston no interior de prismas de betão ensaiados, embora interpretada como

sendo resultado de processos sedimentares, e observada a presença de gel silico-alcalino nas fissuras presentes no agregado coloca em causa a possibilidade da presença de reacções como ASR ou DEF, e que o estudo petroquímico de litologias potencialmente preocupantes é capaz de identificar e estimar a potencialidade de um agregado e das possíveis reacções de deterioração que podem ter lugar quando aplicado em betão, fornecendo um entendimento sobre os processos geológicos envolvidos na geração de uma rocha potencialmente reactiva e os álcalis, podendo até vir a fornecer *guide lines* para a identificação futura de agregados potencialmente reactivos de acordo com a presença de fenómenos geológicos específicos, responsáveis pelo incremento em reactividade de uma rocha.

IX. Trabalhos futuros

As observações realizadas do agregado de rocha proveniente de Kingston indicam que a rocha inicialmente definida como "rocha carbonatada dolomítica impura" (Swenson & Gillott, 1964) se trate na realidade de uma rocha que experienciou processos que levaram à formação epigenética de minerais potencialmente reactivos. Assim sendo, o conhecimento e entendimento da reacção ACR necessita da correlação entre que tipo de fenómenos e/ou os minerais presentes nesta rocha que se encontrem directamente relacionados com a reactividade observada quando o agregado é integrado em betão, assim como qualquer estudo que tenha como objectivo o estudo da reactividade de rochas dolomíticas.

Desta forma, o autor entende que como trabalhos futuros seria benéfica a realização de um estudo detalhado dos fenómenos metassomáticos, e outros se presentes, experienciados pelo pacote litológico explorado na pedreira de Kingston. Este estudo terá de envolver uma amostragem de campo detalhada de todos os diferentes processos observados nas diferentes bancadas da pedreira, de forma a compreender por completo a evolução deste conjunto de rochas carbonatadas. Para cada bancada amostrada e/ou bancadas diferentes identificadas, propõem-se um estudo petroquímico como o realizado neste estudo, fazendo um estudo fino desde a escala macro da rocha, passando pela petrografia de luz reflectida e transmitida de superfícies polidas de interesse, à análise química através de MEV-EDS e de microssonda electrónica das diferentes mineralogias de interesse identificadas. Mais ainda, um estudo da fracção fina e/ou insolúvel da rocha é necessária. Esse estudo corresponderá à utilização de difracção raio-X para a identificação dos diferentes minerais que compõem as amostras de rocha retiradas da pedreira, em múltiplas fases: (1) moagem e análise da rocha total; (2) dissolução das diferentes fracções de rocha total em ácido acético a 2M de forma a preservar todos os filossilicatos presentes, até à dissolução completa dos carbonatos que compõe a matriz da rocha (Pye, 1989); (3) realização de colunas de sedimentação e amostragem de fracções específicas da amostra da fracção insolúvel (Hirst & Nicholls, 1958); (4) análise e identificação em difracção raio-X dos diferentes filossilicatos presentes.

Ao realizar-se a dissolução da rocha carbonatada de Kingston, é aconselhável também a separação da fracção insolúvel grosseira e respectiva análise MEV-EDS, uma vez que embora parte da amostra corresponda a minerais identificados em fases do estudo petrográfico, mineralogias mais finas de difícil identificação por microscopia óptica poderão ser identificadas na amostra concentrada de

espécies insolúveis. Assim torna-se possível correlacionar as diferentes ocorrências minerais presentes na pedreira de Kingston, assim como a extensão da influência dos diferentes processos geológicos que lhes deram origem, permitindo assim constranger com mais segurança os níveis potencialmente mais reactivos da pedreira e o porquê de tal reactividade. Por fim o autor sugere que, por cada bancada ou zona da pedreira amostrada, seja amostrado um duplicado com o objectivo de produzir prismas de betão com os agregados grossos correspondentes, que mais tarde serão estudados petrograficamente.

Os prismas de betão produzidos com as diferentes fracções de rocha carbonatada identificadas com os trabalhos de petroquímica deverão ser submetidos a um dos ensaios padrão para a avaliação da reactividade de agregados em betão, tal como o ensaio CSA A23.2-14A (2014), de forma a acelerar e tornar possível o estudo dos danos produzidos no betão. A análise comparativa entre a rocha amostrada e o tipo de reacções produzidas pela mesma fracção de rocha em betão, previamente estudada e definida mineralogicamente, permitirá a correlação entre as diferentes mineralogias reactivas e o tipo de agregado, e consequentemente processos identificados como responsáveis pela presença das mineralogias em questão, e os danos observados, assim como a severidade dos mesmos. Outro factor de interesse a ser analisado é a porosidade do agregado, uma vez que valores de porosidade superiores tornam o agregado acessível para uma reacção química potencialmente danosa entre a pasta de cimento e as espécies minerais reactivas no seu interior. Desta forma poderá ser possível não só determinar que tipo de reacções de deterioração têm um papel nos danos observados, uma vez que a rocha de Kingston apresenta formas de sílica potencialmente reactivas passíveis de produzir dano por si só ou em conjunto com outras mineralogias reactivas como sulfatos, como também determinar que tipo de processos geológicos podem ser causadores de litologias tendencialmente mais reactivas, permitindo uma análise mais rápida e segura da viabilidade de determinado maciço rochoso para a produção de agregado de qualidade para betão.

X. Bibliografia

- ASTM C227 (2010), "Standard test method for potential alkali-silica reactivity of aggregates (mortar-bar method)". West Conshohocken, USA, American Society for Testing and Materials.
- ASTM C289 (2007) (now withdrawn), "Standard test method for potential alkali-silica reactivity of aggregates (chemical method)". West Conshohocken, USA, American Society for Testing and Materials.
- ASTM C295 (2012), "Standard guide for petrographic examination of aggregates for concrete". West Conshohocken, USA, American Society for Testing and Materials.
- ASTM C441 (2011), "Standard test method for effectiveness of pozzolans or ground blast-furnace slag in preventing excessive expansion of concrete due to the alkali-silica reaction". West Conshohocken, USA, American Society for Testing and Materials.
- ASTM C1260 (2014), "Standard test method for potential alkali-reactivity of aggregates (mortar-bar method)". West Conshohocken, USA, American Society for Testing and Materials.
- ASTM C1293 (2008), "Standard test method for determination of length change of concrete due to alkali-silica reaction". West Conshohocken, USA, American Society for Testing and Materials.
- Batic, O. R., Milanesi, C. A., Maiza, P. J., and Marfil, S. A., 2000, Secondary ettringite formation in concrete subjected to different curing conditions: Cement and Concrete Research, v. 30, p. 1407–1412.
- Birch, G., 2016, The global sand wars-understanding the impacts of intensive sand extraction on coastal environments: Interaction, v. 44, p. 19–22.
- Chevallier, R., (2014), Illegal Sand Mining in South Africa. Issue 116, SAIIA Policy Briefings, South African Institute of International Affairs (SAIIA).
- CSA A23.2-14A (2014), "Potential expansivity of aggregates (procedure for length change due to alkaliaggregate reactions in concrete prisms at 38°C)". Mississauga, Ontario, Canada, Canadian Standards Association. pp. 350–362.
- CSA A23.2-15A (2014), "Petrographic examination of aggregates". Mississauga, Ontario, Canada, Canadian Standards Association.
- CSA A23.2-25A (2014), "Test method for detection of alkali-silica reactive aggregate by accelerated expansion of mortar bars". Mississauga, Ontario, Canada, Canadian Standards Association. pp. 425–433.
- Dan Gavriletea, M., 2017, Environmental impacts of sand exploitation. Analysis of sand market: Sustainability (Switzerland), v. 9, 1118. https://doi.org/10.3390/su9071118.
- Dolar-Mantuani, L., 1964, Expansion of Gull River carbonate rocks in sodium hydroxide, in Symposium on Alkali-Carbonate Rock Reactions. Highway Research Record, Issue Number: 45. http://onlinepubs.trb.org/Onlinepubs/hrr/1964/45/45-011.pdf.
- Dolar-Mantuani, L., 1969, Alkali-silica-reactive rocks in the Canadian Shield. Highway Research

- Record, Issue Number: 268. http://onlinepubs.trb.org/Onlinepubs/hrr/1969/268/268-008.pdf
- Fournier, B., Fecteau, P.-L., Villeneuve, V., Tremblay, S., and Sanchez, L. F. M., 2015, Description of petrographic features of damage in concrete used in the determination of the damage rating index (DRI): p. 59. Unversité Laval.
- Gaines, A. M., 1977, Protodolomite redefined: Journal of Sedimentary Research, v. 47, p. 543–546.
- Gillott, J. E., 1975, Alkali-aggregate reactions in concrete: Engineering Geology, v. 9, p. 303–326.
- Gillott, J. E., and Swenson, E. G., 1969, Mechanism of the alkali-carbonate rock reaction: Quarterly Journal of Engineering Geology, v. 2, p. 7–23.
- Goodhue, R., Dornan, T., and O'Connor, A., 2019, Building Materials: Expanding Potencial, p. 1.
- Grattan-Bellew, P. E., 1995, Laboratory evaluation of alkali-silica reaction in concrete from Saunders Generating Station: Materials Journal, v. 92, p. 126–134.
- Grattan-Bellew, P. E., and Danay, A., 1992, Comparison of laboratory and field evaluation of AAR in large dams, in Proceedings of the International Conference on Concrete Alkali–Aggregate Reactions in Hydroelectric Plants and Dams, Fredericton, NB.
- Grattan-Bellew, P. E., and Katayama, T., 2017, So-called alkali-carbonate reaction (ACR): Alkali-Aggregate Reaction in Concrete: A World Review, p. 63–88. CRC Press.
- Grattan-Bellew, P. E., and Lefebvre, P. J., 1987, Effect of confinement on deterioration of concrete made with alkali-carbonate reactive aggregate Proceedings of the 7th International Conference on Concrete Alkali-Aggregate Reactions, Ottawa, Canada, 1986: Publication of: NOYES PUBLICATIONS.
- Grattan-Bellew, P. E., Mitchell, L. D., Margeson, J., and Min, D., 2010, Is alkali-carbonate reaction just a variant of alkali-silica reaction ACR = ASR? Cement and Concrete Research, v. 40, p. 556–562.
- Hadley, D. W., 1961, Alkali reactivity of carbonate rocks-expansion and dedolomitization, in Highway Research Board Proceedings, v. 40, p. 462-474.
- Hirst, D. M., and Nicholls, G. D., 1958, Techniques in sedimentary geochemistry:(1) Separation of the detrital and non-detrital fractions of limestones: Journal of Sedimentary Research, v. 28 (4): p. 468–481.
- Johnson, M. D., Armstrong, D. K., Sanford, B. V., Telford, P. G., and Rutka, M. A., 1992, Paleozoic and Mesozoic geology of Ontario: Ontario Geological Survey, Special 4 (Part 2), p. 907–1008.
- Katayama, T., 2004, How to identify carbonate rock reactions in concrete: Materials Characterization, v. 53, p. 85–104.
- Katayama, T., 2010, The so-called alkali-carbonate reaction (ACR) Its mineralogical and geochemical details, with special reference to ASR: Cement and Concrete Research, v. 40, p. 643–675.
- Katayama, T., and Sommer, H., 2008, Further investigation of the mechanisms of so-called Alkali.carbonate reaction based on modern petrographic techniques. Proc. of 13th ICAAR, p.850-860.
- Katayama, T., Mauco, A., Kosec, T., Kopar, T., and Gartner, N., 2011, So-called alkali-carbonate

- reaction—petrographic details of field concretes in Ontario: 13th Euroseminar on Microscopy Applied to Building MaterialsAt: Ljubljana, Slovenia, Book of Extended Abstracts, p. 38.
- Katayama, T., Jensen, V., and Rogers, C. A., 2016, The enigma of the 'so-called'alkali-carbonate reaction: Proceedings of the Institution of Civil Engineers-Construction Materials, v. 169, p. 223–232.
- Leemann, A., Katayama, T., Fernandes, I., and Broekmans, M. A. T. M., 2016, Types of alkaliaggregate reactions and the products formed: Proceedings of the Institution of Civil Engineers-Construction Materials, v. 169, p. 128–135.
- Leemann, A., Shi, Z., and Lindgård, J., 2020, Characterization of amorphous and crystalline ASR products formed in concrete aggregates: Cement and Concrete Research, v. 137, p. 106-190.
- McArthur, J. M., 1985, Francolite geochemistry—compositional controls during formation, diagenesis, metamorphism and weathering: Geochimica et Cosmochimica Acta, v. 49, p. 23–35.
- McClellan, G. H., 1980, Mineralogy of carbonate fluorapatites: Journal of the Geological Society, v. 137, p. 675–681.
- Milanesi, C. A., Marfil, S. A., Locati, F., and Benito, D., 2020, Effects of different alkaline solutions on the expansivity of rock prisms of an alkali-reactive dolostone from Valcheta (Río Negro, Argentina): Cement and Concrete Research, v. 134, p. 106-192.
- Min, D., and Mingshu, T., 1993, Mechanism of dedolomitization and expansion of dolomitic rocks: Cement and Concrete Research, v. 23, p. 1397–1408.
- Moreland, G. C., 1968, Preparation of polished thin sections: American Mineralogist: Journal of Earth and Planetary Materials, v. 53, p. 2070–2074.
- Naveen Saviour M., 2012, Environmental Impact of Soil and Sand Mining: a Review: International Journal of Science, Environment, v. 1, p. 125–134.
- Neville, A. M., 2004, The confused world of sulfate attack on concrete: Cement and Concrete Research, v. 34, p. 1275–1296.
- Neville, A. M., 2006, Concrete: Neville's insights and issues: Thomas Telford.
- Neville, A. M., 2011, Properties of concrete: New York, Pearson.
- Osbæck, B., 1984, Auswertung des Gehalts an wasserlöslichen Alkalien im Portlandzementklinker (Calculation of water-soluble alkali content in Portland cement clinker): ZKG international, v. 37, p. 486–493.
- Peterson, K., Gress, D., Van Dam, T., and Sutter, L., 2006, Crystallized alkali-silica gel in concrete from the late 1890s: Cement and Concrete Research, v. 36, p. 1523–1532.
- Ponce, J. M., and Batic, O. R., 2006, Different manifestations of the alkali-silica reaction in concrete according to the reaction kinetics of the reactive aggregate: Cement and Concrete Research, v. 36, p. 1148–1156.
- Poole, A. B., and Sims, I., 2016, Concrete petrography: a handbook of investigative techniques: CRC Press.

- Pye, K., 1989, Techniques in Sedimentology: Geological Magazine, v. 126, p. 307.
- Rasheeduzzafar, Ehtesham Hussain, S., and Al-Saadoun, S. S., 1991, Effect of cement composition on chloride binding and corrosion of reinforcing steel in concrete: Cement and Concrete Research, v. 21, p. 777–794.
- Rogers, C., and Macdonald, C. A., 2012, Geology, Properties and Field Performance of the Sudbury, Spratt and Pittsburg AAR Aggregates distributed by the Ontario Ministry of Transportation. In: Drimalas, T, Ideker, JH, Fournier, B (editors), Proceedings of the 14th International Conference on Alkali-Aggregate Reactions in Concrete (ICAAR), Austin, USA.
- Rogers, C., Grattan-Bellew, P. E., Hooton, R. D., Ryell, J., and Thomas, M. D. A., 2000a, Alkaliaggregate reactions in Ontario: Canadian Journal of Civil Engineering, v. 27, p. 246–260.
- Rogers, C. A., Grattan-Bellew, P. E., Hooton, R. D., Ryell, J., and Thomas, M. D. A., 2000b, Alkaliaggregate reactions in Ontario: Proceedings Third International Conference on 3-D Digital Imaging and Modeling, p. 179–186.
- Sanchez, L. F. M., Fournier, B., Jolin, M., and Duchesne, J., 2015, Reliable quantification of AAR damage through assessment of the Damage Rating Index (DRI): Cement and Concrete Research, v. 67, p. 74–92.
- Sandell, E. B., Hey, M. H., and McConnell, D., 1939, The composition of francolite: Mineralogical Magazine and Journal of the Mineralogical Society, v. 25, p. 395–401.
- Sims, I., and Poole, A. B., 2017, Alkali-Aggregate Reaction in Concrete: A World Review: CRC Press.
- Smith, M. R., and Collis, L., 2001, Aggregates: Sand, gravel and crushed rock aggregates for construction purposes: Geological Society, London.
- Smith, P., 1974, 15 Years of living at Kingston with a reactive carbonate rock: Transportation Research Record. Canada.
- Stanienda-Pilecki, K. J., 2018, Magnesium calcite in Muschelkalk limestones of the Polish part of the Germanic Basin: Carbonates and evaporites, v. 33, p. 801–821.
- Stanton, T. E., 1942, Expansion of concrete through reaction between cement and aggregate: Transactions of the American Society of Civil Engineers, v. 107, p. 54–84.
- Swenson, E. G., 1957, A Reactive aggregate undetected by ASTM test: ASTM Bulletin, 226, pp. 48-51.
- Swenson, E. G., and Gillott, J. E., 1960, Characteristic of Kingston Carbonate Rock Reaction: in 39th Annual Meeting of the Highway Research Board, Issue 275. Highway Research Board. http://onlinepubs.trb.org/Onlinepubs/hrbbulletin/275/275-002.pdf.
- Swenson, E. G., and Gillott, J. E., 1964, Alkali-carbonate rock reaction: ASTM Special Technical Publication, v. 169 D-STP, p. 410–424.
- Thomas, M. D. A., Nixon, P. J., and Pettifer, K., 1991, Effect of Pulverised-Fuel Ash With a High Total Alkali Content on Alkali Silica Reaction in Concrete Containing Natural UK Aggregate: Special Publication, v. 126, p. 919–940.

- Thomas, M. D. A., Hooton, R. D., and Folliard, K., 2017, Prevention of alkali-silica reaction, in Alkali-Aggregate Reaction in Concrete: a world review: CRC Press, p. 89–118.
- Torres, A., Brandt, J., Lear, K., and Liu, J., 2017, A looming tragedy of the sand commons: Science, v. 357, p. 970–971.
- Verbeck, G., 1958, Carbonation of hydrated Portland cement, in Cement and Concrete: ASTM Spec. Tech. Publ. 205, p. 17-36.
- Vicente, M. A., Razzaghe, M., and Robert, M., 1977, Formation of aluminium hydroxy vermiculite (intergrade) and smectite from mica under acidic conditions: Clay Minerals, v. 12, p. 101–112.
- Villeneuve, V., Fournier, B., and Duchesne, J., 2012, Determination of the damage in concrete affected by ASR-the damage rating index (DRI), in 14th International Conference on Alkali-Aggregate Reaction (ICAAR). Austin, Texas (USA).:
- Walker, H. N., 1978, —Chemical Reactions of Carbonate Aggregates in Cement Paste, in Significance of Tests and Properties of Concrete and Concrete-Making Materials: ASTM International.
- Wollenberg, H. A., and Smith, A. R., 1964, A concrete low-background counting enclosure: Lawrence Radiation Lab., Univ. of California, Berkeley.
- Zhang, H., Lin, Z., and Tong, D., 1996, Influence of the type of calcium sulfate on the strength and hydration of portland cement under an initial steam-curing condition: Cement and concrete research, v. 26, p. 1505–1511.

Anexos

Composição do cimento Portland

O cimento Portland, com todas as suas variedades, é actualmente o ligante mais utilizado na indústria de construção a nível mundial (Neville, 2011; Sims & Poole, 2017a). É considerado um ligante hidráulico, tal como definido no procedimento normativo NP EN 197-1:2001 «o cimento é um ligante hidráulico, isto é, um material inorgânico finamente moído que, quando misturado com água, forma uma pasta que faz presa e endurece devido a reacções e processos de hidratação e que, depois do endurecimento, conserva a sua resistência mecânica e estabilidade debaixo de água». É composto pela mistura de quatro óxidos principais, que podem ser obtidos a partir de uma variedade de recursos naturais, obrigatoriamente disponíveis à escala local. O primeiro componente é a cal (CaO), normalmente obtida pela exploração de rochas carbonatadas como calcários e margas; o segundo componente é a alumina (Al₂O₃), normalmente obtida a partir da exploração de rochas ricas em filossilicatos (rochas margosas e argilosas) ou bauxite; o terceiro composto é a sílica (SiO₂), obtida pela exploração de areias e/ou pela exploração de rochas margosas/argilosas; o quarto, e último componente principal do cimento, é o óxido de ferro (Fe₂O₃), geralmente proveniente das perdas/excedentes na indústria metalúrgica (limalha de ferro p.ex.). A mistura destes quatro componentes principais deve respeitar parâmetros quantitativos pré-determinados dentro da mistura de forma a garantir um produto final comercializável (Neville, 2011), sendo esses parâmetros definidos pelas autoridades nacionais/técnicas de cada país tendo em conta os usos previstos para este material (e.g. diferentes misturas que assegurem as características físicas, químicas e mecânicas pretendidas para diferentes usos). Uma forma simples de se compreender a composição química do cimento é através da percentagem limite dos diferentes óxidos que o constituem, como apresentado na Tabela A5.1..

Tabela A5.1 – Constituintes do cimento Portland sob a forma de óxidos (Neville, 2011).

Óxido	Quantidade (%)
CaO	60 – 67
SiO_2	17 - 25
Al_2O_3	3 – 8
Fe_2O_3	0.5 - 6
MgO	0.5 - 4
Álcalis (Na ₂ O e K ₂ O)	0.3 - 1.2
SO_3	2.0 - 3.5

Estes componentes são submetidos ao processo de fabrico que se inicia com a moagem dos materiais até uma granulometria relativamente fina, a sua mistura, respeitando as quantidades apresentadas anteriormente, e a posterior cozedura da mistura num forno rotativo que atinge temperaturas até 1450° C, temperatura à qual a mistura funde parcialmente e dá origem a grãos de material denominados de clínquer. O clínquer é então arrefecido, moído finamente e finalmente adicionado algum gesso (cerca de 5%) para obter o cimento Portland comercializado mundialmente. O nível de moagem e a finura são determinados em função da classe de resistência pretendida para o

cimento. Quando misturado com água, numa determinada razão de água (a) e cimento (c), a pasta sofre uma série de reacções químicas, nomeadamente reacção entre os aluminados e silicatos presentes no cimento quando em contacto com a água, que dará origem a novos compostos cristalinos que se ligam e aglutinam entre si de forma a dar origem à pasta de cimento endurecida. A resistência observada no cimento endurecido resulta da hidratação da pasta, do processo de cristalização que se segue e por fim do processo de passagem ao estado sólido, através da criação de ligações entre os diferentes cristais que lhe conferem a coesão quando endurecido. A estes fenómenos é dado o nome de presa e endurecimento (Neville, 2011).

Das reacções de hidratação do cimento resulta uma série de compostos intermédios que irão reagir entre si novamente até darem origem aos constituintes principais do cimento. Os principais constituintes estão apresentados na Tabela A5.2.. Para cada um desses constituintes existe um conjunto de reacções químicas que têm de ocorrer entre o cimento e a água para lhes dar origem (Equações A5.1.-A5.4.) (A. M. Neville, 2011).

Tabela A5.2. – Constituintes principais do cimento Portland (Neville, 20	11).
Composição	

Composto (óxido)	Composição química	Quantidade (%)		
Silicato tricálcico	3CaO.SiO ₂	20 - 65		
Silicato bicálcico	2CaO.SiO2	10 – 55		
Aluminato tricálcico	3CaO.Al ₂ O ₃	0 – 15		
Ferro aluminato tetracálcico	4CaO.Al ₂ O ₃ .Fe ₂ O ₃	5 – 15		

Equação A5.1. Formação de silicato tricálcico

$$2(3CaO.SiO_2) + 6H_2O \rightarrow 3CaO.2SiO_2.3H_2O_3[silicato\ tricálcico] + 3Ca(OH)_2$$

Equação A5.2. Formação de silicato bicálcico

$$2(2CaO.SiO_2)[silicato\ bic\'alcico] + 4H_2O \rightarrow 3.3CaO.SiO_2.3.3H_2O_3 + 0.7Ca(OH)_2$$

Equação A5.3. Reacção de aluminato tricálcico

$$3CaO.Al_2O_3[aluminato\ tric\'alcico] + Ca(OH)_2 + 12H_2O \rightarrow 3CaO.Al_2O_3.13H_2O$$

Equação A5.4. Reacção de aluminato tetracálcico

$$4CaO.Al_2O_3.Fe_2O_3[ferroaluminato\ tetrac\'alcico] + 2Ca(OH)_2 + 10H_2O$$

 $\rightarrow 3Ca.Al_2O_3.6H_2O + 3CaO.Fe_2O_3.6H_2O$

As reacções correspondentes à formação do aluminato tricálcico são muito rápidas e de carácter exotérmico, o que gera rigidez na pasta de forma muito rápida, impossibilitando a sua aplicação em obra. Para evitar este problema é adicionada ao clínquer numa proporção de 3 a 4% do seu peso em gesso (CaSO₄.2H₂O). O gesso vai, em conjunto com os aluminatos, dar origem a trissulfoaluminato de cálcio hidratado (ettringite) que por sua vez protege os aluminatos da acção da água, impedindo o endurecimento demasiado rápido da pasta (Equação A5.5.).

Equação A5.5. Formação de ettringite

$$3CaO.Al_2O_3 + 3CaSO_4.2H_2O + 26H_2O \rightarrow 3CaO.Al_2O_3.3CaSO_4.32H_2O$$

Após a formação da ettringite o gesso transforma-se em monossulfato de cálcio hidratado (3CaO.Al₂O₃.CaSO₄.12H₂O). A forma final estável do aluminato tricálcico é sob a forma hidratada (Equação A5.6.).

Equação A5.6. Formação de aluminato tricálcico hidratado

$$3CaO.Al_2O_3 + 6H_2O \rightarrow 3CaO.Al_2O_3.6H_2O$$

Para além dos quatro óxidos apresentados anteriormente, o cimento Portland possui na sua constituição outros óxidos (que vão influenciar o arranjo atómico, a cristalização e as propriedades hidráulicas do cimento obtido), sendo os mais importantes os óxidos de sódio e potássio (Na₂O e K₂O), comummente conhecidos como álcalis (Neville, 2011). Estes óxidos foram identificados como agentes reactivos no interior do betão quando na presença de agregados particulares (Capítulo III.2), afectando as propriedades físicas e consequentemente a durabilidade do betão.

Permeabilidade do betão

A permeabilidade de um betão é um factor condicionante da sua durabilidade. A resistência do betão não está directamente ligada à durabilidade de determinada mistura. Sabe-se que a durabilidade de um betão depende grandemente não só da tensão que é capaz de suportar, mas também da sua resistência a factores de deterioração (Neville, 2011). A permeabilidade de um betão é então o factor decisivo e condicionante sobre a durabilidade do mesmo, aumentando a vulnerabilidade e consequentemente a ocorrência e intensidade de ataques físicos, químicos e mecânicos (abrasão e erosão), de origem interna ou externa à própria mistura. A permeabilidade do betão vai depender dos seus dois constituintes: a pasta de cimento e o agregado. A permeabilidade da pasta de cimento depende do seu processo de hidratação. Após a hidratação e secagem da pasta de cimento, a permeabilidade vai depender da dimensão, forma e concentração das partículas constituintes do cimento e do grau de comunicação entre os poros capilares presentes na pasta (capilaridade efectiva). Uma forma simples de diminuir a permeabilidade da pasta é reduzindo a razão entre água e pasta de cimento (a/c). A Figura A2.1. mostra que entre pastas de cimento com uma razão de 0,45 e 0,75 a permeabilidade aumenta em duas ordens de grandeza (10⁻¹¹ ou 10⁻¹² e 10⁻¹⁰ m/s respectivamente). Considera-se que razões maiores a 0.4 são excessivas e produzem uma pasta de cimento com uma permeabilidade elevada. Ainda assim, a estanqueidade de um betão não depende apenas da sua permeabilidade e observou-se que ao realizar uma cura húmida de betões com uma razão a/c elevada entre 1 e 7 dias pode reduzir a estanqueidade da pasta por um factor de 5. Observou-se também que a secagem de um betão aumenta a sua permeabilidade, provavelmente devido à retracção mais acelerada do betão que pode levar à ruptura entre poros previamente isolados, aumentando a capilaridade da pasta. Outro factor que influencia a permeabilidade de uma pasta é a granulometria das partículas de cimento usadas: para a mesma razão a/c, pastas mais grosseiras tendem a apresentar valores de permeabilidade superiores aos de pastas mais finas, quando endurecidas (Neville, 2011). Daqui deriva a ideia, ocasionalmente incorrecta, que a resistência de um betão afecta a sua durabilidade, uma vez que pastas mais finas e homogéneas tendem a suportar maiores cargas que pastas mais grosseiras e, por isso, mais heterogéneas.

Assim sendo, perante betões com pastas de cimento semelhantes e com a mesma razão a/c, a diferença entre a sua permeabilidade terá de corresponder à contribuição do agregado no interior do betão. Caso seja empregue um agregado com baixa permeabilidade, a sua contribuição na permeabilidade do betão será mínima. Mais ainda, a presença do agregado diminui os troços apenas preenchidos por pasta de cimento, aumentando a distância entre poros, o que limita a percolação de fluidos no interior do betão. Os fluidos passíveis de danificar o betão, e consequentemente relevantes à sua durabilidade são o dióxido de carbono (CO₂), o oxigénio (O₂) e a água (H₂O com ou sem iões). Sendo que a durabilidade de um betão depende da sua capacidade de permitir a percolação de fluidos no seu interior, a permeabilidade é um factor chave na sua longevidade, ainda que os fluidos intersticiais

possam percorrer o interior do betão por fenómenos de difusão e adsorção. As reacções e processos de deterioração gerados por estes fluidos são abordados no Capítulo III.2. Outro tipo de ataques são os de carácter físico como o efeito dos ciclos de gelo-degelo em poros preenchidos por fluidos intersticiais devido a variações drásticas da temperatura externa, quando comparada com a temperatura interna do betão. Essas variações vão levar a ciclos de gelo-degelo de fluidos dentro do betão ou na sua superfície, que conduzem a um aumento e diminuição de volume dentro do poro, dando origem a danos. Esses danos vão aumentar a capilaridade interna do betão o que por sua vez irá permitir a percolação de fluidos em níveis mais internos do betão, tornando o betão mais susceptível a novos ataques físicos e químicos.

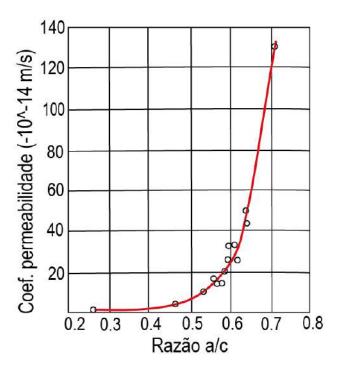
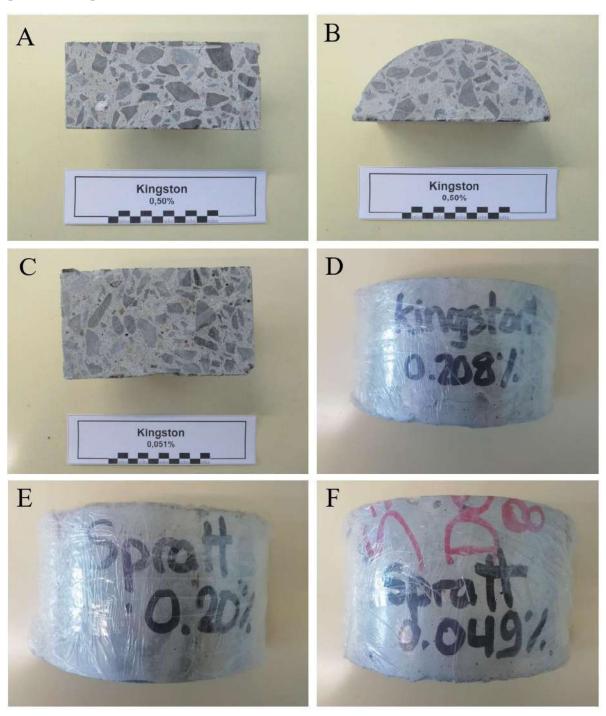
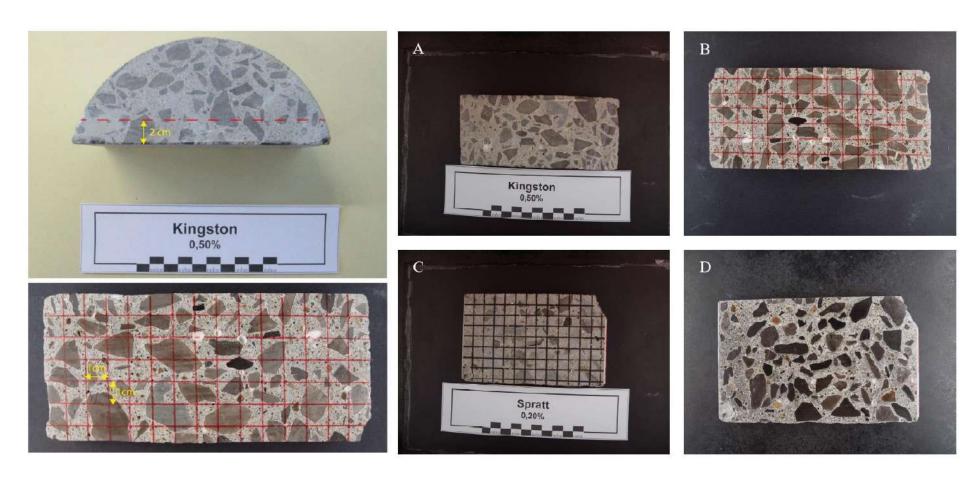



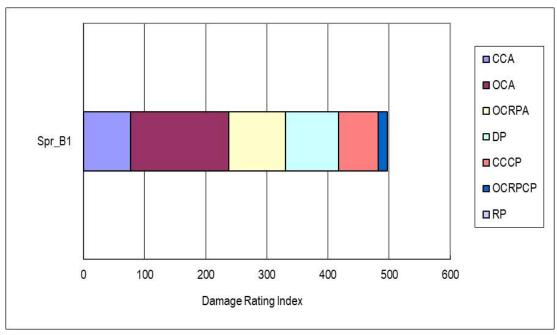
Figura A2.1. - Gráfico comparativo entre a razão a/c e o coeficiente de permeabilidade do betão. Adaptado de Neville (2011)

Figura A2.1. - Gráfico comparativo entre a razão a/c e o coeficiente de permeabilidade do betão. Adaptado de Neville (2011)


Fotografias dos diferentes trechos cilíndricos de betão ensaiados com agregado grosso proveniente da pedreira de Pittsburg (Ki_Bi) e da pedreira de Spratt (Spr_Bi). (A,B) Provete de betão Ki_B1 com escala gráfica em secção transversal (A) e secção perpendicular ao eixo (B); (C) Provete de betão Ki_B2 com escala gráfica em secção transversal; (D) Provete de betão Ki_B3 vista exterior; (D,E) Provetes de betão Spr_B1 (C) e Spr_B2 (D) vista exterior.

Amostras de agregado grosso carbonatado proveniente da pedreira de Pittsburg (A,B,C) e da pedreira de Spratt (D,E,F), separadas nas diferentes fracções granulométricas indicadas na escala gráfica (d < 8 mm; 8 mm < d < 12 mm; d > 12 mm).

Esquema da obtenção da fatia de 2 cm de espessura para a determinação do DRI no provete de betão ensaiado Ki_B1, com escala gráfica. (A,B) Fatia utilizada para a determinação do DRI de Ki_B1 com respectiva quadrícula de 1 cm² e escala gráfica; (C,D) Fatia utilizada para a determinação do DRI de Spr_B1 com respectiva quadrícula de 1 cm² e escala gráfica.



Valores de DRI completos para o prisma de betão Spr_B1

Sum 100mm2	Sample	Spr_B1		Damage I	Rating Index o	n 100cm2		497
Factor 0.25 2 2 2 3 3 3 3 2 2 Sum All 313 81 47 29 22 5 0 0 Section CCA OCA OCA OCAPA DP CCCP OCRPCP RP At 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			160	93	86	65	15	0
Sum All	Sum x Factor	78.25	162	94	87	66	15	0
Sum All	Factor		2	2	3	3	3	2
Section CCA CCA CCRPA DP CCCP CORPCP RP A1	Sum All	313		47	29	22	5	0
A1		CCA		OCRPA		CCCP		RP
A2								.
A3 6 0 0 0 0 0 0 0 0 0 0 0 A44 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 A5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A66 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 A7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								
A4								
A5								
A6								
A7								
A8								
A9								
A10								
A11 0 2 0 0 0 0 0 A12 1 1 0 0 0 0 0 Sum 31 5 3 0 0 0 0 0 B1 3 3 0 0 0 0 0 0 B2 0 1 0 0 0 0 0 0 B4 6 1 0 0 1 0 0 2? B4 6 1 0 0 0 0 0 0 0 B5 1 1 0								
M12								
Sum 31 5 3 0 0 0 0 B1 3 3 0 0 0 0 0 B2 0 1 0 0 0 0 0 B3 5 4 0 1 0 0 7 B4 6 1 0 0 1 0 0 B5 1 1 0 0 0 0 0 B6 2 0 0 0 0 0 0 B7 10 0 0 0 0 0 0 0 B8 6 1 0 1 1 0								
B1						-		
B2								
B3								
B4 6 1 0 0 1 0								_
B5								
B6 2 0 0 0 1 0 0 B7 10 0 0 0 0 0 0 B8 6 1 0 1 1 0 0 0 B9 4 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
B7				-			-	
B8								
B9								
B10								
B11								
B12 3 0 1 0 0 0 0 B13 1 3 1 1 1 1 0 0 Sum 42 17 2 3 4 1 0								
B13 1 3 1 1 1 1 0 Sum 42 17 2 3 4 1 0 C1 0 1 0 1 1 0 0 C2 0 0 0 0 0 0 0 C3 2 1 0 0 0 0 0 0 C4 2 1 1 0 1 0 1 0 0 C5 1 1 0 1 0 1 0 0 0 C6 2 0 4 0 0 0 0 0 0 C7 2 2 2 0								
Sum 42 17 2 3 4 1 0 C1 0 1 0 1 1 0 0 C2 0 0 0 0 0 0 0 C3 2 1 0 0 0 0 0 C4 2 1 1 0 1 0 0 C5 1 1 0 1 0 1 0 0 C6 2 0 4 0 0 0 0 0 C7 2 2 2 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
C1 0 1 0 1 1 0								
C2 0 0 0 0 0 0 0 0 C3 2 1 0 0 0 0 0 C4 2 1 1 0 1 0 0 C5 1 1 0 1 0 1 0 C6 2 0 4 0 0 0 0 C7 2 2 2 0 0 0 0 0 C8 1 0 1 0 0 0 0 0 C9 3 0 0 1 0 0 0 0 C9 3 0 0 1 0 0 0 0 C9 3 0 0 1 0 0 0 0 C10 6 2 0 1 0 0 0 0 <								
C3 2 1 0 0 0 0 0 C4 2 1 1 0 1 0 0 C5 1 1 0 1 0 1 0 C6 2 0 4 0 0 0 0 C7 2 2 0 0 0 0 0 C8 1 0 1 0 0 0 0 C9 3 0 0 1 0 0 0 0 C10 6 2 0 1 0 0 0 0 0 C11 2 0 1 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
C4 2 1 1 0 1 0 0 C5 1 1 0 1 0 1 0 C6 2 0 4 0 0 0 0 C7 2 2 0 0 0 0 0 C8 1 0 1 0 0 0 0 C9 3 0 0 1 0 0 0 0 C10 6 2 0 1 0								
C5 1 1 0 1 0 1 0 C6 2 0 4 0 0 0 0 C7 2 2 0 0 0 0 0 C8 1 0 1 0 0 0 0 C9 3 0 0 1 0 0 0 0 C10 6 2 0 1 0<								
C6 2 0 4 0 0 0 0 C7 2 2 0 0 0 0 0 C8 1 0 1 0 0 0 0 C9 3 0 0 1 0 0 0 C10 6 2 0 1 0 0 0 C11 2 0 1 0 0 0 0 C11 2 0 1 0 0 0 0 C12 2 0 0 0 0 0 0 C13 6 0 0 0 0 0 0 0 Sum 29 8 7 4 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								
C7 2 2 0 0 0 0 0 C8 1 0 1 0 0 0 0 C9 3 0 0 1 0 0 0 C10 6 2 0 1 0 0 0 C11 2 0 1 0 0 0 0 C12 2 0 0 0 0 0 0 C13 6 0 0 0 0 0 0 0 Sum 29 8 7 4 2 1 0								
C8 1 0 1 0 0 0 0 C9 3 0 0 1 0 0 0 C10 6 2 0 1 0 0 0 C11 2 0 1 0 0 0 0 C12 2 0 0 0 0 0 0 0 C13 6 0 0 0 0 0 0 0 C13 6 0 0 0 0 0 0 0 Sum 29 8 7 4 2 1 0 D1 0 1 0 0 0 0 0 D2 7 1 0 0 0 0 0 D3 2 1 0 0 0 0 0 D4 4 1 0								
C9 3 0 0 1 0 0 0 C10 6 2 0 1 0 0 0 C11 2 0 1 0 0 0 0 C12 2 0 0 0 0 0 0 0 C13 6 0 0 0 0 0 0 0 C13 6 0 0 0 0 0 0 0 Sum 29 8 7 4 2 1 0 0 D1 0 1 0 0 0 0 0 0 D2 7 1 0 0 0 0 0 0 D3 2 1 0 0 0 0 0 0 0 D4 4 1 0 0 0 1 0				_		-		
C10 6 2 0 1 0 0 0 C11 2 0 1 0 0 0 0 C12 2 0 0 0 0 0 0 0 C13 6 0 0 0 0 0 0 0 Sum 29 8 7 4 2 1 0 D1 0 1 0 0 0 0 0 0 D2 7 1 0 0 0 0 0 0 D3 2 1 0 0 0 0 0 0 0 D4 4 1 0 0 0 1 0 0 0 D5 4 0 0 0 1 0 0 0 D6 7 0 0 0 0 0								
C11 2 0 1 0 0 0 0 C12 2 0 0 0 0 0 0 0 C13 6 0 0 0 0 0 0 0 Sum 29 8 7 4 2 1 0 D1 0 1 0 0 0 0 0 D2 7 1 0 0 0 0 0 0 D3 2 1 0 0 0 0 0 0 0 D3 2 1 0 0 0 0 0 0 0 D4 4 1 0 0 0 1 0 0 0 D5 4 0 0 0 1 0 0 0 D6 7 0 0 0 0								
C12 2 0								
C13 6 0 0 0 0 0 0 Sum 29 8 7 4 2 1 0 D1 0 1 0 0 0 0 0 D2 7 1 0 0 0 0 0 D3 2 1 0 0 0 0 0 D4 4 1 0 0 1 0 0 D5 4 0 0 0 1 0 0 D6 7 0 0 0 1 0 0 D7 4 1 0 1 0 0 0 D8 6 0 0 0 0 0 0 D9 2 1 1 0 1 0 0 D10 1 0 0 0 0 0								
Sum 29 8 7 4 2 1 0 D1 0 1 0 0 0 0 0 D2 7 1 0 0 0 0 0 D3 2 1 0 0 0 0 0 D4 4 1 0 0 1 0 0 D5 4 0 0 0 1 0 0 D6 7 0 0 0 1 0 0 D7 4 1 0 1 0 0 0 D8 6 0 0 0 0 0 0 0 D9 2 1 1 0 1 0 0 0 D10 1 0 0 0 0 0 0 0 D11 4 0 1								
D1 0 1 0 0 0 0 0 D2 7 1 0 0 0 0 0 D3 2 1 0 0 0 0 0 D4 4 1 0 0 1 0 0 D5 4 0 0 0 1 0 0 D6 7 0 0 0 1 0 0 D7 4 1 0 1 0 0 0 D8 6 0 0 0 0 0 0 0 D9 2 1 1 0 1 0 0 0 D10 1 0 0 1 0 0 0 D11 4 0 1 1 0 0 0 D11 4 0 0 0								
D2 7 1 0 0 0 0 0 D3 2 1 0 0 0 0 0 D4 4 1 0 0 1 0 0 D5 4 0 0 0 1 0 0 D6 7 0 0 0 1 0 0 D7 4 1 0 1 0 0 0 D8 6 0 0 0 0 0 0 0 D9 2 1 1 0 1 0 0 0 D10 1 0 0 1 0 0 0 0 D11 4 0 1 1 0 0 0 0 0 D12 4 0 0 0 0 0 0 0 0 0								
D3 2 1 0 0 0 0 0 D4 4 1 0 0 1 0 0 D5 4 0 0 0 1 0 0 D6 7 0 0 0 1 0 0 D7 4 1 0 1 0 0 0 D8 6 0 0 0 0 0 0 0 D9 2 1 1 0 1 0 0 0 D10 1 0 0 1 0 0 0 0 D11 4 0 1 1 0 0 0 0 D12 4 0 0 0 0 0 0 0 D13 3 2 0 1 1 0 0 0 D13								
D4 4 1 0 0 1 0 0 D5 4 0 0 0 1 0 0 D6 7 0 0 0 1 0 0 D7 4 1 0 1 0 0 0 D8 6 0 0 0 0 0 0 0 D9 2 1 1 0 1 0 0 0 D10 1 0 0 1 0 0 0 0 D11 4 0 1 1 0 0 0 0 0 0 D12 4 0 <								
D5 4 0 0 0 1 0 0 D6 7 0 0 0 1 0 0 D7 4 1 0 1 0 0 0 D8 6 0 0 0 0 0 0 D9 2 1 1 0 1 0 0 D10 1 0 0 1 0 0 0 D11 4 0 1 1 0 0 0 D12 4 0 0 0 0 0 0 D13 3 2 0 1 1 0 0 Sum 48 8 2 4 5 0 0								
D6 7 0 0 0 1 0 0 D7 4 1 0 1 0 0 0 D8 6 0 0 0 0 0 0 0 D9 2 1 1 0 1 0 0 0 D10 1 0 0 1 0 0 0 0 D11 4 0 1 1 0 0 0 0 D12 4 0 0 0 0 0 0 0 D13 3 2 0 1 1 0 0 0 Sum 48 8 2 4 5 0 0								
D7 4 1 0 1 0 0 0 D8 6 0 0 0 0 0 0 0 D9 2 1 1 0 1 0 0 0 D10 1 0 0 1 0 0 0 0 D11 4 0 1 1 0 0 0 0 D12 4 0 0 0 0 0 0 0 D13 3 2 0 1 1 0 0 0 Sum 48 8 2 4 5 0 0								
D8 6 0 0 0 0 0 0 D9 2 1 1 0 1 0 0 D10 1 0 0 1 0 0 0 D11 4 0 1 1 0 0 0 D12 4 0 0 0 0 0 0 D13 3 2 0 1 1 0 0 Sum 48 8 2 4 5 0 0								
D9 2 1 1 0 1 0 0 D10 1 0 0 1 0 0 0 D11 4 0 1 1 0 0 0 D12 4 0 0 0 0 0 0 D13 3 2 0 1 1 0 0 Sum 48 8 2 4 5 0 0								
D10 1 0 0 1 0 0 0 D11 4 0 1 1 0 0 0 D12 4 0 0 0 0 0 0 D13 3 2 0 1 1 0 0 Sum 48 8 2 4 5 0 0								
D11 4 0 1 1 0 0 0 D12 4 0 0 0 0 0 0 D13 3 2 0 1 1 0 0 Sum 48 8 2 4 5 0 0								
D12 4 0 0 0 0 0 D13 3 2 0 1 1 0 0 Sum 48 8 2 4 5 0 0								
D13 3 2 0 1 1 0 0 Sum 48 8 2 4 5 0 0								
Sum 48 8 2 4 5 0 0								
								
E1 8 0 1 0 0 0								
	E1	8	0	1	0	0	0	0

E2	4	0	0	0	0	0	0
E3	2	0	0	1	0	0	0
E4	5	0	0	0	0	0	0
E5	3	2	0	0	0	0	0
E6	7	0	0	0	0	0	0
E7	6	2	0	0	0	0	0
E8	5	1	0	0	0	0	0
E9	8	1	0	0	0	0	0
E10	3	0	0	0	0	0	0
E11	8	1	0	0	0	0	0
E12	5	1	0	0	1	?	0
E13	9	0	0	2	0	0	0
Sum	73	8	1	3	1	0	0
F1	1	0	0	1	0	0	0
F2	1	1	0	0	0	0	0
F3	1	0	2	0	0	0	0
F4	2	1	0	1	0	0	0
F5	1	6	0	0	1	0	0
F6	9	5	0	0	1	0	0
F7	2	3	0	0	1	0	0
F8	6	1	0	1	0	0	0
F9	7	1	0	0	0	0	0
F10	4	0	2	0	1	0	0
	2	0					
F11			0	2	0	2	0
F12	1	2	0	2	1	0	0
F13	2	0	3	1	0	0	0
Sum	39	20	7	8	5	2	0
G1	3	4	0	0	1	0	0
G2	5	0	3	1	1	0	0
G3	2	2	0	0	0	0	0
G4	3	1	0	0	0	0	0
G5	2	0	2	0	0	0	0
G6	1	0	1	2	0	0	0
G7	3	0	1	0	1	0	0
G8	4	0	1	0	0	0	0
G9	3	0	3	0	0	0	0
G10	2	0	0	2	0	0	0
G11	2	0	1	1	0	0	0
G12	1	3	1	0	0	0	0
Sum	31	10	13	6	3	0	0
H1	0	0	0	0	0	0	0
H2	7	0	0	0	0	0	0
H3	2	0	2	1	0	0	0
H4	0	0	0	0	0	0	0
H5	1	0	2	0	2	0	0
H6	1	0	1	0	0	1	0
H7	1	0	1	0	0	0	0
H8	0	0	1	0	0	0	0
H9	2	2	2	0	0	0	0
H10	5	1	1	0	0	0	0
H11	1	1	2	0	0	0	0
H12	0	1	0	0	0	0	0
Sum	20	5	12	1	2	1	0
- Julii			12	<u>'</u>		'	
DRI	313	81	47	29	22	5	0
% DRI	16	32	19	17	13	3	0
/0 DKI	10	JZ	פו	L 1/	13	J	U

				Area,	mm2				
	Α	В	С	D	Е	F	G	Н	
	100	100	100	100	100	100	100	100	l
	100	100	100	100	100	100	100	100	
	100	100	100	100	100	100	100	100	l
	100	100	100	100	100	100	100	100	l
	100	100	100	100	100	100	100	100	l
	100	100	100	100	100	100	100	100	l
	100	100	100	100	100	100	100	100	l
	100	100	100	100	100	100	100	100	l
	100	100	100	100	100	100	100	100	l
	100	100	100	100	100	100	100	100	l
	100	100	100	100	100	100	100	100	l
	100	100	100	100	100	100	100	100	l
	0	100	100	100	100	100	0	0	
Total	1200	1300	1300	1300	1300	1300	1200	1200	Ĺ

Valores de DRI completos para o prisma de betão Spr_B2

Sample	Spr_B2		Damage	Rating Index o	n 100cm2		173
Sum / 100cm2	74	34	27	24	8	5	0
Sum x Factor	82.25	38	30	27	9	6	0
Factor	0.25	2	2	3	3	3	2
Sum All	329	19	15	9	3	2	0
Section	CCA	OCA	OCRPA	DP	CCCP	OCRPCP	RP
A1	6	0	0	0	0	0	0
A2	5	0	0	0	0	0	0
A3	0	0	0	0	0	0	0
A4	1	1	0	0	0	0	0
A5	2	0	0	0	0	0	0
A6	2	0	0	0	0	0	0
A7	7	0	0	0	0	0	0
A8	4	0	0	0	0	0	0
A9	2	0	0	0	0	0	0
A10	1	0	0	0	0	0	0
A11	4	1	0	0	0	0	0
A12	5	0	0	0	0	0	0
A13	1	0	0	0	0	0	0
A14	2	1	0	0	2	0	0
Sum	42	3	0	0	2	0	0
B1	0	0	0	0	0	0	0
B2	0	0	0	0	0	0	0
B3	2	0	0	0	0	0	0
B4	1	0	0	0	0	0	0
B5	1	0	0	0	0	0	0
B6	2	0	0	0	0	0	0
B7	3	0	0	0	0	0	0
B8	2	0	0	0	0	0	0
B9	3	0	0	0	0	0	0
B10	3	0	0	0	0	0	0
B11	0	0	0	0	0	0	0
B12	1	0	0	0	0	0	0
B13	1	0	0	0	0	0	0
B14	7	0	0	0	0	0	0
Sum	26	0	0	0	0	0	0
C1	2	0	0	0	0	0	0
C2	1	0	0	0	0	0	0
C3	2	0	0	0	0	0	0
C4	11	0	0	0	0	0	0
C5	4	0	0	0	0	0	0
C6	0	0	0	0	0	0	0
C7	0	0	0	0	0	0	0
C8	3	0	0	0	0	0	0
C9	3	0	0	0	0	0	0
C10	4	0	0	0	0	0	0

				1	1		
C11	5	0	0	0	0	0	0
C12	1	0	0	0	0	0	0
C13							
	3	0	0	0	0	0	0
C14	4	1	1	0	0	0	0
Sum	33	1	1	0	0	0	0
D1	2	0	0	0	0	0	0
D2	7	0	0	0	0	0	0
D3	4	0	0	0	0	0	0
D4	1	0	0	0	0	0	0
D5	3	0	0	0	0	0	0
D6	2	0	0	0	0	0	0
D7	7	1	0	0	0	0	0
D8	5	0	0	0	0	0	0
D9	3	0	0	0	0	0	0
D10	6	0	0	0	0	0	0
D11	3	1	1	0	0	0	0
D12	4	0	0	0	1	0	0
D13	3	0	0	0	0	0	0
D14	8	0	0	0	0	0	0
Sum	58	2	1	0	1	0	0
E1	3	0	0	0	0	0	0
E2	1	0	1	0	0	0	0
E3	3	0	0	0	0	0	0
E4	1	1	0	0	0		0
						0	
E5	3	0	1	1	0	0	0
E6	3	0	0	0	0	0	0
E7	3	0	0	0	0	0	0
E8	4	0	0	0	0	0	0
E9	3	2	0	0	0	0	0
E10	2	1	0	0	0	0	0
E11	0	0	0	0	0	0	0
E12	5	1	0	0	0	0	0
E13	4	1	0	1	0	0	0
E14	2	0	0	0	0	0	0
Sum	37	6	2	2	0	0	0
Sum	37	6	2	2	0	0	0
Sum F1 F2	37 0 7	6 0 1	2 0 1	2 0 0	0 0 0	0 1 0	0 0 0
Sum F1 F2 F3	37 0 7 2	6 0 1 0	2 0 1	2 0 0 0	0 0 0	0 1 0 0	0 0 0 0
Sum F1 F2 F3 F4	37 0 7 2 1	6 0 1 0	2 0 1 1 0	2 0 0 0 0	0 0 0 0	0 1 0 0	0 0 0 0
Sum F1 F2 F3	37 0 7 2	6 0 1 0	2 0 1	2 0 0 0	0 0 0	0 1 0 0	0 0 0 0
Sum F1 F2 F3 F4 F5	37 0 7 2 1 4	6 0 1 0 0	2 0 1 1 0 0	2 0 0 0 0	0 0 0 0 0	0 1 0 0 0	0 0 0 0 0
Sum F1 F2 F3 F4 F5 F6	37 0 7 2 1 4 5	6 0 1 0 0 0	2 0 1 1 0 0	2 0 0 0 0 0	0 0 0 0 0	0 1 0 0 0 0	0 0 0 0 0
Sum F1 F2 F3 F4 F5 F6 F7	37 0 7 2 1 4 5	6 0 1 0 0 0 0	2 0 1 1 0 0 0	2 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 1 0 0 0 0 0	0 0 0 0 0 0
Sum F1 F2 F3 F4 F5 F6 F7 F8	37 0 7 2 1 4 5 2	6 0 1 0 0 0 0 0	2 0 1 1 0 0 0 0	2 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0
Sum F1 F2 F3 F4 F5 F6 F7	37 0 7 2 1 4 5	6 0 1 0 0 0 0	2 0 1 1 0 0 0	2 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 1 0 0 0 0 0	0 0 0 0 0 0
Sum F1 F2 F3 F4 F5 F6 F7 F8 F9	37 0 7 2 1 4 5 2 7 6	6 0 1 0 0 0 0 0 0 0	2 0 1 1 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0
Sum F1 F2 F3 F4 F5 F6 F7 F8 F9 F10	37 0 7 2 1 4 5 2 7 6	6 0 1 0 0 0 0 0 0 0 0	2 0 1 1 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0
Sum F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11	37 0 7 2 1 4 5 2 7 6	6 0 1 0 0 0 0 0 0 0 0 0 0	2 0 1 1 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0
Sum F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12	37 0 7 2 1 4 5 2 7 6 1 2	6 0 1 0 0 0 0 0 0 0 0 0 0 0 0	2 0 1 1 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 0 1	0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0
Sum F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11	37 0 7 2 1 4 5 2 7 6	6 0 1 0 0 0 0 0 0 0 0 0 0	2 0 1 1 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0
Sum F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13	37 0 7 2 1 4 5 2 7 6 1 2 2 2	6 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 0 1	0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0
\$um F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14	37 0 7 2 1 4 5 2 7 6 1 2 2 2 2	6 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 1 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0
\$um F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 Sum	37 0 7 2 1 4 5 2 7 6 1 2 2 2 2 2 4 3	6 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0
Sum F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 Sum G1	37 0 7 2 1 4 5 2 7 6 1 2 2 2 2 2 43 1	6 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sum F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 Sum G1 G2	37 0 7 2 1 4 5 2 7 6 1 2 2 2 2 2 4 3	6 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 3 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0
Sum F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 Sum G1 G2	37 0 7 2 1 4 5 2 7 6 1 2 2 2 2 2 43 1	6 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 3 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sum F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 Sum G1 G2 G3	37 0 7 2 1 4 5 2 7 6 1 2 2 2 2 2 43 1 2	6 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 3 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
\$um F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 \$um G1 G2 G3 G4	37 0 7 2 1 4 5 2 7 6 1 2 2 2 2 2 43 1 2	6 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 3 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
\$um F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 \$um G1 G2 G3 G4 G5	37 0 7 2 1 4 5 2 7 6 1 2 2 2 2 2 43 1 2 1 3 3	6 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 3 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
\$um F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 \$um G1 G2 G3 G4	37 0 7 2 1 4 5 2 7 6 1 2 2 2 2 2 43 1 2	6 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 3 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
\$um F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 \$um G1 G2 G3 G4 G5 G6	37 0 7 2 1 4 5 2 7 6 1 2 2 2 2 2 43 1 2 1 3 3 3	6 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 3 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sum F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 Sum G1 G2 G3 G4 G5 G6 G7	37 0 7 2 1 4 5 2 7 6 1 2 2 2 2 2 43 1 2 1 3 3 3 3 8	6 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 3 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
\$um F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 \$um G1 G2 G3 G4 G5 G6 G7 G8	37 0 7 2 1 4 5 2 7 6 1 2 2 2 2 2 43 1 2 1 3 3 3 3 8 3	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 3 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
\$um F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 \$um G1 G2 G3 G4 G5 G6 G7 G8 G9	37 0 7 2 1 4 5 2 7 6 1 2 2 2 2 2 43 1 1 2 2 1 3 3 3 3 8 8	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 3 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
\$um F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 \$um G1 G2 G3 G4 G5 G6 G7 G8 G9	37 0 7 2 1 4 5 2 7 6 1 2 2 2 2 2 43 1 1 2 2 1 3 3 3 3 8 8	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 3 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
\$um F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 \$um G1 G2 G3 G4 G5 G6 G7 G8 G9 G10	37 0 7 2 1 4 5 2 7 6 1 2 2 2 2 2 43 1 1 2 2 1 3 3 3 8 8 3	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
\$um F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 \$um G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11	37 0 7 2 1 4 5 2 7 6 1 2 2 2 2 2 43 1 1 2 1 3 3 3 3 8 3	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
\$um F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 \$um G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12	37 0 7 2 1 4 5 2 7 6 1 2 2 2 2 2 43 1 1 2 1 3 3 3 3 8 3 4	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
\$um F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 \$um G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11	37 0 7 2 1 4 5 2 7 6 1 2 2 2 2 2 43 1 2 1 3 3 3 3 8 3 4 5	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
\$um F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 Sum G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13	37 0 7 2 1 4 5 2 7 6 1 2 2 2 2 2 43 1 2 1 3 3 3 3 8 3 4 5	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sum F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 Sum G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 Sum	37 0 7 2 1 4 5 2 7 6 1 2 2 2 2 2 43 1 2 1 3 3 3 3 3 4 5 5	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
\$um F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 \$um G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 \$um H1	37 0 7 2 1 4 5 2 7 6 1 2 2 2 2 2 43 1 2 1 3 3 3 3 3 4 5 5 4 5	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sum F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 Sum G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 Sum H1 H2	37 0 7 2 1 4 5 2 7 6 1 2 2 2 2 2 2 43 1 2 1 3 3 3 3 3 4 5 5 5 5	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sum F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 Sum G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 Sum H1	37 0 7 2 1 4 5 2 7 6 1 2 2 2 2 2 43 1 2 1 3 3 3 3 3 4 5 5 4 5	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sum F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 Sum G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 Sum H1 H2	37 0 7 2 1 4 5 2 7 6 1 2 2 2 2 2 2 43 1 2 1 3 3 3 3 3 4 5 5 5 5	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H5	3	1	0	1	0	0	0
H6	8	2	0	0	0	0	0
H7	1	0	1	0	0	0	0
H8	0	0	0	0	0	0	0
H9	0	0	0	0	0	0	0
H10	0	0	0	0	0	0	0
H11	6	0	0	0	0	0	0
H12	8	0	1	0	0	0	0
H13	3	0	0	0	0	0	0
H14	1	0	0	0	0	0	0
Sum	49	3	4	4	0	1	0
DRI	329	19	15	q	3	2	n

DRI	329	19	15	9	3	2	0
% DRI	43	20	16	14	5	3	0

ſ								
ļ				Area,	mm2			
l	Α	В	С	D	E	F	G	Н
	100	100	100	100	100	100	100	100
	100	100	100	100	100	100	100	100
	100	100	100	100	100	100	100	100
	100	100	100	100	100	100	100	100
	100	100	100	100	100	100	100	100
	100	100	100	100	100	100	100	100
	100	100	100	100	100	100	100	100
	100	100	100	100	100	100	100	100
	100	100	100	100	100	100	100	100
	100	100	100	100	100	100	100	100
ĺ	100	100	100	100	100	100	100	100
ĺ	100	100	100	100	100	100	100	100
ĺ	100	100	100	100	100	100	100	100
ĺ	100	100	100	100	100	100	0	100
	1400	1400	1400	1400	1400	1400	1300	1400

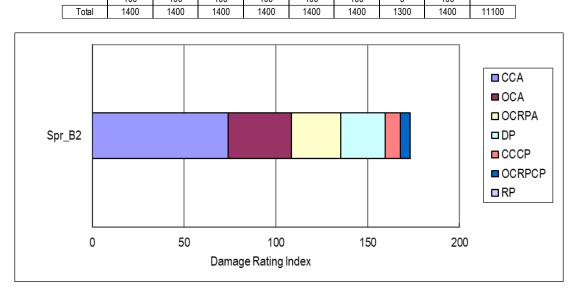
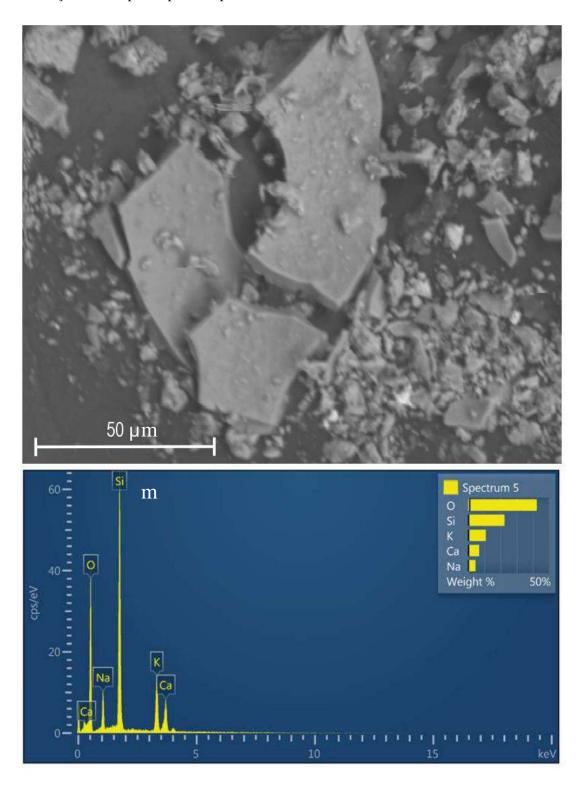
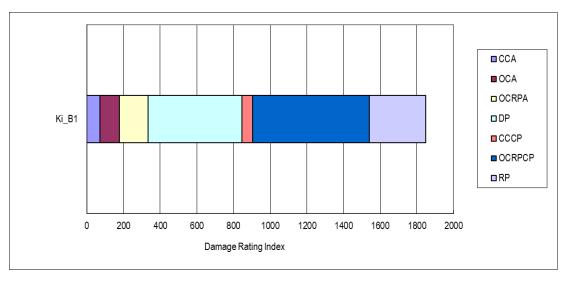



Imagem MEV e espectro EDS de gel silico-alcalino que se formou sobre a fatia de betão utilizada para a determinação de DRI para o prisma Spr_B2.



Valores de DRI completos para o prisma de betão Ki_B1

Sample	Ki_B1		Damage F	Rating Index o	n 100cm2		1849
Sum / 100cm2	71	107	156	513	57	637	309
Sum x Factor	63.75	96	140	462	51	573	278
Factor	0.25	2	2	3	3	3	2
Sum All	255	48	70	154	17	191	139
Section	CCA	OCA	OCRPA	DP	CCCP	OCRPCP	RP
A1	0	0	0	2	0	2	2
A2	9	2	0	1	0	2	0
A3	5	3	0	2	0	2	2
A4	2	0	0	2	0	1	2
A5	0	0	0	3	1	0	3
A6	0	0	1	2	0	2	2
A7	5	0	0	3	1	2	3
A8	3	0	3	2	0	3	2
A9	7	1	1	2	0	2	2
A10	5	0	1	3	1	3	2
A11	2	0	0	2	1	2	3
A12	1	0	0	2	1	2	2
A13	2	0	0	2	0	4	2
A13	8	2	1	3	0	3	2
A14 A15	2	0	0	1	1	3	2
	51	8	7	32	6	33	31
Sum	1	1	0		0	2	2
B1				2 1			
B2	11	0	0		0	3	1
B3	4	0	0	1	0	2	3
B4	2	0	1	3	0	2	3
B5	2	0	1	2	0	2	2
B6	2	0	1	1	1	3	1
B7	3	0	0	2	0	4	2
B8	3	0	1	2	0	2	2
B9	1	0	1	2	0	2	2
B10	3	1	1	1	1	1	1
B11	1	1	2	3	0	4	2
B12	1	1	0	2	0	3	2
B13	3	1	4	1	0	4	1
B14	0	0	0	2	1	1	2
B15	1	0	0	2	1	0	3
Sum	28	5	12	27	4	35	29
C1	1	0	0	2	0	3	2
C2	5	1	1	2	0	1	2
C3	2	1	1	2	0	5	2
C4	7	0	0	1	0	0	1
C5	2	0	0	2	0	3	2
C6	5	0	4	1	0	1	1
C7	2	0	2	1	1	1	1
C8	2	0	1	1	1	1	2
C9	3	1	0	0	0	1	1
C10	1	0	0	3	0	3	2
C11	4	0	0	1	0	0	1
C12	3	0	1	2	1	2	1
C13	0	0	0	0	0	3	0
C14	4	0	2	1	0	1	1
C15	0	0	1	2	0	4	2
Sum	41	3	13	21	3	29	21
D1	5	0	0	2	0	4	2
D2	8	0	1	2	0	1	2
D3	3	1	1	2	0	3	2
-		<u> </u>		·	<u> </u>	<u> </u>	·

D4	2	0	3	1	0	4	2
D5	1	0	0	2	0	6	1
D6	0	1	2	2	0	4	2
D7	3	0	1	1	0	2	1
D8	4	0	0	2	0	2	2
D9	3	0	0	3	0	3	1
D10	4	1	0	3	0	3	2
D11	7	1	0	2	0	2	2
D12	0	0	0	2	0	3	1
D13	1	1	2	3	0	3	2
D14	12	1	0	1	1	1	1
D15	1	1	0	1	0	0	2
Sum	54	7	10	29	1	41	25
E1	2	1	0	2	0	1	2
E2	5	0	0	2	0	2	2
E3	6	1	0	2	0	2	1
E4	3	5	1	2	0	1	1
E5	2	1	1	3	0	4	3
E6	7	1	0	1	0	1	1
E7	0	0	1	1	0	1	1
E8	1	0	0	1	0	1	1
E9	3	0	0	2	0	2	2
E10	8	1	0	2	1	2	2
E11	3	0	2	1	0	2	1
E12	1	0	0	2	0	2	1
E13	4	5	0	2	0	1	1
E14	5	1	0	1	1	2	1
E15	0	1	0	1	0	3	1
Sum	50	17	5	25	2	27	21
F1	0	0	1	1	0	1	1
F2	0	3	0	1	0	1	0
F3	3	1	4	1	0	1	1
F4	1	1	1	1	0	0	1
F5	4	0	1	1	0	1	1
F6	2	1	0	1	0	1	0
F7	4	0	0	1	1	1	0
F8	0	1	1	1	0	2	1
F9	2	0	3	1	0	0	1
F10	1	0	4	1	0	1	0
F11	5	1	2	2	0	4	1
F12	4	0	5	2	0	3	1
F13	3	0	1	1	0	2	1
F14	0	0	0	2	0	5	1
F15	2	0	0	3	0	3	2
Sum	31	8	23	20	1	26	12
	1				1	I .	1
DRI	255	48	70	154	17	191	139
% DRI	4	6	8	28	3	34	17

			Area,	mm2			
	Α	В	С	D	Е	F	
	100	100	100	100	100	100	
	100	100	100	100	100	100	
	100	100	100	100	100	100	
	100	100	100	100	100	100	
	100	100	100	100	100	100	
	100	100	100	100	100	100	
	100	100	100	100	100	100	
	100	100	100	100	100	100	
	100	100	100	100	100	100	l
	100	100	100	100	100	100	
	100	100	100	100	100	100	l
	100	100	100	100	100	100	
	100	100	100	100	100	100	
	100	100	100	100	100	100	
	100	100	100	100	100	100	
Total	1500	1500	1500	1500	1500	1500	ĺ

Valores de DRI completos para o prisma de betão Ki_B2

Sample	Ki_B2		Damage Ra	ating Index	on 100cm2		1524
Sum / 100cm2	96	100	47	408	430	290	153
Sum x Factor	115.25	120	56	489	516	348	184
Factor	0.25	2	2	3	3	3	2
Sum All	461	60	28	163	172	116	92
Section	CCA	OCA	OCRPA	DP	CCCP	OCRPCP	RP
A1	5	2	1	2	2	3	2
A2	5	0	0	0	1	1	1
A3	3	0	0	1	1	1	1
A4	0	0	0	0	2	0	0
A5	5	0	0	0	0	0	2
A6	2	2	2	1	0	1	1
A7	3	0	0	0	2	0	2
A8	3	0	0	1	1	0	1
A9	6	0	0	1	2	0	2
A10	6	0	0	1	2	0	0
A11	3	1	0	2	0	0	0
A12	4	0	0	1	2	2	0
A13	3	0	0	0	1	0	1
A14	6	0	0	0	0	0	0
A15	2	0	0	0	1	0	0
Sum	56	5	3	10	17	8	13
B1	3	0	0	0	0	2	2
B2	6		0	0 1	0	1	0
B3 B4	1	0	0	0	0	1	1
B5	2	0	0	0	1	1	1
B6	1	0	0	0	0	2	0
B7	3	0	0	1	1	1	0
B8	3	3	1	0	0	1	1
B9	1	0	0	1	1	1	1
B10	5	0	0	2	4	1	0
B11	7	0	0	1	0	2	0
B12	1	0	0	1	1	0	0
B13	6	0	0	0	2	0	0
B14	9	0	0	0	0	0	0
B15	2	0	0	0	0	0	1
Sum	50	4	1	7	11	13	8
C1	5	0	0	0	0	0	0
C2	2	0	0	0	1	1	1
C3	1	0	0	1	0	1	0
C4	4	1	0	0	2	1	1
C5	1	0	0	0	0	0	0
C6	2	0	0	1	1	1	0
C7	5	0	0	0	1	0	1
C8	4	0	0	1	3	2	0
C9	3	0	0	2	0	0	0
C10	1	0	0	3	1	1	0
C11	5	0	0	1	2	3	1
C12	2	0	0	1	2	0	0
C13	0	1	0	2	3	0	1
C14	4	0	0	2	0	1	0
C15	2	0	6	1	1	0	0
Sum	41	2	6	15	17	11	5
D1	3	3	0	1	1	0	1
D2	6	2	0	4	5	2	1
D3 D4	3	0	0	2 1	1	0 2	1 1
			0				
D5	3	0	0	1	0	1	1

D6	2	8	0	2	0	2	0
D7	5	0	0	4	2	1	1
D8	1	0	0	3	1	1	1
D9	3	3	0	2	3	0	1
D10	10	2	0	0	1	1	2
D11	1	0	1	2	2	1	1
D12	2	0	0	1	4	2	0
D13	11	0	0	1	2	1	1?
D14	2	0	0	1	2	0	0
D15	4			1			1
Sum	57	0 19	0 1	26	0 25	2 16	12
E1							
	2	0	0	1	2	2	0
E2	2	1	1	2	2	1	2
E3	2	0	0	2	1	0	0
E4	0	0	0	0	3	0	0
E5	11	0	0	0	1	0	1
E6	5	0	0	1	1	1	0
E7	5	0	0	1	1	0	0
E8	6	0	0	3	2	0	1
E9	6	0	0	2	1	1	0
E10	16	1	0	3	1	2	1
E11	0	0	0	1	2	0	1
E12	6	1	0	1	3	0	0
E13	15	0	0	2	8	0	0
E14	7	0	0	2	0	1	1
E15	5	0	0	2	5	1	2
Sum	88	3	1	23	33	9	9
F1	0	0	0	2	2	1	1
F2	3	0	0	2	1		1
F3	0	0	0	1	0	1	1
F4	0	0	0	0	3	0	0
F5	2	0	0	1	2	1	0
F6	2	4	0	2	3	2	1
F7	4	0	0	1	2	0	1
F8	2	1	0	1	1	0	0
F9	4	0	0	2	0	1	0
F10	4	0	0	4	0	3	1
F11	8	0	0	2	1	0	0
F12	4	0	0	2	1	2	1
F13	0	0	0	1	0	1	1
F14	0	0	0	1	4	1	0
F15	5	2	0	2	2	1	1
Sum	38	7	0	24	22	14	9
G1	5	2	1	2	2	1	1
G2	2	0	0	3	0	1	1
G3	1	0	1	1	0	1	0
G4	1	0	0	1	1	0	1
G5	0	0	0	1	4	1	0
G6	4	1	0	1	4	0	1
G7	13	6	0	2	1	1	2
G8	2	0	0	2	2	0	0
G9	6	0	2	3	0	2	1
G10	4	0	0	4	0	0	3
G11	3	0	0	2	0	1	2
G12	5	1	0	3	4	1	2
G13	19	3	0	1	1	2	=
G14	2	0	0	2	3	1	1
G15	2	0	0	1	0	1	1
Sum	69	13	4	29	22	13	16
Julii	บช	13	4	29		13	טו

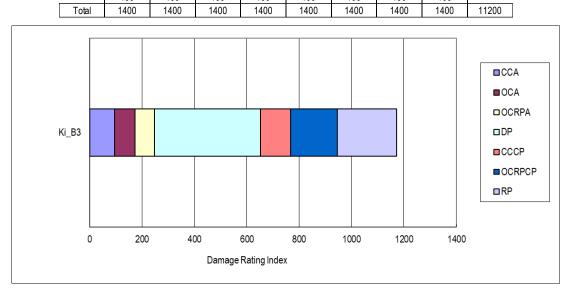
H1	2	1	0	1	1	2	1
H2	4	0	0	3	4	4	2
H3	1	0	0	2	2	1	2
H4	5	1	0	2	3	1	0
H5	6	3	0	2	1	6	1
H6	5	0	4	3	1	4	2
H7	6	0	2	4	3	3	4
H8	6	0	0	1	2	0	1
H9	0	0	2	2	1	3	1
H10	1	0	1	1	0	2	1
H11	3	0	2	3	0	1	2
H12	9	0	0	1	1	1	1
H13	10	2	1	2	3	2	0
H14	0	0	0	1	3	1	1
H15	4	0	0	1	0	1	1
Sum	62	7	12	29	25	32	20

DRI	461	60	28	163	172	116	92
% DRI	6	7	3	27	28	19	10

				Area,	mm2			
İ	Α	В	С	D	Е	F	G	Н
İ	100	100	100	100	100	100	100	100
Ī	100	100	100	100	100	100	100	100
Ī	100	100	100	100	100	100	100	100
	100	100	100	100	100	100	100	100
	100	100	100	100	100	100	100	100
	100	100	100	100	100	100	100	100
	100	100	100	100	100	100	100	100
	100	100	100	100	100	100	100	100
	100	100	100	100	100	100	100	100
	100	100	100	100	100	100	100	100
	100	100	100	100	100	100	100	100
	100	100	100	100	100	100	100	100
	100	100	100	100	100	100	100	100
	100	100	100	100	100	100	100	100
	100	100	100	100	100	100	100	100
ı	1500	1500	1500	1500	1500	1500	1500	1500

□ CCA ■ OCA □ OCRPA Ki_B2 □ DP ■ CCCP OCRPCP □ RP 0 200 400 600 800 1000 1200 1400 1600 Damage Rating Index

Valores de DRI completos para o prisma de betão Ki_B3


Sample	Ki_B3		Damage R	ating Index o	n 100cm2		1172
Sum / 100cm2	95	79	75	404	115	177	227
Sum x Factor	106.25	88	84	453	129	198	254
Factor	0.25	2	2	3	3	3	2
Sum All	425	44	42	151	43	66	127
Section	CCA	OCA	OCRPA	DP	CCCP	OCRPCP	RP
A1	3	0	1	2	0	1	3
A2	2	0	1	1	1	1	0
A3	3	1	0	2	0	1	1
A4	1	0	0	0	1	0	1
A5	2	4	3	1	1	1	1
A6	1	0	1	1	0	1	0
A7	1	0	0	1	0	1	2
A8	1	1	1	1	0	0	1
A9	2	0	0	2	0	0	2
A10	4	0	0	3	0	1	2
A11	1	2	1	2	0	1	3
A12	0	2	1	2	1	1	2
A13	4	0	2	3	0	1	2
A14	2	0	0	1	1	0	0
Sum	27	10	11	22	5	10	20
B1	2	0	1	1	1	0	1
B2	2	0	0	1	0	1	1
B3	2	0	1	2	0	2	1
B4	3	0	0	3	0	1	1
B5	1	0	1	2	0	0	1
B6	2	0	0	2	0	0	1
B7	9	0	1	1	0	0	1
B8	2	0	0	2	0	0	1
B9	7	0	0	1	0	1	1
B10	5	0	0	1	0	0	1
B11	1	0	0	1	1	1	1
B12	0	0	1	1	2	1	1
B13	1	0	0	1	0	1	1
B14	1	0	0	3	0	0	1
Sum	38	0	5	22	4	8	14
C1	2	4	3	2	3	1	2
C2	3	0	1	1	0	1	1
C3	6	0	0	3	0	1	2
C4	2	0	0	2	0	0	1
C5	2	1	0	1	0	0	1
C6	2	0	1	1	0	0	0
C7	1	0	0	0	0	0	1
C8	2	0	0	1	0	0	1
C9	1	1	0	1	0	0	1
C10	1	0	0	1	0	0	0
C11	0	0	0	2	0	0	0
C12	7	4	0	1	2	1	1
C13	1	0	1	2	0	0	1
C14	4	0	1	2	0	1	0
Sum	34	10	7	20	5	5	12
D1	5	5	1	2	0	2	2
D2	8	0	1	1	1	0	2
D3	5	0	0	3	0	0	1
D4	0	0	1	0	0	1	0
D5	2	0	0	1	1	0	1
D6	5	0	1	0	1	0	0
			'	J			,

D7	2	0	0	1		1	2
D7	2	0	0		0	0	2
D8		0	1	2	0		3
D9	1	0	1	1	0	1	2
D10	4	0	0	1	0	1	0
D11	3	0	0	1	0	0	1
D12	0	0	0	1	0	1	0
D13	5	0	0	1	1	0	2
D14	6	0	0	1	0	1	0
Sum	48	5	6	16	4	8	16
E1	2	0	0	0	1	0	0
E2	6	0	0	1	2	0	0
E3	21	2	0	1	2	1	0
E4	8	0	0	0	0	1	1
E5	5	0	0	0	0	1	1
E6	0	0	0	1	0	2	0
E7	13	0	1	1	1	0	1
E8	0	0	0	2	0	0	1
E9	5	0	0	2	0	1	2
E10	5	0	0	0	0	0	1
E11	0	0	0	1	0	1	1
E12	2	0	0	2	0	0	0
E13	7	0	0	1	0	1	1
E14	7	0	0	1	0	1	1
Sum	81	2	1	13	6	9	10
F1	2	0	0	2	0	1	2
F2	5	0	0	0	1	0	1
F3	2	0	0	0	2	0	0
F4	4	0	0	0	2	0	1
F5	4	1	0	0	2	1	1
F6	2	0	0	3	0	1	2
F7	23	3	0	2	1	1	1
F8	0	0	0	0	2	0	0
F9	11	0	0	1	1	0	1
F10	8	0	0	2	0	0	3
F11	3	0	1	0	0	0	2
F12	0	1	2	2	0	1	0
F13	5	0	0	0	0	0	1
F14	3	0	1	1	0	0	2
Sum	72	5	4	13	11	5	17
G1	7	0	1	2	1	0	1
G2	2	0	0	1	0	1	1
G3	1	0	0	0	0	0	0
G4	1	0	0	1	0	1	1
G5	5	0	1	2	1	1	1
G6	2	0	0	1	1	2	1
G7	7	0	0	1	0	0	1
G8	7	0	0	2	0	1	2
G9	18	2	1	2	0	0	2
G10	0	0	1	1	0	0	1
G11	2	0	0	1	1	1	2
G12	3	1	0	3	0	1	3
G13	3	0	0	2	0	2	2
G14	3	1	1	2	0	2	2
Sum	61	4	5	21	4	12	20
H1	5	0	0	3	0	0	1
H2	12	1	2	1	0	1	0
H3	4	0	0	2	0	0	0
	·	•					

H4	2	0	0	2	1	2	2
H5	2	0	0	2	1	1	3
H6	2	0	0	2	0	1	2
H7	1	0	0	1	0	0	2
H8	5	3	0	1	1	0	1
H9	5	2	0	1	0	0	1
H10	2	0	0	1	0	0	1
H11	9	0	0	1	1	1	1
H12	8	0	1	3	0	1	2
H13	4	2	0	2	0	1	0
H14	3	0	0	2	0	1	2
Sum	64	8	3	24	4	9	18

DRI	425	44	42	151	43	66	127
% DRI	8	7	6	35	10	15	19

				Area,	mm2				
	Α	В	С	D	Е	F	G	Н	
	100	100	100	100	100	100	100	100	
	100	100	100	100	100	100	100	100	1
	100	100	100	100	100	100	100	100	1
	100	100	100	100	100	100	100	100	1
	100	100	100	100	100	100	100	100	1
	100	100	100	100	100	100	100	100	1
	100	100	100	100	100	100	100	100	1
	100	100	100	100	100	100	100	100	1
	100	100	100	100	100	100	100	100	
	100	100	100	100	100	100	100	100	1
	100	100	100	100	100	100	100	100	1
	100	100	100	100	100	100	100	100	1
	100	100	100	100	100	100	100	100	1
	100	100	100	100	100	100	100	100	1
otal	1400	1400	1400	1400	1400	1400	1400	1400	11

Anexo 12

Composição em wt% de cristais de carbonatos analisados nos agregados de Kingston e respectiva identificação, acompanhados de tabela resultante do tratamento estatístico dos mesmos e leituras completas.

	ı																			
Ref	Ki_R1	Ki_R1	Ki_R1	Ki_R1	Ki_R1	Ki_R1	Ki_R1	Ki_R1	Ki_R1	Ki_R1	Ki_R1	Ki_R1	Ki_R1	Ki_R1	Ki_R1	Ki_R1				
Leitura	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	_			
CaO	52.720	52.510	52.274	52.653	52.344	51.162	52.410	52.539	31.172	32.439	31.839	30.820	33.138	32.219	32.067	31.532				
MgO	0.597	0.800	0.674	0.734	0.787	0.898	0.497	0.765	19.053	18.438	18.239	18.636	18.818	18.496	18.140	18.557				
FeO	0.564	0.599	0.512	0.687	0.541	0.816	0.586	0.644	1.286	0.743	1.182	1.925	0.365	0.525	1.214	0.693				
MnO	0.209	0.245	0.227	0.224	0.267	0.088	0.073	0.246	0.065	0.053	0.062	0.039	0.103	0.117	0.073	0.068				
CO2 (teórico)	42.500	42.600	42.213	42.681	42.434	41.685	42.076	42.613	46.098	46.080	45.666	45.741	46.843	45.877	45.764	45.477				
Total	96.590	96.754	95.900	96.979	96.373	94.649	95.642	96.807	97.674	97.753	96.988	97.161	99.267	97.234	97.258	96.327				
Descrição	Cal	Cal	Cal	Cal	Cal	Cal	Cal	Cal	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDol	_			
Ref	Ki_R2	Ki_R2	Ki_R2	Ki_R2	Ki_R2	Ki_R2	Ki_R2	Ki_R2	Ki_R2	Ki_R2	Ki_R2	Ki_R2	Ki_R2	Ki_R2						
Leitura	1	2	3	4	5	6	7	8	9	10	11	12	13	14						
CaO	53.501	53.86	54.723	55.071	33.952	33.998	33.63	33.813	34.313	32.897	33.032	33.379	33.442	34.286	-					
MgO	0.434	0.581	0.827	0.648	18.589	18.746	19.337	18.177	17.835	18.356	17.641	18.3	19.242	18.708						
FeO	0.283	0.369	0.043	0.075	0.702	0.804	0.504	1.16	0.797	1.022	0.696	1.255	0.646	0.317						
MnO	0.128	0.105	0.025	0.025	0.079	0.058	0.065	0.025	0.129	0.085	0.071	0.114	0.053	0.112						
CO2 (teórico)	42.712	43.193	43.889	43.987	47.423	47.680	47.857	47.111	46.972	46.541	45.657	47.019	47.686	47.600						
Total	97.058	98.108	99.507	99.806	100.745	101.286	101.393	100.286	100.046	98.901	97.097	100.067	101.069	101.023						
Descrição	Cal	Cal	Cal	Cal	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDol	•					
•	ı																			
Ref	Ki_R3	Ki_R3	Ki_R3	Ki_R3	Ki_R3	Ki_R3	Ki_R3	Ki_R3	Ki_R3	Ki_R3	Ki_R3	Ki_R3	Ki_R3	Ki_R3	Ki_R3	Ki_R3	Ki_R3	Ki_R3	Ki_R3	Ki_R3
Leitura	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
CaO	0.013	55.355	55.464	55.143	54.448	55.083	55.435	55.764	54.746	54.373	37.746	35.099	33.662	35.057	36.249	35.332	35.336	34.714	35.008	34.901
MgO	1.142	0.814	0.608	0.550	0.858	0.572	0.331	0.561	0.596	0.734	14.617	17.527	17.404	17.824	17.167	18.706	17.317	17.756	17.691	17.986
FeO	0.415	0.044	0.000	0.066	0.053	0.040	0.126	0.038	0.135	0.123	1.203	0.516	0.753	0.695	0.324	0.464	0.455	0.322	0.276	0.627
MnO	0.000	0.047	0.000	0.010	0.000	0.057	0.000	0.075	0.062	0.000	0.038	0.037	0.060	0.041	0.038	0.039	0.013	0.034	0.029	0.008
CO2 (teórico)	1.512	44.385	44.190	43.921	43.698	43.911	43.942	44.444	43.734	43.547	46.345	47.024	45.921	47.427	47.416	48.463	46.928	46.851	46.979	47.420
Total	3.082	100.645	100.262	99.690	99.057	99.663	99.834	100.882	99.273	98.777	99.949	100.203	97.800	101.044	101.194	103.004	100.049	99.677	99.983	100.942
Descrição	Inválido	Cal	Cal	Cal	Cal	Cal	Cal	Cal	Cal	Cal	Cal Mg [HMC]	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDol

Anexo 12 - Continuação

		ŀ	Ki_R1 : Ca				Ki_	R1 : Protol	Dol	
wt%	min	média	Máx	DP	med	min	média	Máx	DP	med
CaO	51.162	52.327	52.720	0.462	52.460	30.820	31.903	33.138	0.688	31.953
MgO	0.497	0.719	0.898	0.118	0.750	18.140	18.547	19.053	0.277	18.527
FeO	0.512	0.619	0.816	0.091	0.593	0.365	0.992	1.925	0.475	0.963
MnO	0.073	0.197	0.267	0.069	0.226	0.039	0.073	0.117	0.024	0.067
CO2 (teórico)	41.685	42.350	42.681	0.318	42.467	45.477	45.943	46.843	0.391	45.820
		I	Ki_R2 : Ca	l			Ki_	R2 : Protol	Dol	
wt%	min	média	Máx	DP	med	min	média	Máx	DP	med
CaO	53.501	54.289	55.071	0.633	54.292	32.897	33.674	34.313	0.463	33.722
MgO	0.434	0.623	0.827	0.141	0.615	17.641	18.493	19.337	0.520	18.473
FeO	0.043	0.193	0.369	0.137	0.179	0.317	0.790	1.255	0.274	0.750
MnO	0.025	0.071	0.128	0.046	0.065	0.025	0.079	0.129	0.030	0.075
CO2 (teórico)	42.712	43.445	43.987	0.522	43.541	45.657	47.155	47.857	0.632	47.267
		ŀ	Ki_R3 : Ca				Ki_	R3 : Protol	Dol	
wt%	min	média	Máx	DP	med	min	média	Máx	DP	med
CaO	54.373	55.090	55.764	0.451	55.143	33.662	35.040	36.249	0.638	35.057
MgO	0.331	0.625	0.858	0.150	0.596	17.167	17.709	18.706	0.429	17.691
FeO	0.000	0.069	0.135	0.045	0.053	0.276	0.492	0.753	0.161	0.464
MnO	0.000	0.028	0.075	0.030	0.010	0.008	0.033	0.060	0.015	0.037
CO2 (teórico)	43.547	43.975	44.444	0.291	43.921	45.921	47.159	48.463	0.636	47.024

													An	exo 12	– Cont	inuação
Ref	Ki_R1	Ki_R1	Ki_R1	Ki_R1	Ki_R1	Ki_R1	Ki_R1	Ki_R1	Ki_R1	Ki_R1	Ki_R1	Ki_R1	Ki_R1	Ki_R1	Ki_R1	Ki_R1
Leitura	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
CaO	52.720	52.510	52.274	52.653	52.344	51.162	52.410	52.539	31.172	32.439	31.839	30.820	33.138	32.219	32.067	31.532
CO2	31.019	31.246	32.146	28.881	29.511	30.922	29.836	29.696	29.274	32.064	29.479	30.149	28.540	32.347	30.794	30.208
La2O3	0.081	0.000	0.000	0.047	0.000	0.136	0.075	0.042	0.003	0.038	0.000	0.000	0.000	0.000	0.000	0.009
SrO	0.000	0.000	0.000	0.000	0.000	0.000	0.095	0.000	0.000	0.036	0.000	0.000	0.000	0.011	0.009	0.002
BaO	0.000	0.000	0.000	0.008	0.000	0.000	0.000	0.000	0.042	0.000	0.003	0.000	0.000	0.049	0.000	0.035
Na2O	0.003	0.000	0.000	0.000	0.061	0.000	0.000	0.025	0.050	0.076	0.039	0.042	0.077	0.065	0.033	0.087
Ce2O3	0.140	0.000	0.000	0.076	0.113	0.000	0.170	0.000	0.014	0.097	0.021	0.000	0.028	0.064	0.052	0.000
FeO	0.564	0.599	0.512	0.687	0.541	0.816	0.586	0.644	1.286	0.743	1.182	1.925	0.365	0.525	1.214	0.693
TiO2	0.008	0.000	0.000	0.016	0.037	0.000	0.000	0.011	0.055	0.000	0.001	0.014	0.024	0.000	0.016	0.009
MgO	0.597	0.800	0.674	0.734	0.787	0.898	0.497	0.765	19.053	18.438	18.239	18.636	18.818	18.496	18.140	18.557
MnO	0.209	0.245	0.227	0.224	0.267	0.088	0.073	0.246	0.065	0.053	0.062	0.039	0.103	0.117	0.073	0.068
ZnO	0.000	0.024	0.000	0.086	0.052	0.000	0.007	0.050	0.029	0.000	0.042	0.000	0.044	0.012	0.029	0.028
H2O	14.661	14.577	14.168	16.589	16.288	15.979	16.251	15.980	18.958	16.016	19.094	18.376	18.865	16.096	17.574	18.773
Total	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
Descrição	Cal	Cal	Cal	Cal	Cal	Cal	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDol
D. f	l 1/2 D0	I/: D0	I/: D0	K: D0	I/: D0	I/: D0	I/: D0	I/: D0	I/: D0	I/: D0	I/: D0	I/: D0	I/: D0	I/: D0		
Ref	Ki_R2 1	Ki_R2	Ki_R2	Ki_R2	Ki_R2	Ki_R2	Ki_R2	Ki_R2	Ki_R2	Ki_R2	Ki_R2	Ki_R2	Ki_R2 13	Ki_R2		
Leitura CaO	53.501	2 53.860	3 54.723	<u>4</u> 55.071	5 33.952	6 33.998	7 33.630	8 33.813	9 34.313	10 32.897	11 33.032	12 33.379	33.442	14 34.286	-	
CO2	l	27.796	28.616		33.952 29.578	28.253	29.350				30.932		33.442 28.142	28.505		
La2O3	31.039 0.000	0.056	0.000	27.196 0.163	0.020	0.000	0.055	30.089 0.075	30.431 0.000	31.164 0.056	0.014	29.333 0.000	0.000	0.000		
SrO	0.000	0.000	0.000	0.163	0.020	0.000	0.055	0.075	0.006	0.036	0.014	0.000	0.000	0.000		
SrO BaO	0.000	0.000	0.021	0.041	0.000	0.000	0.024	0.073	0.006	0.022	0.000	0.035	0.006	0.000		
Na2O	l			0.000	0.024	0.000	0.000	0.000	0.065		0.005			0.000		
	0.023	0.000	0.000							0.040		0.035	0.071			
Ce2O3	0.080	0.102	0.000	0.000	0.000	0.002	0.000	0.005	0.000	0.024	0.052	0.000	0.009	0.030		
FeO TiO2	0.283 0.071	0.369	0.043	0.075 0.001	0.702 0.000	0.804	0.504 0.009	1.160 0.003	0.797 0.000	1.022 0.000	0.696 0.000	1.255	0.646 0.010	0.317 0.000		
	0.071	0.000 0.581	0.000 0.827	0.648	18.589	0.000 18.746		0.003 18.177	17.835		17.641	0.000	19.242			
MgO	l						19.337			18.356		18.300		18.708		
MnO	0.128	0.105	0.025	0.025	0.079	0.058	0.065	0.025	0.129	0.085	0.071	0.114	0.053	0.112		
ZnO	0.000	0.000	0.003	0.000	0.001	0.021	0.000	0.021	0.018	0.004	0.000	0.000	0.000	0.044		
H2O	14.442	17.131 100.000	15.743	16.778	17.009	18.062	16.938	16.531	16.407	16.313	17.485	17.532	18.377	17.971		
Total	100.000		100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	-	
Descrição	Cal	Cal	Cal	Cal	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDol		

																Ar	exo 1	2 - Co	ontinu	ação
Ref	Ki_R3	Ki_R3	Ki_R3	Ki_R3	Ki_R3	Ki_R3	Ki_R3	Ki_R3	Ki_R3	Ki_R3	Ki_R3	Ki_R3	Ki_R3	Ki_R3	Ki_R3	Ki_R3	Ki_R3	Ki_R3	Ki_R3	Ki_R3
Leitura	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
CaO	0.013	55.355	55.464	55.143	54.448	55.083	55.435	55.764	54.746	54.373	37.746	35.099	33.662	35.057	36.249	35.332	35.336	34.714	35.008	34.901
CO2	27.403	26.660	26.063	25.263	26.248	27.305	26.332	25.086	27.681	28.363	24.903	29.391	26.489	30.116	28.119	26.410	27.853	28.738	28.292	24.473
La2O3	0.000	0.000	0.000	0.000	0.000	0.042	0.008	0.000	0.000	0.002	0.000	0.015	0.100	0.000	0.000	0.034	0.032	0.022	0.001	0.041
SrO	0.028	0.000	0.036	0.035	0.083	0.053	0.187	0.038	0.047	0.004	0.000	0.000	0.026	0.021	0.018	0.000	0.000	0.021	0.000	0.000
BaO	0.000	0.000	0.130	0.000	0.000	0.016	0.075	0.000	0.000	0.103	0.000	0.000	0.023	0.063	0.000	0.000	0.025	0.000	0.000	0.000
Na2O	0.030	0.041	0.000	0.008	0.033	0.000	0.056	0.028	0.022	0.000	0.039	0.049	0.058	0.051	0.064	0.057	0.067	0.046	0.055	0.066
Ce2O3	0.003	0.000	0.100	0.000	0.000	0.000	0.086	0.090	0.036	0.023	0.028	0.000	0.000	0.008	0.074	0.059	0.000	0.028	0.000	0.082
FeO	0.415	0.044	0.000	0.066	0.053	0.040	0.126	0.038	0.135	0.123	1.203	0.516	0.753	0.695	0.324	0.464	0.455	0.322	0.276	0.627
TiO2	0.000	0.000	0.000	0.028	0.000	0.016	0.014	0.042	0.000	0.000	0.103	0.000	0.000	0.000	0.010	0.000	0.025	0.044	0.012	0.003
MgO	1.142	0.814	0.608	0.550	0.858	0.572	0.331	0.561	0.596	0.734	14.617	17.527	17.404	17.824	17.167	18.706	17.317	17.756	17.691	17.986
MnO	0.000	0.047	0.000	0.010	0.000	0.057	0.000	0.075	0.062	0.000	0.038	0.037	0.060	0.041	0.038	0.039	0.013	0.034	0.029	0.008
ZnO	0.000	0.029	0.081	0.000	0.026	0.000	0.079	0.000	0.000	0.000	0.000	0.000	0.000	0.019	0.009	0.093	0.000	0.039	0.000	0.000
H2O	70.968	17.011	17.517	18.896	18.249	16.816	17.270	18.279	16.676	16.276	21.322	17.365	21.423	16.103	17.930	18.806	18.876	18.237	18.638	21.813
Total	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
Descrição	Inválido	Cal	Cal	Cal	Cal	Cal	Cal	Cal	Cal	Cal	Cal Mg [HMC]	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDol

Imagem de electrões retrodifundidos da matriz carbonatada de Ki_R1, composta por calcite \pm dolomite \pm quartzo \pm feldspatos \pm filossilicatos. (A) Imagem de electrões retrodifundidos obtida em MEV; (B-F) mapas composicionais dos respectivos elementos identificados no canto inferior esquerdo. Matriz carbonatada de Ki_R1, composta por massas alongadas de calcite no seio de proto dolomites, com quartzo detrítico e uma grande quantidade de filossilicatos nos interstícios da matriz. [Nota: a faixa oblíqua escurecida presente nos mapas composicionais corresponde a um problema na aquisição de imagens e não a um empobrecimento elementar]

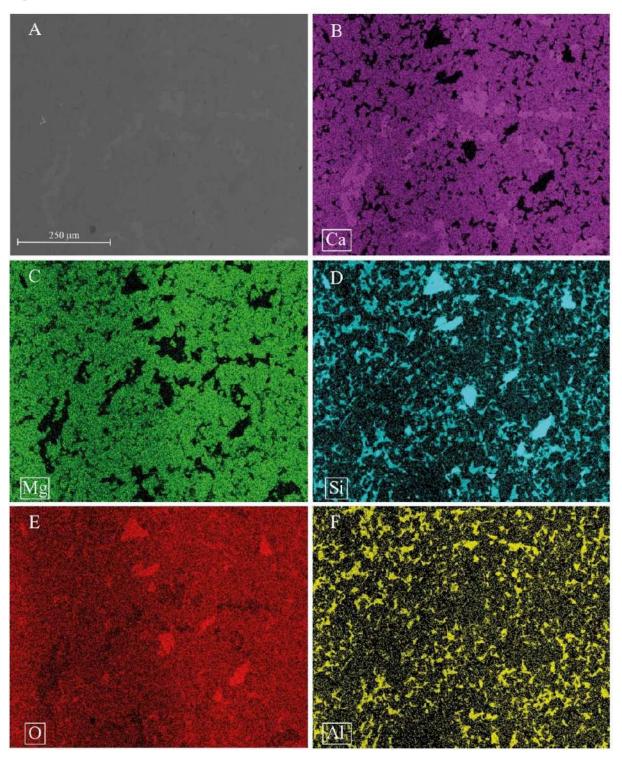
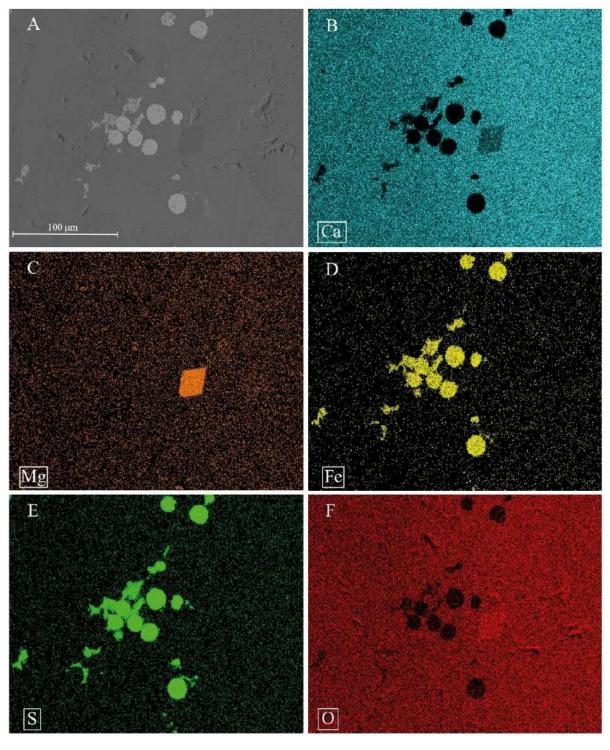



Imagem de electrões retrodifundidos da matriz carbonatada de Ki_R2, composta por calcite \pm dolomite \pm pirite. (A) Imagem de electrões retrodifundidos obtida em MEV; (B-F) mapas composicionais dos respectivos elementos identificados no canto inferior esquerdo. Matriz carbonatada composta por calcite com proto dolomites dispersas e pouco abundante, especialmente bem desenvolvidas na proximidade de pirites framboidais.

Composição em wt% de grãos de quartzo analisados nos agregados de Kingston, Ontário.

Ref	Ki_R1	Ki_R2	Ki_R3	Ki_R3	Ki_R3	Ki_R3	Ki_R3																		
Leitura	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5
CaO	0.000	0.022	0.039	0.035	0.008	35.674	36.275	0.052	0.128	0.009	0.469	6.275	0.437	0.271	0.162	0.200	3.655	0.247	0.220	0.265	0.090	0.219	0.134	0.115	0.161
F	0.079	0.049	0.000	0.000	0.000	0.122	0.164	0.000	0.038	0.000	0.036	0.089	0.000	0.056	0.000	0.000	0.000	0.000	0.074	0.000	0.028	0.007	0.047	0.000	0.073
SiO2	99.931	99.347	99.407	100.773	99.467	0.818	0.656	100.069	100.335	100.372	146.111	131.816	145.682	146.614	145.978	146.597	139.489	102.862	145.588	147.308	99.196	99.625	100.924	100.277	100.726
Rb2O	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TiO2	0.000	0.000	0.013	0.000	0.012	0.000	0.000	0.000	0.000	0.009	0.000	0.000	0.005	0.000	0.018	0.006	0.000	0.000	0.000	0.061	0.010	0.009	0.000	0.000	0.009
Na2O	0.000	0.006	0.000	0.000	0.001	0.072	0.055	0.000	0.008	0.005	0.005	0.019	0.000	0.021	0.000	0.000	0.039	20.646	0.000	0.000	0.000	0.000	0.015	0.004	0.004
CI	0.010	0.000	0.000	0.004	0.000	0.035	0.015	0.000	0.013	0.016	0.000	0.019	0.000	0.014	0.000	0.018	0.004	0.004	0.017	0.000	0.000	0.000	0.002	0.000	0.013
K20	0.046	0.059	0.007	0.001	0.009	0.156	0.134	0.003	0.002	0.000	0.011	0.002	0.004	0.000	0.000	0.000	0.003	0.046	0.008	0.000	0.002	0.008	0.000	0.000	0.000
Cr2O3	0.055	0.052	0.073	0.039	0.064	0.056	0.058	0.043	0.053	0.028	0.127	0.188	0.134	0.106	0.084	0.103	0.051	0.087	0.164	0.089	0.049	0.066	0.078	0.047	0.039
MgO	0.018	0.041	0.003	0.001	0.000	22.386	22.536	0.000	0.001	0.006	0.000	0.016	0.024	0.000	0.000	0.000	0.054	0.000	0.000	0.000	0.000	0.001	0.001	0.000	0.000
Cs2O	0.000	0.003	0.028	0.033	0.000	0.000	0.000	0.000	0.020	0.000	0.103	0.000	0.090	0.000	0.000	0.021	0.001	0.000	0.033	0.000	0.001	0.000	0.000	0.034	0.000
BaO	0.044	0.028	0.000	0.009	0.000	0.017	0.000	0.000	0.093	0.029	0.000	0.000	0.057	0.062	0.000	0.000	0.000	0.070	0.000	0.027	0.050	0.011	0.000	0.000	0.010
MnO	0.000	0.015	0.031	0.000	0.006	0.169	0.151	0.000	0.021	0.000	0.008	0.047	0.000	0.000	0.057	0.025	0.000	0.050	0.000	0.060	0.001	0.002	0.023	0.031	0.004
AI2O3	0.164	0.160	0.000	0.007	0.013	0.231	0.285	0.000	0.000	0.015	0.025	0.000	0.000	0.010	0.002	0.011	0.245	37.252	0.039	0.000	0.002	0.000	0.003	0.000	0.014
NiO	0.021	0.000	0.000	0.003	0.015	0.040	0.060	0.051	0.035	0.006	0.000	0.100	0.003	0.086	0.039	0.044	0.000	0.000	0.105	0.000	0.038	0.000	0.042	0.013	0.037
FeO	0.014	0.021	0.034	0.022	0.031	0.297	0.283	0.019	0.053	0.008	0.142	0.038	0.038	0.057	0.000	0.042	0.024	0.003	0.037	0.021	0.000	0.040	0.014	0.000	0.008
H2O	0.000	0.217	0.363	0.000	0.374	39.989	39.401	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.544	0.017	0.000	0.000	0.000
Total	100.346	100.000	100.000	100.926	100.000	100.000	100.000	100.237	100.781	100.499	147.022	138.567	146.474	147.270	146.340	147.063	143.564	161.266	146.250	147.831	100.000	100.000	101.263	100.521	101.064
Descrição	Qz	Qz	Qz	Qz	Qz	Qz+Cal	Qz+Cal	Qz	Qz	Qz	Inválido	Inválido	Inválido	Inválido	Inválido	Inválido	Inválido	Inválido	Inválido	Inválido	Qz	Qz	Qz	Qz	Qz

Imagem de electrões retrodifundidos da matriz carbonatada de Ki_R2 com grãos euédricos de quartzo (ampliado no Anexo 17). (A) Imagem de electrões retrodifundidos obtida em MEV; (B-F) mapas composicionais dos respectivos elementos identificados no canto inferior esquerdo. Mapas composicionais da matriz de Ki_R2 com vários cristais euédricos de quartzo, indício de formação em espaço aberto e do carácter epigenético destes grãos minerais. [Nota: a faixa oblíqua escurecida presente nos mapas composicionais corresponde a um problema na aquisição de imagens e não a um empobrecimento elementar]

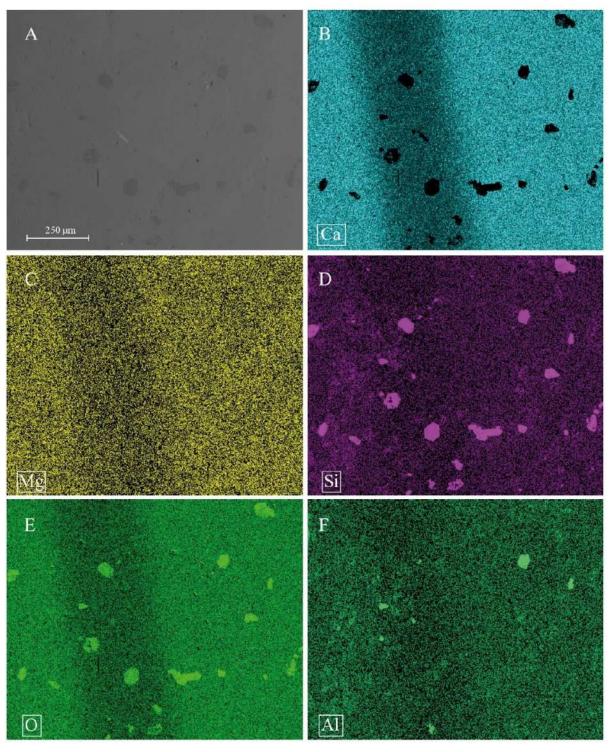
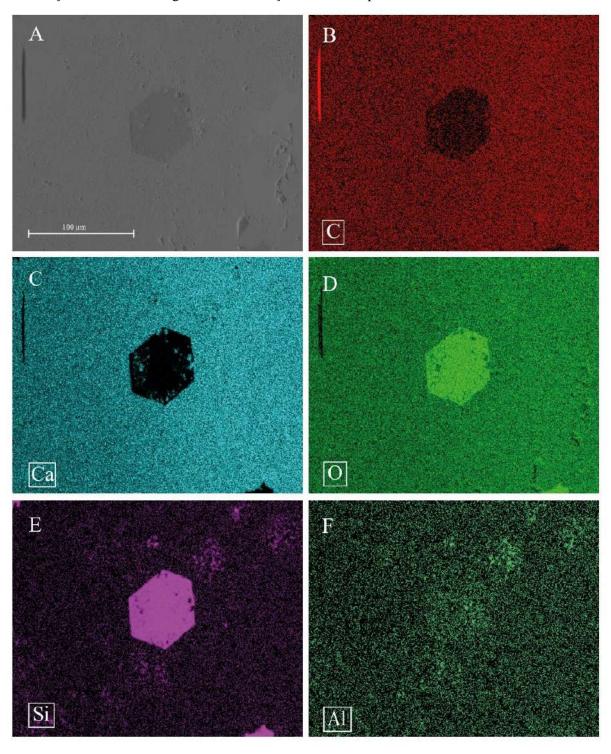



Imagem de electrões retrodifundidos da matriz carbonatada de Ki_R2 com grão euédrico de quartzo. (A) Imagem de electrões retrodifundidos obtida em MEV; (B-F) mapas composicionais dos respectivos elementos identificados no canto inferior esquerdo. Ampliação de cristal euédrico de quartzo observado em Ki_R2, com pequenas inclusões da matriz carbonatada no seu interior, indício de crescimento no interior da matriz. Observa-se também um ligeiro sinal de Si e Al na parte superior direita do cristal, sem a presença de interstícios na matriz carbonatada, possível indício da presença de um fenómeno de silicificação da rocha de Kingston, ou a formação de um feldspato.

																		AllC	AU 10
Composição	o em wt%	de grãos	s de felo	Ispato a	nalisado	s nos ag	gregado	s de Kii	ngston (Ontário	e respe	ectiva id	lentifica	ção.					
Ref	Ki_R1	Ki_R1	Ki_R1	Ki_R1	Ki_R1	Ki_R1	Ki_R1	Ki_R1	Ki_R1	Ki_R2	Ki_R2	Ki_R2	Ki_R2	Ki_R2	Ki_R2	Ki_R2	Ki_R2	Ki_R2	Ki_R2
Leitura	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9	10
SiO2	64.756	64.87	64.812	66.608	61.576	69.072	65.979	64.509	67.945	53.799	63.293	63.39	64.013	63.914	64.924	63.292	67.823	68.085	67.897
Na2O	1.04	0.413	0.388	10.357	10.669	11.389	10.218	0.42	10.885	9.942	0.761	0.922	0.673	0.291	11.525	11.912	12.185	12.226	12.542
BaO	0.572	0.741	0.753	0.126	0	0.01	0	0.104	0	0	0.101	1.134	0.283	0.662	0	0.109	0	0	0.045
K20	15.013	16.05	16.055	0.407	0.059	0.029	0.201	16.242	0.085	0.047	15.392	14.591	15.382	15.814	0.236	0.021	0.025	0.035	0.091
CaO	0.158	0.105	0.091	0.805	3.361	0.088	2.073	0.092	0.771	11.625	0.234	0.189	0.227	0.228	2.274	4.127	0.17	0.392	0.525
MgO	0.004	0.006	0	0.284	0.667	0	0.015	0	0	0.057	0	0.003	0	0.008	0.11	0	0.007	0	0.006
TiO2	0.061	0.031	0	0.054	0.054	0	0.028	0	0.002	0.017	0	0	0	0.03	0.055	0	0.008	0	0
SrO	0.243	0.228	0.099	0.005	0	0	0.025	0	0.038	0.135	0.054	0.154	0.1	0.127	0	0	0	0	0
Al2O3	18.498	18.36	18.188	19.262	17.871	19.257	20.766	18.313	19.92	17.719	17.238	17.881	17.335	17.49	17.28	17.917	18.36	18.299	18.593
MnO	0	0	0.027	0	0.065	0	0	0	0	0	0	0.024	0.031	0	0.001	0.026	0	0.002	0.01
FeO(t)	0.027	0.137	0.017	0.813	0.104	0.01	0.052	0.032	0.04	0.153	0.045	0.02	0.014	0	0.128	0.022	0.014	0.043	0.044
Total	100.372	100.941	100.43	98.721	94.426	99.855	99.357	99.712	99.686	93.494	97.118	98.308	98.058	98.564	96.533	97.426	98.592	99.082	99.753
Descrição	Or	Or	Or	Ab	Olg	Ab	Olg	Or	Ab	Andes	Or	Sa	Or	Or	Olg	Olg	Ab	Ab	Ab
Ref	Ki_R3	Ki_R3	Ki_R3	Ki_R3	Ki_R3	Ki_R3	Ki_R3	Ki_R3	Ki_R3	Ki_R3									
Leitura	1	2	3	4	5	6	7	8	9	10									
SiO2	64.591	60.605	67.198	64.623	54.5	64.518	63.618	65.076	60.083	64.995	-								
Na2O	0.364	0.38	10.54	0.412	0.356	0.562	0.361	0.079	0.351	0.241									
BaO	0.386	0.053	0	0.41	0.54	0.578	0.185	0.065	0.091	0.707									
K20	16.09	14.907	0.241	16.22	13.356	15.775	15.191	16.684	14.348	15.92									
CaO	0.239	3.843	1.714	0.283	7.822	0.358	2.141	0.193	3.35	0.141									
MgO	0	0.047	0.023	0	0.443	0	0.532	0.021	0.611	0									
TiO2	0	0	0	0.015	0.015	0.011	0	0.061	0	0.062									
SrO	0.115	0.024	0.178	0.081	0	0.051	0.061	0.071	0	0.13									
Al2O3	17.464	16.299	19.372	17.17	15.169	17.495	15.519	17.036	15.833	17.423									
MnO	0.004	0	0	0.031	0.053	0	0.004	0.06	0	0.082									
FeO(t)	0.06	0.033	0.066	0.05	0.301	0.031	0.128	0.067	0.214	0									
Total	99.313	96.191	99.332	99.295	92.555	99.379	97.74	99.413	94.881	99.701	_								
Descrição	Or	mSs	Ab	Or	m Ss	Or	m Ss	Or	mSs	Or	=								

Anexo 18 - Continuação

Valores estatísticos (a.p.f.u.) da composição dos grãos de ortóclase (Or) e albite (Ab) analisados no conjunto de agregados Kingston.

conjunto de agregados Kingston.												
		ŀ	Ki_R1 : Or	•			ŀ	<pre>Ki_R1 : Ab</pre>	1			
a.p.f.u.	min	média	Máx	DP	med	min	média	Máx	DP	med		
Si	0.96	0.97	0.97	0.00	0.97	0.92	1.03	1.09	0.06	1.03		
Na	0.01	0.02	0.03	0.01	0.01	0.31	0.32	0.35	0.02	0.31		
Ва	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
K	0.29	0.30	0.31	0.01	0.31	0.00	0.00	0.01	0.00	0.00		
Ca	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.05	0.02	0.01		
Mg	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00		
Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Sr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Al	0.32	0.32	0.33	0.00	0.32	0.32	0.36	0.38	0.02	0.36		
Mn	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Fe	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00		
		ŀ	Ki R2 : Or	,			ł	(i_R2 : Ab)			
a.p.f.u.	min	média	_ Máx	DP	med	min	média	_ Máx	DP	med		
Si	0.92	0.93	0.94	0.01	0.93	0.98	1.04	1.08	0.04	1.06		
Na	0.01	0.02	0.03	0.01	0.02	0.34	0.37	0.39	0.02	0.37		
Ва	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
K	0.27	0.29	0.30	0.01	0.29	0.00	0.00	0.00	0.00	0.00		
Ca	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.07	0.03	0.01		
Mg	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Sr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Al	0.30	0.30	0.31	0.00	0.30	0.31	0.33	0.35	0.01	0.34		
Mn	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Fe	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
		ŀ	Ki_R3 : Or				Ki_R3 :	: Ab_Leitu	ra nº 3			
a.p.f.u.	min	média	Máx	DP	med							
Si	0.96	0.96	0.96	0.00	0.96			1.05				
Na	0.00	0.01	0.02	0.00	0.01			0.32				
Ва	0.00	0.00	0.00	0.00	0.00			0.00				
K	0.30	0.31	0.32	0.01	0.30			0.00				
Ca	0.00	0.00	0.01	0.00	0.00			0.03				
Mg	0.00	0.00	0.00	0.00	0.00			0.00				
Ti	0.00	0.00	0.00	0.00	0.00			0.00				
Sr	0.00	0.00	0.00	0.00	0.00			0.00				
Al	0.30	0.30	0.31	0.00	0.30			0.36				
Mn	0.00	0.00	0.00	0.00	0.00			0.00				
Fe	0.00	0.00	0.00	0.00	0.00			0.00				

Imagem de electrões retrodifundidos da matriz carbonatada de Ki_R3, composta por calcite \pm dolomite \pm quartzo \pm feldspatos. (A) Imagem de electrões retrodifundidos obtida em MEV; (B-F) mapas composicionais dos respectivos elementos identificados no canto inferior esquerdo. Zona da matriz afectada pelo processo metassomático, com grande quantidade de silicatos dispersos, com uma matriz proto dolomítica bem presente. [Nota: a faixa oblíqua escurecida presente nos mapas composicionais corresponde a um problema na aquisição de imagens e não a um empobrecimento elementar]

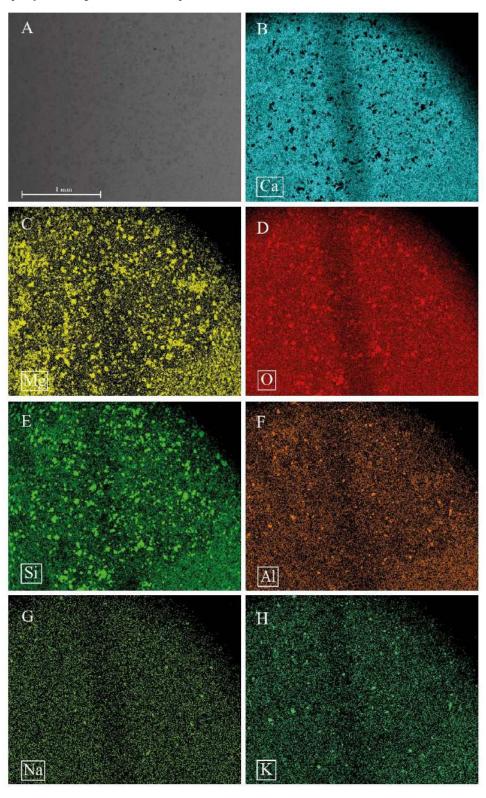
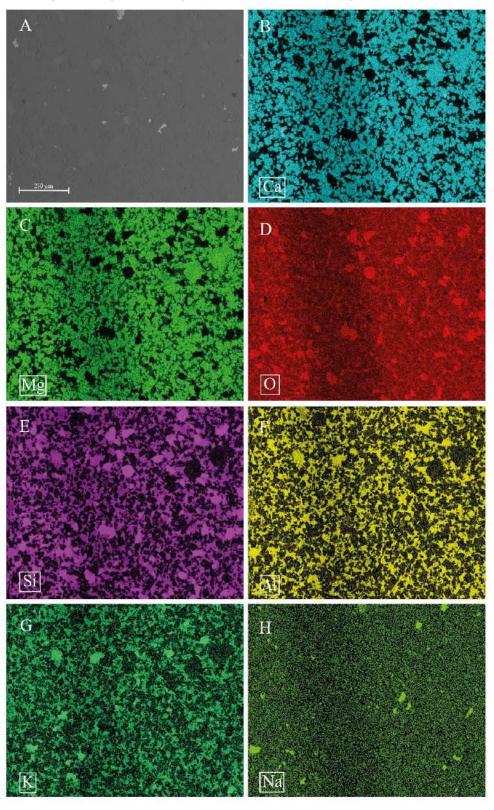



Imagem de electrões retrodifundidos da matriz carbonatada de Ki_R1, apresentando uma matriz proto dolomítica bem desenvolvida, associada à presença de calcite \pm quartzo \pm feldspatos \pm filossilicatos. (A) Imagem de electrões retrodifundidos obtida em MEV; (B-H) mapas composicionais dos respectivos elementos identificados no canto inferior esquerdo. [Nota: a faixa oblíqua escurecida presente nos mapas composicionais corresponde a um problema na aquisição de imagens e não a um empobrecimento elementar]

Anexo 21

Composição em wt% de cristais de pirite analisados nos agregados de Kingston (Ontário).

Ref	Ki_R1	Ki_R1	Ki_R1	Ki_R1	Ki_R2	Ki_R2	Ki_R2	Ki_R2	Ki_R2	Ki_R2	Ki_R2	Ki_R2	Ki_R2	Ki_R2
Sample	1	2	3	4	1	2	3	4	5	6	7	8	9	10
Bi	0	0	0	0	0	0	0	0	0	0	0	0	0	0.031
Ga	0	0	0	0	0	0	0	0	0	0	0	0.027	0	0.013
Pb	0.084	0.122	0.069	0.161	0	0.165	0.063	0.668	0.165	0.16	0.052	0.042	0.061	0.085
Au	0.037	0.017	0.01	0.005	0.058	0	0	0	0	0.012	0.005	0	0.012	0
Ag	0.019	0	0	0	0	0	0	0.004	0.067	0	0	0.03	0	0.012
Ge	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cd	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mo	0	0	0	0	0	0	0	0	0	0	0	0	0	0
In	0	0	0	0	0	0	0	0	0.019	0.02	0	0	0.011	0
As	0	0	0.015	0	0	0.01	0	0	0	0.027	0	0	0	0
Sn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S	53.244	52.732	53.356	53.442	52.005	52.061	52.526	53.104	52.172	52.483	53.133	52.307	52.916	52.654
Ni	0.017	0.041	0	0	0.077	0.038	0.022	0	0.06	0.026	0.108	0.033	0.002	0.063
Se	0.003	0	0	0	0	0.005	0.016	0.011	0	0	0	0	0	0
Zn	0	0	0.079	0	0	0.021	0	0	0	0.073	0.03	0	0.063	0
Fe	47.101	47.011	46.944	47.087	45.82	46.124	46.318	47.112	45.727	46.179	46.579	46.374	46.649	46.314
Sb	0	0.01	0	0	0	0	0	0	0.009	0	0.014	0	0	0
Mn	0	0.01	0	0.001	0	0.008	0	0	0.024	0	0.056	0.021	0.013	0.087
Co	0.051	0.018	0	0	0.061	0.014	0.031	0	0.042	0.022	0	0.027	0	0.059
W	0.077	0.089	0	0	0.067	0	0	0	0.268	0	0.202	0.059	0.013	0.069
Te	0	0	0	0	0	0.019	0	0.008	0.069	0.016	0	0	0	0
Cu	0	0	0.025	0	0	0	0.01	0	0	0.011	0.015	0.019	0.003	0.038
Total	100.633	100.05	100.498	100.696	98.088	98.465	98.986	100.907	98.622	99.029	100.194	98.939	99.743	99.425
Description	Py	Ру	Py	Ру	Ру	Py	Py	Ру	Py	Py	Ру	Ру	Ру	Py

Imagem de electrões retrodifundidos da matriz carbonatada de Ki_R2, composta por calcite + dolomite + pirite framboidal + quartzo. (**A**) Imagem de electrões retrodifundidos obtida em MEV; (**B-H**) mapas composicionais dos respectivos elementos identificados no canto inferior esquerdo. Associado ao desenvolvimento da matriz dolomítica observam-se os diferentes silicatos, assim como uma maior presença de Fe na matriz carbonatada circundante à pirite framboidal, com ligeiro sinal de Co.

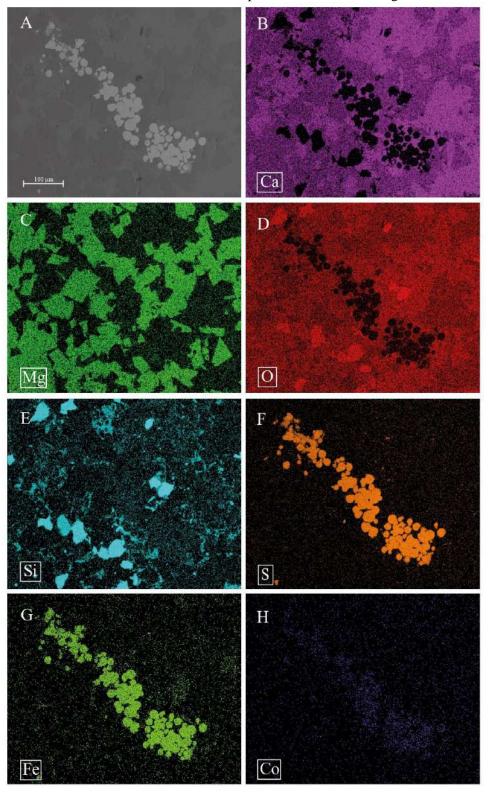
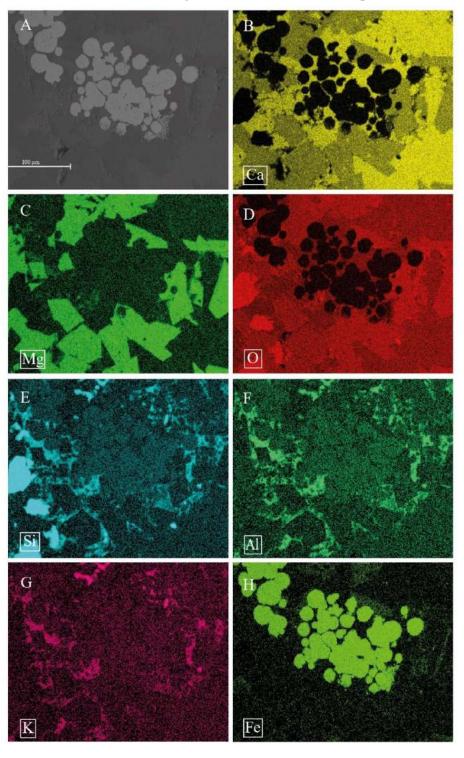
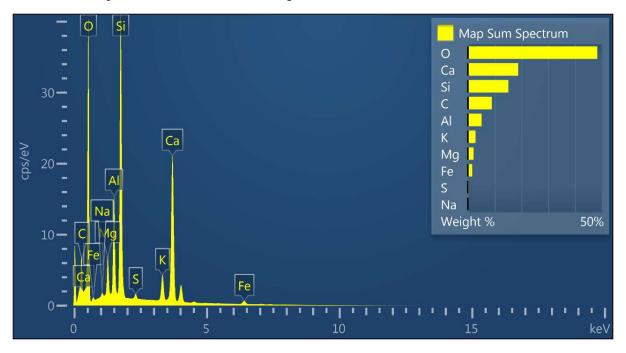



Imagem de electrões retrodifundidos da matriz carbonatada de Ki_R2, composta por calcite + dolomite + pirite framboidal + quartzo (ampliação do canto inf. direito do Anexo 25). (A) Imagem de electrões retrodifundidos obtida em MEV; (B-H) mapas composicionais dos respectivos elementos identificados no canto inferior esquerdo. Zona da matriz dolomítica bem desenvolvida de Ki_R2, associada a pirite framboidal, com a presença de Si, Al e K nos interstícios da matriz, resultado do processo metassomático, com indícios de algum tipo de armadilha geoquímica envolvida na deposição destes minerais. Note-se também o sinal de Fe mais intenso nos carbonatos em redor do sulfureto, resultado da passagem deste elemento entre mineralogias devido à instabilidade da pirite.

Anexo 24


Composições em wt% de cristais de sulfato analisados nos agregados de Kingston (Ontário).

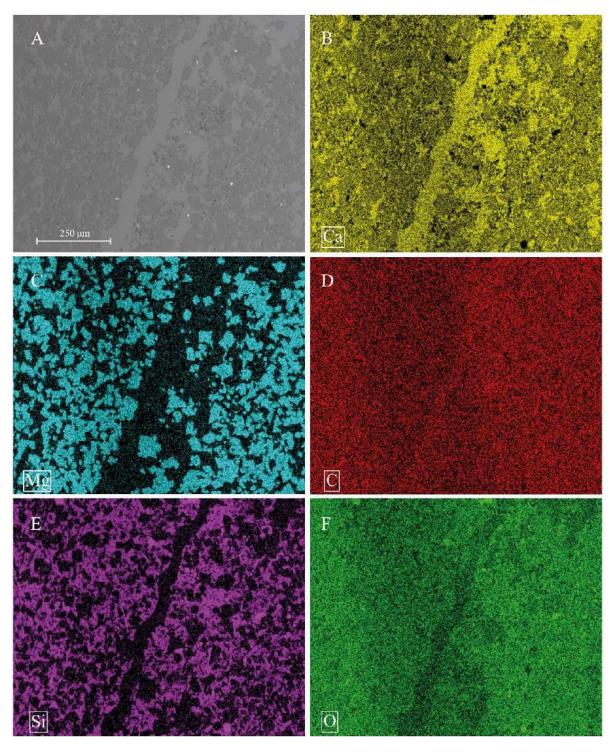
Ref	Ki_R1	Ki_R1	Ki_R1	Ki_R1	Ki_R1	Ki_R1	Ki_R1	Ki_R1	Ki_R1
Sample	1	2	3	4	5	6	7	8	9
SrO	55.115	54.609	53.076	54.966	55.672	55.483	55.893	54.969	55.614
SO3	43.883	43.42	42.653	43.001	43.824	44.057	43.979	43.954	43.767
ThO2	0	0	0	0.121	0	0.01	0	0.191	0
MgO	0.005	0	0	0.003	0.01	0	0	0.003	0.018
SiO2	0.032	0	0.073	0.001	0	0	0	0	0
BaO	0.903	1.684	0.394	1.727	0.792	0.228	0.32	1.073	1.207
CaO	0.116	0.048	0.221	0.083	0.007	0.109	0.084	0.012	0.021
Al2O3	0	0	0	0	0.019	0	0	0	0
PbO	0.051	0	0.063	0.12	0.135	0	0.071	0	0.036
TiO2	0.016	0	0	0	0.003	0	0.051	0	0
CuO	0.004	0.004	0	0	0.103	0.016	0	0.02	0
FeO	0.004	0	0	0	0.023	0.028	0.028	0.049	0.024
H2O	0	0.236	3.52	0	0	0.068	0	0	0
Total	100.129	100	100	100.022	100.588	100	100.426	100.271	100.687
Description	Clt	Clt	Clt	Clt	Clt	Clt	Clt	Clt	Clt

Valores estatísticos (wt% e a.p.f.u.) das celestites presentes no conjunto de agregados Ki_R1.

wt%			Ki_R1			on fu			Ki_R1		
W L /0	min	média	Máx	DP	med	a.p.f.u.	min	média	Máx	DP	med
SrO	53.08	55.04	55.89	0.80	55.12	Sr	0.97	0.98	0.99	0.00	0.98
SO3	42.65	43.62	44.06	0.46	43.82	S	0.99	1.00	1.01	0.01	1.00
ThO2	0.00	0.04	0.19	0.07	0.00	Th	0.00	0.00	0.00	0.00	0.00
MgO	0.00	0.00	0.02	0.01	0.00	Mg	0.00	0.00	0.00	0.00	0.00
SiO2	0.00	0.01	0.07	0.02	0.00	Si	0.00	0.00	0.00	0.00	0.00
BaO	0.23	0.93	1.73	0.52	0.90	Ва	0.00	0.01	0.02	0.01	0.01
CaO	0.01	0.08	0.22	0.06	0.08	Ca	0.00	0.00	0.01	0.00	0.00
Al2O3	0.00	0.00	0.02	0.01	0.00	Al	0.00	0.00	0.00	0.00	0.00
PbO	0.00	0.05	0.14	0.05	0.05	Pb	0.00	0.00	0.00	0.00	0.00
TiO2	0.00	0.01	0.05	0.02	0.00	Ti	0.00	0.00	0.00	0.00	0.00
CuO	0.00	0.02	0.10	0.03	0.00	Cu	0.00	0.00	0.00	0.00	0.00
FeO	0.00	0.02	0.05	0.02	0.02	Fe	0.00	0.00	0.00	0.00	0.00

Espectro EDS do preenchimento dos interstícios da matriz dolomítica de Ki_R1. Os sinais de Si, Al, K, Na e Mg deverão corresponder a filossilicatos. A presença de um sinal fraco de S poderá corresponder a sulfatos ou sulfuretos microcristalinos, possivelmente o mesmo tipo de cristais observados de forma concentrada em planos estilolíticos como na Figura VII.25.

Anexo 26


Composições em wt% de cristais de carbonatos analisados nos agregados de Spratt e respectiva identificação, acompanhados de tabela resultante do tratamento estatístico dos mesmos, seguido das leituras completas realizadas.

Ref	Spr_R1	Spr_R1	Spr_R1	Spr_R1	Spr_R1	Spr_R1	Spr_R1	Spr_R1	Spr_R1	Spr_R1											
Leitura	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
CaO	57.155	56.875	55.942	55.738	56.286	56.536	56.791	56.874	55.074	56.462	53.912	39.376	38.227	30.854	30.850	29.480	30.678	29.148	29.766	30.396	30.719
MgO	0.329	0.439	0.188	0.449	0.862	0.824	0.416	0.270	0.387	0.134	0.204	9.999	13.017	19.163	18.351	20.028	19.008	19.682	20.703	19.896	20.183
FeO	0.014	0.039	0.055	0.002	0.000	0.002	0.005	0.015	0.005	0.000	0.026	0.048	0.098	1.532	1.860	1.150	1.409	0.849	0.115	0.668	0.072
MnO	0.051	0.000	0.026	0.029	0.037	0.021	0.029	0.046	0.012	0.000	0.011	0.101	0.033	0.107	0.116	0.120	0.086	0.270	0.128	0.064	0.013
CO2 (teórico)	45.252	45.136	44.156	44.250	45.135	45.281	45.043	44.965	43.653	44.455	42.553	41.912	44.295	46.145	45.461	45.785	45.749	45.056	46.118	46.030	46.200
Total	102.801	102.489	100.367	100.468	102.320	102.664	102.284	102.170	99.131	101.051	96.706	91.436	95.670	97.801	96.638	96.563	96.930	95.005	96.830	97.054	97.187
Descrição	Сс	Inválido	Cal Mg [HMC]	Dol	Dol	Dol	Dol	Dol	Dol	Dol	Dol										
Ref	Spr_R2	Spr_R2	Spr_R2	Spr_R2	Spr_R2	Spr_R2	Spr_R2	Spr_R2	Spr_R2	Spr_R2											
Leitura	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
CaO	56.107	55.147	54.059	54.819	55.501	53.599	56.061	55.243	55.715	55.910	56.309	32.669	32.786	32.599	32.865	32.660	33.723	31.478	31.455	32.012	30.832
MgO	0.864	0.977	0.685	0.527	0.747	0.609	0.330	0.470	0.613	0.463	0.416	20.357	19.938	20.225	19.814	20.057	19.924	19.712	20.308	20.317	19.566
FeO	0.016	0.006	0.023	0.017	0.013	0.025	0.000	0.097	0.049	0.027	0.020	0.133	0.104	0.267	0.061	0.248	0.440	0.458	0.387	0.262	1.228
MnO	0.022	0.000	0.022	0.000	0.000	0.032	0.044	0.068	0.020	0.000	0.045	0.038	0.027	0.034	0.067	0.053	0.086	0.062	0.054	0.082	0.219
CO2 (teórico)	44.997	44.348	43.199	43.606	44.379	42.762	44.382	43.967	44.435	44.398	44.683	47.973	47.583	47.854	47.508	47.718	48.545	46.548	47.133	47.520	46.451
Total	102.006	100.478	97.988	98.969	100.640	97.027	100.817	99.845	100.832	100.798	101.473	101.170	100.438	100.979	100.315	100.736	102.718	98.258	99.337	100.193	98.296
Descrição	Co	Dol	Del	Dal	Dal	Dal	Dal	Dal	Dal	Dal	Dol										

			Spr_R1 : Co	:				Spr_R1 : Do	I	
wt%	min	média	Máx	DP	med	min	média	Máx	DP	med
CaO	53.912	56.150	57.155	0.910	56.462	29.148	30.236	30.854	0.631	30.537
MgO	0.134	0.409	0.862	0.228	0.387	18.351	19.627	20.703	0.701	19.789
FeO	0.000	0.015	0.055	0.017	0.005	0.072	0.957	1.860	0.610	1.000
MnO	0.000	0.024	0.051	0.016	0.026	0.013	0.113	0.270	0.069	0.112
CO2 (teórico)	42.553	44.535	45.281	0.807	44.965	45.056	45.818	46.200	0.371	45.908
			Spr_R2 : Co	:				Spr_R2 : Do	l	
wt%	min	média	Máx	DP	med	min	média	Máx	DP	med
CaO	53.599	55.315	56.309	0.827	55.501	30.832	32.308	33.723	0.810	32.630
MgO	0.330	0.609	0.977	0.188	0.609	19.566	20.022	20.357	0.262	19.998
FeO	0.000	0.027	0.097	0.025	0.020	0.061	0.359	1.228	0.317	0.265
MnO	0.000	0.023	0.068	0.022	0.022	0.027	0.072	0.219	0.052	0.058
CO2 (teórico)	42.762	44.105	44.997	0.634	44.379	46.451	47.483	48.545	0.603	47.552

																	An	exo 2	6 – C	ontin	uação
Ref	Spr_R1	. –	. –	Spr_R1	Spr_R1	Spr_R1	Spr_R1	Spr_R1	. –	Spr_R1	Spr_R1	. –	Spr_R1	Spr_R1	Spr_R1	•	Spr_R1	•	•	•	•
Leitura	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
CaO	57.155	56.875	55.942	55.738	56.286	56.536	56.791	56.874	55.074	56.462	53.912	39.376	38.227	30.854	30.850	29.480	30.678	29.148	29.766	30.396	30.719
CO2	25.500	25.449	27.269	25.361	24.798	23.478	23.178	24.263	26.756	24.566	29.447	40.521	33.066	33.258	33.283	34.976	32.313	30.240	31.063	31.877	34.417
La2O3	0.000	0.000	0.044	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.052	0.012	0.079	0.002	0.000	0.000	0.004	0.000	0.000
SrO BaO	0.069	0.008	0.093 0.000	0.088 0.026	0.000	0.120 0.021	0.503	0.119 0.002	0.045 0.000	0.000 0.007	0.001	0.052	0.021 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000 0.000
	0.000	0.000			0.047		0.000				0.049	0.000		0.000	0.000	0.000	0.000			0.005	
Na2O	0.000	0.050	0.008	0.022	0.018	0.003	0.019	0.001	0.184	0.003	0.000	0.000	0.000	0.050	0.049	0.033	0.001	0.000	0.010	0.005	0.000
Ce2O3	0.000	0.000	0.081	0.000	0.020	0.007	0.000	0.000	0.000	0.082	0.000	0.024	0.007	0.034	0.062	0.068	0.054	0.000	0.000	0.007	0.000
FeO	0.014	0.039	0.055	0.002	0.000	0.002	0.005	0.015	0.005	0.000	0.026	0.048	0.098	1.532	1.860	1.150	1.409	0.849	0.115	0.668	0.072
TiO2	0.000	0.000	0.000	0.000	0.000	0.014	0.000	0.000	0.017	0.000	0.000	0.000	0.020	0.000	0.005	0.001	0.000	0.000	0.000	0.011	0.000
MgO	0.329	0.439	0.188	0.449	0.862	0.824	0.416	0.270	0.387	0.134	0.204	9.999	13.017	19.163	18.351	20.028	19.008	19.682	20.703	19.896	20.183
MnO	0.051	0.000	0.026	0.029	0.037	0.021	0.029	0.046	0.012	0.000	0.011	0.101	0.033	0.107	0.116	0.120	0.086	0.270	0.128	0.064	0.013
ZnO	0.036	0.050	0.000	0.000	0.000	0.000	0.000	0.014	0.014	0.000	0.000	0.018	0.000	0.024	0.027	0.000	0.000	0.000	0.000	0.005	0.000
H2O	16.846	17.091	16.295	18.284	17.933	18.975	19.060	18.396	17.507	18.746	16.351	9.862	15.459	14.965	15.316	14.142	16.452	19.811	18.210	17.066	14.597
Total	100.000	100.000	100.000	100.000		100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000						
Descrição	Cal	Cal	Cal	Cal	Cal	Cal	Cal	Cal	Cal	Cal	Cal	invalido	Cal Mg [HMC]	Dol							
Ref	Spr_R2	Spr_R2	Spr_R2	Spr_R2	Spr_R2	Spr_R2	Spr_R2	Spr_R2	Spr_R2	Spr_R2	Spr_R2	Spr_R2	Spr_R2	Spr_R2	Spr_R2	Spr_R2	Spr_R2	Spr_R2	Spr_R2	Spr_R2	Spr_R2
Leitura	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
CaO	56.107	55.147	54.059	54.819	55.501	53.599	56.061	55.243	55.715	55.910	56.309	32.669	32.786	32.599	32.865	32.660	33.723	31.478	31.455	32.012	30.832
CO2	26.770	29.858	28.772	29.681	29.155	31.121	30.372	29.484	27.696	28.823	29.529	30.763	30.659	31.272	31.023	30.031	29.211	31.797	32.960	32.429	32.160
La2O3	0.000	0.025	0.000	0.000	0.000	0.010	0.000	0.000	0.000	0.000	0.042	0.000	0.000	0.000	0.000	0.011	0.000	0.000	0.003	0.000	0.000
SrO	0.199	0.298	0.136	0.087	0.086	0.057	0.062	0.097	0.060	0.042	0.083	0.000	0.000	0.009	0.000	0.000	0.014	0.000	0.000	0.000	0.000
BaO	0.000	0.000	0.000	0.037	0.000	0.000	0.016	0.003	0.000	0.000	0.041	0.000	0.000	0.000	0.012	0.000	0.000	0.058	0.000	0.000	0.029
Na2O	0.032	0.011	0.020	0.159	0.181	0.006	0.022	0.006	0.000	0.040	0.011	0.011	0.014	0.005	0.021	0.006	0.028	0.010	0.004	0.000	0.009
Ce2O3	0.009	0.007	0.021	0.024	0.000	0.000	0.039	0.000	0.026	0.007	0.000	0.001	0.000	0.000	0.000	0.050	0.016	0.037	0.000	0.009	0.000
FeO	0.016	0.006	0.023	0.017	0.013	0.025	0.000	0.097	0.049	0.027	0.020	0.133	0.104	0.267	0.061	0.248	0.440	0.458	0.387	0.262	1.228
TiO2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.004	0.000	0.000	0.000	0.000	0.000	0.024	0.027	0.000	0.007	0.000
MgO	0.864	0.977	0.685	0.527	0.747	0.609	0.330	0.470	0.613	0.463	0.416	20.357	19.938	20.225	19.814	20.057	19.924	19.712	20.308	20.317	19.566
MnO	0.022	0.000	0.022	0.000	0.000	0.032	0.044	0.068	0.020	0.000	0.045	0.038	0.027	0.034	0.067	0.053	0.086	0.062	0.054	0.082	0.219
ZnO	0.008	0.015	0.055	0.018	0.050	0.000	0.000	0.049	0.026	0.027	0.000	0.003	0.029	0.008	0.008	0.006	0.004	0.000	0.000	0.000	0.000
H2O	15.972	13.655	16.206	14.632	14.267	14.541	13.054	14.482	15.794	14.660	13.498	16.027	16.443	15.579	16.130	16.878	16.530	16.362	14.829	14.880	15.955
Total	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
Descrição	Cal	Cal	Cal	Cal	Cal	Cal	Cal	Cal	Cal	Cal	Cal	Dol	Dol	Dol	Dol	Dol	Dol	Dol	Dol	Dol	Dol

Imagem de electrões retrodifundidos da matriz carbonatada de Spr_R2, composta por proto dolomite + calcite ± sílica criptocristalina. (A) Imagem de electrões retrodifundidos obtida em MEV; (B-F) mapas composicionais dos respectivos elementos identificados no canto inferior esquerdo. Matriz dolomítica bem desenvolvida de Spr_R2 com a presença de um bioclasto sparítico alongado em corte transversal no centro da imagem. [Nota: a faixa oblíqua escurecida presente nos mapas composicionais corresponde a um problema na aquisição de imagens e não a um empobrecimento elementar]

Anexo 28

Resultados em wt% das análises pontuais realizadas em grãos de quartzo nos agregados de Spratt (Ottawa).

Ref	Spr_R1	Spr_R2																	
Leitura	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9	10
CaO	7.813	20.882	0.203	2.099	0.146	0.118	0.205	0.066	0.174	0.266	0.066	2.438	0.168	0.100	0.070	0.180	0.111	4.581	0.187
F	0.124	0.012	0.000	0.020	0.000	0.000	0.048	0.030	0.048	0.000	0.000	0.037	0.085	0.048	0.000	0.029	0.000	0.028	0.000
SiO2	87.665	67.401	98.801	95.464	99.884	100.596	99.280	99.475	100.241	98.508	99.697	95.711	100.164	100.585	100.970	99.618	101.385	93.102	100.077
Rb2O	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TiO2	0.000	0.000	0.017	0.000	0.002	0.000	0.000	0.000	0.003	0.000	0.000	0.000	0.012	0.000	0.000	0.013	0.000	0.000	0.015
Na2O	0.039	0.000	0.075	0.075	0.053	0.031	0.050	0.046	0.087	0.035	0.021	0.058	0.000	0.000	0.032	0.023	0.005	0.000	0.028
CI	0.026	0.000	0.113	0.143	0.138	0.017	0.001	0.136	0.117	0.094	0.071	0.085	0.000	0.005	0.013	0.000	0.011	0.009	0.003
K20	0.055	0.000	0.011	0.013	0.016	0.019	0.021	0.013	0.010	0.019	0.008	0.018	0.000	0.007	0.002	0.008	0.001	0.000	0.005
Cr2O3	0.077	0.047	0.068	0.032	0.063	0.108	0.064	0.064	0.014	0.044	0.034	0.029	0.024	0.051	0.016	0.042	0.076	0.054	0.027
MgO	0.012	0.259	0.000	0.018	0.015	0.010	0.000	0.002	0.000	0.010	0.019	0.015	0.000	0.000	0.000	0.019	0.000	0.021	0.000
Cs2O	0.000	0.000	0.000	0.000	0.000	0.005	0.011	0.000	0.020	0.017	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.006	0.000
BaO	0.000	0.062	0.038	0.000	0.021	0.029	0.001	0.035	0.000	0.045	0.032	0.061	0.000	0.052	0.017	0.000	0.055	0.000	0.000
MnO	0.000	0.004	0.000	0.000	0.032	0.000	0.010	0.000	0.000	0.012	0.004	0.019	0.000	0.000	0.003	0.000	0.004	0.018	0.001
Al2O3	0.236	0.013	0.111	0.148	0.065	0.033	0.208	0.066	0.158	0.134	0.023	0.079	0.001	0.000	0.000	0.102	0.005	0.010	0.000
NiO	0.000	0.000	0.024	0.000	0.000	0.062	0.039	0.056	0.000	0.000	0.000	0.000	0.000	0.075	0.029	0.000	0.054	0.040	0.029
FeO	0.096	0.009	0.002	0.008	0.021	0.003	0.000	0.008	0.000	0.000	0.034	0.007	0.015	0.000	0.004	0.038	0.016	0.000	0.000
H2O	3.914	11.316	0.561	2.022	0.000	0.000	0.080	0.046	0.000	0.839	0.006	1.479	0.000	0.000	0.000	0.000	0.000	2.145	0.000
Total	100.000	100.000	100.000	100.000	100.425	101.027	100.000	100.000	100.825	100.000	100.000	100.000	100.433	100.902	101.153	100.060	101.721	100.000	100.371
Descrição	Qz+Cc	Qz+Cc	Qz	Qz+Cc	Qz	Qz+Cc	Qz	Qz	Qz	Qz	Qz	Qz+Cc	Qz						

Imagem de electrões retrodifundidos da matriz carbonatada de Spr_R2, composta por calcite + dolomite + sílica criptocristalina ± francolite. (A) Imagem de electrões retrodifundidos obtida em MEV; (B-F) mapas composicionais dos respectivos elementos identificados no canto inferior esquerdo. Bioclasto parcialmente substituído por sílica criptocristalina em Spr_R2, com silicificação intensa da matriz carbonatada. [Nota: a faixa oblíqua escurecida presente nos mapas composicionais corresponde a um problema na aquisição de imagens e não a um empobrecimento elementar]

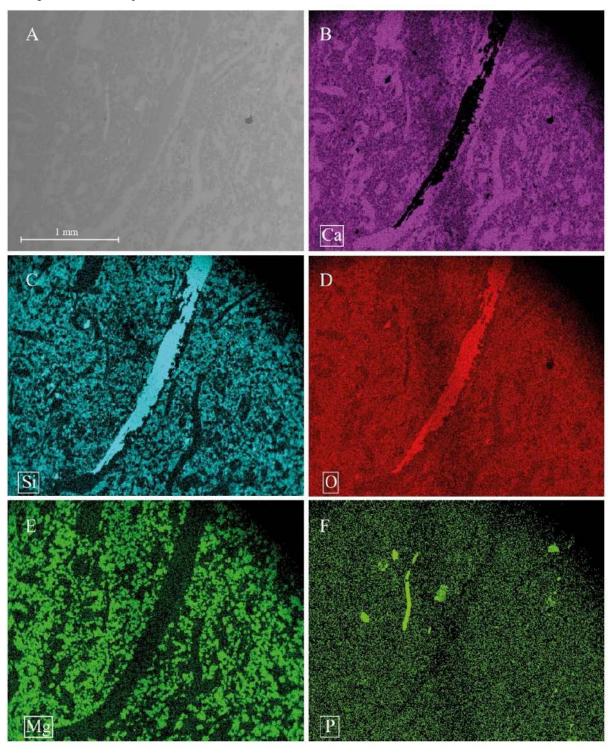


Imagem de electrões retrodifundidos da matriz carbonatada de Spr_Rb, apresentando dois níveis mineralogicamente distintos (dois de três) em contacto planar. (A) Imagem de electrões retrodifundidos obtida em MEV; (B-F) mapas composicionais dos respectivos elementos identificados no canto inferior esquerdo. Zona de transição entre a matriz carbonatada dolomítica bem desenvolvida (a topo) e matriz composta por sílica criptocristalina, menos rica em fases minerais carbonatadas (em baixo). [Nota: a faixa oblíqua escurecida presente nos mapas composicionais corresponde a um problema na aquisição de imagens e não a um empobrecimento elementar]

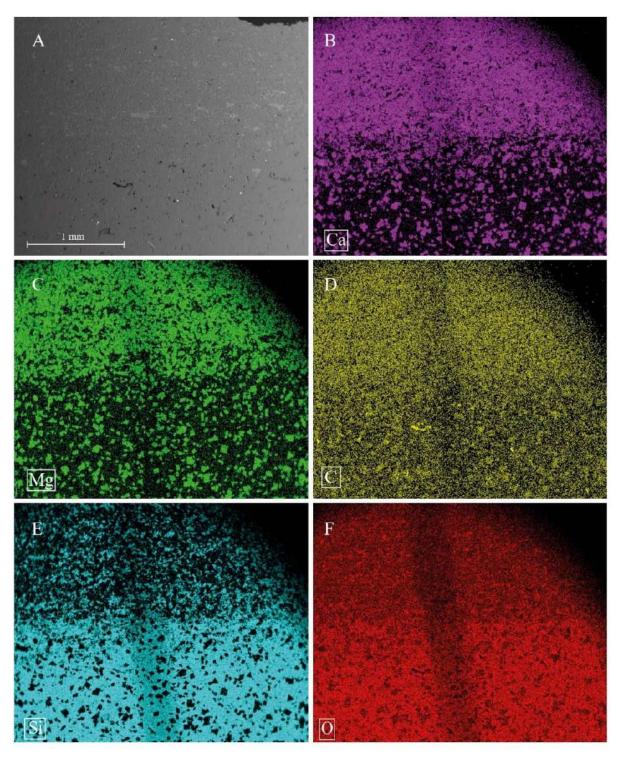
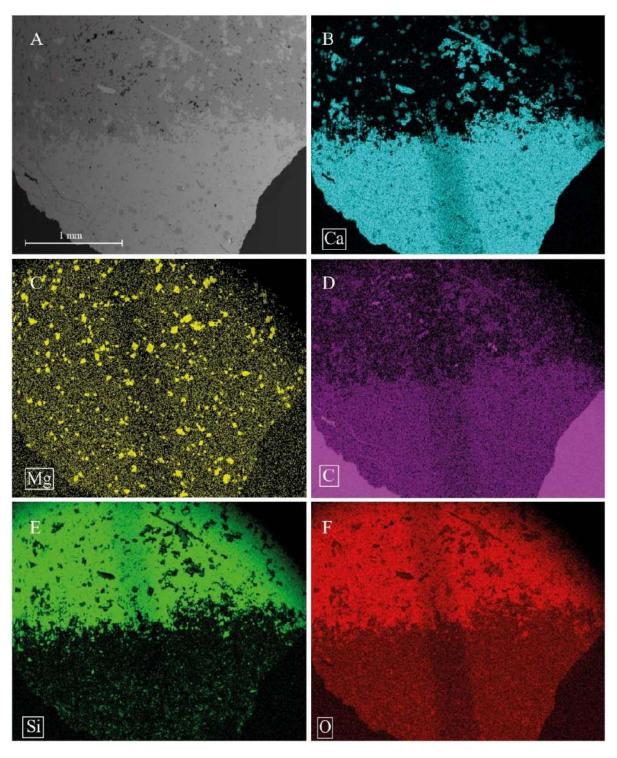
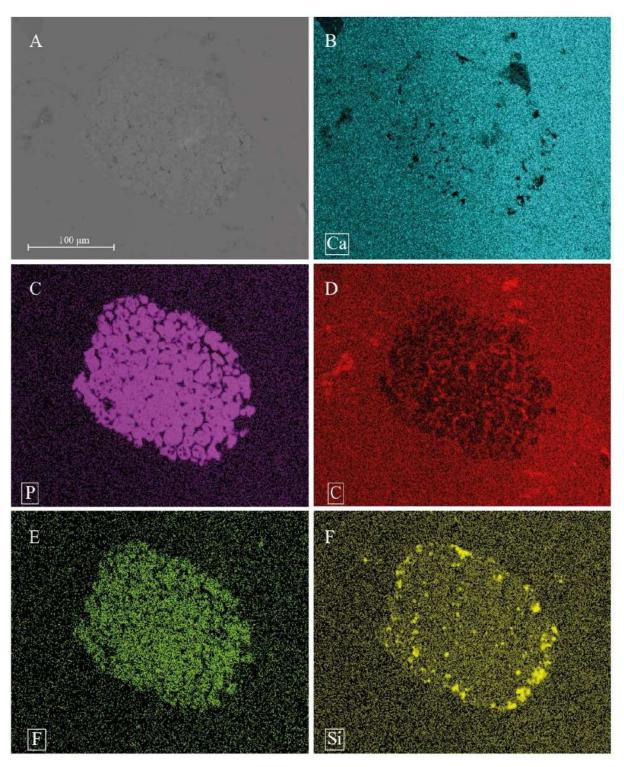



Imagem de electrões retrodifundidos da matriz carbonatada de Spr_Rb, apresentando dois níveis mineralogicamente distintos (dois de três) em contacto planar. (A) Imagem de electrões retrodifundidos obtida em MEV; (B-F) mapas composicionais dos respectivos elementos identificados no canto inferior esquerdo. Contacto entre a matriz composta por sílica criptocristalina menos rica em fases minerais carbonatadas (a topo) e uma matriz carbonatada maioritariamente calcítica (em baixo). Observam-se cristais de dolomite dispersos em ambas as matrizes. [Nota: a faixa oblíqua escurecida presente nos mapas composicionais corresponde a um problema na aquisição de imagens e não a um empobrecimento elementar]

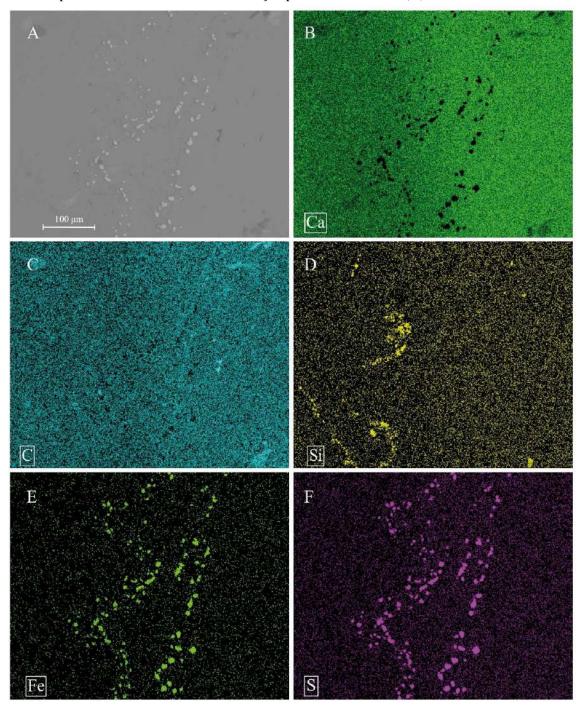


Composições em wt% de cristais de fosfat	os (francolite) analisados no	s agregados de Spratt (Ottawa).

Ref	Spr_R1	Spr_R1	Spr_R1	Spr_R1	Spr_R1	Spr_R1	Spr_R1	Spr_R1	Spr_R1	Spr_R1	Spr_R1	Spr_R1	Spr_R1	Spr_R1	Spr_R1	Spr_R1	Spr_R1	Spr_R1	Spr_R1	Spr_R1	Spr_R1	Spr_R1	Spr_R1	Spr_R1	Spr_R1	Spr_R1	Spr_R1	Spr_R1
Leitura	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
La203	0.08	0	0	0	0.058	0.062	0	0.049	0	0.01	0	0	0	0.013	0	0.039	0.009	0.023	0.001	0	0	0.049	0.062	0	0	0.009	0	0
F	2.713	2.768	2.853	2.785	2.923	2.809	2.402	2.803	2.826	3.14	2.316	2.745	2.507	2.405	29.34	30.314	2.197	2.591	2.59	2.911	2.476	2.601	2.96	3.07	2.461	2.784	2.585	1.419
SrO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
P2O5	36.561	36.411	35.258	35.974	35.581	36.681	34.075	35.937	36.024	38.929	33.21	35.65	41.239	41.391	0.028	0.007	33.61	34.926	36.157	36.215	35.281	33.213	38.894	37.68	33.875	37.143	37.076	10.239
Nd2O3	0	0	0	0	0	0	0	0	0	0.015	0	0	0	0	0.005	0	0.065	0.059	0.052	0	0	0	0	0	0.006	0	0	0
Na2O	0.209	0.237	0.214	0.218	0.243	0.248	0.273	0.196	0.221	0.246	0.199	0.191	0.37	0.544	0	0.003	0.235	0.235	0.254	0.279	0.28	0.287	0.107	0.18	0.13	0.111	0.154	0.068
Ce2O3	0.167	0.032	0.105	0	0	0.227	0	0.134	0.027	0	0	0.18	0	0.073	0.217	0	0.068	0	0	0.082	0.03	0.042	0.105	0	0.104	0	0.139	0.152
CaO	51.79	50.598	49.365	50.343	49.994	51.732	48.648	55.601	54.093	54.424	53.968	52.875	53.539	52.637	80.558	77.52	47.149	49.012	50.562	51.22	49.836	46	52.811	53.448	46.386	51.822	52.115	58.235
MnO	0.031	0	0	0	0.007	0.069	0.011	0	0	0	0.003	0.02	0	0.073	0.002	0.035	0	0	0.026	0	0	0.008	0.051	0	0	0	0	0.018
MgO	0.062	0.09	0.096	0.094	0.117	0.1	0.131	0.082	0.069	0.041	0.102	0.1	0.036	0.039	0	0	0.086	0.11	0.109	0.156	0.128	0.165	0.057	0.04	0.057	0.077	0.07	0.255
CI	0.132	0.102	0.158	0.144	0.149	0.107	0.159	0.056	0.021	0.055	0.046	0.051	0.108	0.067	0	0.007	0.194	0.208	0.172	0.141	0.166	0.129	0.046	0.044	0.087	0.081	0.116	0.064
FeO	0.06	0.029	0.106	0.054	0.063	0.118	0.521	0.047	0.039	0.061	0.037	0.012	0	0	0.021	0.018	0.032	0.02	0	0.044	0.041	0.306	0.093	0.239	0.054	0.729	0.203	0.575
H2O	9.366	10.921	13.082	11.595	12.129	9.053	14.827	6.287	7.875	4.414	11.105	9.342	3.28	3.787	2.185	4.822	17.322	13.953	11.208	10.209	12.843	18.322	6.069	6.601	17.894	8.434	8.657	29.586
Total	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Descrição	Frc	Frc	Frc	Frc	Frc	Frc	Frc	Frc	Frc	Frc	Frc	Frc	Frc	Frc	Frc	Frc	Frc	Frc	Frc	Frc	Frc	Frc	Frc	Frc	Frc	Frc	Frc	Frc

Ref	Spr_R2	Spr_R2	Spr_R2	Spr_R2	Spr_R2	Spr_R2	Spr_R2	Spr_R2	Spr_R2	Spr_R2	Spr_R2	Spr_R2	Spr_R2	Spr_R2	Spr_R2	Spr_R2
Leitura	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
La2O3	0	0.062	0	0	0	0	0.021	0	0	0.027	0.028	0	0.007	0	0.031	0.026
F	2.92	2.772	2.678	2.855	1.473	1.746	3.105	2.508	3.03	3.169	2.597	2.796	2.885	3.24	2.904	2.733
Sr0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
P2O5	36.737	36.968	35.771	38.453	17.688	19.45	38.239	35.51	36.512	38.069	35.147	37.665	38.006	36.229	36.211	30.459
Nd2O3	0.007	0	0.014	0	0	0	0	0.063	0	0.053	0.034	0.024	0.028	0	0	0
Na2O	0.288	0.289	0.222	0.231	0.109	0.129	0.181	0.184	0.154	0.134	0.296	0.303	0.328	0.424	0.425	0.38
Ce2O3	0	0.055	0.037	0.156	0.244	0	0.109	0	0	0.091	0.064	0	0.12	0.036	0	0
CaO	52.459	52.474	50.399	55.003	58.577	58.104	54.446	54.805	52.675	53.456	50.311	53.822	54.137	54.593	54.039	54.195
MnO	0.041	0	0	0	0.049	0.029	0	0.005	0.032	0.007	0	0.043	0.03	0	0	0.007
MgO	0.187	0.17	0.131	0.065	0.359	0.359	0.064	0.084	0.837	0.036	0.184	0.192	0.138	0.292	0.302	0.343
CI	0.117	0.134	0.159	0.055	0.026	0.034	0.047	0.018	0.034	0.055	0.147	0.103	0.095	0.128	0.152	0.136
FeO	0.034	0.015	0.01	0.33	0.419	0.217	0.052	0.073	0.035	0	0.37	0.13	0.095	0.04	0.038	0.041
H2O	8.466	8.259	11.741	4.066	21.683	20.677	5.055	7.812	7.974	6.247	11.948	6.122	5.368	6.411	7.154	12.861
Total	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Descrição	Frc	Frc	Frc	Frc	Frc	Frc	Frc	Frc	Frc	Frc	Frc	Frc	Frc	Frc	Frc	Frc

Imagem de electrões retrodifundidos da matriz carbonatada de Ki_R1, ampliação de bioclasto substituído por francolite. (A) Imagem de electrões retrodifundidos obtida em MEV; (B-F) mapas composicionais dos respectivos elementos identificados no canto inferior esquerdo. O bioclasto apresenta um sinal de F (E) mais intenso que o comum neste mineralóide, possivelmente devido à influência de processos metamórficos (McClellan, 1980).



Anexo 34

Resultados em wt% das análises pontuais realizadas em cristais de sulfuretos presentes nos agregados de Spratt (Ottawa).

Ref	Spr_R1	Spr_R2	Spr_R3	Spr_R4	Spr_R5	Spr_R6	Spr_R7	Spr_R8	Spr_R9	Spr_R10	Spr_R11
Leitura	1	2	3	4	5	6	7	8	9	10	11
Bi	0.04	0	0	0	0.042	0	0.009	0.012	0.003	0	0
Ga	0.002	0	0.043	0	0.004	0	0.002	0.006	0.023	0.01	0.017
Pb	0.014	0.024	0.167	0.008	0.016	0	0.088	0.072	0.017	0.118	0.103
Au	0	0.026	0	0.036	0.071	0.042	0	0.04	0.001	0	0.018
Ag	0	0	0	0.033	0	0	0.018	0.016	0	0	0.02
Ge	0	0	0	0	0	0	0.034	0.015	0	0	0
Cd	0	0	0	0	0	0	0	0	0	0	0
Мо	0.044	0	0	0	0.082	0.069	0.241	0.206	0	0	0
In	0	0	0	0	0	0	0	0.005	0	0	0
As	0	0	0	0	0	0	0	0	0	0	0
Sn	0.016	0	0	0	0	0	0	0	0	0	0
S	1.119	19.402	39.649	16.727	40.703	40.463	20.368	20.492	11.786	30.829	21.611
Ni	0	0.02	0.019	0.008	0.093	0.038	0	0	0	0.017	0.017
Se	0.008	0.015	0.02	0	0.011	0.04	0.011	0	0	0.013	0
Zn	0	0.09	0	0.014	0.061	0	0.011	0	0	0	0.014
Fe	1.773	22.474	43.403	14.493	42.674	42.54	18.586	18.625	5.638	32.13	23.823
Sb	0.017	0.007	0	0.081	0.006	0	0.007	0.018	0.026	0	0
Mn	0.017	0.073	0	0.001	0.000	0	0.007	0.010	0.061	0.022	0.017
Co	0	0.013	0.004	0.017	0	0	0.015	0.028	0.023	0.022	0.005
W	0	0.225	0.061	0.017	0	0.087	0.001	0.020	0.023	0	0.003
Te	0	0.225	0.001	0.014	0	0.007	0.001	0	0	0	0
Cu	0	0	0	0.045	0.017	0	0	0	0	0	0
Total	3.033	42.369	83.366	31.476	83.78	83.279	39.38	39.535	17.578	63.139	45.645
Descrição	Inválido	Inválido	Inválido	Inválido	Inválido	Inválido	Inválido	Inválido	Inválido	Inválido	Inválido
Descrição	IIIVallao	iiivalido	iiivaliao	iiivalido	iiivalido	iiivalido	iiivalido	iiivalido	iiivalido	iiivalido	iiivalido
Ref	Spr_R2	Spr_R3	Spr_R4	Spr_R5	Spr_R6	Spr_R7	Spr_R8	Spr_R9	Spr_R10	Spr_R11	Spr_R12
Ref Leitura	Spr_R2	Spr_R3 2	Spr_R4 3	Spr_R5 4	Spr_R6 5	Spr_R7	Spr_R8 7	Spr_R9 8	Spr_R10 9	Spr_R11 10	Spr_R12 11
	1 '								• –		
Leitura	1	2	3	4	5	6	7	8	9	10	11
Leitura Bi	0	2	3	0.033	5	6	7	8	9	10	11
Leitura Bi Ga	0 0	0 0	3 0 0	0.033 0	5 0 0.008	6 0 0	7 0 0	8 0 0	9 0	10 0 0	0 0.03
Leitura Bi Ga Pb	1 0 0 0	2 0 0 0	3 0 0 0.104	4 0.033 0 0.108	5 0 0.008 0.039	6 0 0 0	7 0 0 0.121	8 0 0 0.108	9 0 0 0.042	10 0 0 0.053	0 0.03 0.076
Leitura Bi Ga Pb Au	1 0 0 0 0	2 0 0 0 0	3 0 0 0.104 0.056	4 0.033 0 0.108 0.018	5 0 0.008 0.039 0.044	6 0 0 0 0	7 0 0 0.121 0.057	8 0 0 0.108 0	9 0 0 0.042 0	10 0 0 0.053 0	0 0.03 0.076 0.019
Leitura Bi Ga Pb Au Ag	0 0 0 0 0 0 0.043	2 0 0 0 0 0	3 0 0 0.104 0.056 0	4 0.033 0 0.108 0.018 0	5 0 0.008 0.039 0.044 0	6 0 0 0 0	7 0 0 0.121 0.057 0.017	8 0 0 0.108 0 0.013	9 0 0 0.042 0	10 0 0 0.053 0	11 0 0.03 0.076 0.019
Leitura Bi Ga Pb Au Ag Ge	1 0 0 0 0 0 0.043	2 0 0 0 0 0	3 0 0 0.104 0.056 0 0.019	4 0.033 0 0.108 0.018 0	5 0 0.008 0.039 0.044 0	6 0 0 0 0 0	7 0 0 0.121 0.057 0.017 0	8 0 0 0.108 0 0.013	9 0 0 0.042 0 0	10 0 0 0.053 0 0	0 0.03 0.076 0.019 0
Leitura Bi Ga Pb Au Ag Ge Cd	0 0 0 0 0 0.043 0	2 0 0 0 0 0 0	3 0 0 0.104 0.056 0 0.019	4 0.033 0 0.108 0.018 0 0	5 0 0.008 0.039 0.044 0 0	6 0 0 0 0 0 0	7 0 0 0.121 0.057 0.017 0	8 0 0 0.108 0 0.013 0	9 0 0 0.042 0 0 0	10 0 0 0.053 0 0 0	0 0.03 0.076 0.019 0 0
Leitura Bi Ga Pb Au Ag Ge Cd	1 0 0 0 0 0.043 0 0 0.066	2 0 0 0 0 0 0 0	3 0 0 0.104 0.056 0 0.019 0	4 0.033 0 0.108 0.018 0 0	5 0 0.008 0.039 0.044 0 0 0	6 0 0 0 0 0 0	7 0 0 0.121 0.057 0.017 0 0	8 0 0 0.108 0 0.013 0 0	9 0 0 0.042 0 0 0	10 0 0 0.053 0 0 0	0 0.03 0.076 0.019 0 0
Leitura Bi Ga Pb Au Ag Ge Cd Mo	0 0 0 0 0.043 0 0 0.066	2 0 0 0 0 0 0 0 0	3 0 0 0.104 0.056 0 0.019 0	4 0.033 0 0.108 0.018 0 0 0	5 0 0.008 0.039 0.044 0 0 0	6 0 0 0 0 0 0 0	7 0 0 0.121 0.057 0.017 0 0 0	8 0 0 0.108 0 0.013 0 0	9 0 0 0.042 0 0 0 0	10 0 0 0.053 0 0 0 0	0 0.03 0.076 0.019 0 0 0
Leitura Bi Ga Pb Au Ag Ge Cd Mo In	0 0 0 0 0.043 0 0 0.066	2 0 0 0 0 0 0 0 0 0	3 0 0 0.104 0.056 0 0.019 0 0	4 0.033 0 0.108 0.018 0 0 0 0	5 0 0.008 0.039 0.044 0 0 0 0	6 0 0 0 0 0 0 0 0	7 0 0 0.121 0.057 0.017 0 0 0	8 0 0 0.108 0 0.013 0 0 0	9 0 0 0.042 0 0 0 0 0	10 0 0 0.053 0 0 0 0 0	11 0 0.03 0.076 0.019 0 0 0 0
Leitura Bi Ga Pb Au Ag Ge Cd Mo In As Sn	1 0 0 0 0 0.043 0 0 0.066 0	2 0 0 0 0 0 0 0 0 0 0	3 0 0 0.104 0.056 0 0.019 0 0 0	4 0.033 0 0.108 0.018 0 0 0 0 0	5 0 0.008 0.039 0.044 0 0 0 0	6 0 0 0 0 0 0 0 0 0	7 0 0 0.121 0.057 0.017 0 0 0 0	8 0 0 0.108 0 0.013 0 0 0 0	9 0 0 0.042 0 0 0 0 0	10 0 0 0.053 0 0 0 0 0	0 0.03 0.076 0.019 0 0 0 0 0
Leitura Bi Ga Pb Au Ag Ge Cd Mo In As Sn S	0 0 0 0 0.043 0 0 0.066 0 0 32.831	2 0 0 0 0 0 0 0 0 0 0 0 0 0	3 0 0 0.104 0.056 0 0.019 0 0 0 0 52.97 0.014 0	4 0.033 0 0.108 0.018 0 0 0 0 0 0 0 50.069	5 0 0.008 0.039 0.044 0 0 0 0 0 0 0 0 0 50.106	6 0 0 0 0 0 0 0 0 0 0 0 0 32.429	7 0 0 0.121 0.057 0.017 0 0 0 0 0 0 52.672	8 0 0 0.108 0 0.013 0 0 0 0 0 0	9 0 0 0.042 0 0 0 0 0 0 0 0	10 0 0 0.053 0 0 0 0 0 0 0 0 0 21.696	11 0 0.03 0.076 0.019 0 0 0 0 0 0 0 0 37.784
Leitura Bi Ga Pb Au Ag Ge Cd Mo In As Sn S	0 0 0 0 0.043 0 0 0.066 0 0 32.831	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25.429 0.009	3 0 0 0.104 0.056 0 0.019 0 0 0 0 52.97 0.014	4 0.033 0 0.108 0.018 0 0 0 0 0 0 0 50.069	5 0 0.008 0.039 0.044 0 0 0 0 0 0 0 50.106	6 0 0 0 0 0 0 0 0 0 0 0 0 32.429 0.061	7 0 0 0.121 0.057 0.017 0 0 0 0 0 0 52.672 0	8 0 0 0.108 0 0.013 0 0 0 0 0 0 0 10.948 0.058	9 0 0 0.042 0 0 0 0 0 0 0 0 0 0 0 0	10 0 0 0.053 0 0 0 0 0 0 0 0 21.696 0.052	11 0 0.03 0.076 0.019 0 0 0 0 0 0 0 0 37.784 0.015
Leitura Bi Ga Pb Au Ag Ge Cd Mo In As Sn S Ni Se Zn Fe	1 0 0 0 0 0.043 0 0 0.066 0 0 32.831	2 0 0 0 0 0 0 0 0 0 0 0 0 0 25.429 0.009 0.007 0.104	3 0 0 0.104 0.056 0 0.019 0 0 0 0 52.97 0.014 0	4 0.033 0 0.108 0.018 0 0 0 0 0 0 0 50.069 0.222 0 0 45.735	5 0 0.008 0.039 0.044 0 0 0 0 0 0 0 50.106 0 0	6 0 0 0 0 0 0 0 0 0 0 0 0 32.429 0.061 0.014 0 43.362	7 0 0 0.121 0.057 0.017 0 0 0 0 0 0 52.672 0 0.001 0.061 46.291	8 0 0 0.108 0 0.013 0 0 0 0 0 0 0 0 10.948 0.058 0.064 0.069 18.503	9 0 0 0.042 0 0 0 0 0 0 0 0 0 19.955 0.008 0 0	10 0 0 0.053 0 0 0 0 0 0 0 21.696 0.052 0.014 0.186 29.146	11 0 0.03 0.076 0.019 0 0 0 0 0 0 0 0 0 0 0 0 0
Leitura Bi Ga Pb Au Ag Ge Cd Mo In As Sn S Ni Se Zn Fe Sb	1 0 0 0 0 0.043 0 0 0.066 0 0 32.831 0 0 0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 25.429 0.009 0.007	3 0 0 0.104 0.056 0 0.019 0 0 0 0 52.97 0.014 0	4 0.033 0 0.108 0.018 0 0 0 0 0 0 0 50.069 0.222 0	5 0 0.008 0.039 0.044 0 0 0 0 0 0 50.106 0 0 45.586 0	6 0 0 0 0 0 0 0 0 0 0 0 0 32.429 0.061 0 0.014 0	7 0 0 0.121 0.057 0.017 0 0 0 0 0 52.672 0 0.001 0.061 46.291 0	8 0 0 0.108 0 0.013 0 0 0 0 0 0 0 0 10.948 0.058 0.064	9 0 0 0.042 0 0 0 0 0 0 0 0 0 19.955 0.008 0 0	10 0 0 0.053 0 0 0 0 0 0 0 0 21.696 0.052 0.014 0.186 29.146 0.002	11 0 0.03 0.076 0.019 0 0 0 0 0 0 0 0 37.784 0.015 0
Leitura Bi Ga Pb Au Ag Ge Cd Mo In As Sn S Ni S E Zn Fe Sb Mn	1 0 0 0 0 0.043 0 0 0.066 0 0 32.831 0 0 0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 0 0 0.104 0.056 0 0.019 0 0 0 0 52.97 0.014 0 0	4 0.033 0 0.108 0.018 0 0 0 0 0 0 0 50.069 0.222 0 0 45.735 0	5 0 0.008 0.039 0.044 0 0 0 0 0 0 50.106 0 0 45.586 0	6 0 0 0 0 0 0 0 0 0 0 0 0 32.429 0.061 0.014 0 43.362 0.015	7 0 0 0.121 0.057 0.017 0 0 0 0 0 52.672 0 0.001 0.061 46.291 0	8 0 0 0.108 0 0.013 0 0 0 0 0 0 10.948 0.058 0.064 0.069 18.503 0 0.036	9 0 0 0.042 0 0 0 0 0 0 0 0 0 19.955 0.008 0 0	10 0 0 0.053 0 0 0 0 0 0 0 21.696 0.052 0.014 0.186 29.146 0.002 0	11 0 0.03 0.076 0.019 0 0 0 0 0 0 0 0 0 0 37.784 0.015 0 0 38.214 0 0.003
Leitura Bi Ga Pb Au Ag Ge Cd Mo In As Sn S Ni Se Zn Fe Sb Mn Co	1 0 0 0 0 0.043 0 0 0.066 0 0 32.831 0 0 0 16.55 0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 0 0 0.104 0.056 0 0.019 0 0 0 0 52.97 0.014 0 0 45.906 0	4 0.033 0 0.108 0.018 0 0 0 0 0 0 0 50.069 0.222 0 0 45.735	5 0 0.008 0.039 0.044 0 0 0 0 0 0 50.106 0 0 45.586 0 0.051	6 0 0 0 0 0 0 0 0 0 0 0 0 32.429 0.061 0 0.014 0	7 0 0 0.121 0.057 0.017 0 0 0 0 0 52.672 0 0.001 0.061 46.291 0 0.003 0.012	8 0 0 0.108 0 0.013 0 0 0 0 0 0 0 10.948 0.058 0.064 0.069 18.503 0	9 0 0 0.042 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 0 0 0.053 0 0 0 0 0 0 0 0 0 21.696 0.052 0.014 0.186 29.146 0.002 0	11 0 0.03 0.076 0.019 0 0 0 0 0 0 0 0 0 37.784 0.015 0 0 38.214 0 0.003 0
Leitura Bi Ga Pb Au Ag Ge Cd Mo In As Sn S Ni Se Zn Fe Sb Mn Co W	1 0 0 0 0 0.043 0 0 0.066 0 0 32.831 0 0 16.55 0 0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 0 0 0.104 0.056 0 0.019 0 0 0 0 52.97 0.014 0 0 45.906 0	4 0.033 0 0.108 0.018 0 0 0 0 0 0 0 50.069 0.222 0 0 45.735 0 0.061 0.094	5 0 0.008 0.039 0.044 0 0 0 0 0 0 0 50.106 0 0 45.586 0 0.051 0.01	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 0 0 0.121 0.057 0.017 0 0 0 0 0 52.672 0 0.001 0.061 46.291 0 0.003 0.012	8 0 0 0.108 0 0.013 0 0 0 0 0 0 0 10.948 0.058 0.064 0.069 18.503 0 0 0	9 0 0 0.042 0 0 0 0 0 0 0 0 0 0 19.955 0.008 0 0 14.129 0.019 0	10 0 0 0.053 0 0 0 0 0 0 0 0 0 0 0 0 0	11 0 0.03 0.076 0.019 0 0 0 0 0 0 0 0 37.784 0.015 0 0 38.214 0 0.003 0
Leitura Bi Ga Pb Au Ag Ge Cd Mo In As Sn S Ni Se Zn Fe Sb Mn Co W Te	1 0 0 0 0 0.043 0 0 0.066 0 0 32.831 0 0 16.55 0 0.01 0.162	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 0 0 0.104 0.056 0 0.019 0 0 0 0 52.97 0.014 0 0 45.906 0	4 0.033 0 0.108 0.018 0 0 0 0 0 0 0 50.069 0.222 0 0 45.735 0 0.061 0.094 0	5 0 0.008 0.039 0.044 0 0 0 0 0 0 50.106 0 0 45.586 0 0.051 0.01	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32.429 0.061 0.014 0 43.362 0.015 0.07 0.059 0	7 0 0 0.121 0.057 0.017 0 0 0 0 0 52.672 0 0.001 0.061 46.291 0 0.003 0.012 0.197 0	8 0 0 0.108 0 0.013 0 0 0 0 0 0 0 0.058 0.064 0.069 18.503 0 0.036 0	9 0 0 0.042 0 0 0 0 0 0 0 0 0 0 19.955 0.008 0 0 14.129 0.019 0	10 0 0 0.053 0 0 0 0 0 0 0 0 0 0 0 0 0	11 0 0.03 0.076 0.019 0 0 0 0 0 0 0 0 37.784 0.015 0 0.003 0 0.0015 0
Leitura Bi Ga Pb Au Ag Ge Cd Mo In As Sn S Ni Se Zn Fe Sb Mn Co W Te Cu	1 0 0 0 0 0.043 0 0 0.066 0 0 32.831 0 0 0.01 0.01 0.01 0.01 0.01 0.02	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 0 0 0.104 0.056 0 0.019 0 0 0 0 52.97 0.014 0 0 45.906 0	4 0.033 0 0.108 0.018 0 0 0 0 0 0 0 50.069 0.222 0 0 45.735 0 0.061 0.094 0	5 0 0.008 0.039 0.044 0 0 0 0 0 0 50.106 0 0 45.586 0 0.051 0.01	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 0 0 0.121 0.057 0.017 0 0 0 0 0 52.672 0 0.001 0.061 46.291 0 0.003 0.012 0.197 0	8 0 0 0.108 0 0.013 0 0 0 0 0 0 0 10.948 0.058 0.064 0.069 18.503 0 0 0 0 0	9 0 0 0.042 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 0 0 0.053 0 0 0 0 0 0 0 0 0 0 21.696 0.052 0.014 0.186 29.146 0.002 0 0 0	11 0 0.03 0.076 0.019 0 0 0 0 0 0 0 0 37.784 0.015 0 0.003 0 0.015 0
Leitura Bi Ga Pb Au Ag Ge Cd Mo In As Sn S Ni Se Zn Fe Sb Mn Co W Te	1 0 0 0 0 0.043 0 0 0.066 0 0 32.831 0 0 16.55 0 0.01 0.162	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 0 0 0.104 0.056 0 0.019 0 0 0 0 52.97 0.014 0 0 45.906 0	4 0.033 0 0.108 0.018 0 0 0 0 0 0 0 50.069 0.222 0 0 45.735 0 0.061 0.094 0	5 0 0.008 0.039 0.044 0 0 0 0 0 0 50.106 0 0 45.586 0 0.051 0.01	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32.429 0.061 0.014 0 43.362 0.015 0.07 0.059 0	7 0 0 0.121 0.057 0.017 0 0 0 0 0 52.672 0 0.001 0.061 46.291 0 0.003 0.012 0.197 0	8 0 0 0.108 0 0.013 0 0 0 0 0 0 0 0.058 0.064 0.069 18.503 0 0.036 0	9 0 0 0.042 0 0 0 0 0 0 0 0 0 0 19.955 0.008 0 0 14.129 0.019 0	10 0 0 0.053 0 0 0 0 0 0 0 0 0 0 0 0 0	11 0 0.03 0.076 0.019 0 0 0 0 0 0 0 0 37.784 0.015 0 0.003 0 0.0015 0

Imagem de electrões retrodifundidos da matriz carbonatada de Spr_R1, apresentando a formação preferencial de sulfuretos (pirite) em bioclasto. (A) Imagem de electrões retrodifundidos obtida em MEV; (B-F) mapas composicionais dos respectivos elementos identificados no canto inferior esquerdo. Acumulação preferencial de pirites em bioclastos de formato ondulado observados em Spr_R1. É também possível observar-se uma silicificação parcial do bioclasto (D).

Anexo 36

Resultados em wt% das análises pontuais realizadas em cristais de carbonatos analisados em Ki_B1 e respectiva identificação, assim como os perfis realizados em dolomites zonadas, seguidos das leituras completas realizadas.

							_												
Ref	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A		
Leitura	Gr1_1	Gr1_2	Gr1_3	Gr1_4	Gr1_5	Gr1_6	Gr1_7	Gr1_8	Gr1_9	Gr1_10	Gr1_11	Gr1_12	Gr1_13	Gr1_14	Gr1_15	Gr1_16	Gr1_17		
CaO	56.046	54.204	50.874	53.399	49.427	54.809	34.617	34.220	33.857	34.409	34.929	40.051	34.347	44.442	37.587	34.093	35.661		
MgO	0.411	0.792	1.055	0.786	1.955	0.914	18.651	18.097	17.849	18.399	18.325	15.126	19.432	11.544	16.515	19.374	18.186		
FeO	0.044	0.212	0.384	0.246	0.377	0.082	0.462	0.519	1.021	0.367	0.402	0.488	0.276	0.218	0.349	0.558	0.977		
MnO	0.000	0.004	0.000	0.049	0.027	0.062	0.027	0.015	0.069	0.007	0.040	0.056	0.056	0.012	0.002	0.026	0.034		
CO2 (teórico)	44.458	43.534	41.311	42.945	41.171	44.099	47.834	46.945	46.730	47.325	47.694	48.282	48.379	47.624	47.747	48.270	48.465		
Total	100.959	98.746	93.624	97.425	92.957	99.966	101.591	99.796	99.526	100.507	101.390	104.003	102.490	103.840	102.200	102.321	103.323		
Descrição	Сс	Сс	Сс	Сс	Сс	Сс	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDolz_1	ProtoDolz_2	ProtoDolz_3	ProtoDolz_4	ProtoDolz_5	ProtoDolz_6		
	•						•					•							
Ref	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A
Leitura	Gr2_1	Gr2_2	Gr2_3	Gr2_4	Gr2_5	Gr2_6	Gr2_7	Gr2_8	Gr2_9	Gr2_10	Gr2_11	Gr2_12	Gr2_13	Gr2_14	Gr2_15	Gr2_16	Gr2_17	Gr2_18	Gr2_19
CaO	53.525	53.236	46.319	53.649	50.434	32.925	32.293	34.391	32.405	34.900	35.138	35.255	34.363	34.909	35.061	39.140	33.141	30.275	33.265
MgO	0.747	0.852	4.917	0.275	1.757	18.476	16.583	17.676	17.256	16.744	18.978	18.557	18.715	18.215	18.860	15.287	17.851	21.195	18.234
FeO	0.321	0.197	0.471	0.105	0.377	0.850	0.939	0.850	1.068	0.618	0.624	0.319	0.392	0.339	0.451	0.691	0.649	0.097	0.465
MnO	0.012	0.026	0.000	0.000	0.034	0.058	0.033	0.040	0.059	0.006	0.030	0.023	0.036	0.011	0.002	0.054	0.008	0.018	0.015
CO2 (teórico)	43.024	42.845	42.007	42.466	41.749	46.572	44.047	46.837	44.965	46.056	48.701	48.142	47.667	47.501	48.388	47.866	45.904	46.975	46.312
Total	97.629	97.156	93.714	96.495	94.351	98.881	93.895	99.794	95.753	98.324	103.471	102.296	101.173	100.975	102.762	103.038	97.553	98.560	98.291
Descrição	Сс	Cc	Inválido	Cc	Inválido	ProtoDol	Inválido	ProtoDol	ProtoDol	ProtoDol	ProtoDolz1_1	ProtoDolz1_2	ProtoDolz1_3	ProtoDolz1_4	ProtoDolz1_5	ProtoDolz1_6	ProtoDolz2_1	$ProtoDolz2_2$	ProtoDolz2_3
Ref	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A									
Leitura	Gr3_1	Gr3_2	Gr3_3	Gr3_4	Gr3_5	Gr3_6	Gr3_7	Gr3_8	Gr3_9	Gr3_10									
CaO	52.253	51.461	53.465	48.432	52.758	33.988	35.421	33.796	34.066	33.533									
MgO	1.052	1.315	0.914	1.252	1.401	18.526	16.406	17.597	17.818	18.944									
FeO	0.364	0.393	0.165	0.273	0.155	0.593	0.627	0.959	0.640	0.289									
MnO	0.000	0.093	0.034	0.000	0.000	0.048	0.034	0.011	0.000	0.000									
CO2 (teórico)	42.378	42.119	43.077	39.542	43.027	47.297	46.118	46.333	46.584	47.180									
Total	96.047	95.381	97.655	89.499	97.341	100.452	98.606	98.696	99.108	99.946									
Descrição	Сс	Сс	Сс	Inválido	Cc	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDol									

Anexo 36 - Continuação

CaO	56.046	54.204	50.874	53.399	49.427	54.809	34.617	34.220	33.857	34.409	34.929	40.051	34.347	44.442	37.587	34.093	35.661		
CO2	25.031	24.754	23.193	24.967	22.732	25.941	24.119	24.749	23.055	23.684	24.153	23.556	25.847	25.257	25.422	26.309	25.333		
	0.000					0.000	l		0.000	0.064		0.000	0.000	0.000		0.000	0.000		
_a2O3 SrO	0.000	0.022 0.018	0.010	0.000	0.013	0.000	0.016 0.002	0.000 0.010	0.000	0.004	0.000	0.000	0.000	0.000	0.000 0.012	0.000	0.000		
							l												
Ba0	0.049	0.000	0.037	0.039	0.101	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.051	0.000		
Na2O	0.026	0.050	0.081	0.066	0.000	0.000	0.083	0.065	0.061	0.075	0.056	0.051	0.074	0.070	0.049	0.068	0.062		
Ce2O3	0.000	0.000	0.077	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.047	0.000	0.000	0.000	0.074	0.000		
eO	0.044	0.212	0.384	0.246	0.377	0.082	0.462	0.519	1.021	0.367	0.402	0.488	0.276	0.218	0.349	0.558	0.977		
TiO2	0.000	0.018	0.058	0.000	0.061	0.000	0.000	0.000	0.024	0.000	0.019	0.000	0.005	0.016	0.000	0.000	0.000		
ИgO	0.411	0.792	1.055	0.786	1.955	0.914	18.651	18.097	17.849	18.399	18.325	15.126	19.432	11.544	16.515	19.374	18.186		
MnO	0.000	0.004	0.000	0.049	0.027	0.062	0.027	0.015	0.069	0.007	0.040	0.056	0.056	0.012	0.002	0.026	0.034		
ZnO	0.081	0.032	0.032	0.000	0.001	0.000	0.000	0.000	0.000	0.014	0.000	0.018	0.011	0.000	0.028	0.071	0.037		
120	18.287	19.895	24.200	20.366	25.305	18.193	22.023	22.324	24.066	22.982	22.075	20.606	19.954	18.441	20.037	19.378	19.710		
Total	100.000	100.000	100.000	100.000		100.000					100.000	100.000	100.000	100.000	100.000	100.000	100.000		
Descrição	Cal	Cal	Cal	Cal	Cal	Cal	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDolz_1	ProtoDolz_2	ProtoDolz_3	ProtoDolz_4	ProtoDolz_5	ProtoDolz_6		
	l			=															
	Ki_B1_A										Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A
_eitura	Gr2_1		Gr2_3	Gr2_4		Gr2_6	Gr2_7	Gr2_8	Gr2_9		Gr2_11	Gr2_12	Gr2_13	Gr2_14	Gr2_15	Gr2_16	Gr2_17	Gr2_18	Gr2_19
CaO	53.525			53.649		32.925	32.293	34.391	32.405	34.900	35.138	35.255	34.363	34.909	35.061	39.140	33.141	30.275	33.265
002	27.116	27.188	25.901	26.950	26.403	26.829	26.629	26.679	26.234	26.911	24.695	24.330	24.721	24.777	25.073	24.765	28.507	30.245	29.780
.a2O3	0.091	0.000	0.126	0.114	0.000	0.000	0.000	0.000	0.000	0.059	0.000	0.000	0.023	0.003	0.019	0.039	0.000	0.000	0.000
SrO	0.000	0.041	0.000	0.046	0.000	0.000	0.000	0.003	0.021	0.000	0.009	0.002	0.017	0.018	0.032	0.035	0.000	0.007	0.001
BaO	0.000	0.031	0.010	0.000	0.063	0.000	0.000	0.014	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.001	0.003	0.000
Na20	0.187	0.024	0.062	0.173	0.194	0.083	0.067	0.090	0.067	0.085	0.093	0.056	0.090	0.062	0.079	0.043	0.051	0.019	0.063
Ce2O3	0.000	0.000	0.000	0.072	0.000	0.000	0.015	0.000	0.000	0.011	0.061	0.086	0.046	0.037	0.000	0.024	0.046	0.077	0.009
eO	0.321	0.197	0.471	0.105	0.377	0.850	0.939	0.850	1.068	0.618	0.624	0.319	0.392	0.339	0.451	0.691	0.649	0.097	0.465
i02	0.000	0.055	0.019	0.000	0.000	0.035	0.721	0.005	0.048	0.078	0.000	0.024	0.024	0.012	0.000	0.000	0.000	0.006	0.011
/IgO	0.747	0.852	4.917	0.275	1.757	18.476	16.583	17.676	17.256	16.744	18.978	18.557	18.715	18.215	18.860	15.287	17.851	21.195	18.234
MnO	0.012	0.026	0.000	0.000	0.034	0.058	0.033	0.040	0.059	0.006	0.030	0.023	0.036	0.011	0.002	0.054	0.008	0.018	0.015
ZnO	0.084	0.000	0.000	0.015	0.000	0.023	0.006	0.000	0.011	0.000	0.009	0.028	0.003	0.030	0.000	0.000	0.033	0.000	0.037
120	17.916	18.351	22.174	18.603	20.739	20.722	22.714	20.253	22.831	20.587	20.363	21.320	21.569	21.589	20.423	19.917	19.713	18.058	18.118
Total		100.000						100.000			100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
Descrição	Cal	Cal	Inválido	Cal	Inválido	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDolz1_1	ProtoDolz1_2	ProtoDolz1_3	ProtoDolz1_4	ProtoDolz1_5	ProtoDolz1_6	ProtoDolz2_1	ProtoDolz2_2	ProtoDolz2_3
	l .			=															
	Ki_B1_A																		
Leitura		Gr3_2	Gr3_3	Gr3_4		_	Gr3_7		Gr3_9										
CaO	52.253	51.461	53.465	48.432	52.758	33.988	35.421	33.796	34.066	33.533									
CO2	25.664	24.513	25.972	23.451	25.416	26.276	26.950	24.390	27.464	24.719									

Ki_B1_A

Ki_B1_A

Ki_B1_A

Ki_B1_A

Ki_B1_A Gr1_17

 Ref
 Ki_B1_A
 Ki

0.017 0.000 0.007 0.000 0.081 0.017 0.000 0.001 0.014 0.076

0.364 0.393 0.165 0.273 0.155 0.593 0.627 0.959 0.640 0.289 0.000 0.048 0.000 0.000 0.019 0.016 0.000 0.000 0.000 0.000

0.000 0.093 0.034 0.000 0.000 0.048 0.034 0.011 0.000 0.000

0.000 0.049 0.000 0.000 0.000 0.053 0.052 0.003 0.012 0.000

20.540 22.112 19.409 26.433 20.048 20.457 20.449 23.098 19.876 22.289 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 Descrição Cal Cal Inválido Cal ProtoDol ProtoDol ProtoDol ProtoDol ProtoDol

0.000 0.000 0.003 0.019 0.000

0.000 0.001 0.025 0.000 0.000

0.010 0.000 0.000 0.034 0.000

0.000 0.000 0.000 0.000 0.065

La203

SrO

BaO

Na2O

FeO

TiO2

MgO

MnO ZnO

H20

Ce2O3

139

Anexo 36 - Continuação

Ref	Ki B1 B	Ki B1 B	Ki R1 R	Ki R1 R	Ki R1 R	Ki B1 B	Ki B1 B	Ki B1 B	Ki R1 R	Ki B1 B	Ki B1 B	Ki B1 B	Ki B1 B	Ki B1 B	Ki B1 B	Ki B1 B	Ki B1 B	Ki B1 B	Ki B1 B	Ki B1 B	
Leitura	Gr1 1	Gr1 2	Gr1 3	Gr1 4	Gr1 5	Gr1 6	Gr1 7	Gr1_8		Gr1 10	Gr1 11	Gr1 12	Gr1 13	Gr1 14	Gr1 15	Gr1 16	Gr1 17	Gr1 18	Gr1 19	Gr1_20	
CaO	48.763	52.368	51.599	51.388	49.488	34.640	33.767	38.183	35.103	34.609	35.668	33.251	31.474	34.322	33.899	34.092	36.361	33.291	33.646	30.477	•
MgO	1.574	1.946	1.133	0.862	2.180	18.017	17.856	14.350	17.520	17.601	18.771	20.115	17.653	16.985	18.857	17.116	17.411	19.072	19.139	17.017	
FeO	0.254	0.350	0.344	0.348	0.414	0.734	0.638	0.583	0.691	0.696	0.363	0.191	1.007	0.781	0.212	0.671	0.393	0.073	0.082	0.568	
MnO	0.045	0.000	0.044	0.041	0.000	0.000	0.044	0.000	0.000	0.014	0.002	0.008	0.014	0.041	0.000	0.047	0.024	0.015	0.001	0.000	
CO2 (teórico)	40.170	43.436	41.968	41.507	41.470	47.309	46.417	45.993	47.103	46.816	48.713	48.183	44.603	45.987	47.325	45.886	47.804	47.007	47.356	42.848	
Total	90.806	98.100	95.088	94.146	93.552	100.700	98.722	99.109	100.417	99.736	103.517	101.748	94.751	98.116	100.293	97.812	101.993	99.458	100.224	90.910	
Descrição	Inválido	Сс	Сс	Inválido	Inválido	ProtoDol	ProtoDol	Cal Mg [LMC]	ProtoDol	ProtoDol	ProtoDolz_1	ProtoDolz_2	Inválido	ProtoDolz2_1	1 ProtoDolz2_2	ProtoDolz2_3	ProtoDolz3_	1 ProtoDolz3_2	ProtoDolz3_3	Inválido	-
	<u> </u>					Ī		• • •						_							
Ref	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B
Leitura	Gr2_1	Gr2_2	Gr2_3	Gr2_4	Gr2_5	Gr2_6	Gr2_7	Gr2_8	Gr2_9	Gr2_10	Gr2_11	Gr2_12	Gr2_13	Gr2_14	Gr2_15	Gr2_16	Gr2_17	Gr2_18	Gr2_19	Gr2_20	Gr2_21
CaO	54.267	52.168	54.070	51.246	53.374	34.505	34.272	33.601	33.994	34.839	33.202	31.171	32.488	35.926	34.333	34.446	34.324	34.735	34.884	35.013	34.495
MgO	0.801	2.217	0.663	0.385	0.720	18.188	17.740	17.638	17.376	17.218	15.599	16.696	16.243	17.592	19.006	18.780	18.705	18.781	18.585	18.575	15.308
FeO	0.123	0.180	0.166	0.367	0.196	0.508	0.467	0.469	0.991	0.432	1.064	0.754	1.147	0.604	0.551	0.355	0.457	0.128	0.193	0.207	1.095
MnO	0.000	0.018	0.018	0.047	0.108	0.008	0.027	0.054	0.028	0.076	0.001	0.130	0.080	0.018	0.000	0.013	0.036	0.000	0.030	0.040	0.056
CO2 (teórico)	43.537	43.482	43.269	40.890	42.859	47.256	46.571	45.951	46.277	46.455	43.743	43.237	43.986	47.786	48.036	47.766	47.665	47.847	47.808	47.913	44.493
Total	98.728	98.065	98.186	92.935	97.257	100.465	99.077	97.713	98.666	99.020	93.609	91.988	93.944	101.926	101.926	101.360	101.187	101.491	101.500	101.748	95.447
Descrição	Сс	Сс	Сс	Inválido	Сс	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDol	Inválido	Inválido	Inválido	ProtoDolz2_1	1 ProtoDolz2_2	ProtoDolz2_3	ProtoDolz2_4	4 ProtoDolz2_5	ProtoDolz2_6	ProtoDolz2_7	ProtoDolz2_8
1						i															
Ref						Ki_B1_B		Ki_B1_B	Ki_B1_B												
Leitura	Gr3_1	Gr3_2	Gr3_3	Gr3_4	Gr3_5	Gr3_6	Gr3_7	Gr3_8		Gr3_10											
CaO	55.525	53.081	52.733	51.530	52.767	35.744	34.855	34.697	34.046	35.060											
MgO	0.574	1.024	0.790	0.933	0.901	17.529	17.805	18.516	17.990	17.605											
FeO	0.074	0.178	0.332	0.326	1.004	0.620	0.420	0.227	0.921	0.588											
MnO	0.000	0.000	0.000	0.005	0.000	0.022	0.053	0.000	0.027	0.027											
CO2 (teórico)	44.246	42.883	42.449	41.660	43.008	47.586	47.087	47.588	46.945	47.116											
Total	100.419	97.166	96.304	94.454	97.680		100.220	101.028	99.929	100.396											
Descrição	Сс	Сс	Сс	Inválido	Cc	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDol											

Anexo 36 - Continuação

Ref	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	
Leitura	Gr1_1	Gr1_2	Gr1_3	Gr1_4	Gr1_5	Gr1_6	Gr1_7	Gr1_8	Gr1_9	Gr1_10	Gr1_11	Gr1_12	Gr1_13	Gr1_14	Gr1_15	Gr1_16	Gr1_17	Gr1_18	Gr1_19	Gr1_20	
CaO	48.763	52.368	51.599	51.388	49.488	34.640	33.767	38.183	35.103	34.609	35.668	33.251	31.474	34.322	33.899	34.092	36.361	33.291	33.646	30.477	
CO2	23.413	24.788	23.730	24.038	25.434	25.671	26.048	26.335	24.895	25.030	24.217	25.839	25.361	27.399	28.851	28.417	26.205	27.382	27.813	26.432	
La2O3	0.000	0.000	0.000	0.022	0.000	0.000	0.009	0.044	0.000	0.103	0.000	0.018	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.053	
SrO	0.082	0.002	0.041	0.042	0.024	0.015	0.000	0.001	0.004	0.004	0.001	0.000	0.000	0.000	0.000	0.008	0.000	0.000	0.008	0.000	
BaO	0.021	0.071	0.000	0.066	0.018	0.000	0.029	0.000	0.000	0.025	0.049	0.071	0.000	0.023	0.072	0.000	0.000	0.013	0.018	0.000	
Na2O	0.058	0.016	0.043	0.067	0.036	0.063	0.085	0.071	0.063	0.089	0.066	0.078	0.140	0.076	0.028	0.064	0.079	0.038	0.064	0.058	
Ce2O3	0.181	0.000	0.042	0.000	0.137	0.011	0.000	0.061	0.018	0.034	0.000	0.031	0.009	0.000	0.000	0.000	0.019	0.023	0.039	0.000	
FeO	0.254	0.350	0.344	0.348	0.414	0.734	0.638	0.583	0.691	0.696	0.363	0.191	1.007	0.781	0.212	0.671	0.393	0.073	0.082	0.568	
TiO2	0.017	0.042	0.037	0.000	0.057	0.008	0.016	0.023	0.000	0.000	0.004	0.000	0.003	0.013	0.000	0.022	0.000	0.067	0.030	0.007	
MgO	1.574	1.946	1.133	0.862	2.180	18.017	17.856	14.350	17.520	17.601	18.771	20.115	17.653	16.985	18.857	17.116	17.411	19.072	19.139	17.017	
MnO	0.045	0.000	0.044	0.041	0.000	0.000	0.044	0.000	0.000	0.014	0.002	0.008	0.014	0.041	0.000	0.047	0.024	0.015	0.001	0.000	
ZnO	0.018	0.062	0.000	0.043	0.095	0.000	0.038	0.000	0.004	0.000	0.003	0.014	0.000	0.000	0.006	0.000	0.000	0.026	0.000	0.000	
H2O	25.574	20.354	22.989	23.081	22.117	20.843	21.471	20.351	21.701	21.796	20.853	20.386	24.337	20.360	18.076	19.566	19.509	20.001	19.160	25.388	
Total	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	
Descrição	Inválido	Cal	Cal	Inválido	Inválido	ProtoDol	ProtoDol	Cal Mg [LMC] ProtoDol	ProtoDol	ProtoDolz_1	ProtoDolz_2	Inválido	ProtoDolz2_1	ProtoDolz2_2	ProtoDolz2_3	ProtoDolz3_1	ProtoDolz3_2	ProtoDolz3_3	Inválido	•
Ref	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B
Ref Leitura	Ki_B1_B Gr2_1	Ki_B1_B Gr2_2	Ki_B1_B Gr2_3	Ki_B1_B Gr2_4	Ki_B1_B Gr2_5	Ki_B1_B Gr2_6	Ki_B1_B Gr2_7	Ki_B1_B Gr2_8		Ki_B1_B Gr2_10	Ki_B1_B Gr2_11	Ki_B1_B Gr2_12	Ki_B1_B Gr2_13	Ki_B1_B Gr2_14	Ki_B1_B Gr2_15	Ki_B1_B Gr2_16	Ki_B1_B Gr2_17	Ki_B1_B Gr2_18	Ki_B1_B Gr2_19	Ki_B1_B Gr2_20	Ki_B1_B Gr2_21
													1								
Leitura	Gr2_1	Gr2_2	Gr2_3	Gr2_4	Gr2_5	Gr2_6	Gr2_7	Gr2_8	Gr2_9	Gr2_10	Gr2_11	Gr2_12	Gr2_13	Gr2_14	Gr2_15	Gr2_16	Gr2_17	Gr2_18	Gr2_19	Gr2_20	Gr2_21
Leitura CaO	Gr2_1 54.267	Gr2_2 52.168	Gr2_3 54.070	Gr2_4 51.246	Gr2_5 53.374	Gr2_6 34.505	Gr2_7 34.272	Gr2_8 33.601	Gr2_9 33.994	Gr2_10 34.839	Gr2_11 33.202	Gr2_12 31.171	Gr2_13 32.488	Gr2_14 35.926	Gr2_15 34.333	Gr2_16 34.446	Gr2_17 34.324	Gr2_18 34.735	Gr2_19 34.884	Gr2_20 35.013	Gr2_21 34.495
Leitura CaO CO2	Gr2_1 54.267 27.371	Gr2_2 52.168 26.313	Gr2_3 54.070 27.686	Gr2_4 51.246 26.309	Gr2_5 53.374 27.148	Gr2_6 34.505 26.946	Gr2_7 34.272 27.148	Gr2_8 33.601 28.723	Gr2_9 33.994 26.444	Gr2_10 34.839 27.277	Gr2_11 33.202 27.523	Gr2_12 31.171 29.315	Gr2_13 32.488 28.604	Gr2_14 35.926 25.771	Gr2_15 34.333 25.999	Gr2_16 34.446 26.304	Gr2_17 34.324 26.701	Gr2_18 34.735 26.663	Gr2_19 34.884 25.773	Gr2_20 35.013 25.947	Gr2_21 34.495 25.521
Leitura CaO CO2 La2O3	Gr2_1 54.267 27.371 0.103	Gr2_2 52.168 26.313 0.037	Gr2_3 54.070 27.686 0.000	Gr2_4 51.246 26.309 0.084	Gr2_5 53.374 27.148 0.000	Gr2_6 34.505 26.946 0.000	Gr2_7 34.272 27.148 0.020	Gr2_8 33.601 28.723 0.000	Gr2_9 33.994 26.444 0.000	Gr2_10 34.839 27.277 0.023	Gr2_11 33.202 27.523 0.000	Gr2_12 31.171 29.315 0.036	Gr2_13 32.488 28.604 0.000	Gr2_14 35.926 25.771 0.008	Gr2_15 34.333 25.999 0.000	Gr2_16 34.446 26.304 0.000	Gr2_17 34.324 26.701 0.000	Gr2_18 34.735 26.663 0.000	Gr2_19 34.884 25.773 0.000	Gr2_20 35.013 25.947 0.000	Gr2_21 34.495 25.521 0.000
Leitura CaO CO2 La2O3 SrO	Gr2_1 54.267 27.371 0.103 0.011	Gr2_2 52.168 26.313 0.037 0.000 0.010 0.049	Gr2_3 54.070 27.686 0.000 0.000	Gr2_4 51.246 26.309 0.084 0.001 0.071 0.012	Gr2_5 53.374 27.148 0.000 0.010 0.034 0.087	Gr2_6 34.505 26.946 0.000 0.007	Gr2_7 34.272 27.148 0.020 0.000	Gr2_8 33.601 28.723 0.000 0.003	Gr2_9 33.994 26.444 0.000 0.007	Gr2_10 34.839 27.277 0.023 0.021	Gr2_11 33.202 27.523 0.000 0.004	Gr2_12 31.171 29.315 0.036 0.000	Gr2_13 32.488 28.604 0.000 0.000	Gr2_14 35.926 25.771 0.008 0.007	Gr2_15 34.333 25.999 0.000 0.005	Gr2_16 34.446 26.304 0.000 0.019	Gr2_17 34.324 26.701 0.000 0.000	Gr2_18 34.735 26.663 0.000 0.000	Gr2_19 34.884 25.773 0.000 0.000	Gr2_20 35.013 25.947 0.000 0.004	Gr2_21 34.495 25.521 0.000 0.006
Leitura CaO CO2 La2O3 SrO BaO	Gr2_1 54.267 27.371 0.103 0.011 0.151	Gr2_2 52.168 26.313 0.037 0.000 0.010	Gr2_3 54.070 27.686 0.000 0.000 0.000	Gr2_4 51.246 26.309 0.084 0.001 0.071	Gr2_5 53.374 27.148 0.000 0.010 0.034	Gr2_6 34.505 26.946 0.000 0.007 0.000	Gr2_7 34.272 27.148 0.020 0.000 0.000	Gr2_8 33.601 28.723 0.000 0.003 0.000	Gr2_9 33.994 26.444 0.000 0.007 0.000	Gr2_10 34.839 27.277 0.023 0.021 0.009	Gr2_11 33.202 27.523 0.000 0.004 0.000	Gr2_12 31.171 29.315 0.036 0.000 0.000	Gr2_13 32.488 28.604 0.000 0.000 0.000	Gr2_14 35.926 25.771 0.008 0.007 0.004	Gr2_15 34.333 25.999 0.000 0.005 0.000	Gr2_16 34.446 26.304 0.000 0.019 0.000	Gr2_17 34.324 26.701 0.000 0.000 0.005	Gr2_18 34.735 26.663 0.000 0.000 0.005	Gr2_19 34.884 25.773 0.000 0.000 0.000	Gr2_20 35.013 25.947 0.000 0.004 0.022	Gr2_21 34.495 25.521 0.000 0.006 0.000
Leitura CaO CO2 La2O3 SrO BaO Na2O	Gr2_1 54.267 27.371 0.103 0.011 0.151 0.021	Gr2_2 52.168 26.313 0.037 0.000 0.010 0.049	Gr2_3 54.070 27.686 0.000 0.000 0.000 0.000	Gr2_4 51.246 26.309 0.084 0.001 0.071 0.012	Gr2_5 53.374 27.148 0.000 0.010 0.034 0.087	Gr2_6 34.505 26.946 0.000 0.007 0.000 0.058	Gr2_7 34.272 27.148 0.020 0.000 0.000 0.081	Gr2_8 33.601 28.723 0.000 0.003 0.000 0.062	Gr2_9 33.994 26.444 0.000 0.007 0.000 0.054	Gr2_10 34.839 27.277 0.023 0.021 0.009 0.067	Gr2_11 33.202 27.523 0.000 0.004 0.000 0.073	Gr2_12 31.171 29.315 0.036 0.000 0.000 0.090	Gr2_13 32.488 28.604 0.000 0.000 0.000 0.133	Gr2_14 35.926 25.771 0.008 0.007 0.004 0.077	Gr2_15 34.333 25.999 0.000 0.005 0.000 0.091	Gr2_16 34.446 26.304 0.000 0.019 0.000 0.088	Gr2_17 34.324 26.701 0.000 0.000 0.005 0.085	Gr2_18 34.735 26.663 0.000 0.000 0.005 0.088	Gr2_19 34.884 25.773 0.000 0.000 0.000 0.000 0.084	Gr2_20 35.013 25.947 0.000 0.004 0.022 0.078	Gr2_21 34.495 25.521 0.000 0.006 0.000 0.045
Leitura CaO CO2 La2O3 SrO BaO Na2O Ce2O3	Gr2_1 54.267 27.371 0.103 0.011 0.151 0.021 0.043	Gr2_2 52.168 26.313 0.037 0.000 0.010 0.049 0.065	Gr2_3 54.070 27.686 0.000 0.000 0.000 0.000 0.000	Gr2_4 51.246 26.309 0.084 0.001 0.071 0.012 0.000	Gr2_5 53.374 27.148 0.000 0.010 0.034 0.087 0.047	Gr2_6 34.505 26.946 0.000 0.007 0.000 0.058 0.000	Gr2_7 34.272 27.148 0.020 0.000 0.000 0.081 0.026	Gr2_8 33.601 28.723 0.000 0.003 0.000 0.062 0.000	Gr2_9 33.994 26.444 0.000 0.007 0.000 0.054 0.006	Gr2_10 34.839 27.277 0.023 0.021 0.009 0.067 0.044	Gr2_11 33.202 27.523 0.000 0.004 0.000 0.073 0.043	Gr2_12 31.171 29.315 0.036 0.000 0.000 0.090 0.090	Gr2_13 32.488 28.604 0.000 0.000 0.000 0.133 0.094	Gr2_14 35.926 25.771 0.008 0.007 0.004 0.077 0.033	Gr2_15 34.333 25.999 0.000 0.005 0.000 0.091 0.038	Gr2_16 34.446 26.304 0.000 0.019 0.000 0.088 0.023	Gr2_17 34.324 26.701 0.000 0.000 0.005 0.085 0.080	Gr2_18 34.735 26.663 0.000 0.000 0.005 0.088 0.011	Gr2_19 34.884 25.773 0.000 0.000 0.000 0.084 0.000	Gr2_20 35.013 25.947 0.000 0.004 0.022 0.078 0.060	Gr2_21 34.495 25.521 0.000 0.006 0.000 0.045 0.067
Leitura CaO CO2 La2O3 SrO BaO Na2O Ce2O3 FeO	Gr2_1 54.267 27.371 0.103 0.011 0.151 0.021 0.043 0.123	Gr2_2 52.168 26.313 0.037 0.000 0.010 0.049 0.065 0.180	Gr2_3 54.070 27.686 0.000 0.000 0.000 0.000 0.094 0.166	Gr2_4 51.246 26.309 0.084 0.001 0.071 0.012 0.000 0.367	Gr2_5 53.374 27.148 0.000 0.010 0.034 0.087 0.047 0.196	Gr2_6 34.505 26.946 0.000 0.007 0.000 0.058 0.000 0.508	Gr2_7 34.272 27.148 0.020 0.000 0.000 0.081 0.026 0.467	Gr2_8 33.601 28.723 0.000 0.003 0.000 0.062 0.000 0.469	Gr2_9 33.994 26.444 0.000 0.007 0.000 0.054 0.006 0.991	Gr2_10 34.839 27.277 0.023 0.021 0.009 0.067 0.044 0.432	Gr2_11 33.202 27.523 0.000 0.004 0.000 0.073 0.043 1.064	Gr2_12 31.171 29.315 0.036 0.000 0.000 0.090 0.090 0.000 0.754	Gr2_13 32.488 28.604 0.000 0.000 0.000 0.133 0.094 1.147	Gr2_14 35.926 25.771 0.008 0.007 0.004 0.077 0.033 0.604	Gr2_15 34.333 25.999 0.000 0.005 0.000 0.091 0.038 0.551	Gr2_16 34.446 26.304 0.000 0.019 0.000 0.088 0.023 0.355	Gr2_17 34.324 26.701 0.000 0.000 0.005 0.085 0.080 0.457	Gr2_18 34.735 26.663 0.000 0.000 0.005 0.088 0.011 0.128	Gr2_19 34.884 25.773 0.000 0.000 0.000 0.084 0.000 0.193	Gr2_20 35.013 25.947 0.000 0.004 0.022 0.078 0.060 0.207	Gr2_21 34.495 25.521 0.000 0.006 0.000 0.045 0.067 1.095
Leitura CaO CO2 La2O3 SrO BaO Na2O Ce2O3 FeO TiO2	Gr2_1 54.267 27.371 0.103 0.011 0.151 0.021 0.043 0.123 0.000	Gr2_2 52.168 26.313 0.037 0.000 0.010 0.049 0.065 0.180 0.020	Gr2_3 54.070 27.686 0.000 0.000 0.000 0.000 0.094 0.166 0.000	Gr2_4 51.246 26.309 0.084 0.001 0.071 0.012 0.000 0.367 0.000 0.385 0.047	Gr2_5 53.374 27.148 0.000 0.010 0.034 0.087 0.047 0.196 0.056 0.720 0.108	Gr2_6 34.505 26.946 0.000 0.007 0.000 0.058 0.000 0.508 0.000	Gr2_7 34.272 27.148 0.020 0.000 0.000 0.081 0.026 0.467 0.027	Gr2_8 33.601 28.723 0.000 0.003 0.000 0.062 0.000 0.469 0.000	Gr2_9 33.994 26.444 0.000 0.007 0.000 0.054 0.006 0.991 0.008	Gr2_10 34.839 27.277 0.023 0.021 0.009 0.067 0.044 0.432 0.000	Gr2_11 33.202 27.523 0.000 0.004 0.000 0.073 0.043 1.064 0.018	Gr2_12 31.171 29.315 0.036 0.000 0.000 0.090 0.090 0.000 0.754 0.053	Gr2_13 32.488 28.604 0.000 0.000 0.000 0.133 0.094 1.147 0.107	Gr2_14 35.926 25.771 0.008 0.007 0.004 0.077 0.033 0.604 0.009	Gr2_15 34.333 25.999 0.000 0.005 0.000 0.091 0.038 0.551 0.000	Gr2_16 34.446 26.304 0.000 0.019 0.000 0.088 0.023 0.355 0.000	Gr2_17 34.324 26.701 0.000 0.000 0.005 0.085 0.080 0.457 0.000	Gr2_18 34.735 26.663 0.000 0.000 0.005 0.088 0.011 0.128 0.000	Gr2_19 34.884 25.773 0.000 0.000 0.000 0.000 0.084 0.000 0.193 0.000	Gr2_20 35.013 25.947 0.000 0.004 0.022 0.078 0.060 0.207 0.000	Gr2_21 34.495 25.521 0.000 0.006 0.000 0.045 0.067 1.095 0.065
Leitura CaO CO2 La2O3 SrO BaO Na2O Ce2O3 FeO TiO2 MgO	Gr2_1 54.267 27.371 0.103 0.011 0.151 0.021 0.043 0.123 0.000 0.801	Gr2_2 52.168 26.313 0.037 0.000 0.010 0.049 0.065 0.180 0.020 2.217	Gr2_3 54.070 27.686 0.000 0.000 0.000 0.000 0.094 0.166 0.000 0.663	Gr2_4 51.246 26.309 0.084 0.001 0.071 0.012 0.000 0.367 0.000 0.385	Gr2_5 53.374 27.148 0.000 0.010 0.034 0.087 0.047 0.196 0.056 0.720	Gr2_6 34.505 26.946 0.000 0.007 0.000 0.058 0.000 0.508 0.000 18.188	Gr2_7 34.272 27.148 0.020 0.000 0.000 0.081 0.026 0.467 0.027 17.740	Gr2_8 33.601 28.723 0.000 0.003 0.000 0.062 0.000 0.469 0.000 17.638	Gr2_9 33.994 26.444 0.000 0.007 0.000 0.054 0.006 0.991 0.008 17.376	Gr2_10 34.839 27.277 0.023 0.021 0.009 0.067 0.044 0.432 0.000 17.218	Gr2_11 33.202 27.523 0.000 0.004 0.000 0.073 0.043 1.064 0.018 15.599	Gr2_12 31.171 29.315 0.036 0.000 0.000 0.090 0.000 0.754 0.053 16.696	Gr2_13 32.488 28.604 0.000 0.000 0.000 0.133 0.094 1.147 0.107 16.243	Gr2_14 35.926 25.771 0.008 0.007 0.004 0.077 0.033 0.604 0.009 17.592	Gr2_15 34.333 25.999 0.000 0.005 0.000 0.091 0.038 0.551 0.000 19.006	Gr2_16 34.446 26.304 0.000 0.019 0.000 0.088 0.023 0.355 0.000 18.780	Gr2_17 34.324 26.701 0.000 0.000 0.005 0.085 0.080 0.457 0.000 18.705	Gr2_18 34.735 26.663 0.000 0.000 0.005 0.088 0.011 0.128 0.000 18.781	Gr2_19 34.884 25.773 0.000 0.000 0.000 0.084 0.000 0.193 0.000 18.585	Gr2_20 35.013 25.947 0.000 0.004 0.022 0.078 0.060 0.207 0.000 18.575	Gr2_21 34.495 25.521 0.000 0.006 0.000 0.045 0.067 1.095 0.065 15.308
Leitura CaO CO2 La2O3 SrO BaO Na2O Ce2O3 FeO TiO2 MgO MnO	Gr2_1 54.267 27.371 0.103 0.011 0.151 0.021 0.043 0.123 0.000 0.801 0.000 17.108	Gr2_2 52.168 26.313 0.037 0.000 0.010 0.049 0.065 0.180 0.020 2.217 0.018 0.041 18.883	Gr2_3 54.070 27.686 0.000 0.000 0.000 0.000 0.094 0.166 0.000 0.663 0.018 0.000 17.304	Gr2_4 51.246 26.309 0.084 0.001 0.071 0.000 0.367 0.000 0.385 0.047 0.000 21.479	Gr2_5 53.374 27.148 0.000 0.010 0.034 0.087 0.047 0.196 0.056 0.720 0.108 0.000 18.221	Gr2_6 34.505 26.946 0.000 0.007 0.000 0.058 0.000 0.508 0.000 18.188 0.008 0.000 19.781	Gr2_7 34.272 27.148 0.020 0.000 0.001 0.081 0.026 0.467 0.027 17.740 0.027 0.021 20.171	Gr2_8 33.601 28.723 0.000 0.003 0.000 0.062 0.000 0.469 0.000 17.638 0.054 0.000 19.451	Gr2_9 33.994 26.444 0.000 0.007 0.000 0.054 0.006 0.991 0.008 17.376 0.028 0.000 21.091	Gr2_10 34.839 27.277 0.023 0.021 0.009 0.067 0.044 0.432 0.000 17.218 0.076 0.000 19.995	Gr2_11 33.202 27.523 0.000 0.004 0.000 0.073 0.043 1.064 0.018 15.599 0.001 0.024 22.447	Gr2_12 31.171 29.315 0.036 0.000 0.000 0.000 0.000 0.754 0.053 16.696 0.130 0.040 21.717	Gr2_13 32.488 28.604 0.000 0.000 0.000 0.133 0.094 1.147 0.107 16.243 0.080 0.001 21.103	Gr2_14 35.926 25.771 0.008 0.007 0.004 0.077 0.033 0.604 0.009 17.592 0.018 0.000 19.949	Gr2_15 34.333 25.999 0.000 0.005 0.000 0.091 0.038 0.551 0.000 19.006 0.000 0.021	Gr2_16 34.446 26.304 0.000 0.019 0.000 0.088 0.023 0.355 0.000 18.780 0.013 0.054 19.919	Gr2_17 34.324 26.701 0.000 0.005 0.085 0.085 0.457 0.000 18.705 0.036 0.000 19.607	Gr2_18 34.735 26.663 0.000 0.005 0.088 0.011 0.128 0.000 18.781 0.000 19.587	Gr2_19 34.884 25.773 0.000 0.000 0.000 0.084 0.000 0.193 0.000 18.585 0.030 0.012 20.439	Gr2_20 35.013 25.947 0.000 0.004 0.022 0.078 0.060 0.207 0.000 18.575 0.040 0.003 20.052	Gr2_21 34.495 25.521 0.000 0.006 0.000 0.045 0.067 1.095 0.065 15.308 0.056 0.000 23.341
Leitura CaO CO2 La2O3 SrO BaO Na2O Ce2O3 FeO TiO2 MgO MnO ZnO	Gr2_1 54.267 27.371 0.103 0.011 0.151 0.021 0.043 0.123 0.000 0.801 0.000 17.108 100.000	Gr2_2 52.168 26.313 0.037 0.000 0.010 0.049 0.065 0.180 0.020 2.217 0.018 0.041 18.883	Gr2_3 54.070 27.686 0.000 0.000 0.000 0.000 0.094 0.166 0.000 0.663 0.018 0.000	Gr2_4 51.246 26.309 0.084 0.001 0.071 0.012 0.000 0.367 0.000 0.385 0.047 0.000 21.479 100.000	Gr2_5 53.374 27.148 0.000 0.010 0.034 0.087 0.047 0.196 0.056 0.720 0.108 0.000 18.221	Gr2_6 34.505 26.946 0.000 0.007 0.000 0.058 0.000 0.508 0.000 18.188 0.008 0.000 19.781	Gr2_7 34.272 27.148 0.020 0.000 0.001 0.081 0.026 0.467 0.027 17.740 0.027 0.021 20.171	Gr2_8 33.601 28.723 0.000 0.003 0.000 0.062 0.000 0.469 0.000 17.638 0.054 0.000 19.451 100.000	Gr2_9 33.994 26.444 0.000 0.007 0.000 0.054 0.006 0.991 0.008 17.376 0.028 0.000 21.091	Gr2_10 34.839 27.277 0.023 0.021 0.009 0.067 0.044 0.432 0.000 17.218 0.076 0.000 19.995	Gr2_11 33.202 27.523 0.000 0.004 0.000 0.073 0.043 1.064 0.018 15.599 0.001 0.024 22.447	Gr2_12 31.171 29.315 0.036 0.000 0.000 0.090 0.090 0.053 16.696 0.130 0.040	Gr2_13 32.488 28.604 0.000 0.000 0.000 0.133 0.094 1.147 0.107 16.243 0.080 0.001	Gr2_14 35.926 25.771 0.008 0.007 0.004 0.077 0.033 0.604 0.009 17.592 0.018 0.000	Gr2_15 34.333 25.999 0.000 0.005 0.000 0.091 0.038 0.551 0.000 19.006 0.000 0.021 19.957	Gr2_16 34.446 26.304 0.000 0.019 0.000 0.088 0.023 0.355 0.000 18.780 0.013 0.054 19.919 100.000	Gr2_17 34.324 26.701 0.000 0.005 0.085 0.080 0.457 0.000 18.705 0.036 0.000 19.607	Gr2_18 34.735 26.663 0.000 0.005 0.088 0.011 0.128 0.000 18.781 0.000 0.000 19.587	Gr2_19 34.884 25.773 0.000 0.000 0.000 0.084 0.000 0.193 0.000 18.585 0.030 0.012 20.439 100.000	Gr2_20 35.013 25.947 0.000 0.004 0.022 0.078 0.060 0.207 0.000 18.575 0.040 0.003	Gr2_21 34.495 25.521 0.000 0.006 0.000 0.045 0.067 1.095 0.065 15.308 0.056 0.000
Leitura CaO CO2 La2O3 SrO BaO Na2O Ce2O3 FeO TiO2 MgO MnO ZnO H2O	Gr2_1 54.267 27.371 0.103 0.011 0.151 0.021 0.043 0.123 0.000 0.801 0.000 17.108	Gr2_2 52.168 26.313 0.037 0.000 0.010 0.049 0.065 0.180 0.020 2.217 0.018 0.041 18.883	Gr2_3 54.070 27.686 0.000 0.000 0.000 0.000 0.094 0.166 0.000 0.663 0.018 0.000 17.304	Gr2_4 51.246 26.309 0.084 0.001 0.071 0.000 0.367 0.000 0.385 0.047 0.000 21.479	Gr2_5 53.374 27.148 0.000 0.010 0.034 0.087 0.047 0.196 0.056 0.720 0.108 0.000 18.221	Gr2_6 34.505 26.946 0.000 0.007 0.000 0.058 0.000 0.508 0.000 18.188 0.008 0.000 19.781	Gr2_7 34.272 27.148 0.020 0.000 0.081 0.026 0.467 0.027 17.740 0.027 0.021 20.171 100.000	Gr2_8 33.601 28.723 0.000 0.003 0.000 0.062 0.000 0.469 0.000 17.638 0.054 0.000 19.451	Gr2_9 33.994 26.444 0.000 0.007 0.000 0.054 0.096 0.991 0.008 17.376 0.028 0.000 21.091	Gr2_10 34.839 27.277 0.023 0.021 0.009 0.067 0.044 0.432 0.000 17.218 0.076 0.000 19.995	Gr2_11 33.202 27.523 0.000 0.004 0.000 0.073 0.043 1.064 0.018 15.599 0.001 0.024 22.447	Gr2_12 31.171 29.315 0.036 0.000 0.000 0.000 0.000 0.754 0.053 16.696 0.130 0.040 21.717	Gr2_13 32.488 28.604 0.000 0.000 0.133 0.094 1.147 0.107 16.243 0.080 0.001 21.103 100.000	Gr2_14 35.926 25.771 0.008 0.007 0.004 0.077 0.033 0.604 0.009 17.592 0.018 0.000 19.949	Gr2_15 34.333 25.999 0.000 0.005 0.000 0.091 0.038 0.551 0.000 19.006 0.000 0.021 19.957	Gr2_16 34.446 26.304 0.000 0.019 0.000 0.088 0.023 0.355 0.000 18.780 0.013 0.054 19.919 100.000	Gr2_17 34.324 26.701 0.000 0.005 0.085 0.080 0.457 0.000 18.705 0.036 0.000 19.607	Gr2_18 34.735 26.663 0.000 0.005 0.088 0.011 0.128 0.000 18.781 0.000 0.000 19.587	Gr2_19 34.884 25.773 0.000 0.000 0.000 0.084 0.000 0.193 0.000 18.585 0.030 0.012 20.439 100.000	Gr2_20 35.013 25.947 0.000 0.004 0.022 0.078 0.060 0.207 0.000 18.575 0.040 0.003 20.052	Gr2_21 34.495 25.521 0.000 0.006 0.000 0.045 0.067 1.095 0.065 15.308 0.056 0.000 23.341

Ref	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B
Leitura	Gr3_1	Gr3_2	Gr3_3	Gr3_4	Gr3_5	Gr3_6	Gr3_7	Gr3_8	Gr3_9	Gr3_10
CaO	55.525	53.081	52.733	51.530	52.767	35.744	34.855	34.697	34.046	35.060
CO2	26.817	26.116	25.446	26.004	28.203	24.209	23.831	24.810	25.998	25.987
La2O3	0.000	0.000	0.030	0.000	0.114	0.000	0.043	0.000	0.062	0.000
Sr0	0.010	0.000	0.000	0.043	0.000	0.000	0.000	0.000	0.006	0.000
BaO	0.086	0.000	0.037	0.000	0.000	0.055	0.000	0.000	0.026	0.004
Na2O	0.000	0.064	0.051	0.059	0.070	0.059	0.084	0.040	0.044	0.076
Ce2O3	0.075	0.004	0.044	0.125	0.000	0.092	0.001	0.007	0.015	0.059
FeO	0.074	0.178	0.332	0.326	1.004	0.620	0.420	0.227	0.921	0.588
TiO2	0.037	0.004	0.024	0.001	0.004	0.004	0.000	0.000	0.005	0.000
MgO	0.574	1.024	0.790	0.933	0.901	17.529	17.805	18.516	17.990	17.605
MnO	0.000	0.000	0.000	0.005	0.000	0.022	0.053	0.000	0.027	0.027
ZnO	0.000	0.000	0.000	0.000	0.000	0.002	0.051	0.000	0.000	0.000
H2O	16.802	19.529	20.512	20.977	16.937	21.664	22.856	21.704	20.861	20.594
Total	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
Descrição	Cal	Cal	Cal	Inválido	Cal	ProtoDol	ProtoDol	ProtoDol	ProtoDol	ProtoDol

Imagem de electrões retrodifundidos do prisma de betão Ki_B1_A, apresentando uma zona de contacto entre agregado grosso e pasta de cimento, com carbonatação da pasta em torno do grão. (A) Imagem de electrões retrodifundidos obtida em MEV; (B-H) mapas composicionais dos respectivos elementos identificados no canto inferior esquerdo. O grão de agregado grosso possui uma matriz dolomítica bem desenvolvida, rica em filossilicatos e quartzo, sendo que a pasta apresenta sinais intensos de Mg (C), possivelmente correspondentes a pequenas massas de brucite, produto do processo de desdolomitização.

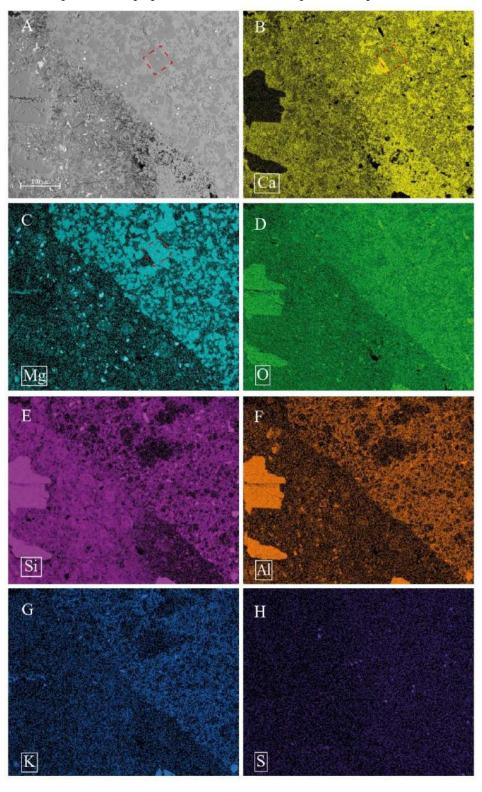
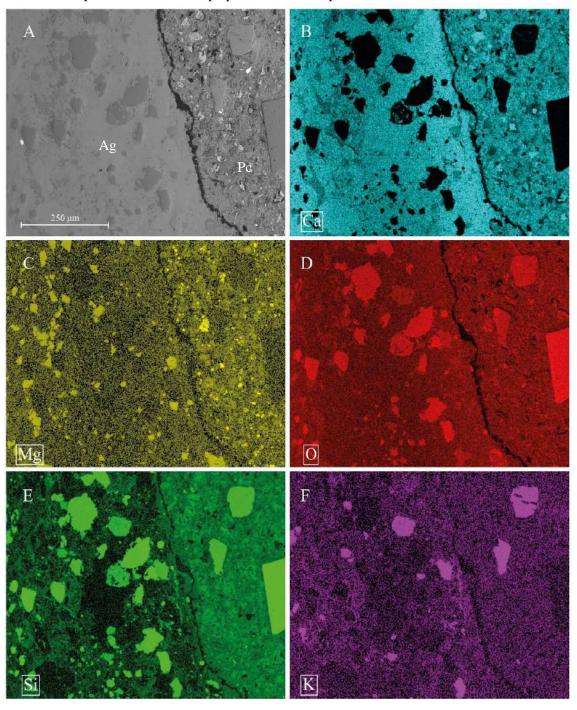



Imagem de electrões retrodifundidos do prisma de betão Ki_B1_A, apresentando uma fissura aberta no contacto entre grão de agregado grosso e a pasta de cimento, sem evidências de carbonatação da pasta ou no interior da fissura. (A) Imagem de electrões retrodifundidos obtida em MEV; (B-F) mapas composicionais dos respectivos elementos identificados no canto inferior esquerdo. Grão de agregado apresenta uma grande abundância de quartzo detrítico e alguma quantidade de filossilicatos, sempre associados a zonas da matriz mais dolomítica. Observando (C) e (D) é possível confirmar-se a presença de brucite na pasta sob a forma de pequenas massas dispersas.

Anexo 39

Resultados em wt% das análises pontuais realizadas em cristais de quartzo presentes no interior dos grãos de agregado grosso nas lâminas Ki_B1_A e Ki_B1_B.

Ref	Ki_B	1_A k	Ki_B1_A	Ki_B1_A	Ki_B1	_A K	i_B1_A	Ki_B1_A	Ki_B1_	A Ki_	B1_A	Ki_B1_A	Ki_B1_A	A Ki_B	1_A K	i_B1_A
Leitura	1		2	3	4		5	6	7		8	9	10	1	1	12
CaO	0.1	56	1.923	4.831	1.63	5 2	24.569	10.514	28.63	2 4.	988	0.701	0.357	0.1	55	0.278
F	0.0	98	0.000	0.022	0.10	1	0.095	0.000	0.037	0.	000	0.060	0.058	0.0	00	0.000
SiO2	100.	163	95.054	88.210	95.96	69 5	6.454	75.863	47.98	4 89	.508	100.523	101.731	99.8	367 1	00.237
Rb2O	0.0	00	0.000	0.000	0.00	0	0.000	0.000	0.000	0.	000	0.000	0.000	0.0	00	0.000
TiO2	0.0	00	0.000	0.026	0.03	1	0.000	0.016	0.044	0.	000	0.000	0.000	0.0	00	0.000
Na2O	0.0	09	0.044	0.120	0.02	2	0.015	0.024	0.031	0.	040	0.012	0.000	0.0	15	0.002
CI	0.0	00	0.005	0.059	0.00	0	0.017	0.015	0.018	3 0.	800	0.000	0.018	0.0	12	0.016
K20	0.0		0.017	0.185	0.00		0.072	0.207	0.754		309	0.026	0.032	0.0		0.022
Cr2O3	0.0		0.099	0.057	0.00		0.073	0.037	0.047		043	0.037	0.048	0.0		0.024
MgO	0.0		0.918	0.340	0.01		0.219	0.744	0.437		346	0.259	0.393	0.0		0.012
Cs2O	0.0		0.006	0.000	0.00		0.000	0.000	0.000		000	0.000	0.000	0.0		0.000
BaO	0.0		0.000	0.000	0.00		0.000	0.000	0.031		033	0.000	0.007	0.0		0.000
MnO	0.0		0.013	0.047	0.02		0.000	0.005	0.000		000	0.000	0.007	0.0		0.000
Al2O3	0.0		0.000	0.024	0.00		0.105	1.005	1.333		724	0.015	0.051	0.0		0.000
NiO	0.0			0.009	0.00		0.000	0.025	0.000					0.0		
			0.006								037	0.071	0.045			0.038
FeO	0.0		0.077	0.133	0.11		0.042	0.261	0.337		213	0.019	0.038	0.0		0.054
H2O	0.0		1.808	5.620	2.09		8.345	11.287	20.33		755	0.000	0.000	0.0		0.000
Total	100.		100.000	100.000	100.0		00.000	100.000	100.00		0.000	101.713	102.750			00.697
Descriçã	io Q	Z	Qz+Cc	Qz+Cc	Qz+(c (Qz+Cc	Qz+Cc	Qz+C	c Qz	z+Cc	Qz	Qz	Q	Z	Qz
Ref	Ki_B1_B	Ki_B1_E	B Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B									
Leitura	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
CaO F	0.265 0.000	2.859 0.000	1.632 0.202	0.841 0.000	0.190 0.000	0.217 0.095	0.189 0.018	1.200 0.097	1.935 0.088	0.241 0.000	0.237 0.031	0.225 0.105	0.143 0.062	0.243 0.125	0.239	0.426 0.000
SiO2	100.944	89.990	89.307	97.620	100.137	99.304	99.600	68.289	65.908	99.808	99.710		100.153	100.185	99.126	98.691
Rb2O	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TiO2	0.000	0.028	0.000	0.013	0.012	0.000	0.000	0.015	0.022	0.009	0.002	0.000	0.016	0.000	0.028	0.000
Na2O Cl	0.014 0.002	0.025 0.009	0.026 0.001	0.081 0.078	0.005 0.003	0.020 0.005	0.000	10.296 0.000	9.926 0.003	0.000	0.014	0.014 0.001	0.004 0.015	0.003	0.009	0.006 0.000
K20	0.002	0.009	0.568	0.076	0.003	0.003	0.000	0.000	0.003	0.000	0.001	0.001	0.015	0.000	0.000	0.000
Cr2O3	0.077	0.058	0.083	0.037	0.059	0.074	0.064	0.047	0.046	0.063	0.053	0.056	0.034	0.058	0.079	0.064
MgO	0.019	3.213	1.701	0.202	0.011	0.047	0.002	0.000	0.014	0.165	0.014	0.000	0.015	0.025	0.013	0.022
Cs2O	0.019	0.000	0.000	0.000	0.009	0.028	0.031	0.000	0.000	0.000	0.046	0.000	0.001	0.000	0.016	0.023
BaO MnO	0.000 0.022	0.041 0.004	0.000	0.037 0.028	0.014 0.000	0.017 0.024	0.031 0.002	0.039 0.015	0.025 0.007	0.023 0.021	0.011	0.000	0.014 0.026	0.006	0.000 0.011	0.000 0.029
Al2O3	0.028	0.986	2.812	0.938	0.000	0.024	0.002	18.962	19.782	0.010	0.032	0.000	0.000	0.002	0.017	0.025
NiO	0.030	0.021	0.000	0.000	0.000	0.000	0.019	0.046	0.000	0.000	0.027	0.000	0.042	0.000	0.000	0.030
FeO	0.047	0.507	0.477	0.149	0.026	0.052	0.030	0.029	0.075	0.049	0.057	0.000	0.023	0.040	0.048	0.030
H2O Total	0.000 101.475	2.105 100.000	3.276 100.000	0.000 100.261	0.000 100.465	0.078 100.000	0.015 100.000	0.905 100.000	2.115 100.000	0.000 100.404	0.000 100.283	0.000 3 101.091	0.000 100.528	0.000 100.658	0.404 100.000	0.628 100.000
Descrição	Qz	Qz+Cc	Oz+Cc	Qz	Oz	Qz	00.000 Oz	Qz+Cc	Qz+Cc	0z	Qz	0z	Qz	Qz	Qz	Qz

Anexo 40

Resultados em wt% das análises pontuais realizadas em cristais de feldspatos presentes no interior dos grãos de agregado grosso nas lâminas Ki_B1_A e Ki_B1_B.

Ref	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B	Ki_B1_B
Leitura	Gr2_1	Gr2_2	Gr2_3	Gr2_4	Gr2_5	Gr1_1	Gr1_2	Gr1_3	Gr1_4	Gr1_5	Gr2_1	Gr2_2	Gr2_3	Gr2_4	Gr2_5	Gr3_1	Gr3_2	Gr3_3	Gr3_4	Gr3_5
SiO2	62.489	46.325	64.853	65.265	64.389	65.305	64.884	64.974	64.277	62.434	64.488	64.776	65.02	63.505	65.039	64.618	64.747	64.719	61.339	64.53
Na2O	0.691	0.32	0.356	0.373	0.49	0.365	0.568	0.477	0.214	0.48	0.276	0.744	0.408	0.681	0.428	0.558	0.271	0.363	0.357	0.438
BaO	0.24	0.444	0.38	0.25	0.329	0.923	0.174	0.21	0.307	0.32	0.948	0.553	0.143	1.778	0.436	0.677	0.174	0.198	0.22	0
K20	13.568	14.096	16.215	16.256	16.056	15.975	16.002	16.264	16.152	15.682	16.042	15.586	16.308	15.154	16.021	15.85	16.428	16.251	16.083	16.02
CaO	1.535	14.51	0.331	0.239	0.296	0.267	0.217	0.206	0.601	2.017	0.165	0.216	0.439	0.23	0.219	0.155	0.201	0.213	2.469	0.269
MgO	0.203	0.364	0.008	0	0.011	0.011	0.005	0.003	0.325	0.017	0	0	0.019	0.013	0.015	0	0	0.007	0.003	0.003
TiO2	0	0.029	0.014	0.033	0	0.014	0	0	0.018	0	0.005	0	0	0.005	0.003	0.053	0	0.025	0	0
SrO	0	0.031	0.058	0	0.007	0.049	0.003	0.148	0.049	0.071	0.073	0.334	0	0.082	0.163	0.035	0	0	0.046	0
Al2O3	16.523	16.228	17.949	17.654	17.959	18.111	17.919	18.129	17.81	17.669	17.973	17.882	17.912	18.522	18.127	18.234	17.704	17.778	17.159	17.989
MnO	0.013	0	0	0.035	0	0	0.007	0	0.083	0.005	0.007	0	0.035	0.044	0	0	0	0	0	0.092
FeO(t)	0.113	0.131	0.023	0.012	0.027	0.048	0.051	0	0.272	0.005	0.039	0.056	0.039	0.057	0.085	0.013	0.006	0.017	0.073	0.074
Total	95.375	92.478	100.187	100.117	99.564	101.068	99.83	100.411	100.108	98.7	100.016	100.147	100.323	100.071	100.536	100.193	99.531	99.571	97.749	99.415
Descrição	m Ss	m Ss	Or	mSs	Or	mSs	Or													

Composições em wt% para perfil realizado na pasta de cimento, perpendicularmente a um grão de agregado (grão 2) de Ki_B1_A, acompanhado dos respectivos perfis elementares. Pode observar-se a presença da faixa de possível carbonatação em torno do grão através dos valores inicialmente altos de Ca, seguido de valores maiores de Si e Fe (entrada na pasta de cimento). Os valores obtidos após a análise pontual 4 da pasta, sendo que as leituras de 1-3 correspondem à faixa enriquecida em Ca que envolve o grão de agregado grosso.

Ref	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A	Ki_B1_A
Leitura	Gr2_1	Gr2_2	Gr2_3	Gr2_4	Gr2_5	Gr2_6	Gr2_7	Gr2_8
CaO	63.651	61.525	57.730	48.854	45.835	58.781	53.730	59.131
F	0.000	0.000	0.000	0.000	0.142	0.059	0.073	0.267
SiO2	4.649	2.489	2.568	11.668	8.451	2.861	8.427	0.913
Rb2O	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TiO2	0.041	0.000	0.030	0.351	0.652	0.000	0.069	0.020
Na2O	0.169	0.297	0.317	0.769	0.281	0.185	0.535	0.305
CI	0.011	0.000	0.020	0.017	0.026	0.004	0.036	0.004
K20	0.140	0.253	0.223	0.680	0.163	0.238	0.432	0.186
Cr2O3	0.032	0.076	0.057	0.085	0.051	0.104	0.014	0.073
MgO	0.305	0.202	1.643	4.383	3.722	0.368	0.430	0.233
Cs2O	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
BaO	0.075	0.043	0.055	0.040	0.000	0.043	0.024	0.054
MnO	0.000	0.019	0.031	0.040	0.120	0.055	0.000	0.000
Al2O3	0.501	0.285	0.507	1.032	2.586	0.379	0.635	0.140
NiO	0.000	0.000	0.008	0.005	0.026	0.051	0.000	0.000
FeO	0.301	0.257	0.513	1.568	7.800	0.279	0.495	0.249
H2O	30.129	34.552	36.302	30.509	30.209	36.616	35.139	38.540
Total	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000

Descrição Cc+CemSil Cc+Cem

Imagem de electrões retrodifundidos do prisma de betão Ki_B2_A, apresentando fissura no interior de agregado grosso carbonatado. (A) Imagem de electrões retrodifundidos obtida em MEV; (B-F) mapas composicionais dos respectivos elementos identificados no canto inferior esquerdo. Fissura aberta no interior de agregado grosso em Ki_B2_A. Note-se que a fissura tira partido de um plano estilolítico insipiente (D-F) para se propagar. Observa-se quartzo abundante disperso na matriz do agregado de rocha.

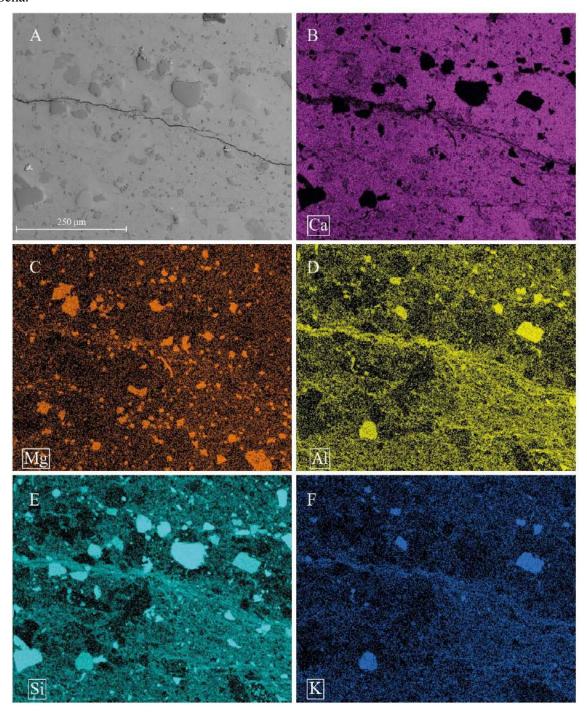


Imagem de electrões retrodifundidos do prisma de betão Ki_B1_B, apresentando uma fissura aberta no contacto entre grão de agregado grosso e pasta de cimento. (A) Imagem de electrões retrodifundidos obtida em MEV; (B-H) mapas composicionais dos respectivos elementos identificados no canto inferior esquerdo. Não é observável qualquer tipo de carbonatação da pasta, mas a presença de brucite é evidente no canto inferior esquerdo da imagem através da conjugação dos sinais de Mg e O (C e F respectivamente). O grão de agregado é rico em quartzo, feldspatos e em filossilicatos, apresentando uma matriz dolomítica bem desenvolvida.

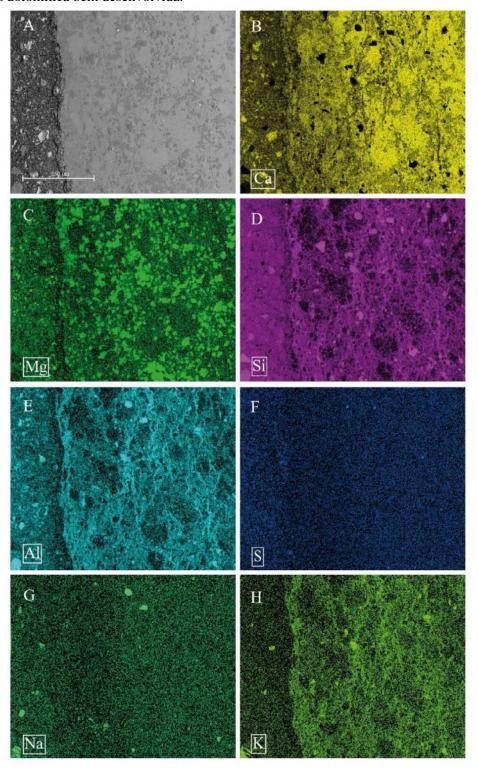


Imagem de electrões retrodifundidos do prisma de betão Ki_B1_A, apresentando o fenómeno de carbonatação, aparentemente exacerbado, entre um agregado grosso carbonatado e um agregado fino, feldspato. (A) Imagem de electrões retrodifundidos obtida em MEV; (B-H) mapas composicionais dos respectivos elementos identificados no canto inferior esquerdo. Carbonatação da pasta de cimento em zona de proximidade entre grão de agregado grosso (de matriz dolomítica e rico em filossilicatos e quartzo detrítico) com grão de feldspato na fracção fina do betão. O grão de feldspato apresenta mirmequites e uma fissura fina (preenchida por calcite), sendo também possível observar-se a presença de brucite na pasta através de sinais intensos de Mg em (C).

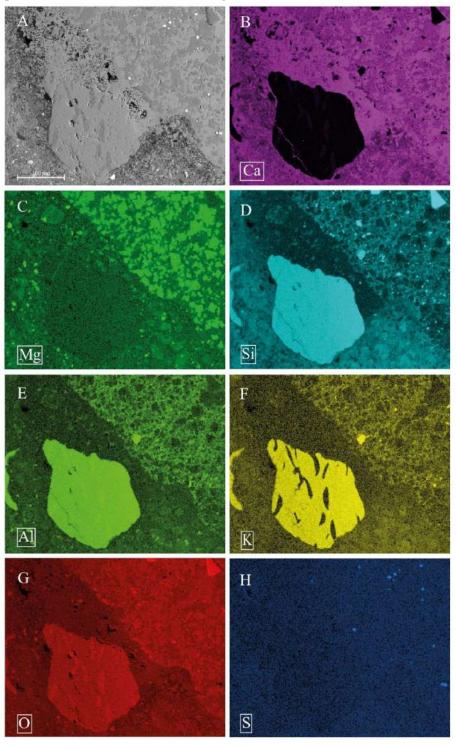


Imagem de electrões retrodifundidos do prisma de betão Ki_B1_A, apresentando rede de fissuras abertas na pasta de cimento, na proximidade de vazio na pasta e grão de agregado grosso dolomítico (em baixo). (A) Imagem de electrões retrodifundidos obtida em MEV; (B-H) mapas composicionais dos respectivos elementos identificados no canto inferior esquerdo. Não é observado qualquer tipo de carbonatação da pasta em torno do agregado grosso, no vazio na pasta ou na rede de fissuras, mas observa-se uma grande quantidade de brucite dispersa na pasta de cimento, resultado do processo de desdolomitização. [Nota: a faixa oblíqua escurecida presente nos mapas composicionais corresponde a um problema na aquisição de imagens e não a um empobrecimento elementar]

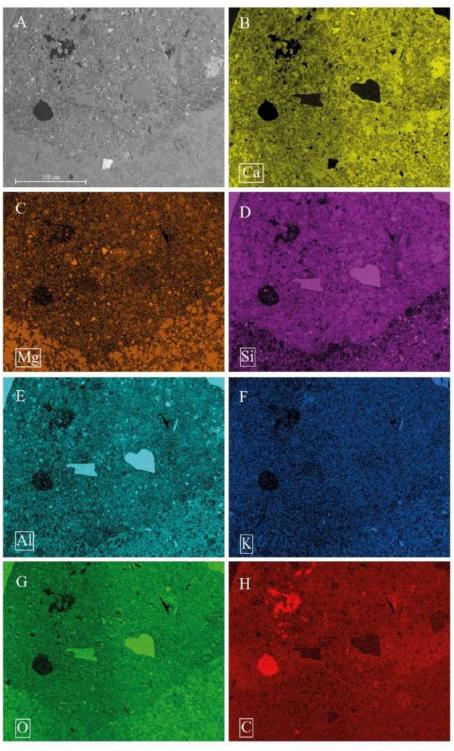
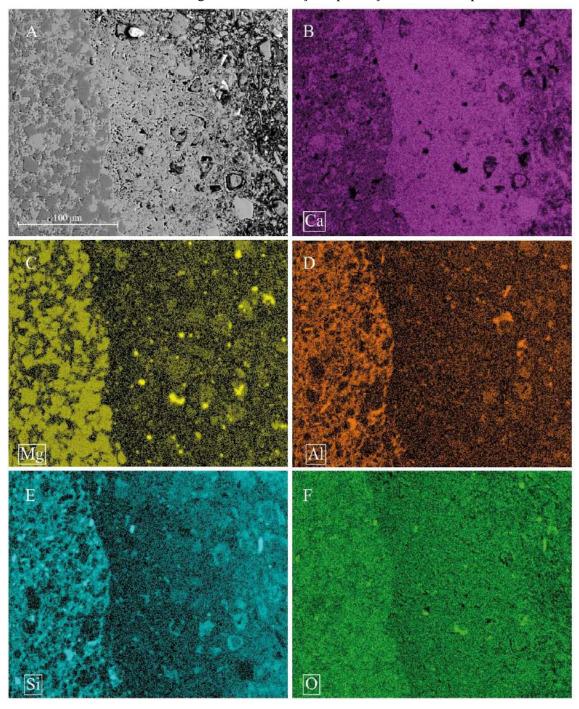



Imagem de electrões retrodifundidos do prisma de betão Ki_B1_A, apresentando uma carbonatação intensa da pasta em torno de agregado grosso (à esquerda). (A) Imagem de electrões retrodifundidos obtida em MEV; (B-F) mapas composicionais dos respectivos elementos identificados no canto inferior esquerdo. Observa-se a aparente relação entre o desenvolvimento da matriz dolomítica, e consequente abundância de filossilicatos, com o grau de carbonatação e presença de brucite na pasta de cimento.

Anexo 47

Resultados em wt% para as análises pontuais realizadas em gel silico alcalino, amorfo (SiG) e produto silico-alcalino cristalino (SiGc), presente em Spr_B1_A.

Ref	Spr_B1_A	Spr_B1_A	Spr_B1_A	Spr_B1_A	Spr_B1_A	Spr_B1_A	Spr_B1_A	Spr_B1_A	Spr_B1_A	Spr_B1_A	Spr_B1_A	Spr_B1_A	Spr_B1_A	Spr_B1_A	Spr_B1_A	Spr_B1_A	Spr_B1_A	Spr_B1_A	Spr_B1_A	Spr_B1_A
Leitura	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
CaO	31.279	21.966	31.400	24.700	18.746	29.349	29.449	29.448	28.757	30.049	34.088	33.560	35.846	30.332	30.785	31.279	31.594	28.979	29.627	30.617
F	0.025	0.026	0.142	0.061	0.030	0.045	0.145	0.134	0.213	0.044	0.185	0.104	0.126	0.000	0.000	0.069	0.000	0.082	0.035	0.000
SiO2	41.174	34.629	40.415	37.041	31.495	48.291	48.020	48.450	48.128	48.556	43.238	42.104	44.280	36.588	44.193	43.718	43.133	42.649	42.288	42.988
Rb2O	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TiO2	0.000	0.001	0.000	0.000	0.011	0.000	0.020	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.016	0.000
Na2O	0.264	0.242	0.354	0.669	0.451	0.642	0.775	0.693	0.749	0.818	0.266	0.278	0.246	0.534	0.325	0.444	0.870	0.823	0.772	1.286
CI	0.031	0.019	0.027	0.044	0.300	0.015	0.011	0.033	0.000	0.004	0.019	0.000	0.000	0.016	0.002	0.026	0.032	0.031	0.024	0.013
K20	0.618	0.533	0.903	0.915	0.510	2.839	3.040	2.922	3.139	3.131	1.413	1.536	1.124	1.340	1.494	1.742	1.985	1.998	1.969	2.899
Cr2O3	0.035	0.054	0.045	0.075	0.038	0.039	0.050	0.046	0.087	0.000	0.065	0.075	0.030	0.076	0.012	0.070	0.102	0.078	0.041	0.058
MgO	0.553	0.628	0.543	0.629	0.757	0.403	0.476	0.417	0.422	0.450	0.777	0.778	0.542	0.468	0.970	0.664	0.697	0.758	0.667	0.732
Cs2O	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
BaO	0.058	0.052	0.027	0.033	0.003	0.000	0.039	0.028	0.065	0.052	0.066	0.060	0.058	0.020	0.069	0.059	0.030	0.086	0.008	0.014
MnO	0.027	0.016	0.028	0.041	0.087	0.000	0.025	0.003	0.000	0.008	0.000	0.017	0.000	0.049	0.028	0.040	0.020	0.033	0.025	0.006
AI2O3	1.216	1.361	1.297	1.360	1.398	0.165	0.179	0.212	0.201	0.193	0.784	0.815	0.452	1.810	2.143	0.282	0.403	0.274	0.321	0.263
NiO	0.000	0.042	0.027	0.000	0.000	0.000	0.033	0.000	0.001	0.027	0.006	0.000	0.000	0.005	0.024	0.058	0.003	0.000	0.000	0.000
FeO	0.089	0.101	0.098	0.127	0.113	0.000	0.002	0.029	0.018	0.011	0.109	0.091	0.092	0.093	0.101	0.066	0.022	0.048	0.074	0.050
H2O	24.646	40.345	24.760	34.342	46.138	18.235	17.799	17.650	18.310	16.679	19.066	20.626	17.259	28.674	19.856	21.519	21.117	24.203	24.153	21.079
Total	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
Ca/Si (mol)	0.814	0.680	0.832	0.714	0.638	0.651	0.657	0.651	0.640	0.663	0.845	0.854	0.867	0.888	0.746	0.767	0.785	0.728	0.751	0.763
(Na+K)/Si (mol)	0.032	0.033	0.045	0.067	0.048	0.101	0.112	0.105	0.113	0.115	0.054	0.059	0.043	0.075	0.057	0.071	0.098	0.097	0.095	0.144
Descrição	SiG																			

Anexo 47 - Continuação Ref Spr_B1_A Spr_B

	OpD	OpD/.	OpD	OpD/.	Op	Op, .	Op	Op	Op	OpD, .	OpD, .	OpD	OpD	Op	OpD, .
Leitura	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CaO	23.894	17.666	10.267	22.432	16.605	23.301	14.185	11.564	11.874	18.193	11.478	11.962	12.164	12.277	14.526
F	0.109	0.000	0.000	0.023	0.002	0.000	0.000	0.122	0.054	0.000	0.000	0.000	0.110	0.065	0.000
SiO2	36.646	45.611	47.368	46.455	45.894	38.208	50.756	51.520	55.537	47.071	51.786	56.925	54.645	55.842	54.083
Rb2O	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TiO2	0.000	0.000	0.000	0.028	0.000	0.000	0.000	0.000	0.000	0.009	0.021	0.000	0.001	0.000	0.000
Na2O	0.786	0.883	0.949	0.609	1.369	1.300	1.681	1.307	1.105	2.036	0.906	0.916	1.089	0.863	0.820
CI	0.288	0.203	0.357	0.117	0.204	0.172	0.247	0.281	0.232	0.188	0.248	0.162	0.296	0.164	0.191
K20	6.139	7.969	7.050	2.703	7.369	5.799	8.231	8.341	8.962	8.288	8.640	7.693	8.187	8.226	7.090
Cr2O3	0.037	0.046	0.081	0.082	0.086	0.052	0.066	0.069	0.062	0.047	0.007	0.059	0.074	0.056	0.076
MgO	0.206	0.181	0.090	0.420	0.149	0.354	0.202	0.110	0.063	0.177	0.092	0.153	0.119	0.219	0.181
Cs2O	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
BaO	0.000	0.032	0.081	0.000	0.000	0.000	0.000	0.000	0.010	0.000	0.083	0.000	0.003	0.018	0.010
MnO	0.020	0.002	0.020	0.041	0.000	0.000	0.002	0.049	0.023	0.032	0.000	0.069	0.009	0.019	0.014
Al2O3	0.322	0.249	0.200	1.088	0.269	0.235	0.273	0.255	0.263	0.418	0.345	0.311	0.404	0.388	0.727
NiO	0.011	0.056	0.032	0.000	0.020	0.000	0.068	0.000	0.000	0.000	0.012	0.003	0.027	0.000	0.036
FeO	0.037	0.077	5.905	0.108	0.010	0.060	0.035	0.035	0.040	0.022	0.026	0.029	0.021	0.038	0.011
H2O	31.616	27.070	27.682	25.931	28.069	30.557	24.311	26.460	21.850	23.563	26.411	21.754	22.964	21.890	22.280
Total	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
Ca/Si (mol)	0.699	0.415	0.232	0.517	0.388	0.653	0.299	0.240	0.229	0.414	0.237	0.225	0.238	0.236	0.288
(Na+K)/Si (mol)	0.255	0.260	0.229	0.100	0.263	0.260	0.271	0.256	0.244	0.308	0.247	0.204	0.230	0.218	0.197
Descrição	SiGc														

Ref	Spr_B1_A	Spr_B1_A	Spr_B1_A	Spr_B1_A	Spr_B1_A	Spr_B1_A	Spr_B1_A	Spr_B1_A	Spr_B1_A	Spr_B1_A	Spr_B1_A	Spr_B1_A	Spr_B1_A
Leitura	1	2	3	4	5	6	7	8	9	10	11	12	1
CaO	13.690	11.965	13.639	12.214	12.415	12.760	12.094	11.856	12.476	13.509	12.351	12.551	12.623
F	0.155	0.000	0.000	0.112	0.156	0.109	0.078	0.000	0.000	0.116	0.000	0.000	0.079
SiO2	53.674	53.843	57.204	54.756	54.483	55.849	52.755	53.047	51.144	51.232	56.135	55.937	56.644
Rb2O	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TiO2	0.000	0.000	0.000	0.000	0.021	0.000	0.007	0.000	0.000	0.005	0.000	0.000	0.000
Na2O	0.977	0.761	0.761	0.728	0.728	0.972	0.857	0.843	0.619	0.852	0.814	0.675	0.830
CI	0.273	0.158	0.140	0.352	0.186	0.211	0.170	0.266	0.165	0.179	0.243	0.211	0.186
K20	8.667	8.650	8.327	8.604	8.035	8.399	8.098	8.572	7.859	7.415	8.793	8.897	8.712
Cr2O3	0.048	0.020	0.065	0.069	0.038	0.081	0.063	0.053	0.031	0.090	0.069	0.079	0.046
MgO	0.145	0.081	0.140	0.068	0.154	0.082	0.064	0.084	0.329	0.078	0.105	0.045	0.078
Cs2O	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
BaO	0.000	0.000	0.016	0.000	0.012	0.000	0.000	0.026	0.065	0.000	0.006	0.000	0.003
MnO	0.046	0.004	0.000	0.031	0.012	0.000	0.000	0.026	0.046	0.000	0.032	0.008	0.000
AI2O3	0.049	0.057	0.041	0.081	0.083	0.084	0.045	0.042	0.079	0.093	0.108	0.076	0.320
NiO	0.000	0.012	0.000	0.000	0.000	0.045	0.000	0.009	0.000	0.000	0.000	0.000	0.015
FeO	0.015	0.011	0.039	0.020	0.022	0.024	0.014	0.000	0.019	0.031	0.028	0.016	0.005
H2O	22.389	24.475	19.660	23.093	23.762	21.478	25.828	25.238	27.206	26.490	21.372	21.553	20.533
Total	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
Ca/Si (mol)	0.273	0.238	0.255	0.239	0.244	0.245	0.246	0.239	0.261	0.283	0.236	0.240	0.239
(Na+K)/Si (mol)	0.241	0.232	0.211	0.226	0.214	0.226	0.227	0.237	0.220	0.217	0.228	0.226	0.225
Descrição	SiGc												

Imagem de electrões retrodifundidos do prisma de betão Spr_B1_A, apresentando um vazio na pasta de cimento preenchido por gel silico-alcalino (SiG), abastecido por uma rede de fissuras que conectam dois agregados grossos carbonatados e um terceiro agregado fino (no centro). (A) Imagem de electrões retrodifundidos obtida em MEV; (B-F) mapas composicionais dos respectivos elementos identificados no canto inferior esquerdo. Acumulação de gel silico alcalino amorfo em vazio na pasta de cimento, alimentado pelas fissuras presentes no grão de agregado grosso (canto inf. direito) que comunicam com a pasta e outros grãos finos de agregado (topo esquerdo).

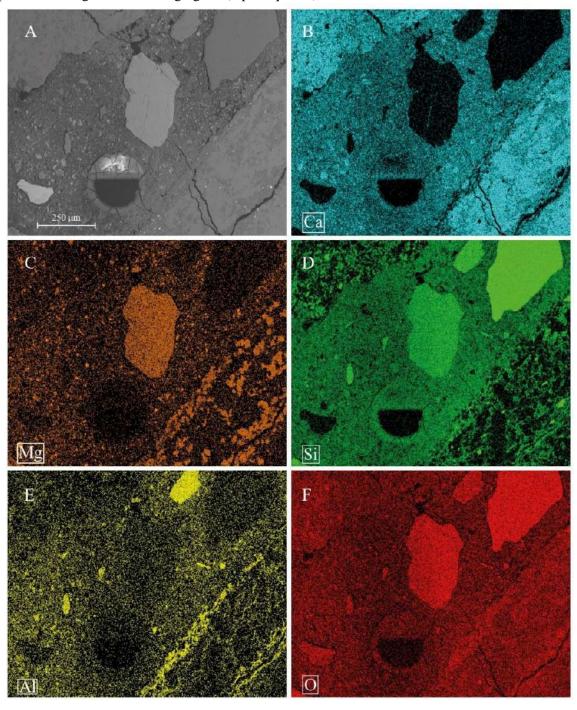


Imagem de electrões retrodifundidos do prisma de betão Spr_B1_A, apresentando uma fissura aberta no interior de agregado grosso carbonatado bordejado com gel silico alcalino (SiG). (A) Imagem de electrões retrodifundidos obtida em MEV; (B-F) mapas composicionais dos respectivos elementos identificados no canto inferior esquerdo. Observe-se que embora a fissura não possua um preenchimento por gel silico alcalino, este produto de reacção está presente de forma pouco expressiva ao longo dos bordos da fissura, podendo com o decorrer do envelhecimento do betão vir a ser preenchido pela sua forma amorfa e/ou cristalina.

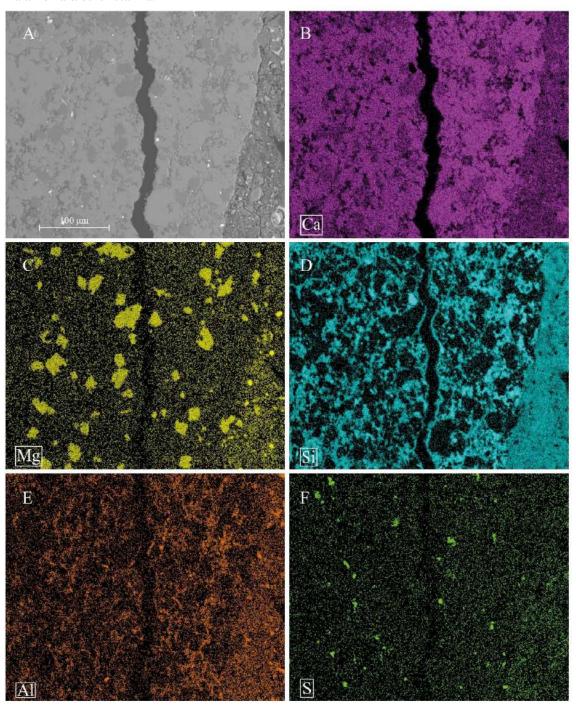


Imagem de electrões retrodifundidos do prisma de betão Spr_B1_B, apresentando um exemplo do grau de silicificação experienciado pela litologia de Spratt. (A) Imagem de electrões retrodifundidos obtida em MEV; (B-F) mapas composicionais dos respectivos elementos identificados no canto inferior esquerdo. Bom exemplo do tipo de agregado grosso produzido pela pedreira de Spratt, onde se observa uma substituição quase total dos diferentes bioclastos que compõe a matriz deste agregado por sílica (C-D); bioclasto substituído por francolite (E) na zona superior do grão.

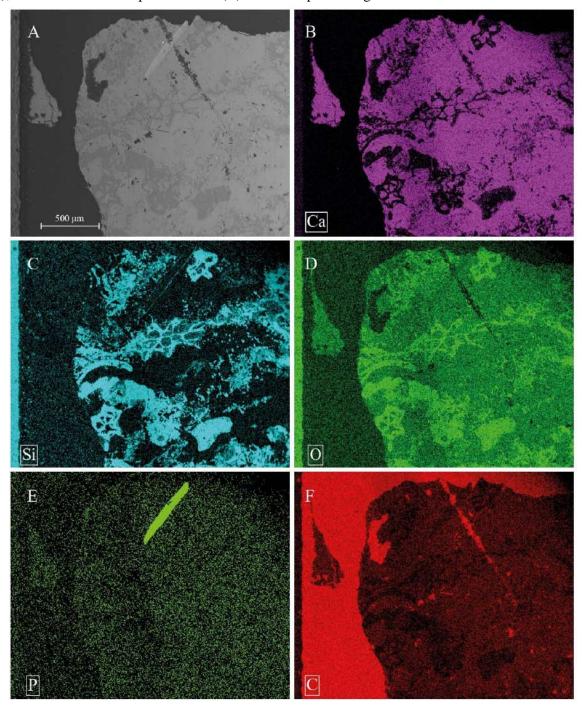
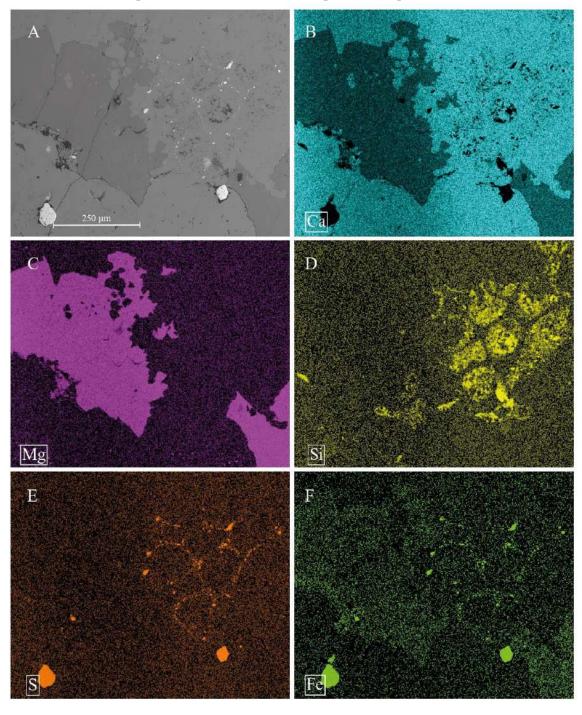



Imagem de electrões retrodifundidos de grão de agregado grosso no prisma de betão Spr_B1_B, apresentando um bom exemplo do fenómeno de piritização de bioclastos presentes na litologia de Spratt. (A) Imagem de electrões retrodifundidos obtida em MEV; (B-F) mapas composicionais dos respectivos elementos identificados no canto inferior esquerdo. Acumulação preferencial de pirite (E-F) nas paredes de bioclasto substituído quase totalmente no seu interior por sílica criptocristalina (D).

