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“We can only see a short distance ahead, but we can see plenty there that needs to be
done.”

―Alan Turing, Computing Machinery and Intelligence
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Abstract

Biclustering and triclustering are becoming increasingly popular for unsupervised analysis of two and
threedimensional datasets. Among other patterns of interest, usingnclusters in unsupervised data analy
sis can identify potential biological modules, illness progression profiles, and communities of individuals
with consistent behaviour. Despite this, most algorithms still rely on exhaustive approaches to produce
highquality results.

The main limitation of using deep learning to solve this task is that nclusters are computed assuming
that all elements are represented under equal distance. This assumption invalidates the use of locality
simplification techniques like neural convolutions. Graphs are flexible structures that could represent
a dataset where all elements are at an equal distance through fully connected graphs, thus encouraging
the use of graph convolutional networks to learn their structure and generate accurate embeddings of the
datasets. Because nclustering is primarily viewed as an iterative task in which elements are added or re
moved from a given cluster, a reinforcement learning framework is a good fit. Deep reinforcement learn
ing agents have already been successfully coupled with graph convolutional networks to solve complex
combinatorial optimization problems, motivating the adaptation of reinforcement learning architectures
to this problem.

This dissertation lays the foundations for a novel reinforcement learning approach for nclustering
that could outperform state of the art algorithms while implementing a more efficient algorithm. To this
end, three libraries were implemented: a synthetic data generator, a framework that models nclustering
tasks asMarkov decision process, and a training library. A proximal policybased agent was implemented
and tunned using populationbased training, to evaluate the behaviour of the reinforcement learning en
vironments designed.

Results show that agents can learn to modify their behaviour while interacting with the environment
to maximize their reward signal. However, they are still far from being a solution to nclustering. This
dissertation is the first step towards this solution. Finally, future steps to improve these results are pro
posed.

This dissertation has presented foundational work that enables modelling nclustering as an MDP,
paving the way for further studies focused on improving task performance.

Keywords: Data Mining, NDimensional Data Analysis, NClustering, Reinforcement Learning,
Graph Neural Networks
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Resumo Alargado

Os seres humanos evoluíram para encontrar padrões. Esta capacidade está presente na nossa vida quo
tidiana, e não sobreviveríamos sem ela. Na realidade, esta é uma característica que parecemos partilhar
com todos os seres inteligentes, a necessidade de compreender padrões e de criar rotinas. Os padrões são
lugares seguros onde podemos agir conscientemente, onde as relações causais que ligam as nossas acções
às suas consequências são conhecidas por nós. A compreensão de um padrão pode ser a diferença entre
vida e morte, o suave som de folhas pode implicar um ataquemortal, a presença de humidade no solo pode
indicar um riacho próximo, enquanto um cheiro pode ajudar a distinguir entre amigo ou inimigo. Encon
trar padrões e distinguir entre padrões e acontecimentos aleatórios permitiu à nossa sociedade chegar tão
longe.

Hoje, enfrentamos problemas mais complexos em quase todos os campos de estudo científicos e
sociais, por vezes escondidos por detrás de quantidades massivas de eventos aleatórios. É literalmente
como encontrar uma agulha num palheiro. Como tal, recorremos mais uma vez a máquinas para nos
ajudar neste empreendimento desafiante.

Técnicas de aprendizagem sem supervisão começaram a ser propostas por estatísticos e matemáti
cos muito antes do aparecimento de campos como a prospecção de dados. No entanto, estes campos,
juntamente com um significativo interesse restaurado na área pela indústria, na esperança de rentabilizar
grandes quantidades de dados guardados ao longo dos anos, deram grandes passos em frente. Nos úl
timos anos, temos visto muitos avanços notáveis neste campo e uma nova face da inteligência artificial
em geral (por exemplo, aprendizagem de máquinas, aprendizagem profunda). Foram propostas aborda
gens de clusters revigoradas que combinavam técnicas clássicas com aprendizagem profunda para gerar
representações precisas e produzir clusters a partir destes vectores de dados.

Biclustering e triclustering estão a tornarse cada vez mais populares para análises não supervision
adas de conjuntos de dados bidimensionais e tridimensionais. Entre outros padrões de interesse, a utiliza
ção de nclusters na análise não supervisionada de dados pode identificar potenciais módulos biológicos,
perfis de progressão de doenças, e comunidades de indivíduos com comportamento consistente.

Nos domínios médicos, as aplicações possíveis incluem a análise de sinais fisiológicos multivariados,
onde os nclusters identificados podem capturar respostas fisiológicas coerentes para um grupo de indiví
duos; análise de dados de neuroimagem, onde os nclusters podem capturar funções de resposta hemod
inâmica e conectividade entre regiões cerebrais; e análise de registos clínicos, onde os nclusters podem
corresponder a grupos de pacientes com características clínicas correlacionadas ao longo do tempo.
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Relativamente aos domínios sociais, as aplicações possíveis vão desde a análise de redes sociais até à
descoberta de comunidades de indivíduos com actividade e interacção correlacionadas (frequentemente
referidas como comunidades em evolução coerente) ou conteúdos de grupo de acordo com o perfil do
utilizador; grupos de utilizadores com padrões de navegação coerentes nos dados de utilização da web;
análise de dados de comércio electrónico para encontrar padrões de navegação ocultos de conjuntos cor
relacionados de utilizadores (web), páginas (web) visitadas, e operações ao longo do tempo; análise de
dados de pesquisa demarketing para estudar a utilidade perceptível de vários produtos para diferentes fins,
a julgar por diferentes grupos demográficos; dados de filtragem colaborativa para descobrir correlações
accionáveis para sistemas de recomendação ou utilizadores de grupo com preferências semelhantes, entre
outras aplicações.

O clustering tradicional pode ser utilizado para agrupar observações neste contexto, mas a sua utili
dade é limitada porque as observações neste domínio de dados são tipicamente apenas significativamente
correlacionadas em subespaços do espaço global.

Apesar da importância de nclustering, a maioria dos algoritmos continua a basearse em abordagens
exaustivas para produzir resultados de qualidade. Como o nclustering é uma tarefa complexa de opti
mização combinatória, as abordagens existentes limitam a estrutura permitida, a coerência e a qualidade
da solução.

A principal limitação da utilização de aprendizagem profunda para resolver esta tarefa é que os n
clusters são computados assumindo que todos os elementos são representados sob igual distância. Este
pressuposto invalida o uso de técnicas de simplificação da localidade como as convoluções neurais.

Os grafos são estruturas flexíveis que podem ser utilizadas para representar um conjunto de dados
onde todos os elementos estão a uma distância igual, através de grafos completos, encorajando assim a
utilização de redes convolucionais de grafos para aprender a sua estrutura e gerar representações precisas
dos conjuntos de dados.

Uma vez que o nclustering é visto principalmente como uma tarefa iterativa em que os elemen
tos são adicionados ou removidos de um dado cluster, uma estrutura de aprendizagem de reforço é um
bom suporte. Agentes de aprendizagem de reforço profundos já foram acoplados com sucesso a redes
convolucionais de grafos para resolver problemas complexos de otimização combinatória, motivando a
adaptação de arquitecturas de aprendizagem de reforço a este problema.

Esta dissertação lança as bases para uma nova abordagem de aprendizagem por reforço para n
clustering que poderia superar os algoritmos de estado da arte, ao mesmo tempo que implementa um
algoritmo mais eficiente.

Para este fim, foram implementadas três bibliotecas: um gerador de dados sintéticos, uma framework
quemodela as tarefas de nclustering como um processo de decisão deMarkov, e uma biblioteca de treino.

NclustGen foi implementado para melhorar a utilização programática dos geradores de dados sintéti
cos de biclustering e triclustering de última geração.

ONclustEnvmodela nclustering como um processo de decisãoMarkov através da implementação de
ambientes de biclustering e triclustering. Segue a interface padrão de programação de aplicações proposta
pelo Gym para ambientes de aprendizagem por reforço.

A implementação de ambientes de qualidade que modelam a interação entre um agente e uma tarefa
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de nclustering é da maior importância. Ao implementar esta tarefa utilizando o padrão Gym, o ambi
ente pode ser implementado como agente agnóstico. Assim, qualquer agente será capaz de treinar neste
ambiente, se correctamente configurado, independentemente da sua implementação. Esta capacidade de
construir ambientes que modelam uma dada tarefa de uma forma agnóstica permite a implementação de
uma framework geral para nclustering baseada em aprendizagem por reforço. Os agentes podem depois
utilizar esta framework de treino para encontrar uma solução de última geração para esta tarefa.

A fim de avaliar o comportamento dos ambientes de aprendizagem por reforço que foram concebidos,
foi implementado e calibrado um agente de optimização proximal de políticas utilizando treino baseado
em populações. Um agente de optimização proximal de políticas foi escolhido porque pode servir como
uma boa base para experiências futuras. Devido à sua versatilidade, os agentes de optimização proximal
de políticas são largamente considerados como os agentes de referência para experiências em ambientes
não explorados. A solução e as limitações alcançadas por este agente normalmente dão pelo menos uma
ideia dos seguintes passos a tomar se o agente não conseguir alcançar uma boa solução.

Os resultados mostram que os agentes podem aprender a modificar o seu comportamento enquanto
interagem com o ambiente para maximizar o seu sinal de recompensa. No entanto, ainda estão longe de
ser uma solução para o nclustering.

Esta dissertação é o primeiro passo para esta solução e apresentou o trabalho fundamental, mas ainda
há muito mais trabalho a ser feito para que esta abordagem possa ultrapassar os algoritmos mais avança
dos.Por fim, são propostos os próximos passos para melhorar estes resultados, e que para num futuro
próximo, esta abordagem possa vir a resolver a tarefa do nclustering.

Keywords: Prospecção de dados, Análise de Dados NDimensionais, NClustering, Aprendizagem
por Reforço, Redes Neuronais para Grafos
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Chapter 1

Introduction

Biclustering and triclustering are increasingly popular techniques for unsupervised analysis of two and
threedimensional datasets. Despite this, most algorithms still depend mainly on exhaustive approaches
to obtain quality results, and it exists very little work that expands this task to higher dimension datasets.
This dissertation proposes a novel reinforcement learning (RL) approach that could potentially solve this
task for any ndimensional datasets. Since reinforcement learning has been used to tackle combinatorial
optimization problems with great success, it could improve current heuristics, provide a way of using
these techniques more efficiently and expand approaches to fourplus dimensions. This work treads
towards this goal by modelling biclustering and triclustering as RL tasks and laying out the foundations
for a possible RLbased solution to this problem.

The current chapter introduces the contents of this dissertation. Section 1.1 describes the context
and motivation for this work. Section 1.2 introduces the scope by way of objectives and contributions.
Section 1.3 concludes the chapter by outlining the format of this dissertation.

1.1 Context and Motivation

The use of nclusters in unsupervised data analysis can find potential biological modules, illness progres
sion profiles, and communities of individuals with consistent behaviour, among other patterns of interest.
It is thus critical to enhance our understanding of the complex biological, individual, and societal pro
cesses (Henriques and Madeira, 2019).

In medical domains, possible applications include multivariate physiological signal analysis, where
identified nclusters can capture coherent physiological responses for a group of individuals; neuroimag
ing data analysis, where nclusters can capture hemodynamic response functions and connectivity be
tween brain regions; and clinical records analysis, where nclusters can correspond to groups of patients
with correlated clinical features throughout time.

Concerning social domains, possible applications range from the analysis of social networks to either
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Chapter 1 Introduction

discover communities of individuals with correlated activity and interaction (often referred to as coher
ently evolving communities) or group contents according to the user profile; group users with coherent
navigation patterns in web usage data; analysis of ecommerce data to find hidden browsing patterns from
correlated sets of (web) users, visited (web) pages, and operations throughout time; analysis of marketing
research data to study the perceived utility of diverse products for different ends as judged by different
demographic groups; collaborative filtering data to discover actionable correlations for recommenda
tion systems or group users with similar preferences, among other applications (Henriques and Madeira,
2019).

Traditional clustering can be used to group observations in this context, but its utility is limited be
cause observations in this data domain are typically only meaningfully correlated on subspaces of the
overall space. Because nclustering is a complex combinatorial optimization task, existing approaches
limit the allowed structure, coherence, and quality of the solution (Henriques et al., 2015; Xie et al., 2019;
Vandromme et al., 2022; Henriques and Madeira, 2019).

Patternminingbased biclusteringmethods allow for exhaustive yet efficient space exploration as well
as the discovery of flexible bicluster structures with parameterizable coherency and noise tolerance (Hen
riques et al., 2015, 2017). Triclustering, the discovery of coherent subspaces within threedimensional
data, has been recently pinpointed as key to tackling more complex problems in these data domains (Hen
riques and Madeira, 2019).

N clusters are computed under the assumption that the different dimensions (e.g. rows and columns)
may contain elements that are not necessarily adjacent to each other, which differentiates these algorithms
from other pattern matching algorithms, making it also less desirable for Deep Learning and other state
of the art approaches. However, since most nclustering algorithms are usually able to find only one or a
reduced set of patterns, relying on heavily restricted heuristics to circumvent this NPhard problem, the
appeal for optimization techniques, such as Geneticbased algorithms, is increasing (Orzechowski et al.,
2018).

Assuming dimensions as composed of unordered sets means that all elements are at equal distance,
which invalidates the use of locality simplification techniques (e.g. neural convolutions). These tech
niques reduce space by considering proximity between elements; hence do not produce helpful embed
dings under these assumptions (O’Shea and Nash, 2015). Graphs pose as highly flexible structures, which
allow, in this case, for a representation of the dataset where all elements are at an equal distance by mean
of a fully connected graph. Ndimensional datasets composed in such a way can, thereby, be represented
as Npartite heterogeneous weighted graphs (Madeira and Oliveira, 2004). At this point, graph convo
lutional networks (GCN) can be employed to learn this structure and generate an accurate embedding of
the dataset.

Trainable models could present many advantages compared to the state of the art biclustering and
triclustering algorithms, namely, learning on generated data where hidden patterns are known and then
exploiting this knowledge on realworld datasets. Once trained, it is expected that these models would
present a much more efficient solution to the nclustering task.
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Chapter 1 Introduction

An RL framework is a good fit since nclustering is mainly seen as an iterative task, where elements
are added or removed to a given cluster. GCNs have already been coupled with success to Deep Rein
forcement Learning (DRL) frameworks to solve complex combinatorial optimization problems (Mirho
seini et al., 2020; Wang et al., 2021), motivating the adaptation of RL architectures to this problem.

In this dissertation, the nclustering task is modelled in an RL setting, and possible approaches to
tackle this problem are evaluated. This work aims to contribute to a solution that improves the state of
the art in Biclustering and Triclustering.

1.1.1 Funding

This dissertation was developed in the context of the Circles andAIpals projects, coordinated by Professor
Sara Madeira at LASIGE, and with the collaboration of Dr.André Carreiro at Fraunhofer, AICOS.

Both projects exploit subspace clustering techniques, namely Triclustering and Biclustering, to anal
yse clinical and genetic data.

The first project aims to study microbiomes from various organisms at different phases of develop
ment in order to assess the relations between food chain metagenomes and covariates and then model
the optimal microbiome configuration across food chains. The second project regards patients diagnosed
with ALS; the dataset comprises static features containing personal information about each patient and
temporal features collected at each followup. The goal is to identify disease progression patterns that
correspond to groups of patients with coherent temporal evolutions, which may then be used to make
prognostic predictions.

This work has received funding from the European Union’s Horizon 2020 research and innovation
programme through the CIRCLES project (under grant agreement no. No 818290) and from Fundação
para a Ciência e a Tecnologia (FCT), the Portuguese public agency for science, technology and innovation
through the AlpALS project (PTDC/CCICIF/4613/2020).

1.2 Objectives and Contributions

This dissertation aims to lay out the foundations for an RLbased solution to nclustering. For this goal
to be achieved, the nclustering task had to be modelled as a Markov decision process (MDP) and im
plemented as an RL environment. In order to evaluate if this framework was fit for purpose, a training
methodology was proposed and tested. The work developed provided the following contributions present
in this dissertation.

1. Improving data generation tools for Biclustering and Triclustering through the implementation of
NclustGen, a python tool to programmatically generate biclustering and triclustering datasets.

3
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2. Formalising nclustering as a MDP and implementing NclustEnv, a Gym environment that enables
training of DRL agents for any Biclustering or Triclustering task.

3. Evaluating this environment by proposing a training methodology testing it with a simple RL agent,
and implementing NclustRL, an application programming interface (API) for training RL agents in
this environment, with a series of tools that facilitate future their training.

The code of contribution 1 is publicly available here: https://github.com/PedroCotovio/nclustgen;
with its respective documentation available here: https//nclustgen.readthedocs.org; and available
for installation through pip: https://pypi.org/project/nclustgen/. The code for contributions 2
is available here: https://github.com/PedroCotovio/nclustenv; and the code for the last contri
bution (3) is available here: https://github.com/PedroCotovio/nclustRL.

1.3 Dissertation Outline

This dissertation is organized into six chapters, as follows:
Chapter 2 extensively covers the related work on Biclustering and Triclustering, Graph Neural Net

works (GNN) and RL.
Chapter 3 describes the data generation methodology and lays out the implementation of the data

generation framework.
Chapter 4 provides the problem formulation, overviews MDP modelling, and the implementation of

the environment framework.
Chapter 5 provides the evaluation of the proposed environment through the implementation of a

simple RL agent and the analysis of its performance. In addition, the implementation of a training API
is also covered.

Chapter 6 concludes the preceding chapters and outlines this dissertation’s contributions, limitations,
and future work.

Finally, Appendix A provides more information on training methodology.
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Chapter 2

Related Work

Humans evolved to find patterns. This ability is present in our daily lives, and we would not survive
without it. In reality, this is a characteristic we seem to more or less share with every intelligent being,
the need for understanding patterns and creating routines. Patterns are safe places where we can act
consciously, where the causal relations that connect our actions to their consequences are known to us.
Understanding a pattern might be the difference between life and death, the gentle brushing of leaves
might imply a deadly attack, the presence of humidity on the ground might indicate a nearby stream,
while a smell might help distinguish between friend or foe. Finding patterns and distinguishing between
patterns and random events enabled our society to get this far.

Today, we face more complex problems in almost every scientific and social study field, sometimes
hidden behind massive amounts of random events. It is quite literally like finding a needle in a haystack.
As such, we once again turn to machines to help us in this challenging endeavour.

Unsupervised learning techniques started being proposed by statisticians and mathematicians long
before fields like data mining emerged. However, these fields, jointly with significant restored interest in
the area by industry, hoping to monetise large piles of data saved throughout the years, have made great
strides. In the last few years, we have seen many notable advancements in this field and a new face to arti
ficial intelligence in general (e.g. machine learning, deep learning). Reinvigorated clustering approaches
that combined classical techniques with deep learning were proposed to generate accurate embeddings
and produce clusters from these data vectors (Min et al., 2018). Even in computer vision, techniques like
subspace clustering had a big success using Convolutional Neural Networks (CNN) in combination with
Generative Adversarial Networks or Variational Autoencoders (Ji et al., 2006; Mukherjee et al., 2019;
Zhou et al., 2020).

The field of biclustering and coclustering also came to be, and later triclustering, with an expected
expansion into more dimensions, hence the generalisation to nclustering. In the few years this field
existed, a massive amount of fresh ideas and concepts were proposed, and now it is possible to produce
some quality results for this very complex task efficiently (Henriques et al., 2017; Henriques andMadeira,
2019). The future looks bright, and deep reinforcement learning, which has substantially improved clas
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sical combinatorial optimisation tasks (Mirhoseini et al., 2020; Wang et al., 2021), seems a promising
step forward.

This chapter lays out the theoretical foundations upon which this dissertation was possible. In Sec
tion 2.1, the concept of nclustering is presented, along with the characterisation of its properties; method
ology for evaluating nclusters’ quality and state of the art algorithmic approaches are also described.
Section 2.2 covers graph structures and models; it presents the foundations of graph embeddings, partic
ularly graph convolution networks, along with the broader advances in machine learning that made them
possible and the definitions that enable graphs to be acceptable structures for nclustering. Section 2.3 in
troduces the concepts of reinforcement learning and Markov decision processes and furthers the concepts
introduced about deep learning in Section 2.2, primarily under a deep reinforcement learning framework.

2.1 Nclustering

1 ... j ... m

1 a11 ... a1j ... a1m

... ... ... ... ... ...

i ai1 ... aij ... aim

... ... ... ... ... ...

n an1 ... anj ... anm

Table 2.1: Illustration of A (data matrix)

Clustering is a common unsupervised learning technique that, generally, aims to partition a set of obser
vations into groups, given a similarity measure over the feature space. Similarly to other unsupervised
tasks, it is useful when there is no previous knowledge, as it can find an underlying structure to the data
by exploiting general patterns in the feature space (Madeira and Oliveira, 2004).

This feature space approach to clustering can be seen as onedimensional, given that solutions are
partitions over a single axis (columns or rows). Thus, biclustering and triclustering can be defined as
extensions to the clustering task, where a clustering agent performs partitioning over two or three dimen
sions, respectively. A generalization of this extension into an n number of dimensions (where n > 1)
can be referred as nclustering (Henriques and Madeira, 2019).

Definition 2.1.1 (Clustering) Given a matrix, A (represented in Table 2.1), defined by a set of n rows,
X = {x1, ..., xn}, a set ofm columns, Y = {y1, ..., ym}, and n×m values, such that aij represents the
value in its ith row and jth column, A can thus be denoted as (X,Y ).

The clustering task partitions (X,Y ) into subsets of X , {I1, ..., Ir} where Ii ⊆ X and r ≤ n,

6
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Figure 2.1: Clusters that satisfy euclidean distancebased similarity criteria. On the left, without overlap,
C1 = (I = {x1, x2, x5, x4}, Y ), and C2 = (I = {x3}, Y ). On the right, with overlap, C ′

1 = (I =

{x1, x2, x5, x4}, Y ), and C ′
2 = (I = {x4, x3}, Y ).

that satisfy a certain similarity criterion across Y (cluster of rows), or subsets of Y , {J1, ..., Jr} where
Ji ⊆ Y and r ≤ m, that satisfy a certain similarity criteria acrossX (cluster of columns).

A cluster of rows can therefore be denoted as (I, Y ), where I = {i1, ..., ik}, I ⊆ X ∧ k ≤ n, and
defined as a k × m submatrix of A. Similarly a cluster of columns can be denoted as (X, J), where
J = {j1, ..., js}, J ⊆ Y ∧ s ≤ m, and defined as a n× s submatrix of A.

Figure 2.1 exemplifies the clustering task over a matrix where rows are reordered in accordance with
the solution found. Clusters in Figure 2.1 minimize the intracluster euclidean distance, with and without
cluster overlap.

Considering Definition 2.1.1, clustering can be more concisely described as partitioning A by one
axis (X or Y ) in a way that satisfies global similarity criteria. The global model learned by this one
dimensional approach helps characterize how one dimension behaves generally. However, by consider
ing global similarity criteria, local similarities become obscured, which leads to failure to capture local
patterns as the nonclustered dimension increases in size (relative to the clustered dimension) (Henriques
and Madeira, 2019). This issue is solved by clustering both dimensions simultaneously, thus defining
clusters that are both subsets of rows and columns (biclusters). This twodimensional approach is gener
ally referred to as biclustering (Cheng and Church, 2000).

Models learned through biclustering can be considered local models since they encode underlying
local patterns in the data matrix. Biclusters are subsets of rows that display similar behaviour over a
subset of columns. Therefore, they represent data structures that holdmuchmore information than regular
clusters, enabling more knowledge extraction relating to local patterns in the data.

In a typical unsupervised problem, with an observation by conditions data matrix, finding local
patterns is especially significant when observations relate only over specific conditions (Madeira and
Oliveira, 2004).

Definition 2.1.2 (Biclustering) Considering the matrix, A (represented in Table 2.1), defined by a set
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Figure 2.2: B1 = (I = {x4, x2}, J = {y1, y3, y4}), B2 = (I = {x2, x3, x4}, J = {y4, y2}), and
B3 = (I = {x1, x5}, J = {y3, y4}) are possible constant biclusters found when considering a plaid
model. B′

1 = (I = {x4, x2}, J = {y1, y3}), and B′
3 = (I = {x1, x5}, J = {y3, y4}) are possible

biclusters found on the same matrix when not considering a plaid model.

of n rows, X = {x1, ..., xn}, a set of m columns, Y = {y1, ..., ym}, and n × m values, such that aij
represents the value in its ith row and jth column, A can thus be denoted as (X,Y ).

The biclustering task partitions (X,Y ) into a set of k partitions (biclusters), {B1, ..., Bk}, such that
anyBi is a subset ofX , I = {i1, ..., iq}, I ⊆ X∧q ≤ n, that satisfies an input criteria across a subset of
Y , J = {j1, ..., js}, J ⊆ Y ∧ s ≤ m, thus Bi can be denoted as (I, J), and defined as a q× s submatrix
of A.

Figure 2.2 provides examples of possible solutions to the biclustering task, over the same matrix
as Figure 2.1. By comparing both figures, it is clear that biclusters provide information that is not re
trieved through clustering. In addition, Figure 2.2 also demonstrates the importance of considering the
interactions between biclusters in order to find the complete solution.

In Definition 2.1.2, the biclustering task is defined over a twodimensional dataset (matrix). This
formulation needs to be extended for application in threedimensional datasets (tensors). The tricluster
ing task extends biclustering into data tensors; thus, the solutions found are sets of threedimensional
data structures (triclusters) that satisfy input criteria over subsets of rows, columns, and contexts (3rd
dimension) of a given tensor (Zhao and Zaki, 2005).

This extension to the clustering task has recently proved invaluable in order to tackle even more
complex problems, where twodimensional structures did not provide enough information (Henriques
and Madeira, 2019).

Definition 2.1.3 (Triclustering) Given a tensor, T (represented in Figure 2.3), defined by a set of n
rows, X = {x1, ..., xn}, a set ofm columns, Y = {y1, ..., ym}, a set of p contexts Z = {z1, ..., zp}, and
n×m× p values, such that aijk represents the value in it’s ith row, jth column, and kth context, T can
thus be denoted as (X,Y, Z).

8
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a11p · · · a1jp · · · a1mp

...
aimp

...
anmp

a11k · · · a1jk · · · a1mk

...
aimk

...
anmk

a111 · · · a1j1 · · · a1m1

... . . . ...
...

ai11 · · · aij1 · · · aim1

...
... . . . ...

an11 · · · anj1 · · · anm1

Co
nte
xts

Columns

R
ow

s

Figure 2.3: Illustration of B (data tensor)

The triclustering task partitions (X,Y, Z) into a set of k partitions (triclusters), {B1, ..., Bk}, such
that any Bi is a subset of X , I = {i1, ..., iq}, I ⊆ X ∧ q ≤ n, a subset of Y , J = {j1, ..., js}, J ⊆
Y ∧ s ≤ m, and a subset of Z,K = {k1, ..., kc},K ⊆ Z ∧ c ≤ p in a way that satisfies an input criteria
across all subsets. Thus Bi can be denoted as (I, J,K), and defined as a q × s× c subtensor of T .

Figure 2.4 provides examples of possible solutions to the triclustering task, over a tensor in which
context z1 corresponds to the matrix presented in figures Figure 2.1 and Figure 2.2.

The triclusters found in figure Figure 2.4, are an extension of the biclusters found in figure Figure 2.2.
B1 andB2 hold across all contexts whileB3 is not present in context z2. This is a good example of how the
triclustering task can generate structures that can extend on the information provided by the biclustering
task.

In Definition 2.1.2 and Definition 2.1.3, an extension to the clustering task is presented for two and
three dimensions respectively, nclustering denotes a generalization of this task given a dataset withn > 1

dimensions.

Definition 2.1.4 (Nclustering) Considering an ndimensional dataset, N , defined by an n set of di
mensions where each dimension is a set of variables, {Di = {v1, ..., v|Di|}|i = [1, n] ∧ n > 1}, and∏n

i=1 |Di| values, such that for every value, ai1,...,in , a variable per dimension is associated, (vi1 , ..., vin),
N can thus be denoted as {Di}i=[1,n].

The nclustering task partitions {Di}i=[1,n] into a set of k partitions (nclusters), {B1, ..., Bk}, such
that anyBi is a subset of variables on each dimension,Bi = {Si ⊆ Di |i = [1, n]} in a way that satisfies
a given input criteria across all dimensions. Thus Bi can be denoted as {Si}i=[1,n], and defined as a∏n

i=1 |Si| subspace of N (Henriques and Madeira, 2019).

In previous definitions, nclustering was described as a general extension to the clustering task. It
should, nonetheless, be noted that since clustering, biclustering, and triclustering can also occur over an
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Z1

Z2

Z3

y1 y3 y4 y2
x4
x2
x3
x1
x5

Figure 2.4: B1 = (I = {x4, x2}, J = {y1, y3, y4}, Z = {z1, z2, z3}), B2 = (I = {x2, x3, x4}, J =

{y4, y2}, Z = {z1, z2, z3}), and B3 = (I = {x1, x5}, J = {y3, y4}, Z = {z1, z3}) in blue, red and
green respectively are possible plaid triclusters.
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ndimensional dataset, these tasks can also be defined as particular cases of nclustering, as shown in
Definition 2.1.5.

2.1.1 Properties of Nclusters

In this subsection, the taxonomy defined by (Henriques and Madeira, 2019) will be used as standard
and extended, when necessary, to characterise the solution produced by the nclustering task. Given this
taxonomy, nclusters are defined by their locality, homogeneity, and statistical significance.

2.1.1.1 Locality

Locality denotes the dimensional space being partitioned in an nclustering task is characterized as re
stricted when nclusters have all variables of, at least, one dimension. Therefore, it is unrestricted when
no nclusters exist that contain all given dimension variables.

Definition 2.1.5 (Locality) Given anndimensional dataset, with a set ofn dimensions, andn′clustering
task, that partitions subsets overn′ dimensions, where, n′ ≤ n∧n′ ≥ 1, locality is restricted whenn′ ̸= n.

If n′ = 1 then locality is restricted since n > 1, and the n′clustering task is equivalent to a clustering
task, where its solutions are denoted as full clusters. If n′ < n ∧ n′ > 1 then locality is restricted, and
the n′clusters are denoted as partial clusters. Otherwise if n′ = n, then locality is unrestricted, and the
solutions of this task are nclusters.

2.1.1.2 Homogeneity

Homogeneity characterizes nclusters in accordance with their coherence, structure and quality.

Coherence: defines the correlation between elements of an ncluster and the allowed deviation from
that assumption.

Definition 2.1.6 (Coherence) Given B = {Si}i=[1,n] , a ncluster, with ai1,...,in elements, contained in
an ndimensional dataset, N . Coherence of B is characterized by the type of correlation, coherence
assumption, and deviation from correlation, coherence strength.

If B has categorical elements, ai1,...,in ∈ Σ, then if ai1,...,in = c, B has the assumption of a constant
symbol, else if ai1,...,in = ci, B has a constant pattern.

If instead B has real values, ai1,...,in ∈ R, then it has a constant(lowvariance) assumption when
ai1,...,in = c+ ηi1,...,in , where ηi1,...,in defines an allowed noise factor.

Maintaining the assumption of a real valuedB, where ai1,...,in = c+
n∑

i=1
(αi)+ηi1,...,in ,∀c ∈ R∧αi ∈

R ∧ αi ∈ Si, is fully additive if αi ̸= 0, and partial additive if αi = 0.

11
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When instead ai1,...,in = c × +
n∏

i=1
(αi) + ηi1,...,in ,∀c ∈ R ∧ αi ∈ R ∧ αi ∈ Si, B is either fully or

partial multiplicative, if αi ̸= 0 or αi = 0 respectively.
Given Bt = {Sti}i=[1,n], B follows a plaid assumption if considers the cumulative effects from Bt:

ai1,...,in = µ0 +
q∑

t=0
(θti1,...,tin ×

n∏
i=1

(ρti)) + ηi1,...,in , ∀θti1,...,tin = µt +
n∑

i=1
(αti) + ηi1,...,in ∧ ρti⊤ ∧

αti ∈ Sti . If ai1,...,in = coherence + ηi1,...,in , then the coherence strength of B is given by δ where
∃δ ∈ [0,max(N)−min(N)] : ηi1,...,in ∈ [−δ/2, δ/2] ∧ δ ∈ R.

Structure: characterizes the overlapping of nclusters and how they are positioned in an ndimensional
dataset. Some form of restriction to overlapping is usually adopted to reduce search space.

In regards to their structure, nclusters are:

• flexible when no restrictions are applied;

• plaid when overlapping areas are described through an assumption of cumulative effect, as in
Definition 2.1.6;

• dimensionspecific exclusive when a variable of a given dimension is exclusive to an ncluster;

• dimensionspecific exhaustive when any given variable of a dimension must be assigned to, at
least, one ncluster;

• hierarchical when an ncluster is contained in a larger ncluster;

• nonoverlapping when overlapping is entirely restricted.

Quality: of a given ncluster is determined by the tolerance to noisy and missing elements. Although
coherence strength bounds the deviation for the expected correlation, to deal with real data, sometimes
more robust ncluster are required. Thus nclusters can be bounded on:

• a set deviation;

• their average error;

• the average error of a set of nclusters.

2.1.1.3 Statistical Significance

Statistical significance characterizes the probability of a given ncluster to occur. This property is essen
tial to separate authentic patterns from patterns that might appear by chance. N clusters are considered
statistically significant if they have a low probability of occurrence by comparison to a null data model.
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2.1.2 Evaluation of Nclusters

As seen in the previous subsection, where the properties of nclusters were discussed, nclusters represent
structures that varymuch depending on data and objectives defined by domain knowledge. In this section,
metrics that evaluate the quality of these structures, given their properties, are revised.

While in clustering, the input criteria are (dis)similarity, in nclustering, is a combination of multi
ple criteria, such as homogeneity, statistical significance and dissimilarity. Homogeneity and statistical
significance are essential to determine the quality and significance of nclusters. Dissimilarity serves
as a limitation to overlapping, useful for settings where structures can become overwhelmingly nested.
Given that no previous knowledge about hidden patterns exists in most realdata applications of the n
clustering task, metrics to evaluate them must use these properties to assert their quality. In cases where
data is synthetic, known patterns can be hidden. Thus, the task of quality evaluation becomes a compar
ison between the found and hidden structures. The metrics that use groundtruth knowledge are denoted
as accuracybased. In contrast, others that focus on the intrinsic properties are either homogeneitybased
or statisticallybased, depending on the property they exploit (Henriques and Madeira, 2019).

2.1.2.1 Homogeneitybased

Generally denoted as merit functions, Homogeneitybased metrics mainly exploit the concept of homo
geneity in order to evaluate the quality of an ncluster and are thus very biased towards patterns with
specific properties (Madeira and Oliveira, 2004; Henriques and Madeira, 2019). Given this, they are
regularly used to guide the nclustering algorithms, promoting solutions that follow some desired prop
erties (Pontes et al., 2015b). In order to access the quality of a given ncluster in a more general and
unbiased way, these functions can be combined (Henriques and Madeira, 2019).

Variance: This metric is used to find constant patterns in a realvalued datasets. The formulation in
Equation 2.1, was proposed by (Henriques and Madeira, 2019), and illustrates the variance in an n
dimensional set. This formulation can be used to find constant nclusters where σ2

{Si}i=[1,n]
< δ, and

δ controls the coherence strength. More than to guide decision, variance can also be used to access the
error in a constant solution.

σ2
{Si}i=[1,n]

=
1

n∏
i=1
|Si|
×

∑
i1=1,...,|S1|;...;in=1,...,|Sn|

(ai1,...,in − µs)
2,

∀µs =

∑
i1=1,...,|S1|;...;in=1,...,|Sn|

(ai1,...,in)∏n
i=1 |Si|

(2.1)

Mean Squared Residue: is a metric proposed initially for the biclustering task by (Cheng and Church,
2000), then extended to triclustering solutions by (Bhar et al., 2012), and finally generalised for n
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clustering by (Henriques and Madeira, 2019). This metric can evaluate more flexible structures with
coherent patterns.

MSR{Si}i=[1,n]
=

1
n∏

i=1
|Si|
×

∑
i1=1,...,|S1|;...;in=1,...,|Sn|

ηi1,...,in ,

∀ηi1,...,in = ai1,...,in − (c+
n∑

i=1

(αi))

(2.2)

Plaid: Previous metrics fail to consider the cumulative effects of overlapping nclusters. Plaid mod
els, as per Definition 2.1.6, describe the layered contributions of overlapping nclusters. First proposed
by (Lazzeroni and Owen, 2002) to find correlated solutions in twodimensional space, then extended
for the triclustering task by (Mankad and Michailidis, 2014), this model can be generalized into n
dimensional space as in Equation 2.3, proposed by (Henriques and Madeira, 2019).

plaid{Si}i=[1,n]
=

1
n∏

i=1
|Si|
×

∑
i1=1,...,|S1|;...;in=1,...,|Sn|

(i1,...,in − µ0 −
T∑
t=1

(θti1,...,tin ×
n∏

i=1

(ρti)))
2,

∀ai1,...,in = µ0 +

T∑
t=0

(θti1,...,tin ×
n∏

i=1

(ρti)) + ηi1,...,in

∧ θti1,...,tin = µt +

n∑
i=1

(αti) + ηi1,...,in

(2.3)

2.1.2.2 Accuracybased

Accuracybased metrics exploit groundtruth knowledge to evaluate the quality of an ncluster. Since
the actual solution is known, these metrics can be formulated objectively, thus removing much of the
bias that existed in homogeneitybased metrics. Compared to homogeneitybased metrics, these metrics
prove to be more accurate to evaluate the performance of nclustering algorithms since they depend only
on objective mappings.

The task that accuracybased metrics intend to solve is one of volume matching, between a B set of
found nclusters, and a H set of true hidden nclusters. This problem has been extensively explored in
many areas (e.g. computer vision).

The most popular solution is the Intersection over Union (IoU) ratio. This metric, defined in Equa
tion 2.4, also known as Jaccard Index, was first introduced by (Jaccard, 1912) and since then used ex
tensively. As defined Equation 2.4, this is a similarity metric since it tends to one as B and H become
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Figure 2.5: Example of a biclustering solution (B), in red, and the ground truth (H), in blue.

similar. The Jaccard distance, defined in Equation 2.5, is a complementary metric that measures dissim
ilarity, obtained by subtracting the Jaccard index from 1, thereby obtaining a metric that tends to zero as
B andH become similar.

J(B1, B2|B1 ∈ B, B2 ∈ H) =

i=1∑
n
|S1i ∩ S2i |

i=1∑
n
|S1i ∪ S2i |

, B1 = {S1}i=[1,n] ∧B2 = {S2}i=[1,n] (2.4)

dJ = 1− J(B1, B2|B1 ∈ B, B2 ∈ H) (2.5)

In the field of subspace clustering, an equivalent metric was proposed by (Patrikainen and Meila,
2006) as Clustering Error. This metric calculates the IoU between all elements of B andH and then uses
a linear optimization method, like the Hungarian method (Kuhn, 1955), to discover the optimal weight
matchings between sets; this way, not having to resort to exploring all possible permutations.

B′
1 B′

2

B1
1
2 1

B2 1 1
2

Table 2.2: Cost matrix between (B) and (H)

Figure 2.5 depicts an example of a biclustering solution and the correspondent ground truth. By
applying Equation 2.4 and equation, Equation 2.5 to all possible permutations of B andH, the cost matrix
present in Table 2.2 is obtained. In this case, the optimal combination of sets of B and H is evident;
however, in realworld applications, a linear assignment algorithm such as the Hungarian method would
be used.
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Despite many metrics having emerged afterwards, a survey by (Horta and Campello, 2014) still found
that this simple metric is best at evaluating biclustering algorithms’ performance. (Ignatov et al., 2015)
proposed an extension to Jaccardbased scores, in order to access all dimensions at a time in a three
dimensional set. Subsequently, this metric is revised by (Henriques and Madeira, 2019) to account for
nonmatched volume between threedimensional clusters.

In Equation 2.6, an extension to this metric is proposed for ndimensional space. Where B represents
a set of found nclusters, andH represents a set of true hidden nclusters.

RMSn(B,H) =
1

B
∑

B1∈B,maxarg{Jac(B1,B2)|B2∈H}

n

√√√√i=1∏
n

|S1i ∩ S2i |
|S1i ∪ S2i |

(2.6)

2.1.3 Algorithmic Approaches

Given the scope of the task proposed by nclustering and its diversity, many different algorithmic ap
proaches were proposed to tackle it. This section will briefly review the classical approaches to the
nclustering task. Since very little has been proposed in ndimensional space, most surveys tend to cover
algorithms that operate in two or three dimensions.
In surveys (Madeira and Oliveira, 2004; Tanay et al., 2005; Eren et al., 2013; Pontes et al., 2015a; Hen
riques and Madeira, 2019) most approaches to biclustering and triclustering are reviewed. In this sub
section, these surveys will serve to define a general taxonomy for algorithmic approaches that could be ap
plied tonclustering. Approaches to thenclustering can be: greedy; stochastic; exhaustive; optimization
based; (n1)clusteringbased.

2.1.3.1 Greedy Approaches

These sorts of approaches perform the nclustering task through greedy iterative search. Generally, they
can be subdivided into two strategies: divideandconquer or seed growth. These two approaches differ
mainly in the starting point, with one using a topdown and the other a bottomup approach. While divide
andconquer methods start by considering the whole of space as the solution set, seed growth algorithms
initialize a set of k nclusters. They both greedily optimize a merit function by removing space from the
solution or adding space. In order to find a set of k′ nclusters, a divideandconquer algorithm must run
k′ times, removing the solution from the search space after each run, while in a seed growth algorithm,
k′ clusters can be initialized, and the algorithm runs only once.

Divideandconquer provides a robust solution to a task where the solution is a single ncluster, but it
is less efficient when the solution set size increases. On the other hand, seed growth can suffer from lousy
initialization, which makes it less robust for shorter solution sets, but it performs more efficiently under
more extensive solution sets. Suppose the size of the solution set is undefined: In that case, divideand
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conquer is a more straightforward approach since the algorithm can run until a certain point of conver
gence, even if seed growth could also be adapted to not be restricted to the initialized nclusters by split
and merge actions. Since these are greedy approaches, they handle extensive search sets better than most
algorithms. However, most times, that compromises the quality of the results through early decisions
that optimize a local optimum.

In conclusion, given their simplistic nature, greedy approaches often fail to find the best nclusters.
Nevertheless, they provide a fast heuristic for what is an NPhard problem.

2.1.3.2 Stochastic Approaches

These nondeterministic algorithms find solutions by iterative optimization of a specific distribution pa
rameter. These approaches build on their greedy counterparts by assuming a statistical model to guide
their search. Since they usually assume a given distribution, these algorithms might miss nclusters that
do not fit that specific statistical model, making most algorithms that follow this strategy very biased
to nclusters with particular properties. Nevertheless, they provide a fast way to obtain good quality
nclusters that often serve to initialize other more complex algorithms.

2.1.3.3 Exhaustive Approaches

Given that nclustering is either an NPhard or complete problem depending on n, actual exhaustive
enumeration of all nclusters is impossible in linear time. Usually, algorithms that follow this strategy
find the best nclusters but are very timeconsuming. Thus, these approaches are quasiexhaustive, using
restrictions to nclusters’ properties to avoid exponential runtimes.

In order to be feasible, these algorithms need to explore various techniques to improve efficiency.
Although runtimes and restrictions are drawbacks of these algorithms, they still produce difficult results
to match by other algorithmic approaches.

2.1.3.4 OptimizationBased

These strict optimization approaches are usually bioinspired metaheuristics like genetic or swarm in
telligence algorithms. These approaches explore algorithmic techniques inspired in nature to optimize
a set of objectives. They can provide good optimizations and are very adaptable to different tasks. The
drawbacks are: running time and biases inherited from the metric functions they optimize.

Compared to the proposed reinforcement learning approach, both are datadriven optimization ap
proaches, but agents learn to generalize data. This way, they can optimize unbiased, objective metrics
and apply them to unseen data. Generalization also enables efficient solutions after training, while strict
optimization algorithms do not retain information between runs.
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2.1.3.5 (N1)ClusteringBased

For a given ndimensional dataset, any approach suitable to find solutions in n − 1 dimensions can be
used and then extended to combine these solutions, generating solutions in ndimensions. This approach
is helpful to lower the complexity of finding solutions in n dimensions. However, since only n−1 dimen
sions are being considered during the search, many possible nclusters are not found by this approach.

2.2 Graph Neural Networks

In this section, the foundations of graph embedding techniques, particularly GNNs, will be presented,
closely following as defined in (Hamilton, 2020).

A graph G = (V, E) is a structure used to represent entities and their relationships. It comprises two
sets: the set of nodes V (also known as vertices) and the set of edges E (also called arcs). An edge denoted
as (u, v) ∈ E , linking two nodes u ∈ V and v ∈ V , demonstrates a connection between them. In this
case, u and v are said to be neighbours (Easley and Kleinberg, 2010).

The relations might be undirected, capturing symmetric node relations, or directed, capturing asym
metric relations. A graph is thereby directed or undirected depending on the directionality of its edges. If
a graph describes people’s friendships in a social network, the edges will be undirected because friendship
is mutual. However, the edges will be directed if the graph represents how people follow each other on
Twitter.

An adjacency matrix, A ∈ R|V|×|V| is a practical way to depict graphs. In order to describe a graph
with an adjacency matrix, nodes in the graph should be organized so that each node indexes a specific
row and column in the adjacency matrix. Edges are then represented as entries in this matrix, in the case
of unweighted graphs: A[u, v] = 1 if (u, v) ∈ E elseA[u, v] = 0. It can be easily inferred that this matrix
will also be symmetric when a graph is undirected.

As seen before, the adjacency matrix will be a binary matrix in unweighted graphs, A[u, v] ∈ B.
However, graphs can also be weighted when edges possess connections of different strengths (e.g.
strength of the affinity between two proteins). In this case, entries in the adjacency matrix are real values
that indicate the strength of the connection, A[u, v] ∈ R.

When nodes can be divided into k disjoint sets, such that any edges can only connect nodes of different
sets, graphs can be denoted as kpartite. In some instances, graphs can also contain feature information.
A common form of depicting this information is through nodelevel features, represented as a realvalued
matrix X ∈ R|V|×m, where the node ordering is consistent with the adjacency matrix A.

Only graphs where all nodes and edges are equal were discussed up until this point, also known as
homogeneous graphs. However, graphs known as heterogeneous graphs, can possess different types of
nodes and edges. In this case, the edge notation can be extended to include edge type t, (u, t, v) ∈ E , and
an adjacency matrixAt can be defined per type. Nodes can also possess k types, thus similarly to kpartite
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graphs, they can be partitioned into k disjoint sets, V = V1 ∪ V2 ∪ ... ∪ Vk, where Vi ∩ Vj = ∅, ∀i ̸= j.
A heterogeneous graph can thereby be summarized by an adjacency tensor A ∈ R|V|×|R|×|V|, where R is
the set of relations. Multipartite graphs are a special case of heterogeneous and kpartite graphs, where
only different types can be connected by edges, (u, ti, v) ∈ E → u ∈ Vj , v ∈ Vk ∧ j ̸= k (Hamilton,
2020).

It is possible to establish an intriguing link between data tensors and graph theory. Any ndimensional
data tensor can be represented as a complete weighted multipartite graph, as exemplified in Figure 2.6.
Node types are the set of n dimensions, and edges convey tensor elements intersecting between dimen
sions. In this case the graph is complete because there exists an edge (u, ti, v) ∈ E , between all nodes of
a given dimension Vx, and all nodes of another dimension Vy, for all u ∈ Vx ∧ v ∈ Vy ∧ x ̸= y (Madeira
and Oliveira, 2004).

Figure 2.6: Example of a data matrix represented as a bipartite graph.

2.2.1 Node Embeddings

The goal of node embedding learning is to encode nodes into lowdimensional vectors that capture their
graph position and the structure of their surrounding neighbourhood. An embedding can be formally
defined as a projection of a node in a latent space where geometric relations correspond to edges in the
original graph.

A common approach to finding an accurate representation of a graph is the encoderdecoder frame
work, exemplified in Figure 2.7, composed of two central operations: An encoder model maps nodes into
a vector, and then a decoder reconstructs the original graph using the information in the latent space.
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Figure 2.7: Example of the encoderdecoder framework. The encoder maps node F into a latent space
vector, while the decoder reconstructs the original node and its neighbourhood.

The encoder model is a mapping function, and in its simplest form, is known as a shallow embedding,
and it is just an embedding lookup:

ENC(v) = Z[v], ∀Z ∈ R|V|×d (2.7)

The decoder attempts to predict the original graph from the embeddings generated by the encoder.
Many approaches exist to this end, but it is common practice to use a pairwise decoder. These decoders
try to predict relations between two nodes (e.g. if they are neighbours).

This framework aims to optimize the encoder and decoder so that the error between the original and
reconstructed graph is minimized. This error is known as reconstruction loss. Thereby the reconstruction
objective is given by:

DEC(ENC(u), ENC(v)) = DEC(zu, zv) ≈ S[u, v] (2.8)

The standard training practice in machine learning is to reach the reconstruction objective, exempli
fied in Equation 2.7, by empirically minimizing the reconstruction loss L over a training set, D. L is
given by:

L =
∑

(u,v)∈D

ℓ(DEC(zu, zv),S[u, v]) (2.9)

The loss function, ℓ, measures the error between estimated and true values. The overall goal is to
train the encoder and decoder so that pairwise node relations on the training set may be appropriately
recreated. To this end, most approaches use stochastic gradient descent to minimize loss (e.g. neural
networks). However, other approaches can be used for specific problems (e.g. matrix factorization).
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2.2.1.1 FactorizationBased Approaches

In the case of graph embeddings, matrix factorization based approaches are a classical strategy. The task
of generating accurate embeddings can be viewed simply as using matrix factorization to approximate a
node to node similarity matrix.

The Laplacian eigenmaps (LE) technique was one of the first matrix factorization approaches to
this problem. This technique uses a decoder based on L2distance. Its highlevel intuition is that it will
penalize the model when embeddings far apart in the latent space are originally very similar.

Methods based on the innerproduct have also been proposed. In this case, the similarity between
two nodes is assumed to be proportional to the dot product of their embeddings. The intuition is that
embeddings should be learned such that the inner product of the learned embedding vectors approximates
a given deterministic measure of similarity.

Alternatively, random walk embeddings use inner product methods and stochastic similarity mea
sures. This method optimizes embeddings such that two nodes that tend to cooccur on short random
walks have similar embeddings.

2.2.1.2 Limitations

Although shallow embeddings like those discussed in this section have had much success in some tasks,
there are drawbacks to using these approaches:

• Firstly these approaches do not consider node features; as such, some information might be lost in
the encoding phase.

• Secondly, the encoder directly optimizes a unique vector for each node. This way, it is impossible
to share parameters between nodes. Not having parameter sharing reduces learning efficiency and
increases computational complexity.

• Lastly, shallow embedding approaches are intrinsically transductive, meaning they can only gener
ate embeddings for nodes present during training. They cannot extrapolate knowledge for unseen
nodes, preventing these methods from being used for inductive applications.

2.2.2 Message Passing

GNNs are a general formalism for deep neural networks that receive graph data as input. This approach
arose as a solution to the limitations met in shallow embedding methods. However, graph data presents
a challenge because it is unlike the data typically used in deep learning models. An intuitive approach
would be to flatten the adjacency matrix and use the vector as input for multilayer perceptron (MLP).
However, since adjacencymatrixes are unordered sets, the order reflected in the vector would be arbitrary.
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Therefore, the representation produced by this method varies according to different permutations of the
adjacency matrix. CNNs and recurrent neural networks are also not helpful since they encode grid and
sequence data, respectively.

The premise is that we want to use a permutation invariant model to obtain representations of nodes
dependent on the graph’s structure and any feature information wemay have. The same basic GNNmodel
has been derived in a myriad of ways. Whatever the rationale, the distinguishing feature of a GNN is that
it employs a type of neural message passing in which vector messages are exchanged between nodes and
updated using neural networks. In a GNN, every messagepassing iteration updates a hidden embedding
h(k)u that corresponds to a given node u ∈ V according to the information aggregated from the node’s
neighbourhood. This framework is illustrated in Figure 2.8.
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Figure 2.8: Illustration of the message passing framework (inspired in (Hamilton, 2020))

Given two arbitrary differentiable functions, UPDATE and AGGREGATE, usually neural net
works: At each iteration k the AGGREGATE function receives as input a set of embeddings of the
nodes in u’s neighborhood, N (u), and generates a message, m(k)

N (u), based on this aggregated neighbor
hood information. The UPDATE function then combines the message with the previous embedding,
h(k−1)
u of node u to generate the updated embedding h(k)u . The initial embeddings at k = 0 are set as the
input features for all the nodes, h(0)u = xu,∀u ∈ V . After running K iterations of the message passing,
we can use the output of the final layer to define the embeddings for each node, zu = h(K)

u ,∀u ∈ V .
This algorithm ensures that after the first iteration (k = 1), every node embedding includes information

from its 1hop neighborhood (neighbors that only a relation away), that after the second iteration (k =
2), each node embedding contains information from its 2hop neighborhood, and that after k iterations,
every node embedding includes information about its khop neighborhood.

The basic intuition is that there are two types of information: structural and featurebased. The
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messagepassing framework ensures that both types are equally relevant when generating graph repre
sentations.

2.2.3 Graph Convolutional Networks and Pooling

GCNs proposed in (Kipf and Welling, 2016) are one of the most effective and popular forms of GNN.
Considering that W(k) is a trainable parameter matrix and σ an activation function, the GCN model
defines message passing as:

h(k)u = σ

W(k)
∑

v∈N (u)∪(u)

hv√
|N (u)||N (u)|

 (2.10)

GCNs may also be extended to deal with heterogeneous graphs by augmenting the aggregation func
tion to support different relation types by specifying a distinct transformation matrix per relation type:

h(k)u =
∑
t∈R

σ

W(k)
t

∑
v∈Nt(u)∪(u)

hv√
|N (u)||N (u)|

 (2.11)

Until this point, embeddings were discussed under the assumption that they should extract node
level representations. Nonetheless, some tasks (e.g. graph classification) might require a graph level
representation. In order to generate a graphlevel representation, a pooling function is used. This function
is usually simply a mean or sum of all nodelevel embeddings. However, a simple approach is usually fit
for purpose in small graphs. In large graphs, more complex approaches can be used (e.g. LSTMs). The
average pooling operation is given by:

hG =
1

V
∑
v∈V

hv (2.12)

In the case of this dissertation, GCNs are used to generate graph embeddings; thus, the average
pooling is used to generate graphlevel representations.

2.3 Reinforcement Learning

When we consider the nature of learning, the first thought that typically comes to mind is that we learn
by interacting with our surroundings. An infant has no explicit instructor when it plays, waves its arms,
or looks around, but it does have a clear sensory link to its environment.

RL is the process of determining how to map situations to actions to maximize a numerical reward
signal. The agent is not instructed which actions to take. Instead, it must explore to determine which
actions produce the greatest reward. In the most interesting and demanding situations, actions may impact
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not only the immediate gain but also a later scenario and, as a result, all subsequent rewards. The two
most significant distinguishing properties of reinforcement learning are trialanderror exploration and
postponed reward.

A training set of labelled examples supplied by a knowledgeable external supervisor drives supervised
learning. However, in interactive problems, obtaining instances of desired behaviour that are both right
and representative of all the scenarios in which the agent might need to act is typically impracticable. An
agent must therefore be able to learn from its own experience. RL is, therefore, about an agent interacting
with the environment and learning an optimal policy, by trial and error, for sequential decisionmaking
problems.

In this section, the theoretical concepts behind this form of learning will be surveyed, following the
definitions provided by (Sutton and Barto, 2018).

2.3.1 Markov Decision Processes

In MDP, an agent interacts with an environment over a sequence of discrete timesteps, t ∈ N0. This
framework is the basis of reinforcement learning and it structures the task of teaching an agent to achieve
a given goal through a set of interactions with an environment.

MDPs are described through a state space, S, an action space, A, a transition function, T , and a
reward function, R. The state is a representation of the environment at a given timestep. It serves to
compile information necessary for the model to decide an action at a given point, which is the whole
environment in a worstcase scenario. An agent remains in a given state, st ∈ S , until it takes an action,
at ∈ A, then it moves to the next state, st+1, by means of a transition function, T (st, at) , and afterwords
the agent receives a numeric reward, rt, from the environment through a function, R(st, at, st+1). An
action at is selected for state, st, given a policy, π(s).

A reinforcement learning framework aims to solve an MDP by finding an optimal policy, π∗.

Figure 2.9: Representation of the interaction between agent and environment in an MDP (Sutton and
Barto, 2018).
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2.3.2 ModelBased Approaches

Depending on the proposed reinforcement learning approach, a givenmodel can further describe an agent.
The transition function is known in amodelbased setting, and amodel is constructedwith this knowledge.

Thus, finding the optimal policy can be achieved by simply searching and planning within a given
model. Within these searchbased strategies, rollout algorithms are the ones that tend to perform better.
These algorithms calculate the action values for a given policy by averaging the outcomes of several
simulated trajectories that begin with each available action. Monte Carlo Tree Search (MCTS) based
strategies are among the most popular approaches within these algorithms. MCTS is a rollout algorithm
at its core. However, it has been refined by adding a method for accumulating value estimations obtained
from Monte Carlo simulations to drive simulations toward more favourable trajectories successively.
Given the complexity of problems in realworld applications, deep learning methods can be attached to
MCTS to help find the optimal policy (Silver et al., 2017).

Agents that follow this searchbased approach have an advantage in a low data setting since less data
is necessary for the agent to learn the optimal policy. The drawback is that, in many cases, a proper
environment model is not known or is not deterministic. A model can be estimated, but an estimation
error must be accounted for in these cases.

2.3.3 ModelFree Approaches

Contrary to the previous approach, modelfree solutions learn from experience (trial and error) without
any model. These approaches can be either on or off policy, differing in what they optimize. Onpolicy
methods learn a policy directly by optimizing a function that maps states to actions. In contrast, offpolicy
methods learn a value function that defines the value of an action at a particular state. Both methods are
less dataefficient than modelbased methods since trial and error learning implies that the agent must
make lots of mistakes to learn. Nevertheless, these datadriven approaches can be used in conditions
where modelbased methods cannot and require less knowledge to solve a given task. Using function
approximation methods also makes this strategy applicable to partially observable environments where
the entire state is unavailable to the agent.

2.3.3.1 Qlearning

The most common offpolicy algorithm is Qlearning. This method learns an actionvalue function in a
Qtable that maps the value of an action at a given state by exploring the environment and charting the
rewards.

This approach can generalize most tasks, but it depends on some knowledge of the problem since
a reward function must be devised that can map the value of a single action at every step. When S is
large, a neural network can be used to approximate the Qtable since an exhaustive approach would not
be feasible.
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2.3.3.2 Policy Gradient

This onpolicy algorithm maps states to actions directly by measuring the quality of a policy through a
score function and then optimizing the parameter that determines the policy through gradient ascent.

Methods for learning and storing a policy parameter have numerous advantages. They can learn par
ticular probabilities for performing actions. They can learn suitable amounts of exploration and asymptot
ically approximate deterministic strategies. They are inherently suited to dealing with continuous action
spaces.

Policy gradient methods only evaluate the policy and, as such, are much more resilient to sparse
rewards. This approach is very similar to a supervised learning problem. It is very data inefficient,
making it more interesting for problems where lots of data are available, but not much is known about
the problem, or rewards are very sparse.

2.3.4 Deep Reinforcement Learning

The pairing of RL with neural networks has a long history, with deep neural networks dominating rein
forcement learning in recent years. In reality, we are seeing the revival of RL. Novel algorithms such
as the deep Qnetwork (Mnih et al., 2015), AlphaGo Zero (Silver et al., 2017), and proximal policy
optimization (PPO) (Schulman et al., 2017) have been suggested, generating much new interest in DRL.

Representation learning with deep learning provides autonomous feature engineering and endtoend
learning via gradient descent, reducing or even eliminating the need for domain knowledge.

Feature engineering was formerly done manually, which was timeconsuming, overspecified, and
incomplete. Deep learning is based on distributed representations, which means that multiple features
can represent one input, and each feature can represent several inputs. Deep, distributed representations
use the hierarchical composition of data elements to overcome the exponential challenges of the curse of
dimensionality.

Deep neural networks’ generality, expressiveness, and adaptability make some RL tasks easier or
even achievable in some instances (Mousavi et al., 2018).

2.3.4.1 ActorCritic Methods

The optimal policy in policybased RL algorithms is computed directly by changing policy. In contrast,
the optimal policy in valuebased algorithms is discovered implicitly by identifying the optimal value
function. Policybased RL works well in highdimensional and stochastic continuous action fields. In
contrast, valuebased RL exceeds in terms of sample efficiency and stability.

An actorcritic algorithm is a variant of policy gradient in which two networks, the Actor and the
Critic, are implemented. Similarly to generative adversarial networks (GANs) (Goodfellow et al., 2014),
the actor determines which action to take. The critic tells the actor how good the action was and what
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adjustments are needed. Critics assess the actor’s activity by estimating the value function, whereas the
actor’s learning is based on the policy gradient technique (Mousavi et al., 2018).

The most popular implementation of the vanilla actorcritic algorithm is the A3C proposed in (Mnih
et al., 2016). In A3C, critics learn the value function while several actors are taught in parallel and
synchronised with global parameters: all gradients are gathered as part of the stability training.

The basic logic that an actorcritic algorithm follows is as follows:

Algorithm 1 ActorCritic algorithm:
1: Sampling st, at exploiting the policy πθ from the actornetwork.
2: Estimating the advantage function,Aπθ(st, at). The advantage function is approximated by the critic

network:

Aπθ(st, at) = r(st, at) + Vπθ(St+1)− Vπθ(St) (2.13)

3: Evaluating the gradient:

∇J(θ) ≈
T−1∑
t=0

∇θlogπθ(st, at)Aπθ(st, at) (2.14)

4: Updating the policy parameters, θ:

θ = θ + α∇J(θ) (2.15)

5: Updating the agent’s weights:

w = w + αAπθ(st, at) (2.16)

6: Repeat 1 to 5 until the optimal policy πθ is found.

2.3.4.2 Proximal Policy Optimization

PPO proposed in (Schulman et al., 2017) is the most common baseline in DRL and one of its most ac
complished algorithms. It consists of a variation of actorcritic algorithms combined with policy gradient
approximation. Its main contribution was improving efficiency by lowering the risk of destructively large
policy updates and allowing multiple epochs of gradient descent on samples.

A known limitation of vanilla policy gradient algorithms is data efficiency. Running multiple epochs
of gradient descent on the same sample using this algorithm might cause the updates to become too large
to be reversed, known as destructively large policy updates. This limitation leads this algorithm to only
work with a single policy update by sample, becoming data inefficient for practical use.

Trust Region Policy Optimization (TRPO) proposed in (Schulman et al., 2015) was the first proposed
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solution to this problem. TRPO estimates a trust region for policy updates, a KL constraint that limits
the gradient step. However, the complexity of estimating this region and the necessary constraint adds
overhead to the training process.

PPO simplifies the optimization process proposed by the TRPO algorithm by simply estimating a
clipped surrogate objective that limits the policy updateswithout the need to use additional KL constraints.
The clipped surrogate objective is given by:

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ)), 1− ε, 1 + ε)Ât] (2.17)

Commonly PPO is implemented with two neural network approximators, a policy (actor) network
and a value (critic) network. The output of the policy network is then used to sample a given action.
Generally, this action or set of actions is either discrete or continuous. However, in some cases, actions
might be parameterizable, such that a discrete action is altered by parameters defined in a continuous
space (e.g. turn(4.3%), forward(51.5km/h)).

With this in mind, a hybrid PPO approach, HPPO, was proposed in (Fan et al., 2019). In this archi
tecture, the encoding and value networks are shared while the policy network branches out into a discrete
action network and continuous parameter networks, as depicted in Figure 2.10.

Figure 2.10: Hybrid actorcritic architecture for parameterized action space (Fan et al., 2019).

2.3.4.3 Population Based Training

In various machine learning disciplines, neural networks have become the workhorse nonlinear function
approximator, most notably contributing to substantial breakthroughs in RL and supervised learning.
However, it is sometimes ignored that the performance of a specific neural network model depends on
the combined tuning of several parameters, known as hyperparameters, which impact the learning pro
cess and must be set correctly to unlock the network’s capabilities completely. This crucial tuning step
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is computationally costly, and as neural network systems get more complex and equipped with more
hyperparameters, the weight of this search process grows heavier.

Furthermore, in the circumstances such as deep reinforcement learning, where the learning problem
can vary a lot, there is an additional degree of complexity. As a result, it is possible that the optimal
hyperparameters for such learning problems are highly nonstationary and should fluctuate so that their
schedule cannot be predicted in advance.

Parallel search and sequential optimisation are two common paths for tuning hyperparameters. Par
allel search executes parallel optimisation processes, each with its own set of hyperparameters, to obtain
a single best result from one of the optimisation processes (e.g. gridsearch). In sequential optimisation,
few optimisation procedures are carried out concurrently. However, it does it repeatedly in order to pro
gressively undertake hyperparameter optimisation utilising knowledge gathered from previous training
runs to influence subsequent ones (e.g. Bayesian optimisation).

Population Based Training (PBT) was suggested to bridge the gap between parallel search methods,
and sequential optimisation approaches (Jaderberg et al., 2017). This method uses information sharing
across a population of concurrently running optimisation processes and enables the online transfer of
parameters and hyperparameters across population members based on their performance. As a result,
many of the efficiency and quality limitations of employing a single approach are overcome.

Since PBT is predicated on genetic algorithms, each member of the population can leverage infor
mation from the rest of the population. It may also experiment with new hyperparameters by randomly
modifying the present values. As the neural network population is trained, this process of exploiting and
exploring is repeated regularly, guaranteeing that all components in the population have a strong base
performance level and that new hyperparameters are regularly searched.

2.4 Summary

In this chapter, the theoretical concepts necessary to grasp the work conducted in this dissertation were
laid out.

N clustering is a task that partitions a given Ndimensional tensor into a set of partitions that satisfies
a particular criterion across all dimensions. Each partition is known as an ncluster. This task generalises
themore common biclustering and triclustering that are executed over two and threedimensional datasets,
respectively. These clustering tasks are the main subject of this dissertation, where the work conducted
aims to improve on state of the art Biclustering and Triclustering methodology.

GNNs are a formalism used to describe any neural network that receives a graph as input and that
consequently employs some type of neural message passing algorithm to generate a vector representation
that maps graph structure and features into a given latent space so that further classification or prediction
tasks might be trained. GCNs are the most common form of GNN. They are very efficient and versatile
networks. Any ndimensional tensor might be represented as a complete weighted multipartite graph
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where node types denote the set of n dimensions, and edges represent tensor elements intersecting between
dimensions.

RL is the process of determining how to map states to actions to maximise a numerical reward signal.
All RL environments are modelled as an MDP, that can be described through a state space, an action
space, a transition function, and a reward function. There are two main approaches to RL: modelbased
solutions where a knownmodel enables planning forthcoming actions, and alternatively, modelfree solu
tions, where agents learn by trial and error via mapping a value function or policies directly. Actorcritic
methods are solutions that bridge the gap between mapping a value function or policies directly by using
both a value and a policy network. PPO is a variation of these methods and serves as a baseline for most
DRL applications PBT is a training algorithm predicated on genetic algorithms that efficiently obtains
the best hyperparameters for a given neural network by employing a system where every member of the
population can leverage information from the rest of the population.

In the next chapter, the data generation methodology will be described.
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Data Generation

An essential task while developing a novel nclustering algorithm is assessing the quality of found solu
tions. This task is often accomplished by testing the proposed approach with available data and assessing
the quality of the discovered nclusters using a predetermined set of metrics evaluating various attributes
such as homogeneity, size, and statistical significance. There is no ground truth because there is no prior
knowledge about the type of patterns expected to be discovered.

A known baseline solution can be compared to its output to evaluate the algorithm’s effectiveness
and efficiency. However, each new algorithm can locate different groups of nclusters, resulting in an
nclustering solution with distinct sizes and properties, making it challenging to define an objective and
independent criterion to evaluate them.

One approach to overcoming this limitation is to use synthetic datasets. These data can be tailored,
constructed with specified attributes defined by the user and a set of planted nclusters with known struc
tures, and then utilized to analyze better the effectiveness of algorithms using ground truth. However,
very few efficient implementations exist, making it difficult to achieve a good baseline against which to
test a new algorithm and timeconsuming to generate new datasets.

Efficiently generating synthetic datasets becomes even more essential in the case of datadriven ap
proaches, like the one proposed in this dissertation, since they depend highly on the amount and quality
of the available data. RLbased approaches, in particular, require a highly efficient generator for on
line training, given that training time will be conditioned on the environment’s ability to initialize new
episodes. Offline training could offer an alternative if no efficient generator is available but would still
require the data to be generated at some point.

This chapter will further expand on the task of efficiently generating synthetic datasets fornclustering
tasks. Section 3.1 will give an indepth look at the methodology proposed in (Lobo et al., 2021), its con
tributions to this task and its limitations. In Section 3.2, a novel implementation NclustGen is proposed,
along with a comprehensive survey of its properties and usage. Finally, Section 3.3 includes a collection
of tests performed on the NclustGen tool.
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3.1 Overview of GBic and GTric

Gtric, proposed in (Lobo et al., 2021), is a novel synthetic data generator that generates triclustering
datasets with hidden known tricluster solutions. The author also implemented Gbic, a simplification of
Gtric that generates biclustering datasets.

Both generators were implemented in Java with usability in mind, the objective being that any user
could generate these datasets regardless of computation power or programming expertise. These tools
achieve top marks in this objective, with an easytouse graphical user interface (GUI) and reasonably
efficient memory usage, enabling almost anyone to generate datasets from a laptop.

These generators are an invaluable addition to the nclustering toolkit, being among the first to pro
duce nclustering datasets efficiently. Both allow for complete customization of the dataset regarding
shape and general properties, and solution properties and quality.

The main limitation of this implementation is programmatic use. Firstly, it was implemented in Java,
an unfriendly language for use in machine learning compared to other contemporary languages (e.g.
python). However, mainly because it was not built with this objective in mind, it does not expose an
easytouse API, and instead, a series of classes need to be instantiated and used sequentially.

3.2 NclustGen

Many tasks require programmatic access to a data generator (e.g. online learning systems), and although
Gtric possesses superb usability for graphical usage, it lacks good programmatic access.

In order to solve these limitations, NclustGen is proposed, a python tool that empowers programmatic
usage by wrapping both Java packages and exposing a general easytouse API. Moreover, it expands on
the original packages by adding some functionality that enables more fluid interaction with other python
libraries.

3.2.1 Dataset Properties

Nclustgen generates fully customizable datasets. This subsection will discuss the parameters that can be
defined.

The first set of parameters relates to the dataset’s structure:

• Data type: In terms of data type, NclustGen supports the creation of both symbolic and numeric
datasets. The symbolic type is appropriate when symbols better describe the experiment that the
user wishes to replicate and data trends are more meaningful than the actual underlying values. A
numeric dataset can contain integer or realvalued components.
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• Dimension: The dimension parameter defines the dataset’s actual shape as comprised of a list of
observations, features, (and contexts) that should be generated.

• Alphabet: A dataset’s alphabet defines its set of symbols or range of values. It can be a given
length, for symbolic datasets, upon which the generator will build a default set of symbols or a list
of preferred symbols. A minimum and maximum value will limit numeric datasets.

• Background distribution: The background distribution parameter defines how the alphabet will
be distributed across the matrix or tensor concerning the values that do not represent clusters. Four
distribution types are available: Uniform distribution; Gaussian distribution; Discrete distribution,
which is not available on realvalued datasets; and lastly, aMissing distribution, where null values
form the background.

Parameters that regard the structure of the clusters can also be defined as follows:

• Number of hidden clusters: This parameter defines the number of clusters that should be planted.

• Dimension of hidden clusters: Defines the distribution and the shape that clusters can take. The
distribution might be Gaussian or Uniform, while the shape is defined as a range enabling the
generation of dynamic structures.

• Contiguity: This parameter is helpful to simulate some data types where contiguous dimensions
might exist (e.g. timeseries). In this case, the contiguity parameter might be applied to either
features or contexts.

• Patterns: Lastly, the patterns parameter indicates which patterns should be hidden in the dataset.
Patterns can be OrderPreserving, Constant, Additive, or Multiplicative. Note that more than one
pattern type can be defined at a time; in this case, the dataset will be generated with multiple
patterns.

NclustGen also supports parameters that regard overlapping properties such as:

• Plaid Coherency: This parameter defines how a group of clusters correlates in its shared values.
Correlations can be Additive, Multiplicative or Interpolated.

• Percentage of Overlapping: Defines the percentage of clusters that can overlap.

• Maximum Number of Overlappings: Defines how many clusters can overlap simultaneously.

• Percentage of Overlapping Elements: This parameter defines the maximum percentage of ele
ments that can overlap.

33



Chapter 3 Data Generation

The last set of parameters is relative to the quality of the solutions and facilitates the creation of noisy
datasets:

• Percentage of missing values: Defines the percentage of missing values. The parameter also
supports the definition of where the missing values should be created, in the planted solutions or
the background.

• Percentage of noise: Defines the percentage of noise in the values. The parameter also specifies
whether noise should be created in the planted solutions or the background.

This subsection provided a highlevel summary of all parameters of NclustGen. A complete list and
definition of parameters can be found at https//nclustgen.readthedocs.org.

3.2.2 Implementation

NclustGen is implemented in python and calls upon the classes implemented in Java for GBic/Tric.
It was motivated by a need to improve the programmatic usability of these tools by exposing a single
easytouse API.

Python is the most popular language for machine learning, and it is thus the most appropriate language
to implement this tool. In machine learning, some python libraries are essential (e.g. numpy), optimizing
for primary data structures like arrays. In order to ensure fluidity using the output provided by this tool
with other python libraries, some functionality was added in such a way that compatibility with these
frameworks is guaranteed.

Since most of the logic is shared between the biclustering and triclustering generators, this imple
mentation used the concept of inheritance to develop an abstract class, Generator. The Generator class
implements the core logical operations and calls and must then be inherited by a class that implements
a set of abstract methods. Currently, the BiclusterGenerator and TriclusterGenerator classes are imple
mented. However, this could be easily extended into more dimensions given this inheritance structure.

Thus far, four generator classes have been implemented; the BiclusterGenerator and TriclusterGen
erator classes provide APIs for generating biclustering and triclustering datasets, respectively. At the
same time, the BiclusterGeneratorbyConfig and TriclusterGeneratorbyConfig classes facilitate generat
ing datasets from a JSON configuration file.

An example of the basic usage of NclustGen is available in Listing 3.1. The first step is to initialize
the class providing the core dataset properties.

Afterwards, the generatemethod can be called and provided with the dataset’s shape and the number
of clusters to hide. This method will initiate the generation process and output dense or sparse array,
depending on the parameters passed to the generator, and a list of hidden solutions. The save method
enables the dataset to be saved into csv or tsv formats, using a single or multiple files.
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Lastly, the to_graph method outputs the dataset under a complete weighted multipartite graph repre
sentation. The method outputs in two standard graph libraries formats (networkX and DGL). Graphs can
be saved for access by a central processing unit (CPU) or a graphics processing unit (GPU).

1 ## Generate biclustering dataset
2

3 from nclustgen import BiclusterGenerator
4

5 # Initialize generator
6 generator = BiclusterGenerator(
7 dstype='NUMERIC',
8 patterns=[['CONSTANT', 'CONSTANT'], ['CONSTANT', 'NONE']],
9 bktype='UNIFORM',
10 in_memory=True,
11 silence=True
12 )
13

14 # Get parameters
15 generator.get_params()
16

17 # Generate dataset
18 x, y = generator.generate(nrows=50, ncols=100, nclusters=3)
19

20 # Build graph
21 graph = generator.to_graph(x, framework='dgl', device='cpu')
22

23 # Save data files
24 generator.save(file_name='example', single_file=True)

Listing 3.1: Example of NclustGen basic usage

3.3 Testing

In order to ensure the quality of the NclustGen implementation, a suite of tests was designed. These tests
include unit, integration and efficiency tests.

Unit testing ensures individual components perform as expected by asserting a particular logical com
parison, while integration tests verify the tool’s functionality as a whole by verifying its output.

As discussed previously, efficiency is a vital characteristic of a synthetic data generator, primarily
when used in an RL context since environment initialization might become a bottleneck when training.
To ensure NclustGen’s efficiency, the average time needed by the tool to perform its core tasks on a
moderately sized dataset (1000 × 100 × 5;h = 30) was measured, along with the standard deviation.
The tasks considered were:
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• The core generation task;

• Representing a dataset as a NetworkX graph;

• Representing a dataset as a DGL graph stored on CPU or GPU;

• Saving a dataset to file;

Considering the results illustrated in Table 3.1, it is possible to infer that the tool is quite efficient,
particularly on sparse tensors. Given the tool’s performance (±1s← Gen+DGL(GPU)), a bottleneck
regarding data generation is unlikely.

This tool accomplished all the goals set; it unifies the data generation task under a central, easytouse
API while preserving efficiency.

Tasks Time(s)

Dense Sparse
Generate 0.52± 0.06 0.06± 0.11

Graph NetworkX 9.89± 0.21 10.06± 0.38

GraphDGL(cpu) 1.46± 0.06 1.32± 0.08

GraphDGL(gpu) 0.59± 0.02 0.59± 0.02

Save 0.27± 0.03 0.18± 0.05

Table 3.1: Efficiency test results on NclustGen’s tasks. The generator was initialized with the default
settings, and tasked to generate datasets with 1000 rows, 100 columns, 5 contexts and 30 hidden clusters.
Ten iterationswere performed, and the average time in seconds is presented above, alongwith the standard
deviation.

3.4 Summary

This chapter described the implementation ofNclustGen, a synthetic data generation tool for nclustering.
NclustGen’s primary motivation was to facilitate programmatic access to synthetic data generators for n
clustering while retaining the efficiency of original java implementation. NclustGen was implemented
in python by wrapping two java packages, Gtric and Gbic proposed by (Lobo et al., 2021), which serve
as backend generators.

As a solution to the limitations found in the original java packages (programmatic usability), Nclust
Gen exposes an easytouse API and extends the functionality to improve fluidity with python libraries.
In this chapter, the usage and parameters of this API were surveyed. The complete documentation for
this tool is available at https//nclustgen.readthedocs.org.

36

https//nclustgen.readthedocs.org


Chapter 4

Modeling

One of the main tasks of solving any problem with an RL agent is modelling this problem as an MDP.
As seen in Section 2.3.1, an MDP is a framework where problems are modelled so that a solution might
be achieved by taking a series of sequential steps (actions). Modelling a problem this way facilitates
implementing an RL environment, where an agent can then be trained to reach an optimal policy.

An RL environment is a framework with which an agent interacts to reach a given target. It is intu
itively the agent’s world. Therefore, its implementation encapsulates completely the logic of the problem
that is being solved and, as such, defines most of the behaviour the agent must learn. Ensuring the quality
and efficiency of this implementation is consequently of the utmost importance to achieve good results
in realworld applications.

This chapter discusses the task of modelling nclustering as an MDP, along with NclustEnv, a toolkit
that implements biclustering and triclustering environments. In Section 4.1, the theoretical formulation
of nclustering as an MDP is proposed. In Section 4.2, RL environments are discussed, particularly
environments that follow the industrystandard API proposed by OpenAI’sGym library (Brockman et al.,
2016). Lastly, Section 4.3 examines NclustEnv, its motivation, usage, implementation, and testing.

4.1 Problem Formulation

Given an ndimensional environment, N , the nclustering task as per Definition 2.1.4, is the task of
finding a set of k partitions ofN , B, that optimize a given input criterion. In this section, the nclustering
task is defined as an MDP, thereby making possible a solution to be obtained through an RL agent. In
this formulation, k is considered an unknown variable, and thereby the agent is given free rein to find
all the possible subspaces of N . The proposed MDP is episodic, starting with k′ initialized nclusters
and terminating when a convergence criterion based on reward improvement is reached. A statespace S
further describes this MDP, as well as an action space A, a transition function T , and a reward function
R. This MDP is illustrated in Figure 4.1.
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Figure 4.1: Illustration of the proposed MDP.

State Space: The state at timestep t is given by the current set of nclusters, st = Bt, where the
initial state, s1 is determined by the initialization criteria. S has

n∏
i=1

(|Di|) distinct states (every possible

combination of B).

Action Space: The agent can choose from a set of four possible actions,A, each with a discrete number
of possible decisions.

Add: This action adds a variable, viz , from dimension Di of N to a given ncluster, B.

Add(viz , B) = Si(viz),∀viz ∈ Di ∧ viz ̸∈ Si (4.1)

Remove: This action is the inverse of the previous, removing a variable, viz , from dimension Di

of N , from a given ncluster, B.
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Rm(viz , B) = Si \ {viz}, ∀viz ∈ Di ∧ viz ∈ Si (4.2)

Merge: Let there be two nclusters Bx and By, the merge action creates a superset Bz , where
Bz = Bx ∪By.

M(Bx, By) = {S(x)
i ∪ S

(y)
i |S

(x)
i , S

(y)
i ⊆ Di ∧ i = [1, n]} (4.3)

Split: The split action is the inverse of the merge action. Given an ncluster, Bz , this action splits
Bz into two subsets Bx and By, by a set of dimensions N ′, where N ′ ⊆ N .

N ′ ={D′
i = vix |i = [n′

1, n
′
2] ∧ n ≥ n′

2 > 1 ∧ n′
2 > n′

1 ≥ 1

∧ x ∈ [1, |Di|]}
(4.4)

Split(Bz, N
′) ={Si \ {vi1 , ..., vix}|i = [n′

1, n
′
2]}

∪ {Si|i = [1, n] \ [n′
1, n

′
2]},

{Si \ {vix , ..., vin}|i = [n′
1, n

′
2]}

∪ {Si|i = [1, n] \ [n′
1, n

′
2]}

(4.5)

This action, as formulated, ensures that Bx and By do not overlap.

Transition Function: The state transitions are deterministic, where T = (st, at)

Reward Function: Reward is obtained by a deterministic function based on ground truth knowledge.
For this MDP a supervised approach is proposed whereN is synthetic, and generated with a set of hidden
nclusters,H. CH is a vector of sizeH, where each value corresponds to the coverage (%) of an h ∈ H
and γ represents the defined discount factor. The proposed reward function R, uses Jaccard distance
(Equation 2.5) to compare B andH.

Vmatch(B,H) =
∑

arg min {dj(B1, B2)|B1 ∈ B ∧B2 ∈ H}CH (4.6)

R(st, at, st+1) = Vmatch(Bt,H)− Vmatch(Bt+1,H− γ,H)),Bt ∈ st ∧ Bt+1 ∈ st+1 (4.7)
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4.2 Reinforcement Learning Environments

The environment is the fundamental element of any reinforcement learning problem. It is crucial to
understand the underlying environment of any problem and how the agent is supposed to interact with
it to train an efficient agent. The fundamental interaction between an agent and an environment is as
follows:

1. A new environment is initialized and sends an initial state (observation) to the agent;

2. The agent receives a state and samples an action from its policy;

3. The environment receives an action and alters itself accordingly. Afterwards, the environment
estimates a reward for the agent’s action and sends it to the agent along with its new state;

4. Repeat 2 and 3 until the environment concludes;

An illustration of this process is available in Figure 4.1. When considering the type of observation
output by the environment at a given timestep, twomajor categories exist: fully observable and partially
observable environments. In fully observable environments, the observations represent the complete
state of the environment at a given time (e.g. game of chess). In partially observable environments, the
agent only gets a partition of the complete state, representing the agent’s perspective of the environment,
generally because the complete state is unknown (e.g. robotics, selfdriving cars).

Environments may also be classified by their stochasticity. An environment is said to be stochastic
if, given an action at and a state st, the next state, st+1 will not be constant. In other words, the transition
function T (st, at) is not deterministic. As such, the output may vary given the same input. A practical
example is a selfdriving car wherein realworld conditions there is always a chance that breaking might
lead to a failure in the breaks, although this will not happen most of the time. A deterministic environ
ment is a simpler environment where an action, under a given state, always leads to the same result (e.g.
chess).

Lastly, an environment can be classified according to the type of action it allows. Discrete environ
ments have discrete action types, where all possible actions are sampled from a discrete set. In contrast,
continuous environments have a continuous action space (Sutton and Barto, 2018).

4.2.1 The Gym Standard

From this definition of RL, it becomes clear that RL is comprehensive, embracing all problems involving
a series of decisions. This might lead to very different implementations of the same underlying envi
ronment. Subtle changes in the problem definition can substantially change the difficulty of a task (e.g.
reward function, action space). Also, different implementations might lead to very different ways of
communication between the environment and the agent. The lack of a standard communication method
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inhibits the implementation of general solutions. These problems make it difficult to reproduce published
research and compare results from multiple studies.

Large labelled datasets like ImageNet (FeiFei et al., 2010) have fueled progress in supervised learn
ing. Unfortunately, the closest analogy in RL would be a wide and diverse variety of environments.
However, the existing collections of RL environments lack variety and are frequently hard to set up.

The OpenAI’s Gym library (Brockman et al., 2016) was implemented (in 2016) with solving these
problems in mind, and it quickly rose and became an industry standard, given the high demand for stan
dardisation in RL.Gym is a python toolkit that provides a general API for interaction between environment
and agent without making assumptions regarding the agent. Gym also provides other standardisation tools
like a concrete definition of spaces that helps better define action and observation spaces. Lastly, it pro
vides other helpful tools like wrappers to enable slight alterations to the properties of an environment
without reimplementation. This level of abstraction and standardisation proved to be invaluable in RL.

4.2.1.1 Standard API

The standard API proposed by OpenAI (Brockman et al., 2016) consists of four methods:

• Seed, a method that standardizes seed generation in RL, improving results reproducibility;

• Step, Gym’s primary method. It allows an agent to make changes in an environment. Step receives
a given set of actions within the previously defined action space and outputs, an observation within
the defined observation space, a reward, a flag indicating if the current episode ended, and an info
dictionary for debugging;

• Reset, a method that generates a new episode by sampling from a distribution and outputs the new
initial observation;

• Render, a method mainly for debugging. It renders the current state of the environment;

It is straightforward to infer that this API follows closely in the footsteps of that previously described
flow for interaction between agents and environments.

4.2.1.2 Observation and Action Spaces

This toolkit also applies standardization across spaces, a crucial step towards better reproducibility. This
standardization ensures a common language between environments to define the action and observation
spaces.

All spaces in Gym should inherit from a base Space class. Space classes should be able to sample
from their space, meaning that space classes need to sample the distribution they represent. Also, these
classes must be able to verify if a given sample belongs to their space.

There are several implemented spaces in Gym, but the two most common are Box and Discrete:
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• The Box space represents the Cartesian product of n closed intervals in Rn;

• The Discrete space represents a discrete set, {0, 1, ..., n− 1};

Other spaces are mainly programmatic collections of several spaces (e.g. dict and tuple spaces) or
variations of these spaces (e.g. multidiscrete space).

In theGym standard, all environments should define an observation space and an action, which should
be objects of these spaces—ensuring that all spaces can be sampled and checked.

4.2.1.3 Wrappers

Wrappers are simple functions that allow minor additions to the dynamics of an environment without a
need for a reimplementation or to dwell onto its code. The modifications usually are very slight, minor
alterations to observations or rewards. Wrappers require a function that maps the output of the environ
ment to the final output that will be provided to the agent. The base wrapper class is also implemented
in an abstract manner enabling the development of fully customizable wrapper classes.

4.3 NclustEnv

As discussed, implementing quality environments that model the interaction between an agent and an n
clustering task is of the utmost importance. By implementing this task using the defined Gym standard,
the environment can be implemented as agent agnostic. Thus, any agent will be able to train in this
environment, if properly configured, regardless of its implementation. This ability to build environments
that model a given task in an agnostic way enables the implementation of a general framework for RL
based nclustering. Agents can then use this framework for training to find a state of the art solution for
this task.

This work puts forward NclustEnv, a python toolkit that implements several environments for n
clustering and other functionalities, along with some default datasets and configurations. The motivation
behind NclustEnv is providing quality general environments for training and benchmarking RLbased
solutions to nclustering.

4.3.1 Tasks and Environments

NclustEnv implements four fully observable and deterministic environments, with three distinct tasks.
The tasks convey the number of hidden nclusters the agent should find and change the underlying

action space. Thus, in order of difficulty, the task can be: to find a single ncluster, several defined
nclusters, or several undefined nclusters. Task difficulty also changes according to the number of
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actually hidden nclusters. Therefore, tasks can also have a 1:1 ratio when the number of hidden n
clusters equals the number of nclusters being searched. Or a 1:many ratio when the number of hidden
nclusters is larger than the number of nclusters searched by the agent. Both criteria are defined during
the environment’s initialization by setting the number of nclusters to find and the number of hidden
nclusters in the environment. Environments might sometimes have both 1:1 and 1:many ratios since
hidden nclusters can be set to sample from a distribution at each new episode.

The environments differ in their dimensionality and training method. Regarding the first, environ
ments can be for biclustering (2 dimensions) or triclustering (3 dimensions). At the same time, the
training varies between online and offline environments. The first method is the standard RL method
ology, where a new episode is sampled from a defined distribution, whereas the second methodology
retrieves episodes from an offline dataset.

In summary, environments can be characterized as:

• Biclustering or Triclustering environments

• Online or Offline environments

And tasks as:

• Single, kDefined or kUndefined tasks

• 1:1 or 1:many tasks

4.3.2 Observation and Action Spaces

NclustGen implements hybrid environments where the action space is a tuple containing: a discrete space
with four discrete actions and a tuple of box spaces with three continuous parameters for each action. The
actions and their respective parameters are defined in Section 4.1 and illustrated in Figure 4.2. The set of
possible actions is:

• Add

• Remove

• Merge

• Split

However, not all actions can be performed in the environment at every given time. In ndefined tasks,
merge and split are not possible and removing a node when all clusters are empty is equally impossible.To
deal with impossible actions, NclustEnv employs action masking, where the current state includes not
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Add Node Remove Node

Merge Cluster Split Cluster

Figure 4.2: Illustration of how actions affect their environment.

only the current observation, but also the vector of available actions and a mask. During inference, the
agent’s network then uses these vectors to enforce the set of possible actions.

The continuous parameters are sampled between [0, 1], evaluated by the environment, and mapped
to their target. For example, if a given parameter indicates a node in the graph where the total number of
nodes is n, and the agent returns α, the affected node will be estimated by α× n.

NclustEnv generates episodes with NclustGen. Consequently, it represents the current state as a com
plete weighted multipartite graph in the DGL library format. DGL’s format is chosen since this library
is implemented explicitly to deal with graphs in the context of deep learning and supports saving graphs
in GPU memory. However, this library is entirely agnostic and does not make assumptions about the
agent. In these graphs, node types represent dimensions, and edges represent elements. Found clusters
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are encoded in boolean node features.
To represent these graphs,NclustEnv implements a customized space,DGLHeteroGraphSpace, where

it can sample graphs and verify if the space contains a graph.
The observation space is a dictionary space containing: a Box space that represents the mask, a Box

space that represents the vector of available actions, and a DGLHeteroGraphSpace, that defines the state
of the environment.

In summary, the action space and observation space can be represented, following the Gym standard
as:

Sa = {Discrete(4); {Box([0, 1], (3, ));Box([0.0, 1.0], (3, ));Box([0, 1], (3, ))}} (4.8)

So = {mask : Box([0, 1], (4, )); actions : Box([0, 1], (4, )); state : DGLHeteroGraphSpace(...)}
(4.9)

4.3.3 Reward Shaping

The reward function, defined in Equation 4.7, estimates the reward of a given action by considering the
Jaccard distance between the state before and after said action, discounted by a constant discount factor,
γ. This reward function only models the general behaviour that the environment should incentivise the
agent to learn. However, it is easy to infer that particular states exist that should be rewarded distinctively
to force the agent to repeat or avoid said states; this can be denoted as reward shaping. In the case of
NclustEnv, three states lead to additional signals being added to the reward function. All of them are
termination states:

• If the agent reaches themaximumnumber of steps allowed for an episode, a signal of−1 is returned.

• If the agent comes to a complete solution, then a reward of +2 is returned.

• In some cases, it might be difficult for the agent to reach a complete solution, but if it is close enough
to a solution, it should not be negatively signalled. These solutions are denoted as incomplete and
are applicable when the mean of the agent’s last three solutions is within an error margin. In such
a case, the agent is signalled with +1, and the episode terminates.

The signals {−1,+1,+2} represent the reward shaping ratio (−1 : 1 : 2), that is implemented
for all NclustEnv environments. However, the actual signals can change since the user can pass a real
number, α, to the environment by which this ratio is multiplied. This way, the reward shaping is given
by α(−1, 1, 2), α ∈ R. In every other state, the reward is given strictly by the reward function.
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4.3.4 Environments’ Properties

NclustEnv aims to model most tasks and problems for biclustering and triclustering datasets. Therefore,
customization is possible when initializing an environment to ensure its usefulness. This subsection will
discuss the properties and parameters of NclustEnv’s environments.

Firstly the parameters common to all implemented environments will be considered:

• Number of findable clusters, k: As discussed in Section 4.3.1, this parameter defines the task
that the agent should perform. When the parameter carries a numerical value n, the environment
is initialized to find k clusters (kdefined task). If, instead, the parameter is initialized as empty
(None), then the agent should try to find the best number of clusters (kundefined task).

• Seed: defines a seed to be used in during sampling.

• Maximum number of steps: defines the maximum amount of steps an agent can take in a given
environment before it is forcibly terminated.

• Margin of error: defines the acceptable margin of error for terminating an episode. It serves as a
way of permitting incomplete solutions.

• Penalty: this parameter defines the agent’s discount factor at each step. It is a method of forcing
the agent to prioritize solving the episode as soon as possible and can be adjusted to fit a given
experience better.

• Reward shaping: this parameter defines the percentage of reward shaping defined in Section 4.3.3.

The parameters specific to online environments are the following:

• Dimensions (shape): this parameter defines the underlying dataset’s structure as comprised of a
range of observations, features, (and contexts) that should be generated. The environment then
samples from this range at each new episode.

• Number of hidden clusters: This parameter defines a range of clusters that should be planted.
This range is then sampled at each new episode.

• Dataset settings: Should be a dictionary with all the parameters that should be passed to the gen
erator, as defined in Section 3.2.1. This dictionary might contain concrete parameters that will be
passed directly, or distributions. The environment will sample these distributions at the beginning
of each episode and send the resulting configurations to the generator.

Lastly, parameters specific to offline environments are as follows:

• Dataset: a DGL dataset object from where episodes will be sampled.
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• Train and test split: percentage of episodes that should be used for training; the remaining episodes
will be reserved for testing.

This subsection provided a summary of all parameters of NclustEnv. A complete list and definition
of parameters will be found at https//nclustenv.readthedocs.org

4.3.5 Implementation

NclustEnv was implemented in python, using NclustGen as the generator for online training and theDGL
library to represent the graph structures. DGL was chosen for its optimization for deep learning with
graphs, and its toolkit includes implementations of GCN, dataset builders, pooling function and other
functionalities.

The NclustEnv’s environments are built with Gym. Thus, its core API is discussed in Section 4.2.1.
NclustEnv’s architecture focuses on an abstract class (base) that contains the core logic and API and
is, consequently, the only part that cannot be customized. The environments described in section Sec
tion 4.3.1 inherit from this base class and receive requests from the user and the agent.

This toolkit divides itself into four abstractions to enable greater customization:

• The state abstraction: NclustEnv separates all environment logic into a separate class (State);
this class can be inherited for minor modification or reimplemented for significant changes. It
receives actions from the main class and actuates them in the graph. It is also responsible for
sampling the space and requesting a new episode upon a reset command. Currently, there are two
implemented states, the State and the Offline State classes. Intuitively the State class handles all
online environments, while the Offline State class is used in offline environments.

• The space abstraction: NclustEnv also implements its observation spaceDGLHeteroGraphSpace,
which can sample DGL graph configurations from a distribution used with NclustGen for dataset
creation.

• The metric abstraction: The base class implements the linear assignment function and all other
core logic necessary to estimate the reward and send it to the agent. However, it takes a function as
a parameter so that other reward functions might be used. This function should return the distance
between all permutations of hidden and found clusters. The only assumption made about the metric
is that it is a distance metric; hence, the objective is to minimize it. NclustEnv currently implements
Jaccard Distance defined in Equation 4.3.

• The action abstraction: This abstraction implements a simple action container. When an ac
tion reaches the environment is parsed through the Action class. This class should implement two
properties: action that contains the discrete action to take and parameters containing the vector of
parameters for that action index. The base class takes a pointer to this action class as a parameter.
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Nonetheless, it is not advised that this action is reimplemented. Instead, to modify its behaviour,
it should be inherited.

Figure 4.3 represents this architecture through a simple diagram. Lastly, NclustEnv implements a
SyntheticDataset class that generates a synthetic dataset with n number of graphs that can be used for
offline learning.

NclustEnv, provides test datasets and some default configurations used in the next chapter to evaluate
this framework. A more detailed look at this implementation and how to customize it will be available
in the framework’s documentation.
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Figure 4.3: Diagram exemplifying NclustEnv’s architecture
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4.3.6 Testing

In conformity with NclusGen, a test suite was implemented to test all components. While unit tests,
test all main components’ logic individually. Integration tests, test different environment, builds, and
sample them for several episodes while ensuring that all observations are contained within the episode’s
observation space.

4.3.6.1 Environment Dynamics

In this subsection, some metrics are proposed to understand how the environment’s signals behave and
what interaction is expected with the environment.

The first regards the structure of the dataset and calculates, given the dimensions of a dataset, the
number of possible hidden clusters. Considering a total number of nodes, nnodes, the number of possible
hidden clusters is given by:

Possibleh = 2nnodes − 1 (4.10)

Other metrics regard the reward in a given episode. The first assesses the maximum possible reward
in an episode, given αg the reward shaping for reaching the complete solution, and mint the minimum
number of steps needed to reach that solution:

MaxR = 1 + αg − (γ ×mint) (4.11)

The nextmetric calculates theminimumpossible reward in a given episode, consideringαp the reward
shaping for reaching the max number of steps,maxt:

MinR = 0− αp − (γ ×maxt) (4.12)

The final metric estimates the maximum reward that can be obtained in a single step:

MaxStepR = arg max
(

1

mint
− γ, αg

)
(4.13)

These metrics will be used in the next chapter to evaluate the environments used for testing.

4.4 Summary

This chapter described the implementation of NclustEnv. It started with the definition of nclustering
as an MDP. Followed by a survey of RL environments. Then a complete description of NclustEnv was
provided.
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RL environments can be described as fully or partially observable, deterministic or stochastic, and
discrete or continuous. Gym provides a standard API for RL environments ensuring reproducibility and
good communication between all environments and agents. Furthermore, it provides a collection of
classical RL environments.

NclustEnv is a python toolkit that implements several environments for nclustering. Environments
can be defined as Online or Offline and for Biclustering or Triclustering. Tasks can be characterised as
Single, N Defined or N Undefined, and 1:1 or 1:many. The action space is hybrid with discrete actions and
continuous parameters, while the observation space is given by two continuous vectors for actionmasking
and a graph observation. NclustEnv is a fully customisable framework that implements an abstract base
class inherited by specific environments and four abstractions: the space, the state, the metric and the
action abstractions. Four different metrics were proposed for environment assessment: possible hidden
clusters, maximum reward, minimum reward and maximum reward stepwise.
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Evaluation

A significant part of understanding any environment in a DRL context is seeing how an agent inter
acts with it and how it modifies the agent’s behaviour throughout the learning process. Thus, a crucial
evaluation for any environment or framework is to train DRL agents using said environments.

In order to train DRL agents, a deep learning model needs to be implemented along with a training
algorithm. In this chapter, HPPO will be used for evaluation purposes. This choice is mainly motivated
by PPO being currently the standard baseline in DRL. This way, future works can better compare against
the results obtained in this dissertation and build on them.

In this chapter, NclustRL is proposed, a python toolkit that implements some functionalities to help
train agents for nclustering tasks using Ray’s RLlib, and practical examples of concrete trained agents
in this task. In Section 5.1, NclustRL, its functionalities and implementations, along with the models
and agents used for evaluation, are discussed. In Section 5.2, the environments used for evaluation are
defined, and an exploration into their fundamental dynamics is discussed. Finally, Section 5.3 presents
the evaluation experiments and their findings.

5.1 NclustRL

Ray is a generalpurpose framework for distributed computing that implements a known library for hyper
parameter tunning, Tune. Furthermore, it implements RLlib, a DRL framework that supports distributed
computing and great customization. NclustRL is implemented in python, and it works with Ray’s RLlib
to train DRL agents. In RLlib, like Gym, all environments and models need registering to be available
in the internal registry. Thus, NclustRL implements a registry function that automatically registers these
classes when the library is initialized to facilitate working with custom models and environments.

NclustRL also implements a trainer API for nclustering that handles all training tasks for the user,
a set of default models and metrics, and other helpful functions. Likewise, it provides a set of default
configurations for nclustering tasks available in Appendix A. Figure 5.1 better illustrates NclustRL’s
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architecture, using a simple diagram.
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Figure 5.1: Diagram exemplifying NclustRL’s architecture

5.1.1 Trainer API

The trainer API aimed to provide a simple way of training and testing DRL agents for nclustering tasks.
It was expected that this class would handle all of RLlib’s logic and expose only userfriendly methods.
The trainer API receives the following parameters:

• Trainer: The RLlib’s agent that will be trained (e.g. PPOTrainer);

• Environment: The environment where the agent should train;

• Name: The name of the experiment (for storing purposes);

• Configuration: A dictionary with the configurations for the experiment;
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• Save Directory: Where the experiment files should be saved;

• Seed: A seed to ensure reproducibility;

After initialized, the trainer exposes four primary methods:

• Train: Exposes the primary training function. It receives the training parameters that should be
passed on to Tune, initiates the training process, manages multiple samples of the same trial, and
parses results returning the best performance obtained;

• Load: Imports an agent from a checkpoint for testing;

• Test: Evaluates the accuracy and mean reward and returns the mean and standard deviation for
each of these metrics across n episodes.

• Test Dataset: Evaluates the performance in the same way as Test but receives as input a specific
dataset from where episodes should be sampled.

5.1.2 Proximal Policy Optimization Agent

This chapter focuses on evaluating NclustEnv and better understanding the environment’s dynamics to
determine the next steps that might lead to solving the nclustering task through this methodology. As
such, the choice of agent for these experiments should reflect this aim.

PPO agents make very few assumptions about the environment and, although mostly sample ineffi
cient when training, usually reach reasonable solutions. For combinatorial optimization tasks like this
one, modelbased algorithms like AlphaGo might also present sensible solutions. However, more as
sumptions about the environment make them less desirable to serve as a baseline agent. A PPO agent
was chosen to evaluate NclustEnv because it can serve as a good baseline for future experiments. Due
to its versatility, PPO is widely regarded as a goto agent in several highprofile implementations (Hsu
et al., 2020).

5.1.2.1 Model

The first step to training a DRL agent is to define a deep learning model. The model implemented for
this experiments is represented in Figure 5.2.

The model was implemented using Pytorch, a deep learning framework for fast vector computations
in GPU, and DGL, which stands for Deep Graph Library and is a library for deep learning with graphs.

The network receives a batch of graphs as an input, from which point a 2layered GCN maps these
graphs’ nodes into a latent space by considering their features, structure, and their relation weights. The
resulting embedding is passed through a nonlinear activation function. In this case, the rectified linear
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Figure 5.2: Representation of the DRL model proposed.

function (ReLU) was selected. Finally, an average pooling operation is performed by which the final
graph representations are obtained, concluding, therefore, the graph embedding network.

The graph representations obtained are then sent into two separate networks, a value network that
will try to assess the value of the current observation and a policy network that will define the agent’s
policy. The first network is a single connected layer. At the same time, the second network starts with
a fully connected layer, which by default, is given by two layers of 256 neurons each. Afterwards, the
vector is passed through a hyperbolic tangent function for nonlinearity. The resulting vector is sent once
more into separate branches. The first is sent through a single connected layer and an action mask and
returns a discrete action distribution for sampling. The second is sent through a single connected layer
and returns a tensor from which to sample the parameters, following the HPPO architecture proposed in
(Fan et al., 2019).

After that, the agent samples the policy obtained by this model to obtain a discrete action and its
parameters, that are sent to the environment.

5.1.2.2 HyperParameters

Another critical task while training DRL agents is hyperparameter tunning. Current DRL algorithms are
brittle, hence hyperparameter tunning generally has a tremendous impact on the agent’s performance.

To tune the agent’s hyperparameters in this experiment, PBT is used, as defined in section Sec
tion 2.3.4.3. The search distributions used in the tunning process are presented in Listing 5.1.

1

2 hyperparam_mutations={
3 # The GAE (lambda) parameter.
4 "lambda": lambda: random.uniform(0.9, 1.0),
5 # PPO clip parameter.
6 "clip_param": lambda: random.uniform(0.01, 0.5),
7 # Stepsize of SGD.
8 "lr": [1e-3, 5e-4, 1e-4, 5e-5, 1e-5],
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9 # Initial coefficient for KL divergence.
10 "kl_coeff": lambda: random.uniform(0.3, 1),
11 # Coefficient of the value function loss.
12 # IMPORTANT: you must tune this if you set
13 # vf_share_layers=True inside your model's config.
14 "vf_loss_coeff": lambda: random.uniform(0.5, 1.0),
15 # Coefficient of the entropy regularizer.
16 "entropy_coeff": lambda: random.uniform(0.0, 0.01),
17 # Clip param for the value function. Note that this is sensitive to the
18 # scale of the rewards. If your expected V is large, increase this.
19 "vf_clip_param": lambda: random.uniform(10, 20),
20 # Target value for KL divergence.
21 "kl_target": lambda: random.uniform(0.003, 0.03),
22 # Number of SGD iterations in each outer loop (i.e., number of epochs to
23 # execute per train batch).
24 "num_sgd_iter": lambda: random.randint(1, 30),
25 # Total SGD batch size across all devices for SGD. This defines the
26 # minibatch size within each epoch.
27 "sgd_minibatch_size": lambda: random.randint(128, 512),
28 # Number of timesteps collected for each SGD round. This defines the

size
29 # of each SGD epoch.
30 "train_batch_size": lambda: random.randint(1000, 5000)}

Listing 5.1: Hyperparameter search distributions

The complete set of parameters used in this evaluation is available in Appendix A.

5.2 Environments

This section will define the environments used during the ensuing experiments.
Two accessible environments, v2 and v3, were used to evaluate NclustEnv, both binary biclustering

environments. The parameters of these environments are presented in Table 5.1. It is shown that both
environments share most parameters, changing only the reward’s shaping and the maximum number of
steps. It is also clear that both environments are relatively small, with only one hidden cluster and a fixed
size dataset to simplify the task. These environments are designed to quickly understand if the agent can
learn the task and, if not, what can be improved.

In Table 5.2, the dynamics of the proposed environments are explored, using the metrics proposed
in Section 4.3.6.1. These metrics help understand the agents’ results by providing the threshold values.
This way, it is easier to know how far the agent is from its target in terms of reward.
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Parameters Environments

v2 v3
MaxSteps 1000 50

RewardShaping 1 0.1

Environment BiclusterEnvv0
Shape 6× 6

K 1

Clusters 1

DsType Symbolic
Patterns Constant
Symbols {−1, 1}
BkType Uniform

ClusterDist {Uniform, 4× 4}
Contiguity None

PlaidCoherency No Overlapping

Table 5.1: Parameters of environments used for evaluation.

Parameters Environments

v2 v3
MaxR 2.998 1.188

MinR −2 −1.15
MaxStepR 2 0.1

Possibleh 4095

Table 5.2: Dynamics of environments proposed for evaluation.
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5.3 Experiments

To determine how varying the maximum number of steps influences an agent’s ability to learn an n
clustering task, the first experiment performs a simple grid search over the maximum steps parameter
using eight trials and sampling from a uniform distribution in [50, 1000]. The training results are illus
trated in Figure 5.3. The rest of the configurations follow the definition for environment v2.

It is shown in the training results that reducing the number of allowed steps improves the mean reward
obtained by the agent, but this increase must not necessarily be reflected in an increase in solution quality.
It is intuitive to infer that reducing the maximum allowed number of steps would lead to an increase in
reward since the penalty, received even in a worstcase scenario, would be reduced by an early stoppage.
It would also be expected to increase the quality of solutions since the environments are small; it would
incentivise more immediate solutions, with less opportunity for the agent to explore uninteresting parts
of the optimisation landscape. However, this hypothesis cannot be directly inferred from the training
results. A clear correlation in the best case scenarios where penalties should carry less weight would be
needed to verify this increase in quality. Furthermore, a steady decrease in mean episode length during
training would also be expected to correlate with a decrease in the maximum number of steps. Both these
expectations cannot be confirmed in these training results.

Considering the intuition that reducing the maximum number of steps could increase solution quality,
environment v3 was devised. This environment also tackles another issue of environment v2, the reward
shapings. It was hypothesised that using full reward shapings for this task might not be ideal since they
are rather disproportional compared to the reward obtained at each step and that this might lead the agent
to local minima. Therefore, the following experiments intend to tune and train v2 and v3 environments
to: assess the framework’s performance, evaluate the suitability of a PPO agent for this task, and check
if these hypotheses hold. The hyperparameter tuning for the v2 environment employs eight trials of
PBT, searching the space defined in Section 5.1.2.2. The results obtained for this task are presented in
Figure 5.4.

These results show that although the agent is not solving the proposed tasks, it improves with some
configurations. In some cases, the mean rewards improve almost linearly with timesteps. At the same
time, a decrease in the average episode length and entropy, alongwith an increase in themaximum reward,
is also observed. However, the minimum rewards stays low, meaning that the agent cannot consistently
avoid forceful termination. Another sign the agent is not improving consistently is that the losses were
expected to approximate towards zero but do not show a consistent trend. Considering no configuration
shows particular promise, the hypothesis regarding reducing shapings and the maximum number of steps
holds.

The results obtained for tunning the v3 environment through the same methodology as previously
described for the v2 environment are presented in Figure 5.5. These results show a more consistent loss
tendency and an increase in mean and minimum rewards. However, maximum rewards and episode
lengths are more inconsistent. A reasonable mean reward is obtained by training an agent with the best
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configuration for more iterations, although the agent’s performance is still very inconsistent (Figure 5.6).
These results enable the conclusion that NclustEnv is a sound framework upon which an agent can

modify its behaviour to perform an nclustering task better. However, they also suggest that the ideal
training algorithm might not be PPO since it could not learn even this simple task. In this case, model
based algorithms might present a suitable alternative (e.g. AlphaGo). Modelbased algorithms, although
less general, can more easily learn tasks where the transition function is known, such as this one, given
that they make more assumptions about the environment and use planning to exploit this knowledge.
While modelfree algorithms, like PPO, are much more challenging to train, given that no assumptions
are made about the environment, and all the behaviour is learned through trial and error.

Additional training alternatives could also be pursued to improve these results, like combining super
vised learning with RL, curriculum learning, and other forms of RL task optimisation.

Other experiments could also be pursued using this model: tuning v3 while varying the maximum
number of steps; testing on integer datasets; testing multiple clusters; tunning model parameters (e.g.
connect layers).

5.4 Summary

In this chapter, a training approach was proposed to evaluate NclustEnv suitability as a model upon which
to learn the nclustering task.

To facilitate the training of nclustering tasks, NclustRL, a python library that exposes a simple trainer
API, was implemented. A PPO agent was also implemented, using PyTorch and DGL following the ar
chitecture proposed by HPPO (Fan et al., 2019). Furthermore, a complete set of default training con
figurations and a search space for hyperparameter tunning were provided. The first experiment served to
understand the dynamics of the framework better, while the rest determined its suitability.

Results show promise regarding the future of these approaches. However, a different training algo
rithm might be better suited to achieve quality solutions. More complex training frameworks might need
to be implemented to improve the agents’ results in future work.
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Figure 5.3: Training results for grid search over the maximum number of steps.
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Figure 5.4: Training results for the hyperparameter tunning of the v2 environment.
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Figure 5.5: Training results for the hyperparameter tunning of the v3 environment.

61



Chapter 5 Evaluation

Figure 5.6: Training results of the v3 environment with tuned configurations.
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Conclusions

This chapter brings this dissertation to an end. Section 6.1 provides an overview of the document’s
contents. Section 6.2 highlights a list of contributions made by this dissertation, and Section 6.3 outlines
future work motivated by the remaining challenges.

6.1 Summary

This dissertation aimed to develop the foundational work for an RLbased nclustering algorithm and
proposed this with three subobjectives: to improve on current synthetic data generators in nclustering,
to model nclustering as an MDP, and to evaluate baseline agents for this task.

NclustGen was implemented to improve the programmatic use of state of the art biclustering and
triclustering synthetic data generators. Afterwards, nclustering was formalized as an MDP, and Nclus
tEnv was implemented. This library implements biclustering and triclustering environments following
the standard API proposed by Gym for RL environments.

Finally, a training methodology was proposed to evaluate the suitability of the implemented environ
ments. This methodology followed an HPPO architecture, with a PBT algorithm for hyperparameter
tuning. To facilitate training the DRL agents, NclustRL was implemented. This library provides a trainer
that facilitates interactions between all components of the training architecture.

The training methodology was applied to two environments, v2 and v3. Results show promise, as
environments can modify the agents’ behaviour to approximate the desired solution. However, the agents
have not yet reached a point where they could be considered a solution to the nclustering task.

Nevertheless, this dissertation has presented foundational work that enables modelling nclustering
as an MDP, paving the way for further studies focused on improving task performance.
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6.2 Contributions

The most important contributions of this dissertation are the following:

• Implementation of NclustGen: A python tool that exposes a general easytouse to generate bi
clustering and triclustering datasets programmatically.

• Implementation of NclustEnv: A python framework that implements several environments for
nclustering.

• Implementation of NclustRL: A python library to facilitate training agents in nclustering tasks.

The code forNclustGen is publicly available here: https://github.com/PedroCotovio/nclustgen;
with its respective documentation available here: https//nclustgen.readthedocs.org; and available
for installation through pip: https://pypi.org/project/nclustgen/.

The code forNclustEnv, andNclustRL is still publicly available with more details regarding documen
tation and packaging, respectively, here: https://github.com/PedroCotovio/nclustenv; https:
//github.com/PedroCotovio/nclustRL.

6.3 Limitations and Future Work

In this dissertation, a novel approach to RLbased nclustering was proposed that could enable improve
ments in the state of the art biclustering and triclustering algorithms and expand these algorithms into
higher dimensionalities. However, this dissertation only provides the essential tools and foundational
work to start exploring these approaches, thus is essential to highlight the current limitations of this ap
proach.

Regarding the theoretical formulation of a DRL agent that solves nclustering tasks by learning in
synthetic datasets where ground truth is known, a significant limitation is that the termination of a given
episode is bounded by ground truth. This can be easily inferred because the stopping criterion is dependent
on knowing the distance between an agent and its goal. In training, this bound is acceptable, preferential
even. However, in production, it is infeasible. This work does not address the problem of finding a general
metric to define the stopping criterion in production. Nevertheless, this limitation does not warrant an
RLbased solution impractical in production. A simple way of implementing the agent in a production
environment would be to use a merit function to define the stopping criterion. Although not as elegant
as a general solution, it would probably be as effective. Hence, finding this general stopping criterion in
production is left for future work.

Concerning the dataset generator, one of themain limitations ofGTric andGBic, thatNclustEnv does
not address is dealing with random clusters in the background. These java packages sample a background
from a given distribution and afterwards hide clusters in this space. However, there is no guarantee that
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no random clusters are present in the background. In order to deal with this limitation, some statistical
significance metric could be used to ensure that no significant correlation exists in the dataset. Still, it is
currently not implemented.

Although agents could not learn consistent solutions to the biclustering tasks, results were encour
aging, with agents able to improve their performance and find some compelling dynamics about these
environments. Therefore next steps will now be discussed which could facilitate learning this problem.

While still considering the training methodology proposed in this dissertation, some important ex
periments still need to be done to better understand the dynamics of these environments. Namely, tests
using an integer dataset (or a symbolic dataset with a larger alphabet) would be of the utmost importance.
A binary dataset could have too little variation, and given the limitation about natural occurring clusters,
it could be leading the agents into error. Afterwards, tunning environmental parameters (e.g. maximum
steps) and network parameters (e.g. network layers) in the already considered search space could also
lead to better solutions.

Additions to the training methodology should also be considered. Curriculum learning (Bengio et al.,
2009; Narvekar et al., 2020) could be used to learn smaller tasks that could be used to build a more general
agent. This was one of the ideas for this dissertation, but it was impossible to test due to time constraints.
Another idea meant to be tested but left for future work is a training methodology that mixes supervised
learning with RL. This approach is proposed in (Mirhoseini et al., 2020), where the context is similar
to that of this task. The approach consists of assembling datasets with observations and their respective
rewards. Such datasets are then used to train the GCN and the value network in a supervised way. The
intuition is that when the agent starts training in an RL environment, its policies are less random because
it can already perceive a given position’s value. This approach leads to a significant decrease in training
time and could also facilitate learning more challenging problems.

Lastly, PPO could not be the most suitable training algorithm, in which case modelbased algorithms
could serve as a suitable alternative (although less general). AlphaGo Zero (Silver et al., 2017), with a
selfplay reward (Laterre et al., 2018), would be a compelling alternative to try.

This dissertation was the first step towards a reinforcement learning based solution to nclustering.
The importance of the nclustering tasks and the improvement this approach could provide was impressed
upon the reader. This approach’s theoretical base has been proposed. The ability of agents to learn the
signals of this task was demonstrated, and the next steps to increase their performance were identified.
Essential tools for ongoing work have been implemented. As a result, this dissertation ends with the
expectation that steps will be taken in the future that will lead to a reinforcement learningbased solution
to nclustering.
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Appendix A

Default Configurations for NclustRL

1

2 MODEL_DEFAULTS = {
3 # === Options for custom models ===
4 # Name of a custom model to use
5 "custom_model": 'general_model_torch',
6 # Extra options to pass to the custom classes. These will be available to
7 # the Model's constructor in the model_config field. Also, they will be
8 # attempted to be passed as **kwargs to ModelV2 models. For an example,
9 # see rllib/models/[tf|torch]/attention_net.py.
10 "custom_model_config": {
11 "fcnet_feats": [256, 256]
12 },
13 # Name of a custom action distribution to use.
14 "custom_action_dist": None
15 }

Listing A.1: NclustRL’s default model configurations

1

2 TRAINER_DEFAULTS: TrainerConfigDict = {
3 # === Settings for Rollout Worker processes ===
4 # Number of rollout worker actors to create for parallel sampling. Setting
5 # this to 0 will force rollouts to be done in the trainer actor.
6 "num_workers": 4,
7 # When `num_workers ` > 0, the driver (local_worker; worker-idx=0) does not
8 # need an environment. This is because it doesn't have to sample (done by
9 # remote_workers; worker_indices > 0) nor evaluate (done by evaluation
10 # workers; see below).
11 "create_env_on_driver": False,
12 # Number of environments to evaluate vector-wise per worker. This enables
13 # model inference batching , which can improve performance for inference
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14 # bottlenecked workloads.
15 "num_envs_per_worker": 1,
16 # How to build per-Sampler (RolloutWorker) batches, which are then
17 # usually concat'd to form the train batch. Note that "steps" below can
18 # mean different things (either env- or agent-steps) and depends on the
19 # `count_steps_by ` (multiagent) setting below.
20 # truncate_episodes: Each produced batch (when calling
21 # RolloutWorker.sample()) will contain exactly `rollout_fragment_length `
22 # steps. This mode guarantees evenly sized batches, but increases
23 # variance as the future return must now be estimated at truncation
24 # boundaries.
25 # complete_episodes: Each unroll happens exactly over one episode, from
26 # beginning to end. Data collection will not stop unless the episode
27 # terminates or a configured horizon (hard or soft) is hit.
28 "batch_mode": "truncate_episodes",
29

30 # === Settings for the Trainer process ===
31 # Discount factor of the MDP.
32 "gamma": 0.99,
33 # Should use a critic as a baseline (otherwise don't use value baseline;
34 # required for using GAE).
35 "use_critic": True,
36 # If true, use the Generalized Advantage Estimator (GAE)
37 # with a value function, see https://arxiv.org/pdf/1506.02438.pdf.
38 "use_gae": True,
39 # The GAE (lambda) parameter.
40 "lambda": 1.0,
41 # Initial coefficient for KL divergence.
42 "kl_coeff": 0.2,
43 # Size of batches collected from each worker.
44 "rollout_fragment_length": int(1024 / 4),
45 # Number of timesteps collected for each SGD round. This defines the size
46 # of each SGD epoch.
47 "train_batch_size": 1024,
48 # Total SGD batch size across all devices for SGD. This defines the
49 # minibatch size within each epoch.
50 "sgd_minibatch_size": 128,
51 # Whether to shuffle sequences in the batch when training (recommended).
52 "shuffle_sequences": True,
53 # Number of SGD iterations in each outer loop (i.e., number of epochs to
54 # execute per train batch).
55 "num_sgd_iter": 30,
56 # Stepsize of SGD.
57 "lr": 5e-5,
58 # Learning rate schedule.
59 "lr_schedule": None,
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60 # Coefficient of the value function loss. IMPORTANT: you must tune this if
61 # you set vf_share_layers=True inside your model's config.
62 "vf_loss_coeff": 1.0,
63

64 # Coefficient of the entropy regularizer.
65 "entropy_coeff": 0.0,
66 # Decay schedule for the entropy regularizer.
67 "entropy_coeff_schedule": None,
68 # PPO clip parameter.
69 "clip_param": 0.3,
70 # Clip param for the value function. Note that this is sensitive to the
71 # scale of the rewards. If your expected V is large, increase this.
72 "vf_clip_param": 10.0,
73 # If specified , clip the global norm of gradients by this amount.
74 "grad_clip": None,
75 # Target value for KL divergence.
76 "kl_target": 0.01,
77

78 # Arguments to pass to the policy optimizer. These vary by optimizer.
79 "optimizer": {},
80

81 # === Environment Settings ===
82 # Number of steps after which the episode is forced to terminate. Defaults
83 # to `env.spec.max_episode_steps ` (if present) for Gym envs.
84 "horizon": None,
85 # Calculate rewards but don't reset the environment when the horizon is
86 # hit. This allows value estimation and RNN state to span across logical
87 # episodes denoted by horizon. This only has an effect if horizon != inf.
88 "soft_horizon": False,
89 # Don't set 'done' at the end of the episode.
90 # In combination with `soft_horizon `, this works as follows:
91 # - no_done_at_end=False soft_horizon=False:
92 # Reset env and add `done=True` at end of each episode.
93 # - no_done_at_end=True soft_horizon=False:
94 # Reset env, but do NOT add `done=True` at end of the episode.
95 # - no_done_at_end=False soft_horizon=True:
96 # Do NOT reset env at horizon, but add `done=True` at the horizon
97 # (pretending the episode has terminated).
98 # - no_done_at_end=True soft_horizon=True:
99 # Do NOT reset env at horizon and do NOT add `done=True` at the horizon.
100 "no_done_at_end": False,
101 # The environment specifier:
102 # This can either be a tune-registered env, via
103 # `tune.register_env([name], lambda env_ctx: [env object])`,
104 # or a string specifier of an RLlib supported type. In the latter case,
105 # RLlib will try to interpret the specifier as either an openAI gym env,
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106 # a PyBullet env, a ViZDoomGym env, or a fully qualified classpath to an
107 # Env class, e.g. "ray.rllib.examples.env.random_env.RandomEnv".
108 "env": None,
109 # The observation - and action spaces for the Policies of this Trainer.
110 # Use None for automatically inferring these from the given env.
111 "observation_space": None,
112 "action_space": None,
113 # Arguments dict passed to the env creator as an EnvContext object (which
114 # is a dict plus the properties: num_workers , worker_index , vector_index ,
115 # and remote).
116 "env_config": {},
117 # If using num_envs_per_worker > 1, whether to create those new envs in
118 # remote processes instead of in the same worker. This adds overheads , but
119 # can make sense if your envs can take much time to step) to work.
120 # See `examples/curriculum_learning.py` for an example.
121 "env_task_fn": None,
122 # If True, try to render the environment on the local worker or on worker
123 # 1 (if num_workers > 0). For vectorized envs, this usually means that only
124 # the first sub-environment will be rendered.
125 # In order for this to work, your env will have to implement the
126 # `render()` method which either:
127 # a) handles window generation and rendering itself (returning True) or
128 # b) returns a numpy uint8 image of shape [height x width x 3 (RGB)].
129 "render_env": False,
130 # If True, stores videos in this relative directory inside the default
131 # output dir (~/ray_results/...). Alternatively , you can specify an
132 # absolute path (str), in which the env recordings should be
133 # stored instead.
134 # Set to False for not recording anything.
135 # Note: This setting replaces the deprecated `monitor` key.
136 "record_env": False,
137 # Whether to clip rewards during Policy's postprocessing.
138 # None (default): Clip for Atari only (r=sign(r)).
139 # True: r=sign(r): Fixed rewards -1.0, 1.0, or 0.0.
140 # False: Never clip.
141 # [float value]: Clip at -value and + value.
142 # Tuple[value1, value2]: Clip at value1 and value2.
143 "clip_rewards": False,
144 # If True, RLlib will learn entirely inside a normalized action space
145 # (0.0 centered with small stddev; only affecting Box components).
146 # We will unsquash actions (and clip, just in case) to the bounds of
147 # the env's action space before sending actions back to the env.
148 "normalize_actions": True,
149 # Whether to use "rllib" or "deepmind" preprocessors by default
150 # Set to None for using no preprocessor. In this case, the model will have
151 # to handle possibly complex observations from the environment.
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152 "preprocessor_pref": None,
153

154 # === Debug Settings ===
155 # Set the ray.rllib.* log level for the agent process and its workers.
156 # Should be one of DEBUG, INFO, WARN, or ERROR. The DEBUG level will also
157 # periodically print out summaries of relevant internal dataflow (this is
158 # also printed out once at startup at the INFO level). When using the
159 # `rllib train` command, you can also use the `-v` and `-vv` flags as
160 # shorthand for INFO and DEBUG.
161 "log_level": "DEBUG",
162 # Whether to attempt to continue training if a worker crashes. The number
163 # of currently healthy workers is reported as the "num_healthy_workers"
164 # metric.
165 "ignore_worker_failures": False,
166 # Log system resource metrics to results. This requires `psutil` to be
167 # installed for sys stats, and `gputil` for GPU metrics.
168 "log_sys_usage": True,
169

170 # === Deep Learning Framework Settings ===
171 # tf: TensorFlow (static-graph)
172 # tf2: TensorFlow 2.x (eager)
173 # tfe: TensorFlow eager
174 # torch: PyTorch
175 "framework": "torch",
176 # Enable tracing in eager mode. This greatly improves performance , but
177 # makes it slightly harder to debug since Python code won't be evaluated
178 # after the initial eager pass. Only possible if framework=tfe.
179 "eager_tracing": False,
180

181 # === Exploration Settings ===
182 # Default exploration behavior, iff `explore `=None is passed into
183 # compute_action(s).
184 # Set to False for no exploration behavior (e.g., for evaluation).
185 "explore": True,
186 # Provide a dict specifying the Exploration object's config.
187 "exploration_config": {
188 "type": "StochasticSampling",
189 },
190 # === Evaluation Settings ===
191 # Evaluate with every `evaluation_interval ` training iterations.
192 # The evaluation stats will be reported under the "evaluation" metric key.
193 # Note that evaluation is currently not parallelized , and that for Ape-X
194 # metrics are already only reported for the lowest epsilon workers.
195 "evaluation_interval": None,
196 # Number of episodes to run in total per evaluation period.
197 # If using multiple evaluation workers (evaluation_num_workers > 1),
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198 # episodes will be split amongst these.
199 # If "auto":
200 # - evaluation_parallel_to_training=True: Will run as many episodes as the
201 # training step takes.
202 # - evaluation_parallel_to_training=False: Error.
203 "evaluation_num_episodes": 10,
204 # Whether to run evaluation in parallel to a Trainer.train() call
205 # using threading. Default=False.
206 # E.g. evaluation_interval=2 -> For every other training iteration ,
207 # the Trainer.train() and Trainer.evaluate() calls run in parallel.
208 # Note: This is experimental. Possible pitfalls could be race conditions
209 # for weight synching at the beginning of the evaluation loop.
210 "evaluation_parallel_to_training": False,
211 # Internal flag that is set to True for evaluation workers.
212 "in_evaluation": False,
213 # Typical usage is to pass extra args to evaluation env creator
214 # and to disable exploration by computing deterministic actions.
215 # IMPORTANT NOTE: Policy gradient algorithms are able to find the optimal
216 # policy, even if this is a stochastic one. Setting "explore=False" here
217 # will result in the evaluation workers not using this optimal policy!
218 "evaluation_config": {
219 "explore": False
220 },
221 # Number of parallel workers to use for evaluation. Note that this is set
222 # to zero by default, which means evaluation will be run in the trainer
223 # process (only if evaluation_interval is not None). If you increase this,
224 # it will increase the Ray resource usage of the trainer since evaluation
225 # workers are created separately from rollout workers (used to sample data
226 # for training).
227 "evaluation_num_workers": 0,
228 # Customize the evaluation method. This must be a function of signature
229 # (trainer: Trainer, eval_workers: WorkerSet) -> metrics: dict. See the
230 # Trainer.evaluate() method to see the default implementation. The
231 # trainer guarantees all eval workers have the latest policy state before
232 # this function is called.
233 "custom_eval_function": None,
234

235 # === Advanced Rollout Settings ===
236 # Use a background thread for sampling (slightly off-policy, usually not
237 # advisable to turn on unless your env specifically requires it).
238 "sample_async": False,
239

240 # Element-wise observation filter, either "NoFilter" or "MeanStdFilter".
241 "observation_filter": "NoFilter",
242 # Whether to synchronize the statistics of remote filters.
243 "synchronize_filters": True,
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244 # Whether to LZ4 compress individual observations.
245 "compress_observations": False,
246 # Wait for metric batches for at most this many seconds. Those that
247 # have not returned in time will be collected in the next train iteration.
248 "collect_metrics_timeout": 180,
249 # Smooth metrics over this many episodes.
250 "metrics_smoothing_episodes": 100,
251 # Minimum time per train iteration (frequency of metrics reporting).
252 "min_iter_time_s": 0,
253 # Minimum env steps to optimize for per train call. This value does
254 # not affect learning, only the length of train iterations.
255 "timesteps_per_iteration": 0,
256 # This argument , in conjunction with worker_index , sets the random seed of
257 # each worker, so that identically configured trials will have identical
258 # results. This makes experiments reproducible.
259 "seed": None,
260 # Any extra python env vars to set in the trainer process, e.g.,
261 # {"OMP_NUM_THREADS": "16"}
262 "extra_python_environs_for_driver": {},
263 # The extra python environments need to set for worker processes.
264 "extra_python_environs_for_worker": {},
265

266 # === Resource Settings ===
267 # Number of GPUs to allocate to the trainer process. Note that not all
268 # algorithms can take advantage of trainer GPUs. Support for multi-GPU
269 # is currently only available for tf-[PPO/IMPALA/DQN/PG].
270 # This can be fractional (e.g., 0.3 GPUs).
271 "num_gpus": 0.0001,
272 # Set to True for debugging (multi-)?GPU funcitonality on a CPU machine.
273 # GPU towers will be simulated by graphs located on CPUs in this case.
274 # Use `num_gpus ` to test for different numbers of fake GPUs.
275 "_fake_gpus": False,
276 # Number of CPUs to allocate per worker.
277 "num_cpus_per_worker": 1,
278 # Number of GPUs to allocate per worker. This can be fractional.
279 "num_gpus_per_worker": (1 - 0.001) / 4,
280 # Any custom Ray resources to allocate per worker.
281 "custom_resources_per_worker": {},
282 # Number of CPUs to allocate for the trainer. Note: this only takes effect
283 # when running in Tune. Otherwise , the trainer runs in the main program.
284 "num_cpus_for_driver": 1,
285 # The strategy for the placement group factory returned by
286 # `Trainer.default_resource_request()`. A PlacementGroup defines, which
287 # devices (resources) should always be co-located on the same node.
288 # For example, a Trainer with 2 rollout workers, running with
289 # num_gpus=1 will request a placement group with the bundles:
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290 # [{"gpu": 1, "cpu": 1}, {"cpu": 1}, {"cpu": 1}], where the first bundle is
291 # for the driver and the other 2 bundles are for the two workers.
292 # These bundles can now be "placed" on the same or different
293 # nodes depending on the value of `placement_strategy `:
294 # "PACK": Packs bundles into as few nodes as possible.
295 # "SPREAD": Places bundles across distinct nodes as even as possible.
296 # "STRICT_PACK": Packs bundles into one node. The group is not allowed
297 # to span multiple nodes.
298 # "STRICT_SPREAD": Packs bundles across distinct nodes.
299 "placement_strategy": "PACK",
300

301 # === Logger ===
302 # Define logger-specific configuration to be used inside Logger
303 # Default value None allows overwriting with nested dicts
304 "logger_config": None,
305 # Experimental flag.
306 # If True, no (observation) preprocessor will be created and
307 # observations will arrive in model as they are returned by the env.
308 # In the future, the default for this will be True.
309 "_disable_preprocessor_api": True,
310 }

Listing A.2: NclustRL’s default trainer configurations
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