
UNIVERSIDADE DE LISBOA 

FACULDADE DE CIÊNCIAS 

DEPARTAMENTO DE FÍSICA 

 

 

 

 

 

 

The effect of using multiple connectivity metrics in brain 

Functional Connectivity studies 

 

 

 

Hugo Emanuel Augusto Teixeira 

 

 

 

Mestrado Integrado em Engenharia Biomédica e Biofísica   

 Perfil em Sinais e Imagens Médicas 

 
 

Dissertação orientada por: 

Professor Doutor Alexandre Andrade 

 

 

2021 



 

ii 

 

 
 

Acknowledgements 

Firstly, I would like to thank the Faculdade de Ciências da Universidade de Lisboa, for integrating 

me so well over these years. I would also like to thank the teachers I had the opportunity to meet, for 

always transmitting the necessary knowledge in the best way possible and for being always close to the 

students. 

I would also like to express my gratitude to my advisor, Professor Doctor Alexandre Andrade from 

the Faculdade de Ciências da Universidade de Lisboa and Instituto de Biofísica e Engenharia Biomédica, 

for all the shared knowledge that was truly important for this dissertation, confidence in the work 

developed throughout these months, and for the opportunity to work in such an interesting area, leading 

to my personal and academic growth. 

To all my friends and colleagues, I’m extremely grateful for always being there for me over these 

years, whether to help me with academic or other matters, and for all the great moments we’ve been 

through. 

 A special mention to Marta, for being the best person I know, for always supporting and motivating 

me even when things didn’t seem to go well, for all the valuable opinions, and for helping me becoming 

the best version of myself. 

Last but not least, there are no words that can express the unconditional support, motivation, and 

love that my family, especially my mother and grandparents, have given me throughout my life and my 

academic journey. They are the best, I wouldn't be the person I am today and I wouldn't have achieved 

what I've achieved without them, a thank you is not enough. 



 

iii 

 

 

Abstract 

Resting-state functional magnetic resonance imaging (rs-fMRI) has the potential to assist as a 

diagnostic or prognostic tool for a diverse set of neurological and neuropsychiatric disorders, which are 

often difficult to differentiate. fMRI focuses on the study of the brain functional Connectome, which is 

characterized by the functional connections and neuronal activity among different brain regions, also 

interpreted as communications between pairs of regions. This Functional Connectivity (FC) is quantified 

through the statistical dependences between brain regions’ blood-oxygen-level-dependent (BOLD) 

signals time-series, being traditionally evaluated by correlation coefficient metrics and represented as 

FC matrices. However, several studies underlined limitations regarding the use of correlation metrics to 

fully capture information from these signals, leading investigators towards different statistical metrics 

that would fill those shortcomings. Recently, investigators have turned their attention to Deep Learning 

(DL) models, outperforming traditional Machine Learning (ML) techniques due to their ability to 

automatically extract relevant information from high-dimensional data, like FC data, using these models 

with rs-fMRI data to improve diagnostic predictions, as well as to understand pathological patterns in 

functional Connectome, that can lead to the discovery of new biomarkers. In spite of very encouraging 

performances, the black-box nature of DL algorithms makes difficult to know which input information 

led the model to a certain prediction, restricting its use in clinical settings.  

The objective of this dissertation is to exploit the power of DL models, understanding how FC 

matrices created from different statistical metrics can provide information about the brain FC, beyond 

the conventionally used correlation family. Two publicly available datasets where studied, the ABIDE-

I dataset, composed by healthy and autism spectrum disease (ASD) individuals, and the ADHD-200 

dataset, with typically developed controls and individuals with attention-deficit/hyperactive disorder 

(ADHD). The computation of the FC matrices of both datasets, using different statistical metrics, was 

performed in MATLAB using MULAN’s toolbox functions, encompassing the correlation coefficient, 

non-linear correlation coefficient, mutual information, coherence and transfer entropy. The 

classification of FC data was performed using two DL models, the improved ConnectomeCNN model 

and the innovative ConnectomeCNN-Autoencoder model. Moreover, another goal is to study the effect 

of a multi-metric approach in classification performances, combining multiple FC matrices computed 

from the different statistical metrics used, as well as to study the use of Explainable Artificial 

Intelligence (XAI) techniques, namely Layer-wise Relevance Propagation method (LRP), to surpass the 

black-box problem of DL models used, in order to reveal the most important brain regions in ADHD.  

The results show that the use of other statistical metrics to compute FC matrices can be a useful 

complement to the traditional correlation metric methods for the classification between healthy subjects 

and subjects diagnosed with ADHD and ASD. Namely, non-linear metrics like h2 and mutual 

information, achieved similar and, in some cases, even slightly better performances than correlation 

methods. The use of FC multi-metric, despite not showing improvements in classification performance 

compared to the best individual method, presented promising results, namely the ability of this approach 

to select the best features from all the FC matrices combined, achieving a similar performance in relation 

to the best individual metric in each of the evaluation measures of the model, leading to a more complete 

classification. The LRP analysis applied to ADHD-200 dataset proved to be promising, identifying brain 

regions related to the pathophysiology of ADHD, which are in broad accordance with FC and structural 

study’s findings. 

Keywords: Functional Connectivity, Connectome, Brain Disorders, Deep Neural Networks, Neural 

Networks Explainability 
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Resumo 

A ressonância magnética funcional em estado de repouso (rs-fMRI) tem o potencial de ser uma 

ferramenta auxiliar de diagnóstico ou prognóstico para um conjunto diversificado de distúrbios 

neurológicos e neuropsiquiátricos, que muitas vezes são difíceis de diferenciar. A análise de dados de 

rs-fMRI recorre muitas vezes ao conceito de conectoma funcional do cérebro, que se caracteriza pelas 

conexões funcionais entre as diferentes regiões do cérebro, sendo estas conexões interpretadas como 

comunicações entre diferentes pares de regiões cerebrais. Esta conectividade funcional é quantificada 

através de dependências estatísticas entre os sinais fMRI das regiões cerebrais, sendo estas 

tradicionalmente calculadas através da métrica coeficiente de correlação, e representadas através de 

matrizes de conectividade funcional. No entanto, vários estudos demonstraram limitações em relação ao 

uso de métricas de correlação, em que estas não conseguem capturar por completo todas as informações 

presentes nesses sinais, levando os investigadores à procura de diferentes métricas estatísticas que 

pudessem preencher essas lacunas na obtenção de informações mais completas desses sinais.  

O estudo destes distúrbios neurológicos e neuropsiquiátricos começou por se basear em técnicas 

como mapeamento paramétrico estatístico, no contexto de estudos de fMRI baseados em tarefas. Porém, 

essas técnicas apresentam certas limitações, nomeadamente a suposição de que cada região cerebral atua 

de forma independente, o que não corresponde ao conhecimento atual sobre o funcionamento do cérebro. 

O surgimento da rs-fMRI permitiu obter uma perspetiva mais global e deu origem a uma vasta literatura 

sobre o efeito de patologias nos padrões de conetividade em repouso, incluindo tentativas de diagnóstico 

automatizado com base em biomarcadores extraídos dos conectomas. Nos últimos anos, os 

investigadores voltaram a sua atenção para técnicas de diferentes ramos de Inteligência Artificial, mais 

propriamente para os algoritmos de Deep Learning (DL), uma vez que são capazes de superar os 

algoritmos tradicionais de Machine Learning (ML), que foram aplicados a estes estudos numa fase 

inicial, devido à sua capacidade de extrair automaticamente informações relevantes de dados de alta 

dimensão, como é o caso dos dados de conectividade funcional. Esses modelos utilizam os dados obtidos 

da rs-fMRI para melhorar as previsões de diagnóstico em relação às técnicas usadas atualmente em 

termos de precisão e rapidez, bem como para compreender melhor os padrões patológicos nas conexões 

funcionais destes distúrbios, podendo levar à descoberta de novos biomarcadores. Apesar do notável 

desempenho destes modelos, a arquitetura natural em caixa-preta dos algoritmos de DL, torna difícil 

saber quais as informações dos dados de entrada que levaram o modelo a executar uma determinada 

previsão, podendo este utilizar informações erradas dos dados para alcançar uma dada inferência, 

restringindo o seu uso em ambientes clínicos.  

O objetivo desta dissertação, desenvolvida no Instituto de Biofísica e Engenharia Biomédica, é 

explorar o poder dos modelos DL, de forma a avaliar até que ponto matrizes de conectividade funcional 

criadas a partir de diferentes métricas estatísticas podem fornecer mais informações sobre a 

conectividade funcional do cérebro, para além das métricas de correlação convencionalmente usadas 

neste tipo de estudos. Foram estudados dois conjuntos de dados bastante utilizados em estudos de 

Neurociência e que estão disponíveis publicamente: o conjunto de dados ABIDE-I, composto por 

indivíduos saudáveis e indivíduos com doenças do espectro do autismo (ASD), e o conjunto de dados 

ADHD-200, com controlos tipicamente desenvolvidos e indivíduos com transtorno do défice de atenção 

e hiperatividade (ADHD).  

Numa primeira fase foi realizada a computação das matrizes de conetividade funcional de ambos os 

conjuntos de dados, usando as diferentes métricas estatísticas. Para isso, foi desenvolvido código de 

MATLAB, onde se utilizam as séries temporais dos sinais BOLD obtidas dos dois conjuntos de dados 
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para criar essas mesmas matrizes de conectividade funcional, incorporando funções de diferentes 

métricas estatísticas da caixa de ferramentas MULAN, compreendendo o coeficiente de correlação, o 

coeficiente de correlação não linear, a informação mútua, a coerência e a entropia de transferência. De 

seguida, a classificação dos dados de conectividade funcional, de forma a avaliar o efeito do uso de 

diferentes métricas estatísticas para a criação de matrizes de conectividade funcional na discriminação 

de sujeitos saudáveis e patológicos, foi realizada usando dois modelos de DL. O modelo 

ConnectomeCNN melhorado e o modelo inovador ConnectomeCNN-Autoencoder foram desenvolvidos 

com recurso à biblioteca de Redes Neuronais Keras, juntamente com o seu backend Tensorflow, ambos 

em Python. Estes modelos, desenvolvidos previamente no Instituto de Biofísica e Engenharia 

Biomédica, tiveram de ser otimizados de forma a obter a melhor performance, onde vários parâmetros 

dos modelos e do respetivo treino dos mesmos foram testados para os dados a estudar. Pretendeu-se 

também estudar o efeito de uma abordagem multi-métrica nas tarefas de classificação dos sujeitos de 

ambos os conjuntos de dados, sendo que, para estudar essa abordagem as diferentes matrizes calculadas 

a partir das diferentes métricas estatísticas utilizadas, foram combinadas, sendo usados os mesmos 

modelos que foram aplicados às matrizes de conectividade funcional de cada métrica estatística 

individualmente. É importante realçar que na abordagem multi-métrica também foi realizada a 

otimização dos parâmetros dos modelos utilizados e do respetivo treino, de modo a conseguir a melhor 

performance dos mesmos para estes dados. Para além destes dois objetivos, estudou-se o uso de técnicas 

de Inteligência Artificial Explicável (XAI), mais especificamente o método Layer-wise Relevance 

Propagation (LRP), com vista a superar o problema da caixa-preta dos modelos de DL, com a finalidade 

de explicar como é que os modelos estão a utilizar os dados de entrada para realizar uma dada previsão. 

O método LRP foi aplicado aos dois modelos utilizados anteriormente, usando como dados de entrada 

o conjunto de dados ADHD-200, permitindo assim revelar quais as regiões cerebrais mais importantes 

no que toca a um diagnóstico relacionado com o ADHD.  

Os resultados obtidos mostram que o uso de outras métricas estatísticas para criar as matrizes de 

Conectividade Funcional podem ser um complemento bastante útil às métricas estatísticas 

tradicionalmente utilizadas para a classificação entre indivíduos saudáveis e indivíduos como ASD e 

ADHD. Nomeadamente métricas estatísticas não lineares como o h2 e a informação mútua, obtiveram 

desempenhos semelhantes e, em alguns casos, desempenhos ligeiramente melhores em relação aos 

desempenhos obtidos por métodos de correlação, convencionalmente usados nestes estudos de 

conectividade funcional. A utilização da multi-métrica de conectividade funcional, apesar de não 

apresentar melhorias no desempenho geral da classificação em relação ao melhor método das matrizes 

de conectividade funcional individuais do conjunto de métricas estatísticas abordadas, apresenta 

resultados que justificam a exploração mais aprofundada deste tipo de abordagem, de forma a 

compreender melhor a complementaridade das métricas e a melhor maneira de as utilizar. O uso do 

método LRP aplicado ao conjunto de dados do ADHD-200 mostrou a sua aplicabilidade a este tipo de 

estudos e a modelos de DL, identificando as regiões cerebrais mais relacionadas à fisiopatologia do 

diagnóstico do ADHD que são compatíveis com o que é reportado por diversos estudos de conectividade 

funcional e estudos de alterações estruturais associados a esta doença. O facto destas técnicas de XAI 

demonstrarem como é que os modelos de DL estão a usar os dados de entrada para efetuar as previsões, 

pode significar uma mais rápida e aceite adoção destes algoritmos em ambientes clínicos. Estas técnicas 

podem auxiliar o diagnóstico e prognóstico destes distúrbios neurológicos e neuropsiquiátricos, que são 

na maioria das vezes difíceis de diferenciar, permitindo aos médicos adquirirem um conhecimento em 

relação à previsão realizada e poder explicar a mesma aos seus pacientes. 

Palavras-chave: Conetividade Funcional, Conectoma, Distúrbios Cerebrais, Redes Neuronais 

Profundas, Explicabilidade de Redes Neuronais 
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1 – Introduction 

1.1 – Context and Motivation 

The brain is the most complex organ in the human body, being composed by an estimate of 

8.6 × 1011 neurons that connect with each other via approximately 1014 synapses, allowing chemical 

and electrical signals to be transmitted, either by efferent or afferent pathways [1,2]. The human brain 

is considered a very efficient network, with a large number of functionally and structurally 

interconnected regions that are specialized to perform certain functions and are constantly sharing 

information with each other [3].   

The rs-fMRI became one of the most used techniques to study the brain since the study performed 

by Biswal et al. (1995), reporting highly correlated spontaneous activity from right and left motor 

cortices when a subject was at rest, showing that brain activity is present even in the absence of specific 

tasks [4]. The advances in non-invasive Neuroimaging techniques and brain network analysis paved the 

way to a new the field in Neuroscience, the brain Connectome, linking the structural and functional 

information of the brain network based on the idea of a brain circuit map. This consists of brain regions 

with their structural connections and respective functional interactions, allowing to know the behavior 

of the system as a whole and the interactions between different regions of the brain, both at a structural 

and functional level [3,5]. Researchers have started to explore the human brain network from the 

perspective of connectivity patterns, with much of its attention being focused on the study of FC, which 

helps characterize not only healthy individuals but several neurological and neuropsychiatric disorders, 

like schizophrenia (SZ), ASD, Alzheimer disease (AD) and ADHD, being defined by measure the 

relationship between BOLD signals from distinct regions of the brain using statistical metrics, 

traditionally correlation. 

For many years, the study of neurological and neuropsychiatric disorders through FC, has relied on 

mass-univariate analytical techniques like statistical parametric mapping, which compared healthy 

patients with disease diagnosed patients to report neuroanatomical and neurofunctional differences, 

providing significant improvements towards the understanding of these disorders. However, these 

techniques have limitations, such as the statistical inferences assuming that each brain region acts 

independently, which is not true, and only allow to detect differences between groups. Partly to fulfill 

those limitations, but also with the goal of improving diagnostic power, neuroimaging researchers began 

to focus on Machine Learning (ML) algorithms, a branch of Artificial Intelligence (AI) responsible for 

extracting patterns from data and learning how to make predictions in new data [6]. With increasingly 

improved ML techniques, these began to be used in the study of FC of the brain, overcoming the 

drawbacks existing with mass-univariate analytical methods, enhancing the diagnosis capacity and 

knowledge regarding FC patterns in neurological and neuropsychiatric disorders, achieving varying 

degrees of success [7,8].  

Despite their vast and popular use, conventional ML algorithms lacked good performance on raw 

data, requiring the use of expertise to extract of the most important features, which ends up being 

extremely arduous due to the complex high-dimensional datasets from rs-fMRI and FC data, with the 

attention turned to the application of another branch of AI called DL. DL algorithms are representation-

learning methods, meaning that they can automatically extract and learn good representations from the 

raw data, without the need of manual feature selection as with conventional ML algorithms. Beside that 

quality, DL models have the ability to reach higher levels of complexity and abstraction, making them 

perfectly suited to the classification of complex FC data [7]. Researchers began to take advantage of the 

potential of DL models and apply them to FC data, where several studies showed their promising results 
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in FC based classification of neurological and neuropsychiatric disorders [6,8]. The use of DL models 

can be extremely valuable in the analysis of diverse neurological and neuropsychiatric disorders, as 

these are difficult to differentiate since the diagnosis is based on clinical interview to determine signs 

and symptoms present, with symptoms being shared between diseases, as well as subtle neuroanatomical 

and neurofunctional abnormalities. 

Although having a superb performance, DL models lack an explanation about which characteristics 

of the input features were used to achieve a given outcome. To fulfill this limitation, several XAI 

techniques were developed to provide transparency to these models, explaining and evaluating which 

input data features the models are using to achieve a given prediction [9]. The field of XAI techniques 

is still taking its first steps in its application to medical data, but it has enormous potential for the 

incorporation of these AI models in clinical environments, allowing to bring machine logic closer to 

clinicians, also facilitating the presentation of the results of this to the patients. 

1.2 - Objectives 

After a brief introduction about the context of this work, there are several goals to be accomplished 

during this dissertation project: 

1. Use of multiple statistical metrics to compute FC matrices, beyond the traditional use of 

correlation, and assessment of the performance of each individual metric by using automatic 

classifiers, mainly DL models, in order to classify between healthy and diseased subjects. 

2. Understand if coupling together those connectivity metrics used to compute the FC matrices, 

creating a multi-metric, can indeed improve the performance of DL models used previously to 

distinguish subjects from a diseased or healthy state. 

3. Evaluate which input features, in other words brain regions, from the FC matrices computed 

using the set of statistical metrics, are relevant and positively contribute to the classification and 

discrimination of ADHD subjects, by using the XAI technique LRP. Following this, compare 

whether the relevant brain regions obtained by using LRP are in line with what has been reported 

by previous studies. 

1.4 – Scientific Contribution to this Dissertation 

For this dissertation, in order to achieve the objectives proposed to accomplish, it was created a self-

developed code in MATLAB to compute the FC matrices through the BOLD time-series data retrieved 

from the online databases ABIDE-I and ADHD-200, incorporating the statistical metrics functions from 

MULAN toolbox. To study the classification performance of the FC matrices from the brain disorders 

addressed, two DL models were used and optimized, the ConnectomeCNN and ConnectomeCNN-

Autoencoder models, which were previously developed by the researcher Antonio Cano Montes at the 

Instituto de Biofísica e Engenharia Biomédica. To conclude the final goal of this dissertation, an XAI 

technique called LRP, from the Python’s iNNvestigate toolbox, has been coupled up to the DL models 

used to help understand how these models are using the FC data to perform a given prediction and 

identify which regions of the brain are more associated with an ADHD-related diagnosis.  

1.5 – Dissertation Outline  

This dissertation project is divided into six chapters. The first chapter is responsible for providing a 

general overview of this dissertation project thematic, what led to its development and the main 

objectives to be achieved. The chapter 2 focuses on the general concepts involving this work, where it 
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includes notions about data acquisition with rs-fMRI, how the FC matrices are created using different 

metrics and concepts about Deep Neural Networks (DNNs), mainly Convolutional Neural Networks 

(CNNs) and autoencoders, how they work, their development and how to evaluate their performances. 

Still on this chapter, it is introduced the XAI technique called LRP, which is used to unveil the black-

box problem present in DL models. Chapter 3 approaches the state-of-the-art regarding the Connectome 

field and what are the main limitations nowadays. Chapter 4 describes the methodology used in this 

project, as well as the materials needed for its development. In Chapter 5, the results obtained are 

showed, followed by their respective discussion. The final chapter seals this project by highlighting the 

main findings and conclusions, some limitations of the study and guidelines for future research.  
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2 – Theoretical Background   

2.1 – Resting-state Functional MRI 

Magnetic Resonance Imaging (MRI) is a non-invasive technique introduced at the clinical stage in 

1980s. MRI is an extraordinary versatile imaging technique able to provide high-resolution images, both 

two-dimensional (2D) and three-dimensional (3D) data from different human body structures, since 

muscles, cartilage, organs, white matter tracts and arteries. This technique, because of the absence of 

ionizing electromagnetic radiation, has become increasingly used in many clinical applications such as 

diagnosis, staging and treatment monitoring of a wide range of pathologies, including neurological and 

neuropsychiatric disorders [10].  

The basic principle on which MRI works is the magnetizing properties of the atomic nuclei, where 

an external magnetic field is applied through the patient to align the protons, that are randomly oriented 

in the water nuclei of the examined location, with that field. This alignment is the consequence of the 

magnetization effect, which will be further disturbed by the application of an external radiofrequency 

energy pulse, causing these nuclei to return to their normal alignment through relaxation processes, 

emitting radiofrequency energy. Then, moments after the application of radiofrequency energy, the 

emitted signals are measured using the Fourier transformation, which translates the frequency 

information of these signals into the respective intensity levels, of each location in the image plane, 

being displayed as grayscale in a matrix composed of these pixels. Different radiofrequency energy 

pulses can be generated and received, in order to create different types of MRI images [10].  

The fMRI is a non-invasive modality of MRI that, instead of analyzing the anatomical structure of 

the brain, it examines brain activity by observing the neurological processes, regional or time-varying 

changes that influence the brain metabolism consumption [1]. The fMRI is performed under the same 

principles as the conventional MRI scans, where it uses Nuclear Magnetic Resonance coupled with 

gradients in magnetic field to create images of the patient’s brain structures neuronal activity, with that 

neuronal activity being based on blood oxygen level dependent (BOLD) signal, that is the basis of fMRI 

formation, being totally dependent on the oxygen levels in the blood, which are influenced by the brain 

metabolic activity [5,11].  

Blood contains oxyhemoglobin and deoxyhemoglobin, which are diamagnetic and paramagnetic 

molecules, respectively. The deoxyhemoglobin present in a blood vessel leads to a susceptibility 

between the vessel and the neighboring tissue, causing the dephasing of MR proton signal and a 

darkening of the image in the regions containing those vessels, with the oxyhemoglobin, as diamagnetic 

molecule, will not cause the same dephasing. It would be expected that with the enhancement of 

neuronal activity, the concentration of deoxyhemoglobin would consequently increase due to the 

consumption of oxygen and decrease the signal. Instead, associated with the increase of oxygen levels 

from the blood is the increase in cerebral blood flow, which transport with it more oxyhemoglobin, 

observed in figure 2.1, reducing the concentration of deoxyhemoglobin and increasing the BOLD signal 

[12]. The BOLD signal changes present some smooth delays or lags from the beginning of the neuronal 

activity, characterizing the changes in blood flow that is detected by the fMRI, with this delay being 

called hemodynamic response. The deoxyhemoglobin involved in BOLD signal can be affected by many 

factors, such as changes in cerebral blood flow and volume, cerebral metabolic rates of oxygen and 

different magnetic fields strength [5,11]. 
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Figure 2.1: Neuronal activity increases oxygen levels and consequently cerebral blood flow, leading to higher levels of 

oxyhemoglobin [4]. 

During many years, in task-based fMRI studies, the standard procedure, it was thought that the 

presence of some oscillations in BOLD signals recorded was noise resulted from physiological processes 

like cardiac pulsation, respiratory and subject movement, leading to the rejection of that “noise” from 

the main signal to posterior analysis. But, as demonstrated by Biswal et al [3], part of this problematic 

“noise” present in the signals was in fact the so-called brain spontaneous fluctuations, which refers to 

activity that is not originated from specific stimulus towards the patients, representing neuronal activity 

intrinsically generated by the human brain, as illustrated in figure 2.2 [4]. These spontaneous 

fluctuations are consistent low frequency fluctuations, in the order of 0.01-0.08 Hertz (Hz), which will 

be considered in rs-fMRI and are confined to distinct cortical network systems in the brain [3,11]. 

 

Figure 2.2: Representation of resting-state blood oxygen level dependent signal activity from a brain region [4]. 

These spontaneous fluctuations in rs-fMRI demonstrate that the human brain is always operational 

and working, representing at rest about 20% of the total energy consumption of the body, most of that 

energy is used to support the spontaneous neuronal signals that are taking place. The energy 

consumption of the brain when performing tasks is 5% less than the 20% of resting-state body’s total 

energy consumption, thus showing the importance of the resting-state in brain functions, providing a 

window to be a disease-related signal change [4,13]. When two brain regions show a highly correlated 

BOLD signal during the rs-fMRI, they are said to be functionally correlated, even if those regions are 

not structurally connected by any direct pathway [14]. 

The wide use of fMRI in comparison to other techniques is mainly due to its excellent spatial 

resolution, which allows the measurement of BOLD signal changes, while techniques like 

Electroencephalography (EEG) and Magnetoencephalography (MEG) have a poor spatial resolution and 

excellent temporal resolution. Another advantage of fMRI in comparison to other techniques is the 
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capability to detect deeper brain activity changes and it offers a better signal-to-noise ratio. The 

advantages of using resting-state in fMRI are the easy and short period of acquisition, allowing an 

increased sample size, and unlike task-based imaging, resting-state allows the observation of many brain 

networks at once [11,15]. Since is not necessary the execution of a task, rs-fMRI circumvents the confuse 

interpretation of tasks, allowing greater comfort and less effort from the patients. Even though rs-fMRI 

has all these advantages compared to task-based fMRI, these signals are influenced by many 

physiological processes, such as the cardiac pulsation, respiratory and subject movements, which are 

not related to the neuronal activity, requiring preprocessing procedures to be later analyzed.  

2.2 – Brain Connectivity  

The human brain is a hierarchical complex that comprises different yet connected levels, from genes, 

proteins, synapses, neurons and their circuits, brain areas and their pathways, and the brain as a whole. 

The concept that the human brain was a complex, large-scale network, called Connectome, emerged in 

2005 by Sporns et al, although the idea that the brain was a structural network of connections between 

neurons with functional implications, had been proposed by Santiago Ramón y Cajal decades earlier 

[16]. Today, the definition of brain Connectome is based on a mapping of the brain circuit, consisting 

in brain regions, their structural connections, and respective functional interactions, allowing to 

understand the dynamic interactions between different brain regions, both at a structural and functional 

level [17,18]. There are different types of connectivity that provide information to study the 

Connectome, these being the Structural Connectivity (SC), the FC and the Effective Connectivity (EC).   

The brain structural Connectome consists of grey matter, representing the neuronal elements where 

information is processed, and white matter tracts, which will be the structure where communication 

pathways rely on [19]. The SC is based on an anatomic map of physical connections comprising white 

matter fiber tracts, linking different brain cortical and subcortical regions with their fiber bundle [20]. 

Neuronal axons involving these white matter fiber tracts allow them to transmit neural signals to other 

brain areas, which is fundamental for the communication between them [21]. To assess SC, techniques 

are available including Diffusion-weighted MRI (DW-MRI), left image in figure 2.5, a variant from 

conventional MRI, which is very sensitive to the water diffusion within brain tissues, measuring the 

magnitude of diffusion for each tissue voxel, generating a contrast map based on comparisons between 

the differences in water diffusion values in brain tissues [22,23]. Diffusion Tensor Imaging (DTI) can 

also be used to study SC, middle image in figure 2.3, providing images of anisotropy of water diffusion 

in the brain, offering information about its structure and direction of diffusion, because myelin creates 

a barrier to water diffusion and white matter tracts show a substantial diffusion anisotropy [24]. Together 

with DTI can be used the Tractography, right image in figure 2.5, which uses the orientation information 

to estimate the structural pathways between brain regions and reconstruct the direction of axons tracts, 

with the SC being accomplished by calculate the number of streamlines in a certain pair of brain regions 

[21,22].  

 

Figure 2.3: Procedure used to study Structural Connectivity depicted by white matter fiber tracts [25]. 



 

7 

 

Another type of brain connectivity is the FC, defined as the synchronization and patterns of 

interactions between different brain regions that do not necessarily need to be structurally connected and 

may result from direct anatomical connections or remote paths [8,26]. FC is characterized by the 

measure of temporal correlations or statistical dependences among time-series of BOLD signals between 

different brain regions, as illustrated in figure 2.4, being indicative of neural activity over time, at each 

voxel [1,20]. Functional communication between brain regions is very important in many complex 

processes, assisting in the continuous integration of information from different brain regions, making 

this connectivity highly important in the comprehension of human brain organization and disorders 

patterns [3]. These types of connections can oscillate on small time intervals such as seconds or 

milliseconds, being time dependent and focusing on spontaneous brain activity of ongoing information 

processing between regions [16,17].  

 

Figure 2.4: Procedure to study Functional Connectivity between two brain regions. Adapted from [27]. 

Several studies suggest that disruptions in FC are the root of several brain disorders, making this type 

of connectivity more vulnerable to pathologies [2].  FC has been an important tool to examine how brain 

organization and functional connections might be changed in neurological and psychiatric disorders, 

contributing to an earlier and very useful diagnosis of these disorders [3,16]. Closely related and linked 

to functional brain interactions, emerges the EC, which estimates the influence that a neural element 

exerts over another, evaluating the directionality and the causality of neural interactions [1,11]. Both FC 

and EC are derived from the relationships between brain regions BOLD signal time-series, which can 

be acquired with fMRI, EEG or MEG, but resting-state fMRI is achieving a higher use in this research 

due to the properties mentioned previously [20].  

2.2.1 – Functional Connectivity Metrics 

As mentioned previously, FC employs statistical methods to evaluate the neuronal dependencies 

between different brain regions BOLD signal time-series, called in this dissertation as FC metrics. There 

is a significant set of metrics that can be used in FC analysis, being those subdivided in different 

categories, according to their functions and mathematical formulations. The first subdivision that can be 

made is related to the domain where the metrics are applied, as they can be in time domain or in 

frequency domain. Another subdivision is based on whether the metric considers linear or non-linear 

dependencies between the signals, being called linear FC metrics or non-linear FC metrics. Another 

subdivision is focused on the capacity of the metric to quantify the direction of interaction between 

regions signals, in other words, the objective is to understand which region causes the effects in the 

other, as it can be directed or non-directed metric [28]. 
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Correlation  

The most widely used metric to evaluate the dependency between neuronal signals is the correlation, 

as it is simple to calculate and being widely used in FC studies facilitates the exchange of knowledge 

between researchers [29]. If one region of brain is functionally connected to another, even though they 

are distant, should be present correlation regarding their BOLD signal time-series. This metric, given in 

equation 2.1, by considering two brain regions time-series signals x and y, allows to calculate the linear 

correlation among pairs of brain regions, being the covariance between the signals time-series 𝑐𝑜𝑣𝑥𝑦, 

dividing by the product of both signals’ standard deviations, 𝜎𝑥 and 𝜎𝑦 [30,31]. The calculation of 

correlation coefficient has an important variable corresponding to the time delay or lag of the 

hemodynamic response present in BOLD signal, the 𝜏, which in the case of Pearson’s correlation 

coefficient, a correlation family metric, is considered as zero [32]. 

𝑅𝑥𝑦(𝜏)  =
∑(𝑥𝑖 − 𝑥̅) (𝑦𝑖 − ӯ)

√∑(𝑥𝑖 −  𝑥̅)2(𝑦𝑖 − ӯ)2
=  

𝑐𝑜𝑣𝑥𝑦(𝜏)

𝜎𝑥. 𝜎𝑦
 (2.1) 

Correlation values range from -1 to +1, where -1 indicates that as the value of one signal increases, 

the value of the other signal decreases, being negatively correlated, and +1 indicates that as the value of 

one signal increases, the value of the other signal does the same, being positively correlated. It is 

important to mention that this metric do not provide information about the direction or causality between 

the signals compared [31]. 

Coherence 

Another linear metric used in FC studies is the coherence, which is equivalent to correlation but is 

computed from the frequency domain of the signals. This undirected metric allows to overcome the 

problems of artifact noises such as cardiac or respiratory activity, which could result in high illusory 

correlations [32]. Fourier-based coherence or simply coherence, defined by the equation 2.2, measures 

the common energy between pairs of signals at a specific frequency, quantifying the amount of variance 

in one of the signals that can be explained by the other [28,33].  

𝑐𝑜ℎ𝑥𝑦(𝑓) =  
|𝐹𝑥𝑦(𝑓)|

2

𝐹𝑥𝑥(𝑓). 𝐹𝑦𝑦(𝑓)
 (2.2) 

The mathematical basis of this metric consists of 𝐹𝑥𝑦, which is the cross-spectrum between signals x 

and y at a frequency f, defined by the Fourier transform of the cross variance in equation 2.3, and of 𝐹𝑥𝑥  

and 𝐹𝑦𝑦  being the power-spectrum of the signals x and y time-series at a frequency f, respectively 

calculated through equations 2.4 and 2.5 [28,33]. 

𝐹𝑥𝑦(𝑓) =  ∑ 𝑐𝑜𝑣𝑥𝑦(𝑢)
𝑢

. 𝑒−𝑗𝑓𝑢 (2.3) 

𝐹𝑥𝑥(𝑓) =  ∑ 𝑐𝑜𝑣𝑥𝑥(𝑢)
𝑢

. 𝑒−𝑗𝑓𝑢 (2.4) 

𝐹𝑦𝑦(𝑓) =  ∑ 𝑐𝑜𝑣𝑦𝑦(𝑢)
𝑢

. 𝑒−𝑗𝑓𝑢 (2.5) 

Due to the non-stationarity changes in neuronal signals time-series, their spectral characteristics vary 

over time, coherence should be considered over the time domain as well. Derived from that concept, 

beside the Fourier-based coherence mentioned, emerged the Wavelet-based coherence (Wcoh), which 
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corresponds to the measure of correlation between a pair of signals in time-frequency domain [34]. 

Signals can be decomposed through the Morlet wavelet family, despite the existence of a variety of 

wavelet functions, this one is the most used because of its simplicity and is well suited for spectral 

estimations, having a good stability between time and frequency. Morlet wavelet (𝛹), mathematically 

described in equation 2.6, is defined for both frequency f and time 𝜏, being the product of sinusoidal 

wave at a certain frequency with a Gaussian function centered at a certain time and with the standard 

deviation (σ) proportional to the inverse of frequency [34,35].  

𝛹𝜏,𝑓(𝑢) =  √𝑓 × 𝑒𝑖2𝜋𝑓(𝑢−𝜏). 𝑒
−

(𝑢−𝜏)2

𝜎2 (2.6)  

From the convolution of a signal x with the Morlet wavelet is obtained the wavelet transform of that 

respective signal, as a function of time τ and frequency f, where * denotes the complex conjugate: 

𝑊𝑥(𝜏, 𝑓) =  ∫ 𝑥(𝑢). 𝛹𝜏,𝑓 ∗ (𝑢)𝑑𝑢 (2.7)
+∞

−∞

 

Finally, the calculation of Wavelet-based coherence, defined by equation 2.9, will be equivalent to 

the Fourier-based coherence introduced in equation 2.3, by using the wavelet cross-spectrum between a 

signals x and y time-series in both time and frequency domain, provided by the equation 2.8, and using 

the product of power-spectrum from each signal around time and frequency [35].  

𝐹𝑥𝑦(𝜏, 𝑓) = ∫ 𝑊𝑥(𝜏, 𝑓). 𝑊𝑦(𝜏, 𝑓)
𝜏+

𝛿
2

𝜏+
𝛿
2

𝑑𝜏(2.8) 

𝑊𝑐𝑜ℎ(𝜏, 𝑓) =  
|𝐹𝑥𝑦(𝜏, 𝑓)|

2

𝐹𝑥𝑥(𝜏, 𝑓). 𝐹𝑦𝑦(𝜏, 𝑓)
 (2.9) 

Both Fourier-based and Wavelet-based coherence have values ranging from 0 to +1, indicating that 

the signals have no linear relationship, and that one signal can predict the other in a linear way, 

respectively. The use of coherence is particularly interesting, as this metric allows to the study the 

dependencies between neuronal signals in the range of low frequencies, where the spontaneous 

fluctuations of the brain occur and are closely related to the FC, namely between 0.01-0.08 Hz, as 

previously mentioned [32]. 

Non-linear correlation coefficient 

In addition to the linear FC metrics mentioned so far, non-linear metrics are also used to study the 

dependency between neuronal signals from brain regions. Among the non-linear statistical analysis 

methods, Lopes da Silva et al. [36] developed a metric originally for EEG signals analysis and has been 

applied to the field of brain FC analysis in recent years, describing the dependency of a signal x on 

another signal y, independently of the relation between these two signals. This is based on the idea that 

if the value of a signal x is considered as a function of a value from signal y, the given value from signal 

x can be predicted by means of a non-linear regression curve [37]. 

This metric developed is represented as non-linear correlation coefficient (h2), basing itself in a 

scatter plot between signals y and x, with the signal x to be split into bins and the mean value of signal 

y, as well as signal x value of the midpoint, being calculated for each respective bin. Through the 

connection of the points previously calculated, an approximation of the regression curve is achieved and 
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the h2 is calculated as follows in equation 2.10, where the f(xi) is the linear piecewise approximation of 

the non-linear regression curve [36,37]. 

ℎ𝑦|𝑥
2 =  

∑ 𝑦(𝑘)2 −  ∑ (𝑦(𝑘) − 𝑓(𝑥𝑖))2𝑁
𝑘=1

𝑁
𝑘=1

∑ 𝑦(𝑘)2𝑁
𝑘=1

 (2.10)  

The values obtained for h2 range from 0, where the two signals are independent from each other, to 

+1, when one signal is fully determined by the other. Differing from the traditional correlation, which 

is always symmetric, the h2 ratio can be asymmetric, where the relationship explained from signal x to 

signal y may be different to the relationship from signal y to x, with the amount of asymmetry being 

related to the nature of the respective relationship [38].  

Mutual Information 

Another non-linear approach used to study the relationship between neuronal signals time-series is 

mutual information, which is based on concepts from information theory [45]. Information theory was 

developed with the aim of measure the entropy of a random variable, which is the amount of information 

or uncertainty required to specify the outcome of that variable, that is known or can be estimated [39].  

The information content present in a random variable x can be explored through Shannon entropy, 

defined by equation 2.11, which consists in splitting the signal into M bins and represent the probability 

density 𝑝𝑖
𝑥 that a measurement will find x in the ith element of the bin, being represented through a 

histogram of the respective bin, where the sum is extended to all the values that the variable can assume 

[30,40]. 

𝐻(𝑥) =  − ∑ 𝑝𝑖
𝑥 . 𝑙𝑛 𝑝𝑖

𝑥

𝑖∈𝑀

(2.11) 

The definition of Shannon entropy can be extended to a pair of multivariate random variables x and 

y. As stablished by equation 2.12, the variables are divided into M bins and it is used the joint entropy 

of those variables, which is defined according to the variable’s joint probability density 𝑝𝑖𝑗
𝑥𝑦

, instead of 

each signal probability, involving finding the values of the random variables in two different spaces, Mx 

and My [30,40]. 

𝐻(𝑥, 𝑦) =  − ∑ ∑ 𝑝𝑖𝑗
𝑥𝑦

. 𝑙𝑛 𝑝𝑖𝑗
𝑥𝑦

𝑗∈𝑀𝑦𝑖∈𝑀𝑥

(2.12) 

The notion of information theory from Shannon entropy is expanded to characterize mutual 

information, which is a statistical method that quantifies the overlap of the information content present 

between time-series from two signals, being the reduction of uncertainty of one signal due to the 

knowledge of the other. One of the properties present in mutual information is that its calculation 

between signals x and y, is exactly the same applied between signals y and x, being thus symmetrical 

[40]. Differentiating from correlation, mutual information is an undirected metric that can measure both 

linear and non-linear relationships between time-series, being susceptible to dependences that are not 

exhibited in the covariance [41]. In terms of its mathematical formulation, mutual information assumes 

the form of equation 2.13, where Mx and My are the potential values that x and y can take, with 𝑝𝑖𝑗
𝑥𝑦

being 

the probability that the signals take the values i in Mx and j in My, and 𝑝𝑖
𝑥 and 𝑝𝑗

𝑦
assuming the probability 

functions of each signal [45].  
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𝑀𝐼(𝑥, 𝑦) = 𝐻(𝑥) + 𝐻(𝑦) − 𝐻(𝑥, 𝑦) = ∑ ∑ 𝑝𝑖𝑗
𝑥𝑦

. 𝑙𝑛
𝑝𝑖𝑗

𝑥𝑦

𝑝𝑖
𝑥𝑝𝑗

𝑦

𝑗∈𝑀𝑦𝑖∈𝑀𝑥

 (2.13) 

If the result of mutual information is 0, the measurement of a value from signal x time-series is totally 

independent of the measurement of a value from signal y time-series, having no information shared 

between these signals. On the other hand, if mutual information result is +1, reaches its maximum value, 

where the two signals time-series are completely the same [40]. 

Transfer Entropy 

As seen previously, mutual information has the ability to provide evidence about the amount of 

shared information content between two signals time-series but, it says little about existent causal 

interactions, due to the shortage of directional and dynamical information [42].  Despite some use of 

Granger causality to study causal relationships in time-series data, it is limited to linear interactions, 

making it inadequate to study causal relationships in highly complex non-linear systems like human 

brain [42,43].  

Also based in information theory emerged transfer entropy, which is a direct and non-linear statistical 

measure that quantifies the reduction of uncertainty in the future values of a signal y by knowing the 

past and present values of signal x instead of only knowing the past and present values of signal y. 

Thomas Schreiber introduced the concept of transfer entropy in 2000, allowing to estimate the amount 

of information flow from a signal to another, with its definition based on principle of observational 

causality from the mathematician Norbert Wiener, where a signal x is said to cause a signal y when the 

next value of signal y is better predicted by knowing the past and present of signal x than using the past 

and present of signal y alone [44]. When two signals x and y can be approximated by Markov processes, 

Schreiber defined a measure of causality from the generalized Markov condition in equation 2.14, where 

𝑥𝑡
𝑚 =  (𝑥𝑡 , . . . , 𝑥𝑡−𝑚+1) and 𝑦𝑡

𝑚 =  (𝑦𝑡 , . . . , 𝑦𝑡−𝑛+1) [45]. 

𝑝(𝑦𝑡+1 | 𝑦𝑡
𝑛, 𝑥𝑡

𝑚) =  𝑝(𝑦𝑡+1 | 𝑦𝑡
𝑛) (2.14) 

Transfer entropy can be understood by the conditional mutual information, presented in equation 

2.15, which allows to describe the information transfer between two signals by considering the history 

of both signals, 𝑥𝑡
𝑚 and  𝑦𝑡

𝑛, with the parameters m and n being the number of states considered from 

the past of each respective signal [44]. The state parameters include the most important past observations 

of the respective signal over time [45]. The conditioning in equation 2.15 enables transfer entropy to 

fulfill the drawbacks present in mutual information, by allowing to assess the directional and dynamical 

information between the two signals, due to its asymmetric property, where transfer entropy from signal 

x to signal y is not the same as the transfer entropy from signal y to signal x, and because it is based on 

transition properties between states, respectively [44,45]. 

𝑇𝐸𝑥→𝑦 =  𝑀𝐼(𝑌𝑡+1 ; 𝑋𝑡
𝑚 | 𝑌𝑡

𝑛) (2.15) 

For two time-series x and y, Schreiber uses the Kullback-Leibler divergence between the two 

distributions at each side of equation 2.14 to mathematically define transfer entropy, as shown in 

equation 2.16, where 𝑥𝑡
𝑚  and 𝑦𝑡

𝑛 are, as before, the history of both signals time-series for the respective 

states m and n, while 𝑦𝑡+1  refers to the state of time-series y at a time t + 1. Further, 𝑝(𝑦𝑡+1 , 𝑦𝑡
𝑛, 𝑥𝑡

𝑚) is 

denoted as the joint probability of 𝑦𝑡+1 and the histories 𝑥𝑡
𝑚 and 𝑦𝑡

𝑛 of the two time-series, with 

𝑝(𝑦𝑡+1 | 𝑦𝑡
𝑛, 𝑥𝑡

𝑚) and 𝑝(𝑦𝑡+1 | 𝑦𝑡
𝑛) representing the conditional probabilities [43,46].  
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𝑇𝐸𝑥→𝑦 =  ∑ ∑ ∑ 𝑝(𝑦𝑡+1 , 𝑦𝑡
𝑛, 𝑥𝑡

𝑚)

𝑥𝑡
𝑚

. 𝑙𝑛 (
𝑝(𝑦𝑡+1 | 𝑦𝑡

𝑛, 𝑥𝑡
𝑚) 

𝑝(𝑦𝑡+1 | 𝑦𝑡
𝑛)

)

𝑦𝑡
𝑛𝑦𝑡+1 

 (2.16) 

It is very important to highlight that transfer entropy captures causal dependencies through some 

value in the past of a signal to explain the future of another signal, further than the past of the latter, 

causing transfer entropy to actually obtain the knowledge about information transfer between signals 

instead of quantifying the strength of causal relationships [44]. 

2.2.2 – Brain Network Analysis 

To study the FC among different regions of the brain, as is the scope of this study, the rs-fMRI BOLD 

signals must go through some preprocessing, since these signals are exposed to artifacts that are not 

related to the neural activity recorded, influencing the nature of the signals. The artifacts that influence 

BOLD signals are mainly physiological processes like cardiac pulsation, respiratory and subject 

movements, being these identified and removed in preprocessing steps [47]. After preprocessing, two 

more procedures are executed in order to perform an analysis of the brain network study, these being 

brain regions definition and FC measurement.  

Human brain is a complex network with a huge number of neurons, so reconstructing the entire 

Connectome at that scale and for the variability of existing brains is a difficult task. The process of 

spatial partitioning of the brain into macroscale regions is called brain parcellation, helping in the 

reduction of information from thousands of voxels into a group of nodes and to select the regions of 

interest (ROIs) [48,49]. In brain parcellation representations each parcel is responsible for a node in the 

network, subdividing different brain regions, as demonstrated in figure 2.5C, with the number of regions 

in the parcellation to be considered, as they play an important role in estimating further characteristics 

of the network [50]. To select the nodes of the parcellated brain network, the most widely used option 

in connectivity studies is the Automated Anatomical Labelling (AAL) atlas, where the AAL atlas using 

116 brain regions is the most commonly applied, with the brain being parcellated by using a pre-defined 

anatomical template that is human-crafted, based essentially on cytoarchitectural characteristics [51]. 

There are other pre-defined anatomical atlases options like the Harvard-Oxford atlas and the Desikan–

Killiany atlas, with these having individual characteristics such as the number and spatial location of 

brain regions, as well as the image registration technique used. Beside the pre-defined anatomical atlases 

mentioned, atlases can be generated from random-voxel seeds, in which a voxel in the gray matter or a 

small triangle on the gray-white matter boundary surface can be used as a node, producing random equal 

size dividing parcels that divide the brain regions uniformly [48,50]. 

Once the brain is subdivided into different parcels at a macroscale level, reducing the complexity of 

the brain, the extraction of BOLD signal time-series from the N parcels of the atlas chosen is made, as 

seen in figure 2.5D, and employed to create the FC matrix, which will then be used to study the 

functional connections and statistical dependencies between brain regions. The FC matrix establishes 

the relation between the time-series from all nodes/parcels of a network, where a 2D array with N rows 

and N columns is created, with each row and respective column representing a unique node from the 

network. The 𝑁 × 𝑁 matrix is fulfilled by the values obtained from the computation of the FC metrics, 

described in subchapter 2.2.1, between every pair of nodes time-series, resulting in a connectivity matrix 

similar to the one represented in figure 2.5E, with the values range depending on the statistical metric 

used to estimate the connectivity.  
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Figure 2.5: Representation of steps involved in brain connectivity analysis using Functional Magnetic Resonance Imaging 

data. Adapted from [1]. 

This FC matrix has become an important component of research in many Neuroscience investigation 

studies, mostly using fMRI, helping researchers to understand the network-level properties of the brain, 

how tasks can reconfigure the brain and how the dysfunctions in those networks, mainly due to 

neurological diseases, propagate and affect the relationships among different brain regions, allowing to 

find patterns and information that permits to differentiate patients, including making a diagnosis and 

prognosis of these neurological disorders [52]. One of the emerging techniques to use FC matrix data to 

diagnose neurological disorders is a subfield of ML, called DL.  

2.3 – Deep Learning  

With the combined evolution of human knowledge and technology, the process of having machines 

that could have the ability of learn without being manually programmed became possible, emerging the 

field of AI and ML. ML uses algorithms to teach machines how to interpret and learn information from 

the data provided, being used in innumerous applications, including Neuroimaging studies [53]. The 

learning of a ML machine can be supervised, unsupervised, semi-supervised or by reinforcement. 

Supervised learning is a task of learning where the model uses the input data to achieve an output, by 

being trained on already labeled/targeted data. This labeled data corresponds to a dataset that includes 

the inputs and the expected outputs, with the algorithm finding methods to determine how to reach those 

outcomes from the inputs. In unsupervised learning, unlike supervised learning, there are no labels to 

aid the learning from the model, with the machine having the responsibility to discover important 

features from the available data. Semi-supervised learning is a combination of both learning methods, 

with a portion of the dataset having the corresponding labels and the remaining data is unlabeled, where 

the algorithm can learn how to predict the unlabeled data from the data already labeled. The 

reinforcement learning uses as example the learning experience from humans, by trial and error, the 

machine explores different options and possibilities, in terms of parameters and actions, learning from 

each result and evaluate which one is optimal [54].     
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The performance of ML algorithms depends on good quality of the input data, where a bad quality 

of data can lead to a lower performance, requiring careful handcrafted feature engineering to transform 

the input data in its raw format into learnable data, so that ML models are be able to identify patterns in 

the input for further classification [53,55]. With the expansion and availability of data, feature 

engineering turned out to be too arduous to keep up. To tackle the drawbacks created by ML models, a 

new branch of ML methods emerged, allowing machines to use the raw input data and automatically 

distinguish patterns/features for classification, the so-called DL models or DNNs, inspired by Neural 

Networks, mimicking the functioning processes of human brain [53]. DL is one of the most exciting 

research topics in many fields, especially in Neuroscience, undergoing major advances in solving 

various problems that have persisted, by taking advantage of the increasing amount of data available 

and computational resources.  

2.3.1 – Concepts of Neural Networks  

The history of the creation of a system that could resemble the human brain function started in 1943 

with Warren McCulloch and Walter Pitts, as they were trying to understand how human brain could be 

so complexly interconnected by their basic cells neurons, creating the McCulloch and Pitts model of a 

neuron. This was an extremely important contribution that paved the way for Frank Rosenblatt, in 1958, 

create the first prototype of a Neural Network, called the perceptron [56].  

As observed in figure 2.6, the perceptron is a single-layer Neural Network, due to having one layer 

linking the input and output, is used in supervised learning to distinguish the data between two classes 

and is composed by four important parts including input values, weights and bias, the weighted sum and 

the activation function. Weights are values that can be adjusted for the network be trained to accomplish 

a desired output and contain the knowledge of the Neural Network about the problem, where a positive 

weight value represents a strong connection of that input regarding the result and a negative weight 

value represents the opposite. The inputs are multiplied by their respective weight and are combined to 

create the weighted sum. Bias is a special type of input that is used to adjust the output along with the 

weighted sum, allowing to shift the activation function to right or left and to have higher quality in 

training. 

 

Figure 2.6: Structure of the perceptron [57]. 

Mathematically, the perceptron is defined by equation 2.17, where 𝑦 will be the outcome predicted, 

𝑥𝑖 refers to all the inputs used from a dataset and 𝑤𝑖 the weights of those respective inputs, with 𝑏 being 

the bias applied to the network and 𝑎 the activation function.  
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𝑦 = 𝑓(𝑥) = (∑ 𝑥𝑖𝑤𝑖 +

𝑚

𝑖=1

𝑏) 𝑎 (2.17) 

Activation functions introduce non-linearities to the network, using the values from the weighted 

sum to perform mathematical operations to convert them into interpretable values for the classification 

process. One of the most used activation functions is the sigmoid function, which takes an input value 

and outputs a value between 0 and +1, but it has some disadvantages like saturation and vanishing of 

the gradients, responsible for the correct update in the direction and quantity of the network weights, 

and the output values are not zero-centered, causing the gradients to oscillate between positive and 

negative values. Another activation function used is the hyperbolic tangent (Tanh) function, with output 

values varying from -1 to +1, and despite not having the problem of zero-centered outputs, the saturation 

of gradients remains [58]. Due to the problems presented by these two activation functions, emerged the 

rectified linear unit (ReLU) function. ReLU will output the respective input value if this one is positive, 

while if the input is negative, it will output zero. With its linearity overcomes the vanishing gradient 

problem in other activation functions, allowing models to learn faster and perform better [58,59].  

Despite being able to learn from the data and execute predictions, the perceptron by having one 

adaptive layer is limited to only recognize linearly separable patterns, blocking its application in more 

complex tasks. This limitation fell off with the introduction of backpropagation or multilayer perceptron 

networks, the basis for DNNs algorithms, which extends the original perceptron by adding multiple 

hidden layers between the inputs and output. A typical multilayer perceptron contains the input, output 

and hidden layers between the input and output, and non-linear computational elements called neurons 

or units, as seen in figure 2.7, with the neurons of one layer are fully connected to neurons in adjacent 

layers. Hidden layers of the network have the ability to identify and extract features present in the input 

data, which helps resolving more complex problems than the original perceptron. This capacity arises 

from the internal mappings of input data patterns that occur in hidden layers during training, which 

posteriorly uses those mapped features of the input to automatically recognize them in the classification 

phase [60].    

 

Figure 2.7: Structure of a multilayer perceptron with an input and output layer, plus one hidden layer in between [60]. 

The multilayer perceptron computation for a two-layer network is given by equation 2.18, where is 

similar to the equation 2.17 of perceptron, with the only difference being the number of calculations 
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performed, instead of being limited to input-output layers, extends to input-hidden layers and then to 

hidden-output layers. Here, 𝑦 is the predicted output as in the perceptron, 𝑊1 and 𝑊2 represent the 

weights of the first and second layers, respectively, 𝑏1and 𝑏2 are the biases applied to the first and second 

layers, respectively, with 𝑎1and 𝑎2 being the activation functions of each layer.  

𝑦 = 𝑓(𝑥) = 𝑎2(𝑎1 (𝑥 · 𝑊1 + 𝑏1) · 𝑊2 + 𝑏2)  (2.18) 

2.3.1.1 – Training, Optimization and Shortcomings of Neural Networks 

The learning is the main part of DNNs, being an optimization process, where the model is trained to 

find the best parameters (weights) in the network that minimize the loss or cost function, the error 

between the classification output computed by the model and the desired target values. There are some 

loss functions used to determine the error, among them the Mean Squared Error (MSE) and Mean 

Absolute Error (MAE). The learning of a Neural Network involves two steps: a forward-propagation 

step followed by a backpropagation step. 

Forward-propagation starts by feeding the input layer with a given set of input data, which will go 

through the network and each input is multiplied by their respective weights, with the weights being 

randomly initialized as small numbers. The forward-propagation continues with the activation function 

calculations with the weighted sum, sum of the multiplication of all inputs by their weights, which will 

propagate forward through the hidden layers, where in each following layer the previous process is 

repeated, until it reaches the output layer of the network, producing the predicted classification value 

for the original input [60]. After the estimated classification outcome, the error or loss function for each 

output, the difference between the desired target and the network output, are calculated. The amount of 

error is then backpropagated from the output layer towards the input layer, being used to update the 

weights into new ones, with the objective of produce outputs closer to the desired target values, reducing 

the loss function.  

To know how to minimize the error obtained between the expected output and the prediction of the 

network in order to find the optimal values for the weights towards a better output, it is necessary an 

optimization function called gradient descent. Batch gradient descent is one of the most used type of 

gradient descent in ML and DL, where the weights matrix is randomly initialized and then runs through 

all the input data used to train the model before update model’s network weights by calculate the gradient 

of loss function. Another widely used gradient descent is a variation of batch gradient descent called 

stochastic gradient descent, differing in the fact that the weights updates are made after running over n 

number of random samples from the input data used to train the network, allowing a faster convergence 

when compared with gradient descent, meaning that the network has rapidly and successfully learned 

how to respond to the patterns of the data [59].  

In this training learning process, the speed at which the weights are updated is managed by a model 

hyperparameter called learning rate. When the learning rate is too low, it takes too much time to find an 

optimal state, while higher learning rate values will reduce the loss faster but incorrectly. In order to 

determine the best learning rates, emerged the adaptive learning algorithms, allowing to adapt the 

learning rate in response to certain parameters [55]. Several adaptive algorithms have been proposed 

over the years to tackle the limitations of the adaptive gradient algorithm (AdaGrad), the first 

optimization method developed, with the adaptive moment estimation (Adam) being one of the most 

popular and with better performance among all. Adam combines the ideas of AdaGrad, root mean square 

propagation (RMSProp) and momentum, other adaptive learning algorithms, providing adaptive 

learning rates for each parameter. Adam retain the exponential decaying average of past squared 
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gradients 𝑣𝑡, as made by AdaGrad and RMSProp, as well as retaining the exponentially decaying 

average of past gradients 𝑚𝑡, just like momentum [59]. 

Firstly, the decaying averages of past and past squared gradients are calculated through equations 

2.19 and 2.20, where 𝛽1 and 𝛽2 are hyperparameters known as decay rates that control the contribution 

of past recorded gradients versus the actual gradient, respectively, with 𝑔𝑡 being the vector of gradients 

for the current iteration.   

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (2.19) 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 (2.20) 

The 𝑚𝑡 and 𝑣𝑡 are estimations of the first and second moments of the gradients, respectively, which 

are then used in Adam weights update rule described by equation 2.21, with 𝜃𝑡 as the neuron weight for 

an iteration t, 𝜂 as the learning rate and 𝜖 assumes a small value to prevent divisions by zero. 

𝜃𝑡−1 = 𝜃𝑡 −
𝜂

√𝑣𝑡 + 𝜖
𝑚̂𝑡  (2.21) 

The purpose of training the network is to make sure that the model has successfully acquired the best 

knowledge to perform well in unseen data from the dataset used and others, but it’s not always the case. 

One of the main shortcomings of Neural Networks is undoubtedly the overfitting problem, which is 

characterized by the loss of the model’s ability to generalize to other data than the data used to train 

[60]. When a network is overfitted, it cannot learn general patterns present in the training data, but learns 

instead specific characteristics of that training data, causing the error between the expected output and 

the outcome predicted to increase, as seen in figure 2.8. 

 

Figure 2.8: Representation of the differences between good fitting, overfitting and underfitting [61]. 

In order to reduce overfitting, there are several options that can be used, starting with the addition of 

more data. If there is more data available from the dataset used, it should be added, as the performance 

of Neural Networks is significantly improved with the increase of examples provided. In case of not 

being possible to add more data, there is the technique of data augmentation, which takes the selected 

data to train the network and applies a series of operations, like rotation, translation, or size changes in 

image data types, for example.   
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One technique successfully used to tackle overfitting is the dropout regularization. In dropout, some 

neurons in a layer are randomly selected to have their activation ceased during forward-propagation and 

backpropagation, having their weights and outputs set to zero. Each time the training is executed, 

different sets of neurons are dropped, preventing the adaptation of the network to the training data used. 

Another technique used is the regularization, where the model is optimized by applying penalties to 

complex models, forcing the network to be simple and reduce the loss function. Dropout performs better 

than regularization in reducing the overfitting, improving the training speed as well [59].  

There are hyperparameters in the models that can contribute to the problem of overfitting, such as 

learning rate, batch size, number of data samples used to later update the network parameters, and 

epochs, number of iterations specified to train the model and go through the number of data samples 

chosen in batch size. The determination of batch size and epochs values influence the learning rate, 

which consequently influence the ability of the network to converge and find optimal solutions, which 

may lead to overfitting of the model [60]. A solution for this is the use of a technique called early 

stopping, which allows to indicate a threshold value to stop the training process when the model 

performance is no longer improving, by using for example a predefined value for loss function.       

2.3.2 – Convolutional Neural Networks  

Different DNNs architectures were developed to tackle various problems in several areas, with CNNs 

getting a lot of attention, having a great success specially in computer vision and the detection, 

segmentation and recognition of objects and regions in images, including in Connectome [53]. Its 

structure is similar to traditional Neural Networks because it is inspired by neurons in the human and 

animal brain, more specifically by the visual cortex.  

The architecture of CNNs is structured by three main types of neural layers, each one with different 

functions in the network, designed to process data arranged in 3D, m × m × r, with m referring to the 

height and width of the input, and r to the number of channels, 3 for an RGB (red, green and blue) image 

and 1 for a grayscale image. The model starts with convolutional layers, the main component of CNNs 

and where most of the computation occurs. Each convolutional layer is composed by filters or kernels k 

of size n × n × q, with n being smaller than the input image and q equal to or smaller than r, which are 

extremely important as they are convolved with small regions of the original input data, together with 

the respective weights and bias (W and b), to produce feature maps (h), which contain information about 

the input data [55]. The convolution operation is represented in figure 2.9. 

 

Figure 2.9: Convolution operation in convolutional layers [62]. 

Mathematically speaking, the convolutional layer computes a dot product between inputs 𝑥 and 

respective weights 𝑊, followed by the addition of a bias 𝑏, with an activation function 𝑓 then applied 

to the output of the product, as demonstrated by equation 2.22 [55].  
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ℎ𝑘 = 𝑓(𝑊𝑘 ∗ 𝑥 + 𝑏𝑘) (2.22) 

In convolutional operation, filters have an important parameter called stride, which is a used to 

specify the size of the movement made by the filter through the input, vertically and horizontally. The 

size of strides directly affects the output volume obtained, where a bigger stride results in smaller output 

volumes, as it performs the convolution operation with more input data points. Stride parameter works 

together with padding, which is a parameter that adds empty units to the data in order to cover more 

input data, resulting in more input information, as observable in bottom image sequence of figure 2.10, 

and, consequently, in more accurate analysis [58]. With this link, stride and padding can be used to 

adjust the dimensionality of the data when using convolutional layers. 

 

Figure 2.10: Comparison of padding types, with the top image sequence having no padding added, while the image sequence 

below has a size 1 padding addition. Adapted from [63]. 

Alternating with convolutional layers are pooling layers, where the feature maps are subsampled to 

decrease the number of parameters in the model by reducing the width and height of the input, leading 

to a loss of information, being helpful to accelerate the training and control the problem of overfitting. 

Pooling operations are performed over a p × p region for all feature maps, with p as the filter size used 

to run over the feature map. There are different pooling operations, with the most used being max 

pooling and average pooling, where in the first one maintains the highest value present in the p × p 

region, while in the other the statistical mean of the values present in the p × p region is applied. Of 

these two, max pooling can converge faster, select superior invariant features and improve 

generalization of the model [56].  

Following the set of convolutional and pooling layers, as final layers are the fully connected layers, 

just like the one used in multilayer perceptron, that take the features generated previously and create 

high-level of abstraction from the data. Neurons in fully connected layers are fully connected to all the 

activation of the previous layers, converting then the features maps into one-dimensional feature vector, 
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which will be fed into the last layer to obtain the classification scores, where each score is the probability 

of a given instance corresponding to a certain class [55,56]. It is important to highlight that the learning 

backpropagation in CNNs is the same as other DNNs and the multilayer perceptron, allowing all the 

weights in all the filters to be trained [53]. In figure 2.11 is an example of the construction of a CNN 

architecture, from its input to the output. 

 

Figure 2.11: Example architecture of a basic Convolutional Neural Network [6]. 

2.3.3 –Autoencoders 

As mentioned previously, for a conventional ML to perform well, a good feature representation from 

the dataset is required, which needs specialized expertise, leading to a time consuming and very difficult 

task. The increasingly need for the development of algorithms that were capable of automatically learn 

features from the data let to the development of the autoencoder. The autoencoder is a type of 

unsupervised Neural Network, being part of representation learning methods, automatically learning 

from input data, reducing the dimensionality of the features and recreate the original dataset [64]. 

Autoencoders can be compared with the Principal Component Analysis, another representation learning 

method, in which the latter transforms multi-dimensional data into linear representations, while 

Autoencoders can generate non-linear representations, having the ability to catch multimodal features 

of the input [59].  

An autoencoder is composed by two parts: the encoder and the decoder, as seen in figure 2.12, also 

having their customized parameters like any Neural Network. The encoder receives the input x, can be 

any type of data like images, video, or text, and maps the input into a latent encoding space, compressing 

the information of x. For example, considering an MRI slice of 256 × 256 voxels, the encoder can 

transform that size into a vector of 50 × 1, or other preferred size. The decoder part uses the data 

compressed by the encoder into the latent code and tries to reconstruct the original input x’, having the 

same size as the input. These two structures can use architectures like any other Neural Network model, 

from fully connected layers to convolutional and pooling layers, so by increasing their complexity, 

autoencoders can learn more complex features from the original data [64]. Even though autoencoder 

learning is based on backpropagation, commonly used in supervised training, they are considered 
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unsupervised DNNs because the input is restored after the decoder part, instead of using different sets 

of target values [59]. 

 

Figure 2.12: The structure of a simple autoencoder [65]. 

The main goal of an autoencoder is to reconstruct the input as precisely as possible only with the 

most important features, being this achieved by using the reconstruction loss during the training of the 

model, which typically is the MSE between the input and output, as demonstrated in equation 2.23, 

penalizing the model when output 𝑥′ differs from the input 𝑥. The real purpose of using the autoencoder 

is not to generate a perfect copy of the input, it is in fact expected that the latent encoding space, where 

the compression of data is done, originate less redundant features, allowing to reduce the dimensionality 

of the input data, which is very important to avoid computational time and, more importantly, the 

overfitting problem of ML and DL models [64]. 

𝐿𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = ‖𝑥 − 𝑥′‖2 (2.23) 

The simplest way to discover valuable features from the input data is by using the so called 

undercomplete autoencoder. This type of autoencoder restraints the architecture, with the latent 

encoding space having less neurons than the input, leading to the encoder structure to compress the input 

data, performing data dimensionality reduction [65]. There are other variations of autoencoders created, 

like the denoising autoencoder, the sparse autoencoder, and the adversarial autoencoder, which are not 

approached in this work. For a detailed description of these methods, the reader is referred to [64,65].  

Autoencoders have been also widely used to pretrain the Neural Networks, allowing a better tuning 

of the parameters that consequently lead to an improvement of the Neural Networks training process. 

Another use of autoencoders in Neural Networks is as a regularization technique for a classification 

network, where the network is connected to the encoder and decoder [65]. Furthermore, the ability that 

this technique has to automatically extract useful features from the input data and reduce feature 

dimensionality is extremely important in brain disorders research, due to the high dimensionality, 

complexity and sometimes small dataset sizes involving neuroimaging data [64].  

2.3.4 – Model Evaluation  

After the model classification is finished, it is extremely important to evaluate how precise and 

reliable the model predictions are regarding the data used. First, the dataset is partitioned into different 

sets in order to study model’s performance, with two options for that partition: the two-way split, where 

the dataset divided into training and test set, or the three-way split, used to estimate the performance of 

the model when tunning hyperparameters, splitting into training, validation, and test set. Training set is 

a specific amount of data from the whole dataset from used to train the DL model, helping to fit the 

parameters to the model and optimize the classification. The training set consists of input data paired 

with the correct corresponding output, known as the target or label. Validation set is a predetermined 
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sample of data from the whole dataset, different from training and test set, used to perform an unbiased 

evaluation of the trained model while tunning the model’s parameters, also known as parameter tuning. 

Test set is a predetermined sample of data from the whole dataset, which is different from the data used 

in training and validation sets the previous sets, only used to evaluate the model completely trained when 

tested on unseen data [66,67]. The reason why using two-way split when tunning model hyperparameters 

is not recommended, is because these splits reuse the test set multiple times, introducing a bias, and 

influencing model performance, resulting in excessively optimistic estimates, whereas three-way split 

uses the test set exclusively for model evaluation, avoiding the previous problem [68]. 

The most used evaluation measures to quantitatively assess the performance of a model classification 

in binary or multi-class classification problems is accuracy, for being easy to use and to understand by 

human. Accuracy is calculated through equation 2.24, by using the number of positive and negative 

correctly classified instances, TP and TN, respectively, and the number of positive and negative 

misclassified instances, FP and FN, respectively. The values used to calculate the accuracy can be 

explained through the confusion matrix shown in table 1, where it relates the labels predicted against 

the actual labels of the data, also allowing for other evaluation measures to be applied and provide more 

information about the general quality of the model classification [69]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁 

(𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃)
 (2.24) 

Despite the wide use of accuracy, there are cases when might not be the best metric to evaluate the 

quality of the model. Unfortunately, in the majority of the datasets, the targets or labels present in the 

data are not evenly distributed, creating a very common problem known as class imbalance. Let’s 

consider that a dataset has 1000 samples, with 995 of those being negative samples and 5 as positive. If 

the model classifies all the samples as negative, accuracy will be 99.5%, despite the classifier being 

unable to catch the positive samples. Applying accuracy as the main evaluation metric of the models in 

imbalanced data can origin misleading conclusions, since there is a high probability that the results are 

biased towards the class with greater presence in the dataset, achieving a misleading higher accuracy 

[70].  

Table 2.1: Confusion matrix for a binary classification. 

 Predicted Class 

Positive  Negative  

 

Actual Class 

Positive True Positive (TP) False Negative (FN) 

Negative False Positive (FP) True Negative (TN) 

 

Two metrics also used to measure the performance of the model are the recall and the precision, 

evaluating the efficacy of a model to classify each class in the binary classification problem. Recall, also 

referred as sensitivity or true positive rate (TPR), measures the number of positive instances divided by 

the number of all relevant instances, instance that should’ve been classified as positive. Precision on the 

hand, also referred as positive predictive value, measures the number of positive instances that the model 

classified correctly from the number of positive instances predicted by the model, with both measures 

mathematically described in equations 2.25 and 2.26, respectively [66,70]. 
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2.25) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2.26) 

An alternative metric proposed was the F-score, which is calculated by using the weighted average 

of precision and recall, relying the weights on a constant β, as shown in equation 2.27, controlling the 

weights trade-off between precision and recall.  In the majority of cases 𝛽 = 1, making F-score more 

known as F1-score, with the metric being defined through the harmonic mean between recall and 

precision values, as seen in equation 2.28 [67]. F1-score ranges from 0 to +1, where the maximum value 

indicates an excellent performance by the model, allowing to acknowledge how precise and robust the 

model can be, classifying the instances correctly and with the fewest number of misses [70]. 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =  (1 + 𝛽2) ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 (2.27) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (2.28) 

In current days, a very common evaluation metric used in binary classification problems is the 

Receiver Operating Characteristics (ROC), given by the relation between the sensitivity, or TPR, and 

the false positive rate (FPR), also known as the opposite of specificity, corresponds to the portion of 

negative instances that are wrongly classified as positive, considering all the negative instances of the 

data, as defined in equation 2.29. This metric has become widely used to assess the classification 

performance of models because it does not suffer the limitations faced by accuracy, namely the class 

imbalance problem. The main reason why ROC is an adequate evaluation metric, even in class 

imbalances, is that it considers the relationship between two distinct metrics, TPR and FPR, in a single 

metric, while other model evaluation measures like precision and recall focus only on the performance 

of each class, with this performance being evaluated in two distinct measures [71].  

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (2.29) 

The ROC is represented through a two-dimensional graph that plots the TPR in function of the FPR, 

with the points for each metric being then joined to create a curve, indicating the ROC curve of the 

model, as seen in figure 2.13. The ROC curve offers a visual tool to evaluate the capability of the model 

to correctly identify the positive and negative instances that were incorrectly classified [69]. The higher 

performance of model classification is related to the curve proximity to the top-left corner of the ROC 

space, where the FPR is small and the TPR is larger [71]. The information about the model classification 

performance in the ROC curve can be quantified by calculating the area beneath the ROC curve, a metric 

known as area under the ROC curve (AUC or AUROC) [70]. The AUC ranges from 0 to +1, where the 

greater the value, the better is the classification performance of the model in distinguish between the 

positive and negative classes. 
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Figure 2.13: Example of the Receiver Operating Characteristics graph and the area under the Receiver Operating 

Characteristics curve [72]. 

Most of times, especially when dealing with medical data, the quantity of data is limited, which can 

make DL models less effective as they exhibit the best performances when trained in huge amount of 

data. Due to the problem mentioned above, the available data has to be wisely reused, in order to estimate 

the performance of the models in the most trustworthy way possible, avoiding the overfitting or 

underfitting generalization problems [71]. 

The most common data resampling technique for model evaluation and selection is cross-validation, 

where the main concept is that each instance of data present in dataset can be tested by the model. One 

type of cross-validation is the k-fold cross-validation, which randomly splits the same into k parts, with 

one k part to be used as validation set and the other 𝑘 − 1 parts are stacked into a single training set, as 

shown in figure 2.16, iterating over the dataset k number of times [73]. Is important to point out that 

each data instance is only used once as validation set along the different k iterations, guaranteeing no 

overlaps. The k-fold cross-validation will lead to k different models, where each one is fitted with distinct 

samples of the dataset, with the model performance of each evaluation metric being the arithmetic mean 

of the k models performances for that respective metric, as demonstrated in figure 2.14 by using 5 folds 

[68]. When the dataset is imbalanced, k-fold cross-validation can create problems, since the minority 

class may not even be represented in one of the k folds, leading to misleading overly optimistic 

performances. To avoid this problem, the stratified k-fold cross-validation is used, ensuring that the 

classes proportions are the same in both training and validation folds [71,73]. 

 

Figure 2.14: Illustration of k-folds cross-validation process for 5 folds. Adapted from [68]. 
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2.3.5 – Black-box Problem 

As mentioned previously, the importance of AI and ML techniques, like DNNs algorithms, are 

becoming more and more important in medical settings, mainly in diseases diagnosis and prognosis. 

These DNNs can provide exceptional classification accuracies in numerous complex medical tasks, from 

image to signals analysis, but despite that performance, these models are not highly transparent [74].  

The lack of transparency from DNNs models arises from the nature of the respective algorithms, 

where the explainability is sacrificed for prediction accuracy, with these models learning important 

features by themselves instead of being chosen by the developer. With the increasing of layers and 

complex connections across the network, which leads to highly nonlinear associations between inputs 

and outputs, turn out to be very difficult to understand among users [75]. This problem is seen as a 

black-box, exemplified in figure 2.15, where the model receives an input data and provides the decision, 

without knowing the internal inference processes which led to the use of certain input information to 

accomplish the outcome [76]. 

 

Figure 2.15: Artificial Intelligence systems prediction scheme, where nothing is known about what led to the prediction f(x) 

of an input x [76]. 

The black-box problem does not influence the quality of the DNNs models directly, rather it creates 

problems when it comes to evaluating what information the model is using to achieve those results. The 

problem with these models is that their architecture is projected to learn from the training data supplied, 

which are not always perfect, having a probability of presence of biased data, with the model 

consequently learn that faulty characteristics as well. An example of that problem is a classifier created 

to distinguish enemy from friendly tanks, which presented high accuracy results but in practice did not 

execute the proposed task. Instead of classifying enemy from friendly tanks, it was actually a good 

weather classifier, because the images for the training set of enemy tanks were from cloudy days and 

the images from the friendly ones were taken in sunny days. Another example is the dog or wolf 

classifier, where it revealed to be a snow classifier due to the influence of snow background in dogs and 

wolfs images from the training set [77].  

So, with the purpose of avoid this black-box problem among DNNs and other AI models, emerged a 

new field called XAI, which is an AI with the objective of provide an easier understanding, analysis and 

most of all an explanation, for both experts and mere users, about why the model made that outcome on 

that problem [74]. With the increasingly development of these techniques to be used in medical 

environment, it is extremely important to provide the most transparency possible to all involved, 

discussed in [78] and [79], mainly the clinicians, as they need to have a strong foundation about the 

decision-making process occurred during the automated diagnosis, for relying on that relevant clinical 

information and explain their decisions [76]. 
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2.3.5.1 –Explainable AI Methods  

After the model perform the classification and the output predictions are known, the XAI methods 

are applied to explain which input features contribute positively or negatively to the prediction obtained. 

It is important to highlight the differences between the concepts of explainability and interpretability, 

often misunderstood. Interpretability consists in mapping something, for example a predicted class, so 

that it is visually perceptible to the human being, while explainability can include the interpretability 

and is the collection of features that have contributed to a certain classification prediction, in terms of 

relevance values, which can be observed later through a heatmap overlaid on the input [80].  

The challenges faced in the complexity of analyzing the DNNs led to the expansion of the field of 

XAI, where different approaches were proposed to offer a diverse set of options to explain the 

classification predictions obtained. There are two types of model’s explanation: the ante-hoc or 

intrinsically interpretable explanation, responsible for giving explanations from the beginning of the 

model and allowing to assess how correct a neuron in the network is about his prediction; and the post-

hoc explanation, which evaluates the explainability of a model from its outcome, revealing the input 

data responsible for the final decision [77]. 

In explanations of DNNs, there are three major groups of methods: visualization, model distillation 

and intrinsic methods. Visualization methods provide an explanation about the output of a DNN by 

visually highlighting characteristics of an important input feature. Model distillation methods use a 

white-box model that is created to simulate the input-output relationship of the DNN used, allowing to 

identify the input features that influence the outputs. Finally, the intrinsic methods are DNNs that have 

been specifically designed to achieve an explanation along with the output result [81]. In the scope of 

this project, visualization methods will be addressed, which comprise two types: backpropagation-based 

and perturbation-based. The main focus will be on backpropagation-based methods, where the relevance 

of input features is evaluated based on the volume of gradient passed across the network layers during 

training, namely in LRP method. 

One of the most recent XAI technique developed to explain the model’s classification predictions is 

the LRP, a backpropagation-based method implemented based on the decomposition principle [77]. One 

of the advantages of LRP in comparison to other backpropagation-based or perturbation-based methods 

relies on the fact that the other methods measure the difference in response in output’s prediction when 

the input features are changed, while LRP measures the relevance strength between the input feature 

and the specific output prediction, without any change in network inputs [81].  

Given an input x and the computation of the prediction f(x) in the output layer, the principle ensures 

that the prediction is fully redistributed backwards through all the layers of the network until the input 

variables are reached, with a relevance score 𝑅𝑗 being established for each input variable, for example, 

for each pixel in an image, as observed in the scheme of figure 2.16 [76]. The relevance scores allow to 

know how much an input variable impacts the prediction, either positively or negatively, which can be 

then displayed through a heatmap of the original input data. 
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Figure 2.16: Layer-wise Relevance Propagation application in a Neural Network. Adapted from [80]. 

LRP can be implemented through different rules, but the most basic rule of LRP is described by 

equation 2.30, where the relevance is redistributed evenly from a layer l+1 to layer l, with 𝑎𝑗 being the 

neuron activation at layer l, 𝑅𝑗 as the relevance score from the neurons of the previous layer and 𝑤𝑗𝑘 is 

the weight of the connection between neuron j and neuron k in the layer above. The rules of LRP have 

a property of relevance conservation, which means that the relevance score 𝑅𝑗 of a prediction f(x) is the 

same for every layer backpropagated in the model [76]. The denominator of each rule is responsible for 

the enforcement of the relevance conservation property [82]. 

𝑅𝑗 =  ∑
𝑎𝑗. 𝑤𝑗𝑘

∑ 𝑎𝑗 . 𝑤𝑗𝑘0,𝑗
𝑘

𝑅𝑘  (2.30) 

Later, other LRP rules were proposed, since the gradients of DNNs, responsible for the correct update 

in the direction and quantity of the network weights, are usually noisy. Starting by the LRP𝜀 (epsilon) 

rule, shown in equation 2.31 and an improvement of equation 2.30, with the main difference being the 

addition of a small constant ε to the denominator to avoid divisions by zero. The constant ε absorbs 

some relevance when there are inconsistent or weak contributions to the activation of a certain neuron, 

reducing the noise in the explanations and consequently in the observable heatmap [82,83].  

𝑅𝑗 =  ∑
𝑎𝑗. 𝑤𝑗𝑘

𝜀 + ∑ 𝑎𝑗. 𝑤𝑗𝑘0,𝑗
𝑘

𝑅𝑘  (2.31) 

Following the LRP𝜀 rule, another enhancement was made towards the latter, originating the LRP𝛾 

(gamma) rule, given by equation 2.32, which allows to highlight the effect of positive contributions over 

the negative contributions from the input variables in the explanation. The parameter γ is responsible 

for manage the strength of influence from positive contributions, serving in more stable explanations 

[82]. Originally, the idea of considering positive and negative contributions separately was created with 

another rule, called LRP𝛼𝛽 (alpha-beta) rule, represented in equation 2.33, where the α parameter 

controls the strength of positive contributions and the parameter β controls the strength of negative 

contributions [82,83].  
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𝑅𝑗 =  ∑
𝑎𝑗 . (𝑤𝑗𝑘 + 𝑤𝑗𝑘

+ )

∑ 𝑎𝑗. (𝑤𝑗𝑘 + 𝑤𝑗𝑘
+ )0,𝑗

𝑘

𝑅𝑘  (2.32) 

𝑅𝑗 = ∑ (𝛼.
(𝑎𝑗. 𝑤𝑗𝑘

+ )

∑ (𝑎𝑗 . 𝑤𝑗𝑘
+ )0,𝑗

+ 𝛽.
(𝑎𝑗. 𝑤𝑗𝑘

− )

∑ (𝑎𝑗. 𝑤𝑗𝑘
− )0,𝑗

)

𝑘

 (2.33) 

In figure 2.17, is possible to compare the performance of the different LRP rules, mainly the basic 

LRP rule, the LRP𝜀 rule and LRP𝛾 rule. When the basic LRP rule is used, for explaining the class “castle” 

in the input image, it’s not able to focus on that class, picking too many artifacts from the image, while 

LRP𝛾 rule is easier to understand but considers unrelated classes. LRP𝜀 rule is able to provide a faithful 

explanation of the positively contributing input features of the desired class “castle”, being also able to 

highlight the input features that are not related with the class “castle”. 

 

Figure 2.17: Comparison of Layer-wise Relevance Propagation rules in the explanation of input image by considering the 

output class “castle”. Adapted from [82]. 
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3 – State-of-the-Art 

Before starting the study, it is important to recap the main objectives of this dissertation, in order to 

carry out a complete research on what has been explored in previous years and the current state-of-the-

art in the field of FC. The main goal of this dissertation is centered on the study of the effect of the 

application of multiple statistical metrics to calculate the FC and create the FC matrices, beside the 

traditionally used correlation metric, which will then feed the DL models as inputs, in order to classify 

between healthy and diseased subjects of neurological and neuropsychiatric disorders. Together with 

this, it is also intended to study the effect of a FC multi-metric, created through the combination of these 

FC matrices calculated from the different statistical metrics, in the classification of healthy and diseased 

subjects, using the same previous DL models. 

 The final goal of this dissertation is to incorporate an XAI technique to the DL models used, more 

specifically the LRP technique, in order to provide an explanation of the internal processes performed 

by the models to achieve a given prediction, overcoming the black-box problem of these models, using 

the previously calculated FC matrices as input, revealing which regions of the brain are most important 

for distinguishing between healthy and diseased subjects.  

3.1 – Use of Functional Connectivity Metrics  

In the vast majority of FC studies, like Tang et al (2012), Dos Santos Siqueira et al (2014), Yu et al 

(2017) and Heinsfeld et al (2018), the analysis of connectivity in brain disorders is traditionally 

performed by using the FC matrices generated from the computation of correlation-based metrics 

between the different brain regions BOLD signal time-series from different subjects [8]. Despite the 

usual practice of correlation in FC studies, it has some drawbacks. Studies have shown that there are 

non-linearities inherent to resting-state acquisition of BOLD signals, mainly from hemodynamic origin, 

affecting the timing and amplitude of the BOLD signal measured, influencing the relationships between 

time-series and playing a significant role in connectivity analysis, more importantly when a pathology 

is present [84,85]. For example, if the correlation value between two signals is low, it may be wrong to 

assume that there is no dependence between them, where it can simply be the case that there is no linear 

dependence.  

This limitation paved the way for the need to characterize FC matrices using non-linear metrics, 

where mutual information, whose definition is explained in chapter 2.2.1, is one of those metrics capable 

of consider non-linearities present in BOLD signals, tackling the drawback left by correlation family 

metrics. Zhang et al [84] aimed to compare the use of mutual information and Pearson’s correlation 

coefficient to compute FC networks, between all brain regions BOLD signal time-series from the rs-

fMRI and test their capability to predict the intelligence quotient level of epileptic patients. The results 

revealed that FC based on mutual information outperformed the use of Pearson’s correlation in terms of 

accuracy prediction, showing that the FC defined from mutual information is able to capture better 

features of the functional brain network than correlation. Gao et al [86] in their study, applied the mutual 

information between all the pairs of rs-fMRI BOLD signals to construct the FC network, in order to 

explain functional alterations in brain networks between healthy and schizophrenia (SZ) diseased 

subjects, achieving promising findings regarding potential SZ diagnosis biomarkers. Along with mutual 

information, h2 is another statistical metric capable of considering non-linearities present in signals, 

although it has not been used in FC studies to the date of this dissertation. 
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Another limitation found in correlation metrics use is that it might occur by chance or due to a 

common cause, and not necessarily by cause-effect relationships, emerging the statement “correlation 

does not imply causation”. Even if one signal is dependent on another, the correlation doesn’t indicate 

the direction of the causality present. By capturing interactions in a bivariate sense, do not consider the 

effects of confounding variables, without having the ability to interpret direct connections, becoming 

difficult to relate neuronal signals with bidirectional interactions, the predominant interactions in the 

brain, not having the ability to know which signal is impacting which [28,87].  

To counter the inability of correlation consider causal relationship between signals from different 

brain regions, transfer entropy was proposed, with more details about this statistical metric described in 

chapter 2.2.1. In Mäki-Marttunen et al [88], transfer entropy was used to find biomarkers that could 

relate large-scale disruptions of brain function to the diagnosis and prognosis of patients suffering from 

disorders of consciousness, along with the use of partial correlation. Their work uses brain FC matrices 

computed through the pairwise transfer entropy between all brain regions BOLD signals time-series 

from each patient, defined as ROIs by the AAL atlas. The results suggest that transfer entropy, beyond 

partial correlation, can detect alterations in the FC of pathological patients, contributing with an 

important biomarker that can account for the large-scale brain function disruption in patients. Diez et al 

[89] decided to study the FC intercommunication between resting-state networks in individuals with 

AD. The transfer entropy was applied between the time-series of the rs-fMRI BOLD signals from the 

brain regions defined as ROIs, across all individuals present in the dataset used, originating the FC 

matrices. The main finding of this study is the fact that AD individuals had a higher transfer entropy 

value, or information flow, between resting-state networks that the control individuals, providing 

information on how these networks interact with each other when a pathology is present, as this can also 

be applied to other brain disorders. A study performed by Kumar et al [90] aimed to validate the use of 

transfer entropy, as a complement to Pearson’s correlation coefficient, to predict attention performance 

of individuals. The FC matrix constructed was based on rs-fMRI, where it was calculated from the 

BOLD signals time-series across each participant’s brain regions. The results obtained showed that the 

information flow from transfer entropy is able to predict the attention scores from individuals, 

demonstrating that transfer entropy can be very valuable in the characterization of human brain 

functional organization and a possible helpful addition to traditional correlation analysis. 

With the use of correlation, information is still lacking about signals beyond the temporal domain, 

such as frequency and time-frequency domains. Furthermore, correlation is sensitive to the regional 

hemodynamic response, which can vary from individual to individual due to vascular differences, with 

such variability between regions resulting in decreased interregional correlation, despite the presence of 

neural activity [91]. For example, two brain regions can have related neural activities but different 

hemodynamic responses, with the correlation between the two regions being impacted by those 

hemodynamic variations. In Thirion et al [92] study, was proposed a framework to detect resting-state 

activity networks based on FC matrices computed using coherence. The FC matrices were obtained by 

calculating coherence between the time-series of the BOLD signals of the pairs of brain regions, defined 

as ROIs, across all the individuals, with a range of frequency band defined from 0.02 to 0.1 Hz. The 

results of this study showed that coherence FC analysis focuses on the frequency band used and is not 

impacted by physiological confounds, making resting-state activities more noticeable, unlike 

correlation. 

Correlation is a metric that captures dependences only in time domain and assumes a temporal 

stationarity among brain signals [93]. Studies have confirmed that brain signals are non-stationary, with 

FC may have more pronounced dynamics in the resting-state than in task activations, therefore, when 

these dynamic changes are not considered, the detection of brain functional disruptions that characterize 
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the disorders becomes difficult and incomplete [94]. Coherence lacks the notion of time, which makes 

it unable to characterize the dynamics present in resting-state BOLD signals, with researchers giving a 

special attention towards the study of FC in time-frequency domain. 

In Chang and Glover [93], Wavelet-based coherence was used to examine the dynamic behavior in 

relationships between brain regions at a resting-state. The FC was computed by using the Wavelet-based 

coherence between each participant rs-fMRI BOLD signals time-series from the brain regions defined 

as ROIs. The results obtained indicate that rs-fMRI signals do have dynamic properties, and these may 

be hidden by stationary analysis like Pearson’s correlation. Later, Yaesoubi et al [95] investigated the 

differences between resting-state FC between SZ and healthy patients, by incorporating frequency 

domain characteristics with temporal dynamics. The FC matrices were estimated through the use of 

Wavelet-based coherence, measuring the dependence between the time-series of each patient rs-fMRI 

BOLD signals. The results of this study showed promising findings, where their particular FC patterns 

that can distinguish between SZ and healthy patients, are only recognizable when connectivity is 

analyzed in both time and frequency domains, suggesting that this joint domain can be very useful in 

revealing differences and similarities between diseased and healthy populations. A study conducted by 

Al-Hiyali and colleagues [96] aimed to study the influence of dynamic FC patterns to classify 

individuals with autism spectrum disease (ASD). The authors used Wavelet-based coherence to compute 

the FC data between rs-fMRI signals from all individuals present in the database used, with this FC 

being afterwards represented as a scalogram image. The results obtained in this work surpass previous 

related studies that used Pearson’s correlation coefficient to compute FC data, showing that the use of 

both temporal and frequency domains is able to capture information from FC data that escape the 

traditionally applied Pearson’s correlation. 

Although most studies presented apply statistical FC metrics individually to study the dependence 

between subject’s rs-fMRI BOLD signal time-series, few studies have tried to combine together FC 

matrices from different statistical FC metrics and take advantage of the different sources of information 

that are present in each one of them. One of the first studies to combine information from diverse FC 

metrics was in Meszlényi et al [7], where they combined the FC matrices calculated with dynamic time 

warping distance and warping path length. The results demonstrated that this combination led to an 

improved classification performance when compared to the individual use of the respective metrics and 

to the correlation coefficient. More recently, a study led by Mohanty et al [97], decided to combine eight 

different statistical FC metrics into one single composite multi-metric, in order to perform population-

based classification as well as study the relationship between FC and behavioral outcome, being those: 

cross-correlation, coherence, Wavelet-based coherence, mutual information, Euclidean distance, 

cityblock distance, dynamic time warping and earth mover’s distances. The results compared the use of 

this multi-metric against the traditional correlation coefficient used, and the multi-metric was able to 

achieve better performances, being more consistent than the application of the metrics individually as 

well. 

Based on the studies presented, three key questions still remain a hot topic of interest in FC studies: 

(1) Is correlation coefficient, the standard FC metric used to compute FC matrices, enough? (2) Are 

there other FC metrics capable of quantify FC, with the same quality or better, and provide more 

information than Pearson’s correlation? (3) Can the use of several FC metrics together, take advantage 

of the bundling of different information captures, and exhibit improved performances? 
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3.2 – Deep Learning in Functional Connectome 

A few years ago, the data generated by FC analysis began to be widely used to study and 

classify/predict brain disorders, namely SZ, AD and Mild Cognitive Impairment, ADHD, Epilepsy and 

ASD [8]. The high heterogeneity and the neural disruptions resulted from widespread connectivity 

networks, rather than in single brain regions, in individuals with this type of neurological and 

neuropsychiatric disorders, plus the amount of Neuroimaging data, can take advantage of the capabilities 

provided by traditional ML methods like Support Vector Machines and Linear Regression techniques, 

overcoming human performance in the recognition of disorders non-specific symptoms and reducing 

the associated error [98].  

The combination between rs-fMRI with ML methods has proven to be a great promise in exposing 

new and important FC patterns associated to brain disorders, as well as potential biomarkers, being a 

valuable option in the future for their diagnosis and prediction [99]. Despite such effectiveness from ML 

methods in identifying associations between variables of interest, they need a significant amount of 

manual feature engineering, remaining a challenge due to the characteristic high dimensionality of the 

FC data, suffering from the overload that limits its use in applications where decisions are needed almost 

in real time. In addition, these methods compress the data into a feature vector. This vectorization, 

however, removes the spatial structure of the Connectome, a valuable source of information [100].   

Recent developments in DL models showed that these methods can be very useful in complex high-

dimensional datasets such as fMRI data, including FC data, since these are able to learn representations 

directly from the raw data, solving the problem of manual feature selection from traditional ML methods 

and improving the classification performance, as they naturally discover unknown patterns and can 

generalize better in new data [98]. Several researchers have stated their attempts to use DL algorithms, 

especially DNNs, on rs-fMRI in order to extract high-level FC features for the diagnosis and 

understanding of several neurological and neuropsychiatric disorders.  

One of the first studies using DL models in classification tasks using fMRI data was from Kuang et 

al [101], where a Deep Belief Network was tested on rs-fMRI FC data to predict the presence or absence 

of ADHD, using data from the ADHD-200 Global Competition. The classification accuracy from the 

proposed method is better than the results obtained in the competition, giving good evidence for the use 

of DL in patient classification using fMRI data, namely FC data. Following this study, Kim et al [102] 

developed a DNN model for the classification of SZ from healthy individuals, using the FC patterns 

originated from rs-fMRI data. The DNN model comprises several hidden layers, with the output layer 

consisting in a softmax activation layer. Moreover, the authors proposed the use of a normalization 

technique (L1-norm) for weight sparsity control in each hidden layers of the model. The classification 

performance was evaluated using a 5-fold cross-validation, comparing the proposed model with an SVM 

model, which had a maximum accuracy of 85.8% in the proposed method with three hidden layers plus 

the normalization technique, compared to 77.7% in the SVM model. In Heinsfeld et al [103] study, the 

authors investigated the FC patterns, measured using rs-fMRI, that could improve the identification of 

ASD patients from healthy individuals. They proposed a model with two stacked denoising 

autoencoders, used for an unsupervised pre-training of the model, being responsible for extracting lower 

dimensional data from the input dataset. Following the autoencoders is a multilayer perceptron, 

composed by two hidden layers with a softmax function in the output layer, which uses the knowledge 

acquired from these autoencoders to perform the classification task, containing the weights adjusted in 

autoencoders process. The results obtained achieved an accuracy of 70% for a 10-fold cross-validation, 

exceeding the traditional ML methods, such as Support Vector Machines, by 7%. A similar work was 

performed by Eslami et al [104], where they used a model with a simple autoencoder jointly with a 



 

33 

 

single-layer perceptron, called ASD-DiagNet, for the classification of patients with ASD from healthy 

controls, by using FC data from rs-fMRI. In addition to significantly reducing computational execution 

time, the classification performance of ASD-DiagNet outperforms other state-of-the-art methods, 

achieving a maximum accuracy for an imaging center of 82% and 70.1% accuracy for the whole dataset. 

Despite being promising, DL models have some critical drawbacks inherent to their architecture. 

One of the challenges in these algorithms is the fact that they have a large set of parameters to be 

estimated, which can lead to overfitting if the number of training samples is low and increases the 

computational time and resources [8]. However, the use of CNNs can be helpful to tackle this limitation, 

as these convolutional networks are able to learn characteristics from a given pixel neighborhood 

structure, which usually is a 3 × 3 and 5 × 5 pixels, independently from the location of that pixel, 

allowing the weights of the network to be shared, becoming the model strengthened against overfitting 

by decreasing the number of weights trained [7]. Regardless of the advances made with CNNs, their 

application to Connectome data is still in its early days.  

In Kawahara et al [105], a new CNN framework called BrainNetCNN was developed to be used 

specifically in Connectome data. This network breaks down the paradigm of the use of CNNs to extract 

spatial correlation within the data, with image shape. An edge-to-edge (E2E) layer is similar to a 

standard convolutional layer in a CNN, but is defined in terms of topological locality, combining the 

weights of edges that share nodes together. An edge-to-node (E2N) filter is equivalent to convolving the 

adjacency matrix with a spatial 1D convolutional row filter and adding the result to the transpose of the 

output from a 1D convolutional column filter. Similar to E2N layer, a node-to-graph (N2G) layer 

reduces the dimensionality of the input by taking a weighted combination of nodes to output a single 

scalar. The work of Brown and colleagues [106] was inspired by BrainNetCNN model, using FC data 

to distinguish between ASD and healthy individuals. The model consists in an element-wise layer as 

input layer of the network, with a Tanh activation function, followed by 6 feature maps in each of the 

E2E and E2N layers, in order to reduce the number of trainable parameters, both with Leaky ReLu 

activation functions and dropout regularizations. The final output layer is a single fully connected N2G 

layer with a softmax function, responsible for the classification prediction, ending up getting a maximum 

accuracy of 68.7%. In another study, Khosla et al [100] implemented a simple CNN model to use the 

features from FC matrices as inputs, in order to distinguish ASD patients and healthy controls. The 

model consisted in two convolutional layers, each with an ELU activation function, interspersed max-

pooling layers, to down-sample the data, followed by two fully connected layers, with the last being the 

output layer using a sigmoid function, performing the final data classification. The proposed CNN was 

compared with an SVM and a fully-connected network, achieving a classification accuracy of 73.3% 

for a 10-fold cross-validation, outperforming the other methods. One of the most recent studies, 

Shahriman et al [107] presented a CNN model for binary classification between SZ patients and healthy 

controls, based on EEG FC brain network. The model used in the study is composed of two 

convolutional layers with a ReLU activation, followed by two max-pooling layers, acting as a feature 

extractor. After these layers, two fully connected layers are employed, the first uses a ReLU activation 

with a dropout regularization, feeding the second fully connected layer with a softmax activation 

function to provide the classification outcome. The CNN model used in this study was compared against 

an Artificial Neural Network model, achieving an accuracy of 85.81% when applied a 5-fold cross-

validation, overcoming the 76.96% accuracy for the Artificial Neural Network model.  

The final challenge in DL models, including CNNs, is the explainability of the classification 

outcomes. Since these models are treated as black-boxes, due to the use of non-linear transformations 

on the raw data features to map them into higher levels of abstraction, huge number of parameters to be 

trained and their complex architecture, it is difficult to get information about which input features are 
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used to support the decision on a given outcome, not providing a clear knowledge about neuroanatomical 

and neurofunctional changes [8, 98]. The solution for this problem is the use of XAI methods, which is 

critical for a future adoption in healthcare applications, since a medical diagnosis needs to be clear, 

understandable, and explainable to be trustworthy by physicians and patients, explaining the logic 

behind a certain decision. The explainability, united with the remarkable performance of DL methods, 

is the missing piece for its safer and trustable application in real world healthcare. The most promising 

practice of XAI methods used in medical imaging data is displaying a heatmap representation of the 

input data, indicating the importance of each voxel, or data feature, in a given classification outcome. 

Over the years, several XAI methods were proposed to explain the predictions of CNNs and other 

DNNs, in other words, visualize what is learned by the model, beside the most commonly used methods 

such as extraction of activations during convolution or the visualization of networks weights. The most 

used XAI methods for visualization include several techniques, one of the first being the sensitivity 

analysis proposed by Simonyan et al [108], which works by evaluating the correlation between the 

uncertainty in the output of a predictor and the uncertainty present in model’s inputs. Another widely 

used XAI method is the guided backpropagation developed by Springenberg et al [109], which computes 

the gradient of the score for a certain output class in relation to the input given, backpropagating only 

the positive values of gradient, setting the negative ones to zero, in order to obtain the input data 

heatmap. A different XAI method to visually explain the classification of a model is the occlusion 

analysis implemented by Zeiler and Fergus [110], based on the modification or omission of input 

features and comparing the output prediction between the original and modified input, testing how the 

model responds to a certain input. The aforementioned methods measure the susceptibility of the output 

according to input modifications, which can lead to inaccurate input features on which the DNN supports 

its prediction decision [81]. A powerful method to overcome this limitation is the LRP method, proposed 

by Bach et al [111] and whose definition was given in chapter 2.3.5.1, with its main advantage being 

based on the fact that considers the model’s weights and output layers neuron activations, being less 

prone to group effects in the explanation [112].  

LRP analysis has been applied to several areas, including structural MRI data as in the study by 

Böhle et al [112], but few studies have been conducted on the use of LRP in fMRI data for clinical 

disease classification, more specifically using FC data, as of the date of this dissertation. One of the 

studies applying LRP to FC data is the one by Yan et al [113], whose work proposes a DNN model plus 

the LRP method to classify SZ patients from healthy controls, based on the FC network patterns from 

rs-fMRI. The proposed framework, in addition to having an excellent classification performance, also 

allowed the identification of the most significant FC patterns among the different brain regions, by using 

the LRP, which would not be possible analyzing only the predictions of the DNN model. This study, 

together with others from different LRP applications, show the promising utility of this XAI technique 

in explaining DL model decisions. 

Given the studies carried out to this date in the field of XAI, it is possible to conclude that there is 

still a lot of work to be done in the application of these techniques. This is pertinent to medical 

applications, since this is an area where the application of DL models is gaining enormous 

preponderance, working as a tool to aid clinicians in the diagnosis and prognosis of various types of 

diseases, including neurological and neuropsychiatric disorders. Taking this into account, some 

questions regarding the use of these XAI techniques along with DL models are still present, being 

important to improve the understanding of how these techniques operate and their future application: 

(1) how they analyze the internal inferences made by the models for a given input prediction? (2) can 

these techniques provide a clearer and reliable explanation for all parties involved in this medical 

procedure, from clinicians to patients? 
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4 – Materials and Methods 

4.1 – Data Collection  

In order to achieve this study objectives, the rs-fMRI data from the Autism Brain Imaging Data 

Exchange I dataset (ABIDE-I) was used, which belongs to the Preprocessed Connectome Project (PCP) 

and the International Neuroimaging Datasharing Initiative (INDI). ABIDE-I dataset is composed by 

1112 subjects, with 539 of those suffering from ASD and 573 healthy controls, with this neuroimaging 

data being shared by 16 international institutions, including university medical centers and hospitals 

[114].  

The data from ABIDE-I has several derivatives, where the user can choose which one to download, 

from preprocessed or mean preprocessed functional images, amplitude of low frequency fluctuations, 

Eigenvector centrality and time-series extracted from different parcellation atlases. ABIDE-I data has 

been preprocessed by 5 different tools, which are chosen according to the user’s preferences: the 

Connectome Computation System (CCS), the Configurable Pipeline for the Analysis of Connectomes 

(CPAC), the Data Processing Assistant for Resting-State fMRI (DPARSF) and the NeuroImaging 

Analysis Kit (NIAK). Alongside with preprocessing tools, the noise removal strategy also has 4 different 

options, including band-pass filtering and global signal regression, band-pass filtering or global 

regression only, and neither of those strategies [115].  

In this study, the preprocessed ABIDE-I rs-fMRI dataset was downloaded by using the DPARSF 

preprocessing pipeline, that comprised: slice timing correction, motion realignment, intensity 

normalization and registration of fMRI images to standard anatomical space (MNI152 space), without 

the application of band-pass filtering or global signal regression noise removal. The dataset was 

parcellated into 116 brain ROIs using the AAL atlas to extract BOLD signal time-series [115]. 

Downloading the rs-fMRI data through the DPARSF pre-processing pipeline resulted in a total of 879 

subjects. 

Another dataset used in this dissertation is the ADHD-200 Sample, also belonging to INDI, with this 

dataset resulting from the collaboration of 8 international institutions in order to publicly share 

neuroimaging data from anonymous patients diagnosed with ADHD [116]. The ADHD-200 dataset 

includes rs-fMRI, structural MRI, along with phenotypic information of 973 subjects, 362 of them are 

children and adolescents diagnosed with ADHD. It combines the three different types of ADHD 

(ADHD-combined, ADHD-inattentive, ADHD-hyperactive/impulsive), 585 subjects are typically 

developing controls and 26 subjects with unavailable diagnosis [117]. Following the same procedure as 

ABIDE-I dataset, ADHD-200 Sample has a preprocessed repository containing both rs-fMRI and 

structural fMRI, offering three different pipelines to download the preprocessed data, according to the 

user’s preferences: ATHENA, BURNER and NIAK pipelines.  

The ADHD-200 rs-fMRI data was obtained through ATHENA preprocessing pipeline, that involved 

the following procedures: remove the first four image volumes, slice timing correction, motion 

realignment, voxel-wise nuisance regression to remove variations because of physiological noise, head 

motion and scan drifts, with the BOLD signal time-series band-pass filtered between 0.009 Hz and 0.08 

Hz. These frequencies allowed to focus only on the frequencies associated with resting-state FC, and 

then smoothened with a Gaussian filter. In the same way as the ABIDE-I dataset, the preprocessed 
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ADHD-200 was also parcellated into 116 brain ROIs using the AAL atlas, for posterior BOLD signal 

time-series extraction [117]. 

Almost all the imaging data from the original ADHD-200 Sample was included in ATHENA 

preprocessing pipeline download, with some subjects being excluded due to poor quality or defective 

values. Subjects from the Bradley Hospital/Brown University were excluded for not having a diagnosis 

for each subject, resulting in a total of 776 subjects obtained. It is important to highlight that in this 

study, the different types of ADHD were considered as only one type of ADHD. 

4.1.1 – Participants  

A first analysis was carried out to explore each subject’s data, consisting in the observation of the 

values of the time-series of all subjects present in each dataset studied, being this one performed through 

the MATLAB toolbox called Brain Analysis using Graph Theory (BRAPH). BRAPH (version 1.0.0) is 

an object-oriented open-source toolbox that uses MRI, fMRI, and EEG images to perform all the steps 

of Graph Theory analysis. This toolbox obtains directed/undirected binary and weighted brain 

connectivity matrices from the image modality and atlas defined at the start, as well as perform 

comparisons between modular structures of the brain graph and calculate the global and local measures 

of the graph [118].  

As a result of this assessment, some subjects from the ABIDE-I dataset presented missing values in 

their time-series, probably due to some errors during preprocessing or acquisition. These would lead to 

an incorrect FC matrix computation, due to the inability to fully relate the values of the time series of 

the different regions of the brain, thus conducting to the exclusion of these respective subjects. From the 

initial 879 subjects provided by all 16 imaging institutions, using the pipeline mentioned for this study, 

a total of 853 subjects from each institution remained and were used in this study, as represented in 

tables A.1 and A.2 of the Appendix, 393 of those diagnosed with ASD and 460 as healthy controls.  

The same analysis was carried out for the ADHD-200 dataset preprocessed using the ATHENA 

pipeline. By using BRAPH toolbox, a few subjects from the initial 776 subjects downloaded displayed 

missing values in the time-series, maybe due to preprocessing or acquisition errors, which would lead 

to an incorrect FC matrix computation. Similarly to what was explained for the ABIDE-I dataset, these 

subjects were excluded from the study, resulting in a total of 768 subjects used to study this dataset, 

where 280 are subjects diagnosed with ADHD and 488 are typically developed controls.  

4.2 – Computation of Functional Connectivity Matrices   

After the extraction of preprocessed BOLD time-series from all subjects with acceptable values, 

Functional Connectivity matrices were calculated using another MATLAB toolbox called Multiple 

Connectivity Analysis (MULAN). This open-source code developed by Wang et al [119], which can be 

used with signals from both EEG and fMRI modalities, calculates FC matrices by applying different 

metrics. MULAN toolbox allows the use of 7 different families of connectivity metrics, being those 

from time domain like correlation, h2, mutual information, transfer entropy and Granger causality, with 

coherence being from frequency and time-frequency domain, in a total of 42 possible methods.  

Within the scope of this study, Granger causality methods were not considered, mainly due to the 

excessive computational time to perform the calculations. The final methods for each family of metrics, 

with the respective terminology, are presented in table 4.1, resulting in 13 FC matrices per subject 

analyzed. 
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Table 4.1: List of metrics used in the study, according to their domain and relationship between time-series. 

Domain Relationship Metric Methods 

 

 

 

 

Time 

 

Linear 

 

Correlation 

BCorrD (Directed bivariate correlation) 

BCorrU (Undirected bivariate correlation) 

 

 

 

 

 

 

 

Non-linear 

 

h2 

BH2D (Directed bivariate h2) 

BH2U (Undirected bivariate h2) 

 

 

 

Mutual 

information 

BMITU (Undirected bivariate mutual 

information) 

BMITD1 (Directed bivariate mutual 

information comparing individual histograms 

to joint histograms from 2 signals) 

BMITD2 (Directed bivariate mutual 

information reducing the bias of the entropy of 

2 time-series) 

 

Transfer entropy 

BTED (Directed bivariate transfer entropy) 

BTEU (Undirected bivariate transfer entropy) 

 

 

 

 

 

Frequency 

 

 

 

 

 

Linear 

 

 

 

 

 

Coherence 

 

 

 

BCohF1 (Bivariate Fourier-based coherence 

for min frequency) 

BCohF2 (Bivariate Fourier-based coherence 

for max frequency) 

BCohW1 (Bivariate Wavelet-based coherence 

for min frequency) 

BCohW2 (Bivariate Wavelet-based coherence 

for max frequency) 

 

To perform the calculation of these Functional Connectivity metrics for both datasets used, a 

MATLAB (version 2020a) code was created to compute all the 13 FC matrices, using MULAN’s 

functions developed to perform the calculations. MULAN’s functions need several input parameters, 

some specific to certain metrics, and also .mat files, which are required in all metrics and have the 

information about each subject’s 116 brain regions BOLD signal time-series. The regions of the brain 

involved in the 116 AAL atlas used in this study to parcellate the brain regions are presented in table 

4.2, with the respective abbreviation.  
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Table 4.2: The 116 brain regions of the Automated Anatomical Labelling atlas template and their abbreviation. 

Brain Region Name Abbreviation Brain Region Name Abbreviation 

Precentral gyrus PreCG Lingual gyrus LING 

Superior frontal gyrus SFG Superior occipital gyrus SOG 

Superior frontal gyrus (orbital) ORBsup Middle occipital gyrus MOG 

Middle frontal gyrus MFG Inferior occipital gyrus IOG 

Middle frontal gyrus (orbital) ORBmid Fusiform gyrus FFG 

Inferior frontal gyrus (opercular) IFGoper Postcentral gyrus PoCG 

Inferior frontal gyrus (triangular) IFGtri Superior parietal lobule SPL 

Inferior frontal gyrus (orbital) IFGorb Inferior parietal lobule IPL 

Rolandic operculum ROL Supramarginal gyrus SMG 

Supplementary motor area SMA Angular gyrus ANG 

Olfactory cortex OLF Precuneus PCUN 

Superior frontal gyrus (medial) SFGmed Paracentral lobule PCL 

Superior frontal gyrus (medial 

orbital) 

ORBmed Caudate CAU 

Rectus gyrus REC Putamen PUT 

Insula INS Pallidum PAL 

Anterior cingulate gyrus ACG Thalamus THA 

Middle cingulate gyrus MCG Heschl gyrus HES 

Posterior cingulate gyrus PCG Superior temporal gyrus STG 

Hippocampus HIP Temporal pole 

(superior) 

TPOsup 

Parahippocampal gyrus PHG Middle temporal gyrus MTG 

Amygdala AMY Temporal pole (medial) TPOmed 

Calcarine cortex CAL Inferior temporal gyrus ITG 

Cuneus CUN Cerebellum (3, 4_5, 6, 

7b, 8, 9, 10) 

Cer 

Vermis (1_2, 3, 4_5, 6, 7, 8, 9, 10) Vms Cerebellum Crus (1, 2) CerCrus 
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As mentioned above, each family of metrics has input parameters, which are very important for the 

consistency and accuracy of FC matrices calculation. In correlation and h2 metrics, the parameter needed 

is the model order, referring to the number of lagged observations in the model, with h2 having also the 

parameter bins. The mutual information has as parameters the max delay or max lag, which refers to the 

signaling time delays, and the bins parameter. Transfer entropy metric has the parameter max lag, that 

considers the signaling time delays, being the same as max delay used in mutual information. In 

coherence metric, the relevant parameters are freqs, indicating the desired range of frequencies to 

calculate the connectivity matrix with coherence, and the fs, which corresponds to the sampling 

frequency [119]. The sampling frequency fs is defined based on the repetition time (TR) from each 

international institution rs-fMRI scan, which can be found in [120] and the values are shown in tables 

A.3 and A.4 of the Appendix1, for each dataset. The values chosen for the freqs parameter consider the 

evidence mentioned in 2.2.1, due to the fact that low frequency fluctuations are the basis of the rs-fMRI, 

and on which the data of the BOLD time-series signals under study are based [3,11]. The value of each 

of those parameters mentioned are presented in table 4.3, with those being chosen considering the default 

values provided by MULAN’s authors and the best representations obtained for the data used in the 

study [119,121]. 

Table 4.3: Parameters and their values for every metric used in the study. 

Metric Parameter Value 

Correlation model order 2 

 

h2 

model order 

bins 

2 

2 

 

Mutual 

Information 

max delay/max lag 

bins 

10 

10 

Transfer entropy max delay/max lag 10 

 

 

Coherence 

 

freqs 

 

fs 

min: 0.01 Hz 

max: 0.08 Hz 

1

𝑇𝑅1
 

 

4.3 – Automatic Classification 

4.3.1 – Individual Functional Connectivity Metrics Classification 

The first objective of this dissertation is to study how the distinct statistical metrics applied to 

compute FC data, namely FC matrices from the rs-fMRI data acquired from ABIDE-I and ADHD-200 

datasets, perform in order to classify brain disorders by using DL models, evaluating the impact of these 

when fed with Connectome information originated from FC matrices. Alterations in brain FC have the 

potential to provide biomarkers to classify or predict brain disorders, detecting abnormalities that cannot 

be found in other imaging modalities, even when there are no significant structural changes in the brain. 

As described in chapter 2.2.2, the functional network is composed by ROIs, in this case are parcellated 

into 116 brain regions, according to the atlas used, with the FC matrices being calculated using statistical 
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metrics between the time-series of the 116 ROIs, creating a 116 × 116 array with information on the 

relationships between the different brain regions. One of the most used methods is to use FC matrices 

in classification problems as input features and feed these matrices directly into the DL model. The DL 

models implemented to perform the automatic classification were developed in Python (version 3.6.13), 

using Keras (version 2.1.6) and Tensorflow (version 1.11.0) from Graphics Processing Unit (GPU) as 

backend. It is important to run the DL models using local GPU instead of Central Processing Unit (CPU), 

since the training of the model is faster using GPU.   

The first model implemented was inspired on the Connectome-Convolutional Neural Network 

(ConectomeCNN) model proposed by [7], being developed by researcher Antonio Cano Montes in 

collaboration with Instituto de Biofísica e Engenharia Biomédica. The ConnectomeCNN model starts 

by receiving as input the FC matrices computed by MULAN’s toolbox from each dataset used, with 

these matrices being treated as images, coming with an input size of [𝑁 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 × 116 × 116 ×

 𝑁 𝑚𝑒𝑡𝑟𝑖𝑐𝑠], where 𝑁 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 is the number of subjects from the dataset and 𝑁 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 the number of 

statistical metrics used.   

The ConnectomeCNN model, shown in figure 4.1, is composed by two convolutional layers (Conv), 

where the first layer and second layers have a specified number of filters, with the number of filters for 

the second layer being twice the value of the first layer, extracting features from the input data in each 

convolutional layer. Usually, CNNs use squared kernel filters with a stride (3 × 3 and 5 × 5 filters), 

which moves by column to perform the convolution operation, resulting in a single value, allowing the 

same filter to be multiplied by the input data multiple times and at different locations of the input. This 

is very important in image classification, since important information is present in square neighborhoods 

of pixels because the pattern could occur both horizontally or vertically, and by using this squared filter 

both patterns can be extracted. However, in FC the local neighborhood is not the same as traditional 

images, with spatial information being useless, not obtaining any further information about the input 

features. This led the authors to propose a novel convolution in those two layers. In the first 

convolutional layer, the convolution is applied line-by-line in the input data, with a convolution filter of 

[1 × 𝑁 𝑅𝑂𝐼𝑠] size, while in the second convolution layer used the operation is applied column-by-

column, with a convolution filter of [𝑁 𝑅𝑂𝐼𝑠 ×  1] size, with both convolutional layers using a Scaled 

Exponential Linear Units (SELU) activation function in the end. Following the convolutional layers, 

feature extractors of the model, two fully connected layers (FCL) emerge, with the first being a fully 

connected hidden layer, with a defined number of neurons, that receives as input the features generated 

from the second convolutional layer, using a SELU activation function. The first fully connected hidden 

layer feeds the model output layer, a fully connected layer composed by two output neurons that 

correspond to the two classes present in data, healthy or diseased subjects, along with the application of 

a softmax function at this layer to calculate the probabilities of each instance belonging to a certain class. 

 

Figure 4.1: Architecture of the ConnectomeCNN model. 
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After each convolution layer and between the fully connected layers, dropout layers were added to 

conceive robustness and prevent adaptations of the model relatively to the training data used. A standard 

dropout layer was added after the second convolution layer and after the first fully connected hidden 

layer, but a different dropout technique was used in this project, namely after the first convolution layer, 

which in the scope of this work fits better with the idea of ConnectomeCNN. While standard dropout 

layers randomly drop network units in each iteration, spatial dropout layers drop the entire feature maps 

instead of random individual elements, as seen in figure 4.2. Spatial dropout works as a regularization 

technique that will consequently drop the ROI relationship with other ROIs and promotes independence 

between feature maps. In both standard and spatial dropouts, keep probabilities were the same. 

 

Figure 4.2:Comparison between standard and spatial dropout [122]. 

The second and final DL model implemented in this dissertation for the classification process was 

an innovative approach, developed by researcher Antonio Cano Montes who collaborated with IBEB, 

which was called ConnectomeCNN-Autoencoder. The purpose of this model is to combine the powerful 

ability of the ConnectomeCNN model to relate different brain regions with the power of autoencoders 

in automatic features extraction.  

In ConnectomeCNN-Autoencoder model, displayed in figure 4.3, the input data size is exactly the 

same as the one used in ConnectomeCNN model, being [𝑁 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 × 116 × 116 ×  𝑁 𝑚𝑒𝑡𝑟𝑖𝑐𝑠], with 

the model architecture resembling the autoencoders, containing an encoding and decoding phase, as 

explained in chapter 2.3.3. In the encoding phase emerges the original ConnectomeCNN, where two 

convolutional layers are used, with the first layer applying a line-by-line convolution filter of 

[1 × 𝑁 𝑅𝑂𝐼𝑠] size to the input data, while in the second layer a column-by-column convolution filter of 

[𝑁 𝑅𝑂𝐼𝑠 ×  1] size was applied, with both convolutional layers using a SELU activation function in the 

end. Similarly to the Connectome-CNN model, the number of filters for the second convolutional layer 

are twice the value of the first convolutional layer. After each convolution layer, a standard dropout is 

applied and provides input for the first fully connected hidden layer with the features generated, which 

uses a SELU activation function and feeds the two neurons output layer with a softmax function, which 

performs the classification. The decoder phase starts with a fully connected layer coupled to a SELU 

activation function, which is connected to the output layer of the encoder phase and used for the latent-

space or compressed data representation, aiming to find simpler representations of the data and use them 

to reconstruct the original input. After the fully connected layer, three deconvolutional or transpose 

convolutional layers, also referred as up-sampling layers, are used to perform an inverse convolution 

operation to the data contained in the latent-space, taking that compressed data and transforming it into 

a reconstruction of the original input, keeping the latent-space data patterns. The first deconvolutional 

layer uses a convolutional filter of [1 ×  1], while the second deconvolutional layer uses a column-by-

column convolution filter of [𝑁 𝑅𝑂𝐼𝑠 ×  1] size and the final deconvolutional layer, which is responsible 
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for the reconstruction of the input, uses a line-by-line convolution filter of [1 × 𝑁 𝑅𝑂𝐼𝑠] size. The first 

two deconvolutional layers use a SELU activation function, while in the last is used a Tanh activation 

function. 

 

Figure 4.3: Architecture of the ConnectomeCNN-Autoencoder model. 

As usual in ML and DL algorithms, to evaluate the performance of both models, the datasets were 

divided into two distinct sets, the training set, corresponding to 75% of the dataset used, and the test set, 

corresponding to 25% of the subjects present in the dataset used. Each subject was uniquely present in 

one of these two sets, the test set or the training set, to prevent overly optimistic classification 

predictions. In order to give the model the opportunity to train in different train-test splits, reducing the 

variance of the estimated performance when using model evaluation measures, leading to more faithful 

classifications, k-fold cross-validation was applied to the models used. A k=10, the most standard choice 

when using cross-validation as stated by Berrar in [73], splitting the data into 10 folds with different 

subjects in each fold train-test split. Moreover, a stratified split was applied to the k-fold cross-

validation, ensuring that the classes distribution from the original dataset, healthy and diseased subjects, 

is maintained. Both models, ConnectomeCNN and ConnectomeCNN-Autoencoder, use a binary cross-

entropy as loss function, since the output has two classes, healthy or diseased, and an Adam optimizer 

as learning optimization algorithm. Since the convergence of some metrics is slower than others and it’s 

difficult to determine the proper number of epochs for the model to run, which can lead to overfitting, 

early stopping callback was applied to the model. In this callback, the validation loss was used as target, 

when this metric does not show any improvements to the validation set for 15 epochs, model training 

for the respective FC metric stops.  

Several model evaluation measures were used to assess the performance and provide a better 

understanding of the models in both training and testing phases, beyond the typical accuracy. In those 

evaluation measures are the sensitivity or TPR, specificity, precision, F1-score, negative positive value 

(NPV) and the AUC. In addition, the confusion matrix was also used to summarize the performance 

classification of models. 

4.3.2 –Functional Connectivity Multi-Metric Classification 

In addition to the objective mentioned before, it is also intended to test if the combination of those 

different statistical metrics used to compute the FC matrices, into one single multi-metric, can enhance 

the classification performance of these DL models used. The common practice in Connectome studies 

using FC matrices is the use of correlation family metrics to relate brain regions BOLD signal time-

series from different subjects, not considering other properties inherent of these signals, as explained in 

chapter 3.  

CNNs were designed to merge information from RGB color channels, since each channel is 

responsible for different characteristics of the same pixel. Transposing this ability to FC matrices, it is 

possible to combine different FC matrices from different statistical metrics, also keeping the respective 
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ROIs features information by treating the FC matrices as color channels. Even though using combined 

inputs can increase the number of trainable parameters of the model, as well as its complexity, 

combining different sources of information can enhance classification performance.  

The models used to assess the classification of FC multi-metric are the same used to evaluate the 

impact of the individual statistical metrics, the ConnectomeCNN and ConnectomeCNN-Autoencoder 

models. The implementation of FC multi-metric is achieved by simply concatenate over the last 

dimension of the input matrix [𝑁 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 × 116 × 116 ×  𝑁 𝑚𝑒𝑡𝑟𝑖𝑐𝑠], as visually represented in figure 

4.4, where 𝑁 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 will be the number of the statistical metrics used from the individual classification. 

The model evaluation measures used to assess the performance of both models using the FC multi-

metric are the same as those used in the individual FC metrics classification, which include the 

traditional accuracy, sensitivity, specificity, precision, F1-score, NPV and the AUC, along with the use 

of the confusion matrix. 

 

Figure 4.4: Example of concatenation between Functional Connectivity matrices computed from different statistical metrics. 

4.3.3 –Optimization of Model Parameters 

Once the models are developed, in order to achieve the best classification performance possible, it is 

extremely important to tune several model parameters, namely the number of filters or neurons present 

in each convolutional and fully connected layers, as well as the number of neurons to be maintained 

after the application of dropout layers. This is important so that these parameters are the most suitable 

for the FC matrix data of both datasets, used as input to the models. This set of parameters trials, shown 

in table 4.4, were tested for both models created, the ConnectomeCNN and ConnectomeCNN-

Autoencoder models, in the two approaches studied in this dissertation, which are based on the use of 

each model for the evaluation of individual classification of each FC matrix computed through the 

different statistical metrics chosen, and on the use of the same models for the classification of a FC 

multi-metric.  

Table 4.4: Model parameters values tested, in ConnectomeCNN and ConnectomeCNN-Autoencoder models, in order to 

optimize their performance for the datasets used. 

 Dropout layers Convolutional layers  Fully connected layers  

Trial 1 0.65 20 42 

Trial 2 0.35 20 42 
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Trial 3 0.65 32 64 

Trial 4 0.35 32 64 

Trial 5 0.35 42 80 

Trial 6 0.65 42 80 

Trial 7 0.35 52 92 

Trial 8 0.65 52 92 

Trial 9 0.35 68 102 

Trial 10 0.65 68 102 

Trial 11 0.35 78 114 

Trial 12 0.65 78 114 

Trial 13 0.35 90 130 

Trial 14 0.65 90 130 

Trial 15 0.35 104 162 

Trial 16 0.65 104 162 

 

From the different trials experimented, the bottom and upper range of values, namely trials 1 and 2, 

15 and 16, were the limit range of values in which both models demonstrate any ability to learn the 

patterns of the input data. With values above and below this range, respectively, both models failed to 

obtain good performances, with the number of parameters of the models being too low and too complex, 

respectively, in order to learn significant features for the classification between the two classes, healthy 

or diseased subjects. Regarding dropout layers values, it was started by testing values of 0.3 and 0.7, but 

these neurons drop probabilities were too small and too high to cause any difference in results, leading 

to an exaggerated inactivation of neurons and, consequently, poor performance. 

Along with the internal parameters of the models, in the case of the ConnectomeCNN and 

ConnectomeCNN-Autoencoder models, it is extremely important to tune the hyperparameters external 

to the model, namely learning rate and batch-size, with an introduction about how these models work 

being provided in chapter 2.3.1.1. In table 4.5 are shown the values of learning rate and batch-size tested 

in the ConnectomeCNN and ConnectomeCNN-Autoencoder models, in which they were tested 

simultaneously with changing the model's internal parameters, such as the dropout, convolutional and 

fully connected layers. Several batch-size values were used in the training of the created models, along 

with different values of learning rates, and for the data used as input, larger batch-size values led to 

better learning results by the models, allowing for better discrimination between healthy and diseased 

subjects. With the increase of the batch-size, the learning process became more consistent for the FC 

matrices of the different statistical metrics used. 
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Table 4.5: Tested learning rate and batch-size hyperparameters values for ConnectomeCNN and ConnectomeCNN-

Autoencoder models optimization. 

Learning Rate Batch-size 

0.001 32 

0.0001 32 

0.0001 64 

0.001 64 

0.01 64 

0.001 128 

0.0001 128 

0.00001 128 

0.001 256 

0.0001 256 

0.01 256 

0.001 Length of training set 

0.0001 Length of training set 

 

Once the results for the various trials of parameters tested for both models and approaches used were 

obtained, the best configuration of parameters for each case was chosen according to its performance, 

being evaluated through different model evaluation measures, such as accuracy, sensitivity, specificity, 

precision, F1-score, NPV and the AUC. From these model evaluation measures, it was focused primarily 

on accuracy results, as this is the most common measure used to evaluate model predictions, but 

accuracy results can be biased when the classes to be distinguished are not uniformly balanced, as 

mentioned previously, which is the case for ABIDE-I and ADHD-200 (more pronounced in this dataset). 

Together with accuracy, and to avoid biased results, AUC and confusion matrix were very important to 

take into account, allowing to have a better insight of the predictions for both classes, diseased or healthy 

subjects, preventing the influence of the larger class on the results, which can occur with accuracy. Other 

model evaluation measures like sensitivity, specificity, or precision, were used to perceive the model’s 

ability to classify a particular class. The final model parameters values used in this dissertation, for each 

model and approaches, are shown in table 4.6. Regarding the learning rate and batch-size 

hyperparameters used to achieve the finest performance of the ConnectomeCNN and ConnectomeCNN-

Autoencoder models, along with the use of the parameters of the models present in table 4.6, had as 

their final values a learning rate of 0.001 and a batch-size equal to the training set dimension used to 

train the models. 
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Table 4.6: Best configuration of parameters values for both models and respective approaches used in this study. 

 ConnectomeCNN ConnectomeCNN-Autoencoder 

 

Approach 

Dropout 

layers 

Convolutional 

layers 

Fully 

connected 

layers 

Dropout 

layers 

Convolutional 

layers 

Fully 

connected 

layers 

ABIDE-I 

individual 

FC metrics 

 

0.35 

 

32 

 

64 

 

0.65 

 

20 

 

42 

ABIDE-I  

FC multi-

metric 

 

0.65 

 

20 

 

42 

 

0.35 

 

20 

 

42 

ADHD-200 

individual 

FC metrics 

 

0.65 

 

42 

 

80 

 

0.65 

 

20 

 

42 

ADHD-200 

FC multi-

metric 

 

0.65 

 

42 

 

80 

 

0.35 

 

20 

 

42 

 

4.4 – Explaining Model Classification   

Another main objective of this dissertation is to assess which features from the FC matrices generated 

with the statistical metrics mentioned in chapter 4.2.1 (in this case these features are the 116 × 116 

brain regions, since the data was parcellated into 116 brain ROIs and the FC matrix relates pairs of brain 

regions) are relevant for the classification of the diseased patients in ADHD-200 dataset. This is an 

important task, considering the fact that DL models’ architecture makes them like black-boxes, being 

difficult to know which input features the model is really using to predict the outcome of the subjects.  

To accomplish this objective, it was used the XAI technique LRP from the iNNvestigate (version 

1.0.9) toolbox. The toolbox library is compatible with Python 3.6 or recent versions and is based on 

Keras, with a supported Keras-backend needed, which in this case is a TensorFlow backend. The 

iNNvestigate toolbox consists of base classes and functions that are design to implement a variety of 

XAI algorithms rapidly and easily along with the model created. The user only needs to adapt the 

algorithm already developed to the specific changes required by the toolbox, and it is up to the library 

to execute the desired analysis [123].  

Before proceeding to the LRP analysis itself, the statistical mean between the FC matrices of all 

subjects for a certain statistical metric was applied, in order to study the brain regions involved in 

classifying subjects with ADHD as a group. The implementation process of the LRP is performed in 

both ConnectomeCNN and ConnectomeCNN-Autoencoder models, being described in figure 4.5, 

starting with the removal of softmax activation function present in the last layer of the model. Since the 

focus is on analyzing the model’s weights before softmax activations, as it is necessary to understand 

how the weights of the model's neurons are considering the input data as important for the classification 

of ADHD, this being observed before the application of the softmax activation function. Then, the 

desired LRP rule is chosen to create the analyzer applied to the model trained, with this model being the 
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one already without the softmax activation function. As mentioned in chapter 2.3.5.1, LRP methods 

have a variety of rules, with each of them having a particular rule for backpropagating the relevance 

through the Neural Network model. After researching the iNNvestigate toolbox documentation and tests 

with other LRP rules, it was decided to use the LRP𝜀 rule in this study, as it is the rule with more faithful 

visual explanations and in terms of its relevance values. Details about how this LRP𝜀 rule works to 

provide model explanations can be consulted in chapter 2.3.5.1. 

The last step is to use the LRP analyzer created previously to perform the relevance analysis towards 

the data used to test the model, test set, in order to calculate which input features from the test set are 

relevant for the prediction achieved. It is important to underline that the default analysis is performed 

examining the output of the neuron with the highest activation, existing the option of choosing which 

output neuron. Since in this study the classification aims to distinguish between healthy and diseased 

subjects, the output neuron can be one of two classes, 0 if the important features from healthy subjects 

want to be observed, or 1 if the features from diseased subjects are the ones to be observed. In this 

particular case, it is intended to observe which input features/brain regions from the FC matrices 

generated are considered relevant, by the model, to classify the subjects as diseased. LRP analysis works 

while training the model for each statistical metric, using the weights of the trained model to perform 

the analysis of which FC input features are considered most relevant for the desired prediction.  

 

Figure 4.5: Example code to implement Layer-wise Relevance Propagation technique from the iNNvestigate toolbox in the 

models developed. 

Once the LRP analysis is finished, the variable assigned will comprise the relevance values between 

the 116 × 116 brain regions for each subject present in the test set and for the respective FC statistical 

metric used. The whole set of statistical metrics used in individual classification are chosen to study the 

most relevant brain regions for the classification of diseased patients. In order to study the dataset as a 

group the statistical mean between the relevance values of all subjects analyzed, which are the ones 

present in test set, was applied, yielding a variable with 116 × 116 brain regions relevance values, for 

each statistical metric. A key step to further analyze the relevance between brain regions is the removal 

of the diagonal from the previous variable, as the diagonal of FC matrices relate the brain regions to 

themselves, having no important information on how these are related, thus ending up with a variable 

of 116 × 115 brain regions relevance values. 

In addition to obtaining the relevance values between the different regions of the brain, LRP analysis 

allows to reconstruct the FC matrices used as input data, in the form of heatmaps. The heatmaps consist 

in the same dimensions of a FC matrix, but instead of relating brain regions from a statistical dependence 

point-of-view, it relates them accordingly with the relevance between each brain region, where a color 

means a strong relevance among two brain regions, while the other color means a weaker relevance 

among two brain regions. 
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5 – Results and Discussion 

5.1 – Individual Functional Connectivity Metrics  

The first goal of this dissertation is to evaluate how the use of FC matrices, constructed from different 

statistical metrics to evaluate the statistical dependences between BOLD signals time-series, in addition 

to the standard statistical metric correlation coefficient. These FC matrices will be used as input data for 

automatic subject classification using DNN models, in this case subjects with ADHD and ASD, from 

ADHD-200 and ABIDE-I datasets, respectively. It is important to highlight that this study’s main goal 

was not to achieve the best possible accuracy or performance, but rather to focus on seeing whether FC 

matrices computed with different statistical metrics can provide valuable information to distinguish 

between pathological or healthy states.  

For the first step, the FC matrices were computed using the procedure and parameters described in 

chapter 4.2.1, having a total of 13 matrices for each dataset. In figure 5.1, a FC matrix of a random 

subject from the ABIDE-I and ADHD-200 datasets is represented, calculated using the correlation-based 

BCorrU method. An example of FC matrices computed using each method applied in this study, for the 

same random subjects from ABIDE-I and ADHD-200 datasets used to exemplify the FC matrix of 

BCorrU method, is illustrated in figure A.1 of the Appendix. As seen in the figure below, the FC matrix 

relates the 116 brain regions, parcellated using the 116 AAL atlas, through the statistical metric chosen, 

leading to a range of values specific from the statistical metric used, which quantifies the statistical 

dependence between rs-fMRI BOLD signals from different brain regions. These FC matrices of each 

statistical metric computed are then applied as input data to the model, which will later classify between 

healthy and diseased subjects.  

 

Figure 5.1: Functional Connectivity matrices examples, computed using the undirected bivariate correlation method, for a 

random subject from the ABIDE-I dataset (left image) and a random subject from the ADHD-200 dataset (right image). 

The classification results for the ABIDE-I dataset using the ConnectomeCNN model and cross-

validation are shown in table 5.1, being based on model evaluation measures such as accuracy, 

specificity, sensitivity, precision, AUC and the confusion matrix. It is important to refer that due to the 

use of cross-validation to evaluate the performance of the models, confusion matrix can contain non-

integer values, since this process evaluates model’s performance though the arithmetic mean between 
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the result from each fold. A description of how this ConnectomeCNN model is implemented and works, 

is given in chapter 4.3.1. As can be seen from the table, there are several FC metrics that stood out from 

the rest in terms of being able to correctly distinguish between the two classes, healthy or ASD subjects, 

namely BCorrU, BCorrD, BH2U, BH2D, BMITD1 and BMITD2. The correlation-based methods 

BCorrU and BCorrD, used as baseline since they’re the traditional statistical metric used in FC studies, 

achieved an accuracy of 64% and 62%, with an AUC performance of 0.63 and 0.62, respectively. The 

h2 metric, composed of the BH2U and BH2D methods, which is responsible for capturing the non-

linearities of the signals, can match the performance of the correlation-based methods, obtaining both 

an accuracy value of 64%, plus an AUC of 0.64 and 0.63, respectively. The h2-based method BH2U 

slightly outperformed the best correlation method BCorrU. An additional interesting result is the 

performance from the mutual information methods BMITD1 and BMITD2. These two methods 

achieved a classification  performance similar to the correlation-based method BCorrD, ending up with 

61% accuracy and 0.61 AUC, which can be justified by the sensibility of mutual information in capturing 

non-linear relationships between the time-series of BOLD signals from brain regions.  

Interestingly, these results demonstrate that correlation is not the only FC metric capable of achieving 

good classification results, showing that the features present in the FC matrices generated with these 

methods are important to the model and are useful to discriminate the FC information between healthy 

subjects and those with ASD. These findings validate the limitation of using correlation-based methods, 

that consists in not capturing non-linearities inherent in acquired resting-state BOLD signals, having 

these an important role in the relationships between BOLD signals time-series, as stated in [84] and 

[85]. Based on the results of non-linear metrics such as mutual information based BMITD1 and BMITD2 

methods, as well as h2-based methods, these assume an important complement to correlation-based 

methods. 

Despite the better performance of previous statistical metrics, FC matrices computed using other 

mutual information based methods like BMITU, plus the transfer entropy methods, were a little behind 

compared to previous methods.  This is verified in terms of learning important characteristics of the data 

that would better distinguish between healthy individuals and those with ASD, achieving accuracies of 

58%, 51% and 52%, respectively. Along with the lower performance of these metrics are the coherence-

based methods, which are responsible to consider the time-series of the BOLD signals from brain regions 

in frequency and time-frequency domain. For time domain Fourier-based coherence methods BCohF1 

and BCohF2, the accuracy obtained was 57% and 54% for each method, respectively, while in time-

frequency domain Wavelet-based coherence methods BCohW1 and BCohW2, the accuracy was 51% 

for both methods. One hypothesis for the poor performances obtained by these methods is the fact that 

the model may have become adapted to the training data, falling into an overfitting state, with the model 

being unable to generalize the classification performance when confronted with data that has not been 

seen by the model before.  

Table 5.1: Results for the classification of the ABIDE-I dataset using individual Functional Connectivity matrices and the 

ConnectomeCNN model. 

ConnectomeCNN  

Method Accuracy Specificity Sensitivity Precision AUC 
Confusion 

Matrix 

BCorrU 64% 69% 57% 62% 0.63 [56.4  35.3 

42.6  79.7] 

BCorrD 62% 64% 60% 59% 0.62 
[59.1  40.9 

39.9  74.1] 
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BCohF1 57% 61% 53% 54% 0.57 
[52.5  45.2 

46.5  69.8] 

BCohW1 54% 55% 53% 50% 0.54 
[52.6  52 

46.4  63] 

BCohF2 54% 61% 47% 51% 0.54 
[46.6  45.2 

52.4  69.8] 

BCohW2 54% 56% 52% 50% 0.54 
[51.3  50.3 

47.7  64.7] 

BH2U 64% 69% 59% 62% 0.64 
[58.4  36.2 

40.6  78.8] 

BH2D 64% 68% 59% 61% 0.63 
[58.2  37 

40.8  78] 

BMITU 58% 64% 52% 55% 0.58 
[51.7  41.7 

47.3  73.3] 

BMITD1 61% 60% 61% 57% 0.61 
[60.5  45.6 

38.5  69.4] 

BMITD2 61% 61% 62% 57% 0.61 
[61.1  45.4 

37.9  69.6] 

BTEU 51% 56% 46% 47% 0.51 
[45.6  50.5 

53.4  64.5] 

BTED 52% 58% 45% 48% 0.51 
[44.6  48.4 

54.4  66.6] 

 

For the ADHD-200 dataset, it is even more important to consider all model evaluation measures 

before drawing conclusions, since this dataset has the particularity of being unbalanced. This is observed 

by the number of healthy and diseased subjects, with 280 subjects diagnosed with ADHD and 488 as 

typically developed controls, which would make the accuracy a highly biased evaluation metric to 

consider for assessing the performance of each method. That said, the best model evaluation metric to 

be considered in this dataset is arguably the AUC, which is a measure that calculates the area beneath 

the ROC curve, being the latter a trade-off between the sensitivity and the FPR, the opposite value of 

specificity, discarding overoptimistic performances in relation to the influence of a dominant class [71]. 

The results obtained using ConnectomeCNN model applied to ADHD-200 dataset with cross-

validation, are in its majority slightly worse when compared to those obtained for the same model in the 

ABIDE-I dataset, confirming the difficulties in accurately classify ADHD data. As observable in table 

5.2, the standard metric used in FC studies, correlation-based methods, achieved accuracy measures 

equal to those obtained for the ABIDE-I dataset data using the same model, with 64% for BCorrU 

method and 62% for BCorrD method. When the AUC is considered, it is seen that the methods based 

on this metric are not the best, with an AUC of 0.59 and 0.57, respectively. Similarly to the results 

obtained for ABIDE-I dataset, mutual information based methods and h2-based methods showed a good 

ability to differentiate between typically developed controls and subjects diagnosed with ADHD. These 

methods matched, and even surpassed the performance of the traditional correlation-based methods. In 

this dataset, h2-based methods performed slightly worse than the data in ABIDE-I dataset, with 63% 

accuracy and 0.60 AUC for BH2U method, and 65% accuracy and 0.60 AUC for BH2D method, 

demonstrating a somewhat superior ability to distinguish between healthy and ADHD diagnosed 

subjects compared to standard correlation-based methods. The best method for this ADHD-200 dataset 

is the mutual information based BMITD2 method, being able to reach an accuracy of 63% and an AUC 
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of 0.62, providing the most consistent classification performance among all the methods used. The 

BMITU and BMITD1 mutual information methods, despite having a performance inferior to BMITD2 

method, both were capable of obtain AUC values of 0.59, matching the results of the best correlation-

based BCorrU method. Despite having lower accuracy values, these methods indicated that they could 

provide a more consistent classification performance when discriminating typically developed controls 

and ADHD subjects. These findings demonstrate that, similarly to what was obtained in the results for 

the ABIDE-I dataset using the same model, despite a decreased classification performance, statistical 

metrics that are able to consider non-linearities present in BOLD signals are extremely important for FC 

information. This is confirmed by the equal or, in certain cases, better performance of FC matrices 

computed from h2 and mutual information based methods compared to correlation, the statistical metric 

commonly used in FC studies. 

Once again, likewise to what was obtained in ABIDE-I dataset results, FC matrices computed using 

transfer entropy based methods, were not capable of distinguish between healthy and ADHD subjects, 

with AUC values of 0.51 for BTEU method and 0.50 for BTED method, despite a classification accuracy 

of 57% and 58%, respectively. Along with these methods, Wavelet-based and Fourier-based coherence 

methods performed poorly in ADHD-200. Within these coherence methods, the Fourier-based BCohF1 

and BCohF2 methods, achieved accuracies of 58% and 60%, respectively, but AUC of 0.52 and 0.55 

confirmed the poor performance of both methods. The same was verified for Wavelet-based BCohW1 

and BCohW2 methods, both having accuracies of 59%, but an inferior performance in terms of AUC, 

both with a value of 0.54. As stated above for the results of using these methods on the data in the 

ABIDE-I dataset, this poor performance by these same methods may have been due to the fact that the 

model has fall into an overfitting, being unable to perform well on unseen data.  

It is also possible to observe in the results of Table 5.2 the influence of the imbalance between the 

classes of subjects in the ADHD-200 dataset, diseased and healthy subjects, in the classification 

performance of the ConnectomeCNN model. When looking at the confusion matrices of each FC matrix 

computed using the different statistical metrics, it is clear that the model used had a great tendency to 

better learn the features of the predominant class in the ADHD-200 dataset, which is the typically 

developed controls, with the opposite occurring with the smallest class, subjects diagnosed with ADHD. 

Table 5.2: Results for the classification of the ADHD-200 dataset using individual Functional Connectivity matrices and the 

ConnectomeCNN model. 

ConnectomeCNN  

Method Accuracy Specificity Sensitivity Precision AUC 
Confusion 

Matrix 

BCorrU 64% 75% 43% 50% 0.59 
[30.3  30.1 

39.7  91.9] 

BCorrD 62% 75% 38% 47% 0.57 
[26.9  30.5 

43.1  91.5] 

BCohF1 58% 72% 32% 40% 0.52 
[22.6  33.8 

47.4  88.2] 

BCohW1 59% 72% 37% 43% 0.54 
[25.8   34 

44.2   88] 

BCohF2 60% 76% 33% 44% 0.55 
[23.2  29.3 

46.8  92.7] 

BCohW2 59% 74% 35% 43% 0.54 [24.5  32.3 
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45.5  89.7] 

BH2U 63% 73% 46% 50% 0.60 
[32.4  32.9 

37.6  89.1] 

BH2D 65% 76% 45% 52% 0.60 
[31.2  28.9 

38.8  93.1] 

BMITU 59% 61% 56% 45% 0.59 
[39.2  47.4 

30.8  74.6] 

BMITD1 60% 63% 55% 46% 0.59 
[38.7   45 

31.3   77] 

BMITD2 63% 66% 58% 50% 0.62 
[40.7  41.4 

29.3  80.6] 

BTEU 57% 71% 32% 38% 0.51 
[22.2  35.5 

47.8  86.5] 

BTED 58% 78% 23% 37% 0.50 
[16.3  27.2 

53.7  94.8] 

 

The ConnectomeCNN-Autoencoder model is an innovative approach that aims to take advantage of 

the ConnectomeCNN model’s ability to relate different brain regions and the autoencoder’s ability to 

work as feature extractors, trying to capture the most outstanding features of the FC data and reduce the 

dimensionality of these. A description of how this ConnectomeCNN-Autoencoder model is 

implemented and works, can be found in chapter 4.3.1. 

The results obtained when using cross-validation and the ConnectomeCNN-Autoencoder model to 

classify the ABIDE-I dataset are shown in table 5.3. Starting by analyzing the correlation-based 

methods, the baseline of FC studies, the results obtained are relatively close to the results of the model 

ConnectomeCNN for the same data. The BCorrD method achieved the best classification performance 

among the two correlation methods, with an accuracy of 63% and an AUC of 0.63. Here, in the 

ConnectomeCNN-Autoencoder model, the h2 metric composed of the BH2U and BH2D methods, 

showed the best performance in the classification task of distinguish between the two classes, healthy 

and ASD subjects, in terms of accuracy and AUC, in relation to all other methods used. The BH2U, as 

the best performing method, was able to achieve an accuracy of 64% and an AUC of 0.64, while BH2D 

method registered an accuracy value of 63% and AUC value of 0.63, achieving an equal performance 

comparatively with the best correlation-based method BCorrD. As with the use of the ConnectomeCNN 

model in these same ABIDE-I dataset data, the mutual information based BMITD1 and BMITD2 

methods, in the ConnectomeCNN-Autoencoder model, were two of the metrics that stood out from the 

other methods results, in addition to those mentioned so far. BMITD1 method was able to achieve an 

accuracy of 61% and AUC of 0.61, while BMITD2 ended with an accuracy of 62% and an AUC of 0.62. 

The other mutual information method, BMITU, performed a little bit worse in comparison with the two 

methods mentioned above, achieving an accuracy of 59%, and with an AUC of 0.58.  

These results from the ConnectomeCNN-Autoencoder model are in line with what was said above 

regarding the results obtained with the ConnectomeCNN model for this same dataset, indicating that 

there are some methods that may complement the correlation family metrics in the use of FC information 

to discriminate the between healthy subjects and those diagnosed with ASD. Namely methods of 

statistical metrics that consider non-linearities present in resting-state BOLD signals, being part of those 

methods the mutual information and h2 metric. These proved to be equally beneficial and important for 
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the analysis of FC, overcoming the inability of correlation-based metrics to capture non-linearities in 

these signals, as discussed in [84] and [85]. 

Contrasting with the results of other methods, time domain Fourier-based coherence methods, 

BCohF1 and BCohF2, and time-frequency Wavelet-based coherence methods, BCohW1 and BCohW2, 

were one of the methods with the lowest classification performance. These had difficulties in capture 

features that could differentiate healthy subjects from ASD subjects, leading to accuracies of 57% and 

53% for the Fourier-based coherence methods, respectively, with Wavelet-based coherence methods 

having both 54% accuracy. Together with this decreased performance, transfer entropy methods BTEU 

and BTED, were the methods with worst classification performance, with an accuracy of 50% and 52%, 

respectively. Again, the overfitting problem may be the cause of the model's inability to be able to better 

classify the dataset between healthy and ASD subjects, when using these methods. 

Table 5.3: Results for the classification of the ABIDE-I dataset using individual Functional Connectivity matrices and the 

ConnectomeCNN-Autoencoder model. 

ConnectomeCNN-Autoencoder 

Method Accuracy Specificity Sensitivity Precision AUC 
Confusion 

Matrix 

BCorrU 62% 70% 53% 61% 0.62 
[52.9  34.2 

46.1  80.8] 

BCorrD 63% 71% 54% 62% 0.63 
[53.8  33.3 

45.2  81.7] 

BCohF1 57% 63% 50% 54% 0.56 
[49.1  42.2 

49.9  72.8] 

BCohW1 54% 63% 45% 51% 0.54 
[44.3  42.7 

54.7  72.3] 

BCohF2 53% 62% 43% 50% 0.53 
[42.9  43.5 

56.1  71.5] 

BCohW2 54% 63% 43% 50% 0.53 
[42.9  42.1 

56.1  72.9] 

BH2U 64% 71% 56% 63% 0.64 
[55.5  32.8 

43.5  82.2] 

BH2D 63% 68% 58% 61% 0.63 
[57.4  37.1 

41.6  77.9] 

BMITU 59% 64% 52% 56% 0.58 
[51.7  41.2 

47.3  73.8] 

BMITD1 61% 68% 53% 59% 0.61 
[52.6  36.4 

46.4  78.6] 

BMITD2 62% 67% 56% 59% 0.61 
[55.3  38.5 

43.7  76.5] 

BTEU 50% 60% 39% 46% 0.50 
[38.7  45.8 

60.3  69.2] 

BTED 52% 58% 45% 48% 0.51 
[44.8  48.7 

54.2  66.3] 
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Regarding the application of ConnectomeCNN-Autoencoder model in ADHD-200 dataset, most 

performances of FC methods were slightly lower when compared to using the ConnectomeCNN model 

on the same data, as can be seen in cross-validation results from table 5.4. Starting by looking to the 

standard metric in FC studies, correlation-based methods, the best classification performance was 

achieved by BCorrU method, one of the highest obtained, with 63% of accuracy value but with an AUC 

value of 0.58. Through the table below, it is possible to observe what has been noticed in previous 

results, where the methods based on h2 metric and mutual information are achieving a similar, and in 

some cases, better classification performances in relation to the correlation-based methods. From the 

two h2-based methods, BH2U method is the one with the highest ability to distinguish typically 

developed controls and subjects with ADHD. This method had an accuracy of 63%, while the AUC 

ended up with a value of 0.58, matching the best correlation method, BCorrU. Although slightly inferior, 

the BH2D method managed to achieve the same accuracy as BH2U method, but with an inferior AUC 

of 0.57. When it comes to the mutual information methods, two of  the three methods were able to reach 

equal accuracy values in comparison with BCorrU method and both h2 metric methods, with BMITU 

surpassing all with an accuracy of 64%. Despite this higher accuracy, the AUC of the BMITU method 

was not the best, ending up with an AUC of 0.57, together with the BMITD2 method, both very similar 

to the best correlation method.  

Even though the use of this ConnectomeCNN-Autoencoder model in the ADHD-200 dataset has 

experienced a decrease in classification performances among what have been the best individual metrics 

in this study, such as correlation, h2 and mutual information based methods, it is still possible to notice 

the proximity between the performances of these metrics. This proximity reinforces the fact that has 

been observed previously regarding the use of statistical metrics with the ability to consider the non-

linearities of BOLD signals, like h2 and mutual information based methods, indicating their importance 

and positive complement to the correlation metrics, overcoming its limitation, as shown in [84] and [85]. 

As a trend in the results presented so far, here in the classification results for ADHD-200 dataset using 

ConnectomeCNN-Autoencoder model, all coherence-based methods showed a poor performance in 

terms of distinguishing healthy and ADHD subjects. Although most of these methods obtained 

accuracies in the order of 60%, their AUC values barely surpassed the 0.50 barrier. Together with these 

results for coherence metric methods, are the results for the transfer entropy methods BTEU and BTED. 

These two methods ended up with the worst performances among all the FC statistical metrics used with 

the ConnectomeCNN-Autoencoder model, even with accuracies of 56% and 58%, respectively, the 

AUC for both models were the two worst values, being respectively 0.49 and 0.50. 

It is evident for the ConnectomeCNN-Autoencoder model, identically to what happened using 

ConnectomeCNN model, the difficulties in distinguishing ADHD subjects from typically developed 

controls. In the ConnectomeCNN-Autoencoder model, this is slightly more accentuated due to the fact 

that the model has in its structure an autoencoder. Since the ADHD-200 dataset is quite unbalanced in 

terms of the number of healthy and diseased subjects, the model’s autoencoder emphasize the features 

from the typically developed controls, the predominant class, translating this into the low results 

obtained for sensitivity. What was said previously can be observed in the confusion matrices of each FC 

matrix used in table 5.4, where there is a noticeable capacity of the model to recognize the class with 

the greatest presence in the dataset, similarly to what was observed for the same dataset when using the 

ConnectomeCNN model for classification. In addition to what was said, the presence and negative effect 

of overfitting is a hypothesis that may also be associated with these less positive results. 
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Table 5.4: Results for the classification of the ADHD-200 dataset using individual Functional Connectivity matrices and the 

ConnectomeCNN-Autoencoder model. 

ConnectomeCNN-Autoencoder 

Method Accuracy Specificity Sensitivity Precision AUC 
Confusion 

Matrix 

BCorrU 63% 78% 38% 50% 0.58 
[26.9  27.3 

43.1  94.7] 

BCorrD 62% 78% 33% 47% 0.56 
[23.3  26.4 

46.7  95.6] 

BCohF1 60% 78% 28% 42% 0.53 
[19.4  27.1 

50.6  94.9] 

BCohW1 60% 78% 27% 42% 0.53 
[19   26.5 

51   95.5] 

BCohF2 61% 81% 26% 43% 0.53 
[18   23.7 

52   98.3] 

BCohW2 59% 78% 25% 39% 0.51 
[17.2  26.5 

52.8  95.5] 

BH2U 63% 78% 37% 49% 0.58 
[26   26.8 

44   95.2] 

BH2D 63% 79% 35% 49% 0.57 
[24.5  25.1 

45.5  96.9] 

BMITU 64% 80% 35% 50% 0.57 
[24.3  24.2 

45.7  97.8] 

BMITD1 63% 84% 26% 49% 0.55 
[18.1   19 

51.9  103] 

BMITD2 63% 80% 33% 49% 0.57 
[23   24.2 

47   97.8] 

BTEU 56% 76% 23% 35% 0.49 
[15.8  29.4 

54.2  92.6] 

BTED 58% 78% 23% 37% 0.50 
[16   27.2 

54   94.8] 

 

Although the main objective of this dissertation is to test the use of different statistical metrics to 

calculate FC matrices, it is important to compare the classification performance of the DL models used 

in this study, the ConnectomeCNN and ConnectomeCNN-Autoencoder models, with other classifiers 

tested with these two databases used, ABIDE-I and ADHD-200. Several authors have tested their DL 

models on the ABIDE-I dataset, using the data coming from the CPAC pre-processing pipeline. These 

models in [103] and [104] achieved accuracies of 70% and 70.1% for the entire dataset, respectively. In 

addition, CNNs were also applied to this dataset, namely in [100] and [106] papers, each ending with a 

classification accuracy of 73.3% and 68.7%, respectively. When it comes to the performance of the 

ConnectomeCNN and ConnectomeCNN-Autoencoder models in the ABIDE-I dataset, both had the best 

overall performance in the FC matrix of the BH2U method, with an accuracy of 64% and an AUC of 

0.64, as can be seen in tables 5.1 and 5.3, respectively, showing to be slightly behind the performance 

of other DL models used recently. Regarding the ADHD-200 dataset, there are few studies that use DL 

models to classify the dataset as a whole, as performed in this dissertation, rather than classifying the 

subjects of each imaging site individually. Two studies, [124] and [125], whose classification was done 
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for the ADHD-200 complete dataset, following the preprocessing pipeline used in this dissertation, 

achieved classification accuracies of 71.3% and 70.3% with the DL models proposed, respectively. 

Other studies have focused only on testing their proposed DL models into classifying subjects from 

individual imaging sites present in the ADHD-200 dataset, so they should not be considered a good 

comparison. About the performance of the ConnectomeCNN and ConnectomeCNN-Autoencoder 

models in the ADHD-200 dataset, the best accuracy performance was achieved by the FC matrix of the 

BH2D method, with 65%, and by the FC matrix of the BMITU method, with 64%, respectively. When 

comparing the results obtained by the DL models used in this dissertation and the DL models proposed 

in other studies, applied to the same datasets, it is possible to conclude that the performances of the 

former are slightly behind other DL models. 

5.2 – Functional Connectivity Multi-Metric  

The second main goal of this dissertation was to test the use of the FC matrices, computed previously 

using different statistical metrics, combined together to create a FC multi-metric. This approach arises 

from the idea of combining different sources of information that are captured by each individual 

statistical metric, which could lead to an increased ability to distinguish between healthy and 

pathological subjects. To successfully handle the high-dimensionality input data that combining FC 

matrices from different methods would lead to, DL methods emerge as a perfectly suited option to the 

task. These methods, given their ability to automatically extract important features, avoid the laborious 

work of manual feature selection that occurs when using ML techniques. The model parameters used to 

study the classification performance of the multi-metric approach, for both ConnectomeCNN and 

ConnectomeCNN-Autoencoder models, are shown in table 4.6 in chapter 4.3.3. 

The FC matrices from each statistical metric computed with ABIDE-I dataset were combined, 

through concatenation, and used as input to feed the ConnectomeCNN model. As observable in cross-

validation results from table 5.5, the result of this combination matches the results of h2 metric BH2U 

method, the best performing method in the individual classification of the different methods of each 

metric using the ConnectomeCNN model, as demonstrated in table 5.1. This FC multi-metric approach 

achieved an accuracy value of 64% and an AUC value of 0.64. An important detail of the result of the 

FC multi-metric approach is the fact that it was able to reproduce the sensitivity measure in relation to 

the same measure of the best individual method, the BH2D method. This led to a sensitivity value equal 

to the best value of this measure in the FC individual methods, which was 62% of the mutual information 

based BMITD2 method. The same reproducibility was almost verified for the precision, ending up being 

only 1% behind the best individual method, which were the BCorrU and BH2U methods with 62%. This 

result from the FC multi-metric indicates the good capacity of this approach to select the best features 

from all the FC matrices combined, in order to differentiate between healthy and ASD subjects, which 

is verified by the maintenance of the classification performance of the multi-metric approach in relation 

to the best method of individual classification.  

In the ADHD-200 dataset, the combination of the FC matrices generated from the respective dataset 

data led to a performance quite similar to the best performance obtained in the individual metrics 

classification. As shown in table 5.5 cross-validation, the FC multi-metric approach for the ADHD-200 

dataset achieved an accuracy of 64%, with the best individual method accuracy, that is from the h2 metric 

BH2D method, ending up obtaining 65% of accuracy, as described in table 5.2. But, as previously 

mentioned, this dataset has its unbalanced classes, which means that a detailed evaluation of other 

evaluation measures of the model is necessary, being AUC one of these important measures to assess 

the unbiased performance of the model. Looking at the best AUC value from individual metrics 

approach, which was for mutual information BMITD2 method, and multi-metric approach AUC value, 
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it is possible to observe that the AUC value of the latter approach was below the classification of the 

best individual method, registering an AUC of 0.59 against 0.62 of the BMITD2 method. When 

analyzing other evaluation measures of the model, which is the case of specificity and precision, it can 

be observed that this multi-metric approach was able to extract the most important information from the 

best performing individual methods. This approach obtained a result equal to the best individual method 

in specificity, which was the BTED method, and a result equal to the best individual method in precision, 

which was the BH2U method. Despite not being able to achieve the same result regarding the best 

individual method in sensitivity, these results are linked with was stated in the use of the FC multi-

metric approach in ConnectomeCNN model, where this approach provided good evidence of having a 

good ability to use the information on the best statistical metrics, making it more complete. 

Table 5.5: Results for the classification of the ABIDE-I and ADHD-200 datasets using Functional Connectivity multi-metric 

matrix and the ConnectomeCNN model. 

ConnectomeCNN 

Method Accuracy Specificity Sensitivity Precision AUC 
Confusion 

Matrix 

ABIDE-I 

multi-metric 

 

64% 

 

66% 

 

62% 

 

61% 

 

0.64 

[61.5  38.6 

37.5  76.4] 

ADHD-200 

multi-metric 

 

64% 

 

78% 

 

41% 

 

52% 

 

0.59 

[28.8  27.1 

41.2  94.9] 

 

Regarding the use of ConnectomeCNN-Autoencoder model with the FC matrices combined from 

ABIDE-I dataset, as demonstrated in table 5.6, the performance of multi-metric approach is almost the 

same as the results achieved by the ConnectomeCNN model using the same approach. Both models 

achieved an equal accuracy value of 64%, with the AUC for the ConnectomeCNN-Autoencoder model 

being once again the same as the AUC obtained for the ConnectomeCNN model. In terms of the other 

model evaluation measures, the multi-metric approach of the ConnectomeCNN-Autoencoder model was 

able to slightly overcome the specificity of the same approach when used in the ConnectomeCNN 

model, obtaining a specificity of 68%, while the FC multi-metric of the ConnectomeCNN model 

obtained only 66%. The precision values were very close between the two models used with the FC 

multi-metric, but in sensitivity, the ConnectomeCNN-Autoencoder model was a little below the result 

obtained with the ConnectomeCNN model, with the latter achieving 2% more in sensitivity value.  

When comparing the FC multi-metric classification against the individual metrics classification in 

table 5.3, using the ConnectomeCNN-Autoencoder model, it is noticeable that this approach can achieve 

a similar accuracy and AUC values to the respective values obtained by the best individual method, 

which was the BH2U method. In relation to precision, the multi-metric approach was able to reproduce 

the result from the best performing individual method, achieving a precision value of 62%, the same of 

BCorrU method. In terms of sensitivity, the FC multi-metric managed to surpass the best individual 

method, which was the BH2D method, with a value of 58%, and improve the result of this evaluation 

measure, achieving a sensitivity of 60%. On the other hand, in specificity measure, the FC multi-metric 

was not capable to come close to the result obtained by the best individual method, the BCorrD and 

BH2U methods, which ended up with a specificity of 71%, while the specificity for the multi-metric 

approach was 68%. 
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In the ADHD-200 dataset, when the FC multi-metric approach was applied using the 

ConnectomeCNN-Autoencoder model, the classification performance was quite similar to the best 

individual metrics, as well as the FC multi-metric approach using the ConnectomeCNN model. As 

observable in table 5.6, despite an accuracy of 64%, model’s ability to discriminate between typically 

developed controls and subjects diagnosed with ADHD is not so good, which can be seen by the 0.59 

value of AUC. The classification results for the same approach with the ConnectomeCNN model differ 

from the latter only in terms of sensitivity, with better sensitivity by 3%. As noted, using the multi-

metric approach in the ConnectomeCNN model, comparing the result of this FC multi-metric with the 

results of the individual methods in table 5.4, the result of the FC multi-metric in the ConnectomeCNN-

Autoencoder model resembles the performance of the individual methods with better performance in 

each evaluation measure of the model. This multi-metric approach using the ConnectomeCNN-

Autoencoder model was able to surpass by 1% the sensitivity from the best performing individual 

method, the correlation-based BCorrU. It was also able to surpass the best individual method in precision 

measure, achieving a precision of 52%. In terms of specificity, the FC multi-metric was a little short of 

the best individual method performance, which was the mutual information BMITD1 method with 84%, 

while the multi-metric approach achieved 80%. In line with what was shown using the FC multi-metric 

approach with the ConnectomeCNN model, this approach with the ConnectomeCNN-Autoencoder 

model for the ADHD-200 dataset was also able to consider the most relevant features of the different 

FC multi-metric information sources, providing a more complete classification performances. 

Table 5.6: Results for the classification of the ABIDE-I and ADHD-200 datasets using Functional Connectivity multi-metric 

matrix and the ConnectomeCNN-Autoencoder model. 

ConnectomeCNN-Autoencoder 

Method Accuracy Specificity Sensitivity Precision AUC 
Confusion 

Matrix 

ABIDE-I 

multi-metric 

 

64% 

 

68% 

 

60% 

 

62% 

 

0.64 

[59.3  36.7 

39.7  78.3] 

ADHD-200 

multi-metric 

 

64% 

 

80% 

 

39% 

 

52% 

 

0.59 

[25   23.9 

45   98.1] 

 

From the results obtained in this dissertation and the two studies, up to the moment of this 

dissertation, which sought to combine FC matrices computed through different statistical metrics, [7] 

and [97], despite the less good performance of the FC multi-metric using ConnectomeCNN-

Autoencoder model with ADHD-200 dataset, it is possible to see that the use of FC multi-metric can be 

extremely important in the classification of brain disorders using FC data. This approach has shown the 

ability to consider different sources of information from the various statistical metrics used, achieving a 

classification performance practically identical to the best method when used individually. This 

comparable performance may suggest a more frequent use of this type of analysis in FC studies, since 

it seems to complete the capacity of correlation-based metrics in other domains, not preventing the 

continuity of the individual use of statistical metrics at the same time, so as not to compromise the new 

developments and the comparison between the two approaches. 

Similarly to what was done for the classification using the individual FC matrices calculated through 

the different statistical metrics, is important to compare the classification performance of the FC multi-

metric approach of the ConnectomeCNN and ConnectomeCNN-Autoencoder models used in this 
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dissertation, and the DL models proposed by other studies. In the ABIDE-I dataset, the multi-metric 

approach achieved the same 64% of accuracy and 0.64 of AUC when used with both the 

ConnectomeCNN and ConnectomeCNN-Autoencoder models. Comparing the performance of these 

models with the DL models employed by other authors in the classification of the ABIDE-I dataset, 

namely in [100],[103], [104] and [106], where a classification accuracy of 73.3%, 70%, 70.1%, and 

68.7% were achieved, respectively, it is possible to conclude that this approach fell short of current state-

of-the-art models. The multi-metric approach, for the ADHD-200 dataset, achieved the same 

classification performance for the ConnectomeCNN and ConnectomeCNN-Autoencoder models, with 

an accuracy of 64%. The two studies whose classification was done for the complete ADHD-200 dataset, 

[124] and [125], similarly to what was conducted in this dissertation, achieved classification accuracies 

of 71.3% and 70.3% with the DL models proposed, respectively, a step ahead from the models used in 

this study. 

5.3 – Explaining ADHD Relevant Brain Regions  

The final objective of this dissertation is to explore XAI methods, mainly the LRP method, in order 

to explain and provide transparency to the DL models. The architecture of these models makes them 

work like black-boxes, not providing a justification about why the model made that certain classification. 

The LRP was applied to the ADHD-200 dataset using both ConnectomeCNN and ConnectomeCNN-

Autoencoder models. With this method it is expected to get a deeper understanding of which FC matrices 

input features, the relationships between different brain regions BOLD signals time-series, are 

considered relevant by the model for the discrimination between healthy subjects and subjects diagnosed 

with ADHD. For this task, only the individual FC matrices from each statistical metric were used, in 

order to compare how, from the capturing different signal information from these metrics, they consider 

the most relevant brain regions for the classification of subjects diagnosed with ADHD.  

5.3.1 – LRP analysis with ConnectomeCNN model 

The application of LRP method was firstly conducted on ConnectomeCNN model while it was 

performing the individual FC matrices classification. It is important to mention that within this relevance 

values, the redundant information present in the diagonal, which relates each brain region with 

themselves, is already removed. In order to study the brain regions involved in ADHD pathophysiology 

from this dataset as a group, it was performed the statistical mean between the FC matrices of all subjects 

for each statistical metric used. This procedure is conducted for the FC matrices of the subjects present 

in the test set, as the objective is to assess the most relevant brain regions for a classification related to 

ADHD.  

As soon as the model executes the classification for each FC matrix from the set of statistical metrics 

used, by using the procedure explained in chapter 4.4, the relevance values among each of the 116 brain 

regions from the AAL atlas are obtained. Before analyzing the relevance scores, a visual representation 

of the LRP analysis is conducted, reconstructing the input FC matrix, for each statistical metric, in the 

form of an heatmap, indicating which pixels, or pairs of brain regions, are the most relevant. This 

heatmap is shown in the left image of figure 5.2, being compared to the original FC matrix input in the 

image on the right of the same figure. This LRP analysis concerns the classification of the ADHD-200 

dataset through the FC matrix computed with the BCorrU method, using the ConnectomeCNN model, 

where is possible to observe the most relevant pixels for an ADHD diagnosis in red, while the least 

relevant pixels are in blue. The LRP analysis for the remaining statistical metrics FC matrices are shown 

in figure A.2 of the Appendix.  
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Figure 5.2: Heatmap of the Layer-wise Relevance Propagation analysis for the Functional Connectivity matrix computed 

with the undirected bivariate correlation method (left image) of the respective original Functional Connectivity matrix 

computed with the same method (right image) with the ConnectomeCNN model, using the statistical between the Functional 

Connectivity matrices of all subjects for this statistical method. 

From the visual representation of LRP analysis using the ConnectomeCNN model emerges table 5.7, 

providing the ten most relevant brain regions related to an ADHD diagnosis and their respective 

relevance values. These values are ordered from the most relevant to the smallest among these ten 

regions, for each statistical metric FC matrix, considering the results of the group of subjects in the test 

set, presenting a more precise and quantitative evaluation of the LRP analysis.  

Frontal lobe 

From the results obtained in tables 5.7 and A.5, it is evident that the frontal lobe brain regions are 

one of the most predominant brain regions in FC matrices of each statistical metric used. These frontal 

lobe brain regions, composed by superior (SFG), middle (MFG), and inferior frontal gyrus (IFG), are 

known to be involved in several higher cognitive functions, including attention regulation. They’re also 

involved in executive functions such as planning, organize and make decisions, coordination of 

voluntary movements, formation and retention of memories, conscious thoughts, and personality 

dysregulations, leading to changes in personality traits, with all these functions being somehow 

compromised when an individual is affected by ADHD [126,127]. The prefrontal cortex is the primary 

brain region when it comes of executive function, and dysfunctions in these regions lead to an impaired 

executive function, which plays a key role in the pathology of ADHD. Several studies have been 

reporting connectivity alterations in prefrontal cortex of individuals with ADHD, mostly discovering 

abnormal FC both in middle and superior frontal gyrus [128,129 ,130]. The inferior frontal gyrus is also 

an important region of the prefrontal cortex for ADHD pathology, since the dysfunction of this region 

is critical to the deficit of response inhibition, being also reported as one of the prefrontal cortex regions 

with connectivity alterations in ADHD individuals [130]. One of the most recent works from Riaz et al 

[131] showed alterations in frontal lobe in ADHD individuals, being the brain region containing the 

most discriminative FC activity in terms of an ADHD classification. These findings are in some extent 

related to a structural damage to the frontal lobe region, leading to the respective dysfunction and 

compromising the executive function in individuals with ADHD [128,132].  

https://sci-hub.se/https:/www.sciencedirect.com/science/article/abs/pii/S0165027019303632?via%3Dihub
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 Table 5.7a: Brain regions with greater impact on the others in an ADHD-related diagnosis, when using the ConnectomeCNN model, and respective relevance values. 

ConnectomeCNN 

Method Brain Regions 

BCorrU Cer 6.L MTG.L STG.R THA.L CAU.R LING.L CUN.L CAL.R CAL.L HIP.L 

Relevance Value 0.00139 0.00129 0.00107 0.00097 0.00095 0.00094 0.00072 0.0006 0.0006 0.00051 

BCorrD CerCrus 2.L MTG.R THA.R SMG.L PCG.L IFGorb.R IFGorb.L ORBmed.R SFG.R PreCG.L 

Relevance Value 0.00088 0.00086 0.00084 0.00057 0.00050 0.00045 0.00044 0.00043 0.00042 0.00034 

BCohF1 Cer 8.L Cer 4_5.L STG.R PUT.R PCUN.L IPL.R ORBmed.R ORBmed.L SFGmed.R IFGoper.R 

Relevance Value 0.00123 0.00114 0.00066 0.00065 0.00064 0.00063 0.00055 0.00054 0.00054 0.00053 

BCohW1 Vms 8 Cer 4_5.R SMG.L FFG.R IOG.L PCG.R PCG.L SFGmed.R MFG.L ORBmed.R 

Relevance Value 0.00118 0.00104 0.00102 0.00096 0.00084 0.00081 0.0008 0.00076 0.00070 0.00067 

BCohF2 Vms 6 STG.L SMG.L CAL.L REC.L ORBmid.L SFGmed.R IFGtri.L IFGoper.L ORBmid.R 

Relevance Value 0.00175 0.00117 0.00109 0.00106 0.00104 0.0010 0.00097 0.00089 0.00076 0.00075 

BCohW2 Cer 4_5.L MTG.R PCL.L ANG.R SMG.L IOG.L PCG.L MFG.R MFG.L ORBmed.R 

Relevance Value 0.00125 0.00119 0.00072 0.00071 0.00065 0.00063 0.00062 0.0006 0.00058 0.00057 

BH2U Vms 10 CerCrus 2.L ANG.R IPL.L SOG.R ACG.R ACG.L REC.R REC.L SMA.R 

Relevance Value 0.00093 0.00079 0.00067 0.00058 0.00057 0.00055 0.0005 0.00047 0.00046 0.00045 
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Table 5.7b: Brain regions with greater impact on the others in an ADHD-related diagnosis, when using the ConnectomeCNN model, and respective relevance values. 

ConnectomeCNN 

Method Brain Regions 

BH2D ITG.L PHG.R PHG.L REC.L ORBmid.L SFGmed.R OLF.L IFGoper.L ORBmed.L SFG.L 

Relevance Value 0.00114 0.00074 0.00064 0.00061 0.00060 0.00059 0.00059 0.00056 0.00054 0.00051 

BMITU Cer 4_5.L CerCrus 1.L STG.L PCL.L PCUN.L SMG.L SOG.L PCG.L REC.L ORBmid.L 

Relevance Value 6.75e-06 5.39e-06 5.33e-06 5.16e-06 4.34e-06 4.33e-06 4.15e-06 3.92e-06 3.80e-06 3.68e-06 

BMITD1 PCL.L ANG.L SMG.L PoCG.L REC.L ORBmid.L ORBmed.R ORBmed.L PreCG.L SOG.L 

Relevance Value 0.00012 7.69e-05 4.76e-05 4.15e-05 3.70e-05 3.55e-05 3.25e-05 2.92e-05 2.83e-05 2.80e-05 

BMITD2 STG.L PCL.L SMG.L PoCG.L LING.L REC.L ORBmid.L ROL.R ORBmed.L PreCG.L 

Relevance Value 0.00057 0.00047 0.00035 0.00028 0.00027 0.00027 0.00024 0.00021 0.00020 0.00019 

BTEU Vms 4_5 STG.L HES.L PCL.L IPL.R MOG.R CAL.L AMY.L PCG.L MCG.L 

Relevance Value 0.00178 0.00172 0.00155 0.00148 0.00143 0.00128 0.00101 0.00094 0.00082 0.00071 

BTED Vms 9 Vms 4_5 Vms 1_2 Cer 3.L MTG.R TPOsup.L FFG.L CAL.L AMY.L PCG.R 

Relevance Value 0.00095 0.00076 0.00074 0.00073 0.00069 0.00057 0.00054 0.00053 0.00052 0.00051 
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It is possible to observe that the superior frontal gyrus is the most prominent region from the 

prefrontal cortex, being considered relevant by almost all statistical methods used, except for the 

BCorrU, BH2U, BTEU and BTED methods. The middle frontal gyrus corresponds to the second region 

of the premotor cortex most often considered as one of the most relevant, where it was considered by 

the BCohF1, BCohW2, BCohF2, BH2D and all the mutual information based methods. The inferior 

frontal gyrus had the fewest presence in the LRP analysis of this study, being seen as relevant by the 

BCorrD, BCohF1, BCohF2 and BH2D methods. The location in the human brain of the frontal lobe 

regions considered the most relevant for a diagnosis related to ADHD, from the LRP analysis with the 

different FC matrices, are shown in the image on the left in figure 5.3. 

 

Figure 5.3: Location of brain regions relevant to an ADHD-related diagnosis, comprising the frontal lobe regions (left 

image), the basal ganglia (central image) and limbic structures (right image). 

Basal ganglia and limbic structures 

The basal ganglia are a set of subcortical regions that are in charge of motor and non-motor functions, 

several cognitive functions and emotional processing, with the striatum serving as the entry point to the 

basal ganglia, which is composed by the caudate nucleus (CAU), the putamen (PUT) and nucleus 

accumbens [133,134]. Throughout the years, researchers have found reduced volume or altered shapes 

in basal ganglia, as well as in limbic areas like amygdala (AMY), thalamus (THA) and hippocampus 

(HIP), in ADHD individuals when compared to healthy controls [135,136,137]. Dysfunction of the basal 

ganglia and fronto-striatal circuit, which includes the connections between the basal ganglia striatum, 

thalamus, and prefrontal regions, along with the limbic structures, are traditionally implied as one of the 

key interactions in ADHD pathophysiology. This circuit is linked to motivation and reward processing, 

where individuals with ADHD are able to concentrate during interesting activities, but are challenged 

by routine and everyday tasks. In addition to the structural alterations of these regions involved in 

ADHD, FC studies have also shown that the connectivity in these brain regions and circuits is affected. 

Recent works from [134] and [138] have reported that changes in the FC of striatum regions, in particular 

the caudate nucleus and the putamen, are related to ADHD groups. The study from [139] found an 

increased FC activity when analyzing the prefrontal cortex and the striatum, structures of the fronto-

striatal circuit, among ADHD individuals. A hypoactivation of the FC activity in amygdala and 

hippocampus was also revealed, with these two regions showing abnormal FC activity in [140] study. 

Another work, from [141], examined the FC of the thalamus and two regions of the striatum, the caudate 

and putamen, showing an increase of FC in both structures of ADHD individuals. A meta-analysis 

conducted by [142] study, reinforced that the fronto-striatal regions, along with limbic regions, present 

indeed an abnormal FC in individuals with ADHD, supporting the previous studies statements.  

All these regions involved in motivation and reward processing dysfunctions, were considered as 

relevant in the LRP analysis performed using the ConnectomeCNN model, corroborating the findings 
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presented above from diverse studies. The prefrontal regions were already identified in the previous 

LRP analysis, when the influence of this area on ADHD was presented, so the main focus will be on the 

basal ganglia and limbic system structures. Starting with basal ganglia, which comprise the striatum 

regions, the LRP analysis did not considered the nucleus accumbens as a relevant region for a diagnosis 

related to ADHD, since this region is not present in the AAL atlas used in this work. The caudate and 

putamen were considered, with the first being seen as relevant in the FC matrix computed with the 

correlation BCorrU method, and the latter considered as one of the most relevant brain regions by the 

FC matrix of the BCohF1 method. In relation to the limbic regions, the amygdala was identified by the 

LRP analysis as one of the most relevant brain regions for a diagnosis ADHD-related, namely in the two 

transfer entropy based methods, BTEU and BTED. The thalamus, another region belonging to the limbic 

system, was also seen as one of the most relevant regions, with its relevance being present when using 

FC matrices computed with the traditionally used correlation, which in this case are the BCorrU and 

BCorrD methods. The hippocampus joins the previous regions as relevant for distinguish ADHD 

individuals from typically developed controls, being considered as relevant by the LRP analysis when 

using BCorrU method.  

Interestingly, the LRP also considered the parahippocampal gyrus (PHG), a region of the brain that 

surrounds the hippocampus and is part of the limbic system, as relevant, in the FC matrix of the BH2D 

method. FC abnormalities in this region have been associated to individuals with ADHD, demonstrated 

by few studies [130], as well as structural changes [137]. The location in the human brain of the basal 

ganglia and limbic structures considered the most relevant for a diagnosis related to ADHD, from the 

LRP analysis with the different FC matrices, are shown in the images on the center and on the right in 

figure 5.3, respectively.  

Default-mode and cognitive control networks 

A special network involved in ADHD related diagnosis, along with prefrontal brain regions, is the 

default-mode network (DMN). This network is a large-scale brain network that is well known for being 

active when the brain is at rest, becoming a hot topic of research with the objective of find and 

characterize dysfunctions in order to discover biomarkers for these brain connectivity abnormalities, 

since it is a brain network involved in many neurological and neuropsychiatric disorders [143]. DMN 

comprises the posterior cingulate gyrus (PCG), the precuneus (PCUN), medial prefrontal cortex, the 

medial, lateral, and inferior parietal cortex. One deficit present in ADHD is the response inhibition, 

where the subject can’t prevent spontaneous and inappropriate responses, being this directly related to 

the activation of DMN instead of its suppression, contributing to a decreased task performance. Besides, 

interactions between DMN and cognitive control network, which includes the anterior cingulate cortex, 

the supplementary motor area (SMA), the posterior parietal cortex, the dorsolateral prefrontal cortex, 

and the inferior frontal junction, are important in ADHD pathophysiology. These interactions are 

activated when processes like working memory and inhibitory control happen [128,144]. Moreover, 

DMN and the cognitive control network functions are antagonists, when the levels of attention arise, the 

cognitive control network increases and diminishes the activation of the DMN. This suppression of 

DMN has been shown to be weaker in individuals with ADHD, indicating a disruption in the normal 

relationship between DMN and cognitive control network, which may be related to the neural 

mechanisms that lead to impairment of working memory [144]. In recent years, another region of brain 

has been revealed to be involved in the response inhibition, the postcentral gyrus (PoCG), located in 

somatosensory cortex, being this region associated to an abnormal connectivity with the precuneus 

[145]. Previous works have demonstrated increased FC in postcentral gyrus [145], [146], [147], as well 

as differences in the structure of the postcentral gyrus [137], finding that individuals with ADHD present 

https://sci-hub.se/https:/www.sciencedirect.com/science/article/abs/pii/S0736574819301005
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greater involvement in the processing of motor sensory information, which results in an impaired 

response inhibition by these individuals. 

In this LRP analysis with ConnectomeCNN model, presented in table 5.7, many DMN brain regions 

were seen as relevant for an ADHD related diagnosis by the different statistical metrics used. Included 

in these brain regions are the precuneus in BCohF1 and BMITU methods, the posterior cingulate gyrus 

in BCorrD, BCohW1, BCohW2, BMITU, BTEU and BTED methods, the medial prefrontal cortex, in 

this AAL atlas is represented by the anterior cingulate gyrus (ACG), was found in BH2U method. 

Together with DMN regions, several cognitive control network were considered as relevant by the LRP 

technique in the ConnectomeCNN model. These regions comprise the supplementary motor area in 

BH2U method, regions of the posterior parietal cortex like the inferior parietal lobule (IPL), which are 

considered by BCohF1, BH2U and BTEU methods. Brain regions from the inferior frontal junction, 

involving the inferior frontal gyrus and the precentral gyrus (PreCG), were also identified by the LRP 

analysis, with the first region being seen as relevant by BCorrD, BCohF1, BCohF2 and BH2D methods, 

and the second region by BCorrD method as well, along with the BMITD1 and BMITD2 methods. 

Regarding the dorsolateral prefrontal cortex, which lies in middle frontal gyrus, the statistical methods 

responsible for considering this region as relevant, are the same discussed above in the frontal lobe brain 

regions. This LRP analysis was also able to reveal postcentral gyrus as one of the most relevant brain 

regions related to an ADHD diagnosis, being captured by two mutual information based methods, the 

BMITD1 and BMITD2. The location in the human brain of the DMN and cognitive control network 

regions considered the most relevant for a diagnosis related to ADHD, from the LRP analysis with the 

different FC matrices, are shown on the left and right images in figure 5.4, respectively. 

 

Figure 5.4: Location of brain regions relevant to an ADHD-related diagnosis, comprising the default-mode network (left 

image), the cognitive control network, including the postcentral gyrus (central image), and occipital cortex regions (right 

image). 

The brain regions considered by the LRP analysis of this study are in agreement with the results 

obtained by other studies, including the study from [128], where the posterior cingulate gyrus, medial 

superior frontal gyrus and right inferior parietal lobule from ADHD individuals showed lower 

connectivity values in comparison with the same regions in controls. In another study [148], it was found 

that ADHD subjects showed decreased FC in anterior cingulate cortex, posterior cingulate cortex, lateral 

prefrontal cortex and precuneus. In addition to these studies, a more recent work performed in [149] 

examined the resting-state brain networks that differ most between normal subjects and subjects with 

ADHD, showing a decreased FC activity in DMN and in cognitive control network, indicating that the 

DMN is strongly related to the pathological basis of impaired response inhibition in ADHD.  

 

https://sci-hub.se/https:/www.sciencedirect.com/science/article/abs/pii/S0736574819301005
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Occipital cortex 

The occipital cortex, in addition to processing visual information, is involved in the movement 

perception and in cognitive functions, being also a key region for working memory control, along with 

the DMN [128]. This brain region was also identified as important in the mechanism of working memory 

dysfunction in ADHD in [128] study, where the FC was increased in these regions when ADHD children 

were compared with normal controls, affecting the development of working memory by making this 

process slower. This study is in accordance with what was found in [129] and [150], where the occipital 

regions had an altered FC, showing an ADHD related functional abnormalities in these regions. The use 

of LRP with the ConnectomeCNN model in ADHD-200 dataset corroborates with the findings presented 

by previous studies. Revealed that the inferior (IOG), middle (MOG) and superior occipital gyrus (SOG) 

are involved in an ADHD-related diagnosis, being captured by the BCohW1, BCohW2, BH2U, BMITU, 

BMITD1 and BTEU statistical methods, as demonstrated in table 5.7. The image on the right in figure 

5.4 shows the location in the human brain of the regions of the occipital cortex considered to be the most 

relevant for a diagnosis related to ADHD, from the LRP analysis with the different FC matrices. 

Ventral and dorsal attention networks 

ADHD is also characterized by symptoms of inattention, where two major brain systems are 

responsible for these processes, being those the ventral and dorsal attention networks. Ventral attention 

network (VAN) is associated with the orientation of attention when triggered by unexpected stimuli. 

VAN comprises the opercular part of the inferior frontal gyrus (IFGoper), the anterior cingulate gyrus, 

and the temporo-parietal junction, comprising the separation between the superior temporal gyrus and 

the middle temporal gyrus, and the inferior parietal lobule, this being divided into supramarginal (SMG) 

and angular gyrus (ANG). On the other hand, dorsal attention network (DAN) is prominently involved 

in voluntary and sustained control of attention, comprising the intraparietal sulcus, which separates the 

parietal lobe into superior (SPL) and inferior, the frontal eye field, which is located at the intersection 

of the middle frontal gyrus and the precentral gyrus [151,152]. The influence of the DAN in ADHD is 

quite evident in several studies, such as [153], [154] and [155] works, where it was found that the DAN 

among healthy individuals and individuals with ADHD presented a decrease in their FC activity, 

something confirmed more recently in [156] and [157] studies. Regarding the VAN, studies have found 

inconsistent results in terms of whether there is an increase or decrease in activity in this network. For 

example, the studies from [153] and [154], reported a decreased FC in VAN in ADHD adults and in 

ADHD children, respectively, however the latter found no alterations in the VAN of adults with ADHD. 

These discoveries were also present in [149] most recent work, confirming a reduced FC activity in 

children with ADHD, relative to healthy controls. On the other hand, the work from [158] found FC 

hyperactivation in both adults and children’s ADHD groups, with adults showing greater FC activation, 

with the same increased FC in the of VAN ADHD children and adolescents reported in the study [159]. 

More recently in work [145], no significant changes were seen in the VAN of ADHD individuals. 

VAN’s network suppression is fundamental to avoid the attentional shifting towards stimuli not related 

to the current task, with its hyperactivity being related to the distractibility symptoms of ADHD, 

although the contribution of this network in ADHD is not yet fully understood, while dysfunctions in 

DAN are clearly present [145]. Despite these findings, neither of the two networks exert a more 

important role in attention processes individually, but rather work together in a dynamic control of 

attention towards a specific goal [145,151]. 

The regions from the VAN and DAN involved in attention tasks mentioned above, are distinguished 

by the LRP analysis with ConnectomeCNN model as relevant for an ADHD-related diagnosis. From the 

regions present in VAN, even though the functions of this network in ADHD are not fully explicit, some 
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of these were considered as relevant for ADHD diagnosis, starting with the regions present in temporo-

parietal junction. The supramarginal gyrus, part of the inferior parietal lobule, was considered relevant 

for an ADHD-related diagnosis in several statistical methods, being those the BCorrD, BCohW1, 

BCohF2, BCohW2 and all mutual information based methods. The other part of the inferior parietal 

lobule, the angular gyrus, was present in the LRP analysis of BCohW2, BH2U, and BMITD1 statistical 

methods. Regarding the remaining regions of the temporo-parietal junction, namely the temporal 

regions, were present in many statistical methods, such as the two correlation based methods, BCohF1, 

BCohF2, BCohW2, BH2U2, BMITU, BMITD2, and the two transfer entropy based methods. The 

opercular part of the inferior frontal gyrus is the portion of frontal lobe that overlaps the insula, and it 

was analyzed as relevant in BCorrD, BCohF1, BCohF2 and BH2D methods, while the anterior cingulate 

gyrus was only seen as a relevant region involved in ADHD in statistical method BH2U. Regions that 

are part of the DAN were also identified as relevant in the LRP analysis. Although there was no superior 

parietal lobule findings in LRP analysis, this technique was capable of identify the inferior parietal 

lobule as one of the regions more relevant for a diagnosis related to ADHD, mainly in BCohF1, BH2Ua 

and BTEU methods. Brain regions from the frontal eye field, which encompass around the middle 

frontal gyrus and the precentral gyrus, are present in LRP relevant regions. The middle frontal gyrus 

was seen as one of the most relevant brain regions for an ADHD-related diagnosis in BCohF1, BCohW2, 

BCohF2, BH2D, and all the mutual information based methods, with the precentral gyrus being captured 

by the BCorrD, BMITD1 and BMITD2 methods. The location in the human brain of the VAN and DAN 

regions considered the most relevant for a diagnosis related to ADHD, from the LRP analysis with the 

different FC matrices, are shown on the left and center images in figure 5.5, respectively. 

 

Figure 5.5: Location of brain regions relevant to an ADHD-related diagnosis, comprising the ventral attention network (left 

image), the dorsal attention network (central image) and cerebellum with its constituent vermis (right image). 

Cerebellum 

Recently, studies have also suggested the cerebellum as an active participant of this dorsal attention 

network [160]. The study performed in [161] found a decrease in the volume of the posterior cerebellar 

vermis and in the volume of the posterior inferior lobe in posterior vermis of individuals with ADHD, 

with a normal anterior portion and posterior superior lobe, respectively, demonstrating that the 

cerebellum is somehow involved in the voluntary attention system. Along with its relationship towards 

attention impairments, cerebellum has been widely associated with poor motor abilities symptoms in 

ADHD, in addition to impairments of regions involving motor control skills such as the supplementary 

motor area and the putamen, discussed previously. These poor motor abilities can affect 30-50% of 

children with ADHD, mostly in posture, walking, and balance capabilities [162]. Structural studies were 

the first to reveal consistent findings regarding alterations of cerebellar structures, more specifically 

reduced volume of the total cerebellum, cerebellar lobules and several portions of vermis, emphasizing 
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the role of the cerebellum and its constituents in ADHD [132,162]. The same findings of reductions in 

the volumes of cerebellum and its subregions, vermis and cerebellar lobules, were reported in the works 

of [163] and [164], with this reduction being correlated with ADHD, more specifically with the 

attentional and motor problems that arise from this diseased. In addition to the structural changes, an 

abnormal FC in the cerebellum and its regions was also verified. In [128] study, the FC intensity between 

both sides of the cerebellum was found to be increased in individuals with ADHD compared to what 

was observed in normal controls, reporting an indirect effect of this increase in the structure of the 

cerebellum, which is probable to intensify the ADHD symptoms and cause an attention impairment. 

Another study outcome confirmed the involvement of cerebellum as one of the brain regions with the 

most discriminative FC connections for in ADHD diagnosis, confirming its importance in ADHD 

abnormalities [138].  

The LRP analysis performed with the ConnectomeCNN model considered the cerebellum 

(Cer/CerCrus), as well as the vermis (Vms), an integral structure of the cerebellum, two of the brain 

regions with most presence and some of the highest relevance values in FC matrices from different 

statistical metrics, in ADHD-related diagnosis, as seen in table 5.7. From these results, it is possible to 

observe that in the majority of these statistical methods used, with the exception of the BH2U, BMITD1 

and BMITD2 methods, cerebellum and its vermis were the regions considered as the most relevant in a 

diagnosis related to ADHD. The results from this LRP analysis are in line with what has been revealed 

by the previous studies presented. The image on the right in figure 5.5 shows the location in the human 

brain of the regions of the cerebellum and vermis considered to be the most relevant for a diagnosis 

related to ADHD, from the LRP analysis with the different FC matrices. 

Visual and auditory attention processing 

Much of human attention comes from the processing of visual and auditory information, which, when 

not properly processed, can directly influence attention tasks from the main attention systems mentioned 

previously. Several regions located in the occipital lobe, such as the cuneus (CUN), lingual gyrus 

(LING) and calcarine cortex (CAL), as well as the fusiform gyrus (FFG), are responsible for the direct 

processing of visual information and form the visual attention system These regions maintain the 

attention levels and prevent distractions from undesirable stimuli, with the inability to inhibit unwanted 

stimuli as one of the main symptoms of ADHD [146]. Studies have been reporting FC abnormalities 

between ADHD and healthy individuals in these brain regions, namely in [130], [140], [145], [146], and 

more recently in [138] work. In addition to the FC abnormalities, findings on structural alterations are 

found in [137] study. All of these regions mentioned were considered relevant for a diagnosis related to 

ADHD in the LRP analysis performed with the ConnectomeCNN model. The cuneus and the lingual 

gyrus were present in the BCorrU method, the latter being also present in the BMITD2 method, with the 

fusiform gyrus being captured by the BCohW1 and BTED methods. The calcarine cortex was the region 

of the brain, among those involved in these mechanisms of visual attention, the region most present in 

statistical methods, being seen as relevant by the BCorrU, BCohF2, and both the transfer entropy 

methods, BTEU and BTED. 

Not only dysfunctions of the visual attention system can be crucial in the process of impaired 

attention, but so is the auditory attention system, affecting the maintenance of individuals' attention and 

leading to their disturbance by external stimuli to the intended task. The auditory attention system is 

located in primary auditory cortex, which comprises portions of the superior temporal gyrus and the 

transverse temporal gyri, better known as Heschl’s gyrus (HES). Although it is not yet fully understood, 

several studies have been reporting findings regarding the influence of auditory cortex in ADHD 

individuals, where deficits in this area can lead to significant high-order impairments, as presented in 
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[165] and [166] works. The work in [158] found enhanced FC in the auditory network when comparing 

ADHD and healthy controls groups, with other studies revealing in specific regions of this network, 

namely the increased FC activity in the superior temporal gyrus from a study performed by [145]. It was 

also found an increased FC activity in Heschl’s gyrus in [166] and [167] works, with this increase in 

activity being related to a greater ability to be distracted by external stimuli to the task. The use of LRP 

analysis with the ConnectomeCNN model, regarding the regions considered relevant for a diagnosis of 

ADHD, was able to corroborate the findings of these studies presented. The superior temporal gyrus 

was already presented in the results of the LRP analysis before, while the Heschl’s gyrus was considered 

as one of the most relevant brain regions only by the BTEU method. The location in the human brain of 

the visual and auditory attention processing regions considered the most relevant for a diagnosis related 

to ADHD, from the LRP analysis with the different FC matrices, are shown on the left image in figure 

5.6. 

 

Figure 5.6: Location of brain regions involved in visual and auditory attention processing (left image) and other brain 

regions, such as the rectus gyrus, olfactory gyrus, Rolandic operculum and paracentral lobule, (right image) considered 

relevant for an ADHD-related diagnosis. 

Rectus gyrus and olfactory gyrus 

Studies are reporting several other brain regions beyond the most prominent ones, a majority of those 

discussed above. A brain region that is also involved in the diagnosis related to ADHD when LRP 

analysis is performed is the rectus gyrus (REC). The anterior surface of the orbital part of the frontal 

lobe is composed by the rectus gyrus, with this region being affected in ADHD, as verified by the studies 

from [168] and [169], observing an altered gray matter in individuals with ADHD when compared with 

healthy controls. Moreover, recent FC studies like [129], [138] and [140], have found rectus gyrus FC 

as one of the most discriminant brain regions in ADHD-related diagnosis. Together with rectus gyrus is 

the olfactory gyrus (OLF), also part of the anterior surface of the orbital part of the frontal lobe, since 

abnormalities this brain region have been contributing to ADHD, namely in working memory 

impairments, as demonstrated by [170] and [171] works. Along with the previous studies, FC 

abnormalities were also identified in olfactory gyrus in [129] and [138], revealing this region as one of 

the brain regions with the most discriminative power between ADHD and control individuals. The 

results achieved by the LRP analysis with the ConnectomeCNN model corroborate with the findings 

presented in the studies above, where the rectus gyrus was considered as a relevant brain region in 

ADHD-related diagnosis by several statistical methods, including the BCohF2, the h2 and mutual 

information based methods. Regarding the olfactory gyrus, only one statistical method was involved in 

the ability of the LRP technique to consider this region as one of the ten most relevant for a diagnosis 

related to ADHD, this being the BH2D method.  
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Rolandic operculum and paracentral lobule  

Another region that is beginning to be associated to ADHD problems is the Rolandic operculum 

(ROL), also known as the subcentral gyrus, which unifies the precentral and postcentral gyrus, and it is 

responsible for the control of emotions, language and speech, as well as in part of motor execution [172]. 

Together with the Rolandic operculum, the paracentral lobule (PCL) has also been linked to ADHD in 

recent findings, serving as a connector between the precentral and postcentral gyrus, controlling motor 

and sensory functions [173]. Some more modern studies have reported FC abnormalities in the Rolandic 

operculum, when comparing this region in individuals with ADHD and healthy controls, such as [125], 

[129] and [138]. Works by [138] and [174] showed alterations in the FC activity of paracentral lobule, 

and by [175] and [176] observed structural alterations in this region. These findings can be observed by 

the LRP analysis performed in this work and shown in table 5.7, where the Rolandic operculum was 

considered relevant for a diagnosis related to ADHD by the BMITD2 method. The paracentral lobule 

was considered relevant for ADHD diagnosis by more statistical methods, these being the BCohW2, 

BMITU, BMITD1, BMITD2 and the BTEU methods. As they are connected to precentral and 

postcentral gyrus, two regions with evidence of their influence on ADHD, as demonstrated in this LRP 

analysis with ConnectomeCNN model and previous studies, one might think that these may somehow 

affect the Rolandic operculum and the paracentral lobule, requiring further studies to assess the extent 

of this effect. The image on the right in figure 5.6 shows the location in the human brain of the rectus 

gyrus, olfactory gyrus, Rolandic operculum and paracentral lobule, considered to be the most relevant 

for a diagnosis related to ADHD, from the LRP analysis with the different FC matrices. 

5.3.2 - LRP analysis with ConnectomeCNN-Autoencoder model 

The same LRP analysis procedure is conducted when the classification for each individual FC matrix 

computed, from the set of statistical metrics used, is performed with the ConnectomeCNN-Autoencoder 

model. Figure 5.7 demonstrates a comparison between the mean FC matrix among all subjects present 

in the test set, computed through the BCorrU method, in the image on the right, and the respective visual 

heatmap result of the LRP analysis, in the image on the left. The LRP analysis is done for the FC matrices 

computed using the remaining statistical metrics, which are shown in figure A.3 of the Appendix. 

 

Figure 5.7: Heatmap of the Layer-wise Relevance Propagation analysis for the Functional Connectivity matrix computed 

with the undirected bivariate correlation method (left image) of the respective original Functional Connectivity matrix 

computed with the same method (right image) with the ConnectomeCNN-Autoencoder model, using the mean between the 

Functional Connectivity matrices of all subjects for this statistical method. 
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From the LRP analysis performed with the ConnectomeCNN-Autoencoder model, table 5.8 is 

presented, providing the ten most relevant brain regions related to an ADHD diagnosis, from the most 

relevant to the smallest among these ten regions, for each statistical metric FC matrix. The respective 

relevance values for these brain regions are shown in table 5.8 as well, exactly with the same order as 

in table 5.8.  

Frontal lobe 

By examining the LRP results for the ConnectomeCNN-Autoencoder model, it is possible conclude 

that, similarly to what was found earlier with the ConnectomeCNN model, the prefrontal cortex regions 

are the brain regions with the highest frequency in terms of being considered relevant for a diagnosis 

related to ADHD, among the FC matrices computed through the different statistical metrics, supporting 

the findings from FC and structural studies presented. The LRP analysis considered the superior frontal 

gyrus as relevant in several FC matrices of different statistical metrics, among which are the BCorrD, 

BCohF1, BCohF2, BCohW2, BH2D, and all mutual information based methods. Regarding the middle 

frontal gyrus as one of the most relevant regions for an ADHD-related diagnosis, it was seen by the LRP 

in BCorrD, BCohW1, BCohF2, BCohW2, BMITD2, and both transfer entropy methods, BTEU and 

BTED. The inferior frontal gyrus, in spite of being slightly less present as a relevant brain region 

compared to the other two regions of the prefrontal cortex, was considered relevant for a diagnosis 

related to ADHD in various statistical metrics of FC matrices, such as the BCohF1, BCohF2, BCohW2, 

BMITU, BMITD2 and BTED methods.  

Basal ganglia and limbic structures 

When the basal ganglia and the fronto-striatal circuit, together with the limbic structures, were 

analyzed by the LRP in conjunction with the ConnectomeCNN-Autoencoder model, they were found as 

relevant brain regions for an ADHD-related diagnosis in various statistical metrics of FC matrices. From 

the LRP analysis performed, regions of the striatum, which is composed by the caudate nucleus, the 

putamen and the nucleus accumbens, were included in table 5.8 among the most relevant regions for a 

diagnosis of ADHD. The caudate was considered as relevant in both correlation based methods, BCorrU 

and BCorrD, as well as in the BH2D method, with the putamen being seen as a relevant region for 

ADHD in BCohF1 and BTEU methods. The nucleus accumbens, a part of the striatum, is not considered 

in this analysis as this region is not part of the 116 AAL atlas.  

Regarding the limbic system structures, involving the amygdala, thalamus and hippocampus, both 

were considered as relevant in this LRP analysis with the ConnectomeCNN-Autoencoder model. The 

amygdala was seen as relevant for an ADHD-related diagnosis in the FC matrix computed using BH2U 

method, and thalamus when used the FC matrices from BCorrD and BCohF1 methods. Concerning the 

hippocampus, this specific region was not considered as relevant for a diagnosis related to ADHD, but 

its surrounding region, the parahippocampal gyrus, which has been associated by some studies as a 

possible region affected by ADHD [130,137]. The results of the LRP analysis when used with the 

ConnectomeCNN-Autoencoder model corroborate the findings of several studies on the importance of 

these brain regions in the discrimination of individuals with ADHD. 
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Table 5.8a: Brain regions with greater impact on the others in an ADHD-related diagnosis, when using the ConnectomeCNN-Autoencoder model, and respective relevance values. 

ConnectomeCNN-Autoencoder 

Method Brain Regions 

BCorrU Cer9.L Cer6.L Cer 4_5.R Cer 4_5.L TPOsup.R STG.L CAU.R LING.L PCG.L OLF.L 

Relevance Value 0.0015 0.0013 0.0012 0.00108 0.00100 0.00098 0.00089 0.00080 0.00068 0.0005 

BCorrD Vms 10 Vms 4_5 Cer 7b.L CerCrus 2.L THA.R CAU.R SOG.L ORBmid.R ORBmed.L PreCG.L 

Relevance Value 0.0012 0.0011 0.0011 0.00111 0.00097 0.00088 0.00083 0.00081 0.00080 0.0006 

BCohF1 Vms 7 Cer 7b.L THA.R PUT.R PUT.L ANG.L IPL.R REC.L SFGmed.R IFGoper.L 

Relevance Value 0.0010 0.0010 0.0010 0.00100 0.00087 0.00086 0.00075 0.00074 0.00072 0.0007 

BCohW1 Cer4_5.R CerCrus 1.L HES.L PoCG.R FFG.R FFG.L IOG.L IFGoper.L ORBmid.L MFG.L 

Relevance Value 0.0021 0.0018 0.0017 0.00173 0.00166 0.00126 0.00126 0.00119 0.00112 0.0011 

BCohF2 Cer 10.R CerCrus 1.R ITG.R STG.R STG.L HES.L REC.L ORBmid.L SFGmed.R IFGtri.L 

Relevance Value 0.0018 0.0016 0.0014 0.00131 0.00129 0.00126 0.00126 0.00115 0.00108 0.0010 

BCohW2 Vms 10 Vms 9 IFG.R FFG.R FFG.L MOG.L PCG.L SFGmed.R MFG.L ORBmed.R 

Relevance Value 0.0016 0.0014 0.0013 0.00118 0.00116 0.00106 0.00104 0.00104 0.00102 0.0010 

BH2U Cer 10.L Cer 3.R ITG.R MTG.L IPL.L SOG.R AMY.R ACG.L REC.L OLF.R 

Relevance Value 0.0022 0.0018 0.0016 0.00131 0.00120 0.00115 0.00114 0.00109 0.00107 0.0010 
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Table 5.8b: Brain regions with greater impact on the others in an ADHD-related diagnosis, when using the ConnectomeCNN-Autoencoder model, and respective relevance values. 

ConnectomeCNN-Autoencoder 

Method Brain Regions 

BH2D Cer 10.R Cer 6.L ITG.R STG.L CAU.R SOG.L SFGmed.R SMA.R SMA.L ORBmed.L 

Relevance Value 0.0016 0.0010 0.0009 0.00093 0.00088 0.00087 0.00070 0.00061 0.00060 0.0005 

BMITU Vms 7 Vms 3 CerCrus 2.L MTG.R STG.L HES.R PCUN.L REC.L ORBmed.L IFGoper.R 

Relevance Value 0.0022 0.0017 0.0011 0.00114 0.00113 0.00098 0.00094 0.00080 0.00070 0.0006 

BMITD1 STG.R STG.L HES.R IPL.L CUN.R CAL.L MCG.L SMA.L ORBmed.L Left PreCG 

Relevance Value 0.0014 0.0014 0.0007 0.00063 0.00062 0.00052 0.00047 0.00044 0.00043 0.0003 

BMITD2 Vms 4_5 STG.L PCL.R PHG.R REC.L ORBmed.R SMA.R IFGoper.R ORBmid.R ORBmed.L 

Relevance Value 0.0009 0.0008 0.0007 0.00074 0.00074 0.00068 0.00068 0.00060 0.00056 0.0005 

BTEU Vms 9 Vms 1_2 HES.L PUT.R PCL.R SPL.R PCG.R MCG.L ORBmid.L ROL.R 

Relevance Value 0.0016 0.0014 0.0014 0.00136 0.00126 0.00123 0.00118 0.00115 0.00106 0.0010 

BTED Cer 9.R STG.R PCL.R PCL.L PCG.R PCG.L ORBmid.L ROL.R IFGorb.R ORBmid.R 

Relevance Value 0.0012 0.0011 0.0010 0.00090 0.00084 0.00082 0.00081 0.00067 0.00060 0.0006 
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Default-mode and cognitive control networks 

DMN regions were identified as relevant for a diagnosis related to ADHD when used the LRP 

analysis with the ConnectomeCNN-Autoencoder model.  Among these DMN regions, the precuneus is 

present in the FC matrix using BMITU method, the posterior cingulate gyrus using the BCorrU, 

BCohW2, and both transfer entropy methods, BTEU and BTED, with the medial prefrontal cortex, 

which is represented by the anterior cingulate gyrus in the 116 AAL atlas used, being considered as 

relevant for ADHD in BH2U method. As mentioned previously, cognitive control network regions are 

also proposed as implied in ADHD pathophysiology, and identified as relevant regions for ADHD 

diagnosis in the LRP analysis. The supplementary motor area was considered as relevant in the FC 

matrices of the BH2D, BMITD1 and BMITD2 methods, and a region of the posterior parietal cortex, 

like the inferior parietal lobule, was considered as relevant in BCohF1, BH2U, and BMITD1 methods.  

Regions of the inferior frontal junction, also included in the cognitive control network, comprising 

the inferior frontal gyrus and the precentral gyrus, are seen as relevant regions for a diagnosis related to 

ADHD in FC matrices of the BCohF1, BCohF2, BCohW2, BMITU, BMITD2 and BTED methods, and 

in BCorrD and BMITD1 methods, respectively. The dorsolateral prefrontal cortex, located in the middle 

frontal gyrus, belongs to the cognitive control network, with the FC matrices of the statistical methods 

used considered as relevant for ADHD diagnosis being the same as the ones presented previously in 

frontal lobe regions. Regarding the postcentral gyrus, involved in the inhibition response deficits, it was 

seen as one of the most relevant brain regions related to a diagnosis of ADHD in the FC matrix of the 

BCohW1 method. These regions involved as relevant to a diagnosis of ADHD, through the LRP analysis 

with the ConnectomeCNN-Autoencoder model, are in line with what has been reported by several 

related studies, both in terms of FC and structural abnormalities. 

Occipital cortex 

The occipital cortex, despite including important regions in visual information processing, as will be 

discussed later, is also important in the control of working memory, together with DMN [128]. The 

regions of the occipital cortex, which play a key role in working memory, including the superior, middle 

and inferior occipital gyrus, were considered one of the most relevant regions of the LRP analysis with 

the ConnectomeCNN-Autoencoder model. These regions were found by the FC matrices of the BCorrD, 

BCohW1, and BCohW2 methods, as well as in both statistical methods from the h2 metric, BH2U and 

BH2D. 

Ventral and dorsal attention networks 

One of the most important dysfunctions in ADHD pathophysiology is the inattention symptom, 

which is controlled by two major networks, the VAN and DAN. Of these two networks, VAN is the one 

with less consistent results regarding its impact on ADHD, even so presenting several regions in this 

LRP analysis with the ConnectomeCNN-Autoencoder model.  

The temporo-parietal junction is one the most important area in the VAN, comprising the superior 

temporal gyrus and two regions of the inferior parietal lobule, the supramarginal and angular gyrus. The 

inferior parietal lobule and angular gyrus were identified by the LRP analysis as relevant regions 

regarding a diagnosis related to ADHD. Both regions were present in the FC matrix of the BCohF1 

method, with the first one being also identified in the FC matrices of the BH2U and BMITD1 methods. 

Here in the LRP analysis obtained with the ConnectomeCNN-Autoencoder model from table 5.8, the 

remaining constituent of inferior parietal lobule, the supramarginal gyrus, was not considered relevant 

by any FC matrix. The temporal region of the temporo-parietal junction, the intersection between the 
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superior and middle temporal gyrus, was present as a relevant brain region in FC matrices of various 

statistical methods, such as the BCorrU, BCohF2, BH2U, BH2D, all mutual information based methods, 

BMITU, BMITD1, and BMITD2, as well as the BTED method. The VAN even encompasses more 

regions, such as the opercular part of the inferior frontal gyrus, considered as relevant for an ADHD-

related diagnosis when using the BCohF1, BCohW1, BCohF2, BMITD1, BMITD2, and BTED 

methods, and the anterior cingulate cortex, only seen as important in the diagnosis of ADHD with the 

FC matrix of the BH2U method.  

When it comes to the DAN, composed by the intraparietal sulcus, dividing the superior and inferior 

parietal lobules, and the frontal eye field, located between the middle frontal gyrus and the precentral 

gyrus, all these were identified by the LRP analysis with the model used, as presented in table 5.8. The 

intraparietal sulcus regions, superior and inferior parietal lobules, were identified as relevant regions by 

the LRP analysis when the FC matrices of the BTEU method, and the FC matrices of the BCohF1, 

BH2U and BMITD1 methods, respectively. The frontal eye field regions, including the middle frontal 

and precentral gyrus, were included among the brain regions with the most relevance in an ADHD-

related diagnosis. The first was captured by the FC matrices of BCorrD, BCohW1, BCohF2, BCohW2, 

BMITD2, and both transfer entropy methods, BTEU and BTED, with the last to be identified in the FC 

matrices  of the BCorrD and BMITD1 methods. These findings are in accordance with what has been 

reported in several studies, confirming the influence of DAN impairments on ADHD inattention and 

showing more evidence that VAN may also be involved in this problem. 

Cerebellum 

Looking at the table 5.8, the LRP analysis performed with the ConnectomeCNN-Autoencoder model 

considered the cerebellum and vermis as the brain regions with the highest relevance values in the 

majority of the FC matrices of the set of statistical methods used, except for the FC matrix of the 

BMITD1, for an ADHD-related diagnosis. As can be observed in the table mentioned, regions of the 

cerebellum were identified by LRP as the most relevant regions for a diagnosis of ADHD, among all 

regions considered in the analysis. This region was present in the FC matrix using the BCorrU method, 

having the four most relevant regions, in the FC matrix of the BCohW1, BCohF2, BH2U, and BH2D 

methods, with the two most relevant brain regions, as well as the most relevant brain region when using 

the FC matrix of the BTED method.  

In addition to having the most important regions for a diagnosis related to ADHD, in the FC matrices 

of the BCorrD, BCohF1, and BMITU methods, cerebellum is present as one of the ten most important 

brain regions in this diagnosis. In the case of vermis, its presence as the most relevant brain region, 

among all the regions studied, was captured by the LRP in several FC matrices statistical methods, such 

as the FC matrices for the BCorrD, BCohW2, BMITU and BTEU methods, where two vermis structures 

were the two most relevant brain regions. In the FC matrices of the BCohF1 and BMITD2 methods, 

only one vermis region was considered as the most relevant region in ADHD diagnosis. The results 

achieved by the use of LRP analysis with the ConnectomeCNN-Autoencoder model showed a 

significant presence of the cerebellum and vermis for a diagnosis of ADHD, showing the importance of 

dysfunctions in these regions in the pathophysiology of the disease, reporting similar results to previous 

studies. 

Visual and auditory attention processing 

As discussed previously, the human attention is directly influenced by visual and auditory stimuli 

processing. The LRP analysis used along with the ConnectomeCNN-Autoencoder model displayed the 

importance of these visual processing brain regions in a diagnosis related to ADHD, as showed in table 
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5.8, being among the regions with the most relevance for that same diagnosis. The cuneus and calcarine 

cortex were seen as relevant brain regions when used the FC matrix of the BMITD1 method, with the 

lingual gyrus considered as relevant in the BCorrU method, while the fusiform gyrus was captured by 

the LRP analysis as relevant for ADHD diagnosis when used the FC matrices of the BCohW1 and 

BCohW2 methods.  

Regions of the brain responsible for the auditory processing were also identified by the LRP analysis 

with the ConnectomeCNN-Autoencoder model as important regions for a diagnosis related to ADHD. 

Among these regions, the superior temporal gyrus was considered as a relevant region in FC matrices 

of the BCorrU, BCohF2, BH2D, and all mutual information based methods, BMITU, BMITD1, 

BMITD2, as well as the BTED method. The Heschl’s gyrus was present in FC matrices of various 

statistical methods, such as the BCohW1, BCohF2, BMITU, BMITD1, and BTEU methods, showing 

its importance in the diagnosis of ADHD in this analysis. The results from this LRP analysis about the 

impact of visual and auditory processing brain regions are very positive, confirming several findings 

reported in previous works on these regions position in ADHD pathophysiology. 

Rectus gyrus and olfactory gyrus 

Recently, some brain regions that were not in the standard ADHD pathophysiology, as the ones 

discussed above, have started to emerge with evidence that their impairments were present in individuals 

with ADHD compared to typically developed controls. Among these regions is the rectus gyrus, 

identified by the LRP analysis with the ConnectomeCNN-Autoencoder model as a relevant region for a 

diagnosis related to ADHD, being considered in FC matrices of the BCohF1, BCohF2, BH2U, BMITD1, 

and BMITD2 methods. In addition, the olfactory gyrus is another brain region that has been associated 

with the pathophysiology of ADHD, which was seen as one of the most relevant brain regions in the 

LRP analysis with the ConnectomeCNN-Autoencoder model in FC matrices using the BCorrU and 

BH2U methods. 

Rolandic operculum and paracentral lobule  

 Two other regions that have been shown to be affected by ADHD and were not in the standard 

ADHD pathophysiology are the Rolandic operculum and the paracentral lobule. In the LRP analysis 

with the ConnectomeCNN-Autoencoder model, paracentral lobule was highlighted as one of the most 

relevant regions for a diagnosis related  to ADHD in FC matrices of the BMITD2, BTEU and BTED 

methods, with the Rolandic operculum being seen as relevant in both transfer entropy based methods, 

BTEU and BTED. All these findings from the LRP analysis seem to corroborate the results of recent 

studies presented on the influence of ADHD on dysfunctions in these regions. 

5.3.3 – Overall View 

From the results presented in tables 5.7 and 5.8, corresponding to the application of LRP analysis in 

conjunction with the ConnectomeCNN and ConnectomeCNN-Autoencoder models, respectively, it is 

possible to observe that the use of this XAI technique proved to be very similar in both models, in terms 

of the brain regions that were considered as relevant for an ADHD-related diagnosis. Since the results 

of the LRP analysis for both models used are practically identical, the figures of the location of brain 

regions considered relevant by this analysis will not be shown. A difference between the results obtained 

from the use of the two models concerns the superior parietal lobule, an element of DAN, a network 

involved in voluntary and sustained control of attention, in which attention impairments are a common 

symptom in subjects with ADHD. This region of the brain was considered as a relevant region in this 
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diagnosis when the LRP was used with the ConnectomeCNN-Autoencoder model, while in the 

ConnectomeCNN model only the inferior parietal lobule was found as relevant.  

By using the FC matrices of the different statistical metrics in the LRP analysis, it was possible to 

assess how the use of statistical metrics in addition to the traditional linear metric used in FC studies, 

correlation coefficient, can actually provide more information, rather than the use of correlation alone. 

Looking at tables 5.7 and 5.8, it is noticeable in the LRP analysis using both models, that brain regions 

comprising the prefrontal cortex, an important area of dysfunction in the pathophysiology of ADHD, as 

well as the cerebellum and vermis, are present in the FC matrices of correlation-based methods and FC 

matrices of other methods. Despite this, most of the remaining brain regions that are shown by previous 

studies to be involved in ADHD are identified by LRP analysis using FC matrices of the different 

statistical metrics used. 

From the above analysis on the regions of the brain that are more related to ADHD diagnosis, it 

demonstrates that the models used, ConnectomeCNN and ConnectomeCNN-Autoencoder models, 

together with the LRP technique, can reveal some of the brain circuits regions involved in ADHD 

pathophysiology. These findings are in accordance with structural and functional alterations reported in 

several previous studies presented. 
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6 – Conclusions 

One of the main goals of the present dissertation was to study the use of different statistical metrics 

to compute the FC matrices using the time-series of the BOLD signals from two widely used datasets, 

the ABIDE-I and ADHD-200 datasets, which encompass subjects with ASD and ADHD, respectively, 

as well as healthy subjects. The FC data were used as input to two DNNs models, the modified 

ConnectomeCNN and the innovative ConnectomeCNN-Autoencoder models, each having their 

respective parameters fine-tuned in relation to the input data used, performing the classification task 

between healthy and diseased subjects for each FC matrix computed with the several statistical metrics 

studied. In addition, it was also intended to observe the effect of combining these FC matrices computed 

with the different statistical metrics, in a single FC multi-metric, on the classification performance of 

the models used. As the final objective of this dissertation, the XAI technique LRP was used to internally 

analyze the functioning of the DNNs models used in relation to their predictions, in order to overcome 

the black-box problem associated with these algorithms. 

Regarding the performance of each model, the ConnectomeCNN and ConnectomeCNN-

Autoencoder models showed quite similar classification performances when used in both datasets. There 

were, in fact, some differences in the FC matrices results for certain statistical metrics between the 

ConnectomeCNN and ConnectomeCNN-Autoencoder models when applied to the ADHD-200 dataset, 

where the results were slightly worse in the ConnectomeCNN-Autoencoder models, which may have 

been due the fact that this dataset classes are not evenly balanced, affecting the performance of the 

autoencoder. It was possible to conclude that, from the classification results of both datasets in both 

models, it is easier to distinguish between ASD and healthy subjects than between ADHD and healthy 

subjects. 

The results from the individual FC matrices classifications revealed promising findings when it 

comes to using other statistical metrics to create the FC matrices, apart from the traditionally used 

correlation metric, as other statistical metrics like h2 and mutual information, which are characterized 

for having the ability to consider non-linearities in signals, showed similar and in some cases better 

classification performances. This is more evident when used the FC matrix of the h2 based methods, 

where the overall performance of the FC matrix of the best method based on h2 metric is slightly better 

than the FC matrix of the best method based on correlation, while FC matrices based in mutual 

information methods, although it did not obtain a better classification than correlation, achieved 

performances very close to those of correlation-based methods. This emphasizes the importance of 

considering non-linearities present in the BOLD signals acquired, overcoming the natural limitation of 

correlation family metrics, validating its importance, as discussed in [84] and [85], and its complement 

to the use of correlation metrics. In this study, the results showed that FC matrices calculated using 

statistical metrics like coherence transfer entropy had the worst classification performance, requiring 

further studies to understand the capability of these metrics when applied to rs-fMRI data.  

In the FC multi-metric approach, despite not improving the classification performance compared to 

the best individual FC matrix from the statistical metrics, achieving similar classification results, some 

interesting results were found, mainly in its ability extract the most important features from the different 

FC matrices combined. This can be verified by observing the measures used to evaluate the performance 

of the models, where in the majority of the experiments, using the ConnectomeCNN and 

ConnectomeCNN-Autoencoder models in both datasets, each model evaluation measure value for the 

FC multi-metric corresponds to the result of the respective measure of the best individual FC matrix, 
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supporting the evidence that this approach can select the best features of the FC matrices combined. The 

importance of these FC multi-metric findings is close to the studies of [7] and [97], where in these works 

an improvement in the classification was observed when a multi-metric was used, showing a positive 

impact of the use of this combination of statistical metrics. In the final part of this dissertation, the early 

use of the LRP technique from the iNNvestigate toolbox proved to be very successful in unraveling the 

black-box problem of DNNs, being applied to the FC matrices of ADHD-200 dataset subjects, it was 

able to reveal the regions of the brain that were most relevant to an ADHD-related diagnosis, with these 

LRP findings being supported by several previous studies.   

For future work, some limitations of this dissertation should be addressed. In the present work, for 

both ABIDE-I and ADHD-200 datasets, the different subtypes of ASD and ADHD were not considered 

separately. Furthermore, for the group of subjects in these datasets, a demographic division was not 

made, in terms of age, gender, and also considering other relevant phenotypic information, such as IQ 

levels, handedness, among others. These subject’s demographic and phenotypic information are 

extremely important in order to reduce the heterogeneity of these disorders, where each subtype is more 

related to a specific group age, genre, or other information. The consideration of this type of information 

may lead to improvements in the classification performance of the DL models used, which were below 

expectations, since it will allow them to better distinguish between the patterns of a disease subtype and 

the patterns of subjects considered healthy. This would affect not only the classification performance as 

well as the LRP analysis performed, making this analysis more reliable. Another limitation of this 

dissertation lies in the TR values associated with the acquisition of BOLD signals from rs-fMRI. 

Different TR's were used by the different image locations of the different subjects, being somehow 

interesting to try to understand if this difference in values can have any influence on the FC data, and 

later on the respective classification. Moreover, the improvement of the DL models used, as well as the 

investigation of new developments in other state-of-the-art DL models applied to FC studies, should not 

be discarded, as this area is in rapid evolution and with incredible progress.  

Given the conclusions above mentioned, it is clear that the field of connectomics is far from being 

fully understood and mastered, with the FC studies being a valuable tool for analyzing neurological and 

neuropsychiatric disorders. It is also important to continue to explore and improve DL models in terms 

of the diagnosis ability of these disorders, consequently leading to the discovery of more reliable and/or 

new biomarkers, since these models have the capacity to deal with high-dimensionality data, which is 

the case of connectivity data, and allow to learn features from raw data without laborious handmade 

feature selection executed in tradition ML algorithms. The application of a FC multi-metric needs to 

continue to be more studied, as it demonstrates the ability to capture the most important features of each 

statistical metric combined, leading to a more complete analysis of the FC among the different brain 

regions BOLD signals due to different sources of information from different statistical metrics 

combined. The incorporation of XAI techniques, such as LRP and others, in DL algorithms, should be 

further investigated as it may be the missing piece, along with a reliable classification/diagnosis 

performance, for these valuable technologies to be implemented in clinical settings and assist healthcare 

professionals in their decisions, as well as provide them an understanding of how the model is behaving 

for a given prediction.  
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Appendix A 

Table A.1: Number of subjects in the ABIDE-I dataset from each imaging institution used in the study. 

ABIDE I Institution Number of subjects 

California Institute of 

Technology 

 

37 

Kennedy Krieger Institute 39 

University of Leuven 59 

Ludwig Maximilian’s 

University Munich 

 

41 

NYU Langone Medical Center 169 

Oregon Health and Science 

University 

 

23 

Institute of Living at Hartford 

Hospital 

 

24 

University of Pittsburgh 

School of Medicine 

 

36 

Social Brain Lab, Groningen 

Institute of Neurosciences 

 

15 

San Diego State University 33 

Stanford University 36 

Trinity Centre of Health 

Sciences 

 

44 

University of California, Los 

Angeles 

 

75 

University of Michigan 113 

University of Utah School of 

Medicine 

 

61 

Yale Child Study Center 48 
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Table A.2 Number of subjects in the ADHD-200 dataset from each imaging institution used in the study. 

ADHD-200 Institution Number of subjects 

NeuroIMAGE 48 

Kennedy Krieger Institute 83 

Peking University 194 

Washington University 59 

NYU Langone Medical Center 216 

Oregon Health and Science 

University 

 

79 

University of Pittsburgh 

School of Medicine 

 

89 

 

Table A.3: Repetition time for each imaging institution from ABIDE I dataset present in the study. 

ABIDE I Institution  TR (seconds) 

California Institute of 

Technology 

 

2 

Kennedy Krieger Institute 2.5 

University of Leuven 0.0016 

Ludwig Maximilian’s 

University Munich 

 

3 

NYU Langone Medical Center 2 

Oregon Health and Science 

University 

 

2.5 

Institute of Living at Hartford 

Hospital 

 

1.5 

University of Pittsburgh 

School of Medicine 

 

1.5 

Social Brain Lab, Groningen 

Institute of Neurosciences 

 

2.2 

San Diego State University 2 

Stanford University 2 
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Trinity Centre of Health 

Sciences 

 

2 

University of California, Los 

Angeles 

 

3 

University of Michigan 2 

University of Utah School of 

Medicine 

 

2 

Yale Child Study Center 2 

 

Table A.4: Repetition time for each imaging institution from ADHD-200 dataset present in the study. 

ADHD-200 Institution TR  (seconds) 

NeuroIMAGE 1.960 

Kennedy Krieger Institute 2.5 

Peking University 2 

Washington University 2.5 

NYU Langone Medical Center 2 

Oregon Health and Science 

University 

 

2.5 

University of Pittsburgh 

School of Medicine 

 

1.5 
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Figure A.1: Visualization of the Functional Connectivity matrices computed using the remaining statistical metrics methods 

chosen for this study, BCorrD, BCohF1, BCohW1, BCohF2, BCohW2, BH2U, BH2D, BMITU, BMITD1, BMITD2, BTEU 

and BTED (top to bottom), where the left image corresponds to a random subject from ABIDE-I dataset and the right image 

corresponds to a random subject from ADHD-200 dataset. 
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Figure A.2: Heatmaps of the Layer-wise Relevance Propagation analysis for the Functional Connectivity matrices computed 

with the remaining statistical metrics (left image), BCorrD, BCohF1, BCohW1, BCohF2, BCohW2, BH2U, BH2D, BMITU, 

BMITD1, BMITD2, BTEU and BTED (top to bottom), and the original FC matrices computed with the respective statistical 

metrics (right image), when using the ConnectomeCNN model. 
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Figure A.3: Heatmaps of the Layer-wise Relevance Propagation analysis for the Functional Connectivity matrices computed 

with the remaining statistical metrics (left image), BCorrD, BCohF1, BCohW1, BCohF2, BCohW2, BH2U, BH2D, BMITU, 

BMITD1, BMITD2, BTEU and BTED (top to bottom), and the original FC matrices computed with the respective statistical 

metrics (right image), when using the ConnectomeCNN-Autoencoder model. 


