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Resumo

Atualmente, estima-se que mais de 50 milhões de pessoas em todo o mundo sofram de epilepsia,
sendo que um terço dos casos correspondem a epilepsias refratárias, onde as convulsões epiléticas não
conseguem ser tratadas com o uso de fármacos. Deste modo, o procedimento cirúrgico aparece como
solução para o tratamento destes casos, onde o tecido responsável pela origem das convoluções é re-
movido. As Displasias Corticais Focais (FCDs, do inglês Focal Cortical Dysplasias) são malformações
do desenvolvimento cortical que constituem o tipo mais comum de lesões corticais responsáveis por
epilepsia refratária em crianças. Estas lesões têm uma manifestação em neuroimagens altamente het-
erogénea, ocorrendo em diferentes regiões do cérebro e com diferentes níveis de visibilidade. Deste
modo, nos casos de epilepsia refratária, um terço de todas as lesões não conseguem ser corretamente
identificadas por especialistas de neuroimagem. Adicionalmente, é comum existir um desacordo entre
peritos de imagem sobre o que poderá ser considerado evidência de FCDs nas diversas modalidades
de imagem, e o que poderá ser identificado apenas como a intrínseca heterogeneidade do tecido cere-
bral (que apresenta típicas variações saudáveis do cortéx). Este desacordo é também agravado pelo
uso de diferentes equipamentos e métodos de imagem médica, nos diversos estabelecimentos hospita-
lares e clínicos, propulsionando o aparecimento de variados tipos de ruído associados a processos de
aquisição de imagem. Como consequência de uma equívoca identificação da localização de uma FCD, o
planeamento pré-cirúrgico é frequentemente realizado de forma incorreta, resultando numa cirurgia mal-
sucedida que se traduz num tratamento ineficaz para os pacientes. No entanto, recentemente, as Redes
Adversárias Generativas (GANs, do inglês Generative Adversarial Networks) demonstraram o seu poder
na deteção de anomalias em neuroimagens. Estes modelos utilizam técnicas de aprendizagem automática
para a deteção de subtis padrões em imagens médicas, associados a doenças ou lesões, que poderão ser
impercetíveis à natureza humana, e que visam ser robustos aos problemas relacionados com diferentes
equipamentos e aquisição de imagens mencionados anteriormente. Assim, esta dissertação propõe o uso
destes poderosos modelos computacionais para a deteção de lesões em imagens médicas, com a possi-
bilidade de constituir a base para futuros projetos que visem a implementação de ferramentas auxiliares
para a deteção automática de FCDs, proporcionando um apoio adicional a peritos de imagens aquando
do planeamento cirúrgico, revelando as regiões de interesse onde poderão existir lesões. Deste modo,
este trabalho aplica dois modelos de GANs - WGAN e CycleGAN - para deteção de anomalias (FCDs)
em imagens de tomografia por emissão de positrões (PET do inglês positron emission tomography) e
Ressonância magnética (MR do inglês Magnetic Ressonance), de pacientes epiléticos. Estas neuroima-
gens possuíam anotações clínicas (denominadas em inglês por labels) registadas por peritos de imagem,
que indicavam as possíveis regiões cerebrais onde as lesões se localizavam, para cada paciente. Foi então
possível criar máscaras binárias, para todas as imagens, das lesões encontradas pelos especialistas, que
indicam as localizações das mesmas, e que foram usadas no treino dos modelos. Isto permitiu que os
modelos de GANs usados neste projeto focassem a sua atenção nestas regiões de interesse, aprendendo
a distinguir padrões associados a FCDs em neuroimagens de MR e PET.
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Assim, duas técnicas distintas de deteção foram utilizadas: deteção por reconstrução de imagens (usando
um modelo designado por WGAN) e deteção por translação de imagem (usando um modelo designado
por CycleGAN). Ambas estas técnicas passam por treinar GANs com uma base de dados que possuí um
número reduzido de exemplos 3D de neuroimagens disponíveis, o que motiva a adoção de um treino
realizado em porções (patches, do inglês). Este treino em patches é definido por repartir aleatoriamente
a imagem total em diversas porções 3D de tamanho mais reduzido desta imagem original, de modo a
diminuir a memória computacional requerida para treinar estes modelos e, simultaneamente, funcio-
nando como uma técnica que possibilita aumentar o número de exemplos de imagens disponível para o
seu treino (uma imagem corresponderá a vários exemplos de treino consoante o número de diferentes
patches extraídos). No caso da deteção por reconstrução, o objetivo passa por treinar o modelo com
patches de imagens saudáveis, permitindo que este aprenda a distribuição característica do domínio de
uma imagem saudável (sem FCDs). Deste modo, quando é apresentado ao modelo imagens com lesões,
este deverá demonstrar um error de reconstrução de imagem elevado nas zonas onde se encontra uma
lesão. No caso da técnica de translação de imagem, a CycleGAN foi treinada com patches de imagens
saudáveis e com lesões, com o objetivo de aprender a translação entre uma imagem com lesão e uma im-
agem saudável. Assim, a deteção de lesões é possível através de um mapa de diferenças calculado entre a
imagem original dos pacientes e a sua "versão saudável", que resultou da translação realizada pela Cycle-
GAN. Este mapa de diferenças apresentará aglomerados nas regiões da imagem que corresponderão às
anomalias identificadas. No caso da WGAN, o mapa de diferenças será calculado entre a imagem origi-
nal e a sua reconstrução, onde os maiores erros ao reconstruir a imagem serão evidenciados neste mapa,
detetando assim a localização das lesões. Nesta dissertação, ambos os modelos de GANs foram inicial-
mente treinados com ambas as modalidades de imagem (PET e MR disponíveis de cada paciente), com
o intuito de analisar o seu impacto no desempenho nos modelos em detetar lesões bem como examinar
eventuais problemas associados à utilização de multimodalidades, em relação a modalidades individuais
de imagem, durante o treino de modelos de GANs. Assim, ambos os modelos foram treinados usando
ambas as modalidades ou usando apenas cada modalidade de imagem individualmente. Para avaliar o
desempenho de ambos os modelos na deteção de lesões, estes foram testados em dois pacientes com
FCDs de visibilidade distinta, não presentes nos exemplos usados para o treino destes modelos. Deste
modo, um dos pacientes de teste possuía uma FCD de grande visibilidade em ambas as modalidades de
imagem, e o segundo paciente de teste possuía uma FCD muito subtil em ambas as imagens de PET e
MR. Os resultados obtidos demonstraram que ambos os modelos (WGAN e CycleGAN) treinados com
ambas as modalidades e com as modalidades individuais, foram capazes de detetar, nos mapas de difer-
enças, a FCD mais facilmente visível nas neuroimagens de um dos pacientes de teste. No entanto, para
o caso das lesões bastante subtis, estes modelos mostraram maior dificuldade em as localizar nos mapas
de diferença, não sendo capazes de as identificar de uma forma precisa em todos os modelos treinados.
Através dos resultados obtidos, foi também possível observar a dificuldade que os modelos GANs têm
em treinar com multimodalidades de imagem.
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O treino destes modelos mostrou ser mais instável (difícil de atingir um equilíbrio entre as suas funções
de custo), comparado ao treino de modelos GANs que usam as modalidades de imagem individualmente.
Deste modo, estudos recentes serão discutidos brevemente na conclusão deste trabalho, que mencionam
novas técnicas de fusão de modalidades de imagem, que visam encontrar novas estratégias para melhorar
o treino de modelos multimodais e consequentemente o seu desempenho, bem como hipóteses de passos
futuros a considerar para uma melhor deteção de FCDs mais subtis. Através deste projeto, foi então
possível demonstrar o grande potencial que estes novos modelos formados por GANs possuem para
constituírem a base de ferramentas auxiliares a peritos de imagem para deteção de lesões como as FCDs.

Palavras chave: Displasia Cortical Focal, Redes Adversariais Generativas, Detecção de Lesões,
Ressonância Magnética, Tomografia por Emissão de Positrões
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Abstract

More than 50 million people worldwide suffer from epilepsy with a third of those being diagnosed
with drug-resistant epilepsy where the seizures cannot be treated through pharmacotherapy. In these
cases, surgical removal of the epileptic brain tissue in patients is presented as an effective solution for
treatment. However, for surgery success, it is vital that the accurate location of epileptic regions in the
brain are known. Neuroimaging, specifically magnetic resonance imaging (MRI) and positron emission
tomography (PET), commonly are the doctor’s allies in identifying these lesions’ locations responsible
for the seizures. Focal cortical dysplasias (FCDs) are the most common type of cortical lesions respon-
sible for drug-resistant epilepsy in children. These lesions have highly heterogeneous masses, occur in
different brain regions and result in different levels of visibility, corresponding to the second most in-
tractable type of lesion in adults with epilepsy. Moreover, among drug-resistant epilepsy cases, a third of
these lesions cannot be correctly identified by neuroimaging experts, resulting in unsuccessful surgical
planning and consequently ineffective treatment for patients. Recently, Generative Adversarial Networks
(GANs) have demonstrated their value in neuroimaging anomaly detection. Therefore, this work pro-
poses the application of two different GAN methods – WGAN and CycleGAN - for anomaly detection
of FCDs, in PET-MRI data of epileptic patients. A 3D patch-basis anomaly detection approach was
therefore developed, inspired by previous works, to detect FCDs location by deconfounding acquisition
noise and normal cortical variabilities in PET-MR brain scans of epilepsy patients. Therefore, the GAN
models applied two different approaches for lesion detection: detection through reconstruction (WGAN)
and detection through translation (CycleGAN). Moreover, the combination of PET and MR modalities
was studied and compared to training the networks with individual imaging modalities instead. Through
the results, it was possible to understand and correct some issues GAN models have when training with
multimodal 3D data. However, both methods for anomaly detection were able to detect diseased brain
areas in patients with very visible FCDs, although failing to identify them in patients with very subtle
lesions. Recent studies will be briefly discussed in the conclusion, which propose new approaches and
architectures for multimodality training, with great potential to improve the performance of the networks
for anomaly detection in future works.

Keywords: Focal Cortical Dysplasia, Generative Adversarial Networks, Lesion Detection, Magnetic
Resonance Imaging, Positron Emission Tomography

v



Acknowledgments

Firstly, my deeply gratitude goes out for my supervisors Dr. Raquel and Dr. Emma for helping me
relentlessly throughout this long journey and encouraging me to learn as much as I can, which I certainly
did. I would also like to thank Professor Alexander Hammers, Dr. Siti Yaakub, Dr. Colm McGinnity,
Dr. Jorge Cardoso, and all my colleagues in the METRICS Lab that received me with kindness and were
always ready to help. A special thank you to Mariana Silva for letting me share this masters’ project
alongside her. A thank you to my friends for making this academic journey a little easier, and of course
my family, who always supports me in whatever professional path I choose.

vi



List of Abbreviations

BCE - Binary Cross Entropy.

CycleGAN - Cycle Generative Adversarial Network.

TE - Echo Time.

FCD - Focal Cortical Dysplasia.

FID - Fréchet Inception Distance.

GANs - Generative Adversarial Networks.

TI - Inversion Time.

MRI - Magnetic Resonance Imaging.

MAE - Mean Absolute Error.

PSNR - Peak-Signal-to-Noise Ratio.

PET - Positron Emission Tomography.

TR - Repetition Time.

TSE - Turbo Spin Echo.

WGAN - Wasserstein Generative Adversarial Network.

vii



Index

Resumo ii

Abstract v

Acknowledgments vi

List of Abbreviations vii

List of Figures x

List of Tables xviii

1 Introduction 1
1.1 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Theoretical Concepts and Literature Review 3
2.1 Generative Adversarial Networks (GANs) . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 U-net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 WGAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 CycleGAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Literature Review: Machine Learning for Anomaly Detection . . . . . . . . . . . . . . . 9
2.2.1 Anomaly Detection using GANs . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 MR Image Reconstruction and Translation 14
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Dataset Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Data Acquisition and Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Image Reconstruction Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.3 Image Translation Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Network Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Experimental Set Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.1 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.2 Methodology and Training Parameters . . . . . . . . . . . . . . . . . . . . . . . 20

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5.1 Image Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5.2 Image Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

viii



INDEX

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6.1 Image Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6.2 Image Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 PET-MRI Anomaly Detection using Deep Generative Modelling 29
4.1 Motivation: Detection of Focal Cortical Dysplasia in Neuroimaging . . . . . . . . . . . 29
4.2 Dataset and Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.2 Data Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.3 Lesion Masks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Experimental Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.1 Anomaly Detection Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.2 Networks Architecture and Training Details . . . . . . . . . . . . . . . . . . . . 42
4.3.3 Training Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.4 Testing Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4.1 WGAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4.2 CycleGAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5.1 Multimodal Data Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5.2 Single-Channel Data Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Conclusion and Future Work 71

A Appendix 77

ix



List of Figures

2.1 Overall structure of a GAN. From a training dataset, the original samples (x) serve as
the input to the discriminator, as well as the generated/fake samples (x*), which come
from the generator model. The Generator receives as input a random noise vector (z) that
creates the fake samples. The discriminator model outputs a classification of the data as
either real or fake, and the classification error is used to iteratively train the networks.
Retrieved from [16]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Overall structure of a GAN for image generation of digits. (1) represents the original
samples (x) that will be inputted in the discriminator. (2) represents the input noise for
the generator (z). (3) the generative model where its output will be “fake” images (x*).
(4) the discriminator model where its output will be a classification of the digit image
as either real or fake. (5) the classification error of the discriminator that will be used to
iteratively train the networks. Retrieved from [16]. . . . . . . . . . . . . . . . . . . . . 5

2.3 Example of an Autoencoder network. The encoder and decoder are usually composed of
convolutional and transposed convolutional layers, respectively. The encoded represen-
tation illustrates the latent space. The input of the Autoencoder is an image that passes
through the model to be reconstructed. Retrieved from [19]. . . . . . . . . . . . . . . . 6

2.4 Example of a U-net architecture. The middle grey arrows between layers (with copy and
crop description) correspond to the skip connections U-nets implement. Retrieved from
[20]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.5 General scheme of the building blocks and losses of CycleGAN. G1 and G2 represent the
Generators and D1 and D2 the discriminators. The x and y represent the original images
of different domains that we want to translate while x̂ and ŷ represent the translated
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Chapter 1

Introduction

This Masters dissertation project, entitled “A Patch-Wise Generative Adversarial Network for PET-
MR Image Generation with Feature Attribution for Detection of Focal Cortical Dysplasia”, was devel-
oped throughout 2020/2021 and represents the culmination of my path throughout the Integrated Masters
in Biomedical Engineering and Biophysics.

This work aimed to apply machine learning techniques to a brain PET-MRI dataset of epileptic
subjects to detect FCDs, the most common cause of treatment-resistant epilepsy in children [1] and
second most intractable origin of seizures in epileptic adults [1] .

This project was proposed by Dr. Emma Robinson, lab lead of the METRICS Lab in King´s College
London, UK, which focuses on machine learning methods for translational medical imaging with appli-
cations in the field of neurology, including neurodevelopment and cortical surface processing. Through a
recent partnership with Professor Alexander Hammers and Dr. Jonathan O’Muircheartaigh, both with ex-
tensive expertise in epileptic neuroimaging, it was possible to have access to labelled epilepsy PET-MRI
data, with cortical lesions identified as FCDs.

FCDs are malformations of cortical development, with highly heterogeneous manifestations in med-
ical imaging, occurring in different regions of the brain and presenting different levels of visibility de-
pending on factors, such as age. These FCDs’ characteristics combined with the complex shape and
structure of the brain plus its healthy tissue variation across individuals, makes these lesions extremely
challenging to identify on neuroimages, even for clinical experts. In fact, for drug-resistant cases, a third
of all the lesions responsible for seizures cannot be identified [2], most of them being FCDs. This results
in an unsuccessful surgical planning for the removal of the epileptic tissue of the brain and a consequently
ineffective treatment for the patients.

Having this in mind, a diagnostic tool to support reviewing of Magnetic Resonance Imaging (MRI)
and Positron Emission Tomography (PET) of patients with treatment-resistant epilepsy would be very
useful. This tool could help neuroimaging experts to differentiate healthy brain variations from diseased
tissue (the epileptic seizure origin), providing to experts more information about possible abnormalities
in scans, which can improve detection rates of brain pathologies.

Recently, machine learning methods, such as GANs, have demonstrated their value in anomaly de-
tection in neuroimaging. Therefore, this work will build upon past achievements based on GAN methods
for localising the origin of epileptic seizures [3–6], and the modelling of healthy brain variation [7–10] to
create a generalisable tool to detect FCDs. These networks will be applied in PET-MR scans of epileptic
patients to create anomaly detection methods, which could contribute to a solution for the cases where
surgical planning is unsuccessful.

Moreover, a framework like this could also address the detection of cortical paediatric disorders
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1.1 Dissertation Outline

in general since it proposes to tackle key problems of age-related tissue contrast and between-subject
cortical heterogeneity. These problematic factors are strong contributors to covering subtle pathologies,
and therefore preventing precise comparisons of healthy versus pathological tissue, between the exact
cortical regions across patients and healthy controls.

This work will also take advantage of both neuroimaging modalities available (PET and MR) to
detect FCDs, since recent studies have shown that complementary review of FDG-PET overlaid on MRI
can improve detection of FCD lesions [11, 12]. Therefore, in this project, a PET-MR brain dataset of
twenty-two epileptic patients with a wide range of ages will be used to train and test the developed
networks. A patch-basis training (described in section 3.4.2) will also be implemented in the networks
to tackle the reduced number of data available and the computational cost of 3D data.

A 3D patch-basis anomaly detection approach was therefore developed, inspired by the work of
Yaakub et al. [13], to detect FCDs location by deconfounding acquisition noise and normal cortical
variabilities in PET-MR brain scans of epilepsy patients. To build these GAN approaches for anomaly
detection in PET-MR data, it was necessary to first explore the basic structure of such networks. This
included building simple machine learning networks that are the basis of GANs architectures, for image
reconstruction and translation tasks. The following section 1.1 (Dissertation Outline) describes in more
detail the content of this dissertation, including the several steps taken to build the networks for anomaly
detection in PET-MR data.

1.1 Dissertation Outline

Chapter 2 describes vital background theory necessary to fully understand GANs and their use for
anomaly detection tasks that are explored throughout this project. Additionally, a brief literature review
about GANs is mentioned in this chapter, including state-of-the-art papers about anomaly detection that
served as an inspiration for this project.

Chapter 3 starts by describing the models built for image reconstruction, using T2 MR images of
neonates from the dHCP dataset. These models include Autoencoders, U-nets and a WGAN. This first
stage is essential since these image reconstruction models constitute the basic structures of more ad-
vanced networks for anomaly detection. Therefore, this allowed for an initial practice of the basic con-
cepts of machine learning regarding GANs, creating an initial framework to then build upon in the next
stages. Chapter 3 then describes the adaptation and further development of the previous built U-net for
image translation tasks (with 2D and 3D data), using T1 and T2 MR scans belonging to neonates from the
dHCP database. Therefore, T1 and T2 MR images were used to train and test different image-to-image
translation models that were then compared: a U-net and a CycleGAN. The WGAN and CycleGAN
models built in this chapter, for either image reconstruction or image translation, served as a basis to
further develop and modify these models for the anomaly detection task explored in Chapter 4.

Chapter 4 adapts the models previously built in Chapter 3 to two different 3D patch-wise anomaly
detection GANs: a 3D WGAN and a 3D CycleGAN. These two different networks were applied to a
PET-MR dataset and used different methods for anomaly detection – detection through reconstruction
(WGAN) and detection through translation (CycleGAN). Following the work of [13] and [14] it was,
therefore, possible to implement a patch-based approach of these networks to identify cortical lesions in
epilepsy patients.

Chapter 5 presents the conclusions drawn from this study, explores the limitations of these experi-
ments, and considers future work on this subject.
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Chapter 2

Theoretical Concepts and Literature
Review

Machine learning methods arise as true contenders for developing automated solutions that can bring
to life new tools for detecting cortical malformations in the brain. Specifically, a type of machine learning
algorithms - GANs - have gained a lot of interest for anomaly detection in recent years. Some of the most
relevant research that has demonstrated the utility of GANs in this area will be presented in section 2.2
(literature review). However, to understand how these networks have shown potential, it is essential to
comprehend their basic theoretical concepts presented as follows.

2.1 Generative Adversarial Networks (GANs)

GANs were firstly introduced in 2014 by Goodfellow et al. [15] and are a class of machine learning
techniques that consist of two simultaneously trained models: one model (the Generator) trained to
generate fake data, and the other model (the Discriminator) trained to discern the fake data from real
examples.

This architecture therefore puts two or more neural networks (usually convolutional neural networks)
against each other in adversarial training, where one of those networks takes the role of a generative
model that captures the data distribution, and a discriminator model that estimates the probability that a
sample came from the training data rather than the generator network. The discriminator therefore has
the goal of classifying the input sample as real (if it comes from the original dataset – ground truth) or
fake (if it was produced by the generator). Figure 2.1 shows a general representation of the elements,
inputs and tasks performed in a GAN model.

In GANs, the input of the generator depends on the type of GAN model, however, the original
GAN model described, uses a vector of pure random noise sampled from a prior distribution, commonly
gaussian or a uniform distribution. The output of the generator is then compared to the real sample that
was drawn from the real data distribution, and through the training process it becomes more similar to the
ground-truth samples. Therefore, while traditional convolutional neural networks for object recognition
learn patterns in images, GANs train their generator to create those patterns from scratch [16].

In other variations of GANs, such as conditional GANs [17], the input of the generator is also con-
stituted of an additional factor (such as an image), conditioning the generator and discriminator based on
this input. In simpler terms, this allows the model to direct the generator network to synthesize a specific
desired fake example, therefore modifying the original GAN model for targeted data generation. These
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2.1 Generative Adversarial Networks (GANs)

Figure 2.1: Overall structure of a GAN. From a training dataset, the original samples (x) serve as the input to the discriminator,
as well as the generated/fake samples (x*), which come from the generator model. The Generator receives as input a random
noise vector (z) that creates the fake samples. The discriminator model outputs a classification of the data as either real or fake,
and the classification error is used to iteratively train the networks. Retrieved from [16].

conditional GANs are commonly used in, for example, medical image synthesis and image-to-image
translation. Figure 2.2 shows a representation of a GAN model applied to the specific task of generating
images of digits.

Therefore, since both the generator and discriminator models are implemented using neural-
networks, each with its own loss function, the training of GANs uses a gradient-based optimisation
algorithm. The parameters used to define the neural networks (defined as weights) are updated during
training using backpropagation of the error (obtained from the loss function of the model), and according
to the defined learning-rate of the networks. During training, the discriminator model aims to minimize
the loss for the real and the fake samples it receives (aiming to correctly identify which samples are the
ground-truth and which are generated), while the generator strives to maximize the Discriminator’s loss
for the generated/fake samples it produces [16].

As a result, GANs have two key factors that make them differ from traditional convolutional neural
networks. Firstly, the loss function (J) of a conventional network is defined in respect to its own trainable
weights (Θ), which is expressed as J(Θ). However, in GANs, the generator and discriminator have
loss functions that depend on both the network’s weights. This results in a generator’s loss function
represented as JG(ΘG,ΘD) , and a Discriminator’s loss function represented as JD(ΘG,ΘD) . The second
differentiating factor in GANs is that each network (the generator and the discriminator) can only
tune its own parameters when training, instead of entire model parameters, as it happens in traditional
neural networks. As a results, each network (generator and discriminator) only controls a part of what
determines the entire GAN model loss [16].
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2.1 Generative Adversarial Networks (GANs)

Figure 2.2: Overall structure of a GAN for image generation of digits. (1) represents the original samples (x) that will be
inputted in the discriminator. (2) represents the input noise for the generator (z). (3) the generative model where its output will
be “fake” images (x*). (4) the discriminator model where its output will be a classification of the digit image as either real or
fake. (5) the classification error of the discriminator that will be used to iteratively train the networks. Retrieved from [16].

The architectures of the convolutional neural networks that constitute the generator and discriminator
models in GANs varies according to the overall task of the GAN model. However, some of the most
popular networks implemented as generators are based on Autoencoder networks or U-nets - which have
also been applied in chapters 3 and 4 of this work.

2.1.1 Autoencoder

The Autoencoder is a neural network that consists of an encoder (typically built with convolutional
layers to downsample data) and a decoder (typically built with transposed convolutional layers to upsam-
ple data). This network can learn how to map data to a compressed representation of itself (designated
latent space) and reproduce it back to its original representation/dimensions. As a result, this network
is capable of learning a mapping (through the encoder) from an input space (typically an image) into a
latent space, as well as a mapping (through the decoder) from the latent space to the input space. Training
an Autoencoder consists of passing an input data, such as an image, through the model, and measuring
the error of its reconstruction (the decoded latent representation of the input image). The encoded and
decoded learned mappings are therefore trained to get reconstructed images as close as possible to the
original inputs [16, 18].

Figure 2.3 illustrates an Autoencoder network, with the representations of the encoder, decoder and
latent space for image reconstruction of digits.

These Autoencoder networks, although seemingly simple, have many practical applications, such as
one-class classifier for anomaly detection tasks, where it is possible to analyse a reduced representation
of the data (latent space) of the trained network to check for similarities with a target class [16].
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2.1 Generative Adversarial Networks (GANs)

Figure 2.3: Example of an Autoencoder network. The encoder and decoder are usually composed of convolutional and trans-
posed convolutional layers, respectively. The encoded representation illustrates the latent space. The input of the Autoencoder
is an image that passes through the model to be reconstructed. Retrieved from [19].

2.1.2 U-net

From the Autoencoder network, a similar architecture was developed, the U-net [20]. This network
architecture consists of the same encoder and decoder paths in the model but introduces skip-connections.

The skip-connections were implemented to improve reconstruction detail in the Autoencoder archi-
tecture. Therefore, they have the ability to recapture the finer details of the original images (the spatial
information lost during encoding/downsample) in their reconstructions [20].

Nowadays, the U-net is a very popular network for biomedical image segmentation tasks and is
usually implemented as a generator in GANs [20].

Figure 2.4 shows the U-net architecture, a similar network to the Autoencoder but with added skip-
connections.

Figure 2.4: Example of a U-net architecture. The middle grey arrows between layers (with copy and crop description) corre-
spond to the skip connections U-nets implement. Retrieved from [20].

The general structure, training process and network architectures described here are therefore the
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2.1 Generative Adversarial Networks (GANs)

basis of the functioning of GANs. However, since their introduction by Goodfellow et al. [15], many
different variations of the original GAN structure have appeared for various tasks. In particular, two of
those variations: WGAN and CycleGAN will be described briefly in sections 2.1.1 and 2.1.2, respec-
tively, since they are the methods used in the following chapters 3 and 4.

2.1.3 WGAN

The WGAN was introduced in 2017 by Arjovsky et al. [21] and represents an extension of the
GAN architecture, which distinguishes itself by using a Wasserstein distance (also denominated as earth
mover’s distance) as a loss function [21]. The Wasserstein distance has proven to be a more optimal
measure compared to the original GAN model, therefore improving training stability of these networks
[22] and generating higher-quality samples [16].

The discriminator network in the WGAN is called critic instead, which tries to estimate the earth
mover’s distance, and aims to reach for the maximum difference between the original and the generated
distribution in the loss function. This critic network scores the “realness” or “fakeness” of a given
input (usually an image), instead of classifying the input as real/original or fake/generated - the strategy
described in the original GAN model [16]. In contrast, the generator in the WGAN tries to minimize
the distance between the distribution of the real data, observed in training, and the distribution in the
generated samples.

In practice, the implementation of a WGAN maintains the basic foundations of the conventional
GANs described before, only with minor changes to its training (such as the use of a Wasserstein distance
as a loss function) and architecture (the discriminator network is designated as critic, which outputs a
score for the real and generated samples and does not use a sigmoid function, unlike typical GANs).
Further details about the differences of this network compared to the original GAN model are described
in the work of [21].

2.1.4 CycleGAN

Introduced in 2017 [23], a CycleGAN is an extension of the GAN architecture that involves the
simultaneous training of two generator models and two discriminator models.

This model is commonly used for image-to-image translation tasks, one of the most revolutionary
applications of GANs [23, 24]. This is based on the challenge of translating a representation of one
image into another, such as trying to translate one medical image modality into another image modality
(for example PET to MRI and vice versa). As a result, for this image translation between two differ-
ent domains, the model learns to extract characteristic features of both these domains, discovering the
underlying relationship between them.

The CycleGAN framework combines two sets of GANs (each with a generator and a discriminator)
to learn a mapping from domain X to domain Y (generator GX ) and vice versa (generator GY ), with
the generators GX and GY being trained by discriminators DX and DY, respectively. Therefore, in the
CycleGAN, one generator takes images from the first domain (X) as input and outputs images for the
second domain (Y). The other generator takes images from the second domain (Y) as input and generates
images for the first domain (X). The discriminator networks have then the same goal of determining the
plausibility of the generated samples from the generator networks and update them accordingly [25].

Figure 2.5 shows the CycleGAN framework for PET-to-CT image translation task with the associated
losses.
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2.1 Generative Adversarial Networks (GANs)

Figure 2.5: General scheme of the building blocks and losses of CycleGAN. G1 and G2 represent the Generators and D1 and
D2 the discriminators. The x and y represent the original images of different domains that we want to translate while x̂ and ŷ
represent the translated images from the generators of both the original x and y, respectively. The translation of the images x̂
and ŷ back to their original domain are represented by ˆ̂x and ˆ̂y, respectively. The cycle consistency loss and adversarial loss are
also represented in the figure by Lcyc and Ladv . Retrieved from [26].

Besides being possible to use unpaired data to train CycleGANs, another differentiating aspect of
this model is the cycle consistency characteristic of CycleGANs. This represents the idea that the image
output from the first generator could be used as input for the second generator in the model and so
both the output of the second generator and the original image should match each other. Therefore,
CycleGANs encourage this cycle consistency aspect by adding another loss (cycle consistency loss) that
is responsible for measuring the difference between the output of the second generator and the original
image (and the reverse), therefore acting as a regularization of the generator models, and so driving the
generation process in the new domain towards image translation [23].

In CycleGANs, the U-net (represented in Figure 2.4) is commonly used as the generator network. As
for the network used for the discriminators, CycleGANs usually use a PatchGAN [24], which classifies
each N x N patch of the image and averages all the scores of the patches to get the final score for the
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2.2 Literature Review: Machine Learning for Anomaly Detection

image, instead of classifying the image as a whole, like standard GANs.
The PatchGAN discriminator is a convolutional network that generates an output of a 70x70 array,

instead of producing a single scalar vector as typical discriminators do. This 70x70 array maps to a patch
of the original input image. The mean of this output is then calculated to predict if the whole image is
“real” (the ground-truth image) or “fake” (a network generated image). The authors of [24] defend the
use of this discriminator architecture with a 70x70 receptive field since it has less parameters, therefore
being easier to train than a full-image discriminator. The patch size of 70x70 was found to be effective
in multiple image-to-image translation tasks and is therefore the standard size used.

Once these underlying concepts of GANs are comprehended, it is possible to further understand why
GAN-based approaches are implemented in tools for feature attribution and lesion/pathology detection,
the main themes addressed in this dissertation. The following literature section will therefore discuss the
use of GANs in medical imaging for anomaly detection.

2.2 Literature Review: Machine Learning for Anomaly Detection

Anomaly detection is the task of identifying outliers from the normal examples in a dataset, detecting
the patterns that deviate from the general pattern present in the dataset. This topic has been explored
extensively over the years for different areas, with several methods for anomaly detection being proposed
depending on the type of dataset and abnormality [27, 28]. More recently, machine learning techniques
have been extensively implemented for anomaly detection approaches.

The work of O’Muircheartaigh et al. [29] is an example of machine learning applied for anomaly
detection, where a Bayesian regression technique was implemented to detect focal white matter injuries
in MRI of neonates. The model was firstly trained to estimate brain tissue intensity of MR scans, and
then calculate voxelwise deviations between the neonate’s observed MRI and the intensities predicted by
the model, to identify injuries. With this technique, from 408 neonate images, it was possible to correctly
identify anomaly areas in 83% of the T2-weighted MR scans and in 76% of the T1-weighted scans.

Tan et al. [11] also showed the potential of machine learning in lesion detection by using multimodal
feature sampling and applying a support vector machine classifier, improving the detection of FCDs in
MR and PET data. The morphology and intensity-based features that characterised the FCD lesions in
the images were calculated on the cortical surfaces and fed into the classifier. This classifier was able to
outperform quantitative MRI analysis as well as multimodal visual analysis in detecting FCDs, by using
combined features from both MR and PET modalities.

Similarly, the work of [30], developed a neural network classifier using surface-based features (such
as grey-white matter intensity contrast, cortical thickness, FLAIR signal intensity, etc.) to identify FCDs
in a paediatric population. This approach consisted in optimising the ability of finding and quantifying
the cortex area depending on how much they differ from a naturally healthy cortex. Overall, this method
then used the established surface-based features in the trained neural network model, to classify the
cortical regions as either containing anomalies or not. The results from the classifier showed a correct
identification of FCDs with a sensitivity of 73%.

However, as deep learning methods grew in popularity, traditional machine learning models were
pushed aside, and data-driven approaches prevailed in anomaly detection of diseases (such as multiple
sclerosis, Alzheimer’s, epilepsy, tumours, etc.) in neuroimaging [14, 31]. Specifically, various deep
learning techniques have been proposed for anomaly detection using artificial neural networks, with
state-of-the-art methods commonly focused on GANs, Autoencoders and their variations [14]. Recent
studies using GANs [13, 14, 32] have particularly demonstrated exciting potential in anomaly detection
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tasks in medical imaging.

2.2.1 Anomaly Detection using GANs

The AnoGAN introduced in [33] was one of the pioneering works that successfully implemented a
2D patched-based convolutional GAN to achieve anomaly detection in optical coherence tomography
images of the retina. This approach detected abnormalities by learning a model of healthy tissue and
seeking anomalies as outliers from this distribution [32].

Further works followed, transferring this concept to the field of neuroimaging for anomaly detection
in brain MR images [34]. Other examples include Chen et al. [35] that took advantage of an adversarial
auto-encoder to learn the data distribution of healthy brain MR images to then highlight potential lesions.
Works by Sun et al. [14] and Yaakub et al. [13] have also demonstrated that several types of GANs and
approaches can be used for anomaly detection.

More specifically, two different methods for anomaly detection using deep learning have relevance
for this work: anomaly detection through image reconstruction and through image translation.

In terms of anomaly detection using reconstruction, the work of [36] demonstrated the efficacy of
this method using the reconstruction error of an autoencoder to detect anomalies in the MNIST dataset
(a handwritten digit database). The goal was to minimize the reconstruction error of normal examples at
the same time as maximizing the same error for any anomalies in the data. As a result, the model was
trained to not be able to reconstruct the specific set of anomalies given during testing – in this case the
digits 3 and 5 – as is illustrated in Figure 2.6.

Figure 2.6: (a) The test dataset, including the anomaly digits 3 and 5. (b) Reconstruction outputs of a conventional autoencoder
- can reconstruct any input. (c) Reconstruction outputs of the proposed autoencoder which fails to reconstruct anomalies.
Retrieved from [36].
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In the medical context, for detecting anomalies through reconstruction, models are applied to learn
the healthy distribution of the data available. Therefore, the input of the networks should consist of only
healthy samples, with its output being a reconstruction of that same healthy data. Once that healthy
distribution is learnt, the models can reconstruct anomaly-free images but not diseased ones. Therefore,
when presented with anomaly samples, the network will not be able to reconstruct the lesion regions of
the data sample. The detection of the anomaly region can then be identified by evaluating the discrepancy
between the input image and its reconstruction – which will reveal a higher reconstruction error on the
anomaly location. The region that does not follow the learnt healthy distribution can be regarded as
abnormal [14].

On the other hand, detecting anomalies through translation consists of giving the models both healthy
and diseased labelled data samples. With this strategy, networks are trained to learn how to translate
between healthy and diseased samples. This results in the network being able to detect anomalies by
computing the difference between a diseased sample and its translation to healthy – where the network
will translate only the diseased region to a healthy version of it.

The work of Yaakub et al. [13] had previously demonstrated that it is possible to use translation
methods to detect FCD location within a brain lobe region in PET-MR datasets. In this work, a deep
generative modelling of PET from MR was used to synthesise a model of healthy brain tissue and detect
lesions as outliers. Therefore, a GAN was implemented to synthesise pseudo-normal PET scans from
T1 MRIs for the identification of possible regions of hypometabolism. Firstly, a 3D patched-based
GAN is trained to learn the mapping between T1 MRIs and the PET scans in control data (healthy
individuals). After this, the previous network is used to generate the pseudo-normal FDG PET scans
in patients suffering from epilepsy, based on the patients’ T1 MRI. To track the hypometabolism areas
in the brain, the patient’s real PET scan was subtracted from the generated pseudo-normal PET scan.
Yaakub et al. [13] represented these stages in Figure 2.7. The results from this work showed that the
proposed GAN method was able to detect hypometabolic regions with high sensitivity of about 93% and
75% in MRI-positive patients and MRI negative patients, respectively, at a lobar level. Figure 2.8 shows
examples of hypometabolic clusters detected in both MRI positive and MRI negative patients. This
method explores the discrepancy between both FDG PET scans: the apparent normal PET scan (which
was generated by the GAN model from the patient’s normal T1 MRI scan) and the actual abnormal PET
scan of the patient.
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Figure 2.7: The different stages of the work of [13] for identifying hypometabolism in patients with epilepsy. Stage 1 represents
a 3D-patch GAN architecture for estimating pseudo-normal PET from MRI. G stands for Generator and D for Discriminator.
Stage 2 represents the identification of hypometabolic clusters in patients [13].

Figure 2.8: Examples of images of MRI-positive (top) and MRI-negative (bottom) scans of patients with detected hy-
pometabolic clusters. The real [18F] FDG PET and pseudo-PET scans as well as the T1 MR scan with clusters of hy-
pometabolism overlaid and FLAIR MR images highlighting the hypometabolism corresponding to the FCD for the MRI-
positive case (white arrows) [13].

Similarly, the work of [14] demonstrated the use of a CycleGAN to perform translation of diseased
MR scans to a healthy version of it. This network additionally applies an anomaly-mask loss (illustrated
in Figure 2.9 as LAM), which focuses the network’s attention on the diseased region of a scan since there
are masks of the lesions available with the dataset.
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Figure 2.9: The proposed ANT-GAN model for lesion detection from [14]. The abnormal and normal MRI slices correspond
to xa and xn respectively. GA2N and GN2A illustrate the generators that aim to translate abnormal to normal data and vice versa,
respectively. DA and DA are in turn the discriminators that classify in “real” (original scans) or “fake” (network generated
scans) images. From the discriminators, 2 losses result (represented by LGAN ). LCC represents the cycle consistency loss –
between the original image and its reconstruction - and LAM represent the lesion mask loss – if the generator modifies a known
healthy region of the image during the translation to diseased, it receives a heavy L2 penalty [14].

Figure 2.10: Results produced by the ANT-GAN model from [14]. (a) and (d) represent the original images with and without
lesions, respectively. (b) and (e) illustrate the output of the generators of the model and (c) and (f) show the difference maps
between the images, highlighting the lesions or lack of them [14] .

It is then possible to identify regions where lesions are present by getting the difference map (Figure
2.10(c)) between the original scan (the diseased image - Figure 2.10(a)) and the translated one (that
should correspond to a healthy version of the scan where the lesion is not present - Figure 2.10(b)).

Through this literature review it is hopefully possible to understand the impact of GANs in applica-
tions such as anomaly detection, specifically the potential in detecting lesions or regions of interest in
epilepsy, therefore emerging as a tool to help imaging experts in focusing on probable lesions, essential
for a correct surgery planning.

Therefore, the following chapters of this dissertation focus on the implementation of GANs for
anomaly detection in epileptic patients - starting with chapter 3, by exploring the basis of what con-
stitutes more complex GANs, developed for anomaly detection in chapter 4, and taking inspiration from
the works explored in this literature review section.
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Chapter 3

MR Image Reconstruction and Translation

3.1 Motivation

The present chapter is dedicated to building, applying, and benchmarking different networks for
image reconstruction and translation tasks, which will serve as the basic structure of more advanced
networks, such as GANs, implemented in Chapter 4 for PET-MR anomaly detection. All experiments
were built using the Pytorch and MONAI machine learning frameworks [37, 38], and trained using a
NVIDIA Titan RTX GPU with 24 GB of RAM.

Firstly, 2D neural network-based models - an Autoencoder, U-net and WGAN - were applied for im-
age reconstruction of neonatal MRI brain data (T1 and T2-weighted scans), belonging to the developing
human connectome project (dHCP) [39]. Furthermore, some of these networks were modified for 2D
and 3D T2-to-T1 image translation tasks, as well as a CycleGAN - a network specifically designed for
image-to-image translation. These networks were chosen since relevant papers [13, 14] described in sec-
tion 2.2 commonly use them as a basis for other complex GANs for anomaly detection tasks - explored
in Chapter 4.

Additionally, two different training approaches were tested for image translation: whole-image-
based training and patch-based training. This comparison is motivated by the aim to use patch-based
approaches in Chapter 4, since it has proven to better learn global image context and is commonly used
for data augmentation and to save computational memory resources. To evaluate the quality of the trans-
lated images, three different metrics were used, following the work of Yaakub et al. [13] : FID (Fréchet
Inception Distance), MAE (Mean Absolute Error) and PSNR (Peak-Signal-to-Noise Ratio).

Therefore, in this chapter, section 3.2 describes the dataset used for image reconstruction and image
translation tasks. In section 3.3, the different architectures of the networks are illustrated and hyperpa-
rameters used in training described. Finally, in sections 3.4 and 3.5, results are presented, evaluated, and
discussed, respectively.

3.2 Dataset Structure

3.2.1 Data Acquisition and Pre-Processing

The dataset used for reconstruction and translation tasks consisted of T1 and T2-weighted MR scans
of neonates, belonging to the dHCP dataset [39]. This data was collected at St. Thomas Hospital, Lon-
don, on a Philips 3T scanner using a 32-channel dedicated neonatal head coil [40]. For image acquisition,
subjects were not sedated but imaged during natural sleep. T2 images were obtained using a Turbo Spin
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Echo (TSE) sequence, in two stacks of 2D slices (in sagittal and axial planes), with the following param-
eters: repetition time TR=12s, echo time TE=156ms, SENSE factor 2.11 (axial) and 2.58 (sagittal) with
overlapping slices (resolution 0.8 × 0.8 × 1.6 mm) [41]. T1 images were acquired using an IR (Inversion
Recovery) TSE sequence with the same resolution and with parameters: TR=4.8s, TE=8.7ms, SENSE
factor 2.26 (axial) and 2.66 (sagittal) [41].

Motion correction and super-resolution reconstruction techniques were employed combining
Cordero-Grande et al. [42] and Kuklisova-Murgasova et al. [43], resulting in isotropic volumes of
resolution 0.5 × 0.5 × 0.5 mm3 (with T1 and T2 scans having dimensions of 196 x 230 x 196 voxels).

All scans had also been previously pre-processed (including data normalisation between 0 to 1),
before being used for image reconstruction and translation tasks described in this chapter.

3.2.2 Image Reconstruction Dataset

The data used for image reconstruction involved 850 (454 male and 396 female) 3D T2-weighted
MR images of neonates scanned between 28 and 45 weeks of age (with a mean scan age of 40 weeks).
From the 850 images, 10 axial slices from the centre of the brain were chosen to obtain 2D data. Figure
3.1 illustrates three examples of axial slices obtained from the dataset.

Figure 3.1: Example of 3 different T2 MR slices of subjects belonging to the dHCP dataset used in the image-reconstruction
task. All slices plotted using the same colour map.

In total, 8500 T2-weighted MR 2D image slices (with dimensions of 196 x 230 pixels) were used,
with 8000 samples implemented for training and 500 samples used for testing the networks.

3.2.3 Image Translation Dataset

For image translation, a total of 279 subjects (163 males and 116 females with mean age scan of 40
weeks), each with a corresponding pair of T1 and T2 3D MR scans, were used - illustrated in Figure 3.2.

For the 2D networks, 10 middle axial slices from all the images were selected for training and testing.
Therefore, a total of 2790 2D image pairs of T1 and T2 scans (with dimensions 256 x 256 pixels) were
used. For training, 80% of the pairs of images (2232 pairs) were selected randomly and the remaining
20% were implemented for testing (558 pairs).

For 3D networks, the total 279 pairs of 3D images (T1 and corresponding T2 scan, for each subject)
were used, with total dimensions of 256 x 256 x 256 voxels. Since 3D data presents more challenges
to machine learning networks, a validation set was additionally included to aid in the evaluation of the
performance of the networks through training. Therefore, 5% of the data was used for validation and
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Figure 3.2: Paired T1 and T2 MR slices belonging to the same subject and same slice. Left image – T1 MR slice – and right
image – T2 MR slice. Both plotted using the same colour map.

testing, with the remaining 90% used for training. This corresponds to 251 pairs of images for training,
14 image pairs for testing, and 14 image pairs left for validation.

3.3 Network Architectures

Of the three image reconstruction networks, an Autoencoder network (described in section 2.1) was
firstly implemented, following the code from [44], which uses convolutional and transposed convolu-
tional layers to first encode and then decode information (such as images). The architecture used for this
network is represented in Figure 3.3, with the network layer parameters presented in Table A.1 in the
appendix.

Figure 3.3: Overview of the Autoencoder architecture used. The autoencoder consisted of 3 encoder layers E1-E3, and by 3
decoder layers D1-D3. The latent space corresponds to the stage at which the image is in its most compressed form.
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Secondly, a 2D U-net was implemented using the previously built Autoencoder architecture of Figure
3.3 and adding skip-connections to it. This U-net architecture is therefore represented in Figure 3.4, with
the network layer parameters (filter size, stride, padding, etc.) presented in Table A.2 in the appendix.

Figure 3.4: Overview of the U-net architecture used. The U-net consisted of the same autoencoder architecture of Figure 3.3
but with the added skip connections (represented by the orange arrow). The latent space corresponds to the stage at which the
image is in its most compressed form.

A 3D U-net was also implemented for image translation with its architecture illustrated in Figure 3.5
and the network layer parameters (filter size, stride, padding, etc.) presented in Table A.3 in the annex.
In this case, all the network’s layers specific for handling 2D data were modified for 3D (such as the
convolutional layers), and instance normalisation layers [45] were additionally added. These layers are
commonly used in network’s architectures, to help improve training and performance.

Next, a 2D WGAN was implemented since it is, in turn, composed of a U-net as its generator and an
additional convolutional neural network as its critic - whose architecture follows the work of [46]. The
generator reconstructed the images and the critic scored the images passed through the network as either
real (original T2 images) or fake (reconstructed T2 images), giving feedback to the generator on how
similar the reconstructions were to the original images. The WGAN’s generator architecture is therefore
the same as the U-net illustrated in Figure 3.4 and the critic’s architecture is presented in Figure 3.6,
with the network layer parameters (filter size, stride, padding, etc.) presented in Tables A.2 and A.4,
respectively, in the appendix.
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Figure 3.5: Overview of the 3D-Unet architecture used. The U-net consisted of encoder layers E1-E6, and by decoder layers
D1-D6, with added normalisation layers and activation function ReLU. The last layer of the network was a sigmoid function.
The red arrows between the E layers and D layers represent the skip connections. The latent space corresponds to the stage at
which the image is in its most compressed form.

Figure 3.6: Overview of the Critic network architecture used in the WGAN. The Critic consisted of convolutional layers with
a LeakyReLU activation function (with a negative slope of 0.2), and a final layer of adaptative average pooling.

Finally, a 2D CycleGAN was implemented. Its architecture consists of 2 generators and 2 discrimi-
nators. The generators’ architecture is based on a U-net (illustrated in Figure 3.7) and the discriminators
follow the architecture of a PatchGAN (illustrated in Figure 3.8). The layer parameters (filter size, stride,
padding, etc.) for the generators are presented in Table A.5 and for the discriminators in Table A.6, in
the appendix.

Additionally, the 2D CycleGAN was modified to become a 3D CycleGAN and implemented for
patched-based training in the image translation task. The architecture of the CycleGAN was modified
to fit the 3D patch data by replacing convolutional layers and normalisation layers for their 3D versions.
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Figure 3.7: Overview of the 2D-Unet architecture used for the generator of the 2D CycleGAN. The U-net consisted of encoder
layers E1-E6, and by decoder layers D1-D6, with added normalisation layers and activation function ReLU and LeakyReLU
(with a negative slope of 0.2). The last layer of the network was a sigmoid function. The red arrows between the E layers and
D layers represent the skip connections.

Figure 3.8: The PatchGAN discriminator used in the 2D CycleGAN. It consists of layers L1-L5 built with convolutional
operations, normalisation and activation functions (LeakyReLU with negative slope of 0.2).

Therefore, the generators and discriminators of the 3D CycleGAN have the same architectures illustrated
in Figure 3.7 and Figure 3.8, respectively, with the difference of having 3D layers instead of 2D.

The layer parameters (filter size, stride, padding, etc.) for the generator are represented in Table A.5
in the appendix, and the layer parameters for the discriminator are identical to the 2D version (but using
the parameters in the 3D layers) and are presented in Table A.6.

19



3.4 Experimental Set Up

3.4 Experimental Set Up

3.4.1 Goal

The experiments can be divided considering two different goals: image reconstruction and image
translation. For image reconstruction, the Autoencoder, U-net and WGAN networks were trained and
tested to reconstruct 2D T2 MR images. After evaluating the results for this task, the network that showed
visibly better reconstructions (the U-net) was modified for translating T2-to-T1 MR scans, alongside a
CycleGAN. For image translation, there was also the goal to compare and optimise two different training
methodologies: a 2D slice training approach and a patched-based training approach (with 3D data). The
2D approach consisted of passing through the networks the entire slice while the patched-based approach
trained the networks only with patches belonging to the whole 3D image.

Translated images were evaluated using image quality metrics: MAE, PSNR and FID, with the goal
of comparing all networks through analysing the differences in quality of 2D and 3D translations.

The MAE is calculated as the mean of the absolute error between each pixel value in the ground
truth and generated image (with values ranging between 0 and 1). Although this metric does not reveal
anything about similarities in structures of the image, a large error means the intensity values at each
voxel differ a lot from those in the original image. The PSNR metric evaluates the generated image noise
compared to the ground-truth image, in decibels (dB). It is often used to measure image quality after
encoding and decoding losses, with higher PSNR values indicate better image quality results. Finally,
the FID score is used to evaluate the quality of the generated images and measure the similarity between
two different images (the ground-truth and the translation), with lower FID values indicate better quality
and similarity of the generated images [25].

These evaluation metrics helped in understanding the best practices to implement in the networks
and what needs to be optimised in Chapter 4, when dealing with anomaly detection with PET-MR data.

3.4.2 Methodology and Training Parameters

i) Image Reconstruction
To train the image reconstruction networks, a slice-based approach was implemented. For all models,

the same number of epochs and batch size was defined (30 in both cases) and the loss function (MAE
[47]), optimisers (Adam [48]) and remaining parameters used for training the networks, were kept as in
the original examples [44, 46, 49]. Hyperparameters used for all models are presented in Table 3.1.

Table 3.1: Parameters and loss functions used to train the 2D reconstruction networks. Hyperparameters chosen to train include:
batch-size, learning rate, the β parameter of the Adam optimiser chosen, the critic iterations (the number of iterations of the
critic per generator iterations), and the λ values applied to the gradient penalty.

Autoencoder U-Net WGAN

Input Image Size 196 x 230 196 x 230 196 x 230
Epochs 30 30 30
Batch-Size 30 30 5
Learning Rate 1e-3 1e-3 1e-4
Adam Optimiser β = (0.9, 0.999) β = (0.9, 0.999) β = (0.9, 0.999)
Critic Iterations - - 5
λ Gradient Penalty - - 10
Loss Function MSE loss MSE loss Wasserstein distance loss
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At test time, all images from the testing set were passed through the trained models for reconstruc-
tion, and three examples derived from each network were randomly selected to display the reconstruction
results. To better compare the results among the models, all the 3 distinct models were trained for the
same number of epochs.

ii) Image Translation

2D slice approach (2D translation)
For the T2-to-T1 MR image translation task, a U-net and a CycleGAN were compared, for the task

of translating, T2 MR slices, to resemble the appearance of T1 MR slices. In all instances the anatomy
should be preserved between input and translated slices.

For the U-net, the same loss functions and optimisers, used for image reconstruction, were main-
tained. However, the network loss was now computed between the output of the networks (the translated
MR slice) and the corresponding ground-truth T1 MR scan. For the CycleGAN, the loss functions, op-
timisers and other hyperparameters reflect those used in the original code from [50]. Information about
the parameters used to train both networks can be found in Table 3.2.

Table 3.2: Parameters and loss functions used to train the 2D networks. Hyperparameters chosen to train include: batch-size,
patch-size, initial learning rate, epoch decay (after how many epochs the learning rate starts to decay linearly to 0), the β

parameter of the Adam optimiser chosen, the λ values applied to the L1 loss and identity loss.

U-Net CycleGAN

Input Image Size 256 x 256 256 x 256
Epochs 200 100
Batch-Size 18 1
Learning Rate 1e-3 0.0002
Epoch Decay - 100
Adam Optimiser β = (0.9, 0.999) β = (0.5, 0.999)
L1 Loss - 0.001
λ Id - 0.5

Loss Function MSE loss
L1 distance: Cycle-consistency and Identity loss
MSE loss: Discriminators

The U-net and CycleGAN networks were trained until the validation loss and image quality metrics
in validation samples stabilised, indicating that the image quality was no longer improving. At test time,
all 2D images were passed through the networks to obtain translations. The results were evaluated by
calculating the mean of the image quality metrics used, for all test images.

iii) Patched-based approach (3D translation)
The U-net and CycleGAN previously used in the whole-image based training were modified for a

patch-based approach.
In this training method, patches were randomly selected from the whole 3D images. Therefore, the

networks learned to translate a T2 patch to a T1 patch and not the complete 3D T2 MR image to a
complete 3D T1 MR image. Regarding the random patch selection, a Random Spatial Crop Samples
transform [51] was used. The transform crops the image in a random location, with a chosen size, to
generate a list with a defined number of sampled patches (see Figure 3.9 for an example).

For inference, the sliding window method [52] was used (with default parameters) since the goal was
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Figure 3.9: Illustration showing an example of the RandSpatialCropSamplesd function performing random sampling of patches.
The parameters of the function were defined for the patch size to be 100x100x100 and to sample 4 patches. The before (whole
image of size 217x217x217) and after (4 random patches sampled of size 100x100x100) are represented in the image. Retrieved
from [51].

to train the network using patches but translate the whole 3D image in testing. This works by passing the
whole image as a series of patches through the model and joining the outputs so the whole image can be
constructed again. Figure 3.10 illustrates the sliding window method used for inference.

Figure 3.10: Operation method of the sliding window function. 1) Generation of slices from window. 2) Construction of
batches. 3) Passing patches through network. 4) Connection of all outputs. Retrieved from [53].

For both 3D networks, a patch size of 128 x 128 x 128 was chosen to train the networks, with a
sample number set to 5. The loss functions, optimisers and other parameters used for training the 3D
U-net and CycleGAN are represented in Table 3.3.
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Table 3.3: Parameters and loss functions used to train the 3D networks. Hyperparameters chosen to train include: batch-size,
patch-size, initial learning rate, epoch decay, the β parameter of the Adam optimiser chosen, the λ values applied to the L1 loss
and identity loss.

U-Net CycleGAN

Full Image Size 256 x 256 x 256 256 x 256 x 256
Input Patch Size 128 x 128 x 128 128 x 128 x 128
Epochs 800 200
Batch-Size 1 1
Learning Rate 1e-3 0.0002
Epoch Decay - 100
Adam Optimiser β = (0.9, 0.999) β = (0.5, 0.999)
L1 Loss - 0.001
λ Id - 0.5

Loss Function MSE loss
L1 distance: Cycle-consistency and Identity loss
MSE loss: Discriminators

3.5 Results

3.5.1 Image Reconstruction

Figures 3.11, 3.12 and 3.13 represent the results of the image reconstructions, after 30 epochs of
training, obtained from the 2D networks: AE, U-net and WGAN, respectively.

Figure 3.11: Results of image reconstruction using the autoencoder network after 30 epochs. a) Randomly selected examples
of the T2 MR ground-truth slices. b) The corresponding reconstructions obtained by the autoencoder network.
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Figure 3.12: Results of image reconstruction using the U-net network after 30 epochs. a) Randomly selected examples of the
T2 MR ground-truth slices. b) The corresponding reconstructions obtained by the U-net network.

Figure 3.13: Results of image reconstruction using the WGAN after 30 epochs. a) Randomly selected examples of the T2
MR ground-truth slices passed through the WGAN for reconstruction. b) The corresponding reconstructions obtained by the
WGAN.
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3.5.2 Image Translation

i) 2D Networks
Figures 3.14 and 3.15 represent the results of the T2-to-T1 MR image translation obtained from the 2D
networks: U-net and CycleGAN, respectively. The quality evolution of the translated T1 MR images
through the several training epochs is also shown.

Figure 3.14: T2-to-T1 translation using three different test sample images. Example of the translation achieved by the U-net
compared to the ground-truth T1 image. Input of the network was the corresponding T2 MR image. a) 30 epochs, b) 100
epochs, c) 200 epochs.
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Figure 3.15: Figure 3.15: T2-to-T1 translation using a test sample image. Example of the translation achieved by the CycleGAN
network when trained for up to 100 epochs, compared to the ground-truth T1 image. Input of the network was the corresponding
T2 MR image.

Table 3.4 represents the values for MAE, PSNR and FID as evaluation metrics for the translated T1
images for the 2D trained networks, at test time. All results were calculated between the ground truth T1
slices and the corresponding synthesized T1 slices generated by the corresponding network.

Table 3.4: Image quality evaluation metrics - MAE, PSNR and FID - for the translated T1 images. The mean value with
associated standard deviation for each metric is presented for the 2D U-net and 2D CycleGAN. Evaluation metric values
correspond to 200 epochs of training for the U-net and 100 epochs of training for the CycleGAN.

MAE PSNR (in dB) FID score

2D U-net 0.00771684 ± 1.15e-05 37.16 ± 6.07 23.95
2D CycleGAN 0.0145351 ± 5.21e-05 30.69 ± 0.82 14.70

ii) 3D Networks
Figures 3.16 and 3.17 illustrate the results for the 3D U-net and 3D CycleGAN applied for T2 to

T1 image translation. The quality evolution of the translated T1 MR images through the several training
epochs is also shown.

Figure 3.16: Figure 3.16: T2-to-T1 translation using a test sample image. Example of the translation achieved by the 3D U-net
when trained for up to 800 epochs, compared to the ground-truth T1 image. Input of the network was the corresponding T2
MR image.
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Figure 3.17: T2-to-T1 translation using a test sample image. Example of the translation achieved by the 3D CycleGAN network
when trained for up to 200 epochs, compared to the ground-truth T1 image. Input of the network was the corresponding T2
MR image.

Table 3.5 represents the values for MAE, PSNR and FID as evaluation metrics for the translated T1
images for the 3D trained networks, at test time. All results were calculated between the ground truth T1
images and the corresponding T1 generated images by the corresponding network. However, to better
compare both 2D and 3D evaluation metrics, only the middle slices of the 3D translated images were
used to calculate the metrics between the T1 translated slice and its ground-truth slice.

Table 3.5: Image quality evaluation metrics - MAE, PSNR and FID - for the translated T1 images. The mean value of all
test images, with associated standard deviation, for each metric are presented for the 3D U-net and 3D CycleGAN. Evaluation
metric values correspond to 800 epochs of training for the U-net and 200 epochs of training for the CycleGAN.

MAE PSNR (in dB) FID score

3D U-net 0.00532827 ± 2.56e-06 39.83 ± 2.67 25.59
3D CycleGAN 0.04356290 ± 2.91e-06 26.60 ± 1.71 56.68

3.6 Discussion

3.6.1 Image Reconstruction

From the results in Figures 3.11, 3.12 and 3.13, it is possible to compare the three different recon-
structions achieved by the different networks and understand their strengths and limitations.

It is visually possible to observe that the U-net, through its ability to better reconstruct finer de-
tails in images, obtained reconstructions with more quality, illustrated in Figure 3.12, compared to the
more visually blurry reconstructions obtained by the Autoencoder in Figure 3.11. The skip-connections
added to the Autoencoder network therefore delivered the expected results, which accordingly match the
theoretical concepts behind it (mentioned in section 2.1).

The WGAN, however, was not able to reproduce as detailed results (visibly more pixelated in Figure
3.13) as the U-net. These results were expected since WGANs’ unsupervised training requires more
epochs to be able to reach an equilibrium between the generator and the discriminator. The usefulness
and powerfulness of these more complex GANs are expected to be emphasized in the anomaly detection
task of Chapter 4. However, through this result, it was possible to analyse future ways of optimising
the WGAN for image reconstruction, implemented in Chapter 4. Therefore, taking into consideration
the good reconstruction results from the supervised U-net, in the next chapter, an additional supervised
loss will be added to this network, to improve image reconstruction quality and promote quicker network
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training. As it will be presented in the next chapter, the optimisations implemented did indeed contribute
to obtaining quality image reconstructions in the 3D WGAN for anomaly detection.

One limitation of the reconstruction experiment was that no quantitative metrics were used to
evaluate the image reconstruction quality, with it only being interpreted by visually comparing the
networks. This is modified for the image translation task, where MAE, PSNR and FID scores are
presented to help interpret the network’s results.

3.6.2 Image Translation

For 2D image translation (Figures 3.14 and 3.15), the U-net shows better image quality with lower
MAE and higher PSNR values compared to the CycleGAN (Table 3.4). The FID score however gets a
better result in the CycleGAN, indicating a higher similarity of the ground-truth and translated T1 slices.
This suggests that although the CycleGAN demonstrates overall lower image quality in translation, it has
a closer image distribution to the ground-truth T1 images. In fact, it is not surprising that the CycleGAN
demonstrates lower image quality, taking into consideration that it trains in an unsupervised way (mean-
ing that there was no need to have paired T1 and T2 slices during training), unlike the U-net. Therefore,
it was possible to observe the potential that both 2D networks possess in translating T2-to-T1 MR slices
with good image quality, both quantitively and visually.

Shifting the focus to 3D image-translation networks, evaluation metric results (Table 3.5) and visual
results (Figures 3.16 and 3.17) show the image quality degradation that can arise from the increase in
complexity of training 3D images compared to the 2D networks. Although the 3D U-net matched (and
even slightly improved) the 2D U-net performance in terms of MAE and PSNR values for translation,
the 3D CycleGAN struggled with patched-based training, indicating worse values for MAE, PSNR and
FID score. It is therefore possible to visually notice the degradation in image quality of the translations
in Figure 3.17, which contains a perceptible intensity voxel shift in the background.

In fact, it has also been reported by the work of [54] that a CycleGAN model obtained worse quanti-
tative and visual performance results compared to a supervised U-net, in an image translation task with
MR and CT images. Possible reasons for this include the need for great amounts of data, especially in
unsupervised methods, to improve network performance. Another factor in this case could be the use of
patch-training in the CycleGAN, meaning the whole image is never fully passed through the networks,
only patches belonging to it. This could explain the difficulty of the CycleGAN, an already unsupervised
network, in obtaining good translations compared to the U-net.

However, the results from the supervised patched-based trained U-net showed great potential in ob-
taining good translation results while preserving computational memory resources – these factors moti-
vated the use of patched-based training in Chapter 4.

Chapter 4 therefore aimed to improve the patched-based training of the CycleGAN for anomaly
detection, by allowing longer training times (closely evaluated through training and validation losses)
and adding more data augmentation methods. Different activation functions were also tested in the
networks to try minimising the intensity differences of the voxels seen on the background of the images.

In conclusion, these results provided clarity over which network architectures and training methods
should be followed, as well as which factors should be improved or combined to optimise the networks
for anomaly detection in Chapter 4. The following chapter therefore takes advantage of the initial work
presented here and applies these networks to create anomaly detection machine learning models using
PET-MR data, based on these two different methods: image reconstruction and image translation.
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Chapter 4

PET-MRI Anomaly Detection using Deep
Generative Modelling

4.1 Motivation: Detection of Focal Cortical Dysplasia in Neuroimaging

FCDs are malformations of cortical development that belong to a group of rare disorders that are
commonly manifested alongside developmental delay, cerebral palsy and/or seizures. [55]

The identification and classification of these malformations from neuroimaging experts can be quite
challenging, since FCDs reflect small, localised errors created during the development of of the outer
surface of the brain. These FCDs represent a spectrum of focal brain malformations, categorised into
three subgroups (Type I, II and III), which reflect the diverse types of disordered cortical lamination
[55]. Therefore, these 3 types of FCDs relate to distinct types of errors in cortical development, each
with examples illustrated in MR brain scans in Figure 4.1.

Figure 4.1: MR brain images containing visible FCDs. (A and B) Images of Type I FCD, where the left temporal pole is
slightly smaller than the contralateral one and abnormal myelination (in the blurred grey-white matter junction) compared to
the contralateral side (indicated by the arrow). (C and D) Images of Type IIa FCD, where the arrowhead indicates lesion in
the left frontal lobe and the white arrow points to the focal blurring of the grey-white matter junction indicating another lesion.
(E and F) Images of Type IIb FCD, both indicated by the arrows corresponding to regions of abnormalities: hyperintensity in
FLAIR image and hypo intensity in T1 image, respectively. (G-I) Images of Type III FCD, where there is a slightly blurred
grey-white matter junction (represented by the thick arrow). The thin arrow in images H and I indicate a developmental venous
anomaly. (J-L) Tuberous sclerosis complex. The thin arrows show nodules that are associated with cortical tubers and white
matter lesions. The thick arrow indicates a tumour [55].

As observed in Figure 4.1, FCDs are very variable in presentation and commonly present themselves
as only subtle changes in MR scans. Imaging findings in MRI indicating FCDs can, therefore, be in the
form of minimal blurring of cortex-white matter junction, focal changes of cortical thickness, brain folds
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with abnormal size (either larger or smaller), presence of tumours, and so on. This means FCDs can
either be quite visible in MR scans (as observed in Figure 4.4 – a tumour) or, at most times, not visible at
all (represented in Figure 4.3 where the FCD is not visible in MRI, but it is in the PET scan in the same
brain location of the patient).

When FCDs are not visible in MRI, hybrid imaging such as the combination of MRI and PET modali-
ties becomes valuable in identifying these lesions [56]. In fact, the work of Salamon et al. [57] concluded
that incorporating [18F] fluorodeoxyglucose - positron emission tomography (FDG-PET)/MRI coregis-
tration into the presurgical evaluation of patients with lesions had the ability to enhance the identification
of FCD in the brain, subsequently resulting in more successful surgical treatment of epileptic patients.

In FDG-PET scans, FCDs manifest themselves as focal or regional abnormal hypometabolic areas
[58] (focal reductions of glucose metabolism) in the brain, which are commonly represented by more
“bluish” regions, such as the example in Figure 4.3 - abnormally larger hypometabolic region (in blue)
in the right temporal lobe compared to the left temporal lobe.

In an equivalent way, specialists that examine medical images, search for abnormal regions that
differ from their prior experience of what a healthy scan shows [14]. Naturally, this process of labelling
the regions where the lesions are present is very time-consuming and requires specialised neurologists.
For this reason, automated approaches emerge as a solution to help guide experts in their diagnosis,
potentially alleviating this lengthy process.

Therefore, this chapter describes a patch-basis detection approach inspired by the work of Yaakub et.
al. [13] (analysed in section 2.1) with the same PET-MR dataset, by applying 2 different GANs for both
image reconstruction and image translation methods, to detect FCDs in epilepsy patients, combining
both imaging modalities. It also takes inspiration from methods used in the work of Sun et al. [14] -
specifically in creating a personalised anomaly loss - by taking advantage of the lesion masks available
for the data. The general idea of this project was therefore to create a patch-wise approach to try and
identify lesions in the dataset and at the same time deconfound acquisition noise and normal cortical
variabilities in PET-MR data of brains.

In this chapter, a description of the dataset used and pre-processing strategies, are presented in the
following section 4.2. In section 4.3, the general training and testing methodologies applied to both
WGAN and CycleGAN are described, including the data augmentation strategies implemented, archi-
tecture of the network, learning rates, loss functions and other hyperparameters. All experiments were
built using the Pytorch and MONAI machine learning frameworks [37, 38], and trained using a NVIDIA
Titan RTX GPU with 24 GB of RAM. Finally, results are presented in section 4.4 and their discussion in
section 4.5.

4.2 Dataset and Pre-processing

4.2.1 Data Structure

The dataset was comprised of 31 MR and PET scans of patients with drug-resistant epilepsy (with
dimensions of 230 x 160 x 230). The MR and PET scans were acquired on the same day using a whole-
body GE Discovery 710 PET/CT system and a 3T Siemens Biograph mMR PET-MR scanner. Data
acquisition for this dataset included a 15-minute [18F] FDG PET scan on the PET/CT system 30 min
post-injection and a 3D T1 MP RAGE (magnetization-prepared rapid acquisition gradient echo) scan on
the PET-MR system [13]. All data acquisition information was retrieved from [13], with MRI TI values
and other echo values not mentioned in this paper. Information about age, gender, category, and the
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region where the lesion was found is presented in Table A.7.
All subjects had their scans evaluated by two consultant Nuclear Medicine physicians and 15 sub-

jects had their scans additionally examined by Professor Alexander Hammers, Head of King’s College
London Guy’s and St Thomas’ PET centre [59]. The patients’ scans could belong to one of the following
categories: MR+PET+ (lesion was visible in both MR and PET scans), MR-PET+ (lesion was not visible
in the MR scan but visible in the PET scan) or MR-PET- (lesion was not visible in the MR nor the PET
scans). From this visual inspection, the positive (+) scans were given labels indicating the suspected
lesion location and used to create a mask of potentially pathological tissue in the scans (described in
section 4.2.3). These lesion masks were then used to train the networks described in section 4.4.

From the entire dataset, the patients belonging to the MR-PET- category were excluded since the
location of the lesion was unknown and therefore not useful for the intended goal of this project. The
total number of patients used in this project was therefore reduced to 22 pairs of PET-MR scans.

Figures 4.2, 4.3 and 4.4 illustrate examples of 3 different lesions present in patients’ scans. Figure
4.2 shows the PET and MR scans of patient mMR_BR1_050, containing abnormalities seen in both
MR and PET scans, which were classified as a FCD of type I by the physicians. In Figure 4.3, the
PET scan of patient mMR_BR1_022 illustrates a small abnormality (hypometabolic region) which is
not visible in the MR scan. This patient is therefore under the category of MR-PET+. The patient was
diagnosed with epilepsy originating in the right temporal-frontal lobe. Finally, Figure 4.4 illustrates a
clearly visible lesion in both MR and PET scans, identified as a dysembryoplastic neuroepithelial tumour
by the physicians. Figures 4.2-4.4 illustrate the diversity of lesions found across patients’ brains in this
dataset. These lesions can be either very subtle (Figure 4.2-4.3), sometimes not visible in MR scans, or
visually distinct in both scans – just as Figure 4.4 where it is possible to identify a tumour.
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Figure 4.2: Example of 2 pairs of slices (both with sagittal, coronal, and axial schemes) of MR and PET scans of the same
patient (mMR_BR1_050), showing the hypometabolic region where the lesion is located (red circle and white arrow). In this
patient’s case, the lesion is visible in both MR and PET scans. The FCD was classified by the physicians as type I.

There have been several studies [57, 60] showing the advantage of using both PET and MR modalities
together to identify FCD, especially in cases where the lesion is visually difficult to identify in either the
PET or the MR scan. In this project, the two nuclear physicians visually inspected the MR and PET
scans separately unlike Professor Hammers, who examined both PET and MR scans of the patients
alongside each other in order to create a clinical label of the suspected lesion location. Having this in
mind, Professor Hammer’s clinical labels were taken into consideration when available, over the ones
noted by the two nuclear physicians - the examination was only done by Professor Hammers for 15 of
the 22 patients. It is worth mentioning that the image specialists sometimes disagreed on the location of
the lesions, which also occurred between the nuclear physicians and Professor Hammers in this dataset.
Some of the FCDs in this dataset were also sometimes noted by the specialists as being extended and/or
disperse through a lobe or several lobes of the brain, with no focal point.
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Figure 4.3: Example of 2 pairs of slices (both with sagittal, coronal, and axial schemes) of MR and PET scans of the same
patient (mMR_BR1_022), showing the hypometabolic region, where the lesion is located (red circle and white arrow). In this
patient’s case, the lesion is only visible in the PET scan. The patient was diagnosed with suspected right temporal-frontal
epilepsy.

This visual inspection of the scans is then sometimes unsurprisingly ambiguous since there is inter-
subject variability in the brain and a disagreement among specialists in what is considered a “healthy
looking tissue” in the brain. An example of a contributing factor to this is the fact that the temporal lobes
on PET scans have characteristically lower uptake values in healthy patients [62] compared to other lobe
regions, complicating the detection of abnormalities in these locations since it could simply correspond
to normal inter-subject variation or in fact an abnormal hypometabolic region in the scan. The diverse
types of FCD present in this dataset therefore constitute a challenge for the networks that aim to detect
them, since the lesions among the patients can be heterogeneous in contrast, morphology, and size.
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Figure 4.4: Example of 2 pairs of slices (both with sagittal, coronal, and axial schemes) of MR and PET scans of the same
patient (mMR_BR1_020), showing the hypometabolic region where the lesion is located (red circle and white arrow). In this
patient’s case, the lesion is visible in both MR and PET scans. The lesion was classified by the physician as a dysembryoplastic
neuroepithelial tumour [61].

4.2.2 Data Pre-processing

The dataset underwent several pre-processing steps before being inputted to the networks to ensure
its correct display. The skull was firstly removed from the raw images in order to only keep the brain
tissue in all the subjects, since this is where the networks should focus. The process of skull-stripping
was therefore the first to be implemented before registering all images to a common space. Secondly,
in order to better compare the same regions of the brain in every subject, all images were registered to
the same (MNI) standard space. The MR and PET scans had already been previously co-registered to
each other (aligned in the same subject space) but not aligned to all the subjects present in the dataset.
Remasking was then applied to every scan to further eliminate skull portions that were missing in the
initial skull-stripping process. Finally, the data was normalised - by scaling intensity values between 0-1
for every subject through the histogram normalisation method.

The pipeline for the data pre-processing is described in Figure 4.5. Further details associated with
each step are presented next with the associated necessity to perform them.
i) Skull extraction

The BET tool [63] from FSL [64] was used to perform brain extraction for every MR and PET scan.
This method segments the brain tissue from each image using an intensity-based thresholding approach.
The choice of the parameters f (fractional intensity threshold) and g (threshold gradient) were manually
selected for every image since different images had different optimal parameters for skull-removal.

This process was repeated for the MR and PET scans of all the patients and visually inspected after
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Figure 4.5: Pipeline for pre-processing the dataset. 1: Skull-stripping process with examples of sagittal, coronal, and axial
MR slices of patient mMR_BR1_002 before skull removal and same sagittal slice after skull-tripping. 2: Image registration
process with examples of sagittal, coronal, and axial MR slices of both patients mMR_BR1_067 (represented in red) and
mMR_BR1_047 (represented in black and white) overlapped before image registration (not aligned among each other). The
same sagittal slice with both patients overlapped is shown after image registration. 3: Remasking process - the first image
represents the original sagittal MR slice of patient mMR_BR1_002, the second image represents the brain mask of the same
slice to be applied and the third picture represents the overlay of the brain mask (with the outline in red) and the original
image. The last image of the row represents the remasked sagittal slice. 4: Intensity normalisation of both MR and PET scans
belonging to patient mMR_BR1_002. The first 2 images represent the scans before normalisation and the last 2 images of that
row represent the scans after normalisation.

every skull-stripping operation to ensure the brain tissue was not “cut out” of the scan. If the skull
removal resulted in the removal of too much of the brain tissue, changes were made to the f and g
parameters for the images to include more skull - Figure 4.7 illustrates an example of an image with
parameters that allow for the correct removal of skull and another example of an image with incorrect
parameters that remove brain tissue. This process was optimised empirically.

In some images, the BET tool was not able to fully remove the skull without also removing important
brain-tissue. In these cases, the brain-tissue and the images were left with some pieces of skull – example
in Figure 4.8 – that would be further removed using a remasking method after registration took place.
The remasking method will be explained later in this section.
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Figure 4.6: Example of 2 pairs of slices (both with sagittal, coronal, and axial schemes) of MR scans of the same patient
(mMR_BR1_030), showing the outline of the brain in red, overlayed on the whole image with skull.

Figure 4.7: Sagittal brain MR slice of patient mMR_BR1_002 showing the incorrect way of removing skull (top scheme) and
the correct way of removing skull (bottom scheme).

ii) Affine registration
After the skull-removal process was complete, it was necessary to define a common reference system

to allow an anatomy comparison between the multiple subjects’ scans. Image registration was therefore
used to align all data to a common coordinate system - the MNI152 standard space [65].

The FLIRT algorithm [66] was used for affine registration with 12 degrees of freedom of all MR
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Figure 4.8: Sagittal brain MR slice of patient mMR_BR1_002, illustrating an additional skull part that could not be removed
with the BET tool without also removing important brain tissue.

scans to the MNI space with normalised mutual information cost function and tri-linear interpolation
method. This computed affine transformation was then applied to the corresponding PET scan to equally
align it to the MNI space. Finally, this process was repeated for every subject in the dataset to ensure the
MR and PET scan alignment.

iii) Remasking
Once the image registration was complete, the images were remasked to further remove skull “left-

overs” in the previous skull-stripped images and smooth the borders of the brain tissue to prevent sharp
variations in contrast at the edges where the skull was eliminated. The removal of the skull ensured the
networks focused on the brain tissue, where the lesions are located, thus not wasting memory or network
parameters on the unnecessary parts of the images (skull and background).

For each patient it was necessary to have a personalised brain mask in order to remask the scans. The
remasking was done by multiplying the mask with each subject’s image, ensuring every piece of image
outside the brain mask would be removed (pixel intensity turned to 0).

Each mask was created using the standard non-linear dilated brain mask available in FSL (repre-
sented as standard brain mask in Figure 4.9) and registering it back to the affine space for each subject
(represented as brain mask affinely registered in Figure 4.9). To do this, all MR images were first non-
linearly registered to the MNI space, using the FNIRT command in FSL. This operation outputs the
non-linearly align MR scans as well as the warp fields of that operation, which can then be inverted to
transform images from being non-linearly registered to affinely registered.

Therefore, the warp fields of each subject were inverted and applied to the standard non-linear brain
mask of FSL, each creating an affinely registered brain mask of each subject. Each of these masks were
then applied to the corresponding affine registered brain image (MR and PET) to further remove skull
leftovers in the previous skull-stripped image. A schematic representation of the remasking process is
presented below in Figure 4.9.
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Figure 4.9: Scheme illustrating pipeline followed to obtain brain mask of patient mMR_BR1_002 and its transform back to the
affine space. Warp field illustration retrieved from [67].

Figure 4.10: Top row represents the sagittal, coronal, and axial MR slices of brain mask of patient mMR_BR1_002 used for
remasking the affine brain image for complete skull removal. Middle row represents the sagittal, coronal, and axial MR slices
of the affinely registered brain image of patient mMR_BR1_002 before remasking. Bottom row represents the sagittal, coronal,
and axial MR slices of the remasked brain image of patient mMR_BR1_002.

iv) Histogram Normalisation
The last step of the image pre-processing was the intensity normalisation of all the images.
Normalisation is a vital step before data analysis since it is not uncommon for images in the same

dataset to have large intensity variations caused by the use of different image acquisitions parameters or
even different scanners [68], which considerably affects the conclusions drawn from the image analysis.
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In the specific case of FDG-PET images, the concentration of FDG in the brain was also found to be
subject-dependent on the account of factors such as age, gender, or blood glucose level [62, 69]. There-
fore, intensity normalisation plays an essential role, not only in MR images but also in PET images, to
attenuate these variations so that it is possible to compare either voxel intensity values or ROI uptake
values among patients [70].

Recently, the work of [68] has recommended the use of histogram-based normalisation methods in
the harmonization of brain FDG-PET images compared to other intensity normalisation approaches. This
same work [68] goes on to further illustrate that the use of inaccurate intensity normalisation methods in
images can cause the wrong detection of disease-related hypometabolism regions, resulting in an increase
of false positives during image analysis.

Having this in mind, the objective was to normalise the current dataset that contains several
subjects to a common space. Therefore, a histogram normalisation method following the work of [71]
was applied to this dataset to promote data-harmonisation among patients, rescaling image intensity
distributions to match that of a standardised target distribution.

A general overview of the used histogram normalisation method is presented as follows:

• Firstly, a range of percentiles was chosen to map (10-90 range was chosen with a step of 10
between them).

• Then, the intensity values at each percentile were calculated for each of the images - commonly
referred to as landmarks.

• Additional percentiles were chosen to act as the minimum and maximum of the range - 5 and
95 were chosen respectively, assuming the values below 5 and above 95 represent noise. The
intensities corresponding to this range were then scaled to the target scale using interpolation.

• After this, the same scaling operation was applied to each landmark.

• Then, the landmark intensities were estimated for all images (in this case for every MR scan and
then for every PET scan separately) and averaged to achieve a target set of average landmark
intensities (one for each percentile in our original list).

• Finally, each image intensity was scaled to match the target (landmark) percentile scale.

As mentioned before, the intensity normalisation in this project was performed for the MR scans and
PET scans separately for every patient. Figure 4.11 represents an example of the MR and PET scan of a
patient before and after normalisation, where the intensity values can be visually perceived as different,
specifically in some regions.

4.2.3 Lesion Masks

For each patient’s data, a binary mask was created, each reflecting the brain regions where the lesions
were found by the clinical labels available.

For this task, the Hammer Atlas n30r83 maximum probability map [10, 72–74] with 83 segmented
brain regions in MNI space - illustrated in Figure 4.12 - was used to identify the regions accordingly to
the clinical labels and a binary mask of those was created. The patient’s non-linearly registered data to
MNI space was used to check if the masks overlayed correctly with the brain regions they belonged to
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Figure 4.11: Sagittal MR scan slice (top scheme) and PET scan (bottom scheme) before and after normalisation, with emphasis
on a brain region where it is visually possible to understand the difference in intensity between both images. Both MR and PET
scans belong to patient mMR_BR1_002.

Figure 4.12: Sagittal, coronal, and axial slices of the Hammer atlas n30r83 maximum probability map visualised in FSLeyes
image viewer tool [75]. Each colour represents a different segmented region of the atlas.

and were then inverted back to the affine MNI space (with the affine transforms used to register the data
in an affine way to MNI space in section 4.2.2).

In this atlas, each segmented brain region had a different intensity value, with a numerical label
attached to it. The specific regions were therefore selected by using the intensity tool in FSL, which
allows the selection of voxels by their specific intensity.

Once the brain regions were isolated for each patient - creating a brain mask only with the lesion
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Figure 4.13: Example of how the brain regions were selected for each patient using the intensity tool of FSLeyes (top image).
The selection of the right-side superior frontal gyrus (belonging to the frontal lobe) in the atlas and the isolation of that region
- with now an intensity value equal to 1 (bottom image).

regions - the mask was converted back to the affine space and overlayed with the affinely registered
patient’s scans to visually confirm that the lesion mask was in the correct anatomical region of the brain.
Figure 4.14 illustrates the overlay of the masks for different patients, confirming that the anatomical
region and the atlas label correspond (are aligned) on the MR scan. Figure 4.15 shows the PET scan of a
patient with a clearly visible lesion (on the crosshair location - region in blue on the temporal lobe) and
the mask overlayed on top of it, confirming that the mask is aligned with the lesion area.

Figure 4.14: Example of lesion masks for different patients overlayed with the corresponding MR scans. Top row - sagittal,
coronal, and axial slices of MR scan of patient mMR_BR1_021, with the lesion mask located on both temporal poles and the
right parietal lobe. Bottom row - sagittal, coronal, and axial slices of MR scan of patient mMR_BR1_062, with the lesion mask
located on the right and left hippocampus and left insula.
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Figure 4.15: Example of PET scan (top row) and the lesion mask overlayed (bottom row). Top row - sagittal, coronal, and axial
slices of PET scan of patient mMR_BR1_020. The area of the lesion can be seen where the crosshair is positioned (darker blue
area on the left temporal lobe). Bottom row - sagittal, coronal, and axial slices of the PET scan of the same patient with the
overlayed lesion mask, showing the lesion location and the brain mask area overlap, as expected.

4.3 Experimental Set-Up

4.3.1 Anomaly Detection Methods

In this chapter, two different anomaly detection approaches (reconstruction and translation) were
implemented using two different networks (WGAN and CycleGAN), taking advantage of both PET and
MR modalities present in the dataset.

i) Detection through Reconstruction
The first implemented approach involved training a 3D WGAN with only healthy patches from the

patients’ PET-MR scans (thus leaving out any diseased tissue), for the network to learn how to recon-
struct healthy PET-MR patches. In testing, the whole PET-MR scans (with healthy and diseased tissue)
were passed through the network and the diseased areas were expected to show higher reconstructed
errors, therefore identifying lesion locations.

ii) Detection through Translation
This approach for anomaly detection made use of a 3D CycleGAN to perform translation between

diseased and healthy patches of patients. The network was therefore trained to translate between these 2
classes (healthy and diseased), and, during testing, the whole PET-MR image was translated to a healthy
version of it in which the lesions were removed, enabling to identify their location.

Therefore, this section aims to implement these two different detection approaches by combining
advanced machine learning techniques to create a diagnostic tool for anomaly detection, specifically
epilepsy-causing brain lesions, with a particular focus on FCD, from PET-MR data.

4.3.2 Networks Architecture and Training Details

Depending on the implemented network - WGAN or CycleGAN - different architectures, loss
functions, and hyperparameters were chosen. In general, the typical loss functions for GANs were
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used in both networks, apart from a personalised loss inspired by the work of [14], which was added to
the CycleGAN training and will be described in this section. Therefore, both networks used different
training methodologies that are enumerated and described next.

i) WGAN
The objective of the WGAN was to identify lesions through reconstruction. In this approach, training

was performed using only healthy patches, with the goal of learning a generative model of healthy brain
appearance. During testing, whole images (including the diseased patches where the lesion was present)
are passed through the network, with the expectation that a higher reconstruction error will appear for
lesion areas, since the network did not learn the diseased distribution during training.

The WGAN network (Figure 4.16) comprises a Generator and a Critic. The Generator receives
ground truth healthy patches of the MR and PET and learns how to reconstruct them. The critic receives
the original healthy patches and their reconstructions, with associated labels (label 0 for reconstructions
and label 1 for original patches), and then gives a score to the input, predicting if it represents an original
or reconstructed patch.

In terms of network losses, the WGAN was trained using a Wasserstein distance loss with gradi-
ent penalty, and a supervised L1 reconstruction loss (to penalise differences between the original and
reconstructed patches). The Wasserstein loss was therefore used to measure the distance between the
ground-truth data distribution and the distribution shown in reconstructed samples [27], aiming to opti-
mise the Critic and the Generator. Additionally, a L1 loss was imposed to penalise reconstruction errors
between the original and the reconstructed patch.

Figure 4.16: Illustration of the WGAN structure (one Generator and one Critic) and data flow with associated losses. The
network input is represented by the original healthy MR and PET patches, which pass through the Generator and are recon-
structed. The Critic aims to classify the patches as original or reconstructed using a WGAN-GP loss that optimises both the
Generator and Critic during the training. The L1 loss between the original and reconstructed patches is used to also optimise
the Generator.

The architectures for the Generator and Critic are illustrated in Figures 4.17 and 4.18, respectively.
Tables A.8 and A.9 in the appendix describe the parameters used for the generator and critic, respectively.
The hyperparameters used to train the WGAN were based on the recommended values from the work of
[21] and are presented in Table A.10 in the appendix.
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Figure 4.17: Illustration of the Generator’s architecture. The Generator is based on a U-net architecture with skip connections
(represented by the red arrows). This architecture included an Instance normalisation layer and a Leaky ReLU activation
function (with a negative slope parameter set to 0.2), as well as a ReLu activation functions for the decoder layers. The input
of the Generator was the healthy patches of size 2x64x64x64 (the 2 channels referring to both the MR and PET scans of the
associated patient) and its output consisted in the reconstructed input patches with a sigmoid function as a last layer. The
Generator aims to learn the mapping of the healthy patches.

Figure 4.18: Illustration of the Critic’s architecture, represents a typical down sampling network using convolution, with a
distinguishing factor of not having a final sigmoid layer. This architecture included an Instance normalisation layer and a Leaky
ReLU activation function (with a negative slope parameter set to 0.2). The input of the Critic was the healthy or reconstructed
patches of size 2x64x64x64 (the 2 channels refer to both the MR and PET scans of each patient) and its associated labels
(whether 0 or 1). The Critic output was a score given to the input image to classify it in either more probable to be an original
patch or its reconstruction. The Critic aims to distinguish the original healthy patches from their own reconstruction.
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ii) CycleGAN

When it comes to the CycleGAN, it uses a translation methodology where the network is trained to
learn the mapping between healthy to diseased patches, and vice-versa. The typical CycleGAN uses 2
Generators and 2 Discriminators that aim to learn this mapping.

The CycleGAN was optimised using the following losses:

• Discriminator DA loss - implements a binary cross entropy (BCE) function which outputs a pre-
dicted probability value (between 0 and 1) with 1 corresponding to the original abnormal patches,
and 0 corresponding to the translated healthy patches (Figure 4.19.b with an associated label = 0).

• Discriminator DN loss - implements a BCE function which outputs a predicted probability value
(between 0 and 1) of the patches corresponding to original normal patches (Figure 4.19.a with an
associated label = 1) or normal patches translated from diseased patches (Figure 4.19.e with an
associated label = 0), furthermore calculating a score that penalizes the probabilities based on their
distance to the expected label.

• Cycle-Consistency A2N loss - implements a L1 distance loss function between the original abnor-
mal patches (d. in Figure 4.19) and the reconstructed abnormal patches after being translated to
normal patches and translated back to abnormal patches (Figure 4.19.f).

• Cycle-Consistency N2A loss - implements a L1 distance loss function between the original normal
patches (Figure 4.19.a) and the reconstructed normal patches after being translated to abnormal
patches and translated back to normal patches (Figure 4.19.c).

• Anomaly mask loss - implements an L2 distance loss between the original abnormal patches (Fig-
ure 4.19.d) and its translation to normal patches (Figure 4.19.e), both multiplied by the lesion
mask of the abnormal patch. Therefore, only the healthy tissue is preserved, and its reconstruction
is evaluated, since the lesion regions indicated in the anomaly mask are set to a voxel intensity of
0. Equation 4.1 represents this personalised loss function.

• Identity A loss - implements a L1 distance loss function between abnormal patches (Figure 4.20.g)
fed into the Generator N2A and its output, which should ideally correspond to the same abnormal
patches (Figure 4.20.h). This loss is applied to further ensure that the Generator N2A will not
translate abnormal patches since they already belong to the domain it should output.

• Identity N loss - implements a L1 distance loss function between the normal patches (Figure 4.20.i)
fed into the Generator A2N and its output, which should ideally correspond to the same normal
patches (Figure 4.20.j). This loss is applied to further ensure that the Generator A2N will not
translate normal patches since they already belong to the domain it should output.

The identity losses are represented in Figure 4.20 and the remaining losses illustrated in Figure 4.19.
Tables A.11 and A.12 in the appendix also describe the parameters used in the network’s layers. The
hyperparameters used to train the CycleGAN were based on the recommended values in [23] and are
presented in Table A.13. The λAM parameter for the anomaly mask loss was used according to the work
of [14].
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Figure 4.19: Illustration of the CycleGAN structure and data flow with associated losses. Healthy MR and PET patches
pass through the CycleGAN with the goal of learning the mapping that allows to translate between healthy and diseased
patches and vice-versa. The overall structure of the CycleGAN is composed by 2 Generators (Generator A2N and N2A) and 2
Discriminators (DA and DN ). The Generator N2A is trained to translate “normal” healthy patches (a.) to “abnormal” diseased
patches (b.) and the Generator A2N is trained to translate diseased patches (d.) to healthy patches (e.) - their associated
loss includes L1 losses (cycle-consistency losses) between the original (a. and d.) and reconstructed patches (c. and f.).
The Discriminator DA is trained to distinguish between these real abnormal patches (d.) and abnormal patches translated from
healthy patches (output of Generator N2A – b.). The Discriminator DN was in turned trained to distinguish between real healthy
patches (a.) and healthy patches translated from diseased patches (output of Generator A2N - e.). The Discriminators losses are
represented by a binary cross entropy (BCE) loss. Finally, an anomaly mask loss was added between the input of the Generator
A2N (d.) and its output (e.), both multiplied by the binary lesion mask of the associated patient.

Figure 4.20: Representation of the Identity L1 losses of the CycleGAN. Identity loss A was applied between abnormal patches
(g) fed into the Generator N2A and its output (h). Identity loss N was applied between the normal patches (i) fed into the
Generator A2N and its output (j).

The goal of the anomaly mask loss was to ensure the healthy part of the tissue present in the diseased
patch was not being modified, since the input patch was not entirely diseased. Therefore, by multiplying
the lesion mask by the input and output patches of the Generator A2N, the healthy tissue remained in
both images and the voxels of the diseased tissue were set to an intensity of 0. If any voxel in the healthy
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tissue area was translated when passed through the network, the Generator A2N was penalised since its
aim was to only translate the diseased tissue to healthy, keeping the healthy tissue of the input patch
unchanged.

Equation 4.1 describes this loss function, where M represents the matrix of the binary lesion mask
where the lesion location has a voxel intensity equal to 0. Both the input abnormal patch and the output
patch of Generator A2N had 2 channels (corresponding to the PET and MR scans) and M had only 1
channel. Both M and the patches had the same width and height. This loss therefore measures an L2
distance between the heathy tissues in both patches, where the lesion location in the images is set to an
intensity of 0 – illustrated in Figure 4.21.

It was assumed that the patches x were drawn from their corresponding distributions: xa ∼ pa and
xn ∼ pn, being xa a sample from the abnormal patch distribution and xn a sample from the normal patch
distribution. The penalty LAM can therefore be defined as:

LAM = E pa(x)[‖M� (GA2N(xa)− xa)‖2
2] (4.1)

where� represents element-wise multiplication, E (pa(x)) the estimator of the abnormal distribution
dependent on a patch x , M the binary lesion mask, and GA2N(xa) the resulting patch from the Generator
A2N, that receives an abnormal patch, xa, as its input.

Figure 4.21: Representation of the patches evaluated by the anomaly mask loss. The full patches (corresponding to the MR
and PET channels) are multiplied by the corresponding lesion mask that have the lesion regions with voxel intensity equal to 0.
Consequently, the resulting patches only have healthy tissue present (with the regions that are inside the anomaly mask set to
0). The MSE loss is evaluated in this way, between the input and output patches of the Generator A2N.
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The final Generator loss can therefore be described as the summation of the generator losses in
Equation 4.2:

Gloss = LGA2N + LGN2A +λL1 LCycleA +λL1 LCycleN +λid λL1LIdentityA +λidλL1LIdentityN +λAMLAM

(4.2)

where LGA2N and LGN2A represents the loss of Generator A2N and Generator N2A that resulted from
the respective Discriminators, LCycleA and LCycleN represent the cycle-consistency losses, LIdentityA and
LIdentityN the identity losses, and LAM the anomaly mask loss. The different generator losses were
multiplied by hyperparameters ( λAM , λid , λL1) ollowing the work from [23] and [14], and their values
are presented in Table A.13.

Both Discriminators DA and DN shared the same architecture (illustrated in Figure 4.22 and Figure
4.23, respectively), and both Generators A2N and N2A shared the same U-net structure, as presented in
Figure 4.24.

Figure 4.22: Illustration of the Discriminator DA architecture. This architecture included an Instance normalisation layer and a
Leaky ReLU activation function (with a negative slope parameter set to 0.2). The input of the Discriminator was the original
diseased patches or the translated-to-diseased patches of size 2x64x64x64 (the 2 channels refer to both the MR and PET scans
of the associated patient) and their associated labels (0 or 1). The Discriminator output is a probability score given to the input
image depending on whether it was an original patch or a translation-to-diseased patch. The Discriminator aims to distinguish
the original diseased patches from translations-to-diseased patches.
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Figure 4.23: Illustration of the Discriminator DN architecture. This architecture included an Instance normalisation layer and
a Leaky ReLU activation function (with a negative slope parameter set to 0.2). The input of the Discriminator was the original
healthy patches or the translated-to-healthy patches of size 2x64x64x64 (the 2 channels refer to both the MR and PET scans of
the associated patient) and their associated labels (0 or 1). The Discriminator output was a probability score given to the input
image depending on whether it was an original patch or a translation-to-healthy patch. The Discriminator aims to distinguish
the original healthy patches from translation-to-healthy patches.

Figure 4.24: Illustration of the Generator N2A architecture (it shares the same architecture as Generator A2N but has the
diseased patches as input and their translations to healthy as output). The Generators were based on a U-net architecture with
skip connections (represented by the red arrows). This architecture included an instance normalisation layer and a Leaky ReLU
activation function (with a negative slope parameter set to 0.2) in the encoder layers and a ReLU activation function in the
decoder layers. The input of Generator N2A were the healthy patches of size 2x64x64x64 (the 2 channels refer to both the
MR and PET scans of the associated patient) and its output consisted in the translation-to-diseased from the input patches, with
a sigmoid function as a last layer. Generator N2A here illustrated aims to translate healthy patches to diseased patches and
Generator A2N aims to translate diseased patches to healthy ones.
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4.3.3 Training Methodology

i) Patch-based Training
As motivated by Chapter 3, all networks implemented for this project were trained with 3D patches

instead of using the entire 3D scans in order to address the high computational cost of training large
3D images, and reduced quantity of available data. Additionally, patched-based training of the networks
allows for the use of the patients’ own data as healthy tissue, since the lesions are not located in the entire
brain volume.

Patch selection was implemented using a ‘weighted cropper’ function [76], which took as input a
weight map – corresponding to the lesion mask created for each image in section 4.2.3 – and cropped
random regions (either inside or outside the lesion mask) depending on if a healthy patch or a diseased
patch was desired. Figure 4.25 illustrates an example of a 2D axial slice of the binary weight maps used
to sample random patches of either healthy or diseased patches. The regions where voxel intensity equals
to 0 (represented in black) mean that the centre of the patch will not be randomly chosen in that region.
In contrast, white regions (voxel intensity equals to 1) indicate that the weighted cropper function is
allowed to randomly sample patches in that region.

The optimal patch size was an important factor to consider. Ideally, patch size should be optimised
to be sufficiently small to save computational memory, but big enough to learn the global context of the
image. In the specific case of this work, there was also the need to have a patch size that was big enough
to sample most of each masked lesion area (with roughly the same order of size of a brain lobe) but, at
the same time, small enough to not sample too much healthy tissue. Having this is mind, patch sizes
of 128 x 128 x 128 were, considered inappropriate upon visual inspection since their size was too big
considering the size of the lesions, whereas a patch size of 32 x 32 x 32 was considered too small. As a
result, an intermediate patch size of 64 x 64 x 64 was chosen, and networks were trained on 3D patches
randomly sampled from each whole 3D image in the training set.

Patch selection was implemented differently for each network architecture: for the WGAN, the net-
work was trained only with patches that only contained healthy tissue. As such the random sampling of
patches was parameterised to ensure that the patches had a maximum of 10% of lesion area. Therefore,
patches were considered healthy if they did not have more than 10% of their volume belonging to a
region marked as diseased.

For the CycleGAN training, it was needed to have both healthy and diseased classes. Therefore,
while the same modified weighted cropper function (used in the WGAN) was applied to sample random
healthy patches; for the diseased class, the weighted cropper function was modified to only sample
patches that had at least 10% of lesion volume in the total patch.

Figure 4.26 shows an example of the random sampling of a healthy patch of size 64 x 64 x 64 voxels
that also contains a portion of diseased tissue but is considered as healthy since the percentage of lesion
area is less than 10% of the total volume of the patch. Figure 4.27 shows the same sampled patch of
Figure 4.26, with the associated 2D and 3D visualisation of the patch in relation to the entire MR scan.
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Figure 4.25: Example of axial 2D slice binary lesion mask (left temporal lobe) of patient mMR_BR1_020. The left-side figure
represents the weight map used to sample healthy patches whereas the right-side figure represents the weight map used to
sample diseased patches. The regions in black represent voxels with intensity equal to 0 and regions in white with intensity
equal to 1.

Figure 4.26: Illustration of axial slices showing a random healthy patch sampled from the MR scan of patient mMR_BR1_047,
and the quantity of diseased tissue it contains – a lesion area needs to be less than 10% of the total area to be considered a
healthy patch. The top image represents an axial slice of the binary lesion mask (where the observed diseased region belongs to
the right temporal lobe) - this binary mask is used by the healthy patch sampler function to know in which regions it can sample
patches. The second from the top image highlights the random sampled patch – this specific patch was sampled close to the
lesion mask but contains less than 10% of lesion area and is, therefore, considered as a healthy patch. The third image illustrates
the overlay of the lesion mask and the highlighted sampled patch, showing that the patch contains a portion of diseased tissue.
The bottom image represents only the healthy tissue in the patch, with the intensity of the diseased tissue voxels set to 0 for
better visualisation.
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Figure 4.27: 2D and 3D visualisation of the same patch sampled in Figure 4.26 in relation to the entire MR scan of patient
mMR_BR1_047.

ii) Multimodal Channel versus Single Channel Training
Additionally, a comparison was made between training with both PET and MR modalities and with

a single channel (either MR or PET modality individually). Consequently, each patch for the multimodal
training had a shape of 1 x 2 x 64 x 64 x 64 – where 1 corresponds to the batch-size (only one patch in
this case), 2 to the multimodal channels (PET and MR) and 64 x 64 x 64 to the patch dimension. Each
patch for the single channel training had a shape of 1 x 1 x 64 x 64 x 64 – where the single channel would
now only be either PET or a MR modality.

As a result, the WGAN and CycleGAN networks were trained with the following data inputs:

• WGAN with multimodal channel (PET and MR data)

• WGAN with single channel (PET data)

• WGAN with single channel (MR data)

• CycleGAN with multimodal channel (PET and MR data)

• CycleGAN with single channel (PET data)

• CycleGAN with single channel (MR data)

This comparison was motivated by several papers [60, 77, 78] that note the many challenges when
training with multimodal data, especially when imaging data is obtained from different scanners or
research centres. Some of these challenges and future ways to tackle them will be discussed in chapter
5.

52



4.3 Experimental Set-Up

iii) Data Augmentation
In addition to randomised patch selection, random left-right (horizontal) patch flipping [79] was also

introduced in training as a data augmentation strategy. The random flips had the intention of allowing the
network to learn how both hemispheres of a healthy brain should look like. In the WGAN, for example,
this would allow that a patient that has the right temporal lobe diseased (which makes this region not
to be passed through the network in the training) could have a representation of that left side (imitating
what a healthy right temporal lobe should look like) if the patch is flipped.

4.3.4 Testing Methodology

i) Patient Selection
For testing, both PET and MR scans of the patient needed to have a well-defined lesion location to

analyse the network performance in detecting the abnormality in that same region. Having this is mind,
patients (mMR_BR1_050 and mMR_BR1_020) with lesions of the category MR+PET+ were chosen.
The lesions of both patients are represented in Figures 4.2 and 4.4, respectively.

Patient mMR_BR1_020 had a very visible FCD on both PET and MR scans, which resembles the
lesions present on the MR data used in the work of [14], replicated in Figure 2.4(a). Since the networks
tested in this chapter take inspiration from the work of [14], it was desired to replicate the performance of
this paper with the networks built in this chapter, evaluating if they could equally identify the noticeable
anomaly. Conversely, patient mMR_BR1_050 was chosen since it had a subtle FCD on both PET and
MR scans, which aimed to test the networks’ ability to detect these more subtle lesions, more difficult to
identify.

ii) Whole-image Testing
All networks in this chapter used patched-based training (described in section 4.3.3.1) but were tested

using the entire 3D images to identify lesions in the whole brain volume, and not exclusively on patches.
During inference, the whole 3D image of the test data is passed through the model using the sliding

window function described in section 3.3.2 and its process is illustrated in Figure 3.10. This enables
the model to receive the patches that form the entire image, output their reconstruction (for the WGAN)
or translation (for the CycleGAN), and construct recursively the entire 3D image again with these
predictions. It is this 3D whole-image that results from all the patch predictions of the networks that
will be used to evaluate the networks performance in detecting the lesions, through difference maps cal-
culate between the input and output images of the networks, for the two models: WGAN and CycleGAN.

iii) Difference Maps
For both detection experiments, the detection of lesions was completed by using absolute difference

maps, which indicated the regions in the images with more differences than the potential lesions.
Therefore, for the WGAN model at test time, a difference map was computed between the input of

the model and its output (reconstruction). The map should highlight the regions which have intensity dis-
tributions the WGAN has not learned how to reconstruct (diseased tissue) – therefore indicating lesions
in said area. Higher reconstruction error indicates the most probable lesion location.

In the CycleGAN experiment, at test time, the difference map is calculated between the input image
(considered diseased) and its output (a healthy translation). The model is expected to only translate to
healthy the regions it has identified as diseased, leaving the already healthy tissue untouched. This will
result in higher differences in the diseased regions of the image, corresponding to the lesion location.
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4.4 Results

All networks in this section were trained until both the training and validation losses decreased until
reaching a point of stabilisation. As a result, the WGAN (either multimodal or single-channel network)
trained for 10 000 epochs (approximately 5 days) and the CycleGAN (either multimodal or single-
channel network) for 15 000 epochs (approximately 7 days). Therefore, the results presented for the
WGAN and CycleGAN correspond to the tests performed with the test patients using the fully trained
networks.

4.4.1 WGAN

i) Multimodal Data
Figure 4.28 corresponds to the original, reconstructed and difference map of patient mMR_BR1_020

obtained for the WGAN, using multimodal data for training. These figures show both MRI (first set of
images) and PET (second set of images) channels. The axial, sagittal and coronal slices illustrated in the
figures correspond to the same region, where the lesion was located.

Figure 4.30 corresponds to the original, reconstructed and difference map of patient mMR_BR1_050
obtained for the WGAN, using multimodal data for training. These figures show both MRI (first set of
images) and PET (second set of images) channels. The axial, sagittal and coronal slices illustrated in the
figures correspond to the same region, where the lesion was located.

ii) PET Data
Figure 4.31 corresponds to the original, reconstructed and difference map of patient mMR_BR1_020

obtained for the WGAN, using a single image modality – PET. The axial, sagittal and coronal slices
illustrated in the figures correspond to the same region, where the lesion was located.

Figure 4.33 correspond to the original, reconstructed and difference map of patient mMR_BR1_050
obtained for the WGAN, using a single image modality – PET. The axial, sagittal and coronal slices
illustrated in the figures correspond to the same region, where the lesion location.

iii) MR data
Figures 4.34, correspond to the original, reconstructed and difference map of patient mMR_BR1_020

obtained for the WGAN, using a single image modality – MRI. The axial, sagittal and coronal slices
illustrated in the figures correspond to the same region, where is possible to visualise the lesion location.

Figures 4.36 correspond to the original, reconstructed and difference map of patient mMR_BR1_050
obtained for the WGAN, using a single image modality – MR. The axial, sagittal and coronal slices
illustrated in the figures correspond to the same region, where the lesion is located.
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Figure 4.28: Original, Reconstructed and Difference maps images of both MRI (first set of three images) and PET channels
(second set of three images), for patient mMR_BR1_020, using the WGAN.

Figure 4.29: Magnification of the difference maps of MR and PET channels on the region where the lesion should be identified.
A slightly higher intensity is visible in the lesion area.
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Figure 4.30: Original, Reconstructed and Difference maps images of both MRI (first set of three images) and PET channels
(second set of three images), for patient mMR_BR1_050, using the WGAN.
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Figure 4.31: Original, Reconstructed and Difference maps images of PET scans, for patient mMR_BR1_020, using the WGAN
only with PET modality.

Figure 4.32: Magnification of the PET difference map in the region where the lesion should be identified. A slightly higher
intensity is visible in the lesion area.
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Figure 4.33: Original, Reconstructed and Difference maps images of PET scans, for patient mMR_BR1_050, using the WGAN
only with PET modality.
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Figure 4.34: Original, Reconstructed and Difference maps images of MR scans, for patient mMR_BR1_020, using the WGAN
only with MR modality.

Figure 4.35: Magnification of the region of the MR difference map where the lesion should be identified. A cluster with higher
intensity is visible in the lesion area.
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Figure 4.36: Original, Reconstructed and Difference maps images of MR scans, for patient mMR_BR1_050, using the WGAN
only with MR modality.

4.4.2 CycleGAN

i) Multimodal data
Figure 4.37 corresponds to the original, translation to healthy, and difference map of patient

mMR_BR1_020 obtained for the CycleGAN, using multimodal data for training. This figure show both
MRI and PET channels. The axial, sagittal and coronal slices illustrated in the figure corresponds to the
same region, where the lesion is located.

Figure 4.38 corresponds to the original, translation to healthy, and difference map of patient
mMR_BR1_050 obtained for the CycleGAN, using multimodal data for training. This figure shows
both MRI and PET channels. The axial, sagittal and coronal slices illustrated in the figure correspond to
the same region, where the lesion is located.

ii) PET data
Figure 4.40 corresponds to the original, translation to healthy, and difference map of patient

mMR_BR1_020 obtained for the CycleGAN, using a single image modality – PET. The axial, sagit-
tal and coronal slices illustrated in the figure correspond to the same region, where the lesion is located.

Figure 4.41 corresponds to the original, translation to healthy, and difference map of patient
mMR_BR1_050 obtained for the CycleGAN, using a single image modality – PET. The axial, sagittal
and coronal slices illustrated in the figure correspond to the same region, where the lesion is located.
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iii) MR data
Figure 4.42 corresponds to the original, translation to healthy, and difference map of patient

mMR_BR1_020 obtained for the WGAN, using a single image modality – MRI. The axial, sagittal
and coronal slices illustrated in the figure correspond to the same region, where the lesion is located.

Figure 4.43 corresponds to the original, translation to healthy, and difference map of patient
mMR_BR1_050 obtained for the CycleGAN, using a single image modality – MRI. The axial, sagit-
tal and coronal slices illustrated in the figure correspond to the same region, where the lesion is located.

Figure 4.37: Original, Translated and Difference maps images of both MRI (first set of three images) and PET channels (second
set of three images), for patient mMR_BR1_020, using the CycleGAN.
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Figure 4.38: Original, Translated and Difference maps images of both MRI (first set of three images) and PET channels (second
set of three images), for patient mMR_BR1_050, using the CycleGAN.
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Figure 4.39: Magnification of the difference maps resulting from MR and PET channels in the region where the lesion should
be identified. A cluster with higher intensity is visible in the lesion area.

Figure 4.40: Original, Translated and Difference maps images of MRI, for patient mMR_BR1_020, using the CycleGAN only
with PET data.
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Figure 4.41: Original, Translated and Difference maps images of MRI, for patient mMR_BR1_050, using the CycleGAN only
with PET data.
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Figure 4.42: Original, Translated and Difference maps images of MRI, for patient mMR_BR1_020, using the CycleGAN only
with MR data.
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Figure 4.43: Original, Translated and Difference maps images of MRI, for patient mMR_BR1_050, using the CycleGAN only
with MR data.
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4.5 Discussion

4.5.1 Multimodal Data Training

i) WGAN
The result for lesion detection (difference maps) for patient mMR_BR1_020, using the WGAN,

is presented in Figure 4.28. It shows the regions in the brain with the highest differences in intensity
between the original images and its reconstructions (for both PET and MR channels of the input).

It can be observed that the WGAN, in both modality channels, was only able to detect a very subtle
difference between the images (seen in more detail in Figure 4.29) in the location where the lesion was
identified. This is indicated by the appearance of higher voxel intensity (in white/yellow in the image)
located in the region that matches the lesion. However, for patient mMR_BR1_020 with a very visible
lesion in both imaging modalities, it was desirable for the network to be able to identify this area in a
more precise manner, forming a cluster that could be easily differentiated by eye such as in the work of
Yaakub et al. [13] (see Figure 2.8).

Figure 4.30 shows the difference maps (of both the MR and PET channels) of patient
mMR_BR1_050 for the multimodal WGAN. Both difference maps indicate that the WGAN cannot
identify the subtle lesion of this patient in both neuroimaging modalities since it shows no clusters in
the brain region. Therefore, the network only showed higher levels of pixel intensity outside the brain,
which is a common occurrence in all difference maps that should be ignored since the brain tissue is the
only area of interest to analyse. A similar method as the one applied by [13], which remasked the results
to ignore any clusters in skull regions, could have also been performed to only show these reconstruction
errors in the brain tissue.

The WGAN implemented in this work differentiates itself from the previous work of [13] by not
using “ground-truth” control data (from healthy patients) as healthy tissue to train the networks. This
complicates the networks’ task since it uses its own data as a “ground-truth” healthy tissue (the areas
the imaging experts did not consider diseased). However, as mentioned in section 4.2, neuroimaging
experts can often have contradictory opinions on lesion location, especially when it comes to the visual
identification of FCDs. Therefore, this can be a possible source of noise in the networks. This also
resulted in a reduced dataset (in comparison to [13]) for training the networks, which was one of the
reasons that motivated the use of patched-based training.

In summary, the multimodal WGAN showed potential in identifying anomalies in multiple modali-
ties, especially in visible lesions such as tumours, but with clear room for improvement in future works.

ii) CycleGAN
The difference maps (for both PET and MR channels of the input) for patient mMR_BR1_020, using

the CycleGAN, are in Figure 4.37, showing the difference between the original and translated image (to
healthy), which illustrates the regions most modified by the CycleGAN. These regions indicate the areas
the network considered as diseased, therefore modifying them to get a healthy version of the image,
which will appear with a higher intensity in the difference maps.

For patient mMR_BR1_020, the difference maps of both channels show a subtle increase in voxel
intensity in the lesion location, especially in the MR channel. However, it is possible to observe other
high intensity areas on the difference maps, although not as intense when compared to the area where the
lesion is located (this is more evident in the MR channel). In the PET channel, the model tries to modify
the diseased hypometabolic area to a more “typically healthy” region (in this case to a less “bluish”
region), which is observed in the translated image by a slight decrease in intensity. This shift is identified
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in the difference map by a higher voxel intensity (represented by the colour yellow/green in Figure 4.37).
Observing the results (Figure 4.38) for the CycleGAN of patient mMR_BR1_050, the difference

maps for MR and PET show a very small cluster with higher voxel intensities (seen in more detail in
Figure 4.39). This cluster matches the lesion location on the MR scan; however, it is also possible to
notice other background high intensity clusters (although of smaller dimensions) in the difference maps.
It is also possible to see a region with higher intensity on the frontal lobe of the PET difference map
(marked in yellow/green), although not in the form of a cluster and with lower intensity compared to the
lesion cluster.

Overall, the CycleGAN presents more “noisy” difference maps (also observed in patient
mMR_BR1_020), compared to the WGAN, where not only one cluster or high intensity region can
be identified. However, the fact that the cluster matches the precise lesion location in both difference
maps is a motivating factor to further improve this approach for better anomaly detection.

In both patients, the difference maps indicate that the network is changing regions outside the dis-
eased areas. The anomaly mask loss was implemented in the CycleGAN to help alleviate this effect,
aiming to focus the network’s attention on the diseased areas by penalising the model for translating
already healthy tissue. However, the large size of anomaly masks available (not with a very precise lo-
cation but with a considerable extended area) could be contributing for the translation of some healthy
regions by the CycleGAN. The anomaly mask loss therefore seems to not be able to entirely shift the
attention of the network to only change diseased regions.

Overall, both networks using multimodal data showed challenges in training. The validation and
training losses were monitored throughout the training and showed a difficulty in reaching an equilib-
rium between generator and discriminator – one of many known challenges of GANs. It is also worth
mentioning that for the multimodal networks, one conditioning factor was that the number of random 3D
patches sampled per batch was limited to five because of computational memory issues, expressing how
computational costly these networks can be.

Having these problems in mind, several approaches were taken to improve training stability in the
multimodality networks.

One of the approaches taken included adding noise to the discriminator networks (for both WGAN
and CycleGAN). This consisted in randomly flipping the labels (0 or 1) in epochs that went through the
discriminator alongside the “real” (input images in the WGAN for example) or “fake” images (recon-
structions in the WGAN for example). This technique is commonly used to add noise to the discriminator
to prevent it from improving very rapidly compared to the generator, which consequently prevents the
generator from receiving positive feedback to be able to improve.

Another implementation used in this work was the replacement of transposed convolutions for up-
sampling [80] followed by a convolution operation, to prevent checkerboard artifacts related to trans-
posed convolutions (discussed in [81]). This technique did show improvement in image quality overall
(less patch artifacts were present in the reconstructions and translations of the WGAN and CycleGAN,
respectively), but did not influence the performance of the networks in detecting lesions.

Although these applied techniques improved training for multimodal networks, they did not increase
the performance of the networks in detecting the lesions. The multimodal training was then thought to
be the source of training instability, which motivated the implementation of single-channel networks.
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4.5.2 Single-Channel Data Training

i) WGAN with MR Data
For patient mMR_BR1_020, it can be observed that the WGAN was able to detect the lesion -

represented by the cluster visible in the region where the lesion is in both the PET and MR scans - this
indicates that the reconstructed image had a higher error in the locations where a possible anomaly was
identified.

By looking at the reconstructed image (in Figure 4.34), it is clearly visible that the WGAN is not
able to reconstruct the diseased area as well as the healthy tissue, resulting in the cluster in the difference
map (Figure 4.34). The difference map shows the clearly higher voxel intensity that forms the cluster,
corresponding to the lesion location (shown in more detail in the Figure 4.35). The difference map also
shows some other high voxel intensity areas near the lesion location but are not as intense or as big
clusters as the one identified.

However, for patient mMR_BR1_050, the network is still not able to identify the lesion location as
seen in Figure 4.36.

ii) WGAN with PET Data
For patient mMR_BR1_020, the difference maps illustrated in Figure 4.31 show that the WGAN

identified a slightly higher reconstruction error on the lesion location (presented in more detail in Figure
4.32) - represented by the higher voxel intensity in the region where the lesion is in.

For patient mMR_BR1_050, the difference maps illustrated in Figure 4.33 show that the WGAN
could not identify the lesion location, similarly to the WGAN with only MR data and the WGAN with
multimodal data.

Although the single-channel networks still showed difficulty in identifying the most subtle FCDs,
they revealed some improvements in relation to the multimodal networks. For example, for both
the single-channel WGAN networks, the training was much more stable compared to the multimodal
WGAN. The training and validation losses showed their gradual decrease as expected in a GAN model
and the network performance (image reconstruction quality) improved throughout the epochs as ex-
pected.

Specifically, the WGAN using only MR data identified a much higher intensity cluster (Figure 4.35)
compared to the WGAN using MR and PET data.

iii) CycleGAN with MR Data
For patient mMR_BR1_020, Figure 4.42 shows the original, translated and difference map for the

CycleGAN using only MR data. The difference map shows a slightly higher voxel intensity in the
region where the lesion is in. Observing the translated image in Figure 4.42, it is possible to notice that
the CycleGAN visibly modified the lesion location slightly (resulting in the high intensity value in the
difference map). However, the difference map observed also has background noise, since it also shows
other regions with high intensity values. Nevertheless, the cluster associated with the lesion appears to
be the most prominent in the difference map.

For patient mMR_BR1_050, Figure 4.43 shows the original, translated and difference map for the
CycleGAN using only MR data. The difference map does not show a high intensity value in the lesion
location, indicating that the CycleGAN could not identify the subtle lesion, just as the single-channel
CycleGAN using only PET data.
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iv) CycleGAN with PET only
For patient mMR_BR1_020, Figure 4.40 shows the original, translated and difference map for the

CycleGAN using only PET data. The difference map shows a high intensity region around the area
where the lesion is located, however also showing some other background high intensities.

For patient mMR_BR1_050, Figure 4.41 shows the original, translated and difference map for the
CycleGAN using only PET data. The difference map does not identify any relevant high intensity regions
in the lesion location. However, it is possible to observe in the translated image of Figure 4.41, the shift
in intensity (predominantly in hypometabolic regions) in the image compared to its original form. This
indicates that the network is modifying the regions it considers diseased to a “healthy version” in the
translated image (although not including the lesion area).

The single-channel networks still showed difficulty in identifying FCDs but also revealed some im-
provements in relation to the multimodal networks. For example, for both the single-channel CycleGAN
networks, the training was much more stable compared to the multimodal CycleGAN. The monitorisa-
tion of the training and validation losses showed their gradual decrease as expected in a GAN model and
the network performance (image translation quality) improved throughout the epochs as expected. The
translated image also showed signs to be improving each epoch by changing the diseased area more than
the healthy tissue, which was desired.

In general, the CycleGAN model showed more difficulty in training (either multimodal or single-
channel), which is expected since it is a more complex network with a more challenging training set-up
than the WGAN. However, it still showed signs to be able to detect visible anomalies such as tumours
(in patient mMR_BR1_020). A further step of this work should also introduce a quantitative evalua-
tion metric to better interpret the visual results obtained and identify false positives in difference maps,
enabling to quantitatively compare the performance of models.

Overall, the multimodal networks show potential to be improved and applied for lesion detection
since they can identify anomalies in regions that match the location of the lesions. The single-channel
networks showed improvements in training balance but did not show a significant increase in perfor-
mance compared to the multimodal networks when detecting the lesions, therefore suggesting that more
improvements should be made not only in the multimodal data fusion method, but also in training
methodology as well.

Further suggestions to improve and modify the multimodal networks in this dissertation are found in
chapter 5.
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Chapter 5

Conclusion and Future Work

Throughout this dissertation, various GAN models have been explored for different applications
including image reconstruction, image translation and the ultimate goal of anomaly detection.

Image reconstruction and image translation tasks implemented in chapter 3 achieved high image
quality using 2D data in both reconstruction and translation tasks. Training in 3D was more challenging
when using a CycleGAN for T2-to-T1 MR image translation, nonetheless, showing GANs capabilities
to learn image domain mappings.

Chapter 4 described and presented different methods for detecting lesions from PET and MR data -
using reconstruction or translation approaches - and by initially combining both modalities for training.
Since joint training with WGAN and CycleGAN showed difficulties in training stability, finding it hard
to balance the discriminator and generator losses, single modality networks were tested additionally.
These networks revealed a more stable training and presented more anomaly detection difference maps
identifying lesions in the case of patient mMR_MR1_020. However, the very subtle FCD seen in patient
mMR_BR1_050, proved to be undetectable by the networks.

Since combining modalities appeared to be the source of difficulty in training, some suggestions to
improve this include recent papers such as [82], describing a GAN model entitled TarGAN (target-aware
generative adversarial network) that could be modified for generation or translation tasks for this anomaly
detection purpose. This model uses unpaired data to translate from one image modality to another by
giving special focus on a translated target area within the image. Its architecture also follows inspiration
from a CycleGAN (has a cycle-consistency loss) and a StarGAN [83], outperforming other state-of-
the-art methods in segmentation tasks. Additionally, the TarGAN introduces a novel loss denominated
crossing loss, which allows the generator to focus on the target area when performing the translation.
Therefore, the CycleGAN implemented in this dissertation could be modified to support some of the
techniques or losses from the TarGAN model.

Another recent work [84] proposed the use of separate normalization layers for each image modality,
in a 3D U-net for segmentation to help dealing with the differences of intensity distributions in the image
modalities. This method proved to outperform typical image modality fusion methods (as implemented
in this dissertation) and individual modality training in networks for segmentation. Therefore, similar
methods described in [84] will be implemented in future work. A review of the dataset’s labels used
could also be helpful by getting more accurate anomaly masks that impact patch-sampling regions for
training the networks. More precise anomaly masks will translate in more diverse and better quality
training data. Future work will therefore be focused on trying new ways of combining PET and MR data
as well as improving network architecture and adding new losses specific for anomaly detection, with
the hope of improving training stability and network performance.
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Appendix A

Appendix

The tables presented in the appendix report the layer parameters and the hyperparameters used for
training all the networks in this dissertation. Additionally, Table A.7 includes the description of the
dataset used in chapter 4.

Table A.1: Illustration of the layer parameters of the 2D Autoencoder represented in Figure 3.3. Layers E1-E3 downsample
(through the convolution operation) the input and layers D1-D3 upsample (through the transposed convolution operation) the
input. The information described in the table corresponds to the parameters used for the 2D convolutional operation, in the
E1-E3 layers, and the 2D transposed convolution operation, in the D1-D3 layers. These parameters consist in the number of
input channels, number of output channels, filter size, stride, and padding – the parameters with only one value indicate that it
is applied for all dimensions.

2D Autoencoder
E1 In channels= 1 ; Out channels= 16 ; Filter= [2, 2] ; Stride= 2 ; Padding= 0

E2 In channels= 16 ; Out channels= 32 ; Filter= [4, 3] ; Stride= 2 ; Padding= 0

E3 In channels= 32 ; Out channels= 64 ; Filter= [2,3] ; Stride= 2 ; Padding= 0

D1 In channels= 64 ; Out channels= 32 ; Filter= [2, 3] ; Stride= 2 ; Padding= 0

D2 In channels= 32 ; Out channels= 16 ; Filter= [4, 3] ; Stride= 2 ; Padding= 0

D3 In channels= 16 ; Out channels= 1 ; Filter= [2, 2] ; Stride= 2 ; Padding= 0

Table A.2: Illustration of the layer parameters of the 2D U-net represented in Figure 3.4. Layers E1-E3 downsample (through
the convolution operation) the input and layers D1-D3 upsample (through the transposed convolution operation) the input. The
information described in the table corresponds to the parameters used for the 2D convolutional operation, in the E1-E3 layers,
and the 2D transposed convolution operation, in the D1-D3 layers. These parameters consist in the number of input channels,
number of output channels, filter size, stride, and padding – the parameters with only one value indicate that it is applied for all
dimensions. Layers D2 and D3 have channels multiplied by 2 because of the skip connections present in the network.

2D U-net
E1 In channels= 1 ; Out channels= 16 ; Filter= [2, 2] ; Stride= 2 ; Padding= 0

E2 In channels= 16 ; Out channels= 32 ; Filter= [4, 3] ; Stride= 2 ; Padding= 0

E3 In channels= 32 ; Out channels= 64 ; Filter= [2,3] ; Stride= 2 ; Padding= 0

D1 In channels= 64 ; Out channels= 32 ; Filter= [2, 3] ; Stride= 2 ; Padding= 0

D2 In channels= 32*2 ; Out channels= 16 ; Filter= [4, 3] ; Stride= 2 ; Padding= 0

D3 In channels= 16*2 ; Out channels= 1 ; Filter= [2, 2] ; Stride= 2 ; Padding= 0
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Table A.3: Illustration of the layer parameters of the 3D U-net represented in Figure 3.5. Layers E1-E6 downsample (through
the convolution operation) the input and layers D1-D6 upsample (through the transposed convolution operation) the input. The
information described in the table corresponds to the parameters used for the 3D convolutional operation, in the E1-E6 layers,
and the 3D transposed convolution operation, in the D1-D6 layers. These parameters consist in the number of input channels,
number of output channels, filter size, stride, and padding – the parameters with only one value indicate that it is applied for all
dimensions. Layers D2 to D6 have channels multiplied by 2 because of the skip connections present in the network.

3D UNET
E1 In channels= 1 ; Out channels= 16 ; Filter= 4 ; Stride= 2 ; Padding= 1

E2 In channels= 16 ; Out channels= 32 ; Filter= 4 ; Stride= 2 ; Padding= 1

E3 In channels= 32 ; Out channels= 64 ; Filter= 4 ; Stride= 2 ; Padding= 1

E4 In channels= 64 ; Out channels= 128 ; Filter= 4 ; Stride= 2 ; Padding= 1

E5 In channels= 128 ; Out channels= 256 ; Filter= 4 ; Stride= 2 ; Padding= 1

E6 In channels= 256; Out channels= 512 ; Filter= 4 ; Stride= 2 ; Padding= 1

D1 In channels= 512 ; Out channels= 256 ; Filter= 4 ; Stride= 2 ; Padding= 1

D2 In channels= 256*2 ; Out channels= 128 ; Filter= 4 ; Stride= 2 ; Padding= 1

D3 In channels= 128*2 ; Out channels= 64 ; Filter= 4 ; Stride= 2 ; Padding= 1

D4 In channels= 64*2 ; Out channels= 32 ; Filter= 4 ; Stride= 2 ; Padding= 1

D5 In channels= 32*2 ; Out channels= 16 ; Filter= 4 ; Stride= 2 ; Padding= 1

D6 In channels= 16*2 ; Out channels= 1 ; Filter= 4 ; Stride= 2 ; Padding= 1

Table A.4: Illustration of the layer parameters of the Critic of the 2D WGAN represented in Figure 3.6. Layers L1-L7 down-
sample (through the convolution operation) the input to obtain a classification score. The information described in the table
corresponds to the parameters used for the 2D convolutional operation, in the L1-L7 layers. These parameters consist in the
number of input channels, number of output channels, filter size, stride, and padding – the parameters with only one value
indicate that it is applied for all dimensions.

Critic WGAN
L1 In channels= 1 ; Out channels= 16 ; Filter= 3 ; Stride= 2 ; Padding= 0

L2 In channels= 16 ; Out channels= 32 ; Filter= 3 ; Stride= 2 ; Padding= 0

L3 In channels= 32 ; Out channels= 64 ; Filter= 3 ; Stride= 2 ; Padding= 0

L4 In channels= 64 ; Out channels= 128 ; Filter= 3 ; Stride= 2 ; Padding= 0

L5 In channels= 128 ; Out channels= 256 ; Filter= 3 ; Stride= 2 ; Padding= 0

L6 In channels= 256; Out channels= 256 ; Filter= 3 ; Stride= 2 ; Padding= 0

L7 In channels= 256 ; Out channels= 1 ; Filter= 1 ; Stride= 1 ; Padding= 0
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Table A.5: Layer parameters for both the Generators of the CycleGAN illustrated in Figure 3.7. The information described in the
table corresponds to the parameters used for the convolutional operation (in E1-L6 layers) and for the transposed convolutional
operation (in L6-D5 layers). These parameters consist in the number of input channels, number of output channels, the filter
size, stride, and padding (in which filter size, stride and padding have one value that is applied for all dimensions). Layers E1
to E5 represent encoding layers, as well as the convolutional operation in L6, which downsample the image by a factor of 2.
Layer L6 represents the innermost layer of the network – formed by a convolutional operation, a ReLU activation function,
a transposed convolutional operation, an instance normalisation layer and a final ReLU activation function. The transposed
convolution operation in L6, as well as layers D1 to D5 represent decoding layers that upsample the image by a factor of 2.
Layers D1 to D5 have in channels multiplied by 2 because of the skip connections present in the network.

Generator – 2D and 3D CycleGAN
E1 In channels= 2 ; Out channels= 64 ; Filter= 4 ; Stride= 2 ; Padding= 1

E2 In channels= 64 ; Out channels= 128 ; Filter= 4 ; Stride= 2 ; Padding= 1

E3 In channels= 128 ; Out channels= 256 ; Filter= 4 ; Stride= 2 ; Padding= 1

E4 In channels= 256 ; Out channels= 512 ; Filter= 4 ; Stride= 2 ; Padding= 1

E5 In channels= 512 ; Out channels= 512 ; Filter= 4 ; Stride= 2 ; Padding= 1

L6 Conv3D: In channels= 512 ; Out channels= 512 ; Filter= 4 ; Stride= 2 ; Padding = 1
TransConv3D: In channels= 512 ; Out channels= 512 ; Filter= 4 ; Stride= 2 ; Padding= 1

D1 In channels= 512*2 ; Out channels= 512 ; Filter= 4 ; Stride= 2 ; Padding= 1

D2 In channels= 512*2 ; Out channels= 256 ; Filter= 4 ; Stride= 2 ; Padding= 1

D3 In channels= 256*2 ; Out channels= 128 ; Filter= 4 ; Stride= 2 ; Padding= 1

D4 In channels= 128*2 ; Out channels= 64 ; Filter= 4 ; Stride= 2 ; Padding= 1

D5 In channels= 64*2 ; Out channels= 2 ; Filter= 4 ; Stride= 2 ; Padding= 1

Table A.6: Illustration of the layer parameters of the Discriminator of the 2D and 3D CycleGAN represented in Figure 3.8.
Layers L1-L5 downsample (through the convolution operation) the input to obtain a classification score. The information
described in the table corresponds to the parameters used for the convolutional operation, in the L1-L7 layers. These parameters
consist in the number of input channels, number of output channels, filter size, stride, and padding – the parameters with only
one value indicate that it is applied for all dimensions.

Discriminator - 2D and 3D CycleGAN
L1 In channels= 1 ; Out channels= 64 ; Filter= 4 ; Stride= 2 ; Padding= 1

L2 In channels= 64 ; Out channels= 128 ; Filter= 4 ; Stride= 2 ; Padding= 1

L3 In channels= 128 ; Out channels= 256 ; Filter= 4 ; Stride= 2 ; Padding= 1

L4 In channels= 256 ; Out channels= 512 ; Filter= 4 ; Stride= 2 ; Padding= 1

L5 In channels= 512 ; Out channels= 1 ; Filter= 4 ; Stride= 1 ; Padding= 1
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Table A.7: Information about the subjects used in this project including: age, gender, category of the lesion and the location the
region was found.

Subject ID Age Gender Category Lesion Location
mMR_BR1_002 37 F MR-PET+ Bil TL, Bil SFG, Bil PL

mMR_BR1 _004 50 F MR-PET+ L Insula

mMR_BR1_008 16 M MR-PET+ L TL

mMR_BR1_014 18 F MR+PET+ L superior PL, L TL

mMR_BR1_019 26 M MR-PET+
Bil TL,
L OFC

mMR_BR1_020 14 F MR+PET+ L TL

mMR_BR1_021 30 F MR+PET+
Bil Temporal Poles,

Bil Medial TL,
R PL

mMR_BR1_022 15 F MR-PET+ R TL

mMR_BR1_026 20 M MR+PET+ L TL

mMR_BR1_030 17 F MR+PET+ R superior TL

mMR_BR1_033 40 M MR-PET+ L Insula

mMR_BR1_035 13 M MR-PET+ R STG, R Temporal Pole

mMR_BR1_044 32 M MR-PET+ R PL

mMR_BR1_046 25 F MR+PET+
L TL,

L Insula

mMR_BR1_047 45 F MR-PET+
R TL,

R insula

mMR_BR1_049 16 F MR-PET+
R Pre-Central Gyrus,

R Post-Central Gyrus, Precuneus

mMR_BR1_050 70 F MR+PET+ R PL

mMR_BR1_055 59 F MR-PET+
Bil TL, Bil FL,

R Central Regions

mMR_BR1_058 56 F MR+PET+ L TL, L PL

mMR_BR1_059 14 M MR+PET+ R TL

mMR_BR1_062 17 M MR-PET+ L Insula, Bil Hippocampus

mMR_BR1_067 27 M MR-PET+ L TL, L Temporal Pole, L Insular

L - Left ; R - Right ; Bil - Bilateral ; TL - Temporal Lobe ; FL - Frontal Lobe ; PL - Parietal ;
OFC - Orbitofrontal Cortex ; SFG - Superior Frontal Gyrus ;

STG - Superior Temporal Gyrus
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Table A.8: Illustration of the Generator’s architecture. The information in the table corresponds to the parameters used for the
3D convolutional or transposed convolution operation, per layer. These parameters consist of the number of input channels,
number of output channels, filter size, stride, and padding (in which filter size, stride and padding have one value that is applied
for all dimensions). Layers E1 to E6 represent encoding layers (illustrated in Figure 4.17) that down sample the image (through
the convolution operation) by a factor of 2. Layers D1 to D6 represent decoding layers (illustrated also in Figure 4.17) that up
sample the image (through the transposed convolution operation) by a factor of 2. Layers D2 to D6 have channels multiplied
by 2 because of the skip connections present in the network.

Generator – WGAN
E1 In channels= 2 ; Out channels= 16 ; Filter= 4 ; Stride= 2 ; Padding= 1

E2 In channels= 16 ; Out channels= 32 ; Filter= 4 ; Stride= 2 ; Padding= 1

E3 In channels= 32 ; Out channels= 64 ; Filter= 4 ; Stride= 2 ; Padding= 1

E4 In channels= 64 ; Out channels= 128 ; Filter= 4 ; Stride= 2 ; Padding= 1

E5 In channels= 128 ; Out channels= 256 ; Filter= 4 ; Stride= 2 ; Padding= 1

E6 In channels= 256 ; Out channels= 512 ; Filter= 4 ; Stride= 2 ; Padding= 1

D1 In channels= 512 ; Out channels= 256 ; Filter= 4 ; Stride= 2 ; Padding= 1

D2 In channels= 256*2 ; Out channels= 128 ; Filter= 4 ; Stride= 2 ; Padding= 1

D3 In channels= 128*2 ; Out channels= 64 ; Filter= 4 ; Stride= 2 ; Padding= 1

D4 In channels= 64*2 ; Out channels= 32 ; Filter= 4 ; Stride= 2 ; Padding= 1

D5 In channels= 32*2 ; Out channels= 16 ; Filter= 4 ; Stride= 2 ; Padding= 1

D6 In channels= 16*2 ; Out channels= 2 ; Filter= 4 ; Stride= 2 ; Padding= 1

Table A.9: Illustration of the Critic’s architecture. Layers L1 to L5 (illustrated in Figure 4.18) down sample the image (through
the convolution operation). The information in the table correspond to the parameters used in the 3D convolutional operation,
in each layer. These parameters consist of the number of input channels, number of output channels, filter size, stride, and
padding (in which filter size, stride and padding have one value that is applied for all dimensions).

Critic – WGAN
L1 In channels= 2 ; Out channels= 64 ; Filter= 4 ; Stride= 2 ; Padding= 1

L2 In channels= 64 ; Out channels= 128 ; Filter= 4 ; Stride= 2 ; Padding= 1

L3 In channels= 128 ; Out channels= 256 ; Filter= 4 ; Stride= 2 ; Padding= 1

L4 In channels= 256 ; Out channels= 512 ; Filter= 4 ; Stride= 2 ; Padding= 1

L5 In channels= 512 ; Out channels= 1 ; Filter= 4 ; Stride= 1 ; Padding= 0

Table A.10: Hyperparameters chosen to train the WGAN. These include batch-size, patch-size (size of the 3D patches to
be sampled in the whole image), learning rate, the β parameter of the Adam optimiser chosen (for both the Generator and
Discriminator), the critic iterations (the number of iterations of the critic per generator iterations), and the λ values applied to
the L1 loss and gradient penalty.

Hyperparameters - WGAN
Batch-size 5
Patch-size 64 x 64 x 64

Learning Rate 1e-04
Adam Optimiser β = (0, 0.9)
Critic Iterations 5

λ L1 loss 0.001
λ gradient penalty 10

81



Table A.11: Illustration of the Discriminator’s architecture (same architecture used for DN and DA) for the 3D CycleGAN, illus-
trated in Figures 4.22 and 4.23. Layers L1 to L5 downsample the image (through the convolution operation). The information
described in the table corresponds to the parameters used for the 3D convolutional operation, in each layer. These parameters
consist in the number of input channels, number of output channels, filter size, stride, and padding (in which filter size, stride
and padding have one value that is applied for all dimensions).

Discriminator CycleGAN
L1 In channels= 2 ; Out channels= 64 ; Filter= 4 ; Stride= 2 ; Padding= 1

L2 In channels= 64 ; Out channels= 128 ; Filter= 4 ; Stride= 2 ; Padding= 1

L3 In channels= 128 ; Out channels= 256 ; Filter= 4 ; Stride= 2 ; Padding= 1

L4 In channels= 256 ; Out channels= 512 ; Filter= 4 ; Stride= 2 ; Padding= 1

L5 In channels= 512 ; Out channels= 1 ; Filter= 4 ; Stride= 1 ; Padding= 0

Table A.12: Illustration of the Generator’s architecture (same for both the A2N and N2A Generators) of the 3D CycleGAN
in Figure 4.24. The information described in the table corresponds to the parameters used for the 3D convolutional operation,
in each layer. These parameters consist in the number of input channels, number of output channels, the filter size, stride,
and padding (in which filter size, stride and padding have one value that is applied for all dimensions). Layers E1 to E5
represent encoding layers, as well as the convolutional operation in L6, which downsample the image (through the convolution
operation) by a factor of 2. Layer L6 represents the innermost layer of the network – formed by a convolutional operation, a
ReLU activation function, an upsample operation followed by a convolutional operation, an instance normalisation layer and a
final ReLU activation function. The upsample and convolution operation in L6, as well as layers D1 to D5 represent decoding
layers that upsample the image (using a default k-nearest neighbour algorithm) by a factor of 2 and pass through a convolutional
operation after. Layers D1 to D5 have in channels multiplied by 2 because of the skip connections present in the network.

Generator – CycleGAN
E1 In channels= 2 ; Out channels= 64 ; Filter= 4 ; Stride= 2 ; Padding= 1

E2 In channels= 64 ; Out channels= 128 ; Filter= 4 ; Stride= 2 ; Padding= 1

E3 In channels= 128 ; Out channels= 256 ; Filter= 4 ; Stride= 2 ; Padding= 1

E4 In channels= 256 ; Out channels= 512 ; Filter= 4 ; Stride= 2 ; Padding= 1

E5 In channels= 512 ; Out channels= 512 ; Filter= 4 ; Stride= 2 ; Padding= 1

L6
Conv3D: In channels= 512 ; Out channels= 512 ; Filter= 4 ; Stride= 2 ; Padding = 1

Up sample: factor = 2 ;
Conv3D: In channels= 512 ; Out channels= 512 ; Filter= 3 ; Stride= 1 ; Padding= 1

D1 In channels= 512*2 ; Out channels= 512 ; Filter= 3 ; Stride= 1 ; Padding= 1

D2 In channels= 512*2 ; Out channels= 256 ; Filter= 3 ; Stride= 1 ; Padding= 1

D3 In channels= 256*2 ; Out channels= 128 ; Filter= 3 ; Stride= 1 ; Padding= 1

D4 In channels= 128*2 ; Out channels= 64 ; Filter= 3 ; Stride= 1 ; Padding= 1

D5 In channels= 64*2 ; Out channels= 2 ; Filter= 3 ; Stride= 1 ; Padding= 1
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Table A.13: Hyperparameters chosen to train the CycleGAN. Includes: batch-size, patch-size (size of the 3D patches to be
sampled in the whole-image), initial learning rate, epoch decay (after how many epochs the learning rate starts to decay linearly
to 0), the β parameter of the Adam optimiser chosen (for both the Generators and Discriminators), the λ values applied to the
L1 loss, identity loss and anomaly loss.

Hyperparameters - CycleGAN
Batch-Size 5
Patch-Size 64 x 64 x 64

Learning Rate 0.0002
Epoch Decay 1000

Adam Optimiser β = (0.5, 0.999)
λ L1 Loss 0.001

λ AM 10
λ Id 0.5
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