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Marginal Posterior Simulation via Higher-order
Tail Area Approximations

Erlis Ruli ∗ , Nicola Sartori ∗ and Laura Ventura ∗

Abstract. A new method for posterior simulation is proposed, based on the com-
bination of higher-order asymptotic results with the inverse transform sampler.
This method can be used to approximate marginal posterior distributions, and re-
lated quantities, for a scalar parameter of interest, even in the presence of nuisance
parameters. Compared to standard Markov chain Monte Carlo methods, its main
advantages are that it gives independent samples at a negligible computational
cost, and it allows prior sensitivity analyses under the same Monte Carlo varia-
tion. The method is illustrated by a genetic linkage model, a normal regression
with censored data and a logistic regression model.
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1 Introduction

Consider a parametric statistical model with density f(y;θ), with θ = (ψ,λ), θ ∈ Θ ⊆
IRd (d > 1), where ψ is a scalar parameter of interest and λ is a (d − 1)-dimensional
nuisance parameter. Let ℓ(θ) = ℓ(ψ,λ) = ℓ(ψ,λ;y) denote the log-likelihood function
based on data y = (y1, . . . , yn), π(θ) = π(ψ,λ) be a prior distribution of (ψ,λ) and
let π(θ|y) = π(ψ,λ|y) ∝ π(ψ,λ) exp{ℓ(ψ,λ)} be the posterior distribution of (ψ,λ).
Bayesian inference on ψ, in the presence of the nuisance parameter λ, is based on the
marginal posterior distribution

π(ψ|y) =

∫
π(ψ,λ|y) dλ, (1)

which is typically approximated numerically, by means of Monte Carlo integration meth-
ods. In order to approximate (1), a variety of Markov chain Monte Carlo (MCMC)
schemes have been proposed in the literature (see, e.g., Robert and Casella 2004). How-
ever, MCMC methods in practice may need to be specifically tailored to the particular
model (e.g. choice of proposal, convergence checks, etc.) and they may have poor tail
behavior, especially when d is large.

Parallel with these simulation-based procedures has been the development of analyt-
ical higher-order approximations for parametric inference in small samples (see, e.g.,
Brazzale and Davison 2008, and references therein). Using higher-order asymptotics
it is possible to avoid the difficulties related to MCMC methods and obtain accurate
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approximations to (1), and related tail area probabilities (see, e.g., Reid 1996, 2003;
Sweeting 1996, and Brazzale et al. 2007). These methods are highly accurate in many
situations, but are nevertheless underused compared to simulation-based procedures
(Brazzale and Davison 2008).

The aim of this paper is to discuss a new posterior sampling scheme, which is ob-
tained by combining higher-order tail area approximations with the inverse transform
sampler (see, e.g., Robert and Casella 2004, Chap. 2). The proposed method, called
HOTA (Higher-Order Tail Area), gives accurate approximations of marginal posterior
distributions, and related quantities, also in the presence of nuisance parameters.

The HOTA sampling scheme is straightforward to implement, since it is available at little
additional computational cost over simple first-order approximations. It is based on an
asymptotic expansion of the log-posterior distribution around the posterior mode. In
principle, the whole procedure requires as an input only the unnormalized log-posterior
distribution. The method can be applied to a wide variety of regular statistical models,
with the essential requirement of the posterior mode being unique (see Kass et al. 1990,
for precise regularity conditions). When the posterior mode is close to the maximum
likelihood estimate (MLE), then an asymptotic expansion around the MLE can be used.
The latter approximation allows the use of standard maximum likelihood routines for
Bayesian analysis.

The proposed simulation scheme gives independent samples at a negligible computa-
tional cost from a third-order approximation to the marginal posterior distribution.
These are distinct advantages with respect to MCMC methods, which in general are
time consuming and provide dependent samples. Nevertheless, MCMC techniques give
samples from the full posterior distribution subject only to Monte Carlo error, pro-
vided convergence has been reached. On the other hand, HOTA has an easily bounded
Monte Carlo error, while it has an asymptotic error for the approximation to the true
marginal posterior distribution, which depends on the sample size. This approximation
is typically highly accurate even for small n.

One possible use of the HOTA sampling scheme is for quick prior sensitivity analyses
(Kass et al. 1989; Reid and Sun 2010). Indeed, it is possible to easily assess the effect of
different priors on marginal posterior distributions, given the same Monte Carlo error.
This is not generally true for MCMC or importance sampling methods, which in general
have to be tuned for the specific model and prior.

The use of higher-order approximations for posterior simulation is a novel approach in
the Bayesian literature. An exception is given by Kharroubi and Sweeting (2010), where
a multivariate signed root log-likelihood ratio is used to obtain a suitable importance
function. The proposal by Kharroubi and Sweeting (2010) deals with issues related
to the importance function and importance weights, which are avoided by the HOTA
sampling scheme. Moreover, the performance of HOTA is independent of the ordering
of the parameters, required by the multivariate signed root log-likelihood ratio. On
the other hand, Kharroubi and Sweeting’s method has the advantage that it generates
samples from the full posterior distribution, which can be used to obtain an integrated
likelihood for doing model selection or for computing predictive distributions.



E. Ruli, N. Sartori and L. Ventura 131

The paper is organized as follows. Section 2 briefly reviews higher-order approximations
for the marginal posterior distribution (1), and for the corresponding tail area. Section
3 describes the proposed HOTA sampling scheme and its implementation. Numerical
examples and sensitivity analyses are discussed in Section 4. Finally, some concluding
remarks are given in Section 5.

2 Background on higher-order asymptotics

Let ℓ̃(θ) = ℓ(θ) + log π(θ) be the unnormalized log-posterior, θ̃ = (ψ̃, λ̃) the posterior

mode, and λ̃ψ the posterior mode of λ for fixed ψ. The basic requirements for the
approximations given in this section are that there exists an unique posterior mode and
that the Hessian of ℓ̃(θ) evaluated at the the full mode or at the constrained posterior
mode is negative definite (see for instance Kass et al. 1990). These assumptions are
typically satisfied in many commonly used parametric models.

The marginal posterior distribution (1) can be approximated with the Laplace formula
(Tierney and Kadane 1986). It gives

π(ψ|y) =̇ 1√
2π

exp{ℓ̃(ψ, λ̃ψ)− ℓ̃(ψ̃, λ̃)} |ȷ̃(ψ̃, λ̃)|1/2

|ȷ̃λλ(ψ, λ̃ψ)|1/2
, (2)

where ȷ̃(ψ,λ) = −∂2ℓ̃(θ)/(∂θ∂θT ) is the (d × d) negative Hessian matrix of the log-
posterior, ȷ̃λλ(ψ,λ) is the (λ,λ)-block of ȷ̃(ψ,λ), and the symbol “=̇” indicates accuracy
with relative error of order O(n−3/2). Moreover, the accuracy of (2) is uniform on
compact sets of ψ.

From (2), a third-order approximation to the marginal posterior tail area (see, e.g.,
Davison 2003, Sec. 11.3.1) can be obtained as follows. Starting from∫ +∞

ψ0

π(ψ|y) dψ =̇
1√
2π

∫ +∞

ψ0

exp{ℓ̃(ψ, λ̃ψ)− ℓ̃(ψ̃, λ̃)} |ȷ̃(ψ̃, λ̃)|1/2

|ȷ̃λλ(ψ, λ̃ψ)|1/2
dψ , (3)

change the variable of integration from ψ to r̃(ψ), where r̃(ψ) = sign(ψ̃−ψ)[2(ℓ̃(ψ̃, λ̃)−
ℓ̃(ψ, λ̃ψ))]

1/2. The Jacobian is −ℓ̃ψ(ψ)/r̃(ψ), where ℓ̃ψ(ψ) = ∂ℓ̃(ψ, λ̃ψ)/∂ψ. Hence, we
obtain ∫ +∞

ψ0

π(ψ|y) dψ =̇
1√
2π

∫ +∞

r̃(ψ0)

exp

{
−1

2
r̃2
}

r̃

ℓ̃ψ(ψ)

|ȷ̃(ψ̃, λ̃)|1/2

|ȷ̃λλ(ψ, λ̃ψ)|1/2
d r̃. (4)

The final step is an additional change of variable from r̃(ψ) to

r̃⋆(ψ) = r̃(ψ) +
1

r̃(ψ)
log

q̃B(ψ)

r̃(ψ)
, (5)

with

q̃B(ψ) = ℓ̃ψ(ψ)
|ȷ̃λλ(ψ, λ̃ψ)|1/2

|ȷ̃(ψ̃, λ̃)|1/2
. (6)
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Since the Jacobian of this transformation contributes only to the error of (4), it can be
shown that the approximate posterior tail area is given by∫ +∞

ψ0

π(ψ|y) dψ =̇
1√
2π

∫ +∞

r̃⋆(ψ0)

exp

{
−1

2
t2
}
dt = Φ{r̃⋆(ψ0)}, (7)

where Φ(·) is the standard normal distribution function. Expression (7) relies entirely
on simple posterior quantities. This is a remarkable computational advantage since
these quantities can be computed with any software that performs optimizations and
numerical derivatives.

When the posterior mode and the MLE are close, the tail area approximation (7) can
be obtained also by considering expansions around the MLE with the same order of
approximation error. In particular, let θ̂ = (ψ̂, λ̂) be the MLE and let λ̂ψ be the

constrained MLE of λ for fixed ψ. Moreover, let ℓp(ψ) = ℓ(ψ, λ̂ψ) be the profile

log-likelihood, j(θ) = −∂2ℓ(θ)/(∂θ∂θT ) the observed Fisher information matrix and
jp(ψ) = −∂2ℓp(ψ)/∂ψ the profile information.

The marginal posterior distribution (1) approximated with the Laplace formula becomes
(see, e.g., Reid 1996)

π(ψ|y) =̇ 1√
2π

jp(ψ̂)
1/2 exp{ℓp(ψ)− ℓp(ψ̂)}

|jλλ(ψ̂, λ̂)|1/2

|jλλ(ψ, λ̂ψ)|1/2
π(ψ, λ̂ψ)

π(ψ̂, λ̂)
. (8)

Then following the same steps as before, the higher-order tail area approximation for
(1) can be written as ∫ +∞

ψ0

π(ψ|y)dψ =̇ Φ{r⋆p(ψ0)}, (9)

where r⋆p(ψ) = rp(ψ)+rp(ψ)
−1 log{qB(ψ)/rp(ψ)} is the modified likelihood root, rp(ψ) =

sign(ψ̂ − ψ)[2(ℓp(ψ̂)− ℓp(ψ))]
1/2 is the likelihood root, and

qB(ψ) = ℓ′p(ψ) jp(ψ)
−1/2 |jλλ(ψ, λ̂ψ)|1/2

|jλλ(ψ̂, λ̂)|1/2
π(ψ̂, λ̂)

π(ψ, λ̂ψ)
, (10)

with ℓ′p(ψ) = ∂ℓp(ψ)/∂ψ the profile score. Obviously, when π(θ) ∝ 1, expressions (7)
and (9) coincide.

When the class of matching priors (see Tibshirani 1989) is considered in (1), the marginal
posterior distribution for ψ can be expressed as (Ventura et al. 2009, 2013)

π(ψ|y) ∝ Lmp(ψ) πmp(ψ) , (11)

where Lmp(ψ) = Lp(ψ)M(ψ) is the modified profile likelihood for a suitably defined
correction term M(ψ) (see, among others, Severini 2000, Chap. 9 and Pace and Salvan
2006), and the corresponding matching prior is

πmp(ψ) ∝ iψψ.λ(ψ, λ̂ψ)
1/2, (12)
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with iψψ.λ(ψ,λ) = iψψ(ψ,λ)−iψλ(ψ,λ)iλλ(ψ,λ)
−1iψλ(ψ,λ)

T partial information, and
iψψ(ψ,λ), iψλ(ψ,λ), and iλλ(ψ,λ) blocks of the expected Fisher information i(ψ,λ)
from ℓ(ψ,λ). In Ventura and Racugno (2011) it is shown that (9) holds with r⋆p(ψ) given
by the modified profile likelihood root of Barndorff-Nielsen and Chamberlin (1994); see
also Barndorff-Nielsen and Cox (1994) and Severini (2000, Chap. 7). In particular, the
quantity (10) has the form

qB(ψ) =
ℓ′p(ψ)

jp(ψ̂)1/2
iψψ.λ(ψ̂, λ̂)

1/2

iψψ.λ(ψ, λ̂ψ)1/2
1

M(ψ)
.

3 Posterior simulation via tail area approximations

Expressions (7) and (9) give accurate approximation of quantiles of the marginal pos-
terior distribution, but it is not possible to use them to obtain posterior summaries,
such as posterior moments or highest posterior density (HPD) regions. One possibility
to obtain posterior summaries could be to integrate numerically (2) or (8). However,
even though ψ is scalar, numerical integration may become time consuming since a large
number of function evaluations is needed to obtain accurate estimates, especially when
d is large. In fact, a first numerical integration is needed to compute the normalizing
constant and then several numerical integrations are needed for each required posterior
summary.

In the following we introduce the HOTA simulation scheme, which is based on the
combination of (7) or (9) with the inverse transform sampling. Its main advantage
is that it gives independent samples with negligible computational time. Indeed, its
implementation only requires a few function evaluations (e.g., 50), independently of the
number of simulations. As happens in every simulation method, the HOTA simulation
scheme is subject to Monte Carlo error of order Op(T

−1/2), where T is the number of
Monte Carlo trials. On the other hand, since the samples are drawn independently, it is
easy to control such Monte Carlo error by taking T large enough. Finally, it is important
to note that HOTA samples from a third-order approximation of the marginal posterior
distribution, whose accuracy depends on the sample size. However, the approximation
is typically highly accurate even for small sample sizes.

The HOTA simulation scheme is summarized in Algorithm 1, and it can be implemented
in two versions: HOTAπ, based on r̃⋆(ψ) and inversion of (7), and HOTAℓ, based on
r⋆p(ψ) and inversion of (9).

Algorithm 1 HOTA for marginal posterior simulation.

1: for t = 1 → T do
2: draw zt ∼ N(0, 1)
3: solve r̃⋆(ψt) = zt (or r

⋆
p(ψt) = zt) in ψt

4: end for
5: store ψ as an approximate sample from π(ψ|y).
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To implement Algorithm 1, we need to invert r̃⋆(ψ) or r⋆p(ψ). This may be done as
follows. Generate z = (z1, . . . , zT ) from the standard normal distribution. Fix a grid of
values ψj , j = 1, . . . , N , for a moderate value of N (e.g. 50-100), equally spaced in the
interval [ψ(1), ψ(T )]. The extremes of the grid can be found by solving numerically z(T ) =
r̃⋆(ψ(1)) and z(1) = r̃⋆(ψ(T )) (or the corresponding for r⋆p(ψ)), where z(1) and z(T ) are
the minimum and maximum of z, respectively. Then, evaluate r̃⋆(ψ) (or r⋆p(ψ)) over the
grid of ψ values. Finally, apply a spline interpolator to (r̃⋆(ψj), ψj), j = 1, . . . , N , and
then obtain the predicted value of ψt, corresponding to the values zt, for t = 1, . . . , T .

Typically, both r̃⋆(ψ) and r⋆p(ψ) are monotonically decreasing functions in ψ and have

a numerical discontinuity at ψ̃ and ψ̂, respectively. This is not a concern for practical
purposes as it can be avoided by the numerical interpolation described above (see Braz-
zale et al. 2007, Sec. 9.3). To this purpose, it may be necessary to exclude values of ψ

in a δ-neighborhood of ψ̃ or ψ̂ (for instance ψ̂ ± δ jp(ψ̂)
−1/2), for some small δ. Other

techniques (secant method, Brent’s method, etc.) can be used to invert r̃⋆(ψ) or r⋆p(ψ).
Nevertheless, this would be computationally more demanding than the proposed spline
interpolation, without solving the numerical instability around the posterior mode, or
MLE.

Constrained maximization and computation of the required Hessians are generally
straightforward to obtain numerically, whenever code for the likelihood or unnormal-
ized posterior is available. For many statistical models with diffuse priors, built-in R

functions (see R Core Team 2012) can sometimes be used to obtain full and constrained
likelihood maximization as well as the related profile quantities required for HOTAℓ.
For instance, the glm function in R can handle many generalized linear models, and it
offers the offset option for constrained estimation. Therefore, if the model in question
belongs to the glm class, then all the quantities required in HOTAℓ can be extracted
from it.

When the posterior mode and the MLE are substantially different, HOTAπ is generally
recommended. In this case, maximum likelihood routines can be used to find appro-
priate starting values for posterior optimization. For instance, if the model is in the
glm class, starting values for the constrained posterior optimization can be obtained
from the glm command along with the offset used to fix the parameter of interest.
More generally, starting values for constrained optimization can be obtained by a linear
expansion around the maximum (Cox and Wermuth 1990)

λ̂
start

ψ = λ̂+ jλλ(ψ̂, λ̂)
−1jλψ(ψ̂, λ̂)(ψ̂ − ψ). (13)

These are the strategies used in the examples of Section 4.

Algorithm 1 approximates (1) by simulating independently from the higher-order tail
area approximations (7) or (9). In this respect, it has an obvious advantage over MCMC
methods, which usually are more time consuming. Moreover, MCMC methods typically
require more attention from the practitioner (e.g. choice of proposal, convergence checks,
etc.). A pitfall of HOTA is that its theoretical approximation error (i.e. O(n−3/2)) is
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bounded by the sample size n. Nonetheless, as it will be shown in Section 4, HOTA
gives typically very accurate approximations, even in small samples.

4 Examples

The aim of this section is to illustrate the performance of the HOTA method by three
examples. In all but the first example, HOTA is compared with a trustworthy pos-
terior approximation technique, namely the random walk Metropolis, which is one of
the MCMC methods most widely used in practice. Prior sensitivity analysis is also
considered with HOTA and compared also with MCMC. Prior sensitivity with HOTA
is based on the same set of independent random variates, thus giving a comparison of
different priors, given the same Monte Carlo error.

In general MCMC methods give autocorrelated samples and it is important to check
that the chain has converged to its ergodic distribution (see, e.g., Gelman et al. 2003).
In the examples, a multivariate normal proposal is used, suitably scaled in order to have
an acceptance rate of 30-40%. Chains of simulations are run for a very large number
of iterations, are thinned and the initial observations are discarded. In addition, the
convergence is checked by the routines of the coda package of R. In each example,
105 final MCMC samples are considered, all with moderate autocorrelation. These
MCMC samples will be considered as the gold standard, even though they are only an
approximation of the exact posterior distribution.

The functions r̃⋆(ψ) and r⋆p(ψ) are inverted by spline interpolation applied to a grid of
50 values evenly spaced with δ = 0.3. A sample of 105 is taken from all the approximate
marginal posteriors. Required derivatives are computed numerically. This may be an
other source of approximation error, difficult to quantify in practice. Nonetheless, we
stress that this is an issue for many statistical applications since numerical derivatives are
ubiquitous in statistics. Fortunately, there are many routines which performs accurate
numerical derivatives; for instance, the numDeriv R package (see Gilbert and Varadhan
2012). The R code used in the examples is available at http://homes.stat.unipd.it/
ventura/?page=Software&lang=IT.

4.1 Example 1: Genetic linkage model

The following scalar parameter problem has been studied also in Kharroubi and Sweeting
(2010), among others. It concerns a genetic linkage model in which n individuals are dis-
tributed multinomially into four categories with cell probabilities (12 +

θ
4 ,

1
4 (1−θ),

1
4 (1−

θ), θ4 ), with θ ∈ (0, 1). There are n = 20 animals with cell counts y = (14, 0, 1, 5). Under
a uniform prior, the posterior of θ is proportional to the likelihood and is given by

π(θ|y) ∝ (2 + θ)14(1− θ)θ5, θ ∈ (0, 1).

There are no nuisance parameters and tail area approximations (7) and (9) coincide and

http://homes.stat.unipd.it/ventura/?page=Software&lang=IT
http://homes.stat.unipd.it/ventura/?page=Software&lang=IT
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simplify to ∫ +∞

θ0

π(θ|y)dθ =̇ Φ{r̃⋆(θ0)},

where r̃⋆(θ) = r(θ) + r(θ)−1 log{qB(θ)/r(θ)}, qB(θ) = ℓ′(θ)j(θ̂)−1/2, ℓ′(θ) = dℓ(θ)/dθ,

and r(θ) = sign(θ̂− θ)[2(ℓ(θ̂)− ℓ(θ))]1/2. In view of this, HOTAℓ and HOTAπ coincide.

Figure R.1 shows the posterior distribution computed with the HOTA algorithm and
the exact posterior distribution π(θ|y).

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

Exact
HOTA

π(
θ|

y)

θ

Figure R.1: Genetic linkage model: exact and HOTA simulated posterior distributions.

The exact posterior distribution appears to be extremely skewed to the right, with
a long left tail, and in this case one might expect HOTA algorithm to fail. On the
contrary, it gets very close to the exact posterior, even thought the sample size is only
n = 20. In order to further explore the accuracy of the approximation, the two posteriors
are compared also in terms of some summary statistics (mean, standard deviation, 2.5
percentile, median, 97.5 percentile and 0.95 HPD credible set) in Table 1. The HOTA

Posterior Mean St. Dev. Q0.025 Median Q0.975 0.95 HPD
Exact 0.831 0.108 0.570 0.852 0.978 (0.620, 0.994)
HOTA 0.827 0.108 0.566 0.848 0.976 (0.617, 0.994)

Table R.1: Genetic linkage model: numerical summaries of the exact and HOTA pos-
terior distributions.

results are very close to those based on the exact posterior.
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4.2 Example 2: Censored regression

The data consist of temperature accelerated life tests on electrical insulation in n = 40
motorettes (Davison 2003, Table 11.10). Ten motorettes were tested at each of four
temperatures in degrees Centigrade (150◦, 17◦, 190◦ and 220◦), the test termination
(censoring) time being different at each temperature. This data were analysed from a
Bayesian perspective in Kharroubi and Sweeting (2010), among others.

The following linear model is considered

yi = β0 + β1xi + σ εi,

where εi are independent standard normal random variables, i = 1, . . . , n. The response
is the log10(failuretime), with time in hours, and x = 1000/(temperature+273.2). Given
a type I censoring mechanism with censoring indicator δi, i = 1, . . . , n, the joint density
of (Yi, δi) given the parameter θ = (β0, β1, σ) is (see, e.g., Pace and Salvan 1997, pp.
21–22)

p(yi, δi;θ) = ϕ

(
yi − β0 − β1xi

σ

)1−δi (
1− Φ

{
yi − β0 − β1xi

σ

})δi
,

where ϕ(·) is the standard normal density. Reordering the data so that the first m
observations are uncensored, with observed log-failure times yi, and the remaining n−m
are censored at times ui, the loglikelihood is

ℓ(θ) = −m log σ − 1

2σ2

m∑
i=1

(yi − β0 − β1xi)
2 +

n∑
i=m+1

log

{
1− Φ

(
ui − β0 − β1xi

σ

)}
.

(14)

For illustrative purposes several prior specifications are considered. The first is given by
the flat prior πF (θ). The second prior is a Normal-Half Cauchy distribution πNHC(θ),
given by independent components, which are respectively N(0, k) for the components of
(β0, β1) and Half Cauchy with scale s for σ, with (k, s) = (5, 0.1). The third prior is the
Zellner’s G-prior πG(θ) (see, e.g., Marin and Robert 2007), which is the product of σ−1

and a bivariate normal density with mean a and covariance matrix cσ2(XTX)−1, where
X is the design matrix with the first column being a vector of ones. For simplicity we
assume a = 0 and c = 100. Several proposals exist for fixing c, but we choose 100 since
this result can be interpreted as giving to the prior a weight of 1% of the data (see
Marin and Robert 2007).

The posterior distributions obtained with these priors do not have a closed form solution,
and numerical integration is needed in order to compute π(ψ|y), and related quantities,
with ψ being a separate component of θ.

Figure R.2 shows a sensitivity study on the effect of the three different priors on the
posterior distributions based on HOTAπ. Note that the same set of random variates has
been used in all cases, therefore what is shown are the differences between posteriors,
given the same Monte Carlo error. See also Tables 2 and 3 for some numerical summaries
for β1 and σ, respectively.
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Figure R.2: Censored regression model: empirical marginal posterior CDFs for β1 (left)
and σ (right), computed with HOTAπ. The hyperparameters for πNHC(θ) are k = 5
and s = 0.1.

Figure R.3 presents a graphical comparison between MCMC, HOTAπ (based on r̃⋆(ψ))
and HOTAℓ (based on r⋆p(ψ)) in terms of the approximate posterior cumulative distri-
bution functions (CDF) for β1 (left column) and σ (right column). Results with HOTAπ
are always in close agreement with those of MCMC. On the contrary, the accuracy of
HOTAℓ may not be satisfactory with non-flat priors, as also confirmed by the summary
statistics in Tables 2 and 3.

Posterior Method Mean St Dev. Q0.025 Median Q0.975 0.95 HPD

πF (β1|y)
MCMC 4.409 0.518 3.461 4.382 5.512 (3.425, 5.470)
HOTAℓ 4.401 0.521 3.459 4.370 5.521 (3.398, 5.443)
HOTAπ 4.401 0.521 3.459 4.370 5.521 (3.398, 5.443)

πNHC(β1|y)
MCMC 3.731 0.447 2.802 3.746 4.571 (2.827, 4.594)
HOTAℓ 3.739 0.437 2.823 3.755 4.549 (2.889, 4.611)

k = 5, s = 0.1 HOTAπ 3.739 0.443 2.818 3.754 4.569 (2.840, 4.589)

πG(β1|y)
MCMC 4.955 1.114 2.907 4.908 7.304 (2.906, 7.304)
HOTAℓ 5.885 3.078 1.182 5.388 13.173 (0.781, 12.389)
HOTAπ 4.955 1.099 2.939 4.897 7.285 (2.838, 7.119)

Table R.2: Censored regression model: numerical summaries of the marginal posteriors
of β1 with πF (θ), πNHC(θ) and πG(θ), computed with MCMC, HOTAℓ and HOTAπ.
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Posterior Method Mean St Dev. Q0.025 Median Q0.975 0.95 HPD

πF (σ|y) MCMC -1.240 0.201 -1.60 -1.253 -0.811 (-1.616, -0.832)
HOTAℓ -1.240 0.202 -1.601 -1.251 -0.808 (-1.624, -0.837)
HOTAπ -1.240 0.202 -1.601 -1.251 -0.808 (-1.624, -0.837)

πNHC(σ|y) MCMC 0.299 0.064 0.201 0.288 0.452 (0.193, 0.431)
HOTAℓ 0.277 0.052 0.196 0.270 0.398 (0.189, 0.384)

k = 5, s = 0.1 HOTAπ 0.298 0.064 0.203 0.287 0.452 (0.190, 0.426)

πG(σ|y)
MCMC 0.649 0.127 0.454 0.630 0.941 (0.434, 0.899)
HOTAℓ 1.327 0.306 0.875 1.278 2.058 (0.815, 1.936)
HOTAπ 0.647 0.125 0.456 0.628 0.941 (0.430, 0.894)

Table R.3: Censored regression model: numerical summaries of the marginal posteriors
of σ, with πF (θ), πNHC(θ) and πG(θ), computed with MCMC, HOTAℓ and HOTAπ.
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Figure R.3: Censored regression model: empirical marginal posterior CDFs for β1 (left
column) and σ (right column). The three rows correspond to priors πF (θ), πNHC(θ)
(k = 5, s = 0.1) and πG(θ), respectively. In the first line, HOTAπ coincides with
HOTAℓ.
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4.3 Example 3: Logistic regression

In this example we consider a logistic regression model applied to the urine dataset
analysed in Brazzale et al. (2007, Chap. 4), among others. This dataset concerns cal-
cium oxalate crystals in samples of urine. The response is an indicator of the presence
of such crystals, and the explanatory variables are: specific gravity (gravity) (i.e. the
density of urine relative to water), pH (ph), osmolarity (osmo, mOsm), conductivity
(conduct, mMho), urea concentration (urea, millimoles per litre), and calcium concen-
tration (calc, millimoles per litre). After dropping two incomplete cases, the dataset
consists of 77 observations. Let X denote the (n × 7) design matrix composed by a
vector of ones and the six covariates, and let β = (β0, . . . , β6) be regression parameters,
where β0 is the intercept.

Different prior specifications are considered: a flat prior πF (β) ∝ 1, a multivariate
normal prior πN (β) with independent components N(a, k), with a = 0 and k = 5, as
well as the Zellner’s G-prior (see Marin and Robert 2007, Chap. 4), given by

πG(β) ∝ |XTX|1/2Γ(13/4)(βT (XTX)β)−13/4π−7/2.

The choice of these priors has only the aim of illustrating our method and not to suggest
their use for Bayesian data analysis.

Figure R.4 shows a sensitivity study on the effect of different priors on the posterior
distributions based on HOTAπ. Here, we also consider the matching prior (12), given
by

πmp(βr) ∝ jp(βr)
1/2, for r = 0, . . . , 6.

With this prior the posterior distribution is approximated by HOTAℓ. See also Tables
4 and 5 for some numerical summaries for β4 and β6, respectively.
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Figure R.4: Logistic regression model: empirical marginal posterior CDFs for β4 (left)
and β6 (right), computed with HOTAπ.



E. Ruli, N. Sartori and L. Ventura 141

Figure R.5 presents a graphical comparison between MCMC, HOTAπ and HOTAℓ in
terms of the approximate posterior cumulative distribution functions (CDF) for β4 (left
column) and β6 (right column). The same comments about Figure R.3 apply here,
with the difference that the accuracy of HOTAℓ is better than the one for the previous
example when non-flat priors are used. See also Tables 4 and 5.

Posterior Method Mean St Dev. Q0.025 Median Q0.975 0.95 HPD

πmp(β4|y) HOTAℓ -0.508 0.270 -1.063 -0.497 -0.007 (-1.010, 0.033)

πF (β4|y)
MCMC -0.591 0.256 -1.116 -0.585 -0.114 (-1.089, -0.095)
HOTAℓ -0.547 0.278 -1.117 -0.537 -0.032 (-1.063, -0.009)
HOTAπ -0.547 0.278 -1.117 -0.537 -0.032 (-1.063, -0.009)

πN (β4|y)
MCMC -0.619 0.248 -1.132 -0.607 -0.163 (-1.117, -0.155)
HOTAℓ -0.645 0.214 -1.073 -0.641 -0.239 (-1.035, -0.206)

k = 5 HOTAπ -0.623 0.246 -1.127 -0.613 -0.169 (-1.079, -0.133)

πG(β4|y)
MCMC -0.335 0.227 -0.816 -0.323 0.068 (-0.793, 0.081)
HOTAℓ -0.348 0.236 -0.837 -0.336 0.081 (-0.773, 0.114)
HOTAπ -0.343 0.228 -0.819 -0.330 0.070 (-0.790, 0.102)

Table R.4: Logistic regression model: numerical summaries of the marginal posterior
of β4, with πmp(β4), πF (β), πN (β), and πG(β) approximated by MCMC, HOTAℓ and
HOTAπ.

Posterior Method Mean St Dev. Q0.025 Median Q0.975 0.95 HPD
πmp(β6|y) HOTAℓ 0.859 0.255 0.424 0.839 1.417 (0.414, 1.399)

πF (β6|y)
MCMC 0.883 0.250 0.454 0.863 1.425 (0.435, 1.391)
HOTAℓ 0.924 0.264 0.472 0.903 1.500 (0.461, 1.482)
HOTAπ 0.924 0.264 0.472 0.903 1.500 (0.461, 1.482)

πN (β6|y)
MCMC 0.863 0.241 0.447 0.845 1.386 (0.419, 1.347)
HOTAℓ 0.829 0.217 0.445 0.817 1.289 (0.436, 1.277)

k = 5 HOTAπ 0.859 0.239 0.445 0.842 1.373 (0.435, 1.357)

πG(β6|y)
MCMC 0.604 0.204 0.259 0.586 1.054 (0.241, 1.024)
HOTAℓ 0.591 0.197 0.237 0.573 1.030 (0.229, 0.995)
HOTAπ 0.600 0.212 0.264 0.584 1.060 (0.235, 1.045)

Table R.5: Logistic regression model: numerical summaries of the marginal posterior
of β6, with πmp(β6), πF (β), πN (β), and πG(β) approximated by MCMC, HOTAℓ and
HOTAπ.
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Figure R.5: Logistic regression model: empirical marginal posterior CDFs for β4 (left
column) and β6 (right column). The three rows correspond to priors πF (β), πN (β),
with k = 5, and πG(β) respectively.
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5 Concluding remarks

The HOTA simulation method for Bayesian approximation combines higher-order tail
area approximations with the inverse transform sampler. This sampling method gives
accurate approximations of marginal posterior distributions for a scalar parameter of
interest.

The accuracy of the two versions of the HOTA algorithm may be different and, in
particular, may depend on the chosen prior. In this respect, the version based on the
expansion around the posterior mode is a safer choice, since the approximation makes
explicit use of the prior information. On the contrary, the accuracy of the version based
on the expansion around the MLE, although easier to compute, could be affected by
the difference between the likelihood and the posterior, which is indeed the effect of the
prior. Therefore, in general we would recommend the use of HOTAπ, since the effect of
the prior on the posterior depends on many aspects, such as the nature and range of the
parameter, and it is not straightforward to assess such effect in advance. On the other
hand, both approximations rely on small-sample results, in the sense that as the sample
size increases the effect of the prior vanishes, implying that the two approximations will
tend to coincide.

Bayesian robustness with respect to the prior can be easily handled with the HOTA
sampling scheme. Indeed, higher-order approximations make it straightforward to assess
the influence of the prior, and the effect of changing priors on the posterior quantities (see
also Reid and Sun 2010). Moreover, with HOTA the effect of the prior on the posterior
distribution can be appreciated under the same Monte Carlo variation. Finally, default
priors, such as the matching prior used in Example 3, could be easily handled by the
method and could be used as a benchmark for Bayesian robustness.

The proposed use of higher-order asymptotics for Bayesian simulation opens to other
interesting applications. For instance, the HOTA procedure could be used in conjunc-
tion with MCMC methods, e.g. to simulate from conditional posteriors within Gibbs
sampling. Moreover, HOTA could be applied also to other Bayesian procedures, such
as model selection or prediction. In the latter cases, simulations from the full model are
required. Although in the present article we are not concerned with these topics, the
extension of our method in these directions is currently under investigation.

The R code used in the examples is available at homes.stat.unipd.it/ventura. A
more general R package is under preparation, which will implement the HOTA method
for regular parametric models, requiring only the unnormalized log-posterior function
as input.
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