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ACTIVE-SET IDENTIFICATION WITH COMPLEXITY1

GUARANTEES OF AN ALMOST CYCLIC 2-COORDINATE2

DESCENT METHOD WITH ARMIJO LINE SEARCH∗3

ANDREA CRISTOFARI†4

Abstract. In this paper, it is established finite active-set identification of an almost cyclic 2-5
coordinate descent method for problems with one linear coupling constraint and simple bounds. First,6
general active-set identification results are stated for non-convex objective functions. Then, under7
convexity and a quadratic growth condition (satisfied by any strongly convex function), complexity8
results on the number of iterations required to identify the active set are given. In our analysis, a9
simple Armijo line search is used to compute the stepsize, thus not requiring exact minimizations or10
additional information.11

Key words. active-set identification, surface identification, manifold identification, active-set12
complexity, block coordinate descent methods13
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1. Introduction. In many different contexts, a desirable property of an opti-15

mization algorithm is the ability to identify, in a finite number of iterations, a surface16

containing an optimal solution, in the sense that the points generated by the algo-17

rithm eventually remain on that surface. After such an identification, convergence18

can indeed be faster since the algorithm can work in a lower dimensional space and,19

under proper assumptions, it may also be possible to switch to methods with higher20

convergence rate. Furthermore, in certain problems one may only be interested in21

knowing the structure of an optimal solution, which can be revealed by identifying a22

surface where it lies, without the need of running the algorithm to convergence (for23

example, in lasso problems sparse solutions are promoted by the `1 norm and one24

may only be interested in knowing the support of an optimal solution).25

In the literature, much effort has been devoted to proving identification properties26

of some algorithms for smooth optimization [3, 5, 6, 7, 8, 9, 10, 11, 19, 22, 25, 48, 50],27

non-smooth optimization [16, 24, 26, 30, 32, 36, 42, 43, 49, 51], stochastic optimiza-28

tion [18, 29, 47] and derivative-free optimization [31]. Moreover, a wide class of meth-29

ods, known as active-set methods, has been object of extensive study from decades30

(see, e.g., [4, 13, 14, 17, 20, 23] and the references therein), making use of specific tech-31

niques to identify the so called active set, which is the set of constraints or variables32

that parametrizes a surface containing a solution.33

The scope of the present paper is establishing finite active-set identification of a34

2-coordinate descent method, proposed by the author in [12], for smooth minimization35

problems with one linear equality constraint and simple bounds on the variables. The36

main contributions of this paper can be summarized in the following points:37

(i) The problem we consider here is not separable, due to a coupling constraint, and38

the method under analysis does not require first-order information to choose the39

working set, while guaranteeing deterministic convergence properties.40

These features represent major differences with the analysis of other block co-41

ordinate descent methods for which active-set identification results have been42

proved [15, 17, 27, 34, 35, 42, 48, 51], since these methods either solve uncon-43
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2 A. CRISTOFARI

strained problems where the objective function is the sum of a smooth term44

and a convex separable term (the latter might be an indicator function that45

enforces bound constraints), or allow for a non-separable structure but require46

full gradient evaluations to choose the working set, or have convergence results47

in expectation. In particular, active-set identification results are given in [48]48

for variants of the sequential minimal optimization algorithm applied to the49

Support Vector Machine problem, where the authors consider a random selec-50

tion of the working-set, which therefore does not require first-order information,51

but leads to convergence results in expectation.52

(ii) Besides stating finite active-set identification results in a general non-convex set-53

ting, complexity results are also given under convexity of the objective function54

and a quadratic growth condition (satisfied by any strongly convex function),55

allowing us to bound the maximum number of iterations needed to identify the56

active set.57

Let us also remark that here we consider a simple Armijo line search for computing58

the stepsize along any search direction, thus not requiring exact minimizations, or the59

knowledge of the Lipschitz constant of the gradient, or other additional information.60

This makes our analysis of particular interest for realistic application to large-scale61

optimization problems.62

2. Preliminaries and Notation. Let us first introduce part of the notation63

used in the paper. Given a function f : Rn → R, we indicate the gradient of f by ∇f64

and we denote by ∇if its ith component (i.e., the ith partial derivative of f). For65

a vector x ∈ Rn, we denote by xi the ith component of x, we indicate by ‖x‖ the66

Euclidean norm of x and we indicate by ‖x‖∞ the sup-norm of x. We also denote67

by e ∈ Rn the vector made of all ones, and by ei ∈ Rn the vector that has the ith68

component equal to 1 and all other components equal to 0. Given a scalar a, we69

indicate with bac the largest integer less than or equal to a.70

Our analysis is concerned with the following problem:71

min f(x)

eTx = b

li ≤ xi ≤ ui, i = 1, . . . , n,

(2.1)72

where f : Rn → R is a function with Lipschitz continuous gradient, n ≥ 2, b ∈ R and,73

for all i = 1, . . . , n, we have li < ui, li ∈ R ∪ {−∞}, ui ∈ R ∪ {+∞}. The feasible set74

of problem (2.1) is denoted by F .75

Note that we may consider, instead of eTx = b, any constraint of the form aTx = b,76

with ai 6= 0, i = 1, . . . , n. In such a case, problem (2.1) can be obtained by applying77

the variable transformation xi ← ai xi and setting the lower and the upper bound78

accordingly. (Examples of relevant applications where problem (2.1) arises can be79

found, e.g., in [12] and the references therein.)80

The Lipschitz constant of ∇f over Rn is denoted by L, that is,81

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rn.82

It is possible to show [1] that there exist local Lipschitz constants83

(2.2) Li,j ≤ 2L, i, j = 1, . . . , n,84

such that, for any x ∈ Rn,85

|∇f(x+ s(ei− ej))T (ei− ej)−∇f(x+ t(ei− ej))T (ei− ej)| ≤ Li,j |s− t|, ∀ s, t ∈ R.86
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ACTIVE-SET IDENTIFICATION OF AC2CD 3

Equivalently, defining φi,j,x(α) = f(x + α(ei − ej)) and denoting its derivative by87

φ̇i,j,x, we have that88

(2.3) |φ̇i,j,x(s)− φ̇i,j,x(t)| ≤ Li,j |s− t|, ∀ s, t ∈ R,89

that is, each derivative φ̇i,j,x is Lipschitz continuous over R with constant Li,j .90

Without loss of generality, we assume that all Li,j > 0, i 6= j (if some of them91

are equal to zero, they can be replaced by positive overestimates) and that Li,i = 0,92

i = 1, . . . , n. We also define the following constants:93

Lmax = max
i,j=1,...,n

Li,j ,(2.4)94

Lj =

n∑
i=1

Li,j , j = 1, . . . , n,(2.5)95

L̂max = max
j=1,...,n

Lj .(2.6)96
97

A characterization of stationary points for problem (2.1) follows from KKT con-98

ditions. In particular, a point x∗ ∈ F is stationary for problem (2.1) if and only if99

there exists λ∗ ∈ R such that, for all i = 1, . . . , n,100

(2.7) ∇if(x∗)


≥ λ∗, if x∗i = li,

= λ∗, if x∗i ∈ (li, ui),

≤ λ∗, if x∗i = ui.

101

Moreover, a variable x∗i ∈ {li, ui} is said to satisfy the strict complementarity if102

∇if(x∗) 6= λ∗. We also say that x∗ is non-degenerate if all variables x∗i such that103

x∗i ∈ {li, ui} satisfy the strict complementarity.104

In the following, we will make use of a simple operator between vectors in Rn, ob-105

tained from the usual dot product by discarding a certain component. More precisely,106

for any j ∈ {1, . . . , n} we define the following positive semidefinite inner product:107

〈x, y〉j =
∑
i6=j

xiyi, ∀x, y ∈ Rn.108

We also define the following seminorm, induced by the above inner product:109

‖x‖〈j〉 =
√
〈x, x〉j , ∀x ∈ Rn.110

Note that, by Cauchy-Bunyakovsky-Schwarz inequality, we have111

(2.8) 〈x, y〉j ≤ ‖x‖〈j〉 ‖y‖〈j〉, ∀x, y ∈ Rn.112

In particular, (2.8) implies that113

|xi| ≤ ‖x‖〈j〉, i 6= j, ∀x ∈ Rn,(2.9)114 ∑
i 6=j

|xi| ≤
√
n− 1‖x‖〈j〉, ∀x ∈ Rn.(2.10)115

116

Moreover, it is straightforward to verify that117

(2.11) ‖x‖〈j〉 ≤ ‖x‖, ∀x ∈ Rn.118
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4 A. CRISTOFARI

3. Review of the algorithm. Let us briefly review the algorithm proposed119

in [12], named Almost Cyclic 2-Coordinate Descent (AC2CD) method, to solve prob-120

lem (2.1). The main feature of AC2CD is an almost cyclic rule to choose the working121

set. This rule iteratively selects two variables: one is picked in a cyclic fashion, while122

the other one is chosen by considering the distance from the bounds in some points123

produced by the algorithm and remains in the working set until all the other variables124

have been picked. Note the difference from the so-called essentially cyclic rule, where125

all blocks of variables must be selected at least once within a certain number of steps.126

More precisely, at the beginning of each outer iteration k of AC2CD we have a127

feasible point xk and we select a variable index j(k) such that xkj(k) is “sufficiently128

far” from its nearest bound. Then, we set the point zk,1 = xk and start a cycle of129

inner iterations, which are denoted by (k, 1), . . . , (k, n). In each inner iteration (k, i),130

we choose a working set of two variables: one of them is selected in a cyclic fashion,131

while the other one remains the j(k)th variable. So, we produce a feasible point zk,i+1132

from zk,i by moving only the two variables in the working set. At the end of the last133

inner iteration we finally set xk+1 = zk,n+1 and start a new outer iteration k + 1.134

Let us remark that our algorithm does not use first-order information to choose135

the working set. Moreover, as to be described later, only two partial derivatives are136

required to move each pair of variables. We can hence achieve high computational137

efficiency if partial derivative evaluation for the objective function is much cheaper138

than full gradient evaluation. For instance, this is the case when f is the sum of139

univariate functions (such as in the problems considered in [38] for large-scale network140

optimization). Other interesting examples, including the Support Vector Machine141

problem and the Chebyshev center problems, are those where the objective function142

is quadratic of the form f(x) = xTQTQx− qTx, with Q being a given m× n matrix143

and q being a given vector. In this case, a partial derivative of f(x) can be computed144

with a cost O(m), while computing the whole gradient has a cost O(mn) (see [12] for145

details).146

Now, let us explain in more detail how the index j(k) is chosen at the beginning147

of an outer iteration k and how the two variables in the working set are moved in the148

inner iterations (k, 1), . . . , (k, n).149

For what concerns the choice of j(k), for any x ∈ F let us first define150

(3.1) Dh(x) = min{xh − lh, uh − xh}, h = 1, . . . , n.151

Namely, Dh(x) returns the distance of xh from its nearest bound. Moreover, for any152

point xk produced by the algorithm, we define Dk as the maximum distance between153

each component of xk and its nearest bound, that is,154

(3.2) Dk = max
h=1,...,n

Dh(xk).155

Then, j(k) can be chosen as any index satisfying156

(3.3) Dj(k)(x
k) ≥ τDk,157

where τ ∈ (0, 1] is a fixed parameter. In other words, the distance between xkj(k) and158

its nearest bound must be sufficiently large compared to Dk.159

For what concerns the variable update, let us denote by pki the variable index160

that is selected in a cyclic manner at an inner iteration (k, i) (note that the variables161

can be taken in any order). So, zk,i
pki

and zk,ij(k) are the two variables that can be moved162

This manuscript is for review purposes only.



ACTIVE-SET IDENTIFICATION OF AC2CD 5

from zk,i. To do this, we use the following search direction (which has at most two163

non-zero components and maintains feasibility for the equality constraint):164

(3.4) dk,i = gk,i(epki − ej(k)), where gk,i = ∇j(k)f(zk,i)−∇pki f(zk,i),165

and we set166

zk,i+1 = zk,i + αk,idk,i,167

where αk,i is a suitably computed feasible stepsize. Note that168

(3.5) ∇f(zk,i)T dk,i = −(gk,i)2,169

and then, every non-zero dk,i is a descent direction. The scheme of AC2CD is reported170

in Algorithm 3.1.171

Algorithm 3.1 Almost Cyclic 2-Coordinate Descent (AC2CD) method

0 Given x0 ∈ F and τ ∈ (0, 1]
1 For k = 0, 1, . . .
2 Choose a variable index j(k) ∈ {1, . . . , n} that satisfies (3.3)
3 Choose a permutation {pk1 , . . . , pkn} of {1, . . . , n}
4 Set zk,1 = xk

5 For i = 1, . . . , n
6 Let gk,i = ∇j(k)f(zk,i)−∇pki f(zk,i)

7 Compute the search direction dk,i = gk,i(epki − ej(k))
8 Compute a feasible stepsize αk,i and set zk,i+1 = zk,i + αk,idk,i

9 End for
10 Set xk+1 = zk,n+1

11 End for

3.1. Computation of the stepsize. Under a technical assumption (see As-172

sumption 1 in the next section), global convergence of AC2CD to stationary points173

was established in [12] for different choices of the stepsize αk,i (to be used at line 8174

of Algorithm 3.1), including the Armijo stepsize, overestimates of the local Lipschitz175

constants of ∇f and the exact stepsize for strictly convex objective functions1.176

Here we focus on the case where, at every inner iteration (k, i), the stepsize αk,i is177

computed by the Armijo line search, which is a backtracking procedure that computes178

a stepsize in a finite number of iterations. The scheme of the Armijo line search used179

in AC2CD is reported in Algorithm 3.2.180

Algorithm 3.2 Armijo line search (to compute αk,i at step 8 of AC2CD)

0 Given the search direction dk,i and two parameters γ ∈ (0, 1), δ ∈ (0, 1)
1 Choose a feasible stepsize ∆k,i ≥ 0 and set α = ∆k,i

2 While f(zk,i + αdk,i) > f(zk,i) + γα∇f(zk,i)T dk,i

3 Set α = δα
4 End while
5 Return αk,i = α

1For general conditions on the stepsize, see SC (Stepsize Condition) 1 in [12]. A typo is present
in point (i) of SC 1 in [12]: f(zk,i+i) should be replaced by f(zk,i+1).
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6 A. CRISTOFARI

We see that the considered Armijo line search is very simple and does not require181

exact minimizations or additional information (such as the knowledge of the Lipschitz182

constant of ∇f). For this reason, it can be an effective choice for non-convex large-183

scale problems and when no closed form is known for the stepsize.184

To obtain global convergence of AC2CD to stationary points, an appropriate185

choice of the initial stepsize ∆k,i at line 1 of Algorithm 3.2 is needed. In [12] it was186

shown that, at every inner iteration (k, i), a possible choice is the following:187

(3.6) ∆k,i = min{ᾱk,i, Ak,i},188

where189

• ᾱk,i is the largest feasible stepsize along the direction dk,i, that is,190

(3.7) ᾱk,i =


1

gk,i
min{upki − z

k,i

pki
, zk,ij(k) − lj(k)}, if gk,i > 0,

1

|gk,i|
min{zk,i

pki
− lpki , uj(k) − z

k,i
j(k)}, if gk,i < 0,

0, if gk,i = 0;

191

• Ak,i must be chosen between two finite positive constants, that is,192

(3.8) 0 < Al ≤ Ak,i ≤ Au <∞,193

with Al and Au being two fixed parameters.194

We observe that, in (3.7), we set ᾱk,i = 0 when gk,i = 0, i.e., when dk,i = 0 (see (3.4)).195

Therefore, ᾱk,i is not actually the largest feasible stepsize along dk,i when dk,i = 0.196

This choice in the definition of ᾱk,i simplifies the analysis and entails no loss of197

generality, since it stills guarantees that zk,i+1 = zk,i when dk,i = 0. In particular,198

note that199

(3.9) dk,i = 0
(3.4)⇔ gk,i = 0

(3.7)⇒ ᾱk,i = 0 ⇔ zk,i+1 = zk,i.200

To obtain the last relation in (3.9), we can use (3.5), (3.6) and (3.8), leading to201

ᾱk,i > 0 ⇔ ∆k,i > 0 ∧ ∇f(zk,i)T dk,i < 0.202

So, if ᾱk,i > 0, the Armijo line search returns a stepsize αk,i > 0, implying that203

zk,i+1 6= zk,i. Vice versa, if ᾱk,i = 0, the Armijo line search returns αk,i = 0,204

implying that zk,i+1 = zk,i. Namely, the last relation in (3.9) holds.205

4. Basic assumptions. Let X∗ be the set of all stationary points for prob-206

lem (2.1) and also define the level set207

L0 = {x ∈ F : f(x) ≤ f(x0)},208

where F is the feasible set of problem (2.1) and x0 is the starting point used in AC2CD.209

We assume that L0 is non-empty and compact (implying that both the feasible set F210

and the set of stationary points X∗ are non-empty as well).211

According to the results stated in [12], we also need the following assumption on212

the level set L0 to ensure global convergence of AC2CD (in the sense that every limit213

point of the sequence {xk} produced by the algorithm is stationary):214

Assumption 1. ∀x ∈ L0, ∃ i ∈ {1, . . . , n} : xi ∈ (li, ui).215
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Namely, we require that every point of L0 has at least one component strictly between216

the lower and the upper bound. Note that Assumption 1 is automatically satisfied217

when F is the unit simplex (i.e., when in problem (2.1) we have b = 1, li = 0, ui = +∞,218

i = 1, . . . , n). Moreover, in [33] it is shown that Assumption 1 is also satisfied for the219

Support Vector Machine training problem if f(x0) < 0 and the smallest eigenvalue of220

the Hessian matrix of f(x) is sufficiently large. (Assumption 1 is satisfied also when221

at least one variable has are no finite bounds, provided F is not a singleton.)222

Essentially, Assumption 1 is needed to prevent AC2CD from converging to a223

point x∗ with all components at the lower or the upper bound. To be more spe-224

cific, the convergence analysis of AC2CD (see [12]) relies on the fact that eventually225

lj(k) < xkj(k) < uj(k) and that ∇j(k)f(xk) converges (over suitable subsequences) to226

the KKT multiplier λ∗ appearing in (2.7). Also the analysis of the active-set identi-227

fication reported later uses the same properties (see Proposition 6.2 and the proof of228

Theorem 6.4 below). Without Assumption 1, all these results do not hold, since {xk}229

may have limit points with all components at the lower or the upper bound.230

We also observe that, for every outer iteration k ≥ 0, Assumption 1 ensures that231

xk+1 6= xk if and only if xk is non-stationary. To see this, under Assumption 1 observe232

that lj(k) < xkj(k) < uj(k) for all k ≥ 0 (since j(k) must satisfy (3.3) with Dk > 0).233

Then, from the KKT conditions (2.7), there exists a feasible descent direction in the234

inner iterations (k, 1), . . . , (k, n) if and only if xk is non-stationary.235

On the contrary, without Assumption 1, the algorithm may end up in a non-236

stationary point xk with all components at the lower or the upper bound. In such a237

case, even if every choice of j(k) = 1, . . . , n satisfies (3.3) (since Dk = Dh(xk) = 0,238

h = 1, . . . , n), for certain choices of j(k) there may not exist a feasible descent direction239

in any inner iteration (k, 1), . . . , (k, n). Namely, AC2CD may get stuck in a non-240

stationary point xk. This issue can be overcome by introducing an anticycling rule to241

select j(k) when such a point xk is produced. Doing so, we may relax Assumption 1242

by requiring only the stationary points in L0 not to have all components at the lower243

or the upper bound, but in our analysis we use Assumption 1 for simplicity.244

Overcoming the limitation deriving from Assumption 1 by properly modifying245

the algorithm might be a challenging subject for future research.246

In the rest of the paper, we will consider all the above assumptions always satisfied,247

even if not explicitly invoked. Namely, we will consider L0 non-empty and compact248

and we will consider Assumption 1 satisfied.249

5. Technical results. In this section, we fix a few concepts and give some250

technical results. First note that, for every inner iteration (k, i) of AC2CD,251

(5.1) pki 6= j(k) ⇒ zk,i
pki

= xkpki
and xk+1

pki
= zk,i+1

pki
,252

since each coordinate, except the j(k)th one, is moved (at most) once in a cycle of253

inner iterations.254

Furthermore, there is a relation between the Armijo stepsize and the local Lips-255

chitz constants of ∇f : at any inner iteration (k, i), every stepsize α ≤ 2(1−γ)/Lpki ,j(k)256

satisfies the so called Armijo condition, which is the exit condition in the while257

loop of Algorithm 3.2. Namely, f(zk,i + αdk,i) ≤ f(zk,i) + γα∇f(zk,i)T dk,i for all258

α ∈ [0, 2(1 − γ)/Lpki ,j(k)] (see the proof of Proposition 3 in [12]). Since, in our line259

search, α is multiplied by δ ∈ (0, 1) until the Armijo condition is satisfied (see line 3260

in Algorithm 3.2), we immediately have the following result.261
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8 A. CRISTOFARI

Lemma 5.1. At every inner iteration (k, i), the initial stepsize ∆k,i used in the262

Armijo line search is such that263

∆k,i ≤ 2(1− γ)

Lpki ,j(k)
⇒ αk,i = ∆k,i,264

∆k,i >
2(1− γ)

Lpki ,j(k)
⇒ αk,i ∈

(
2δ(1− γ)

Lpki ,j(k)
,∆k,i

]
,265

266

where, in the Armijo line search, γ ∈ (0, 1) is the parameter for sufficient decrease267

and δ ∈ (0, 1) is the reduction parameter. Therefore, αk,i ≥ min

{
∆k,i,

2δ(1− γ)

Lpki ,j(k)

}
.268

As a consequence of Lemma 1 in [12], we also have the following relation between269

the limit of {xk} and the limit of the sequences {zk,i}, i = 1, . . . , n:270

(5.2) lim
k→∞

xk = x∗ ⇔ lim
k→∞

zk,i = x∗, i = 1, . . . , n.271

Now we state some useful properties derived from the semidefinite inner product272

and the seminorm defined at the end of Section 2. In the following results, we use Lj273

as defined in (2.5). The proofs are reported in Appendix A.274

Lemma 5.2. For any j ∈ {1, . . . , n} we have that275

vT (x′ − x′′) = 〈v − vje, x′ − x′′〉j , ∀x′, x′′ ∈ F , ∀ v ∈ Rn.276

Lemma 5.3. If f is convex over Rn, for any j ∈ {1, . . . , n} we have that277 ∥∥[∇f(x′)−∇jf(x′)e]− [∇f(x′′)−∇jf(x′′)e]
∥∥
〈j〉 ≤ Lj‖x

′ − x′′‖〈j〉, ∀x′, x′′ ∈ F278

Corollary 5.4. If f is convex over Rn, at every inner iteration (k, i) of AC2CD279

we have that280

|∇pki f(v)−∇j(k)f(v) + gk,i| ≤ Lj(k)‖v − zk,i‖〈j(k)〉, ∀ v ∈ Rn.281

Lemma 5.5. If f is convex over Rn, for any j ∈ {1, . . . , n} we have that282

f(x′′) ≤ f(x′) +∇f(x′)T (x′′ − x′) +
Lj
2
‖x′ − x′′‖2〈j〉, ∀x′, x′′ ∈ F .283

6. Active-set identification in the non-convex case. In this section, we284

show that AC2CD identifies the active set of problem (2.1) in a finite number of285

iterations, without any assumption on the convexity of f .286

First of all, let us give the definition of active set for our problem.287

Definition 6.1. Given a stationary point x∗ of problem (2.1), we define the ac-288

tive set as289

Z (x∗) = {i : x∗i = li} ∪ {i : x∗i = ui}.290

We also define291

Z +(x∗) = Z (x∗) ∩ {i : ∇if(x∗) 6= λ∗},292

where λ∗ is the KKT multiplier associated with x∗ appearing in (2.7).293
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We see that Z (x∗) is the set of indices of all the variables that are at the lower or294

the upper bound in a stationary point x∗, whereas Z +(x∗) contains only the indices of295

the variables satisfying the strict complementarity. We notice that, from a geometric296

perspective, Z +(x∗) defines the face of F exposed to −∇f(x∗) [9].297

The scope of this section is two-fold:298

(i) Firstly, it will be shown that, given a sequence of points {xk} → x∗ produced299

by AC2CD, an iteration k̄ exists such that, for all k > k̄,300

(6.1) xkh = x∗h, ∀h ∈ Z +(x∗).301

Namely, in a finite number of iterations AC2CD sets to the bounds all the302

variables that satisfy the strict complementarity at x∗.303

(ii) Secondly, we will give a characterization of the neighborhood of x∗ where (6.1)304

holds, which will be used in Section 7 to obtain an upper bound for k̄ (under305

convexity of f and a quadratic growth condition).306

Note that, as common when analyzing active-set identification properties of an307

optimization algorithm, here we require the whole sequence {xk} to converge. For308

AC2CD, in [12] it was shown that every limit point of {xk} is stationary and, if309

{f(xk)} converges, then limk→∞‖zk,i+1 − zk,i‖ = 0, i = 1, . . . , n, implying that310

limk→∞‖xk+1−xk‖ = 0 if a limit point of {xk} exists. So, using the same arguments311

given in [45, Theorem 14.1.5], we get that the whole sequence {xk} converges if the312

number of stationary points in L0 is finite. By a more general result stated in [21,313

Proposition 8.3.10], we also have that the whole sequence {xk} converges if it has314

an isolated limit point. Other conditions can be obtained from [5, Theorem 4.3]:315

if f satisfies a suitable descent property along the search directions, then a strict316

local minimum with no other stationary points in its neighborhood attracts the whole317

sequence {xk}.318

Now, we start our analysis by giving an intermediate result stating that, in a319

neighborhood of x∗, the index j(k) is such that lj(k) < x∗j(k) < uj(k).320

Proposition 6.2. Let {xk} be a sequence of points produced by AC2CD and as-321

sume that limk→∞ xk = x∗. Define the maximum distance from the bounds at x∗322

as323

Dmax(x∗) = max
i=1,...,n

Di(x
∗),324

which is positive by Assumption 1, and let kj be the first outer iteration such that325

‖xk − x∗‖∞ <
τ

τ + 1
Dmax(x∗), ∀ k ≥ kj ,326

where τ ∈ (0, 1] is the parameter used to choose j(k), satisfying (3.3). Then, for all327

k ≥ kj we have that j(k) /∈ Z (x∗).328

Proof. Consider an outer iteration k ≥ kj and let ̂ be an index such thatD̂(x
∗) =329

Dmax(x∗). We have |xk̂ − x∗̂ | ≤ ‖xk − x∗‖∞ <
τ

τ + 1
Dmax(x∗), implying that330

(6.2) xk̂ − l̂ > x∗̂ − l̂ −
τ

τ + 1
D̂(x

∗) and û − xk̂ > û − x∗̂ −
τ

τ + 1
D̂(x

∗).331

Therefore, we can write332

D̂(x
k) = min{xk̂ − l̂, û − xk̂ }

(6.2)
> min{x∗̂ − l̂, û − x∗̂ } −

τ

τ + 1
D̂(x

∗)

= D̂(x
∗)− τ

τ + 1
D̂(x

∗) =
1

τ + 1
D̂(x

∗).

(6.3)333
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10 A. CRISTOFARI

Arguing by contradiction, assume now that j(k) ∈ Z (x∗), that is,334

(6.4) x∗j(k) ∈ {lj(k), uj(k)}.335

We obtain336

Dj(k)(x
k) = min{xkj(k) − lj(k), uj(k) − x

k
j(k)}

(6.4)

≤ |xkj(k) − x
∗
j(k)| ≤ ‖x

k − x∗‖∞

<
τ

τ + 1
Dmax(x∗) =

τ

τ + 1
D̂(x

∗)
(6.3)
< τD̂(x

k)
(3.2)

≤ τDk,
337

contradicting (3.3).338

Combining the above proposition with (5.2), the next result immediately follows.339

Proposition 6.3. Let {xk} be a sequence of points produced by AC2CD and as-340

sume that limk→∞ xk = x∗. There exists an iteration kz such that, for all k ≥ kz,341

lj(k) < zk,ij(k) < uj(k), i = 1, . . . , n+ 1.342

Now, we are ready to show that (6.1) holds for all sufficiently large iterations.343

Our analysis takes inspiration from the one in [43] for proximal gradient methods,344

where it is proved that the active set is identified in a neighborhood of the optimal345

solution under the non-degeneracy assumption. That neighborhood is defined in [43]346

by using a problem-dependent constant related on “the amount of degeneracy” of the347

optimal solution.348

Here, for a stationary point x∗ such that Z +(x∗) 6= ∅, we define the following349

positive constant, measuring the “minimum amount of strict complementarity” at x∗:350

(6.5) ζ(x∗) = min
i∈Z +(x∗)

|∇if(x∗)− λ∗|,351

where λ∗ is the KKT multiplier associated to x∗, according to (2.7).352

Theorem 6.4. Let {xk} be a sequence of points produced by AC2CD and assume353

that limk→∞ xk = x∗. Let k̄ be the first outer iteration such that354

(6.6) ‖zk,i − x∗‖ < ζ(x∗)

2L+ max

{
1

Al
,
Lmax

2(1− γ)

} , i = 1, . . . , n, ∀ k ≥ k̄,355

where ζ(x∗) > 0 is the minimum strict complementarity measure at x∗, defined as356

in (6.5), L is the Lipschitz constant of ∇f , Al > 0 is the lower bound on the parameter357

Ak,i used to compute the initial stepsize ∆k,i in the Armijo line search (see (3.6)358

and (3.8)), γ ∈ (0, 1) is the parameter for sufficient decrease in the Armijo line search359

and Lmax > 0 is the maximum among the local Lipschitz constants Li,j, defined as360

in (2.4).361

Also assume that k̄ ≥ max{kj , kz}, where kj is the first outer iteration such that362

j(k) /∈ Z (x∗) for all k ≥ kj, defined as in Proposition 6.2, and kz is the first outer363

iteration such that lj(k) < zk,ij(k) < uj(k), i = 1, . . . , n+ 1, for all k ≥ kz, defined as in364

Proposition 6.3.365

Then, for all k > k̄ we have that366

xkh = x∗h, ∀h ∈ Z +(x∗).367

This manuscript is for review purposes only.



ACTIVE-SET IDENTIFICATION OF AC2CD 11

Proof. Consider an outer iteration k ≥ k̄ and any index h ∈ Z +(x∗). Moreover,368

let (k, i) be the inner iteration where pki = h. Without loss of generality, let us assume369

that x∗h = lh (the proof for the case where x∗h = uh is analogous). Namely,370

(6.7) x∗h = lh and ∇hf(x∗) > λ∗,371

where λ∗ is the KKT multiplier associated to x∗, according to the stationary condi-372

tions (2.7). Since k ≥ kj , from Proposition 6.2 we have that373

(6.8) j(k) /∈ Z (x∗),374

implying that h 6= j(k). Then, using (6.8) and the stationary conditions (2.7), we get375

λ∗ = ∇j(k)f(x∗). Recalling the definition of ζ(x∗), it follows that376

ζ(x∗) ≤ ∇hf(x∗)−∇j(k)f(x∗).377

Moreover, from the definition of gk,i given in (3.4) we can write378

∇hf(x∗)−∇j(k)f(x∗) + gk,i = ∇hf(x∗)−∇j(k)f(x∗) +∇j(k)f(zk,i)−∇hf(zk,i)

≤ |∇hf(x∗)−∇hf(zk,i)|+ |∇j(k)f(zk,i)−∇j(k)f(x∗)|
≤ 2‖∇f(x∗)−∇f(zk,i)‖ ≤ 2L‖x∗ − zk,i‖,

379

and then,380

(6.9) ζ(x∗) ≤ −gk,i + 2L‖x∗ − zk,i‖.381

Now, we can rewrite (6.6) by multiplying the numerator and the denominator of the382

right-hand side by max

{
1

Al
,
Lmax

2(1− γ)

}−1
= min

{
Al,

2(1− γ)

Lmax

}
, obtaining383

‖zk,i − x∗‖ <
ζ(x∗) min

{
Al,

2(1− γ)

Lmax

}
2Lmin

{
Al,

2(1− γ)

Lmax

}
+ 1

.384

Multiplying both sides of this inequality by the denominator of the right-hand side,385

we can write386

‖zk,i − x∗‖ = (ζ(x∗)− 2L‖zk,i − x∗‖) min

{
Al,

2(1− γ)

Lmax

}
(6.9)

≤ −gk,i min

{
Al,

2(1− γ)

Lmax

}
.

(6.10)387

It follows that gk,i ≤ 0. If gk,i = 0, we have388

xk+1
h

(5.1)
= zk,i+1

h

(3.4)
= zk,ih

(6.10)
= x∗h,389

and the desired result is thus obtained. Now assume that gk,i < 0. We can upper390

bound the largest feasible stepsize ᾱk,i as follows:391

ᾱk,i
(3.7)

≤ −
zk,ih − lh
gk,i

(6.7)
= −

zk,ih − x∗h
gk,i

(6.10)
< min

{
Al,

2(1− γ)

Lmax

}
(3.8)

≤ min

{
Ak,i,

2(1− γ)

Lmax

}
,

(6.11)392
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12 A. CRISTOFARI

implying that ᾱk,i < Ak,i. Taking into account that the initial stepsize ∆k,i in393

the Armijo line search is chosen as in (3.6), we have that ∆k,i = ᾱk,i. So, using394

again (6.11) we obtain395

∆k,i = ᾱk,i <
2(1− γ)

Lmax
≤ 2(1− γ)

Lh,j(k)
.396

From Lemma 5.1 we get that αk,i = ᾱk,i. Since ᾱk,i is the largest feasible stepsize397

along dk,i, (at least) one variable between zk,i+1
h and zk,i+1

j(k) will be at the lower or398

the upper bound. Using the fact that k ≥ kz, from Proposition 6.3 we have that399

zk,i+1
j(k) ∈ (lj(k), uj(k)), and then zk,i+1

h will be necessarily at the lower or the upper400

bound. Since gk,i < 0, from the definition of the search direction given in (3.4) it401

follows that zk,i+1
h = lh. Using (5.1) and (6.7), we finally have that zk,i+1

h = xk+1
h and402

lh = x∗h, yielding to the desired result.403

Remark 6.5. From (5.2), there must exist an outer iteration k̄ such that (6.6)404

holds, provided the whole sequence {xk} converges to x∗ and Z +(x∗) 6= ∅.405

7. Active-set complexity. In this section, the main result of the paper is pre-406

sented: under convexity of f and a quadratic growth condition (satisfied by any407

strongly convex function), it is possible to compute the maximum number of itera-408

tions required by AC2CD to identify the active set, thus extending what obtained409

in the previous section. Using the definition given in [43], we refer to the maximum410

number of iterations required to identify the active set as “active-set complexity”.411

To obtain the desired result, we first show how choosing the initial stepsize in412

the Armijo line search, in order to meet an additional requirement. Then, we will413

show non-asymptotic sublinear convergence rate of AC2CD, which, combined with414

Theorem 6.4, will lead to the active-set complexity of the algorithm.415

7.1. Initial stepsize in the Armijo line search. To obtain non-asymptotic416

sublinear convergence rate of AC2CD, for all k ≥ 0 we need to satisfy417

(7.1) lj(k) < zk,ij(k) < uj(k), i = 1, . . . , n+ 1.418

Note that, in general, (7.1) holds only for sufficiently large k (see the proof of419

Theorem 1 in [12]). To satisfy (7.1) for all k ≥ 0 we can use sufficiently small stepsizes420

in all the inner iterations, exploiting the fact that xkj(k) = zk,1j(k) ∈ (lj(k), uj(k)) for all421

k ≥ 0. In particular, to obtain a small stepsize αk,i from the Armijo line search we422

must choose a small value of the initial stepsize ∆k,i. Taking into account (3.6), this423

means that we must use a small value of Ak,i. Anyway, we have to keep in mind that424

Ak,i must satisfy (3.8) as well. A possible strategy is setting Au > 0, ε ∈ (0, 1) and,425

at every inner iteration (k, i), computing426

(7.2) Ak,i =

{
min{α̂k,i, Au}, if gk,i 6= 0 (i.e., if dk,i is a non-zero direction),

Au, otherwise,
427

where α̂k,i is the stepsize such that Dj(k)(z
k,i+ α̂k,idk,i) = εDj(k)(z

k,i) when gk,i 6= 0.428

Note that α̂k,i may be infeasible and/or infinity. Since αk,i ≤ Ak,i ≤ α̂k,i, it follows429

that Dj(k)(z
k,i+1) = Dj(k)(z

k,i + αk,idk,i) ≥ Dj(k)(z
k,i + α̂k,idk,i) ≥ εDj(k)(z

k,i).430

Consequently,431

(7.3) Dj(k)(z
k,i+1) ≥ εiDj(k)(z

k,1) = εiDj(k)(x
k) > 0, i = 1, . . . , n.432
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Then, this choice of Ak,i satisfies (7.1) for all k ≥ 0. To show that it also satisfies (3.8),433

we have to explicitly write the expression of α̂k,i, which can be obtained by simple434

calculations (recall that α̂k,i is defined only when gk,i 6= 0):435

If gk,i > 0,436

α̂k,i =

{
(1− ε)Dj(k)(z

k,i)/gk,i, if Dj(k)(z
k,i) = zk,ij(k) − lj(k),

[zk,ij(k) − lj(k) − εDj(k)(z
k,i)]/gk,i, otherwise;

437

else if gk,i < 0,438

α̂k,i =

{
(1− ε)Dj(k)(z

k,i)/|gk,i|, if Dj(k)(z
k,i) = uj(k) − zk,ij(k),

[uj(k) − zk,ij(k) − εDj(k)(z
k,i)]/|gk,i|, otherwise.

439

440

We see that, when gk,i 6= 0, we have α̂k,i ≥ (1 − ε)Dj(k)(z
k,i)/|gk,i|. Using (7.2)441

and (7.3), it follows that442

min

{
(1− ε)εi−1Dj(k)(x

k)

|gk,i|
, Au

}
≤ Ak,i ≤ Au, if gk,i 6= 0.443

Then, (3.8) is satisfied with a proper value of Al which can be easily obtained, since444

any non-zero |gk,i| is less than or equal to maxi,j=1,...,n{∇jf(x) − ∇if(x) : x ∈ L0}445

(which is finite by the assumption that the level set L0 is compact) and, from (3.3),446

we have Dj(k)(x
k) ≥ τ min

x∈L0
max

i=1,...,n
Di(x) (which is positive by Assumption 1).447

Many other strategies can be used to compute a value of Ak,i that satisfies all448

the required conditions. It is important to note that, in practice, Ak,i should not be449

too small compared to the largest feasible stepsize ᾱk,i (for a non-zero direction dk,i),450

otherwise the Armijo line search may produce extremely small stepsizes which can451

dramatically slow down the algorithm. For example, ε should be sufficiently smaller452

than 1 in the above described strategy.453

In the rest of this section, we will assume Ak,i to be computed in order to satisfy,454

together with (3.8), condition (7.1) for all k ≥ 0.455

7.2. Convergence rate analysis. In this subsection we show that, when f is456

convex, AC2CD has a non-asymptotic sublinear convergence rate. Let us remark that457

the results reported here are completely different from those given in [12], where a458

linear rate was obtained, but asymptotically, whereas a non-asymptotic linear rate459

was proved only when there are no bounds on the variables (both results are not460

useful in the analysis of the active-set complexity).461

Our results here are obtained by adapting the analysis of the block coordinate462

gradient projection method in [2] for minimization problems over the Cartesian prod-463

uct of closed convex sets. In particular, with respect to [2], major difficulties in our464

analysis come from the presence of the coupling constraint in the problem and the465

absence of projection operations in the algorithm. In such a context, the next lemma466

establishes a useful property of AC2CD.467

Lemma 7.1. For all x∗ ∈ X∗, at every inner iteration (k, i) of AC2CD we have468

that469

gk,i(x∗pki
− zk,i+1

pki
) ≤ max

{
1

Al
,

Lmax

2δ(1− γ)

}
|zk,i+1

pki
− zk,i

pki
||x∗pki − z

k,i+1

pki
|,470

where Al > 0 is the lower bound on the parameter Ak,i used to compute the initial471

stepsize ∆k,i in the Armijo line search (see (3.6) and (3.8)), γ ∈ (0, 1) is the parameter472
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14 A. CRISTOFARI

for sufficient decrease in the Armijo line search, δ ∈ (0, 1) is the reduction parameter473

in the Armijo line search and Lmax > 0 is the maximum among the local Lipschitz474

constants Li,j, defined in (2.4).475

Proof. Consider any inner iteration (k, i). The result is trivial if gk,i = 0, so we476

assume that gk,i 6= 0 and distinguish two possible cases.477

(i) First, assume that αk,i = ᾱk,i, that is, the largest feasible stepsize is used. This478

means that (at least) one variable between zk,i+1

pki
and zk,i+1

j(k) will be at the lower479

or the upper bound. Recalling that (7.1) holds for all k ≥ 0, necessarily zk,i+1

pki
480

will be at the lower or the upper bound. Using the definition of ᾱk,i given481

in (3.7), it follows that either zk,i+1

pki
= upki if gk,i > 0, or zk,i+1

pki
= lpki if gk,i < 0,482

implying that gk,i(x∗
pki
− zk,i+1

pki
) ≤ 0 and the desired result is obtained.483

(ii) Now, assume that αk,i < ᾱk,i, which implies that ᾱk,i > 0 and, from (3.9), that484

zk,i+1 6= zk,i. Since zk,i+1

pki
= zk,i

pki
+αk,igk,i, it follows that αk,igk,i 6= 0. Recalling485

the definition of gk,i given in (3.4), this implies that pki 6= j(k). Moreover, we486

can write487

gk,i(x∗pki
−zk,i+1

pki
) =

(zk,i+1

pki
− zk,i

pki
)(x∗

pki
− zk,i+1

pki
)

αk,i
≤
|zk,i+1

pki
− zk,i

pki
||x∗

pki
− zk,i+1

pki
|

αk,i
.488

So, to obtain the desired result we have to show that489

αk,i ≥ min

{
Al,

2δ(1− γ)

Lmax

}
.490

To this extent, let us distinguish two further subcases, depending on whether491

∆k,i = ᾱk,i or ∆k,i < ᾱk,i, according to the definition of ∆k,i given in (3.6).492

• If ∆k,i = ᾱk,i, then αk,i < ∆k,i (recall that we are considering the case493

αk,i < ᾱk,i) and, from Lemma 5.1, it follows that494

αk,i >
2δ(1− γ)

Lpki ,j(k)
≥ min

{
Al,

2δ(1− γ)

Lpki ,j(k)

}
≥ min

{
Al,

2δ(1− γ)

Lmax

}
.495

• If ∆k,i < ᾱk,i, from (3.6) we have ∆k,i = Ak,i. Using Lemma 5.1 it follows496

that497

αk,i ≥ min

{
∆k,i,

2δ(1− γ)

Lpki ,j(k)

}
= min

{
Ak,i,

2δ(1− γ)

Lpki ,j(k)

}
498

≥ min

{
Al,

2δ(1− γ)

Lpki ,j(k)

}
≥ min

{
Al,

2δ(1− γ)

Lmax

}
.499

500

Now, we give a first result on the decrease in the objective function at every outer501

iteration.502

Proposition 7.2. At every outer iteration k of AC2CD we have that503

f(xk)− f(xk+1) ≥ γ

Au
‖xk+1 − xk‖2〈j(k)〉,504

where Au > 0 is the upper bound on the parameter Ak,i used to compute the initial505

stepsize ∆k,i in the Armijo line search (see (3.6) and (3.8)) and γ ∈ (0, 1) is the506

parameter for sufficient decrease in the Armijo line search.507
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Proof. First we show that at, every inner iteration (k, i), we have508

(7.4) f(zk,i)− f(zk,i+1) ≥ γ

Au
(zk,i+1

pki
− zk,i

pki
)2.509

If αk,i = 0, then zk,i+1 = zk,i and (7.4) trivially holds. If αk,i > 0, from the instruc-510

tions of the Armijo line search it follows that f(zk,i+1) ≤ f(zk,i)+γαk,i∇f(zk,i)T dk,i.511

Using (3.5), we can write512

f(zk,i+1) ≤ f(zk,i)− γαk,i(gk,i)2 = f(zk,i)− γ

αk,i
(αk,igk,i)2.513

Since zk,i+1

pki
= zk,i + αk,igk,i and αk,i ≤ Au, we obtain (7.4). Hence, we have514

f(xk)− f(xk+1) =

n∑
i=1

[f(zk,i)− f(zk,i+1)]
(7.4)

≥ γ

Au

n∑
i=1

(zk,i+1

pki
− zk,i

pki
)2515

=
γ

Au

∑
i : pki 6=j(k)

(zk,i+1

pki
− zk,i

pki
)2

(5.1)
=

γ

Au

∑
i : pki 6=j(k)

(xk+1
pki
− xkpki )2516

=
γ

Au
‖xk+1 − xk‖2〈j(k)〉,517

518

where, in the second equality, we have used the fact that zk,i+1
j(k) = zk,ij(k) when pki = j(k),519

according to the definition of the search direction dk,i given in (3.4).520

In the rest of this section, the objective function will be required to be convex521

over Rn and its optimal value for problem (2.1) will be denoted by f∗. Let us also522

define the following constants (which are finite under convexity of f , since this implies523

X∗ ⊆ L0, where the level set L0 is assumed to be non-empty and compact):524

R0 = max
j=1,...,n
x∈L0

x∗∈X∗

‖x− x∗‖〈j〉,(7.5)525

G∗ = max
i,j=1,...,n
x∗∈X∗

[∇jf(x∗)−∇if(x∗)].(7.6)526

527

We see that R0 is the maximum distance between a point in the level set L0 and a528

point in X∗, where the distance is measured in terms of the pseudometrics induced529

by the seminorms ‖·‖〈j〉 (the latter can be upper bounded by the Euclidean norm,530

see (2.11)). From the KKT conditions (2.7), we also note that G∗ is related to the531

minimum strict complementarity measure ζ(x∗) defined in (6.5), in the sense that, if532

Z +(x∗) 6= ∅ for some x∗ ∈ X∗, then G∗ ≥ ζ(x∗) > 0, while, if Z +(x∗) = ∅ for all533

x∗ ∈ X∗, then G∗ = 0 and ζ(x∗) is not defined for any x∗ ∈ X∗. We can interpret G∗534

as a measure of the “maximum amount of strict complementarity” over the set X∗.535

We now state a result which, for every outer iteration, relates the decrease in the536

objective function with the optimization error.537

Proposition 7.3. Assume that f is convex over Rn. Then, at every outer iter-538

ation k of AC2CD we have that539

f(xk)− f(xk+1) ≥ γ(f(xk+1)− f∗)2

Au(n− 1)

[(
max

{
1

Al
,

Lmax

2δ(1− γ)

}
+ 2L̂max

)
R0 +G∗

]2 ,540
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16 A. CRISTOFARI

where Al > 0 and Au > 0 are the lower and the upper bound, respectively, on the541

parameter Ak,i used to compute the initial stepsize ∆k,i in the Armijo line search542

(see (3.6) and (3.8)), δ ∈ (0, 1) is the reduction parameter in the Armijo line search,543

γ ∈ (0, 1) is the parameter for sufficient decrease in the Armijo line search, Lmax > 0544

is the maximum among the local Lipschitz constants Li,j, defined as in (2.4), L̂max > 0545

is the maximum among the constants Lj =
∑n
i=1 Li,j, defined as in (2.6), R0 ≥ 0 is546

the maximum distance between a point in the level set L0 and an optimal solution,547

defined as in (7.5), and G∗ ≥ 0 is the maximum strict complementarity measure over548

X∗, defined as in (7.6).549

Proof. Let x∗ be an optimal solution of problem (2.1) and consider any inner550

iteration (k, i). From the definition of the search direction dk,i given in (3.4), we have551

that zk,i+1

pki
≥ zk,i

pki
if gk,i ≥ 0, and zk,i+1

pki
≤ zk,i

pki
if gk,i ≤ 0. Namely, gk,i(zk,i

pki
−zk,i+1

pki
) ≤552

0 and, using (5.1), we can write gk,i(xk
pki
− xk+1

pki
) ≤ 0. Then,553

gk,i(xkpki
− x∗pki ) ≤ gk,i(xk+1

pki
− x∗pki )

= [∇pki f(xk+1)−∇j(k)f(xk+1)](x∗pki
− xk+1

pki
)

+ [∇pki f(xk+1)−∇j(k)f(xk+1) + gk,i](xk+1
pki
− x∗pki ).

554

Using Corollary 5.4 with v = xk+1, we have that555

∇pki f(xk+1)−∇j(k)f(xk+1) + gk,i ≤ L̂max‖zk,i − xk+1‖〈j(k)〉
(5.1)

≤ L̂max‖xk − xk+1‖〈j(k)〉.
556

It follows that557

gk,i(xkpki
− x∗pki ) ≤ [∇pki f(xk+1)−∇j(k)f(xk+1)](x∗pki

− xk+1
pki

)

+ L̂max‖xk − xk+1‖〈j(k)〉|x∗pki − x
k+1
pki
|.

558

Summing these inequalities, we obtain559

∑
i : pki 6=j(k)

gk,i(xkpki
− x∗pki ) ≤

∑
i : pki 6=j(k)

[∇pki f(xk+1)−∇j(k)f(xk+1)](x∗pki
− xk+1

pki
)

+ L̂max‖xk − xk+1‖〈j(k)〉
∑

i : pki 6=j(k)

|x∗pki − x
k+1
pki
|

(2.10)

≤
∑

i : pki 6=j(k)

[∇pki f(xk+1)−∇j(k)f(xk+1)](x∗pki
− xk+1

pki
)

+
√
n− 1R0L̂max‖xk − xk+1‖〈j(k)〉.

560

Using Lemma 5.2 with v = ∇f(xk+1), x′ = x∗ and x′′ = xk+1, we can write561

∇f(xk+1)T (x∗ − xk+1) = 〈∇f(xk+1)−∇j(k)f(xk+1)e, x∗ − xk+1〉j(k)
=

∑
i : pki 6=j(k)

[∇pki f(xk+1)−∇j(k)f(xk+1)](x∗pki
− xk+1

pki
),562
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and then,563 ∑
i : pki 6=j(k)

gk,i(xkpki
−x∗pki ) ≤ ∇f(xk+1)T (x∗−xk+1) +

√
n− 1R0L̂max‖xk−xk+1‖〈j(k)〉.564

From the convexity of f we have that f(xk+1)− f∗ ≤ ∇f(xk+1)T (xk+1−x∗). Hence,565

f(xk+1)− f∗ ≤
∑

i : pki 6=j(k)

gk,i(x∗pki
− xkpki ) +

√
n− 1R0L̂max‖xk − xk+1‖〈j(k)〉

=
∑

i : pki 6=j(k)

gk,i(x∗pki
− xk+1

pki
) +

∑
i : pki 6=j(k)

gk,i(xk+1
pki
− xkpki )

+
√
n− 1R0L̂max‖xk − xk+1‖〈j(k)〉.

566

Using (5.1) and Lemma 7.1, for all i such that pki 6= j(k) we can write567

gk,i(x∗pki
− xk+1

pki
) ≤ max

{
1

Al
,

Lmax

2δ(1− γ)

}
|xk+1
pki
− xkpki ||x

∗
pki
− xk+1

pki
|.568

Therefore,569

f(xk+1)− f∗ ≤max

{
1

Al
,

Lmax

2δ(1− γ)

} ∑
i : pki 6=j(k)

|xk+1
pki
− xkpki ||x

∗
pki
− xk+1

pki
|

+
∑

i : pki 6=j(k)

gk,i(xk+1
pki
− xkpki )

+
√
n− 1R0L̂max‖xk − xk+1‖〈j(k)〉.

(7.7)570

To obtain the desired result, now we upper bound the two summations in the right-571

hand side of (7.7) by appropriate constants.572

• As for the first summation in the right-hand side of (7.7), using the fact that573

|x∗
pki
− xk+1

pki
| ≤ ‖x∗ − xk+1‖〈j(k)〉 by (2.9), we can write574

∑
i : pki 6=j(k)

|xk+1
pki
− xkpki ||x

∗
pki
− xk+1

pki
| ≤ R0

∑
i : pki 6=j(k)

|xk+1
pki
− xkpki |

(2.10)

≤
√
n− 1R0‖xk+1 − xk‖〈j(k)〉.

(7.8)575

• As for the second summation in the right-hand side of (7.7), from the trian-576

gular inequality we have that577

gk,i ≤ |gk,i +∇pki f(x∗)−∇j(k)f(x∗)|+ |∇pki f(x∗)−∇j(k)f(x∗)|,578

and then, using Corollary 5.4 with v = x∗,579

gk,i ≤ Lj(k)‖x∗ − zk,i‖〈j(k)〉 + |∇pki f(x∗)−∇j(k)f(x∗)| ≤ L̂maxR0 +G∗.580

Taking into account (2.10), we get581

(7.9)
∑

i : pki 6=j(k)

gk,i(xk+1
pki
− xkpki ) ≤ (L̂maxR0 +G∗)

√
n− 1‖xk+1 − xk‖〈j(k)〉.582
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18 A. CRISTOFARI

Combining (7.7) with (7.8) and (7.9), we have that583

f(xk+1)− f∗ ≤
√
n− 1

[(
max

{
1

Al
,

Lmax

2δ(1− γ)

}
+ 2L̂max

)
R0 +G∗

]
‖xk+1−xk‖〈j(k)〉.584

Using Proposition 7.2, the desired result is finally obtained.585

We are now ready to show the non-asymptotic sublinear convergence rate of586

AC2CD.587

Theorem 7.4. Assume that f is convex over Rn. Then, at every outer iteration588

k ≥ 1 of AC2CD we have that589

f(xk)− f∗ ≤ C

k
,590

where C is equal to591

√
n− 1 max

{
3Au
√
n− 1

2γ
,

1

Lmax

}[(
max

{
1

Al
,

Lmax

2δ(1− γ)

}
+ 2L̂max

)
R0 + 2G∗

]2
,592

Al > 0 and Au > 0 are the lower and the upper bound, respectively, on the parameter593

Ak,i used to compute the initial stepsize ∆k,i in the Armijo line search (see (3.6)594

and (3.8)), δ ∈ (0, 1) is the reduction parameter in the Armijo line search, γ ∈ (0, 1)595

is the parameter for sufficient decrease in the Armijo line search, Lmax > 0 is the596

maximum among the local Lipschitz constants Li,j, defined as in (2.4), L̂max > 0 is597

the maximum among the constants Lj =
∑n
i=1 Li,j, defined as in (2.6), R0 ≥ 0 is598

the maximum distance between a point in the level set L0 and an optimal solution,599

defined as in (7.5), and G∗ ≥ 0 is the maximum strict complementarity measure over600

X∗, defined as in (7.6).601

Proof. Consider a sequence {ak} of nonnegative scalars such that ak − ak+1 ≥602

β(ak+1)2, for all k ≥ 0, with β > 0. From Lemma 6.2 in [2] we have that, if a1 ≤603

3/(2β) and a2 ≤ 3/(4β), then ak ≤ 3/(2βk), for all k ≥ 1. Using ak = f(xk) − f∗,604

in view of Proposition 7.3 we have that ak − ak+1 ≥ β(ak+1)2 with β ≥ 3/(2C). It605

follows that the desired result is obtained if606

(7.10) f(x1)− f∗ ≤ C and f(x2)− f∗ ≤ C

2
.607

To show that (7.10) holds, by definition of C we first write608

C ≥
√
n− 1

Lmax

[(
max

{
1

Al
,

Lmax

2δ(1− γ)

}
+ 2L̂max

)
R0 + 2G∗

]2
≥
√
n− 1

Lmax

[(
Lmax

2
+ 2L̂max

)
R0 + 2G∗

]2
,

(7.11)609

where the last inequality follows from the fact that 2δ(1− γ) ≤ 2, since δ, γ ∈ (0, 1).610

Now, we use the trivial inequality (θ1 + θ2 + θ3)2 ≥ 2θ1(θ2 + θ3), holding for all611

θ1, θ2, θ3 ∈ R, with the choice θ1 = LmaxR0/2, θ2 = 2L̂maxR0, θ3 = 2G∗. We get612

(7.12) C ≥ 2
√
n− 1R0(L̂maxR0 +G∗) ≥ 2

[
L̂max

2
(R0)2 +

√
n− 1G∗R0

]
,613

where the last inequality follows from the fact that we are assuming n ≥ 2.614
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Now consider an outer iteration k ≥ 1, picking any x∗ ∈ X∗ and any j ∈615

{1, . . . , n}. Using Lemma 5.2 with v = ∇f(x∗), x′ = xk and x′′ = x∗, we have616

∇f(x∗)T (xk − x∗) = 〈∇f(x∗)−∇jf(x∗)e, xk − x∗〉j

=
∑
h6=j

[∇hf(x∗)−∇jf(x∗)](xkh − x∗h)

(2.10)

≤
√
n− 1G∗‖xk − x∗‖〈j〉.

617

So, using Lemma 5.5 with x′ = x∗ and x′′ = xk, we get618

f(xk)− f∗ ≤ ∇f(x∗)T (xk − x∗) +
Lj
2
‖x∗ − xk‖2〈j〉 ≤

√
n− 1G∗R0 +

L̂max

2
(R0)2.619

In view of (7.12), we conclude that f(xk)− f∗ ≤ C/2, implying that (7.10) holds.620

A question that can naturally arise is whether the constant C in Theorem 7.4621

is tight. To answer this challenging question, we can look in detail at the steps of622

the above proofs, from which it seems that C may in fact be loose. For example, in623

the proof of Theorem 7.4 we got a lower bound for C by decomposing the last term624

in (7.11) as the sum of L̂max(R0)2 + 2
√
n− 1G∗R0 and625

(2
√
n− 1−1)L̂max(R0)2+

√
n− 1

[
Lmax(R0)2

4
+4

(L̂maxR0)2 + (G∗)2 + 2L̂maxG∗R0

Lmax

]
.626

We then obtained (7.12) by lower bounding the above quantity by 0. But the above627

quantity may be much larger than 0 and, for large values of n and G∗, even dominant628

over L̂max(R0)2 + 2
√
n− 1G∗R0, observing that L̂max = ξLmax, with ξ ∈ [1, n − 1],629

as we see from (2.4), (2.5) and (2.6).630

In the literature, a non-asymptotic convergence rate was also shown for other631

coordinate descent methods on different settings with one or more linear constraints,632

where the working set is chosen by random selection [37, 38, 40, 46, 48] or by rules633

based on first-order optimality violation [1, 28]. In particular, just like AC2CD,634

random coordinate descent do not use ∇f to choose the working set. A sublinear635

rate (in expectation) with respect to the objective values was shown for random636

coordinate descent in [40] under convexity of f , and a linear rate (in expectation) was637

shown in [48] under the additional assumption of proximal-PL inequality. We note638

that the sublinear rate f(xk)− f∗ ≤ n2L(R̄0)2/[k+n2L(R̄0)2/(f(x0)− f∗)] obtained639

for random coordinate descent in [40], where R̄0 = maxx{maxx∗∈X∗‖x−x∗‖ : x ∈ L0},640

holds with respect to the inner iterations, so k should be multiplied by a factor O(n)641

to have a fair comparison with AC2CD, for which the rate was computed with respect642

to the outer iterations. With this adjustment, the rate of random coordinate descent643

is however better than f(xk)− f∗ ≤ C/k obtained for AC2CD, with the constant C644

from Theorem 7.4 being O(n(nLmaxR0+G∗)2) if we reasonably assume
√
n� 1/Lmax645

and consider L̂max = O(nLmax) (since L̂max = ξLmax, with ξ ∈ [1, n− 1], as observed646

above), where Lmax ≤ 2L from (2.2).647

These results seem in agreement with the unconstrained case, where cyclic coor-648

dinate selection achieves worse convergence rate than random selection and Gauss-649

Southwell-type rules [2, 44], even if practical performances of the algorithms usually650

depend on the specific features of the problems.651
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7.3. Computation of the active-set complexity. Using all the previous re-652

sults, we can now compute the active-set complexity of AC2CD, that is, the maximum653

number of iterations required by the algorithm to identify the active set. In particular,654

we give an upper bound for k̄ appearing in Theorem 6.4 under convexity of f and a655

quadratic growth condition, which is now described.656

We assume that there exists µ > 0 such that657

(7.13) f(x)− f∗ ≥ µ

2
‖x− x∗‖2, ∀x ∈ L0,658

where x∗ ∈ X∗. Note that (7.13) is automatically satisfied if f is µ-strongly convex659

over L0 [41]. However, (7.13) is a weaker condition than strong convexity of f over660

L0, since there exist convex functions that satisfy (7.13) even if they are non-strongly661

convex. This can be seen in the following example, obtained from [39] with proper662

adjustments. Note that, in the provided example, f is not even strictly convex, there663

is a unique optimal solution x∗ (so that {xk} → x∗) and Assumption 1 is satisfied.664

Example 1. Consider the following convex problem:665

min f(x) =
1

2
x21 +

n∑
i=2

xi

eTx = 0

x1 ≥ −1

xi ≥ 0, i = 2, . . . , n,

666

with arbitrary dimension n ≥ 3. Since the smallest eigenvalue of the Hessian matrix667

of f is equal to 0, then f is not strongly convex. Actually, f is not even strictly668

convex, since f(ωx′ + (1 − ω)x′′) = ωf(x′) + (1 − ω)f(x′′) for all ω ∈ [0, 1] and any669

distinct feasible points x′, x′′ such that x′1 = x′′1 . We also have that x∗ = 0 is the670

unique optimal solution and f∗ = 0. We conclude that (7.13) is satisfied with µ = 1,671

since f(x)− f∗ = 1
2x

2
1 +

∑n
i=2 xi ≥

1
2

∑n
i=1 x

2
i = 1

2 ||x− x
∗||2 for all feasible x.672

Theorem 7.5. The following upper bound holds for k̄ appearing in Theorem 6.4673

if f is convex over Rn and statisfies (7.13):674

k̄ ≤

2C

µ
max


(

τ

τ + 1
Dmax(x∗)

)−2
,

 ζ(x∗)

2L+ max

{
1

Al
,
Lmax

2(1− γ)

}

−2

+ 1,675

where C ≥ 0 is the constant of the sublinear convergence rate defined in Theorem 7.4,676

Dmax(x∗) > 0 is the maximum distance from the bounds at x∗, defined as in Proposi-677

tion 6.2, ζ(x∗) > 0 is the minimum strict complementarity measure at x∗, defined as678

in (6.5), L is the Lipschitz constant of ∇f , Al > 0 is the lower bound on the parame-679

ter Ak,i used to compute the initial stepsize ∆k,i in the Armijo line search (see (3.6)680

and (3.8)), Lmax > 0 is the maximum among the local Lipschitz constants Li,j, defined681

as in (2.4), and τ ∈ (0, 1] is the parameter used to choose j(k), satisfying (3.3).682

Proof. By the definition of k̄ given in Theorem 6.4, it holds that k̄ ≥ max{kj , kz}683

and (6.6) is satisfied. Recalling the definition of kz given in Proposition 6.3 and the684

fact that (7.1) holds for all k ≥ 0, we have kz = 0, and then k̄ ≥ max{kj , kz} = kj .685

So, from (6.6) and the definition of kj given in Proposition 6.2, it follows that k̄ is686
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the first outer iteration such that687

‖xk − x∗‖∞ <
τ

τ + 1
Dmax(x∗), ∀ k ≥ k̄.(7.14a)688

‖zk,i − x∗‖ < ζ(x∗)

2L+ max

{
1

Al
,
Lmax

2(1− γ)

} , i = 1, . . . , n, ∀ k ≥ k̄.(7.14b)689

690

By Theorem 7.4 and (7.13), for all k ≥ 1 we hence have that691

‖xk − x∗‖2∞ ≤ ‖xk − x∗‖2 ≤
2

µ
[f(xk)− f∗] ≤ 2C

µk
,692

‖zk,i − x∗‖2 ≤ 2

µ
[f(zk,i)− f∗] ≤ 2

µ
[f(xk)− f∗] ≤ 2C

µk
, i = 1, . . . , n,693

694

where, in the last chain of inequalities, we used the fact that f(zk,i+1) ≤ f(zk,i) ≤695

f(xk), i = 1, . . . , n. Therefore, (7.14) holds for all k such that
√

2C/(µk) is less than696

both the right-hand side of (7.14a) and the right-hand side of (7.14b), yielding to the697

upper bound for k̄ given in the assertion.698

We remark that Theorem 7.5 requires convexity and quadratic growth, but it699

uses the convergence rate result stated in Theorem 7.4, holding for general convex700

objective functions. As a consequence, we expect the upper bound provided for k̄ in701

Theorem 7.5 to be loose. Improving the convergence rate of the algorithm under the702

additional quadratic growth condition may hence be a challenging question, since it703

affects the active-set complexity.704

8. Additional results. So far we have shown that AC2CD identifies Z +(x∗)705

in a finite number k̄ of outer iterations (provided {xk} → x∗), also giving an upper706

bound for k̄ when f is convex and satisfies a quadratic growth condition.707

Now, we want to show that the counterparts of these results hold as well, in the708

sense that AC2CD is able to identify the complement of Z (x∗), the so called non-709

active set, in a finite number k̂ of outer iterations, where an upper bound for k̂ can710

be computed when f is convex and satisfies (7.13). More specifically, still considering711

a sequence {xk} → x∗, we want to show that, for all k > k̂,712

(8.1) xkh ∈ (lh, uh), ∀h /∈ Z (x∗).713

Actually, (8.1) is quite obvious (it follows from the properties of the limit), but ob-714

taining an upper bound for k̂ can be of interest. In particular, if (6.1) and (8.1) hold715

for k > k̄ and k > k̂, respectively, for all k > max{k̄, k̂} we have that716

Z +(x∗) ⊆
{
i : xki ∈ {li, ui}

}
⊆ Z (x∗).717

As a consequence, if x∗ is non-degenerate, for all k > max{k̄, k̂} it holds718

(8.2) xkh ∈ {lh, uh} ⇔ h ∈ Z (x∗),719

that is, the active set is exactly identified after max{k̄, k̂} outer iterations.720

First we show that (8.1) holds for all sufficiently k, without any assumption on721

the convexity of f , provided the whole sequence {xk} converges.722
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Theorem 8.1. Let {xk} be a sequence of points produced by AC2CD and assume723

that limk→∞ xk = x∗. Define the minimum non-zero distance from the bounds at x∗724

as725

Dmin(x∗) = min
i/∈Z (x∗)

Di(x
∗),726

which is well defined and positive by Assumption 1, and let k̂ be the first outer iteration727

such that728

‖xk − x∗‖∞ < Dmin(x∗), ∀ k > k̂.729

Then, for all k > k̂ we have that730

xkh ∈ (lh, uh), ∀h /∈ Z (x∗).731

Proof. Consider an outer iteration k > k̂ and any index h /∈ Z (x∗). We have732

|xkh − x∗h| ≤ ‖xk − x∗‖∞ < Dmin(x∗) ≤ Dh(x∗), implying that733

(8.3) xkh − lh > x∗h − lh −Dh(x∗) and uh − xkh > uh − x∗h −Dh(x∗).734

Therefore, we can write735

Dh(xk) = min{xkh − lh, uh − xkh}
(8.3)
> min{x∗h − lh, uh − x∗h} −Dh(x∗)

= Dh(x∗)−Dh(x∗) = 0,
736

that is, xkh ∈ (lh, uh).737

We finally give an upper bound for k̂ under the same assumptions used in The-738

orem 7.5. As in the previous section, also here we assume the parameter Aki in the739

Armijo line search to be computed in order to satisfy, together with (3.8), condi-740

tion (7.1) for all k ≥ 0, as explained in Subsection 7.1.741

Theorem 8.2. The following upper bound holds for k̂ appearing in Theorem 8.1742

if f is convex over Rn and statisfies (7.13):743

k̂ ≤
⌊

2C

µ

(
Dmin(x∗)

)−2⌋
+ 1,744

where C ≥ 0 is the constant of the sublinear convergence rate defined in Theorem 7.4,745

and Dmin(x∗) > 0 is the minimum non-zero distance from the bounds at x∗, defined746

as in Theorem 8.1.747

Proof. Reasoning as in the proof of Theorem 7.5, the desired result follows from748

Theorem 8.1 and the fact that ‖xk − x∗‖2∞ ≤ ‖xk − x∗‖2 ≤ 2C
µk for all k ≥ 1.749

The same remarks stated after Theorem 7.5 hold for Theorem 8.2 as well. Namely,750

we expect the upper bound provided for k̂ to be loose, since it requires convexity and751

quadratic growth, but it uses the convergence rate result of Theorem 7.4, holding for752

general convex objective functions.753

Appendix A. Proofs of the technical results of Section 5.754

Proof of Lemma 5.2. For all x ∈ F we have xj = b−
∑
i 6=j xi, j = 1, . . . , n. So,755

vT (x′ − x′′) =
∑
i 6=j

vi(x
′
i − x′′i ) + vj(x

′
j − x′′j )756

=
∑
i 6=j

vi(x
′
i − x′′i )− vj

(∑
i 6=j

x′i −
∑
i 6=j

x′′i

)
=
∑
i6=j

(vi − vj)(x′i − x′′j ).757

758
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Proof of Lemma 5.3. Fix j ∈ {1, . . . , n} and x′, x′′ ∈ F . For all i = 1, . . . , n and759

x ∈ F , let φi,j,x be the functions appearing in (2.3). Pick any h 6= j and, from known760

results on functions with Lipschitz continuous derivatives [41], we can write761

f(x+ t(eh − ej)) = φh,j,x(t) ≤ φh,j,x(0) + tφ̇h,j,x(0) +
Lh,j

2
t2762

= f(x) + t∇f(x)T (eh − ej) +
Lh,j

2
t2, ∀ t ∈ R.763

764

Using t =
1

Lh,j
(∇jf(x)−∇hf(x)), we get765

(A.1) f(x)− f
(
x+

1

Lh,j
(∇jf(x)−∇hf(x))(eh− ej)

)
≥ 1

2Lh,j
(∇hf(x)−∇jf(x))2.766

Let f̄ = infx∈Rn f(x). For all x ∈ Rn we can write767

f(x)− f̄ ≥ f(x)− f
(
x+

1

Lh,j
(∇jf(x)−∇hf(x))(eh − ej)

)
≥ 1

2
max
i 6=j

1

Li,j
(∇if(x)−∇jf(x))2

(∗)
≥ 1

2
∑
i 6=j Li,j

n∑
i=1

(∇if(x)−∇jf(x))2

=
1

2Lj

∑
i 6=j

(∇if(x)−∇jf(x))2 =
1

2Lj

∥∥∇f(x)−∇jf(x)e
∥∥2
〈j〉,

(A.2)768

where the second inequality follows (A.1), whereas the inequality (∗) follows from the769

fact that770

max
i=1,...,r

ai
bi
≥ 1

b1 + . . .+ br

n∑
i=1

ai,771

for all a1, . . . , ar ∈ R and b1, . . . , br > 0.772

Now, define the convex function ψ1(x) = f(x) − f(x′) −∇f(x′)T (x − x′). Since773

∇ψ1(x) = ∇f(x)−∇f(x′), for all x ∈ F , i ∈ {1, . . . , n} and t, s ∈ R, we can write774

|∇ψ1(x+ t(ei − ej))T (ei − ej)−∇ψ1(x+ s(ei − ej))T (ei − ej)|775

=|∇f(x+ t(ei − ej))T (ei − ej)−∇f(x+ s(ei − ej))T (ei − ej)| ≤ Li,j |t− s|,776777

where the last inequality follows from the fact that Li,j are local Lipschitz constants778

for ∇f(x). Therefore, Li,j are also local Lipschitz constants for ∇ψ1. Consequently,779

we can use (A.2) with f replaced by ψ1. Observing that minx∈Rn ψ1(x) = 0, we obtain780

ψ1(x) ≥ 1

2Lj

∥∥∇ψ1(x)−∇jψ1(x)e
∥∥2
〈j〉781

=
1

2Lj

∥∥(∇f(x)−∇jf(x)e)− (∇f(x′)−∇jf(x′)e)
∥∥2
〈j〉, ∀x ∈ Rn.782

783

Using x = x′′ in the above relation, we get784

(A.3) ψ1(x′′) ≥ 1

2Lj

∥∥(∇f(x′′)−∇jf(x′′)e)− (∇f(x′)−∇jf(x′)e)
∥∥2
〈j〉.785
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Defining the function ψ2(x) = f(x) − f(x′′) − ∇f(x′′)T (x − x′′), we can reason as786

above and we obtain787

(A.4) ψ2(x′) ≥ 1

2Lj

∥∥(∇f(x′)−∇jf(x′)e)− (∇f(x′′)−∇jf(x′′)e)
∥∥2
〈j〉.788

Summing (A.3) and (A.4), we get789 ∥∥[∇f(x′)−∇jf(x′)e]− [∇f(x′′)−∇jf(x′′)e]
∥∥2
〈j〉 ≤ Lj [∇f(x′)−∇f(x′′)]T (x′ − x′′).790

So, to obtain the desired result we have to show that [∇f(x′)−∇f(x′′)]T (x′ − x′′) is791

less than or equal to792

(A.5)
∥∥[∇f(x′)−∇jf(x′)e]− [∇f(x′′)−∇jf(x′′)e]

∥∥
〈j〉 ‖x

′ − x′′‖〈j〉.793

This can be achieved by using Lemma 5.2 first with v = ∇f(x′) and then with794

v = ∇f(x′′), in order to rewrite [∇f(x′)−∇f(x′′)]T (x′ − x′′) as795

〈[∇f(x′)−∇jf(x′)e]− [∇f(x′′)−∇jf(x′′)e], x′ − x′′〉j .796

Hence, by using inequality (2.8) we obtain that the above quantity is less than or797

equal to (A.5).798

Proof of Corollary 5.4. From (2.9) and the definition of gk,i given in (3.4), for all799

v ∈ Rn we have that800

|∇pki f(v)−∇j(k)f(v)+gk,i| ≤
∥∥[∇f(v)−∇j(k)f(v)e]−[∇f(zk,i)−∇j(k)f(zk,i)e]

∥∥
〈j(k)〉.801

Using Lemma 5.3, the desired result is obtained.802

Proof of Lemma 5.5. Fix j ∈ {1, . . . , n} and x′, x′′ ∈ F . From the mean value803

theorem and using Lemma 5.2 with v = ∇f(x′ + t(x′′ − x′)), we have804

f(x′′)− f(x′) =

∫ 1

0

∇f(x′ + t(x′′ − x′))T (x′′ − x′) dt

=

∫ 1

0

〈∇f(x′ + t(x′′ − x′))−∇jf(x′ + t(x′′ − x′))e, x′′ − x′〉j dt.
805

The integrand in the last term of the above chain of equalities can be rewritten as the806

sum of 〈∇f(x′)−∇jf(x′)e, x′′ − x′〉j and807

〈[∇f(x′ + t(x′′ − x′))−∇jf(x′ + t(x′′ − x′))e]− [∇f(x′)−∇jf(x′)e], x′′ − x′〉j ,808

and the latter, by using inequality (2.8) and Lemma 5.3, is less than or equal to809

tLj‖x′ − x′′‖2〈j〉. Therefore,810

f(x′′) ≤ f(x′) + 〈∇f(x′)−∇jf(x′)e, x′′ − x′〉j + Lj‖x′ − x′′‖2〈j〉
∫ 1

0

t dt

= f(x′) + 〈∇f(x′)−∇jf(x′)e, x′′ − x′〉j +
Lj
2
‖x′ − x′′‖2〈j〉.

811

Using Lemma 5.2 with v = ∇f(x′), the desired result is obtained.812
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