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Abstract: In this paper we consider the problem of estimating causal effects in a framework

with many treatments through a simulation study. We engage in Monte Carlo simulations

to evaluate the performance of inverse probability of treatment weighting (IPTW) with 10

treatments, estimating the propensity scores using Generalised Boosted Models. We assess

the performance of IPTW under three different scenarios representing treatment allocations,

and compare it with a simple parametric approach, i.e., logistic regression. IPTW’s esti-

mates are less biased, even though they exhibit a higher variance than those based on logistic

regression. Moreover, we apply IPTW to the estimation of the neighbourhood effect on the

probability of older people experiencing hospitalised fractures by comparing 10 neighbour-

hoods in the city of Turin (Italy). Our paper demonstrates that IPTW can be successfully

applied to the estimation of neighbourhood effects, and, more generally, to the estimation

of causal effects in presence of many treatments.
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1 Introduction

Propensity score techniques represent a way to simulate a randomized trial with
observational data, when the use of a randomized controlled trial is not feasible and
ethical. In a randomized trial the treatment allocation process is completely known
and individuals’ characteristics do not confound estimates. Differently from other



2 Margherita Silan

techniques in which the analyst models the outcome conditioning on all measured
confounders, propensity score approaches are focused on modelling the treatment
allocation process in order to make it ‘known’ as in a randomized trial. However, the
treatment allocation model needs to be well specified, this is not trivial especially
in the presence of many treatments.

The neighbourhood effect is the independent causal effect of living in a given
neighbourhood rather than in another place on a given health or social outcome
(Oakes, 2004). In its estimation a randomised experiment that randomly allocates
individuals to different neighbourhoods should be performed. This approach would
allow for the comparison of the health outcomes of individuals living in different
neighbourhoods. Randomised experiments are, however, expensive and difficult to
implement in the field of neighbourhood effects on health.

In observational neighbourhood studies, individuals self-select into different treat-
ments (i.e., neighbours). For this reason, it is unclear whether differences in the
outcomes of neighbourhoods can be causally attributed to living in one area instead
of another, or whether these differences are simply due to the heterogeneous compo-
sition of the neighbourhoods - or in other words, to differences in the distribution of
the characteristics of individuals living in different areas (Harding, 2003). Indeed, if
the characteristics of these individuals not only vary across neighbourhoods, but are
also associated with the outcome under study, they can be considered confounders
of the neighbourhoods’ effects.

To adjust for the observed characteristics of individuals, previous studies have
often used parametric regression models, and, in particular, multilevel models with
individuals nested into neighbourhoods. In the causal inference literature, it has
been shown that regression models can be helpful in adjusting for observed con-
founders. But if groups differ greatly, these models may provide biased estimates
due to extrapolation, which can be sensitive to model misspecification (Li et al.,
2013; Drake, 1993).

As an alternative to parametric regression models, we propose dealing with the
estimation of neighbourhood effect by using an inverse probability of treatment
weighting (IPTW) approach that models the assignment to treatments (neighbour-
hoods) and the health outcome separately (Austin, 2011; Rosenbaum, 1987). In
the first step, the method consists of estimating the probability of receiving each
treatment (living in different neighbourhoods). In the second step, in estimating
the outcome effect model, observations are weighted by the inverse of the proba-
bility of being treated. Recent studies have demonstrated the advantages of using
non-parametric machine learning methods (Cannas and Arpino, 2019; Tu, 2019) to
estimate the probability of receiving each treatment, defined as propensity scores.
We follow these advances in the literature by using Generalised Boosted Models
(GBM) (McCaffrey et al., 2013).

Previous methodological studies have shown that, compared to regression ap-
proaches, propensity score-based methods, and IPTW in particular, reduce the bias
of causal estimates by guaranteeing a better balance of observed confounders across
treatment groups (Austin, 2011; Austin and Stuart, 2015; Rosenbaum, 1987). Im-
plementing IPTW for the estimation of neighbourhood effects is complicated by the
fact that the number of neighbourhoods (treatments) to be compared is usually high.
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IPTW has been employed and evaluated for a limited number of treatments (two or
three). In this study, we evaluate and apply IPTW to many treatments.

Motivated by the estimation of neighbourhood effects on the probability of older
people in the Italian city of Turin experiencing hospitalised fractures, we first run
a series of Monte Carlo simulations to evaluate the performance of IPTW in the
case of many treatments (10 specifically, which corresponds to the number of neigh-
bourhoods in the real data). This simulation exercise is essential for gauging the
feasibility of the approach in the context of neighbourhood observational studies,
and, more generally, in the presence of many treatments. The simulations are also
intended to evaluate the statistical performance in terms of the bias, variance, and
coverage of IPTW with propensity scores estimated through GBM, and compared
to a simpler parametric approach based on a logistic regression with neighbourhoods
as the main independent variables.

The motivating case study refers to the estimation of the neighbourhood effect
on the probability of older people experiencing hospitalised fractures, adjusting for
confounders. The research question is to what extent observed differences in the
incidence of hospitalised fractures across neighbourhoods can be causally attributed
to the neighbourhoods’ effects, rather than to their different compositions, i.e., to
the fact that individuals with different risks factors for fractures live in different
areas. Thus, we prefer to use a methodological approach that handles separately
the assignment to treatments (neighbourhoods) and the occurrence of the health
outcome, such as the IPTW (McCaffrey et al., 2013).

The rest of the paper is organised as follows. In the second section, we describe
the IPTW approach and the GBM used to estimate the propensity scores. In the
third section, we describe the motivating case study and the real data that inspired
the simulations. In the fourth section, we describe the simulation study. We report
the results of the study in section 5. In section 6, we illustrate the application on
the real data. In section 7, we summarise the main findings and discuss possible
future developments.

2 Methods

2.1 Generalized propensity score in a multi-treatment framework

Let suppose there is a population composed of N individuals, each of them indexed
by i = 1, . . . , N . Two fundamental variables are associated with each subject: a
multivalued variable T that represents the treatment assignment and the outcome
variable Y . It is possible to represent, for simplicity, the treatment assignment with
a set of dummies Dit(Ti) (Linden et al., 2016), where Ti is a multivalued treatment
variable that takes values from 1 to K (in our specific application, it takes values
from 1 to 10):

Dit(Ti) =

{
1 if Ti = t

0 otherwise.
for t = 1, . . . ,K (1)

Consequently, we will have a set of potential outcomes Y = (Y1i, ..., YKi) for indi-
vidual i considering all different treatments, and just one of them is observed.
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In order to apply propensity score techniques, some assumptions are needed,
such as temporality, which implies that the treatment selection T must occur be-
fore the outcome; the strong ignorability, which is composed of two assumptions,
unconfoundedness and positivity; and the stable unit treatment value assumption
(SUTVA). The strong ignorablity assumption requires that

• Pr[Y|T = t, x] = Pr[Y|x], unconfoundedness assumption; and

• 0 < Pr[T = t|x] ∀t ∈ T , positivity assumption.

In other words, the potential outcomes, Y, are independent of the treatment assign-
ment T , given a set of observable variables X that are not affected by the treatment
and each subject must have a positive probability to be included in all the treatment
groups. The SUTVA includes two assumptions: the no interference and the stable
treatment assumption. According to the SUTVA, the potential outcomes for any
given unit do not vary with the treatments assigned to other units; and, for each
unit, there are no different forms or versions of each treatment level that lead to
different potential outcomes (Imbens and Rubin, 2015).

Imbens (2000) proposed a modification of the Rosenbaum-Rubin definition of
the propensity score. The generalised propensity score (GPS) is the conditional
probability of receiving a particular level of the treatment given the pre-treatment
variables. In the literature, there are some scattered applications of GPS methods
in multi-treatment frameworks, including a few applications in three (or four) treat-
ments regimes (Tu and Koh, 2016). The most common model for estimating a GPS
is the multinomial logistic regression (Lopez and Gutman, 2017), which produces
K propensity scores eit with t = 1, ...K, one for each treatment, that sum to 1.
However, in this work, we adopted an approach proposed by McCaffrey et al. (2013)
for a multi-treatment framework. This method is based on a GBM for computing
the propensity score while reducing the risk of the misspecification of the treatment
assignment model; and it is implemented in the twang package in R (Ridgeway et al.
(2006), Toolkit for Weighting and Analysis of Nonequivalent Groups). The method-
ological research question consists in the evaluation of this approach in the presence
of a high number of treatments, that has not yet been explored in the literature.

2.2 IPTW in a multi-treatment framework

The first step of the algorithm proposed by McCaffrey and colleagues (2013) consists
of estimating the propensity score as in a dichotomous framework, while considering
the treatment groups separately. For each treatment group t, the GBM fits a piece-
wise constant model composed of many simple regression trees in order to predict
the dichotomous treatment (represented by the variable Dt(T )). These regression
trees are combined to iteratively adjust the log-odds of treatment assignment g(X)
in order to maximise the log-likelihood function:

`(g) =
N∑
i=1

Dit(Ti)g(Xi)−
N∑
i=1

log{1 + exp[g(Xi)]} (2)
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where Dit(Ti) is the treatment assignment indicator and X contains all the con-
founders (McCaffrey et al., 2004). The iterative process continues until the stopping
rule is satisfied; in this case, it regards the balance of pre-treatment covariates.
A possible balance measure is the Population Standardized Bias (PSB) for each
variable v and each neighbourhood t. This measure compares the distribution of
the confounders in each treatment group and in the whole population (p), while
considering all treatment groups. It is given by the formula:

PSBvt =
| ˆ̄Xvt − ˆ̄Xvp|

σ̂vp
∗ 100, (3)

where X̄vt is the mean of variable v computed on the analysed sample weighted
with the inverse of the propensity score of being in neighbourhood t, and X̄vp and
σ̂vp are the unweighted mean and the standard deviation of variable v in the whole
population (McCaffrey et al., 2013).

The PSB balance measure is computed automatically for each variable and each
neighbourhood, and needs to be summarised. In the twang package, it is possible to
choose between two summary statistics: namely, the mean or the maximum value
of PSBvt among all considered covariates and treatment groups.

As we have a lot of dichotomous variables in our analysis, we have decided to use
the Population Standardized Bias to measure the balance among the covariates; and,
to be more conservative, to summarise it by its maximum value (instead of using the
mean) among the pre-treatment variables. Indeed, minimising the maximum PSBs
guarantees that all the other values are smaller than the maximum, whereas if we
use the mean for the minimisation, there is the risk to have high values of the PSB
offset by low values.

The R function twang allows us to set other important parameters such as the
maximum number of trees to be combined (to reduce the risk of over-fitting), their
maximum interaction level, and the shrinkage level. In this work, we used mainly
default values of the function mnps in the R package twang; except for the following
cases, in which we also followed other suggestions found in the literature (McCaffrey
et al., 2004) (the results of these additional attempts are available from the authors):

• The number of GBM iterations (n.trees): we used the default value (10,000)
for the empirical application, but, since we observed that the balance was
reached with fewer iterations in the simulations, we set it at 3,000 in order to
save time and computational effort. However, we also ran some simulations
with 5,000, 10,000, and 20,000 GBM iterations in order to check whether the
lower number negatively affected the performance of IPTW.

• A shrinkage parameter was applied to each tree in the expansion (shrinkage).
The default value was 0.01, but we also used 0.0005 in some simulations, as
suggested in the literature (McCaffrey et al., 2004).

• For the fraction of the training set, observations were randomly selected to
propose the next tree in the expansion (bag.fraction), while introducing
randomness into the model fit if it was less than 1. The default value was
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1, but we also used 0.5 in some simulations, as suggested by the literature
(McCaffrey et al., 2004).

• For the maximum number of iterations for the direct optimisation (iterlim):
the default value was 1,000, but we also tried some simulations with a higher
value (10,000) to check whether 1,000 was enough.

After the GBM computation of the propensity scores for each individual and for each
treatment with respect to the rest of the population has been implemented, the result
is a matrix with K propensity scores for each individual, each one of which is referred
to as one of the treatments. In other words, the first part of the algorithm produces
a matrix that shows the computed probability of living in each neighbourhood (and
not in other neighbourhoods) for each subject. This step produces propensity scores
that are useful for making each treatment group comparable with the rest of the
population. The sum of the K propensity scores for each individual is not equal to 1,
as in the multinomial model, because these values are the results of different models
that consider treatments separately. Since propensity scores are used in this work
primarily in order to balance the weights, this is not an issue, and it is not necessary
to modify these values to make them sum to 1. Indeed, such a transformation would
simply modify the scale of the weights, and would not have any effect on the final
result. The final weight wi for each subject is given by the inverse of the propensity
score eit of the received treatment

wi =
K∑
t=1

Dit(Ti)

eit
. (4)

Once weights are computed, several estimands may be considered for the estimation
of the treatment effect. In this work we considered the Average Treatment Effect
(ATE) that is defined as

ˆATEt′,t′′ =
1

N

N∑
i=1

YiDit′(Ti)

eit′
− 1

N

N∑
i=1

YiDit′′(Ti)

eit′′
. (5)

considering two treatments t′ and t′′.

When dealing with IPTW, it is common to find extremely high weights that
cause the variance of estimates to increase. Therefore, weight trimming has been
considered as a way to reduce the variance with small losses in terms of bias (Lee
et al., 2011). However, the optimal level of trimming for improving the inference and
achieving the best compromise between bias and variance is difficult to determine.
Thus, it is sometimes more effective to focus on the procedure for computing weights,
such as a proper specification of the propensity score model (Lee et al., 2011).
Nonetheless, we also implemented an asymmetrical trimming of the higher weights
in the simulation study, while setting the extreme weights equal to the upper bound
threshold, even if there is no proof of a substantial improvement in the overall
performance of the GBM in an IPTW procedure in dichotomous cases (Lee et al.,
2011).
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3 Motivating case study

As our motivating case study, we consider the estimation of the neighbourhood effect
on the incidence of hospitalised fractures among older people living in the Italian
city of Turin. Previous studies have found that the neighbourhood context may
affect fracture rates in the residents through two main paths: the terrain may be
uncomfortable to walk on, which can cause people to fall; or the people living in
the area may be discouraged from engaging in physical activity, which can lead to
a deterioration in their muscle and bone mass (Sànchez-Riera et al., 2010; Barnett
et al., 2017) .

Data used in the analysis come from the Longitudinal Study in Turin. This
is an integrated database that includes administrative data flows with information
about the residents from both censuses and health data flows (hospital discharge
records, participation in prescription charges, and territorial drug prescriptions).
These data sources may be linked together and through time (starting from 1971)
using a deterministic key that is unique for each individual who was a resident of
Turin for at least one day.

The analysed population consists of all participants in the 2001 population cen-
sus, with some additional restrictions. We consider only the individuals who where
aged 60 or older on 31 December 2001. In order to be able to collect information on
possible confounders related to past health information, we focus on the individuals
who were living in Turin between 1 January 1997 and 31 December 2001. Finally,
we measure the outcome, i.e., the incidence of hospitalised fractures during the year
following the census (2002). Therefore, we restrict our analyses to individuals who
were living in Turin over the whole period between 1 January 1997 and 31 Decem-
ber 2002. Our design allows us to measure the time-varying confounders before the
treatment, which is in turn measured before the outcome is observed. The final pop-
ulation counts 225,828 individuals that are not equally distributed among different
neighbourhoods.

In the application, we focus on the causal effect of living in a given neighbourhood
at the 2001 census on the probability of experiencing at least one hospitalised fracture
during 2002.

The city of Turin can be divided into 10 neighbourhoods, which have different
living conditions (e.g., levels of deprivation, walkability, crime, and social cohesion)
and population characteristics.

Based on the literature about neighbourhood effects on older people’s health
(Roux et al., 2004; Yen et al., 2009), we consider the following variables as possible
confounders: gender, age, region of birth, family composition, educational attain-
ment, last observed professional condition, home ownership, and overcrowding. The
region of birth has been coded by distinguishing between those born in Piedmont
(the region to which Turin belongs); in another region in the north of Italy; in the
centre of Italy; in the south of Italy or the islands; or in a country outside of Italy.
The variable that represents the family composition is built by combining the in-
dividual’s marital status and family components: living alone; married and living
with the partner only (two components); not married and not living alone (two or
more components); and married and living in a family with more than two peo-
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ple. The variable that reflects the individual’s last observed professional condition
is composed based on census data from 1971 to 2001, with the aim of capturing
the person’s last type of employment before retirement. For some individuals this
was not possible because they were already retired in 1971 (or in all of the censuses
they were observed) or they were not working for other reasons. Additionally, the
professional status variable distinguishes between this group and homemakers, en-
trepreneurs, white-collar workers, and manual workers. The variable representing
overcrowding consists of the ratio between the number of rooms and the number of
family components. Moreover, in the simulation study two more variables that de-
scribe the health conditions of the individuals in the neighbourhoods are reported:
diagnoses of hypertension or cardiac issues and the number of different kinds of
drugs that have been prescribed to individuals. We do not use these variables in the
empirical study because they can themselves be affected by the treatment. However,
they are included in the set of variables that are considered in the simulation study
because in that context we are manipulating the true data-generating models.

Some descriptive statistics on the outcome and the confounders considered in
our empirical analyses by neighbourhood may be found in appendix A, table 5.

4 Simulation design

In order to keep our experiment realistic and to simplify our computations, we
extracted from the total population a 10% sample from each neighbourhood. The
original data structure was thereby preserved, but with a reduced sample size that
makes the computations less demanding (the simulation dataset contains 22,690
individuals). In order to keep the simulation simple, we selected a small number of
covariates from the variables described in section 3: gender, age, education (Edu0,
Edu1, Edu2, and Edu3), overcrowding, hypertension, and drugs.

In the simulation experiment, we included variables describing the health condi-
tions of the population that we had discarded in the empirical study, because in our
simulations we established both the temporality and the causality direction given
by the data generation design: i.e., we simulated first the treatment and then the
outcome; whereas in the empirical framework, this assumption could not be fully
trusted with respect to health conditions.

In line with other studies (Arpino and Cannas, 2016; Setoguchi et al., 2008),
and given the real distribution of these six covariates, we decided to simulate the
treatment assignment and the outcome according to three different scenarios that
reflect three different treatment allocation settings: the first one reflects the real
circumstances with a simple, linear, and additive model; the second one shows a
case in which the treatment allocation equation is complex and may be misspecified;
and the third one represents a highly unbalanced situation.

Simulations have been implemented with the software R, the code for the simu-
lation is reported in the appendix D.

In the first scenario, the treatment assignment equation is simple and close to
reality. The treatment is generated through a multinomial logistic model, using
neighbourhood 6 as a reference; because it is, the neighbourhood with the lowest
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crude hospitalised fractures rate. Thus, for each neighbourhood t and each individual
i, the treatment equation is

ln

(
Pr(Ti = t)

Pr(Ti = 6)

)
= 1β

t
0 +1 β

t
1 ∗Genderi +1 β

t
2 ∗Agei +1 β

t
3 ∗ Edu1i +

+ 1β
t
4 ∗ Edu2i +1 β

t
5 ∗ Edu3i +1 β

t
6 ∗Overcrowdingi

+ 1β
t
7 ∗Hypertensioni +1 β

t
8 ∗Drugsi. (6)

In order to choose the values for the coefficients, we estimated a multinomial logistic
model on the whole population and used the same rounded parameters for t =
1, ..., 5, 7, ..., 10, for the intercept, 1β

t
0, and for other coefficients, 1βv v = 1, ...8 (the

exact values of the parameters are reported in table 6 in appendix B).

The second scenario relies on a more complex treatment assignment equation
that includes six interaction terms and three quadratic terms, while having the
following equation form for each neighbourhood t

ln

(
Pr(Ti = t)

Pr(Ti = 6)

)
= 2β

t
0 +2 β

t
1 ∗Genderi +2 β

t
2 ∗Agei +2 β

t
3 ∗ Edu1i

+ +2β
t
4 ∗ Edu2i +2 β

t
5 ∗ Edu3i +2 β

t
6 ∗Overcrowdingi +

+ 2β
t
7 ∗Hypertensioni +2 β

t
8 ∗Drugsi +2 β

t
9 ∗Age2i +

+ 2β
t
10 ∗Overcrowding2i +2 β

t
11 ∗Drugs2i +

+ 2β
t
12 ∗Genderi ∗Agei +2 β

t
13 ∗Genderi ∗Hypertensioni +

+ 2β
t
14 ∗Genderi ∗Drugsi +2 β

t
15 ∗Agei ∗Hypertensioni +

+ 2β
t
16 ∗Agei ∗Drugsi +2 β

t
17 ∗Drugsi ∗Hypertensioni. (7)

As in the first scenario, the parameters for these treatment assignment equations
were chosen based on the parameters estimated by a multinomial logistic model
with the same functional form for the whole population (the exact values of the
parameters are reported in table 7 in appendix B).

The third scenario relies on the very same treatment assignment equation as
in the first scenario, but with different parameters. Indeed, starting with the co-
efficients in scenario 1, some of the parameters were modified to obtain a greater
initial imbalance. Moreover, in order to keep the simulated dataset close to a poten-
tially real situation in terms of the hospitalised fractures percentage, the intercepts
were modified as well (the exact values of the parameters are reported in table 8 in
appendix B).

We evaluated the initial balance of these three scenarios in all of the 1000 simu-
lations using the Population Standardized Bias. The mean values of the PSB among
all of the 1000 simulations for each scenario are reported in table 1. While in the
first scenario the initial situation is only mildly unbalanced, in scenarios 2 and 3
more extreme imbalanced situations can be observed.

After the treatment generation, the outcome has also been simulated given the
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Table 1: Mean of PSB among the neighbourhoods of the unweighted sample in all
of the iterations (simulation study).

Neighbourhoods

Scenario Variable 1 2 3 4 5 6 7 8 9 10

Male 4.64 1.33 1.59 2.58 2.33 2.49 1.68 2.33 1.61 5.02
Female 4.64 1.33 1.59 2.58 2.33 2.49 1.68 2.33 1.61 5.02
Age 17.84 5.61 5.11 6.88 8.46 9.47 3.80 12.70 2.61 16.65
Primary Educ. or lower 36.04 10.56 6.76 6.53 22.68 23.36 2.24 26.42 1.35 26.14
Lower Secondary Educ. 8.40 5.94 3.04 1.74 2.68 3.29 1.30 3.76 5.42 4.94

1 Upper Secondary Educ. 19.90 6.99 4.81 5.79 16.12 17.14 1.86 15.57 2.40 18.54
Tertiary Educ. 31.30 1.56 0.83 1.14 15.87 14.45 1.27 20.77 5.61 15.36
No Hypertension 7.41 1.48 1.83 1.77 2.22 5.29 1.91 4.23 1.80 3.95
Hypertension 7.41 1.48 1.83 1.77 2.22 5.29 1.91 4.23 1.80 3.95
Overcrowding 26.34 6.00 2.19 1.36 12.02 10.18 2.54 21.93 4.44 2.32
Drugs 24.53 1.71 5.29 4.04 10.31 12.92 2.14 13.22 3.99 14.71

Male 6.26 1.41 1.64 6.05 1.42 6.38 6.22 3.76 2.78 1.59
Female 6.26 1.41 1.64 6.05 1.42 6.38 6.22 3.76 2.78 1.59
Age 30.81 6.14 13.49 29.99 2.49 14.87 26.13 26.09 38.62 1.58
Primary Educ. or lower 29.91 9.77 10.60 8.64 23.39 14.35 2.73 21.47 4.02 20.31
Lower Secondary Educ. 3.42 5.39 4.00 2.78 3.14 1.89 2.67 3.22 5.84 7.39

2 Upper Secondary Educ. 15.61 6.47 6.36 7.04 15.14 10.56 2.21 13.87 5.84 12.81
Tertiary Educ. 24.22 1.21 2.25 2.45 18.31 14.96 2.33 15.25 7.51 6.26
No Hypertension 1.39 3.94 5.45 6.98 1.79 3.30 5.22 9.65 7.74 2.51
Hypertension 1.39 3.94 5.45 6.98 1.79 3.30 5.22 9.65 7.74 2.51
Overcrowding 19.63 9.68 2.65 10.62 17.49 11.54 11.88 14.70 15.59 1.00
Drugs 13.52 11.52 9.99 11.93 3.85 2.52 15.86 17.31 7.14 4.79

Male 22.94 3.75 6.95 38.93 8.38 5.34 1.55 13.88 7.79 5.61
Female 22.94 3.75 6.95 38.93 8.38 5.34 1.55 13.88 7.79 5.61
Age 258.46 23.91 17.88 7.20 27.36 23.28 15.68 20.03 18.78 13.86
Primary Educ. or lower 4.19 22.26 23.94 9.30 27.75 26.14 10.24 52.42 3.44 31.52
Lower Secondary Educ. 6.70 33.45 10.18 4.36 2.88 2.24 6.12 27.87 8.68 5.90

3 Upper Secondary Educ. 1.12 4.59 44.43 1.15 21.08 20.27 15.01 10.57 5.85 22.65
Tertiary Educ. 2.29 12.91 13.03 9.53 21.48 19.93 8.85 92.91 13.00 21.24
No Hypertension 28.29 3.94 3.70 2.42 1.16 3.22 7.56 10.45 1.59 13.86
Hypertension 28.29 3.94 3.70 2.42 1.16 3.22 7.56 10.45 1.59 13.86
Overcrowding 34.09 6.35 5.08 3.67 30.76 8.17 3.47 21.79 4.21 4.67
Drugs 27.08 4.81 11.89 2.72 5.21 9.27 8.47 28.43 2.24 44.81

six covariates and the treatment assignment according to the following model:

ln

(
Pr(Yi = 1)

Pr(Yi = 0)

)
= β0 + β1 ∗Genderi + β2 ∗ Edu1i + β3 ∗ Edu2i +

+ β4 ∗ Edu3i + β5 ∗Hypertensioni + β6 ∗Agei +

+ β7 ∗Overcrowdingi + β8 ∗Drugsi + β9 ∗Di1(Ti) +

+ β10 ∗Di2(Ti) + β11 ∗Di3(Ti) + β12 ∗Di4(Ti) +

+ β13 ∗Di5(Ti) + β14 ∗Di7(Ti) + β15 ∗Di8(Ti) +

+ β16 ∗Di9(Ti) + β17 ∗Di10(Ti), (8)

where Di1(Ti), Di2(Ti), ..., Di10(Ti) are dichotomous variables that take value 1 if the
individual i lives in the considered neighbourhood, and value 0 otherwise. As before,
the reference is neighbourhood 6. The coefficients are close to those estimated by
the same model for the whole population, but the parameters from β9 to β17 were



Section 5 Simulation results 11

inflated to obtain a larger neighbourhood effect for the purposes of estimation (the
exact values of the parameters are reported in table 9 in appendix C). Indeed,
when the true neighbourhood effects are small, there is a risk that the simulations
will produce more biased and less stable estimates, and that the IPTW approach
will perform badly (Cepeda et al., 2003). However, we also ran some simulations
with smaller neighbourhood effects in order to explore and verify this result in a
multi-treatment framework.

We evaluated the performance of the two approaches, the logistic regression, and
the IPTW, while comparing the estimates of nine neighbourhood coefficients (the
reference is neighbourhood 6) and the true treatment effect used to simulate the
outcome. The analysis was focused on three measures: the mean and the median
of the relative bias (the percentage difference from the true treatment effect), the
variance of the estimated values among the 1000 simulations, and 95% confidence
interval coverage (the percentage of times the true value is included in the 95%
confidence interval of the obtained estimates among all of the simulations).

5 Simulation results

For each replicate in every scenario, we estimated the neighbourhood effect using
both the logistic regression approach and the IPTW approach. Since we were trying
to improve the balance of the confounders among the neighbourhoods, we observed
the distribution of the PSB across all of the simulations, neighbourhoods, and vari-
ables. To summarise them all, we reported the mean of the PSB of the weighted
samples among all of the simulations in table 2.

In the first two scenarios, the balance attained with IPTW was extremely good,
with all of the considered confounders showing an average PSB that was lower than
5% for all of the neighbourhoods; indeed, in many cases, the PSBs was even lower
than 1%. According to the literature, the possible thresholds for defining a balanced
population are 25%, 20%, and 10% (Austin, 2009; Rosenbaum and Rubin, 1985).
Using even the most restrictive threshold cited in literature, we can state that in
these two scenarios the balance was reached.

In the most complicated scenario (scenario 3), the PSBs tended to be higher.
This was especially the case for neighbourhood 1, for which most of covariates had
PSBs higher than 10%, and the average PSB for age was 53.23%. Even though
the balance was not satisfactory, it should be noted that in scenario 3 the initial
imbalance was very high (e.g., the PSB for age in neighbourhood 1 was 258.46;
table 1). Indeed, if we compare the balance after weighting (table 2) with the
initial balance, we can see that even in scenario 3, the use of the IPTW approach
guarantees a considerable improvement in the degree of similarity of the confounders’
distributions across the neighbourhoods. Since the residual imbalance was higher,
we expected to observe higher bias for the IPTW estimator in scenario 3.

Whereas in scenarios 1 and 2 the bias of the IPTW estimates was quite good,
or lower than 5% in most cases, in the third scenario there were two parameters
with a bias higher than 10%. However, as was already explained, in the third
scenario, the initial balance was particularly challenging in terms of the distribution
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Table 2: Mean of PSB among the neighbourhoods of the weighted sample in all of
the replicates (simulation study).

Neighbourhoods

Scenario Variable 1 2 3 4 5 6 7 8 9 10

Male 1.90 0.42 0.51 0.73 0.82 0.88 0.54 1.42 0.48 1.62
Female 1.90 0.42 0.51 0.73 0.82 0.88 0.54 1.42 0.48 1.62
Age 0.96 1.45 0.79 1.02 2.66 2.91 1.30 1.47 2.00 5.48
Primary Educ. or lower 1.55 0.29 0.27 0.40 1.60 1.67 0.56 1.01 0.57 3.23
Lower Secondary Educ. 0.83 0.40 0.32 0.40 0.53 0.51 0.38 0.84 0.72 0.80

1 Upper Secondary Educ. 0.73 0.24 0.20 0.26 0.72 0.87 0.50 0.41 0.42 1.75
Tertiary Educ. 0.35 0.53 0.27 0.33 2.38 2.26 0.55 0.27 1.45 4.04
No Hypertension 0.93 0.42 0.31 0.44 0.65 1.01 0.74 0.91 0.64 1.53
Hypertension 0.93 0.42 0.31 0.44 0.65 1.01 0.74 0.91 0.64 1.53
Overcrowding 3.35 1.05 0.26 0.41 0.47 0.41 0.43 3.12 0.45 2.10
Drugs 1.08 0.96 0.52 0.80 2.18 2.41 0.98 1.24 1.69 4.48

Male 1.04 0.42 0.85 2.67 0.67 0.70 1.20 2.35 1.73 0.60
Female 1.04 0.42 0.85 2.67 0.67 0.70 1.20 2.35 1.73 0.60
Age 0.52 0.53 1.87 6.13 1.73 2.88 4.59 6.21 7.87 2.01
Primary Educ. or lower 1.07 0.35 0.62 1.23 1.64 1.62 1.24 1.56 2.35 1.22
Lower Secondary Educ. 0.66 0.31 0.51 1.13 0.63 0.63 1.09 1.26 1.80 0.19

2 Upper Secondary Educ. 0.38 0.22 0.38 0.91 0.59 0.71 1.29 0.86 2.00 1.02
Tertiary Educ. 0.22 0.21 0.31 1.09 2.78 2.58 1.00 0.68 3.62 0.63
No Hypertension 0.57 0.35 0.59 1.42 0.43 0.96 1.27 1.56 1.52 0.50
Hypertension 0.57 0.35 0.59 1.42 0.43 0.96 1.27 1.56 1.52 0.50
Overcrowding 1.33 1.93 0.50 0.94 0.48 0.40 0.79 3.22 1.23 0.48
Drugs 0.57 1.18 0.63 2.23 1.64 1.97 1.64 2.28 3.55 0.97

Male 9.59 0.85 0.57 1.66 1.53 1.46 0.98 1.47 1.21 2.25
Female 9.59 0.85 0.57 1.66 1.53 1.46 0.98 1.47 1.21 2.25
Age 53.23 5.51 4.00 4.59 7.35 7.11 5.47 4.82 5.87 8.70
Primary Educ. or lower 10.46 0.54 0.33 1.28 2.80 2.59 1.73 1.73 1.36 5.18
Lower Secondary Educ. 8.80 1.30 0.58 0.61 0.73 0.81 0.69 0.88 1.13 1.13

3 Upper Secondary Educ. 9.16 0.45 0.54 0.74 1.20 1.15 1.79 0.81 0.85 2.54
Tertiary Educ. 7.07 2.19 1.80 2.32 4.02 3.86 1.45 0.70 2.76 6.74
No Hypertension 11.19 0.61 0.54 0.78 0.78 0.97 0.99 1.54 0.73 2.61
Hypertension 11.19 0.61 0.54 0.78 0.78 0.97 0.99 1.54 0.73 2.61
Overcrowding 18.68 1.36 0.49 0.85 1.98 0.66 0.64 2.02 0.59 2.20
Drugs 17.18 1.22 0.74 1.07 2.31 2.62 1.24 1.91 1.87 9.59

of the confounders among the different treatment groups. Moreover, when the bias
of IPTW estimates was high, the logistic regression method also provided biased
estimates.

In the first scenario, we observe that the biases relative to the estimates produced
by IPTW were smaller than those produced by the logistic regression method, except
for one neighbourhood, number 10. This neighbourhood had the highest PSBs, and
was the only one for which a PSB higher than 5% was found. Relative to the other
neighbourhoods, the third had the largest bias with respect to both the estimation
approaches and the mean and the median. Indeed, the bias of this parameter was
expected to be the highest because its true value was the smallest and closest to
0. According to the literature (Cepeda et al., 2003), higher bias is often observed
for estimates of smaller effects. In general, in the first scenario, almost all of the



Section 5 Simulation results 13

parameters were estimated by both of the models with bias lower than 5%; except
for neighbourhoods 1, 3 (already mentioned), and 4, where, on average, the IPTW
approach seems to have provided better estimates.

In the second scenario, the estimates given by the IPTW method for neighbour-
hoods 4, 8, and 9 had a particularly high median bias, of between 5% and 10%.
This was probably because the balance in these neighbourhoods was not completely
achieved, especially for the variable age, which had a mean PSB of more than 5%
in these three neighbourhoods (table 2). On the other hand, the logistic regression
model provided estimates that were particularly biased for the effect of neighbour-
hood 1; probably because of the initial highly unbalanced situation (as shown in
table 1).

In the third scenario, both methods performed well for most of the neighbour-
hoods (numbers 2, 5, 7, 8, 9, and 10), as they had both mean and median biases
of less than 5%. However, when the IPTW approach was applied, the biases be-
came slightly smaller for all of these neighbourhoods. The logistic regression model
produced better results in terms of bias in neighbourhoods 3 and 4. However, both
methods performed poorly with respect to the estimates for neighbourhood 1, for
which the initial situation was extremely unbalanced (as shown in table 1). While
the situation of the first neighbourhood remained unbalanced even after weighting
(as shown in table 2), the IPTW approach produced estimates for this parameter
that had, on average, half the bias of those produced by the logistic regression model.

A general observation with respect to table 3 is about variances. Indeed, in all
of the scenarios and for all of the neighbourhoods, the variances of the estimates
generated by the IPTW approach were higher than those produced by the logistic
regression model. In the first scenario, which corresponds most closely to reality,
the variances of the two models were more similar and smaller than those in the
other two scenarios, in which the allocation of individuals to treatments was more
complex (in the second one) and more unbalanced (in the third one).

Since in the presence of weights the variance may increase and the estimates may
be greatly affected, especially if the weights are extreme, we also tried an asymmetri-
cal trimming. We trimmed only the extremely high weights, reducing the influence
of those individuals who were under-represented in some of the neighbourhoods,
based on the assumption that these individuals were outliers who did not reflect the
population as a whole. Selecting different levels of trimming (percentiles from 99
to 85 and 75), we assigned the threshold weight value to those individuals who had
higher weights. This technique proved to be quite useful for reducing the variance,
but the gain was associated with an increase in bias in some cases.

In figures 1 and 2, two examples are presented that show how trimming affected
the mean bias and the variance of the estimates produced by the IPTW approach
relative to the mean bias and the variance of the logistic regression’s estimates for
neighbourhoods 5 and 8 in the first scenario. In some cases, as for neighbourhood
5 in figure 1, it was possible to increase the level of trimming while having a lim-
ited impact on the bias, or even causing it to decrease slightly at around the 85th

percentile, while ensuring that it remained lower than the bias of the estimates pro-
duced by the logistic regression. On the other hand, the variance of the trimmed
estimates was substantially reduced, and assumed values closer to the variance of
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Figure 1: Comparison of the mean biases and the variances of the estimates obtained
by IPTW at different levels of trimming for the neighbourhood effect of neighbour-
hood 5 in the first scenario with the logistic regression’s (Logit) results (represented
as horizontal dashed lines).

the logistic regression’s estimates when the level of trimming was increased. Thus,
when we consider this example, we can state that the optimal level of trimming in
order to reduce both the bias and the variance may be around the 85th percentile.

Figure 2: Comparison of the mean biases and the variances of the estimates obtained
by IPTW at different levels of trimming for the neighbourhood effect of neighbour-
hood 8 in the first scenario with the logistic regression’s (Logit) results (represented
as horizontal dashed lines).

A completely different situation can be observed for the estimates of neighbour-
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hood 8 in the first scenario, where the trade-off between the bias and the variance
was more severe than in the previous example. Indeed, when the level of trimming
was increased, the bias grew from around 0% in the absence of trimming to around
8% at the 75th percentile of trimming. However, the variance decreased when mov-
ing closer to the variance of the logistic regression’s estimates. Indeed, finding the
optimal level of trimming was harder in this case, as the level at which the esti-
mates were less biased was the one at which the variances were higher. Moreover,
at around the 96th percentile of trimming, we got estimates with the same bias as
the logistic regression’s estimates, but with a variance that was 15% higher.

In general, even after observing all of the trimmed estimates in all of the simu-
lations, it was not possible to find a common criterion we could use to define a best
practice in terms of trimming. The fact that we had nine different parameters to
estimate did not make this choice easier, because the levels that ensure a balance
between bias and variance may be different for each parameter. Moreover, in an
empirical framework, it is not possible to observe the bias of estimates. Thus, it
would have been even more difficult to discern which trimming level was the best
to use without quantifying the loss in terms of bias. Thus, we would not recom-
mend the trimming of weights when using the IPTW approach in a multi-treatment
framework.

In order to improve the performance of the IPTW approach, we also tried to
change some default settings in the twang package. As we mentioned before, we ran
some simulations with different numbers of GBM iterations (3,000, 5,000, 10,000,
and 20,000), levels of shrinkage (0.01 and 0.0005), fractions of the training set to fit
the trees (1 and 0.5), and maximum numbers of iterations for the direct optimisation
(1,000 and 10,000); as well as several combinations thereof. However, as the balance
after weighting was not improved and the bias was not reduced, we decided against
deepening this research path, and instead opted to use all of the default values for
the simulations, except for the number of GBM iterations (the default was 10,000,
but to save time and computational effort, we used 3,000, since the balance was
reached with fewer iterations).

6 Empirical results

In this section, we describe the empirical results obtained by both the logistic re-
gression and the IPTW approaches for the estimation of the neighbourhood effects
of 10 neighbourhoods of Turin city. As we explained in section 3, we are consid-
ering the population aged 60 or older, with the hospitalised fractures event as the
outcome. The confounders we consider are age, gender, region of birth, family com-
position, education level, last observed professional condition, home ownership, and
overcrowding; which are described in detail in section 3.

As we explained in section 2, we estimated the weights for the IPTW approach
using the default values of the function mnps in the R package twang, and included
the n.trees number of GBM iterations that was set to 10,000, even if such a large
number was not necessary. Indeed, as figure 3 shows, gains in balance become smaller
after 3,000 iterations; and in some cases, such as in neighbourhood 7, increasing the
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complexity of the GBM model may worsen the obtained balance of the weighted
variables and cause overfitting. However, when a huge number of treatments is to
be considered, the decision about what number of iterations is optimal for getting
good results in correspondence with each of them it is not trivial.

Figure 3: Reduction of the balance measure (the Population Standardized Balance,
computed as in equation 3) during the weights estimation process in correspondence
with an increasing number of iterations for the 10 considered neighbourhoods, and
considering the whole population.

Nevertheless, as shown in figure 4, the final result is quite satisfying with respect
to the initial unweighted situation, with almost all of the significant reductions of
the PSB differences considering the maximum among all pairwise comparisons.

Figure 4: Comparisons of the absolute standardised differences (considering the max-
imum of pairwise comparisons) in the whole population before and after weighting.
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There are small differences between the logistic regression and the IPTW esti-
mates. We computed the neighbourhood effect for the whole population (All), and
for the female (Women) and male (Men) populations separately. In table 4, we
report the neighbourhood effect estimates in terms of the odds ratio, with standard
errors and 95% confidence intervals for the two estimation approaches, and with
respect to the three different populations selected.

The parameters estimated with the two approaches on the whole population
were similar, except for neighbourhood 10, for which the effect was greater in the
logistic regression model. The odds for the individuals living in neighbourhoods 2
and 7 was 33% higher than for the people living in neighbourhood 6 (odds ratio
equal to 1.33). The main differences in the estimation of the neighbourhood effects
were also observed in neighbourhoods 1 and 10 for the female population and in
neighbourhoods 4, 5, 7, and 10 for the male population. In general, there were more
discrepancies between the two estimation approaches for the effect of neighbourhood
10 than for the effects of the other neighbourhoods.

It is not possible to know exactly which of the two methods was more accurate
in this setting, but, given the results of the simulation study, we can assume that
the estimates based on the IPTW were more reliable because in the scenario closest
to the real situation, this method performed better, with less bias.

7 Conclusions

The purpose of this work was to assess the performance of IPTW techniques for the
estimation of causal effects in observational studies characterised by many treat-
ments. The motivation for the study was the estimation of neighbourhood effects
on the incidence of hospitalised fractures in the Italian city of Turin. One of the
most intriguing methodological aspects of this study is that the number of treat-
ments was large, and was thus not easy to handle. This was done by implementing
simulation studies in which the IPTW approach was also compared to a standard
logistic regression approach. Moreover, these approaches were applied to real data
originating from our motivating case study.

The simulation study was performed under three possible scenarios for the al-
location of individuals to neighbourhoods: one that was close to reality, one that
had a complex misspecified treatment allocation, and one that had an extremely un-
balanced initial situation. In all the scenarios, IPTW performed very well in terms
of reducing the initial imbalance of the confounders across the different neighbour-
hoods. However, in the scenarios characterised by a higher initial imbalance, the
bias of the estimated causal effect was higher than it was in the first scenario, which
was characterised by a lower initial imbalance.

It is often stressed in the causal inference literature (?) that researchers should
examine balance measures because a higher (residual) imbalance tends to be asso-
ciated with more bias in the causal estimates. This was confirmed in our analyses,
which showed that the bias tended to be higher for both the logistic regression
and the IPTW approaches in scenarios characterised by higher initial (and residual)
imbalances.
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Our results indicate that IPTW is a promising approach for reducing the imbal-
ance of confounders in a multi-treatment context, even in the presence of a number
of treatments as high as 10.

However, the IPTW approach is more computationally demanding than a stan-
dard logistic regression (the computation of weights may last several hours if the
number of treatments is high, as in our case). Future research may be devoted to
investigating more computationally efficient approaches, which would be necessary
if an even higher number of treatments than the 10 we considered here was used.

One limitation in the application we considered, but not in our simulations, is
that the mobility of individuals between neighbourhoods may invalidate the SUTVA.
Indeed, in some neighbourhoods, the individuals may have had a higher propensity
to move and to be affected by other neighbourhoods. Since our focus was on older
people, who tend to be a more stable population, this risk, in the empirical applica-
tion, was limited. However, it would be interesting for future research to take this
aspect into account as well.
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Sànchez-Riera, L., Wilson, N., Kamalaraj, N., Nolla, J. M., Kok, C., Li, Y., Macara,
M., Norman, R., Chen, J. S., Smith, E., et al. (2010). Osteoporosis and fragility
fractures. Best practice & research Clinical rheumatology, 24(6):793–810.

Setoguchi, S., Schneeweiss, S., Brookhart, M. A., and Glynn, R. J., . C. E. F.
(2008). Evaluating uses of data mining techniques in propensity score estimation:
a simulation study. Pharmacoepidemiology and drug safety, 17(6):546–555.

Tu, C. (2019). Comparison of various machine learning algorithms for estimating
generalized propensity score. Journal of Statistical Computation and Simulation,
89(4):708–719.

Tu, C. and Koh, W. Y. (2016). Causal inference for average treatment effects of
multiple treatments with non-normally distributed outcome variables. Journal of
Statistical Computation and Simulation, 86(5):855–861.

Yen, I. H., Michael, Y. L., and Perdue, L. (2009). Neighborhood environment in
studies of health of older adults: a systematic review. American journal of pre-
ventive medicine, 37(5):455–463.



Section A Descriptive statistics 23

A Descriptive statistics

Table 5: Descriptive statistics on the outcomes and the confounders by neighbour-
hoods.

Neighbourhoods

Variables 1 2 3 4 5 6 7 8 9 10 Total

Incidence of
Hospitalized Fractures (%) 1.05 0.93 0.85 0.92 0.84 0.71 1.03 1.02 0.92 0.85 0.90

Female (%) 60.60 57.40 58.88 59.50 56.75 56.67 58.67 58.97 57.48 55.07 58.63

Age (Mean) 71.99 70.63 71.22 71.35 70.48 70.43 71.14 71.68 70.87 70.02 70.96

Region of Birth(%)

Piedmont 56.43 48.84 50.12 49.59 34.74 34.92 48.73 59.47 47.64 30.75 45.93
North of Italy 13.83 14.75 15.14 15.63 13.56 13.09 12.67 13.43 14.80 12.87 14.12
Center of Italy 3.74 3.51 2.76 2.89 2.59 2.73 2.57 3.24 3.24 2.42 2.97
South of Italy 21.19 27.54 26.73 27.04 39.98 41.91 31.25 19.59 27.42 47.62 30.93
Outside of Italy 4.81 5.37 5.25 4.86 9.13 7.36 4.77 4.28 6.91 6.33 6.05

Family composition (number of components) (%)

Alone (1) 35.74 26.46 30.05 31.09 25.89 26.44 31.34 32.20 27.37 20.65 28.73
Married couple (2) 33.99 44.97 42.33 41.30 44.90 43.62 41.00 37.97 43.46 45.71 42.28
Married couple (> 3) 17.35 19.14 17.24 16.85 18.55 19.52 17.19 18.20 19.15 23.34 18.41
Not married couple (> 2) 12.92 9.42 10.38 10.76 10.66 10.42 10.47 11.63 10.02 10.29 10.58

Educational attainment (%)

Primary or lower 26.05 40.73 43.04 43.15 60.99 61.42 48.37 31.42 47.19 63.03 46.94
Lower Secondary 25.73 34.15 32.40 31.43 29.22 28.84 30.53 28.47 33.88 27.95 30.69
Upper Secondary 25.43 18.38 17.28 17.80 7.64 7.23 14.03 22.96 13.70 6.73 14.94
Tertiary 22.79 6.74 7.28 7.61 2.15 2.51 7.08 17.16 5.23 2.29 7.42

Home owner (%) 71.15 81.43 77.99 75.48 71.21 72.54 76.87 78.99 80.01 79.48 76.34

Last observed professional condition (%)

No observed work 13.75 11.61 13.28 14.11 14.25 15.72 16.65 13.92 14.74 12.08 14.00
Home-maker 34.05 35.24 36.02 34.81 35.02 33.74 33.51 34.85 33.50 36.53 34.74
Entrepreneur 16.90 5.75 6.73 7.07 2.45 2.34 6.09 13.63 4.89 1.73 6.34
White collars 24.45 26.73 24.53 24.67 17.32 17.14 22.79 24.75 23.29 14.88 22.33
Manual workers 10.85 20.66 19.44 19.33 30.96 31.06 20.96 12.85 23.59 34.78 22.59

Overcrowding (Mean) 0.64 0.74 0.78 0.77 0.84 0.82 0.78 0.66 0.79 0.76 0.77

Hypertension 51.16 54.89 54.49 54.73 57.04 58.85 56.52 53.09 56.45 58.08 55.58

Drugs (Mean) 7.35 7.84 7.72 7.78 8.09 8.16 7.87 7.61 7.96 8.18 7.86
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B Parameters to simulate the three scenarios

Table 6: Parameters used to simulate the first scenario.
Neighbourhoods

Variables 1 2 3 4 5 7 8 9 10

(Intercept) 1β0 -3.1640 -0.6430 -1.650 -2.1240 -0.0420 -1.6450 -2.7530 -1.4290 0.5070
Gender 1β1 0.4420 0.1530 0.2410 0.2640 0.0140 0.1900 0.2980 0.1330 -0.1350
Lower Secondary Educ. 1β2 0.7700 0.5770 0.5220 0.4930 0.0270 0.3320 0.6670 0.4550 -0.1300
Upper Secondary Educ. 1β3 2.1240 1.3270 1.3030 1.3350 0.0760 0.9540 1.8080 0.9480 -0.2360
Tertiary Educ. 1β4 3.0430 1.3690 1.4980 1.5460 -0.1280 1.3270 2.5410 1.0460 -0.2860
Hypertension 1β5 -0.0910 -0.0820 -0.0820 -0.0910 -0.0770 -0.0200 -0.0910 -0.0570 -0.0390
Age 1β6 0.0380 0.0100 0.0240 0.0250 0.0030 0.0190 0.0300 0.0140 -0.0130
Overcrowding 1β7 -0.5490 -0.2530 0.0640 0.0370 0.0620 0.0020 -0.5560 0.0260 -0.4900
Drugs 1β8 -0.0720 -0.0190 -0.0370 -0.0340 -0.0020 -0.0310 -0.0490 -0.0160 0.0100

Table 7: Parameters used to simulate the second scenario.
Neighbourhoods

Variables 1 2 3 4 5 7 8 9 10

(Intercept) 2β0 2.8360 -1.0650 -0.6010 -0.8630 -0.9300 -0.2560 0.8170 -0.4910 -1.3490
Gender 2β1 0.3390 1.2150 0.3480 -0.1640 0.1900 -0.1910 0.5620 0.4530 2.6710
Lower Secondary Educ. 2β2 0.6120 0.4030 0.3750 0.3100 -0.1240 0.1800 0.3300 0.1930 -0.2680
Upper Secondary Educ. 2β3 1.5400 0.9330 0.9470 0.9850 -0.2060 0.5550 1.1300 0.3670 -0.2740
Tertiary Educ. 2β4 2.7400 1.3960 1.5980 1.5920 -0.3520 1.3990 2.0700 0.8550 0.5070
Hypertension 2β5 -0.2960 -0.0730 0.5710 1.4020 0.1900 0.7710 0.2990 -0.5720 0.5760
Age 2β6 -0.1010 0.0240 0.0060 -0.0080 0.0150 -0.0120 -0.0170 -0.0170 0.0470
Overcrowding 2β7 -1.5120 -0.1240 -0.2110 -0.2790 0.3490 -0.3860 -2.1930 0.3660 -1.7120
Drugs 2β8 -0.1870 -0.1570 -0.1780 -0.2260 -0.1110 -0.1630 -0.2530 -0.1020 -0.1700
Age2 2β9 0.0010 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Overcrowding2 2β10 0.4830 -0.1700 0.0770 0.1970 -0.0520 0.2150 0.6720 -0.0840 0.5590
Drugs2 2β11 0.0190 0.0170 0.0080 0.0180 0.0050 0.0070 0.0140 0.0140 0.0180
Gender*Age 2β12 0.0010 -0.0090 -0.0010 0.0110 0.0010 0.0060 -0.0040 -0.0030 -0.0390
Gender*Hypertension 2β13 -0.0040 0.0800 0.0310 -0.0310 0.0800 0.1170 0.0530 0.0380 0.2030
Gender*Drugs 2β14 0.0010 -0.0520 -0.0050 -0.0130 -0.0260 -0.0220 0.0040 0.0010 -0.0030
Age*Hypertension 2β15 0.0080 0.0010 -0.0090 -0.0180 -0.0060 -0.0090 -0.0020 0.0080 -0.0130
Age*Drugs 2β16 -0.0010 0.0000 0.0010 0.0000 0.0010 0.0010 0.0010 -0.0010 -0.0010
Hypertension * Drugs 2β17 -0.0480 -0.0220 -0.0160 -0.0360 -0.0070 -0.0360 -0.0470 -0.0250 0.0170
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Table 8: Parameters used to simulate the third scenario.
Neighbourhoods

Variables 1 2 3 4 5 7 8 9 10

(Intercept) 3β0 -30.6410 -0.8200 -1.8790 -2.5810 -0.4830 -1.4070 -3.3250 -1.3680 -1.0100
Gender 3β1 0.4420 0.1530 0.2410 1.3200 0.0140 0.1900 0.2980 0.0266 -0.1350
Lower Secondary Educ. 3β2 0.7700 1.1540 0.5220 0.2465 0.0270 0.3320 0.6670 0.4550 -0.1300
Upper Secondary Educ. 3β3 2.1240 1.3270 2.6060 1.3350 0.0760 0.4770 1.8080 0.9480 -0.2360
Tertiary Educ. 3β4 3.0430 1.3690 1.4980 1.5460 -0.0640 1.3270 5.0820 1.0460 -0.2860
Hypertension 3β5 -0.0910 -0.0820 -0.0082 -0.0910 -0.0770 -0.2000 -0.0910 -0.0570 -0.0390
Age 3β6 0.3800 0.0100 0.0240 0.0250 0.0030 0.0190 0.0300 0.0140 -0.0013
Overcrowding 3β7 -0.5490 -0.2530 0.0640 0.0370 0.6200 0.0020 -0.0556 0.0260 -0.4900
Drugs 3β8 -0.0072 -0.0190 -0.0370 -0.0340 -0.0020 -0.0310 -0.0490 -0.0160 0.1000

C Parameters to simulate the outcome

Table 9: Parameters used to simulate the outcome.

Variables Parameter Value

(Intercept) β0 -13.553
Gender β1 0.740
Lower Secondary Educ. β2 -0.012
Upper Secondary Educ. β3 0.098
Tertiary Educ. β4 0.128
Hypertension β5 0.029
Age β6 0.100
Overcrowding β7 0.006
Drugs β8 0.077
Neighbourhood 1 β9 0.820
Neighbourhood 2 β10 1.310
Neighbourhood 3 β11 0.375
Neighbourhood 4 β12 0.720
Neighbourhood 5 β13 0.915
Neighbourhood 7 β14 1.430
Neighbourhood 8 β15 0.950
Neighbourhood 9 β16 1.020
Neighbourhood 10 β17 1.535
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D R code for the simulation study

In this Section we report the R code used for the simulations described in section
4. As far as was possible, we used the same notation (variables names, parameters
name, etc.) as in the main text.

###In this code X1 represents the gender, X2 the age, X3 the

educational attainment, X4 the overcrowding, X5 the hypertension

and X6 the drugs prescription. Moreover, for the second scenario,

quadratic transformation of age (X7), overcrowding (X8) and drugs

prescriptions (X9) have been created.

###Create the counfounders’ matrix with respect to the first and

the third scenarios.

X<-model.matrix(~X1+X2+X3+X4+X5+X6)

###Create the counfounders’ matrix with respect to the second

scenario.

X<-model.matrix(~X3+X4+X7+X8+X9+(X1+X2+X5+X6)^2)

###Create probability vectors to live in every neighbourhood

(treatments), chosing the right X

and beta matrices according to the considered scenario.

denominator<-c(rep(1, dim(sample)[1]))

p<-matrix(data=NA, nrow = dim(sample)[1], ncol=9)

for (i in c(1:9) ){

p[,i]<-exp(X%*%beta[,i])

denominator<-denominator+p[,i]

}

p<-cbind(p[,1:5],c(rep(1, dim(sample)[1])),p[,6:9])

prob.sim<-p/denominator

###Once the number, n, of desired replicates has been set it is

possible to proceed with the simulations.

for (j in 1:n){

###Treatment generation

assign.treat = t(apply(prob.sim, 1, rmultinom, n = 1, size = 1))

s1 = cbind.data.frame(sample, treat_sim = apply(assign.treat, 1,

function(x) which(x==1)))

###Create probability vectors with respect to the occurence of
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the outcome

XO<-cbind(X, assign.treat[,c(1:5,7:10)])

sim.prob<-(1+exp(-(XO%*%beta_out)))^(-1)

###Outcome generation

unif<-runif(dim(sample)[1],0,1)

s1$sim.y<-ifelse(sim.prob>unif,1,0)

###Computation of weights with the twang package

mnps_s1 <- mnps(as.factor(treat_sim) ~ X1+X2+X3+X4+X5+X6,

data = s1,

estimand = "ATE",

verbose = FALSE,

stop.method ="es.max",

n.trees = 3000)

###Saving balance measures

for (b in 1:10){

row<-(j-1)*10+b

bal<-bal.table(mnps_s1$psList[[b]])

balance[row,]<-bal$es.max.ATE[,5]

balance_now[row,]<-bal$unw[,5]

}

###Estimation of the treatment effect

s1$t.sim<-relevel(as.factor(s1$treat_sim), ref=6)

s1$weight<-get.weights(mnps_s1)

weights[,j]<-s1$weight

design.s1<-svydesign(ids=~1, weights=~weight, data=s1)

####With IPTW and no trimming

glm.s1<-svyglm(sim.y~t.sim, design=design.s1, family=quasibinomial())

mccaffrey[j,]<-glm.s1$coefficients[-1]

ci<-confint.default(glm.s1, 2:10)

for (c in 1:9){ ci_mcc[j,c]<-between(true[c], ci[c,1], ci[c,2])}

####With logistic regression model

glm.s1_now<-glm(sim.y~t.sim+X1+X2+X3+X4+X5+X6, data=s1,

family=binomial())

logistic[j,]<-glm.s1_now$coefficients[2:10]

ci<-confint.default(glm.s1_now, 2:10)

for (c in 1:9){ ci_log[j,c]<-between(true[c], ci[c,1], ci[c,2])}

#####Create trimmed weights

percentiles<-c(c(75,85:99)/100)

thresholds<-quantile(s1$weight, percentiles)
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w_trim<-matrix(data=NA, nrow=dim(s1)[1], ncol=length(percentiles))

for(i in 1:length(thresholds)){

w_trim[,i]<-ifelse(s1$weight>thresholds[i],thresholds[i],s1$weight)

}

trimmed<-cbind(s1,w_trim)

####With IPTW and different levels of trimming, listed in

the vector percentiles. For every level of trimming a different

column in the matrix trimmed has to be considered as in the

following example:

design.t<-svydesign(ids=~1, weights=~‘1‘, data=trimmed)

glm.t<-svyglm(sim.y~t.sim, design=design.t, family=quasibinomial(),

maxit=100)

trimming75[j,]<-glm.t$coefficients[2:10]

ci<-confint.default(glm.t, 2:10)

for (c in 1:9){ ci_t75[j,c]<-between(true[c], ci[c,1], ci[c,2])}
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