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deal with large datasets and very complex models, even when the use of stan-
dard likelihood or Bayesian methods is not feasible. In this paper, we aim to
suggest an integrated, general approach to inference and model selection us-
ing composite likelihood methods. In particular, we introduce an information
criterion for model selection based on composite likelihood. Applications to
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modelling time series of counts through dynamic generalized linear models and
to the analysis of the well-known Old Faithful geyser dataset are also given.
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Section 1 Introduction 1

A note on composite likelihood inference and model selec-
tion

Cristiano Varin

Department of Statistical Sciences
University of Padua

Italy

Paolo Vidoni
Department of Statistics
University of Udine

Italy

Abstract: A composite likelihood consists in a combination of valid likelihood objects,
usually related to small subsets of data. The merit of composite likelihood is to reduce the
computational complexity so that it is possible to deal with large datasets and very complex
models, even when the use of standard likelihood or Bayesian methods is not feasible. In this
paper, we aim to suggest an integrated, general approach to inference and model selection
using composite likelihood methods. In particular, we introduce an information criterion
for model selection based on composite likelihood. Applications to modelling time series of
counts through dynamic generalized linear models and to the analysis of the well-known Old
Faithful geyser dataset are also given.

Keywords: AIC; dynamic generalized linear models; hidden Markov model; Old Faithful
geyser data; overdispersion; pairwise likelihood; pseudolikelihood; TIC; tripletwise likelihood.

1 Introduction

In a number of applications, the presence of large correlated datasets or the speci-
fication of very complex models make unfeasible the use of the likelihood function,
since too computationally demanding. One possibility is to avoid ordinary likelihood
methods, or Bayesian strategies, and to adopt simpler pseudolikelihoods, like those
belonging to the composite likelihood class (Lindsay 1988, Cox & Reid 2003). A com-
posite likelihood consists in a combination of valid likelihood objects, usually related
to small subsets of data. It has good theoretical properties and it behaves well in
many complex applications, for example spatial statistics (Besag 1974, Vecchia 1988,
Hjort & Omre 1994, Heagerty & Lele 1998, Nott & Rydén 1999), multivariate sur-
vival analysis (Parner 2001), generalized linear mixed models (Renard, Molenberghs
& Geys 2004), frailty models (Henderson & Shimakura 2003), genetics (Fearnhead
& Donnelly 2002).

In this paper, we aim to set and justify an integrated, general approach for
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inference and model selection, using composite likelihood methods. In particular,
we focus on a new information criterion for model selection, which is the counterpart
of the Takeuchi’s information criterion (Takeuchi 1976, Shibata 1989, Burnham &
Anderson 2002), abbreviated as TIC, based on composite likelihood. The paper is
organized as follow. In Section 2, we restore the concept of composite likelihood and
derive a first-order unbiased composite likelihood selection statistics. In Section 3,
we test our methodology with regard to dynamic generalized linear models (West &
Harrison 1997) for time series of counts and to the analysis of the well-known Old
Faithfull geyser dataset (Azzalini & Bowman 1990).

2 Inference and model selection using composite likelihood

The term composite likelihood (Lindsay 1988) denotes a rich class of pseudolikeli-
hoods based on likelihood-type objects. We start by restoring its definition.

Definition 1. Let {f(y; 0),y € Y,0 € @} be a parametric statistical model, with
YCR", ©CRY n>1,d>1. Consider a set of events {A; : A; C F,i € I}, where
I C N and F is some sigma algebra on ). Then, a composite likelihood is a function
of 6 defined as

CLs(6;y) = [ ] fy € Aiz0)",
i€l
where f(y € A;;0) = f({yj €y:y; € .AZ-};H), with y = (y1,...,Yyn), while {w;,i €
I'} is a set of suitable weights. The associated composite loglikelihood is log CL ¢(0;y).

Example We present three important examples of composite loglikelihoods.
(i) The “full” loglikelihood, given by log L(0;y) = log f(y;0).

(ii) The pairwise loglikelihood, defined as log PL(0;y) = >_,_; log f(y;, yx; O)w(; k),
where the summation is over all the pairs (y;,yx), j,k = 1,...,n, of obser-
vations. With a slight abuse of notation we denote with w;) the weight
associated to (y;,yx). Analogously, we may define the tripletwise loglikelihood,
where triplets of observations are taken into account, and so on.

(iii) The Besag’s pseudologlikelihood, defined as log BPL(0;y) = Z?Zl log f(y;ly(—j);
)w;, where the summation is over all the conditional events {y;|y;) }, with
Y(—j) the subset of the components of vector y without the j-th element y;
(Besag 1974).

&

The usefulness of the composite likelihood ideas naturally arises in an estimating
function framework (Heyde 1997). Indeed, given the set of realized events {A; :
A; C F,i € I}, the mazimum composite likelihood estimator is usually defined as a
solution of the composite likelihood equation

Vlog CL¢(0;y) =0, (1)
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where V1og CL;(0;y) = > ,c; Viog f(y € Ai; 0)w; is the composite score function.
Hereafter, we use the notation Vh(#) for the column vector of the first partial deriva-
tives of function h(f), while V2h(#) is the symmetric matrix of second derivatives.
Since the composite score function is a linear combination of unbiased estimating
functions, then, under suitable regularity conditions, the maximum composite like-
lihood estimator fyicr,(Y') is consistent and asymptotically normal distributed, that
is

O (Y) L N0, H(6)  T(0)H(6) T},

where
J(0) = varp, {VIog CL(6;Y)} and H(0) = Ep{V*log CL(6;Y)}.

Although a deep study on efficiency issues is still lacking, some useful results may be
found in Heyde (1997), Heagerty & Lele (1998) and Nott & Rydén (1999). A recent
account on these key aspects of pseudolikelihood inferential procedures is given by
Cox & Reid (2003).

In this paper, we aim to emphasize the opportunity of using composite likelihood
methods both for making inference and for model selection purposes. The exten-
sion of the pseudolikelihood framework to model selection is natural, and in some
sense obvious, however, to our concern, it is not explicitly considered so far in the
literature.

In the sequel, we shall introduce a predictive model selection procedure based
on the following generalization of the Kullback-Leibler divergence.

Definition 2. Given two density functions ¢g(z) and h(z) for a random variable Z,
the associated composite Kullback-Leibler information is defined by the non-negative
quantity

Ie(9,h) = Eg(z{log(CLy(2)/ CLA(2))} = Y Eyz){log 9(Z € Ai)—log h(Z € A;) bwy,
icl

where the expectation is with respect to g(z), log CLy(Z) = >, wilogg(Z € A;)
and log CL,(Z) = >, wilogh(Z € A;).

Note that I.(g,h) is a linear combination of the ordinary Kullback-Leibler diver-
gences, corresponding to each likelihood object forming the composite likelihood
function. Moreover, I.(g,h) is a key quantity in order to asses the properties of
composite likelihood inferential and model selection procedures, under an possibly
misspecified statistical model.

In this context, we focus on a new information criterion, defined as a first order
unbiased estimator for a target quantity related to the expected composite Kullback-
Liebler information between the true unknown density of a potential future obser-
vation and the corresponding estimated density. Since this criterion is, in some
sense, a composite likelihood generalization of the TIC, and its derivation follows a
standard procedure, we shall present only the key steps. Let us consider the sample
Y = (Y3,...,Y,) and a parametric statistical model specified by the family of density
functions { fly;0),y € V,0 € 0}, with respect to a common dominating measure.
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There could be several plausible statistical models for Y, which may or may not
contain the true g(y). We would like to choose the model which offers the most
satisfactory predictive description for the observed data y. More precisely, let Z be
a future random variable, defined as an independent copy of Y, we are interested
in the choice of the “best” model for forecasting Z, given a realization of Y, using
composite likelihood methods.

As for the TIC, model selection can be approached on the basis of the expected
composite Kullback-Leibler information between the true density g(z) and the esti-
mated density fA'(z) = f(z; §MCL(Y)), under the assumed statistical model. Namely,
we select the model which minimizes Ey,{I.(g, F)} or, analogously, which maxi-
mizes the theoretical target quantity

30(97 f) = Z Eg(y) [Eg(z){log f(Z € Ai; é\MCL(Y))}]wi’ (2)

icl

called the expected predictive composite loglikelihood

Since the computation of (2) requires the knowledge of the true density g(z),
and then it is in fact unfeasible, model selection may be approached by maximizing
a selection statistic defined as a suitable estimator for ¢(g, f). As proved in the
Appendix, under standard regularity conditions, the following information criterion
is based on a selection statistic, which is a first order unbiased estimator for (g, f).

Definition 3. Let us consider a random sample Y, as previously defined. The
composite likelihood information criterion (CLIC) selects the model maximizing

VY f) = U(V; f) + te{ J(V)H(Y) ™'}, (3)
where

W(Y; f) =log CLy(Omer(Y); V) = Y log f(V € A fycr(Y)w;,
el

and J(Y) and H(Y') are suitable consistent, first order unbiased, estimators for J(6)
and H (), respectively, based on Y.

Note that the selection statistics (3) corresponds to a modification of the estimated
composite loglikelihood ¥(Y; f), obtained by adding penalty term as for TIC in
the ordinary likelihood framework. Moreover, it easy to see that, in the particular
case when the composite likelihood is in fact the likelihood function, the composite
Kullback-Leibler divergence I.(g, fA ) equals the usual Kullback-Leibler divergence.
Thus, as obtained in the following example, part (i), the CLIC equals the TIC and,
when the model is true or it is a good approximation to the “truth”, it coincide with
the AIC, namely the Akaike’s information criterion (Akaike 1973). In the following
section, we shall consider the CLIC based on the selection statistic —W¢(Y; f), which
is in accordance with the usual representation chosen for the AIC and the TIC.
The CLIC is a generalized information criterion, which is useful whenever the

computation of the likelihood, and of the penalty term given by the TIC, is too
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computationally demanding, and then not convenient or even possible. Furthermore,
it is worthwhile to emphasize that, when the model is the true one, the CLIC does not
usually coincide with a sort of composite-AIC, that is ¥(Y; f) —d, unless we consider
the “full” likelihood itself. In general, since the composite likelihood differs from the
ordinary likelihood function, a composite likelihood analogous of the well-known
information identity does not usually hold and the penalty term tr{J(Y)H(Y) '}
is expected to differ from d.

Example (continued)

(i)

(iii)

The CLIC for the “full” likelihood is based on
V(Y f) = log f(V; 0uu(Y)) + tr{ J(Y)H(Y) ™'}, (4)

where J(Y) and H(Y) are convenient estimators for .J(6) = var g, {Vlog f(Y;
0)} and H(0) = Eg(y){V2 log f(Y;0)}, respectively; ¢/9\ML(Y) is the maximum
likelihood estimator. In this case the CLIC corresponds to the TIC. Moreover,

if we (optimistically) assume that the model is correctly specified for Y, then
J(0) = —H(#) and (4) simplifies to the familiar AIC

V(Y f) = log f(Y; O (Y) - d.
The CLIC for the pairwise likelihood is based on

(Y5 f) = log f(Vy, Yis Oupr(Y))w(j e + tr{J(Y)H(Y) '},

j<k

where é\MpL (Y) is the maximum pairwise likelihood estimator and T (Y), H (Y)
estimate, respectively,

J(0) =D covy){V log f (Y}, Yi;0), V1og £ (Y, Yims 0) b iy wim)»

i<kl<m
H(0) =) By {V?1og F(Y, Yi: 0) b 1.
i<k
The CLIC for the Besag’s pseudolikelihood is based on
V(Y f) = log f(V;|Y(_j): OmpprL(Y))w; + tr{ J(V)H(Y) ™'},
j=1

where é\MBpL(Y) is the maximum Besag’s pseudolikelihood estimator and J(Y),
H(Y) estimate, respectively,

J(0) =Y covyy{Vieg f(Y;[Y(_j);0), Viog f(YVil|Y(_g); 0) }wjwy,
Jj=1k=1

H(0) =) Ey){V*log f(Y;]Y(_5);0)}w;.
j=1
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Finally, we briefly mention two further important points. The first one regards
the choice of the weights in the composite likelihood. Typically, with regard to
the pairwise likelihood, the weights are chosen in order to cut off the pairs of not-
neighboring observations, which should be less informative. The simpler weighting
strategy is then to estimate the correlation range and put equal to zero all the
pairs at a distance larger than such a range. A more accurate approach consists in
choosing the pairs under some optimality criterion (see, for example, Nott & Rydén
(1999)).

The second one concerns the efficient estimation of J(#) and H(#). The latter
does not pose difficulties and, under standard regularity conditions, a consistent esti-
mator is H(Oaer(Y)) = VZlog CL(Oyicr (Y); V). Much more complex is to estimate
J(0), since its intuitive empirical estimate J(0;y) = Vlog PL(6;y)V log PL(6;y)”
vanishes when evaluated at the maximum composite likelihood estimate. In prac-
tice, the estimation of J(#) is performed by means of different strategies, depending
on the selection problem taken into account and on the particular composite likeli-
hood which is considered.

In Section 3.1, we shall analyze discrete values time series data using the pairwise
likelihood and J(#) is suitably estimated by means of a reuse sampling procedure,
called window subsampling (Carlstein 1986, Hall & Jing 1996, Garcia-Soidan & Hall
1997, Heagerty & Lele 1998, Lumley & Heagerty 1999). We briefly restore the basic
procedure behind window subsampling strategies, in the case of time series data
y = (y1,...,yn). More precisely, the method is based on the following steps: (i)

consider a set of overlapping subseries nyrm = (Yi, -+ Yitm—1) of dimension m;
(ii) compute the empirical estimators J(Oypr;yi™™) related to each subseries; (iii)
take their average, with a suitable scale transformation accounting for the subseries

dimension, giving the window subsampling estimate

n—m-+1
=1

Heagerty & Lumley (2000) show that the optimal dimension m for the subwindows
is Cn'/3, where C is a constant, with suggested values between 4 and 8, which
depends on the strength of the dependence within the data.

3 Applications

In this section, we shall present two applications of composite likelihood methods,
with the aim of emphasizing some interesting features of these pseudolikelihood-
based inferential procedures. The first application involves simulations related to
time series of counts, modelled by dynamic generalized linear models, in the presence
of overdispersion. The second one concerns the analysis of the well-known the Old
Faithful geyser dataset (Azzalini & Bowman 1990).

3.1 Testing overdispersion in dynamic generalized linear models

When modelling counts data, usually by means of the Poisson distribution, a com-
mon problem to be faced is that of accounting for potential overdispersion (McCullagh
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& Nelder 1989). In this context a standard overdispersion model is that one obtained
by replacing the Poisson distribution with the negative binomial one and a simple
procedure for testing the presence of overdispersion is to compare these two alterna-
tive nested models, using for example the AIC (Lindsey 1999). Here, by means of a
simulation study, we discuss the use of composite likelihood methods for testing the
presence of overdispersion with regard to time series count data. Since, in this case,
the ordinary likelihood-based methods are not feasible, we use the CLIC to compare
two dynamic generalized linear models (West & Harrison 1997) based, respectively,
on the Poisson and on the negative binomial distribution.

A dynamic generalized linear models may be viewed as a state space model, that
is as double stochastic process {Y;, X;};>1, where the observable random variables
{Y;}i>1 are assumed to be conditionally independent given a hidden Markov pro-
cess {X;}i>1, describing the latent unobserved evolution of the system. Hereafter,
f(z1;0) and f(x;|z;—1;0), i > 1, are, respectively, the initial and the transition
probability (density) functions of the latent Markov process, while f(y;|z;;0), 7> 1,
is the conditional probability (density) function of Y; given X; = x;, which does not
depend on i; # € © C RY indicates, as usual, the unknown parameter.

In this framework, a simple model for describing the time series count data y =
(Y1, - - ., Yn) is the Poisson-AR(1) model, where the latent process is an AR(1) process
and the observations are conditionally independent, following a Poisson distribution.
More precisely,

Yi|X; = z; ~ Po(exp{x;}), i=1,...,n,
Xi=XX_1+¢, 1=2,...,n,

with €; ~ N(0,02), i = 1,...,n, independent random variables. We assume |A| < 1,
so that the latent AR(1) model is indeed stationary and we set X7 ~ N(0,0%/(1 —
A2)).

An alternative model, useful for describing overdispersion, is obtained by sub-
stituting the Poisson distribution with a negative binomial one, that is by assuming
that Y;|X; = x;, ¢ = 1,...,n, follows a negative binomial distribution with mean
w; = exp{z;} and an additional size parameter x > 0. Thus, adopting a suitable
parameterization, we state

C(v™' ui) [ mp \Y 1 e
| = » i =0,1,...,
f(yilzs; k) T(r Dyl \1+ rp 1+ Kpy v

for i =1,...,n, where I'(-) is the gamma function. Note that these two models are
nested, since the second one tends to the first one as K — 0. The comparison between
these two models could be of practical interest, since the presence of the latent AR(1)
process, in the Poisson-based model, may not give a complete description of data
overdispersion.

Although the above models are appealing, their analysis using standard likeli-
hood inference and model selection procedures could be problematic, since the com-
putation of the likelihood function needs the solution of the following n-dimensional
intractable integral

L(0;y) = /Hf(yzkﬂu 0)f(xi|xi—1;0)dey - - - day,
=1



8 Firstname Lastname

where f(z1]xo;0) = f(z1;0). A known solution to this problem involves compu-
tational intensive, simulation-based, approximations (see, for example, Durbin &
Koopman (2001) and references therein). In this example, we perform a different
strategy based on a suitable composite likelihood and, in particular, we use the
CLIC for deciding which of the two alternative models is more suited for the data
under examination. We consider the pairwise likelihood formed by taking the n — 1
subsequent pairs of observations obtained from data y = (y1,...,yn)

PL(6;y) = [ [ //f(yz|$u 0)f(Yi-1lzi-1;0) f(@i|wi-1;0) f(2i-1;0)dzidair. (5)
i=2

Note that the evaluation of the n — 1 two-dimensional intractable integrals, defining
PL(#;y), is much simpler than the computation of the full likelihood.

In the next lines, we present a simulation study in order to assess the perfor-
mance of the maximum pairwise likelihood estimators and to test the usefulness of
model selection based on the CLIC. The n — 1 integrals involved in the pairwise
likelihood (5) are computed by means of standard numerical approximations via
deterministic quadrature rules, such as the Gauss-Hermite procedure. In the first
simulation, we generate 500 datasets with n = 300 observations from the Poisson-
AR(1) model with A = 0.35 and o = 1. The 299 two-dimensional integrals forming
the pairwise likelihood (5) are approximated by means of a double Gauss-Hermite
quadrature with 10 nodes for each dimension, that is a total amount of 100 nodes.
Using the adaptive quadrature gives similar results. The sample means of the simu-
lated pairwise likelihood estimators for A and o are, respectively, 0.34996 and 0.9820,
with sample standard deviations 0.1128 and 0.0831. We repeat the simulation with
A = —0.5 and ¢ = 1.2. We obtain that the sample means of the simulated pair-
wise likelihood estimators for A and o are, respectively, —0.4922 and 1.1397, with
sample standard deviations 0.0671 and 0.0897. In both cases the maximum pairwise
likelihood estimators show a slight tendency to underestimate o.

The second simulation study deals with model selection. We generate 100
datasets with n = 300 observations from the negative binomial-AR(1) model with
A = 0.35, 0 = 0.5 and alternative values for the size parameter x, namely 1,1/2,1/4,
1/8,0. Here, k = 0 means that the simulations are in fact from the Poisson-AR(1)
model. We compare the negative binomial-AR(1) and the Poisson-AR(1) models
using the CLIC. The matrix J(6) is estimated with a suitable window subsampling
procedure involving 251 overlapped subseries of observations of dimension m = 50.
Table 1 (a) gives the frequencies of correct model selection over the 100 simulated
datasets, for different values for k. We do not report the results for x > 1, since
in this case the CLIC indicates almost always the true model, that is the nega-
tive binomial one. These results give a preliminary justification for using composite
likelihood methods for model selection purposes.

Note that, as expected, whenever k approaches to zero, the CLIC tends to choose
more often the wrong model, since there is a potential slight overdispersion in the
observations and then the two models provide an almost equivalent data description,
as detected by the composite Kullback-Liebler divergence. When & is less than 1/4,
the observed values of the selection statistics for the two alternative models are
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(a) (b)
k1 1/2 1/4 1/8 0 k 1 1/2 1/4 1/8 0
100 90 64 59 55 99 82 64 45 583

Table 1: Frequencies of correct model selection over the 100 simulated datasets with
k=1,1/2,1/4,1/8,0 and (a) A = 0.35, 0 = 0.5 (b) A = —0.6, 0 = 0.7; the case
x = 0 indicates a true Poisson-AR(1) model.

usually very closed. This is confirmed by the boxplots of Figure 1 (a), where we
summarize the observed differences between the CLIC selection statistics for the
two alternative models. In particular, for K = 1/8,0, the differences are usually

° :

: o

g ; ; 8
° =1 i

P . : ¢
: : ° | —5
| — H — —— | %

Figure 1: Boxplots of the observed differences between the CLIC selection statis-
tics for the two alternative models, based on the 100 simulated datasets with
k=1,1/2,1/4,1/8,0 and (a) A =0.35, 0 = 0.5 (b) A = —0.6, 0 = 0.7.

negligible, since the values of the selection statistics are around 900.
We repeat the simulation study with A = —0.6, 0 = 0.7and x = 1,1/2,1/4,1/8,0.
In this case, as presented in Table 1 (b) and Figure 1 (b), we obtain similar results.

3.2 The Old Faithful geyser data

Here we present an application to the Old Faithful geyser dataset discussed in Az-
zalini & Bowman (1990), with the aim of comparing binary Markov and hidden
Markov models. In this context, we shall show that composite likelihood methods,
based on the triplewise likelihood, lead to good inferential conclusions. However, for
model selection purposes, the associated CLIC fails to distinguish between the two
alternative models.

The data consists in the time series of the duration of the successive eruptions at
the Old Faithful geyser in the Yellowstone National Park in the period from 1 to 15
August 1985. Azzalini & Bowman (1990) and MacDonald & Zucchini (1997, §4.2)
consider a binary version of this data, described as short or long eruptions, obtained
by thresholding the time series at 3 minutes. Let us label the short and the long
eruptions with the states 0 and 1, respectively. The random variables N,, r = 0,1,
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indicate the corresponding number of observed eruptions. We have that Ng = 105
and N1 = 194; moreover, the one-step observed transition matrix is

Noo No1) (0 104
(Nm N11> N (105 89)’
where N, r,s = 0,1, in the number of one-step transition from state r to state s.
Note that no transition from state 0 to itself is occurred. For the models discussed
in the sequel, it is also relevant to consider the two-steps transitions. Since Ngg = 0,
only five triplets were observed. Being N,g, r,s,t = 0,1, the number of two-step
transitions from state r to state s and then to state ¢, the non-null observations are:
N010 == 69, N110 = 35, N011 = 35, N101 =104 and N111 = 54.

In Azzalini & Bowman (1990), the time series is first analyzed by a first-order
Markov chain model. Then, since this model does not fit very well the autocorrela-
tion function, they move to a second-order Markov chain model, which seems more
plausible. The same data are also analyzed by MacDonald & Zucchini (1997, §4.2).
They consider some hidden Markow models based on the binomial distribution and
compare them with the Markov chain models of Azzalini & Bowman (1990), using
the AIC and the BIC, namely the Bayesian information criterion (Schwarz 1978).
They conclude, see Table 2 (a), that both the AIC and the BIC indicate that the
model for Old Faithful geyser data is the second-order Markov chain, even if the
two-state binomial hidden Markov model is quite similar in performance. In our
opinion, this conclusion is questionable, since the observed value of the AIC and of
the BIC selection statistics are very closed for the two alternative models. Indeed,

by removing the last observation, we obtain that both the AIC and the BIC prefer
the two-state hidden Markov model, as reported in Table 2 (b).

(a) (b)
Model  AIC BIC Model  AIC BIC
MC2 262.24 277.04 MC2  260.37 275.17
HMM  262.62 277.42 HMM 260.22 275.02

Table 2: Old Faithful geyser dataset. Values for the AIC and the BIC for the second-
order Markov chain (MC2) and the two-state hidden Markov model (HMM) based
(a) on all the 299 observations and (b) on the observations after removing the last
one.

Let us start by recalling that an hidden Markov model indicates a state space
model {Y;, X;}i>1, with a discrete-valued latent process. More precisely, {X;}i>1 is
an hidden Markov chain. We shall assume that this latent Markov chain is stationary
and irreducible, with w € N states. Thus, the bivariate process {Y;, X;};>1 is itself
stationary. The likelihood function for the unknown parameter 6, based on the
available observations y = (y1,...,Yn), iS

n

LOy) =Y > f@)f @il 0) [ £ (ilwioa; 0) f (wilass 0), (6)

1=2
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where the summations are over the w states and the initial probability function
f(x1) is not necessarily that related to the stationary distribution of the chain
(Leroux 1992). Since the evaluation of (6) requires O(w™) computations, MacDonald
& Zucchini (1997) rearrange the terms in (6) in order to reduce significantly the com-
putational burden. However, this rearrangement does not seem useful, if one desires
to compute likelihood quantities such as the derivatives of function log L(6;y), with
respect to 6, and their expectations with respect to the true unknown distribution,
which are required for the ordinary likelihood-based TIC.

An alternative to the full likelihood may be found within the composite likelihood
family. Again, the simpler useful composite likelihood is the pairwise likelihood,
based on the pairs of subsequent observations,

PLOy) =[] Y. f(@io1;0)f (@ilwio1;0)f (yilawi1;0) f (yilwi; 0),

1=2T;—1,%4

where the summation is over the pairs of subsequent latent observations. However,
this is not a good candidate for our inferential and model selection problem, since,
for second-order Markov chains, the composite likelihood equation has an infinity
number of solutions. Then, we have to move to the, slightly more complex, triplet-
wise likelihood. For a hidden Markow model, the tripletwise likelihood, based on
the triplets of subsequent observations, is given by

TLOy) = [ Y. flwiowix,wi0)f (Wialwi2:0)f (yilwi1;0)f (yileis 0),

1=3 Ti—2,Li—1,%;

where f(z;_2,2;—1,2;;0) is the joint probability function of (X;_o, X;_1,X;) and
the summation is over the triplets of subsequent latent observations. When dealing
with binary data, as with the dataset under discussion, if we assume stationarity,
the tripletwise likelihood looks like

TLOy) = [ pr(Via=rYig=sY=0)""
r,s,t€{0,1}

where N,q, r,s,t = 0,1, defined above, is the number of realized events (Y;_o =
r,Yio1 =s,Y; =t), 1 > 2. Note that, in this case, TL(0;y) consists in eight terms.
However, since in the Old Faithful geyser dataset there are no transitions from state
0 to itself, in fact only five terms enter in the function.

In the following, we shall present the two models under competition and we
compute the corresponding tripletwise likelihoods. We implicitly assume that the
assumptions required for asymptotic unbiasedness of the CLIC, see the Appendix,
are fulfilled. In fact, the consistency and asymptotic normality of the tripletwise
likelihood can be proved using the framework suggested in Renard (2002, §3.2),
whose assumptions are here satisfied because the Markov and the hidden Markov
models are supposed to be stationary.

The first model is a second-order two-states Markov chain. In order to compute
the probabilities associated with the triplets (Y;_o,Y;—1,Y;), @ > 2, is convenient to
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consider the transition probability matrix whose entries are A (g 4s) = pr(Yi—1 =
Sa}/i - TD/Z'*Q — ta}/ifl — 8) = pr(Y; — TD/ifl — 57}/1'72 - t)a T’,S,t = Oa 17 1> 25

1-k k£ O 0
MC2 0 0 b 1-0b
A - 0 1 0 0 ’

0 0 ¢ 1-—c

with b,¢ € (0,1) unknown parameters and k is any real number in (0,1). The

presence of this arbitrary value k is not relevant since, as noted by MacDonald &

Zucchini (1997, §4.2), the pair (0,0) can be disregarded without loss of information.
The associated bivariate stationary distribution is

™= e (e aln)

and then the joint probabilities for the five relevant triplets are, for i > 2,

pr(Y;2=0,Y; 1 =1Y;,=0) = ﬁ?—b)’
pr(Yi o =0,Y;, 1 =1Y;=1) = %7
pr(Y;2=1Y,1=0,Y;=1) = m7

and pr(Y;— 2o =1,Y;1=1,Y;=0) =pr(Y;—2 =0,Y;—1 = 1,Y; = 1). Since 6 = (b, ¢),
the tripletwise loglikelihood is

log TL(b, ¢;y) = —(N — 2)log(2¢ + 1 — b) + Noig log(cb) + (No11 + Ni1o) log(c(1 — b))
+ Nip1 IOgC + Ni11 log((l — b)(l — C))

Here the maximum tripletwise likelihood estimates are found to be EMTL = 0.6634,
cyvrr = 0.3932, which equal the maximum likelihood estimates. Graphical inspec-
tion from Figure 2 shows, as expected, that the ordinary loglikelihood has a more
peaked form; indeed, the contour plots show different gradient directions. The max-
imal value of the tripletwise loglikelihood is log TL(basrr, crrr;y) = —451.5889.
It is worthwhile to emphasize that the maximum tripletwise likelihood estimates
allow for the equality between the estimated and the observed frequencies for the
five triplets of potential observations. Namely, we have that

pr(Yio=0,Y,_1=1Y,=0) =

and similarly for the remaining triplets. Then, we can say that this model reaches
a sort of “best” possible fitting, as detected by the tripletwise likelihood.
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log-full likelihood log-tripletwise likelihood

Figure 2: Contour plots of the ordinary loglikelihood (left) and of the tripletwise
loglikelihood (right) for the second order Markov chains model fitted to the Old
Faithful geyser data.

The second model is a two-states hidden Markov model. The hidden process
{Xi}i>1 is a Markov chain with one-step transition probabilities

0 1
F_<a 1—a>’

with @ € (0,1) unknown. The conditional probabilities for the observations given
the latent variables are

pr(Y; =y|X; =0)=p(1—p)'"Y, y=0,1,
pr(Y1 = HXZ = 1) = 1,

for i > 1, with p € (0,1) an unknown parameter. The relevant triplet probabilities
are, for ¢ > 2,

1— 2CL2
Pr(Yz‘—2:07Yi—1:17Yi:0):%v
1—p)a®+ (1 —p)(1—a)a
pr(Yiig = 0., = 1Y, = 1) = 2L =¢) 1(+ap)( Ja,
1—-pa
pr(Yis = 1Y =0,y = 1) = L227
_ p*a® +2p(1 —a)a+ pa+ (1 — a)?

pr(Yio=1Y, 1 =1Y,=1)= T+a
and pr(Y;—2 =1,Y;-1 = 1,Y; =0) = pr(Y;—2 = 0,Y;-1 = 1,Y; = 1). Here 6 = (a,p)
and the maximum tripletwise likelihood estimates are ay;r;, = 0.8948, pyrr, =
0.2584, while the maximum likelihood estimates, thought not the same, are very
closed; that is, ay;;, = 0.827, pasr, = 0.225. Graphical inspection, from Figure 3, of
the contour plots of the ordinary loglikelihood and of the tripletwise loglikelihood
leads to conclusions similar to those emphasized in the previous case.
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log-full likelihood log-tripletwise likelihood
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0.4
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Figure 3: Contour plots of the ordinary loglikelihood (left) and of the tripletwise
loglikelihood (right) for the hidden Markov model fitted to the Old Faithful geyser
data.

Moreover, we find that the maximal value of the tripletwise loglikelihood, which
corresponds to log TL(ayrr, pyrr;y) = —451.5889, coincides with that one ob-
tained for the second-order Markov chain. This is a consequence of the perfect
match between the estimated and the observed frequencies for the five triplets of
potential observations, which holds for the two-states hidden Markov model as well.
Indeed, also the computation, using Monte Carlo simulation, of the bias correction
term tr{J(Y)H(Y)~'} specifying the CLIC, gives the same approximated value 4.65
for the two models. Thus, in this case, the tripletwise likelihood, though useful for
inferential purposes, does not discriminate between these two models. The potential
drawback of this composite likelihood is related to the fact that the triplet-based
likelihood-type objects involved in the computation do not detect the high-order
structural differences between the estimated second-order Markov chain and the es-
timated two-states hidden Markov model. This conclusion emphasizes that a careful
choice of the composite likelihood is necessary, both for inference and model selec-
tion, with the aim of balancing the improved computational facilities and the reduced
descriptive ability, characterizing pseudolikelihood procedures.

A Appendix

We aim to justify the first order unbiasedness of the CLIC. Since the proof is very
simple, and in fact similar to that considered for the TIC based on ordinary likeli-
hood, we shall emphasize only some key issues, useful for generalizing the standard
approach to the composite likelihood framework.

Recalling the notation and the definitions introduced in the previous section, we
set the following assumptions.

A. The parametric space © is a compact subset of R¢, d > 1, and, for every
fixed y € Y, the composite likelihood function is two times differentiable with
continuity, with respect to 6.
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B. The maximum composite likelihood estimator fyicy,(Y) is defined as a solution
to the composite likelihood equation (1) and there exist a vector 6, € int(©)
such that, exactly or with an error term negligible as n — 400,

C. The maximum composite likelihood estimator é\MCL(Y) is consistent, that is
Ovcn(Y) = 0. + 0p(1), and asymptotically normal distributed, as n — +o0,
with a suitable asymptotic covariance matrix, as indicated in Section 2.

Note that the first two assumptions correspond to the basic regularity conditions
for the asymptotic properties of maximum likelihood, and in general maximum
composite likelihood, estimators under a model which could be misspecified for Y
(White 1994). The vector 0, is a pseudo-true parameter value, defined as a value
in int(O) such that the composite Kullback-Leibler divergence between g(y) and
f(y;0) is minimal. If the true distribution belong to the working family of distri-
butions, the model is correctly specified for Y, namely g(y) = f(y;00), for some
0o € int(©). In this particular case, 6y is the true parameter value. With regard to
the third assumption, in order to prove the asymptotic normality of Oyicr(Y), we
usually require that

V21og CL(6,;Y) = Eg(y){V2 log CL(6+;Y)} + op(n).
Then, the following results hold.

Lemma 1. Under the assumptions A-C, we have that

P9, ) = By log CL(.; Y )} + 5 (T (0. H(8.) ™} + (1),

Lemma 2. Under the assumptions A-C, we have that
1 _
By {9 (Y; f)} = By, {log CL(0.;Y)} — 3 tr{J(0,)H(0,) "} + o(1).

The proof is omitted, since, under the above assumptions, it is a natural generaliza-
tion to composite likelihood of that one considered for the ordinary likelihood setting
(Burnham & Anderson 2002, §7.2). Using the previous lemmas, we can easily prove
that the selection statistic (3), defining the CLIC, is a first order unbiased estimator
for the expected predictive composite loglikelihood (2).
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