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Robust Tehniques for Measurement ErrorCorretion in Case-Control Studies: A Re-view
A. GuoloDepartment of Statistial SienesUniversity of PaduaItaly
Abstrat: Measurement error a�eting the independent variables inregression models is a ommon problem in many sienti� areas. Itis well known that the impliations of ignoring measurement errors ininferential proedures may be substantial, often turning out in unreli-able results. Many di�erent measurement error orretion tehniqueshave been suggested in literature sine the 80's. Most of them requiremany assumptions on the involved variables to be satis�ed. However,it may be usually very hard to hek whether these assumptions aresatis�ed, mainly beause of the lak of information about the unob-servable and mismeasured phenomenon. Thus, alternatives based onweaker assumptions on the variables may be preferable, in that they of-fer a gain in robustness of results. In this paper, we provide a review ofrobust tehniques to orret for measurement errors a�eting the ovari-ates. Attention is paid to methods whih share properties of robustnessagainst misspei�ations of relationships between variables. Tehniquesare grouped aording to the kind of underlying modeling assumptionsand inferential methods. Details about the tehniques are given andtheir appliability is disussed. The basi framework is the epidemiolog-ial setting, where literature about the measurement error phenomenonis very substantial. The fous will be mainly on ase-ontrol studies.Keywords: ase-ontrol study, empirial likelihood, estimating equa-tion, kernel regression, logisti regression, measurement error, normalmixture, quasi-likelihood
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2 A. Guolo1 IntrodutionMeasurement error is a widely present problem in many sienti� areas. Inpartiular, it is a ommonplae in observational studies, suh as those arriedout in environmental epidemiology (Zeger et al., 2000). Erroneous measure-ments are due to di�erent reasons, the most obvious being the inauray ofthe instruments. Other examples inlude high osts of exat measures, the sub-jetive nature of some variables, suh as self-reported information and intrinsibiologial variability. Measurement error is responsible for non-negligible infer-ene problems if it is not orreted for (Armstrong, 2003). In partiular, it hasbeen long reognized that measurement error an bias the estimates. Furthere�ets are unreliable overage level of on�dene intervals and redued powerof tests.A large number of methods aiming to orret for measurement error havebeen proposed in literature sine the 80's. They di�er aording to the as-sumptions about the distribution of the unobserved variable, to the availabil-ity of additional data about the unobserved variable and to the theoretialbakground of the approah, whih may be parametri or nonparametri. Adetailed review is Carroll et al. (2006). Previously, a review of measurementerror orretion tehniques in ase-ontrol studies, when extra information isavailable, has been proposed by Th�urigen et al. (2000). The review of teh-niques we provide here di�ers from the one by Th�urigen et al. (2000) in thatthe fous is on methods whih share the property of being robust against mis-spei�ations of the relationships between variables. Most of these tehniqueshave been proposed in literature during the last few years and a omprehen-sive overview of them is not available yet, to the best of our knowledge. Theperformane of these tehniques in orreting for measurement errors has not



Setion 2 Notation 3been deeply investigated in appliations, although situations where the avail-ability of robust methods would be preferable arise very often. The mostommon situation is avoiding estimators of parameters to be inonsistent, asit may happen when the assumptions underlying nonrobust methods are notsatis�ed, at least approximately. To stimulate the use and the developmentof robust tehniques to orret for measurement error a�eting the ovariates,we provide a review of the methods, through a lassi�ation made up on theirunderlying theory. We do not onsider results about robustness against lever-age points or outliers, whih both are rare in this literature. We mainly referto the epidemiologial setting and to ase-ontrol studies.The paper is organized as follows. In Setion 2 we de�ne the frameworkwhih we fous on and the orresponding notation we will adopt thereafter.Robust measurement error orretion tehniques are desribed in Setion 3,following a lassi�ation into groups whih share a similar theoretial approah.A disussion about the appliability of the methods is given in Setion 4.2 NotationSuppose that ase-ontrol data are available. Let Y be the response vari-able. In the ase-ontrol setting we fous on, this is the ase-ontrol status,or the disease status, indiator. Let X be the ovariates whih may be notdiretly observed. In epidemiologial studies, they typially represent risk fa-tors ontributing to the presene of the disease. Instead ofX, the mismeasuredvariables W are observed. These are usually alled proxy variables. It may beassumed that other variables, Z, an be measured without error.In measurement error literature, we distinguish di�erent models relatingthe variables. The model relating the variable Y to the unobserved variables



4 A. GuoloX and the error-free variables Z is referred to as the disease model. Its densityis indiated by fY jXZ(yjx; z; �). In ase-ontrol studies this model is typiallythe logisti regression model. The interest usually fouses on the vetor ofparameters �, whih is the vetor of relative risks assoiated with a unit hangein the exposure to the risk fators X.The measurement error proess is spei�ed by modelling the relationshipbetween X and W , possibly depending on Z. It is alled measurement errormodel. The simplest measurement error model is the lassial error modelW =X+U , where U has mean zero and variane equal to �2U and is independent ofX. The lassial measurement error model is an unbiased and additive errormodel, suh that E[W jX℄ = X. An alternative model is the Berkson errormodel, whih typially arises in laboratory studies and experimental situationsin whih the observed variable is ontrolled for. The model relates X andW as X = W + U , where U has mean zero and variane equal to �2U and isindependent of W . In the Berkson model E[XjW ℄ = W and W is said to bean unbiased preditor of X.Di�erent types of measurement error an arise in pratie. An impor-tant distintion is made between di�erential and nondi�erential measure-ment errors. The error in W is nondi�erential if no additional informa-tion on Y is ontained in (W;X;Z) with respet to (X;Z). This meansthat the onditional distribution of Y given (W;X;Z), fY jWXZ(yjw; x; z; �),is the same than the distribution of Y given (X;Z), fY jXZ(yjx; z; �), that is,fY jWXZ(yjw; x; z; �) = fY jXZ(yjx; z; �). In this ase, W is said to be a surro-gate for X. When, instead, fY jWXZ(yjw; x; z; �) 6= fY jXZ(yjx; z; �), the erroris said to be di�erential.In appliations, many di�erent error soures an be enountered. This im-



Setion 2 Notation 5plies that both nondi�erential and di�erential errors, with lassial or Berksonomponents, an be de�ned. An aurate spei�ation of the error model,distinguishing between di�erential and nondi�erential errors with lassial orBerkson omponents, is ruial beause of the di�erent impats of the errors onthe inferential results and the di�erent available orretion tehniques. There-fore, a good identi�ation of the error model is important for the suessfulappliation of measurement error orretion tehniques (Heid et al., 2004).These tehniques an be roughly lassi�ed into two groups, aording totheir interpretation of the unobserved variables X. We de�ne a method tobe funtional if it makes no assumption on the unobserved variables X, thatis, they are modeled as unknown, nonrandom onstants (parameters). On theontrary, we de�ne a method to be strutural if it onsiders the X's to berandom variables. In this ase, the spei�ation of the distribution for the X'sis needed, possibly depending on Z. This gives rise to the exposure model,whose density is indiated by fXjZ(xjz; Æ).The simplest way to orret for measurement error is by adopting the so-alled regression alibration (RC, for short) method (Rosner et al., 1989, 1990;Carroll and Stefanski, 1990; Gleser, 1990). This is the most ommonly adoptedmethod to orret for measurement error in ovariates, mainly beause of thesimpliity of its appliability with existing softwares. The idea underlying themethod is the estimation of the regression of X on W and, possibly, Z onadditional data, that is, further data than the main study sample. Additionalinformation an be available in di�erent forms. For example, a subsample ofobservations from X an be reorded for a small group of subjets of the mainstudy sample. It originates the internal validation data set, from whih theso-alled gold standard measures of X are available. A ommon alternative



6 A. Guolois olleting repliation data, whih are repliates of the observations from X.They an be obtained by the same proess whih provides observations fromW .Aording to the idea underlying RC, the resulting preditions of X ob-tained by the regression of X on (W;Z) in the additional data set are thensubstituted to the unknown values of X in the disease model. After that,standard analysis an be run. RC often leads to onsistent or approximatelyonsistent estimators of the parameter of interest. However, it requires somehypotheses to be satis�ed, �rst of all that a linear homosedasti relationshipbetween X and W and, possibly, Z, holds. If this is not the ase, RC resultsould be quite misleading.Thus, alternative tehniques to orret for measurement error may bepreferable. An example is given by likelihood-based orretion tehniques,whih have the advantage of ensuring good properties of the orrespondingestimators, as, for example, eÆieny and optimality, although at the notableprie of a bigger omputational burden. The appliation of likelihood teh-niques requires the parametri spei�ation of the distribution for the unob-served variable X, that is, the exposure model, together with the spei�ationof the disease model and of the measurement error model previously de�ned.Let a lassial struture for measurement error hold and let fW jXZ(wjx; z; )be the density assoiated with this model. If n1 is the number of subjets onwhih observations (yi; wi; zi), i = 1; : : : ; n1, from the variables (Y;W;Z) arereorded, the likelihood is given by integrating over the true and unobservedXL(�; y; w; z) = n1Yi=1 Z fY jXZ(yijxi; zi; �)fW jXZ(wijxi; zi; )fXjZ(xijzi; Æ)dxi; (1)where � = (�; ; Æ)T. If the Berkson error model holds in plae of the lassial



Setion 2 Notation 7one, then the likelihood funtion for � is given byL(�; y; w; z) = n1Yi=1 Z fY jXZ(yijxi; zi; �)fXjWZ(xijwi; zi; )fW jZ(wijzi; Æ)dxi; (2)whih an be simpli�ed toL(�; y; w; z) = n1Yi=1 Z fY jXZ(yijxi; zi; �)fXjWZ(xijwi; zi; )dxi; (3)if we onsider that fW jZ(wjz; Æ) arries no information about the interest pa-rameter � and does not depend on X. The integrals in (1) and (3) are replaedby a sum if X is a disrete random variable.Often additional information about the measurement error distribution isneessary for parameters in (1) and (3) to be identi�able. Suh additionalinformation may be in the form of validation data or repliates. Supposethat internal validation data are available. Let n2 be the dimension of theinternal validation data set, in whih we observe (yi; xi; zi), i = 1; : : : ; n2, from(Y;X; Z). To take aount of this, the likelihood in (1) is re-expressed asfollowsL(�; y; w; z) = n1Yi=1 Z fY jXZ(yijxi; zi; �)fW jXZ(wijxi; zi; )fXjZ(xijzi; Æ)dxin2Yi=1 fY jXZ(yijxi; zi; �)fW jXZ(wijxi; zi; )fXjZ(xijzi; Æ);while the one in (3) is re-expressed as followsL(�; y; w; z) = n1Yi=1 Z fY jXZ(yijxi; zi; �)fXjWZ(xijwi; zi; )dxi n2Yi=1 fY jXZ(yijxi; zi; �)fXjWZ(xijwi; zi; ):Similar modi�ations of the likelihood are de�ned to take aount of otheradditional data as, for example, external validation data or repliates(Higdonand Shafer, 2001),(Shafer, 2002).



8 A. Guolo3 Robust tehniquesAs outlined in Setion 2, a parametri approah requires the spei�ation ofsome models for all the involved variables. In partiular, the likelihood-basedapproah requires the exposure model to be spei�ed, whih is often diÆultbeause of the lak of observations from X. This implies that issues of modelmisspei�ation naturally arise. It is well known that model misspei�ationan result in inonsistent estimators of the model parameters (Carroll et al.,1998). Reently, Huang et al. (2006) suggest methods for diagnosing the ef-fets of model misspei�ation of the exposure distribution, by heking bothformally and empirially robustness properties. Alternatives to parametrimodeling whih retain good properties of eÆieny with respet to parametriinferene while reduing sensitivity to modeling assumptions on the variablesmay be preferable. Examples are exible-parametri modeling and semipara-metri modeling, whih are illustrated in Setion 3.1 and Setion 3.2. More-over, other solutions are provided by di�erent tehniques. We lassi�ed them inquasi-likelihood, estimating equations and empirial likelihood. Details aboutthese tehniques are given, respetevely, in Setion 3.3, Setion 3.4 and Se-tion 3.5. Robust tehniques whih annot be inluded in one of the previousgroups are illustrated in Setion 3.6.3.1 Flexible-parametri modeling methodsThe use of a parametri model with a high exibility in de�ning some om-ponents of the problem, suh as, for example, the exposure model, has theadvantage of being easily de�ned and making inferene retaining a high degreeof eÆieny if ompared to parametri inferene. The method is suggestedby Carroll et al. (1999b). These Authors propose to use a mixture of normal



Setion 3 Robust tehniques 9distributions as a exible spei�ation for a omponent of the problem. In par-tiular, they fous on linear models and hange-point Berkson models, withnondi�erential errors and use a mixture of normal distributions to model theunobservable ovariate X and the measurement error, respetively. The mix-ture distribution is inorporated into the likelihood funtion, thus summarizingdata ontribution for inferential proedures performed through a frequentistor a Bayesian approah. A Bayesian approah is adopted to obtain point es-timates and on�dene intervals for all parameters of interest, using Markovhain Monte Carlo (MCMC) for simulating from the posterior distribution ofthe parameters. The number of omponents in the normal mixture, indiatedby k, is also onsidered an unknown parameter. Aording to Carroll et al.(1999b), it an be estimated like the other parameters or it an be hosenthrough a sensitivity analysis, by evaluating how inferential results vary as afuntion of k. The �rst solution is adopted in the linear model, while the seondis used in the hange-point Berkson model. Simulation studies are performedto ompare the behaviour of the likelihood based on the mixture of normals tothe method of moments and the likelihood based on the normal distribution, interms of properties of the resulting estimators. Several sampling distributionsfor the unobservable ovariate X are assumed, as, for example, the log �2 dis-tribution, the normal distribution and the skew normal distribution. Resultsindiate that the mixture method an outperform the one based on the normaldistribution in terms of bias of the estimators, exept in situations where thedistribution of the unobservable ovariate is highly skewed, as, for example,when a log�2 distribution is assumed. As expeted, the method of momentsis the less satisfatory solution for a large lass of the assumed distributions,both in terms of bias and variane of the estimators.



10 A. GuoloAs Carroll et al. (1999b), also Carroll et al. (1999a) use a mixture of normaldistributions to model the exposure, with the aim of inreasing robustness tomodel misspei�ation. The di�erene is that the proposal by Carroll et al.(1999a) onsiders regression splines as a way to orret for measurement errors.The type of regression splines the Authors fous on depends on the onditionaldistribution of X given W . Moreover, the onditional distribution of X givenW is shown to depend on the marginal distribution ofX, under the assumptionof additive and normally distributed measurement error. The Authors proposeto model the distribution of X by a mixture of normal distributions, with anunknown number of omponents. The distribution of X is estimated by amodi�ed version of the Gibbs Sampling algorithm (Wasserman and Roeder,1997). To ensure parameter identi�ability, the measurement error variane isassumed to be known. If this is not the ase, as it usually happens in pratie,additional information is needed.The idea of using a mixture distribution is also adopted by Rihardson et al.(2002), within a Bayesian framework. The Authors fous on mixture modelswith a variable number of omponents for exibly modeling the distributionof X in Bayesian hierarhial models. This suggestion was given before inRihardson and Green (1997), who use MCMC methods based on the reversiblejump algorithm proposed by Green (1995). Rihardson et al. (2002) referto epidemiologial ase-ontrol studies, whih involve validation data. Thefous is mainly on the logisti disease model, where ovariates are a�etedby normal or lognormal lassial measurement errors. A key assumption ismeasurement error to be nondi�erential. The proposed method is a funtionalone, thus assuming that the X's are unknown parameters for whih a prior isneeded. This prior is given by a mixture of univariate normals with an unknown



Setion 3 Robust tehniques 11number of omponents, k. Treating k as being unknown and integrating overits posterior distribution when estimating regression parameters of interestenhanes the adaptivity of the mixture to heterogeneity in the underlyingdistribution of X. The prior distribution for k is hosen to be vague. Inpartiular, a uniform distribution over the range 1 � 30 is used. However,the Authors suggest that in pratie the mixture rarely uses more than tenomponents, so that k ould be de�ned on a smaller range without any loss ofexibility. Several simulation studies are performed to evaluate the inuene ofmisspei�ations of the prior distribution for X and to show the improvementof using a exible mixture distribution for X instead of a normal one.
In all the papers we foused on, the advantage of using exible parametrimodels is well outlined. It relies upon their simple appliability and the ro-bustness added to the analysis. However, a ruial point is the hoie of thenumber of mixture omponents. It an be �xed as suggested by Carroll et al.(1999b), although this is obviously a matter of subjetiveness, or it an be leftunde�ned, with the onsequent risk of overparametrising the model. If k isallowed to inrease too muh, so as, for example, when it grows with the sam-ple size (Roeder and Wasserman, 1997) the orresponding model may beomeuseless in pratie, making inferene results unreliable. In fat, usually thereis not information enough to allow the estimation of a large number of om-ponents. Thus, a modest value of k is more onvenient. Moreover, also undera small number of mixture omponents, if the resulting mixture distributionis not a good approximation of the real one, the estimators an be biased. Inall these ases a di�erent approah, suh as, for example, a semiparametriapproah, may be preferable.



12 A. Guolo3.2 Semiparametri analysisAn alternative to the exible parametri modeling is the semiparametri ap-proah. It represents a response to the sensitivity of modeling assumptions,although it an be sometimes hallenging to implement. The semiparametriapproah has the advantage of robustness, in that it does not require the spe-i�ation of the distribution of X and/or of W . However, it may lak eÆienywith respet to a full likelihood approah, if the parametri spei�ation ofthe model is approximately orret. This loss of eÆieny may be substantialeven for moderate sample sizesCarrollet al. (1998). Di�erent proposals in litera-ture suggest to perform a semiparametri analysis by allowing a nonparametrispei�ation of one or more omponents of the model, that is, the disease, themeasurement error and/or the exposure omponent.One of the �rst proposals of semiparametri analysis in measurement er-ror problems is the paper by Carroll and Wand (1991). It onerns logistiregression models, with nondi�erential errors on ovariates. A validation dataset is supposed to be available. No parametri assumption is made for thedistribution of the true and unobservable ovariate X or its surrogate W . TheAuthors develop an estimating algorithm, whih is based on a kernel regressionto approximate the likelihood, without modeling the distribution of X givenW . Their method provides a semiparametri estimate of the parameters ofthe disease model, together with an asymptotially normal limit distributionof the estimators and an estimated bandwidth of the kernel regression. Inde-pendently, Pepe and Fleming (1991) onsider a similar problem in the ase ofa disrete random variable X.The assumption underlying the proposal by Carroll and Wand (1991) andby Pepe and Fleming (1991) is that missingness of observations from X does



Setion 3 Robust tehniques 13not depend on the response Y . Robins et al. (1995) suggest a new lass of es-timators for the parameters of the disease model that remains onsistent andasymptotially normally distributed even when the probability that X is miss-ing depend on the observations from Y . The proedure requires a validationdata onsisting on observations from the X, the response variable Y and theerror-free variable Z, to be available. They are needed to nonparametriallyestimate the distribution of X, onditionally on Y and Z. In situation when anonparametri estimation of the distribution ofX given Z may be not pratiblebeause of the urse of dimensionality (Huber, 1985), that is, when the vetorof error-free ovariates Z inludes more than two ovariates, the estimatorsremains asymptotially unbiased and are omputationally simple. Moreover,under ertain onditions on Y and Z, the proposed lass of estimators ontainsestimators of the parameters whih are semiparametri eÆient in the sense ofBegun et al. (1983). Simulation studies performed with referene to a logistidisease model indiate that the estimators by Robins et al. (1995) is preferableto the one by Pepe and Fleming (1991), in terms of absolute relative eÆieny.Wang and Wang (1997) suggest a semiparametri orretion tehniqueagain based on kernel regression. The fous is on logisti regression mod-els with validation data available. The observations from X are thought tobe missing data in the main study sample, with a path of missingness whihdepends on (Y;W ) but not on X, that is, X is assumed to be missing at ran-dom (MAR). No distributional assumption is made on omponents suh asthe seletion probabilities of the validation data set or the probability densityof X onditionally on the other variables. The paper investigates two kernelestimation methods whih extend the proposals by Breslow and Cain (1988)and by Reilly and Pepe (1995) when (W;Z) are ontinuous. The proposal by



14 A. GuoloBreslow and Cain (1988) suggests the use of a pseudo-onditional likelihoodfuntion in a two-stage ase-ontrol study, so that at the seond stage someX's are observed in eah stratum lassi�ed by (Y;W ), where W is a ategor-ial variable. The proposal by Reilly and Pepe (1995), instead, is a modi�edpseudo-likelihood approah for the ase that (Y; Z;W ) are all disrete variablesand X is MAR. It extends the previous works by Carroll and Wand (1991)and Pepe and Fleming (1991). They both propose semiparametri estimatorsof the parameters of interest, without modeling the onditional distributionof X given (W;Z). Their solutions may lead to inonsistent estimators if themissingness proess of X is not independent of Y . Reilly and Pepe (1995)extend this proposal by allowing the seletion probabilities of X to depend onY and (W;Z), when (W;Z) are disrete.Wang and Wang (1997) extend the previous works by allowing the ovari-ates and the surrogates to be ontinuous. The extension of the proposal byBreslow and Cain (1988) is obtained by using a nonparametri kernel estima-tion of the seletion probabilities of X in the validation data. The extension ofthe estimator by Reilly and Pepe (1995) is based on the nonparametri kernelestimation of the onditionally expeted estimating sore of X given (Y;W;Z).The asymptoti properties of the two estimators are given. The simulationstudies arried out by Wang and Wang (1997) to evaluate the performaneof their proposals, under additive and non-normal measurement error, show ahigh relative eÆieny of the estimators of the parameters if ompared to themaximum likelihood estimator, when the modeling assumptions are inorret.Another semiparametri approah to orret for measurement error whenvalidation data are available is the pseudo-likelihood analysis suggested byCarroll et al. (1993). It is de�ned for handling nondi�erential errors and mod-



Setion 3 Robust tehniques 15i�ed so as to inlude also di�erential errors. The method requires a parametriformulation of the disease model and the measurement error model, whih anbe heked in the validation subsample, while the exposure model is left un-spei�ed. The marginal distribution of X is estimated by using a weightedaverage of the empirial distribution of XjY = y obtained from the ompletedata. This estimate is plugged into the likelihood, from whih the maximumpseudo-likelihood estimates of the remaining parameters an be obtained. Sim-ulation studies indiate that the approah gives satisfatory results with re-spet to the maximum likelihood approah, in terms of bias and standarderrors of the estimators. However, small sample sizes an a�et the estimationproess with numerial instability problems due to the empirial distributionfuntions whih are used. Moreover, modeling the relationship between Y andW by using the estimates of X may only partially reover the informationabout the parameters of interest whih is ontained in the validation data.In other words, some information about the distribution of X in the redueddata might be lost. As a onsequene, maximizing the full likelihood turnsout to yield more information about the parameters than a pseudo-likelihoodapproah, whih is, of ourse, less eÆient.Roeder et al. (1996) propose an alternative to the pseudo-likelihood methodby Carroll et al. (1993), when validation data are available. Both di�erentialand nondi�erential errors are allowed. A parametri formulation is given forthe disease model and for the measurement error model, whih an be hekedin the validation subsample. Instead, the empirial distribution funtion of X,alulated on the same validation subsample, is used as a �rst estimate of themarginal distribution ofX. The estimate is then updated by the EM algorithmor the gradient method within the estimation proess of the disease model



16 A. Guoloparameters. The idea omes from Kiefer and Wolfowitz (1956), who treat thenuisane parameters x as random variables from an unspei�ed distribution.The estimation of the parameters is arried out via nonparametri maximumlikelihood (NPML), as suggested by Laird (1978). Simulation experimentsshow that the proposal by Roeder et al. (1996) performs at least as well as oreven better than the pseudo-likelihood method by Carroll et al. (1993), withthe amount of improvement depending on the sample size and the type ofmeasurement error.A similar idea is followed by Shafer (2001). The Author generalizes the useof nonparametri maximum likelihood proposed by Laird (1978) for semipara-metri likelihood analysis of linear, generalized linear and nonlinear regressionmodels, where the ovariates are a�eted by nondi�erential errors. Moreover, aonvenient omputational form for the data analysis is provided. The approahis illustrated under a variety of strutures and types of extra information aboutthe measurement error distribution. The integral of the full likelihood (1) isapproximated by a k-node quadratureL(�; y; w; z) = KXk=1 �kfY jXZ(ykjx�k; zk; �)fW jX;Z(wkjx�k; zk; ); (4)where �k is �kfXjZ(x�kjzk; Æ), the �k's and x�k's are known quadrature massesand nodes and � = (�; ; Æ)T. LairdLaird (1978)'s algorithm an be applied forsimultaneous maximum likelihood estimation of the parameters of the diseaseand the measurement error model and for the estimation of fXjZ(x�kjzk; Æ). Thisamounts to the estimation of the quadrature masses �k and of the nodes x�k.The EM algorithm is suggested to this aim. Simulation studies indiate thatthis semiparametri approah retains a high degree of eÆieny with respet tothe full maximum likelihood inferene based on orret distributional assump-



Setion 3 Robust tehniques 17tions and an outperform maximum likelihood methods based on inorretdistributional assumptions.Shafer (2002) follows an approah similar to Shafer (2001) for the semi-parametri analysis of linear, generalized linear and nonlinear regression mod-els, where ovariates are a�eted by nondi�erential errors. Di�erent types ofextra information about the measurement error distribution are onsidered.The underlying idea is the evaluation of the integral (4) by a k-node Gauss-Hermite quadrature. It is evident that expression (4) has the form of a �nitemixture of densities with mixing proportions given by �k. Applying the EM al-gorithm to estimate the parameters requires the introdution of k-dimensionalmultinomial random variables to identify the relevant mixture omponent foreah i, whih are treated as missing data. The main di�erene with respet tothe previously mentioned approah by Shafer (2001) is that here the numberof nodes at whih the integrand is evaluated is treated as a �xed quantity.That is, the approah an be thought of as an attempt of exible struturalmodeling of the exposure. This implies that the only parameters to be es-timated are the parameters of the disease model and the measurement errormodel. However, this approah bears some issues whih require further inves-tigation. First of all, there is no guarantee of numerial stability of the EMalgorithm. Seondly, there is no lear indiation about the number of nodesrequired in any situation, although 20 seems to be suÆient at least in theexamples analyzed by the Author. Finally, the approah has been proposedin situations with a single unobservable ovariate. While its extension to sev-eral X 0s measured with error is theoretially possible, the appliation may beunrealisti beause of omputational diÆulties.Within a Bayesian framework, M�uller et al. (1997) propose to orret for



18 A. Guolomeasurement error in ovariates by a semiparametri approah wihh is espe-ially designed for handling ase-ontrol data. The method fouses on semi-parametrially modeling the distribution of X. This is obtained by using amixture of normal models with a Dirihlet proess prior on the mixing measure(Antoniak, 1974; Esobar and West, 1995). Using multivariate normal kernelsin the mixture impliitly assumes that ovariates are ontinuous. However, theAuthors indiate that the appliation of the method to ategorial ovariatesis possible by using di�erent distributions in plae of a mixture of normals.The proedure to estimate the parameters of the disease model is based on aombination of Markov hain Monte Carlo tehniques. The method by M�ulleret al. (1997) is developed under the assumption of nondi�erential errors andthe availability of validation data. Simulation studies performed assuming alogisti disease model show that the method is robust against heteroshedas-tiity over ases and ontrols, whereas it is sensitive to di�erential error. Whennondi�erential measurement errors hold, the method is preferable in terms ofbias and mean squared error to the proposal by Carroll et al. (1993). Underdi�erential measurement error, instead, the situation reverses, the method byCarroll et al. (1993) having the advantage of exhibiting a smaller bias.Later, Mallik et al. (2002) develop semiparametri Bayesian methods forregression models where measurement errors follow a lassial struture, aBerkson struture or a ombination of both of them. The method suggestedby the Authors is semiparametri in the spei�ation of both the disease modeland the exposure model. The disease model is supposed to be monotone inthe unobserved variable X and thus it is spei�ed through a semiparamet-ri monotone form. In partiular, a mixture of beta umulative distributionfuntions is used. The distribution of the unobserved X is also semipara-



Setion 3 Robust tehniques 19metrially modeled, by using a P�olya tree distribution (Lavine, 1992; Walkerand Mallik, 1999). However, as the Authors suggest, exible semiparamet-ri alternatives to the P�olya distribution ould be used. Simulation studiesperformed under a logisti disease model and a ombination of lassial andBerkson measurement error omponents indiate a satisfatory behaviour ofthe proposed method with respet to the naive analysis and the one based onthe true simulated data for X.In eonometri researh, Li and Hsiao (2004) reently proposed a semipara-metri approah to orret for lassial errors in ovariates in generalized linearmodels. The hypothesis of nondi�erential error is relaxed by assuming onlythat E[U jY ℄ = 0. Additional data as repliated measures of X are onsideredto be available. The proposal by Li and Hsiao (2004) does not make distribu-tional assumptions on the unobservable variable X or the measurement errors.The method is based on maximizing an asymptotially orreted likelihood(ACL) funtion. It is a two-stage method. At the �rst stage, the distributionof X is nonparametrially identi�ed. This is done by using the empirial har-ateristi funtions and trunated inverse Fourier transform, as suggested byLi (2002). At the seond stage, a semiparametri estimator of the parametersof interest is derived by maximizing the ACL funtion using the estimateddistribution of X obtained at the �rst stage. The Authors show that the ACLonverges to the same likelihood funtion one would obtain with observed X.However, some future lines of researh are pointed out. First of all, the needof evaluating the asymptoti distribution and the rate of onvergene of theACL estimator. Simulation studies ompare the proposed ACL estimator tothe naive maximum likelihood estimator and to the orreted sore estimatorby Nakamura (1990), whih is based on the normality assumption of errors



20 A. Guolo(see Setion 3.4). The omparison is in terms of bias and standard error ofthe estimators. Results show that the ACL method outperforms the orretedsore when the measurement error distribution is misspei�ed as a normal.Standard errors are larger than those of alternative methods, as a onsequeneof the �rst stage nonparametri estimation, while bias redution is substantial.This leads to a notable redution in mean squared error. As expeted, naiveanalysis yields worse results.3.3 Quasi-likelihood methodsQuasi-likelihood is a promising alternative to the full likelihood approah forthe analysis of measurement error data. It has the advantage of ombininghigher exibility with a smaller omputational e�ort. Quasi-likelihood requiresthe spei�ation of the �rst two moments, that is, of the mean and the vari-ane, of the onditional distribution of Y given X and Z and not of its entiredistribution (see (Carroll et al., 2006), Setion 8.8). That is, one needs onlyto speifyE [Y jX;Z℄ = mY (x; z; �1) and V ar [Y jX;Z℄ = gY (x; z; �1; �2): (5)The approah inludes quasi-likelihood methods for generalized linear modelsas speial ases. Quasi-likelihood methods require that the mean and varianefuntions be evaluated on the observed data and not on the unobservable ones.These are given byE [Y jW;Z℄ = E [mY (�)jW;Z℄ and V ar [Y jW;Z℄ = E [gY (�)jW;Z℄+V ar [mY (�)jW;Z℄ :(6)An example is given in Carroll and Stefanski (1990). The Authors onsiderthe appliation of the quasi-likelihood method in ase-ontrol studies, where



Setion 3 Robust tehniques 21data are a�eted by nondi�erential measurement errors, whih an be lassialas well as Berkson errors. Validation data, in the form of gold standard mea-surements of X, are required. No assumption is made on the distribution of Xgiven W , but only on the �rst two moments of the measurement error givenW . The Authors propose M-estimators for the parameters of interest, startingfrom estimating equations based on Taylor series expansions of the mean andvariane funtions. Their asymptoti distribution is provided under di�erentadditional data senarios.Wang et al. (1996) onsider quasi-likelihood estimation under the hypoth-esis that orrelated repliates of the proxy variableW are available. A nondif-ferential and lassial additive measurement error on the ovariate is assumed.The Authors perform a quasi-likelihood analysis by omputing the mean andvariane funtions through Monte Carlo methods. The distribution of X issuggested to be exibly modeled by using a mixture of normals. The ap-pliation of the method is illustrated on a real data set. The results showthe improvement with respet to a RC approah whih ignores the orrela-tion struture of repliates, both in terms of bias ans standard error of theparameter estimators.3.4 Estimating equationsThe use of estimating equations in measurement error problems has beenmainly studied in two variants whih are referred to as orreted sore andonditional sore methods, although alternatives have been reently suggested.The orreted and onditional sore methods were developed starting fromthe estimating equations for regression parameters in the absene of measure-ment error. An estimating equation is unbiased if it has expetation zero. An



22 A. Guoloexample is the sore funtion, that is, the �rst derivative of the log-likelihoodfuntion with respet to the parameters. Measurement error indues bias inestimating equations, whih in turn gives rise to biased estimators for the pa-rameters. Thus, the purpose is to modify the estimating equations so as toobtain unbiased estimating equations.The orreted sore method spei�es orreted sore funtions, whihare unbiased estimators of the sore funtion yielding the estimator onewould use if there was no measurement error. The method of orretedsore funtions was studied by Stefanski (1989) and Nakamura (1990). Inthe absene of measurement error, onsider the estimate of � whih solvesPni=1  (yi; xi; zi; �) = 0, where n is the sample size and  (�) is the estimatingfuntion. The funtion  (�) is typially a likelihood sore funtion from themodel for the data without error. It is unbiased if its expetation is zero, thatis, E[ (Y;X; Z; �)℄ = 0. Generally, it is no longer unbiased when W replaesX. Correted sore funtions instead, say  �(y; w; z; �), have the property thatE[ �(Y;W;Z; �)℄ =  (Y;X; Z; �), where the expetation is with respet to thedistribution ofW given (Y;X; Z). The orreted sores are unbiased wheneverthe original sores are. Unbiasedness is a major requirement for onsisteny ofthe estimators obtained from orreted sore funtions.The orreted sore method applies to generalized linear models, as, forexample, the gamma regression model with logarithmi link. It requires thata measurement error distribution be spei�ed. The normal distribution istypially used for this purpose (Stefanski, 1989). Correted sore funtions donot always exist and �nding them when they do is not always as easy as in thelinear ase. A typial example is logisti regression whih does not admit aorreted sore funtion, exept under restritions (Buzas and Stefanski, 1996).



Setion 3 Robust tehniques 23Stefanski (1989) derived orreted sore funtions for some ommon modelsand generally appliable approximate orreted sore funtions. Reently, amethod for obtaining orreted sore funtions via omputer simulation wasstudied (Novik and Stefanski, 2002).The onditional sore method was introdued by Stefanski and Carroll(1985) and developed into the usually applied formulation by Stefanski andCarroll (1987) within an important lass of generalized linear models. Themost important example is logisti regression. Carroll et al. (2006), Setion 7,desribe extensions of the method to Poisson-loglinear, gamma-inverse andother models.The onditional sore is a funtional method based on the theory of suÆ-ient statistis, on whih we an ondition to eliminate the nuisane parame-ters x. Stefanski and Carroll (1987) assumed that the measurement errors arenormally distributed. However, the estimator an redue bias also for smalldepartures from this assumption (Huang and Wang, 2001). Stefanski andCarroll (1987) fous on logisti regression with lassial measurement error,although the method applies to other generalized linear models, provided themeasurement errors are normal and the models are in the anonial form (see(Carroll et al., 2006), Setion 7). They provide the onditional sore estimatorfor logisti regression and show that it behaves satisfatorily in terms of eÆ-ieny with respet to the full maximum likelihood estimator whih, however,requires the spei�ation of an exposure model (Stefanski and Carroll, 1990).For models other than logisti regression, the onditional sore estimatingequations are far more ompliated (see (Carroll et al., 2006), Setion 6.4) andtypially omputed by means of numerial integration.Outside the onditional sore and the orreted sore formulation, other



24 A. Guoloproposals to orret for measurement error have been suggested whih arebased on the theory of estimating equations. An example is the paper byIturria et al. (1999). The Authors derive estimators of parameters of the dis-ease model and their asymptoti standard errors in the polynomial regressionmodel, by referring to orreted estimating equations whih do not neessarilyome from the sore funtion. Additive and multipliative measurement errorsare onsidered. Conditions under whih it is possible to estimate parametersare given. These onditions do not rely on distributional assumptions aboutthe X 0s, but use ratios of the W 0s, thus making the method be a robust so-lution. The method may be easily extended to general estimating funtions.The basi idea is that an estimating funtion an be expanded as a polynomial,thus allowing the proposal by Iturria et al. (1999) to be applied. Simulationstudies arried out to ompare the method and the likelihood approah showthat the �rst provides more reliable results whenever models for measurementerrors are misspei�ed. This is mainly the ase for skewed errors.Reently, Wang and Pepe (2000) foused on the use of estimating equationsto orret for measurement error in marginal or partly onditional regressionmodels for longitudinal data. Measurement errors are assumed to be nondi�er-ential. Estimating equations are onsidered whih are not neessarily likelihoodsore equations. They have to be unbiased when evaluated on the ompletedata, that is, on observations from (Y;X; Z). The Authors propose to base theestimation of the parameters of the disease model on the expetation of theestimating equation for the omplete data onditioned on the available data.The estimates are derived as solutions of the resulting estimating equations.The expeted estimating equations (EEE, for short), as they are alled, yieldan estimator whih has the property of being equal to the maximum likelihood



Setion 3 Robust tehniques 25estimator if the omplete data sores are likelihood sores and onditioning iswith respet to all the available data. The asymptoti distribution of the es-timator is derived. Its behaviour is ompared to the RC estimator throughsimulations studies of a logisti disease model, under an order one autoregres-sive model for the error proess. Simulation results indiate that for moderatesample sizes, with large relative risk, the EEE estimator is more eÆient thanthe RC estimator, while it an su�er from both a large bias and a large stan-dard error in small samples. This agrees with the behaviour of the maximumlikelihood estimator whih su�ers from bias in the presene of small samplesizes.As Wang and Pepe (2000), also Pan et al. (2006) fous on longitudinaldata, where a single ovariate X is assumed to be a�eted by measurementerror. The error is supposed to be additive and nondi�erential. The Authorsmainly refer to the transition models, that is, models where the onditionalmean of the response variable at the urrent time point is modeled as a fun-tion of its value at the previous time and ovariates (see (Diggle et al., 2002),Chapter 10). Within this setting, an estimating equation approah is proposedby modifying the onditional sore method by Stefanski and Carroll (1987).This gives rise to the so-alled pseudo onditional sore estimators of the dis-ease model parameters. They are shown to be onsistent and asymptotiallynormally distributed. Moreover, an alternative to the pseudo onditional soreestimator is proposed, namely a semiparametri eÆient one-step estimator.It improves the eÆieny of the pseudo onditional sore estimator, by tak-ing advantage of the expliit expression of the eÆient sore funtion for theparameters of interests. Moreover, the one-step estimator reahes the semi-parametri eÆieny bound in the presene of validation data. However, the



26 A. Guoloexpliit formulation of the eÆient sore funtion whih the one-step estimatorrelies on does not exist for models more ompliated than the linear model,as, for example, the logisti transition model.3.5 Empirial likelihoodThe paper by Wang and Rao (2002) is the �rst example of appliation of em-pirial likelihood in measurement error problems. The empirial likelihood,introdued by Owen (1988), is useful to onstrut on�dene regions under anonparametri model. It has some advantages with respet to lassial meth-ods, in that it does not require the de�nition of pivotal quantities for inferen-tial purposes and provides on�dene regions whih are range-preserving andtransformation-respeting (Hall and La Sala, 1990).Wang and Rao (2002) fous on linear regression model, when validationdata are available. Measurement errors are assumed to be nondi�erential.The regression model is re-written in an equivalent form where unobservedovariatesX are substituted by E[XjW ℄. The empirial log-likelihood funtionis then evaluated starting from this formulation. To estimate the parametersof interest, the quantity E[XjW ℄ has to be replaed by known values derivedfrom the validation data. The idea is similar to the one underlying the RCapproah. This substitution leads to an estimated empirial log-likelihood.The Authors show that the resulting estimated empirial log-likelihood followsasymptotially a �2 distribution and use it to de�ne on�dene regions for theparameters of interest. However, suh an approah an su�er from the urse ofdimensionality when the dimension ofX and hene ofW is large, beause of therequired estimation of E[XjW ℄. In this ase, dimension-redution models maybe preferable for estimating E[XjW ℄. However, the orresponding asymptoti



Setion 3 Robust tehniques 27theory has still to be developed and is an interesting �eld of future researh.Cui and Chen (2003) suggest a di�erent approah based on empirial like-lihood to derive on�dene regions for the parameter of the disease model.The fous is on linear regression models, where ovariates are assumed to bea�eted by lassial and nondi�erential measurement errors. The Authors il-lustrate how to onstrut empirial likelihood on�dene regions by startingfrom a modi�ation of the sore funtion. This adds up squared orthogonaldistanes for eah data point to a hyperplane in the parameter spae. Suha sore funtion di�ers from the one from an ordinary linear model in thatthe former has more than two solutions, of whih only one is genuine. Thissolution is found by onstraining the empirial likelihood to a restrited re-gion of the parameter spae. The Authors evaluate the overage auray andBartlett orretability of the on�dene regions derived from this approah.Simulation studies are performed to ompare the behaviour of the proposedempirial likelihood on�dene region to that based on the asymptoti normaldistribution of the estimators of the parameters. The results show that theempirial likelihood-based method provides on�dene regions with better ov-erage and shorter lenghts than the normal approximation ounterpart. Thisimprovement is already notable for small or moderate sample sizes.3.6 Further tehniquesFurther approahes whih make no distributional assumption on the involvedvariables were proposed in literature, although they an not be lassi�ed intoone of the previous groups. They are summarized below.� Cook and Stefanski (1994) develop a simulation-extrapolation method(SIMEX, for short), whih is a funtional simulation-based method to



28 A. Guoloorret for measurement error a�eting the ovariates. It has been fur-ther developed by Stefanski and Cook (1995), Carroll et al. (1996) andWang et al. (1998). The method is robust in that it does not makedistributional assumptions on the unobserved variables X. The ideaunderlying SIMEX is that the e�et of the measurement error an bedetermined by simulation. The method develops in two steps. The �rstone is a resampling-like stage, in whih data sets with additional mea-surement error are generated starting from the original one. For eahdata set the naive estimate of the parameters is obtained, so that thetrend of the estimates versus the variane of the extra error terms anbe established. The orreted estimators of the parameters are obtainedin the seond stage by extrapolating this trend bak to the ase of nomeasurement error. Carroll et al. (1996) investigate the asymptoti dis-tribution of the SIMEX estimator. They show that it is asymptotiallynormally distributed and provide methods to onsistently estimate thevariane. Later, Fung and Krewski (1999) propose a omparison be-tween RC and SIMEX estimators, by means of a omputer simulation ina logisti regression framework. Their study shows that RC and SIMEXestimators generally exhibit a satisfatory and similar performane interms of bias, mean squared error and overage of on�dene intervals.When a Berkson measurement error model in highly orrelated predi-tors holds, however, the SIMEX method seems to be preferable. On theother hand, RC has the nontrivial advantage to be a simpler and lessomputationally intensive method.� Haukka (1995) suggests to orret for ovariate measurement error ingeneralized linear models by using bootstrap tehniques. The method



Setion 3 Robust tehniques 29is referred to as two-stage bootstrap, beause both the primary and thevalidation data are resampled. It requires validation data to be avail-able. At the �rst stage, a bootstrap sample is taken from the validationdata set. It is used to estimate the parameters of the measurement errormodel relating X to the proxy variables W and to the error-free ovari-ates Z. A bootstrap sample is then taken from the primary data. Thissample is used to estimate the parameters of interest, with X replaedby the predited values obtained in the regression at the previous stage.Bootstrap sampling generally involves 50 { 100 repliations. The em-pirial distribution of the estimator is used for making inferene on theparameters. The method is illustrated under the assumption of ontin-uous linear measurement errors, although extensions to other measure-ment funtions require only slight modi�ations of the proedure. Thenonparametri nature of the method turns out in a nontrivial gain inrobustness, if ompared to simpler approahes as, for example, RC. Infat, simulation studies, performed in the logisti regression framework,showed that the method is a valid alternative to the RC, although itan lead to larger on�dene intervals, espeially in situations where thedistribution of the errors is asymmetri. Despite of this, the prinipal dis-advantage of Haukka (1995)'s method relies in its omputational burdenonneted with the intensive appliation of the bootstrap tehnique.� Lee and Sepanski (1995) propose an estimation method whih is ompu-tationally simpler than semiparametri and nonparametri methods de-sribed in Setion 3.2, both for linear and nonlinear disease models. Themethod relies neither on distributional assumptions nor on spei�ationsof the equations relating the measured variable W to the true variable



30 A. GuoloX, thus obtaining onsiderable gain in robustness. Additive measure-ment errors are onsidered and they are allowed to a�et the ovariatesas well as the dependent variable. The method is based on replaing theregression funtion of Y on (X;Z) by a wide-sense onditional expeta-tion, or least squares projetion, of the regression funtion on funtionsof W (Chamberlain, 1982). The underlying idea is that the original re-gression funtion an be projeted onto a �nite-order polynomial of W .This wide-sense onditional expetation an be estimated from valida-tion data using the ordinary least squares method. After replaement ofthe original regression funtion by this onditional expetation, nonlin-ear least squares an be used to estimate the parameters. The hoie ofthe polynomial for the projetion spae is arbitrary. Simulation studiesperformed by the Authors suggest that few polynomials of low degreeare good enough even for highly nonlinear funtions.� In eonometris, Chesher (2000) notes that, to the �rst order of ap-proximation, the bias implied by measurement errors an be determinedby a funtional of the marginal distribution of the mismeasured variableW . The suggested orretion tehnique, whih follows Chesher (1991), isbased on the onstrution of a nonparametri estimate of the funtionalof the distribution of W . The assumptions of independene between Xand the errors U and of nondi�erential errors are needed. Monte Carloexperiments, performed both when the measurement errors are normallyand non-normally distributed, indiate that the proposed method ansubstantially redue bias in estimators, if ompared to a naive approah.Moreover, in linear and polynomial models, the method an be ombinedwith the lassial instrumental variables proedure, thus improving the



Setion 3 Robust tehniques 31eÆieny of both approahes.� Sepanski (1994) suggest to orret for measurement error in a lass ofmodels inluding the generalized linear models by an approah stritlyrelated to RC. It is a semiparametri RC method, requiring a validationdata set onsisting of exat measures of X. It applies to nondi�eren-tial measurement error whih are not neessarily lassial and additive.The underlying idea is the substitution of the unobserved X's by theestimates of E[XjW ℄ obtained from a nonparametri kernel regression inthe validation data. One the unknown X 0s are replaed by these esti-mates, a standard analysis an be performed. The parallelism with RC isevident. However, this method gives rise to a gain in robustness againstdeviations from the linear relationship between X and W underlying theoriginal RC idea, when this relationship does not hold. Moreover, theAuthors provide the asymptoti distribution of the regression parameterestimators and disuss the hoie of the bandwidth parameter, involv-ing higher-order expansions for the ovariane matrix of the orretedestimators. Although the fous is on nonparametri kernel regressionto estimate E[XjW ℄, the Authors suggest that other smoothing teh-niques ould be used, inluding loal linear kernel smoothing, lowess,spline smoothing and generalized additive models. Simulation studiesarried out to ompare the method against parametri alternatives, as,for example, RC, indiate that it has a omparable performane, whihin some ases is also better, mainly under multipliative error strutures.� Another approah whih an be related to RC is suggested by Piere andKellerer (2004). The Authors propose to adjust for errors in ovariates



32 A. Guoloby using a nonparametri assessment of the true ovariate distribution.Their proposal an be used within the RC approah. In fat, the ex-peted value of X givenW , whih is needed in the RC proedure, an benonparametrially derived, although it involves a deonvolution whihis diÆult to arry out diretly. However, with multipliative and log-normal measurement errors, the Authors derive simple but aurate ap-proximations for the k-th order moment of X given W , with k = 1; 2; : : :. These approximations depend only on the �rst and seond derivativesof the logarithm of the density of W and the oeÆient of variation ofW given X. Both lassial and Berkson errors are onsidered.� Berry et al. (2002) suggest a robust approah to the analysis of measure-ment error data, where robustness is related to misspei�ation of thedisease model and not on the exposure model, as ommonly adopted.The Authors propose a exible nonparametri estimation of the regres-sion funtion, by using smoothing splines or regression P-splines, withina Bayesian framework. The posterior distribution of the parameters ofinterest may be obtained from two algorithms. The �rst one, the so-alled iterative onditional modes, uses a omponentwise maximizationroutine to �nd the mode of the posterior distribution, while the seond isa fully Bayesian method based on Monte Carlo Markov Chain tehniquesto generate observations for the posterior distribution. Although the lastis omputationally more diÆult than the �rst one, it is preferable in thatit allows exploring the posterior distribution, rather then only �nding themode. Simulation studies performed to evaluate the potential of the or-retion tehnique by Berry et al. (2002) with respet to alternatives showthat it is ompetitive in eÆieny with similar approahes performed in



Setion 3 Robust tehniques 33the frequentist framework, as, for example, the method by Carroll et al.(1999a). The normal distribution for the additive measurement errorand for the exposure variable is assumed, although simulation studiesshow that small departures from this assumption only slightly modifythe results.
� Jiang and Turnbull (2004) base statistial inferene in measurement errormodels on the so-alled indiret method. This is an approah to inferenewhih has been exploited in eonometris (Gouri�eroux et al., 1993) as arobust alternative to likelihood-based proedures. The indiret method isbased on the searh of an intermediate statisti as a funtional of the em-pirial distributon funtion. The intermediate statisti typially followsan asymptoti normal distribution, but it is not neessarily a onsistentestimator of the parameter of interest. An example is the naive estima-tor. Jiang and Turnbull (2004) fous on the indiret method to suggesta onsistent estimator of the disease model parameter without requiringparametri assumptions on the distribution of (X;W ), thus obtaining anotable gain in robustness of results. Moreover, only the �rst moment isspei�ed for the disease model. The assumption of nondi�erential errorsand the availability of validation data is needed. A onsistent estimatorof the parameter of interest is found starting from the naive solution andits asymptoti distribution is derived. The appliation of the method isevaluated within a logisti framework and ompared to that of RC. Re-sults outline the improvement of the indiret method in estimating theparameter of interest, mainly in situations where assumptions requiredby RC are not satis�ed.



34 A. Guolo� Tsiatis and Ma (2004) propose a lass of semiparametri estimators,whih are alled loally eÆient semiparametri estimators, within thefuntional measurement error setting. This lass is derived by de�ning es-timating equations for the parameters of the disease model. The estimat-ing equations are obtained from the eÆient sore derived as the residualafter projeting the sore vetor with respet to the disease model pa-rameters onto the tangent spae for the distribution of X. Tsiatis andMa (2004) show that the residual has mean zero even under misspei-�ed distributions for X. This allows one to form estimating equationsfor the parameters of the disease model whih yield to onsistent andasymptotially normally distributed estimators. Moreover, if the modelfor X is orretly spei�ed, the resulting estimator is semiparametri ef-�ient. The assumption underlying the method of known measurementerror distribution may be relaxed if additional data are available to esti-mate the unknown parameters of the distribution. Simulation studies areperformed to evaluate the behaviour of the proposed estimator, under aquadrati logisti disease model and two measurement error strutures,the �rst having normally distributed errors while the seond having ex-ponentially distributed errors. Results show that, in both of the ases,the proposed loally eÆient estimator is robust against misspei�ationof the distribution of X. If ompared to the RC estimator, the loallyeÆient estimator is preferable in terms of bias and empirial overageof on�dene intervals.



Setion 4 Disussion 354 DisussionWe have provided a review of tehniques to orret for measurement error inovariates whih represent solutions to the sensitivity to assumptions typialof parametri approahes. Di�erent solutions have been proposed in literature,whih may be more or less hallenging to implement. Some of them ombine aparametri and a nonparametri spe�ation of relationships between variables,while other methods fae the problem by adopting a totally nonparametri ap-proah. Although solutions are variously developed, they share harateristisof robustness against model misspei�ations, the prinipal being the misspe-i�ation of the exposure model. However, in all ases, this advantage doesnot ome without osts. The higher prie to pay for it is the possible loss ineÆieny relative to parametri models if they are approximately orret.Furthermore, some omputational problems related to the diÆulties inimplementing most of the suggested methods are non-negligible. Fous, forexample, on semiparametri tehniques. The proposed methods in this groupshare the ommon approah of nonparametrially estimating one of the rela-tionships between variables, that is, the disease, the measurement error or theexposure model. Although these modi�ations are applied to the likelihoodfuntion given in (1), problems related to a full likelihood approah may stillbe present, like diÆulties in the maximization proedure and in the evaluationof the involved integrals. Usually numerial methods or analytial approxima-tions are required and the assoiated omputational e�ort tends to inreasein ase of high-dimensional models. If this is the ase, alternative solutionsmay be preferable. From a stritly pratial point of view, the most feasiblesolutions seem to be those based on the idea underlying RC, the so-alled semi-parametri RC methods. Starting from the simplest tehnique to orret for



36 A. Guolomeasurement error, i.e. regression alibration, a nonparametri modi�ationyields a gain in robustness, without a�eting the feasibility of the approah.Other solutions, as for example estimating equations, in spite of a wellknown underlying theory, may be less attrative beause of diÆulties in ap-pliation, whih are not neessarily omputational diÆulties. As it an beseen from the paper by Wang and Pepe (2000), deriving unbiased estimatingequations for the parameters is very often a nontrivial problem, mainly in sit-uations with mathed or unmathed ase-ontrol data. In this ase, in fat, ifone starts from a formulation like the one in (1), for example, it is not possi-ble to obtain estimating equations and estimators of parameters in an expliitform. Moreover, bias orretion an be hardly ahieved. Further investigationin this area seems to be needed.Empirial likelihood is a powerful tool for inferene in nonparametri set-tings. The methods suggested by Wang and Rao (2002) and Cui and Chen(2003), whih apply empirial likelihood in measurement error problems, seemto be promising in terms of robustness properties, nevertheless studies are re-strited to linear regression models at the moment. Although the attentionof this review has been mainly foused on models appropriate to handle ase-ontrol data, we have mentioned the previous works on empirial likelihood inorder to highlight the fat that, on the basis of the promising results, extensionsto more general models may be an interesting �eld of further investigations.Most of the proposals reviewed here heve been developed under the as-sumption of nondi�erential measurement errors. The possibility for di�erentialmeasurement errors, instead, has been rarely examined. Although a nondif-ferential assumption is appropriate in many situations, mainly through a goodexperimental design, sometimes it may not be appropriate in ase-ontrol stud-



Setion 4 Disussion 37ies. In fat, when the possibility of selet or reall bias arises, as it is typialin ase-ontrol studies, thus measurement error an depend on the diseasestatus, that is, it an be di�erential. In this situation, many of the existingtehniques to orret for measurement errors are not appliable. This suggeststhe need for further researh to extend orretion methods developed underthe assumption of nondi�erential errors to the situation of di�erential errors.A ommon feature of methods examined here is their appliation to prob-lems where just a single ovariate is a�eted by measurement error. Additionalerror-free ovariates may be onsidered. The main reason relies on the om-putational e�ort required by a more extensive analysis, whih may beomequite umbersome. As the dimension of X inreases, the extension of most ofthe proedures is not straightforward and their appliation may beome lessattrative. An example is the augmented omplexity of integrals whih haveto be evaluated in semiparametri methods. Thus, further investigations areneeded in this area. The researh for extension of the existing methods tohigher dimensions of unobserved ovariates and/or their surrogates is requiredso as to make them suitable for more realisti problems. These may involvemore than one ovariate a�eted by measurement error, with the possibility ofsome orrelation patterns among errors.AknowledgmentsThis researh was supported by Assoiazione Italiana per la Riera sul Can-ro, with additional support provided by the Italian Ministry for Eduation,University and Researh. The author is grateful to Prof. Alessandra Salvanand Dr. Alessandra R. Brazzale for helpful omments on the preprint ver-sion of the paper. She also aknowledges Prof. Raymond J. Carroll for his
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