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SUMMARY 

 

 

In recent years, the efficacy and accuracy of Multi-Voxel Pattern Analysis (MVPA) 

techniques on neuroimaging data has been tested on different topics. These methods have 

shown the ability to decode mental states from the analysis of brain scans, for this reason 

it has been called “brain reading”. The predictions can be applied to: general states, 

referring to stable conditions not related to a contingent task (e.g., a neurological diagnosis), 

or specific mental states, referring to task-related cognitive processes (e.g., the perception 

of a category of stimuli). According to several neuroscientists, brain reading approach can 

potentially be useful for applications in both clinical and forensic neuroscience in the 

future.  

In the present dissertation, two applications of the brain reading approach are presented on 

two relevant topics for clinical and forensic neuroscience that have not been extensively 

investigated with these methods. In Section A, the application of this approach is tested in 

decoding different levels of Cognitive Reserve from the pattern of grey matter volume, in 

two MRI studies. Whereas, in Section B two fMRI studies investigate the possibility of 

decoding real autobiographical memories from brain activity (fMRI).  

The aim of this thesis is to contribute to the amount of studies showing the usefulness of 

multivariate techniques in decoding “mental states” starting from the analysis of structural 

and functional brain imaging data, as well as the potential uses in clinical and forensic 

settings. 
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Chapter 1 

 

FROM MODEL-DRIVEN TO DATA-DRIVEN APPROACH IN 

NEUROIMAGING 

 

INTRODUCTION 

One of the main issues in cognitive neuroscience is related to the localization of cognitive 

functions within the human brain. Moreover, a great amount of studies has focused on brain 

correlates of neurological and psychiatric diseases. Thus, the “where?” question seems to 

be the most commonly asked one, at least within the neuroimaging field. Conventional 

neuroimaging approaches have mainly faced the problem of identifying brain areas where 

activity was related to a specific cognitive function or mental state.  A different approach 

has been introduced with the advent of multivariate analysis techniques, which can 

represent a step forward in the direction of a more complete understanding of human brain. 

In the last years, a number of neuroimaging studies have adopted multivariate techniques 

for the analysis of both functional and structural data. The use of these new methods can 

lead to important advantages for the advance of knowledge about how the brain works and 

about the relation between mind and brain. Indeed, as will be discussed in the following 

chapters, the main aim of multivariate analysis techniques applied to neuroimaging data is 

to infer a mental state starting from the analysis of brain imaging data. Therefore, the crucial 

point is that now we have the possibility to study the relation between mind and brain from 

a new perspective. Moreover, these novel methods allow researchers to answer to different 

research questions about the nature of this relation.  

Multivariate approaches can be adopted for decoding cognitive states by analyzing the 

functional or structural images related to those states. This is the main reason why these 

methods can be referred to as classifiers or learning machines. These last two expressions 

emphasize the origin of these techniques, that come from a branch of artificial intelligence, 

called Machine Learning.  

In this chapter, the standard approach to the analysis of neuroimaging data will be compared 

with the new emerging multivariate methods, highlighting their differences and their 

critical consequences for the cognitive neuroscience field. The discussion will start from 

the theoretical background from which these techniques come from.  
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PATTERN RECOGNITION AND MACHINE LEARNING IN COGNITIVE 

NEUROSCIENCE 

 

What is Pattern recognition? 

Everyday people carry out many complex tasks that are surprisingly made simple by their 

brain. So that, we are not aware of the real complexity of these processes, until the moment 

when we are asked to formalize them. For example, imagine how easily we recognize the 

letter “A” (Fig. 1.1a) despite the differences or the alterations of its graphical aspects, or 

the ease in recognizing each of the stimuli in Fig. 1.1b as belonging to a specific category 

(e.g., a car, or a face) even if none of them has been previously experienced.  

 

 
Fig. 1.1 Pattern recognition in everyday life. a) Despite the differences in shape, orientation, color, or the occlusion of 
some graphical parts, in all cases we recognize the letter “A”; b)  An example of how easily we can associate a new 
stimulus to a known category 
 

How do we associate a new stimulus to one among thousands of known categories? This 

cognitive process is called pattern recognition. Pattern recognition is a basic function of the 

human brain, and it can be realized in some milliseconds (DiCarlo, Zoccolan, & Rust, 

2012). Given this speed, it is probably a product of evolution (M. W. Brown & Aggleton, 

2001) as it allow humans to access the semantic information about a new stimulus and, in 

case, to evaluate its dangerousness. However, the apparent ease of this process hides the 

computational complexity of it. One of the most effective definitions of “pattern 

recognition” is the following:  

 

“By the time are five years old, most children can recognize digits and letters. Small 

characters, large characters, handwritten, machine primed, or rotated – all are easily 
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recognized by the young. The characters may be written on a cluttered background, on 

crumpled paper or may even be partially occluded. We take this ability for granted until 

we face the task of teaching a machine how to do same. Pattern recognition is the study of 

how machines can observe the environment, learn to distinguish patterns of interest from 

their background, and make reasonable decisions about the categories of the patterns.” 

(Jain, Duin, & Mao, 2000) 

 

In many real-life settings the need of computer-based systems reproducing this 

extraordinary human ability is continuously increasing. For example, it is common 

nowadays to bump into OCR websites or software. OCR stands for “optical character 

reader” and refers to automatic systems for the translation of handwritten documents in a 

digital format, and can be very useful for a number of applications. In the industry, 

increasing the speed and therefore the automation of the workflow is a minimum 

requirement for surviving in a competitive world. For this reason, several practical 

applications of machine-based pattern recognition are requested today, also because of the 

high number of variables that has to be considered simultaneously and cannot be within the 

range of human workers. In the next paragraph an example of automatized pattern 

recognition system will be presented, in order to describe the structure of the problem and 

how modern computer-based systems can deal with it. 

 

Pattern recognition in practice: an example 

Duda, Hart and Stork (2001) reported a good example that allows to understand the 

complexity of some practical problem in which the help of automatized pattern recognition 

system is required. Imagine that a company specialized in fish packing wants to automate 

the process through which fishes are differentiated on the basis of their species, before 

being packaged. The first species classification tested is that between sea bass and salmon. 

Given that the best classificatory is certainly an individual with an expertise in 

discriminating different fish species just looking at each example,  the decision about the 

class (i.e., specie) has to be made on the basis of an optical sensing system. What the 

hypothetical researchers do as a first step is to acquire, by means of a camera, images of 

exemplars of the two species, in order to note the crucial differences that allow the human 

classifier to visually identify the species. So that, several physical features are highlighted, 

such as length, lightness, width and so on, together with the variability of these features 

across the images of different exemplars. Given that no kind of features emerged as 
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uniquely represented in one of the two species (i.e., having a horn is a feature that uniquely 

characterizes a rhinoceros if compared to an hippopotamus), but are shared between sea 

basses and salmons (i.e., of course both have a length, a width and a lightness), what 

discriminate between the fishes is the pattern of features. In other words, from a 

mathematical perspective, the two species are described by different models of features. In 

a case like this, the classification system can be roughly represented as having the structure 

indicated in Figure 1.1. 

 

 
Fig. 1.1 (adapted from Duda et al., 2001). The rough macro-structure of a classification system that could be applied to 
the described example. First, images of fish examples are recorded. The images (input to the classifier) are then 
preprocessed in order to make the classification easier (noise elimination), and critical features (those that allow the 
classification between different species) are extracted from the whole set of physical features. Then the decision about 
the belonging class (either sea bass or salmon) is taken. 
 

At this point, the critical question is how the decision is made, that is, how the classification 

can be implemented in an automatized system, and thus, how an automatized system can 

learn. What is required in this scenario is to maximize the classification accuracy, thus 

minimizing the number of wrongly classified fishes. Basically, a decision boundary has to 

be set-up by means of a model of the data (fishes) that, considering a set of features in input, 

can tell (with a certain value of accuracy) to which specie that specific pattern of features 

belongs to. The model on which the decision is based is not known a priori but has to be 

learned by the system from a set of examples (i.e., from a  number of  images of fishes 

belonging to the two different species). The way in which machines (e.g., computer-based 

systems) can learn from examples will be discussed in the next paragraph. 

 

How machines learn: elements of the statistical learning theory 

The Statistical Learning Theory was developed by Vapnik and Chevronenkis (Vapnik, 

1995; Vapnik & Chervonenkis, 1974; Vapnik, 1999) in order to provide a framework for 

studying the problem of learning, in the sense of gaining knowledge. In particular, this 

theory is focused on explaining from a statistical point of view how we make inferences, 

predictions, and we construct generalizable models from a set of data (Bousquet, 

Boucheron, & Lugosi, 2004). Essentially, the main steps of pattern recognition are: 
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1) observation of a phenomenon; 

2) construction of a model of the phenomenon; 

3) make predictions using the model. 

 

Basically, from a broad point of view, these steps retrace the general steps of scientific 

research. However, the role of the Statistical Learning Theory is to formalize this process, 

in order to make it understandable from a statistical perspective, while the role of Machine 

Learning algorithms is to automate it (Bousquet et al., 2004). Therefore, expression like 

“Machine Learning” or “Machine Learning algorithms” refer to algorithms that can 

automatically implement the learning process, as formalized by the statistical learning 

theory. As discussed in the example presented in the previous paragraph, essentially the 

machine learning process is based on extracting features from a noisy set of data (i.e., 

training data), and using those critical features to build a model of the data. Finally this 

model can be used to make prediction about new data (i.e., test data). In the example above, 

the algorithm can be trained on a number of examples of sea bass and salmon (images) in 

order to learn which pattern of extracted features is critical for distinguishing between the 

two species. Then, this model of the data can be applied to new examples (i.e., fishes never 

seen before) in order to classify them (prediction). 

Given the great amount of different problems that can be addressed by automatic learning 

methods, is not possible to highlight one specific algorithm as the universally best choice. 

Indeed, if an algorithm A outperforms algorithm B for some classification problem, then 

there must be problems in which B outperforms A. Essentially, this concept is formalized 

in the so-called No Free Lunch theorem (Wolpert & Macready, 1997), which states, in 

essence, that if there is no assumption on the relation between the past (i.e., training data) 

and the future (i.e., test data), it is impossible to make predictions. So that, basically, this 

theorem states that learning is impossible without prior knowledge. This is the basic idea 

of the Ugly Duckling theorem (Watanabe, 1969) which says that things are all equivalent 

each other without prior knowledge, so that classification is impossible in absence of a 

theoretical framework. Thus, the importance of the Statistical learning Theory lies on the 

fact that it provides a framework allowing a statistical approach to the classification 

problem, and thus giving us the possibility to solve practical problems with the use of 

automatized machine learning systems. As Vapnik wrote: “nothing is more practical than 

a good theory” (Vapnik, 1998).  
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Moreover, an a priori restriction on the possible phenomena that are expected is needed, in 

order to be able to generalize a model. Without a priori restrictions, generalization is not 

possible, thus no algorithm is better than others. This is important also for the neuroimaging 

practice because, as will be discussed in the present manuscript, assumptions about the 

algorithm and the model which can explain data are necessary. 

Indeed, different approaches can be adopted in training a machine learning algorithm. 

Basically, these approaches can be divided in two categories: supervised and unsupervised 

learning. In the following paragraphs, a description of these two approaches will be 

presented, in particular referring to the applications in cognitive neuroscience. 

Essentially, the use of machine learning algorithm allows to deal with the classification 

problem also in neuroimaging. This has been possible since the introduction of multivariate 

analysis technique, as previously discussed. Thus, multivariate pattern based classification 

allows researchers to classify pattern of brain activity or of anatomical measures to specific 

mental states (e.g., experimental conditions) or to general conditions (e.g., Alzheimer 

patient vs. control), through a reverse inference process. Multivariate fMRI/MRI analysis 

methods can be divided into two classes (O’Toole et al., 2007): 

- multivariate exploratory analysis: when the association between the pattern of brain 

measures and experimental conditions is not a priori given (unsupervised learning); 

- multi-voxel pattern analysis: when the correct class labels are given before 

classification  (supervised learning).  

 

Supervised learning 

Supervised learning (learning with a teacher) is based on creating a link between a set of 

features (e.g., a pattern of activation) and an associated label identifying the class of the 

example (e.g., patient vs. control; Bray et al., 2009). This type of learning is called 

“supervised” as the information about the correct label assigned to each example is given 

a priori. Basically, a set of data is used by the algorithm to learn (estimate) the parameter 

of a data-driven model which represents the relation between patterns of features and class 

labels. Then, the classifier can use the learned parameters to predict the class of new (i.e., 

never seen before) examples. There are two different types of “supervised learning 

problem”, based on the type of variable that has to be predicted. In the case of a discrete 

variable, such as two or more class labels (e.g., object vs. animal) or different diagnosis 

(e.g., Alzheimer Disease vs. Frontotemporal Dementia), it is called classification. By 

contrast, when the predicted variable is continuous (e.g., age), it is called regression 
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(Haynes, 2015). The great majority of neuroimaging studies adopting a multivariate 

approach use supervised learning algorithms for performing binary classification.  

Among the supervised learning algorithms, different classification methods are available, 

each one making different assumptions about the data and proposing a specific model 

through which the relation between features and target labels can be described (Bray et al., 

2009). Two main classes of supervised classifier algorithms can be identified: linear and 

nonlinear classifiers. Linear classifiers aim at predicting the labels of new examples through 

a linear combination of features. These classifiers are widely adopted in neuroimaging 

studies, because of their simplicity and easy interpretability (Haynes, 2015), together with 

good performances. Moreover, the use of “simple” classifiers usually provides a better 

generalization.  

The most commonly used linear classifiers in neuroimaging studies include the linear 

discriminant analysis (LDA; e.g., Haynes & Rees, 2006), the logistic regression (LR; e.g., 

Yamashita, Sato, Yoshioka, Tong, & Kamitani, 2008), and the Support Vector Machines 

(SVM; Haynes & Rees, 2006; Kamitani & Tong, 2005; LaConte, Strother, Cherkassky, 

Anderson, & Hu, 2005). Although is not possible to tell which classifier is the best choice 

in general, some studies (Cox & Savoy, 2003; Mourão-Miranda, Bokde, Born, Hampel, & 

Stetter, 2005; Pereira, Mitchell, & Botvinick, 2009) have compared the performance of the 

abovementioned linear classifiers. The findings showed that SVM outperforms LDA in 

some cases (e.g., Cox & Savoy, 2003), and the level of performance is the same of LR 

(Pereira et al., 2009), however SVM is more efficient in managing a high number of 

features as commonly experienced in neuroimaging (Bray et al., 2009).  

By contrast, nonlinear classifiers use a nonlinear function to describe the relation between 

features and labels, leading to more complex and less interpretable models. Moreover, the 

performance level of these techniques does not seem to be better than the linear algorithms 

(Cox & Savoy, 2003).  

For all the considerations expressed above, among the wide range of machine learning 

algorithm that can be used to perform a binary classification, supervised learning classifiers 

are preferred to unsupervised classifiers (described below). Moreover, among these, linear 

SVMs are those most common in neuroimaging study both using functional (i.e., fMRI) 

and structural (i.e., MRI) data. 

 

Unsupervised learning 

While supervised learning requires both features and class labels of the training examples 
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to be specified, unsupervised learning requires only the features and tries to learn the 

structure of the data, and whether data can be distinguished through a pattern analysis (Bray 

et al., 2009). Thus, the target here is to teach an algorithm to learn without any a priori 

given association between data and target labels. For this reason, the analyses methods 

belonging to this category are called exploratory analyses. Three main approaches are those 

most commonly adopted in fMRI multivariate exploratory studies: Independent 

Component Analysis (ICA), Principal Component Analysis (PCA) and clustering 

algorithms (e.g., k-means clustering, hierarchical clustering). Exploratory analysis, even if 

overcoming some lacks of the voxel-wise analysis, have some disadvantages and limits. 

For example,  the interpretation of the resulting “components” is made post-hoc and is 

completely left to the subjectivity of the experimenter, moreover there are no systematic 

ways to relate patterns of activity to class labels or experimental conditions.  

After this brief discussion about the different multivariate machine learning approaches, a 

number of issues are still open. However, it is clear that in general the introduction of data-

driven approaches can overcome some of the limitations of the traditionally adopted 

methods. For this reason, in the last years an increasing amount of studies have adopted 

multivariate techniques for the analysis of neuroimaging data in an innovative fashion. The 

introduction of  pattern based multivariate classification methods can play a key role in the 

future in the analysis of neuroimaging data. Indeed, the great advantage of these technique 

is that they can provide a direct link between brain activity or anatomy and explanatory 

variables. Therefore, the neuroscientific perspective to the study of brain and mind can be 

reversed in a way that can lead to a more deep understanding of how the brain react to the 

environment and how researcher can ask the brain in order to predict behavioral or clinical 

variables. These advantages are possible thanks to the key concepts on which the 

multivariate analysis approach lies. These crucial aspects, and their differences with the 

standard approach will be discussed in the next paragraph. 

 

UNIVARIATE vs. MULTIVARIATE ANALYSIS OF NEUROIMAGING DATA 

Traditionally, the statistical analysis of both structural and functional MRI data has been 

performed in a univariate sense. Basically, univariate fMRI data analysis is realized 

correlating an experimental variable (e.g., task conditions) with the brain activity (i.e., the 

BOLD signal; Ogawa, Lee, Kay, & Tank, 1990) through a General Linear Model (GLM) 

computed separately for each voxel in the brain. This approach is called Statistical 

Parametric Mapping (SPM; Friston et al., 1995). Under this perspective, the GLM can be 
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represented with the general formula: !" = 	%&'& + ⋯+	%*'* +	+"   (Penny, Friston, 

Ashburner, Kiebel, & Nichols, 2011), where: 

- Yj is the intensity of the BOLD signal in the voxel j; 

- '(&…*)	are explanatory variables (regressors); 

- %(&…*) are (unknown) coefficients. 

 

In these approach, data are modeled assuming the shape of the Hemodinamic Response 

Function (HRF), that is convolved with each task condition and used for detecting 

correlations. This method is voxel-wise, that is it analyzes each voxel timeseries 

independently for each of the thousands of voxels in the brain.�The output of this analysis 

is a statistical map indicating voxel-by-voxel the intensity of the BOLD signal related to 

the regressors of interest, and thus where (i.e., in which voxels) the activity related to the 

experimental variable is located (Worsley & Friston, 1995). Therefore, this method 

addresses the research question about whether BOLD signal is related to an experimental 

variable, and where the activity is mainly located in the brain, starting from a predefined 

generative model that is fitted to the data separately for each voxel (Bray et al., 2009; 

Haller, Lovblad, Giannakopoulos, & Van De Ville, 2014). The mechanism through which 

the inferential process is realized with this method can be called forward inference (Haller 

et al., 2014; R. Henson, 2006). Basically, this process tell us how well the model fits (i.e., 

explains) the data, and provide inference on which brain areas are supposed to be involved 

(i.e., more active) in a specific mental process or pathological condition. However, this 

analysis is based on a correlational logic, so that it is not possible to infer the causality of 

the resulting relation between brain activity and mental states. Moreover, the brain 

correlates of a number of mental/cognitive processes are not localized in a specific brain 

area, but are represented across patterns of brain activity (or patterns of anatomical indexes 

such as Grey Matter volume).  

Recently, new analysis methods have been introduced in the neuroimaging scenario 

providing a different prospective through which the brain can be studied. These methods, 

referred to the general framework of non-parametric approaches and belonging to the 

category of multivariate analysis, may improve our knowledge on how the brain react to 

stimuli (Di Bono & Zorzi, 2008). However, as discussed in the present dissertation, have 

many advantages in the investigation of anatomical data, as well. The main strength in the 

multivariate approach, if compared to the traditional one, is that the information of 
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thousands of voxel is analyzed simultaneously, in order to detect the distinctive pattern of 

activity (or anatomical differences) related to a cognitive process or a general mental state. 

Therefore, rather than asking how much each voxel’s activity is related to an experimental 

condition, in multivariate analyses the question is about whether there is a pattern of brain 

activity (i.e., spread across many voxels) which discriminate between experimental or 

clinical conditions (Bray et al., 2009). The key idea that critical information about a 

cognitive process or, in general, a mental state, are not encoded is a single location but are 

distributed across many brain regions, is certainly more biologically plausible, given the  

widespread nature of brain responses (Uttal, 2015). Moreover, in multivariate analysis, no 

(parametric) models are preliminarily specified (e.g., HRF model) as there can be strong 

differences across subjects (Handwerker, Ollinger, & D’Esposito, 2004; Thomason, 

Burrows, Gabrieli, & Glover, 2005), but models are learned from a set of data in order to 

predict the explanatory variable on new data (Haller et al., 2014). This approach, can 

therefore be defined data-driven as it starts from the detection of patterns of information 

encoded in the brain, in order to come to the mental process related to the detected pattern. 

In other words, it is possible to infer a mental state by looking at neuroimaging data. This 

inferential process is called reverse inference (Cox & Savoy, 2003; Haller et al., 2014; 

Poldrack, 2006, 2008) or inverse inference (Haynes & Rees, 2006; Haynes, 2015). 

Basically, this mechanism allows to infer a mental process or condition starting from the 

brain. From a logical point of view, this reasoning is based on the fallacy of the converse, 

that is affirming the antecedent from the consequence. This fallacy is based on the fact that 

a specific brain pattern is not the only one possible when performing a specific cognitive 

task or belonging to a specific clinical population. Indeed, the detected brain pattern and 

the co-occurring mental state are not necessarily connected by a causal link (Haynes & 

Rees, 2006). This is the main reason why such inference mechanism has been criticized in 

the neuroimaging field (Poldrack, 2006). Anyway, given that research in cognitive 

neuroscience is aimed at explaining behavioral events, rather than inferring the general 

laws that rule behavior, the use of methods relying on reverse inference is more robust than 

that of the traditional inferential approach (Di Bono, 2009). Importantly, the possibility of 

combining information encoded in many voxels, can potentially increase the analysis 

sensitivity, as univariate approach can fail to map neural basis of conditions having a 

distributed pattern of effects on the brain (Bray et al., 2009; Davis & Poldrack, 2013). 

Therefore, when the difference between two mental processes lies on the functional 

connectivity pattern, multivariate maps might be more informative if compared to standard 
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univariate statistical maps (Sato et al., 2008). Finally, the use of multivariate analysis 

techniques allow to predict mental states from brain imaging data, by recognizing the 

pattern of brain activity related to a specific state (e.g, a cognitive process) or a general 

state (e.g., a neurological condition, such as a diagnosis of Alzheimer Disease). 

 

As discussed in this chapter, multivariate methods have changed the way of asking research 

questions in neuroimaging studies. From a standard approach focused on localizing the 

brain correlates of cognitive functions to a more flexible approach allowing to understand 

in a more exhaustive way which information are encoded in the brain, how they are 

represented. The two approaches, highlighted in the previous paragraphs, within the family 

of multivariate methods, can be distinguished on the basis of the research question that they 

allow to deal with. For the aims of the present dissertation only one question was 

investigated, in different applications. In particular I was interested in analyzing whether 

and how consistently patterns of functional and structural brain indexes can predict mental 

states. This question is addressed by the pattern-based classification methods, also called 

Multi-Voxel Pattern Analysis (MVPA), that will be discussed in the next chapter. 
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Chapter 2 

 

MULTI-VOXEL PATTERN ANALYSIS: AN OVERVIEW 

 

INTRODUCTION 

In the last years, a growing number of studies have adopted multivariate analysis 

approaches for investigations in a wide range of scientific areas. Recently, the multivariate 

approach known as Multi-Voxel Pattern Analysis (MVPA) has strongly entered the 

common practice in neuroimaging studies. In Figure 2.1 the number of neuroimaging 

publications in which MVPA methods have been adopted or discussed between 1992 and 

2016 is shown. Considering the year in course, the number of already published 

neuroimaging papers using MVPA (515) is almost double of those published only three 

years ago (277). This data indicates the increasing interest on the multivariate techniques 

for the analysis of neuroimaging data. 

 

 
Fig. 2.1. Number of published papers in neuroimaging field, using MVPA (Source: pubmed.org - Key: (Multi-Voxel 
Pattern Analysis[Title/Abstract]) OR MVPA[Title/Abstract]"). Research made on November, 7th 2016. 
 

As previously discussed, the multivariate approach has shown several advantages if 

compared to the standard voxel-wise approach to functional and structural neuroimaging 

data. These advantages suggest that the increasing trend in the use of MVPA in the 

neuroimaging field will not stop in the next years, and that this approach will potentially 

become a gold-standard for the statistical analysis of neuroimaging data.  

In neuroimaging field, MVPA has been used to investigate both structural and functional 
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neural correlates of a number of mental states and traits including conscious and 

unconscious racial attitudes (Cunningham et al., 2004), emotional states and self-regulation 

(Beauregard, Lévesque, & Bourgouin, 2001), personality traits (Canli & Amin, 2002), and 

many others.  

Basically, MVPA has been mainly employed in two different ways. The first application is 

to decode the specific mental state of a subject while he is performing task. An example of 

this application is the study by Haxby and co-workers (2001), considered as the first 

important study adopting a pattern recognition approach with fMRI data. In this study 

authors investigated the discriminability of the brain activity pattern associated to the 

processing of faces or objects pictures. Basically, the kind of perceived stimulus is inferred 

based on the information derived from the fMRI BOLD signal, thus leading this procedure 

to be called “brain reading” or “mind reading” (Haynes & Rees, 2006) or “decoding” (e.g., 

Hebart, Görgen, Haynes, & Dubois, 2015) techniques.  

The second most common application of MVPA is more related to the clinical field and 

concern the prediction of the general state of an individual on the basis of functional or 

structural data. For example, several studies have shown the possibility to discriminate 

prodromal Alzheimer Disease (AD) patients from healthy subjects (e.g., Davatzikos, Fan, 

Wu, Shen, & Resnick, 2009), showing that these techniques can be useful in the 

automatized early diagnosis of AD (Salvatore, Battista, & Castiglioni, 2016).  

In both cases, the analysis is focused on the classification of examples as belonging to one 

among two classes. The classification is achieved by training an algorithm in discriminating 

between the two classes, on the basis of a pattern of provided features. This procedure 

produces an accuracy map or a single accuracy value telling how much two stimuli or two 

neurological state can be distinguished and/or where the information for the classification 

is mainly encoded.  

 

Types of classifier 

An important step that has to be performed before training a classifier is choosing which 

classifier. Indeed, many different kinds of classification algorithms are available, and can 

fit to different research questions or different dataset characteristics. One of the most simple 

classification algorithms is the nearest-neighbour. This procedure is based on finding the 

example in the training set that is most similar to a new example that has to be classified. 

Thus, the class label of that training example is assigned to the test example. Other classifier 

types are the discriminative and the generative models. Discriminative models are those 
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that predict the class of a new example by setting the models parameters learned from the 

training set. By contrast, generative models  basically learn a model that can generate an 

example of one specific class (Pereira et al., 2009). An exhaustive comparison of the 

different typed of classifiers is not consistent with the aims of the present dissertation (for 

further details see e.g., Bray, Chang, & Hoeft, 2009; Pereira et al., 2009; Poppenk & 

Norman, 2012). 

A crucial question, when choosing a classifier, is about the shape of the function, that is the 

choice between a linear and a non-linear classifier. Despite this issue is strongly related to 

the specific research question and features set employed, in neuroimaging there is a general 

“rule” that has to be considered. Indeed, as specified in other subsections of the present 

manuscript, typically in fMRI/MRI studies the number of features exceeds the number of 

examples. In other words, for each example (e.g., a single MRI scan of a patient) several 

thousands of features (i.e., voxels) are considered. This can entail the model to be 

excessively fitted to training data, and thus not able to generalize the accuracy performance 

to new unseen data (see the paragraph about the “overfitting” problem). The risk of 

overfitting can be reduced by adopting a les flexible classifiers. Therefore,  among the 

variety of available different classification algorithms, the great majority of MVPA studies 

has adopted linear classifiers. The main reason for this choice is that the use of linear 

classifiers redues the risk of overfitting, as this approach is less flexible than non-linear 

approaches (Misaki, Kim, Bandettini, & Kriegeskorte, 2010). In neuroimaging, the most 

common classifier is the linear support vector machine (SVM; Cortes & Vapnik, 1995; 

Vapnik, 1995), that has been adopted in a number of studies (see e.g., Kamitani & Tong, 

2005; LaConte, Strother, Cherkassky, Anderson, & Hu, 2005; Mourão-Miranda, Bokde, 

Born, Hampel, & Stetter, 2005) as it has been demonstrated to be a valid and efficient 

approach for pattern analysis, both with functional (e.g., Pereira, Mitchell, & Botvinick, 

2009; Schmah et al., 2010) and structural (e.g., Casanova, Hsu, & Espeland, 2012; Ung et 

al., 2014) neuroimaging data. In the following subsections, we will discuss issues a user 

has to deal with when facing binary classification problems, as well as methodological 

aspects of the application of linear SVM algorithms. 

 

 

BINARY CLASSIFICATION: THE SUPPORT VECTOR MACHINES (SVM) 

SVM classifiers have reached increasing popularity in the last 15 years. One reason of the 

diffusion of these algorithms, among all the available approaches, is the relative ease in 
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implementing the analysis and in interpreting the results, if compared to other classifiers.  

The workflow of a MVPA study employing an SVM algorithm has to follow several steps 

(Haller et al., 2014; Haynes & Rees, 2006; Norman, Polyn, Detre, & Haxby, 2006; Orrù, 

Pettersson-Yeo, Marquand, Sartori, & Mechelli, 2012; Pereira et al., 2009). There could be 

slight differences in the pipeline when using structural or functional neuroimaging data, as 

shown in Figure 2.2.  

 

 
Fig. 2.2. Graphical overview of a basic workflow of a MVPA study using functional or structural MRI data. 
 

However there are some main steps that should always be performed. These steps include 

the selection and extraction of features, the use of the selected features to train and test a 

classifier, and finally the evaluation of classifier performance. In the following, each of the 

main steps will be discussed. 

 

Feature extraction and Feature selection 

The word “features” in the pattern recognition field refers to independent variables 

(predictors) that are used to predict the class an example belongs to, where an “example” 
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is defined as a pattern of independent variables (Pereira et al., 2009). In neuroimaging, each 

brain voxel considered in the analysis is a feature, and examples can be the type of stimuli 

investigated (e.g., Object vs. Animal) in the case of functional data (i.e., fMRI) or a global 

condition (e.g., AD patient vs. Control ) in the case of structural MRI data.  

Once participants’ scans (examples) have been collected, data have to be prepared for 

training the classifier. First, the original data are transformed into a set of “features”, which 

will be subsequently used for the pattern classification. This is the so-called features 

extraction. In the neuroimaging practice, this step consists in transforming each brain scan 

in a vector of features with each value corresponding to a single voxel (e.g., GM volume 

or activation in that voxel; Orrù, Pettersson-Yeo, Marquand, Sartori, & Mechelli, 2012). 

Therefore, an example x will be in the form of a vector x = [x1, x2, …, xv], where v is the 

number of voxels and x1…v  are the voxel-by-voxel values (Pereira et al., 2009). Based on 

the type of neuroimaging data that are analyzed, the feature vector could encode the amount 

of Grey Matter (GM) or White Matter (WM) or the cortical thickness (in structural MRI 

data), rather than a measure of brain activity (in fMRI data) for each considered voxel 

(depending on the analysis approach, e.g., whole-brain vs. ROIs-based). 

Then, the most useful features are selected and those redundant or minimally important are 

discarded (Orrù et al., 2012). This process is called features selection. The reduction of the 

number of features used for the classification can allow to:  

- maximize the classifier performance. A less noisy set of features can foster the 

highest reachable accuracy in discriminating between the classes; 

- make results more understandable. For example, focusing only on brain areas 

highlighted by previous literature as related to a certain cognitive process, can make 

the interpretation of results easier. Indeed, when the number of features is 

excessively greater than the number of data-points in the training set, the model will 

be barely interpretable (Friedman, Hastie, & Tibshirani, 2001);  

- save time and computational load. Sometimes MVPA algorithms (e.g., the 

searchlight) can require a high computational power, as well as a great amount of 

time to achieve results. So that, loading less data (i.e., less features) can speed-up 

the process.  

As abovementioned, one possible way to perform a feature selection is to perform a 

Regions-Of-Interest (ROIs) analysis. ROI analysis consists in selecting specific brain 

regions derived from the literature, to focus the analysis only on a subset of voxels. For 

example, only areas that the literature has shown to be related to the psychological process 
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under investigation, are selected. This option is advantageous when there are specific 

spatial priors that can be used to drive the results, on the other hand the disadvantage is that 

the analysis is restricted to a small set of spatial hypotheses and thus the possibility of 

finding unexpected results is less probable. The second option for the feature selection is 

to use automatic algorithm for the features elimination. These methods include the 

recursive features elimination (RFE), in which features giving a small contribution to the 

classifier (i.e., having small SVM weights; see below) are iteratively discarded (De Martino 

et al., 2008) or the Greedy algorithms (see Guyon & Elisseeff, 2003), and the sparse 

methods, which consists of classification and regression algorithms that perform an implicit 

selection of a subset of features that will be used in the model (Carroll, Cecchi, Rish, Garg, 

& Rao, 2009; Grosenick, Greer, & Knutson, 2008; Yamashita, Sato, Yoshioka, Tong, & 

Kamitani, 2008). Also Independent Component Analysis (ICA) and Principal Component 

Analysis (PCA) can be used for the feature selection. 

 

Training and Testing 

As abovementioned, the target of a MVPA study is to reach a good classification accuracy 

in discriminating between examples belonging to different classes (two in the binary case). 

This objective can be achieved following two steps: estimating and optimizing the model 

parameter through the use of a set of training data, and then testing the generalization of 

classifier performance to new examples (i.e., not used for the training). As previously 

stated, given its diffusion in neuroimaging application of MVPA methods, here we will 

focus on how an SVM linear classifier deals with a binary classification problem (i.e., 

where examples belong to two classes). 

Support Vector Machines (SVM) are linear classifiers, so that the classification function is 

based on a linear combination of the features (Pereira et al., 2009) and has the form  

y = g(w1x1 + … + wnxn) 

where: 

- x1 …xn is the set of features; 

- w1 …wn are the weights associated to each feature, estimated during the training 

phase; 

- y is the function of the pattern of features. 

 

In the training phase, the SVM algorithm learns specific parameters called weights (w), 

from a set of training data. The weights can be defined as the influence of each feature on 
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the classification performance. For instance, the value of individual weights indicates the 

relative importance of each feature in the classification process (Bray et al., 2009). 

Basically, a SVM is trained on a set of data in order to estimate a function called “decision 

function” or “hyperplane”, which optimally discriminates between the two considered 

classes (e.g. AD patients vs. Controls). In Figure 2.2, a representation of the SVM 

performance is presented in a pattern recognition problem between two classes (red and 

blue spheres; e.g., AD patients vs. Controls). This simplified case refers to a three-

dimensional case (Fig. 2.2a), where only three features (i.e., voxels) are considered (one 

for each axis), and the position of each example (either a red or a blue sphere) in the k-

dimensional feature space (in this case k=3) is defined by its pattern of features.  

 

 
Fig. 2.3 a) Illustration of a 3-dimensional feature space in which 2 classes of examples (blue and red spheres) are separated 
by a linear SVM hyperplan (in light green).  b) Illustration of a separating hyperplane (green line) in a 2-dimensional 
space, with a maximal margin determined by a linear SVM. Dashed lines are the boundary hyperplanes of the two classes. 
The portion of plan including the closest examples to the line is zoomed-in on the right: the circled examples are the 
support vectors. The margin is the distance between the closest examples of the two classes. In the lower right, two 
different possible separating hyperplans for the same examples are illustrated. The optimal one is the one with the 
maximum margin.  
 

The two classes of examples in Fig. 2.2 can be separated by different hypothetical lines 

(i.e., functions). The target of the SVM, in the training phase, is to find the hyperplan that 

maximizes the distance between the examples lying closest to the separating plane (and 

thus the most difficult to classify) and the plane itself. These examples (i.e., vectors of 
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features) are called support vectors and are those maximally influencing the classifier. In 

Figure 2.2b the same classification problem is illustrated, but in a more understandable 

two-dimensions representation, and support vectors are highlighted (circled examples). 

Therefore, in this simplified two-dimensional features space, learning a linear classifier 

means learning a line that separates points (examples) as accurately as possible, the so-

called decision boundary (Pereira et al., 2009). The same principle is applied in a k-

dimensional features space. 

In the next step, the testing phase, the estimated model (the hyperplan) is used to predict 

the class of new examples (not involved in the training phase).  At this point it is important 

to assess the robustness and generalizability of the classifier performance. Indeed, a good 

performance in fitting the model to the training data is not necessarily followed by a good 

classification accuracy of the examples in the test set. One possible cause of this mismatch 

is the so-called overfitting.  

 

The overfitting problem 

When dealing with complex systems of features, a classifier could make a performance 

close to 100% of accuracy on the training set but the performance can be poor when the 

model is applied to new datasets. This problem is commonly referred as “overfitting” (Duda 

et al., 2001). Overfitting can result from a biased analysis procedure. Indeed, to avoid 

biased estimation of generalizability, the data used as training set should not overlap with 

those used for testing.  

 

 
Fig. 2.4 (Haynes, 2015) Example representing two different classifiers used in a two-class dataset (red and green dots). 
The 10th-degree classifier shows a good performance on training data (actually due to overfitting) but it does not 
generalize to the test set. The 2nd-degree classifier has a lower classification accuracy but it is less overfitting-prone. 
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However, even in presence of an unbiased design, when the number of features is high (as 

often happens in neuroimaging where the number of features exceeds the number of 

examples), the classifier can be excessively fitted to the training data, leading to a lack of 

generalizability (Pereira et al., 2009). Four main options can be chosen to deal with this 

phenomenon:  

1) use of different (i.e., independent) sets of data for training and testing. However this 

solution increases the amount of data that should be acquired; 

2) reduction of the number of features are used for the classification. As discussed 

above, one way is to perform the feature selection step, often crucial to improve the 

classifier performance. Another possibility is to consider some dimensionality 

reduction method, such as Principal Component Analysis (PCA; Hansen et al., 

1999) or Independent Component Analysis (ICA; Calhoun, Adali, Hansen, Larsen, 

& Pekar, 2003);  

3) choice of the classifier. In many neuroimaging papers a linear classifier is chosen 

in order to avoid overfitting.  

4) use of cross-validation (CV) schemes, where a subset of data is iteratively left out 

from the training phase and used as test set, and the resulting classification accuracy 

is averaged across repetitions (Lemm, Blankertz, Dickhaus, Muller, & Müller, 

2011). In the next paragraph cross-validation techniques will be discussed. 

 

Dealing with overfitting: Cross-Validation schemes 

From a general point of view, all cross-validation techniques are based on a common 

principle, that is the independence between training and test set within a single iteration. 

This means that data are split in subsets: one is used in the training phase in order to build 

a model and to estimate model parameters, the other one (i.e., not considered in the training 

process) is used to evaluate the quality of the learned mapping between the patterns of brain 

activity (or the pattern of GM volume when using structural data) and the experimental 

conditions. This process is repeated a variable number of times (iterations) based on the 

number of created subsets. Cross-validation can be considered a method that allow the user 

to test the validity, robustness and reliability of a classifier performance. In the following, 

the most common CV-schemes are presented. 

 

Hold-out cross-validation 

In this cross-validation scheme a subset of data is used as training set, in order to estimate 
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the model parameters, and the remaining set of examples is used as test set for the validation 

of classifier performance. Thus, in the testing phase, the model built on training data is 

applied to the new data in order to predict the class of each data point, and the number of 

correctly classified examples is collected.  

 

K-fold cross-validation 

A common cross-validation design in neuroimaging is the k-fold cross-validation. In this 

scheme, k is the number of partitions the dataset is split into (N is the total number of 

examples). Then, k steps are performed in which the classifier is trained on N-k folds and 

tested on one. The algorithm stops when each folds has been used as test set once. Then, 

the classification accuracies are averaged across the k iterations (Bray et al., 2009) and a 

final value of accuracy is reached. 

 

Leave-One-Out cross-validation (LOO-CV) 

Another cross-validation scheme often used in neuroimaging studies is the LOO-CV. This 

scheme can be considered a particular case of the k-fold cross-validation scheme where k 

is set to 1. For example, one subject per group can be iteratively left out and the classifier 

in each iteration is trained on N-1 examples per group, and tested on the left-out pair. Based 

on the number of examples, this scheme can potentially require more computational effort 

(Bray et al., 2009). Leave-one-out cross-validation scheme actually refers to a family of 

cross-validation designs, as the decision on what to leave out can be customized. One of 

the most common implementation of this scheme in fMRI studies is the Leave-One-Run-

Out cross-validation, where the classifier is trained on all but one runs and tested on the 

remaining run (the process is repeated until each run is left out once).  

 

Other possible cross-validation schemes that will not be discussed in the present manuscript 

are referred to the jackknifing or the bootstrapping techniques (Efron & Tibshirani, 1993), 

and the reproducibility resampling (Strother et al., 2004).  

The important concept is that, independently from the employed cross-validation design, 

users should be aware of possible problems related to the analysis of functional and 

structural MRI data, either related to the nature of the data itself (e.g., the temporal 

correlation of fMRI scans) or to the kind of analysis approach adopted (e.g., in the case of 

MVPA, the overfitting problem).  
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MVPA classification approaches 

As shown in Figure 2.2, the decoding (classification) analysis can be realized on 

preprocessed images (e.g., in the case of structural data) or on beta images, representing 

the brain activation related to a specific stimulus type (in the case of functional data). When 

analyzing functional data in a task-based design, the decoding can be performed with cross-

validation schemes at the subject-level (i.e., examples are betas resulting from the first level 

analysis of a single subject) or at the group-level (i.e, the dataset includes betas resulting 

from the first level analysis of different subjects). In all these cases, the results of the 

analysis are related to the type of chosen approach. One decoding option is the whole-brain 

analysis, in which each voxel in the brain is used as input feature for the classifier. Another 

possibility is the ROI-based analysis, discussed in a previous paragraph as it can be 

considered a way to reduce the number of features. An interesting alternative to these two 

analysis approaches has been introduced by Kriegeskorte and colleagues (2006) and is 

called searchlight. In this analysis, classification is performed separately for each 

“searchlight” sphere (or square) of a specified radius (e.g., 3 voxels radius). The analysis 

is repeated until each voxel in the brain has been used as central voxel of a searchlight 

sphere (see Etzel, Zacks, & Braver, 2013). 

These different decoding approaches lead to different results format. In the case of a whole-

brain the result will be a single value of accuracy that indicated the classification 

performance considering all the voxels in the brain. Similarly, an ROI-based analysis will 

result in one value of accuracy for each of the selected ROI. Whereas, in a searchlight 

analysis the result is expressed as an accuracy map in which, for each considered voxel, an 

accuracy value is reported indicating the accuracy reached in the multivariate analysis 

performed on the searchlight sphere having that voxel as the central one.  

In the following paragraph, the next step of testing the significance of the obtained result 

will be discussed.  

 

Interpretation of classifier performance 

After performing a multivariate analysis for a classification purpose, the output should be 

properly interpreted. Indeed, it is important to note that pitfalls may be encountered when 

interpreting the results of classification experiments. For example, it is not possible to 

directly relate the information contained in a voxel or cluster to the information encoded in 

neurons (Haynes, 2015), as should be done in general with techniques involving the 

analysis of BOLD signal (Logothetis & Wandell, 2004), also in the univariate perspective. 
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For instance, it is possible that a voxel sample the signal coming from a large vessel that 

brings blood to a large population of neurons without sharing a direct anatomical correction 

(Gardner, 2010; Haynes, 2015). Moreover, there are many factors that have to be evaluated 

when interpreting the overall output of a classifier (Allefeld & Haynes, 2014), including 

the experimental design and the size of the training set.  

However, on the basis of the different MVPA approaches previously described (whole-

brain, ROI-based and searchlight analyses), there are differences in the way output is 

presented. In the whole-brain analysis a single number is obtained, simply indicating the 

level of classification accuracy considering all the voxels in the brain volume. So that, in 

this case we would not have a real accuracy map, but only a general accuracy value (e.g., 

“80%”). The same happens with ROI-based analyses, with the only difference that one 

accuracy value is obtained for each of the ROIs used.  

More interesting is the output of searchlight analyses. This approach provides maps in 

which for each point (voxel) one accuracy value is reported. This value indicates the 

classification accuracy of local clusters of voxels surrounding that point. Therefore, each 

accuracy value does not indicate the accuracy reached in that specific voxel, but the 

accuracy reached in the cluster centered on that voxel (Haynes, 2015). This important 

aspect should be taken into account as information might be distributed in many ways 

within the cluster, not necessarily including the central voxel (Etzel et al., 2013). 

 

Statistical evaluation of classifier performance  

Once a classification result has been obtained (e.g., either an accuracy value or an accuracy 

map), the statistical significance of that result should be tested. In other words, we should 

test whether the classification accuracy reached has been obtained by chance. From a 

statistical point of view, a significant result is one that allow us to reject the null hypothesis 

that the analyzed features do not encode information about the variable of interest (i.e., the 

class). In the classical NHST (Null-Hypothesis Significance Testing) framework, the 

statistical significance is determined by quantifying the probability (p-value) of obtaining 

the observed result (in this case the classification performance) under the null hypothesis 

that there is no difference between the considered classes, and thus that the classification 

accuracy is 1/2 = 0.5 (50%; if we have had four classes, it would have been 25%). Consider 

the example of tossing a coin for n times. In this case we have two classes (heads vs. tails) 

and assume that “heads” is obtained in k out of n trials. The null hypothesis is that the coin 

is well-balanced, and thus that in each trial there is a 50% probability for each class to 
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occur. The alternative hypothesis is that the coin is unbalanced, so that one class is more 

probable than the other. At this point, we want to test whether the k successes we obtained 

are significantly different (or above/below) than chance-level. Each trial in this case is 

independent, so that it can be modeled as a Bernoulli trial with 50% probability of success 

under the null hypothesis (Pereira et al., 2009), so that one possibility is to perform a 

Binomial test. The binomial test gives us the probability that the k successes occurred by 

chance. However, in most MVPA neuroimaging studies, the assumption of independence 

is not satisfied, mainly because of the use of cross-validation designs, where the same 

examples are used both as training and test data. Although this consideration, the use of 

binomial test has been common practice for years (Kohavi, 1995).  Recently, several papers 

(e.g., Noirhomme et al., 2014; Stelzer, Chen, & Turner, 2013) have faced this issue and 

have argued that when a standard cross-validation design is applied, the independence of 

trials is not provided, thus the distribution of observations cannot be approximated to a 

binomial distribution. Therefore, in these cases, a binomial test is not appropriate and 

results can be biased. According to a recent paper (Noirhomme et al., 2014), however, when 

an independent leave-one-out cross-validation design is adopted (e.g., using an independent 

test set, the examples of which are not used during the training phase) a binomial test can 

be applied.  

In the lots of cases in which assumptions of independence do not hold, a good option is the 

use of a permutation test (Etzel, 2015; Etzel & Braver, 2013; Pereira et al., 2009). 

Permutation tests (for neuroimaging application see Nichols & Holmes, 2002; Nichols & 

Holmes, 2003) are based on minimal assumptions (P. Good, 2013) and their efficacy in the 

context of classification has been proven (Golland & Fischl, 2003; Golland, Liang, 

Mukherjee, & Panchenko, 2000; Stelzer et al., 2013). Basically, permutation test is based 

on shuffling the class-labels in the training set, and training and testing the classifier with 

the relabeled data. This procedure is repeated a number of times (usually at least 1000) 

using the same CV-scheme adopted in the original classification, in order to build an 

empirical distribution of accuracy results under the null hypothesis (Pereira et al., 2009; 

Stelzer et al., 2013). Then, the accuracy obtained using the correct labels is compared to 

the built distribution (Etzel & Braver, 2013), and thus significance value is obtained. 

Although the principle of permutation test is the one described above, different permutation 

designs are possible, for example one can shuffle the class labels across all dataset (dataset-

wise permutation schemes), or for each independently (fold-wise permutation schemes; 

Etzel, 2015; Etzel & Braver, 2013).  
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The abovementioned approaches to significance testing can be applied to both single-

subject and group-level decoding. In neuroimaging studies, one common practice is first to 

realize a within-subject classification (i.e., on not normalized, unsmoothed data), and then 

perform a group analysis on the resulting accuracy maps (e.g., in the case of searchlight 

approach) using a standard approach such as one sample t-test. This procedure, however, 

can be realized only when the classification is possible within-subject, that is when a task 

is performed and functional data are acquired. In MVPA studies where the examples that 

has to be classified are subjects (e.g., patients vs. controls, using structural data or resting 

state functional data), the most common approach is to perform a permutation test (or a 

binomial test when the assumption of independence holds). 

 

Applications of MVPA 

As mentioned above, many applications of MVPA have been tested in the last 20 years. 

Following the important study by Haxby and co-workers (2001) several studies 

investigated the association between visual object categories and patterns of activity in 

ventral temporal cortex (e.g., Carlson, Schrater, & He, 2003). However, applications of 

MVPA on functional MRI data have covered a wide range of fields not related with visual 

perception, such as psychopathy (Pridmore, Chambers, & McArthur, 2005), criminal 

tendencies (Raine et al., 1998), drug abuse (Childress et al., 1999), product preferences 

(McClure et al., 2004), decision-making (Heekeren, Marrett, Ruff, Bandettini, & 

Ungerleider, 2006), and many others. Importantly, for the aims of the present thesis, some 

studies have focused on aspects related to possible forensic applications, such as lie 

detection (Davatzikos et al., 2005) or intentions (Haynes et al., 2007). Particularly 

interesting for the potential future application to forensic settings is the use of MVPA for 

the detection of memories (Rissman, Chow, Reggente, & Wagner, 2016; Rissman, Greely, 

& Wagner, 2010; see Section B and Chapter 7). 

In addition, the analysis of structural MRI brain scans has been used to discriminate 

between healthy controls and patients with different pathologies, including Alzheimer’s 

Disease (Davatzikos et al., 2009), fragile-X syndrome and autism (Hoeft et al., 2011), 

psychosis (Gothelf et al., 2011), depression (Costafreda, Chu, Ashburner, & Fu, 2009), 

multiple sclerosis (Weygandt et al., 2011) and so on.  

In the next chapters two applications of MVPA will be presented, one using structural MRI 

data (Section A) and one using functional MRI data (Section B). 
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SECTION A 

 

DETECTING COGNITIVE RESERVE FROM THE BRAIN: A MVPA 

APPLICATION 

 

 

Introduction 

The concept of “reserve” has been introduced about thirty years ago (Katzman, 1993; 

Katzman et al., 1989) to account for the disjunction between the level of brain pathology 

and its clinical manifestations (Stern, 2009) and to explain the differences in age-related 

cognitive decline. According to a general definition (OED, 2016), “reserve” refers to the 

“supply of a commodity not needed for immediate use but available if required”. Some 

studies have reported discrepancies between cognitive functioning in aging and brain signs 

of pathology at a post-mortem examination (Ince, 2001). In cases like these, the amount of 

reserve is assumed to determine the relation between pathological brain alterations and 

manifestations of symptoms. Within the concept of reserve, a number of models have been 

proposed, such as Cognitive Reserve (CR;  Stern, 2002), Brain Reserve (BR; Satz et al., 

1993), Brain Maintenance (BM; Nyberg, Lövdén, Riklund, Lindenberger, & Bäckman, 

2012), and neurocognitive scaffolding (STAC; Park & Reuter-Lorenz, 2009). In the present 

manuscript, we will focus mainly on CR and BR models and on their relation. 

 

Actively building reserve: the Cognitive Reserve model  

The expression Cognitive Reserve (CR) is defined as “the ability to optimize or maximize 

performance through differential recruitment of brain networks, which perhaps reflect the 

use of alternate cognitive strategies” (Stern, 2002). CR refers to individual differences in 

cognitive processing as a function of lifetime intellectual activities (as well as 

environmental factors) that can explain differences in the susceptibility to cognitive 

impairment due to a neurological condition (Stern, 2002, 2009). Thus, basically, the whole 

set of variables including education level, QI, learning experiences and knowledge that a 

person acquires throughout life contributes to his CR (Mondini et al., 2016). Among the 

components of reserve, CR is the “active” one, as it suggests that the brain actively try to 

cope with brain pathology both using cognitive processes in a more efficient way and 

attempting to compensate the damage (Stern, 2002).  

According to Stern (2009), the way in which CR may influence the clinical expression of 
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neurological pathology (e.g., Alzheimer disease, AD), is represented in Figure A.1. Starting 

from epidemiological and imaging studies on the relation between CR and AD-related 

cognitive decline, the moment in which pathology begins producing clinically visible 

cognitive symptoms (the so-called “point of inflection”) is later in time in persons with 

high CR if compared to persons with low CR. The logical consequence is that a person with 

higher CR will meet clinical diagnostic criteria for AD at a later stage of neuropathology, 

thus, from a clinical perspective, the onset of the disease is delayed. The second implication 

is that, once cognitive decline begins, it is faster in the person with higher CR. Therefore, 

the impact and efficacy of a cognitive training is different in AD patients with high and low 

CR. Indeed, as recently demonstrated, cognitive training is less efficient in AD patients 

with high if compared to patients with low CR, because of the different underlie stage of 

pathology at the moment of clinical manifestation (Mondini et al., 2016). 

 

 
Fig. A.1. (Stern, 2009)  Theoretical representation of the role of CR in mediating the relation between AD neuropathology 
and its clinical expression. The x-axis represents the progression of AD neuropathology over time, while the y-axis 
represents the level of cognitive performance (i.e., cognitive functioning). The basic assumption is that the progression 
of AD pathology is the same independently from the level of cognitive reserve. What is modulated by the CR level (high 
vs low) is the moment when the clinical expression of symptoms (point of inflection) begins. With higher CR this point 
is postponed. 
 

It has been largely demonstrated that life experiences, such as educational and occupational 

attainment, or involvement in leisure-time activities (e.g., social or, in general, cognitively 

relevant activities)  have been associated with a reduced risk of degenerative diseases such 

as dementia (Scarmeas, Levy, Tang, Manly, & Stern, 2001; Stern et al., 1994; Valenzuela, 

Sachdev, Wen, Chen, & Brodaty, 2008; Wilson, 2009) and better progress in other 
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neurological conditions such as traumatic brain injury (Fay et al., 2010), Parkinson’s 

disease (Poletti, Emre, & Bonuccelli, 2011), multiple sclerosis (Sumowski et al., 2016; 

Sumowski, Chiaravalloti, Wylie, & Deluca, 2009; Sumowski & Leavitt, 2013).  

Taken together, all these studies suggest that the threshold for functional decline can be 

modulated by life experiences (e.g., education, occupation, leisure time activities), 

therefore it is not fixed throughout the life-span. A slightly different perspective is 

suggested by “passive” models of reserve, the so-called Brain Reserve (BR), that will be 

presented in the following.  

 

Quantifying Cognitive Reserve 

Given the theoretical nature of CR, there are no direct measures through which it can be 

quantified. However, in literature, several variables have been indicated as “proxies” of 

CR, that is, measures used as indirect indicators of CR level. The most commonly used 

proxies of CR are:  

- educational attainment (e.g, Arenaza-Urquijo et al., 2013; Fitzpatrick et al., 2004); 

- occupational achievement (e.g., Garibotto et al., 2008; Staff, Murray, Deary, & 

Whalley, 2004; Stern et al., 1995); 

- socio-economic status (e.g., Scarmeas & Stern, 2003); 

- intelligence (premorbid IQ; e.g., Sole-Padulles et al., 2009);  

- leisure activity (e.g., Nikolaos Scarmeas & Stern, 2003; Sole-Padulles et al., 2009); 

- bilingualism (e.g., Schweizer, Ware, Fischer, Craik, & Bialystok, 2012) 

Moreover, several composite measures of CR have been introduced in literature. These 

tools take into account the combined contribution of several variables such as education, 

leisure-time activities, occupation and so on. Examples of these tools are the Cognitive 

Reserve Index questionnaire (CRIq; Nucci, Mapelli, & Mondini, 2012) or the Cognitive 

Reserve Scale (CRS; León, García-García, & Roldán-Tapia, 2014; Leon, Garcia, & 

Roldan-Tapia, 2011).  

Among the abovementioned indicators, educational attainment is the most widely studied, 

and in many cases educational level and CR level are considered as the same concept 

(Valenzuela & Sachdev, 2006a, 2006b). It has been argued that education may foster CR 

by contributing to the creation of alternative cognitive strategies (Manly, Byrd, Touradji, 

& Stern, 2004; Stern, 2002). Moreover, it may promote synaptic growth (Katzman, 1993), 

also because of the lifetime period in which educational path begins is the childhood, a 

critical temporal window for brain plasticity plastic. So that, education may have effects on 
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brain structure and contribute to brain protection. Indeed, it has been widely demonstrated 

that education modulates the relation between neuropathology degree and 

neuropsychological test performance (Bennett et al., 2003; Dufouil, Alpérovitch, & 

Tzourio, 2003; Rentz et al., 2010). 

 

From Cognitive Reserve to Brain Reserve: two sides of the same coin? 

Opposite to CR model, the Brain Reserve model (BR; Satz et al., 1993) suggests that 

quantitative (passive) measures, such as the overall size of the brain, the number of neurons 

or the number of synapses, explain the differential susceptibility to brain pathology, on the 

basis of the concept of brain reserve capacity (BRC). Under this perspective, functional 

decline begins when the BRC is depleted by an high level of neuropathology.  

 

Despite BR and CR models have been developed as mapping distinct and independent 

aspects of reserve, a number of studies suggest that boundaries between the two models are 

thinner than expected. Thus, variables that contribute to CR may have a role in BR, as well. 

For example, higher CR seems to be associated with a reduced rate of hippocampal decline 

in aging (Valenzuela et al., 2008).  

Some recent studies (e.g., Bartrés-Faz & Arenaza-Urquijo, 2011) tried to shed light on the 

correspondence between BR and CR models suggesting that a complex relation exists 

between the passive and active components of reserve. For example the model of Brain 

Maintainance (Nyberg et al., 2012) suggests the existence of a combination of both genetic 

and environmental factors, such as particular life experiences, that can have a protective 

role on brain. Barulli and Stern (2013) argued that, taken together, CR, BR, and other 

models such as brain maintenance, should be considered as different perspectives in 

explaining the same concept, that is the resilience to pathology. Lövdén and co-workers 

(2010) suggested that when people have to perform tasks, they use cognitive strategies 

taken from their own experience and knowledge. However, when they experience for a 

long time a mismatch between the efficacy of these strategies and tasks’ requests, brain 

plasticity comes into play to compensate for this mismatch and this may lead to structural 

modifications. This mechanism is similar to that theoretically defined by Stern (2009) as 

neural compensation. Thus, essentially, the brain changes itself to properly deal with 

challenges coming from environment.  
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Cognitive Reserve and brain structure  

Several accounts of the effects of environment on brain structure have been proposed in the 

last century, after the introduction of the enriched environment as an experimental variable 

(Rosenzweig, 1966; Rosenzweig, Bennett, & Krech, 1964). Many studies on rats have 

shown that environmental stimulation can act on the structure of adult brain in many ways, 

such as promoting dendritic arborization or neurogenesis (e.g., Cummins, Walsh, Budtz-

Olsen, Kostantinos, & Horsfall, 1973; for a review see van Praag, Kempermann, & Gage, 

2000). In addition, a number of studies on humans have shown that experience can have 

effects on brain structure. Volumetric brain changes have been documented following 

prolonged life experiences, such as years of intellectual stimulation (Coffey, Saxton, 

Ratcliff, Bryan, & Lucke, 1999), literacy (Carreiras et al., 2009), and musical learning 

(Gaser & Schlaug, 2003; Pascual-Leone, 2001). Moreover, involvement in physical, social 

and cognitive activities seems to have an effect on  brain structure (Seider et al., 2016) also 

after relatively short periods of time. For example, Erickson and co-workers (2011) showed 

an increase in hippocampus size after six months of aerobic exercise. Increases in 

hippocampal volume has been shown also in the well-known study on London taxi-drivers 

(E. a Maguire et al., 2000), after intensive learning of city maps. Training-induced 

structural brain changes have been demonstrated also after three months of training on 

juggling skills, showing increased GM volume in temporal and parietal cortices. Moreover, 

a number of investigations on elders found effects of cognitive or physical training on brain 

structure, involving several measures of brain volume such as the regional volume of GM 

(e.g., Boyke, Driemeyer, Gaser, Büchel, & May, 2008) and WM (Colcombe et al., 2006), 

as well as increased regional cortical thickness (Engvig et al., 2010). This finding is 

consistent with the idea that brain plasticity is an intrinsic property of the nervous system 

and it is maintained throughout all life-span (Bartrés-Faz & Arenaza-Urquijo, 2011; 

Greenwood & Parasuraman, 2010; Pascual-Leone, Amedi, Fregni, & Merabet, 2005).  

Only a few neuroimaging papers have explicitly investigated the relation between measures 

of CR and brain structure in elders, showing that higher levels of CR in healthy elders were 

associated to larger brains (e.g., Bartrés-Faz et al., 2009; Bosch et al., 2010; Sole-Padulles 

et al., 2009), increases in GM volume in frontal and parietal areas (Bartrés-Faz et al., 2009) 

and reduced age-related hippocampal volume decline (Valenzuela et al., 2008). To our 

knowledge, few studies have focused on the relation between the most used proxy of CR 

(i.e., education) and the brain structure. For example, Arenaza-Urquijo and co-workers 
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(2013) found that a higher amount of years of education was related to higher volume in 

the superior temporal gyrus, insula and anterior cingulate cortex.   

Liu and colleagues (2012) showed that more educated subjects had larger regional cortical 

thickness in transverse temporal cortex, insula, and isthmus of cingulate cortex than less 

educated subjects. A low age-related GM loss was also found in the left anterior cingulate 

cortex (anterior portion) in high versus low educated elders (Rzezak et al., 2015). 

Moreover, in two recent important studies on more than 300 participants each (Foubert-

Samier et al., 2012; Steffener et al., 2016), education was associated with higher GM 

volume in a wide range of brain regions.  However, some other investigations (e.g., Coffey 

et al., 1999) did not find significant relationship between education and brain volume. 

 

Aims of this section 

Although some studies have focused on the relation between CR proxies and the brain, the 

effects of cognitively relevant life experiences on brain structure is still unclear. Moreover, 

to our knowledge only one study (Steffener et al., 2016) used a multivariate approach, and 

no studies adopted a pattern recognition approach for the study of the relation between CR 

and BR. In Chapter 3 and 4 two neuroimaging studies are presented, in which Multi-Voxel 

Pattern Analysis (MVPA) techniques are employed to decode subjects’ educational level 

starting from regional GM volume. In both studies, freely accessible MRI images databases 

have been used (i.e., the OASIS database in Chapter 3 and the IXI database in Chapter 4, 

see the following chapters for further details). These databases have been chosen because, 

among the set of demographic available data, the educational level of each participant was 

collected. Therefore, in the next experiments we investigate the relation between CR and 

brain structure in healthy elders (as this is the most studied population in this field) by 

analyzing the differences in patterns of GM volume between individuals with high and low 

education, considering education as an indirect indicator of CR. 

  



 39 

Chapter 3 

 

NEURAL CORRELATES OF COGNITIVE RESERVE: EDUCATION AND 

GREY MATTER VOLUME (I) 

 

INTRODUCTION 

Variables reflecting lifetime experiences have been extensively used in the literature as 

proxies of reserve capacity. Among these variables, education is the most commonly 

adopted in studies of Cognitive Reserve (CR; e.g., Stern, Alexander, Prohovnik, & Mayeux, 

1992). Moreover, level of education, as well as sex and socioeconomic status, have been 

identified as having a role in changes in brain structure in aging (Coffey et al., 1999; Rzezak 

et al., 2015). A number of studies have shown a protective effect of higher levels of 

education against dementia (for a review see Fratiglioni & Wang, 2007). Indeed, 

longitudinal studies have demonstrated that subjects with higher levels of education 

(acquired during early stages of life) showed a diminished risk of dementia during elderly 

(Brayne et al., 2010; Letenneur et al., 1999; Ott et al., 1995; Stern et al., 1994).  

However, the relation between education and brain structure remains unclear. Some studies 

(Arenaza-Urquijo et al., 2013; Sole-Padulles et al., 2009) found a positive correlation 

between educational level and measures of brain structure, indicating for example an 

increase in GM volume in higher educated individuals. By contrast, other studies (e.g., 

Coffey, Saxton, Ratcliff, Bryan, & Lucke, 1999) found no significant relationship.  

In the present study, our aim is to investigate the neural correlates of education, considered 

as one of the proxies of CR, as well as one of the factors contributing to Brain Reserve (BR; 

Katzman, 1993). As specified in the introduction of the present section, BR is a passive 

model of reserve and it refers to inter-subject differences in the brain that allow some 

individuals to cope better than others with pathological brain conditions (Stern, 2009). 

These BR differences can be quantified by measuring brain size, or counting neurons or 

synapses. Nevertheless, life experiences can act on brain structure through several 

processes (e.g., neurogenesis, promoting resistance to apoptosis), basically promoting brain 

plasticity.  

In addition, recent neuroimaging studies highlighted that more indirect indexes of 

neuropathology, such as anatomical changes (Liu et al., 2012), cerebral blood flow 

reduction (Kemppainen et al., 2008) and metabolic alterations (Hanyu et al., 2008) are 

found in people with higher level of CR suffering from dementia, despite their quite normal 
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cognitive performance.  

A recent population-based study (Foubert-Samier et al., 2012) on more than 300 

participants, investigated the influence of several CR proxies (including education) on the 

passive component of reserve (BR). The authors found that education was significantly 

associated with increases in cerebral volume (involving both Grey and White Matter) 

mainly located in temporoparietal and orbitofrontal lobes, suggesting that education may 

contribute to the constitution of cerebral reserve capacity. As stated before in the 

manuscript, another study (Bartrés-Faz et al., 2009) larger GM volumes in frontal and 

parietal regions. 

However, the role of education (considered one of the most important proxies of the active 

component of reserve; CR) in promoting the passive component (BR), is still unclear. Here, 

we investigated the structural brain differences due to educational level by means of two 

analysis approaches. First we performed a standard univariate analysis investigating the 

effects on educational level on GM volume, then we adopted a multivariate approach 

(MVPA) in order to test whether a machine-learning classifier can discriminate subjects 

with low educational level from those with higher education, on the basis of the pattern of 

GM volume. 

 

MATERIALS AND METHODS  

 

Description of the dataset 

Cross-sectional structural MRI (T1) images used in this study were extracted from the 

freely accessible Open-Access Series of Imaging Studies dataset (OASIS, oasis-brains.org; 

Marcus et al., 2007). This dataset consists of 416 participants across the adult life span (age 

range: 18-94). The sample of individuals aged 60 to 94 years, included patients with a 

diagnosis of probable mild to moderate dementia of Alzheimer type (AD). In this dataset, 

the presence and the level of pathology were established by means of the Clinical Dementia 

Rating (CDR) scale (Morris et al., 2001; Morris, 1993). The CDR is an instrument that 

allows to rate cognitive impairment in six domains: memory, orientation, judgment and 

problem solving, function in community affairs, home and hobbies, and personal care. On 

the basis of different sources of information, including interviews, a global CDR score was 

derived for each subject. A global CDR score of 0 indicates no dementia, and CDR score 

greater than 0 indicates very mild (CDR=0.5; e.g., “mild-cognitive impairment”; (Petersen 

et al., 1999; Storandt, Grant, Miller, & Morris, 2006), mild (CDR=1), moderate (CDR=2), 
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severe dementia (CDR=3). Moreover, the Mini-Mental State Examination (MMSE; 

Folstein, Folstein, & McHugh, 1975) score was provided as a measure of global cognitive 

status.  

 

Participants 

In order to be consistent with the aims of the present experiment, only participants aged 

between 60 and 94, with a CDR score of 0 and a MMSE score above 24 (indicating the 

absence of clinically relevant dementia) were selected from the OASIS dataset. The final 

sample was composed by 98 healthy participants (72 F). Demographic and clinical 

characteristics of the sample are presented in Table 3.1. 

 

Variable Mean SD Range 
Sex (female/male) 72/26 

Age (years) 75.9 8.9 60-94 

Education (years) 14.5 2.9 8-23 
Education (level) 3.3 1.3 1-5 

MMSE score 29 1.2 25-30 
Table 3.1. Demographic and clinical sample characteristics. MMSE=Mini-Mental State Examination. 

 

Education was coded in five levels. Level 1: less than high school graduation; level 2: high 

school graduation; level 3: some years at college; level 4: college graduation; level 5: 

beyond college education. In Table 3.2 the number of subjects for each education level is 

reported. 

 

Number of 
subjects 

Educational level 
1 2 3 4 5 

F 5 18 19 13 17 
M 3 7 4 4 8 

Total 8 25 23 17 25 
Table 3.2. Number of subjects for each educational level. 

 

MRI Data acquisition parameters 

In the OASIS dataset, three to four T1-weighted MPRAGE images (Mugler & Brookeman, 

1990) were acquired for each subject, on a 1.5-T Vision scanner (Siemens, Erlangen, 

Germany) within a single session. Acquisition parameters were optimized for gray–white 

contrast (TR=9.7 ms; TE=4ms; Flip angle=10°; TI=20ms; TD=200ms; 

Orientation=sagittal; Thickness=1.25mm [gap=0]; slice number=128; resolution 
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[pixels]=256×256; voxel size=1×1mm). 

 

MRI Data Pre-processing 

All MRI scans were visually inspected for artifacts or structural abnormalities before voxel-

based morphometry (VBM; Ashburner & Friston, 2000; Mechelli, Price, Friston, & 

Ashburner, 2005) analysis was applied by using SPM12 (Wellcome Trust Centre for 

Neuroimaging, Institute of Neurology, UCL, London, UK; 

http://www.fil.ion.uncl.ac.uk/spm). For the VBM analysis the following steps were 

performed. First, all structural images were manually set the origin of the stereotassic space 

to the anterior commissure and realigned along the AC-PC (Anterior Commissure – 

Posterior Commissure) line. Then, images were segmented into GM, white matter (WM), 

and cerebrospinal fluid (CSF) and imported into a rigidly aligned space (Ashburner & 

Friston, 2000). The resulting GM segmented images were then iteratively warped into a 

study-specific template by means of a fast diffeomorphic image registration algorithm 

(DARTEL; Ashburner, 2007), available in SPM12 software. In this step, subject-specific 

deformation fields were used to warp the GM segmented images to the new space, as it has 

been previously demonstrated that this procedure can maximize accuracy and sensitivity 

(Yassa & Stark, 2009). The resulting warped GM images were then spatially normalized 

into the MNI space through an affine spatial normalization and modulated in order to ensure 

that the total amount of gray matter in each voxel was conserved after the registration 

(Ashburner & Friston, 2000; C. D. Good et al., 2001; Mechelli et al., 2005). Finally, the 

images were smoothed with an 8 mm full-width at half-maximum (FWHM) Gaussian 

kernel. This amount of smoothing is commonly adopted in VBM studies (Scarpazza, 

Sartori, De Simone, & Mechelli, 2013).  

Therefore, the resulting smoothed, modulated, normalized data were then used as inputs 

for the VBM analysis.  

 

Univariate analysis: Voxel-Based Morphometry (VBM) 

A general-linear regression model (GLM) was built in order to test the effect of education 

level on the amount of GM volume in a voxel-by-voxel fashion. Previous VBM studies 

have demonstrated strong effects of age (e.g., Salat et al., 2004) and sex (Buckner et al., 

2005; Marcus et al., 2007) on GM volume, therefore in the present experiment these 

variable were used as covariates of no interest in the regression model in order to remove 

their effect from the results. Moreover, the estimated Total Intracranial Volume (eTIV; for 
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details on its calculation see Buckner et al., 2004; Fotenos, Snyder, Girton, Morris, & 

Buckner, 2005; Marcus et al., 2007) was used to global scale data, in order to avoid biased 

results due to inter-individual differences in brain size. 

Statistically significant effects of education on regional GM volume were identified using 

a FWE multiple-comparisons correction at voxel-level. 

 

Multi-Voxel Pattern Analysis 

The decoding analyses were performed using the Pattern Recognition for Neuroimaging 

Toolbox (PRONTO; Schrouff et al., 2013), running under Matlab R2014b. According with 

Schrouff and co-workers (2013), non-smoothed images were used as input for the 

multivariate analyses.  

In this experiment we aimed at using a whole-brain MVPA technique in order to test the 

accuracy of a SVM classifier in discriminating subjects with “low” education from those 

with “high” education. Given that SVM is a binary classifier, as a first step we created two 

classes of subjects selecting from the whole sample only subjects with extreme educational 

levels (level 1, 2, 4 and 5). Thus, we categorized those with an educational level equal to 1 

or 2 as belonging to the “low education” group (LED). By contrast, “Highly” educated 

(HED) individuals were, instead, those with an educational level equal to 4 or 5. Given the 

differences in the newly created sample sizes (low education = 33; high education = 42), 

we randomly extracted from the high education group 33 individual scans in order to match 

the size of the low education sample. Thus, the multivariate analysis was performed on 66 

scans.  

Two decoding analyses were performed. The first analysis was focused on the whole-brain 

GM volume (by using a whole-brain GM mask). As previously reported, a recent study by 

Foubert-Samier and colleagues (2012) investigated the effects of several proxies of CR 

(including education) on GM volume. In particular they investigated, on a huge sample of 

participants (n=331), the effects of educational level on the amount of regional GM volume. 

The areas showing a significant effect in the abovementioned study involved frontal, 

temporal, parietal, occipital and limbic lobe (see Table 3.3 for a summary of significant 

areas obtained). These areas were used to build 5 Regions-Of Interest (ROIs) masks (one 

for each lobe) using the Automated Anatomical Labeling (AAL) atlas as implemented in 

Pickatlas software (http://fmri.wfubmc.edu/ software/PickAtlas). Then, we repeated the 

decoding analysis, as previously described, focusing only on the areas that previous 
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literature (Foubert-Samier et al., 2012) showed to be more sensible to effects of education 

on GM volume.  

 

Region Lat. Lobe 

Superior medial frontal gyrus L, R 

Frontal 

Supplementary motor area L 
Precentral gyrus L, R 
Superior orbitofrontal gyrus L, R 
Middle frontal gyrus L, R 
Rectus L 
Medial orbitofrontal gyrus R 
Inferior frontal gyrus L 
Superior frontal gyrus R 
Middle orbitofrontal gyrus R 
Inferior operculaire frontal gyrus R 
Inferior orbitofrontal gyrus R 
Superior temporal gyrus L, R 

Temporal Fusiform gyrus R 
Middle temporal gyrus R 
Inferior temporal gyrus R 
Anterior cingulate L, R Limbic 
Supra-marginal gyrus R 

Parietal Precuneus L, R 
Paracentral lobule L 
Postcentral lobule L, R 
Lingual gyrus R Occipital 

Table 3.3. Area derived from Foubert-Samier et al. (2012) that showed a more important grey matter volume increase in 
subject with high educational level compared with low level (adjusting for age, sex and Total Intracranial Volume). Lat. 
= lateralization. 
 
In both kinds of analyses (whole-brain and ROIs-based) a Leave-One-Out Cross-Validation 

(LOO-CV) scheme was adopted, with one subject per group iteratively used as test set (see 

Figure 3.1). The performances of the classifier were measured both with the accuracy level 

(i.e. the rate of correct classifications) and the Area Under Curve (AUC) derived from a 

Receiver Operator Curve (ROC) analysis. Statistical significance of the whole-brain 

decoding accuracy was tested with a permutation test (Ojala & Garriga, 2009) as this test 

is preferable when the assumption of independence between test examples is violated such 

as when using a cross-validation scheme (Schrouff et al., 2013). Here the permutation was 

repeated 1000 times and a p-value lower than 0.05 was considered significant.  
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Fig. 3.1. Leave-One-Out Cross-Validation scheme adopted in this MVPA study. For each iteration (total iterations = 21), 
one subject from the LED and one subject from the HED were left out and used to test the classifier. For example, in the 
1st step, the first subject of each group was left out from the training phase, in the 2nd step the second subject of each 
group was let out and so on. Thus, in the 1st step, subjects from S2 to S42 (LED) and from S44 to S84 (HED) were used 
to train the classifier, while subjects S1 (LED) and S43 (HED) were used to test the classifier performance. BLUE 
indicates LED group; GREEN indicates HED group; WHITE indicates unused subjects. 
 

RESULTS 

 

Voxel-Based Morphometry 

As shown in Figure 3.2, no significant differences emerged in Total Intracranial Volume 

between subjects with different levels of education. 
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Fig. 3.2. Relation between Total Intracranial Volume (eTIV; in mm3) and levels of education. 

 

With the VBM analysis, an effect of an increase in the educational level on GM volume 

emerged in several brain regions, adjusting for age, sex and eTIV. Significant clusters were 

found in the left temporal lobe (parahippocampal gyrus, fusiform gyrus, hippocampus, 

lingual gyrus, temporal inferior gyrus; peak-voxel p=.002), right parietal lobe (precuneus, 

paracentral lobule, parietal superior, middle cingulum; peak-voxel p=.011) and in the right 

inferior temporal gyrus (peak-voxel p=.037). See Fig. 3.3. 
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Fig. 3.3. Brain-areas showing significant effects of educational level on GM volume, adjusting for age, sex and eTIV. 
Statistical T maps are thresholded at p<.05 FWE-corrected for multiple comparisons at voxel-level. PHC= 
Parahippocampal cortex; IFG= Inferior frontal gyrus. 
 

In Table 3.4 peak-voxel coordinates and T-values are reported of significant clusters (all 

reported results are significant at p<.05 FWE-corrected at voxel-level). By contrast, no 

brain-regions emerged as having higher GM volume with decreasing educational level. 

 

Peak Lat. Cluster 
size T 

MNI peak 
coordinates (mm) 

x y z 
     
Parahippocampal Gyrus L 415 5.04 -32 -44 -4 
Precuneus R 83 4.50 14 -45 54 
Frontal Inferior Gyrus R 53 4.13 50 20 21 

 
Tab. 3.4. Peak-voxels of significant clusters FWE-corrected at voxel-level at p<.05. Lat.= lateralization.  
 

Multivariate analysis 

As specified above, two MVPA were performed investigating the accuracy of a binary 

SVM classifier in discriminating between LED and HED on the basis of the volume of GM, 

in a whole-brain and a ROI-based analysis respectively. Regions-of-interest for the second 

analysis were derived from a previous study by Foubert-Samier and colleagues (Foubert-

Samier et al., 2012). All significant results have been tested through a permutation test  with 

1000 repetitions. 
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Accuracy of GM in discriminating LED from HED subjects: whole-brain analysis 

The resulting accuracy in classifying brain images as belonging to the LED or the HED 

group was at chance level (48.5%), in the whole-brain analysis. So that, as shown in Table 

3.5, about half of participants were correctly classified (17 LED and 15 HED). 

 

 PREDICTED 
LED HED 

T
R

U
E

 LED 17 16 

HED 18 15 
 

Table 3.5. Number of predicted vs true subject-group (LED vs. HED) association in the whole-brain MVPA analysis.  

 

The ROC curve and the AUC value (Fig. 3.4) confirm the poor performance of the SVM 

classifier algorithm in classifying subjects having high vs. low educational level on the 

basis of the whole-brain pattern of GM volume. 

 

 
Fig. 3.4. ROC curve showing the classification performance in the whole-brain analysis (AUC=0.45) 

 

 

Accuracy of GM in discriminating LED from HED subjects: ROI-based analyses 

The five ROI-masks considered in this paragraph, overlaid on a standard anatomical 

template, are presented in Figure 3.5. No overlap is shown between the masks. 
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Fig. 3.5. Overlay of the five ROI-masks based on Foubert-Samier et al. (2012) on a standard template. 

 

When using ROIs derived from the previous literature, we found strong differences in the 

performances of the classifier using the different ROIs-masks. The accuracy was basically 

at chance-level when using Frontal, Temporal, Limbic and Occipital ROI-masks as shown 

in Table 3.6.  

 

ROI-Mask Accuracy (%) Significance 
Frontal 50 n.s. 

Temporal 37.9 n.s. 

Limbic 48.5 n.s. 

Parietal 75.8 p=.001 

Occipital 45.5 n.s. 
 

Table 3.6. Accuracy reached using each ROI-mask and significance. n.s.=not significant. 

 

The performance of the SVM classifier strongly improved using the ROI-mask focused on 

parietal areas, leading to an accuracy value of 75.8% (p= .001). Twenty-six out of 33 LED 

individuals were correctly classified (see Table 3.7; sensitivity = 78.8%; p=.001), as well 

as 23 out of 33 HED subjects (specificity = 72.7%; p=.009). 

 

 

 

Table 3.7. Number of predicted vs true subject-group (LED vs. HED) association in the ROIs-based MVPA analysis 

using Mask 4 (Parietal lobe). 

 

 PREDICTED 
LED HED 

T
R

U
E

 LED 26 7 

HED 9 24 
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In Figure 3.6 ROC curve and AUC value related to the performance of the SVM classifier 

using the ROI-mask 4 (Parietal lobe) are reported. The resulting AUC value is 0.80, 

indicating an accuracy of 80%. 

 

 
Fig. 3.6. ROC curve showing the classification performance in the ROIs-based analysis using Mask 4 (Parietal lobe). The 
corresponding AUC was 0.80. 
 

 

DISCUSSION 

In the present study we investigated the neural basis of Cognitive Reserve (CR) analyzing 

the effect of educational level (considered in literature as a proxy of CR) on GM volume, 

in a sample of healthy elders selected from a free database of MRI images (OASIS; oasis-

brains.org). To our knowledge, no studies investigated the effects of education on GM 

through a Multi-Voxel Pattern Analysis approach. Thus, the main aim of this study was to 

test the performance of an SVM algorithm in discriminating subjects with high educational 

level from those with low educational level on the basis of their pattern of GM volume, by 

means of a MVPA. As a preliminary step, a standard univariate analysis was performed, 

showing effects of educational level on temporal, parietal and frontal regions. These results 

confirm data from previous studies suggesting that the prolonged cognitive stimulation 

received through formal education can involve changes in the brain structure in several 

regions (Foubert-Samier et al., 2012). This finding is consistent with the hypothesis of 

Brain Maintainance (Nyberg et al., 2012), that suggests the existence of factors (including 

education) that can have a protective role against brain aging and neurological pathologies 
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(Nyberg et al., 2012; Rzezak et al., 2015). Brayne and co-workers (Brayne et al., 2010) 

demonstrated that years of education had no effects on neurodegeneration or vascular 

pathology, but they acted moderating the effects of these pathologies on the clinical 

expression of symptoms. Moreover, several studies (e.g., Bennett et al., 2003; Roe et al., 

2008) have demonstrated that educational attainment attenuates the cognitive symptoms of 

Alzheimer Disease (for a review, see Fratiglioni & Wang, 2007).   

Importantly, on the basis of the present results, as well as of those from other cross-sectional 

design studies (e.g., Foubert-Samier et al., 2012), is not possible to infer the causal direction 

of the relation between educational level and GM volume. So that, we cannot determine 

whether the increase in GM volume in highly educated subjects is a consequence of formal 

education, or a preexisting characteristic. Indeed, the highlighted differences between high 

and low educated subjects could reflect previously existent differences in GM volume or  

in the progression of brain atrophy (Foubert-Samier et al., 2012). However, from a more 

general point of view, it has been demonstrated since the sixties (Rosenzweig, 1966; 

Rosenzweig, Bennett, & Krech, 1964) that neuronal changes occur as a consequence of 

learning and complex stimulation occurring in an enriched environment (Henriette van 

Praag, Shubert, Zhao, & Gage, 2005). Moreover, studies on GM density highlighted 

adolescence as critical periods for the structural brain changes in temporo-parietal cortex 

(Sowell et al., 2003). Therefore, it is plausible that the cognitive engagement required in 

formal education lead to changes in brain structure that can be measured in elderly. 

On the other hand, there is still debate on which brain regions are more affected by the 

structural consequences of cognitive engaging activities. In the present study, the MVPA 

analyses showed performances at chance-level when considering all brain voxels and when 

focusing on frontal, temporal, occipital and limbic regions. A high level of accuracy was 

shown only when a parietal ROI-mask was used. This mask (together with the other masks 

used in the present study) were derived from the work by Foubert-Samier and collaborators 

(2012) and emerged as being the most sensible areas to effects of educational level on GM 

volume.  

These results indicate that the most informative areas for the discrimination between 

participants with high vs. low educational level were located in the parietal lobe. A possible 

role of parietal regions in showing effects of education (i.e., cognitive stimulation) on GM 

volume was suggested by Draganski and colleagues (2006). These authors found that 

medical students, after three months of extensive learning, showed an increase in GM 

volume in posterior and lateral parietal cortex bilaterally, and in posterior portion of right 
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hippocampus. Taken together with our results, these studies suggest that formal education 

seems to have a role in influencing the GM volume in parietal brain areas.  

Therefore, the multivariate analysis indicates that the main structural differences between 

the brains of participants with low education and subjects with high education seems to be 

mainly encoded in parietal areas. By focusing on these areas, it is possible to classify 

subjects as having a low vs. high educational level with an accuracy close to 80%. Aydin 

and colleagues (Aydin et al., 2007) investigated with a VBM analysis the brain structure of  

a group of mathematicians, who had been working as academicians and found an increase 

in GM density in the parietal lobe, and this increase was highly correlated with the time 

spent as an academician. Moreover, in a study by Serra and co-workers (Serra et al., 2011), 

authors found that GM volume in parietal areas was reduced in Alzheimer patients with 

low educational level, if compared with patients with high educational level. 

The main strength of these results is that the multivariate analysis was focused only on 

areas highlighted by a previous study (Foubert-Samier et al., 2012) investigating the 

relation between education and brain structure, so that, our analyses were driven by strong 

spatial priors. Therefore, the present study can be considered as a confirmation of previous 

univariate results obtained by Foubert-Samier and collaborators (2012). Moreover, we went 

a step further by performing a more subtle investigation in which we analyzed, within the 

results of previous literature, the most informative areas in discriminating subjects with 

different educational levels.  

In conclusion, education is one of the main components contributing to reserve capacity 

(Yaakov Stern, 2009), together with occupation and leisure time activities. These variable 

have been mainly studied in relation with functional differences in individual cognitive 

functioning, and have been highlighted as variables having an impact on Cognitive Reserve 

(CR; Stern, 2002, 2009). However, cognitive stimulation (e.g., education) can also 

contribute to Brain Reserve (BR). BR refers to an increase in redundant neural networks 

(Yaakov Stern, 2002), also by promoting neurogenesis (J. Brown et al., 2003; Henriette 

van Praag et al., 2005). Thus, in view of all these results, we suggest that CR is possibly 

implicated in regional increases in GM volume, so that it can promote several “brain 

reserves”, rather than a general increase in brain plasticity (Serra et al., 2011). Therefore, 

the present study contributes to the amount of literature suggesting that Brain Reserve and 

Cognitive Reserve should be considered as “two sides of the same coin”. 
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Chapter 4 

 

NEURAL CORRELATES OF COGNITIVE RESERVE: EDUCATION AND 

GREY MATTER VOLUME (II) 

 

INTRODUCTION 

In the previous study, we performed a Multi-Voxel Pattern Analysis on structural MRI data 

in order to test whether it was possible to discriminate subjects with low education from 

subjects with high education by investigating the volume of GM in their brain. This issue 

was addressed both analyzing all the voxels in the brain (whole-brain analysis) and 

selecting specific ROIs extracted from the literature. In particular, results from a study 

conducted on a large dataset (Foubert-Samier et al., 2012) were adopted to guide our 

analysis. Our results showed that the most informative brain regions in discriminating 

between high vs. low educated participants were located in the parietal lobe. Therefore, in 

the present explorative study we selectively focus our attention on the parietal regions in 

order to investigate in a more precise way where the information about the classification 

are encoded. Moreover, here we test whether our findings about the role of parietal lobe 

can be generalized to a different dataset.  

 

MATERIALS AND METHODS  

 

Description of the dataset 

The MRI scans used in the present study were obtained from the IXI dataset (Information 

eXtraction from Images; brain-development.org), a free open-access database of nearly 600 

structural MRI images of healthy individuals aged 20 to 86 years, acquired at three different 

hospitals in London (UK; Hammersmith Hospital, Guy’s Hospital and Institute of 

Psychiatry).  

 

Participants  

In order to be consistent with the methods used in the previous study, here we chose only 

brain scans of subjects older than 60. Moreover, we decided to avoid using data acquired 

from different scanners, so that we chose only data collected at Guy’s Hospital. Therefore, 

the final ample used in the present study included 109 subjects (64F; see Table 4.1 for 

descriptive statistics). 
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In the IXI dataset education was coded according with the educational system in UK, in 5 

levels as follows. Level 1 indicated no qualifications; level 2 indicated a ten-years 

education (Ordinary-levels, GCSEs or CSEs); level 3: A-levels (comparable to high-school 

diploma); level 4 indicated further education after diploma, such as skill development 

course (e.g., City & Guilds qualification or National Vocational Qualifications - NVQs) 

and level 5 indicated University or Polytechnic degree. In order to be consistent with the 

coding system used in the previous study, we referred the 5 levels explained above to the 5 

levels adopted in the previous study (OASIS dataset; see Chapter 3), structured as follows:  

- level 1: less than high school graduation;  

- level 2: high school graduation;  

- level 3: some years at college;  

- level 4: college graduation;  

- level 5: beyond college education.  

 

Variable Mean SD Range 
Sex (female/male) 45/64 

Age (years) 67.5 6.2 60-86 

Education level (IXI) 3.5 1.6 1-5 
Education level 

(OASIS) 2.7 1.3 1-4 

 
Table 4.1 Demographic sample characteristics. Descriptive statistics are provided for both educational level coding 
systems adopted in the OASIS and IXI dataset. 
 
In Table 4.2 the number of subjects for each education level is reported only for the coding 

system adopted for the next analyses (OASIS coding system). As it can be easily noticed, 

no subjects explicitly met the criteria to be assigned to level 5, according to OASIS coding 

system, that is no subjects were reported as having performed education steps after 

University degree. The reason is that the maximum educational level required in IXI dataset 

was the University degree. However, it is possible that subjects with level 5 in the IXI 

coding system had further education after degree.  

 
Number of 

subjects 
Educational level (OASIS) 

1 2 3 4 5 
F 23 5 14 22 0 
M 10 4 7 24 0 

Total 33 9 21 46 0 
 
Table 4.2. Number of subjects for each educational level.  
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MRI Data acquisition parameters 

Data used in the present experiment (extracted from the IXI dataset) were acquired with a 

1.5T Philips Medical Systems Gyroscan Intera at Guy’s Hospital in London (UK). The 

acquisition parameters were: repetition time/echo time = 9.813 ms, flip angle = 8, echo time 

= 4.603, number of phase encoding steps = 192, echo train length = 0, reconstruction 

diameter = 240, voxel size = 1.5x1.5x1.5 mm.  

 

MRI Data Processing 

As a first step, all MRI scans were visually inspected to detect artifacts or abnormalities. 

Then, a VBM analysis (Ashburner & Friston, 2000; Mechelli, Price, Friston, & Ashburner, 

2005) was performed by using SPM12 (Wellcome Trust Centre for Neuroimaging, Institute 

of Neurology, UCL, London, UK; http://www.fil.ion.uncl.ac.uk/spm), running under 

Matlab R2014b. All structural images were first manually aligned along the anterior-

posterior commissure (AC-PC) line and set the AC as the origin of the spatial coordinates. 

Images were then segmented into GM, WM and CSF and imported into a rigidly aligned 

space (Ashburner & Friston, 2000). For the next steps, only the GM segmented images 

were used. These images were used to create a study-specific template through a fast 

diffeomorphic image registration algorithm (DARTEL; Ashburner, 2007), available in 

SPM12, in order to maximize accuracy and sensitivity (Yassa & Stark, 2009). The last 

preprocessing step consisted in spatially normalizing into the MNI space the resulting 

warped GM images, through an affine spatial normalization and applying a modulation in 

order to ensure that the total amount of gray matter in each voxel was conserved after the 

registration (Ashburner & Friston, 2000; C. D. Good et al., 2001; Mechelli et al., 2005). 

Finally, the images were smoothed with an 8 mm full-width at half-maximum (FWHM) 

Gaussian kernel, commonly adopted in VBM studies (Scarpazza et al., 2013). The resulting 

smoothed, modulated, normalized data were submitted to the VBM analysis. 

 
Univariate analysis: Voxel-Based Morphometry (VBM) 

First, global measures of brain volume were calculated. For each subject we quantified the 

volume of Grey Matter (GM), White Matter (WM), Cerebrospinal Fluid (CSF) and 

estimated Total Intracranial Volume (eTIV). Then we explored the relation between these 

measures and the educational level, that is whether there were differences in brain volumes 

between different levels of education.  



 56 

Second, a VBM analysis was performed (with SPM12 software) to focus on differences in 

regional GM volume. Starting from the results of the previous experiment, we selectively 

analyzed only voxels in the parietal lobe by adopting a brain-mask created with the 

Automated Anatomical Labeling (AAL) atlas implemented in Pickatlas software 

(http://fmri.wfubmc.edu/ software/PickAtlas). A general-linear regression model (GLM) 

was built in order to test the effect of education level on the amount of GM volume in a 

voxel-by-voxel fashion. As in the previous study, age and sex were used as covariates of 

no interest in a regression model (Buckner et al., 2005; Salat et al., 2004), to adjust for 

possible biases. In addition, we global scaled the data using the estimated Total Intracranial 

Volume (eTIV; for details on its calculation see Buckner et al., 2004; Fotenos, Snyder, 

Girton, Morris, & Buckner, 2005; Marcus et al., 2007), in order to account for inter-

individual differences in brain size that could affect the results. Statistically significant 

effects of education on regional GM volume were identified. 

 
Multi-Voxel Pattern Analysis 

MVPA was performed by adopting a “searchlight” approach (Kriegeskorte et al., 2006) in 

order to search across the whole brain for the most informative voxels about the 

classification between subjects with high vs. lo educational level, in an unbiased fashion. 

A spherical searchlight with a radius of four voxels around a central voxel was used. Then 

a Support Vector Machine classifier (SVM; Cortes & Vapnik, 1995) was trained and tested 

on the classification of interest. SVM algorithms have proved their efficacy for MVPA on 

neuroimaging data (Pereira et al., 2009). In particular they are adopted for clinical 

applications on structural MRI data (e.g., Liu et al., 2012). 

As a first step, in order to be consistent with the previous study (see Chapter 3) we selected 

from the whole dataset (N= 109), only subjects with “low” educational levels (level 1 or 2) 

or with “high” educational level (level 4; no IXI subjects were assigned level 5 with OASIS 

coding system) were selected (N = 88). Then, participants with an educational level of 1 or 

2 (N = 42) were assigned to the “low education” group (LED), while participants with a 

level of 4 (N = 46) were assigned to the “high education” group (HED). In order to balance 

the number of subjects belonging to the two groups, 4 subjects were randomly excluded 

from the HED group. The resulting dataset (N = 84) was half-splitted into two independent 

subsets, each one including 42 subjects: 21 from the LED group and  21 from the HED 

group). One subset was used as training-set and the other one was used as independent test-

set. A Leave-One-pair-Out scheme was adopted, where the algorithm was trained on N-2 
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subjects from the training set (40 = 20 LED + 20 HED) and tested on 2 subjects (1 LED + 

1 HED) from the the test set. This procedure was repeated 21 times, until each pair of 

subjects in the test-set was used once to evaluate the classifier performance (see Figure 

4.1).  

 

 
Fig. 4.1. Cross-Validation scheme adopted in this MVPA study. Training set and test set were maintained separate, thus 
this design is called cross-decoding design. For example, in the 1st step, subjects from S2 to S21 (LED) and from S23 to 
S42 (HED) were used to train the classifier, while subjects S43 and S64 were used to test the classifier performance. 
BLUE indicates LED group; GREEN indicates HED group; WHITE indicates unused subjects from the training set; 
GREY indicates unused subject from the independent test set. 
 
Then, to statistically test the significance of the voxel-by-voxel accuracies reached by the 

searchlight classifier, we used a binomial test (Pereira et al., 2009) as it has been 

demonstrated that distributions taken from CV-independent schemes (as the one we 

adopted) match the binomial distribution when a Leave-One-Out scheme is adopted 

(Noirhomme et al., 2014). The decoding analyses were performed using The Decoding 

Toolbox (TDT; Hebart, Görgen, Haynes, & Dubois, 2015; 

https://sites.google.com/site/tdtdecodingtoolbox/) and LIBSVM (Chang & Lin, 2011; 

http://www.csie. ntu.edu.tw/~cjlin/libsvm/), running under Matlab R2014b. As input for 

the multivariate analyses, 8-FWHM smoothed, modulated, normalized images were used.  
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RESULTS 

 

Global-volume measures 

Figure 4.2 shows no significant differences between educational levels in the investigated 

volumetric measures (GM, WM, CSF, eTIV). This visual descriptive analysis indicates that 

global measures of brain volume are not correlated with educational level. The subsequent 

VBM analysis will take into account more subtle differences in regional GM volume. 

 

 
Fig. 4.2. Relation between different measures of brain volume and levels of education. Top left: Total Intracranial Volume 
(eTIV); top right: Grey Matter (GM); bottom left: White Matter (WM); bottom right: Cerebrospinal Fluid (CSF). All 
measures are reported in mm3. 
 
 

Voxel-Based Morphometry 

The regression model built for the VBM analysis showed only one significant cluster in the 

left supramarginal gyrus (t[105] = 3.87, p<.001) when correcting for the effect of age, sex 
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and eTIV. However no voxels survived the Family-Wise multiple comparisons correction 

at p<.05. See Table 4.3 and Figure 4.3 for the uncorrected results at p<.001 and minimum 

cluster-size of 100 voxels. 

 

Peak Lat. Cluster 
size T 

MNI peak 
coordinates (mm) 

x y z 
     
Supramarginal Gyrus L 123 3.87 -51 -45 34 

 

Tab. 4.3. Peak-voxel at p<.001 uncorrected (minimum cluster-size = 100). Lat. = lateralization. 

 

 

 
Fig. 4.2. Brain areas showing significant effects of educational level on GM volume, adjusting for age, sex and eTIV. 
Statistical T maps are thresholded at p<.001 uncorr. (minimum cluster-size = 100). S = superior; L = left; A = Anterior. 
 

 

Multivariate analysis 

Multi-Voxel Pattern analysis was performed investigating the accuracy of a binary SVM 

classifier in discriminating between LED and HED on the basis of the volume of GM, with 

a searchlight approach.  
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The statistical significance of the accuracy values was assessed trough the binomial test 

and corrected for multiple comparisons at cluster-level using a Monte-Carlo simulation 

technique implemented in the AlphaSim program (with a cluster-forming threshold 

p=.0005). Results highlighted a cluster in the left supramarginal gyrus showing accuracies 

significantly above chance (see Figure 4.3). The voxels in this cluster reached accuracies 

ranging from 76% to 85% (mean: 77.2%) in classifying brain images as belonging to the 

LED or the HED group. The most informative voxels highlighted in this multivariate 

analysis were basically the same emerged from the univariate analysis as the most sensitive 

to differences of educational level.  

 

 
Fig. 4.3 Most informative voxels in the discriminating between LED and HED, highlighted by the searchlight-based 
MVPA analysis. S = superior; L = lateral; A = anterior. 
 

DISCUSSION 

Starting from the findings of a previous work (see Chapter 3), in the present study we 

investigated in a deeper way the neural basis of Cognitive Reserve (CR) using educational 

level as proxy of CR. Previous findings highlighted the role of the pattern of GM volume 

in the parietal lobe in encoding crucial information about the discrimination between high 

and low educated subjects. Therefore, here we focused on the parietal lobe, performing a 

searchlight MVPA analysis in order to shed light on which sub-regions are the most 



 61 

informative for the classification of subjects based on educational level, and thus the most 

sensitive areas to the effects of education on brain structure. We analyzed a sample of 

healthy elders extracted from a freely available database of MRI images (IXI; brain-

development.org). For each subjects in the database a value of educational level was 

provided. However, in order to be consistent with the previous study, we transformed those 

values according with the educational level coding system used in the previous study (based 

on OASIS database coding system). 

Uncorrected results of the preliminary VBM analysis showed a cluster in left supramarginal 

gyrus as significantly related to education level, however no voxels survived multiple 

comparisons correction. Interestingly, the MVPA analysis showed a significant cluster in 

the same area as the most informative for the discrimination between LED and HED 

subjects.  

These findings show that two different analysis approaches converged to the same result, 

suggesting that CR produces specific regional GM changes, rather than a general increase 

in brain volume. 

Our results are consistent with the findings of a recent study (Wook Yoo et al., 2015) on 

healthy elders, aimed at investigating cognitive reserve from a network perspective, 

analyzing the relation between the WM network connectivity and education levels. Authors 

found a role of education in reinforcing network reliability in a sub-network centered in the 

left supramarginal gyrus. Another study (Serra et al., 2011) demonstrated that AD patients 

with low educational level had less GM in the bilateral supramarginal gyrus, in the right 

precuneus and frontal opercular cortex,  if compared to patients with high educational level.  

Ciaramelli and co-workers (2008) suggested that the inferior parietal cortex, including the 

supramarginal gyrus, is part of a “bottom-up” attentional subsystem that mediates the 

automatic allocation of attention to task-relevant information. This supports the main idea 

about the way in which cognitive reserve acts in practice, that is through a more efficient 

use of functional networks (Yaakov Stern, 2009). Moreover, it has been widely 

demonstrated that the left supramarginal gyrus has a crucial role in reading (e.g., Sliwinska, 

Khadilkar, Campbell-Ratcliffe, Quevenco, & Devlin, 2012), in particular in phonological 

processing (Hartwigsen et al., 2010; Oberhuber et al., 2016). Reading is considered one of 

the leisure time activities that contributes to cognitive reserve  (e.g., Scarmeas & Stern, 

2003), and it is taken into account in several studies and considered in composite measures 

of CR, such as the CRIq (Nucci et al., 2012). Moreover, reading is one of the most 

stimulated functions in formal education paths.  
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Taken together, these findings suggest a crucial role of the supramarginal gyrus for the 

neural basis of CR. Therefore, it seems plausible that this area resulted as the most 

informative (within the parietal lobe) in discriminating between low and high educated 

subjects.   

The non-significance of univariate VBM results could find an explanation in the lack of 

sensitivity of the traditional neuroimaging analyses techniques for small effect-sizes. 

Indeed, it is well known that there are differences between standard voxel-wise analysis 

and MVPA in sensitivity (Coutanche, 2013; Davis & Poldrack, 2013; Jimura & Poldrack, 

2012). These differences are due to the fact that standard analyses investigate the relation 

between a single-voxel measure (e.g., blood-flow, GM volume) and variables, and thus can 

show poor sensitivity when mapping the neural basis of experimental variables having a 

multimodal effect (e.g., a distributed pattern of activity).  

 Thus, in many cases, the use of a multivariate (e.g., searchlight) technique could be 

preferable due to its sensitivity in investigating the brain correlates of a condition (e.g., a 

neurological diagnosis) from a pattern point-of-view.  
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SECTION B 

 
DETECTING AUTOBIOGRAPHICAL MEMORIES FROM BRAIN ACTIVITY: 

A MVPA APPLICATION 
 

 

Introduction 

Autobiographical memory (AM) is what people usually mean by using the term “memory”, 

that is the ability to remember past events from one’s own life. AM is defined as a form of 

memory that is focused on recalling experienced events integrating them in a unified 

perspective, in order to create a personal history (Fivush, 2008). The ability to represent 

ourselves as individuals experiencing events, and to link past, present and future episodic 

representations into a meaningful framework defining our own lives, is the crucial feature 

of autobiographical memory (Fivush, 2008). For this reason some authors refer to this kind 

of memory as “biography of self” (e.g., Conway, Singer, & Tagini, 2004). This unique 

feature makes autobiographical memory a purely human skill, as it is not possible to build 

an autobiography without being part of a social group (Donald, 2001). Although AM can 

be considered as a type of episodic memory for information related to the self in both a 

retrospective and a prospective sense (Schroots, van Dijkum, & Assink, 2004), in this 

section only the former will be discussed.  

 

Memory systems: a brief overview 
In the last twenty years, given the improvement in the ability to study cognitive functions, 

and in particular memory, there is growing consensus in considering memory not as a 

unified function but rather as a set of dynamic, integrated systems (Howard Eichenbaum & 

Cohen, 2004; Fivush, 2008; D. L. . Schacter, Wagner, & Buckner, 2000; Squire, 2004). 

Memory can be broadly defined as consisting of two main systems: declarative and 

nondeclarative memory.  

Nondeclarative memory refers to the recalling of information with little to no conscious 

awareness, including procedural knowledge, that is knowledge of how to do things that are 

well-practiced, such as using a bike, as well as the phenomenon of conditioning and 

priming (D. L. . Schacter et al., 2000; Squire, 2004). By contrast declarative memory is a 

kind of explicit memory that is available to consciousness, and from a broad point of view, 
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the kind of memory we refer to when speaking about “memory” in general (Fivush, 2008). 

Indeed, this memory system includes representations of real-life past experiences (e.g., “I 

remember when I was 20 and went to Rome for holidays” ). The declarative memory system 

is not just a unitary warehouse, but is composed by two subsystems: semantic memory and 

episodic memory (Tulving, 1972). Semantic memory refers to general knowledge about the 

world without specific coordinates about when and where it has been acquired. For 

example, we know that cows are mammals or that the pope is the leader of the Catholic 

Church, but we did not learn these information in a specific episode. This is the main 

difference with episodic memory, which refers to specific memories having a link with 

spatiotemporal coordinates. For example, remembering the first time we have driven a car 

or the day of our master thesis defense.  

Given that episodic memory system includes all memories of specific past events (Fivush, 

2008), autobiographical memory can be considered as an episodic memory subsystem, or 

even as the episodic memory itself.  

 

From Episodic Memory to Autobiographical Memory  

Some authors (e.g. Fivush, 2008) state that AM should be considered as a different memory 

system in respect of episodic memory, arguing that this distinction allows for a more 

exhaustive understanding not only of the development of these two systems in humans, but 

also across species. Essentially, we can say that AM involves memory for one’s personal 

past and includes memories that are characterized by both episodic and semantic features 

(Glisky, 2007).  

According to Tulving (Tulving, 2002), two components of episodic memory can be 

identified, one containing information about what, where, and when of an experience, and 

the second involving the consciousness of self having experienced the event in the past. 

This last component, in Tulving’s model, involves the so-called “mental time travel” 

(Fivush, 2008; Tulving, 2002). According to some authors (e.g., Fivush, 2008), these 

components can be considered as separable, as the first appears to be available both across 

species and human development, while the second, whose main feature is the so-called 

“autonoetic awareness”, is typically human.  

However, episodic and autobiographical memory are undoubtedly strongly interconnected. 

Indeed, episodic memory refers to the recollection of a specific event, as well as 

autobiographical memory, but the latter refers to the retrieval of an episode also including 
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additional information such as the memory of the self experiencing the event (what 

previously called “autonoetic awareness”). Moreover, autobiographical memory has a role 

in linking independent events together in a coherent personal history (Habermas & Bluck, 

2000). 

Taken together, these considerations depict a role of autobiographical memory as a system 

sharing many features with episodic memory. Therefore, in particular for the studies 

presented in the next chapters, we can speak about “autobiographical episodic memory”. 

 

Neuroimaging of Autobiographical Memory 

Many methods have been adopted for eliciting AMs in the scanning environment. The main 

difference between these techniques lies on the degree of control that the experimenter has 

on several properties of the retrieved memory. That is, some methods cannot be used when 

the remoteness (or other properties) of the recollected memories is a variable under 

investigation. In the following, a non-exhaustive list of the most common approaches with 

a brief description for each one is presented: 

- Generic cues (Crovitz & Sciffman, 1974): in this method participants are asked to 

retrieve an AM associated with a provided cue. Several kinds of cues have been 

used: nouns (Conway et al., 1999), emotional words (Markowitsch, 

Vandekerckhove, Lanfermann, & Russ, 2003), words referred to a specific semantic 

field (Muscatell, Addis, & Kensinger, 2009), odors (Masaoka, Sugiyama, 

Katayama, Kashiwagi, & Homma, 2012), pictures (Burianova & Grady, 2007), or 

musical clips (Ford, Addis, & Giovanello, 2011). Given that AMs elicited by cues 

are not necessarily emotional or significant for the participant, they can imply a 

more time for the retrieval, so that this approach is useful for example when 

studying memory construction. Moreover, this technique leads to more accurate 

subjective ratings (Addis, Barense, & Duarte, 2015). 

 

- pre-scan interview: this method allows to elicit AMs referred to specific events 

during the scanner session. The investigated memories are collected before the 

scanning session (e.g., Addis, Moscovitch, Crawley, & McAndrews, 2004; 

Maguire, 2001). This technique has the advantage that it is possible to control 

aspects of the memories retrieved in the scanner (e.g., remoteness, emotional tone 
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or vividness), and that investigated memories can be highly specific and accessible 

during the fMRI task (Addis et al., 2015).  

 

- Independent sources: this is a technique for eliciting AMs by means of cues 

generated by external sources, such as family or friends (e.g., Rabin & Rosenbaum, 

2012). The main advantages of this method is that elicited memories are 

unrehearsed, and that they can be constrained by collecting more information from 

the sources (Addis et al., 2015). 

 

- Prospective method: in this method participants have to note a sequence of events 

happened in their lives, that will be used as cues in the scanner (e.g., Cabeza et al., 

2004). Here, the main advantage is that it allows to strongly control the encoding 

phase and test of the retrieval accuracy.  

 

Using these methods, several studies have focused on autobiographical memory’s 

functional brain correlates. Essentially, these studies have highlighted medial and left-

lateralized activations when retrieving autobiographical episodic memories (E. A. Maguire, 

2001a). Areas constituting the “core” network of AM have been highlighted and seem to 

include medial and ventrolateral prefrontal cortices, medial and lateral cortices, 

temporoparietal junction, retrosplenial/posterior cingulate cortex, and the cerebellum (e.g., 

Addis, McIntosh, Moscovitch, Crawley, & McAndrews, 2004; Cabeza & Nyberg, 2000; 

for a meta-analysis see Svoboda, McKinnon, & Levine, 2006). These methods have been 

used to study both recollection and recognition memory. In particular methods based on 

the use of cues (pictures, words or, as we did, sentences) can be useful to investigate 

recognition without any explicit instruction. 

 

Aims of this section 

As abovementioned, several studies have investigated the neural correlates of AM retrieval, 

mainly through the use of univariate techniques. Some studies (e.g., Addis, McIntosh, 

Moscovitch, Crawley, & McAndrews, 2004) adopted multivariate techniques, also 

investigating the possibility of classifying memories through the use of multivariate 

analysis methods (e.g., Rissman, Chow, Reggente, & Wagner, 2016; Rissman, Greely, & 

Wagner, 2010). Moreover few studies have adopted real-life, instead of laboratory-based, 
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stimuli (e.g., Rissman et al., 2016). 

In the next chapters (5 and 6), two functional MRI studies using MVPA techniques to 

decode true subject-specific autobiographical memories will be presented. In the first study, 

we tested whether it is possible to discriminate between the pattern of brain activity 

associated with pictures of seen (i.e., previously visited) rooms from that of rooms where 

participants had never been before. In the second study sentences describing a negative 

emotional autobiographical memory were used, and the performance of a classifier 

distinguishing between sentences describing real memories and non-memories was tested.  
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Chapter 5 

 

“HAVE YOU BEEN THERE BEFORE?”  

DECODING ROOMS RECOGNITION IN THE HUMAN BRAIN 

 

INTRODUCTION 

When watching a picture of a scene (e.g., a street), an architect can be attracted by the style 

of the buildings, a photographer can notice the perspective, an artist can be captured by the 

color balance, and so on. Independently from subjectively relevant aspects which can 

capture attention, however, all the observers in this example certainly felt whether the 

picture’s content was familiar, that is, if they experienced before that scene, they recognized 

it as present in their memory.  

Recognition memory represents a critical aspect of our ability to remember (M. W. Brown 

& Aggleton, 2001) and it includes the ability of judging whether a stimulus had been 

experienced before, as well as of identifying it (Mandler, 1980). Although different models 

of recognition memory have been proposed, several authors agree with the point that this 

process does not necessarily imply the recollection of the stimulus-related information. 

Therefore, recognizing a scene is independent from recollecting what happened in that 

scene (e.g., being presented with the image of the street where we live does not imply 

recalling the episode in which, while walking home one week ago, our smartphone fell 

down from the pocket). Moreover, the process of recognizing a scene (e.g., a place) can be 

realized at two different levels (Epstein & Higgins, 2007; Rosch, Mervis, Gray, Johnson, 

& Boyes-Braem, 1976; Tversky & Hemenway, 1983): the scene can be identified as 

belonging to a category (e.g., “a café”) or as referring to a specific place (e.g., “the café 

where I had breakfast this morning”). The first level refers to semantic categorization, while 

the second level refers to recognition memory. In other words, in this second level, the 

place is recognized because it has been previously experienced and thus it is familiar to us.  

In literature, recollection is described as an effortful and time consuming process, while 

recognition (or familiarity, considered as the first step of recognition) is an automatic and 

rapid process. Human beings can recognize natural scenes in less than 150 ms (Thorpe, 

Fize, & Marlot, 1996; VanRullen & Thorpe, 2001), also with near-absent attention (Fei-

Fei, VanRullen, Koch, & Perona, 2005; Li, VanRullen, Koch, & Perona, 2002). According 

to some authors, given its speed, this process can be considered a product of the evolution 
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as it allows us to rapidly react in response to novel stimuli (M. W. Brown & Aggleton, 

2001).  

A great amount of studies have focused on the recognition of complex visual scenes, and 

on investigating its brain correlates. The parahippocampal cortex, in particular the 

Parahippocampal Place Area (PPA) and the retrosplenial cortex (RSC) seem to be the most 

strongly active areas while processing pictures of places (Epstein & Higgins, 2007; Epstein 

& Kanwisher, 1998; O’Craven & Kanwisher, 2000; Walther, Caddigan, Fei-Fei, & Beck, 

2009). 

In a work by Cabeza and collaborators (2004), neural correlates of the recognition of 

pictures of scenes previously encountered in a laboratory setting or in real-world settings 

were investigated. In particular, the authors used a novel “photo paradigm” in which 

participants had to judge whether photos were novel,  previously experienced in the lab or 

acquired by themselves in everyday life. The recognition of self-acquired photos (i.e., real-

world autobiographical memories), if compared to controlled laboratory condition, 

highlighted the involvement of medial prefrontal cortex, occipital and parahippocampal 

regions, as well as hippocampus. Most likely, real-world scenes are encoded in brain-

activity patterns, given their complexity level. So that, the most suitable analysis technique 

for detecting the activity pattern associated with the recognition of previously experienced 

scenes is the multivariate approach, called Multi-Voxel Pattern Analysis (MVPA). Indeed, 

this approach has been adopted to deal with the decoding of distributed brain activity 

processes (e.g., Cox & Savoy, 2003; Haxby et al., 2001), including representations that can 

potentially exist at a smaller spatial scale than the size of functional voxels (Haynes & Rees, 

2006; Kamitani & Tong, 2005).  

To our knowledge, a small number of previous studies have tested whether a multivariate 

approach would be able to accurately classify a brain activation as indicating the response 

to a previously encountered stimulus or not (Rissman et al., 2016, 2010; Uncapher, Boyd-

Meredith, Chow, Rissman, & Wagner, 2015), and none of them dealt with the recognition 

of a real-world experienced room. Importantly, the majority of the studies focusing on the 

use of MVPA for detecting memories has focused on memories for information encoded in 

a laboratory setting rather than real-world derived (Rissman et al., 2016). Determining 

whether a subject is looking at a picture of a known or unknown scene (e.g., a specific 

room) can have important implications for forensic uses. Indeed, several authors have 

discussed the possibility of using MVPA-based memory detection techniques in forensic 
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settings (Bles & Haynes, 2008; Meegan, 2008; Rissman et al., 2016; Schacter & Loftus, 

2013; Shen & Jones, 2011). 

The aim of the present experiment is to investigate the brain activity pattern evoked by the 

observation of stimuli depicting previously visited rooms and the possibility to discriminate 

it from that associated to the processing of unknown-rooms-stimuli. To reach this goal, 

firstly the (univariate) differences in brain activity between the processing of previously 

seen vs. unseen rooms were investigated. Subsequently, the performance of a multivariate 

classifier was evaluated in revealing which brain areas contain more useful information for 

the discrimination between the brain activity patterns associated to seen and unseen rooms.  

 

MATERIALS AND METHODS  

 

Participants  

Thirty healthy participants between the ages of 19 and 31 (mean=24; SD=3.87) took part 

in the study. All participants had normal or corrected-to-normal vision and were free from 

any neurological or psychiatric diagnosis. To ensure that anyone of the participants had 

visited before the rooms used for the experiment, they were enrolled among people not 

working or living in the area around the Campus Nord of Humbolt Universität zu Berlin, 

where the rooms used for the experiment were selected. Six participants were excluded 

from the final sample because of motion artifacts (1), errors in telling which rooms were 

visited or unknown after the fMRI session (4), sleeping during the task (1). A total of 24 

participants was included in the final analysis (11 females). All participants gave informed 

consent and were remunerated with 22€ for their attendance. The study was approved by 

the local ethics committee, Humboldt–Universität zu Berlin, Germany. 

 

Stimuli 

Eight rooms were selected within the Campus Nord of Humbolt Universität zu Berlin: 1) 

the hall of the Institute of Vegetative Anatomy at Charité Hospital; 2) the children´s 

playground at Humboldt Graduate School; 3) the lecture hall at Bernstein Center for 

Computational Neuroscience Berlin; 4) an office at Berlin Center of Advanced 

Neuroimaging; 5) the staircase at Dreispitzpassagen Berlin; 6) a room at the basement at 

Humboldt Graduate School; 7) the conference room at Humboldt Graduate School; 8) the 

recreation room at Bernstein Center for Computational Neuroscience Berlin. A total of 60 

pictures and a videotape were acquired for each room with a Canon 5D Mark II digital 
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camera. Each picture was taken from a different point of view in order to have different 

representation of rooms’ characteristics. The videotape was recorded by positioning the 

camera approximately 1.6 m from the floor and walking through each room for one minute. 

All the pictures and video frames were resized in order to match dimensions (900x600) and 

subjected to luminance normalization through the SHINE Toolbox (Willenbockel et al., 

2010), to control for low-level attributes’ effect. The videotapes were finally split in 

sequences with a duration of five-seconds. To avoid auditory information to influence 

participants performance during the fMRI task, videos were recorded without sound. Taken 

together, 480 pictures and 96 videos were used as stimuli in the experiment. 

 

Pre-scanner task 

A randomized sequence of four out of eight rooms was assigned to each participant. 

Participants were individually accompanied by an examiner to visit the rooms. Once inside, 

participants were asked to perform a task (finding five hidden Lego bricks) in order to 

implicitly ask participants to explore the room, and the time needed to complete this task 

was recorded. Thus, four of the eight rooms were known (“seen”) before the fMRI session, 

while the remaining for were unknown (“unseen”). 

 

In-scanner task 

The day after visiting the rooms participants underwent an fMRI session in which they 

were asked to watch a screen presenting pictures and videos showing the rooms they visited 

the day before, as well as rooms they had never been before. They were not asked to give 

any behavioral response while being scanned. The fMRI session was divided into six 

functional runs. Each run consisted of 32 trials during which a sequence of five pictures 

(750 ms presentation and 250 ms interval) or one five-seconds video was presented. A eight 

seconds ITI was inserted, so that a trial was presented each 13 s. The global run duration 

was 422 s (32 trials × 13 s + 3 volumes before the first trial started). The stimuli were 

presented in a randomized order across all runs, with the following restrictions: in each run, 

two videos and two pictures sequence were presented for each room. A maximum of three 

videos of one condition was presented in a row. Each item (picture or video) appeared once 

within each run. Stimuli were presented using the Psychtoolbox (http://psychtoolbox.org) 

running under MATLAB R2014b (The MathWorks, Inc.) and projected onto a screen (1024 

× 768 pixel, 60 Hz) from the head-end of the scanner. 
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Post-scanner task: explicit rooms recognition 

After the fMRI session, participants were asked to fill a brief questionnaire  in which they 

had to explicitly confirm which rooms they had seen before and which they watched for 

the first time during the scanner session. So that, for each room a sequence of pictures was 

presented and the participants had to answer (yes/no) to the question “have you been to this 

room already?”.  Moreover they had to judge how much confident they were on their 

answer in a 7-points scale (from 1= “very sure” to 7=“very unsure”).  

 

fMRI Data Acquisition  

Gradient-echo EPI functional MRI volumes were acquired with a Siemens TRIO 3 T 

scanner with standard head coil (33 slices, TR = 2000 ms, echo time TE = 30 ms, resolution 

3 × 3 × 3 mm3 with 0.75 mm gap, flip angle = 78°, Field of View [FoV] = 192 mm). In 

each run, 216 images were acquired for each participant. For every subject, six runs of 

functional MRI were acquired. We also acquired structural MRI data (T1-weighted 

MPRAGE: 192 axial slices, TR = 1900 ms, TE =2.52 ms, flip angle = 9°, FoV = 256 mm). 

 

fMRI Data Analysis  

SPM12 (v. 6685; http://www.fil.ion.ucl.ac.uk/spm/) running under Matlab R2014b 

(MathWorks, Inc.) was used for fMRI data preprocessing and univariate analysis. The first 

three volumes of each functional timeserie were discarded to avoid magnetic saturation 

effects. The images were slice-time corrected with reference to the first recorded slice, 

motion corrected, coregistered to the anatomical image, and then spatially smoothed with 

a Gaussian kernel of 6 mm FWHM. Data were high-pass filtered with a cutoff period of 

128 s. The images were also segmented in order to obtain normalization parameters for 

normalizing the accuracy maps resulting from the multivariate analysis. The onsets of the 

trials (pictures or video) were used to model the fMRI data. A general linear model (Friston 

et al., 1995) was applied to the data of each run and four event-based HRF-convolved 

regressors were modeled: pictures of seen rooms (Sp), videos of seen rooms (Sv), pictures 

of unseen rooms (Up), videos of unseen rooms (Uv). Movement parameters derived from 

image realignment were included as additional regressors of no interest. At a subject-level 

a separate contrast was made for each of the four regressors. Then, the obtained contrasts 

were spatially normalized to the MNI space and entered into a second-level random effects 
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ANOVA with the stimulus type (Sp, Sv, Up, Uv) as within-subject factor. Activations for 

the contrasts between seen and unseen stimuli have been investigated ([Sv+Sp]>[Uv+Up]; 

[Uv+Up]>[Sv+Sp]). Finally, we ran a new first-level analysis on unsmoothed data, 

modeling one regressor per room in order to prepare data for the subsequent MVPA 

analysis. 

 

Multi-Voxel Pattern Analysis  

Multi-Voxel Pattern Analysis (MVPA) was performed to investigate whether the brain 

activity pattern elicited by watching at stimuli representing seen rooms can be 

discriminated from that of unseen rooms.  

The decoding analysis between “Seen” vs. “Unseen” rooms was performed considering 

both pictures and videos, pictures only and videos only. Moreover, we performed a cross-

decoding between pictures and videos in which we trained the classifier only on pictures 

and tested the performance on videos and vice versa. So that, for the “Seen” vs. “Unseen” 

decoding, four different analyses were realized. 

All the decoding analyses followed the same steps. First, a GLM was estimated on 

unsmoothed data, with eight regressors (rooms) modeled for each run. Second, the 48 

estimated GLM parameters (8 regressors × 6 runs) were included in the decoding analysis. 

A “searchlight” approach (Kriegeskorte et al., 2006) was adopted to search across the whole 

brain for the voxels that contain more information in an unbiased fashion. A spherical 

searchlight with a radius of three voxels around a central voxel was adopted and each voxel 

in the brain served once as the center of the searchlight. The third step was the training and 

test of a Support Vector Machine classifier (SVM; Cortes & Vapnik, 1995) as it has been 

demonstrated to be a valid approach for pattern analysis, especially on functional 

neuroimaging data (Pereira et al., 2009; Schmah et al., 2010). As described in Chapter 2, 

SVM is a binary classifier that finds the best classifying hyperplane, that maximizes the 

distance with the closer element of each class. Given a set of features, the SVM classifier 

is trained on a set of data and it produces a model able to predict with a certain accuracy 

the class label of the elements in a different dataset (test set). In order to avoid overfitting, 

the approach known as Leave-One-Out Cross-Validation (LOOCV; see Chapter 2) was 

used, in which a subset of data is not included in the training set and it is used as test set. 

For the “Seen” vs. “Unseen” decoding the classifier was trained on GLM estimates from 

six rooms and a pair of rooms (one seen and one unseen) was left out and used to test the 

classifier performance. This procedure was repeated with each pair of rooms acting as the 
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test data set once, while the other rooms were used as training data sets. Importantly, 

although the “Seen” vs. “Unseen” decoding has been realized with room-specific estimated 

GLM parameters, the leave-one-pair-of-rooms-out cross-validation design allow to test the 

accuracy of the classifier in discriminating between seen and unseen rooms without the 

influence of low-level visual differences between rooms. In the rooms decoding GLM 

estimates from five runs were used as training set, while one run was iteratively left out. 

The training and testing of the support vector classifier was performed using The Decoding 

Toolbox (TDT; Hebart, Görgen, Haynes, & Dubois, 2015; 

https://sites.google.com/site/tdtdecodingtoolbox/) and LIBSVM (Chang & Lin, 2011; 

http://www.csie. ntu.edu.tw/~cjlin/libsvm/). The result of each decoding analysis was a 3D 

accuracy map showing a value of accuracy above chance for each voxel in the brain. Each 

accuracy map was then normalized to a standard stereotaxic space (Montreal Neurological 

Institute EPI template), and smoothed with a Gaussian kernel of 6 mm FWHM. Finally, a 

t-test was conducted to statistically test the decoding accuracies for each position in the 

brain. Decoding results were FWE-corrected for multiple comparison at cluster-level 

(p<.05; cluster-forming threshold = .001). 

 

RESULTS 

Functional MRI images of participants were acquired while they were passively viewing 

pictures or videos of eight rooms, four of which had been previously visited. A second-

level within-subject ANOVA was conducted and the differences between brain activity in 

response to stimuli showing seen and unseen rooms were explored in a univariate analysis. 

Furthermore, we run a multi-voxel pattern analysis evaluating the performance of a 

searchlight SVM algorithm in classifying fMRI within-subject activation patterns for seen 

and unseen stimuli.  

 

Behavioral data analysis 

The post-scanning questionnaire revealed that there was no significant difference in the 

confidence rating between seen and unseen rooms. In other words, participants judged all 

the eight rooms as previously visited or not with the same degree of confidence. Overall, 

in 96% of cases (184 out of 192 total ratings) participants chose a score of 1 on the Likert 

scale, meaning that they were very sure about their answer (about having visited the room 

or not).  
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Univariate analysis 

We computed an ANOVA with post-hoc T-contrasts in order to investigate the differences 

in BOLD signal between seen and unseen stimuli. All results are reported in Table 5.1 and 

were FWE corrected at the cluster-level at p<.05 (threshold p<.001). For the contrast 

between seen and unseen, results showed significant activations (all clusters had p<.001) 

in Precuneus and Parahippocampal gyrus bilaterally, left cuneus, right angular gyrus and 

right Superior Parietal Lobule (see Figure 5.1). The reverse contrast highlighted the 

involvement of frontal and parietal regions. In particular, significant activations were found 

in left Postcentral gyrys (p<.001), left Medial Frontal gyrus (p<.001), right Frontal Superior 

gyrus (p=.003).  

 

Contrast Region Lat. Cluster 
size 

T  MNI peak 
coordinates (mm)  

 x y z 
Seen > Unseen 
 Cuneus L 216 7.62 -15 -58 17 
 Precuneus R 267 7.28 18 -58 23 
 Parahippocampal gyrus R 94 5.75 27  -40 -13 
 Parahippocampal gyrus L 89 4.92 -21  -43 -10 
 Superior Parietal 

Lobule 
R 62 4.44 15 -73 53 

 Angolar gyrus R 22 4.25 39 -79 32 
 Precuneus  L 41 4.23 -9 -70 53 
Unseen > Seen     
 Postcentral gyrus L 47 4.55 -57 -11 17 
 Medial Frontal gyrus L 68 4.21 -30 41 17 
 Frontal Superior gyrus R 24 4.25 24 47 44 

 
Table 5.1 Activations for the contrasts Seen > Unseen and Unseen > Seen considering videos and pictures. 
Abbreviations: Lat., Lateralization;  L, left; R, right. 
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Fig. 5.1 Univariate results for contrast Seen > Unseen (left) and Unseen > Seen (right). Sv = Seen videos; Sp = Seen 
pictures; Uv = Unseen videos; UP = Unseen pictures; A = anterior; L = left; S = superior. 
 

Multivariate analysis 

A series of MVPA decoding analyses were performed in order to identify the areas which 

were more informative for discriminating between seen and unseen rooms with an accuracy 

level significantly above chance (FWE cluster-level corrected at p<.05; cluster-forming 

threshold = 0.001). The decoding performed separately for each participants showed an 

average maximum accuracy level of 82.2%, ranging from 75.5% to 94.3%. While the 

maximum accuracy at group level was around 60%. For the group analysis, a one-sample 

t-test was performed. Searchlight MVPA identified significant clusters in the parietal lobe 

bilaterally (Figure 5.2). Peak voxel was located in the right Precuneus (MNI: 6, −76, 53; 

cluster p<.001).  

 

 
Fig. 5.2 Group-averaged maps of classification accuracy significantly above chance level for seen vs. unseen rooms. 
Decoding results obtained using both videos and pictures (left), videos only (center) and pictures only (right) are shown. 
S = superior; L = left; A = anterior. 
 

No strong differences emerged when considering for the decoding pictures- or videos-based 
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activation separately. In both cases right Precuneus (for pictures, MNI: 21, -67, 29; cluster 

p=.004; for videos, MNI: 12, -73, 59; cluster p<.001) emerged as statistically significant 

after multiple-comparisons correction (see Fig. 5.3). Finally, cross-decoding was 

performed between pictures and videos in both ways (i.e. the SVM classifier was trained 

on pictures and tested on videos and vice versa). Both when training on videos and testing 

on pictures (peak [MNI]: -3, -70, 50; cluster p<.001), and when training on pictures and 

testing on videos (peak [MNI]: -12, -79, 50; cluster p=.001), analyses showed a significant 

cluster surviving the multiple-comparisons correction in the left Precuneus (Fig. 5.3). See 

Table 5.2 for further details.  

 

 
Fig. 5.3 Group-averaged maps of classification accuracy significantly above chance level for seen vs. unseen rooms. 
Cross-Decoding results obtained training on pictures and testing on videos (left) and viceversa (right) are shown. S = 
superior; L = left; A = anterior. 
 

Decoding 
Seen vs. 
Unseen 

Region Lat. Cluster 
size 

T  MNI peak 
coordinates (mm)  

 x y z 
pictures and videos 
 Precuneus R 698 6.06 6 -76 53 
pictures only 
 Precuneus R 59 5.33 21 -67 29 
videos only 
 Precuneus R 121 3.97 12 -73 59 
Cross-Decoding 1 
 Precuneus L 141 4.03 -3 -70 50 
Cross-Decoding 2 
 Precuneus L 72 4.03 -12 -79 50 

 
Table 5.2 Group-level MVPA results (peak voxels) of decoding using  pictures and videos, pictures only, videos only, 
trining on videos/testing on pictures and training on pictures/testing on videos. Abbreviations: Lat., Lateralization;  L, 
left; R, right. Cross-Decoding 1 = Training on videos and testing on pictures; Cross-Decoding 2 = Training on pictures 
and testing on videos. 



 79 

 

DISCUSSION 

In this study we aimed to investigate the possibility of discriminating the brain activity 

patterns related to the processing of visual stimuli showing previously visited rooms, from 

that of unknown rooms and to highlight the brain correlates of rooms recognition from a 

multivariate perspective. To address these issues we evaluated the performance of a 

multivariate classifier in a series of decoding analyses, assessing which brain regions 

contained more crucial information for the discrimination between seen and unseen rooms. 

We adopted a searchlight-MVPA approach on regional fMRI activation patterns in 

response to an implicit recognition task for classification of seen vs. unseen rooms. 

Furthermore, we performed a “classical” univariate analysis to highlight the differences in 

brain activity while viewing seen vs. unseen rooms. 

In line with previous reports, the univariate analysis revealed higher activity mainly in the 

precuneus/cuneus (as well as in parietal regions such as superior parietal lobule and angular 

gyrus), and in the parahippocampal cortex (parahippocampal place area, PPA) for the seen 

rooms. From a general point of view, some authors proposed for parahippocampal cortex a 

role in the processing of contextual associations (Aminoff, Kveraga, & Bar, 2013). It is 

well-known that a particular region within parahippocampal cortex seems to be more active 

when processing scenes rather than faces or objects, the so-called PPA (Epstein & 

Kanwisher, 1998). The role of the PPA has been extensively demonstrated in processing 

relevant information for spatial navigation, such as landmarks (Janzen & van Turennout, 

2004; Marchette, Vass, Ryan, & Epstein, 2015). Moreover, in a number of studies PPA has 

showed greater activity for natural scene categorization (e.g., Walther et al., 2009), visuo-

spatial memory (e.g., Cabeza et al., 2004), recognition (e.g., Bar & Aminoff, 2003) and 

familiarity judgments (Rissman et al., 2016).  

On the other hand, a work by Epstein, Harris, Stanley and Kanwisher (1999) apparently 

contradicted this view, by showing that the activity in the PPA was not related to the level 

of familiarity of viewed scenes. These authors acquired fMRI images while participants 

were watching pictures showing scenes from a familiar/unfamiliar environment, landmarks 

from a familiar/unfamiliar environment, objects or faces. In this experiment, buildings were 

used as landmarks for the creation of the stimuli. Authors did not found a significantly 

higher activity in the PPA in response to familiar scenes. By contrast the PPA response was 

significantly higher for familiar landmarks. One possible explanation for this differential 

involvement of PPA in familiarity judgment when considering scenes versus landmarks 
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(buildings) has to be searched in the way through which subjects experience a landmark. 

Activity in the PPA is strong in response to landmarks because participants experience 

them as part of a scene, rather than detached objects (Epstein et al., 1999; Epstein & 

Kanwisher, 1998). So that, when viewing a landmark that refers to a previously experienced 

place (e.g., a room), subjects would probably recognize it as a piece of a more complex 

scene (Epstein et al., 1999). Moreover, a familiar landmark could drive subjects to 

“complete” the scene with imagery, thus leading to a greater activation of PPA (O’Craven 

& Kanwisher, 2000). So that, we argue that in our experiment unknown rooms could be 

processed as unfamiliar landmarks, and thus as detached objects, rather than scenes. This 

could account for the stronger activation in PPA while processing pictures of (i.e., pieces 

of) seen rooms that has been highlighted in the present study.  

Moreover, differences in geometric properties between buildings and natural scenes (e.g., 

a landscape) have to be taken into account. Indeed, from this point of view, rooms are much 

more similar to buildings than to natural scenes, as they are physically delimited. So that, 

a picture of scene in a park can be considered a self-contained scene, while a picture taken 

inside a room is considered as a part of a wider scene, such as a landmark. Therefore, the 

results of the present experiment (in the univariate contrast seen vs. unseen rooms) could 

be comparable to the familiar vs. unfamiliar landmarks contrast in Epstein and colleagues’ 

experiment (1999), in which a role of PPA emerged. According to several authors (e.g., 

Bar & Aminoff, 2003; Davachi, Mitchell, & Wagner, 2003; Eichenbaum, Yonelinas, & 

Ranganath, 2007; Ranganath et al., 2004) the PPA may act a role in recognition, encoding 

a global spatial representation of the context in which an item has been encountered. In this 

view, the PPA activation can be considered as an indirect measure of recognition. In other 

words, the PPA activation might reveal whether a subject is implicitly locating the picture 

he is viewing in its own previously experienced spatial context. Moreover, the visual 

stimuli used in our experiment were not taken from a specific (i.e., subject-specific) point 

of view, so that the activity of PPA may reflect the view of the same room from different 

perspectives, already demonstrated in literature (Epstein, Graham, & Downing, 2003). 

Furthermore, the stronger activity of PPA for seen than for unseen stimuli indicates that in 

this study PPA did not seemed to respond to complete scene changes, as demonstrated by 

Epstein and colleagues (2003). 

The activation we found in the precuneus is consistent with the literature reporting a role 

of this area in episodic memory and recognition (e.g., Henson, Rugg, Shallice, Josephs, & 

Dolan, 1999; for a review see Cavanna & Trimble, 2006). For example, Tulving and 
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colleagues (1994) found an increase in blood flow (measured with PET) in this region, 

related to the recognition of previously presented sentences. Another work demonstrated 

that left precuneus is active when specific autobiographical events are retrieved (Addis, 

McIntosh, et al., 2004). 

In the subsequent multivariate analyses the PPA did not seem to be informative for the 

decoding of seen versus unseen rooms. Overall, multivariate classification analyses 

demonstrated that it is possible to discriminate between previously seen (i.e., visited) and 

unseen rooms. The most informative regions for the decoding were observed in the 

precuneus and involved regions within the retrosplenial cortex (RSC)/ posterior cingulate 

cortex (PCC). In literature, the RSC is usually active for known positions on an allocentric 

map (Marchette, Vass, Ryan, & Epstein, 2014; Robertson, Hermann, Mynick, Kravitz, & 

Kanwisher, 2016; Vass & Epstein, 2013). In other words, RSC is considered to have a so-

called “translational function” because it helps to switch between egocentric to allocentric 

coordinates (for a review on RSC functions see Vann, Aggleton, & Maguire, 2009). 

Burgess and colleagues (Burgess, Becker, King, & O’Keefe, 2001; Byrne, Becker, & 

Burgess, 2007) proposed a model in which the RSC translates the contextual/spatial 

information related to an episodic memory from an allocentric representation (located in 

the hippocampus) to an egocentric one in order to view the remembered scene from a 

specific point of view.  In light of this model, the RSC is supposed to act as a short-term 

buffer for the representations while the translational process takes place. Although 

participants had to deal with different viewpoints we found high accuracies on a within 

subject-basis. This results are consistent with the idea of an important role of the RSC in 

the translation between allocentric and egocentric coordinates. The difference between the 

maximum accuracy reached on a subject-level and on a group-level, it might be due to the 

fact that there could be subject-specific differences in the neural correlates of recognition 

(familiarity). Each subject can incidentally encode peculiar aspects of the room while 

visiting it, and the subsequent recognition can be guided by those aspects. 

Although activity in the RSC seems to be related to many different processes such as 

linguistic comprehension and production (Awad, Warren, Scott, Turkheimer, & Wise, 

2007), motivational aspects (Small, Zatorre, Dagher, Evans, & Jones-Gotman, 2001) and 

pain in fibromyalgia (Wik et al., 2006), this region showed a significantly strong role in 

studies about spatial navigation (Epstein, 2008; Maguire, 2001) and episodic memory (E. 

A. Maguire, 2001a; Svoboda et al., 2006). In particular RSC seems to show greater 

activation for the retrieval of recent versus remote autobiographical memories (Gilboa, 
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Winocur, Grady, Hevenor, & Moscovitch, 2004; Oddo et al., 2008; Woodard et al., 2007). 

Moreover, consistently with our study, some authors (e.g., Addis et al., 2004) demonstrated 

greater activity in the cuneus for the retrieval of specific autobiographical events. 

Overall, we think that one of the strengths of our study is that the incidental memory that 

has been tested (implicit rooms’ recognition) had not been created in a laboratory setting 

but in a real-world location. Moreover, we used stimuli created from real-world scenes 

(rooms). A recent meta-analysis has surprisingly demonstrated that functional correlates of 

memory retrieval (studied with fMRI) for autobiographical memories and for laboratory-

encoded memories are not overlapped as much as it can be assumed (McDermott, Szpunar, 

& Christ, 2009). Rissman and colleagues (2016), starting from this finding, performed an 

across-studies decoding between laboratory-based and real-world memories. More 

specifically, these authors evaluated the performance of a multivariate classifier, trained on 

previously acquired fMRI data from a laboratory-based face recognition task (Rissman et 

al., 2010), in classifying real-world autobiographical memory states. The reverse analysis 

(i.e., training on real-world autobiographical memories and testing on laboratory-based 

memories) was also performed. Results showed a reliable decoding performance in both 

analysis. In this interesting recent work, Rissman and collaborators (2016) investigated the 

neural patterns associated to the recall of memories for real-world autobiographical events 

(after a time interval ranging from 1 to 3 weeks). Participants were asked to wear a 

necklace-mounted digital camera during their everyday life’s activities for 3 weeks. 

Pictures acquired by this camera were then used as stimuli in the subsequent explicit 

recalling task inside the fMRI scanner, in which they were asked to make memory 

judgments about whether photos were showing events from their own lives or not (i.e., 

images captured by other participants’ cameras). Authors found high accuracy in the 

discrimination between recognized and rejected pictures, as well as between recollection, 

familiarity and novelty, through the use of a multivoxel pattern analysis. If compared to the 

study by Rissman and colleagues (2016), the current experiment has an important strength, 

that is the use of visual stimuli taken from different (and not subject-specific) points of 

view. This feature, in our opinion, make our study more ecological in particular if referred 

to possible future forensic applications of this kind of techniques (also taken into account 

by Rissman et al., 2016) which will be discussed in Chapter 7. 
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Chapter 6 

 

“DO YOU REMEMBER IT?”  

DECODING AUTOBIOGRAPHICAL EMOTIONAL MEMORIES FROM BRAIN 

ACTIVITY 

 

 

INTRODUCTION 

 

The neural correlates of autobiographical memory retrieval is represented by a complex 

network of brain areas that includes medial prefrontal, temporal and retrosplenial cortices 

and cerebellum (Maguire, 2001a; Piefke & Fink, 2005; Svoboda et al., 2006). A number of 

factors are involved in autobiographical memory retrieval. Among these, the most studied 

are the emotional relevance and the relevance for the self. 

Despite the relation between emotions and the functions of autobiographical memory is not 

clear, a broad range of behavioral studies (e.g., D’Argembeau, Comblain, & van der 

Linden, 2003) have indicated that emotional valence is one of the main components of this 

memory system (for a review see Holland & Kensinger, 2010) and seems to have a key-

role in encoding, storage and retrieval of autobiographical memories (Conway, 1990). It is 

a common experience that emotionally relevant memories are easier to retrieve. Some 

authors (e.g., Conway, 1990) argued that when people experience emotional events, the 

encoding process is enhanced. So that, highly emotional events are more easily accessible 

than less emotional memories (Buchanan, 2007; Holland & Kensinger, 2010; Robinson, 

1980). Moreover, the emotional valence of episodic memories seems to alter brain activity 

patterns during recollection (for a meta-analysis see Svoboda, McKinnon, & Levine, 2006).  

According to some authors (e.g., Brewer, 1986), the self influences the encoding and 

retrieval of events from memory and, on the other hand, autobiographical memories are 

considered as having a key-role in building the self. Self-referential processing is thus a 

crucial component of autobiographical memory and it is considered as the “organizer” of 

other memory systems with lower levels of complexity (Conway & Pleydell-Pearce, 2000; 

Svoboda et al., 2006). 

The great majority of neuroimaging studies about autobiographical memory have adopted 

standard univariate approaches to functional data analysis. Only few studies have applied 

multivariate techniques, that allow for the analysis of patterns of activated voxels. A 
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technique that has been utilized in the neuroimaging research of autobiographical memory 

is the spatiotemporal partial least square analysis (ST-PLS), which permits the 

identification of cross-correlations between the activity of the brain in different time-points 

related to experimental factors. Addis and co-workers (Addis, McIntosh, et al., 2004) 

adopted this approach and found different temporal patterns of activity when participants 

were retrieving general rather than specific autobiographical memories, thus supporting the 

autobiographical memory hierarchical model proposed by Conway (Conway, 1992; 

Conway & Pleydell-Pearce, 2000).  

More recently, MVPA methods have been adopted for the purpose of classifying true 

memories from stimuli not-related to any memory content (e.g., Rissman, Chow, Reggente, 

& Wagner, 2016; Rissman et al., 2010; Uncapher, Boyd-Meredith, Chow, Rissman, & 

Wagner, 2015).  

For instance, Rissman and co-workers (2010) used multivariate methods of fMRI data to 

detect whether participants were processing previously encountered versus new faces.  

To our knowledge, none of the studies that used MVPA for memory detection explored the 

possibility of using verbal statements, describing specific autobiographical information, as 

stimuli for the decoding. The main advantage of the use of this kind of stimuli to describe 

autobiographical events is the possibility to customize them to the personal subjective 

memories. Such a technique can also be applied to the study of emotional autobiographical 

memories, as the stimuli can be built using the subject’s own words and this can foster the 

re-experience of emotionally relevant aspect of the investigated memories. 

The aim of the present fMRI experiment was to investigate whether it is possible to 

discriminate between sentences describing real autobiographical episodic memories from 

sentences describing the same memories but using false episodic information (i.e., 

depicting a piece of the event that actually did not happen; see below for some examples), 

as well as the level of accuracy that can be reached in detecting each subject’s memory. In 

this experiment, we decided to focus on a highly relevant negative emotional memory in 

order to maximally stimulate the relevance for the self and thus the ease in the recognition. 

Moreover, the use of negative emotional autobiographical memories can shed light on what 

happens in the brain when recognizing a negative event of our life. This can lead to 

interesting potential implication of these results for the forensic field in future (e.g., an 

individual suspected for a murder can be investigated in order to determine the presence of 

memories of the murder). Potential forensic implications will be discussed in Chapter 7. In 

the current experiment, a specific kind of episodic memory (i.e., the death of a family 
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member) was chosen and the participant-specific episodic memory was investigated. 

Moreover, we investigated whether different degrees of personal active involvement (e.g., 

the memory of an important one-by-one conversation with a friend is characterized by a 

higher personal involvement than the memory of the last time we went at the supermarket) 

in the retrieved event had an effect on the neural correlates of autobiographical memory 

recognition, and whether this affects the accuracy in the discrimination of true and false 

sentences about different aspects of the investigated memory. For this purposes, we first 

investigated the differences in brain activity between the processing of true memories and 

non-memories through the use of a standard univariate analysis. Then, we evaluated the 

performance of a multivariate classifier in revealing which brain areas contained more 

useful information for discriminating the brain activity pattern associated to true memories 

from that of non-memories.  

 

MATERIALS AND METHODS 

 

Participants 

This study was approved by the local ethics committee, University of Modena and Reggio 

Emilia, Italy. Six healthy right-handed participants were recruited (age range: 25-49; 

mean=36; SD=9.86). All participants signed informed consent before participation and 

were remunerated. Only female participants were recruited as previous studies have shown 

gender differences in autobiographical memory processing (e.g., Cahill et al., 2001; Piefke 

& Fink, 2005; Piefke, Weiss, Markowitsch, & Fink, 2005), so that we chose to not introduce 

gender as variable in our design. All participants had normal or corrected-to-normal vision 

and were free from any neurological or psychiatric diagnosis.  

 

Preliminary interview and stimuli creation 

In order to be consistent with our aims, the fMRI recognition memory task was focused on 

a personal emotionally relevant negative autobiographical event. A semi-structured 

interview was carried-out with each participant, during which they were asked to focus on 

a particular negative personal event: the memory of the recent death of a family member. 

Then, they were asked to selectively report information related to four categories: a) 

personal data of the deceased person; b) the moment in which they were told about the 

death; c) the last time they met the deceased person; d) the funeral. On the basis of the 

collected information, a set of sentences was built. First, sentences based on real memories 
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were built (e.g., “When I was told about his death I was alone”). Then we created sentences 

describing an alternative event (e.g., “When I was told about his death I was with my 

friends”). See Table 6.1 for further details and for examples of sentences used in the 

experiment. 

 

Category Kind of 
information 

Examples of true 
memory sentences 

Examples of non-memory 
sentences 

a Personal data “She was a professor” “Her height was 1.70 m” 

b News of the 
death 

“When I was told about 
his death I was alone” 

“When I was told about his 
death I was with my 

friends” 

c Last meeting “During our last meeting 
we were alone” 

“During our last meeting 
there was also my mother” 

d Funeral “The funeral took place 
in the morning” 

“During the funeral it was 
raining” 

 

Table 6.1. Examples of true memory and non-memory sentences used in the experiment.  

 

Forty-eight sentences were built for each participant (24 real-memory sentences and 24 

non-memory sentences) and each sentence was presented only once. In order to create 

comparable stimuli, alternative sentences (i.e., real-memory vs. non-memory) about the 

same piece of information had the same length. Overall, sentences’ length ranged between 

four and seventeen syllables. 

 

For the aims of the current study, the episodic details of interest were those referring to 

events were the participant had a main role, such as categories b and c (i.e., information 

about the moment in which they received the news of the death and about the last meeting 

with the deceased person). Consequently, the whole set of obtained information was 

divided in episodic details about an event with a personal main-role (“Personal Event”) and 

details about a public event (funeral) or general information about the deceased person 

categorized as “Not Personal Event”. 
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fMRI task 

During the subsequent fMRI experiment, participants were asked to watch a screen 

presenting sentences about the negative event they previously reported. After the 

presentation of each sentence, they were asked to give an answer judging whether the 

sentence was true or false by pressing two buttons with the index or the middle finger of 

the right hand. The experiment comprised three functional runs, lasting around 8 min each. 

Each of the three runs consisted of 16 trials in which a warning cue appeared for 500 ms, 

then a sentence was presented for 5500 ms. The chosen duration of sentence presentation 

is consistent with electrophysiological studies (e.g., Conway, Pleydell-Pearce, Whitecross, 

& Sharpe, 2003) showing that the average time needed for the retrieval of autobiographical 

memories was 5 secs (range: 3 – 9 secs) and fMRI studies (e.g., Addis, McIntosh, 

Moscovitch, Crawley, & McAndrews, 2004) showing that the autobiographical memory 

activation pattern reaches its peak between 2 and 8 s. In the present study, after stimulus 

disappeared, a twelve seconds resting-state interval was inserted, followed by a 2 s time 

window in which subject were asked to give their response. Finally, 10 seconds of resting-

state were acquired before the next trial started. The stimuli were presented in a randomized 

order across all runs, with the only restriction that in each run half stimuli were true 

sentences and half false sentences.  

 

fMRI Data Acquisition 

Functional MRI volumes were acquired with a Philips Gyroscan Intera 3.0 T MR system 

equipped with IFIS fMRI system with standard head coil (30 slices, TR = 2000 ms, echo 

time TE = 35 ms, resolution 3 × 3 × 3 mm3 with 1 mm gap, flip angle = 78°, Field of View 

[FoV] = 240 mm). For all participant, 280 images were acquired for each of the three runs. 

We also acquired structural MRI data (T1-weighted MPRAGE: 192 axial slices, TR = 1900 

ms, TE =2.52 ms, flip angle = 9°, FoV = 256 mm). 

 

fMRI Data Analysis 

Functional MRI data preprocessing and standard univariate analyses were performed using 

SPM12 (v. 6685; http://www.fil.ion.ucl.ac.uk/spm/) running under Matlab R2014b 

(MathWorks, Inc.). The first fifteen EPI volumes of each functional timeserie were 

discarded. The images were slice-time corrected using the first slice as reference, motion 

corrected, coregistered to the anatomical image, and finally a spatial smoothing with a 

Gaussian kernel of 6 mm FWHM was applied. Data were high-pass filtered with a cutoff 
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period of 128 s. A general linear model (Friston et al., 1995) was built on the basis of each 

trial onset and applied to the data of each run and four event-based HRF-convolved 

regressors were modeled (2 memory types [PE, NPE] × 2 sentence status [true, false]): true 

details of a personal event (tPE), false details of a personal event (fPE), true details of a 

not-personal event (tNPE), false details of a not-personal event (fNPE). Movement 

parameters derived from the realignment preprocessing step were included as additional 

regressors of no interest. At a subject-level a separate contrast was made for each of the 

four regressors. The resulting contrasts were spatially normalized to the MNI space and 

entered into a second-level random effects ANOVA with the stimulus type (tPE, fPE, tNPE, 

fNPE) as within-subject factor. The contrasts between true and false memories were 

investigated considering both memory types ([tPE + tNPE] > [fPE + fNPE]) and selectively 

considering episodic events with (tPE > fPE) and without (tNPE > fNPE) a main-role of 

the participant. Moreover, in order to account for a possible inflated false positives rate in 

our results (Eklund, Nichols, & Knutsson, 2016) due to the small sample size, we repeated 

the second-level analysis with a nonparametric permutation method (Hayasaka & Nichols, 

2003, 2004; T. Nichols & Holmes, 2003), performed using the toolbox SnPM 

(http://www.nitrc.org/projects/snpm/). Finally, we ran a new first-level GLM analysis on 

unsmoothed images, modeling one regressor for each stimulus, in order to prepare data for 

the subsequent MVPA analysis. 

 

Multi-Voxel Pattern Analysis 

In the current experiment different memories of the same kind were investigated for each 

subject, so that we did not expect a common brain pattern for the discrimination between 

memory-related and non-memory-related stimuli. Therefore, a single-subject Multi-Voxel 

Pattern Analysis (MVPA) was performed for each participant (i.e., no across-subject 

decodings were performed). The aim of this analysis was to investigate whether it is 

possible to accurately discriminate between the brain activity patterns elicited by true-

memory sentences and non-memory sentences.  

Two “True” vs. “False” decoding analyses were performed for each subject. In the first 

one, both stimuli referred to memories with and without a personal main-role were 

considered (PE + NPE), while the second decoding was selectively focused on PE stimuli.  

The decoding analyses were performed on the basis of the following steps. First, a GLM 

was estimated on unsmoothed data, with one regressor modeled for each stimulus (as 
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specified above). Second, the estimated GLM parameters were included in each within-

subject decoding analysis. A “searchlight” approach (Kriegeskorte et al., 2006) was used 

to search across the whole brain for the voxels that contain more information in an unbiased 

fashion. A spherical searchlight with a radius of three voxels was adopted and each voxel 

in the brain served once as the center of the searchlight sphere. As previously reported, the 

third step consisted in training and testing a Support Vector Machine classifier (SVM; 

Cortes & Vapnik, 1995). Following what has previously been introduced in this manuscript, 

in order to avoid overfitting, a Leave-One-Out Cross-Validation (LOOCV; see Chapter 2) 

approach was adopted. In the case of the present experiment, the classifier was trained on 

GLM parameter estimates from two runs and tested on the GLM estimates from the 

remaining run. This procedure, called Leave-One-Run-Out cross-validation (LORO), was 

repeated until each run was iteratively used once as the test dataset. Importantly, each run 

included different stimuli, so that the three runs did not included repeated stimuli. The 

training and testing of the support vector classifier was performed using The Decoding 

Toolbox (TDT; Hebart, Görgen, Haynes, & Dubois, 2015; 

https://sites.google.com/site/tdtdecodingtoolbox/) and LIBSVM (Chang & Lin, 2011; 

http://www.csie. ntu.edu.tw/~cjlin/libsvm/). Each decoding analysis resulted in a three-

dimensional subject-specific accuracy map showing a value of accuracy for each voxel in 

the brain.  

 

RESULTS 

Behavioral data analysis 

All stimuli but four (which were not followed by any response) were correctly classified 

by participants. Participant 5 missed one response, while participant 6 missed three 

responses. Stimuli not followed by a behavioral response were discarded both from the 

univariate and multivariate analyses.  

 

Univariate analysis 

The brain activity related to stimuli describing true autobiographical memories 

characterized by a personal main-role (compared to false sentences about the same event; 

tPE > fPE) revealed significant activations (FWE-corrected for multiple comparisons at 

cluster level; cluster-forming threshold=.001) in the left anterior cingulate cortex and in the 

right superior temporal gyrus (see Table 6.2 and Fig. 6.1A). The contrast between true and 

false sentences without considering the memory type ([tPE + tNPE] > [fPE + fNPE]) and 
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the contrast focused only on NPE stimuli (tNPE > fNPE) did not show any significant voxel 

surviving multiple comparisons correction.  

 

Contrast Region Lat. Cluster 
size T 

MNI peak 
coordinates (mm) 

x y z 
tPE > fPE     

 Superior Temporal 
Gyrus R 35 7.82 63 -49 11 

    4.23 66 -46 20 
 Anterior Cingulate L 164 5.61 -3 41 8 
    4.87 0 38 23 
    4.11 -12 50 11 

 

Table 6.2  FWE-corrected for multiple comparisons at cluster level; cluster-forming threshold=.001 

 

Non-parametric permutation analysis results (FWE-corrected for multiple comparisons at 

cluster level; cluster-forming threshold=.001) confirmed the significant frontal cluster (left 

anterior cingulate cortex), while no significant voxels resulted in the superior temporal 

gyrus. In Figure 6.1A and 6.1B the parametric and non-parametric results are shown.  

 

 
Fig. 6.1 Group-level univariate results for the contrast tPE > fPE. A) parametric results (SPM); B) non-parametric results 
(SnPM). L = left; S = superior; A = anterior  
 

Multivariate analysis 

In the multivariate analysis section, the performance of a linear SVM classifier was 

examined in discriminating between true sentences describing autobiographical memory 
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and information not memory-related. The classification was based on the fMRI activity 

pattern investigated through a searchlight approach. Two MVPA decoding analyses were 

performed in order to test whether single sentences describing real autobiographical 

memories can be detected from brain activity, where the information about the 

classification is encoded in the brain and how accurately true autobiographical memories 

and non-memoriescan be discriminated. The best accuracies reached in each within-subject 

decoding analysis, are reported in Table 6.2.   

As a first step, a GLM with one regressor per stimulus was estimated as previously 

described. Then, multivariate pattern classification was performed for each participant on 

the GLM parameter estimates using a LORO cross-validation scheme, to assess whether 

the response pattern encoded information about the discrimination between true and false 

memories. Therefore, an SVM algorithm was trained (for further details please see the 

“Multi-Voxel Pattern Analysis” paragraph above) in discriminating true and false 

memories without differentiating for the memory type. In order to avoid biased decoding 

results due to the unbalanced number of stimuli belonging to the different classes across-

subjects, a repeated subsampling strategy was adopted. Within the cross-validation design, 

the more frequent class was repeatedly subsampled for 10 times, running multiple 

classification iterations, and results were averaged. Results (see Table 6.2) indicated that 

the most informative voxels showed maximum classification accuracies around 80% 

(range=76.7-86.5; mean=81.2%; SD=3.65). These values of accuracy indicate the ability 

of the algorithm in classifying each single item as a true memory or a non-memory. Then, 

we verified the performance of the machine learning algorithm selectively on PE stimuli. 

As shown in Table 6.2, the averaged maximum accuracy in classifying each single item 

increased to a value around 90% (mean=89.1%; SD=2.74) when considering only 

autobiographical memories in which the participant had a direct and main involvement (PE; 

see Fig. 6.2). 
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Table 6.3 Best accuracies reached in single-subject searchlight classification analyses. LORO = Leave-One-Run-Out 

Cross-Validation; SD = Standard Deviation; PE = “Personal Event”; NPE = “Not-Personal Event”; Max acc. = 
maximum accuracy 

 

In Figure 6.2 the increase in maximum accuracies between the decoding using PE + NPE 

and the decoding focused only on PE stimuli is shown. The difference in the peak decoding 

accuracies was statistically significant (t=-3.191; df=5; p=0.024). 

 

 
Fig. 6.2  Comparison of single-subject maximum accuracies reached in the two MVPA analyses (on PE+NPE and on PE 
only). PE = “Personal Event”; NPE = “Not-Personal Event”. 

 

 Decoding type 

Participants 

Single-subject 
PE + NPE 

LORO 
Max Acc. 

Single-
subject 

PE 
LORO 

Max Acc. 
P1 83.3 86.8  
P2 86.5 87.5  
P3 80.7 90.5  
P4 77.6 91.4  
P5 76.7 92.5  
P6 82.1 85.8  

   
Mean 81.2 89.1 

SD 3.65 2.74 
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As expected, strong between-subjects differences emerged in the patterns of informative 

voxels identified through the searchlight-based MVPA analysis, as shown in Fig. 6.3. 

 

 
Fig. 6.3. Overlays of normalized single-subjects’ accuracy maps only showing accuracies greater than 60%. The pattern 
of informative voxels is represented with different colors for each participant. As can be easily noticed, the most 
informative voxels belonged to completely different patterns in different participants. PE = “Personal Event”; NPE = 
“Not-Personal Event”. 
 

The resulting accuracy map obtained for each subject were then entered in a second-level 

one-sample t-test. Results (FWE-corrected for multiple comparisons at cluster-level with a 

cluster-forming threshold of 0.001) showed a significant cluster of informative voxels in 

the left lingual gyrus (see Table 6.3 and Fig. 6.4) for the decoding using PE and NPE 

stimuli. A significant cluster involving the lingual gyrus and posterior cingulate cortex 

(PCC) was confirmed also by a non-parametric version of the analysis. By contrast, the 

decoding analysis performed only on PE stimuli did not show any significant voxel 

surviving multiple comparisons correction.  
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Region Lat. Cluste
r size T 

MNI peak 
coordinates (mm) 

x y z 
Lingual Gyrus L 60 12.27 -21 -61 -4 

   11.37 -6 -73 8 
   9.96 -18 -70 -4 

Table 6.4 Results of the group-level one-sample t test run on decoding accuracy maps (PE+NPE). Results are FWE-
corrected for multiple comparisons at cluster level; cluster-forming threshold=.001. PE = “Personal Event”; NPE = “Not-
Personal Event”. 
 

 

 
Fig. 6.4 Results of group-level one-sample t-test on decoding accuracy maps (PE+NPE). A) parametric results (SPM); 
B) non-parametric results (SnPM). L = left; S = superior; A = anterior. Results are FWE-corrected for multiple 
comparisons at cluster level (cluster-forming threshold=.001). PE = “Personal Event”; NPE = “Not-Personal Event”; S = 
superior; L = left; A = anterior. 
 

DISCUSSION 

The present study mainly aimed at investigating the possibility of classifying single items 

fMRI scans as referred to true autobiographical emotional episodic memories or not, using 

MVPA. Preliminarily, a standard univariate analysis was also performed at group-level, in 

order to test the consistency of the present results with previously reported findings.  

Participants were presented with sentences describing true or false autobiographical 

memories about the death of a family member. Although all sentences were linked to the 

same personal memory, they were related to four categories based on the kind of 

information considered, namely: personal data of the deceased, the moment when the 

participant was told about the death, the last meeting with the deceased and the funeral. 

These four categories can be grouped according to the degree of personal involvement of 
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the participant: the last meeting with the deceased and the moment when the participant 

was told about the death can be considered events characterized by a strong involvement, 

that is, the participants had a main personal role in both these situations (so that stimuli 

belonging to these categories have been called “Personal Events”, PE). On the contrary, the 

category about the personal data of the deceased and about the funeral described memories 

not characterized by a direct main involvement of the participant (“Not-Personal Events”, 

NPE). This categorization was used both in the univariate and in the multivariate analyses.  

The fMRI univariate analysis investigated the neural substrates of episodic 

autobiographical memory recognition and retrieval, showing increased activity in MPFC 

(i.e., left anterior cingulate) and in right superior temporal gyrus for true memories of event 

with a personal main involvement (if compared to non-memories of the same kind; contrast 

tPE>fPE). These results are consistent with previous literature on episodic memory 

retrieval. Indeed, a number of studies have demonstrated a key-role of MPFC in self-

reference (Kircher et al., 2000; Northoff et al., 2006), that is one of the main components 

of autobiographical memory recollection, as well as time processing (Tranel & Jones, 

2006). Moreover, this brain area seems to have a role in emotion processing (Phan, Wager, 

Taylor, & Liberzon, 2004, 2002), thus activity in MPFC is consistent with the processing 

of emotionally relevant stimuli as those used in this study. In a previous work, Oddo and 

colleagues (2008) investigated the neural basis of recent episodic autobiographical 

memories (compared to semantic memories) focusing only on young female participants. 

This experiment explored the effect of time on the neural substrates of autobiographical 

and semantic memory retrieval by investigating memories with different degree of 

remoteness (i.e., from different life periods). Authors found that MPFC was specifically 

engaged in the retrieval of recent autobiographical memories and suggested a specific role 

of MPFC in processing autonoetic, emotional and self-related features of recent 

autobiographical memories. Furthermore, some studies highlighted a crucial role of left 

anterior cingulate in the self-processing. For example, in an fMRI study by Kircher and 

colleagues (2000) the neural systems involved in self-relevant information processing were 

investigated. Authors compared judgments of self-relevant traits and self-irrelevant traits. 

Subjects were asked to judge whether psychological trait adjectives were descriptive of 

themselves. Findings showed activation in the bilateral precuneus, left superior parietal 

lobule (SPL), left lateral prefrontal cortex and left anterior cingulate, and were interpreted 

as suggesting the presence of a self-processing brain network.  
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An increase in the activity of the superior temporal gyrus was also found. Although activity 

in this region has been associated to the process of episodic recollection (e.g., Kirwan, 

Bayley, Galván, & Squire, 2008; Yonelinas, Otten, Shaw, & Rugg, 2005), the involvement 

of this area has not been confirmed with the non-parametric analysis, so that, given the 

small sample size, it could represent a false positive. 

The main aim of the present study was to test the possibility of discriminating the brain 

activity pattern related to single true autobiographical memories from that related to 

information not stored in memory. In order to address this point, two MVPA analyses were 

performed. In the first, both stimuli describing events where the participant had a personal 

main role (i.e., the last meeting with the deceased and the moment when they were told 

about the death; PE) and different kind of memories (i.e., semantic information [personal 

data of the deceased] and an event without a direct main-role of the participant [the funeral]; 

NPE) were included. The second decoding analysis was selectively focused on PE stimuli.  

Results showed high performances in classifying fMRI scans related to the processing of 

single sentences describing true episodic autobiographical memories and non-memories. 

When considering both PE and NPE stimuli, the maximum average accuracy reached was 

around 80%, while, surprisingly, when focusing only on PE stimuli, the average maximum 

classification accuracy increased to about 90%. These results indicate that, in a within-

subject decoding analysis, is possible to detect highly informative brain areas about the 

discrimination between sentences related to real-memories and those not memory-related.  

The decoding analysis focused on PE did not show significant voxels at group-level, 

probably because of the small and unbalanced number of stimuli belonging to categories 2 

and 3 (see “Preliminary interview ad stimuli creation” paragraph). Moreover, given the 

small sample size, we think that these results should be considered in any case promising, 

and that future studies might be focused only on stimuli describing events with a personal 

main involvement. Moreover, the accuracy values shown in the multivariate analyses are 

even more promising if the characteristics of the experimental design are taken into 

account. Indeed, in the present study there were no repetitions of the same stimulus across 

the three fMRI runs. This means that each item used for training the classifier was unique. 

The main advantage of the absence of stimuli redundancy is that such a procedure can go 

beyond the so-called “repetition suppression”. This effect refers to the attenuation of neural 

responses to repeated stimuli if compared to the response to a single stimulus, and has been 

demonstrated both in non-human primates (i.e., single-unit recordings; Desimone, 1996) 

and in humans (i.e., fMRI studies; Henson & Rugg, 2003). This phenomenon seems to 
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reflect both the neuronal adaptation process (i.e., the reduction in neuronal firing rates over 

time to a repeated stimulus) and attention-related effects of expectation (Larsson & Smith, 

2012). Hence, the use of unique stimuli of the same kind (i.e., different information related 

to the same memory content) can avoid signal loss due to repetition suppression. 

As shown in Fig. 6.3, the discrimination maps (i.e., accuracy maps) were strongly different 

across subjects, indicating that the pattern of most informative voxels for the discrimination 

between true memories and non-memories involved different brain regions for each 

subject. This can be due to two reasons. First of all, although the investigated memory was 

the same (i.e., death of a family member), each participant was tested on his/her own 

personal emotional memory. Moreover, here we used stimuli (i.e., sentences) that are less 

structured if compared to visual stimuli such as pictures (as in the previous work; see 

Chapter 5). Taken together, these aspects might explain the huge amount of between-

subjects variability shown in multivariate discrimination patterns. However, it has been 

shown that a key role in the discrimination between true memories and non-memories is 

played by the left lingual gyrus. Indeed, as reported in previous studies, the lingual gyrus 

seems to be involved in the recognition of different kinds of negative emotional stimuli. 

For example, Taylor and colleagues (1998) in a PET study, found greater activation in this 

area during recognition of negative images (compared to neutral images). Furthermore, 

another PET-study (Osaka, Yaoi, Minamoto, & Osaka, 2013) showed increases in activity 

in the left lingual gyrus during the recognition of negative emotional sentences. More 

generally, lingual gyrus seems to be involved in emotion processing. Indeed, enhanced 

activity in this area has been demonstrated while processing unpleasant unmoral sentences 

(if compared to neutral statements; Moll, de Oliveira-Souza, Bramati, & Grafman, 2002) 

and words associated with events having a negative emotional meaning (e.g., the word 

“assassinate”; Isenberg et al., 1999). 

Overall, the results of previous works have shown a crucial role of lingual gyrus in the 

recognition of emotionally relevant memory contents. Moreover, this brain region has been 

indicated as part of a neural network involved in negative emotion processing. Despite the 

huge between-subject variability, the results of the present multivariate analysis can be 

interpreted in the same direction, showing (at the group-level both in parametric and in 

non-parametric analysis) the left lingual gyrus as a significant informative region in 

classifying whether a single negative emotional sentence describes a real autobiographical 

event or not. In our opinion, this is the main strength of the present work, as it shows the 

possibility of accurately detect single emotional autobiographical memories from 
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individual fMRI scans. This aspect could be potentially useful in forensic investigations 

(see next chapter for a discussion). 

However, the present work has some important limitations that should be overcome in 

further studies. The main limitation is undoubtedly the small sample size. Indeed, given its 

emotional impact, the particular memory investigated was the factor that mainly affected 

participants’ recruitment. Therefore, the present study does not allow to know whether the 

efficacy of the method adopted can be generalized. Moreover, although the use of cross-

validation procedures in MVPA analyses, the relatively small number of stimuli force us 

to carefully interpret the present results, as the risk of overfitting (see Chapter 2) must be 

taken into account.  

Furthermore, in future studies, different approaches could be adopted, such as ROI-based 

analysis instead of a searchlight-based MVPA, in order to optimize the classification 

accuracy-level rather than focusing on spatial localization of the most informative brain 

areas. 
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Chapter 7 

 

GENERAL DISCUSSION AND CONCLUSIONS 

 

 

Multivariate analysis has been used in four neuroimaging studies in order to test the 

efficacy of pattern classification techniques on neuroimaging data for two specific 

applications. As previously discussed, Multi-voxel Pattern Analysis (MVPA) relies on the 

so-called reverse inference mechanism (Poldrack, 2006; Poldrack, 2008; Poldrack, 2007), 

which substantially inverts the direction of the inference process based on standard GLM 

analysis techniques, the forward inference, intending to infer mental states by looking at 

brain imaging data. The mental or cognitive states that this technique aims to detect can 

belong to two categories, namely: “specific states”, which refers to a temporary cognitive 

state (i.e., related to a task), such as the kind of stimulus a subject is perceiving; or “general 

states”, referring to stable and not task-related conditions, such as a neurological diagnosis 

or more broadly, all quantitative structural measures. The idea is that it is possible to detect 

the presence of a mental state by analyzing brain imaging data patterns. Over the last few 

years, a number of studies have started testing the effectiveness of these multivariate 

pattern-based approaches on numerous topics, with fMRI and MRI data analysis. Among 

all the available multivariate methods for neuroimaging data analysis, linear SVMs are the 

most commonly adopted, given the relative simplicity in interpreting their results and their 

generalization ability. Moreover, these algorithms have the ability to overcome the 

limitations of traditional univariate approaches (i.e., GLM) and of other data-driven 

techniques.  

In the present dissertation, the application of MVPA methods on neuroimaging data has 

been tested in regards to two different topics (separately addressed in Section A and Section 

B of the current manuscript), which could potentially have implications in clinical and 

forensic cognitive neuroscience fields in the near future. In addition to MVPA, a standard 

univariate analysis has been performed for each study. This has been done for two main 

reasons: first, to adopt a double approach to each specific research question, thus having a 

measure of robustness of the results; second, to look at the differences between univariate 

and multivariate results. However, the aim of the present dissertation is to test the 

effectiveness of MVPA approach in detecting mental states on critical research questions 

that could have positive repercussions not only on academic research, but also on real-life 
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settings.  

In section A, structural MRI images have been used to investigate the brain correlates of 

Cognitive Reserve (CR) from a multivariate perspective. In particular, the main goal was 

to test whether it is possible to discriminate between different levels of CR (using Education 

as CR proxy) on the basis of the regional amount of Grey Matter (GM). CR refers to the 

active component of reserve, and can be defined as the ability maximize a performance 

through the use of alternative brain networks and cognitive strategies in order to better 

perform a task (Yaakov Stern, 2002, 2009). By contrast, Brain Reserve (BR), refer to the 

passive component of reserve, defined as individual brain structure differences which can 

help cope better with pathology (Satz et al., 1993; Yaakov Stern, 2009). Although these 

two models have been proposed as alternative explanations of the variability in the 

resilience to brain pathology, some authors suggested that there could be a relation between 

these concepts. The two studies proposed in Section A of the present manuscript have 

investigated whether CR can be predicted on the basis of BR measurement, thus assessing 

the possibility that Cognitive and Brain Reserve theories can describe two sides of the same 

coin. In the first study (Chapter 3) peculiar patterns of GM volume associated with high 

and low levels of CR have been investigated. Firstly, a preliminary Voxel-Based 

Morphometry (VBM) was performed to explore areas associated with higher CR level from 

a standard univariate perspective. Then, a series of MVPA classifications were performed 

to discover brain areas mainly encoding information about the discrimination between high 

and low CR subjects. The first classification was performed considering the whole-brain 

volume, in order to search all over the brain for patterns of GM discriminating between 

high and low CR subjects. Then ROI-based analyses were peformed to test the robustness 

of the results previously obtained in a study by Foubert-Samier and colleagues (2012) on a 

large cohort. MVPA analyses highlighted areas within the parietal lobe as the most 

informative for the classification between high and low CR. The second study (Chapter 4) 

went one step further asking more precisely where in the parietal lobe the most informative 

clusters are located. To address this point, first a preliminary VBM analysis was initially 

performed on the parietal lobe only. Then a MVPA searchlight analysis was performed, 

and the results highlighted a specific cluster in left supramarginal gyrus which seems to 

encode the most critical information that allows to classify high vs. low CR subjects.  

The application of MVPA techniques investigated in chapters 3 and 4, can have useful 

implementations in clinical practice. Indeed, CR is an important aspect that should be taken 

into account when assessing patients with cognitive deficits. In particular, in 
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neurodegenerative diseases such as Alzheimer Disease (AD), Cognitive Reserve level can 

critically influence the progression of the pathology and the efficacy of a cognitive training 

program (Mondini et al., 2016; Yaakov Stern, 2009; Tucker & Stern, 2011). At the same 

time, Brain Reserve contributes to protect brain against neurological pathologies. From this 

perspective, it is extremely useful not only to quantify the CR level, but also to measure the 

cerebral (protective) changes following CR level, for example in order to make plausible 

expectations towards a cognitive training efficacy. Moreover, given that inter-individual 

variations in cognitive reserve can critically affect brain structure, they represent a problem 

for the application of pattern recognition techniques in clinical setting (Haller et al., 2014), 

for example for the early diagnosis of AD (Salvatore et al., 2016). So that, the possibility 

of quantifying the brain correlates of the cognitive reserve level, in a specific individual, 

could be a crucial preliminary step for the systematic use of automatized diagnostic 

techniques for neurodegenerative diseases. 

 

In section B, a different application has been investigated. Functional MRI data have been 

analyzed in order to investigate the neural correlates of autobiographical memories and the 

possibility to discriminate the pattern of brain activity associated with the processing of 

information matching to autobiographical memory content. In particular, the main aim of 

this section was to determine how accurately the presence or absence of specific 

autobiographical individual memories could be detected based on the analysis of fMRI 

activity patterns. Some recent papers have tested the efficacy of MVPA techniques as 

instruments for memory detection that could be potentially useful in forensic field. 

However, the majority of previous studies on this topic used laboratory-based stimuli 

(Rissman et al., 2010; Uncapher et al., 2015). Conversely, here the possibility of using real-

world event memories has been investigated in two studies addressing different aspects of 

possible forensic issues.  

Many critical issues in the criminal law system depend on proofs based on declarative 

testimonies. The main purpose of evaluating witness or defendant declarations is to analyze 

of the dynamics of the crime, i.e. the reconstruction of what most likely happened. 

However, the introduction of scientific tools in the traditional investigative practice could 

become extremely useful to deal with some critical questions in the future. Many forensic 

questions rely on the evaluation of individual memory contents. For this reason, in recent 

years, a debate about the potential use of brain reading methods as memory detection 

techniques has emerged within the field of forensic neuroscience and forensic psychology 
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between neuroscientists, psychologists and legal scholars (Bles & Haynes, 2008; Meegan, 

2008; Rissman et al., 2016; D. L. Schacter & Loftus, 2013; Shen, Francis X; Jones, 2011). 

Indeed, MVPA analysis of functional MRI data could potentially be used to reveal covert 

mental states or personal information without the need of a person’s will (Haynes & Rees, 

2006). Previous fMRI studies have shown the possibility to accurately determine whether 

a probe stimulus evokes a sense of recognition or novelty (Rissman et al., 2016, 2010; 

Uncapher et al., 2015). Therefore, this field of study can be helpful in some specific cases. 

For instance, one potentially crucial point in evaluating the guilt of an individual suspected 

of a crime is to determine whether he/she had been in a particular place before (e.g., the 

crime scene). In Chapter 5 the possibility of predicting whether participants had visited 

some specific rooms before, has been investigated. In particular, the aim was to determine 

from the analysis of brain activity whether subjects were looking at pictures showing rooms 

they had previously visited. A searchlight analysis was performed highlighting which brain 

areas encoded the most useful information for classifying the rooms as previously 

experienced or not. The results have proven accurate within-subjects predictions of whether 

participants were viewing pictures of known rooms. One strength of this experiment is the 

fact that the good classification performance has been reached using pictures not taken from 

participants themselves, as in the recent study by Rissman and co-workers (2016), but 

recorder from different view points. This indicates the robustness as well as the potential 

applicability of brain reading. 

Independently from the guilt condition, another crucial point in a forensic investigation 

could be to determine whether the accused has memory of the crime (e.g., the homicide), 

given that an individual having nothing to do with the crime cannot remember it. In order 

to test a possible application of a MVPA-based memory detector in such a situation, in 

Chapter 6 a specific memory for a negative emotional event involving the death of a known 

person, was investigated. The aim of the study was to test whether it is possible to classify 

sentences as describing a truly happened episode or not by analyzing the pattern of brain 

activity elicited while reading each sentence. Importantly, the possibility of classifying each 

single item (i.e., sentence) as a memory or not has been tested, reaching a good level of 

classification accuracy on a single-subject basis. Moreover, in a group-level analysis, the 

most informative areas for the classification between memories and non-memories have 

been investigated, despite the small sample size. 

Taken together with the previous findings (e.g., Rissman et al., 2016), the results of these 

two experiments suggest that the analysis of brain scans for memory detection can 
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potentially be a useful tool for forensic uses. However, the present results should not be 

assumed to demonstrate an immediate practical applicability of these MVPA-based 

memory detection techniques in forensic contexts. Indeed, there are many aspects that need 

to be systematically investigated in further studies. For example, the participants in the two 

experiments were not asked or incentivized to intentionally alter their performance, and 

thus they were not motivated in trying to fake the classifier. By contrast, in real-life judicial 

and forensic situations, the motivation in lying, malingering, and not cooperating is high. 

Furthermore, some individuals could be tested on genuine false memories, and thus could 

unintentionally fake the classifier. Whether false memories can be distinguished from real 

memories is one of the main issues that should  be addressed in the near future. 

Therefore, at the moment, the use of these techniques in real-world forensic settings is not 

plausible, due to several limitations, and to the claimed possibility of using covert 

countermeasures to alter classification results (e.g., Ganis, Rosenfeld, Meixner, Kievit, & 

Schendan, 2011) or the possibility to willfully manipulate mental states under incentives 

(Uncapher et al., 2015). Indeed, when focusing on single specific memories (in particular 

in a forensic setting) a subject could have advantages in voluntarily trying to conceal that 

information, so that he could try to perform some different covert cognitive activity (e.g., 

counting backward) in order to alter the brain signal related to the recognition of target 

stimuli. To date, the susceptibility of fMRI-based memory detection to this kind of 

alteration has been claimed, but methods for overcoming it have not been systematically 

discussed, yet. Moreover, from the legal perspective the analysis of covert brain responses 

for determining whether a subject possess a specific memory can have some ethical 

implications, such as issues related to rights against self-incrimination. This topic and 

related issues are dealt with by the recently emerged field of neuroethics, which aims to 

address ethical and legal issues related to the relationship between neuroscience and law. 

However, this emerging approach has shown to be potentially useful in future forensic 

applications, once some methodological, technical and ethical issues have been addressed 

(Haynes & Rees, 2006). Despite these important issues that limit real-world applications 

of these fMRI-based techniques, what has to be taken into account is that the studies 

presented in this thesis, together with other recent studies, have shown the possibility of 

tailoring the neuroimaging investigation to the individual personal memories, and that 

accurate performances can also be achieved at single-subject level. 
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In conclusion, Multi-Voxel Pattern Analysis (MVPA) has changed the way of thinking 

about how neuroimaging data can address research questions. In addition to providing a 

more powerful and sensitive approach, these methods have impacted on the kind of 

research questions that can be asked to neuroimaging data, in a way that seems more in line 

with the main questions in cognitive neuroscience. The use of multivariate techniques can 

lead to a deeper comprehension of how representations are spatially distributed in the brain, 

as well as the link between brain and behavior. 

Going beyond the specific results obtained in the four studies presented in this thesis, the 

main point is the ductility of MVPA methods in answering to different research questions 

in a reliable way. 

Taken together, these findings contribute to show the wide range of potential MVPA 

applications in the neuroimaging research. Moreover, thanks to the possibility of making 

predictions at single-trial or single-subject level, these methods can potentially have 

practical applications in real-life settings. Pattern-based multivariate analyses could be used 

to decode covert information in the brain that is voluntarily concealed by an individual, or 

to identify preclinical stages of neurodegenerative diseases. Therefore, it could be possible 

to decode covert specific mental states or general neurological conditions without the need 

for collaboration. This could lead to ethical issues (e.g., forensic use), but also to 

considerable improvements in clinical practice. 
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