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Abstract 
Motivation:  Spatially resolved transcriptomics is a new set of technologies to measure gene 
expression for up to thousands of genes at near-single-cell, single-cell, or sub-cellular resolution, 
together with the spatial positions of the measurements. Analyzing combined molecular and spatial 
information has generated new insights about biological processes that manifest in a spatial manner 
within tissues. However, to efficiently analyze these data, specialized data infrastructure is required, 
which facilitates storage, retrieval, subsetting, and interfacing with downstream tools. 
Results: Here, we describe SpatialExperiment, a new data infrastructure for storing and accessing 
spatially resolved transcriptomics data, implemented within the Bioconductor framework in the R 
programming language. SpatialExperiment extends the existing SingleCellExperiment for single-cell 
data from the Bioconductor framework, which brings with it advantages of modularity, interoperability, 
standardized operations, and comprehensive documentation. We demonstrate the structure and user 
interface with examples from the 10x Genomics Visium and seqFISH platforms. SpatialExperiment is 
extendable to alternative technological platforms measuring expression and to new types of data 
modalities, such as spatial immunofluorescence or proteomics, in the future. We also provide access to 
example datasets and visualization tools in the STexampleData, TENxVisiumData, and ggspavis 
packages. 
Availability and Implementation:  SpatialExperiment is freely available from Bioconductor at 
https://bioconductor.org/packages/SpatialExperiment. The STexampleData, TENxVisiumData, and 
ggspavis packages are available from GitHub and will be submitted to Bioconductor. 
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Introduction 
Recent advances in high-throughput technologies have now led to simultaneously measuring 
transcriptome-wide gene expression (or near-transcriptome-wide up to thousands of genes) at 
near-single-cell, single-cell, or sub-cellular resolution, along with the spatial coordinates of each 
measurement. These technologies are referred to as spatially resolved transcriptomics (ST). Examples 
of ST platform technologies include 10x Genomics Visium [1] and its earlier iteration Spatial 
Transcriptomics [2], Slide-seq [3] and Slide-seqV2 [4], seqFISH [5,6] and seqFISH+ [7], MERFISH 
[8–10], CARTANA [11], and others. These platforms can be divided into two major groups depending 
on the resolution -- spot-based and molecule-based. Current spot-based technologies measure 
transcriptome-wide expression at a series of spatial coordinates (spots) on a two-dimensional tissue 
slide (Visium, Spatial Transcriptomics, Slide-seqV2, Slide-seq), and potentially in three dimensions and 
across time in the future. Molecule-based technologies detect up to thousands of distinct individual 
messenger RNA (mRNA) molecules at single-cell or sub-cellular resolution (seqFISH, seqFISH+, 
MERFISH). These ST technologies have been successfully applied to investigate spatial patterns of 
gene expression in applications including the human brain [12], mouse brain [13], cancer [14,15], and 
mouse embryogenesis [16]. 
 
To efficiently analyze data generated with these technologies, we require robust data infrastructure, 
which facilitates reliable storage, retrieval, operations such as subsetting, and interfacing with 
downstream analysis and visualization tools. There are a number of similarities between ST data and 
single-cell RNA sequencing (scRNA-seq) data, with observations taking place at the level of spots or 
molecules instead of cells. For scRNA-seq, several well-maintained existing data infrastructures, or 
classes, are available, including SingleCellExperiment [17] in the Bioconductor [18] framework in the R 
programming language, Seurat [19,20] in R, and AnnData [21] in Python. Each of these provides a core 
data class, which stores measurements (e.g. transcript counts) together with additional information 
(referred to as metadata) describing the rows, columns, and overall experiment. These classes provide 
consistent storage and access to the data, including operations such as subsetting. Due to the similarity 
with scRNA-seq, recent studies have successfully reused or extended these classes with some 
customizations to store the spatial information [12,16]. However, currently there does not exist a 
standardized data infrastructure for storing and accessing ST data, which is crucial for downstream 
analyses and visualization functions that use these data. A well-designed infrastructure that 
standardizes these choices will simplify user actions such as generating plots and building analysis 
pipelines. 
 
Here, we describe SpatialExperiment, a new data infrastructure for ST, implemented within the 
Bioconductor framework in R. SpatialExperiment extends the existing SingleCellExperiment, with 
added functionality for storing and accessing spatial information corresponding to the units of 
measurement. In extending SingleCellExperiment, we enable building upon existing analysis methods 
implemented for single-cell data [17,22]. Furthermore, the Bioconductor framework provides 
advantages of modularity, standardized infrastructure, and interoperability between packages from 
different developers [17]. In addition to the SpatialExperiment package, we have also developed R 
packages to provide example ST datasets (STexampleData and TENxVisiumData) and visualization 
tools (ggspavis), to use in examples, tutorials, demonstrations, and teaching. In the following sections, 
we describe in detail the structure and usage of the SpatialExperiment class, and show examples of 
functionality from the data and visualization packages. 
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System and Methods 
The SpatialExperiment package provides access to the core data structure, referred to as a class. In 
the following, we use italics to refer to packages and class names, and code font  for function names 
and parts of the class accessible to users via functions known as accessor functions. In addition, we 
provide the STexampleData, TENxVisiumData, and ggspavis packages, which provide access to 
example datasets in the SpatialExperiment format and visualization functions. The SpatialExperiment 
package is available from Bioconductor at https://bioconductor.org/packages/SpatialExperiment, while 
the STexampleData, TENxVisiumData, and ggspavis packages are available from GitHub at 
https://github.com/lmweber/STexampleData , https://github.com/HelenaLC/TENxVisiumData , and 
https://github.com/lmweber/ggspavis, and will be submitted to Bioconductor. The STexampleData 
package contains several small datasets from different platforms, which can easily be loaded and used 
for examples and demonstrations. The TENxVisiumData contains a set of 13 datasets from the 10x 
Genomics Visium platform. For the examples in the next section, we use example datasets 
STexampleData (Table 1 ). The names of the datasets contain the platform name and dataset name, 
separated by an underscore. 
 
 

 

Table 1.  Summary of example datasets from the STexampleData package used to demonstrate the 
SpatialExperiment structure. 
 

Implementation 
The SpatialExperiment class extends Bioconductor’s widely-used SingleCellExperiment class  
(Figure 1A ). Instances of the class, known as objects, contain the following components that are 
reused from SingleCellExperiment: (i) assays , which contain tables of measurement values such as 
raw and transformed transcript counts, (ii) rowData , which contains additional information (metadata) 
describing the features (e.g. gene IDs and gene names), (iii) colData , which contains metadata 
describing the spatial coordinates or cells (e.g. barcode IDs for spot-based ST or cell IDs for 
molecule-based ST), and optionally (iv) reducedDims , which stores reduced dimension 
representations of the measurements (e.g. from principal component analysis) of the features. Note 
that in the Bioconductor framework, features are mostly commonly stored in rows, and observations in 
columns. In addition, to store the spatial information in ST data, we extend SingleCellExperiment to 
include the following components: (v) spatialData , which contains spatial coordinates (e.g. x and y 
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Dataset name Platform Type Tissue 

Number 
of 
samples 

Number 
of spots 
or cells 

Number of 
features 
(genes) 

Contains 
ground 
truth 
labels? 

Contains 
image 
data? Source 

Visium_humanDLPFC 10x 
Genomics 
Visium [1] 

Spot- 
based 

Human 
brain 

1 3,639 33,538 Yes Yes [12,23] 

Visium_mouseCoronal 10x 
Genomics 
Visium [1] 

Spot- 
based 

Mouse 
brain 

1 2,702 32,285 Yes Yes [24] 

seqFISH_mouseEmbryo seqFISH 
[5,6] 

Molecule- 
based 

Mouse 
embryo 

1 11,026 351 No No [16] 
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coordinates) and other spatial metadata describing the barcodes or cells, and optionally (vi) imgData , 
which stores image files (e.g. histology images, if available) and information describing these (e.g. 
resolution in pixels). An additional accessor function spatialCoords()  can be used to extract the 
spatial coordinates as a numeric matrix, which enables easier input to some downstream methods such 
as visualization functions. For spot-based data, assays  contains a single table of measurements 
named counts , consisting of the messenger RNA (mRNA) counts per gene per spot. For 
molecule-based data, assays  contains two tables named counts  and molecules , with counts 
containing summarized mRNA counts per gene per cell, and molecules  storing the spatial 
coordinates and intensities for each individual mRNA molecule (formatted as a BumpyMatrix  [25] 
object). In addition, for molecule-based data, the spatial coordinates of the cell centroids are stored in 
spatialData , and (optionally) segmentation vertices outlining the spatial coordinates of each cell are 
stored in colData  (as a SplitDataFrameList  object). 
 
By building SpatialExperiment as an extension of SingleCellExperiment within the Bioconductor 
framework, we ensure that users can rely on standard operations, such as subsetting objects by 
column (barcode or cell) or row (gene), which simplifies the user interface and helps to avoid errors by 
consistently subsetting across all components of the object. The modularity and interoperability of the 
Bioconductor framework [17] ensures that users can continue to apply methods that were originally 
developed for SingleCellExperiment objects (e.g. preprocessing methods [26]). For datasets that are 
too large to store in memory (e.g. millions of spots), SpatialExperiment can easily take advantage of 
existing Bioconductor infrastructure for sparse matrices and on-disk data representations, such as 
DelayedArray [27]. SpatialExperiment objects can be created with a function known as a constructor 
function (SpatialExperiment() ), which accepts the individual components via input arguments and 
returns a SpatialExperiment object. Alternatively, for the 10x Genomics Visium platform, we also 
provide a dedicated constructor function (read10xVisium() ), which creates objects directly from the 
raw files generated by the 10x Genomics Visium processing software (Space Ranger [28]). 
 
Figure 1B  displays an example of a spot-based ST dataset in SpatialExperiment format 
(Visium_humanDLPFC from the STexampleData package). This is a single biological sample (sample 
151673 [12]) from the human brain dorsolateral prefrontal cortex (DLPFC) region, measured with the 
10x Genomics Visium platform. The full dataset containing 12 biological samples was previously 
published in SingleCellExperiment format in the spatialLIBD package [12,23]. Figure 1C shows an 
example of a molecule-based ST dataset (seqFISH_mouseEmbryo dataset in STexampleData). This is 
a subset of cells (embryo 1, z-slice 2 [16]) from a published dataset investigating mouse 
embryogenesis [16], generated using the seqFISH platform. Additional details on both datasets are 
provided in Table 1. Code to download these example datasets reproduce these figures is available in 
the STexampleData and ggspavis package vignettes. 
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Figure 1:  (A) Illustration of the structure of the SpatialExperiment class, including assays, rowData, colData, 
reducedDims, spatialData, and imgData components, as described in the text. (B) Example of spot-based 
dataset from the 10x Genomics Visium platform [1] (available as Visium_humanDLPFC [12,23] in the 
STexampleData package). Image shows histology image as background, grid of spots, highlighting for spots 
overlapping with tissue, and colors for ground truth cluster labels available in this dataset. Original dataset is also 
available from spatialLIBD package [23]. (C) Example of molecule-based dataset from the seqFISH platform [5,6] 
(available as seqFISH_mouseEmbryo [16] in the STexampleData package). Color scale shows total mRNA 
counts per cell for the Sox2 gene. Additional details on both datasets are provided in Table 1. Figures generated 
using plotting functions from the ggspavis package. 
 

Discussion 
Providing robust, standardized data infrastructure and containers for single-cell data (such as 
SingleCellExperiment [17], Seurat  [19,20], and AnnData [21]) has greatly streamlined the work of users, 
including data analysts and method developers. In particular, a consistent infrastructure brings several 
benefits in terms of interoperability and modularity -- method developers can implement methods that 
accept and generate standard objects as inputs and outputs, which enables data analysts to build 
pipelines consisting of methods from different developers. For single-cell data, this has led to the 
development of comprehensive tutorials and pipelines [17,22], which are an invaluable resource for 
new users to learn how to analyze these data types. ST is a new technology, which yields data with 
some similarities to single-cell data, but does not fit neatly into existing data infrastructure. By 
developing SpatialExperiment, we aim to create similar benefits of standardization, interoperability, and 
modularity for ST data. We anticipate that our contribution will simplify the work of method developers, 
spur the development of resources such as tutorials and example pipelines, and make it easier for 
users and experimental researchers to analyze these data. Since SpatialExperiment extends 
SingleCellExperiment, we also ensure that existing tools, originally designed for single-cell data, can 
easily be applied to ST data, and that existing pipelines can be adapted. Our associated packages 
(STexampleData, TENxVisiumData, and ggspavis) provide several example datasets and visualization 
functions, for use in method development, as well as examples, tutorials, demonstrations, and teaching. 
 
ST technologies are still in their infancy and the next years will see a continuing development of 
existing platforms as well as the emergence of novel experimental approaches. For instance, new 
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platforms are being developed to measure multiple assay types (e.g. transcriptomics, proteomics, and 
epigenomics) at single-cell or near-single-cell level in a spatial context [29]. These and other 
developments will necessitate further extensions to data infrastructure. As part of the Bioconductor 
framework, SpatialExperiment is ideally positioned to be extended in this manner. For example, 
multiple assay types can be stored within multiple tables of measurements in assays  using the 
MultiAssayExperiment [30] framework (e.g. as demonstrated in the SingleCellMultiModal package [31]). 
New platforms and datasets will also extend ST data into three dimensions [32] or across multiple 
timepoints -- these types of measurements could easily be stored in SpatialExperiment by including 
additional columns of spatial or temporal coordinates. We also expect that datasets will soon become 
too large to store in memory, with up to millions of spots or cells measured per sample: 
SpatialExperiment already has the capabilities to deal with such cases through its integration with the 
existing Bioconductor infrastructure for sparse matrices and on-disk data representations, such as 
DelayedArray [27]. Finally, interoperability between SpatialExperiment and other data formats (such as 
AnnData [21] and Loompy [33] in Python) will be ensured through the use of existing conversion 
packages [33,34]. 
 
By providing data infrastructure and examples, and working with the Bioconductor community to further 
develop downstream analysis methods and visualizations (e.g. dittoSeq [35] and iSEE [36]), we aim to 
streamline the work of method developers and data analysts, offer an appropriate standard for data 
sharing, and ultimately make it easier for experimental researchers to obtain robust and reproducible 
biological insights from these platforms. 
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