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IDENTIFICATION OF MECHANICAL LOAD FOR ELECTRICAL DRIVES COMMISSIONING 
- LABELLING MACHINE CASE STUDY 

Luca Peretti, Student Member, IEEE, Mauro Zigliotto, Member, IEEE 
 
 

Abstract: The paper presents a result of the system 
identification theory applied to an industrial machine. 
The case study was a labelling machine driven by a 
permanent magnet synchronous motor drive. The 
identified system model has been used to tune the closed-
loop speed control of the drive. A brief recall of the basic 
principles of power spectral density applied to model 
identification, hints for the practical implementation and 
experimental results are included in the paper. 

Index Terms: Drive commissioning, System 
identification, AC machines. 
 
 
I. INTRODUCTION 
 

Electric drives commissioning often calls for on-
site tuning of current and speed controllers. The 
tuning is performed by a trained employee who 
adjusts the regulators parameters in order to get the 
best performances. Several approaches can be 
adopted. The first and well-known method for PI 
tuning is the Ziegler-Nichols method [1], [2], which 
tunes the parameters by means of a heuristic formula. 
The method, anyway, often requires manual 
refinements to obtain satisfactory performances. 

A more recent trend is represented by self-
commissioning. The literature presents several 
examples of self-commissioning procedures for PI 
regulators tuning. A fair comparison of identification 
techniques is reported in [3]. Self-tuning algorithms 
yield faster commissioning stages, as well as cost 
reductions, since the procedures can be easily 
implemented in the drive and executed once at drive 
set-up. Moreover, precise self-tuning algorithms can 
theoretically consider more complex models and solve 
more complicated expressions for parameters 
calculation, which reflects in higher performances 
with respect to drives tuned manually. An interesting 
solution has been presented in [4], where the load is 
identified assuming a two-mass system structure with 
dominant elasticity. Results of the two-mass system 
model commissioning can be also used to propose 
different control concepts, as reported in [5], where a 
knowledge-based controller selector based on fuzzy 
rules returns a rating of control parameters, based on 
their theoretical feasibility with respect to the 
identified model. 

Another solution for self-tuning of the speed PI 
regulator is reported in [6], where the approach is 
based on the information retrieved by forcing the 
system to oscillate at predetermined frequencies. The 
permanent oscillations are induced by non-linear 
blocks (relay with hysteresis) introduced on purpose 
inside the control loop, and then removed once the 
parameters of the regulators have been calculated. 

However, in many cases the mechanical load is 
either unknown a-priori or very complex, while its 
full identification would be of great help in the design 
of the control system. In principle, a mathematical 
approach based on theoretical modelling could be 
possible, provided that nameplate data of every 
mechanical component is present. However, this 
approach goes rapidly off-limits, as the mechanical 
structure complexity increases. In such cases, non-
parametric off-line approaches should be preferred, as 
the load is identified recording its excitation (speed) 
as function of an injected perturbation (torque), and 
by post-processing the results. 

A straightforward non-parametric approach to the 
estimation of the mechanical load transfer function is 
the addition of different sinusoidal torque components 
to a constant torque reference, recording the 
sinusoidal speed variation in output after the end of 
each initial transient. By measuring both amplitude 
and phase of the speed variation with respect to the 
torque sinusoidal contribute, and repeating the 
procedure for different frequencies, the transfer 
function of the mechanical load can be inferred. 

Actually, the approach hides several drawbacks. 
The variation of the frequency is time-consuming, 
especially when the transfer function must be 
carefully identified around critical resonance points. 
The operator is asked to validate the results while the 
procedure is executed, not to lose relevant 
information about the load. 

On the other hand, solutions like [7] and [8] seem 
attractive but of rather complex fruition in industrial 
applications. Effective solutions exploit different 
types of signal perturbation, whose frequency 
spectrum is wider than that of a simple sinusoid. In 
this way, the load identification is faster since the 
operator is not requested to manually vary the injected 
frequency. However, the frequency interval and the 
harmonic magnitude profile are two of the most 
important parameters for the choice of a suitable 
disturbance signal. 

A fair example is reported in [4], where the 
perturbation is represented by a pseudo-random 
pattern injected as a disturbance signal into the torque 
reference of a speed-and-current-controlled drive. 
Differently from the manual approach, the acquisition 
of the magnitude and phase lag of every harmonic 
with respect to the injected perturbation is not 
feasible, due to the wide frequency content of both 
input and output signals. The load identification is 
thus obtained by a power spectral density approach, 
which has also been used in this work, with a peculiar 
signal injection pattern. 

This paper presents an off-line identification 



procedure based on the power density approach 
applied to a labelling machine, whose complex 
mechanical load transfer function was completely 
unknown. The identification has been performed at 
different load conditions, which cover its safe 
operating range. 

The identified model has been exploited to 
complete the commissioning of the speed loop of the 
PMSM drive of the machine. 

An added value of the work is that the procedure 
is simple enough to be easily implemented on any 
test-bench, or even in the hardware of the machine. It 
can be obviously extended to several different 
industrial machines, and the labelling machines here 
presented can be just intended as a successful case 
study. Experimental results of both the identification 
procedure and the speed-controlled system are 
presented, confirming the validity of the approach. 
 
II. TRANSFER FUNCTION IDENTIFICATION 
 
A. The power spectral density 
 

The power spectral density approach, which is 
exploited for the transfer function estimation in this 
work, is based on the stochastic processes theory [9]. 
The power spectral density can be defined for 
stationary processes only, which have a time-invariant 
statistical description. In particular, a stationary 
process features a constant statistical mean: 
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where fx(a,t) is the probability density function of x(t) 
to assume the value a. It is demonstrated that the 
autocorrelation of a stationary process, defined as 
 
                    ( ) ( ) ( )[ ]txtxEt,trx ττ +=+ ,            (2) 
 
depends only on the difference t-τ and it is a positive 
semi-definite function, since the following properties 
occur: 
 

                            
( ) ( )[ ]
( ) ( )
( ) ( ) ττ

ττ

∀≥

−=
≥=

xx

xx

x

rr
rr

txEr

0

00 2

                    (3) 

 
The Fourier transformation of the autocorrelation 
function is the power spectral density, defined as 
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for continuous-time processes. Rx(f) is greater or equal 
to zero because rx(t) is positive semi-definite. A 
mutual power spectral density can be defined between 
two stationary processes x(t) and y(t): 
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B. The transfer function identification 
 

The hypothesis is that input and output processes 
x(t) and y(t) are linked by a linear transformation. 
Realisations of both processes are available, while the 
transfer function is unknown and it is going to be 
estimated by the power spectral density approach. The 
mathematical relationship between y(t) and x(t) is the 
following: 
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Where h(t) is the impulsive response of the system. If 
x(t) is a stationary process, the expected value of y(t) 
is expressed by: 
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where mx is the expected value of x(t) and H(0) is the 
Fourier transform calculated for the zero frequency of 
h(t). The correlation between y(t) and x(t) is equal to: 
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where rx(τ) is the autocorrelation of x(t) and the 
symbol * is the convolution operator. From (7) and 
(8), it follows that y(t) is a stationary process. With 
similar calculations, it can be obtained that: 
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Calculating the Fourier transformation of both the 

expressions in (9), and recalling that a convolution in 
the time domain corresponds to a multiplication in the 
frequency domain (and vice versa), it is 
 

                        

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )fRfHfR

fRfHfR

fRfHfR

xy

xxy

xyx

2=

=

=

∗                   (10) 

 
where H*(f) is the complex conjugate transfer 
function. The transfer function can be estimated from 
the first of (10), by the knowledge of the spectral 
densities Ryx(f) and Rx(f). Incidentally, the spectral 
densities calculation needs the probability density 
function, which is usually not known for both the 
input and the output.  
The problem is overcome by using the periodogram 
method, which refers to ergodic stochastic processes 
(as are the processes usually involved). For an ergodic 
process, the arithmetic mean of a single realisation of 
the process tends to the statistical mean if the 
temporal window of the realisation is large enough 
[11]: 
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In this case, the Fourier transformation of the 

process can be approximated by the average of the 
Fourier transformation of M realisations of the 
process itself. It can be demonstrated that the spectral 
densities are approximated by: 
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where XT(f) and XT(f) are the Fourier transformations 
of x(t) and y(t) realizations in the temporal window T. 
 
III. THE PROPOSED APPROACH 
 

According to the results expressed in (10) and 
(12), the transfer function of a generic mechanical 
load connected to an electrical drive can be estimated 
by means of the power spectral density approach. The 
realisations of the input and output processes x(t) and 
y(t) are represented by the measurements of the torque 
producing component iq of the stator current and the 
mechanical speed ωm, respectively. 

Fig. 1 shows the block schematic that has been 
used to identify the mechanical load of a labelling 
machine. The system is composed by a classic 
cascade control, with a speed PI controller (outer 
loop) and a current PI controller (inner loop). In this 
way, the system is stable and controlled, while the 
off-line identification process is executed. A test 
signal is added to the current reference iq

*. The 
reference is reproduced by the inner control loop, and 
a torque disturbance appears to the input of GM, 
which represents the mechanical load. It is worth to 
note that the spectral characteristics of the injected 
signal are fundamental for a proper estimation of the 
mechanical load transfer function, as it is pointed out 
later on in this Section. 

The acquired input and output process realisations 
are the current iq and the mechanical speed ωm. 

During the load identification, the current loop 
should be tuned for best performances, in order to 
track the reference (and the injected perturbation) as 
close as possible. On the contrary, a perfectly tuned 
speed regulator would lead to a marked speed 
disturbances rejection, neutralising the effects on the 
speed of the  injected  perturbation. Consequently, the 
speed PI controller should be tuned for a rather low 
bandwidth.  This  assures significant  speed variations 
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Fig.1 – Block scheme of the identification process. 

 



during the torque perturbation and a high signal-to-
noise ratio for the identification process.Spectral 
characteristics of the injected signal are fundamental 
for the transfer function identification in the 
frequency range of interest. To this aim, the chirp 
signal is a good candidate that combines an easy 
experimental implementation with effectiveness of the 
results. In general, a chirp is a sinusoidal signal with a 
time-variant frequency. It can be described by the 
following expression: 
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If the frequency variation is linear, also the chirp 
signal is named linear: 

 ( ) 













 +=⇒+= ttkftcktftf

2
2sin)( 00 π   (14) 

Fig. 2 reports an example of chirp signal with 
linearly-changing frequency between 0 Hz and 10 Hz. 
The main advantage of the chirp signal is that 
mechanical harmonics are of constant amplitude and 
they do not require excessive peak power to be 
induced on a common drive. A good choice of the 
chirp amplitude leads to a relevant signal-to-noise 
ratio with respect to signals in which frequency 
components have different amplitudes, as it happens 
in step-like signals. 

It is demonstrated [10] that the product of the 
chirp frequency variation ∆f by the temporal window 
T, named time-bandwidth product, has to be large 
enough to approximate the chirp power spectral 
density over the whole ∆f. 
 

 
  
 
IV. EXPERIMENTAL RESULTS  
 
A. The experimental test-bench 
 

A picture of the experimental setup used for the 
identification process is shown in Fig. 3. 

 

 
 
At laboratory premises, the PMSM mounted in the 

labelling machine was fed by a standard PWM 
inverter. PMSM’s nameplate data are reported in 
Table 1. For the sake of a rapid time-to-market 
research, a fast control prototyping (FCP) system was 
used to implement the identification mechanism and 
for feeding the PWM inverter by the appropriate test 
signals. Anyway, the same procedure shall be 
embedded in the labelling machine firmware. 

Rotor position was measured by a conventional 
encoder, post-processed by the FCP system. A 
cascade speed-and-current PI control has been 
implemented on board, as shown in the scheme of 
Fig. 2. Current controllers have been experimentally 
tuned by means of a step variation of the phase 
 

Table 1. PMSM parameters 

Parameter Value 
Nominal power 400 W 
Nominal speed 3000 rpm 
Nominal torque 1,3 Nm 
Nominal current 2,6 Arms 

Pole pairs 4 
Stator resistance 1,9 Ω 
Stator inductance 10,2 mH 

Flux due to magnets 0,059 Vs/rad 
 
current. A bandwidth of around 1 kHz has been 
obtained for the inner current control loop. 

As regards the tuning of the external speed 
controller, it has been already mentioned that a 
perfectly tuned PI regulator collides with the need of a 
high signal-to-noise ratio during the identification 
process. Thus, the identification process has been 
carried excluding the integral part of the speed PI 
regulator, while maintaining only the proportional 
part, which has been tuned for a bandwidth of few 
Hertz. 
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Fig.2 – Chirp signal between 0 Hz and 10 Hz in 1 s. 

 

 

Fig.3 – The experimental setup. 

 



B. Chirp signal acquisition and post-processing 
 

The acquisition procedure is composed by few 
steps, as reported hereafter: 
- the motor rotates at one-third of the rated speed 
(1000 rpm) without any signal injection; 
- the chirp signal injection in the current reference 
signal iq

* is activated; 
- the actual torque-producing current iq and the 
mechanical speed ωm are sampled and acquired for a 
period of 68 seconds, exploiting the full memory 
depth of the drive. 

The frequency span for the chirp signal injection 
encompasses frequencies from 0,01 Hz to 700 Hz, in 
order to identify the mechanical load in the whole 
range of interest. Frequencies higher than 700 Hz are 
not meaningful, since the speed controller bandwidth 
will not be higher than that value. In any case, the 
upper limit is imposed by the current controller, 
which is not capable of tracking torque references 
with a frequency higher than that of its bandwidth. 
Moreover, a torque reference signal with higher 
frequencies results in poor tracking performance and a 
noisy speed with inherently low information content. 

For the sake of accuracy, the whole frequency 
span has been divided into eight smaller intervals: 
[0,01 Hz; 0,1 Hz], [0,1 Hz; 1 Hz], [1 Hz; 10 Hz], [1 
Hz; 7 Hz] , [7 Hz; 15 Hz], [15 Hz; 60 Hz], [60 Hz; 
150 Hz], [150 Hz; 700 Hz]. The procedure has been 
repeated ten times for each interval and results have 
been averaged. 

The mechanical load transfer function has been 
evaluated in both no-load (without the label roll) and 
at full-load (with the complete label roll) conditions, 
in order to investigate the effects of load variability in 
the model. The theoretical approach of Section II has 
been used for the data post-processing, obtaining the 
amplitude-and-phase Bode diagram of Fig. 4 and Fig. 
5. 

The spikes of Fig. 5 refer to the borders of the 
evaluated frequency intervals, and should be 
neglected. The sudden phase swap between +/-180  
degrees is only a math issue and should be neglected 
as well. 

Results clearly show the mechanical pole of the 
system, which is due to the inertia and the viscous 
friction, located around 1 Hz. Different couples of 
complex poles and zeros appear in the frequency 
interval [40 Hz; 200 Hz], with a profile which 
depends on the load condition. However, the transfer 
function dependence on the label roll presence is not 
dramatic at all. 

This convenient result leads to more homogeneous 
performances of the speed PI controller in the whole 
load range, once the latter has been tuned for the 
worst condition. The mechanical torque-speed transfer 
function can be obtained by multiplying the diagram 
of Fig. 4 by 1,5pλmg, where p is the number of pole 
pairs and λmg is the flux linkage due to the rotor 
permanent magnets. 

 
 

 
 
C. Transfer function identification 
 

The Bode diagrams obtained in the previous 
paragraph have been analysed to obtain a 
mathematical description of the mechanical load in 
the Laplace domain form. To maintain a rather low 
implementation complexity, the structure of the 
system model was the result of a manual guess, aided 
by computer simulations. In case of real need, some 
more complex automatic procedures could be 
investigated. 

The no-load transfer function that best fits for the 
experimental curves features two couples of complex 
poles and complex zeros, as follows: 
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where the parameters assume the following values: 
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Fig.5 – Mechanical load Bode diagram: phase. 
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Fig.4 –Mechanical load Bode diagram: magnitude. 
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Similarly, the full-load transfer function has been 

modelled with three couples of complex poles and 
complex zeros, as reported hereafter: 
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The numerical parameters, obtained by trial-and-error, 
were the following: 
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The comparison of the transfer function magnitude 

response with respect to measured data is reported in 
Fig. 6, for both the no-load and the full-load transfer 
function. The excellent match confirms the 
effectiveness of the used method. 
 

 
 
D. PMSM drive tuning 
 

Results from Section IV-E have been used to tune 
the speed regulator. Due to the small change of the 

identified transfer function from no-load to full-load 
conditions, the PI parameters has been fixed to 
constant values, obtaining almost the same 
performances for every condition. Fig. 7 and Fig. 8 
report the simulation and experimental measurements 
of a speed step at no load, while Fig. 9 and Fig. 10 
show the same step for a full-load condition. The 
identification of the load model and the estimation of 
its parameters were of great importance in speeding 
up the tuning. 
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Fig.9 – Speed step at full load, simulation results. 
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Fig.8 – Speed step at no load, experimental results. 
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Fig.7 – Speed step at no load, simulation results. 
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Fig.6 – Identified models vs. measured data. 



 
 
V. CONCLUSIONS 
 

The paper presented a method for the black-box 
model identification of a complex mechanical load. 
After recalling the mathematical basics of the 
proposed approach, the procedure has been fully 
tested on a case study, represented by a labelling 
machine. The PI speed controller of the PMSM drive 
has been tuned using the identified model, obtaining 
good performances that were also confirmed by the 
impressive matching between simulation and 
experimental results. 
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Fig.10 – Speed step at full load, experimental results. 


