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Abstract 

ITER is the first reactor-scale scientific experiment that aims to demonstrate the scientific and the 

technological feasibility of fusion energy. It is based on the tokamak concept of magnetic 

confinement, in which the fuel, a mixture of deuterium and tritium heated to temperatures in excess of 

150 million degrees Celsius, is contained in a toroidal vacuum chamber. Among the systems used to 

reach such high temperature range, a fundamental role is played by the injection of intense beams of 

neutral particles into the plasma, which is consequently heated by collisions. This process is realized 

by means of two Neutral Beam Injectors (NBIs), capable of delivering to the plasma a power of 16.7 

MW each. These devices are mainly composed of a negative deuterium ion source, an electrostatic 

accelerator where a 40 A beam of negative deuterons will be accelerated to 1 MV and a neutralizer 

which converts part of the beam into high energy neutrals able to penetrate the high magnetic field 

confining the ITER plasma. The ITER requirements for these devices have never been simultaneously 

achieved so far in a full scale, full performance device and therefore a neutral beam test facility is 

being constructed at Consorzio RFX in Padova.  

The research activity presented in this thesis work is in the framework of the development of the 

negative ion source (SPIDER) and full injector (MITICA) prototypes for the ITER neutral beam. In 

particular, it is focused on two main topics: particle transport studies inside the MITICA accelerator 

and the development of a tomographic beam diagnostic.  

A proper modeling of the particle transport inside the MITICA accelerator, considering the main 

processes that generate secondary particles relevant for the evaluation of the heat loads on the 

accelerator grids is essential for the thermo-mechanical analysis and the mechanical design of the 

accelerator. For this reason an upgrade of the relativistic particle tracking code called EAMCC has 

been undertaken and the simulations performed for evaluating the thermal power deposited on the 

MITICA accelerator grids are presented in the first part of the present thesis work. For the first time, 

an entire source called NIO1 installed at RFX and made of nine beamlets has been simulated in 

EAMCC considering multi-beamlet effects which were neglected earlier and discarding the axis-

symmetry hypothesis of the electric fields imposed by the original version of the code. Results 

obtained, also presented in the first part, will be used for benchmarking the modifications introduced 

in the code. 

The second part of the thesis is dedicated to beam tomography, an important diagnostic for the 

assessment of the density profile of the beam. A tomography code based on algebraic reconstruction 

techniques has been developed and numerically tested. Beam emissivity profiles considered for testing 

the code are calculated by the upgraded version of EAMCC. The tomography code has been 

developed with the aim of realizing a versatile instrument, applicable to linear accelerators as well as 

to a tokamak and without adding any hypotheses about the beam characteristics or the emissivity in a 

particular region of the tomography plane, not to limit the capability of the code of detecting 

irregularities in the beam profiles. The effects of the instrumental noise on tomography reconstructions 

have also been studied and, in order to reduce its impact, different filtering techniques have been 

considered both in the frequency and in the spatial domain, demonstrating the feasibility to filter out 

the effect of the noise by post-processing the reconstructed image of the beam. 
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Riassunto 

ITER (International Thermonuclear Experimental Reactor) è un reattore sperimentale a fusione 

termonucleare basato sulla configurazione magnetica tokamak e volto a dimostrare la possibilità di 

sfruttare l’energia da fusione per la generazione di elettricità. Il combustibile nucleare costituito da una 

miscela di deuterio e trizio, portato a temperature eccedenti i 150 milioni di gradi centigradi, è 

confinato in una camera di forma toroidale per mezzo di campi magnetici. Tra i sistemi usati per 

riscaldare il combustibile nucleare, l’iniezione di neutri riveste un ruolo fondamentale. Essa consiste 

nella iniezione di nuclei di deuterio ad alta energia (1 MeV) che scaldano il combustibile gassoso 

altamente ionizzato (denominato plasma) a seguito delle collisioni con lo stesso. In ITER sono previsti 

due iniettori di neutri (NBIs), ciascuno in grado di immettere nel plasma una potenza di 16,7 MW. Tali 

iniettori sono essenzialmente costituiti da una sorgente di ioni negativi di deuterio, un acceleratore 

elettrostatico dove un fascio di 40 A di tali ioni viene accelerato fino a raggiungere l’energia di 1 MeV 

e un neutralizzatore nel quale una parte del fascio viene convertita in particelle neutre ad alta energia 

che possono penetrare gli intensi campi magnetici usati per confinare il plasma: il sistema dovrà 

operare continuativamente per un’ora. Le prestazioni richieste per tali iniettori di neutri non sono mai 

state raggiunte fino ad ora simultaneamente in un unico esperimento e su tale scala. Si è reso pertanto 

necessario lo studio e lo sviluppo di un prototipo di iniettore, affidato al Consorzio RFX di Padova. Il 

progetto prevede lo studio e la realizzazione della sorgente di ioni dell’ITER NBI (SPIDER) e 

successivamente la costruzione del prototipo dell’intero iniettore (MITICA). 

La mia attività di ricerca, presentata in questa tesi, si inserisce in tale contesto e più in particolare è 

incentrata sullo studio del trasporto di particelle all’interno di acceleratori lineari finalizzato al calcolo 

della potenza termica depositata nelle griglie dell’acceleratore di MITICA e sullo sviluppo di una 

diagnostica tomografica per fasci di particelle.  

Un appropriato modello fisico, il più realistico possibile, dei fascetti di particelle che compongono il 

fascio di MITICA è fondamentale per l’analisi termo-meccanica e per il progetto meccanico 

dell’acceleratore. A tale scopo, sono state eseguite delle modifiche al codice di calcolo EAMCC usato 

per simulare i processi di creazione di cariche secondarie che generano notevoli carichi termici sulle 

griglie dell’acceleratore. La versione modificata del codice è stata utilizzata per lo studio del trasporto 

di cariche nell’acceleratore di MITICA e per il calcolo dei carichi termici, come illustrato nella prima 

parte della tesi. Inoltre, per la prima volta, l’intera sorgente chiamata NIO1 installata a RFX e 

costituita da nove fascetti di ioni negativi di idrogeno è stata simulata con EAMCC, considerando 

effetti fino ad ora non simulati, come l’interazione tra fascetti vicini, ed eliminando l’ipotesi 

semplificativa di campi elettrici assial-simmetrici. I risultati delle simulazioni su NIO1 verranno usati 

in futuro per la validazione sperimentale delle modifiche introdotte in EAMCC e sono sintetizzati 

sempre nella prima parte del presente lavoro di tesi. 

La seconda parte è invece dedicata alla tomografia del fascio che rappresenta una diagnostica 

importante per la misura del profilo di densità delle particelle e consente di valutare il grado di 

uniformità dello stesso, un requisito fondamentale per l’iniettore di neutri. In tale ambito è stato 

sviluppato un codice tomografico basato su diverse tecniche di ricostruzione algebriche, più indicate 

rispetto a tecniche basate sulla trasformata di Radon nel caso in cui il numero di rivelatori disponibile 

sia molto inferiore rispetto al numero di pixel del profilo ricostruito. Tale codice è stato testato su 

NIO1 e su MITICA con risultati promettenti. Non essendo disponibile alcuna misura sperimentale 

dell’emissione dei fasci di particelle, grazie alle modifiche introdotte in EAMCC è stato possibile 

calcolare il profilo di emissività di fotoni del fascio usato poi per il test del codice tomografico. E’ 

stato inoltre studiato il ruolo del rumore strumentale e il suo impatto sulle ricostruzioni tomograficche. 

Sono state considerate tecniche di filtraggio sia nel dominio delle frequenze spaziali sia in quello 

spaziale e in particolare, una tecnica usata per filtrare le immagini radar è stata adattata al caso 

tomografico e implementata nel codice dimostrando la possibilità di limitare fortemente l’effetto 

negativo del rumore sulla tomografia del fascio. 
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Introduction 

 
If a deuterium nucleus fuses with a tritium nucleus, an alpha particle is produced and a neutron 

released. The nuclear rearrangement results in a reduction in total mass with the consequent release of 

a significant amount of energy. In macroscopic terms, just 1 kg of this fuel would release 10
8
 kWh of 

energy and would provide the requirements of a 1 GW (electrical) power station for a day. The same 

energy would be produced by burning more than 11600 tons of a good quality coal, or about 8700 tons 

of fuel oil. Substantial advantages over other innovative forms of energy generation distinguish 

nuclear fusion, in terms of environmental protection (no carbon emissions, neither transuranic nor 

fission products), large fuel availability (deuterium can be extracted from water and tritium is 

produced from lithium, which is found in the earth's crust) and intrinsic safety (the small amounts of 

fuel used in fusion devices means that a large-scale nuclear accident is not possible). 

Far from being commercially available, the production of energy from nuclear fusion could represent a 

cleaner way to respond to our increasing energy demand, declining supplies of fossil fuel, responsible 

for the negative effects of the greenhouse gases on the environment. 

To build an operating controlled fusion reactor the most promising solution requires the particle 

thermal energy to reach a sufficient threshold to overcome the Coulomb barrier between the reactants. 

At these temperature values the fuel is in a state of ionized gas called plasma, where the electrostatic 

charge of the nuclear ions is balanced by the presence of an equal number of electrons. Since such 

high temperatures preclude confinement by material walls and plasma particles are subject to magnetic 

fields, they can be confined in a toroidal region in which particles are forced to follow prescribed 

gyrating orbits.  

Presently the major efforts of the international community are focused on the controlled thermonuclear 

fusion using magnetic fields to confine a plasma of tritium and deuterium in a vacuum chamber of 

toroidal shape in the so called tokamak configuration. Great progress has been made in solving the 

scientific problems and large efforts are currently devoted to tackle the technological challenges. 

Many of the critical issues will be addressed in a new experiment known as ITER (the “path” towards 

fusion energy), the world first reactor-scale burning plasma experiment under construction in France 

(Cadarache). 

In order to have a sufficient number of reactions to occur, the plasma temperature in ITER must be 

raised up to 150 million degrees Celsius. The ohmic heating which is intrinsically produced by 

externally induced and self-induced current flowing in the plasma is not sufficient to reach this 

temperature and the use of auxiliary heating methods is necessary. Among the systems used to reach 

such a high temperature range, a fundamental role is played by the injection of intense beams of 

neutral particles into the plasma, which is consequently heated by collisions. This process will be 

realized in ITER by means of two Neutral Beam Injectors (NBIs), capable of delivering to the plasma 

a power of 16.7 MW each. 

These devices are mainly composed of a negative deuterium ion source, an electrostatic accelerator 

where a 40 A beam of negative deuterons will be accelerated to 1 MV and a neutralizer which 

converts part of the beam into high energy neutrals, capable of penetrating the high magnetic field 

confining the ITER plasma: the device should work continuously for one hour. The ITER 

requirements for these devices have never been simultaneously achieved so far in a full scale, full 

performance device and therefore a neutral beam test facility is being constructed at Consorzio RFX in 

Padova. The facility will host two experimental devices: SPIDER, the full size prototype of the ITER 

NBI ion source and MITICA the prototype of the full neutral beam. The purpose of this project is to 

demonstrate the feasibility of a reliable and efficient prototype injector and to optimize its 

performances. 

My research activity is in the framework of the development of the negative ion source and full 

injector prototypes for the ITER neutral beam. In particular it is focused on two main topics: particle 

transport studies inside the MITICA accelerator and development of a tomographic beam diagnostic. 

For what concerns the first topic, a proper modeling of the particle transport inside the MITICA 

accelerator, considering all the secondary emission processes responsible for a relevant power 

deposition on the accelerator grids, is essential for the thermo-mechanical analysis and the mechanical 

http://en.wikipedia.org/wiki/Transuranic
http://en.wikipedia.org/wiki/Fission_product
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design of the accelerator. This calculation is performed by EAMCC, a relativistic particle tracking 

code based on the Monte-Carlo method for describing collisions inside the accelerator. EAMCC is 

able to perform a single-beamlet analysis of the accelerator, which means that it simulates the 

propagation of just one of the 1280 beamlets composing the MITICA beam, under the hypothesis of 

axis-symmetric electric fields. An upgrade of EAMCC has been undertaken and a fully 3D version of 

the code is now available for performing more realistic multi-beamlet simulations of the MITICA 

accelerator. For the first time, an entire source called NIO1 installed at RFX and made of nine 

beamlets has been simulated in EAMCC considering multi-beamlet effects before neglected and 

discarding the axis-symmetry hypothesis of the electric fields imposed by the original version of the 

code. Results obtained will be used for benchmarking the modifications introduced in the code. 

As for tomography, its application to an ion beam can be useful for the assessment of the density 

profile of the beam. It can go beyond the simple detection of the lack of uniformity of the beam, 

giving information about its causes and suggesting possible solutions. A tomography code based on 

algebraic reconstruction techniques has been developed and tested on the NIO1 emissivity profile 

calculated by EAMCC. Algebraic techniques have been used since they are more suitable than 

algorithms based on the Radon transform when the number of detectors is limited compared to the 

number of pixels. The tomography code has been developed with the aim of realizing a versatile 

instrument, applicable to different accelerators as well as to a tokamak and without adding any 

hypotheses about the beam characteristics or imposing particular geometrical constraints to the 

emissivity, in order not to limit the capability of the code of detecting irregularities in the beam 

profiles. 

The effects of the instrumental noise on tomography reconstructions have also been studied: a 

particular case of interest regards the SPIDER tomographic diagnostic based on a pre-existing 

reconstruction code. The main aim of this diagnostic in SPIDER will be measuring the uniformity of 

the beam: in particular the ITER requirement for the beam is that the maximum acceptable deviation 

from uniformity is ± 10%, thus the deviation of the tomographic reconstruction from the real 

emissivity of the beam has to be sufficiently lower than this value. It was found that the noise has a 

large influence on the maximum achievable resolution of the diagnostic and in order to reduce its 

impact different filtering techniques have been considered both in the frequency and in the spatial 

domain. In particular, a technique developed for radar imaging and based on a local statistics method 

has been adapted and implemented in the SPIDER tomography code, demonstrating the feasibility to 

filter out the effect of the noise by post-processing the reconstructed image of the beam. 

The present thesis work synthesizes the mentioned activities and it is structured as follows:  

 

 Chapter 1 introduces the concept of thermonuclear fusion, the ITER project and the essentials 

of a neutral beam injector, together with the description of the two experiments SPIDER and 

MITICA. 

 

Particle transport and heat load calculations 

 Chapter 2 is dedicated to the numerical simulation tools for the particle transport calculations 

inside the accelerator. Codes used for the estimation of magnetic field and electric potential 

maps inside the particle accelerator (required by EAMCC) are described, together with the 

physics model and numerical approach in EAMCC. 

 Chapter 3 presents the simulation of the MITICA beam with EAMCC and the calculation of 

heat loads on the accelerator grids: after the description of the MITICA accelerator, a 

comparison between simulations performed with the original code and the modified version is 

presented, as a validation of the modifications introduced in the latter. Subsequently, the main 

results of a single-beamlet analysis performed with the two versions of the code are shown and 

the differences between the 2D and the 3D simulations discussed. The last part of the chapter 

is dedicated to the multi-beamlet simulation of the accelerator.  

 In Chapter 4 a 3D analysis of the NIO1 beam performed for the first time by EAMCC is 

presented. The H
-
 beam core, the co-extracted electrons and the beam halo fraction have been 

simulated for determining the heat loads on grids and the power transmitted out of the 
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accelerator. The main results are reported after the description of the device, the proposed 

upgrade and the reference conditions for the simulations. 

 

Tomography and image filtering 

 Chapter 5 is focused on the tomography code developed for NIO1. In the the first part of this 

chapter the algebraic method for tomography reconstructions and the iterative techniques 

implemented in the code are described. Subsequently, the simulation of the transport of the 9 

H
-
 beamlets on the NIO1 tomography plane made by the modified version of EAMCC which 

represents the ‘experimental’ emissivity profile to be reconstructed, the hypothesized 

configurations of the tomography system and the reconstructions obtained in these cases are 

presented. A concluding paragraph illustrates the reconstruction of the beam profile of 

MITICA without including any constraint concerning the beam characteristics. In doing so, a 

larger number of degrees of freedom are introduced in the tomography inversion problem and 

consequently the reconstruction errors increase. However, the proposed technique allows the 

correct reconstruction of the beam emissivity profile. 

 Chapter 6 is dedicated to a theoretical study of the instrumental noise in the SPIDER visible 

tomography. It was found that the noise has a large influence on the maximum achievable 

resolution of the diagnostic and in order to reduce its impact different filtering techniques have 

been considered both in the frequency and in the spatial domain.  

 

 Chapter 7 summarizes the results of the previous chapters.  
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Chapter 1 

 
Neutral beam injectors for thermonuclear fusion 

 
Substantial advantages over other forms of innovative energy generation distinguish nuclear fusion, in 

terms of environmental protection, fuel availability and intrinsic safety. Far from being commercially 

available, the production of energy from nuclear fusion could represent a cleaner way to supply the 

global increasing energy demand, declining supplies of fossil fuel, responsible for the negative effects 

on the environment.  

The major efforts of the international community are focused on the controlled thermonuclear fusion 

by using magnetic fields to confine an ionized gas of tritium and deuterium in a vacuum chamber of 

toroidal shape in the so called tokamak configuration. Great progress has been made in solving the 

scientific problems and large efforts are currently underway to address the technological challenges 

of a future fusion reactor. Many of the critical issues will be addressed in a new experiment known as 

the International Thermonuclear Experimental Reactor (ITER) the world’s first reactor-scale burning 

plasma experiment under construction in France (Cadarache.) 

This introductory chapter gives a short overview on the basic issues of the controlled thermonuclear 

fusion and the ITER project. In the context of the auxiliary systems required to heat the nuclear fuel up 

to the temperature required to have a significant fusion reaction rate and consequently a positive 

energy balance, the last part of the chapter is dedicated to the description of the neutral beam injector 

system (NBI) and to the test facility under construction at RFX for the realization of the ITER NBI 

prototype. 

 

 

1.1 Thermonuclear fusion  

Nuclear fusion is the reaction between two light nuclei that fuse into a heavier one, releasing energetic 

reaction products. It was recognized as the power source of the Sun and other stars in 1938 [Bet38] 

and since then, fusion research has been planned in many laboratories all over the world for 

reproducing it on the Earth in a controlled manner. 

Studies of the nuclear properties of light elements indicate that three such reactions may be 

advantageous for the production of nuclear energy. These reactions involve the isotopes of the 

hydrogen H
2
 and H

3
, respectively called deuterium (D) and tritium (T), and helium-3 (He

3
), an isotope 

of helium.  

The D-D reaction produces fusion energy by the nuclear interaction of two deuterium nuclei: this is 

the most desirable reaction in the sense of a virtually unlimited supply of fuel, since the deuterium 

could be extracted from the ocean water [Fre07]. This reaction has two branches, each occurring with 

an approximately equal likelihood and can be written as follows (n is a neutron, p a proton): 

)45.2()82.0(322 MeVnMeVHeHH  , (1.1) 

)03.3()01.1(322 MeVpMeVHHH  . (1.2) 

The second reaction of interest is the D-He
3
: 

)67.14()67.3(432 MeVpMeVHeHeH  . (1.3) 

This reaction fuses a deuterium nucleus with a helium-3 nucleus. There are no natural supplies of 

helium-3 on the Earth and this is the reason why current fusion research is not focused around this 

reaction. Despite that, the reaction is worth discussing since the end products are all charged particles: 

from an engineering point of view charged particles are more desirable than neutrons for extracting 

energy as they greatly reduce the problems associated with materials activation and radiation damage. 
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They also offer the possibility of converting the nuclear energy directly into electricity without passing 

through an inefficient steam cycle [Fre07].  

The third reaction, the D–T, involves the fusion of a deuterium nucleus with a tritium nucleus: 

)06.14()52.3(432 MeVnMeVHeHH  . (1.4) 

This reaction produces a high-energy neutron and a 3.5 MeV alpha particle. It requires a supply of 

tritium in order to be capable of continuous operation. Tritium does not exist in nature and furthermore 

it is radioactive (i.e. it is a low-energy beta emitter with a half-life of about 12 years). It can be 

produced in the nuclear reactor from lithium, which exists in large quantities in the Earth’s crust (Li
6
 

with isotopic abundance of ~7.5% and Li
7
 with ~ 92.5%), by bombarding it with neutrons produced by 

the fusion reaction itself: 

MeVHHenLi 8.4346   (1.5) 

MeVnHHenLi 5.2347   (1.6) 

The D–T reaction, nevertheless, produces a significant amount of nuclear energy, mostly as kinetic 

energy of neutrons. In spite of the problems associated to high-energy neutrons (material activation 

and radiation damage) and radioactivity associated with tritium, the D–T reaction is the central focus 

of worldwide fusion research, a choice dominated by the fact that it is the easiest fusion reaction to 

initiate. In fact, the reaction rate per unit volume is proportional to the density of reactants and to the 

cross section of the considered fusion reaction, which mimics the probability of the same to occur 

[Dua72, Per79].  

 

Fig. 1.1 Cross section (1 barn=10-28 m2) of the D-T, D-D, D-He3 reactions. It represents the reaction probability as a function 

of the reactant energy 

 

In Fig. 1.1 the cross section of the D-T, D-D, D-He3 reactions are shown as a function of the reactant 

energy. At low energies, the cross-sections of the fusion reactions are small due to the Coulomb 

barrier that repels the two nuclei and does not allow them to approach close enough in order to fuse; as 

the kinetic energy of reactants increases the electrostatic barrier is easier overcome by quantum 

tunnelling the Coulomb repulsion among them [Per79]. The D-T reaction has the highest cross-section 

value at relatively low energies (~ 100 keV) and this explains why it is considered the most promising.  
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For a significant fraction of fusion reactions to occur, the nuclear fuel has thus to be brought to high 

densities and temperatures for a sufficiently long time. In such conditions, matter is in the plasma 

state, an ionized gas in globally neutral condition which exhibits collective properties [Gol95]. 

Since such high temperatures preclude confinement by material walls two methods emerged to be 

rather promising for plasma confinement: magnetic confinement, which exploits the use of strong 

magnetic fields [Wes04] and inertial confinement where small volumes of solid matter are brought to 

sufficiently high temperatures and densities by firing high power lasers from many different directions 

[Atz04]. 

Since the present thesis work is devoted to investigate some aspects of the neutral beam injector, an 

important auxiliary system in fusion machines based on the magnetic confinement, henceforth just this 

technology will be considered.  

The major efforts of the international community are focused on the controlled thermonuclear fusion 

by using magnetic fields to confine a plasma of tritium and deuterium in a vacuum chamber of toroidal 

shape in the so called tokamak configuration (Fig. 1.2). The word tokamak is a Russian acronym 

meaning “toroidal chamber with magnetic coils”, which already gives an idea of its functioning. In 

this device, the plasma is confined by means of a strong toroidal magnetic field created by a set of 

coils surrounding the toroidal vacuum vessel where the plasma is confined. The magnetic field lines 

closed in themselves avoid the hot particles flow coming onto the reactor wall. Since a pure toroidal 

magnetic field causes particle losses arising from various drifts and instabilities [Wes04], another 

magnetic field (poloidal) perpendicular to the toroidal one is added. The poloidal magnetic field is 

created by a toroidal plasma current which is generated in the plasma itself by a transformer placed in 

the middle of the torus. Toroidal and poloidal fields create a helical structure of the twisted magnetic 

lines improving the plasma confinement. Additional poloidal field coils are used mainly for the plasma 

shaping and stability. 

 

 

Fig. 1.2 Sketch of a tokamak 

 

For the balance of a fusion reactor to be positive, the energy produced has to exceed that required to 

create and sustain the plasma itself accounting for the energy losses (an important fraction of which is 

caused by bremsstrahlung, i.e. emission of radiation).  

The power per unit volume produced by the fusion reactions can be defined as PR = EDT n
2
 <σv>DT /4 

where EDT= 17.6 MeV is the energy released after a single D-T fusion reaction, n is the density (it is 

assumed an equal density for deuterium and tritium nD= nT= n/2) and <σv>DT is the product of the 

cross-section of the D-T reaction and the relative velocity of the reactants, averaged over their velocity 

distribution. 

By naming the plasma energy density W (W~3nT assuming equal ion and electron temperature and 

density), the auxialiary heating PH and the plasma power loss PL per unit volume, the balance between 

heating and losses is: 
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LRH PPP
t

W





. (1.7) 

Without any heating, the energy decreases almost exponentially ∂W/∂t=-W/τE with a characteristic 

energy confinement time τE. One of the most desirable reactor scenarios is one in which the alpha 

particles produced by fusion reactions are confined and replace all the energy losses by transferring 

their energy to the plasma, whereas neutrons escape the plasma volume and their energy is converted 

to electric energy. By analogy with the burning of fossil fuels this event is called ignition: the auxiliary 

heating can be removed since the plasma temperature is sustained solely by alpha particle heating. The 

ignition condition can be calculated considering that it must be PR ≥ PL where PR= Pα =Eα n <σv>DT /4 

and Eα=3.5 MeV is the kinetic energy of the alpha particle released after the D-T reaction.  

Under these assumptions, the ignition condition, that is usually expressed in the following convenient 

form, becomes:  

 ][103 321 skeVmTn E
  (1.8) 

Where the so called triple product (nτET) brings out clearly the requirements on density, temperature 

and confinement time for the burning plasma. 

 
Fig. 1.3 Values of the fusion triple product as a function of ion temperature for existing experiments in D-T reactions 

 

Figure 1.3 shows the values of the triple product reached in fusion devices since the beginning of 

experiments in plasma physics and the research progress towards the self-sustained burning plasma. 

From the right side axis it can be seen how the efforts in fusion research have produced results more 

and more encouraging in the last decades, also if a major step, demonstrating the feasibility of a 

nuclear fusion reactor is still missing. 

 

1.2 ITER 

The large experimental database obtained in the last decade in tokamaks and other toroidal 

configurations, together with the improving capability of numerical simulations have provided the 

international community the physics basis for the design of a burning plasma experiment based on the 

tokamak concept named ITER (International Thermonuclear Experimental Reactor). The seven 

countries participants (European Union, Japan, Russian Federation, People's Republic of China, South 

Korea, India and United States of America) formally agreed to finance and to cooperate for the 
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realization of the project in November 2006. The site preparation (Cadarache, France) is in progress 

and the first plasma operation is expected in 2020 [Ite14]. 

ITER would offer the possibility of studying several reactor relevant scientific and technological 

issues, which are beyond the present experimental capabilities. New physical regimes and a variety of 

technological issues will be explored with ITER, like the test of advanced materials facing very large 

heat and particle fluxes, the test of concepts for a tritium breeding module, the superconducting 

technology under high neutron flux and many others. All of these requirements are expected to solve 

many of the scientific and engineering issues concerning a burning plasma and could allow to make a 

straightforward step towards the demonstration of a nuclear fusion power plant. 

The main technical data and parameters of the reactor are listed in Table 1.1. 

 

Total fusion power 500 MW 

Q=fusion power/addition heating power ∼10 

Plasma inductive burn time ≥400 s 

Plasma major radius (R0) 6.2 m 

Plasma minor radius (r) 2.0 m 

Plasma current (Ip) 15 MA 

Safety factor (q) 3 

Toroidal magnetic field (B) 5.3 T 

Electron density (ne) 10
20

m
−3

 

Average ion temperature <Ti> 8.0 keV 

Average electron temperature <Te> 8.8 keV 

Plasma total heating ∼ 50 MW 

Neutral Beam Injector 33 MW 

Electron cyclotron antenna 20 MW (170 GHz) 

Ion cyclotron antenna 20 MW (50 MHz) 

Plasma type deuterium-tritium 

Plasma volume 840 m 

Tab. 1.1 ITER parameters 

 

The amplification factor Q, i.e. the ratio between the power produced by the fusion with respect to the 

external power supplying the reactor, should achieve a value of about 10. It means that from 50 MW 

of the input power (73 MW designed) the tokamak will produce 500 MW of output thermal power 

from fusion. Thereby, ITER will be the first fusion machine to get more energy out of the fusion 

process, than it uses to generate it, which has never been shown before at other experimental facilities. 

Consequently, ITER should achieve ignition condition when switching off all additional heating 

systems, and plasma becomes self-sustained.  

In Fig. 1.4 an isometric view of the ITER reactor is shown, with the indication of the main 

components. The vacuum vessel of the reactor is surrounded by a large stainless steel structure called 

cryostat. It provides the vacuum environment and protects the reactor from an external damage. The 

blanket covers the interior part of the vacuum vessel and protects it from the heat load and neutron 

fluxes of the fusion reaction. The neutrons will transform their kinetic energy into heat energy that will 

be in turn collected by the coolants. The divertor is positioned at the bottom of the vacuum vessel. It is 

the main interface between the hot plasma and surface material and has the function to extract heat, 

helium ash and other impurities from the plasma. 

ITER design includes three auxiliary heating systems. They are the neutral beam, the ion cyclotron 

and the electron cyclotron heating. These systems will supply maximum of 73 MW heating power 

with contribution of the neutral beam injectors (NBIs) of 33 MW.  

The NBI heating system includes two injectors, each of which delivering 16.7 MW power into the 

ITER plasma. In the NBI a beam of negative deuterons is produced and accelerated by electric fields. 
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These accelerated ions then pass through an ion beam neutralizer where their electrical charge is 

removed. The high velocity neutral particles being unaffected by the strong magnetic fields can be 

injected into the heart of the plasma where, by way of rapid collisions, transfer their energy to the 

plasma particles. In order to penetrate into the ITER plasma core for heating and also for generating 

sufficiently high toroidal current responsible of the poloidal magnetic field in tokamak configuration 

(exploiting the current drive capability of neutral beams for studying advanced scenarios in ITER 

[Suz11]), the neutral beam has to be injected with the energy of 1 MeV supplying a current of 40 A. 

Neutralization of the positive ions is not efficient at such energy and therefore, a concept of 

neutralization of negative ions will be used in the ITER NBI system.  

 

 
Fig. 1.4 Schematic view of ITER 

 

1.3 ITER NBI and the PRIMA test facility 

As already mentioned, the NBI is able to heat the plasma by injecting a neutral particle beam. 

Moreover, the injection of such beams increases the efficiency of the current drive [Suz11], and allows 

the transition from a low level of confinement of the plasma (L mode) to an enhanced confinement 

scenario (H mode) [Wes04].  

A beam of neutral particles can only be created in indirect way: since neutrals are not subject to 

electromagnetic fields, in order to give them the energy required to effectively heat the plasma, in 

principle they are generated as positive or negative ions inside an ion source. Then they are 

accelerated as an ion beam by means of strong electric fields between different grids of an electrostatic 

accelerator, and only at this point they are neutralized in charge exchange processes with a neutral gas 

stripper. The neutral beam is then filtered of the ions which did not get the neutralization by means of 

strong magnetic field inside the so called residual ion dump (RID) and finally directed toward the 

tokamak chamber. As the neutrals enter the plasma, they are quickly ionized and remain trapped by 

the magnetic field of the device. The choice of the beam particle species is due to the fact that injected 

particle must not pollute the confined plasma, mainly composed by electrons and ions D
+
 (or H

+
 in the 

first experimental phase of ITER), for this reason the beams are formed with D
0
 (or H

0
) particle. The 

ions created in the source can be either positive or negative. Even if the majority of existing neutral 

beam injector exploits the acceleration of positive ions, in the perspective of a highly energetic beam, 
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as it is the case for ITER the use of negative ions appear compulsory, due to their higher neutralization 

efficiency at high energy with respect to positive ions, as reported in Fig. 1.5. 

 
Fig. 1.5 Neutralization efficiency for positive and negative deuterium and hydrogen ions as a function of the particle energy 

 

The energy parameters for the beam must satisfy the need to penetrate plasma up to its internal region, 

where the heat is efficiently deposited. It is known, in fact, that the ionizing cross section of the beam 

decreases with the beam energy, hence, in order to allow the beam to reach the plasma core without 

being completely ionized before, a high beam energy is required. Nonetheless the beam energy value 

is limited by the need of minimizing the fraction of surviving neutral beam reaching the internal wall 

of the device vessel. 

In the framework of the strategy for the development and the procurement of the NBI systems for 

ITER, required for sustaining fusion conditions (as earlier mentioned the injection of high energy 

neutrals allows to reach high plasma temperature and to increase the efficiency of the current drive 

[Suz11] but also the L-H transition, from a low confinement mode to an enhanced confinement 

scenario [Wes04]) it has been decided to build in Padova a test facility named PRIMA (Padova 

Research on ITER Megavolt Accelerator), including two experimental devices: a full size plasma 

source with low voltage extraction (SPIDER) and a full size neutral beam injector at full beam power 

(MITICA).  

These two different devices will separately address the main scientific and technological issues of the 

16.7 MW NB injector for ITER. In particular the full size plasma source of negative ions will address 

the ITER performance requirements in terms of current density, current density uniformity, limitation 

of the electron/ion ratio, low source pressure and stationary operation at full current with high 

reliability and stationary operation at full current with high reliability and constant performances for 

the whole operating time up to 1h. Most of these main requirements are well beyond the experimental 

capabilities of the present devices and the full size ion source device will realize a necessary step to 

the development of the knowledge and the technologies to be adopted in the full power 1MV injector 

for ITER. 

 

1.3.1 SPIDER 

SPIDER (Source for Production of Ion of Deuterium Extracted from Rf plasma) is the full scale ITER 

NBI source, designed to accelerate the beam up to 100 keV with a total beam power of 6 MW. The 

cesium seeded plasma source based on the radio frequency (RF) concept includes eight RF drivers 

with external water cooled five turns coils operated at 1MHz followed by a plasma expansion chamber 

and an extraction region where ions are extracted from the plasma and accelerated through three grids 

hold at different voltages [Son09]. 

A schematic of a RF plasma source with magnets for filter field and local suppression field at the 

extraction is shown in Fig. 1.6. The RF source utilizes the inductively coupled plasma (ICP) approach 

to generate the plasma. The coupling is setup first with the free electrons, starting a cascade ionization. 
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The RF ion source also includes a series of auxiliary systems: the electric circuit for power input, the 

cooling circuits for the actively cooled Faraday shield, the gas supply system, starter filaments to 

initiate the plasma and several diagnostic sensors.  

 

Fig. 1.6 Scheme of a RF plasma source 

 

In the driver coils of SPIDER, fed with 1 MHz RF current, the electrons become sufficiently energetic 

(15-30 eV) to cause collisional ionization and dissociation of the injected gas (H2 or D2). The resulting 

plasma is mainly constituted by the species e
-
, H, H

2
, H

+
, H2

+
 (and the analogous for deuterium); it 

expands in the expansion region where the electrons are cooled down by a magnetic filter field, which 

is produced by a current vertically running through the PG itself.  

In the expansion chamber, the production of the negative ions is dominated by the volume processes 

[Bro04] by which highly vibrationally-excited hydrogen molecules capture low energy plasma 

electrons to form negative hydrogen ions through dissociative electron attachment processes (H2+e
-
→ 

H
-
+H) and surface processes [Bro04]. The surface processes (by which atoms emitted energetically 

from a metal surface with a low work function may leave in the form of negative ions) dominate, 

mostly at the cesiated surface of the PG (the work function of the metal surface of the PG is reduced 

with the deposition of a cesium layer [Bel74]). 

 

 
Fig. 1.7 SPIDER experiment with transparent vessel  
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Fig. 1.8 Exploded view of the SPIDER Beam Source 

 

The extraction and accelerator system for the SPIDER ion source is composed of three grids: the 

plasma grid (PG), the extraction grid (EG) and the grounded grid (GG). The grids are 1600 mm high 

and 800 mm wide (divided into four segments for alignment and manufacturing reasons). Each grid 

features 1280 apertures where the ion beamlets are extracted from the ion source and accelerated up to 

100 kV. The 1280 apertures are organised in 16 groups that are, in pairs, faced to a single driver; each 

group has 16 rows and 5 columns of beamlets.  

Upstream of the PG, a copper bias plate (BP) guarantees the same reference potential all around each 

beamlet group. The acceleration grid (EG) is biased at 10 kV with respect to the PG. The grounded 

grid (GG), further downstream, will provide the ions with the last acceleration step of 90 kV. A figure 

of the SPIDER experiment and a sketch of its main components are shown respectively in Figs. 1.7 

and 1.8. 

 
 

Fig. 1.9 Vertical section of SPIDER along the beam with internal components and diagnostics 

 

The main objectives of SPIDER will be to demonstrate the capability to create and extract a current of 

100 kV D
-
 (H

-
) ions up to 50 A (60 A) from large ion radio-frequency sources (the surface exposed to 

the extraction grid is about 1.5 m
2
), with an extracted current density JD=285 A/m

2
 (JH=355 A/m

2
), 
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focusing on the uniformity (the admissible ion inhomogeneity should be better than 10 %) and in the 

containment of electron leakages. In particular the ratio between the number of electrons with respect 

to the number of ions extracted from the source should be limited to less than 1.  

Most of these studies can be performed thanks to a dedicated set of diagnostics shown in Fig. 1.9. The 

RF source will be monitored with thermocouples, electrostatic probes, optical emission spectroscopy, 

cavity ring down, and laser absorption spectroscopy. The beam is analyzed by cooling water 

calorimetry, a short pulse instrumented calorimeter, beam emission spectroscopy, visible tomography 

and neutron imaging [Pas12]. In particular the visible tomography system devoted to the measurement 

of the beam density profile and to the assessment of the beam uniformity will be the subject of the 

chapter 6 of the present thesis work. 

 

1.3.2 MITICA 

The prototype for the ITER heating neutral beam MITICA (Megavolt ITER injector & Concept 

Advancement), will be installed in the PRIMA facility in Padova at Consorzio RFX together with 

SPIDER. Differently from the case of SPIDER, where more flexibility was allowed, the technical 

requirements of MITICA are shared with the NBI to be installed in ITER, a nuclear facility with strict 

regulations. MITICA is shown in Fig. 1.10: the concept of the ion source is the same as SPIDER, but 

the complexities are much more challenging because of the higher voltages involved and the many 

acceleration grids.  

 

 
Fig. 1.10 Schematic view of MITICA 

 

The other components of the beam line are: the neutraliser and electron dump (NED), divided into 4 

vertical channels constituting the gas cells with the function to neutralize negative ions stopping the 

unwanted electrons exiting the source with steered trajectories; the electrostatic residual ion dump 

(ERID) divided into 4 channels in which an electric field deflects the partially positive and partially 

negative residual ions; the calorimeter  located downstream the RID and constituted by two panels, in 

a V shape, of 96 tubes each parallel to the beam. The neutral power dumped onto the calorimeter can 

be measured, and in the ITER NBI, the V calorimeter will open and the deuterium beam of 16.5 MW 

power will travel the duct until the ITER plasma. Cryopumps are placed on each side of the beam path 

and the beamline components to reduce to the minimum the pressure of the background gas. The 
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pressure downstream the accelerator must be low in order to minimize losses in the accelerator. The 

pressure downstream of the neutralizer must be low in order to minimize re-ionization of the D
0
.  

Two modes of operations are foreseen for the NBI, the plasma operation mode, and the 

commissioning/conditioning mode in which the neutral beam is dumped on the calorimeter.  

The MITICA accelerator will be described in chapter 3 where a particle transport study for the 

calculation of the heat loads on the accelerator grids is presented. 
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Chapter 2 

 
Simulation tools 

 
This chapter is dedicated to the description of the numerical simulation tools that will be used for 

performing particle transport calculations inside the electrostatic accelerator of MITICA. EAMCC is 

a relativistic particle tracking code where the macro-particle trajectories of a single negative ion 

beamlet (and related secondary particles), are calculated in prescribed electric and magnetic fields 

inside the ion accelerator vessel. The magnetic field maps are produced by 3D codes, in particular by 

OPERA-TOSCA, while for the calculation of the electric field, electric potential maps are calculated 

by SLACCAD and OPERA-SCALA.  

 

 

2.1 SLACCAD 

The SLACCAD code estimates the electric potential inside an electrostatic accelerator by integrating 

the Poisson's equation and using a Monte Carlo approach. It is a modified version of the SLAC code, 

developed at the Stanford laboratories in the '70s and devoted to the simulation of the positive ions 

based plasma source facility [Her79]. The implementation of the negative ions, including beam 

attenuation and a free plasma boundary is due to J. Pamela [Pam91]. SLACCAD simulates the 

acceleration of negative ions in a linear accelerator, considering a 2 dimensional (2D) axial symmetric 

geometry, giving self consistent results on the potential distribution due to both accelerating electrodes 

and space charge distribution of the beam.  

In spite of the fact that it neglects many physical aspects such as the influence of magnetic fields on 

the ion trajectories and the electrons space charge, and it does not perform any plasma physics 

calculations, due to its long-time usage on different laboratories it is considered one of the most stable 

and efficient codes for calculating the single beamlet optics of negative ion beams.  

 

2.2 OPERA 

Opera is a three dimensional (3D) commercial simulation software suite based on the finite element 

method (FEM) for electromagnetic analysis [Ope14]. It includes eight analysis programs to deal with 

different electromagnetic analysis and for what concerns the beam accelerator, SCALA and TOSCA 

are the two modules of interest.  

SCALA analyses electrostatic fields taking into account the effects of space charge created by beams 

of charged particles. It uses the finite element method to solve the electrostatic Poisson’s equation, and 

calculate the electric scalar potential (i.e. the electric potential map of the accelerator). The space 

charge density, included in the Poisson’s equation solution, is found by calculating the trajectories of a 

set of charged particles from the emitters under the influence of the electrostatic field and magnetic 

fields. Secondary particles produced as a result of collisions are also included in the calculation. The 

extraction of charged particle beams from the plasma source is also modelled.  

The magnetic fields are provided by coupling SCALA with TOSCA, which solves nonlinear 

magnetostatic field and current flow models in three dimensions. In particular, TOSCA is used for the 

calculation of magnetostatic fields inside the accelerator due to current sources and permanent 

magnets embedded in the accelerator grids. 

OPERA incorporates state of the art algorithms for the calculation of electromagnetic fields, advanced 

finite element and nonlinear equation numerical analysis procedures. 

 

2.3 EAMCC 

EAMCC is a relativistic particle tracking code where the macro-particle trajectories of a single 

negative hydrogen (H
-
) or deuterium (D

-
) beamlet and related secondary particles, are calculated in 
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prescribed electric and magnetic fields inside the ion accelerator vessel. In the code each macro-

particle represents an ensemble of rays, carrying a microcurrent of typically 50 nA.  

The code has been developed by G. Fubiani [Fub08] with the purpose of modeling particle-particle 

and particle-surface interactions in ITER NBI-like accelerators (i.e. multiaperture and multigrid 

negative ion accelerators) for the calculation of the relevant thermal power deposition on the 

accelerator grids.  

For the calculation of the electric field inside the accelerator, EAMCC requires a 2D axy-symmetric 

electric potential map. This map is made by SLACCAD code [Pam91] that solves Poisson’s equation 

on a 2D cylindrically symmetric grid. SLACCAD does not perform any plasma physics calculations 

and as a consequence the plasma meniscus (i.e. the boundary which separates the source plasma from 

the accelerated negative ion beam, where the potential is ~ 0 V) is calculated rather simply by 

imposing a vanishing electrostatic field inside the simulation domain dedicated to the ion source area, 

i.e. the region where the potential drops below the plasma grid potential. The magnetic field maps are 

produced by 3D codes. 

The different kinds of particle-metallic surface and particle-particle interactions (electron and heavy 

ion/neutral collisions with accelerator grids, negative ion single and double stripping reactions, 

ionization of background gas) are modeled using a Monte-Carlo method [Vah95] and in the following 

subsections, the details of the numerical approach are reported.  

 

2.3.1 Negative ion stripping and ionization of the background gas 

Negative ion (H
-
/D

-
) stripping occurs due to collisions with the residual background gas (H2/D2) in the 

accelerator, which either comes from the ion source or the neutralizer. Stripping of negative ions is the 

main cause of high energy electron production in conventional electrostatic accelerators found on 

fusion machines (typically of the order of 20-30%) [Fub08]. These electrons are assumed to be emitted 

at the location of the collision with the same direction and velocity as the parent H
-
 or D

-
.� 

Ionization of the background gas caused by negative ions and neutrals (H
0
/D

0
) are also important 

reactions leading to destruction of negative and neutral hydrogen (or deuterium) with the production of 

secondary particles. 

Stripping and ionization reactions considered in EAMCC for hydrogen are: 

Single ion stripping   eHHHH 2
0

2  (2.1) 

Double ion stripping   eHHHH 222  (2.2) 

Ionization by negative ions   eHHHH 22  (2.3) 

Ionization by neutrals   eHHHH 2
0

2
0  (2.4) 

As earlier mentioned, the same reactions are implemented in the code also for deuterium. 

These reactions are calculated using a Monte-Carlo method. For instance, the rate equation for 

destruction of negative ions caused by stripping (reactions 2.1 and 2.2) may be written as follows: 
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where N(z) is the number of negative ions at location z inside the accelerator, N0=N(z=0) is the number 

at the ion extraction location (plasma grid location), and vtot is the total frequency associated with the 

two considered stripping reactions: 
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
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(2.7)
 

In Eq. 2.7 ng represents the background gas density and σi the cross section of the i-th considered 

reaction. Consequently, for a macro-particle, a reaction occurs if within a small interval Δz we have: 
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where ΔN(zi)= N(zi)-N(zi+Δz) and r1 is a random number between 0 and 1. In order to determine 

which type of reactions occurred (2.1 or 2.2), a second random number r2 is used. If r2≤ v1/vtot then 

reaction 2.1 occured, otherwise reaction 2.2 would have happened [Fub08]. 

The same scheme is also applied to the ionization of the background gas by collisions with negative 

ions and neutrals (reactions 2.3 and 2.4). In Fig. 2.1 the cross sections of the reactions implemented in 

EAMCC are plotted as a function of the hydrogen ion energy E0
(H)

 in the range of interest. The cross 

section for deuterium are calculated assuming E0
(D)

= 2E0
(H)

. Concerning the ionization of the 

backgraound gas by negative ions and neutrals, it is assumed the same cross section for both reactions. 

 

 
Fig. 2.1 Cross section for H- single (red line) and double (black line) stripping reactions, ionization of hydrogen background 

gas (blue line). The dashed line corresponds to the numerical fit implemented into EAMCC [Fub08]. 

 

Secondary particles created are followed in their path inside the accelerator and can in turn undergo 

collision processes creating new secondaries.  

It is assumed that neutral atoms and positive ions created via stripping reactions have initial velocities 

identical to that of their precursor negative ions. Electrons are supposed to be emitted at rest in the 

center of mass frame [Bru54] and their mass is corrected for the relativistic effect when they are 

accelerated to high energy. Concerning ionization, the kinetic energies of the hydrogen/deuterium 

molecules is negligibly small Ti≤ 0.2 eV (~ 2000 K) compared to the energy gain of these particles 

once accelerated by the electric field in the accelerator vessel. Consequently, electrons and positive 

molecular ions (H2
+
 or D2

+
) are assumed to be created at rest in the laboratory frame [Fub08]. 
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2.3.2 Electron impact on the accelerator grids 

The greatest power deposition on the accelerator grids is usually from electrons, created by stripping 

and ionization reactions illustrated in the previous subsection and co-extracted from the ion source 

[Dud12, Kra12]. 

The knowledge of the energy and spatial distribution of seconday and reflected electrons, which 

depend on the energy and angle of the incident electron [Mat74, Dar75], is essential for modeling the 

consequences of the impacts of electrons on the accelerator grids. 

The emission energy spectra of secondary electrons can be separated into three quasi-independent 

phenomena [Fur02]: (i) elastically reflected electrons with Ekb=E0, where Ekb is the reflected electron 

energy, i.e., electron reflection with almost no energy loss; (ii) backscattered electrons with an energy 

range 0 to E0, where E0 is the energy of the incident electron; (iii) true secondary electron production 

with a typically low-energy spectra extending from 0 to 50 eV. 

The first effect is negligible for energies greater than ~ 500 eV and it is not included in EAMCC 

[Fub08]. 

The modeling of backscattered electron processes is based on a semianalytical approach [Sta94]. The 

kinetic energy of backscattered electrons (Ekb) normalized to the incident electron energy E0 is 

calculated as: 
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where P is a random number between 0 and 1, 
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where ηb0= η( ϑ1 =0) is the probability for a primary electron to be backscattered at normal incidence. 

γ and K are:  
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Bϑ is calculated according to the formula:  

  
2

0210 )cos1(exp),,(

i
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(2.13)

 

where ϑ1, ϑ2 are the incidence and scattering angles. 

In Eqs. 2.9-2.13, p, B0, α and τ are parameters used to fit experimental data taken from [Mat74, Ste54], 

as reported in Tab.2.1. For intermediate energies, a linear interpolation is performed for obtaining their 

value. 

The probability ηb for a primary electron impacting the grid at an incidence angle ϑ1 to be 

backscattered is calculated considering the backscattered probability at normal incidence ηb0 [Dar75]: 

 )cos1(exp)( 1001   bbb A
 

(2.14)
 

where the coefficient Ab0 is calculated by fitting experimental data [Sta94] as: 
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E0 (keV) 2 10 20 370 

p
 

0.320 0.270 0.270 0.270 

B0
 

0.200 0.240 0.265 0.273 

α
 

2.200 2.200 2.200 2.200 

τ
 

0.510 0.412 0.365 0.350 

Tab. 2.1 Fitting parameters deduced from experimental measurements [Mat74, Ste54]. 

 

Backscattered electrons are re-emitted from the location at which the primary electron impacted the 

grid in a randomly chosen direction, assuming an isotropic scattering. 

The backscattered probability at normal incidence ηb0 on a copper target is taken from the ORNL 

Redbooks [Tho85] in the energy range 0.5–100 keV (ηb0 ~ 0.3). Data from [Wan05] have been used to 

cover the energy range between 100 keV and 1MeV. 

The true secondary electron production induced by primary electrons impact on grids grids is modeled 

in a similar manner as for the case of backscattering. The emission probability ηs(ϑ1) for an incidence 

angle ϑ1, also called secondary emission yield (SEY), is calculated as: 

  )cos1(exp)( 1001   sss A
 

(2.17)
 

where ηs0 is the SEY coefficient at normal incidence (ϑ1 =0). As0 is the coefficient associated with the 

angle dependency of true secondary emission yield.  

In Fig. 2.2 the values of ηs0, ηb0 and As0 as a function of the primary electron energy, considered in 

EAMCC, are plotted in the energy range relevant to neutral beam injectors. Because of the lack of 

realible information for E0< 0.5 keV and E0>10 keV, constant values for As0( E0< 0.5 keV)= As0( E0= 

0.5 keV) and As0( E0> 10 keV)= As0( E0= 10 keV) are assumed. 

 

 
Fig. 2.2 Backscattered coefficient ηb0 (red line), secondary emission yield ηs0 (black line) and coefficient As0 (blue line) are 

shown for a primary electron with energy E0 impacting a copper target at normal incidence ϑ1 =0 [Fub08]. 

 

The energy spectra of true secondary electrons is typically bell shaped, with low energy (0-50 eV). 

However, since inside the accelerator vessel the secondary electrons are accelerated by the 

electrostatic field, that energy is negligible: so in EAMCC true secondary electrons are assumed to be 

emitted from the grid surface at constant energy E0= 10 eV. 
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2.3.3 Heavy particle impact with accelerator grids 

Heavy ions and neutrals, produced by ion stripping and background gas ionization, may impact with 

the accelerator grids. These impacts with the grids may in turn result in the creation of secondary 

electrons together with the possibility of being backscattered. Because of their larger stopping power, 

the secondary emission of electrons is significantly greater than the one induced by primary electron 

impacts. The secondary emission yield for heavy particle impacts is calculated with the same 

expression used for the primary electrons in the previous subsection (Eq. 2.17): 

 )cos1(exp)( 1
)(

0
)(

01
)(

 
i

s
i

s
i

s A
 

(2.18)
 

where i is the index of the reaction: i=0 for neutrals (H
0
 or D

0
), i=- for negative ions (H

-
 or D

-
) and i=+ 

for positive ions (H2
+
 or D2

+
) which are impacting on the grids. Identical SEY coefficients at normal 

incidence (ϑ1= 0) are assumed for all heavy particles, that is ηs0
(0)

(E0)~ ηs0
(-)

 (E0)~ ηs0
(+)

(E0). The 

behaviour of this coefficient as a function of the energy of the incident ion is plotted in Fig. 2.3. 

The parameter As0
(i)

 was found to be close to 1.45, based on data taken from the ORNL Redbooks 

[Tho85] for protons impacting Ni targets. Because of the lack of information on copper (i.e. the 

material of which the accelerator grids are made) this value is considered in EAMCC for impacts on 

the accelerator grids and for all heavy particle impacts (i.e. also for negative ions and neutrals). 

Concerning secondary electron energy spectra, as explained in the previous subsection, it is assumed 

that electrons are emitted at a fixed energy, E0= 10 eV. 

Backscattering of heavy ions and neutrals off a grid is modeled according to data reported in [Tho85]. 

The angular dependence of the particle reflection coefficient ηb
ion

 is expressed by the formula: 









1

0
1

cos)1(
)(

ion
bion

b  
(2.19)

 

where ηb0
ion

 is the reflection coefficient at normal incidence (ϑ1 =0) used for all types of heavy 

particles and shown in Fig. 2.3. µ is a free parameter set to µ=0.5 [Fub08]. 

 

 
Fig. 2.3 Proton backscattering coefficient ηb0

ion (red line) and true secondary emission yield induced by proton impacts on 

copper targets ηs0
+ (blue line) are shown as a function of incident ion kinetic energy E0

+ and at normal incidence (ϑ1 =0). 

Dashed lines correspond to the numerical fit implemented into EAMCC [Fub08]. 
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2.4  Modifications introduced in EAMCC 

The size (in terms of memory) of the electric potential and the magnetic field maps of the accelerator 

required by EAMCC, due to computer’s limits, does not allow to extend the simulated domain over a 

single beamlet, considering a uniform mesh with an adequate pitch. In order to perform a multi-

beamlet analysis it is necessary to extend the size of the simulated domain limiting the increase of the 

size of the maps. In other words it is necessary to use maps with a finer mesh just in the regions where 

a more precise description of the electric and magnetic fields is required and to modify the code 

making it able to deal with an uneven mesh map. 

Different modifications have been introduced in the original version of EAMCC: first of all, the 

possibility to deal with a 3D potential map with the same pitch of the magnetic map. Both maps had to 

be with identical cubic mesh. The most recent modifications allowed to decouple the frame of 

reference of the potential map from the magnetic field one by defining a pitch for the potential map 

and another one for the magnetic field map. The grid of the two maps can be cubic or parallelepiped (a 

pitch along x,y and z directions had been introduced for both the potential and the magnetic field 

maps). Moreover, it has been added the possibility to simulate a larger region of the accelerator 

making the code able to treat a multi-aperture domain. 

The grid of the potential map is used by the code as a frame of reference for the calculation of the 

nodes which defines the cell containing the generic particle for every time-step and the evaluation of 

the potential and electric field in the same position.  

The same grid is used for the evaluation of the dimensions and position of the accelerator grids and 

their apertures (in the input file EAMCC requires to declare just the number and potential values of 

every grid, but the position is found comparing the declared values with the potential map). 

The introduction of a variable pitch along every direction led to several and scattered modifications of 

the code in the main program and sub-routines.  

The modified version of EAMCC reads a 3D potential map where the distance between two 

consecutive nodes (i.e. pitch) can vary along the horizontal, vertical and longitudinal directions. In 

order to realize a map with a variable pitch, the original 3D map made by OPERA code is divided into 

sub-maps of a sufficiently small size. Every sub-map is scanned, main parameters determined and 

according to the chosen pitches, reduced in size by discarding some points. After this phase, sub-maps 

are joined together and read by the code. In Fig. 2.4 the processing phase of the potential map is 

sketched (read3Dpot is the sub-routine of EAMCC where the potential map is read).  

 

 

Fig. 2.4 Processing the potential map in the modified version of EAMCC: sub-maps created by OPERA are reduced in size 

by discarding some points, then re-ordered and joined together. Two files are created: the first contains the electric potential 

values, the other one contains the main parameters of the reduced map (i.e. pitches along the three directions, length of 

segments with constant pitch along the three directions). These 2 files are read by a modified version of the sub-routine 

read3Dpot. 
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Chapter 3 

 
A multi-beamlet analysis of the MITICA accelerator 

 
The thermo-mechanical analysis and the mechanical design of the accelerator of MITICA (i.e. the full 

size prototype of the ITER neutral beam injector under construction at RFX [Gri12,Ant14], are based 

on the calculation of the power deposition induced by particle impacts. This calculation is performed 

by EAMCC [Fub08], a relativistic particle tracking code based on the Monte-Carlo method for 

describing collisions inside the accelerator, under prescribed electric and magnetic fields. The 

magnetic field maps are produced by 3D codes, while the electric field maps come from the 2D axi-

symmetric code SLACCAD [Pam91].  

So far, EAMCC has been used for performing single-beamlet analyses of the MITICA accelerator, 

under the hypothesis of axi-symmetric electric field and the total power deposited on the accelerator 

grids is obtained by scaling the results over the 1280 beamlets of the accelerator [Ago11, Zac12].  

For a more realistic simulation, a 3D multi-beamlet analysis, which allows to take into account the 

beamlet-beamlet repulsion and to consider other effects neglected under the hypothesis of axi-

symmetric beam (e.g. the influence of magnetic fields on the calculation of electric potential maps and 

the effect of steering plates called kerbs on the particle trajectories) should be considered. The size of 

3D potential maps in terms of computer’s memory, does not allow to consider a simulation domain 

larger than a single-beamlet, considering maps with a uniform and sufficiently fine mesh. 

For these reasons, a modified version of EAMCC, fully 3D, capable of modifying the mesh of the 3D 

maps and of dealing with uneven meshes has been developed [Fon14] (see chapter 2): a finer mesh is 

used just in the regions where a more detailed description of the fields is required.  

This chapter is dedicated to the simulation of the MITICA beam with EAMCC and the calculation of 

heat loads on the accelerator grids: after the description of the MITICA accelerator, a comparison 

between simulations performed with the original code and the modified version is presented, as a 

validation of the modifications introduced in the latter. Subsequently, the main results of a single-

beamlet analysis performed with the two versions of the code are shown and the differences between 

the 2D and the 3D simulations discussed. The last part of the chapter is dedicated to the multi-beamlet 

simulation of the accelerator.  

 

 

3.1 MITICA accelerator 

As described in chapter 1, a full scale prototype of the NBI ITER injector, called MITICA, is under 

construction at Consorzio RFX (Padova) [Gri12, Ant14]. The device is mainly composed of a cesium 

seeded negative deuterium/hydrogen ion source, an electrostatic accelerator where a 40 A beam of 

negative deuterons will be accelerated to 1 MV (870 keV for H
-
), a neutralizer which converts part of 

the beam into high energy neutrals, a residual ion dump devoted to electrostatically deflect the positive 

and negative ions still present in the beam to suitably cooled plates and a calorimeter.  

The MITICA accelerator (Fig. 3.1) consists of a plasma grid (PG) which separates the accelerator 

from the ion source, an extraction grid (EG) for focusing the extracted beam, four acceleration grids 

(AG1, AG2, AG3, AG4) and a grounded grid (GG). All the grids are 1600 mm high and 800 mm wide 

(divided into four segments of about 400 mm x 800 mm for beam alignment and manufacturing 

reasons). Each grid features 1280 apertures (320 per segment), arranged into 4x4 rectangular groups 

(beamlet groups) of 16x5 apertures, where the ion beamlets are extracted from the ion source and 

accelerated up to 1 MeV, forming an ion beam of the required 40 A at the exit of the grounded grid. 

D
-
 or H

-
 ions are extracted from the radio frequency plasma source (kept at -1 MV) by means of a 

voltage difference of 10 kV applied between the PG and the EG.  

The surface production of negative ions (i.e. one of the main ion production processes occurring in the 

source by which an atom emitted energetically from a metal surface with a low work function may 

leave in the form of negative ion [Bro04]) is increased by the reduction of the work function of the 
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metal surface and the most widely used method for doing it, is the deposition of a cesium layer on the 

PG surface [Bel74]. In order to enhance the cesium effect for negative ion surface generation, the PG 

is required to operate at a temperature of about 150 °C. 

 
Fig. 3.1 MITICA’s Isometric views of a vertical section with the indication of the nominal electric potentials of the grids and 

main dimensions (a), a horizontal section with the indication of the seven grids (b) and the grid aperture pattern (c) with the 

indication of grid segments and beamlet groups (dimensions in mm). 

 

The extracted negative ion beam is accelerated in five steps by the acceleration grids, which are biased 

(starting from the AG1 and ending with the GG) at the electric potentials of -800, -600, -400, -200 and 

0 kV. The gaps between these grids are kept as large as 88 mm, in order to hold the voltage with a 

reasonable safety margin [Koj12]. The potentials of the grids can be varied in a certain range for 

improving the beam collimation: in particular, varying the EG potential is an effective way to adjust 

the optics of the beam and minimize the beam divergence at the exit, i.e. to obtain a beam that is 

neither divergent nor convergent at the exit of the accelerator. 

A current of about 4 kA flows through the PG in the vertical direction, to provide a horizontal 

magnetic field, called filter field, that reduces the local electron density and so the number of co-

extracted electrons (a certain amount of electrons is extracted together with the negative ions from the 

source, due to the fact that they have the same charge) and the local electron temperature (and so the 

negative ion stripping rate). The same current also provides a magnetic field inside the accelerator, 

called long-range magnetic field to distinguish it from the short range magnetic field produced by the 

magnets embedded in the grids [Ago14]. 

The principal function of the permanent magnets embedded in the accelerator grids [Chi12, Chi14] is 

the suppression of the co-extracted and stripped electrons (i.e. electrons created inside the accelerator 

by means of stripping reactions that occur when a negative ion loses an electron by reacting with the 

background gas inside the accelerator, see chapter 2).  

Magnets embedded in the EG, named Co-extracted Electrons Suppression Magnets (CESM) are 

located horizontally between the aperture rows and are shown in Fig. 3.2(a) where a vertical section of 

the ion extraction region in correspondence of two grid apertures is depicted. CESM generate a 

magnetic field mainly along the vertical direction and alternated from row to row: the blue line in Fig. 

3.2(b) represents the typical symmetric double-swing profile of the vertical component (By) of this 

field, which assures that most of the co-extracted electrons will be deflected and will impinge on the 

upstream side of the EG. In the same figure it is shown the plasma meniscus position (i.e. the surface 

boundary between the plasma and the beam, from which ions are emitted) along the beamlet path, at 

the coordinate z=z0.  

CESM also deflect the negative ions and a remaining alternate horizontal deflection is generally 

measured at the accelerator exit, the so called Criss-Cross Deflection Effect (CCDE). In fact, as 
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explained in [Chi14], the horizontal ion deflection δ at the exit of the accelerator can be estimated as 

the ratio of the transverse velocity vx and axial velocity vz at z=zexit, according to the “paraxial 

approximation” formula: 

exit
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(3.1)
 

where q and m are the ion charge and mass, Uexit the electrostatic acceleration potential.  

The beamlet horizontal deflection at the accelerator exit is thus related to a non-zero integral of By 

from the intial to the final axial coordinates of the ion trajectories, i.e. the blue area in Fig. 3.2 (b).  

 

 
Fig. 3.2 Schematic vertical cross-section of the MITICA extraction region (a) showing the PG, EG and CESM embedded in 

the latter. Ions are extracted from the source and accelerated along the z direction. (b) Profile of the vertical magnetic field By 

along the beamlet axis for EG with CESM (blue line) and EG with CESM+ADCM (dashed black line) [Chi14]. 

 

This deflection is significantly reduced by adding in the EG an additional set of permanent magnets 

inserted in between the CESM. They are alternatively magnetized along the vertical direction and are 

called Asymmetric Deflection Compensation Magnets (ADCM). ADCM enhance the vertical 

component By on the upstream side of the EG and reduce it on the downstream side: the By profile 

becomes asymmetric, as indicated in Fig. 3.2(b) (dashed line). The asymmetry of the By profile along 

z can be adjusted by choosing the thickness of the ADCM along the horizontal direction (x) in order to 

cancel out the integral of By, as well as the magnetic deflection. 

For what concerns the stripping electron suppression, it has been adopted a combination of the long-

range field along x direction, produced by the current flowing through the PG and the related 

conductors and a short range field along y direction, produced by the Stripped Electrons Suppression 

Magnets (SESM) embedded in the AGs. No magnets are foreseen in the grounded grid as they do not 

significantly reduce the transmitted electron power [Esc13].  

The geometry layout of the described magnets is shown in Fig. 3.3 for a single beamlet group.  

The grids also contain cooling channels for exhausting the heat loads caused by impinging electrons 

and negative ions and neutrals having a large divergence. Due to their complex design (with very 

small cooling channels that run inside the grid and grooves for embedded magnets), the grids can be 

manufactured only by means of copper electrodeposition on a milled base plate made of pure copper 

[Ago14]. 

The grid segments are not flat but with a very small curvature that makes the beam aim towards the 

duct that connects the ITER NBI to the Tokamak chamber. Also in MITICA, the same curvature has 

been adopted (see Figs. 3.4 and 3.5), even though there is no duct and the beam is fully absorbed by 

the calorimeter.  
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Fig. 3.3 Layout and polarization of grid embedded magnets of a MITICA beamlet group [Ago14]. 

 

 
Fig. 3.4 Horizontal aiming scheme of the MITICA accelerator with the indication of kerbs location; the curvature of the grids 

is magnified for clarity [Ago14]. 
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Fig. 3.5 Vertical aiming scheme of the MITICA accelerator; the curvature of the grids is magnified for clarity [Ago14]. 

 

The grids also features kerbs (i.e. plates for shaping the electric field placed around the beam groups 

on the backstream surfaces of the extraction and acceleration grids, indicated in Figs. 3.4 and 3.5) for 

compensating the beamlet-beamlet repulsion and providing a calibrated convergent aiming also inside 

each beamlet group (every group is focused toward a focal point at 7.2 m from the GG) [Vel14]. 

The grid aperture positions along the beamlet path are aligned to the expected position of the beamlet 

center (aperture centering), considering the long-range magnetic field, the beam aiming and the 

expected dilatation of the grids due to the working temperature [Esc13]. 

 

3.2 Reference conditions 

EAMCC code [Fub08] and its modified version (henceforth called EAMCC-mod for the sake of 

simplicity), fully 3D, capable of modifying the mesh of the 3D maps and of dealing with uneven 

meshes [Fon14] have been introduced in the second chapter of this thesis work.  

Co-extracted electrons from the ion source, ion stripping, ionization of the background gas and the 

production of electrons by direct particle impact on the grids are the cause of a non-negligible heat 

load on the accelerator grids and they are considered in the following simulations for the calculation of 

the power density deposited on grids and transmitted. The current density considered for ion and co-

extracted electrons for the calculation of the power loads is 293 A/m
2
, while the beam halo current 

(i.e. the fraction of beam particles extracted from the source with a significantly larger divergence than 

the main beam) [Hem96] has not been considered. 

It is important to notice that all the calculations of thermal loads are referred to 1280 beamlets and that 

grids are considered as a continuous array of 20 x 64 apertures, neglecting the distance between 

beamlet groups (this aspect will be considered only in the multi-beamlet analysis). 

The reference geometry configuration of the accelerator is the so called ‘EQ_GAPS_41’ [Ago14]; in 

Fig. 3.6 a vertical section of the single-aperture domain is shown and the main geometry parameters, 

as well as the voltage applied to the grids, indicated.  

The 2D electric potential map for EAMCC has been calculated by SLACCAD [Pam91] considering a 

beam of 400 rays with an initial energy of 3 eV, a mesh size of 0.250 mm and sharp edges on the grid 

apertures. The 3D potential maps for EAMCC-mod are calculated by OPERA [Ope14] under the same 

conditions, exception done for the shape of the aperture edges which are modeled more realistically 

(i.e. chamfered edges).  

Two magnetic fields are considered: the horizontal long-range field calculated by Ansys [Ans14] and 

the field produced by permanent magnets incorporated in the grids (CESM, ADCM and SESM) 

calculated by OPERA.  
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Fig. 3.6 Vertical section of a single aperture of the accelerator, voltages applied to the grids and beam trajectories calculated 

with SLACCAD (dimensions are in mm). 

 

 
Fig. 3.7 Density profile of the background gas inside the accelerator path considered for simulations. 

 

The density profile of the background gas along the accelerator path considered for simulations is 

calculated by AVOCADO code [Sar13] and plotted as a function of the longitudinal coordinate (z) in 

Fig. 3.7. 
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3.3 Comparison between EAMCC and EAMCC-mod 

In order to evaluate if the modifications introduced in EAMCC significantly affects the simulation 

results, some comparisons with the original code have been carried out.  

Firstly, for excluding differences due to the use of a different Poisson solver (SLACCAD is a 2D axi-

symmetric Poisson solver while OPERA utilizes a 3D FEM solver [Ope14]), the map for EAMCC-

mod has been obtained by revolving the 2D SLACCAD map about the longitudinal axis (z).  

A second comparison has been done considering a 3D map made by OPERA, without including the 

magnetic fields in the calculation of the potential map, since this effect cannot be considered in the 

original code.  

Simulations consist of 10
6
 macro-particles of D

-
 (which represent the beam core) and an equal number 

of e
-
 (for considering an equivalent current of co-extracted electrons from the ion source).  

The pitch of the 2D SLACCAD map is 0.250 mm (the same for the revolved 3D map). The 3D map 

made by OPERA has a constant pitch of dx= dy= 0.250 mm along the horizontal (x) and vertical (y) 

directions, while along the beam path (z) the pitch is dz= 0.250 mm until the exit of the EG and in 

correspondence of the other grids (±5 mm), while in the acceleration gaps the considered pitch along z 

is dz= 4 mm. The horizontal long-range magnetic field and the magnetic field produced by permanent 

magnets incorporated in the acceleration grids are described by two magnetic maps with a uniform 

mesh and a pitch of 1 mm. 
 

 

Total thermal power deposited on accelerator grids (kW) 

PG EG AG1 AG2 AG3 AG4 GG 

2D SLAC 0.2 534.2 1480.2 1395.6 785.4 494.8 380.2 

3D SLAC 0.2 544.6 1378.5 1294.0 719.4 462.2 405.1 

3D OPERA 0.2 591.3 1406.0 1356.5 731.5 492.4 381.8 

3D OPERA B 0.2 573.5 1434.2 1301.8 760.6 486.5 403.4 

Tab. 3.1 Total power loads (for 1280 apertures, considering a beam of D- and co-extracted e-) on the accelerator grids 

calculated with EAMCC (2D SLAC) and with EAMCC-mod with three different maps: a 3D map obtained by revolving the 

original 2D SLACCAD map (3D SLAC), a 3D map calculated by OPERA without considering any magnetic fields (3D 

OPERA) and a map calculated with the same code considering magnetic fields (3D OPERA B). 

 

 

Fig. 3.8 Total power loads (for 1280 apertures, considering a beam of D- and co-extracted e-) on the accelerator grids 

calculated with EAMCC (2D SLAC) and with EAMCC-mod with three different maps: a 3D map obtained by revolving the 

original 2D SLACCAD map (3D SLAC), a 3D map calculated by OPERA without considering any magnetic fields (3D 

OPERA) and a map calculated with the same code considering magnetic fields (3D OPERA B). 
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The total power deposition calculated by EAMCC (labeled “2D SLAC”), by EAMCC-mod with the 

revolved map (“3D SLAC”) and by EAMCC-mod with OPERA maps without and with including 

(respectively labeled “3D OPERA” and “3D OPERA B”) the magnetic field in the calculation of the 

potential map are reported in Tab. 3.1 and plotted in Fig. 3.8. The last case will be studied in detail in 

the next paragraph and it has been considered in this comparison for completeness. 

The calculations include the power deposition on grids due to secondary particles created by the beam 

core inside the accelerator (stripped electrons, electrons emitted from grid surfaces, D
0
,D

+
,D2

+
) and to 

co-extracted electrons. Loads on the plasma grid are negligible, and henceforth no longer considered. 

 
Fig. 3.9 Normalized values (to the power calculated by EAMCC) of the loads resulting from the simulation with EAMCC-

mod for the three described cases. 
 

The agreement between the 2D SLAC and 3D SLAC simulations seems encouraging: the maximum 

variation is ~ 7%, mainly due to the fact that the two codes have non negligible differences (see 

chapter 2), for instance in the calculation of collisions and in the determination of the geometry of 

grids.  

The comparison with the third simulation (3D OPERA) reports a maximum difference of 11% (Fig. 

3.9) in the case of the extraction grid. The power deposition on this grid is strongly dependent on the 

plasma meniscus (i.e. the boundary between the plasma and the beam, where the potential is ~ 0 V) 

calculation, perfomed with the two different Poisson solvers and this could explain the difference. In 

fact, the meniscus position, its shape and the deepness of its curvature (with respect to the PG plane) 

play an important role for the ion beam formation and the beam optics as it defines the velocity 

starting angle of the extracted particles [Moc14].  

These results are useful for evaluating how much the modifications introduced in the code and the use 

of a different Poisson solver can influence the calculation of the heat loads and also allow us to state 

that modifying the pitch of the potential map in the regions where there are not steep potential 

variations, does not affect significantly the results of the simulations. 

 

3.4 3D effects on a single-beamlet analysis 

Since a 3D Poisson solver is used by OPERA for the calculation of the electric potential inside the 

accelerator, it is possible to consider in this calculation the influence of the magnetic fields on particle 

trajectories and the subsequent modification of the electric charge distribution. As previously said, this 

aspect is neglected under the hypothesis of axi-symmetric beam and so far, it has not been considered 

in the simulations with EAMCC. An assessment of the importance of this effect on the results of the 

simulations can be achieved by comparing in detail the two simulations performed by EAMCC-mod 
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and introduced in the previous paragraph where the potential maps are calculated without and with the 

presence of the magnetic fields (respectively labeled “3D OPERA” and “3D OPERA B”). 
 

 
Fig. 3.10 Power deposition (considering a beam of D- and co-extracted e-) on the upstream surface of the EG (a), AG1 (b), 

AG2 (c), AG3 (d), AG4 (e), GG(f) and power transmitted at the exit of the GG (g) neglecting magnetic fields in the 

calculation of the potential map (simulation 3D OPERA). 

 

 
Fig. 3.11 Power deposition (considering a beam of D- and co-extracted e-) on the upstream surface of the EG (a), AG1 (b), 

AG2 (c), AG3 (d), AG4 (e), GG(f) and power transmitted at the exit of the GG (g) considering magnetic fields in the 

calculation of the potential map (simulation 3D OPERA B). 

 

In Figs. 3.10 and 3.11 the density of the power deposited on the upstream surface of the grids is 

plotted for EG (a), AG1 (b), AG2 (c), AG3 (d), AG4 (e), GG (f), respectively for the case without and 
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with considering the magnetic field for the calculation of the potential map. Figs. 3.10(g) and 3.11(g) 

show the power density at the exit of the GG.  

The total power loads resulting from the simulation 3D OPERA B (for a beam of D
-
 and co-extracted 

e
-
) are shown in Fig. 3.12, where the fraction deposited on the upstream (front) and downstream (back) 

faces and on the internal surfaces of the grid apertures (inside) are distinguished.  

 

Fig. 3.12 Power loads (considering a beam of D- and co-extracted e-) on the grids on the upstream surface (front), inside 

apertures (inside) and on the downstream surface (back) for the simulation OPERA 3D B where magnetic fields are 

considered in the calculation of the electric potential map.  

 

 
Fig. 3.13 Power load ratio between values calculated with and without considering magnetic fields in the calculation of the 

potential map. 

 

The effect of considering magnetic fields in the calculation of the potential map in terms of power 

deposition can be seen in Fig. 3.13 where the ratio between values obtained by the simulation 3D 

OPERA B and 3D OPERA is plotted. The frontal deposition decreases for EG, AG1, AG2 and AG4, 
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do not change for AG3 while increases for the last grid, as also confirmed by the plots of the power 

density previously described. The internal deposition is higher if the effect of the magnetic fields on 

the electric potential is considered and the maximum increase is about 14% for AG1. 

Considering results of these simulations, it is possible to state that the effect of the two magnetic fields 

on the calculation of the potential map brings to a re-distribution of a fraction of the power deposited 

on grids (~ 10%) between the upstream surface of the grids and the internal part of apertures, while the 

variation of the total power deposited on grids is less than 5%.  

The power density profile of the transmitted beam, which includes also all secondary particles 

produced by the beam core and a negligible part of co-extracted electrons (Fig. 3.11 g) assumes a 

rounded and double peaked shape, more symmetric than the triangular-shaped beam of the first 

simulation (Fig. 3.10 g) that is caused by the non-self consistency in the calculation of trajectories in 

EAMCC-mod, when the magnetic fields are neglected. 

 

3.5 Multi-beamlet analysis 

A multi-beamlet analysis of the accelerator allows to consider the space-charge interaction between 

the beamlets inside a beam group (which causes an outward deflection) and the steering effect of kerbs 

placed around the beam groups on the backstream surfaces of the extraction and acceleration grids 

(EG, AG1, AG2, AG3, AG4).  

Kerbs are used for counteracting the beamlet-beamlet repulsion and for providing the horizontal 

steering of the beamlets of every group toward a focal point at 7.2 m from the GG. The magnitude of 

the electric field they produce varies along the horizontal width of the beam group, so that the more 

peripheral beamlets experience a stronger inward deflection than inner beamlets (the central beamlets 

is undeflected) [Vel14].  

Considering a multi-aperture domain allows also to take into account the aperture centering: the 

aperture centers are aligned to the expected position of the beam center and this brings to converging 

aperture axes in every beam group as shown in Fig. 3.14 where trajectories of 5 D
-
 beamlets resulting 

from a multi-beamlet simulation (the second described later in this paragraph) are plotted.  

The last consideration regards the metallic interspaces between beam groups, so far neglected since 

grids were considered as a continuous array of 20 x 64 apertures: a multi-beamlet analysis allows to 

account for the distribution of beamlets in beamlet groups with the real distances between them. 

Fig. 3.14 Trajectories of 1000 D- macro-particles in a 5-beamlet simulation. 
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For evaluating the relevance of these effects in the calculation of the heat loads, the simulated domain 

has been extended over 5 apertures (i.e. the width of a beam group), the central one being the aperture 

considered for the single-beamlet simulations.  

The potential map has been calculated by OPERA, the size of the mesh exported from OPERA is 

0.250 mm along the horizontal (x) and vertical (y) directions, while along the beam path (z) the pitch 

is 0.250 mm until the exit of the EG and in the region surrounding the other grids (±5 mm). In the 

acceleration gaps the considered pitch along z is 4 mm. The two magnetic maps have a uniform mesh 

and a pitch of 1 mm. The pitch of the potential map along x and y direction have not been enlarged 

because the size (in terms of memory) of the resulting map was already sufficiently small to be 

processed. The calculation of the potential map in OPERA has been done considering the effects of 

the magnetic fields on the particle trajectories. 

Three simulations have been performed considering 5·10
6
 macro-particles of D

-
 and an equal number 

of e
-
. The total power resulting from these simulations, compared with the single-beamlet case 

described in the previous subsection (3D OPERA B), is reported in Tab. 3.2 and shown in Fig. 3.15.  

 

Total thermal power deposited on accelerator grids (kW) 

 3D OPERA B array groups wall 

EG 573.5 569.5 576.1 551.7 

AG1 1434.2 1306.8 1361.7 1131.7 

AG2 1301.8 1563.5 1559.8 1059.7 

AG3 760.6 997.9 735.1 440.4 

AG4 486.5 599.9 514.9 354.8 

GG 403.4 540.0 443.4 324.3 

Tab. 3.2 Power loads (for 1280 apertures, considering a beam of D- and co-extracted e-) on the accelerator grids resulting 

from the single-beamlet simulation (3D OPERA B) and the 5-beamlet simulation without considering the horizontal distance 

between beam groups (labeled “array”), considering it (labeled “groups”) and considering an infinite distance between them  

(labeled “wall”). 

 

 

Fig. 3.15 Power loads (for 1280 apertures, considering a beam of D- and co-extracted e-) on the accelerator grids resulting 

from the single-beamlet simulation (3D OPERA B) and the 5-beamlet simulation without considering the horizontal distance 

between beam groups (labeled “array”), considering it (labeled “groups”) and considering an infinite distance between them 

(labeled “wall”). 
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The first multi-aperture simulation (labeled “array”) keeps the hypothesis of continuous array of 

apertures to allow a comparison with the previous single-beamlet simulations, the second (“groups”) 

considers the real horizontal distance between beam groups and in the third (“wall”) this distance is 

considered infinite, which means that every particle that exits from the lateral boundary of the 5-

apertures domain is considered stopped in the interspaces between beam groups.  

In Fig. 3.16 the normalized power values (to the single-beamlet results) for the described multi-

beamlet simulations are plotted. 

 

Fig. 3.16 Power load ratio between results of the 5-beamlet and the single-beamlet simulations. 

 

While for the single-beamlet simulation the plasma meniscus has been calculated by the OPERA 3D 

Poisson solver, in the case of 5 beamlets the convergence criterion of OPERA is achieved only if the 5 

menisci are imposed as constraints for the calculation of the potential map, i.e. spherical caps with null 

potential. Shape and position of these surfaces are an approximation of shape and position of the 

plasma meniscus calculated in the single-beamlet case. 

In the first multi-beamlet simulation, (that can be directly compared with the single-beamlet case 

thanks to the hypothesis of continuous array of apertures), the power deposition increases significantly 

for AG2, AG3, AG4 and GG, up to ~ 35%. The contributions to the increase of power loads of the 

meniscus approximation used for reaching convergence in OPERA (not observed in the case of single-

beamlet domain) and of the multi-aperture effects considered in this simulation need to be quantified.  

 

Thermal power deposited on accelerator grids (kW) 

 EG AG1 AG2 AG3 AG4 GG 

D- 0.0 0.0 0.0 0.0 0.0 54.8 

D0 0.7 20.2 11.5 24.4 52.8 86.9 

D+ 8.0 4.9 3.3 1.1 0.3 0.1 

D2+ 39.6 17.0 14.1 3.7 1.2 0.0 

Secondary electrons 11.7 1224.0 1481.9 700.0 460.3 301.7 

Co-extracted electrons 516.1 95.6 49.1 5.9 0.3 0.0 

Total power 576.1 1361.7 1559.8 735.1 514.9 443.4 

Tab. 3.3 Power loads for each particle species impinging on accelerator grids resulting from the simulation labeled “groups”. 
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In the second simulation the domain has been extended up to half horizontal distance between beamlet 

groups on the left and on the right of the domain for considering the fact that stray particles 

(electrons), before reaching another beam group must cross a considerable interspaces and an 

important fraction of them is stopped in this space; this may change the power deposition significantly, 

since in the approximation of continuous array the stray particles (that are immediately re-injected 

from the opposite side of the domain) can pass across an aperture and gain more energy before being 

dumped. For this reason heat loads, also reported in Tab. 3.3 for each particle species, are expected to 

be lower than in the first simulation, as observed.  

In the third simulation, every stray electron is stopped in the grid interspaces and this explains why 

heat loads are the lowest of the three cases.  

 
Fig. 3.17 Power density (considering a beam of D- and co-extracted e-) on the upstream surface of the EG (a), AG1 (b), AG2 

(c), AG3 (d), AG4 (e), GG (f) and transmitted beam at the exit of the GG (g) resulting from the 5 beamlet simulation. 
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In Fig. 3.17 the power density on the upstream surface of the EG (a), AG1 (b), AG2 (c), AG3 (d), 

AG4 (e), GG (f) and the density of the transmitted power at the exit of the GG (g) are plotted for the 

second simulation, where distances between beam groups are considered. Hot spots and the typical 

pattern of the power deposition observed in the single-beamlet simulations are present also in the 

multi-beamlet results, exception done for the half rings on the right side of apertures in the EG (Fig. 

3.17 a). These are mainly caused by co-extracted electrons and they are observed in every multi-

aperture simulation we carried out, also in some attempts by replacing in the potential map the 5 

spherical cap menisci with the calculated meniscus of the single-beamlet simulation. This aspect is 

currently being investigated.  

The shape of the 5 transmitted beams (Fig. 3.17 g) shows the combined effect of magnetic fields and 

kerbs: as confirmed by simulations performed by OPERA, beamlets on the right side, especially the 

outermost, have a vertical elongation due to the fact that the magnetic field produced by permanent 

magnets and kerbs act on the same direction pushing particles located at the beam right edge to the 

left. On the left side of the 5-apertures domain, kerbs push particles to the right while the magnetic 

field to the left and the beamlet preserve its almost circular shape.  

 

3.6 Conclusions and future works 

A multi-beamlet analysis of the MITICA accelerator allows to perform a more realistic simulation of 

the particle transport and of the main processes that generate secondary particles relevant for the 

evaluation of the heat loads on the accelerator grids. For this reason, a modified version of EAMCC, 

fully 3D, capable of modifying the mesh of the 3D potential maps and of dealing with uneven meshes 

has been developed. Some characteristics of the accelerator, so far neglected for the calculation of heat 

loads, have been included in simulations presented in this paper.  

In order to partially validate modifications introduced in EAMCC, two simulations performed with the 

original code and the modified version have been compared: the maximum difference of total power 

load on grids is ~ 7%, mainly due to the fact EAMCC-mod implements new routines for the 

calculation of collisions and the determination of the geometry of grids. The effect of the two 

magnetic fields on the calculation of the potential map seems to cause a re-distribution of a fraction of 

the power deposited on grids (~ 10%) between the upstream surface of the grids and the internal part 

of apertures, while the variation of the total power deposited on grids is less than 5%. 

The space-charge interaction between beamlets inside a beam group, the steering effect of kerbs and 

the aperture centering considered in the multi-beamlet simulations, brings to an increase of power 

deposition for AG2, AG3, AG4 and GG, up to ~ 35% with respect to the single-beamlet case.  

The increase of power loads due to the approximation used for reaching convergence in OPERA for 

the calculation of the potential map (not observed in the case of single-beamlet with the same 

conditions) will be investigated in the future with the purpose to better quantify the amount of power 

increse directly caused by the multi-beamlet effects. In the simulation labeled “groups”, the most 

realistic carried out, it has been included the fact that stray particles (electrons), before reaching 

another beam group must cross a considerable interspaces, an important fraction of them is stopped in 

this space and the power deposition is reduced as expected. 
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Chapter 4 

 
Particle transport and heat loads in NIO1 

 
A versatile negative ion source named NIO1 (Negative Ion Optimization phase 1) of a moderate size 

(130 mA total divided in 9 beamlets, 60 kV) has been developed and installed at Consorzio RFX, in 

collaboration with INFN-LNL [Cav10]. Such a small scale and versatile device will allow a larger 

experimental flexibility than SPIDER and MITICA, very beneficial for studying several important 

issues related to the beam extraction, optics and optimization, testing components and for training 

purposes [Cav10]. It will also contribute to benchmark numerical simulation tools, including the 

modified version of EAMCC described in chapter 2 and the dedicated tomography code presented in 

chapter 5 of the present thesis work. 

NIO1 is a modular H
-
 ion source, based on an inductively coupled plasma (ICP) [Cav12], followed by 

a compact accelerating column and a beam diagnostic chamber. A major difference with other H
-
 ICP 

sources is that NIO1 aims at continuous operation which implies a detailed thermo-mechanical 

analysis of the beam-facing components, in particular the four accelerator grids. 

Together with the first operation of NIO1, the design of a new ion extraction system was started for 

optimizing the beam optics and exploring alternative electrostatic and magnetic configurations 

[Vel14]. In particular, the accelerator will be modified by completely replacing the extraction grid: 

the new electrode will feature larger apertures with an increase chamfer at the hole exit and the 

realization of other slots in between apertures, to place additional magnets, useful to optimize the 

electron filtering and residual ion deflection.  

A fully 3D analysis of the entire NIO1 beam has been performed for the first time by EAMCC-mod 

[Fon14], considering the new extraction grid. The H
-
 beam core, the co-extracted electrons and the 

beam halo fraction have been simulated for determining the heat loads on grids and the power 

transmitted out of the accelerator. The main results are presented in this chapter, after the description 

of the device, the proposed upgrade and the reference conditions for the simulations. 

 

 

4.1 The NIO1 experiment at RFX 

NIO1 is a compact radio frequency (rf) ion source jointly developed by Consorzio RFX and INFN-

LNL [Cav10], installed at RFX and currently in its initial operation phase. It is designed to generate a 

60 kV-135 mA hydrogen negative ion beam, composed of 3 x 3 beamlets over an area of about 40 x 

40 mm
2
.  

 
Fig. 4.1 Isometric view of NIO1 with the indication of the main components. 
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In Fig. 4.1 an isometric view of the device is shown: it is mainly composed of a cesium seeded rf 

source, an electrostatic accelerator where the 9 beamlets will be accelerated up to 60 keV, a 350 mm 

diameter diagnostic chamber with several ports for diagnostics [Zan14] and pumping, and a 

calorimetric beam dump [Cav12]. 

An external rf coil, placed approximately halfway between the source rear cover and the extraction 

area, feeded by the 2 MHz/2500 W radiofrequency generator, creates the plasma in the cylindrical 

chamber of 50 mm radius and 200 mm long shown in Fig. 4.2 (a). The chamber is surrounded by 

magnets forming multipoles to improve the plasma confinement, where H
- 
ions are created by volume 

processes [Bac79, Bac06] and surface conversion of H
+
 or H

0
 [Bro04] enhanced by cesium surface 

coverage [Bel74], and extracted from the 9 apertures of the plasma grid (PG).  

There are three acceleration grids (see Fig. 4.2 a), named plasma grid (PG) at -60 kV, extraction grid 

(EG) at -52 kV and post acceleration grid (PA) at the ground voltage, followed by a repeller electrode 

(REP) for a better control of the space charge compensation of the extracted beam [Cav10] and to 

prevent the drain of positive ions from the drift region [Vel14]. The accelerator is about 58 mm long, 

from the exit of the PG to the exit of the repeller. 

PG apertures are arranged in a square lattice with a spacing Lx= Ly= 14 mm and an extraction radius 

r= 3.8 mm. The gap distance g between the PG and EG can be adjusted in the range g= 5 ± 1 mm and 

it is actually set to the middle position. EG has an entrance radius r1= 3.2 mm, exit radius r2= 4.1 mm 

and a thickness of 10.3 mm (d1= 8.8 mm, d2= 1.5 mm in Fig. 4.2 b); PA has r1= 3.5 mm and r2= 4.4 

mm, while repeller has a constant radius r1= r2= 4.4 mm. 

 

 
Fig. 4.2 (a) Vertical section of the NIO1 ion source and accelerator assembly. (b) Zoom on the ion extraction region enclosed 

by the red rectangle in (a) showing the shape of the plasma grid (PG) and extraction grid (EG) [Vel14]. 

 

All grids are realized by electro-deposition of copper and successive milling, and include empty 

channels for water cooling (EG and PA) or water/air heating (PG temperature will be regulated around 

400 K at which the cesium coverage needed for the H
-
 surface production seems to be optimal). 

In the EG four array of CESM magnets (Co-extracted Electron Suppression Magnets, see Fig. 4.2 b) 

are embedded to prevent the acceleration of co-extracted electrons, with magnetization along z, as 

usual in standard negative ion sources and in the original MITICA design. CESM produces a magnetic 

field having the component Bx that is negligible compared to By and Bz at beamlet position. Since 

beam velocity vz is much greater than vx and vy, beam deflection is mainly due to By and it is in x 

direction. As respect to periodicity, each row of beamlets is deflected in opposite directions. 

In the PA, magnets are incorporated to support the disposal of stripped electrons and partially recover 

the primary beam alignment after the deflection induced by the EG magnets. Soft iron bars are placed 
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parallel to the EG and PA external magnets to form a kind of magnetic mirror that virtually 

approximates an infinite periodicity for the B field, as shown in Fig. 4.2(b). 

NIO1 design emphasizes modularity, for quick repair and upgrading of parts, so that source and 

accelerator are a tower of disk assemblies suitably insulated and connected by O-rings.  

It will operate in continuous mode and in conditions similar to those foreseen for the larger ion sources 

of the Neutral Beam Injectors for ITER, exploting its flexibility to address the several still open 

important issues related to beam extraction, optics, and performance optimization. 

 

4.2 Upgrade of the ion extractor and reference conditions for simulations 

The first set of NIO1 grids described in the previous paragraph was completed, installed in the source 

and tested. At the same time, an upgrade of the extraction system was studied for the beam optics 

improvement and for exploring alternative magnetic configurations. It has been proposed a 

modification of the accelerator by completely replacing the EG [Vel14], supported by the theoretical 

advantage of enlarging the EG apertures with an increase chamfer at the hole exit. The entrance radius 

r1 has been increased from 3.2 to 3.5 mm, the exit radius r2 from 4.1 to 5 mm, keeping the same grid 

thickness. As a consequence, a deeper penetration of the electric field downstream of the EG apertures 

will enhance the converging lens effect of the electrode, reducing the beam divergence, with a positive 

effect on the beam optics [Vel14]. 

Moreover, the realization of vertical slots in the EG rear will allow to implement more sophisticated 

magnet configurations for reducing the ion beam deflection caused by CESM (see chapter 3 for details 

on CESM and ion deflection). A possible configuration that gave satisfactory results in terms of 

electron suppression and compensation of the ion beam deflection is obtained by combining CESM 

with another set of magnets embedded in the vertical slots of the new EG, with magnetization along 

the y axis, as shown in Fig. 4.3. 

 

 
Fig. 4.3 Embedded magnets in the EG considered for simulations 

 

The magnetic field map for EAMCC simulations is calculated by OPERA-TOSCA [Ope14] 

considering the configuration shown in Fig. 4.3, exported with a uniform mesh and a pitch of 1 mm. 

The 3D electric potential map is calculated by OPERA-SCALA [Ope14] accounting for the new 

extraction grid geometry and grid voltages of -60 kV for the PG, -54 kV for the EG, 0V for PA and 

REP. With respect to the nominal value of 8 kV, the extraction voltage (i.e. the difference between the 

voltage of EG and PG) has been reduced from 8 to 6 kV since it results beneficial in the new design of 

the extractor [Vel14]. The potential map has a size of 44 x 44 x 70 mm; it has a constant pitch of dx= 

dy= 0.250 mm along the horizontal (x) and vertical (y) directions. Along the beam path (z) the pitch is 

variable: dz= 0.250 mm until the exit of the EG and in correspondence of the PA and REP (±5 mm), 

and dz= 0.5 mm in the acceleration gap between EG and PA.  
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Thanks to the capability of EAMCC-mod of modifying the uniform mesh of the electric potential 

maps, it is also possible to extend the simulation domain by using a larger pitch in the regions where 

the electric field variations are limited, as done for the determination of the beam profile on the 

tomography plane (at 500 mm from the REP grid) for testing the tomography code developed for 

NIO1 (presented in chapter 5). Moreover, enlarging the pitch of the potential map along x and y 

directions in the area surrounding the accelerator grids it is possible to extend the simulation domain 

over a larger plane and follow the stray electrons that exit from the side of the domain, evaluating 

thermal loads on other beam-facing components.  

 

Fig. 4.4 Density profile of the background gas inside the NIO1 accelerator. 

 

The density profile of the background gas along the accelerator considered for simulations is 

calculated by AVOCADO code [Sar13] and plotted as a function of the longitudinal coordinate z in 

Fig. 4.4. 

In the next paragraphs, simulations of H
-
 beam core, co-extracted electrons and beam halo (i.e. the 

fraction of beam particles extracted from the source with a significantly larger divergence than the 

main beam), carried out for the determination of the heat loads on the accelerator grids, are presented.  

 

4.3 Beam core and co-extracted electrons 

Simulations consist of 9 milions of H
-
 macro-particles representing the beam core and an equal 

number of electrons co-extracted from the ion source.  

The extraction current density considered for ions is JH= 340 A/m
2
, a typical value for cesiated sources 

[Dud12, Kra12]. We may expect as many as one electron per extracted ion [Tra98, Spe06], so an equal 

value of current density is assumed for co-extracted electrons, Je= 340 A/m
2
. The extraction radius 

being Rext= 3.8 mm, a current of 15.4 mA of H
-
 and an equal current of electrons are extracted from 

every PG aperture.  

In Tab. 4.1 the calculated power deposited on the accelerator grids (due to particle impacts on the 

frontal and backstream grid surfaces, and inside grid apertures) and the power transmitted out of the 

accelerator, are reported for every particle type. The power deposition on the accelerator grids is also 

shown in Fig. 4.5.  

The highest heat loads are deposited on the EG (803 W) and PA (484 W), for which a water cooling 

system is foreseen; 52 W are calculated for the repeller and 0.5 W for the plasma grid.  

The power deposited on the grids by H
-
 primary particles is negligible and about the 84% of the beam 

is transmitted out of the accelerator, carrying a power of about 6.97 kW (i.e. ~ 774 W per beamlet). 
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The most important process of H
-
 destruction is the ion stripping (i.e. the loss of one electron) inside 

the accelerator vessel due to collisions with the residual hydrogen gas which comes from the ion 

source: the 15.5% of H
-
 ions undergo stripping reactions and are converted to neutrals (H

0
). Such 

neutral particles deposit ~ 20 W on the PA with a marginal effect, if compared with the power load 

given by electrons, while the power transmitted toward the diagnostic chamber is significative, about 

410 W. 

 

 
 Power deposited on grids (W) Power transmitted (W)  

 
PG EG PA REP  

H
-
 0.0 0.0 0.0 0.0 6971.6 

H
0
 0.0 0.3 19.6 0.2 409.8 

H
+
 0.1 1.7 0.0 0.0 15.1 

H2
+
 0.4 4.6 0.0 0.0 0.0 

Secondary e
-
  0.0 19.4 244.9 24.4 143.5 

Co-extracted e
-
 0.0 777.0 219.5 27.6 16.1 

Total power 0.5 803.0 484.0 52.2 7556.1 

Tab.4.1 Power loads on the accelerator grids and transmitted power out of the accelerator for the different particle types 

resulting from the simulations of the H- beam core and the co-extracted electrons. 

 

 

Fig. 4.5 Power loads on the accelerator grids for the different particle types resulting from the simulations of the H- beam 

core and the co-extracted electrons. 

 

Concerning positive charges, H
+
 are created by double stripping of H

-
 ions and represent just the 

0.64% of the beam core particles, while positive molecular ions (H2
+
) originates from ionization of the 

background gas by collisions with neutrals and negative ions and represent the 1.9 % of the beam core 

particles. Due to their charge, positive ions are mostly accelerated back toward the ion source and a 

fraction of them impinges on the back of the EG and PG grids depositing a negligigle heat load: the 

maximum power density, about 30 W/m
2
, is calculated for the backstream surface of the extraction 

grid. The rest of the positive charges accelerated back, reaches the source delivering a power of ~ 83 

W. Plasma grid apertures act as converging lenses on positive charges [Fub08] and a power density 

peak of about 350 kW/m
2
 is expected to be deposited on the back plate of the plasma source. Further 

investigations concerning the focusing effect of the PG on these charges and the effects on the source 

back plate will be carried out in the future. A fraction of H
+
 particles, probably produced near the 



46 

 

acceleration exit, is transmitted toward the diagnostic chamber carrying a power of 15 W out of the 

accelerator. 

 

 
Fig. 4.6 Side view of NIO1 accelerator: blue lines represent the trajectories of 3000 H- particles of the beam core; red lines 

are the trajectories of secondary electrons, mainly produced by ion stripping. 
 

 
Fig. 4.7 Isometric view of NIO1 accelerator: blue lines represent the trajectories of 3000 H- particles of the beam core; red 

lines are the trajectories of secondary electrons, mainly produced by ion stripping. 
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Fig. 4.8 Top view of NIO1 accelerator. 3000 co-extracted electron trajectories are plotted to show the deflection due to 

permanent magnets embedded in the extraction grid. 

 

 
Fig. 4.9 Isometric view of the NIO1 plasma grid and frontal surface of the extraction grid. 3000 co-extracted electron 

trajectories are plotted to show the deflection due to permanent magnets embedded in the extraction grid. 
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In Figs. 4.6 and 4.7 the trajectories of 3000 H
-
 particles are plotted (in blue), together with secondary 

electrons (in red) generated by single and double ion stripping, ionization of the hydrogen gas and 

direct impacts of primary and secondary particles on grids.  

Electrons are responsible for the majority of the grid power loads (~ 98% of total power): the power 

deposition due to co-extracted electrons is relatively important in the EG, representing the 97% of the 

grid load, and in the PA where represents the 45%. The rest of the load on the PA grid is essentially 

due to secondary electrons. Stripping of negative ions is the main cause of secondary electron 

production in conventional electrostatic accelerators [Fub08]: created electrons are assumed to be 

emitted at the location of the collision with H2 background gas with the same direction and velocity as 

the parent H
-
. A fraction of secondary electrons is transmitted out of the accelerator, delivering a 

power of 143 W to the diagnostic chamber. 

As mentioned earlier, magnets embedded in the EG generate a field mainly along the vertical direction 

and alternated from row to row which deflects nearly all the co-extracted electrons onto the EG itself, 

while having little effect on the trajectories of the heavier H
-
 ions; about the 98% of electrons is 

collected in the EG, which corresponds to a relatively low power deposition (777 W) due to the 

moderate potential difference between the plasma and extraction grid (i.e. 6 kV).  

The effect of permanent magnets is clearly visible in Figs. 4.8 and 4.9, where the trajectories of 3000 

electrons are plotted. Electrons extracted from the first and third aperture rows are deflected to the left 

(By is positive, according to the magnetization scheme shown in Fig. 4.3) while the deflection in the 

central row is toward the right side of the EG grid. The deflection of secondary electrons produced by 

the H
-
 beam core in the extraction gap (between PG and EG) causes the deposition of about 20 W on 

the extraction grid. In Fig. 4.10 the power density due to the electron deflection on the frontal surface 

of EG is shown for secondary (a) and co-extracted electrons (b): a relevant power density peak is 

calculated for co-extracted electrons, about 4.5 MW/m
2
. 

 

 
Fig. 4.10 Power density deposition on the frontal surface of EG due to secondary electrons (a) and co-extracted electrons (b). 

 

The 2% of co-extracted electrons are transmitted through the EG downstream of the accelerator. These 

electrons are accelerated in the main accelerator gap: 1.3% impact on the PA grid delivering a power 

of 220 W and the remaining 0.3% is transmitted out of the accelerator, carrying a power of about 1.8 

W per single beamlet. Around 1040 W of power is wasted for extracting and accelerating primary 

electrons and approximately 430 W for accelerating secondary electrons. 

Figs. 4.11, 4.12, 4.13 show the total power density deposited on the frontal surfaces of PG, EG and 

REP. The most relevant power density region, ~ 4.5 MW/m
2
, is due to the co-extracted and secondary 

electron deposition on the EG, as shown in Fig. 4.11 where the sum of the two contributions of Fig. 

4.10 is considered (even if the secondary electron contribution is very limited). Other significative 

power density peaks are observed in the PA (~ 1.6 MW/m
2
) and in the REP (500 kW/m

2
) grids. 
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Fig. 4.11 Power density on the frontal surface of EG due to co-extracted electrons and beam core simulations 

 

 

 
Fig. 4.12 Power density on the frontal surface of PA due to co-extracted electrons and beam core simulations 
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Fig. 4.13 Power density on the frontal surface of REP due to co-extracted electrons and beam core simulations 

 

 

 
Fig. 4.14 Power density of the transmitted beam at the exit of REP 
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With respect to the power density profile calculated for the EG (Fig. 4.11), the power deposition on 

the PA and the REP grids (Figs. 4.12, 4.13) is concentrated on the opposite side of the grid apertures. 

As mentioned in chapter 3, the vertical component of the magnetic field (By) created by magnets 

embedded in the EG has a double-swing profile (see Fig. 3.2) and the horizontal deflection is 

proportional to the integral of By along the charged particle path (Eq. 3.1). If By is positive at the EG 

entrance, co-extracted electrons are deflected toward the left side of the grid while electrons created 

inside the aperture grid (stripping electrons, electrons emitted from the metal surface after a collision 

and scattered electrons) experience a mostly negative By, with a net deflection toward the opposite 

side. This deflection causes their impact in the following grids, mainly onto the PA.  

In conclusion, in Fig. 4.14 it is shown the power density of the 7.5 kW transmitted beam, composed of 

H
-
 ( ~ 7 kW), with the contributions of H

0
 (~ 0.4 kW) and secondary electrons ( ~ 0.1 kW), as earlier 

mentioned. In the same figure it is visible the residual criss-cross deflection effect induced by CESM 

and mitigated by the addition of permanent magnets in the new vertical slots, as described in the 

previous paragraph. 

 

4.4 Beam halo 

It is well known that the profile of negative ion beams is composed of a beam core with a good beam 

optics and a modest fraction of beam particles with a significantly larger divergence than the main 

beam [Hem96]. However, the mechanism of the beam halo formation is not fully understood: some 

studies based on modeling, describe its formation as a consequence of the curvature of the meniscus 

boundary between the plasma and the beam close to the plasma grid [Miy12, Oku13], while in [Esc11] 

it is reported that a significative part of the halo originates from the negative ions surface production 

on the back of the PG outside the plasma source, which is covered with the cesium (that enhances the 

surface production) diffused out of the source. This hypothesis is supported by some beam 

experiments performed at IRFM (CEA-Cadarache) where it has been measured about 8% of halo 

during cesium operation [Esc11]. 

Halo particles having a poor beam optics impinge on the accelerator grids, thereby not only loading 

these grids, but also producing secondary particles that dump more power on the grids. They are quite 

detrimental to high energy neutral beams as the NBI for ITER, since they waste power, load beamline 

components with stray power and generate secondary particles like electrons, which have to be 

intercepted.  

 

 

Fig. 4.15 Isometric view of the PG apertures and 100 halo particle trajectories launched from the downstram aperture surface 

(in red). 
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In order to evaluate the effect of these high-divergence particles on NIO1 grids, a beam halo current 

equal to 8% of the beam core current (as measured at IRFM by de Esch et al. [Esc11]) is simulated by 

launching 9
.
10

5 
H

-
 macro-particles from the downstream side of the PG apertures. In Fig. 4.15 an 

isometric view of the PG is shown and the halo emitting surface is highlighted in red. 

The power deposition on the accelerator grids resulting from the simulation is due to primary (H
-
) and 

secondary impinging particles. Secondaries are created by ionization of the background gas (H2
+
,e

-
), 

stripping (H
0
, e

-
) and double stripping (H

+
, 2 e

-
) reactions, and direct impact on grids (e

-
).  

Simulation results are reported in Tab. 4.2 and shown in Fig. 4.16, where the power deposition for the 

different particle species is indicated.  

 

Thermal power deposited on accelerator grids (W) 

 
PG EG PA REP 

H
-
 0.0 18.1 0.1 0.0 

H
0
 0.0 0.2 0.9 0.0 

H
+
 0.0 0.1 0.0 0.0 

H2
+
 0.0 0.1 0.0 0.0 

Secondary electrons 0.0 1.3 13.9 1.3 

Total power 0.0 19.8 14.9 1.3 

Tab. 4.2 Power loads on accelerator grids due to beam halo and related secondary particles 

 

 
Fig. 4.16 Power loads on accelerator grids due to beam halo and related secondary particles 

 

About 12% of the primary H
-
 macro-particles undergoes stripping reaction, double stripping is 0.5% 

and H2
+
 created by ionizing the background gas correspond to 1.4% of the primary beam particles; 

secondary electrons are mostly created by stripping reactions.  

Compared to the heat loads caused by beam core and co-extracted electrons, the power deposition due 

to the beam halo is very limited, the highest value being about 20 W for EG. Thermal power deposited 

on the PA grid is less than 15 W, while loads on PG and REP grids are negligible.  



53 

 

 
Fig. 4.17 Power density on the upstream surface of EG induced by the beam halo. 

 

 

 
Fig. 4.18 Power density on the upstream surface of PA induced by the beam halo. 
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Fig. 4.19 Power density on the upstream surface of REP induced by the beam halo. 

 

 

 
Fig. 4.20 Power density of the transmitted beam halo at the exit of REP. 
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Direct impact of halo particles is the main responsible of the power deposition on the EG, while 

electrons produced in the acceleration gap between the EG and PA deposit more than 90% of the total 

power calculated for the PA grid. 

In Figs. 4.17, 4.18 and 4.19 the power density deposition for the EG, PA and REP is shown. 

Maximum value is about 50 kW/m
2
 in correspondence of the aperture edges of the EG where the 

typical halo pattern (i.e. rings around apertures) is observed and in PA grid.  

Beam halo transmission, in terms of number of primary particles is ~ 60 %, about 48 W per single 

beamlet. The power density of the transmitted halo beam is depicted in Fig. 4.20: it is visible the 

residual zigzag pattern (the CCDE effect described for MITICA and for the ion beam core of NIO1 in 

the previous paragraph) due to the CESM magnet deflection compensated by the new set of permanent 

magnets with vertical magnetization proposed in the new EG design. 

 

4.5 Conclusions and future works 

A fully 3D analysis of the NIO1 beam has been performed by EAMCC-mod [Fon14]. For the first 

time, an entire source, made of nine beamlets, has been simulated in EAMCC considering multi-

beamlet effects before neglected and discarding the axy-symmetry hypothesis of the electric fields 

imposed by the original version of the code. Thanks to the capability of EAMCC-mod of modifying 

the mesh size of the electric potential maps it is also possible to extend the simulated domain up to the 

diagnostic chamber and this opportunity has been exploited for the determination of the beam profile 

on the tomography plane (at 500 mm from the last accelerator grid). It has been useful for testing 

different reconstruction algorithms implemented in the tomography code developed for NIO1 and 

presented in chapter 5. Moreover, enlarging the pitch of the potential map along x and y directions in 

the area surrounding the accelerator grids it is possible to extend the simulation domain over a larger 

plane and follow the stray electrons that exit from the side of the domain, evaluating thermal loads on 

other beam-facing components.  

For determining heat loads and the power transmitted out of the NIO1 accelerator, the H
-
 beam core, 

the electrons co-extracted from the ion source and the beam halo have been included in simulations. 

According to results, most of the power to the extraction grid comes from the co-extracted plasma 

electrons. PA and REP grids are heated by co-extracted electrons and secondary electrons which are 

by-products of collisions between the accelerated negative ions and the background gas.  

Highest value of power are calculated for the EG and PA and different high-power density regions are 

determined. In particular, the deposition of co-extracted electrons on the frontal surface of the EG 

causes a power density peak of about 4.5 MW/m
2
. Lower but significant high-power density regions 

are also calculated in the PA (~ 1.6 MW/m
2
) and in the REP (500 kW/m

2
) grids. 

NIO1 represents a great experimental opportunity and these results will be considered in the future for 

benchmarking EAMCC-mod. If confirmed, a thermo-mechanical verification of grids for guarantee a 

grid temperature in any case lower than 300 °C (beyond this temperature the copper thermo-

mechanical properties are sensibly worsened [Ago14]) and compatible stress peaks will be carried out. 

Stresses, strains and deformations in the copper will be calculated by the ANSYS finite element code 

[Ans14] and if necessary the capability of the cooling system must be improved, for instance 

increasing the mass flow rates of coolant inside the grid channels.  
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Chapter 5 

 
A Multi-formula Iterative Reconstruction Tomography code for NIO1 

 
The application of tomography to a neutral or ion beam can be useful for the assessment of the density 

profile of the beam. It can go beyond the simple detection of the lack of uniformity of the beam, giving 

information about its causes and suggesting possible solutions.  

This chapter is dedicated to the tomography code developed for NIO1, based on algebraic 

reconstruction techniques, more suitable than algorithms based on the Radon transform when the 

number of detectors is limited compared to the number of pixels of the reconstructed profile. The only 

a-priori knowledge introduced in the code regards the fact that the emissivity must be a positive 

number. This decision is due to the purpose of developing an instrument without adding hypothesis 

about the beam characteristics or the emissivity in a particular region of the tomography plane, for 

not limiting the capability of the code of detecting irregularities in the beam profiles.  

The first part of this chapter is dedicated to the algebraic method for tomography reconstructions and 

the iterative techniques implemented in the code. Subsequently, the simulation of the transport of the 9 

H
-
 beamlets on the NIO1 tomography plane made by EAMCC-mod [Fon14] (chapter 2) which 

represents the ‘experimental’ emissivity profile to be reconstructed, the hypothesized configurations of 

the tomography system and the reconstructions obtained in these cases are presented. A concluding 

paragraph illustrates the reconstruction of the beam profile of MITICA without including any 

constraint concerning the beam characteristics. In doing so, a larger number of degrees of freedom is 

introduced in the tomography inversion problem and consequently the reconstruction errors increase. 

However, it allows to reconstruct the beam emissivity profile even when, during a  particular 

operating condition of the accelerator, some assumption concerning the beam characteristics (which 

becomes a constraint in the inversion problem) is violated. 

 

 

5.1 Beam emission tomography 

Beam emission tomography consists in reconstructing the 2D (or 3D) emissivity profile of an 

accelerated particle beam by observing the integrated Hα (Dα) radiation along a set of lines of sight 

(LoSs). Collisions between fast beam particles and background neutral molecules cause the excitation 

and de-excitation of hydrogen (or deuterium) atoms, with the consequent emission of Hα (Dα) 

radiation. The beam emissivity profile is proportional to the beam density and this explains why 

tomography is a useful instrument for determining the beam density profile.  

The measurement of integrated radiation (brightness) along a set of lines of sight lj can be 

mathematically expressed as: 

 

lj

j dydxyxf ),(
 (5.1)

 

where fj represents the brightness along the j-th LoS and ε(x,y) the local emissivity. From the 

mathematical point of view, the solution of the problem of reconstruction of a function from line 

integrals was solved by Radon in 1917 [Rad17]. However the first transmission scanner was built in 

the seventies by Hounsfield [Hou73], who divided the 1979 Nobel Prize with Cormack, who in 1963 

gave fundamental contributions for the development of reconstruction algorithms for radiological 

applications [Cor63]. 

 

5.2 Reconstruction algorithms implemented in the code 

There are different methods which can be used for calculating the 2D emissivity profile by measuring 

line-integrated signals and the choice depends on different aspects of the problem: e.g. structure of the 

image, a priori knowledge of the emission function, mathematically over-determined or under-

determined system and noise level [Kak99]. 
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Traditionally, tomographic image reconstruction has been framed as the mathematical problem of 

inverting a discrete form of the Radon transform [Rad17]. However, there are situations where it is not 

possible to measure a large number of line-integrated signals, or they are not uniformly distributed 

over 360°, both these conditions being necessary requirements for the transform-based techniques to 

produce results with a good accuracy [Kak99].  

In these situations, algebraic reconstruction algorithms are preferred: the image to be reconstructed (in 

our case the 2D emissivity profile of the beam) is modelled as a discrete array of unknowns and every 

element of this array is called pixel. Each pixel i is associated with a basis function which transforms 

the continuous-domain function ε(x,y) into pixel values εi. The most commonly used pixel basis 

functions are ones that are constant within small, non-overlapping rectangular regions arranged in a 

rectangular grid, and this is the case of the tomography code developed for NIO1. However there are 

benefits of using other types of basis functions, such as Gaussian basis functions [Ago11bis].  

The tomography reconstruction consists in determining the emissivity values for every pixel of the 2D 

profile. In Fig. 5.1 a scheme of the image representation in algebraic methods is depicted: a square 

grid has been superimposed on a beamlet emissivity profile ε(x,y) to be reconstructed. It is assumed 

that in each cell (pixel) the function ε(x,y) is constant and represents an unknown quantity εi.  

A system of algebraic equations for the unknowns εi in terms of the measured data is set up and the 

generic measurement of brightness along the j-th LoS is the sum of the contribution of every pixel 

(npix is the number of pixels in the reconstruction) intercepted by the considered LoS:                                                                                         

j

npix

i

jiij naI 
1

,
 

(5.2)
 

In eq. 5.2, Ij represents the line-integrated signal along the j-th LoS (also called projection), ai,j the 

weighting factor that represents the contribution of the j-th pixel to the i-th integral measurement (i.e. 

the fractional area of the j-th pixel intercepted by the i-th LoS, as shown for one LoS in Fig. 5.1) and nj 

the instrumental noise of the detector of the j-th LoS.  

 
Fig. 5.1 Scheme of the imaging model in algebraic reconstruction methods 

 

In matrix terms, the measured line-integrated data, the pixel emissivity and instrumental noise are 

represented as column vectors, respectively I (nlos x 1), ε (npix x 1), n (nlos x 1), nlos being the 

number of LoSs (equal to the number of detectors), while a is a (nlos x npix) matrix. 
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The emissivity of each pixel, neglecting the instrumental noise could be in principle obtained by 

inverting the matrix a, but the problem of tomographic inversion is ill-posed since the matrix a is 

sparse (i.e. contains a large number of zeros). Since we are going to deal with a limited-data 

tomography (i.e. the number of LoS is limited compared to the number of pixels), considering the fact 

that the less measurements are available the larger the number of zeros in the matrix for a given 

pattern of pixels and also the presence of the noise, a simple matrix inversion is not possible.  

Algorithms implemented in the tomography code for NIO1 are iterative and the estimated image is 

progressively refined in a repetitive calculation. 

 

5.2.1 Algebraic Reconstruction Technique (ART) 

The Algebraic Reconstruction Technique (ART) derives from a simple procedure proposed by 

Kaczmarz [Kac37] for solving systems of consistent linear equations and was proposed 

simultaneously by Gordon, Bender and Herman [Gor70] and by Hounsfield [Hou72]. 

The imaging model introduced in the previous paragraph I=aε (noise is neglected in this phase), can 

be considered as a set of simultaneous equations, one for each projection (i.e. for each line-integrated 

measurement). Each linear equation represents a hyperplane in the vector space in which ε is defined. 

Therefore, assuming that this set of simultaneous equations is consistent (which occurs when there is 

no noise), the solution is any point that lies in the intersection of all the hyperplanes. This point can be 

determined by a process in which, starting from an initial estimate ε
0
, the vector is repeatedly projected 

(in the linear algebra sense) onto all the hyperplanes. A clarifying example is shown in fig. 5.2 (a) in 

the case of two unknowns (ε1 and ε2 ) and two projections represented by two hyperplanes (I1 and I2): 

an arbitrary initial guess is chosen and then it is projected onto the line corresponding to the first 

equation I1. The resulting point is then projected onto the line representing the second equation I2. 

The process is continued back and forth as illustrated by the broken line that represents the course of 

the solution [Ros82].  

 

 
Fig. 5.2 The Kaczmarz method of solving algebraic equations for the case of two unknowns 

 

Two common situations in image reconstructions are that of an over-determined or under-determined 

system of equations. In the first case, i.e. when the number of hyperplanes is greater than the number 

of pixels, the solution does not converge to a unique point, but will oscillate in the neighbourhood of 

the intersections of the hyperplanes. In this case the Kaczmarz method can lead to the least square 

solution [Cen83]. On the other hand, when the number of projections is smaller than the number of 
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unknowns and an infinite number of solutions exists, Tanabe [Tan71] demonstrates that the Kaczmarz 

method converges to the solution closest to the initial guess.  

This iterative procedure can be written for a generic number of LoS (nlos), npix unknowns and 

considering the j-th projection, as: 
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(5.3)
 

Eq. 5.3 represents the ART iterative formula: the value of emissivity for the pixel i at the step k+1 is 

calculated by summing to the previous estimation an error-correcting term, i.e. the weighted (by ai,j) 

and normalized difference between the measured Ij and its estimation at the previous step k. ART is 

sequential: the error-correcting term is calculated and applied for every projection, in a sequential way. 

Its convergence rate may be dependent on the orthogonality of the successive projections and this can 

be understood by comparing Fig. 5.2 (a) and (b): in the second case, the two projections being almost 

orthogonal allow to reach the solution point in a few iterations.  

Different approaches are suggested for improving the convergence rate of ART: treating the 

projections in a random order in each cycle [Gor74] and considering successive projections at least 

60° away [Her80]. For what concerns the code presented in this chapter the second option has been 

adopted, with a reduction of the number of iterations required for reaching the convergence, that in 

any case, considering the limited number of pixels and LoSs foreseen for NIO1 tomography, is small. 

A more significant improvement in terms of reconstruction errors reduction, has been obtained by 

normalizing the correction-term of Eq. 5.3 with the sum of ai,j ‘s elements instead of the sum of their 

squared value. For this reason, also the following modified version of the ART formula has been 

implemented in the code: 
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(5.4)
 

Since emissivity is positive by definition, a non-negativity constraint has been introduced into the 

algorithm and in each iteration, any pixel having a negative value is set to zero. It has been chosen not 

to include in the algorithm any hypothesis concerning the characteristics of the beam (the so called a-

priori knowledge, e.g. Gaussian beamlets, pixels inside a particular region constrained to some known 

values) in order not to preclude the emissivity reconstruction in any situation, in particular during 

malfunctions when some a-priori knowledge could be not realistic.  

 

5.2.2 Simultaneous Algebraic Reconstruction Technique (SART) 

The Simultaneous Algebraic Reconstruction Technique (SART) was developed by Andersen and Kak 

[And84] as a major refinement of ART. The sequential correction scheme of the ART requires a 

considerably large number of iterations for convergence while SART is supposed to yield 

reconstructions of good quality and numerical accuracy in only one iteration [Kak99]. This technique 

is based on the simultaneous application of the error correcting term discussed for eq. 5.3 and the 

average of the corrections generated by all the line-integrated measurements is simultaneously applied. 

The iterative scheme of SART follows the following formula:  
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(5.5)
 

The emissivity of the i-th pixel is updated at the step k+1 considering simultaneously all the LoSs 

intersecting it and the error-correcting term is averaged over the sum of contributions of the j-th pixel 

to every line-integrated measurement. 

A non-negativity constraint for pixel emissivity has been included in the SART routine implemented 

in the tomography code. Moreover, in view of the application of this code for tomography 

reconstructions with a larger number of pixel and LoSs (e.g. MITICA or SPIDER tomography), every 

sum cycle has been optimized in order to make it computationally faster, which means that null 

elements are not considered in the sum process. In doing so, only LoSs intercepting the i-th pixel are 

considered for the sum over all the LoSs and only ai,j ’s not null are considered for the sum over the 

image pixels. 

  

5.2.3 Maximum-Likelihood Expectation-Maximization Algorithm (ML-EM) 

The ML-EM algorithm has been for years the leading iterative reconstruction algorithm in medical 

imaging for SPECT and PET [Wer04]. It was originally proposed in 1977 as the solution to 

incomplete data problems in statistics [Dem77] and successively applied to tomography [She82], 

[Lan84]. The iterative formula reads: 
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It has a simple form, all pixels are updated simultaneously as in SART and errors and updates are 

multiplicative. Despite its simple formula (it seems a sort of multiplicative simultaneous ART) the 

derivation of the ML-EM algorithm is based on more complex statistics considerations: given a 

limited knowledge of the image (i.e. the so called limited data represented by the set of line-integrated 

measurements) we are interested in determining the complete data (the position of every emitted 

photon). The task of the image reconstruction is, in a sense, to un-mix the photon counts finding the 

most probable space distribution of photons (i.e. the emissivity of every pixel). 

The ML-EM algorithm has two main shortcomings: the convergence of the algorithm is slow and it 

yields noisy reconstructed images. ML-EM has been shown consistently to cause low spatial 

frequencies to appear first during the iterative process and then gradually to develop higher spatial 

frequencies: as the iterations proceed and the algorithm approaches the maximum-likelihood solution, 

the variance of the image estimate, which is manifested as noise, increases [Wer04]. In practice the 

ML-EM algorithm yields goods results if the iterative procedure is stopped prematurely, and the 

results may, in addition, benefit from application of a post-reconstruction low-pass filter, which is a 

common approach in clinical applications [Wer04]. 

For what concerns the non-negativity constraint, it is automatically imposed by the algorithm, since 

the correcting-error term is multiplicative. Also in this case, the sum cycles are optimized for being 

faster: sums are performed on sub-matrices which contain just the non-null elements (for instance in 

the sum over the LoSs this is done considering just LoSs that intercept the i-th pixel), avoiding long 

and time-consuming sums of null elements.   
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5.3 The calculation of the emissivity profile for testing the tomography code 

Since this chapter is focused on the feasibility study of a tomography system for NIO1, which is, at the 

time of writing, in its start-up phase, it is not possible to have an experimental emissivity profile for 

testing the tomography code. For this reason a phantom, i.e. a simulated profile, is required.  

So far at RFX, phantoms used for the tomography code developed for SPIDER and MITICA 

[Ago11bis] have been calculated considering an analytical model of the beam (i.e. Gaussian beamlets) 

and this approximation allowed to simplify their calculations. A more realistic calculation of the 

emissivity profile on the tomography plane is now possible thanks to the development of the modified 

version of EAMCC (chapter 2), by which it is possible to simulate the transport of the 9 H
-
 beamlets of 

the NIO1 beam from the ion source, through the accelerator and up to the tomography plane at which 

the tomography detectors are located. Single and double ion stripping reactions and the ionization of 

the background gas are considered along their path.  

In the EAMCC simulation dedicated to the calculation of the NIO1 emissivity profile, 12.6 millions of 

H
-
 macro-particles are created in the source region and accelerated through the 4 accelerator grids. At 

the exit of the last grid, a perfect charge compensation is assumed, which means that the space charge 

of the beamlets is shielded by the positive ions that are created in ionizing collisions (H
-
+H2→H

-

+H2
+
+e) and trapped by the negative potential created by the beamlet itself. This process justify the 

assumption of beam propagation at constant divergence from the accelerator exit up to the tomography 

plane, whose distance from the last grid is 500 mm, according to the position of the two diagnostic 

ports dedicated to the tomography system (Fig. 5.3).  

 
Fig. 5.3 The radio frequency ion source NIO1 with indication of its main parts (source, accelerator, diagnostic chamber and 

dump), and the distribution of the diagnostic chamber ports [Zan14]. 

 

In Figs. 5.4 a 3D plot of the macro-particle trajectories from the EAMCC simulation up to the 

tomography plane is shown. A top view and a side view of the same trajectories are shown 

respectively in Fig. 5.5 (a) and (b).  

The background gas density profile (Fig. 5.6) has been calculated by AVOCADO code [Sar13] inside 

the accelerator and assumed to be constant along the diagnostic chamber up to the tomography plane. 

This hypothesis is supported by a recent analysis of gas distribution along the diagnostic chamber 

[Sar14] where it has been calculated a quasi-constant hydrogen gas pressure profile.  

The particle distribution of the transmitted H
-
 beam, composed of about 7.5 millions of H- macro-

particles (the transmission factor is ~ 60%) is shown in Fig. 5.7 (a) and the energy distribution, peaked 

at about 59.9 keV, in Fig. 5.7 (b).  



63 

 

 
Fig. 5.4 Trajectories of the 9 H- beamlets up to the tomography plane in the EAMCC simulation dedicated to the 

determination of the NIO1 emissivity profile for testing the tomography code. 

 

 

 
Fig. 5.5 Top (a) and side (b) views of the NIO1 beam up to the tomography plane in the EAMCC simulation dedicated to the 

determination of the NIO1 emissivity profile for testing the tomography code. 
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Fig. 5.6  Density profile of the hydrogen background gas along the path of the NIO1 beam (distances are measured from the 

frontal surface of the first accelerator grid) 

 

The beam emissivity is proportional to the beam and background neutral gas density and to the energy 

of the beam. Under the hypotheses of mono-energetic beam and uniform gas density on the 

tomography plane, the emissivity profile reflects directly the density profile of the beam.  

According to the simulation of the NIO1 beam and considering the narrow FWHM of the energy 

distribution in Fig. 5.7 (b) the first assumption is realistic, while the second one is a critical condition 

for the diagnostic and it is assumed that the NIO1 vacuum pumping system is able to guarantee a 

uniform background gas density profile. However, considering the quasi-constant profile along the 

diagnostic chamber and considering the limited extension of the tomography plane (40 x 40 mm) this 

assumption can be considered reasonable.  

For these reasons, under the described assumptions, the particle distribution shown in Fig. 5.7 (a) is 

representative of the emissivity and is taken as the reference phantom to be reconstructed by the 

tomography code. 

 

 
Fig. 5.7  Particle distribution (a) and particle energy distribution of the NIO1 beam on the tomography plane. Color bar 

represents the particle number (bin size is 0.1 x 0.1 mm). 
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5.4 Geometry configurations and reconstructions 

The detection system for the NIO1 visible tomography consists in a set of linear CCD cameras which 

measure the Hα line emitted by the particles of the beam. Each CCD is an array of detectors (one for 

each LoS) which collect the line-integrated optical signals of a fan of LoSs on the plane perpendicular 

to the beam. Cameras are placed on the two available viewports (shown in Fig. 5.3) while for a more 

uniform view of the beam over 360°, an optical system based on mirrors is required.  

Six different geometry configurations have been considered for testing the tomography code and the 

LoSs layout and the main geometry parameters are shown for each of them in Fig. 5.8. The six layouts 

are chosen according to the need of limiting the number of CCD cameras and the complexity of the 

system (for reducing the cost) without significantly affecting the quality of the tomography 

reconstructions. In particular, configurations a,c,d allow a partial view of the beam and are in principle 

easy to be realized, while b,e and f would give a more complete view of the beam and a more precise 

reconstruction but require an optical system based on mirrors. 

An angular aperture of each LoS equal to 2.5 mrad (which corresponds to a width of 0.7 mm at 300 

mm, i.e. the distance from a porthole to the center of the beam) and a 50% overlapping between two 

consecutive LoSs as in [Ago11bis] are hypothesized for the following reconstructions; CCD cameras 

are supposed to be arrays of 1024 light sensitive elements (also called pixels, not to be confused with 

the image pixels) and at least 2 pixels per LoS being necessary, the maximum number of LoSs per 

camera is limited to 500. 

 

Layout # of CCD cameras # of LoSs 

A 2 240 

B 4 736 

C 6 752 

D 6 776 

E 6 1156 

F 8 1548 

Tab. 5.1 Geometry configurations of the tomography system 

 

In Tab. 5.1 the number of CCD cameras and the total number of LoSs required for the six layouts are 

reported. Considering the maximum number of LoSs per camera and the number of LoSs in the 

chosen configurations, it is clear that the potentialities of 1024 pixels CCDs are not fully exploited but 

the geometry constraints (in particular the size and the distance of the tomography portholes compared 

to the small size of the tomography plane) do not allow to increase the number of LoSs efficiently, 

adding information about the beam for reducing the degrees of freedom of the system of equations. 

Under the hypothesis of Gaussian beamlets it would be possible to reduce the inversion problem to the 

calculation of the parameters of 9 2D Gaussians (i.e. amplitude, center coordinates and width along x 

and y directions), having just 45 unknowns, 5 for each beamlet. However, as explained before, this 

would introduce a limit in the detection system capabilities, in disagreement with the criteria adopted 

for the development of this code. In the future, according to the needs and prescriptions for the NIO1 

tomography, this possibility could be investigated. 

A detailed reconstruction of the beam, without any a-priori knowledge that would reduce the degrees 

of freedom of the tomography inversion problem, is achievable with a 1600 pixels emissivity profile 

(i.e. a 40 x 40 pixels tomography reconstruction, each pixel having a size of 1 x 1 mm) and all the 

NIO1 reconstructions presented hereinafter are 40 x 40 pixels images.  

Considering such a large number of pixels and the limited number of LoSs which is possible to obtain 

in the studied configurations, the tomography inversion is a data-limited problem.  
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Fig. 5.8 Cross section of the NIO1 diagnostic chamber at the tomography plane and layouts of the tomography system 

(dimensions are in mm) 
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As explained before, the Kaczmarz method converges to the solution closest to the initial guess in case 

the number of projections is smaller than the number of unknowns and an infinite number of solutions 

exists [Tan71] and this legitimizes the use of techniques based on ART in data-limited problems, 

while the ML-EM algorithm was originally proposed as the solution to incomplete data problems 

[Dem77] and it has been chosen for this characteristic.  

For evaluating the quality of the tomographic reconstructions, the reconstructed emissivity (εi) is 

compared with the reference value (εreal) of the corresponding pixel obtained by reducing the reference 

emissivity profile (Fig. 5.7 a) to a 40 x 40 pixels image. The reconstruction error for the i-th pixel, is 

defined as: 

real

realiiresidual
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 
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(5.7)

 

The mean and the rms values of the normalized reconstruction errors are taken as indexes of quality 

for the tomography reconstructions: 
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(5.9) 

These errors have been calculated for the six geometry configurations and are reported in Tab. 5.2 for 

the implemented reconstruction techniques (ART2 refers to Eq. 5.4, i.e. the modified ART formula; 

the initial emissivity is set to 1 for every technique and the iterative calculation is stopped when the 

rms error reduction is lower than 0.01%. Rms errors are also plotted in Fig. 5.9.  

The ML-EM algorithm gives always the best reconstructions and it is the most sensitive to the increase 

of the number of LoSs, with a significant reduction of errors compared to the other techniques in 

particular for the configurations with 6 CCDs (c,d,e). SART works better than ART, exception done 

for the configuration with 2 cameras, while the modified version of ART with respect to the original 

one allows to reduce the reconstruction errors of at least 1-2 %. 

 

Layout 

ART errors 

(%) 

ART2 errors 

(%) 

SART errors 

(%) 

ML-EM errors 

(%) 

rms mean rms mean rms mean rms mean 

A 25.4 19.4 24.0 18.5 30.7 22.0 21.1 15.3 

B 25.1 21.3 23.6 17.4 24.9 18.4 16.9 13.0 

C 24.2 18.0 21.1 16.8 22.7 17.6 12.9 9.9 

D 22.8 17.4 21.3 16.7 21.3 16.6 12.1 9.2 

E 24.1 16.8 21.3 15.5 18.0 12.7 9.7 7.4 

F 12.3 9.8 10.3 7.8 10.6 7.8 7.7 5.9 
 

Tab. 5.2 Reconstruction errors for the six layouts of the tomography system considering the different algorithms 

implemented in the tomography code. ART2 refers to the modified ART (Eq. 5.4). 
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Fig. 5.9 Rms reconstruction errors for the six tomography configurations shown in Fig. 5.8 for the implemented algorithms.  

 

 
Fig. 5.10 NIO1 emissivity profile calculated by EAMCC (top left) and reconstructions obtained with ART2 (top right), 

SART (bottom left) and ML-EM (bottom right) algorithms for the geometry configuration of the system named a. Color bar 

represents the particle number. 
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The most relevant layouts are a, e and f. For these geometry configurations, the 40 x 40 pixels 

reconstruction profiles obtained with ART2, SART and ML-EM algorithms are shown respectively in 

Figs. 5.10, 5.11, 5.12, together with the pixelated emissivity profile calculated by EAMCC. 

The first configuration is the most simple and considering that at the moment 2 CCDs are available at 

RFX, it is the only one feasible now and likely the first that will be tested in the next months. Rms and 

average reconstruction errors in the case of ML-EM algorithm are respectively 21.1% and 15.3%. The 

limited view of the beam does not allow to reconstruct the horizontal alternating shift of the 3 

beamlets rows visible in the reference profile and due to the applied magnetic field (produced by 

permanent magnets embedded in the NIO1 extraction grid, see chapter 4). 

Configuration e allows to better exploit the 6 CCD cameras than c and d (1156 LoSs against 752 and 

776), it requires an optical system based on mirrors for 4 cameras and represents a good compromise 

between complexity and quality of the reconstructions. Rms and mean errors are down to 10% for the 

ML-EM reconstruction and shape and intensity of the beams are reconstructed with good accuracy. 

 

 
Fig. 5.11 NIO1 emissivity profile calculated by EAMCC (top left) and reconstructions obtained with ART2 (top right), 

SART (bottom left) and ML-EM (bottom right) algorithms for the geometry configuration of the system named e. Color bar 

represents the particle number. 

 

The layout f gives the most complete and uniform view of the NIO1 beam, the most accurate 

reconstruction but the complexity of the system could compromise the feasibility and this aspect must 

be investigated.  
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Fig. 5.12 NIO1 emissivity profile calculated by EAMCC (top left) and reconstructions obtained with ART2 (top right), 

SART (bottom left) and ML-EM (bottom right) algorithms for the geometry configuration of the system named f. Color bar 

represents the particle number. 

 

 
Fig. 5.13 Convergence of the iterative algorithms. 
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With respect to the layout e, in the configuration f a gain of 1- 2 % in errors reduction is calculated, 

while the addition of 2 CCDs would represent an important increase of the cost of the system. 

According to these results, the configuration e with the ML-EM algorithm is the most interesting. For 

this layout the rms error reduction as a function of the number of iterations is plotted for ART2, SART 

and ML-EM in Fig. 5.13, showing saturation to minimum value. As expected, the error reduction in 

the ML-EM iteration process is slower. SART and ART2 reach the plateau faster, but after 25-30 

iterations the further error reduction becomes negligible for all algorithms.  

In the case of  NIO1 an empirical stopping criterion based on the number of iterations can be 

considered as in [Ver93]. Up to now, for NIO1 there is not a stringent need to find a convergence 

criterion for reducing the processing time considering the limited number of LoSs and pixels. In view 

of the application of the code to other beams, a more precise criterion, independent of the object to be 

reconstructed, for instance based on the change in variance of the reconstruction [Ver93] must be 

studied. 
 

 

5.5  Instrumental noise and Butterworth filter 

In a realistic situation the experimental line-integrated measurements would be affected by 

instrumental noise and for evaluating how it acts on the reconstructed beam profile, a model of 

random noise has been considered: errors in the reconstructed image, due to the noisy input data, have 

been calculated for the geometry configurations e and f. 

The generic noisy integral measure (intgross) is simulated by adding a random noise to the net integral 

emissivity measure (intnet): 

)1(intint pnetgross 
 

(5.10)
 

Where p is a number extracted from a uniform distribution limited by the values ± noisemax. 

Noise level is varied by changing the value of the parameter noisemax from 5% up to 20% of the net 

integral value. 

The rms errors for configurations e and f as a function of the noise level introduced are plotted 

respectively in Figs. 5.14 and 5.15. 

 

 
Fig. 5.14 Rms errors as a function of the noise level introduced in the line-integrated measurements for the layout e. 
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Fig. 5.15 Rms errors as a function of the noise level introduced in the line-integrated measurements for the layout f 

 

Random noise in the line-integrated signal introduces rapid spatial variations of pixel intensity in the 

reconstructed image. It means that in the spatial frequency domain of the image, noise is contained at 

the highest frequencies of the Fourier transform. Not only noise contributes significantly to the high-

frequency content, but also edges and other sharp transitions. When applying high frequency 

suppression, noise reduction is then expected as well as a blurring effect.  

A preliminary evaluation of the filtering capabilities of a simple low-pass filter is of interest and 

allows to understand if a more sophisticated filtering technique is required for the NIO1 tomography. 

For this reason, a Butterworth filter [But30] has been applied to the centered Fourier transform of the 

noisy reconstructions (lower frequencies that contain information to be preserved are placed starting 

from the center of the matrix image). The optimization of the low-pass filter brings to the following 

equation for the same:  
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where r is the distance from the center of the image to the considered pixel. 

 

noise 

level 

(%) 

Reconstruction errors config. E (%) Reconstruction errors config. F (%) 

noisy profile filtered profile noisy profile filtered profile 

rms mean rms mean rms mean rms mean 

0 9.7 7.4 
  

7.6 5.9 
  

5 12.1 9.3 11.2 8.5 9.7 7.6 9.0 7.0 

10 15.6 12.1 12.9 9.7 12.3 9.5 10.8 8.3 

15 19.1 14.7 14.2 10.7 14.9 11.4 11.4 8.8 

20 22.4 17.1 15.7 11.8 17.3 13.2 12.2 9.5 

Tab. 5.3 ML-EM reconstruction errors for layouts e and f for different noise levels 
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Fig. 5.16 Top: NIO1 emissivity profile calculated by EAMCC (left) and noisy ML-EM reconstruction (on the right, noise 

level=10%, layout e ). Bottom: filtered image (left) and normalized percentage errors (right). Color bar of the emissivity 

profiles represents the particle number. 

 

 
Fig. 5.17 Top: NIO1 emissivity profile calculated by EAMCC (left) and noisy ML-EM reconstruction (on the right, noise 

level=20%, layout e ). Bottom: filtered image (left) and normalized percentage errors (right). Color bar of the emissivity 

profiles represents the particle number. 
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Fig. 5.18 Top: NIO1 emissivity profile calculated by EAMCC (left) and noisy ML-EM reconstruction (on the right, noise 

level=10%, layout f ). Bottom: filtered image (left) and normalized percentage errors (right). Color bar of the emissivity 

profiles represents the particle number. 

 

  
Fig. 5.19 Top: NIO1 emissivity profile calculated by EAMCC (left) and noisy ML-EM reconstruction (on the right, noise 

level=20%, layout f ). Bottom: filtered image (left) and normalized percentage errors (right). Color bar of the emissivity 

profiles represents the particle number. 
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Reconstruction errors of the noisy and filtered emissivity profiles for layouts e and f calculated with 

the ML-EM algorithm are reported in Tab. 5.3. 

The noisy reconstruction, the filtered one, the normalized errors of the filtered profiles for a noise level 

of 10% and 20% are depicted in Figs. 5.16 and 5.17 for the layout e and in Figs. 5.18 and 5.19 for the 

layout f. 

 

5.6 Reconstruction of the MITICA emissivity profile 

In MITICA the tomography diagnostic is foreseen in 3 positions at different distance from the 

grounded grid (i.e. the last accelerator grid), namely at 1.3, 5 and 7 m. The cross section of the beam at 

z=1.3 m is very similar to the SPIDER one for which a tomography code based on Gaussian pixels has 

already been developed and tested with satisfactory results [Ago11bis]. A modified version of the 

same code has been used for reconstructing the MITICA profile at 5m from the grounded grid 

[Ago11ter]. 

The MITICA profiles at 5 and at 7 m from the grounded grid are very similar and for testing the 

capability of the tomography code developed for NIO1, the profile at 7 m will be considered.  

 

 
Fig. 5.20 MITICA profile at 7 m from the grounded grid. Color bar refers to the particle number. 

 

Due to the size of the device, it is not possible to simulate the propagation of the entire beam in the 

accelerator and up to the tomography plane, as done for NIO1. For this reason, the MITICA emissivity 

profile has been calculated starting from the EAMCC simulation of 5 beamlets (i.e. one row of a 

beamlet group; each beamlet is sampled with 1 million of macro-particles) up to the exit of the 

grounded grid. The same particle distribution has been shifted and adopted also for the other beamlet 

rows; the sign of the horizontal particle velocities has been alternatively changed passing from one 

row to the next below, for considering the effect of the embedded magnets on the beamlets [Ant14] 
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(embedded magnets create a vertical field in correspondence of the grid apertures to deflect electrons 

out of the beam and its orientation, passing from one row to the lower one, alternates between up and 

down). The 1280 beamlets at the exit of the grounded grid calculated from the simulation of 5 

beamlets, have been then projected onto the tomography plane considering their velocity distribution 

and the aiming due to the orientation of the grid segments (accelerator grids are made of 4 horizontal 

segments with different tilting angles for the horizontal aiming of the beam).  

The resulting profile is shown in Fig. 5.20, where the center of the grounded grid is taken as geometry 

reference. The 1280 beamlets are superimposed and the vertical displacement of the profile, with 

respect to the center of the grounded grid, is due to the long range magnetic field [Ago14] which 

pushes the beamlets downward. 

A realistic (but not definitive) geometry layout has been considered for the MITICA tomography, as 

shown in Fig. 5.21 where the MITICA cross section and the available port holes [Ago11ter] for the 

location of the CCDs are depicted. 

 
Fig. 5.21 Cross section of the MITICA vacuum vessel with the arrangement of the available portholes used for the 

tomographic diagnostic [Ago11ter]. Ports available for tomography are numbered clockwise, from 1 to 19. For each fan the 

blue lines define its boundary. Dimensions are in mm. 

 

The MITICA tomography plane is 480 mm wide and 1280 mm high, divided into 48 x 64 pixels (i.e. 

3072 pixels, each pixel is 10 x 20 mm).  

The tomography system is supposed to be composed of 19 linear CCD cameras with 1024 pixels each.  

At first the LoS aperture angle has been set equal to 5 mrad with a superposition between two 

neighbouring LoSs of 1/2, as in [Ago11ter]. The width of a LoS at 2 m of distance from the camera, 

which can be roughly considered the mean distance from a porthole to the beam centre, is in the case 

of an aperture angle of 5 mrad about 10 mm, i.e the width of a single pixel. 
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For reducing the intersection area between LoSs and pixels, a second reconstruction has been 

performed considering an angular aperture of 2.5 mrad. In this case the superposition has been reduced 

to 1/3 because the maximum number of LoSs for a 1024 pixels camera is about 500, and this limit 

would be reached in some cases with an overlapping of the 50%, keeping the same global view angles 

for the 19 CCDs.   

In Tab. 5.4 the available port holes, the geometry coordinates of cameras (with respect to the center of 

the grounded grid) and the number of LoSs for the two cases are reported. 

 

Port hole X0 (mm) Y0 (mm) 
#  LoSs  

5 mrad 

#  LoSs 

 2.5 mrad 

1 -1912.7 -181.8 300 450 

2 -1912.7 612.4 272 408 

3 -1161.1 1811.5 212 318 

4 -686.2 1772.7 208 312 

5 -150.9 1772.7 170 255 

6 240.6 1772.7 168 252 

7 912.0 1772.7 218 328 

8 1297.9 1801.9 214 322 

9 1912.7 467.9 286 430 

10 1912.7 -122.0 302 454 

11 1912.7 -974.9 254 382 

12 1912.7 -1551.0 216 324 

13 1130.9 -2148.0 180 270 

14 705.4 -2138.7 166 250 

15 0.0 -2138.7 134 202 

16 -479.2 -2138.7 152 228 

17 -1232.6 -2127.3 182 274 

18 -1912.7 -1562.4 214 322 

19 -1912.7 -687.8 270 406 

   
Total 4118 Total 6187 

 

Tab. 5.4 Geometry coordinates of CCD cameras (with respect to the center of the grounded grid) and number of LoSs for the 

configurations with a LoS angular aperture of 5 and 2.5 mrad. 

 

In Figs. 5.22 and 5.23 the two reconstructions are shown together with the normalized reconstruction 

errors respectively for the case of 5 mrad and 2.5 mrad aperture angles. Some pixels in the highest row 

of the residuals profile show an infinite error and for this reason, the 2 upper pixel rows have been 

excluded for the calculation of rms and mean errors for the MITICA reconstructions presented in this 

paragraph and in the next one. 

Reducing the LoS aperture angle to 2.5 mrad allows to increase efficiently the number of LoSs, from 

4118 to 6187 and to perform a better reconstruction: rms error is reduced from 21.9% to 15.1%, while 

the average error from 16.2% to 10.6%. In both cases it is possible to recognize the 12 peaks due to 

the superposition of the 1280 beamlets and the vertical shift of the beam downward due to the long 

range magnetic field.  

An interesting study would be exploring the possibility to use tomography for detecting a change in 

the MITICA beam aiming and how this diagnostic would be sensitive to the change. 
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Fig. 5.22 ML-EM reconstruction of the MITICA profile (left, color bar represents the particle number) and reconstruction 

errors (right, color bar represents the percentage error). 3072 pixels, aperture angle =5 mrad, rms =21.9%, mean =16.2% 

 

 
Fig. 5.23 ML-EM reconstruction of the MITICA profile (left, color bar represents the particle number) and reconstruction 

errors (right, color bar represents the percentage error). 3072 pixels, aperture angle =2.5 mrad, rms =15.1%, mean =10.6% 
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5.7 Instrumental noise in MITICA 

A more detailed study of the instrumental noise, based on the tomography code with Gaussian pixels 

developed for SPIDER [Ago11bis] and also applicable to the MITICA tomography system at 1.3 m 

from the grounded grid will be presented in the next chapter. The purpose of this work, was the 

development of a filtering technique [Fon14bis] for reducing the effect of the instrumental noise in 

order to respect the ITER prescriptions concerning the achievable resolution of the diagnostic. 

As done for NIO1, a preliminary evaluation of the filtering capabilities of a simple low-pass filter 

applied to the noisy reconstructions is repeated for MITICA. According to Eq. 5.10, the generic noisy 

integral measure (intgross) is simulated by adding a random noise to the net integral emissivity measure 

(intnet). The uniform distribution from which random numbers are extracted is limited by the values ± 

noisemax. Noise level is varied by changing the value of the parameter noisemax from 5% up to 20% of 

the net integral value. 

A low-pass Butterworth filter has been applied to the centered Fourier transform of the noisy 

reconstructions (lower frequencies that contain information to be preserved are placed starting from 

the center of the matrix image). The optimization of the low-pass filter brings to the following 

equation for the same:  

4

20
1

1












r

H
 (5.12)

 

where r is the distance between the center of the image and the considered pixel. 

Results are summarized in Tab. 5.5, where rms and mean errors of the noisy and filtered 

reconstructions are reported.  

In Figs. 5.24, 5.25, 5.26 and 5.27 the reference emissivity profile calculated by EAMCC, the noisy 

reconstruction, the filtered one and the normalized error profile are shown for a noise level 

respectively of 5, 10, 15, 20%.  

The effect of the noise is stronger with respect to NIO1 reconstructions, the application of the 

Butterworth brings to a significant noise reduction but tend to smooth the profiles, extending the area 

of the 12 peaks and this effect is evident for higher noise levels.  

 

 

noise level (%) 

Reconstruction errors (%) 

noisy profile filtered profile 

rms mean rms mean 

0 15.1 10.6 
  

5 24.4 17.3 19.1 12.3 

10 40.1 28.5 24.8 15.2 

15 56.5 39.5 28.9 17.6 

20 71.8 49.2 33.3 20.2 

 

Tab. 5.5 ML-EM MITICA reconstruction errors of noisy and filtered profiles for different noise levels 
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Fig. 5.24 Top: MITICA emissivity profile calculated by EAMCC (left) and noisy ML-EM reconstruction (on the right, noise 

level=5%). Bottom: filtered image (left) and normalized percentage errors (right). Color bar of the emissivity profiles 

represents the particle number. 
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Fig. 5.25 Top: MITICA emissivity profile calculated by EAMCC (left) and noisy ML-EM reconstruction (on the right, noise 

level=10%). Bottom: filtered image (left) and normalized percentage errors (right). Color bar of the emissivity profiles 

represents the particle number. 
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Fig. 5.26 Top: MITICA emissivity profile calculated by EAMCC (left) and noisy ML-EM reconstruction (on the right, noise 

level=15%). Bottom: filtered image (left) and normalized percentage errors (right). Color bar of the emissivity profiles 

represents the particle number. 
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Fig. 5.27 Top: MITICA emissivity profile calculated by EAMCC (left) and noisy ML-EM reconstruction (on the right, noise 

level=20%). Bottom: filtered image (left) and normalized percentage errors (right). Color bar of the emissivity profiles 

represents the particle number. 
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5.8 Conclusions and future works 

A multi-formula tomography code, based on iterative reconstruction algorithms has been developed 

for NIO1 and the first results obtained are described in this chapter. Considering a reasonable 

compromise between the cost of the tomography system for NIO1 (strongly influenced by the number 

of cameras) and the quality of tomography reconstructions, the limited view of the beam due to the 

available diagnostic ports, different geometry configurations have been analyzed.  

According to the simulations, the most simple system made of 2 CCD cameras, allow to reconstruct a 

1600 pixels emissivity profile with an rms error of 21.1% and a mean error of 15.3%. Considering the 

number of pixels and the number of lines-of-sight (240), the inversion is a limited-data problem and 

results obtained with the ML-EM technique are significant. A more complex system with 6 CCDs 

allow to reduce the reconstruction errors down to 10% and represents a good compromise between 

complexity and quality of reconstructions. 

Some a-priori knowledge would allow to reduce the reconstruction errors and it will be considered in 

the future, keeping in mind that also a limit in the detection capabilities would be introduced.  

For what concerns the instrumental noise, a more detailed study is required, in particular the 

experimental evaluation of the noise model and its intensity. If the experimental noise level is lower 

than 10% a simple low-pass filter could be sufficient, otherwise a more sophisticated filtering 

technique should be considered.  

The tomography code has been also applied to the MITICA profiles, 3072 pixels reconstructions have 

been obtained. Reducing the aperture angle from 5 to 2.5 mrad, a significant improvement in the 

reconstruction quality is obtained. Reconstructions clearly show the right position of the 12 peaks due 

to the superposition of the 1280 beamlets and also the vertical displacement downward due to the 

applied magnetic field. The instrumental noise has, in the case of MITICA, a stronger effect, but 

before considering a proper image filtering, an experimental measurement of the noise level is 

necessary. The application of this code to the MITICA tomography system, despite a dedicated code 

already exists, could be of interest and complementary, due to the peculiarity of not being based on 

any hypothesis concerning the beam characteristics.  
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Chapter 6 

 
An Image Filtering Technique for SPIDER Visible Tomography 

 
The tomographic diagnostic developed for the beam generated in the SPIDER facility (100 keV, 50 A 

prototype negative ion source of ITER neutral beam injector, described in Chapter 1) will 

characterize the two-dimensional particle density distribution of the beam. The request for the beam is 

that the maximum acceptable deviation from uniformity is ±10%, thus the deviation of the 

tomographic reconstruction from the real emissivity of the beam has to be sufficiently lower than this 

value.  

In this chapter the role of the instrumental noise in the reconstruction capability of the tomography 

code developed for SPIDER [Ago11bis] is studied. It was found that the noise has a large influence on 

the maximum achievable resolution of the diagnostic and in order to reduce its impact different 

filtering techniques have been considered both in the frequency and in the spatial domain. In 

particular, a technique developed for radar imaging and based on a local statistics method [Lee86] 

has been adapted and implemented in the SPIDER tomography code. It is able to reduce significantly 

the reconstruction errors in different operating conditions of SPIDER and demonstrates the feasibility 

to filter out the effect of the noise by post-processing the reconstructed image of the beam. 

 

 

6.1 Introduction 

SPIDER is a lower energy prototype negative ion source for the ITER neutral beam injector, aimed at 

demonstrating the capability to create and extract a current of 100 kV D
-
 (H

-
) ions up to 50 A (60 A). 

The ions are extracted over a wide surface (1.52 x 0.56 m
2
) with a prescribed uniformity of ± 10%.  

The main aim of the SPIDER tomography diagnostic will be measuring the uniformity of the beam: in 

particular the request for the beam is that the maximum acceptable deviation from uniformity is ± 

10%, thus the deviation of the tomographic reconstruction from the real emissivity of the beam has to 

be sufficiently lower than this value. Moreover, a complete reconstruction of the beam emissivity in 

two dimensions obtained with the proposed tomography can go beyond the simple detection of the 

lack of uniformity of the beam, giving information about its causes and suggesting possible solutions. 

A tomographic algorithm based on the simultaneous algebraic reconstruction technique (SART, 

described in the previous chapter) has already been developed and tested with satisfactory results 

[Ago11bis]. 

In the real tomography system, the role of the instrumental noise introduced in the line integrated 

signals must be taken into account. This is included in the simulations and it is shown to affect the 

accuracy of the reconstructed profile, imposing a limit on the maximum acceptable noise level. In 

order to reduce the effect of experimental noise and keep the deviation between the real and the 

reconstructed beam profiles lower than the prescribed value, it is necessary to introduce a digital 

filtering technique in the algorithm.   

 

6.2 Emissivity profiles of the SPIDER beam 

The SPIDER beam is simulated with 1280 beamlets whose emissivity has a Gaussian shape, arranged 

into 16 rectangular shaped beamlet groups, as described in [Pas11] and in [Ago11bis]. In the same 

references also the tomographic inversion technique is discussed. 

The reconstructed beam profile is composed of Gaussian pixels of equal size. The 2D emissivity 

profiles (phantoms) which reproduce different possible experimental beam configurations and have to 

be reconstructed are described below and identified by a number. 

The phantom 1, shown in Fig. 6.1, represents a realistic linear non uniformity, simulated by linearly 

varying the amplitude of each beamlet both in horizontal (x) and vertical (y) directions.  

In this phantom, the amplitude of the 1280 Gaussian beamlets (the beamlet width is σxg=  σyg= 3mm) 

is defined as:                                                
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Where δx= 6% and δy= 14% (Δx and Δy are the size of the beam along the two directions, and A0g= 1 

the amplitude of the unperturbed beamlet). So this phantom has a non-uniformity of ± 3% along x and 

± 7% along y, with a resulting total non-uniformity of ± 10%, which is the maximum acceptable 

deviation from uniformity specified for SPIDER. 

The phantom 2, shown in Fig. 6.2, has a uniform profile and represents the ideal neutral beam. All the 

beamlets have the same amplitude (Ag= 1), centered at the nominal position and their widths along x 

and y directions are 3 mm, like phantom 1. 

 

 
Figure 6.1 Phantom 1. It is non uniform along both x and y directions. The colour refers to the amplitude of the Gaussians 

Ag. 

 

       
Figure 6.2 Phantom 2. It is uniform along both x and y directions, (Ag= 1). The colour refers to the amplitude of the 

Gaussians Ag. 
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The phantom 3, shown in Fig. 6.3, is considered in order to simulate a serious malfunctioning of the 

plasma source. Two beamlet groups are turned off and all the Gaussians belonging to them are turned 

to zero amplitude. The other beamlets have all the same amplitude, like phantom 2. 

 

     
Figure 6.3 Phantom 3. It has two entire beamlet groups turned off (the black ones).The colour refers to the amplitude of the 

Gaussians Ag 

 

6.3 Noise model and errors in the reconstructed beam profile 

The tomography diagnostic measures the brightness of the beam along a set of 3127 lines of sight, so 

we have 3127 line integral measurements of Hα (Dα) radiation. 

In order to evaluate how the instrumental noise affecting line integral measurements acts on the 

reconstruction of the beam profile, a model of random noise has been considered and errors in the 

reconstructed image, due to the noisy input data, have been calculated. 

The generic noisy integral measure (intgross) is simulated by adding a random noise to the net integral 

emissivity measure (intnet): 

)1(intint pnetgross 
 

(6.2)
 

Where p is a number extracted from a uniform distribution limited by the values ± noisemax. 

Noise level is varied by changing the value of the parameter noisemax from 5% up to 50% of the net 

integral value.  

It is important to highlight that the minimum spatial resolution required is half a beamlet group, so at 

least 8 pixels along y and 4 pixels along x directions are required for the reconstructed profiles. 

However, a better spatial resolution is preferable and it can be obtained by increasing the number of 

pixels in the inversion. In fact a more detailed reconstruction of the beam emissivity with a number of 

pixels higher than the minimum required can go beyond the simple detection of the lack of uniformity 

of the beam, giving information in a smaller spatial scale. 

In order to study the dependence of the reconstruction errors as a function of the noise level as well as 

of the number of pixels, a new routine (compared to the one described in [Ago11bis]) that allows to 

reconstruct the beam profile with a generic number of pixels has been implemented in the SPIDER 

tomography code. Beamlet groups are vertically divided in pixels with a rectangular base. 

The number of pixels has been increased starting from 16 (where a single pixel represents a whole 

beamlet group) up to 256 (where a single pixel represents 5 horizontal beamlets). 

In order to evaluate how the inverted phantom (obtained by using the noisy line-integrated signals) 

reproduces the simulated ones, two estimators are defined; by naming εi the emissivity of the 

reconstructed pixel, εreal the real emissivity and npix the number of pixels, mean and maximum relative 

errors are respectively defined as: 
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The results of simulations for the phantom 1 are summarized in Fig. 6.4, where the mean and the 

maximum percentage pixel errors are calculated as a function of the noisemax parameter and number of 

pixels. 

                         

 

 

 
Figure 6.4 Inversion errors in the reconstruction of the phantom 1 as a function of the noise level for different numbers of 

pixels used in the reconstruction algorithm. 
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A clear result is that when increasing the noise, also the errors increase with a linear trend. Moreover, 

the same noise condition produces in the reconstructed images with a higher number of pixels a larger 

deviation from the experimental profile. This must be ascribed to the increase of the unknowns in the 

tomography inversion problem. As an example, the average error for the phantom 1 is plotted in Fig. 

6.5 as a function of the pixel number for the same noise level (noisemax= 20%). Starting from 32 pixels, 

the calculated pixel errors are well fitted by a linear function. 

 

 
Figure 6.5 Inversion errors in the reconstruction of the phantom 1 as a function of the number of pixels. 

 

 
Figure 6.6 Top: tomographic reconstruction of the reference phantom (the central profile) with 32 pixels and noisy data 

(noisemax= 5% on the left  and noisemax= 20% on the right). Bottom: comparison of pixel intensities between reference (black 

line) and reconstructed profile (blue dots) is represented for the two cases, respectively on the lower left and right. 

 

As previously written, the minimum required number of pixels is 32. By considering an expected level 

of noise (noisemax= 20%) the calculated mean error is 2.0% (with a standard deviation of 1.5%) and the 

maximum error is 5.2%. In Fig. 6.6 (on the top right) the reconstructed beam profile obtained for the 

case with noisemax= 20% shows an important deviation from the reference phantom (the central 
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profile) that makes the reconstruction algorithm not reliable to operate with this noise level. In the 

same figure, on the top left, another 32 pixels reconstruction with a lower noise level (noisemax= 5%) is 

presented. A comparison of pixel intensities between reference (black line) and reconstructed profiles 

(blue dots) are shown for the two cases, respectively on the lower right and left.  

 

6.4 Filtering in the frequency domain 

Random noise in the line integrated signal introduces rapid spatial variations of pixel intensity in the 

reconstructed image, as shown in Fig. 6.6. It means that in the spatial frequency domain of the image, 

noise is contained at the highest frequencies of the Fourier transform. 

It is important to highlight that also edges and other sharp transitions present in the phantom contribute 

significantly to the high frequency content and when applying high frequency suppression, noise 

reduction is then expected as well as an undesirable blurring effect. Every sharp transition will be 

smoothed and this consideration suggests to pay attention using a frequency filtering technique in the 

case we want to reconstruct a beam profile where some beamlet groups are turned off, and so when 

sharp transitions are expected.  

In order to test if a low pass filter in the spatial domain would be useful to significantly reduce noise in 

the reconstructed beam profile, a preliminary attempt by suppressing highest frequencies from the 

reconstruction of the phantom 1 has been done. The implemented procedure, for a generic number of 

pixels and for a series of noisemax parameter values is sketched in Fig. 6.7.   

By computing the 2-D FFT of the reconstructed image it is possible to obtain a matrix with as many 

complex coefficients as the number of pixels used in the reconstruction, where highest frequency 

components are at the center of the matrix, decreasing in frequency towards the edge. 

 

 
Figure 6.7 Image filtering procedure 

 

A binary rough filter matrix, composed of ones but a central rectangular window composed of zeros 

(notch), is applied. In order to study the correlation between the notch extension and the reconstruction 

errors, the notch window size is varied. 
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It is important to notice that having just 4 elements per row, it is impossible to apply a binary filter 

with a circular window (ideal filter).  

By naming fftu,v the FFT matrix element (u,v represent the subscripts in the frequency domain), the 

corresponding filtered matrix element is given by: 

vuvuvu lowpassfftfiltered ,,, 
 

(6.5)
 

where lowpassu,v is the corresponding element of the low pass filter matrix. 

 

   
 

 
 

Figure 6.8 Mean and maximum reconstruction errors for a 32 pixels configuration. Square dots represent errors obtained 

with a 2x6 filtering window for a noise level up to 10% and a 2x8 window for higher noise level; diamond shaped dots 

represent the unfiltered reconstruction errors. 
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Figure 6.9 Mean and maximum reconstruction errors for a 64 pixels configuration. Square dots represent errors obtained 

with a 2x14 filtering window for a noise level up to 10% and a 2x16 window for higher noise level; diamond shaped dots 

represent the unfiltered reconstruction errors. 

 

As first step, a 2x2 window filter, which forces to zero the 4 central frequency components of the FFT 

matrix, is applied. Then, by an inverse FFT, the filtered reconstructed image is obtained, and the errors 

of the reconstruction are evaluated. The procedure is then repeated increasing the vertical dimension 

of the filter window by one row both up and down at every step, up to a 2x(npix/4) window (npix 

being the number of pixels).  

Minimum mean reconstruction errors for 32 and 64 pixels are achieved respectively by a 2x6 and a 

2x14 windows, for a noisemax up to 10%, while for a higher noise level, a 2x(npix/4) window 

(respectively 2x8 and 2x16 windows) guarantees the minimum mean errors. These results are 

presented on the top of Figs. 6.8 and 6.9, respectively for 32 and 64 pixels, where square dots 

represent minimum mean errors obtained with low pass filter, compared with the unfiltered 
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reconstruction errors (diamond shaped dots). Corresponding maximum errors are also shown in the 

lower plots of the two figures.  

The effect of the low pass filter in the reduction of the reconstruction errors, for these two 

configurations, becomes more evident with increasing noise level: starting from 20%, the average and 

maximum errors are approximately halved. 

 

 
Figure 6.10 Top: tomographic reconstruction of the phantom 1 (the top left profile) with 32 pixels and noisy data 

(noisemax=20%). Unfiltered and filtered beam profiles are shown 

Bottom: plots at the bottom represent a comparison of pixel intensities between reference (black line) and reconstructed 

profile (blue dots), for the unfiltered (left) and for the filtered (right) profile. 

 

 
Figure 6.11 Top: tomographic reconstruction of the phantom 1 (the top left profile) with 64 pixels and noisy data 

(noisemax=20%). Unfiltered and filtered beam profiles are shown. Bottom: plots on the lower left and right represents a 

comparison of pixel intensities between reference (black line) and reconstructed profile (blue dots), respectively for the 

unfiltered and for the filtered profile. 
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In Figs. 6.10 and 6.11 a comparison between noisy and filtered reconstructed profiles, respectively for 

32 and 64 pixels, is presented for an intermediate noise level (20%). The top left profile is the 

reference profile (phantom 1) that has to be reconstructed, while the central and the right ones 

represent respectively the noisy and filtered reconstructions. In the same figures, plots on the lower 

left and right represent a comparison of pixel intensities between reference (black line) and 

reconstructed (blue dots) profiles, respectively for the unfiltered and for the filtered reconstructions. 

The effect of the filter is evident: blue dots, in the case of filtered profiles, follow the black line quite 

well and errors are reduced to few percent. Despite this, the filtered tomographic reconstructions do 

not reproduce sufficiently well variations of the reference profile, particularly along the short 

horizontal extension (the horizontal variation of intensity, having just 4 pixels per row, is harder to be 

reproduced than the vertical one). 

 

 

 
Figure 6.12 Mean and maximum reconstruction errors for a 128 pixels configuration.  
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Figure 6.13 Mean and maximum reconstruction errors for a 256 pixels configuration 

 

For 128 and 256 pixel configurations, best results are obtained by applying a suppressing window 

respectively of size 4x30 and 4x62. In Figs. 6.12 and 6.13, mean and maximum errors as function of 

the noise level are plotted for 128 and 256 pixels. A substantial noise reduction is achieved by 

applying respectively a 4x30 and a 4x62 (triangular dots) instead of a 2x32 and 2x64 windows (square 

dots). The average and maximum errors are reduced, approximately down to 4% and 10%. 

In Figs. 6.14 and 6.15 a comparison between unfiltered and filtered reconstructed profiles, respectively 

for 128 and 256 pixels, is presented for an intermediate noise level (20%). The top left profile is the 

reference phantom that has to be reconstructed, while the two profiles depicted in the lower part of the 

same figures, represent the filtered reconstructions obtained by using the two discussed notches. 

In the same pictures, plots on the right represent a comparison of pixel intensity between reference 

(black line) and reconstructed (blue dots) profiles, for the unfiltered and for the two filtered 

reconstructions. 
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Figure 6.14 Tomographic reconstruction of the phantom 1 (the top left profile) with 128 pixels and noisy data 

(noisemax=20%). Unfiltered and filtered beam profiles are shown. A comparison of pixel intensities between reference (black 

line) and reconstructed profiles (blue dots) are shown on the right. 

 

 
Figure 6.15 Tomographic reconstruction of the phantom 1 (the top left profile) with 256 pixels and noisy data 

(noisemax=20%). Unfiltered and filtered beam profiles are shown. A comparison of pixel intensities between reference (black 

line) and reconstructed profiles (blue dots) are shown on the right. 

 

In both pixel configurations, profiles obtained respectively with 2x32 and 2x64 windows do not show 

a vertical linear variation (the horizontal variation is even harder to be reproduced, since there are just 

4 pixels per row). This effect is also noticeable in the related plots on the right side of the two figures: 

blue dots, when a 2x32 and 2x64 filter windows are applied, do not follow the black line, showing a 

discontinuous trand. 
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Profiles obtained with the larger windows (4x30 and 4x62) show a more gradual variation of intensity 

in the vertical direction, and as previously discussed, it allows having an important noise reduction for 

both pixel configurations. However this notch sets to zero almost every element of the FFT matrix, 

preserving just a few elements at low frequencies. It produces a relevant loss of information, since this 

is suppressed as well as noise. Moreover, the linear variation of the pixel intensity is reproduced with a 

few sinusoidal basis functions of the Fourier transform. The effect is visible in the lower right plots of 

Figs. 6.14 and 6.15, where blue dots show a sinusoidal trend. 

In conclusion, this preliminary attempt shows a relevant but not sufficient reduction of the inversion 

errors applying the FFT spatial filter to the reconstructed images. By setting to zero the highest 

frequencies, the noise is suppressed but also a part of information.  

 

6.4.1 Window function  

In the spatial frequency domain a more efficient noise reduction is obtained by applying a window 

function to the Fourier transform of the image. It allows to gradually attenuate the highest frequencies 

instead setting them to zero as in the previous case.  

The function used to create a 2-D low pass filter for the Fourier Transform is defined as:                                            

   











mf

f
fH  2cos)1()(  , if mff 0       

                                    0)( fH ,       otherwise
 

(6.6)
 

Where f are the spatial frequencies of the image, fm the cut-off frequency and α is a constant value (in 

particular if α= 0.5 the function is called “Hann window”, if α= 0.54  it is called “Hamming window”). 

By taking the product of two 1-D functions, a 2-D filter matrix is obtained, whose elements are 

calculated as: 
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(6.7)

 

N1 and N2 represent respectively the number of rows and columns of the matrix and u,v the matrix 

subscripts in the frequency domain (u= 0,1,2,...,N1-1; v= 0,1,2,...,N2-1) 

 

 
Figure 6.16 20x32 Hann filter matrix 

 



98 

 

In Fig. 6.16 the 2-D filter matrix is shown for α= 0.5: in order to use it as a low pass filter, it must be 

applied to the centered Fourier Transform of the image (i.e. lower frequencies that contain information 

to be preserved are placed starting from the center of the matrix). 

 

 
 

 
Figure 6.17 Mean and maximum reconstruction errors for a 128 pixels configuration with the filter matrix defined by eq. 

(6.7) (with α= 0.45) compared with the previous results obtained with a 4x30 rough filter. 

 

In Fig. 6.17 a comparison between the errors obtained with the applied window function (errors are 

minimized by setting α= 0.45) and with the 4x30 rough filter is shown for a 128 pixels configuration. 

Despite the better results with respect to the previous attempt, the maximum error is still above 5% 

and, even more important, the horizontal variation is not reconstructed, as shown in Fig. 6.18, where 

the tomography reconstruction filtered with the same window function is shown. 

Reconstructions with different number of pixels are omitted, since they do not show better results. 
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Figure 6.18 Top: tomographic reconstruction (the top right profile) of the phantom 1 (the top left profile) with 128 pixels and 

noisy data (noisemax=20%) filtered with the window function defined by eq. (6.7) (with α= 0.45) Bottom: the plot represents a 

comparison of pixel intensities between the reference phantom (black line) and the filtered reconstruction (blue dots). 

 

6.5  Filtering in the spatial domain by a local statistics method 

In order to suppress granular noise from synthetic aperture radar (SAR) images, J. Lee developed a 

noise reduction algorithm which applies a local statistics method that does not require a statistical 

model for the signal [Lee86]. 

Being zi,j the intensity of an observed pixel and xi,j the noise-free image pixel, under the multiplicative 

noise hypothesis we must have: 

jijiji vxz ,,, 
 

(6.8)
 

in which vi,j represents the multiplicative noise with a mean of 1 and a variance σv
2
. 

In most filtering algorithms an a priori mean and variance of the signal x are derived from an assumed 

autocorrelation model. On the contrary, Lee’s algorithm can operate in the absence of a signal model 

because it uses the image itself to estimate the a priori mean and variance by using local mean z  and 

local variance var(z) in a local pixel neighbourhood (defined by a window). 

The a priori mean and variance of x can be computed by [Lee86]: 
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In eqs. (6.9) and (6.10) the values of z  and var(z) are approximated by the local mean and local 

variance of the noisy image. 

The observed pixel z can be linearized by the first-order Taylor series expansion about ( vx, ): 
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(6.11)
 

Since 1v  eqs. (6.9), (6.10) and (6.11) can be further simplified as:                                                          

zx     
 

(6.12) 



100 

 

2

2

2

1

)var(
)var( x

zz
x

v







  
(6.13) 

)1('  vxxz
 

(6.14) 

By minimizing the mean square error it is possible to obtain an estimator of x [Lee86]:                                                                     

)(ˆ xzkxx 
 

(6.15)
 

where:                            
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6.5.1 The implementation of the Lee’s algorithm 

As previously said, Lee’s algorithm smoothes image noise by generating statistics in a local pixel’s 

neighbourhood and comparing them to the expected values. It was originally applied to filter out the 

noise from radar images composed of 256x256 pixels, using 5x5 and 7x7 local windows. 

As confirmed by our attempts, Lee’s algorithm seems not able to reconstruct the horizontal emissivity 

variation of the phantom 1, using just 4 pixels per row (1 pixel for every beamlet group). It is then 

necessary to increase the number of pixels per row, considering the fact that a larger number of pixels 

allows better statistics. 

Since every beamlet group is composed of 5 beamlets per row and every pixel must contain an integer 

number of beamlets, the horizontal pixel number will be increased from 1 to 5 per beamlet group. In 

vertical direction, the beamlet group will be divided into 8 pixels, so the reconstructed image will be 

represented by a matrix of 640 pixels (with 20 columns and 32 rows), and a single pixel will contain 2 

beamlets. 

The filtering algorithm is based on eq. (6.15) by which it is possible to calculate the estimated free-

noise pixel’s intensity just considering its neighbourhood: this value will represent the filtered 

intensity for the corresponding pixel. In order to minimize the reconstruction errors, the algorithm 

applies iteratively eq. (6.15), according to the following formula:
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where 1
,
l
jix  represents the filtered value of the pixel i,j (i,j are the matrix subscripts in the space 

domain) at the step l+1, calculated as a function of the pixel’s value at the previous step l

jix ,
 .  

Satisfactory results have been obtained with beam profiles that show a constant and a linear emissivity 

variation. However, the algorithm is not able to filter out the noise from a beam profile where some 

beamlet groups are turned off, because it acts smoothing every sharp variation of emissivity and at the 

edges of the beamlet groups turned off, a discontinuity of emissivity would be present.  

Since the edges of the turned off area of the reconstruction have to be preserved, it is necessary to 

introduce a delta function that allows not to consider pixels with quasi-zero emissivity in the local 

statistics (for the calculation of x
 
and k  ). 

In particular, considering the delta function, the average value of emissivity for the pixel i,j at the step 

l+1 is defined as the average value of emissivity inside the local window without considering null-

emissivity pixels: 
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Where δi,j  is null if the emissivity of the corresponding pixel is below a threshold (set to a value close 

to zero).  
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The effect of the delta function in the filtering algorithm is shown in the next paragraph in Fig. 6.23, 

where tomography reconstructions with and without considering it, are depicted. When the delta 

function is not included, the filter tends to smooth the edges of the zero-emissivity area and this effect 

is then propagated by successive iterations.  

 

6.5.2 Results with a 3x3 and 5x5 local statistics  

The implemented algorithm allows choosing the size of the pixel’s neighborhood defined as a squared 

window centered on the pixel ji,  and composed of 3x3 or 5x5 pixels (larger local windows did not 

give good results). 

Since the tomography code must be able to reconstruct the beam profile in every operating condition 

with limited errors, as first step of the development of the filtering algorithm, three different emissivity 

profiles (represented by phantoms 1,2,3 with noisemax=20%) have been considered. As previously 

explained, reconstructions are made with 640 pixels. 

   
Figure 6.19 Average reconstruction errors obtained by applying the Lee’s algorithm to the phantoms 1,2,3 for a 3x3 window. 

 
Figure 6.20 Average reconstruction errors obtained by applying the Lee’s algorithm to the phantoms 1,2,3 for a 5x5 window. 
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In Figs. 6.19 and 6.20 the reduction of the average reconstruction errors as a function of the number of 

iterations is shown for the 3 profiles, respectively for the case of 3x3 and 5x5 windows.  

The best global results are obtained with a 5x5 window and 13 iterations: the phantom 1 shows a 

minimum value at this point, while for phantoms 2 and 3, a monotonic error reduction is observed as a 

function of the number of iterations.  

This difference could depend on the fact that the algorithm tends to smooth the difference of 

emissivity between neighboring pixels and this effect is extended to the whole profile after a high 

number of iterations. As a result, an almost constant emissivity profile is obtained. 

 

 
Figure 6.21 Top: tomographic reconstruction of the phantom 1 (the top left profile) with 640 pixels and noisy data 

(noisemax=20%) unfiltered (the central profile) and filtered with the implemented Lee’s algorithm with a 5x5 window (the top 

right profile). Bottom: plots on the lower left and right represent a comparison of pixel intensities between reference (black 

line) and reconstructed profile (blue dots), respectively for the unfiltered and for the filtered profile. 

 

 
Figure 6.22 Top: tomographic reconstruction of the phantom 2 (the top left profile) with 640 pixels and noisy data 

(noisemax=20%) filtered with the implemented Lee’s algorithm with a 5x5 window function (the top right profile).  

Bottom: the plot represents a comparison of pixel intensities between reference (black line) and the reconstructed filtered 

profile (blue dots). 
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Figure 6.23 –Top: tomographic reconstructions of the phantom 3 (the top left profile) with 640 pixels and noisy data 

(noisemax=20%) filtered with the implemented Lee’s algorithm (5x5 window) without delta function (the central profile) and 

with delta function (the top right profile). Bottom: the plot represents a comparison of pixel intensities between reference 

(black line) and the reconstructed filtered profile with delta function (blue dots). 

 

Tomographic reconstructions are depicted in Figs. 6.21, 6.22, 6.23, using the 5x5 window, after 13 

iterations. 

For the phantom 1, the maximum error is reduced from 115% to 3.5%, while the average one from 

29% to 1.4%. The filtered reconstructions of the phantoms 2 and 3 show lower maximum errors (2.5% 

and 2.3%, calculated at iteration 13). As previously anticipated, the phantom 3 that represents a 

malfunctioning of the device has required modifying the algorithm with the introduction of a delta 

function, since the pixel’s neighborhood considered for the local statistics must not contain null 

elements.  

The delta function has an effect only if some elements of the local window are almost null (below a 

threshold): in this case they are not considered for the local statistics (as happens for phantom 3). In 

the opposite case, the delta function does not have any effect on the local statistics (as happens for 

phantoms 1 and 2).  

 

6.6 Conclusions and future works 

This work represents a first and encouraging attempt to demonstrate the feasibility to suppress 

instrumental noise in the SPIDER tomography system by implementing in the tomographic inversion 

code a post-processing algorithm that does not increase significantly the processing time.  

Two main algorithms, operating respectively in the spatial frequency and in the spatial domains, have 

been developed and tested. 

In particular, the second one, derived from radar imaging and modified in order to detect discontinuity 

in the emission of the beamlet groups of SPIDER (i.e. beam profile with some beamlet groups turned 

off), seems the most promising since it is able to reduce the maximum errors (in reconstructions with 

640 pixels and noisemax = 20%) to values down to 3.5% considering different phantoms that represent 

the main operating conditions of the device. 

The algorithm developed in the spatial frequency domain could give similar results (in terms of 

reconstruction errors, for the same level of noise) just considering a lower number of pixels (i.e. 32 or 

64) that gives rise to reconstructions with a low resolution and without the possibility to detect any 

horizontal variation of emissivity. 
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It is important to notice that a reconstruction of the beam emissivity with a higher number of pixels 

can go beyond the simple detection of the lack of uniformity of the beam, giving information about its 

causes and suggesting possible solutions. 

Being this work based on a model that simulates the role of the instrumental noise introduced in the 

line integrated signals, an important further step will be the experimental validation of this noise 

model that would also allow to have a more precise idea about the expected noise level of the system. 

A measure of the noise level is essential to decide which is the best filtering technique. Lee’s 

algorithm, since it is able to strongly reduce the reconstruction errors, is more suitable for a high noise 

level, but for a very low noise level (around a few percent) even without a digital filter it is possible to 

respect the ITER prescriptions for reconstruction errors [Ago11bis]. 

An improvement of the Lee’s algorithm could be the addition of a routine for the optimization of the 

number of iterations required to minimize the reconstruction errors (since it varies with the considered 

phantom) and the validation with phantoms representing other operating conditions of SPIDER. 
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Chapter 7 

 
Conclusions 
 

The research activity presented in this thesis work is in the framework of the development of the 

negative ion source (SPIDER) and of the full injector (MITICA) prototypes for the ITER neutral 

beam. In particular, it is focused on two main topics: particle transport studies inside the MITICA 

accelerator and the development of a tomographic beam diagnostic.  

A proper modeling of the particle transport inside the MITICA accelerator, considering the main 

processes that generate secondary particles relevant for the evaluation of the heat loads on the 

accelerator grids is essential for the thermo-mechanical analysis and the mechanical design of the 

accelerator. This calculation is performed by EAMCC, a relativistic particle tracking code based on 

the Monte-Carlo method for describing collisions inside the accelerator under prescribed electric and 

magnetic fields. In this thesis the code has been deeply modified in order to perform complete 3D 

multi-beamlet analysis: this allows to take into account the beamlet-beamlet repulsion and to consider 

other effects neglected under the hypothesis of axi-symmetric beamlet (e.g. the influence of magnetic 

fields on the calculation of electric potential maps and the effect of steering plates called kerbs on the 

particle trajectories. This modified version of EAMCC (called EAMCC-mod for the sake of 

simplicity), is fully 3D and capable of modifying the mesh of the 3D maps and of dealing with uneven 

meshes for extending the physical dimensions of the simulated domain: a finer mesh is used just in the 

regions where a more detailed description of the fields is required. In order to validate modifications 

introduced in EAMCC, two simulations performed with the original code and the modified version 

have been compared: the maximum difference of total power load on grids is ~ 7%, mainly due to the 

fact that EAMCC-mod implements new routines for the calculation of collisions and the determination 

of the geometry of grids.  

Hot spots and the typical pattern of the power deposition observed in the single-beamlet simulations 

are present also in the multi-beamlet results, apart from some aspects that will be investigated in the 

future. The most relevant difference is that in the multi-beamlet simulation half ring regions are 

observed in the extraction grid with a power density of about 3 MW/m
2
 due to the impinging electrons 

co-extracted from the ion source. Moreover, the total power deposition on the accelerator grids 

calculated in the multi-beamlet simulation, with respect to the single-beamlet case, shows non-

negligible differences and for these reasons an experimental validation is necessary. An opportunity of 

experimental validation is represented by NIO1, a versatile negative ion source installed at Consorzio 

RFX currently in its initial operation phase. 

A fully 3D analysis of the NIO1 beam has been performed using EAMCC-mod. For the first time, an 

entire source, made of nine beamlets, has been simulated in EAMCC considering multi-beamlet 

effects before neglected and discarding the axis-symmetry hypothesis of the electric fields imposed by 

the original version of the code. For determining heat loads and the power transmitted out of the NIO1 

accelerator, the H
-
 beam core, the electrons co-extracted from the ion source and the beam halo have 

been included in simulations. According to results, most of the power to the extraction grid comes 

from the co-extracted plasma electrons. Post acceleration (PA) and repeller (REP) grids are heated by 

co-extracted electrons and secondary electrons which are by-products of collisions between the 

accelerated negative ions and the background gas. Highest value of power are calculated for the EG 

and PA and other high-power density regions are determined. In particular, the deposition of co-

extracted electrons on the front surface of the extraction grid causes a power density peak of about 4.5 

MW/m
2
. Lower but meaningful high-power density regions are also calculated in the PA (~ 1.6 

MW/m
2
) and in the REP (500 kW/m

2
) grids. NIO1 represents a great experimental opportunity and 

these results will be considered in the future for benchmarking EAMCC-mod. If confirmed, a thermo-

mechanical verification of grids to guarantee a grid temperature in any case lower than 300 °C 

(beyond this temperature the copper thermo-mechanical properties are sensibly worsened) and 

compatible stress peaks will be carried out. Stresses, strains and deformations in the copper will be 

calculated and if necessary the capability of the cooling system will be improved.  
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Concerning tomography, its application to an ion beam will be useful for the assessment of the density 

profile of the beam. It can go beyond the simple detection of the lack of uniformity of the beam, 

giving information about its causes and suggesting possible solutions. A tomography code based on 

algebraic reconstruction techniques, more suitable than algorithms based on the Radon transform 

when the number of detectors is limited compared to the number of pixels of the reconstructed profile, 

has been developed and tested on the NIO1 emissivity profile. The tomography code has been 

developed with the aim of realizing a versatile instrument, applicable to linear accelerators as well as 

to a tokamak and without adding any hypotheses about the beam characteristics or the emissivity in a 

particular region of the tomography plane, not to limit the capability of the code of detecting 

irregularities in the beam profiles.  

Since NIO1 is in its start-up phase, it is not possible to have an experimental emissivity profile for 

testing the tomography code. For this reason a phantom (i.e. a simulated profile) was calculated with 

EAMCC-mod, by which it was possible to simulate the transport of the 9 H
-
 beamlets of the NIO1 

beam from the ion source, through the accelerator and up to the tomography plane at which the 

tomography detectors are located. Considering a reasonable compromise between the cost of the 

tomography system for NIO1 (strongly influenced by the number of cameras) and the quality of 

tomography reconstructions, the limited view of the beam due to the available diagnostic ports, 

different geometry configurations have been analyzed. According to the simulations, the simplest 

system made of 2 CCD cameras, allows to reconstruct a 1600 pixels emissivity profile with an rms 

error of 21.1% and a mean error of 15.3%. Considering the number of pixels and the number of lines-

of-sight (240), the inversion is a limited-data problem and results obtained with the Maximum-

Likelihood Expectation-Maximization (ML-EM) algorithm are significant. A more complex system 

with 6 CCDs would allow to reduce the reconstruction errors down to 10% and represents a good 

compromise between complexity and quality of reconstructions. 

Some a-priori knowledge would allow to reduce the reconstruction errors and it will be considered in 

the future, keeping in mind that also a limit in the detection capabilities would be introduced.  

For what concerns the instrumental noise, a more detailed study is required, in particular the 

experimental evaluation of the noise model and of its intensity. If the experimental noise level is lower 

than 10% a simple low-pass filter could be sufficient, otherwise a more sophisticated filtering 

technique should be considered.  

The tomography code has been also applied to the MITICA profiles (simulated by EAMCC code), 

3072 pixels reconstructions have been obtained. Reducing the aperture angle from 5 to 2.5 mrad, a 

significant improvement in the reconstruction quality is obtained. Reconstructions clearly show the 

proper position of the 12 peaks due to the superposition of the 1280 beamlets and also the vertical 

displacement downwards due to the applied magnetic field. The instrumental noise has, in the case of 

MITICA, a stronger effect, but before considering a proper image filtering, an experimental 

measurement of the noise level is necessary.  

A more detailed study of the instrumental noise has been carried out for the SPIDER visible 

tomography. The main aim of this diagnostic in SPIDER will be measuring the two-dimensional 

particle density distribution of the beam: in particular the ITER requirement for the beam is that the 

maximum acceptable deviation from uniformity is ± 10%, thus the deviation of the tomographic 

reconstruction from the real emissivity of the beam has to be sufficiently lower than this value. 

It was found that the noise has a large influence on the maximum achievable resolution of the 

diagnostic, imposing a limit on the maximum acceptable noise level. In order to reduce its impact 

different filtering techniques have been considered both in the frequency and in the spatial domain. In 

particular, a technique developed for radar imaging has been adapted and implemented in the SPIDER 

tomography code. It proved capable of reducing significantly the reconstruction errors in different 

operating conditions of SPIDER and demonstrates the feasibility to filter out the effect of the noise by 

post-processing the reconstructed image of the beam. 
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