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Sommario

I problemi di generazione sono problemi estremamente interessanti nella
teoria dei gruppi finiti. Tali problemi spesso si riducono a problemi sui ge-
neratori di p-gruppi. Questo ha portato ad un sempre maggiore interesse per
i problemi di generazione nei p-gruppi e allo studio di classi di p-gruppi fini-
ti in cui i generatori del gruppo e dei sottogruppi soddisfano alcune precise
condizioni.

Di particolare interesse e la classe dei p-gruppi finiti G tali che il numero
di generatori di ogni sottogruppo H di G' & minore o uguale del numero di
generatori di G.
Esempi di p-gruppi appartenenti a questa classe sono i p-gruppi abeliani, i
p-gruppi modulari e i p-gruppi powerful. Soddisfano tale proprieta anche i

p-gruppi monotoni. Per questi ultimi ricordiamo la definizione.

Definizione. Dato G un gruppo, sia d(G) il numero di generatori di G.
Un p-gruppo G si dice monotono se per ogni H e K sottogruppi di G con H
contenuto in K, si ha d(H) < d(K).

I p-gruppi monotoni sono stati introdotti da Mann durante una conferen-
za tenutasi a Saint Andrews nel 1985.
Lo stesso autore, in “The number of generators of finite p-groups” (vedi [10]),
lavoro pubblicato nel 2005, studia i p-gruppi monotoni e li classifica per p dis-
pari. Del caso p = 2, non viene data alcuna classificazione ma vengono date
alcune proprieta interessanti. Ad esempio, Mann dimostra che un 2-gruppo
G & monotono se e solo se i sottogruppi 2-generati di G sono metaciclici.

In questa tesi vengono studiati e classificati completamente i 2-gruppi

monotoni. Per i risultati si rimanda ai Teoremi 1.4, 1.5 e 1.6.






Abstract

The generation problems are very interesting in the theory of finite groups.
These problems can often be reduced to problems on the generators of p-
groups. This has led to an increasing interest on the problems of generation
in p-groups and on the study of classes of p-groups in which generators
satisfy some precise conditions.

In particular, it is very interesting the class of finite p-groups G with the
property that the rank of G is equal to the number of generators of G (i.e.
the number of generators of every subgroup of G is smaller than or equal to
the number of generators of ). For instance, the abelian, the modular and
the powerful p-groups belong to this class. Also the monotone p-groups lie

in this class. We recall here the definition of monotone p-groups.

Definition. Let G be a group. We denote with d(G) the number of gener-
ators of G. A p-group G is monotone if for every H and K subgroups of G
with H contained in K, we have that d(H) < d(K).

The class of monotone p-groups was introduced by A. Mann during the
1985 Saint Andrews Conference. In the paper “The number of generators
of finite p-groups” (see [10]) published in 2005, Mann studies the monotone
p-groups and classifies the monotone p-groups for p odd. When p = 2,
Mann does not classify the monotone 2-groups, but he gives some remarkable
properties. For instance, he proves that a 2-group G is monotone if and only
if the 2-generated subgroups of G are metacyclic.

In this thesis, the monotone 2-groups are studied and completely deter-

mined. For the main results we refer to Theorems 1.4, 1.5 and 1.6.
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Chapter 1

Introduction

Very many problems in finite group theory are concerned with generators.
Also, very often problems on the generators of a general group can be re-
duced to problems on the generators of p-groups.

For instance, we recall that if every Sylow p-subgroup of a group G is

d-generated, then G is d+ 1-generated (see [8]). Another result in this direc-
tion states that every permutation group of degree n > 3 is n/2-generated
(a proof reduces to dealing with p-groups).
These and many other applications lead to investigations on generation pro-
blems of p-groups. Since general problems concerning generators of p-groups
are quite hard to deal with, authors try to investigate particular classes of
p-groups, where generating systems satisfy some conditions.

A very interesting class is the class of those finite p-groups G in which
the rank of G is equal to the number of generators of GG, i.e. the class of
finite p-groups G such that the number of generators of any subgroup H of
G is smaller than or equal to the number of generators of G.

Abelian, modular and powerful p-groups are examples of p-groups belonging
to this class. Other important p-groups, where the rank equals the num-
ber of generators, are the d-maximal p-groups (a p-group G is said to be
d-maximal if G is d-generated and every proper subgroup of GG is generated
by strictly less than d elements). Laffey, in [6], proves that the nilpotency
class of a d-maximal p-group for p > 3 is at most 2. For p = 2 not much
is known, but it seems to be very difficult to investigate the d-maximal 2-
groups. Some results about d-maximal 2-groups are in [5].

Another family of p-groups that belongs to this class is the family of mono-
tone p-groups. We first recall the definition.

—1ii —



Chapter 1. Introduction

Definition 1.1. Let G be a group. We denote with d(G) the number of
generators of G. A p-group G is monotone if for every H and K subgroups
of G with H contained in K, we have that d(H) < d(K).

The monotone p-groups were introduced by Avinoam Mann during the
1985 Saint Andrews Conference (see [9]).
More precisely, he defined the classes of p-groups My, where 1 < s < p.

Definition 1.2. A p-group G is said to be in Mg, where 1 < s < p, if it
satisfies the following condition:
ifH< K <G, |K:H|=pandK is not cyclic then d(H)—1 < s(d(K)—1).

The restriction on the range of s is imposed to avoid trivialities. In fact,
for s = 1, the p-groups in M; are the elementary abelian p-groups, the cyclic
p-groups and the quaternion group of order 8.

For s > p, all p-groups lie in Mj, because of Schreier’s inequality (i.e. in
every group G, if H is a subgroup of finite index, then d(H) — 1 < |G :
H|(d(G) - 1)).

Among the classes Mg, the class M, is strictly related with the class of
the monotone p-groups.

In fact, every monotone p-group is in My. Moreover, in the paper “The
number of generators of finite p-groups” (see [10]), Mann studies the classes
My, and he shows that, when p = 2 the class M coincides with the class of
the monotone 2-groups.

In the same paper, Mann gives a strong characterization for the groups in
M.

Proposition 1.1. A p-group G is in Mo if and only if every subgroup of a
2-generated subgroup of G is 2-generated.

Using this property, Mann classifies completely, except for some uncer-

tainty for exponent p?, the monotone p-groups and the p-groups in My, when
p is odd.
In particular, he shows that for p > 3, the monotone p-groups are (apart
from a small number of exceptions) modular, whereas for p = 3, there
are also some monotone 3-groups of maximal class and some other related
groups. See Theorems 8, 9, 10 in [10] for a full account.

For p = 2, things are much harder and in literature there is no complete

classification of monotone 2-groups.
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Chapter 1. Introduction

Nevertheless, in his work, Mann gives some important properties for mono-
tone 2-groups.

In fact for p = 2, Proposition 1.1 can be refined into the following:

Proposition 1.2. A 2-group G is monotone if and only if every 2-generated

subgroup of G is metacyclic.

Another remarkable property of the class Ms is related with the sub-
groups Hy(G) of G. We first recall the definition of Hy(G).

Definition 1.3. Let G be a p-group and let ¢ = p®. Then Hy(G) = (x €
G:z9#1).

Mann shows the following:

Proposition 1.3. Let p be equal to 2 or 3. If G is a p-group in Ms, and
exp(G) > q, then |G : Hy(G)| < p.

Moreover, in his work Mann classifies the power-closed 2-groups.

We recall that a p-group G is said to be power-closed if in each section of G
a product of p-th powers is again a p-th power.

It turns out that, for p odd, every monotone p-group is power-closed. For
p = 2 every power-closed 2-group is monotone but the converse is not true
(for example the group (a,b:a* =1,b* =1, ab = a~!) is monotone but not
power-closed).

In this thesis, we classify all the finite monotone 2-groups. In Chapter
3 we completely determine the monotone 2-groups of exponent 4. Chapter
4 and Chapter 5 deal with monotone 2-groups of exponent greater than 4.
By Proposition 1.3, we get that, when G is a monotone 2-group of exponent
greater than 4, the subgroup Hy(G) is either maximal or the whole group.
In particular, in Chapter 4 the monotone 2-groups of exponent greater than
4 and such that |G : H4(G)| = 2 are determined. The last chapter is
dedicated to the monotone 2-groups of exponent greater than 4 and such
that G = Hy(G).

Given a 2-group G, we write G = H % K to mean that G = HK and
[H, K] =1, i.e. G is a central product of the two subgroups H and K. Each
time we use the symbol G = H x K we shall specify the intersection H N K
in G.

We now report the main results of each chapter.
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Theorem 1.4. Let G be a monotone 2-group of exponent 4. Then G is

either abelian or isomorphic to one of the groups in the following list:

- Ex A, where E is an extraspecial group and A is either an abelian group
of the form Cy x Cy x --- x Cy and E* = A? or an elementary abelian
group and ENA=1;

A(b), where A is an abelian group of exponent 4, |b| < 4, and a® = a~!

for all a € A;

(a,b,c:a* = 1,b* = 1,00 = 2,a® = a3, a° = a,b° = b) x A, where A is
elementary abelian;

- {a,b,c:a* =1,b* =1,a%0% = ,a® = a3,a° = a,b° = b3) x A, where A is
elementary abelian;

- {a,b,c,d :a* = 1,b* = 1,2 = a??,d%> = 2,a® = a®,a¢ = a,b° = b,a? =
a,b? = b3, c? = cb?) x A, where A is elementary abelian;

- {a,be,d a0 = 1,04 = 1,2 = a?0?,d%> = 2,ab = a®,a° = a,b° = b,a? =
a,b® =bd?, c? = ) x A, where A is elementary abelian;

- {a,b,c,d:a* =1, =1,¢2 = a®0?,d*> = ?,a® = a®,a° = a,b° = b3,a? =
ad?, b4 = b, c? = ca®) x A, where A is elementary abelian.

Theorem 1.5. Let G be a monotone 2-group of exponent greater than 4

and such that |G : Hy(G)| = 2. Then G is isomorphic to one of the groups

in the following list:

- A(u), where A is abelian of exponent 2" > 8, u? € Qi(A), a¥ = o=+

with |a*?| < 2 for every a € A;

- {a,b,u) x A, where A is elementary abelian, |a| = 2" > 8, |b| = 2, (a,b) is

1

n—1 n—1 _
2 2 , v = ba2 U —q ;

abelian, u* = a , a

- {(a,b,u) x A, where A is elementary abelian, |a| = 2" > 8, |b| = 4, (a,b) is
abelian, u?> = b and a* = a~ ', b* = b*1a2n_1;

- (a,u) x E x A, where |a| = 2" > 8, E is extraspecial, A is elementary
abelian, u? € (a2, a* = a= "4 with |a%| < 2 and E? = (a®"");

- (a,u) * Ex A, where E is extraspecial, A is abelian of the form Cy x Cy X
- x (s, ’a| =2" > 8, u? = a2n71, at = a4 with |a4h’ < 2 and
A2 = E2 — <a2”—1>;
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(a,u,b) x E x A, where |a| = 2™ > 8, E is extraspecial, A is elementary
abelian, |b| = 2, u? € <a2n71>, ab = a2 gt = g1 b = bath with

la*h| < 2 and E% = (a®"');

(a,u,b) * E x A, where E is extraspecial, A is abelian of the form Cy X
Cy x -+ xCy, and \a| =2">38, |b| =2, u? :a2n71, at :a*17 b* = b,
a = a2 and A2 = B2 = (a®");

- {a,b,u) x A, where A is elementary abelian, |a| = 2" > 8, |b| =2, |u| =4,

n—1 . n—1 _
u? =a®"", a¥ = a7 with |a*?] < 2, a® = o2 and ub = u~t;

- (a,c,b,u) x A, where A is elementary abelian, |a| = 2" > 8, |c| = 2,
n—1 _ n—1 _
bl =2, lul =4, v = a® , a* = a7, a® = ¥, Wb = ul,
n—1
¢ =c, c®=cand = ca®" ;

- (a,b,u) x A, where A is elementary abelian, |a| =2" > 8, [b| =4, |u| =4,
u? = b2, a% = a1 with |ath| < 2, b = b 1a2" T, ab = o112

Theorem 1.6. Let G be a non-trivial monotone 2-group such that G =
Hy(G). Then G is either a modular group that does not involve Qg or is

isomorphic to one of the groups in the following list:

(a,c)* E x A, where E is extraspecial, A is elementary abelian, |a| = 2™ >
8, |c| =2 and a¢ = a*™" with |a*h| < 2, B2 = (a®"');

{a,b,c) x A, where A is elementary abelian, |¢| = 2" > 8, |a| = 4, a® = b2,
@ = b = T2 gng o = a7l with | < 2 for

i=1,2,3;

(a,b,c,d) x A, where A is elementary abelian, |c| = 2" > 8, |a| = 4,
a? =02 |d =2, * =c¢, ¢ =c and a® = a7 ' with || < 2, and
=2 gd = g and b = b;

- {a,b,c,d) x E x A, where A is elementary abelian, E is extraspecial, |a| =
n > 8 bt = ¢ (c,d) is elementary abelian, a® = a= 14" with
lah| <2, a® = a' ™M, a? = q, b = b, b = b1T2 | where [a1] < 2
and [b*2| < 2 and E? = (a®"');

- A(b), where A is an abelian group, |b| > 8 and a® = a='**" for every
a€ A;

— vii —



Chapter 1. Introduction

- (A, ¢, by, where A is an abelian group of exponent 2™, with n > 3, AT =
Qi((b), [b] > 8, ab = a4 a¢ = a2 for every a € A, b =
1 and exp ((A, c)*h) < |p?| < 27;

- (A, c,b) where A is an abelian group of exponent 2", with n > 3, AT =
Qb)) |b] > 8, ab = a 2T ge — M2 for cvery a € A,
& =7 el > 27, | = |2, |bP] < 27, and (b) N {c) = 1.

We note that all the groups in the above lists are in fact monotone and
so Theorem 1.4, Theorem 1.5 and Theorem 1.6 comprise the classification
of monotone 2-groups.

All the groups considered in this thesis are finite.

— viii —



Chapter 2

Preliminaries

2.1 Definitions and Notations

In this first section, we give some definitions and state some well-known
facts that will be often used throughout the thesis.

A very basic fact, that is often used in this thesis is the following:

Remark 2.1. If a group H is generated by X, then the derived subgroup of
H is the normal closure in H of the subgroup ([x1, 2] : x1, 22 € X).

If Hy and Hy are subgroups of H generated respectively by X1 and by Xo,
then [Hy, Ha| is the normal closure in (X1, X2) of the subgroup generated by
([x1, 2] : &1 € X1, 29 € Xo).

Let us now recall the definition of powerful p-groups.

As usual, if G is a p-group we denote with G = (2" : z € G).

Definition 2.1. A p-group G is powerful if [G,G] < GP for p # 2, or
[G,G] < G* forp=2.

A subgroup N of a p-group G is said to be powerfully embedded in G, if
[N,G] < NP for p#2, or [N,G] < N* for p=2.

A subgroup N of a p-group G is said to be almost-powerfully-embedded if
[N,G] < NP. In particular, for p # 2, the definition of powerfully embedded

and of almost-powerfully-embedded coincide.

In the following proposition we recall some properties of powerful p-

groups.
Proposition 2.2. Let G be a powerful p-group. Then the followings hold:

- 1=
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- for any i > 1, the subgroup GP' s equal to {l’pi cx € G

- if X ={x1,...,x5} is a set of generators of G, then GP' s generated by
{xlfl, .. ,x}:};
- a 2-generated powerful group is metacyclic.

Standard references for the theory of powerful p-groups are [1] and [7].
We refer the reader to [5] for the theory of almost-powerfully-embedded
groups.

We now recall the definition and some properties of the modular p-

groups. First of all the definition of permutable subgroup:

Definition 2.2. Let G be a group. Let H and K be subgroups of G.
The subgroup H permutes with K if HK = KH.

A subgroup H of G is called permutable if H permutes with K, for all sub-
groups K of G.

By (3.11) and (3.12) on page 24 of [14], we get the following characteri-

zation for permutable subgroups:

Remark 2.3. Let G be a group and let H and K be subgroups of G.
The subgroups H and K permute if and only if |H N K||HK| = |H||K]|.

We report the definition of modular group:

Definition 2.3. A group G is said to be modular if its lattice of subgroups
is modular, i.e. (X,Y NZ)=(X,Y)NZ for all subgroups X, Y, Z of G
such that X < Z.

A finite p-group G is modular if and only if all subgroups of G are
permutable.
The modular p-groups are well-known and are classified in the following

theorem.
Theorem 2.4. A finite p-group G is modular if and only if
(a) G is a direct product of a quaternion group of order 8 with an elementary

abelian 2-group, or

(b) G contains an abelian normal subgroup A with cyclic factor G /A; further
there exists an element b € G with G = A(b) and a positive integer s
such that a® = a'*?° | for all a € A, with s > 2 in case p = 2.

We refer the reader to Chapter 2 of [13] for more details on modular

groups.
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2.2 General results

In this section, we state some results about monotone 2-groups that will be
often used in our work.

The class of monotone 2-groups is closed for taking quotients and sub-
groups, but, in general, it is not closed for taking direct products. For
example, the direct product of a dihedral group of order 8 with a cyclic
group of order 4 is not monotone. Nevertheless, in some special cases the
direct product of monotone 2-groups is monotone. In fact, we have the

following lemma.

Lemma 2.5. If G is a monotone 2-group and A is an elementary abelian

2-group, then the direct product G x A is monotone.

Proof. By Proposition 1.2, we have to show that all the 2-generated sub-
groups of G are metacyclic. Pick x1,22 € G x A. Then for ¢ = 1,2 there
exist g; € G and a; € A such that x; = gja;. The subgroup (g1,g2) is

a 2-generated subgroup of G and so it is metacyclic. Hence there exists

g3 = g} gs" and g4 = gigh> such that (g1, go) = (g3, 94) and (gs) < (g3, ga)-
We have hiks — hoki = 1 mod 2. Put z3 = :z}l”:cgl = ggalfla;”, and
Ty = x?zxé” = g4a’112a]2€2. We get (x3,z4) < (x1,22) and the condition
hike — hoki = 1 mod 2 guarantees that (z1,z2) = (x3,24). Moreover

([xs,24]) = {[93,94]) < (g3) = (23). Hence (z1,72) is a metacyclic sub-

group. Therefore G x A is a monotone 2-group. O

Therefore, given a 2-group G = H x A, where H is a 2-group and A is
elementary abelian, in order to check that GG is monotone, it is sufficient to
check that H is monotone.

In the following lemma, we introduce a very important family of mono-

tone 2-groups.

Lemma 2.6. Let G be a group isomorphic to A(b) where A is abelian and

b is such that a® = a”, for all a in A. Then G is monotone.

Proof. We have to prove that each 2-generated subgroup of G is metacyclic
(see Proposition 1.2). Since A is abelian, and so monotone, it is enough
to check that the subgroups of the form (a;b’,as) are metacyclic, where

a; and ag are in A. So let H = (a1b’,az), with a; and ay in A. Since

ag? = af = a3, we have that (as) < H and so H is metacyclic. Therefore,
our lemma, is proved. ]
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The next part is related with the power structure of a monotone 2-group.
In Lemma 2.7 we show that the Frattini subgroup of a monotone 2-group is
powerful. This implies that any element in G* is a square in G. Moreover,
we show in Lemma 2.9 that the cyclic group generated by a square of an
element of G is permutable in G, and so we get (Corollary 2.10) that G* is

modular.

Lemma 2.7. Let G be a monotone 2-group. The subgroup G2 is powerful.
Moreover, G? is almost-powerfully-embedded in G.

Proof. We want to show that [G?, G?] < (G?)*. By Remark 2.1, since G? is
generated by the set {a? : a € G}, it is enough to show that for all @ and b
in G the commutator [a?, b?] is contained in (G2)%.

Pick @ and b in G. Since G is a monotone 2-group, all the 2-generated
subgroups are metacyclic. Hence, there exist z,y € (a,b) such that (z,y) =
(a,b), (x) < (z,y) and z¥ = 2", where r = £1 mod 4. So r = £1 + 4h.
Since (z,y) is metacyclic and (z) < (z,y), we have that (z,y)? = (22 y?)
and [(z,1)2, (z,1)?] = ([22,92]). Now, we have that (z)V" = z(F1+4h)* =

2 2 2 .
I E8RFI6R and so (22)V° = ?H160+32h7  Hence, we obtain that [22,7?] =

gE16h+320% 1y particular, we have [#2,y%] € (%) and [(z,)2, (z,y)?] < (28).
Now, being (28) = (22)*, we have [(x,)?, (z,y)?] < (G?)*. Since a?,b? are
in (z,9)?2, it follows that [a?,b?] € (G?)%, and the first part of the lemma is
proved.

In order to prove that G2 is almost-powerfully-embedded, we have to
show that [G%,G] < (G?)2. Arguments similar to the previous ones show
that if a and b are in G, then [a?,b] € (G?)? and the result follows from

Remark 2.1. O

Corollary 2.8. Let G be a monotone 2-group. Then ®(G?) = G* and
G2 = (GDY, fori > 1.

Proof. If P is a powerful group and X is a generating set for P, then P? s
generated by the set {2 : z € X} (see Theorem 2.7 on page 40 of [1]).
Since G? is powerful with generating set {a? : a € G}, we get that
(G%)? is generated by the set {a2""" : a € G}. In particular, we obtain that
(G2 = G¥" for i > 1. Moreover, G* = (G2)? = (G?). O

Lemma 2.9. Let G be a monotone 2-group. If a is an element of G, then

the subgroup (a®) is permutable in G.

— 4 —
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Proof. We first show that, if H is a metacyclic 2-group, then, for all a € H,
the subgroup (a?) is permutable in H.

Let H = (z,y), where (z) is normal in (z,y) and 2¥ =2". If r =1 mod 4,
then, by Lemma 2.3.4 on page 56 of [13], H is a modular subgroup, and, by
Lemma 2.3.2 on page 55 of [13], each subgroup of H is permutable.

We assume now r = —1 mod 4, i.e. r = —1 + 4h. Let a be an element
of H. Since a? is in (z,y?), which is a modular subgroup, it is sufficient
to check that (a?) permutes with the subgroup (y*1z*2), where k; is odd.
Replacing y* 2*2 with a suitable power, we may assume k; = 1. Moreover,
we have that (z,y) = (x,yz"?), and yx*? acts as y on (). Therefore, it is
enough to prove that, for all the elements a in H, the subgroups (y) and (a?)
permute. Since H = {y’2’ : i,j € N}, we assume a = y'z/. We distinguish

two cases, depending on the parity of i.

- Suppose i odd. Replacing eventually a with a suitable power, we may

assume a = yal. We get a? = y2z*J. The subgroup (y2z*",y) is

4hj ). Since the subgroups (z*%/) and (y) permute, in

equal to (z
order to prove that the subgroups (y) and (a?) permute, we have to

show that

|2 ly|
[{@47) N ()|

4hj)l =

4hg hij
[(y?at )| = (2, y)| =

Since (22,9?) is a modular subgroup we get that (y%x 2l hdl
mod (z8%!). In particular (y?2*"9)! € (y) if and only if (x*)! € (y).

It follows that [(y2x*h) : (2249 N (y)] = [(2*9) : (") N (y)]. Then

[zl Pyl g, 2,4
TG — Turemane — |92l

- Suppose now i even. Then, we have i = 2k and a = y**27. Now, a? =

y**22t4s for some s € N. We get that (y**z274s o) = (22145 4).
Since the subgroups (z%+4%) and (y) permute, in order to prove that

the subgroups (y) and (a?) permute, we have to show that

2274y

k.27 ‘
Ak g2itds N = (22T )| = M‘

[(y
Since (22,4?) is a modular subgroup, we get that (y*z2+45)! ¢ (y) if

and only if (2%74%)! € (y). Hence, we get [(y*Fa27H4s) . (y4kg27+4s) 0

. . 2j+4s 4k .2j+4s
\% >4]lk:2[<<-|-$42]+4>5’> (@H4) )] and so Aty =
YT Y.
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Therefore, in both cases, we get that (a?) and (y) permute and it follows
that the subgroup (a?) is permutable in H.
This concludes our preliminary claim.

To conclude, let a be an element of G. In order to show that (a?) is a
permutable subgroup of G, it suffices to prove that it permutes with (b) for
all b € G. Hence, it is enough to prove that (a?) is a permutable subgroup
in H = (a,b). Being a subgroup of a monotone 2-group, H is metacyclic,

and so the result follows from the first part of the proof. O

Corollary 2.10. Let G be a monotone 2-group. The subgroups of G* are

permutable in G. In particular, the subgroup G* is modular.

Proof. Since G2 is a powerful subgroup, by Proposition 2.6 of page 40 in
[1], the elements of (G?)? are squares of elements in G2. By Corollary 2.8,
we have that (G?)?2 = G*. By Lemma 2.9, the cyclic subgroups of G* are
permutable in G. Hence all the subgroups of G* are permutable in G* and
we get, by Lemma 2.3.2 on page 55 of [13], that G* is modular. O

The following lemma deals with metacyclic 2-groups that have a gener-

ator of order 2.

Lemma 2.11. Let {(a,b) be a metacyclic group with |b| = 2.
Then (a,b) is either semidihedral or Q1 ({a, b)) is contained in the normalizer

of (c) for all c € (a,b) of order greater than or equal to 4.

Proof. Suppose that (a,b) = (x,y) with (x) < (x,y).

If 2¥ = 2'*4" then (x,%) is modular and so Q((z,y)) is contained in the
normalizer of (c) for all ¢ € (a,b) (see Lemma 2.3.6 on page 57 of [13]).
Hence, we may now assume z¥ = 2~ '+4* The proof is now a case-by-case

analysis depending on the order of z.

- Suppose that |z| = 2. The subgroup (z,y) is abelian and so the statement

is true.

- Suppose that |z| = 4. Then, 2¥ =z~ 1.

If |y| = 2, then (z,y) is isomorphic to Dg and the statement holds.

If |y| > 4, then either there are no elements in (z,y)\(x,y)? of order 2
(and so we contradict our assumptions) or (z,y) is modular (and the
lemma is true).

In fact, the generators of (x,y) are of the form y'z/ with i odd or
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y*2) with j odd. In the first case, (y'z7)? = 3%, and so, y'z?, with

2 2

i odd has order 4. In the second case, (y*27)? = y*22. Hence,

|y%'27| = 2 if and only if y* = 22 for some i. Therefore, |y| = 2" > 8
and (y) N (z) = (@2 = ¥ '). Now, we get y® = y'*2" ' ie. the
subgroup (x,y) is modular. By Lemma 2.3.6 on page 57 of [13], the

statement holds.

- Suppose that |z| = 2" > 8. If [y| = 2, then # = 2¥° = gl 8h+16h?
and so we get 2¥ = 27142 7'h where h € {0,1}. So, either (z,y) is
semidihedral or z¥ = 7.

In the latter case, since an element of order greater than or equal to
4 is contained in (x), the statement is true. So, we may assume that
ly| = 4.

Now, the generators of (x,y) are of the form 32/ with i odd or y*2/
with j odd.

We now study under which conditions there exists a generator of (z,y)
of order 2.

Consider now, y?z7, with j odd. Since (32, ) is a modular subgroup

and xy2 _ $1—8h+16h2 45 2
s. Therefore, since || > 8, and (y) N (z) < (2" '), we get that
y*'al| > 4.

So, if there exists a generator of (z,y) of order 2, then it is of the form

, we have that (y%27)? =y 2%, for some

y'z? with i odd. Now, up to replacing y’z? with a suitable power,

we may assume yz’. Now, we get that (yz?)? = y?z¥". Hence, if

y2%h = 1, then |y| = 4 and y? € (22" ). The automorphism induced

by y on (z) has order at most 2 and so, z¥ = z~1+2" """ with h € {0,1}
on

and 3% = x - Now, all the elements of order greater than or equal

to 8 are in (z), and so the statement is true.

O]

We conclude the section with the Lemma 2.12, Lemma 2.13 and Propo-
sition 2.14, where we give properties of subgroups H of a monotone 2-group

G for which HG*/G* satisfy some particular condition.

Lemma 2.12. Let G be a monotone 2-group.

Let a and b in G such that (a,b)G*/G* is isomorphic to Cy x Cy.
Then, the group (a,b) is modular.

Moreover, {(a,b)? = (a?,b%) and G* N (a,b) = (a,b?).

-7 -
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Proof. We consider a non-modular metacyclic group (z,y) with (z) <(z,y),

—1+4h If (x,y)/N is an abelian quotient of (x,y), then the

and z¥ = z
derived subgroup of (x,y) is contained in N. This means that 22 € N. In
particular, (z,y)/(x?) is isomorphic to Cy x Con. Therefore, a non-modular
metacyclic group has no abelian quotient isomorphic to C4 x Cy. This
implies that (a, b) is a modular metacyclic subgroup that does not involve Qg.
Then, by Proposition 2.5.9 on page 94 of [13], we have that (a,b) is lattice
isomorphic to an abelian group. Then (a?,b%) = (a,b)?, (a?,b%)? = (a*,b?).
Now, since (a*,b*) < G* N (a,b) and |{(a,b) : G* N (a,b)| = 16, we have the
equality (a?,b?) = G* N (a,b). O

Lemma 2.13. Let G be a monotone 2-group.

Let a and b be in G such that |aG*| = 4, |bG?*| = 4, (aG*) N (bG*) = G* and
a’G* = a7 1Gh

Then the group (a,b) is a metacyclic non-modular group.

Moreover, ®({a,b)) = (a?,b*), G* N (a,b) = ®(®((a,b))).

Proof. The group (a, b)G*/G* is non-modular and isomorphic to {a,b)/(G*N
(a,b)).
In particular, (a,b) is non-modular.

The subgroup (a2, b?)(G* N (a,b)) is normal in (a,b) with elementary
abelian quotient of order 4. Since (a,b) is metacyclic, we get (a?,b%)(G* N
{a,b)) = ®({a,b)). Moreover, G* N (a,b) is normal in (a?,b?)(G* N (a, b))
with elementary abelian quotient of order 4. Being a subgroup of a meta-
cyclic group, the subgroup (a?,b)(G* N {(a,b)) is metacyclic. Hence, we
get that G* N (a,b) is the Frattini subgroup of (a?,b?)(G* N {(a,b)) and
(a2, 0*)(G* N {a, b)) = (a®,b?) = ®((a,b)). Now, since the Frattini sub-
group of a metacyclic group is powerful we get that ®((a?,b?)) = (a*,b?) =
G4 N {a,b). O

Proposition 2.14. Let G be a monotone 2-group.

Let H be a subgroup of G such that HG*/G* is isomorphic to a direct product
of Cys, |H?*G*/G* > 4, and HNG* < ®(H).

Then, the subgroup H is modular and it does not involve Qg, the quaternion

group of order 8.

Proof. Suppose that H = {(ay,--- ,a,), where H/(G*NH) = (a1 (G*NH)) x
X {an(G* N H)), with n > 2.
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We first show that the subgroup H is powerful.

In order to prove that H is powerful, it is sufficient, by Remark 2.1, to show
that [a;,aj] < H%, for all i and j.

Now, since (a;,a;)/(G* N H) is isomorphic to Cy x Cy, by Lemma 2.12, we
get that (a;, a;) is modular, hence powerful. In particular, [a;, a;] € {(a;, a;)*
and, since (a;,a;) < H, we get that [a;, a;] € H*. Hence, the subgroup H is
powerful.

Since H is powerful and generated by {a1,--- ,a,}, we have that H? =
(a?,--- ,a%). Now, H*(G*N H) contains H? and [H : H*(G*N H)] = [H :
H?]. Then, we have that H2(G* N H) = H? ie. (G*NH) < ®(H?) < H*.
Since H?/(G* N H) is elementary abelian, we have that H* < (G* N H).
Therefore, we have H* < (G*N H) < H*, which implies H* = (G* N H).
This proves that if H is a subgroup of G such that HG*/G* is isomorphic
to a direct product of Cy and (H N G*) < ®(H), then H is powerful with
H*=(G*N H) and H/H* is isomorphic to a direct product of Cy.

We now show that, for all @ and b in H\H?, the subgroup (a,b) is
modular.

We may assume that (a, b) is maximal among the subgroups of this form. We

distinguish three cases depending on the form of the quotient (a,b)H*/H?*

- Suppose that (a,b)H*/H* is isomorphic to Cy x Cy. By Lemma 2.12, we

have that (a,b) is a modular metacyclic subgroup.

- Suppose that (a,b)H*/H* is isomorphic to Cy x Cy. Then, there exists
z € H?\H* such that b = az. Since H is powerful, there exists a
c € H\ H? such that ¢> = 2. Now, we have that (a,b) < (a,¢c), so that

(a,b) is not maximal, a contradiction.

- {a,b)H*/H* is isomorphic to Cy. Since (a,b)H*/H* ~ C4, we have that
a = bz, where z € H* Since H is powerful, there exists ¢ € H
such that ¢* = z. The maximality of (a,b) forces {(a,b) = (a,c),
but (a,b) = (a,2) = (a,c*). Since ¢* € ®((a,c)), this implies that

(a,b) = (a) and so the subgroup is modular.

Then, we have that for all a,b € H\H?, the subgroup (a, b) is modular.

In order to show that H is modular, we have to prove that, for every
x and y in H, the subgroups (z) and (y) permute. Then, let x and y be
elements in H. Since H is powerful, there exist a and b in H\H? such that

a? =z and b¥ = y. So, we have that (z,y) < (a,b), where a and b are in
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H\H?. By the previous paragraph, the subgroup (a, b) is modular. Hence,
the subgroups (z) and (y) permute and H is modular.

A modular group that involves (g is isomorphic to Qg x A with A el-
ementary abelian, and so it does not have quotients isomorphic to a direct

product of Cy. Therefore, H is a modular group that does not involve a

Qs- O
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Monotone 2-groups of

exponent 4

Throughout all this chapter G will be a monotone 2-group of exponent 4.

Definition 3.1. We introduce the following families of 2-groups:

-

s the family of 2-groups of the form Ko x A, where A is elementary
abelian and Ky = (a,b: a* = 1,b* = 1,0’ = a3);

is the family of 2-groups of the form E x A, where E is an extraspecial
group and A is either an abelian group of the form Cy x Cy x -+ x Cy
and E? = A? or an elementary abelian group and ENA =1;

is the family of 2-groups of the form A x (b), where A is an abelian
group of exponent 4, b has order 2 and a® = o' for alla € A;

is the family of 2-groups of the form A x (b), where A is an abelian
group of exponent 4 with |A%| > 4, b has order 4 and a® = a™! for all
a € A;

is the family of 2-groups of the form A(b), where A is an abelian group
of exponent 4 with |A%| > 8, b has order 4, b*> € A% and a® = a™ " for
all a € A;

is the family of 2-groups of the form Kg x A, where Kg = (a,b,c :
at =1, =1,a2% =%, ab = a®,a° = a,b° = ) and A is elementary

abelian;
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Chapter 3. Monotone 2-groups of exponent 4

o7 is the family of 2-groups of the form Ky x A, where K7 = (a,b,c :
at=1,0*=1,a2? = 2,a’ = a?,a° = a,b° = b%) and A is elementary

abelian;

- als is the family of 2-groups of the form Kg x A, where Kg = {(a,b,c :
at = 1,04 = 1,62 = a2, ab = a0 = a,b° = ba?), and A is an

elementary abelian group;

- @y is the family of 2-groups of the form Kg x A, where A is elementary
abelian and K9 = (a,b,c,d : a* = 1,b* = 1,¢? = a®?,d®> = %,a =
a®,a¢ = a,b® = b,a? = a,b? = b3, c? = cb?);

o is the family of 2-groups of the form Kig x A, where A is elementary
abelian and K19 = (a,b,c,d : a* = 1,b* = 1,¢% = a?b?,d?> = 2,a’ =
a®,a¢ = a,b° = b,a® = a,b? = bd?, c? = 3);

/11 is the family of 2-groups of the form K11 X A, where A is elementary
abelian and K11 = (a,b,c,d : at =1, =1,% = a??, d? = 2,ab =
a®,a® = a,b° = b3, a% = ad?,b? = b, c? = ca?).

We start by proving that the groups in <7, for i € {1,...,11}, introduced
in Definition 4.1, are actually monotone.

The main tools are Proposition 1.2 and Lemma 2.5.

Proposition 3.1. The groups in the families <7, for i € {1,...,11} are

monotone.

Proof. We want to show that if G is a group in <, for i € {1,...,11}, then
G is monotone. Now, the proof is a case-by-case analysis depending on the

family in which G lies.

- Let G be a group in @. Then G = Ky x A, where Ky = {(a,b : a* =
1,b* = 1,a® = a™!) and A is elementary abelian. By Lemma 2.5, in
order to check that G is monotone, it is sufficient to prove that K is

monotone. Since K5 is metacyclic, Ko is monotone and so is G.

- Let G be a group in «%. Then G = E % A, where E is an extraspecial
group and A is either an abelian group of the form Cy x Co x - - - x Cy or
an elementary abelian group. By Lemma 2.5, in order to check that G

is monotone, it is sufficient to prove that £ x Cy and E are monotone.
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Since E is a subgroup of E x Yy, it is enough to check that E x Cy is

a monotone group.

Each cyclic subgroup of order 4 in £*x(C; contains the derived subgroup
of E x Cy. Therefore, for every a and b in E * Cy, if either |a| = 4 or
|b| = 4, then the subgroup (a, b) is metacyclic.

If |a| = 2 and |b| = 2, then (a,b) is abelian or a dihedral group.

This proves that for every a and b in E % Cy4, the subgroup (a,b) is

metacyclic. Hence, E * Cy4 is monotone, and so is G.

Let G be a group in 4. Then G = A x (b), where A is an abelian group

of exponent 4, b has order 2 and a® = a~! for all « € A. Lemma 2.6

proves that GG is monotone.

Let G be a group in 7. Then G = A x (b), where A is an abelian group

of exponent 4 with |A2| > 4, b has order 4 and a® = ™! for all A.

Lemma 2.6 proves that GG is monotone.

Let G be a group in «%. Then G = A(b), where A is an abelian group of

exponent 4 with |A?| > 8, b has order 4, b*> € A% and a® = a~! for all

a € A. Lemma 2.6 proves that G is monotone.

Let G be a group in «%. Then G = Kg x A, where A is elementary abelian

and K¢ = (a,b,c : a* = 1,b* = 1,a%0? = ?,a® = a?,a° = a,b° = b).
By Lemma 2.5, it is sufficient to check that Kg is monotone.

Since (a,c) is abelian, it is enough to check that the subgroups of

2

— a211 0212’

the form (a“c', ba’'c’2) are metacyclic. Now, (a*c')
(ba’1c?2)? = b?a?2, and [a"1c2, balt /2] = a®1b?2.

If iy =1 mod 2 and i1 = jo mod 2, then (ba’tc’2)? = [a®1c2, ba' 2],
and so (ba’lc?) < (a’ 2, ba’t ¢72), i.e. the subgroup (a’c2, ba'lc’?) is
metacyclic.

Suppose that i = 0 mod 2. Then (a’¢2)? = [a"1¢?2, ba/!¢?2], and so
{(ac) < (a2 ba’'c’?), i.e. the subgroup (a’lc?,ba’'c’?) is meta-
cyclic.

Suppose now that i9 = 1 mod 2 and i1 = jo + 1 mod 2. Then,
(a"¢2)?2 = (ba’'¢’2)?, and so the element a’c2ba’'c’? is such that
(a1 ¢ ba’tc??) is equal to (a’c2ba’tc’?, ba’t ¢’?) and (a'c2balt¢i?) <

{(a™ ¢ ba’1c’2). Then, the subgroup (a’c?2, ba/l¢/2?) is metacyclic.
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This shows that each 2-generated subgroup of K is metacyclic. Hence,

K is monotone, and so is G.

- Let G be a group in &%. Then G = K7 x A, where A is elementary abelian
and K7 = {(a,b,c: a* = 1,b* = 1,a%b> = 2,a® = a3,a° = a,b° = b3).

By Lemma 2.5, it is sufficient to check that K7 is monotone.

The subgroup (a, c) is abelian. Hence, it is enough to check that the
subgroups of the form (a‘'c’2, ba’t ¢’2) are metacyclic.

Now, we have that (a’¢?2)? = a?1¢%2, (baltci2)? = b2c?2b%2 = h?a?2,
(a2, balt ci?] = a®1 b2z,

If io =0 mod 2, then (a’¢2)? = [a’'¢2, ba’l ¢2], and so the subgroup
{a™ ¢ baltc??) is metacyclic.

Suppose that i = 1 mod 2. If iy = jo mod 2, then (ba’/'c/2)? =

[a" "2, ba?' ¢72], and so the subgroup (a" c¢'2, ba’*¢?2) is metacyclic.

Suppose now that 9 = 1 mod 2 and i3 = jo + 1 mod 2. Then
(a“1¢2)? = (ba/t¢/?)2. Therefore, the element a'c2ba’l ¢/2 is such that
{ac2, ba’tc’2) is equal to (a'lc2baltci2, ba’tc?) and (atc2ba’tc’2) <

(a1 ¢ ba’ c?2). Then, the subgroup is metacyclic.

This shows that each 2- generated subgroup of K7 is metacyclic. Hence,

K7 is monotone, and so is G.

- Let G be a group in @%&. Then G = Kg x A, where Kg = (a,b,c : a* =
1,br =1,c% = a®b?,ab = a3, a° = a,b° = b?a?), and A is an elementary
abelian group. By Lemma 2.5, it is sufficient to check that Ky is
monotone. Now, the subgroup (a, ¢) is abelian and b acts as inversion

on (a,c). Therefore, Kg is monotone by Lemma 2.6.

- Let G be a group in o%. Then G = Kg x A, where A is elementary abelian
and Kg = (a,b,c,d : a* = 1,b* = 1,¢% = a®b?,d? = c2,a® = a3,a¢ =
a,b® = b,a® = a,b% = b3, ¢c? = cb?). By Lemma 2.5, it is sufficient to
check that Kg is monotone.

The subgroup (a,b,c) is isomorphic to Kg. Since Kg is monotone,
every 2-generated subgroup of (a,b,c) is metacyclic. Therefore, it is
enough to check that the subgroups of the form (a’'c*2b, da’t c/2b73)
are metacyclic. If 4; and j; are both even, then (a’ b, da’t c/2b73)

is contained in (b, c,d) which is isomorphic to Kg (the isomorphism
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is given by setting @ = b, b = d, ¢ = bc). Hence, the subgroup
(a1 c2b%, da’t ¢72b73) is metacyclic.

If iy and jp are both even, then (a'c¢2b®, da’'¢2b73) is contained in
(a, b, d) which is isomorphic to K7 (the isomorphism is given by setting
@=a,b=>b ¢ =d). Hence, the subgroup (a'c2b®®, da’' c’2b73) is
metacyclic.

If i3 and j3 are both even, then (a'c¢2b®, da’¢2b73) is contained in
(a, ¢,d) which is isomorphic to K¢ (the isomorphism is given by setting
@ = ac, b = d, ¢ = ¢). Hence, the subgroup (a’c2b®3, da’t c/2b73) is
metacyclic. So, for every k = 1,2,3, we may assume that i; and ji

are not both even.
We now distinguish two cases depending on the parity of 3.

Suppose firstly that i3 is odd and j3 is even. Since b> € (a,c),
we may assume i3 = 1 and j3 = 0. The subgroup has the form
(a"c2b, da? ¢72). Now, (aitc2b)d@ e = girci2ph2i2p2. Now, if iy is
odd, then the subgroup is abelian. If i is even, then (ac2b)? = b2,
and so (a’'c2b) < (a'tc2b, da’* ¢’2b73) and the subgroup is metacyclic.

Suppose now that i3 is even and j3 is odd. Since b? = a?c?, we

may assume that i3 = 0 and j3 = 1. Hence, the subgroup has
the form (a"c,dba’'¢’?). Now, (ac?)? = a?1c?2 (dba/ic?)? =
d?a?1c¥2p272q%0t = d2a%2, and [a" ¢, dba’t 2] = b*2q%1. In particu-

lar, we have that |dba’'c’2| = 4.

Moreover, if iy = j2 mod 2 and i3 = 1 mod 2, then (a’c2)? =
(dba’*c72)2. Tt follows that a’lc2dba’'c’? is a non-Frattini element
such that (a’c2dba’*c2) < (a1 ¢, dba’'¢/?). Hence, the subgroup is

metacyclic.

Suppose that i3 = 0 mod 2. Then we may assume that jo is odd.
Hence, (a“c2)? = a?", (dba’'c¢?)? = d?a?, and [a“c?2, dba’tc’?] =
a?t. Then, we have that [a’l¢2, dba’¢’2] = (a™¢?)2, and so (a“1c2)

{a"c2, dba’t¢7?). Tt follows that the subgroup is metacyclic.

Finally it remains to consider the case 19 =1 mod 2 and i1 = jo + 1
mod 2. Then, we get that (a''¢2)? = a*1c?, (dba’*c’2)? = b2a?1,
and [a"¢2, dba’' 2] = b%a?"'. Then, we have that [a’c2, dba’t /2] =
(dba’*c72)? | and so {(a“c2) < (a'ic?2,dba/tc?). Tt follows that the

subgroup is metacyclic.
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This shows that every 2-generated subgroup of (a, b, ¢, d) is metacyclic.

Therefore, the group Ky is monotone, and so is G.

- Let G be a group in 9. Then, G = Ky X A, where A is elementary
abelian and K9 = (a,b,c,d : at =1, =1, = a?b?,d> = 2, ab =
a®,a¢ = a,b® = b,a? = a,b? = bd? c? = ). By Lemma 2.5, it is

sufficient to check that Kjg is monotone.

The subgroup (a, b, ¢) is isomorphic to K¢ (the isomorphism is given by
setting @ = ¢, b = ad, ¢ = a). Since K¢ is monotone, every 2-generated

subgroup of (a, b, ¢) is metacyclic.

Therefore, in order to show that K¢ is monotone, it is enough to check
that the subgroups of the form (a’c2d®, ba’t¢’2d’3) are metacyclic.
If i1 and j; are both even, then (a“c2d®, ba/tc/2d’3) is contained in
(b, ¢, d)y which is isomorphic to K¢ (the isomorphism is given by setting
@=d,b="b, ¢ = bc). Hence the subgroup (a’c’2d®, ba’*c’2d’s) is
metacyclic.

If iy and jo are both even, then (a“c2d®, ba/tc/2d’3) is contained in
(a, b, d)y which is isomorphic to Ky (the isomorphism is given by setting
@=a,b=0>0 ¢=d). Hence the subgroup (a"c2d®,ba’*c’2d’3) is
metacyclic.

If i3 and j3 are both even, then (a“c®2d®, ba/tc/2d’3) is contained in
(a, ¢, d)y which is isomorphic to Kg (the isomorphism is given by setting
@=c b=ad, ¢=a). Hence the subgroup (a'c2d,ba’tc’2d’s) is
metacyclic.

Therefore, we may assume that i and ji are not both even, for k =
1,2,3.

Suppose now that i3 is even and js is odd. Since d? € {(a, c), we may
assume that i3 = 0 and, being j3 odd we may assume that js = 1.
So, the subgroup has the form (a‘'c!2,ba/tc¢/2d) and it is metacyclic,
because (a¢?2)be’te2d — (girciz)~1,

So we suppose now that i3 is odd and so we may assume i3 = 1 and
that j3 = 0. The subgroup is of the form (ac?2d, ba’tc/?).

Now, we have (a’'c2d)? = a21¢?2d2c%2 = ¢2" @2, and so |a’ ¢2d| = 4.
Moreover, (balc2)? = b2a®1¢272¢21 = p2¢2% | and so also |ba’t 2| =

4. The commutator [a’c2d, ba’t 2] = a?'d%c¥2. So, if jo is even,
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then (a’c2d)? = [’ ¢2d, ba’' ¢2], and so (a''c2d) < (a’tc2d, ba'' ¢I?),
i.e. the subgroup (a’c?2d, ba’'¢/?) is metacyclic.

If jo is odd, then [a’lc2d, ba’'c’2] = a®1 and (ba’'c’?)? = a®. This
means that [a’tc2d, ba/t /2] < ((ba’*¢’2)?), and so we get that (ba’lc/2)<

(" c2d,ba’t c7?), i.e. the subgroup (a’c?d, ba’' ¢?) is metacyclic.

This shows that every 2-generated subgroup of (a, b, ¢, d) is metacyclic.

Hence the subgroup (a,d, ¢, d) is monotone and so is G.

- @1 is the family of 2-groups of the form Ky; x A, where A is elementary
abelian and K1 = (a,b,c,d : a* = 1,b* = 1,¢% = a??,d?> = 2,a® =
a®,a® = a,b® = b3, a% = ad?, b = b, c? = ca?).

By Lemma 2.5, it is sufficient to check that K7, is monotone.

The subgroup (a, b, ¢) is isomorphic to K7 (the isomorphism is given
by @ =a, b =b, ¢ = ¢). Since K7 is monotone, every 2-generated
subgroup of (a, b, ¢) is metacyclic.

Therefore, it is sufficient to check that the subgroups of the form
(@ c2b | da’t ¢72b73) are metacyclic.

If i; and j; are even, then (a’¢2b®, da’tc/2b73) is contained in (b, ¢, d)
which is monotone, being isomorphic to K7 (the isomorphism is given
by setting @ = b, b = ¢, € = bd). It follows that (a*c2b%, da’tc2b73) is
metacyclic.

If iy and j3 are even, then (a“c2b%, da’t ¢/2b73) is contained in (a, b, d)
which is monotone, being isomorphic to K7 (the isomorphism is given
by setting @ = d, b = a, ¢ = b). It follows that (a’c2b%, da’t /2b73) is
metacyclic.

If i3 and j3 are even, then (aiic’2b%, da’/t¢/2b3) is contained in (a, ¢, d)
which is monotone, being isomorphic to K7 (the isomorphism is given
by setting @ = ac, b = d, ¢ = a). It follows that (a’'c’2b%, da’t c/2b73)
is metacyclic.

Now, suppose that i3 is even. Then, we may assume that j3 is odd.
Since b € (a,c) we may assume that i3 = 0 and j3 = 1. The sub-
group has the form (a’ 2, da’*¢/2b). We have that (a'¢'2)? = a?"1c?2,
(dajl Cj2b)2 = d2a21c22p2q201h202 4201202 = 2H2d2T = q2d%r and
[ c2, daitc2b] = d2i1q2i2q2i1p2ie = 2ir+2iz g2,

In particular, if 41 is odd and i3 = j; mod 2, then (a"¢?)? = (da’t ¢/2b)?,

and so the subgroup is metacyclic. Namely, (a*¢?)(da’¢’2b) is a gen-
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erator and ((a’c¢?)(da’t ¢’2b)) < (a'1c'2, da’t c72b).

If 41 is even, then we may suppose that j; is odd and so (a’¢??)? = 22,
(da’tc2b)? = a%d?, and [a'c®2, da’t¢2b] = d?2. Then we have that
[aitc®2, dalte2b] = (a'1c2)?) and so {a“c2) < {a'1c2, da’*¢?2b), and so
the subgroup (a’¢?2, da’' ¢/2b) is metacyclic.

Suppose now i1 odd and io #Z j; mod 2. This means that j; =is + 1
mod 2, and so we get (a’¢2)? = a?c?2, (da’'¢?b)? = a?d*+?"2 and
[a’1c?2, daltc72b] = d?T22¢2. Then, we have that [a’ 2, da’l ¢/2b] =
(da’tc72b)2, and so {(da’'c’2b) < (a“c2,da’'¢’2b), and the subgroup

(a2 da’tc72b) is metacyclic.

So, we now may assume that i3 is odd. In particular, since b* € (a,c),
we may assume that ¢3 = 1 and that j3 = 0. Hence, the subgroup has
the form (a®c2b, da’' ¢2).

Now, we have that (a’c2b)? = a?"1c?2h2a?1b%2 = o?2+2c2, (dal1 c72)? =
d2a29t (232 4201 g 292 — d2b2j1+2j27 and [ailcin, da’t Cj2] — d2i1 224271202 —
q2i1+2i2+251 2i1+2j2

In particular, we get that |a’c"2b| = 4, and also |da’' ¢2| = 4.

If i =1 mod 2 and j; = j» mod 2, then (a’c2b)? = (da’'¢’2)?, and
so we have that a’t c®2bda’! ¢/? is a generator such that (a’l c?2bda’t ¢72) <

{a“c2b, da’t ¢7?), and so the subgroup is metacyclic.

Suppose that 9 = 0 mod 2. Then, we may assume that jy is odd
and we get (a''¢2b)? = b2, (da’'¢’?)? = a?b?1, and [a" c2b, da’' /2] =
a21H201 20142 _ 20201 251

If iy = j1 mod 2, then [a™c?2b, da’*c’2] € ((a™c2b)?), and so we obtain
that (a‘c2b) < (a'c¢2b, da’t ¢/2), and the subgroup (a'lc?2b, da’t ¢/2) is
metacyclic.

If iy = j1 mod 2, then [a"c2b, da’ ¢2] = (da’*¢’?)?, and so we get
that (da’'c’?) < (a'tc2b, da’t ¢2), and the subgroup (a'lci2b, da’tc’2) is

metacyclic.

To conclude, suppose that io = 1 mod 2 and j; = jo + 1 mod 2.
Then, we have (a’1¢2b)? = ¢2, (da’' ¢’2)? = d?b?, and [a*' ¢2b, da’t /2] =

d*1 %22 p?i2 = g2+t p2int2)z — (2420422 and so we get that
[atc2b, da’t 2] € ((a*1c™2b)?). Hence, (a''c2b) < (a'c2b, da’t ¢/2), and

the subgroup (a*c2b, da’' ¢’2) is metacyclic.

This shows that every 2-generated subgroup of (a, b, ¢, d) is metacyclic.
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Therefore, the group K7p; is monotone, and so is G.
O

Remark 3.2. It is worth mentioning that K¢, K9 and Kyy admit a more
intuitive presentation. Indeed, Kg is isomorphic to Qg x Cy, K¢ is isomor-
phic to Qs X Qg and Kg is isomorphic to Qg * Ko, where, if Ko = (a,b :
a* =1, =1,a" = a7 1), then Q2 = (a®V?).

The presentation given in Definition 3.1 is more convenient for the re-

sults we need to prove.
The aim of this chapter is to prove the following :

Theorem 3.3. Let G be a monotone 2-group of exponent 4. Then G is

either abelian or in <, for some i € {1,...,11}.

3.1 General Results

In this section we prove some preliminary results about monotone 2-groups
of exponent 4.

More precisely, in Lemma 3.4, we describe the metacyclic 2-groups of expo-
nent 4, whereas in Lemma 3.5 and Lemma 3.6, we give some properties of

the normalizers of the cyclic subgroups of order 4.

Lemma 3.4. Let G be a metacyclic 2-group of exponent 4.

Then G is either abelian or isomorphic to a group in the following list:
1. Dg, the dihedral group of order 8;
2. Qs, the quaternion group of order 8;
3. Ky ={(a,b:a*=1,b" =1,a" = a®), a metacyclic group of order 16.

Proof. Suppose G = (a,b) with (a) <G and assume it is non-abelian. Since
exp(G) = 4, the elements a and b have order < 4.
We distinguish the possible cases:

1. if either |a] = 2 and |[b| = 2 or |a| = 4 and |b] = 2, then G is the
dihedral group of order 8.

2. if |a| = 4, |b| =4 and (a) N (b) # 1, then G is the quaternion group of

order 8.
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3. if |a| =4, |b] =4 and (a) N (b) = 1, then G is isomorphic to K.

Lemma 3.5. Let G be a monotone 2-group of exponent 4.
If a and b are elements of order 4 such that (a) N (b) = 1, then either
(a) 4 {a,b) or (b) I (a,b).

Proof. Since G is monotone, H = (a,b) is metacyclic and, by Lemma 3.4,
H is either abelian or isomorphic to Ko.

If H is abelian, then the statement is true.

If H is isomorphic to K, then there exist ¢ and d in H such that H is
equal to {c,d : c¢* = 1,d* = 1,¢? = ¢?). The possible pairs {a,b} such that
{a,b) = H, and (a) N (b) = 1 are {c", c'd*},{c'd*,cd?}, with h € {1,3},
k€ {1,3} and i € {0,1,2,3}. Since {c) and (c"d?) are normal subgroups in
H, the lemma is proved. O

Lemma 3.6. Let G be a monotone 2-group of exponent 4. If a is an element

of order 4, then Q1(Q) is contained in the normalizer of {(a).

Proof. Take a,b € G such that |a| = 4 and |b| = 2. By Lemma 3.4, we have
that (a, b) is either abelian or dihedral of order 8. In particular, each element
of order 2 normalizes every cyclic subgroup of order 4, and the statement is

proved. ]

3.2 Monotone 2-Groups Of Exponent 4 not Involv-
ing KQ

In this section we study monotone 2-groups of exponent 4 that do not involve
a subgroup isomorphic to K (see Definition 3.1). The main results are in
Proposition 3.9 and in Proposition 3.12, where we describe the monotone
2-groups of exponent 4 with the property that K5 is not involved.

When a monotone 2-group of exponent 4 does not involve a subgroup

isomorphic to Ko, we can refine Lemma 3.4 into the following lemma.

Lemma 3.7. Let G be a monotone 2-group of exponent 4 that does not

inwolve a subgroup isomorphic to Ko. The followings hold:
1. G?* < Z(G);
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2. if a and b are elements of G of order 4 such that (a) N (b) = 1, then

(a,b) is abelian;

3. if X s a cyclic subgroup of G of order 4, then X is normal in G and
[G: Ca(X)] < 2.

Proof. The lemma is an easy consequence of Lemma 3.4. O

Lemma 3.8 and Proposition 3.9 deal with non-abelian monotone 2-groups

G of exponent 4, that do not involve subgroups isomorphic to Ko and with
|G?| > 4.
We claim that such a non-abelian group G does not contain a subgroup
isomorphic to Qg. Arguing by contradiction, let @) be a subgroup of G
isomorphic to Qg. Since, by Lemma 3.7(1), G? is abelian and generated by
{2? : x € G}, we obtain that there exists a cyclic subgroup X of order 4
such that @ N X = 1. By Lemma 3.7(2), we get that X centralizes @, and
so G contains a subgroup isomorphic to Qg x Cy4. Since Qg x Cy involves a
K5, we have a contradiction, and our claim is proved.

This means, by Lemma 3.4, that the group G contains a subgroup D
isomorphic to Dg and a cyclic group X of order 4 such that DN X =1. In
particular, for studying the structure of a monotone 2-group G of exponent
4, that does not involve subgroups isomorphic to Ko and with |G2| > 4, we
may assume that G contains a subgroup D isomorphic to Dg and a cyclic
subgroup X of order 4 such that DN X = 1.

Lemma 3.8. Let G be a monotone 2-group of exponent 4 such that
(1) G does not involve a subgroup isomorphic to Ks;

(11) G contains a subgroup D isomorphic to Dg and there exists X a cyclic
subgroup of order 4 of G such that X N D = 1.

Then G contains a subgroup isomorphic to K1 = A x (b), where A is abelian
of the form Cy x Cy, b has order 2 and a® = a™* for all a € A.

More precisely, if D = {a,b: a* = 1,b> = 1,a® = a3) and X = (c), then
(D, X)={a,byc:a*=1,c* =1,0> =1,a* = a3,a° = a,c’ = 3).

Proof. Let D be generated by a and b, with a of order 4 and let X be (c).
By Lemma 3.7, (a, ¢) is abelian. Since (b, c) is either abelian or dihedral,

we get the following cases:
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e a¢ =a, b° = b: since (bc, a) is isomorphic to Ky, we contradict ().

b

e a = a, & = c3: the group (a,c,b) is isomorphic to Kj.

O
Proposition 3.9. Let G be a monotone 2-group of exponent 4 such that
(i) G does not involve a subgroup isomorphic to Ka;
(1) G properly contains a subgroup K isomorphic to Ky (see Lemma 3.8).

Then G is isomorphic to a semidirect product A x (b), where A is abelian of
exponent 4, |A%| > 4, b has order 2 and a® = o™ for all a € A.

Proof. Let K = (a,b,c:a* =1,c'=1,0> =1,a* = a?,c® = 3,a° = a).

Let A be the centralizer of a. We want to prove that A is abelian.

First of all we prove that, if d is an element of order 4 in G, then it

commutes with a and ¢ and is inverted by b.
In fact, if (d) N (a,b) # 1, then, by Lemma 3.7, we have (d) N (a,b) = (a?).
Hence, we get that (d) N {c,b) = 1 and so, by Lemma 3.8, we have that (c, d)
is abelian and d® = d3. Moreover, since (cd) N (a,b) = 1, by Lemma 3.8, we
have that (a,cd) is abelian. Since [a,d] = [a, cd] = 1, our preliminary claim
is proved.

Now, let d and e be elements of order 4 of A. If (d) N (e) = 1, then, by

Lemma 3.7(2), the subgroup (d, e) is abelian.
Suppose (d) N (e) # 1. Then either (d) N (a) = (e) N (a) =1 or (d) N (c) =
(e) N {c) = 1. In the first case, since (ad) N (e) = 1, using Lemma 3.7(2),
we have that (ad,e) is abelian. Since e is in A, we have that also (d,e) is
abelian. In the second case, since (cd) N (e) = 1, using Lemma 3.7(2), we
have that (cd, e) is abelian. By our preliminary claim, the element e is in the
centralizer of (c), and so the subgroup (d, e) is abelian. Hence, the elements
of order 4 of A commute.

Let u be an element of A of order 2. By the previous paragraph, being
au an element of order 4 in A, we have that au centralizes all the elements
of order 4 of A. Since A is the centralizer of a, we have that v commutes
with all the elements of order 4 of A.

Let v and v be elements of order 2 in A. By the previous paragraph,
the element u centralizes av, and since u centralizes a, we get that u and v

commute.
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Therefore, the subgroup A is abelian, and so A is generated by its el-
ements of order 4. Since, by our preliminary claim, each element of A of
order 4 is inverted by b, we get that b acts by inversion on A. Since by

Lemma 3.7(3), A is a maximal subgroup of G, the statement is proved. [J

Complementary to Lemma 3.8 and Proposition 3.9, in Lemma 3.10,
Lemma 3.11 and Proposition 3.12, we deal with monotone 2-groups G of ex-
ponent 4, that do not involve subgroups isomorphic to K and with |G?| = 2.
In particular, if G is as above and contains a subgroup D isomorphic to Dg,
then every cyclic subgroup of G of order 4 intersects non-trivially D.
Hence, for studying a monotone 2-group G of exponent 4, that does not in-
volve a subgroup isomorphic to Ky and with |G?| = 2, we may assume that
any dihedral subgroup D of G and any cyclic subgroup of order 4 intersect
non-trivially.

In Lemma 3.10, we treat monotone 2-groups G of exponent 4, that do not
involve a subgroup isomorphic to K with |G?| = 2 and that contain a sub-
group isomorphic to Qs.

In Lemma 3.11, we determine the non-abelian monotone 2-groups G of ex-
ponent 4, that do not involve a subgroup isomorphic neither to K5 nor to Qg
and with |G2| = 2. Proposition 3.12 concludes the description of monotone
2-groups G of exponent 4 not involving a subgroup isomorphic to Ko and
with |G?| = 2.

Lemma 3.10. Let G be a monotone 2-group of exponent 4 such that
(1) G does not involve a subgroup isomorphic to Ks;

(ii) if G contains a subgroup D isomorphic to Dg, then there are no cyclic
subgroups X of order 4 such that X "D = 1;

(1i1) G contains a subgroup @ isomorphic to Qg.

Then G = E «C, where E is an extraspecial group of the form Qg * - - - * Qg

and C' is a subgroup that does not involve Qg.

Proof. We prove the lemma by induction on the order of G.

Let Q = (a,b: a* = 1,a®> = b*,a® = a~!). If X is a cyclic subgroup of
order 4 not contained in @, then X NQ = (a?) (otherwise G would contain a
subgroup isomorphic to K3). Moreover, by Lemma 3.7(3), the group C¢(Q)
has index 4 in G and G = @ * C5(Q). Now, C;(Q) is a monotone 2-group
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of exponent 4 that satisfies (i) and (ii). Moreover |Cs(Q)| < |G|. Now, if
Cc(Q) does not involve a subgroup isomorphic to Qg, then the lemma is

proved. Otherwise we conclude by induction. O
Lemma 3.11. Let G be a monotone 2-group of exponent 4 such that
(i) G does not involve a subgroup isomorphic to Ko;

(ii) G contains a subgroup D isomorphic to Dg and there are no cyclic
subgroups X of order 4 such that X N D =1;

(1it) G does not involve a subgroup isomorphic to Qs.
Then G = D x A, where A is an elementary abelian subgroup.

Proof. We prove the lemma by induction on the order of G.

Let D = (a,b: a* = 1,b> = 1,a® = a™') be a subgroup of G isomorphic
to Dg. By Lemma 3.7(3), the subgroup C¢((a)) is maximal in G. We now
show that C({(a)) is abelian.

Let ¢, d € Cg({a)). If ¢ has order 4, then ¢* = a? and ac has order 2.
The same holds for d. Then we may assume that ¢ and d have order 2.
Assume (c,d) is non-abelian. Then (c, d) is dihedral. In particular (cd)? =
a?, (ed)¢ = (ad)~! and G contains the subgroup (ac, cd) ~ Qs, against (iii).
Therefore C({a)) is abelian of the form Cy x Cy x -+ x Cs.

We now prove that Q1 (Cg({(a))) < Ca((b)). It is sufficient to prove that
if ¢ is an element of order 2 in Ci({a)), then ¢ € Cg((b)).

Now (b, c) is either abelian or isomorphic to Dg. Suppose that (b,c) is
isomorphic to Dg. The element cb has order 4 and so (cb)? = a® and (bc)? =
(be)~!. Now (bc,a) is isomorphic to Qg, against (iii). It follows that the
subgroup (b, ¢) is abelian, for all ¢ € Cg((a)) of order 2. Therefore C(D)
is an elementary abelian subgroup of G such that [G : Cq(D)] = 4 and so
G =D xCg(D) =D x A, where A is elementary abelian. O

Proposition 3.12. Let G be a monotone 2-group of exponent 4 such that
(1) G does not involve a subgroup isomorphic to Ko;

(ii) if G contains a subgroup D isomorphic to Dg, then there are no cyclic
subgroups X of order 4 such that X N D = 1.

Then G is isomorphic to one of the following groups:
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1. E x A, where E is extraspecial and A is elementary abelian;

2. Ex A, where E is extraspecial and A is abelian of the form C4q x Cy X
oo x Cy and E? = A2,

Proof. If G does not involve a subgroup isomorphic to (Jg, then by Lemma
3.11 the group G is in 1.

Suppose now that G involves a subgroup isomorphic to Js. By Lemma
3.10, we have G = F * C, where E is extraspecial of the form Qg * - - * Qg
and C' is a subgroup of G that does not involve Qs. By (i), it is easy to
check that, if C is abelian, then C' is either of the form Cy x Cy x ... x Co
(and so G is in 2) or elementary abelian (and so G isin 1).

If C is non-abelian, then C' satisfies the hypothesis of Lemma 3.11. So
C =D x A, where D is isomorphic to Dg and A is elementary abelian.
Therefore G = F x A with A elementary abelian and G is in 1. O

Summing up, in this section, we determined the monotone 2-groups of
exponent 4 not containing a subgroup isomorphic to K5. Namely, any such

a group is in the class @ or in the class 7.

3.3 Monotone 2-Groups Of Exponent 4 Involving
K,

In this section we study monotone 2-groups G of exponent 4 containing a

subgroup K isomorphic to Ks.

First of all we state a preliminary result in which we give some properties

of the centralizer of K.

Lemma 3.13. Let G be a monotone 2-group of exponent 4 containing a
subgroup K isomorphic to K.
Then Ql(G) < Cg(K)

Proof. Let K = {(a,b:a* =1,0* = 1,a®* = a™!).
Let ¢ be an element of order 2 in G. If ¢ is in K, then we get ¢ € C(K)
(because ;(K) = Z(K)).
Suppose now that c is not in K.
By Lemma 3.6, the element ¢ normalizes (a) and (b). So, we have the

following cases:
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1. a® = a, b° = b: the element c is in Cg(K).

= a1, b° = b: the element ab has order 4 and (ab)? = b?. Since

aC
(ab)¢ = aba?, we have ¢ ¢ Ng({ab)) and we contradict Lemma 3.6.

3. a¢ = a, b° = b~L: the elements ac and b have order 4 and (ac)N(b) = 1.

Since (ac)? = a®cb? = aca®b?, neither (ac) nor (b) is normal in G, and

we contradict Lemma 3.5.

=a~1, b = b~!: the element ab has order 4 and (ab)? = b2. Since

aC
(ab)¢ = aba?b?, we have ¢ ¢ Ng({ab)) and we contradict Lemma 3.6.

O]

In the first part of this section, we describe the structure of the monotone
2-groups G of exponent 4 containing a subgroup K isomorphic to Ky and
with the property that |G?| > 8. In particular, this implies that there exists
a cyclic subgroup X of order 4 such that X N K = 1.

More precisely, in Lemma 3.14, we determine the structure of (K, X), and in
Proposition 3.15 we conclude the description of the monotone 2-groups G of

exponent 4 containing a subgroup isomorphic to K and such that |G?| > 8.
Lemma 3.14. Let G be a monotone 2-group of exponent 4 such that

(i) G contains a subgroup K isomorphic to Ka;

(ii) there exists X, a cyclic subgroup of order 4 of G, such that X N K = 1.

Then (K, X) is isomorphic to Kz = Ax(b), where A is a 2-generated abelian
group, |A?| = 4, b has order 4 and a® = a™! for all a € A.

More precisely, if K = {a,b: a* = 1,b* = 1,a® = a®) and X = (c), then
(K,X)={(a,byc:a*=1,0*=1,c* =1,a° = a,a® = a?,c® = ).

Proof. Let K = {(a,b: a* = 1,b* = 1,a” = a7!) and let X = (c). Since ¢
and a have order 4 and (a) N (c) = 1, by Lemma 3.5, either (a) or (c) is
normal in (a,c). The same holds for (b,c). Hence [a,c] € {1,a? c?}, and
[b,c] € {1,b% ¢?}. The possibilities are:

2. now, either ¢® = ¢, with h € {1,3}, or ¢® = cb?. In every

1. a° = ac
case, the elements a and cb have order 4 and (a) N (cb) = 1. As (a)

and (cb) are not normal in (a, bc), we contradict Lemma 3.5.
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2. a® = a*: now, either ¢® = ¢, with h € {1,3}, or ¢® = cb?. In every

case, the subgroup (ac,b) is non-metacyclic. In fact, (ac)? = ¢? and
(ac)® = aca?®[c,b]. Since [c,b] € {1,b%,c?}, we have that (ac, b) contains
the 3-generated elementary abelian subgroup (c?,b?,a?). Therefore

(ac, by is not monotone and this case does not arise.

3. a® = a: now, either ¢ = ", with h € {1,3}, or c® = cb?.
If h =1 or ¢® = cb?, then ac and b are elements of order 4 and
(ac)yN(by = 1. As (ac) and (b) are not normal in (ac, b), we contradict
Lemma 3.5.
If h = 3, then we get the group (a,b,c:a* = 1,b* = 1,¢* = 1,0 =

a,a’ = a3, c® = ¢®) which is isomorphic to K3.

Proposition 3.15. Let G be a monotone 2-group of exponent 4.

Suppose that G properly contains a subgroup K isomorphic to K3 (see Lemma
3.14).

Then G is isomorphic to A(b), where A is an abelian group of exponent 4,
|A%| > 4, b has order 4, a® = o™ for all a € A, and either the extension is

splitting or b*> € A2.

Proof. Let K be (a,c) x (b) where (a,c) is a 2-generated abelian group of
order 16, b has order 4 and acts as inversion on (a,c).

We firstly prove that if (d) is a cyclic subgroup such that (d) N (b) = 1,
then the subgroup (a, ¢, d) is abelian and d* = d3.
Let d be an element of order 4 such that (d) N (b) = 1.
Up to renaming the generators of (a, ¢), we may assume that (d) N (a,b) = 1.
Using Lemma 3.14, we have that (a,d) is abelian and d® = d3. Now, if
(d) N {c,b) =1, then, by Lemma 3.14, the subgroup (c, d) is also abelian. If
(d)N{e,b) # 1, then d? € (c?,b?). Since (ad)? = a’d? is not in {c, b), we have
that (ad) N (c,b) = 1 and, by Lemma 3.14, the subgroup (c, ad) is abelian.
Since a and ¢ commute, we get that (c,d) is abelian. This concludes the
proof of the claim and, in the sequel, we refer to (x) to recall this fact.

Let A be the centralizer of a.

We now show that G = (A, b).
If d is an element of order 2 of G then, by Lemma 3.13, the element d lies
in A.
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If d is an element of order 4 of G such that (d) N (b) = 1, then, by (x), we
have that d is in A.
Suppose now that d is an element of order 4 of G such that (d) N (b) # 1. If
d does not lie in A, then (a, d) is non-abelian. Since (a)N(d) = 1, by Lemma
3.5, we get that either (a) or (d) is normal in (a,d). If (d) < (a,d), then we
have d® = d®. The element ad has order 4 and (ad) N (b) = 1. Hence, by
(x), we get that ad lies in A, i.e. d lies in A, a contradiction. Then, we get
{a) < (a,d) and so a® = a3. Then, the element db lies in A. Therefore, our
claim is proved.

We prove that b acts as inversion on A. This also implies that A is
abelian.
We show that, if d is in A, then d® = d3.
If d is an element of A of order 2, then, by Lemma 3.13, we get that
d € Ca({a,b)).
If d is an element of A of order 4 and (d) N (b) = 1, then, by (x), we get that
d® = d?.
If d is an element of A of order 4 and (d) N (b) # 1, then ad is an element
of order 4 lying in A and (ad) N (b) = 1. Therefore, by (), we get that
(ad)® = (ad)?, and since d is in A and a® = a3, we get that d® = d°.

Summing up, the group G = (A, b) is such that A is abelian, |A2%| > 4
and d® = d® for all d € A. The proposition is proved.
]

The previous proposition concludes the first part of this section and
the classification of the monotone 2-groups G that contain a subgroup K
isomorphic to Ks and a cyclic subgroup X of order 4, such that K N X =1
(ie. |G?| > 8).

In the rest of this section, we study the monotone 2-groups of exponent
4 that contain a subgroup K isomorphic to K5 and such that there exist no
cyclic subgroups X of order 4 such that K N X =1 (i.e. |G?| =4).

Lemma 3.16 and Lemma 3.17 gives some properties of these groups.
Lemma 3.16. Let G be a monotone 2-group of exponent 4 such that

(i) G contains a subgroup K isomorphic to Ko;

(ii) there are no cyclic subgroups X of order 4 of G such that X N K = 1.
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Then G? = K2.

Proof. The subgroup G? is generated by {a? : a € G}. Now, if a is an
element of order 4, then (a) N K # 1 and so a®> € Q(K) = K2 Hence
G?={2?:2€ G} < (K)= K> O

Lemma 3.17. Let G be a monotone 2-group of exponent 4 such that

(1) G contains a subgroup K isomorphic to Ko;

(13) there are no cyclic subgroups X of order 4 of G such that X N K = 1.
Then Q1(G) is an abelian subgroup.

Proof. Let K = {a,b:a* =1,b* = 1,a® = a™!) and let ¢,d be elements of
order 2 in G.
If ¢,d € K, then (c,d) is abelian because O (K) = Z(K).

If ce K and d ¢ K, then d € Cg(K) because of Lemma 3.13. Therefore
the subgroup (c, d) is abelian.

Suppose now ¢, d ¢ K. Assume that (c, d) is not abelian. By Lemma 3.4,
the subgroup (c,d) is a dihedral group of order 8. Also by Lemma 3.13, we
get Q1(G) < Cg(K) and we have that (¢,d) < Cg(K). Moreover cd is
an element of order 4 and (ii) yields (cd)? € (a?,b?). Furthermore, either
(cd)yN{a) =1 or (cd) N (b) = 1. If (ed) N (a) = 1, then the subgroup (c,d, a)
is isomorphic to Dg x Cy. If {ed) N (b) = 1, then the subgroup (c,d,b) is
isomorphic to Dg x C4. In both cases, G contains Dg x Cy, that is not a

monotone group, a contradiction. Therefore (c, d) is abelian. O

Let G be a monotone 2-group of exponent 4 containing a subgroup K
isomorphic to Ks. We point out that, by Lemma 3.16, G has no cyclic sub-
groups X of order 4 with K N X = 1 if and only if |G?| = 4.

Lemma 3.18, Lemma 3.21, Lemma 3.22, Lemma 3.23 and Lemma 3.24 de-
scribe the structure of some subgroups of a monotone 2-group that involves

a subgroup isomorphic to K» and such that |G?| = 4.

Lemma 3.18. Let G be a monotone 2-group of exponent 4 such that
(1) G properly contains a subgroup K isomorphic to Ky;

(13) there are no cyclic subgroups X of order 4 of G such that X N K = 1.

— 929 —



Chapter 3. Monotone 2-groups of exponent 4

Then G contains a subgroup isomorphic to a group in the following list:
Ky x Cy;

K¢ = (a,b,c:a*=1,0* =1, = a®v?,a® = a3, a° = a,b° = b);

K7 ={a,b,c:a*=1,b* =1,c% = a®V?,a® = a3, a° = a,b° = b3);

Kg = {a,b,c:a*=1,0* =1,% = a®V?,a® = a3, a° = a, b = b3a?).

Proof. Let K be (a,b:a* =b*=1,a* =a~!) and let c € G\ G? with c ¢ K.
Suppose that ¢ has order 2. Since an element of order 2 centralizes K
(see Lemma 3.13), the subgroup (X, ¢) is isomorphic to K X (c). Also, if
there exists £ € K such that kc has order 2, then, replacing ¢ with kc, we
get (K, c) = K x (kc) ~ Ko x Cs.
Therefore, from now on, we may assume that all the elements of K¢ have
order 4. In the sequel, we refer to (x) to recall the previous assumption.
Since G? = K? = (a?,b?) (see Lemma 3.16), we have that [¢, K] < K? and
c? € K2. The rest of the proof is a case-by-case analysis depending on where

2 lies in K2.

1. Suppose that ¢? = a?b%. Since (c) N (a) = 1, by Lemma 3.5 either (a)
or (c) is normal in (a,c).
Likewise, being (c¢) N (b) = 1, either (b) or (c) is normal in (c, b).
Therefore [a,c] € {1,a?,¢?*} and [b,c] € {1,b% c?}. Now, we analyze
all the possibilities:

- a® = a: now b¢ = b", where h € {1,3} or b = bc>.
If h =1, then the group (a,b,c) is isomorphic to K.
If h = 3, then the group (a, b, ¢) is isomorphic to Kr.
If b° = bc?, then the group (a, b, c) is isomorphic to K.

- a® = a®: now b¢ = b", where h € {1,3} or b¢ = bc2.
If h = 1, then the subgroup (ab, ¢) is neither abelian nor isomor-
phic to K», and this case does not arise by Lemma 3.5.
In the other cases, the group (a, b, ¢) is isomorphic to K7. More
precisely, if h = 3, then we get an isomorphism by setting a =
a,b=ab,c = be.
If b¢ = bc?, then we get an isomorphism by setting @ = a,b =

c,c = be.
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- a® = ab?: now b¢ = b", where h € {1,3} or b¢ = bc?.
If h = 3, then the subgroup (ab, ¢) is neither abelian nor isomor-
phic to K», and this case does not arise by Lemma 3.5.
In the other cases, the group (a,b,c) is isomorphic to K.
More precisely, if h = 1, then we get the isomorphism by setting
a=cb=a,c=0.
Also if b° = bc?, then we get the isomorphism by setting @ =

c¢,b=a,c = abc.

2. Suppose now ¢ = a?. Since (c) N (b) = 1, by Lemma 3.5, either (b) or
(c) is normal in (b, c).
Likewise, being (c) N (ab) = 1, either (ab) or (c¢) is normal in (c, ab).
Therefore [b,c] € {1,b2,¢?} and [ab, c] € {1,b% c*}. Now, we analyze
all the possibilities:

- b° = b: replacing ¢ with bc, we are in the case 1;

- b =13 now (ab)® = abb** (i.e. a® = ab*P*V), where h € {0,1}, or
(ab)¢ = (ab)c?® (ie. a® = a®b?). If h = 0, then, replacing ¢ with
abe, we are in case 1 ((abc)? = b%c? = b%a?). Likewise if a® = a3b?,

then, replacing ¢ with ac, we are in case 1 ((ac)? = a?b?). To

conclude, if A = 1, then ac has order 2 and we contradict ().

- b° = ba®: now (ab)® = abb®" (i.e. a® = aa®v?"), where h € {0,1},
or (ab)¢ = (ab)c? (i.e. a® = a). If h = 0, then, replacing ¢ with
abe, we are in case 1 ((abc)? = a?b?). Likewise, if h = 1, then
replacing ¢ with ac, we are in case 1 ((ac)? = a?b?). To conclude,

if a® = a, then ac has order 2 and we contradict (x).

3. Suppose ¢? = b%. Since (c)N(a) = 1, by Lemma 3.5, we get that either
{a) or {c) is normal in (a,c). Moreover [c,b] € (a?,b?). Therefore, we

analyze all the possibilities:

- a‘ = a: replacing ¢ with ac, we are in case 1 ((ac)? = a?b?).

- a® = a*: now b¢ = ba?"?*, where h,k € {0,1}.
Consider the element be: (be)? = a?M?¢. Hence, if h = 0 and
k = 0, then bc has order 2 and we contradict (x). If h = 1 and

k = 1, then, replacing ¢ with bc, we are in case 1.
Consider the element abe: (abc)? = a®+2'b%. Hence, if h = 1 and
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k = 0, then abc has order 2 and we contradict (x). If h = 0 and
k =1, then, replacing ¢ with abc, we are in case 1.
- a® = ac®: now b¢ = ba®"?*, where h, k € {0,1}.

Consider the element be: (be)? = a?"b?*. Hence, if h = 0 and
k = 0, then bc has order 2 and we contradict (x). If h = 1 and
k =1, then, replacing ¢ with bec, we are in case 1.

Consider the element abe: (abc)? = a?'c?**2. Hence, if h = 0 and
k =1, then abc has order 2 and we contradict (x). If h = 1 and

k = 0, then, replacing ¢ with abc, we are in case 1.

Hence the statement is proved.

O]

Remark 3.19. Let G and K be as in Lemma 3.16. Let c € G\ G? but
c ¢ K. From the proof of Lemma 3.18, we have that there exists an element
k € K such that |ck| = 2 or such that (ck)? = a®b?.

Remark 3.20. Let G and K be as in Lemma 3.16.

If T is a subgroup of G such that T? = G? = K2, then there are no cyclic
subgroups X of order 4 of G such that X NT =1 (otherwise there exists X
cyclic subgroup of G such that X N K =1, against the assumption).

In the following three lemmas, we study the structure of a monotone

2-group G such that |G?| = 4 and containing Kg or K7 and Kg.

Lemma 3.21. Let G be a monotone 2-group of exponent 4 such that

(i) G properly contains a subgroup K isomorphic to K¢ (see Lemma 3.18);
(ii) there are no cyclic subgroups X of order 4 of G such that X N K = 1.

Then K is contained in a subgroup isomorphic to a group in the following
list:

K6><02 ;

Ko = {(a,b,c,d : a*=1,b"=1,c% = a?b?,d* = 2,a® = d?,
a® = a,b® = b,a? = a,b? = b3, c? = cb?);

Kio = (a,b,c,d : a*=1,b*=1,c% =a?? % =d? a® = d?,

a® = a,b° =b,a% = a,b® = bd?, c? = ¢3).
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Moreover, the subgroup Q1(G) is in the centralizer of K.

Proof. Suppose K = (a,b,c:a*=1,b* =1,¢% = a?b?,ab = a?,a¢ = a,b° =
by and let d be in G\ K.

Suppose d has order 2. By Lemma 3.13, we get d € Cg({a,b)) and
d € Cg({ab,bc)). Hence (K,d) is isomorphic to K x Cy. In particular we
get that 1 (G) < Cg(K). Furthermore, from now on, we may assume that
all the elements in K¢ have order 4. In the sequel, we refer to () to recall
the previous assumption.

Suppose d has order 4. By (i), it is easy to check that [d, K] < K? and
d?> € K2. We have (a,b) ~ K3 and (a,b)? = G*> = K2. By Remark 3.19, we
can assume d? = a?b%. Since (d) N {a) = 1, (d) N (b) = 1 and (d) N (bc) = 1,
we get that (a,d), (d,b), (d,bc) are either abelian or isomorphic to Ks.
Hence [a,d] € {1,a?,a?b?}, [b,d] € {1,b%,a%b?}, [be,d] € {1,a?,a’b?}. Now,
the rest of the proof is a case-by-case analysis depending on the possible
values of [a,d],[b,d] and [be,d]. By (%), we may assume that none of the

followings happen:

[d,c] =1 (otherwise (cd)? = 1);

[a,d][b,d] = a® (otherwise (abd)? = 1);

[a,d][c,d] = a® (otherwise (acd)? = 1);

[b,d][c,d] = b? (otherwise (bed)? = 1);

[a,d][b,d][c,d] = b* (otherwise (abcd)? = 1).

Excluding the cases in which one of the previous is satisfied, it remains to

study the following possibilities:

- a? = a, b? = b, (bc)? = bea?b?. The group (a, b, c,d) is isomorphic to K.

An isomorphism is given by setting: @ = ¢, b = abcd, € = ab,d = b.

- a? = a, b = bb?, (bc)? = be, ie. a? = a, b? = bb?, ¢ = cb®. The group

{a, b, c,d) is isomorphic to Ky.

- a? = a, b4 = bb?, (be)? = (bc)a?, ie. a® = a, b = bb?, ¢ = ca®b?: the
group (a, b, c,d) so obtained is isomorphic to K9. An isomorphism is

given by setting: @ = a,b = bed, ¢ = ad, d = acd.
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a? = a, b = ba®b?, (be)? = be, ie. a? = a, b = ba®b?, ¢? = ca®b?. The

group (a,b,c,d) is Kyp.

at = a, b4 = ba®b?, (bc)? = (be)a?, ie. a® = a, b = ba®V?, ¢ = cb?.
The group (a, b, ¢, d) is isomorphic to Kg. An isomorphism is given by

setting: @ = be,b = cd, ¢ = ade,d = c.

a? = aa®, b4 = bb?, (bc)? = be, ie. a? = aa?, b = bb?, ¢ = cb®. The
group (a,b,c,d) is isomorphic to Kg. An isomorphism is given by

setting: @ = a,b = acd,¢ = bd,d = c.

a? = aa?, b = bb?, (bc)? = (bc)a?, ie. a? = aa®, b® = bb?, ¢ = ca®b?.
The group (a, b, ¢, d) is isomorphic to Kg. An isomorphism is given by
setting: @ = abc,b = acd, ¢ = abd, d = abed.

a® = aa?, b = ba®b?, (bc)d = be, ie. a® = aa?, b? = ba?b?, @ = ca®b?.
The group (a, gb, ¢, d) is isomorphic to Kg. An isomorphism is given
by setting: @ = be, b = abed, € = bed, d = bd.

a? = aa?, b? = ba’b?, (bc)? = (bc)a?, ie. a? = aa?, b? = bab?, ¢t = cb?.
The group (a, b, ¢, d) is isomorphic to Ky. An isomorphism is given by
setting: @ = be,b = ab,¢ = ¢,d = abd.

a® = aad®V?, b = b, (be)? = bea?b?, ie. a® = aa®V?, b = b, ¢ = ca’b?.
The group (a, b, ¢, d) is isomorphic to Ky. An isomorphism is given by
setting: @ = a,b = acd, ¢ = bd, d = bcd.

a? = aa®b?, b = baV?, (be)? = be, ie. a? = aa®b?, b® = ba’b?, ¢t = ca®b?.
The group (a, b, ¢, d) is isomorphic to Kg. An isomorphism is given by
setting: @ = d,b = abed, ¢ = ab, d = ac.

Lemma 3.22. Let G be a monotone 2-group of exponent 4 such that
(i) G properly contains a subgroup K isomorphic to K7 (see Lemma 3.18);
(ii) there are no cyclic subgroups X of order 4 of G such that X N K = 1.
Then K 1is contained in a subgroup isomorphic to

K7 xCqy

— 34 —



Chapter 3. Monotone 2-groups of exponent 4

Ko (see Lemma 3.21);

Ky = {(a,b,c,d : a*=1,0*=1,%=a?? d?> =% a’ = d®,
a® = a,b® = bb?a® = ad?,b? = b, c? = ca?).

Moreover, the subgroup Q1 (G) is in the centralizer of K.

Proof. Suppose K = (a,b,c:a* =1,b* = 1,¢% = a®b?,a® = a>,a® = a,b° =
b3) and let d be in G\K.

Suppose d has order 2: then, by Lemma 3.13, d € C¢g({(a,b)) and d €
Ca((b,c)) that means that (K, d) is isomorphic to K x Cs.

In particular, the subgroup Q;(G) is contained in Cg(K). Furthermore,
from now on, we may assume that all the elements in K¢ have order 4. In
the sequel, we refer to (x) to recall the previous assumption.

Suppose d has order 4. By (ii), it is easy to check that [d, K] € K? and
d*> € K?. We have (a,b) ~ K3 and (a,b)? = G?> = K2. By Remark 3.19, we
can assume d? = a?b?. Since (d) N (a) =1, (d) N (b) = 1 and (d) N {ac) = 1,
we get that (a,d), (d,b) and (d, ac) are either abelian or isomorphic to Ks.
Hence [a,d] € {1,a?,a%b?}, [b,d] € {1,b%,a%b?}, [ac,d] € {1,b%,a%b*}. Now,
the rest of the proof is a case-by-case analysis depending on the possible
values of [a,d],[b,d] and [ac,d]. By (x), we may assume that none of the

followings happen:
[d,c] =1 (otherwise (cd)? = 1);

[a,d][b,d] = a® (otherwise (abd)? = 1);

[a,d][c,d] = a® (otherwise (acd)? = 1);

[b,d][c,d] =1 (otherwise (bed)? = 1);

- [a,d][b,d][c,d] = 1 (otherwise (abed)? = 1).

Excluding the cases in which one of the previous is satisfied, it remains to

study the following possibilities:

- a? = a, b = b, (ac)? = ach?, ie. a? = a, bY = b, ¢ = cb®. The group
(a,b,c,d) is isomorphic to Ky. An isomorphism is given by setting:
@ =abd,b=bcd,¢c=c,d=d.

- ¥ =a, bd =b, (ac)? = aca®V?, ie. a® = a, b¥ = b, ¢’ = ca®b®. The group

< ¢,d) is isomorphic to Ky. An isomorphism is given by setting:
bd b= abed, ¢ = ac,d = acd.
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c)? V2, ie. a? = a, b® = bb?, ¢ = ca®b?.
b, ¢, d) is isomorphic to Kg. An isomorphism is given by
setting: @ = a,b = bd, ¢ = ac,d = ad.

—ad:a,bd—be( = aca®
¢,

The group (a,

- a? = a, b = ba®b?, (ac)? = ach?, ie. a® = a, b = ba?b?, & = cb?.
The group (a, b, ¢, d) is isomorphic to Kg.An isomorphism is given by
setting: @ = abd,b = bed, ¢ = ¢, d = d.

- a® = aa®, b? = bb?, (ac)? = ac, ie. a? = aa®, b¢ = bb%, ¢ = ca®. The
group (a,b,c,d) is isomorphic to Kg. An isomorphism is given by
setting: @ = cd,b = be,¢ = abd, d = ac.

- a? = aad?, b = ba®b?, (ac)? = ac, ie. a? = aa?, b = ba®b?, ¢ = ca®.
The group (a, b, ¢, d) is isomorphic to Kg. An isomorphism is given by
setting: @ = acd,b = c,¢ = ac,d = bd.

- a? = ad®v?, b4 = b, (ac)? = ach?, ie. a = aa®b?, b? = b, ¢ = ca®. The
group (a, b, ¢, d) is isomorphic to Kj;.

- a® = aa®b?, b4 = ba®b?, (ac)? = ach?, ie. a® = aa®b?, b = ba®b?, ¢ = ca®.
The group (a,b,c,d) is isomorphic to Kj;. An isomorphism is given
by setting: @ = abe, b = cd, ¢ = bed, d = bd.

Lemma 3.23. Let G be a monotone 2-group of exponent 4 such that

(i) G properly contains a subgroup K isomorphic to Kg (see Lemma 3.18);
(ii) there are no cyclic subgroups X of order 4 of G such that X N K = 1.
Then K 1is contained in a subgroup isomorphic to

Kg x Cy;

Kg (see Lemma 3.21);

Ko (see Lemma 3.21).
Moreover, the subgroup Q1 (G) is in the centralizer of K.

Proof. Suppose K = (a,b,c:a* =1,b* =1,¢% = a?b?,ab = a?,a = a,b¢ =
ba?b?) and let d be in G\ K.
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Suppose d has order 2: then, by Lemma 3.13, d € Cg({a,b)) and d €
Ca({ab,bc)). Hence (K,d) is isomorphic to K x Cy. In particular, the
subgroup Q1 (G) is contained in C(K). Furthermore, from now on, we may
assume that all the elements in K¢ have order 4. In the sequel, we refer to
(%) to recall the previous assumption.

Suppose d has order 4. By (i4), it is easy to check that [d, K] < K? and
d? € K2. We have (a,b) ~ K5 and (a,b)? = G? = K2. By Remark 3.19, we
can assume d? = a?b?. Since (d) N {a) =1, (d) N (b) =1 and (d) N (ac) = 1,
we get that (a,d), (b,d) and (ac, d) are either abelian or isomorphic to Ko.
Hence [a,d] € {1,a?,a?b?}, [b,d] € {1,b%,a%V?}, [ac,d] € {1,b%, a®b*}.

Now, the rest of the proof is a case-by-case analysis depending on the possible
values of [a,d],[b,d] and [ac, d].

By (%), we assume that none of the followings happen:

- [d,c] = 1 (otherwise (cd)? = 1);

[a,d][b,d] = a® (otherwise (abd)? = 1);

[a,d][c,d] = a® (otherwise (acd)? = 1);

[b,d][c,d] = a® (otherwise (bed)? = 1);
- [a,d][b,d][c,d] = a® (otherwise (abcd)? = 1).

Excluding the cases in which one of the previous is satisfied, it remains to

study the following possibilities:

- a? = a, b = b, (ac)? = ach?, ie. a? = a, bY = b, ¢ = cb®. The group
(a,b,c,d) is isomorphic to Ky. An isomorphism is given by setting:
@ =0bd,b=cd,¢=acd,d=d.

- a¥ =a, b = b, (ac)? = aca®b?, ie. a? = a, b = b, ¢ = ca’b?. The group

(a,b,c,d) is isomorphic to Kjg9. An isomorphism is given by setting:

a=cd,b=ad,¢=a,d=abd.

- a? = a, b4 = bb?, (ac)? = ach?, ie. a? = a, b = bb?, ¢? = cb?. The group
a, b, c,d) is isomorphic to Kg. An isomorphism is given by setting:
= abed, b = ab,¢ = acd,d = d.

—~ I

S|

- a? = a, b = ba?b?, (ac)? = aca®b?, ie. a = a, b = ba’b?, ¢ = ca®b?.
The group (a,b,c,d) is isomorphic to Kj9. An isomorphism is given

by setting: @ = c¢d,b = ad,¢ = a,d = abd.
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- a® = aa?, b® = bb?, (ac)? = ac, ie. a? = aa®, b = bb%, ¢ = ca®. The
group (a,b,c,d) is isomorphic to Kg. An isomorphism is given by
setting: @ = acd,b = abd, ¢ = bd,d = abcd.

- a? = aad?, b = ba®b?, (ac)? = ac, ie. a® = aa?, b = ba’b?, ¢ = ca®.
The group (a, b, ¢, d) is isomorphic to Kg. An isomorphism is given by
setting: @ = acd,b = bd,¢ = abd, d = bed.

- a? = ad®v?, b4 = b, (ac)? = ac, ie. a? = aa®b?, b = b, ¢? = ca®b®. The
group (a,b,c,d) is isomorphic to Kjp. An isomorphism is given by
setting: @ = a,b =b,¢ = bed, d = abed.

- a® = aa®b?, b = ba®b?, (ac)? = ac, ie. a® = aa®b?, b = ba®b?, ¢ = ca®b?.
The group (a, b, ¢, d) is isomorphic to Kg. An isomorphism is given by
setting: @ = d,b = abed, ¢ = abd, d = bed.

O]

The next lemma shows that the structure of a monotone 2-group G such

that |G?| = 4 and containing Ko or K19 or K11 is very restricted.
Lemma 3.24. Let G be a monotone 2-group of exponent 4 such that

(i) G properly contains a subgroup K isomorphic to K;, i =9,10,11;

(73) there are no cyclic subgroups X of order 4 of G such that X N K = 1.
Then G is isomorphic to K x A where A is elementary abelian.

Proof. Let
K ={(a,b,c,d : a*=1,b*=1,¢2 = a?? d*> =2, ab = a?,
a® =a,b° =b,a® = a,b® = b3, c? = cb?)
be isomorphic to K.
Let f € G\K.

Suppose f has order 2. By Lemma 3.13, f centralizes all the subgroups
isomorphic to Ks. Since (a, b), (d,b) and (cd, d) are isomorphic to Ko, we get
that f € Cq(K). Therefore, 2 (G) is elementary abelian (see Lemma 3.17),
01 (G) < Cg(K) and so (K, Q;(G)) = K x A, where A is elementary abelian.
Then we may assume that all the elements in K f have order 4. In the sequel
we refer to (*) to recall this assumption. Moreover, since (a,b) ~ K and
f? € (a%,b%), by Remark 3.19, we may assume f2 = a?b%>. Now, we have
(fyn{a) =1, (f)yn(by =1, (f) N{ac) =1 and (f) N (ad) = 1. Hence the

— 38 —



Chapter 3. Monotone 2-groups of exponent 4

subgroups (a, f), (f,b), (f,ac) and (f, ad) are abelian or isomorphic to Ko.
Hence [a, f] € {1,a%,a%2), [b,f] € {1,6%,a%2}, [ac, f] € {1,t2,a%?},
[ad, f] € {1,b%,a®b?}. Because of (%), we assume that none of the followings

happen:
- [e, f] =1 (otherwise (cf)? = 1);

- [a, f][b, f] = a? (otherwise (abf)? = 1);
- [a, f]lc, f] = a® (otherwise (acf)? = 1);
- [b, flle, f] = b® (otherwise (bef)? = 1);

[a, f][b, f]lc, f] = b (otherwise (abcf)? = 1);

[d, f] = 1 (otherwise (df)? = 1);

[a, f][d, f] = a® (otherwise (adf)? = 1);

b, fl[d, f] = 1 (otherwise (bdf)? = 1);

[, fl[d, f] = a® (otherwise (cdf)? = 1);

[a, f1[b, f1[d, f] = 1 (otherwise (abdf)? = 1);

- [a, flle, f1ld, f] = 1 (otherwise (acdf)? = 1);

b, flle, f1ld, f] = a? (otherwise (bedf)? = 1);
- a, f1[b, fllc, f]ld, f] = a? (otherwise (abcdf)? = 1);

It is not difficult to see that for all the possible choices of the commutators
la, f1,1b, f1,[c, f],[d, f] one of the previous conditions is satisfied. Therefore
if 1 =9, then the statement is true.
The arguments above hold also for K;, where ¢ = 10, 11.
O

The next proposition, that concludes the section, completes the classi-
fication of the monotone 2-groups of exponent 4 involving a subgroup K
isomorphic to Ko and such that there is no cyclic subgroup X of order 4
with X N K =1, i.e. |G?| = 4.

Proposition 3.25. Let G be a monotone 2-group of exponent 4 such that

(1) G properly contains a subgroup K isomorphic to Ks;
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(ii) there are no cyclic subgroups X of order 4 of G such that X N K = 1.

Then G is isomorphic to H x A, where A is elementary abelian and H is
isomorphic to K;, where i € {2,6,7,8,9,10,11} (see Lemma 3.18, Lemma
3.21 and Lemma 3.22).

Proof. Suppose K is a subgroup of G isomorphic to K.

If for all the elements ¢ of G\ K there exists k € K such that kc has order 2,
then G = (K,Q1(G)). By Lemma 3.17, Q;(G) is elementary abelian. Since
by Lemma 3.13, the subgroup Q1(G) is in Cg(K), we get that G ~ K x A,
where A is elementary abelian.

Suppose now that there exists an element ¢ in G\K such that there is no
k € K with kc of order 2. Then, by Lemma 3.18, the subgroup K is
contained in a subgroup isomorphic to Kg or to K7 or to Kg.

Then we may assume that G contains a subgroup 7" isomorphic to K;, where
iisin {6,7,8}.

Suppose that for all the elements ¢ of G\T, there exists an element k € T
such that kc has order 2. Then G = (T,Q1(G)). By Lemma 3.17, Q;(G) is
elementary abelian. Moreover, by Lemma 3.21 if ¢ = 6, by Lemma 3.22 if
i =7 and by Lemma 3.23 if i = 8, the subgroup 24(G) is in Cg(T). So, we
get that G ~ T x A, where T ~ K; with i in {6,7,8} and A is elementary
abelian.

Suppose now that there exists an element ¢ in G\T such that there is no
k € K with kc of order 2. Then, by Lemma 3.21 if ¢ = 6, by Lemma 3.22 if
1 = 7 and by Lemma 3.23 if 7 = 8, the subgroup 7' is contained in a subgroup
of GG isomorphic to Kg or to K¢ or to K.

So, we may assume that that G contains a subgroup S isomorphic to Kj,
where ¢ is in {9,10,11}.

By Lemma 3.24, the group G is isomorphic to S x A, where S ~ K; with
i is in {9,10,11} and A is elementary abelian. Hence the statement is

proved. ]

Summing up, in this section we determined the monotone 2-groups of
exponent 4 containing a subgroup isomorphic to K5. Namely, any such a
group is in the class %, with i € {1,3,4,5,6,7,8,9,10,11}.

In particular, combining the previous two sections Theorem 3.3 is proved.

— 40 —



Chapter 4

Monotone 2-Groups of

exponent greater than 4 in
which |G : Hy(G)| =2

Since the 2-groups of exponent at most 2 are elementary abelian and the
monotone 2-groups of exponent 4 were fully classified in Chapter 3, in the
rest of this thesis we study monotone 2-groups of exponent greater than 4.
Let G be such a group. By Proposition 1.3, we have that |G : Hy(G)| < 2.
In this chapter we investigate the monotone 2-groups of exponent greater
than or equal to 8 and such that |G : Hy(G)| = 2.

Definition 4.1. We introduce the following families of 2-groups:

P is the family of 2-groups of the form A{u), where A is abelian of
exponent 2" > 8, u? € Q1 (A), a¥ = a T with |a*"| < 2 for every
a€ A;

By is the family of 2-groups of the form (a,b,u)x A, where A is elementary
abelian, |a| = 2™ > 8, |b| = 2, {a, b) is abelian, u? = a2t bt = ba?"

at = (I_l,'

B3 is the family of 2-groups of the form {(a,b,u) x A, where A is elementary
abelian, |a| = 2" > 8, |b| = 4, (a,b) is abelian, u?> = b and a* = a1,
pu — b—1a2"*1 .

By is the family of 2-groups of the form (a,u)* E x A, where |a| = 2" > 8,

. . . . -1 _
E is extraspecial, A is elementary abelian, u®> € <a2n ), av =a 1+4h
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with |a*"| < 2 and E? = (a®"');

- By is the family of 2-groups of the form (a,u) * E x A, where E is ex-
traspecial, A is abelian of the form Cy x Cy x -+ x Cq, |a| = 2" > 8,
u? =a?"", a% = a Y with |a*t] < 2 and A2 = B2 = (a2"") ;

- B is the family of 2-groups of the form (a,u,b)* E x A, where |a| = 2" >
8, E is extraspecial, A is elementary abelian, |b| = 2, u? € (a2n_1>

-1 . -1
a’ = a2 a¥ = a7, b* = ba*" with [a*"| < 2 and E? = (a®");

)

- Py is the family of 2-groups of the form (a,u,b) * E x A, where E is
extraspecial, A is abelian of the form Cy x Co X -+ x Cq, and |a| =
2" > 8, b = 2, u? = a7 at =at, bt = b, a® = a2, and
A2 — B2 — <a2n*1>;

- Bsg is the family of 2-groups of the form (a,b,u) x A, where A is elementary
abelian, |a| = 2" > 8, |b] = 2, [u| = 4, v = a®" ", a* = a~ " with

1 7
lath] <2, a® = o' and ub = u7l;

- By is the family of 2-groups of the form (a,c,b,u) x A, where A is ele-
mentary abelian, |a| = 2" > 8, || = 2, |b] = 2, |u| = 4, u? = a®" ',

b 14271 b 1 b

— _ n—1
a*=at a’=a cuwb=ul ¢t =¢, d=cand * =ca®;

P is the family of 2-groups of the form (a,b,u) x A, where A is elemen-
tary abelian, |a| = 2" > 8, |b| = 4, |u| = 4, u® = V?, a* = a~ T with
la*h| <2, bt = b a2, ab = @12

We start by proving that the groups in %;, for i € {1,...,10}, defined

in Definition 4.1, are actually monotone.

Proposition 4.1. The groups in the families %;, for i € {1,...,10} are

monotone.

Proof. We want to show that if G is a group in %, for i € {1,...,10}, then
G is monotone. Now, the proof is a case-by-case analysis depending on the

family in which G lies.
- Suppose that G is in %;. Lemma 2.6 proves that G is monotone.

- Suppose that G is in Hy. Then, we have G = (a,b,u) x A, where A is

elementary abelian, |a| = 2" with n > 3, |b| = 2,(a, b) is abelian, u? =

n—1 n—1
a®"", b% = ba?

, a¥ = a~'. We have to prove that the 2-generated
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subgroups are metacyclic. By Lemma 2.5, it is sufficient to prove that
the group (a,b,u) is monotone. Moreover, since (a, b) is abelian, it is
enough to check that the subgroups of the form (a“bu, a’1b2) are
metacyclic.

We distinguish two cases depending on the order of a’!.

If |[a/t| > 8, then Q1((a/b2)) = (a®"'). Since (af1pi2)a"'b?u —
a~1b72a2" 72 we have that (af'b2) < (a’1b2u, a7 b72) and so the sub-
group (a’'b2u, a/1b?) is metacyclic.

Suppose now that |a’t| < 4. The subgroup (a‘1b*2u, a/1b72) is contained

‘o <a2n72,b, ailu). NOW, the group <a2n72,b’ ahu) — <a2n—2’ai1u> *
(a""b) is isomorphic to Qs*Cy, where Q3 = C}. Since Qs*Cy, where

Q§ = C'42, is monotone, the subgroup (a‘b2u, a/1b/2) is metacyclic.

Therefore, the group G is monotone.

- Suppose that G is in #3. Then, we have G = (a,b,u) x A, where A is
elementary abelian, |a| = 2", |b] = 4, (a,b) is abelian, u?> = b? and
a* =a” b bt = b—1a2" ", By Lemma 2.5, it is sufficient to prove that
the group (a, b, u) is monotone. Moreover, since (a, b) is abelian it is
enough to check that the subgroups of the form (a“b2u, a’1b2) are
metacyclic.
Now, we have that (af1i2)a"'b2u = (giipi)u = g i1p=i2q2" 'i2 =

(aj1b72)_1a2n71]2. We distinguish two cases depending on the order of
a’t,

If |a/t] > 8, then |a’'b2| = |a/!] and, in particular, Q((a/1b2)) =
(a®"™"). Then, we have (a/'b2) < (a/1b72, a"1b24), and so the group
(a71b72 @' b2u) is metacyclic.

Suppose now that |a/2| < 4. The subgroup (a’b*2u, a/1b/2) is contained
in the subgroup (a2" . b, a’ ), which is isomorphic to K7 (see Lemma
3.18) by setting @ = a2n_2,5 = a’'ub and ¢ = b. Since K7 is monotone,
the subgroup (a“b2u, a’'b2) is metacyclic.

Therefore, the group (a, b, u) is monotone and so G is monotone.

- Suppose that G is in #A;. Then, we have G = (a,u) * E x A, where a
has order 2™ > 8, E is extraspecial, A is elementary abelian, u is such
that u? € (a2" '), a* = o~ " with |a*"| < 2, E2 = (a2"'). By

Lemma3.6, it is sufficient to show that (a,u) * E is monotone.
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We first prove that the subgroup (a, E) is monotone. It is enough
to check that the subgroups (a’t1,ts), where t; and to are in E, are
metacyclic. Now, (a’t1)? = a'tq[t,t2] = aitlaQn_ls, for some s € N.
If |ai| > 8, then Q1((a't1)) = ("), and so (a’t1) < (a’ty,to). If
la’| < 4, then (aty, t) < (a2 ) * E, which is a monotone group (see
Theorem 3.3).

This proves that the subgroup (a) * E is monotone.

Now, in order to conclude that the group (a,u) * E is monotone, it is
enough to prove that the subgroups (a’tiu, a’ts) are metacyclic, where
ti,to € E. We have that (ajt2)a1t1u = (ajtg)_1a4hjt%[t1,t2]. We now

distinguish two cases depending on the order of a’.

If |af| > 8, then Qi ({(a/ts)) = (a®"') . Since 2t1,t9] € (@), we
have that (a’ty) < (a'tiu, a’ts).

If |a?] < 4, then (a‘tyu, a’ty) is contained in (a?" *, a’u) * E which is
extraspecial and so monotone. In particular, the subgroup (a’ts, a'tyu)

is metacyclic.

Therefore, the group G is monotone.

- Suppose that G is in #5. Then, we have G = (a,u) * E x A, where
FE is extraspecial, A is abelian of the form Cy x Cy x --- x (9, and
la| = 27, with n > 3, v2 = ¢® " and a* = a '™ with |a®h| < 2
and A% = E2 = (a®"'). By Lemma 3.6, it is sufficient to show that

(a,u) x E'x Cy is monotone.

We first prove that the subgroup (a) * E % Cy is monotone. Since
(a) * E x Cy = (a) * E x Cy, by Lemma 3.6, it suffices to check that
the subgroups (a’ty,ts), where t; and ¢y are in F, are metacyclic.
Now, (a't1)? = a'tq[t1ts] = ait1a2n_ls, for some s € N. If |af| > 8,
then Q1 ((a’ty)) = (a®" "), and so (a't1) < (a'ty, t). If |af| < 4, then
(a'ty, 1) < (a2"*) % E, which is a monotone group (see Theorem 3.3).

This proves that the subgroup (a) * E * Cy is monotone.

In order to conclude that the group (a,u) * E % C4 is monotone, we
prove that the subgroups (a‘tiu,a’ty) are metacyclic, where t1,ty €
E % Cy. We have that (aty)*" = (ata) La i3]ty to]. If |af| > 8,
then Q((afts)) = (a®" ') . Since 2[t1,t5] € (a2" '), we have that
(alt3) < (a'tiu, a’ty). If |a/| < 4, then (a'tju,a’ts) is contained in
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(a"~2 a'u) * E * Cy which is monotone. In particular, the subgroup

(a’ty, a’tyu) is metacyclic.

Therefore, the group G is monotone.

- Suppose that G is in %. Then, we have G = (a,u,b) * E x A, where a
has order 2" > 8, E is extraspecial, A is elementary abelian, |b| = 2,
u? € (@), ab = a2 @t = a7t b = ba*h, where |a*"| < 2 and
E? = (a®""). By Lemma 2.5, it is enough to check that (a,u,b) * E
is monotone. Therefore, we have to control that all the 2-generated

subgroups of (a,u,b) x E' are monotone.

We first prove that (a,b) * E' is monotone. We control that the sub-
groups of the form (a’1b2t;, a/'t5) are metacyclic.

We have (afty)® 1?1 = @iigy[at | b2][ty,t,]. Therefore, we obtain
[a1b2t1, al ty] = [adt, b2][te, t1] < (a®" ). We distinguish two cases

depending on the orders of a/! and a'!.

Suppose that |a’t| > 8 or |a’| > 8. In the first case, we get Q1 ((a’1t2)) =
(a® ") and so (af'ty) < (af1bi2ty, afty). In the second case, we have
that Q; ((ab21)) = (a2 ') and so (a1b2t;) < (ai1bi2ty, altty).
Hence, if |a’t| > 8 or |a’t| > 8, then the subgroup (a“b%ty,a’lts) is
metacyclic.

Suppose now that both |a’t| < 4 and |a’'| < 4. Then (ab2ty,a’'ts)

. . . n—2
is contained in (a?

) * E' x (b), which is monotone (see Theorem
3.3) . Therefore, if both |a’!| < 4 and |a’| < 4, then the subgroup

(a1 bty, a’lty) is metacyclic.

This shows that the group (a,b) * E is monotone and, in order to
conclude that (a,u,b) * E is monotone, we check that the subgroups
of the form (a"bt1, a’'b®tou) are metacyclic.

We have (a'bi2t; )10 02e — (gi1pizg)~1¢2" "5 for some s € N.

We distinguish two cases depending on the order of a’!.

Suppose that |a'| > 8. Then, we have Q((a’b2t,)) = (a?" ') It
follows that (a'b?2t;) < (a“1bt1, a/tb®*tou). Hence, if |a’t| > 8, the
subgroup (a’'b?2ty, a’'b’3tyu) is metacyclic.

Suppose now |a’t| < 4. We have that (a’'b"2t1, a’*b**tou) is a subgroup
of (2", b,u, E) = (a®""

monotone group of the form F*Cy, where F' is extraspecial. Therefore,

Ju) % E x (a2 °b), which is isomorphic to a
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if |[a’t| < 4, then (a’1b2ty, a/'b¥3tou) is metacyclic.

This shows that all the 2-generated subgroups of (a, b, u, F) are meta-

cyclic. It follows that the group G is monotone.

- Suppose that G is in B7. Then, we have G = (a,u,b) x E « A, where E is
extraspecial, A is abelian of the form Cy x Cy X - -+ x Cy, and |a|] = 2",
with n > 3, |b] = 2, a® = a2 2 = a2 g = a7 b = b and
A2 = B2 = (a®7).

By Lemma 2.5, it is enough to check that (a, u, b) * E x Cy is monotone.
Therefore, we have to control that all the 2-generated subgroups of

(a,u,b) x E « Cy are metacylcic.

We first prove that (a,b) x E x Cy is monotone. Since (a,b) *x E x Cy =
(a,b) * E x Cy, by Lemma 2.5, it is sufficient to check that the sub-
groups of the form (a’'b%2ty, a’'ty), where t; and t are in E, are meta-
cyclic. Now, we have (afity)® 1?1 = qi¢y[at, b2][ty, t1]. Therefore
(b2t T ty) = [0, b2][ty, 11] € (a2 ).

Suppose that |a’!| > 8 or |a’| > 8. In the first case, we have that
Q1((a71t5)) = (a®" ") and so (af'ty) < (ai'bi2t1,ai'ty). In the second
case, we get O ((ab2t;)) = (a®" ') and so (a®bi2t,) (a1 b2t allty).
Hence, if |a’t| > 8 or |a’| > 8, then the subgroup (a“bty,a/'ts) is

metacyclic.

Suppose now that both |a/!| < 4 and |a’'| < 4. Then (a"b%2ty, a’'ts)
is contained in <a2n72) x E x (b), which is monotone (see Theorem
3.3) . Therefore, if both |a’!| < 4 and |a’| < 4, then the subgroup

(a"bt1, a’lt3) is metacyclic, being a subgroup of a monotone group.

In order to conclude that (a, u, b)* ExCy is monotone, we check that the
subgroups of the form (a’b%2t1, a’tb*3tau), where t; and t3 are in ExCy,
are metacyclic. We have that (a’b2¢,)* 0% 02e = (qi1pig)) 142" for

some s € N.

Suppose that |a| > 8. Then, we have Q((a"b2t;)) = (a®" ') and
so {a1b2t1) < (ab2t1, a1 b%tou). Hence if |a’t| > 8, the subgroup
(a1 b2ty a1 b tou) is metacyclic.

Suppose now |a“t| < 4. Then the subgroup (ab2ty,a’'b%tau) is a

n—2
a2

subgroup of (a2, b,u, E) = ( ,u) % Ex (a2""b), which is isomor-

phic to a monotone group of the form £ x Cy, where F' is extraspecial.
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Therefore, if |a’'| < 4, then (a’'b?2t1, a/1b®tou) is metacyclic (being a
subgroup of a monotone group). This shows that all the 2-generated

subgroups of (a, b, u) x E' « C4 are metacyclic.

It follows that the group G is monotone.

- Suppose that G is in $Bg. Then, we have G = (a,b,u) x A, where A
is elementary abelian, |a| = 2" > 8, [b| = 2, |u| = 4, v = a2,
a* = a 2" with hoin {0,1}, @® = ¢'™2"" and w® = u~!. By
Lemma 2.5, it is enough to check that (a,b,u) is a monotone group.
Therefore, we have to check that all the 2-generated subgroups of
(a,b,u) are metacyclic. Since (a, b) is a modular metacyclic subgroup,
it is monotone and so it is sufficient to check the subgroups of the
form (b*a’,ua’2b/t). If iy = 0, then the subgroup (a’,ua’2b!) is
metacyclic since (a®?) < (a’,ua’2b’). If i = 1 then, replacing if
necessary ua’/2b/! with ua’2b’t (ba'?)’!, we may assume that the sub-
group is of the form (ba™,uai). Now (ba'2)ue’? = po’q(~1+2"" iz —
(ba'2) 12" "2+2" 72 Now, we distinguish two cases depending on

the order of a’2.
If || > 8, then Q;((ba’?)) = (a2 ") and so (ba™) < (ba’2, ua’?).

If |a’2| < 4, then (ba'?, ua’) is contained in the group (a2" . b, ua’?).
We have that (ua’2)? = u2a®" 'hiz = ¢2""hi2t1 and so (ua’?)? €
(a®"""). Therefore, (a2" ", b,uai?) is equal to (a®" ", uai?) * (2" b).
If |ua’2| = 2, then (a?" *,ua’) is isomorphic to Ds. Therefore, the

2n—2 2n—2
a

subgroup (a2" ", b, ua’?) = ( ,ua’?) * (a®" "b) is isomorphic to the

monotone group Dg * Cy, where D2 = 042.
If |ua®2| = 4, then (a®"”,ua??) is isomorphic to Qs. Therefore, the
subgroup (a2" . b,ua’) = (a¥" ", ua?) x (a2 b} is isomorphic to the
monotone group Qg x Cy, where Q3 = C7.
In both cases, the subgroup (a2n72, b,ua’?) is monotone and in parti-

cular, the subgroup (ba’?, ua’?) is metacyclic.

Therefore, the group G is monotone.

- Suppose that G is in %By. Then, we have G = (a,c,b,u) x A, where A is
elementary abelian, |a| = 2" > 8, |c| =2, |b| = 2, |u| = 4, u? = a®" ",

1 ,0b 1427=1 b 1 b

_ _ n—1
a*=a ", a’=a cub=u"t =¢, & =cand ¢ =ca®" .

By Lemma 2.5, it is enough to check that (a,c,b,u) is a monotone
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group. Therefore, we have to check that all the 2-generated subgroups
of (a,c,b,u) are metacyclic. Since the subgroup (a, b, c) is modular
(and so monotone), it is enough to check the subgroups of the form
(a2 ua/ b2¢73). We distinguish two cases depending on the order
of a’.

If [a't| > 8, then (a'1bc3) < (@b uarb2¢7) . In fact, we have

that S
((Lil big Cig )uaJI bI2¢73

(a_il bizci3a2”*1(i2+i3))lﬂ2ci3

a1 pizpis 2" itz tige)
(ailbigcig)71a2”_1(i2+i3+i1j2)_

Since ((a’b2¢%3)2) = (a21), we have that (a2" (izFistii2)) < (42"71) <
O ((abi2c")

Suppose now that |a’t| < 4, then the subgroup (a‘'b‘2c'?, ua/tbi2c/s)
is contained in <a2n_2,b, c,ua’t). Therefore, in order to prove that
(a1 b2t ua/ b2¢73) is metacyclic, it is sufficient to prove that the
group <a2n72, b, c,ua’t) is monotone. Now, this group has exponent 4
and (2", b, c,ua’) = (2", ua) * (a®""b) x (bc). Then, the group

n—2 ; .. . . .
(a®"7,b,c,ua’) is isomorphic to Qg * Cy x Cy, which is monotone.

Therefore, the group G is monotone.

- Suppose that G is in By9. Then, we have G = (a,b,u) x A, where A is
elementary abelian, |a| = 2" > 8, [b| = 4, |u| = 4, u? = b?, a* = a1 T4

with |a%| < 2, b = b~ 162", @b = 2",

By Lemma 2.5, it is enough to check that (a, b, u) is a monotone group.

Therefore, we have to check that all the 2-generated subgroups of

(a,b,u) are metacyclic.

Since (a, b) is a modular metacyclic subgroup, it is monotone and so

it is sufficient to check the subgroups of the form (b1 a®, ua’2b/t). We

distinguish two cases depending on the order of a’!.

Suppose that |a’2| > 8. Then Q;((b"1a®2)) = (a®" ).

Since (bilaig)uaijjl — (b—z‘la2n*1a—z‘2(1+4h))ajzbh — (bilam)—laQ"*ls’

for some s € N, we have that (b1a’?) < (b1 a’,ua’2b!) and so the

subgroup (b™a’2, ua’2b’') is metacyclic.

If |a*2| < 4, then we have that the subgroup (b a2, ua’2b’t) is con-
tained in (2", b, ua’?).

.. -2 ; -2, . . .
If jo is even, then (a2n ,ua’?, ba?" ) is isomorphic to K7 (see Lemma
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3.18).
If jy is odd, (2", ua?®, ba2" ") is isomorphic to Kg (see Lemma 3.18).
Hence, we obtain that the group <a2n_2,b, ua’?) is monotone and so

(b1a® ua’2b) is metacyclic.

Therefore, the group G is monotone.

The aim of this chapter is to prove the following :

Theorem 4.2. Let G be a monotone 2-group of exponent greater than or
equal to 8 and such that |G : Hy(G)| = 2. Then G is in one of the families
B, for some i € {1,...,10}, defined in Definition 4.1.

4.1 The subgroup H,(G)

In this section we study the structure of H4(G), where G is a monotone
2-group of exponent at least 8 and Hy(G) is maximal in G.

In the following two lemmas we give some informations on the normalizer
of the cyclic subgroups of order greater than 4 in G and on the metacyclic

subgroups of Hy(G) having exponent greater than 4.

Lemma 4.3. Let G be a monotone 2-group of exponent greater than 4 and
such that |G : Hy(G)| = 2.

Any cyclic subgroup X of order greater than or equal to 8 is mormal in
G. Moreover, if u is an element of G not in Hy(G) and X = (a), then
a¥ = a1 where |a*t| < 2.

Proof. Let a be an element of Hy(G), with |a| > 8, and let u be an element
lying in G\ H4(G).

We first prove the following claim: each cyclic subgroup of (a, u) of order
greater than 4 is normal in (a,u).
Since w is not in Hy4(G), the order of u is smaller than or equal to 4. More-
over, the subgroup (a,u) is not contained in H4(G) and, since |a| > 8,
the exponent of (a,u) is greater than 4. Now a modular metacyclic group
is generated by its elements of maximal order, and so the group (a,u)
is non-modular metacyclic. Therefore, there exist x,y € (a,u) such that

(a,u) = (z,y), (x) < (z,y) and 2¥ = 2~ 1+h,
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We want to show that each cyclic subgroup of (z,y) of order greater than

or equal to 8 is normal in (x,y).

Assume |z| < 4. In this case we have 2¥ = 2=, If |y| < 4, then we get
exp({x,y)) < 4, a contradiction. Hence, we have |y| > 8. Since |yz| = |y],
the subgroup (z,y) = (yz,y) is contained in Hy(G), a contradiction.

Therefore, this case does not arise.

So, we have that the order of x is 2", where n > 3. If |y| > [8|, then the
subgroup (z,y) is contained in Hy(G), a contradiction.
Therefore, we get that |z| = 2" > 8 and |y| < 4. We now analyze the cases

depending on the order of y and on the action of y on (x).

If y has order 2, then the automorphism induced by y on (x) has order

2, ie. a¥ = g1t

, where ¢ € {0,1}. Now, an element ¢ of (z,y) of
order greater than or equal to 8 lies in (x). In particular, we get (t) <(z,y).
Therefore, the subgroup (z,y) is contained in the normalizer of every cyclic
subgroup of (z,y) of order at least 8. In this case the claim is proved.

27L71

Suppose now |y| = 4 and |(y) N (x)| = 2. Then, we have y? = x
The automorphism induced by y on (x) has order 2, and so ¥ = x_1+2n_1i,
where i € {0,1}. Now, an element ¢ of (z,y), with |[t| > 8, lies in (z). In
particular, we have (t) < (z,y). So, the subgroup (x,y) is contained in the
normalizer of every cyclic subgroup of (z,y) of order at least 8 and, also in

this case, the claim is proved.

Suppose now |y| = 4 and [(y) N (z)| = 1. If yx has order greater than
4, then (z,y) = (z,yz) and (z,yx) is contained in Hy(G), a contradiction.
Hence, we have that |yx| < 4.
Since 2¥ = 214" we have that (yz)* = 28h+64h°=32h* " Therefore, the
element yx is such that |yz| < 4 if and only if 82 = 0 mod 2", i.e. a¥ =
p 14 with |24 < 2.
The elements ¢ in (z,y), with |[t| > 8, are of the form x'y?*, where |2?| > 8
and k € {0,1}. Now, we get that 2 centralizes 2'y?*. Also, since (2'y?*)¥ =

(z'y?*) 1zt and (2'y?¢)? = 2%, we have that y is in the normalizer of

(z'y?*). Tt follows that (x,%) is contained in the normalizer of every cyclic
subgroup of (z,y) of order at least 8. Therefore, in this case, the claim is

proved.

In particular, we have that, if X is a cyclic subgroup of G having order
greater than or equal to 8 and w is an element in G\H4(G), then u is in
Ng(X).
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Now, since {u € G : u ¢ H4(G)} is a set of generators of G, we have that
X is a normal subgroup of GG, and the first part of the statement is proved.

We now prove the second part of the lemma.
Let X = (a), where a element of G of order 2", n > 3. Let u be an element
lying in G\ H4(G). By the previous part, we get that (a) <(a,u). Since (a,u)
is not contained H4(G), the subgroup (a,u) is non-modular metacyclic, i.e.
a® = a~ 174" If the order of ua is greater than 4, then (a,u) = (a,ua) and
(a,ua) is contained in Hy(G), a contradiction. Hence, we have that |ua| < 4.
Now, we have (ua)? = u2a* and so (ua)! = q8h+64h*~32h>
(ua)* = 1 if and only if |a®"| = 1, i.e. |a*"| < 2. Therefore, also the second

part of the statement is proved. O

. Then, we have

Lemma 4.4. Let G be a monotone 2-group of exponent greater than 4 and
such that |G : Hy(G)| = 2.

Let a and b be elements of Hy(G) with |a| > 8.

Then, the metacyclic subgroup (a,b) is modular.

Moreover, the subgroup Hy(G) is powerful and is generated by its elements

of mazimal order.

Proof. By Lemma 4.3, if ¢ is an element of G and |c| > 8, then (¢) <G. Let
a and b be elements of H4(G), with |a| = 2" > 8 and |b| = 2™.
Since (a,b) is a 2-generated subgroup of a monotone group, the subgroup
{a,b) is metacyclic and a® = a”.

Suppose r = —1 mod 4, ie. a® = a7, Let u be in G\Hy(G).

142" 1h b (a—1+2"*1h)b _

By Lemma 4.3, we get a" = a Hence a"

a(—1+4r)(—1+2”_1h)

. So, the subgroup (a,ub) is modular. Since a modular
group is generated by its elements of maximal order and a has order at least
8, we get that (a,ub) is contained in Hy(G). In particular, the element ub
lies in H4(G) and so, since b € Hy(G), we have u € H4(G), a contradiction.
Hence, this case does not arise.

It follows that a® = a'**" and so the subgroup (a,b) is modular (see
Lemma 2.3.4 on page 56 of [13]).

This proves the first part of the statement.

The subgroup Hy(G) is generated by the set T' = {c € H4(G) : |c| > 8}.
The first part of the proof shows that if ¢; and cp are in T', then (¢, ¢2) is
a modular metacyclic subgroup and so [c1, ca] € {(c1,c2)*. Then, if ¢; and
co are in T, then [c1,co] € Hy(G)* and, by Remark 2.1, we conclude that
H4(G) is powerful.
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Furthermore, let a be an element of H4(G) of maximal order and let
¢ € T. Since the subgroup (a,c) is modular, there exists a ¢ € (a,c) such
that |[¢| = |a| and (a,¢) = (a,c). In particular, ¢ € (a,¢) and so the set
T = {z : x is of maximal order in Hy(G)} is a set of generators of maximal
order of H4(G). This concludes the proof of the lemma. O

The following lemmas deal with the elements of order 4 in Hy(G). In
fact, in Lemma 4.5 and in Lemma 4.6 we give some properties of Qo (H4(G)).
More precisely, we show in Remark 4.7 that Q3(H4(G)) is a monotone 2-
group of exponent 4 that does not involve a subgroup isomorphic to K (i.e.

a group well studied in Section 3.2).

Lemma 4.5. Let G be a monotone 2-group of exponent greater than 4 and
such that |G : Hy(G)| = 2.

If a and b are in Hy(G) with |a| < 4 and |b] < 4, then exp({(a,b)) < 4.
Moreover, if a and b have order 4 and (a) N (b) = 1, then the subgroup (a,b)

is abelian.

Proof. Let a and b be elements of order at most 4 in Hy(G).

If exp({a,b)) > 8, then, by Lemma 4.4, the subgroup (a,b) is modular. In
particular, the subgroups (a) and (b) permute, a contradiction, because if H
and K permute, then the exponent of HK equals maz{exp(H), exp(K)}.
Therefore, the exponent of (a, b) is at most 4.

Suppose now that a and b have order 4 and (a) N (b) = 1. Since the
subgroup (a, b) has exponent 4, by Lemma 3.4, the subgroup (a, b) is either
abelian or isomorphic to Ks.

If (a,b) is abelian, then the lemma holds.

Suppose that (a,b) is isomorphic to K. Up to renaming the generator
of (a,b), we may assume that a® = a~!. Since Hy(G) is powerful (see
Lemma 4.4) and a? € H4(G)', we have that a? € Hy(G)* and there exists
a ¢ € Hy(G) such that ¢* = ¢?. In particular, the element ¢ has order
8 and, by Lemma 4.3, the subgroup (c) is normal in G. Moreover, by
Lemma 4.4, the subgroups (c, a) and (¢, b) are modular. Then, we have that
c® = ! and b = "2 Now ¢? has order 4 and lies in the centralizer
of {a,b). In particular, we get ¢ ¢ (a,b). Now, the subgroup (c%a,c?b) is
non-metacyclic, a contradiction. In fact, we have that [c?a, c?b] = a® and
(c2ac?h)? = (ab)? = b%. Therefore, the subgroup (c%a,c?b) contains the 3-

generated elementary abelian subgroup (c?a, a2, b?).
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Therefore, this case does not arise and the second part of the statement is

proved. O

Lemma 4.6. Let G be a monotone 2-group of exponent greater than 4 and
such that |G : Hy(G)| = 2.

If a is an element of H4(G) of order at most 4 and wu is an element in
G\H4(G), then the exponent of (a,w) is at most 4.

Proof. Let a be in H4(G) of order at most 4 and u be in G\ Hy(G).

Suppose that the exponent of (a, u) is 2", with n > 3, and let ¢ be an element
of maximal order in (a,u). Then, (¢) <G and ¢ € H4(G). Therefore, there
exists d ¢ H4(G) with |d| < 4 such that (¢,d) = (a,u). By Lemma 4.3,
c? = ¢4 with |¢¥| < 2. Now, any element z of {(c,d) such that |z| = 4
and (z,d) = (c,d) is of the form dc’, with i odd. All the elements of this
form are not in Hy4(G). Since by hypothesis (c,d) = (a,u), where u is not
in H4(G) and a is in H4(G) and has order 4, we get a contradiction. O

Remark 4.7. By Lemma 4.5 and 4.6, we have that Q2(H4(G)) is a mono-
tone 2-group of exponent 4.
Moreover, Lemma 4.5 shows that Qo(Hy(G)) is a monotone 2-group of ex-

ponent 4 that does not involve a subgroup isomorphic to Ko.

The following lemmas conclude the first part of the investigation of
H,(G) and show that H,(G) is either abelian or there exists an element of
maximal order a in Hy(G) such that Hy(G) = (a,Q2(H4(G))), see Lemma
4.9

Lemma 4.8. Let H be a non-abelian metacyclic modular group of exponent
greater than or equal to 8. Suppose that every cyclic subgroup of order greater
than 4 is normal in H. Then, H is isomorphic to the split extension Can x X,
where 2" = exp(H) and X is a cyclic subgroup of order either 2 or 4.

More precisely, let (a) be a normal cyclic subgroup of H of maximal order.
Then, there exists d € H such that the order of d is at most 4 and H =

(@) x (d).

Proof. Let a be an element in H of maximum order. Then |a|] > 8 and
(a) < H. Since H is not a quaternion group, H is lattice isomorphic to an
abelian group (see Lemma 2.5.9 on page 94 of [13]). In particular, (a) has a
complement (d) in H. If the order of d is greater than 4, then (d) is a normal
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subgroup. Since (a) is also normal in H, we get that [a,d] € (a) N (b) =1,
i.e. H is abelian, a contradiction. Then, the element d has order at most 4,

and the statement is proved. ]

Lemma 4.9. Let G be a monotone 2-group of exponent greater than 4 and
such that |G : Hy(G)| = 2.

Then, either Hy(G) is abelian or there exists an element a in H4(G) of
mazximal order such that Hy(G) = (a, Q2(H4(G))).

Proof. By Lemma 4.4, the subgroup Hy(G) is generated by the set T' = {a €
H4(G) : |a| = 2™}, where 2" = exp(G). If for all a1,a2 € T the subgroup
(a1, a9) is abelian, then, by Remark 2.1, the group Hy(G) is abelian.

Suppose there exist aj,a2 € T, such that the subgroup (aj,as) is non-
abelian. Then, by Lemma 4.4, the subgroup (a1, as) is non-abelian modular
and, by Lemma 4.3, every cyclic subgroup of order greater than 4 is nor-
mal in (aj,a2). Therefore, by Lemma 4.8, there exists an element d in
Q2(H4(G)) such that (a1,as2) = (a1) x (d). Hence, as € (a1, Q2(Hy(G))).
Now, let x be in Hy(G). We want to show that x € (a1, Q2(H4(G))).
Since ay € (a1,Q2(H4(G))), we may replace in case z with agz and as-
sume that z is an element in Hy(G) such that (a1, x) is non-abelian. By
Lemma 4.4, the subgroup (a1, x) is modular non-abelian and, by Lemma 4.3,
every cyclic subgroup of order greater than 4 is normal in (aj,z). There-
fore, by Lemma 4.8, there exists an element d € Qy(H4(G)) such that
(a1,z) = (a1) x (d). Hence, x € (a1,Q(H4(G))). In particular, T is con-
tained in (a1, Q2(H4(G))) and the statement is proved. O

In the rest of this section, we assume that H4(G) is not abelian. By
Lemma 4.8, there exists an element a in Hy(G) of maximal order such that
Hy(G) = (a, Qa(Ha(G))).

If Q9 (H4(G)) is abelian, then, by Lemma 4.4 and by Lemma 4.5, we have
that H4(G) is a modular group that does not involve a quaternion group.
In particular, the structure of Hy(G) is fully understood by Theorem 2.4.

If Qo (H4(G)) is not abelian, then, by Remark 4.7, we get that Qo (H4(G))
involves a subgroup isomorphic to Dg or to (Jg, but not a subgroup isomor-
phic to K.

We determine in Lemma 4.10, in Lemma 4.12 and in Lemma 4.13 the struc-
ture of Hy(G) in this latter case.
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Lemma 4.10. Let G be a monotone 2-group of exponent greater than 4 and
such that |G : Hy(G)| = 2.
Suppose that Hy(G) contains a subgroup D isomorphic to Dg. Then, it

contains a subgroup isomorphic to Qs.

Proof. Let D be (a,b) with a of order 4. Since Hy4(G) is powerful and
a? € Hy(G)', the element a? is in Hy(G)* and there exists ¢ € Hy(G) such
that ¢! = a?. In particular, the element ¢ has order 8, and, by Lemma
4.3, (¢) < G. By lemma 4.4, the subgroups (c,a) and (c,b) are modular.
Therefore, we have that ¢® = ¢! and ¢® = ¢! T2, Now, the element ¢?
has order 4 and lies in the centralizer of (a,b). Now, the subgroup (a, ¢?b) is

isomorphic to a quaternion group of order 8 and the lemma is proved. [J

Remark 4.11. By Lemma 4.5, the subgroup Qo(H4(G)) has exponent 4
and does not involve a subgroup isomorphic to Ks. Moreover, by Lemma
4.10, if Qo(H4(G)) is non-abelian then it contains a subgroup isomorphic
to Qs. Hence, by Theorem 3.3, we have that Q2(H4(G)) is either abelian
or isomorphic to E x A, where E is an extraspecial group and A is either
elementary abelian with ENA =1 or abelian of the form Cyx Co X --- x Co
with E? = A2,

Lemma 4.12. Let G be a monotone 2-group of exponent greater than 4 and
such that |G : Hy(G)| = 2.

Suppose that Qa(H4(G)) contains a subgroup @ isomorphic to Qg. Then,
there are no cyclic subgroups X of order greater than 4 in Hy(G) such that
XNQE = 1. More precisely, if X is not contained in Q, then we have

XnQ = Q>

Proof. Let @ be (a,b) and let X be (c). Suppose (c) N (a,b) = 1. Then, by
Lemma 4.5, the subgroups (a, ¢) and (b, ¢) are abelian. The elements ca and
b are such that (ca) N (b) = 1 but, since (ac, b) is non-abelian, we contradict
Lemma 4.5. Hence, (c¢) N {a,b) # 1. Moreover, by Lemma 4.3, the subgroup
(c) is normal in G and, by Lemma 4.4, the subgroups (c,a) and (c,b) are
modular. At least one of (c,a) and (c, b) is not cyclic. Up to relabeling the
generators of (), we may assume that (¢, a) is a non-cyclic modular subgroup.
Since (c) N {a,b) # 1, we have a® € {¢). So the automorphism induced by a

1+44

on (c) has order at most 2, i.e. ¢ = ¢! where |c¢*| < 2. Since a inverts all

the element of order 4 of Q, we get that (c)N{a,b) < Q1((a,b)) = (a,b)?. O
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Lemma 4.13. Let G be a monotone 2-group of exponent greater than 4
and such that |G : Hi(G)| = 2. Suppose that H4(G) contains a subgroup @
isomorphic to Qs.
Then, H4(QG) is isomorphic to {a,b) x E' x A, where |a| = 2", n > 3, E is
extraspecial, A is elementary abelian, |b| = 2 and a® = a' ™, where |a*| < 2
and E? = (a2 ).

Proof. By Lemma 4.9, since H4(G) is non-abelian, we have that there exists
an element a in Hy(G) of maximal order 2" (and so n > 3) such that
Hy(G) = (a,Q2(H4(G))). Let z be an element in H4(G) such that |z| < 4.
Then, the subgroup (a, z) is modular. Then a® = a'**", where |a*"| < 4.
Thence, the subgroup Q9({a)) is contained in the centralizer of . Therefore,
since Hy(G) = (a,Q(H4(Q))), we have that Qy((a)) = (a2 ") is in the
center of Hy(G).

By Remark 4.11, we have that Qo(H4(G)) = E x A, where A is either
elementary abelian with £N A = 1 or abelian of the form Cy x Co x --- x (4
with E? = A2,

Since Q(H4(G)) contains the central element a' ~ of order 4, we have
that Q2(H4(G)) = E * A, where A is abelian of the form Cy x Cy x -+ X

n—2 .
2 is central of order 4, we may assume that

Cs. In particular, since a
Qo(Hi(G)) = (a2"*) % E x A, where E is extraspecial and A is elementary
abelian. Moreover, since Cy*Dg is isomorphic to CyxQg, we may assume that
E = (x1,y1)* + *(Tpn, Ym), where (x;,y;) ~ Qg. Since a2l = z? = y?, using
Lemma 4.4, we have that a® = a'** and a¥ = a'T%*i where |a*| < 2
and |a**i| < 2.
Replacing in case a with a []}", xflyzhl, we may assume that [a, E] = 1.
Suppose now that A = (a1) x --- x (a,). If [a, A] = 1, then Hy(G) =
(Con * E x A), where E is extraspecial and A is elementary abelian and so
H,4(G) is isomorphic to one of the groups in the statement.
Suppose now that [a, A] # 1. Up to renaming the generators, we may
assume that a™ = a1+2n71, and a% = a, for all ¢ > 2.
Let A be the subgroup (as, ..., a,).
Then, the group Hy(G) is equal to ((a)* E x A) x (a1), where 2% = 1+2" "
for all z € (a) * E x A.
Therefore, the group Hy(G) is isomorphic to one of the groups in the state-

ment. O
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4.2 The Classification of Monotone 2-Groups G
with exp(G) > 8 and |G : Hy(G)| = 2.

Lemma 4.9 shows that if G is a monotone 2-group of exponent at least 8
and with Hy(G) maximal, then Hy(G) is either abelian or there exists an
element of maximal order a in Hy4(G) such that Hy(G) = (a, Q2(H4(G))).
In this second case, if H4(G) contains a subgroup isomorphic to Qg, then
H,(G) is isomorphic to a group of the form (a,b) x E' x A, where |a| = 2",
n > 3, E is extraspecial, A is elementary abelian, |b| = 2 and a® = '™,
where |a%| < 2 and E? = (a®""') (see Lemma 4.13).
If H4(G) does not contain a subgroup isomorphic to Qs, then Hy(G) is
modular with no quaternion subgroups (note that these groups are fully
classified by Theorem 2.4).

The following proposition classifies completely the monotone 2-groups of

exponent at least 8 and with H4(G) maximal and abelian.

Proposition 4.14. Let G be a monotone 2-group of exponent greater than
4 and such that |G : Hy(G)| = 2.

Suppose that Hy(G) is abelian. Then G is in %1 or in Bo or in Bs (see
Definition 4.1).

Proof. Since Hy4(G) is an abelian group of exponent greater than 4, we have
that Hy(G) = [[;~,(a;), where |ai| = 2" > 8 and |a;| > |a;|, for all i < j.
Let u be in G\Hy(G). By Lemma 4.3, we have that a = a; ™" where
jai™| <2,

Suppose that |ag| > 8. Then, the subgroup Hy(G) is generated by
{a1} UT, where the set T is given by {a : |a] > 8, (a) N {(a1) = 1}.
Let a be an element in 7. Then, by Lemma 4.3, we have that a* = a
where |a**| < 2. Then (aja)* = (aya) 1 ath+4k  Therefore, if a1 +4* £

1, we have that the subgroup (aja) has order greater than 4. But (aja) is
—14+4h;

—1+4k
)

not normal, contradicting Lemma 4.3. Hence, we get that a“ = a
Since H4(@G) is abelian and {a;} U T is a generating set, we get that G is
isomorphic to A(u), where A is abelian of exponent 27, A% is not cyclic,
a¥ = a1 with exp(Hy(G)*") < 2 and w? € Q1 (Hy(G)). This shows that
G is isomorphic to a group in %;.

Suppose now that |a;] < 4, for all i > 2. We have that H4(G) =
[T da) = () TT% ™ a0) T (a:), where Jay| = 27 > 8, [ai] = 4 for
2<i<my—1,|a;| =2 for my <i<m.
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Let a be an element of H4(G) of order smaller than or equal to 4. The

element aja has order 2" > 8, and so, by Lemma 4.3, (a1a)* = (aja) 1T,

where |(ara)**| < 2. Then a* = a*1a4(h1+k) In particular, if a has order 4,
. . . n—1
then a? is central in G, Le. Qi(Hy(G))N®(Hy(G)) = (af" ,a3,-- a2, )

is a central subgroup.

If for all @ € H4(G) of order smaller than or equal to 4 we have that
a* = a~!, then G is isomorphic to (Cyn x A){u), where A is abelian of
exponent 4, u? € Q1 (Can x A) and for every a € Can X A we have a* = q~1t4h

with exp((Can x A)*") < 2. This shows that G is 4.
Now, we may assume that there exists an element a such that |a| < 4
and a* = ata?"” h

We first assume that there exists a with |a| = 2 and a" = aa%n_l. Since
all the elements of order 2 of the Frattini subgroup of Hy(G) are centralized
by u, up to relabeling the generators of (a,,,...,an), we may assume that
Uy = amla%nil. Up to replacing perhaps for some i, the element a; with
i, , We may assume ay = ai_1 for every ¢ € {m; + 1,...,m}. In parti-
cular, by Lemma 4.5 and Lemma 4.6, the subgroup (a,,,u) is metacyclic

non-abelian of exponent 4. Then, (a,,,,u) is isomorphic to a Ds. Replacing
2 an-1

in case u with a,,,u, we may assume u® = af . Consider now as. Repla-
. . _ n—1
cing perhaps as with aza,,,, we may assume that ay = a, 1a% .

n—2 . . n—2
as,u) is not metacyclic. In fact, we have (a?

The subgroup (a? az)? =
a?" a2, and (02" ap)" = (a2 ay a 22 i = (a¥" "ag)La2"". In parti-
cular, we have that (ua2" “as)? = u?a;?" Qagla%n 'a2" %4y = 1. Then, the
group ((a® 2n? az),u) contains the 3-generated elementary abelian subgroup
(a®" " agam, u, a2,a®" ).
Therefore, we obtain that m; = 2.

Then, replacing perhaps for some i # 2 the generators a; with a;a,,, we get
that G is isomorphic to the group (a, am,,,u) x A, where A is elementary

-1

abelian, \a| =2">8 a%1 =g and a* = a !, |ay,| = 2, u* = ! and

u? = a®"" . This shows that the group G is in %.
We may now assume that v € C({(a;)), for all i > m;, and that there
exists an element a € Hy4(G) of order 4 such that a" = a 1a% ~'. Up to

renaming the generators, we may assume that ay = a, 1a,1 . Up to repla-

cing a; with ajag, we may assume a¥ = aj .
If u has order 2, then the subgroup (ag,u) is not metacyclic, because it

contains the 3-generated elementary abelian subgroup (u, a3, a? a]L - > Then,
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the element u has order 4. If u? does not lie in (a3, a%n%}, then the sub-

group (ag,u) is not metacyclic, because it contains the 3-generated elemen-

2 277.—1

tary abelian subgroup (u?,a3,a3 ). Then, we have that u? € (a%n_l,a2>.

Suppose that u? = a%nil. The subgroup (a2, u) is non-metacyclic, be-
cause it contains the 3-generated abelian subgroup (a3, u?, agu). Therefore

n—1 . . .
u? = a’a?" "t Replacing in case u with uag, we get that we may assume

u? = a%. Suppose m1 —1 > 3, and consider az. Since ag has order 4, we have

—_ n—1 . . .
that a3 = ag o] "3 Replacing in case a3 with agas, we may assume that
—1 . . . . .
142" The subgroup (a3, u) is not metacyclic since it contains the

3-generated abelian subgroup (a%7l71,a§,u2>. Therefore, this case does not

w -
ag = ag

arise and m; = 3. This proves that G is isomorphic to (a1, as, u) x A, where

A is elementary abelian, |a;| = 27, |ag| = 4, (a1, az) is abelian, u? = a3 and
— _ -1 ..
a¥ =aj', and a¥ = ay'a}"" . Therefore, the group G is in %s. O

Now, we study the cases in which H4(G) is a non-abelian modular group
not involving @Qg. Indeed, the following proposition classifies the mono-
tone 2-groups of exponent greater than 4 with Hy(G) maximal and modular

without subgroups isomorphic to Qs.

Proposition 4.15. Let G be a monotone 2-group of exponent greater than
4 and such that |G : Hy(G)| = 2.

Suppose that Hy(G) is non-abelian and does not involve a subgroup isomor-
phic to Qg. Then G is in one of the families Bs, By, $1o (see Definition

41).

Proof. By Remark 4.11, we have that Q2(H4(G)) is an abelian group of
exponent 4 and Hy(G) = (a)Q2(Ha(G)).

Suppose that the order of a is 8. By Lemma 4.4, if x is an element

of Q1(H4(Q)), then (a,z) is a modular subgroup and the automorphism
induced on (a) has order at most 2.
Suppose that a has order greater than 8. By Lemma 4.3 and Lemma 4.4, if
x is an element of A, then (a, x) is a modular subgroup, and (a) is a normal
subgroup. Suppose that there exists an x of order 4 such that a* = a'**,
with |a*?| = 4. Let u be in G\H4(G). Then, by Lemma 4.3, we have
a¥ = a1 with [a**] < 2. We have that a®* = a~'~*"*4k  Therefore,
the element axu has order 8. Since a and x are in H4(G), we have that
u € Hy(G), a contradiction.
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This proves that if a has order greater than or equal to 8 and x is an
element of Qa(H4(G)), then (a,z) is a modular subgroup and the automor-
phism induced by z on (a) has order at most 2.

Since H4(G) is non-abelian, we have that Hy(G) = ({a) X {a1) X -+ X
(am) x (c1) X -+ % (cr)) % (b), where |a| = 2", |a;| =4, |¢;| =2, |b] <4 and
2 =22 forallx € (a,a1, ..., Qm,Cly...,Cp).

Let u be in G\H4(G). Then u? € Qi (H4(G)) N Z(Hy(G)).

We now distinguish two cases depending on the order of b.

Suppose first |b] = 2. Then, we have H4(G) = ({(a) X (a1) X -+ X {am) X
(c1) X -+ x () % (b), where |a] = 27, |a;| = 4, |¢s| = 2, [b] = 2, b = 212"
for all z € (a,a1,...,am,c1,...,¢p).

By Lemma 4.4, we have that a* = a~'*%" with |a*"| < 2. Since ab has
order 2", by Lemma 4.4, we have that (ab)* = (ab)~'*%* with |(ab)**| < 2,
ie. b* = ba**+th+1) - Replacing perhaps u with au, we may assume that
b = ba?" . In particular, if v has order 4 and u? # a2" ™" then (b, u) is not
metacyclic because it contains the 3-generated elementary abelian subgroup
(b, u?, azn_1>. Then, up to replacing if necessary v with ub, we may assume

that u has order 4 and u2 = a2" .

on—1 1

So we now have a* = a~ 14" with |a*"| < 2, u? =a and u® = v~

We now show that m = 0.
Suppose that m > 0. Since aa; has order 2", by Lemma 4.4, we have
that (aar)* = (aa;)~'a*™ with |a*| < 2, ie. a} = ayta* M), If o =
aflaanl, then the subgroup (a1, u) is not metacyclic because it contains the
3-generated elementary abelian subgroup (uaj,a?,u?). If a% = al_l, then
(a1b)* = (a1b)™*a2"" and the group (aib,u) is not metacyclic because it
contains the 3-generated elementary abelian subgroup (uaib,u?,a?). Then,
we have that m = 0.

Now, we consider the action of w on (c1,--- ,¢,).
Since |ac;| = 27, by Lemma 4.4, we have that (ac;)" = (ac;)"'a*" with
la®t] < 2, ie. ¢t = c; ta™ with [a**i] < 2.
Then, we have two possibilities, depending on the orders of a*¥:.

If ¢} = ¢; for all i, then G is isomorphic to (a,b,u) x A, where A is
elementary abelian, |a| = 2" > 8, |b| = 2, |u| = 4, u? = aanl, at = g~ 14k,

b 142n—1t

a’=a and v® = u~! and so G is in the family %s.

Suppose that there exists an 7 such that c}' = cl-a2"71. Up to reordering

2”

-1 .
the generators, we may assume that c{' = cia . Moreover, up to replacing
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in case ¢; with ¢;c; for ¢ > 2 and a with ac;, we obtain that G is isomorphic

to (a,c1,b,u) x A, where A is elementary abelian, |a| = 2" > 8, |¢1]| = 2,
-1 -1

b =2, |ul =4, u? =a® ,a* =a"!, a® =" Wb = ul o = q,

& =cp and ¥ = c1a2"". So, the group @ is in the family .

Suppose now that [b| = 4. Then, we have Hy(G) = ((a) X (a1) x --- X
(am) X {c1) X +-+ x {¢y)) ¥ (b), where |a| = 2", |a;| = 4, |¢;| = 2, |b] = 4,
2t = 212" forall x € (a,ai,...,am,c1,...,¢). By Lemma 4.4, we have
that a* = a4 with |a*"| < 2.

Since ab has order 27, by Lemma 4.4, we have that (ab)* = (ab)~'T** with
[(ab)*] < 2, ie. b* = b~ 1a**+h+D) Replacing perhaps u with au, we may

assume that % = b=1a2""". So we get a* = a4 and b = b~1a?" .

In particular, if |u| = 2, then the subgroup (b, u) is not metacyclic since it
contains the 3-generated elementary abelian subgroup (b2, a2n71,u>. Then,
u has order 4.

270 b2 then (b, u) is not metacyclic since it contains

Moreover, if u? ¢ (a
the 3-generated elementary abelian subgroup (b%, a2n_1,u2>. Then, the ele-
ment u has order 4 and u? € (a®" ", b?).

If u2 = a2""', then the subgroup (b, u) is not metacyclic since it contains
the 3-generated elementary abelian subgroup (b a2 ,ub). Then, we have
u? = b2a2" s , and, replacing in case u with ub, we may assume u? = b?.
Then, we have that a* = o~ 14" p* = b=1a2""" and u? = b2

We now prove that m = 0.
Suppose m # 0. Then, the element aa; has order 2", and so, by Lemma

4.4, we have that (aa;)® = (aa;)~ a*™+h) with |a*1] < 2. So we have two

— n—1
Lor al = a;'a?

contradiction. In fact, if af = af1a2n71, then the subgroup (aj,u) is not

possibilities: either a} = aj . In both cases we reach a

metacyclic because it contains the 3-generated elementary abelian subgroup
(@' a2, u?). If a¥ = a', then (a1b)* = (a1b)'a®"" and the group
(a1b,u) is not metacyclic because it contains the 3-generated elementary
abelian subgroup (u?, b%a?, a2’ ).
Therefore this case does not arise, and m = 0.

We now consider the action of u on (c1,--- ,¢p).
The element ac; has order 2" and by Lemma 4.4, we have that (ac;)* =
(ac;)~ta*MHh) with [a*M1] < 2, ie. ¢ = c;a* with |a*Fi] < 2.
If ¢} = cia® "', then the subgroup (c;, u) is not metacyclic because it con-

tains the 3-generated elementary abelian subgroup (c;, u?, a2n_1>.
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Then, we have that ¢}' = ¢; for all 4, and G is isomorphic to (a,b,u) x A,

where A is elementary abelian, |a| = 2" > 8, |b| = 4, |u| = 4, u? = V?,
a® = a " with ot < 2, 6% = b 1a?" T, @b = a!'t?"'. So G is in the
family %1p. This concludes the proof of the statement. O

To conclude the classification of monotone 2-groups of exponent greater
than 4 and where Hy(G) is maximal, it remains to consider the case where
H,(G) contains a subgroup isomorphic to Qs. We do that in the next two
propositions.

We first consider the case Hy(G) = Con x E x A, where E is extraspecial

and A is elementary abelian.

Proposition 4.16. Let G be a monotone 2-group of exponent greater than
4 and such that |G : Hy(G)| = 2.

Suppose that Hy(G) is isomorphic to Con x E X A, where E is extraspecial
and A is elementary abelian. Then, the group G belongs either to %y or to
P (see Definition 4.1).

Proof. Let Cyn = (a). Since a®"” is central of order 4 in Hy(G) and Dsg
Cy ~ Qs x Cy, we may assume that F = (x1,y1) * -+ * (T, Ym), Where
(i, yi) ~ Qs. Let A= (a1) x - x {(a).

Let u be in G\ H4(G).
We have that u? € Qi (H4(G)) = (a2"") x (a1) x -+ x (a,).
By Lemma 4.3, we get that a* = a4 where |a*"| < 2.

We now investigate the action of u on F.
Since ax; is an element of order 2", by Lemma 4.3, we have that (az;)" =

(az;) 14 with |(az;)*] < 2, ie. ¥ = 2; 'a® R, Since 2? = a?"!
281'

we have that =} = z;27”, where s; € {0,1}. Using the same argument

with y; instead of x;, we also get that y}* = yiy? "t where r; € {0,1}. Now,
replacing perhaps u with u[[/2; 2}'y;", we may assume that a* = o~ 174",
where [a*"| < 2, and [E,u] = 1.
We now consider the action of u on A.
Since aa; is an element of order 2", by Lemma 4.3, we have that (aa;)" =
(aa;) 14k with |(aq;)?*i| < 2, ie. a¥ = a;a*M, where |a*hi| < 2. We
distinguish two cases depending on the values of the orders of a*.
Suppose first that a*" = 1 for all i. Then we get that [A,u] = 1.
Therefore, we get a* = a~ """ [E,u] = 1, [A,u] = 1. The element u? €
M (Hy(G)) N Z(Hy(G)).
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Suppose that u? ¢ (a2" ). Then, (a2" *z1,u) is not metacyclic, because it
contains the 3-generated elementary abelian subgroup (a2"72x1, u?, a2n71>.
Hence, this case does not arise and u? lies in <a2n_1>. Then, we obtain that
G is isomorphic to (a,u) x E x A, where E is extraspecial, A is elementary
abelian, |a| = 2" > 8, and u is such that u? € (a2" '), a* = a~'T4" with
la*"| <2 and 2% =z for all z € E x A, i.e. G is in ;.

Suppose now that there exists an 4 with |a**| = 2. Up to renaming the
generators of A, we may suppose that a} = a; a2n71, and, replacing in case a;
with a1a;, we may assume that a;' = a;, for i > 2. Replacing perhaps u with
aju, we may assume that v has order 4. If u? # a2n_1, then the subgroup
(a1,u) is not metacyclic, since it contains the 3-generated elementary abelian

n—1 n—1
2 2 _ 20

subgroup (a1, a ,u?). Hence, u

Replacing perhaps a with aa;, we may assume a* = a~ L.

Replacing a; with a1a2n_2, we obtain that the group G is isomorphic to
(a,u) * E'x A, where E is extraspecial, A is abelian of the form C4 x Cs X
- x Oy, and |a| = 2" with n > 3, u? = a2 and a* = a1, ie. G isin

B . O

Finally we are ready to study the last case, i.e. Hy(G) = (a,b) x E x A,
where |a| = 2" > 8, E is extraspecial, A is elementary abelian, |b| = 2,
a® = a2 and B2 = (a¥"7).

Proposition 4.17. Let G be a monotone 2-group of exponent greater than
4 and such that |G : Hy(G)| = 2.

Suppose that Hy(G) is isomorphic to (a,b) x E x A, where |a|] = 2™ > 8,
E is extraspecial, A is elementary abelian, |b| = 2, ab = al*?"" gnd E? =
(a¥" ™). Then G belongs either to Bg or to Br (see Definition 4.1).

Proof. Since a2" ™% is central of order 4 in Hy(G) and Dg * Cy ~ Qg * Cy,
we may assume that E = (z1,y1) * - -+ * (T, Ym), where (z;,y;) ~ Qs. Let
A= (a1) x - x {(a).
Let u be in G\ H4(Q).

By Lemma 4.4, we have that a% = a=1+2""

'h In particular, replacing in

case u with ub we may assume that a* = a~!. The element u? lies in

Q1(H4(G)) N Cg((a)). Hence, since Qi (Hy(G)) N Ca((a)) = (a2, A), we
get that u2 € (a2, A).

We consider now the action of v on E. Since ax; is an element of order
2" by Lemma 4.3, we have that (az;)" = (az;) 22" " with h; € {0,1},
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—1 znfl

i-e. .T;’L = :L‘i Qa (hl) Since .'172 2n- 251'

i=a 1, we have that z}' = x;2;”’, where
s;i € {0,1}. Replacing z; with y; and using the same argument, we also
get that y' = yiyf”, where r; € {0,1}. Now, replacing perhaps u with
w7, 2l'y;t, we may assume that a* = a™!, and [E,u] = 1.

Now, we consider the action of u on A. Since aa; is an element of order
27, by Lemma 4.3, we have that (az;)* = (az;)~ 2" 'k with k; € {0,1},

2" where h; € {0,1}. We distinguish two cases depending

ie. a = a;a
on the values of the h;’s.

Suppose first that h; = 0 for all i. Then we get that [A, u] = 1.
If u has order 4 and u? # "', then the subgroup (a2n72x1, u) is not meta-

2n_2x1, u) contains the 3-generated elementary abelian sub-

group <a2n72m1, u?, a2n71>. Hence, we have that u? lies in <a2n71>. Therefore,
we get a¥ = a™ L, [E,u] =1, [A,u] =1 and u? € (a®"'). Consider now ab.
Since |ab| = 27, we have that (ab)* = (ab)~*T2" """ je. b* = ba®" ", and
G is in Y.

Suppose now that there exists an ¢ with h; # 1. Up to renaming the
2n71

cyclic, because (a

generators of A, we may suppose that a} = aja , and, up to replacing

perhaps a; with aja;, we may assume a}' = a;, for all 7 > 2.
Replacing perhaps u with a;u, we may assume that u has order 4. More-

—1 . . . .
2" then (a1, u) is non-metacyclic because it contains the

anl

over, if u? # a
3-generated elementary abelian subgroup (a,a®" ", u?). Therefore, we have
that u? = a2" .

Consider now ab. Since |ab| = 2", we have that (ab)* = (ab)~ 112" "% je.
bt = ba?" 'k with k € {0,1}. Up to replacing b with a;b, we may assume
that b* = b. Moreover, replacing a; with a1a2"72, we obtain that the group
G is in %. O

Summing up, in this section we determined the monotone 2-groups of
exponent at least 8 such that |G : H4(G)| = 2. Namely, combining the
previous four propositions, we obtain that any such a group is in the class
P, with i € {1,...,10} and Theorem 4.2 is proved.
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Chapter 5

Monotone 2-Groups of

exponent greater than 4 in
which G = Hy(G)

In Chapter 3, the monotone 2-groups of exponent 4 were fully classified.

In Chapter 4, we classified completely the monotone 2-groups of exponent
greater than or equal to 8 and such that |G : Hy(G)| = 2. Therefore, in order
to complete the classification of the monotone 2-groups, by Proposition 1.3,
it remains to study the monotone 2-groups of exponent greater than or equal

to 8 such that G = Hy(G). In this chapter, such groups are determined.

Definition 5.1. We introduce the following families of 2-groups:

€1 is the family of 2-groups of the form (a,c)* E x A, where E is extraspe-
cial, A is elementary abelian, |a| = 2" > 8, |c| = 2, a¢ = a'**" with
la*h| < 2 and (a®"") = E2;

©> is the family of 2-groups of the form (a,b,c) x A, where A is elementary
abelian, |c| = 2" > 8, |a| = 4, a®> = b?, ® = M b = 1+ gng
a’ = a7t with || < 2 fori=1,2,3;

€3 is the family of 2-groups of the form {(a,b,c,d) x A, where A is elemen-
tary abelian, |c| =2" > 8, |a| =4, a®> =b%, |d| =2, c* = ¢, ¢ = c and
a® = a7t with || < 2, and ¢ = cl+2n71, a® =a and b* = b;

€y is the family of 2-groups of the form (a,b,c,d) x E x A, where A is

elementary abelian, E is extraspecial, |a] = 2" > 8, b* = a2n_1, (c,d) is
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elementary abelian, a® = a1 with |a*?| < 2, a® = o' ™M, ¢? = q,
-1
be = b, b = b1+ where [atM| < 2, [b12| < 2 and (a*" ) = E?;

- 5 is the family of 2-groups of the form A(b), where A is an abelian group,
b] > 8 and a® = a1, for every a € A;

- G5 is the family (A, c,b), where A is an abelian group of exponent 2™, with
n>3, A2 = (b)), |b] =8, a® = a1 ¢ = a2 for every
ac A, c’=c 1" and exp((A, c)*h) < |b?| < 27;

- €7 is the family of 2-groups of the form (A, c,b) where A is an abelian
group of exponent 2", with n > 3, A" = Qi ((b), |b| > 8, ab =
a THRE2" T e — g2 for cvery a € A, b = 1T, le| > 2m,
|t = |2, |b?] < 27, and (b) N {c) = 1.

We start by proving that all the groups in the families just defined are

monotone.

Proposition 5.1. The groups in the families €;, for i € {1,...,7} are

monotone.

Proof. We want to show that if G is a group in €, for i € {1,...,7}, then
G is monotone. Now, the proof is a case-by-case analysis depending on the

family in which G lies.

- Suppose that G is in %1. Then, we have G = (a,c) * E x A, where F is

extraspecial, A is elementary abelian, |a| = 2" > 8, |c| = 2, a® = a4
with |a*"| < 2 and (a2"') = E2?. We have to prove that every 2-
generated subgroup is metacyclic. By Lemma 2.5, it is sufficient to

2n71

prove that the group (a, c) * E, where (a®" ) = E?, is monotone. We

treat separately the cases a*” = 1 and |a*"| = 2.

Suppose at first that a*” =1, i.e. (a,c) is abelian. Since c is a central
element of order 2 in (a, ¢) * E/, where (a2n_1> = E?, by Lemma 2.12, it
is sufficient to check that (a)*E, where (azn%) = FE?, is monotone. The
extraspecial groups are monotone, and so we check that the subgroups
of the form (aitl, to), with ¢; and t9 in F, are metacyclic.

If |af| < 4, then (a'ty, t) is contained in (a®" ") * E, where (a®"" ') =
E2. The group (a®""*) * E, where (a2""') = E?, is monotone because
it is isomorphic to a group in % (see Definition 3.1 and Proposition
3.1).
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So, we now assume that |a’| > 4. In particular, Q((a’t1)) = Q1 ({(a)) =
[(a)* E, {a)* E], and so, (a‘t) is normal in the group (a)* E. It follows
that (a’t1,ts) is metacyclic. So, if a*” = 1, the group (a) * E, where

n—1 . .
(a*" ") = E?, is monotone, and so is G.

Suppose now that |a*?| = 2. The group (a?,¢, E) is isomorphic to
Con—1 % E x (c) where Q1(Cyn—1) = E?, and so, it is either in % or iso-
morphic to a group studied in the previous paragraph. In both cases,
{(a?, ¢, E) is monotone. So, it is sufficient to check that the subgroups
of the form (a't1,ts), with ¢; and ¢ in E x (c), are metacyclic. Now,
Q1 ((at2)) = Q1 ({a)) = [{a,c, E), (a,c, E)], and so, (at1) < {(a,c, E). It
follows that (aty,ts) is metacyclic, and so the group (a, ¢, E') is mono-

tone. It follows that if |a*"| = 2, then G is monotone.

- Suppose that G is in %,. Then, we have G = (a,b,c) x A, where A is
elementary abelian, |c| = 2" > 8, |a| = 4, a®> = b%, ¢* = T,
& =2 and ab = a3, with || < 2 for i = 1,2, 3.

We have to prove that every 2-generated subgroup is metacyclic. By
Lemma 2.5, it is sufficient to prove that the group (a, b, ¢) is monotone.
The subgroup (2" *,a,b) is isomorphic to Kg and so (¢2"*,a,b) is
monotone (see Definition 3.1 and Proposition 3.1). Therefore, it is
sufficient to check that every subgroup of the form (c'a’b2, a/1b72),
with |¢!| > 8 is metacyclic. Now, we have O ((clai1b?2)) = (¢2" "), and
[Ciail biz7 alt b]z] — cAhuijit+aheja+ahs (jrio+iain) p2izii+2i1j2 . VWe distinguish
a few cases depending on the parity of j; and of js.

If j; and jy are even, then the subgroup (c'a’'b®2,a/1b/2) is abelian,

and so it is metacyclic.

If j; is odd and jo is even, then, since a® = b?, we may assume that
j1 = 1 and j = 0. Up to replacing c'a’*b? with c'a’'b2a~", we may
assume that i; = 0 and that the subgroup is of the form (c'b2,a).
Now, [CibiQ,a] = cAhiip2ia Ahsiz

If i3 is even, we have that [c'b2,a] € Q1 ({c'b?2)), i.e. (c'b2) < (c'b2, a)
and so the subgroup is metacyclic.

If ip is odd and ¢ +4hsiz = 1 then, (a) <(c'b?, a) and so the subgroup
is metacyclic.

Suppose i 0dd, and |¢"1i+4hsi2| = 2. We have Qy((cib2)) = (2" " b2J3),
where if |cf| = 8, then j3 = 1 and if |c!| > 8, then j3 = 0. Therefore,
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ac? b%s is such that (ac?" “b%33) < (b2, a) and (ac®" *b¥3, cibiz) =

{a,c'b?2), i.e. the subgroup is metacyclic.

If j5 is odd and j is even, then, since a® = b?, we may assume that j, =
1 and j; = 0. We may swap a with b and, using the same argument
of the previous paragraph, we get that (c’a’',b) is metacyclic.
Suppose now that j; and jp are even. Up to replacing in case c'a’ b2
with cfa’b2¢/1b72, we may assume that i; is even and since a? =
b?2, we may assume that i; = 0. Then, the subgroup is of the form
(cibiz, a7 b72). Now, [¢'bi2, al1bi2] = ¢thiintihaijzp2iz Ahsia,

If iy is even, we have that [c'b'2,a/1b2] € Qi((c'b2)), i.e. (c'b2) <
(¢'b2, a/1b72) and so the subgroup is metacyclic.

Suppose that iy is odd. Then, [c'b2, a/tp2] = cthiint+ah2ijzp2 Ahsiz,
Suppose that |cthiiitahzijat+ahaiz) — 9 If |¢*h3| = 2, then (ab) <
(b2, a) and so the subgroup is metacyclic. If ¢** = 1, then we get
Qo (b)) = (2" "b23), where if |¢i| = 8, then j3 = 1 and if |¢f| > 8,
then j;3 = 0. Therefore, a/1b2¢" "b23 is such that (a/1bi2¢2" " p2s) <
(b2, a1 b72) and (af1b2c¢2"*b%3 cibi2) = (a1b2, ¢ib2), ie. the sub-
group is metacyclic.

Suppose ip odd, and cthiiitaheijatahsiz — 1 If |c*h3| = 2. then
Qo ((cb72)) = (2" *b?3), where if |c!| = 8, then j3 = 1 and if |cf| > 8,
then js = 0. Therefore, a/1b?2c2" *b23 is such that (a/1b72¢2" *p%s) <
(b2, aB1b72) and (af1b2c2" *b%3 cibi2) = (a1b2, ¢ib2), ie. the sub-
group is metacyclic.

If ¢*'s = 1, then (ab) < (cb’,ab) and so the subgroup is metacyclic.

This concludes the proof that every 2-generated subgroup of (a,b,c)

is metacyclic, and so G is monotone.

- Suppose that G is in %3. Then, we have that G = (a,b,c,d) x A, where
A is elementary abelian, |¢| = 2" > 8, |a| = 4, a®> =12, |d| = 2, ¢* = ¢,
¢® =cand a® = a ' with [¢*'| < 2, and ¢@ = 12" o? = @ and
bl =b.

By Lemma 2.5, it is sufficient to prove that the group (a,b,c,d) is
monotone. Since (a,b,c) is a group in %3, it is sufficient to check the
subgroups of the form (a®c2b%, da’* c72b73).

If j; is odd, then (a“c2b®, da/tc2b73) < (b, c,ad). Since (b, c,ad) lies

in %, the group (b, ¢, ad) is monotone and so (a’c2b®, da’t c2b73) is
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metacyclic.

If j3 is odd, then (a“c2b%, da/tc2b73) < (bd, c,a). Since (bd,c,a) lies
in €, the group (bd, c,a) is monotone and so (a'c2b®, da’c2b73) is
metacyclic.

Suppose that both j; and j3 are even. Now, [a’lc2b%3, da/lc2b3] =
2" 2 Qo if |¢2] > 8, then € ((a’ ¢2b73)) = (2" ') and so (a1 ¢2b%3) <
(a1 c2b% da’t ¢72p73). This means that (a“c2b%, da’tc/2b73) is meta-
cyclic. If |c2| < 4, then ig is even, and so (a'c2b®3, da’*c2b73) is

abelian.

Hence, every 2-generated subgroup of (a,b,d,c) is metacyclic and so

(a,b,c,d) is monotone. It follows that G is a monotone group.

- Suppose that G is in €4. Then, we have that G = (a,b,¢,d) x E x A,
where A is elementary abelian, E is extraspecial, |a| = 2" > 8, b =
a?" ™, (c,d) is elementary abelian, a® = a1+ with |a*"| < 2, and
at = a1+4h1’ ad =a, be = b, bd — bl+4h2, where |a4h1| < 2’ |b4h2‘ < 2’

and (a?" ') = E2.
The subgroup (a,b?, c,d, E, A) is in %1, and so it is monotone. So, it
is sufficient to check that the subgroups of the form (ba’t;,a*ts) with
t; and t5 in (E, ¢, d) are metacyclic. We have that [b, (E, c,d)] < (b%),
[a, (E,c,d)] < (b*), and (E,c,d)? = (b%).
We have (ba'tty)? = b2a=0+4hig girty [ty, 0] = b2a*™12[ty, b][t1, @™ ] =
b2b*?, for some v.
Moreover, we have that _

(ai2t2)b“”t1 — (aiQ(_1+4h)t2[t2, b])alltl

aig(—1+4h) [aig(—1+4h)7t2]t2 [t27 ail][t27 tl]
= (a%ty) "4 p% for some wu.

Since (a®ty(bait1)?)Pa" 1t = (ai2ty(ba'1t1)2) 14" we have that the
subgroup (ba'lty, a’?ts) is metacyclic. Therefore, the group (a, b, c, d) *

E, where <a2n71> = E?, is monotone, and so is G.
- Suppose that G is in 5. Then, Lemma 2.6 proves that G is a monotone
group.

- Suppose that G is in 6. Then, (A, ¢, b), where A is an abelian group of
exponent 27, with n > 3, A" = Q,((b)), |b| > 8 and a® = a~ 14",
a® = a2 for every a € A, @ = ¢4 and exp((A, ¢)*h) < 12| <
2m,
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We first prove that the subgroup (A4, ¢, b?) is monotone. Since (A, c)
is modular, it is enough to check that the subgroups of the form
(a1, b**asc’) with a; and ag in A, are metacyclic. Since a® = a~1+4"
and ¢® = ¢~ 174" we have that a®® = al*4 and ™ = ¢1t4 where
1+ 4k = (=1 + 4h)?. Now, (ajcit)r™ec? = (alcil)1+4ka§n71ila%nili2.
Now, if |a1| < 2 and |ag| < 27, then (a1ci)P"%2¢2 = (a1 )1 +4% and
so the subgroup (a1c’t, b*asci?) is metacyclic.
Boagci2 _ (

1+4k and so the

If i1 and iy are even, then (ajc') aic't)
subgroup (a1c't, b*asc’?) is metacyclic.

. . ; 2s i
If |ai| = 27", |as| = 2", iy and i; are odd, then (ajcit)’ @2¢”

i )1+4k

(arc , and so the subgroup (a1c™, b**asc’?) is metacyclic.

Suppose that |a;] = 2" and i is odd. Then, we may assume that

lag| < 2™ or 4 is even.

Suppose first that i; is odd and |ag| < 2". We may assume that
i1 = 1. Now, b*axc2(ajc)™2 = bQSagaﬁQn_l. Since (A, b%) is mod-
ular, [b%| < |a1| and |az| < |a1|, we have that ]b25a2a%+2n71| = 2"
and Ql((bzsaga%”nil)) = O1((a1)). Therefore, we have that a2" €
<b23a2a}+2n_1>4. This means that [a;ct, b**asc®?] lies in the subgroup

{(ayc)?, (b25a2a%+2n_1)4> which is contained in (a;c't, b**azc??)*. There-
fore, the subgroup (a;c't, b**asc’?) is powerful and 2-generated. Hence,

it is metacyclic.

.. n—1
Suppose now that i; is even. We have (b**agc)? = b43a§+4k+2 cFHak

Now, the subgroup (A4, ¢, b?) is modular, and so we get that (b%*azc)t =
bzs“aglcﬁ, for some j; and jo with |¢/2| = |¢/1| and j; is even. More-
over, there exists i3 odd such that (a;c’)® = a®¢ 72 and so we
have that (b*agc)t(aic)® = bQSilagla?. Hence, we obtain that
(1P a26)" (a1 )is| = Jax | and 0 ({(FPaae)' (arci)is)) = Oy ({ar)).

Therefore, we have that a2" ' € ((b2agc)™ (a1¢™)™)*. This means that
[arcit, b%azc2] € ((a1c)?, ((b**agzc)™ (ar1ct))?) < (ac't, b*agci2)4.
Therefore, the subgroup (a;ct, b**asc®?) is powerful and 2-generated.

Hence, it is metacyclic.

Suppose now that |az| = 2™ and 41 is odd. We may assume that i; = 1
and up to replacing basc’? with (a1c)~*2, we may assume that i = 0.
Therefore, the subgroup has the form (aic’,b*as). Now, [b*as| =
2" > 8, and moreover, ;({b*az)) = Q1({az)). This means that
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[a1ct, B> asc’] € ((arc)?, ((b*azc)™ (arcit))d) < (aicht, b*%ag)t.
Therefore, the subgroup (ajc't, b**asc®?) is powerful and 2-generated.

Hence, it is metacyclic.

This shows that (4, ¢, b?) is monotone. Hence, in order to prove that
(A, ¢, b) is monotone, we have to check that the subgroups of the form
(bx1,x2), where z1 and a9 are in (A, c), are metacyclic. Put |b| = 2F.
We have that [(A,¢), (4,c)] = ).

We have that 25 = x2_1+4hb2k71“, for some u. In fact we have that xo =
ac® with a € A, and (ac’)? = o 14N — (gc) 1440 [g (] =
(ach)~1+H4hp2" M Moreover, [(A, c), (A, )] = A" = Q ((b)).

So we have that :L"g“"”1 = x51+4hb2k71”, for some v € {0,1}. Now,
(bro)? = b2x§h62k71 and, since |b?| > exp((A,c))*", we have that
Q1 ((bas)) = Q1 ((b)) and [bxg| = |b]. Therefore, (z(bx1)% v} is nor-

mal in (z1,bxs) and so the subgroup is metacyclic.

- Suppose that G is in ¢7. Then G = (A, ¢,b) where A is an abelian group
of exponent 2", with n > 3, A2 = Qi((b)), |b| > 8 and a® =
a A2 e — g142° 7 for every a € A, |¢] > 27, P = ¢4 and
|| = [b?|, |b?| < 2™ and (b) N (c) = 1.

We first prove that the subgroup (A4, ¢, b?) is monotone. Since (A4, c)
is modular, it is enough to check that the subgroups of the form
<alci1,b25agci2> with a1 and as in A, are metacyclic. Since for ev-

-1
—1+4h+2m —1+4h and

ery @ € A we have that a® = a and ¢® = ¢
2s 2s
2" = exp(A), we have that a*” = a'™* and & = ¢+ . Now,
. 25 i . n—1,; n—1,; .
(apcd1)be2c? = (gycn)1H4kql 12" 2 Now, if |ai| < 2" and
; 2s 2 ;
lag| < 27, then (a1c1)b7%2? = (a;c¢1)% and so the subgroup
{a1c™, b?%agc™?) is metacyclic.
. . . ; 2s 2 :
If i1 and iy is even, then (a;c)?92¢” = (a1¢)'*** and so the sub-
group (ajc't,b*asc’?) is metacyclic.
. . ; 2s 2
If |ai| = 27, |as| = 27", iy and i; are odd, then (ajct)b @2¢”
(a1c)*4 and so the subgroup (a;c', b*asc??) is metacyclic.
Suppose that |a;| = 2™ and iy is odd. Then we may assume that
laz| < 2™ or i is even.

Suppose first that i; is odd and |az| < 2". We may assume that
ir = 1. Now, b*azc(arc)™ = 525(12@?2“71. Since (A, b%) is mod-
ular, [b%*| < |a1] and |az| < |a1|, we have that \b25a2a%+2n71\ = 2"
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and Ql(<b25a2ai+2n_l)) = Q1({a1)). Therefore, we have that a%ni1 €

<b23a2a%+2n_1>4. This means that [a;c™, b**asc??] lyes in the subgroup
{(arc)*, (b25a2a%+2n71)4> which is contained in {(a1c®, b?*agc??)?.
Therefore, the subgroup (ajct, b**asc'?) is powerful and 2-generated.
Hence, it is metacyclic.

.. n—1
Suppose now that i1 is even. We have (b**agc)? = b2 T2 (2H4k,

Now, (b?, A, c?) is modular, and so (b**agc)’t = bzs“aé1 c72, for some j;
and jo where |¢/2| = |c't| and j; is even . Moreover, there exists i3 odd
such that (a;c)® = a®c92 and so we have that (b**agc)™ (arct)® =
b25i1qJ ai3 . Hence, we obtain that |(b2*agc)™ (a1¢)| = |a1|. More-
over, Q1({(b**asc)(a1c))) = Q1({a1)). Therefore, we have that
a?' " € ((1®%age) (arc)3)4. This means that [aic®, b2 asc2] lies
in the subgroup ((a1c)*, ((b*azc)® (a1c)®)*) which is contained in
{a1c™,b**ayc’?)*. Therefore, the subgroup (ajc't, b*asc’?) is powerful

and 2-generated. Hence, it is metacyclic.

Suppose now that |az| = 2" and 41 is odd. We may assume that i; = 1
and up to replacing basc®? with (ajc)™%, we may assume that iy = 0.
Therefore, the subgroup has the form (aic’t,b*as). Now, [b*as| =
2" > 8 and moreover, ;((b*as)) = Q1({az)). This means that
[a1c’t, b*asc’2] € {(arc™)?, ((b*%aze)t (a1c))?) < (a1ct, b* ag)t.

Therefore, the subgroup (a;c’t, b**asc’?) is powerful and 2-generated.

Hence, it is metacyclic.

This shows that (A, ¢, b?) is monotone. Hence, in order to prove that
(A, ¢,b) is monotone, we have to check that the subgroups of the form
(bcray, cas), where a1 and ap are in A, are metacyclic. Put |b] = 2F.
We distinguish various cases.

Suppose that ig is odd. Then, we may assume ¢2 = 1, and, up to
replacing bc'ta; with (be'lap)(caz) ™, we may assume that i; = 0.
Therefore, the subgroup is of the form (bay,cas). We have (caz)?™ =
(CGQ)—H-M&%”*.

So, if |ai| < 2", then (ca2) < (bai, caz) and we are done.

If |a1| = 27, then, since Q1 ({a1)) = Q1({b)) and |b?| < ]ai‘h+2n71|, we
have that Qy((ba1)) = (b ) and (cazb® ) < (bay, cas). Therefore,
in this case the subgroup is metacyclic.

Suppose that i is even. If also 71 is even, then we have that Q; ((bc2az)) =
Q1((b)) and (c2ag)be' a1 = (¢i2qy) 142",
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If |ag| < 27, then (c2as) < (bc'tay, c2az) and we are done.

If |ag| = 2", then <ca2(bcila1)2k72> < (bay, caz) and so the subgroup
(bcitay, ¢2as) = (bc'ay, cas(bcray)?" ") is metacyclic.

Suppose that i is even, and 41 is odd. Then, we may assume that i; =

1. If |ay| = 2", we have that (c2a;)?? = (ciQ)_1+4ha2’1+4h+2n_1agn71 =
(c2a9) 14 1f |a1| < 27, then we have that (c¢2a; )% = (¢i2) 14k 10 =
(c2as)(—1 4+ 4h). In both cases, we get that (c2as) < (bc'tay,c2as).

This shows that G is monotone.

The aim of this chapter is to prove the following theorem.

Theorem 5.2. Let G be a monotone 2-groups of exponent greater than or
equal to 4 such that G = H4(G). Then G is either a modular group that

does not involve Qg or is in 6, for some i € {1,...,7}.
First of all, we want to stress the following fact.

Remark 5.3. Let G be a non-trivial monotone 2-group Then, the quotient
G/G* is a monotone 2-group of exponent 4. Therefore, the group G/G* is

isomorphic to one of the groups listed in Theorem 3.3.

5.1 Monotone 2-Groups with H,(G) = G and G/G*

abelian

Let G be a non-trivial monotone 2-group, such that H4(G) = G and such

that G/G* is abelian. In the following proposition, we determine such groups
when |G?/G?| = 2.

Proposition 5.4. Let G be a non-trivial monotone 2-group such that G =
Hy(G).
Suppose that the quotient G/G* is abelian and |G?/G*| = 2. Then G is

either abelian or isomorphic to a group in 6.

Proof. Let G = (a,cy,...,cs), where |[aG*| = 4, and |¢;G*| = 2 for i €
{1,...,s} and G/G* abelian.
First of all we prove that we may assume that ¢; has order 2, and that

the derived subgroup of G is contained in € ((a)).
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The group G is powerful, because G /G* is abelian. In particular, we have
G? = ®(G?). Since G? = (a®)G*, we have that G? is cyclic and generated
by (a?). Since G is powerful and G2 = (a2), we have G%' = (a2') and so
la| = 2", where exp(G) = 2".

Now, from CJQ- € G* and [a, ¢;] € G4, it follows that ¢? = a*"i and a% =
a1+4ki 2

. Since cf is in the centralizer of a, we get that la**i| < 2. In particular,

a? commutes with ¢; for every i, and so (a?) < Z(G). Replacing ¢; with
c;a” %", we may assume that ¢; has order 2, for every i.

Since [c;,¢;] € (a*) and a* € Z(G), we have that c;’ = c;a**ii, with
la**ii| < 2. So, the subgroup (c;, ¢;) is either abelian or isomorphic to Ds.

Therefore, we may assume |¢;| = 2, a% = a'T%i with |a**i| < 2, (a) <G
and ¢; = c;a®*is with [¢**i| < 2. By Remark 2.1, we get that [G,G] <
0 ({a))-
Moreover, the previous argument also shows that |G : Cg(c;)| < 2.

We now prove the proposition by induction on the order of G.

Suppose that (c1,...,cs) is abelian. If [a,¢;] = 1 for every i, then the
group G is abelian. Suppose there exists i such that [a, ¢;] # 1. Then, up to

reordering the indices, we may assume that a“* = alt2" and, up to perhaps
replacing ¢; with ¢;cq, we have that G is isomorphic to (a,c1) X (ca,...,cs)
with |a| = 27, |¢i| = 2, a® = a'*2""" and (cy,...,¢,) clementary abelian.

Hence G is a modular 2-group in %7 .

Suppose now that (ci,...,cs) is not abelian. Then, up to reordering the
indices, we may assume that (cj,c) is non-abelian. Since [c1,co] € (a?),
and a* € Cg({c;)) for every i, we get that cj? = ca?" ' e, (c1,c) ~ Ds.
Since C = Cg({(c1,c2)) has index 4 in G, we have that G = (c1,c2)C.
Since a®t = a!*" and a2 = a'**"2 with |a*"| < 2 and |a*"2] < 2, we may
assume, up to replacing a with ac?2 cgl, that a € C. Therefore, C' is a proper
subgroup of G, G = (c1,c3) * C, where o = (c1,¢2)%, and G* = C*.
Therefore, C is a proper subgroup of G such that C/C* is isomorphic to

Cy X Cy x -+ x (9. Hence, we can conclude by induction. O

The previous proposition determines the non-trivial monotone 2-groups
G such that Hy(G) = G, G/G* is abelian and |G2/G*| = 2.
In the next proposition, we deal with the complementary case and we classify
the non-trivial monotone 2-groups G such that Hy(G) = G, G/G* is abelian
and |G?/G*| > 4.
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Proposition 5.5. Let G be a non-trivial monotone 2-group such that G =
Hy(G). Suppose that the quotient G/G* is abelian with |G%/G*| > 4.

Then G is a modular 2-group not involving Qg.

Proof. Since, by hypothesis, G/G* is abelian, the group G is powerful.

Let G be such that G/G* = (a1G*) x - - - x {a,G*) x {c1G*) x - - - x {c,G*),
where |a;G*| = 4, and |¢;G*| = 2. We have that G? = (a?,...,a?)G*. Since
G? is powerful with ®(G?) = G* (see Lemma 2.7 and Corollary 2.8), we get
that G2' = <a%i, e ,a?f}. Let H be the group (ai,--- ,a,). By Proposition
2.14, H is modular and does not involve Q)g. Moreover, H? = G? for all
i > 1, and, in particular, we have that exp(H) = exp(G) = 2" > 8.

We now prove that we may assume |c;| = 2 for every i. Since ¢ € H 4
and H is powerful with H? = G? and H* = G*, there exists b; € H\H?
with 2" = ¢? with r > 2. If |b;| = 4, then ¢? = 1. Hence, we may assume
that |b;] = 2" > 8. Now, (b?") is a central subgroup of (b;,c;), and the
quotient (b;,c;)/(b?") is a metacyclic group with ¢; generator of order 2 and
b; generator of order greater than or equal to 4. Moreover, since (b;, ¢;)
has a quotient isomorphic to Cy x O, we have that (b;,¢;)/(b?") is not
semidihedral. By Lemma 2.11, we get that ¢;(b?") is in the normalizer of
(bi)/(b?"). This implies that (b;) is normalized by ¢;. If b’ = bl-_1+4hi, then
b? is in the derived subgroup of G, a contradiction, because b; € H\H? and
so b? € H*\H*, but [G,G] < H%. So, we have that b’ = b}+4hi, and since
c? € (b;), we get that \b?hi] < 2. In particular, since [b?,¢;] = 1 and ¢? = b2’
with » > 2, replacing ¢; with cib;QT_l, we may assume that |¢;| = 2, and the
claim is proved.

We now prove that the subgroup (c;, ¢;) is abelian.

Suppose that (c;,c¢j) is non-abelian. Then, (c;,c¢;) is dihedral. Moreover
[ci, c;]% = [ciy ¢5]% = [es,¢4] L. Since [¢i, ¢;] € HY, and H is powerful, there
exists a € H\H?, such that a* = [¢;, ¢;], with 7 > 2. Since [[c;, ¢;]| > 2, we
have that |a| = 2™ > 8.

Since (a,c;)H*/H* is isomorphic to Cy x Cy, the subgroup (a,c;) cannot
be semi-dihedral. Hence, by Lemma 2.12, we get that (a) is normalized by
ci. If a% = a='74" then a? € [G, ], a contradiction because a?> € H?\H*
and [G,G] < G* = H*. Then, we get that a% = a'**", and since ¢;2 = 1,
we get that |a*"| < 2. Now, since [c;,¢;] € (a) and [c;, ¢;]% = [, ¢5] 7Y, we
get that (c;, c;) is isomorphic to a Dg with (¢;, ¢;) N H < (a). Now, since
H is modular and does not involve (QJg, by Proposition 2.5.9 on page 94 of
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[13], H is lattice isomorphic to an abelian group. In particular, we have
[H? : HY] = |Q1(H?)|. Since |[Q1(H?)| > 4, there exists an involution ¢ with
c€ H? and ¢ ¢ (c;, c;). Since ¢ € H?, there exists d € H\H?, with 2 =ec
Since (d, ¢;) H*/H* is isomorphic to Cy x Cy, the subgroup (d, ¢;) cannot be
semi-dihedral. Hence, by Lemma 2.12, we get that (d) is normalized by ¢;.
If d% = d='*% then d? € [G,G], a contradiction because d?> € H?\H* and
[G,G] < G* = H*. Then, we get that d* = d'**i and since ¢;?> = 1, we get
that |d**i| < 2. Using the same argument with ¢; instead of ¢;, we get that
d% = d'***i with [d**s| < 2. In particular, ¢; and ¢; are in the C(Q2((d))),
and so G contains the subgroup Q2((d)) X (¢;, ;). Since Qa((d)) x (ci,c;) is
isomorphic to Cy x Dg, which is not monotone, we have a contradiction.

Therefore (c;, ¢j) is abelian for every i and j and so (ci,- -, ¢s) is abelian.

We now show that ¢; is in the normalizer of every element of H and in
the centralizer of Qo(H).
Let b € H. Since H is powerful, there exists a € H\H? such that a? =0
for some r. In order to show that ¢ € Ng((b)), it is sufficient to show that
¢; normalizes (a).
Now, (a, ¢;) is a metacyclic subgroup with a generator of order 2. Moreover
since (a,c;)G*/G* ~ Cy x Cy, we get that (a, ;) is not semidihedral. By
Lemma 2.12, we have that ¢; is in the normalizer of every cyclic subgroup
having order at least 4 of (a, ¢;). In particular, ¢ € Ng({a)).
Moreover, since a?> € H*\H* and [G, G] < H*, we have that (a, ¢;) is modu-
lar metacyclic and a% = a'™, with |a%| < 2. So, we have that [a?,¢;] = 1,
for each a € H\H? and since {a? : a € H\H?} is a generating set for H?,
we have that ¢; centralizes H?. In particular, if b € H? and has order 4,
then it is centralized by ¢;. Moreover, if b has order 4 and is in H\H?,
then the argument just used shows that b¢ = b. Hence, the element ¢; is in
Ca(Q0e(H)), for all 1.

We now study the action of ¢; on H.
If [H,¢;] = 1 for every i, then G = H X {c1) X -+ X (¢s). Since H is modular
without subgroups isomorphic to g, then G is modular without Q5.
Suppose that there exists a ¢; such that [¢;, H] # 1. Since ¢; is in the
normalizer of every element of H and c? = 1, we have that ¢; acts as a power
automorphism of order 2 on H. The group H is modular and does not involve
a subgroup isomorphic to Qg. Moreover [¢;, Q2(H)] = 1. Hence, by Theorem

2.3.24 on page 68 of [13], we have that ¢; acts as an universal automorphism,
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ie. h% = W2 for every h € H with 2" = exp(G) = exp(H). Up
2" and, up to

to reordering the indices, we may assume that h® = ATt
replacing perhaps ¢; with ¢;c; for i > 2, we may assume that [H,¢;] =1 for
1> 2.
If H is abelian, then G = (H X {c2) x -+ x {cs)) x (1), with a®* = a1 +2" "
for every a € H X (cg) X -+ {cs).
If H is modular non-abelian, then H(c;) satisfies the hypothesis of Lemma
1.3 of [12], and so H(c) is a modular subgroup without Qg. Since (H, ¢;) is
centralized by the elementary abelian subgroup (ca, ..., cs), we obtain that
G = (H,c1) x {ca,...,cs) is modular without subgroup isomorphic to Qs.
We have proved that if G is a group such that the quotient G/G* is
abelian and |G?/G*| > 4, then G is a modular group without subgroups

isomorphic to (Js. Hence the proof is complete. O

Summing up, this section shows that a non-trivial monotone 2-group G
with Hy(G) = G and G/G* abelian is either modular without subgroups

isomorphic to Qg or is in the class 6.

5.2 Monotone 2-Groups with Hy(G) = G and G/G*

non-abelian

In the first seven propositions, we show that if G is a monotone non-trivial
2-group such that Hy(G) = G, then G//G* can not be isomorphic to a group
in o7 where i € {2,3,5,7,8,9,10,11} (see Theorem 3.3).

Proposition 5.6. Let G be a non-trivial monotone 2-group such that G =
Hy(G).
The quotient G/G* cannot be isomorphic to a group in <s.

Proof. Let G be (x1,Y1,- -+, Tn,Yn, a1, - ., Qn), where (x1,y1)G*/G* % - - - %
(T, yn)G*/G* is extraspecial, (z;,y;)G*/G* is isomorphic to Dg or to Qg
with |7;G* = 4 and A = (a;)G*/G* x --- x (a,,)G*/G* is abelian, with
la1G*| < 4 and |a;G*| = 2 for every i > 2.

We have that G?/G* = (22)G*/G*. By Corollary 2.8, we have that G* =
®(G?) and so we obtain G? = (z?). Moreover, by Corollary 2.8, we also
have that <x%z> = G%. Hence, since exp(G) > 8, we get that G4 = (x]) # 1,
ie. |z1] > 8.
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We first show that G/G* cannot involve Q.
Suppose that G/G* involves a Qg. Then, up to relabeling the generators
of G, we may assume that (z1,7;)G*/G* is isomorphic to Qz. We have
that 22G* = y?G*, and ¥ = 2z'G*. This means that 227" = 42 and

o' = 7% In particular, the element y; centralizes (z24") = (7).
From z¥' = z7'™* we have that (23)"" = 27" and so 272" = 23,

This means that 2} = 1, and so G* = (z}) = 1. Tt follows that Hy(G) = 1,
a contradiction. This proves the first claim.

Since Dg * Dg ~ Qg * Qg, Dg * Cy ~ Qg * Cy and G/G4 can not involve
Qs, we obtain that G/G* = (z,y)G*/G* x (a1G*) x - -+ x {a;, G*), where
(x,y)G*/G* ~ Dg, with (z)G*/G* < (x,y)G*/G*, and |a;G*| = 2.

By Corollary 2.8, since G2 = (x?), we have that G? = (x22> and so |z| = 2",
where exp(G) = 2" > 8. Moreover, we have G* = (z%).

—1+4h we get that |z%"| < 2. In particular,

Since y? € (z) and 2¥ =z
since y? € (z1), we have that |y| < 4.

Let now u be an element of G not in (z,a1,...,a,). Then, u ¢ G* =
(z%), uG* has order 2 and acts as inversion on (z,a, ..., a;,)G*/G*. There-
fore, repeating the argument of the previous paragraph with v instead of ¥,
we get that |u| < 4. This shows that each element of G\ (z,a1,- - ,an,) has
order at most 4 and this means that Hy(G) is a proper subgroup of G, a
contradiction.

In particular, this shows that G/G* cannot be in .2%.

O]

Proposition 5.7. Let G be a non-trivial monotone 2-group such that G =

Hy(G). The quotient G/G* cannot be isomorphic to a group in 3.

Proof. Let G be {ai,...,am,c1,...,cs,b) with ((a1G*) x --- x (@, G*) x
(c1G*) x - x (esGH)(BGY), where m > 2, |a;G?| = 4, [bG?| = 2, |e;GY| = 2,
(a; GHPC" = a; 'G* and (c]~C¥4)bG4 = ¢;G4, for every i € {1,...,m} and
jed{l,... s}

We get that G? = (a?,...,a%,)G* By Lemma 2.7 and Corollary 2.8, we
have that G* = ®(G2). So G2 = (a2,--- ,a2) and G* = (a?',--- ,a2). So,
it H={ay, - ,am,c1,...,cs), then, we have that H is a monotone 2-group
such that H/H* is abelian of exponent 4 and |H?/H*| > 4. Therefore, by
Proposition 5.5, the group H is modular and does not involve @sg.

We now show that b is an element of order at most 4.

Since b € G4, G* = (af, -+ ,a}) and (ay,- -+ ,an) is powerful, there exists
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a € (a1, -+ ,an) \ (a?,...,a2,) such that a® = b2. Since (a,b)G*/G* is
isomorphic to Dg with (a)G* of order 4, we have that [a,b]G* = a®G*.
Since (a, b) is 2-generated and ({a?)G*) N (a, b) is normal of index 4 in {a, b)
with elementary abelian quotient, we get that (a?)G* N (a,b) = ®((a,b)).
Since (a, b) is metacyclic, there exist ¢,d € (a,b) such that (c,d) = (a,b)
with {(¢) < {a,b). In particular, (c)(G* N {(a,b)) < {(a,b)(G* N {(a,b)), and
c¢ ®({a,b)) = (a®)(G*N{a,b)). Therefore, (c)(G*N{a,b)) = {(a)(G*N{a,b)).
Since (¢, b)(G* N {a,b)) = {(a,b)(G* N (a,b)) and G* N {a,b) < ®({a,b)), we
have that (a,b) = (¢, b) with (c¢) < {c,b).
Since [a,b](G* N (a, b)) = [a,c](G* N {a,b)) = a®>(G* N (a, b)), we have that
¢ = ¢4 Now, a = ¢'b/, for some i and j. If j is odd then we get that
a? € (G*N{a,b)), a contradiction. Then j is even and so, being b? € (a), we
have (a) = (c). Then, ¢ = ¢71*%" with |c*"| < 2. Moreover, b? € Q;({c))
and so [b] < 4.

Let d be an element not in H. Then dG* has order 2 and acts on H/H*
as inversion. Therefore, using the same argument with d instead of b, we
get that |d| <4 for all d ¢ H. Therefore, Hy4(G) is a proper subgroup of G.

This final contradiction proves the statement. ]

Proposition 5.8. Let G be a non-trivial monotone 2-group such that G =
Hy(G). The quotient G/G* cannot be isomorphic to a group in <5 or in
9.

Proof. Suppose that G = (ay,...,am,c1,...,Cs,b), with ({a1G*) x - x
(amG?) x (c1G?) x -+ x {esGN))(bG?), where m > 2, |a;G*| = 4, [bG*| = 4
and B2G € (a1, ... am,c1,...,c)2GY/GY, |G = 2, (G = a; G
and (ch‘l)bG4 = ¢;G*, for every i € {1,...,m} and j € {1,...,s}.

Now, G% = (a?,...,a2)G*.
By Lemma 2.7 and Corollary 2.8 we have that G* = ®(G?) and so G? =
(a2,...,a2) and G? = <a%i,...,afé>. So, if H = (a1,...,am,c1,...,Cs),
then, we have that H is a monotone 2-group such that H/H* is abelian and
|H?/H*| > 4.
Therefore, by Proposition 5.5, the group H is modular and does not involve
Qs. Moreover, the subgroup K = (ay,...,a,) is such that K/K* is iso-
morphic to a direct product of m copies of Cy. Hence, K is powerful with
K¥ = H? = G2
Since b> € K?\K*, and K is powerful, there exists a € K \ K? such that

a? = b2,

- 79 —



Chapter 5. Monotone 2-Groups of exponent greater than 4 in which G = H4(G)

We now show that |b| < 8.
Since the subgroup K is modular and does not involve (g, we have that
[K,K?] < K®. Then, for all h € K we have that K® = [h,a?|K® = [h, b*| K8,
Hence [h,b]°’K® = [h,b] 1K®, for all h € K. Since K? is generated by
{[h,b] : h € K} and K?/K? is abelian, we have that b acts as inversion on
K?/K8. Therefore, since b*> € K2\ K*, we have that |bK8| < 4, i.e. b* € K8.
Since K is powerful, there exists ¢ € K\K? such that b* = a* € (c®).
Let ¢ be of maximal order with this property. In particular, we have that
a* = b* =¥, with r > 3, and ¢* ¢ K® (otherwise there exists ¢ such that
c* € (¢%), and so ¢ contradicts the maximality of c).
Since ¢ and a are in K, the subgroup (a, ¢) is modular and it is not isomorphic
to Qs, and so (a,c)?" = (a®, ). In particular, the subgroup (a,c)* = (c%).
Moreover, since (a,c)/{a,c)* is abelian (because (a,c) is modular), we get
that (c) < (a,c). Since a* € (c), we have that c¢® = c!T%" with |c*"| < 4.
In particular, this implies that (a?, c?) is abelian.
We claim that the subgroup (a2, c?)K*/K* is elementary abelian of order 4.
Suppose that a? K% = ¢2K*. Then, there exists ¢ € K*, such that a? = ¢?q.
Since [a?,c?] = 1, we get that [¢2,¢q] = 1. In particular, c'¢® = a* = ¥,
with » > 3. Since ¢ € K* and K is powerful, we have that ¢> € K%, and
so ¢* = ¢?"¢72 € K8, which contradicts the choice of ¢. Therefore, we have
that (a?,c?)K*/K* is elementary abelian of order 4. In particular, since
(a?,c?) is the Frattini subgroup of (a,c), we get that (a2, c?) is 2-generated
and moreover, K* N (a,c) = ®((a,c)) = (c*).

It follows that (b, c) K*/K* is as in Lemma 2.13, and (b, c)* = (c*). Since
& = (K*n(b,c)) and K* N (b,c) = (c*), we have that (c) < (c,b) and
& = ¢+ with |c**| < 4. In particular, being |(b) N {(c)| < 2, we obtain

that the order of b is smaller than or equal to 8.

We now prove that if |b| = 8, then we reach a contradiction.

Suppose that |b| = 8. Since a? = b?, we get that |a| = 8. Now, since the
element ac is such that (ac)? = a?c***" we have that (ac)?K? = a®>c2K* and
((ac)) = (ch.

In particular, (ac, b) satisfies the hypothesis of Lemma 2.13, and (ac)<(ac, b).
Since b* € (ac), we have that (ac)® = (ac)~'T#, with |(ac)¥| < 4 i..
a’ = a7, for some s with |¢*¥| < 4.

Now, since a2 = b2, we have a = a”* = (a=1¢*)~1(c*)? = ¢45ac45. Since

Qa({c)) < Ca(a), we have that a = ac=3, and so |c**| < 2.
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Being Q1((c)) = (a*), it follows that (a) < (a,b) with a® = a~'**". Now,

b = 472 and so |a| = 4, a contradiction.

from a? = b2, we get that a® = (a?)
Therefore, this case does not arise and |b| < 4.

If d is an element not in H, then dH = bH. Moreover, we have that
d*G* = b’G*, and dG* acts as inversion on H/H*. The argument above
shows that |d| < 4. Hence, we get a contradiction because we obtain that
for any d such that d ¢ H, then |d| < 4 and so d ¢ H4(G), i.e. G # Hy(QG)

a contradiction. O

Proposition 5.9. Let G be a non-trivial monotone 2-group such that G =

Hy(G). The quotient G/G* cannot be isomorphic to a subgroup in <.

Proof. Suppose that G = (a,b, c, A) with AG*/G* elementary abelian and
central in G/G*, [aG?*| = 4, |cG*| = 4, (aG*) N (cG*) = G4, V¥’ G* = a?G*
and a’G* = a7 1G4, a°G* = aG* and b°G* = b 1G*.

The subgroup (a,c, A) is monotone, being a subgroup of G which is
monotone. Moreover, (a,c, A) satisfies the hypothesis of Proposition 5.5.
Then, (a,c, A) is a powerful modular group not involving (Qs. In particu-
lar, (a,c) is monotone, powerful and (a?,c*)G* = G?. By Corollary 2.8,
G' = ®(G?) and so (a?,¢?) = G? Since V¥’G* = a?c*G*, we have that
b2 = a®>T45¢2H4 ) for some r and s. Therefore, up to replacing a and ¢ with

suitable powers, we may assume that b* = a?c?.

Since (a,c) is modular metacyclic, we have that [{a,c), (a?,c?)] < (a,c)8.
In particular, we have that [(a,c),b?] < (a%b%). Hence, [a,b*]G® = GB
and [c,b?|G® = GB. Tt follows that [a,b]’G® = [a,b]"'G® and [c, b]’G® =
[c,b] 71GB. Since ([a, b], [c,b])G® = (a?, c?)G®, and (a?,c*)G8/G? is abelian,
we have that b acts as inversion on (a?,c?)G®/G®. Since b? € (a?,c?), we
get that |b2G®| < 2, i.e. b* € G®. Hence (a?c?)? € G®. This implies that
a*c* € G8. Now, the subgroup G® = ®(G*) and G* = (a*, ¢*). Hence, the
condition a*c* € G® implies that a*G® = ¢7*G® and so G* = (a*) = ().

Therefore, since a® € a~1G*, we have that a® = o~ 1% for some h. Since
b¢ = b~1G*, we have that b¢ = b—1a**, for some k. Now, (a?)® = (a?)~1+4" =
a2 and b = (b~ 1at)latk = g~ Hpatk = pa—tR(-1+4h) gdk — py—Sk+16hk,
Since a%c® = b%, we have that a?c? = (a?c?)® = o 28hc2q8k+16hk —
a=2c28h—8k+16hk and so a?c? = a2¢2a8h—8k+16hk - Hence, we obtain that
a* € (a®) but, since G* = (a?) and G® = (a®) = ®(G*), we obtain that
G* =1, and so also Hy(G) = 1, a contradiction. O
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Proposition 5.10. Let G be a non-trivial monotone 2-group such that G =

Hy(G). The quotient G/G* cannot be isomorphic to a group in <.

Proof. Suppose that G = (a,b,c,d, A) with [aGY| = 4, |cG*| = 4, (aG*) N
(cGYY = G4, ’°G* = a®2GH, d?G* = AGH, a*G* = a71GY, a°G* = G,
VGt = bGH, alGY = aGY, VG = bTIGY, UGt = ch’GY, AGY /G s ele-
mentary abelian and central in G/G*.

We have that (a?,d?)G* = G?. Since by Corollary 2.8, we have that
G* = ®(G?), we get (a%,d?) = G%. Since b’°G* = a?d*G*, we have b? =
a’t4 2+ for some r and s. Therefore, up to replacing a and d with suit-
able powers, we may assume that b> = a?d?.

Since (a,d) satisfies the hypothesis of Lemma 2.12, the subgroup (a,d) is
modular metacyclic not isomorphic to Qg, and so [{a,d), (a,d?)] < (a,d)8.
Since b? € {(a?,d?), we have that [(a,d),b?] < (a8, d®). In particular, from
[a,b?]G® = G® and [c, b?]G® = GB, it follows that [a,b]’G® = [a,b]'G® and
[d, b]°G® = [d,b]"*G®. Since ([a,b],[d,b])G® = (a?,d*>)G® and (a?,d*)G®/GB
is abelian, we have that b acts as inversion on (a?,d?)G®/G®. Since b? €
(a,d?), we get that [B2G®| < 2, i.e. bt € GB. Hence (a?d?)? € G®. This
implies that a*d* € G® Now, the subgroup G® = ®(G*) and G* =
(a*,d*). Hence, the condition a*d* € G® implies that a*G® = d—*G®
and so G* = (a*) = (d*). Therefore, since a® € a~'G*, we have that
a® = a1 for some h. Since b € b~'G*, we have that b? = b~ la*¥,
for some k. Now, (a2)b = (a2)~1+4h = =28k gpd p&* = (p=1d*)~lak =
a btk = pg—tk(1+4h) g2k — o —8k+16hk  Qince q2d2 = b2, we have that

@2d? = (a2d?)? = a=2+8hg2qSk+10kk ~272,8h—8k+16hk 410 o a2d? —

=a
a=2d%q3h—8k+16hk  Then, we obtain that a* € (a®). Since G* = (a*) and
®(GY) = G® = (a®), we obtain that G* = 1, and so also Hy(G) = 1, a

contradiction. O

Proposition 5.11. Let G be a non-trivial monotone 2-group such that G =

Hy(G). The quotient G/G* cannot be isomorphic to a group in Ag.

Proof. Suppose that G = (a,b,c,d, A) with |aG?*| = 4, |cG*| = 4, (aG*) N
(cG*) = G4, b*G* = ?GH, d*G* = G, "Gt = a7IGY, a°G* = oG,
Gt = bGH, alGr = aGH, PG = d7TIGY, Gt = T1GY, AGH/GY s
elementary abelian and central in G/G*.

We have that (a?,d?)G* = G%. By Corollary 2.8, we have that G* =
®(G?) and so (a?,d?) = G?. Since b2G* = a?d?’G*, we have b? = o> 15@2 7
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for some r and s. Therefore, up to replacing a and d with suitable powers,
we may assume that b? = a?d?.

Since (a,d) satisfies the hypothesis of Lemma 2.12, the subgroup (a,d) is
modular metacyclic not isomorphic to Qg, and so [{a,d), (a?,d?)] < (a, d)®.
This implies that [(a,d),b?] < (a®d®). In particular, from [a,b?|G® =
GS and [d, %G8 = GS, it follows [a,b’G® = [a,b]'G® and [d,b]’G® =
[d,b]71G®. Since ([a,b],[d,b])G® = (a?,d*)G® and (a?,d?)G®/G® is abelian,
we have that b acts as inversion on (a?,d?)G®/G8. Since b? € (a2, d?), we
get that |b?G8| < 2, i.e. b* € GB. Hence, (a?d?)? € G®. This implies that
a*d* € G8. Now, the subgroup G® = ®(G*) and G* = (a*,d*). Hence, the
condition a*d* € G® implies that a*G® = d~*G® and so G* = (a*) = (d*).
Now ¢ is an element such that c2G* = d?G*, and d°G* = d~'G*. Since
G* = (d*), we have that ¢ = d?>T*" and d® = d=1+4"2. Since (d?) = (c?),
we have that d? = (d?)¢ = d=2*8" ie. d* = 1. Since G* = (d*), we get

that G* = 1, a contradiction because we are assuming that exp(G) > 8. O

Proposition 5.12. Let G be a non-trivial monotone 2-group such that G =

Hy(G). The quotient G/G* cannot be isomorphic to a group in o/ .

Proof. Suppose that G = (a,b, c,d, A), where [aG*| = 4, |cG*| = 4, (aG*) N
(cGYY = G4, B*°G* = a®AGH, d?G* = A2GY, oG = a7'GY, a°G* = G,
beGh = b1GA, d°G* = d71GA, dPGH = dGY, UGt = ca®G* and AGY/G? is
elementary abelian and central in G/G*.

We have that (a?,c?)G* = G2. By Corollary 2.8, we have that G* =
®(G?) and so (a2, c?) = G?. Since b2G* = a?c*G*, we have b? = a?H45c2 47
for some r and s. Therefore, up to replacing a and ¢ with suitable powers,
we may assume that b? = a?c?.

Since (a,c) satisfies the hypothesis of Lemma 2.12, the subgroup (a,c) is
modular metacyclic not isomorphic to Qg, and so [{(a, c), (a2, c?)] < (a,d)8.
This implies that [{(a, c), b?] < (a®,®). In particular, from [a, b?|G® = G® and
[c, ’]G® = G8, it follows [a,b]’G® = [a,b]"'G® and [c, b]’G® = [d,b]1G5.
Since {[a,b], [c,b])G® = (a?,c*)GE, and (a?,c?)G®/G® is abelian, we have
that b induces the inversion on {a?, ¢2)G8/G®. Since b? € (a?, c?), we get that
b2G8| < 2, i.e. bt € GB. Hence, (a?c?)? € GB. This implies that a*c* € GB.
Now, the subgroup G® = ®(G*) and G* = (a*,¢*). Hence, the condition
a*c* € G® implies that a*G® = ¢ *G® and so G* = (a*) = (c*). Therefore,
since a® € a~'G*, we have that a® = a= %", for some h. Since b® € b=1G*,
we have that b¢ = b~'a?*, for some k. Now, (a?)? = (a?)"1T4 = =248
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2
and b = (1)Lt = qtkpgdk = pgak(-1HaR) gak _ p,—8k+16hk
Since a%c? = b%, we have that a?c? = (a?c?)® = a 282 8F+16hk —
a= 228 =8k+160k and so a?c? = a2c2a8 8k +16hk - Then, we obtain that

a* € (a®). Since ®(G*) = G® = (a®), we obtain that G* = 1, a contradiction

because we are assuming exp(G) > 8. O

This concludes the first part of this section.
From now on, we deal with non-trivial monotone 2-groups such that G =
Hy(G) and G/G* is isomorphic to a group in .74, in <7 or in %%.

The next proposition determines the non-trivial monotone 2-groups such
that G = H4(G) and G/G* is isomorphic to a group in o%.

Proposition 5.13. Let G be a non-trivial monotone 2-group such that G =
Hy(G). Let G/G* be isomorphic to a group in /5. Then G is either in s
or in 63.

Proof. Let G be {(a,c,b, A) where [aG*| = 4, [cG?*| = 4, (aG*) N (cG*) = G*,
VG = a?GY, a°G* = aG?, Gt = a7'GY, PGt = ¢G4, and AG*/G? s
elementary abelian and central in G/G*.

We have that (a?,c?)G* = G?. By Corollary 2.8, we have that ®(G?) =
G*. Therefore, (a?, c?) = G%. Moreover, since by Lemma 2.7, G? is powerful,
we have that <a2i,62i> = G?. From b2G* = a2G4, we have b? = o2H4s¢47,
for some r and s. Therefore, up to replacing a with a suitable power, we

may assume that b? = a?c?".

By Lemma 2.12, the subgroup (a,c) is modular and so [{(a,c), (a?,c?)] <

b =q1¢, and ¢® = ¢q., where ¢, and ¢. are in G*, we have

{a,c)®. Since a
that (a?)® = (a7'q.)? = a7 2¢[qu,a )% and (c?)’ = ®¢?[qe, c]%. Then
(a®)’G® = a72G® and (?)’G® = G®. Since v? = a?c*", we have that
(a2c) = a%c* and so, in particular, a?c*"G® = (a?c*")’G® = a=2c4GE.
This means that a*G® € G8. Since G* = (a*,¢*)G® and G® = ®(G*), we
get that G* = (c*).

Since [¢,G] < G*, we have that (c) is normal in G. From c*G* = ¢G*
and ?G* = cG*, we have that ¢* = ¢! 71 and ¢ = ¢!+*2. Now, a* and b*
lie in (c*), and so |c¢**1| < 4 and |c¢**?| < 4.

Suppose that |¢*1] = 4. Then ¢** = ¥ with |31 = 2. Since
b2 = a%c" | we have that ¢ = 1851 with |81 = 2, and so ¢® = ¢! 452 with
|c¥2] = 4. Now ¢ = clt4s1+4s2 and |¢*17452| < 2. This is a contradiction,

because (ab)’G* = a?>G*, ie. (ab)? = a?c¢*, for some ¢, and so !T85 =
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Caz = C(ab)2
This shows that |c¢**1| < 2 and, since @ = ¢ we have that also |2 < 2.

In particular, the subgroup (a, c?) is abelian and so, if a* = 8!, then we

= C.

have that @ = ac~% has order 4. In the same way, since the subgroup (b, ¢?) is
abelian and b? = a2¢* we have that b* = 4. So we get that b = be=2("+)
has order 4. Moreover, B2 = BRedr—4l = g2pdreAr—Al 2.4 — g2

¢ = 451 and b = s,

)

Since a*G4 = a~'G*, we have also that ab = a=1c%3. Since a2 = 2, we get
ab = a~'¢*3, with |¢*3| < 2. Therefore, we have (a,b,c¢) = (a,b,c) with
lc| =27, |a| = 4, a® = b2, @ = cltdst b = 1452 and @b = a~te*s3, with
%] <2 for i =1,2,3.

Let A be {c1,...,cm) with |¢;G* = 2. Since ¢? € G* and ¢“G* =
cG*, we get 2 = c*i and ¢ = !t with |¢*fi| < 2. In particular,

replacing ¢; with ¢;c™"

, we may assume that |¢;| = 2. Moreover, since
a%G* = aG* and b9GY = bG?, we get @ = ac¥i and b = bethi. If
|c*¢| > 2, then the subgroup (&, ¢;) is not metacyclic because it contains the
3-generated elementary abelian subgroup <5L2,Ci,62n71>. If |¢*i| > 2, then
the subgroup <B, ¢i) is not metacyclic because it contains the 3-generated
elementary abelian subgroup <l~)2, ¢, czn_l).

Therefore, we have ¢¢ = ¢!t g = g, bei = b.

In particular, up to reordering the indices and replacing perhaps ¢; with ¢;cq,
we have that G is (a, b, c, c1) X A, where A is elementary abelian, |c| = 2",
G| = 4, a2 = B2, @ = eI+ b = c1+4s2 and gb = G148, || = 2 and
¢t = R g = g and b = b, where |¢**1] < 2, [¢**2| < 2, |¢*3] < 2 and
k1| < 2,

Now if ¢**1 = 1, then G is in G5. If |¢**1| = 2, then, up to replacing perhaps
a with ac; and b with bey, we have that G is in 3. O

The next lemma states a preliminary result useful in order to classify
the non-trivial monotone 2-groups such that G = Hy(G) and G/G* is in A
or in 7).

Lemma 5.14. Let G be a non-trivial monotone 2-group such that G =
Hy(G).

Suppose that G = {(a,b,c1,...,c.), with [aG*| = 4, |bG?* = 4, (aG*) N
(bGYY = G*, abG* = a7'G* and (cy,...,c,)G*/G* is elementary abelian
and central in G/G*.

Then, we may assume that |c;| = 2, for every i € {1,...,r} .
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Proof. G = {(a,b,c1,...,c.), with [aG?| = 4, |bG?| = 4, (aG*) N (bG*) = G4,
a’G* = a7'G* and (cy,...,c,)G*/G* is elementary abelian and central in
G/G*.

Since (a,b) satisfies the hypothesis of Lemma 2.13, we have that (a,b)
is non-modular metacyclic. Hence, up to renaming the generators, we may
assume that (a) < (a,b), and a® = a~1**". By Lemma 2.13, we also have
that (a?,b?) = ®({a,b)). Since the Frattini subgroup of a metacyclic group
is powerful, we obtain (a%,b%) = G* N (a,b) = ®({a?,b?)).

In particular, ¢ € (a*,b?) and so ¢ = a?"b%.

We now prove that we may assume that ¢; has of order 2. We distinguish

three cases depending on the values of r and s.

- Suppose first that ¢ = b?*. The subgroup (c?) is normal in {c;,b) and the
quotient (b,c;)/(c?) is metacyclic with a generator of order 2. Since
{c;,b)G*/G* is isomorphic to Cy x Cy, we have that (b, ¢;) is not semidi-
hedral. Therefore, by Lemma 2.11, we have that ¢; is in the normalizer
of b and, since (c?) < (b%), we have that b¢ = b'+4" with |p*"| < 2. In
particular, the subgroup (b, ¢;) is abelian and so, up to replacing c;
with ¢;b~2%, we may assume that c; has order 2. Hence, in this case

the claim is true.

- Suppose now ¢? = a*"b** with [b%*| > 2, |a*"| > 2 and a*" ¢ (b*).

We first show that (c;, b?) is modular. Since (c;, b) is metacyclic, there
exists 072 ¢ ®((c;, b)) such that (¢/*b72) < (¢, b).
We distinguish two cases depending on the parity of jo.

Suppose that js is even. Since c,glbj2 is a generator we have that j; is
odd and so we have that (¢/'672,b) = (¢;, b) with (¢/'b72)0 = (c”b”) ,
for some r. It follows that (cjlbj?)b2 = (c“b”) , and, being r? = 1
mod 4, we have that (cj 172 b2) = (c;, b%) is modular metacyclic.

Suppose that j is odd. Since (bG*, ¢;G*) is isomorphic to Cy x Cy, we
have that [¢;,b] € G* N (b, ¢;). Since (cgll)jQ)QG4 = b?G*, we have that
(czlbh)ci = (cglbj2)1+47". If follows that <c{1bj2,ci> is modular, and so
(b%,¢;) is modular.

Therefore, we get that (b2, ¢;) is modular.

We now show that we may assume c? € (a?).

47y and there

Since (b%,¢;) is modular, we have that (b% ¢;)? = (b%,a
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exists an element cﬁ" b?2 in (b%,¢;) such that (Ci’ b22)? = gtr,

If I; is even, then céibﬂ2 € (c2,b?) = (a'",b?). Since (a,b?) is modular
we have that (a*,b?)2 = (a®,b%) and so (cib?2)? € (a®",b%). Now,
(cil'b%)2 = a*", and so we have that a*" € (a®",b%). This means that
(a* b%) = (b?), i.e. ¢? € (b), against our assumption. Therefore, we
have that [; is odd and, so up to replacing ¢; with cﬁib%, we may
assume that c? € {a*"). In particular, we reduce the proof of this case

to the following.

- Suppose that c? = a’". Then, (c?) is a normal subgroup in (¢;, a) and the

quotient (a, c;)/{c?

1
2. Since {(¢;,a)G*/G* is isomorphic to Cy x Ca, we have that (a,c;)

is not semidihedral. Therefore, by Lemma 2.11, we have that ¢; is in
1+4k

) is a metacyclic group with a generator of order

the normalizer of a and, since (c?) < (a?), we have that a° = a
with |a**| < 2. In particular, the subgroup (a2, ¢;) is abelian and, up

2

to replacing ¢; with ¢;a™*", we may assume that ¢; has order 2.

O]

In the next proposition, we determine completely the non-trivial mono-
tone 2-groups such that G = Hy(G) and G/G* is isomorphic to a group in
.

Proposition 5.15. Let G be a non-trivial monotone 2-group such that G =
Hy(G). Suppose that G/G* is in o .

Then G is isomorphic to a group in 64, or in 65, or in 6.

Proof. Let G = (a,b,c1,...,c.), with |[aG*| = 4, |bG*| = 4, (aG*) N (bG*) =
G4, a’G* = a7'G* and (cy,...,c.)G*/G* is elementary abelian and central
in G/G*.

Since (a, b) satisfies the hypothesis of Lemma 2.13, we have that (a,b)
is non-modular metacyclic. Hence, up to renaming the generators, we may
assume that (a) < (a,b), and a® = a7'***. By Lemma 2.13, we also have
that (a?, b?) = ®({a,b)) and, since the Frattini subgroup of a metacyclic
group is powerful, we have also (a,b?) = G* N (a,b) = ®((a?, b?)).
Moreover, by Lemma 2.7 and Corollary 2.8, since G2/G* = (a?,b?)G* /G4,
we get that G2 = (a2,b?) and also G%' = (a%',b2') for every i > 1.

By Lemma 5.14, we may assume that ¢; has order 2 and so we have that
G = (a,b)(c1, - ,¢r), with a® = a71+4 and |¢;| = 2, for all i.
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Since (a, ¢;) and (b, ¢;) are metacyclic groups with a generator of order 2, and
they are not semidihedral (because they both have a quotient isomorphic to
Cy x C9), we have that ¢; lies in the normalizer of (a) and (b). Moreover,
since ¢; has order 2, and both (a, ¢;) and (b, ¢;) have a quotient isomorphic to
Cy x Co, we get a® = a' T4 with || < 2 and b% = b1+ with |b*Fi| < 2.
In particular, we get that ¢; in the centralizer of (a?,b?), for all i.

We distinguish various cases depending on the structure of (a,b).

- Suppose that |b| = 4. Since (a,b) is such that G* = (a* b*), and b* = 1,
we have that G* = (a%). In particular, we have that a® = a =1+ with
la*h] < 4, (a) N (b) = 1 and |a| = 2" = exp(G).

We now prove that (c;, c;) is abelian.

Suppose that ¢; and ¢; do not commute. Then, [¢;,¢;] € G* and,
being ¢7 = 1, we get that [c;,¢;]% = [e;,¢j]71. Since G* = (a?) and
(a?) is contained in the centralizer of ¢;, we get that [c;, ¢;] = a? .
Moreover, since b has order 4, we have that b € Cg({(c;,¢;j)). This
means that G contains (b) X (¢;, ¢;) which is isomorphic to Cy X Dg,
a contradiction, because Cy x Dg is not monotone. Then, (c¢;,¢;) is
abelian.

Now, suppose a® = a~1*4" with |a*"| < 2. We have that (ba’ [ ;)% =
an2n_ls, for some s. Therefore, for every g € (a,ci,...,c.), we have
that |bg| < 4. This means that b ¢ H4(G), a contradiction.

This implies that a® = a~ 7%, with |a*"| = 4.

So we have that G = (a,b,c1,...,¢,) where |a| =27, [b| =4, |¢;| =2,
a® = a7 with |a*?| = 4, a% = o' T with |a?i] < 2, b% = b and
¢

C.

./ = c¢;. Suppose that there exists ¢; such that a“ = a't4hi | with

la*hi| = 2. Up to replacing ¢; with ¢;b?, we may assume that ¢; is in
the centralizer of a.

So we have that G = (a,b,c1,...,¢), with |a| = 2", |b] = 4, |¢;| = 2,
{c1,...,¢c.) is elementary abelian and central in G and a® = o= 114"

with |a??| = 4. Up to replacing b with ba, we obtain that G is in 5.

- Suppose that |a| = 4. Since (a,b) is such that G* = (a*,b*), and a* = 1,
we have that G* = (b*). In particular, since exp(G) > 8, we have that
a® = a1, |b| = 2¥ > 8 and, since (a,b)G*/G* is isomorphic to Ky we
have that (a) N (b) = 1.
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We now prove that (c;,c;) is abelian. Suppose that ¢; and ¢; do not
commute. Then, [¢;,¢j] € G* = (b*). Since ¢? = 1, we have that
[ciy ¢l = [ci,e;]7t. Now, (b%) is contained in the centralizer of ¢;.
Then, we get that [¢;, ¢;] = p2" Moreover, since a has order 4, we
have that a € Cg({(c;,c;)). This means that G contains (a) x (¢, ¢;)
which is isomorphic to C4 x Dg, a contradiction, because Cy x Dy is

not monotone. Then, (¢;, ¢;) is abelian.

So we have that G = (a,b,c1,...,c.) where |a| = 4, |b] = 2F, |¢;| = 2,
a® = a7l a% = a, b% = b1 with |p*Fi| < 2 and ¢ = ¢;. If
b = 1 for every i, then G is in %5. Suppose that [b*i| = 2 for some
i. Up to reordering the indices and up to replacing in case ¢; with
cic1, we may assume that b% = b for every i > 2 and b = b1+4*1 with
|b¥1] = 2. Let ¢ = c1b?" . Then a¢ = a, ¢ = ¢!, a® = a1 and so

G = (a,b,c) x (ca,...,¢) is in G5.

- Suppose that |a| = 2" > 8, [b| = 8 and (a) N (b) = (a®" ). Since b* € (a),
we have that a® = o= "4 with |a*?| < 4. If |a*"| = 4, then we have
that |ba| = 4, and so, up to relacing b with ba we are in the first case
studied.

So, we may assume that a® = o= 174" with |a4h] < 2.

We now prove by induction that G is isomorphic to (a, b, c,d) x E X A,
with A elementary abelian, E extraspecial, |a| = 2" > 8, |b| = 8 and
(@) N (B) = (a® ") and a® = a1 with |a¥t| < 2, a¢ = a4 with
la*h| <2, b° = b and a? = a, b? = b1 742 with |p*2| < 2.

This means that if ¥ # 1, then G is a group in %4. Otherwise G is in
(55 or in %6-

We now show that, for all ¢ and j, the commutator [c;,c;] is con-

. . -1
tained in (a®"

), and so the subgroup (c;, ¢;) is either abelian or di-
hedral. Suppose that (c;, c;) is not abelian. Since c? = 1, we have that
[ci, ci]% = [ei,¢;] 7t and since [¢;,¢;] € G* = (a?) < Ca((ci,¢j)), we

on

have that [c;, ¢;] = a ~'. So our claim is proved.

Suppose firstly that (c1,--- ,c,) is abelian. Then, since we have that
a% = a' T with |a*"| < 2 and b% = b1k with [p**i| < 2. Up to
reordering the indices and up to replacing in case ¢; with c;c1, we may
assume that a® = o'+ with |a*"1| < 2, and a® = a for every i > 2.

Moreover, up to reordering the indices and up to replacing in case c;
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with ¢;co for i > 3, we may assume that b = b H4%1 with |p*F1] < 2,
be2 = pltihe with |b72| < 2 ) and b% = b for all i > 3.

Hence, up to replacing in case b with ba, we have that G is equal to
{a,bcy, -+, ), with |a| = 2" > 8, |b| = 8 and (a) N (b) = (a®" )
and a® = a7 with |a*?] < 2, @@ = oM b = b, 02 = q,
b2 = pl+4h2 and a% = a, b% = b for all i > 3. Therefore, if a*™ =1,
then, up to replacing ¢ with 20?2, we get that G is in %5.

If [a*"| = 2, then up to replacing co with b2, we get that G is in
G-

Suppose now that (c1,---,¢,) is not abelian. Then, up to reordering
the indices, we may assume that (cj,c2) is dihedral with [c1,co] =

2”1 We have that a® = a! ™" with |a®1| < 2, a2 = a!T4h2 with
lathz| < 2, b = bIH4F1 with [p%1] < 2 and b2 = bIHF2 with [piR2| < 2.

Hence, up to replacing a with ac’lmcé‘1 and b with bc1 02 , We may
assume that (a,b) < Cq((c1, ), |a] = 27, b* = a2, ab = g 1t
with || < 2 Now, for all i > 3, we have [c1,¢;] = a*" k“ and
[ca, ¢;] = a®" *2i. The element clc1 cg " is in the centralizer of (¢;, ¢;)
and, being [(01,...,cr>,<cl,.. e)] < (@), we have that either
¢k has order 2, or ¢ 81 has order 4 with (¢t 511)2 = 2"
Therefore, up to replacing ¢; with clcl21 cl;“ or with ¢;c ]fz’ S“ 27%2, we

may assume that ¢; has order 2 and is in the centralizer of (c1, c2).
This shows that G = (c1,¢2) * (a,b,c3,- -+ ,¢). Since (a,b,c3, -+ ,cr)
satisfies the same hypothesis of G and |{a, b, c3, - , ¢ )| < |G|, we can
conclude by induction that G is in %j.

- Suppose ‘a| =8, ’b’ = 9k > 16 and <a> N <b> _ <b2k_1>_
We have that a® = ¢~ 174, In particular, we get a? = a, 257 0 has
order 4 and G* = (a*,b*) = (b%).

If there exists 7 such that a% = a°, then <b2k_3a, ¢i) is not metacyclic,
because it contains the 3-generated abelian subgroup (c;, a2b2k72, at).

Therefore, we have that a“ = a, for all 1.

Suppose there exists (c;, ¢;) non abelian. Since c% = 1, we have that
[ci,cj]% = [ci,cj]7t. Now, [ci,¢j] € G* = (b?) and (bY) € Ca((c)),
and so [¢,¢j] = »2""'. The subgroup (bzkiga,ci,cﬂ is isomorphic to
Cy x Dg, which is not monotone, a contradiction.

Then, we get that (c¢;,c;) is abelian for all ¢ and j.
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So, we get that a® = a~1T4,

a® = q for all ¢ and (c1,...,¢,) is
elementary abelian. Since b% = b'+**i with |b**¢| < 2, up to reordering
the indices and replacing perhaps ¢; with c;c;, we may assume that
ber = bR with [p**1| < 2 and b = b for i > 2.

Up to replacing ¢; with clbzkfzkl, we get that G is in %5.

- Assume now, |a| > 8, |b| > 8 and G* = (a*, b*) is not cyclic. So, we have

a® = a7 and Qy((a, b)) < ®((a,b)).

We now prove that (c;, c;) is abelian.

Suppose that ¢; and ¢; do not commute. Then, [c;, ¢;] € G* = (a%,b%),
and (a?,b%) is contained in the centralizer of ¢; and of ¢;. In particular,
this implies that [c;, ¢;] € Q1 (G?).

Since G? is modular and it is 2-generated, we have that Q1((a,b))
has order 4. In particular, there exists z € Qp({a?,b?)) such that
(z) N {ci,c;) = 1. Moreover, since G* is not cyclic, z € (a*,b) =
®({a?,b?)). Now, G? is a powerful group and so there exists d € (a?, b?)
such that d? = 2. Since (a?,b?) < Cg({ci, ¢;)), we have that G contains
the subgroup (d, ¢;, ¢;) isomorphic to Cy x Dg, a contradiction, because
Cy x Dg is not monotone.

This shows that the subgroup (c1,...,¢.) is elementary abelian.

- Suppose that |b?| = [a®"|.

Since 2" is not central in (a,b) and (a) N (b) < Z({a,b)),
we get that (a) N (b) = 1. Moreover, we have that (ba)? =
b2a*" and so Q1((ba)) = Q1((a)). If [b*i| = 2, then the sub-
group (ab, ¢;) contains the 3-generated elementary abelian sub-
group <a2n71 B2 ¢;). Moreover, up to replacing ¢; in case with
;b2 ", we may assume that a%hi = 1.

Hence, G is a group in the family %5.

- Suppose now |[b?| = |a*"|. Now, we have that (ba)? = b?a*". If
(@) N (B) = (a®" ") = (12" 7"), then |ba| = 2" and |(ba*h)?| =
2F=2 — |4®"|. Hence, we are in the previous case.

So, we may assume that (a) N (b) = 1. Now, |ba| = 2* and
(ba)?"™" = 2" 'a2""". Then, we have that a* = 1 if and only
if ¥*% = 1. In fact, suppose that a* = 1 and |p**i| = 2. Then
(ba, ¢;) is not metacyclic, because it contains the 3-generated el-

. k—1 -1 . . .
ementary abelian subgroup (b a?' " bt ¢i), a contradiction.
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If [a*"| = 2 and b** = 1, then (ba,c;) is not metacyclic, be-
cause it contains the 3-generated elementary abelian subgroup
<b2k_1a2"_1, a*hi c;).

Therefore, if a*? = 1 for every i, then G is a group in the family
Cy.

Suppose that |a*| = 2 for some i. Then ;b2 is an element of
order 4, such that (¢;b®" ") is central (a,c1, ..., ¢) and b=t
Therefore, we have that G is in the family %5.

47| We have that ba is an element of order 2,

- Suppose now [b%| > |a
with (ba)?" " = 2",
We distinguish two cases depending on the size of the intersection
{a) N (b).
Suppose first that (a) N (b) = 1. Then, if [a*"| = 2, then the
subgroup (ba,c;) is not metacyclic because it contains the 3-
generated elementary abelian subgroup (kafl,aQTLil,cl). Then,
we get that a*?i = 1 for every i € {1,...,7}.
If b*: = 1 for every 4, then G is in the family %5.
If |6**i| = 2 for some 4, then up to reordering the indices, we may
assume that [b**1| = 2 and, up to replacing in case ¢; with c;c;,
we may assume that ¢; is central in G for every ¢ > 2. Up to
replacing c; with clbzk_z, we get that G lies in 65.
Suppose now that (a) N (b) = (2" ") = (B2 7).
If |6?| > |a|, then we have that a* = 1. In fact, if |a*"| = 2,
then the subgroup (b*"a,c;), with |b*"| = |al, is not metacyclic,
because it contains the 3-generated elementary abelian group
<b2k72a2"72,a2n71,ci>. Hence, we have that a* = 1 for every
i €{1,...,r}. Up to reordering the indices and up to replacing
¢; with ¢;c for ¢ > 2, we may assume that b1 = btk with
b*1| < 2 and b% = b for every i > 2. Up to replacing ¢; with
clekizkl, we get that G lies in 65.
Suppose now that [b?| < |a|.
Up to reordering the indices and up to replacing ¢; with c¢;c; for
i > 2, we may assume that a® = a'T*" with |a*"1]| < 2 and
a® = a for every ¢ > 2. Up to reordering the indices and up to
replacing ¢; with ¢;co for i > 3, we may assume that b = pl+4k1
with b1 < 2, b2 = b1H4F2 with [b*F2| < 2 and b% = b for every
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1> 3.

If a*™ = 1, then, up to replacing ¢; with clek_le and cg with
cob? k2 e get that G is a group in %s.

If [a*"1| = 2, then up to replacing in case b with ba we may assume
that b1 = 1. Up to replacing ¢y with 262" %2, we get that G
is in %g.

O]

In the last part of this section we deal with non trivial monotone 2-
groups with G = Hy(G) and G/G* in 7). The following lemma determines

the structure of a maximal subgroup of such a group G.

Lemma 5.16. Let G be a non trivial monotone 2-group with G = Hy(G),
and G /G* isomorphic to a group in <j.

Suppose that G = A(b) with AG*/G* abelian of exponent 4 and |A2G*/G*| >
4, [bG*| = 4, B®°G* ¢ A2G*/G* and aG* = a'G* for every a € A.

The subgroup H = A(b?) is modular and it does not involve Q.

Proof. Let G = (aq,...,as,¢1,...,¢,b), where A = (ay,...,as,¢1,...,¢p)
and AG*/G* = (a1G*) x -+ x {asG*) x {c1G*) x (c,G*) is abelian s > 2,
la;G4| = 4, |¢;G* = 2, [bG*| = 4 and a’G* = a1 G* for every a € A.
Let H be the subgroup (A,b?) = (a1, ...,as,c1,...,c, b?).

We first show that the subgroup H is powerful.
By Lemma 2.7 and Corollary 2.8, we have that G? is powerful and G* =
®(G?). Since G% = (a2,...,a2,b*)G*, we have that G? = (a?,...,a2,b?).
Moreover, G? = <a%i,...,a§i,b2i>. In particular, since G?> < H, we have
that G2 < H2 ™" for every i > 1.
The subgroup A satisfies the hypothesis of Proposition 2.14, and so A is
modular and does not involve Qg. In particular, A is powerful and, in order
to conclude that H is powerful, it is sufficient to prove that [a;,b%] € H*,
[cj,b%] € H* for every i € {1,...,s} and j € {1,...,r}.

Since, (a?,...,a2,bY)G*/G* = H2G*/G*, we get that (a2, ..., a2, bY)G* =
H2GY. From G? < H?™' we have that G4 < H?, and so H?G* =
H?2. Moreover, G* = (af,...,a},b*) < (a2,...,a2,b*), and so we obtain

(a2,...,a2,bHG* = (a?,...,a2,b*). Therefore, we have (a2,--- a2, b*) =
H?. In particular, H? is the Frattini subgroup of a monotone group and so

it is powerful. In particular, H? = <a%i, . agi, b2i+1>.
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Now, let a € A such that a®> ¢ G* The subgroup (a,b) is such that
{a,b)G*/G* is isomorphic to Ka. Therefore, by Lemma 2.13, we have that
(a,b) is non-modular metacyclic, with (a2',b2') = (a,b)?. Then, there exist
x,y € {(a,b) such that (a,b) = (z,y) and ¥ = z~!T4". Since (b)G* is not
normal in {(a,b)G*/G*, we have that b ¢ (z,y?). Hence, b = y/z’ with
j odd, and so {(a,b) = (z,b), with (z) < (2,b) and 2* = 271+ Now,
g = 18K +16K and so [2,b%] € (28). Now, ([z,b%]) = ([a,b?]) and so we
get that [a,b%] € G® < H*. Since A is generated by {a € H : a® ¢ G*}, the
previous argument shows that H is powerful.

Now, H/H* = (a1 H*) x --- x {asH*) x (¢t H*) x -+ x {c, H*) x (bH?)
is abelian with |H/H*| > 4. In fact, from H* < G* < H?, it follows that
|H?/G* < |H?/H*|. Since A < H, we have that A2G* < H?, and so, being
|A2G*/G*| > 4, we have that |[H%/H*| > |H?/G*| > 4. Hence, H satisfies
the hypothesis of Proposition 2.14 and so H is modular and does not contain

a subgroup isomorphic to Qg. ]

The next lemma states some properties of non-trivial monotone 2-groups
with G = Hy(G) and G/G* isomorphic to a group in .

Lemma 5.17. Let G be a non-trivial monotone 2-group with G = H4(G).
Suppose that G = {ay,...,as,c1,...,cr,b), where (a;G*) x -+ x {asG*) x
(c;G*) x - x (¢, G*) is abelian with s > 2, |a;G*| = 4, |¢;G*| = 2, [bG*| = 4,
V2G* ¢ (a1G*Y) x -+ x (asGY) x (¢;GY) x (c,GY), abG* = a71G*, for every

a € (a1,...,05,C1y...,05).
Let A be the group (a1, ...as), K be the group (A,b*) and H be the group
<K,Cl,...,Cr>-

Then, the followings hold:

1. the group K is modular, it does not involve Qg and (K, b>2i =G? for

every i > 1;
2. the group A is modular, it does not involve Qg and A* = G* N A;
3. we may assume that |c;| = 2;

4. we may assume that G = K{ci,...,cp) with {(c1,...,¢r) elementary
abelian. Moreover, K* < Cg(c;) for every i, ¢; € Ng({a)) for every
a € A and c¢; € Ng((b)).
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Proof. By Lemma 2.7, G? is powerful and ®(G?) = G*. Since (K, b)2G* =
G?, we have (K,b)?> = G? and so (K, b>2i = GQi, for all ¢ > 1. Moreover,
K < H and, by Lemma 5.16, the group H is modular and does not involve
Qs. This proves (1).

By Lemma 5.16, the group H is modular and does not involve (Jg. Since
A is a subgroup of H, the subgroup A is modular and does not involve
Qg. In particular A is powerful, and so A? = <a%i, . a§i>. Now, AG*/G*
is isomorphic to a direct product of s copies of C4. Hence, we get that
A% = A2(G* N A), ie. (G*NA) < A* = ®(A?%). Since A is modular,
A%/(G* N A) is an elementary abelian group of order 2%, and A? is at most
s-generated, we get that A* = (G* N A). Then, A/A? is isomorphic to a
direct product of s copies of Cy. This proves (2).

Since ¢? € G* = (A*,b*), and since A is powerful, there exists a € A\ A?
such that ¢ € (a,b)*. Now, applying Lemma 5.14 to (a,b,c;), we may

assume ¢; of order 2 and (3) is proved.

In order to show that ¢; normalizes every element of A, it is sufficient to
check that ¢; normalizes every a € A\ A%, because for every d € A%, being A
powerful, there exists a € A\ A2, such that d € (a).

So let a € A\ A2. In particular, a® ¢ A%, because all the elements of A not
in A% have order 4 modulo A%.

Consider now (a, ¢;). Since ¢; has order 2 and (a, ¢;) has a quotient isomor-
phic to Cy x Co, we have that (a,¢;) is not semidihedral. Then, by Lemma
2.11, we have that ¢; normalizes (a) and a% = a'T*", with |a**| < 2. There-
fore, we have that ¢; € Ng({a)) and ¢; € Cg(a?), for every a € A\ A2. Since
A? is generated by {a? : a € A\ A?}, we get that ¢; € Cg(A?).

Consider now (b, ¢;). Since ¢; has order 2 and (b, ¢;) has a quotient isomor-
phic to Cy x Co, we have that (b, ¢;) is not semidihedral. By Lemma 2.11,
we have that ¢; normalizes (b) and b% = b'+4* with |b**| < 2. In particular,
we get that ¢; centralizes (b?). Since (A% b?) is the Frattini subgroup of G,
we have that ¢; centralizes G2. This proves the second part of (4).

Suppose now that (c;,c;) is not abelian. Since ¢ = 1, we get that

i
ciyc]% = [eiycj]™t. Now, [ei, ¢j] lies in G* and G* < Cg({ei,¢j)). Then
[ci,cj] is in G* and has order 2. Now, A is modular, it does not involve
a Qg and [A : A*] > 4. Then, there exists an element d of order 4 in A
such that (d) N (c;,¢j) = 1. Since d is in the centralizer of (¢;, ¢;), we have

that G contains a subgroup isomorphic to Cy x Dg, which is not monotone.
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Therefore, we have that (c;,cj) is abelian and also the first part of (4) is
proved. O

Using the previous results, in the following remark, we set up some

notations useful to continue our investigation.

Remark 5.18. Let G be a non trivial monotone 2-group with G = H4(G).

Let G = {ay,...,as,c1,...,cyu,b), where (a1G*) x -+ x {a;G*) x (c1G*) x
- x {c,GY) is abelian with s > 2, |a;GY = 4, |G = 2, |bG*| = 4,

VG ¢ (a1 GY) x -+ x {asGY) X (e1GY) X (c,GY), abG* = a7 G, for every

A €A1, ... ,05,Cly...,Cy)-

Let K be the group (a1, ...,as,b?), let L be the group (K,b) and let H be

the group (K, c1,...,cr)

Since G = Hy(Q), we may assume that |b| > 8. Now, by Lemma 5.17, the

subgroup K is modular and does not involve Qg.

Since {a;,b)G*/G* is isomorphic to Ko, by Lemma 2.13, we have that G* N

(a;,b) = (a},bY). From a?(G* N (ai, b)) = a; (G N (ai,b)), it follows that

CL? _ ai_1+4hi piki

Since (a;, b2ki> is modular, we get that there exists x; € {a;, bzki> with (x?) =

<a‘—2+4hi b4ki) )

7

In particular, (x;,b) = (a;,b) and 2% = x’i_1+4ri'

Let X be the subgroup (z1,...,xs). We have that K = (X,b?), and so
X is a modular group that does not involve Qg.
Moreover, X* = <x‘11, oo xdy and so X/ X* is isomorphic to a direct product
of s copies of Cy. Clearly, we have that b normalizes X and L = (X, b) is
such that L)L* = ((x1L*) x - - - x (xsL*)) x (bL*), where |z;L*| = 4, |bL*| = 4
and z°L* = 2~ 'L* for every z € X.
Moreover, by Lemma 5.17, we may assume that {ci,...,c,) is elementary

abelian and so G is equal to (X,b){(c1,...,cy).

The next lemma shows that, if X and b are as in Remark 5.18, then the
derived subgroup of X is contained in € (X).
By Remark 2.1, in order to show that the derived subgroup of X is contained
in Q(X), it is enough to prove that for every i and j in {1,...,s}, the

commutator [z;,z;] € Q1(X). So, we prove the following lemma.
Lemma 5.19. Let X, b and L as in Remark 5.18. Then |[z;,z;]| < 2.
Proof. Since the subgroup (z;,x;) is metacyclic, the subgroup ([z;,z;]) is

the derived subgroup of (z;, z;).
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Suppose that |([x;, z;])| > 4. Since (x;, ;) is normalized by b, and (;, :vj>2l =
?l,x?l> are characteristic subgroups in (z;, x;), we can consider the quo-
tient (z;, z;, b>/<xi,mj>2l with ¢ > 4, such that (z;, x;, b)/(a:i,a:j>2l = (&;,%,b),

(x

with ;% = .fi[l_'i,.fj] = fifﬁhifj‘lhﬂ' and |.fi4hifj4hj‘ = 4, ¥ = fifl+4ri,
fjb = g; 7. Being a quotient of a monotone group (&;,z;,b) is still
monotone.

The subgroup (z;, <;) is metacyclic and modular with derived subgroup
of order 4.

Therefore, there exists z and § in (Z;, &;), such that (z,y) = (z;,2;) and

TV = gitdt 4| = 4. In particular, we have that (z4, 4*) is central in

z,7) and we also have that (z2,3?) is abelian. Since (z%, 7%) = (7%, ©;*),
J

, where |

we have that #;* and #;* are central in (%, %;) and (&%, 2;2) is abelian.

Since b induces an automorphism on (&, £;), from ;% = &; ;%ig;4hi,
CEsb T oAb oan
we have that (£;°)% = z;°(z;4hiz;4h)P.

We now show that if b inverts the element fj4hj £;*" | then we get a contra-
diction.
In fact,

(fig)fjg _ (fi_1+4ri)fj71+4rj

_ o a 1-dr; 5 =144, = —144r;
T zji + szj +ar;
1

TiTq fj_ll_'i4ri
gl ag
(xi l)arj 551'4”'

On the other hand,

—b(=A4hi = Ah;\b  _ = —1+44r; (= 4k = Ahi\—1
xT; (JL‘Z Z.%'j J) = Z; +r’(.%'7; Zl’j J)

g1 — ap 1 e — —dhs — —dh.
Therefore, we have that (z;71)% ;4" = &, o4z 4h1$j 4hi and so

_ m.—1 — 1 — —4h, — — .
(@)% = gLy A~

)

which means

(fi_l) — (fi—l)fjji—4hifj_4hj
— = . 4h  Ahi\—1 % —4h; = —4h;
= (a:zarz "X J) Z; ‘T J
— fiflx—ilehi x—jf4hj T f4h¢fj —4h;
— 15 8h; = 8h;

Ty Ty
— fi_l(fi4hifj4hj)2

So we get that (&;71) = 7; ! (#;*"12;4")2, a contradiction, because F;
has order 4, and so (#;%iz;45)% 2£ 1. This proves that b does not invert

@;4hi z;4hi | In the sequel we refer to (*) to recall this fact.

4hi = 4h;

l:l’/‘j

Since b acts as inversion on Q2((#;)) and on Qu((%;)), we have that

z;4hi 740 is neither in (#;) nor in (), otherwise we contradict (). We also
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have that (7, ;1> is not cyclic (otherwise <xf,x;1> (z}) or (xf, m?} = <m§>,
and again we contradict (x)).

We now show that the elements of order 2 in (#;,Z;) are contained in
(x_i4v x_j4>'
In fact, being (&, 2;)/{z;*, 2;) isomorphic to Cy x Cy we have that there are
no generators of order 2. So suppose that there exists an element 2z of order
2, such that z € (#;%, ;%) \ (#;%, #;). Since the subgroup (&;, ;) is modular
metacyclic, we have that (#;%, 2;%) is the Frattini subgroup of (z;2, #;%), and
so 7 is a generator in (#;2,;?). This implies that (;%, #;%)? = (&%, 2;1) is
cyclic, a contradiction.

Therefore, Q1 ((#;, ;) is contained in (#;*, 2;*) and so it is central.

This implies that |7;4"| > 4 and |ac_ 4hi| > 4. In fact, suppose that

|z;4"i| < 2. Since |74 z;4hi | = 4 and ;" is central we have that |z;4| =

4hi " a contradiction to (). Using the same

4. Tt follows that b inverts xj hi &,
argument, if we suppose that |.fj4h1'\ < 2, then we reach a contradiction.
Hence, we have that |7;%| > 4, |#;4] > 4 and (#;%, ;%) is not cyclic.
This means that (;2,%;2) is an abelian group, with non-cyclic Frattini
subgroup and such that (7;2)° = (£;2)~'*% and (£;2)0 = (4;2)~ 147,
Moreover, the structure of the quotient (w;,x;,b)L? /L4 guarantees that
(b) N (@2, ;%) < (@', ;%) N (bY),
We may assume, without loss of generality, that |z;%| > |2;2].
We distinguish three cases depending on the structure and the intersections

of 01 ((b, 7;%)), Q1 ((z:2,b)) and of Qy (&%, 7;2)).

- Suppose that Q1 ((b, 7;%)) # Q1 ((z:2,b)). If |(2;2)474"i| > 4, then the
subgroup (z;2#;2,b) contains the 3-generated subgroup 2 ({22, ZL‘ ,b)),
a contradiction.

—1+4r;

Therefore, we have that z° = , for every z € (#;%, #;). In par-

ticular, b inverts every element of order 4 in (#;%, #;1)), a contradiction
to ().

- Suppose that Q;((b, 7;2)) = Q1 ((#;2,b)) and Q ((z:2, 7;%)) # Q1 (&%, ).
Then, we have that Qa((z;2)) £ Q1 ((#;%,b)). Therefore, there exists
an element #;%17;%2 such that O ((7;2, ;%1 2;%2)) = O ((2;2, 7;2)).
If |(#;2)%i=47i| > 4, then the subgroup (#;%12;%2 b) contains the 3-
generated subgroup Q4 ((z?, j,b>), a contradiction. Therefore, b =
z=1H7 for every z € (#;*,#;%). In particular, b inverts every element

of order 4 in (#;*,#;1)), a contradiction to (x).
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- To conclude, suppose that ;((b, z;
We have that (#;%, ;%) N (b) = (b
tor ;217,22 such that (z;217,;%2)2* = p¥. Tt follows that for some 7,
and aj such that (b¥71) = (BY) = ((#;2015;22)20) = ((g;205,%2)%),
the element (;%12;%2)*1p~27 is an involution which is not in 1 ((b, 7;))

(otherwise b?7 € (;, ;).

%) = ((#:%, ) = N (3%, 7,%)).
b*7). Therefore, there exists a genera-

Moreover, since afi%fj% is a generator, at least one of i; and is is
odd.

Suppose that i1 is odd. Now, if |(#;2)4" 47| > 4, then (z;%"12;%2,b) is

not metacyclic, because it contains Q1 ((x;, b)) x {(7;%"12;22)21p=21),

Suppose that ip is odd. If |(2;2)457| > 4, then (£;*12;%2,b) is
not metacyclic, because it contains Qy({z;, b)) x ((&;212;22)1p=2m),

This implies that, in both cases 20 = z~1+47

, for some 7, and for every
z € (z;*,7;%). In particular, the element B inverts every element of

order 4 in (z;%, 7;%), a contradiction to (x).

This shows that even this case does not arise, and finally proves that |[z;, z;]| <
2. O

Now, the previous lemma shows that [X, X| < ;(X) and, by construc-
tion, X/X* is isomorphic to a direct product of s copies of Cy. In a modular
metacyclic group where the derived subgroup has order at most 2, the Frat-
tini subgroup is central. Recalling that X is modular and using Lemma
5.19, we get that X? is central in X. Moreover, being Q;(X) contained in
X2, we have that Q;(X) is central in X.

In the next lemma, we study the size of the intersection of X and (b).

Lemma 5.20. Let G, L, X and b be as in Remark 5.18.
Then X N (b) < Qy((b)).

Proof. In order to show that X N (b) < Q;((b)), it is sufficient to show that
there are no element of order 4 in X centralized by b.

The proof is done by induction on the exponent of X.

If exp(X) = 4, then X is abelian and its generators are inverted by b.
Therefore the claim holds.

Suppose now that exp(X) = 2" > 8. Let x be an element of order 4 of
X. Ifz% ¢ X2""' then x is an element of order 4 in X/X2"717 and so, by
the inductive hypothesis, x is not centralized in X/X 2nt by b. Therefore,
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b does not centralize x in X.

If 22 € X' then (z) = Qo((y)), where y is an element of maximal order
in X. Since b acts as inversion on X/X* and X2 = (22',... 2%}, we have
that b acts as inversion on every abelian section of the form X z /X 22 I
particular, b acts as inversion on X 2% Since y is an element of maximal
order, we get that = is an element of order 4 in X 22, Hence, b inverts .
Therefore, there are no element of order 4 in X centralized by b.

It follows that | X N (b)| <2, and so X N (b) < Qy((b)). O

In the following lemmas, we determine the subgroup L = (X, b).
Since, by Lemma 5.20, the intersection X N (b) has order at most 2, we
study separately the two cases. Indeed, in Lemma 5.21, we study the group
L when the intersection X N (b) is trivial. In Lemma 5.23, we study the
group L when the intersection X N (b) has order 2.

Lemma 5.21. Let G, L, X and b be as in Remark 5.18.
Suppose that X N (b) = 1.
Then L is in €5.

Proof. Let x be in X. Since X is normalized by b and X N (b) = 1, we have
that (x,b) N X is normalized by b. This intersection is cyclic and contains
(x). So, we get that () is normalized by (b).

Since this holds for every x € X, we have that b is a power automorphism

of (z1,...,xs). Moreover, (x1,...,xs) is modular without Qg, and so, up to
renaming the generators, we may assume that either (xy, - x) is abelian
or (x1,...,Ts 1) is abelian and x% = 2'*4 for every x € (x1,...,75_1).

If (x1,...,x5) is abelian, then, since b acts as a power automorphism, by

Lemma 1.5.4. on page 32 of [13], we have that b is a universal automorphism
on X. It means that L = (X, b) is in %5.

Therefore, from now on, we suppose that (xj,...,zs) is non-abelian.
We may assume that (z1,...,2s-1) = (x1) X+ -x(x4_1) is abelian, |z;| < |z}
for every 1 < j <i<s—1and 2% = '™ for every x € (21,...,25_1).
Since b is a power automorphism on the abelian group (z1,...,zs_1), we
have that b is a universal automorphism on (x1,...,zs_1), i.e. xb = g~
for every x € (x1,...,Ts-1).

Furthermore, % = z; 144",
We have that 2°%s = 2% for every x € (1, ...,25-1), i.e. [b, 7] is in the cen-
tralizer of (z1,...,25_1). Since ([b, z5]) = (x2), we get that x4 acts as a non-
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trivial automorphism of order 2. In particular, if 2" = exp({x1,...,T5-1)) =
1], then 2% = 272" for every z in (z1,...,2s_1).
We deal separately with the cases |x1| > |z4], |z1] = |zs|, and |z1] < |zs].

Put |z1| = 27, |z;| = 2% (for i € {2,...,5 —1}), |zs| = 2™ and |b| = 2*.

1. Suppose first that |zs| > |z1].

Since XN(b) = 1, we have that the 3-generated subgroup Q4 ((z1, x5, b))
is equal to Q1 ({x1,xs)) x Q1((b)).

We show the following fact:

Claim 1: for every x € (x1,...,xs—1) such that |z| = 2", we have that
01((2)) = D ((24)).

Suppose that Q;((z)) # Q1 ((xs))-
In particular, O ((z,zs)) = (22", 22" ") and, since X N (b) = 1, it
follows that Qq((z,zs,b)) = <x§m71,m2n71,b2k71).

Note that (z22)" = (zx2)~1H4rsg=4+47s We show that if z =447 £
1, then (xx2,b) is not metacyclic. In fact, since |z| < |zs|, we have
that Qi ((z22)) = (227 22" '7), where j € {0,1}. Therefore, since
= +4rs £ 1 we have that 227 € (xx2,b). This implies that
O ((z, 7)) < (w22,b). Thus, (zx2,b) contains the 3-generated ele-
mentary abelian subgroup Q4 ((z, zs, b)), a contradiction.

In the rest of this chapter, we implicitly use the previous argument,
each time we need to show that a certain 2-generated group contains
a 3-generated subgroup.
Therefore, we have that 2 = =147,

Now, being |b?| > |287¢| > |287¢|, we have that (zg,br) is not meta-
cyclic. Indeed, Qi((bz)) = (b*" 22" 7'9) where j € {0,1}, 2 =
2747 02" and so (x4, ba) contains the 3-generated elementary abelian
group O ((z, zs, b)), a contradiction. This concludes the proof of Claim

1.

In particular, Claim 1 implies that (21,...,2,1)2" = Qi ((z1)) =
M ((2s))-

Since (x1,xs) is a 2-generated modular group, there exists an even
integer i such that O ((x1,2s)) = O ({(w12ls)) x Q1 ({z4)).

Therefore, if 331_4T+4TS # 1, then the subgroup (x1z%,b) is not meta-
cyclic, because it contains the 3-generated elementary abelian group
Q1 ({1, xs,0)).
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It follows that 28 = x4,

. 2 1—8rs+16r2
Since 22" = 23T we get that [b2] > 257 ].

We now show that if [b?| > |z%7s|, then we reach a contradiction.

In fact, suppose that |[b?| > |23"s|. Since Q; ((bx)) is equal to <b2k71x§m_1j),
where j € {0,1}, and (z12%)b% = (zy2i) 422" we have that
the subgroup (w12, bxs) is not metacyclic because it contains the 3-

generated elementary abelian group Q4 ((z1, zs,b)).

. . k—1
Therefore, we have [b?| = |2%|. Replacing 1 with x1b*" , we get
k—1 . . _ .
that (216>, 29,...,x,) is abelian, and 2® = 271+ for every x in
2k71
<£U1b ,l’g,...,$5>-

This means that L is in %5.

. Suppose that |z1| = |zs|.

Since X N(b) = 1, we have that Q;({(x1,xs,b)) = Q1 ((z1, zs)) X Q1 ((D)).
We distinguish two cases depending on € ((z5)).

Suppose first that Q1 ((z1)) # Q1 ((zs)).

Since (z125)" = (xlxs)_1+4’”Sx174r+4”+2n_1, if xf4T+4Ts+2n_l # 1, then
the subgroup (xiz,b) is not metacyclic because it contains the 3-
generated elementary abelian group Q4 ((z1, zs,b)).
Therefore, we have 2% = xf1+4rs+2n_l. In particular, x’f = xifgrﬁwrg
and so [b?| > |25

If [b2| > |#]"*|, then the subgroup (z,bx1) is not metacyclic because
it contains the 3-generated group Qq({x1,xs,b)).

k—1 .
¥ and so zb* centralizes

_ n—1
7 1+4rs+2

This means that we have |b?| = |z
(21,...,25_1). Moreover, since (z:b% )0 = , we have
that L is in %5. This concludes the case Q1 ((z1)) # Q1 ((zs)).

From now on, we assume that Q;((zs)) = Q1({(x1)).

In particular, this yields (z1,...,z5)2" " = Qi((z1)).

The element xjxs is such that Q((z1,25)) = Q1 ({(z12s)) X Q1((xs)).
We have that (z12,)? = (azlxs)_1+47"5:z:171+47"+2n_1. Now, ifa:l_4r+4rs+2”71 #
1, then the subgroup (zjxs,b) is not metacyclic, because it contains

the 3-generated elementary abelian subgroup 2 ({z1,zs,b)).

— n—1 _ -1
Therefore, we have that 2% = 277+ and so also a® = g~ 1H+47s+2"
. 2 1-8rs+16r2
for every x € (x1,...,25—1). In particular, :L"l{ = S and so

b2 > ]x?rs\. Now, if |b?| > |:c‘1”s], then the subgroup (xsz1,bxs)

—1+4r5$%"_1

is not metacyclic. In fact, since (z12,)" = (z12) and
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Q1 ((bzs)) = <b2k71x§m_1j>, where j € {0,1}, we get that (xsx1,bxs)
contains the 3-generated elementary abelian group Q;({x1, x5, b)).
Therefore, we have that |[b%| = |2%|. Up to replacing zs with zsb?

we get that L is in %5.

3. Suppose, to conclude, that |z1] > |zs|.
Since X N(b) = 1, we have that Q; ((x1,xs,0)) = Q1 ((z1,x5)) x Q21 ((b)).

We first prove that we may assume that Qq((z1)) # Q1((zs)).
Suppose that Q1((z1)) = Q1 ((zs)). Since (z1,z,) is modular and 2-
generated, there exists 27" x4 such that Qi ((z1,xs)) = Q1 ((x3" ) x
Q1 ((z5)). Now, we have (23" z,)" = (:z:%ilzz:s)_1+4rac;4r+4“. Therefore,
if 274447 =£ 1, then the subgroup (7", b) is not metacyclic.
Hence, we have that 22"z, is such that (z3"'z,)? = (22%z,)~ 1,
) 2iq .
Qi (22 x)) # Q((x1)), and 7' *° = 212 ' Therefore, up to

replacing s with 7"z, we may assume that Q1 ((z1)) # Q1 ((zs)).

From now on, we assume that Q((z1)) # Q1 ((zs)).

Since (z3xs)" = (22z,) 1 g 4rH4rs if g4 +47s £ 1 then the sub-
group (z3,b) is not metacyclic (it contains the 3-generated elemen-
tary abelian group Qi((x1,2s,b))). This means that 2% = 271+4".
Since azlfz = az%_grﬂ&a, we have that |b?| > |2§7].

Now, if [?| > |2{"|, then the subgroup (zs,bx1) is not metacyclic (it
contains Q;((x1,2s,b)), which is 3-generated). If |z5™| = [b?|, then,
up to replacing xs with xstkfl, we get that (x1,...,z,) is abelian and

2b = 2714 for every x € X. Therefore, L is in %5.

O]

Just for the next lemma, we do not strictly use the notation defined in
Remark 5.18. In fact, to improve the presentation of the proof of Lemma
5.23, it is convenient to show a preliminary lemma where X and the auto-

morphism of b on X are as in Remark 5.18, but the order of b is 4.

Lemma 5.22. Let X and the automorphism of b on X be as in Remark
5.18. Suppose that the order of b is 4, and X N (b) = 1.

Then, there exists X a subgroup of L such that (X,b?) = (X,b%) and L =
X % (b), where x° = 74 for every x € X with | X% < 4.
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Proof. Let x be in X. Since X is normalized by b and X N (b) = 1, we have
that (x,b) N X is normalized by b. This intersection is cyclic and contains
(x). So, we get that () is normalized by (b).

Since this holds for every x € X, we have that b is a power automorphism

of (z1,...,xs). Moreover, (x1,...,xs) is modular without Qg, and so, up to
renaming the generators, we may assume that either (z1,--- ,z,) is abelian
or (x1,...,Ts_ 1) is abelian and z% = 2'T4 for every x € (x1,...,75_1).

If (x1,...,xs) is abelian, then, since b acts as a power automorphism, by

Lemma 1.5.4. on page 32 of [13], we have that b is a universal automorphism
and so the lemma holds with X = X.

So, suppose now that X is not abelian. Since X modular without Qg and

b acts as a power automorphism, we may assume that X = (z1,...,zs_1)(zs),
where (z1,...,25-1) = {(z1) X -+ x (¥5_1) is abelian and 2z} = g 14,
xt = x1+487 xb = x—1+47‘7 for every T S <ZC17 e 7«Ts—1>.

Using Lemma 5.19 and the fact that b has order 4, we obtain that x*s

1+

22" for every x € (21, ..., 35-1), exp((z1,...,25-1))" < 4 and |zdrs| <

4. We study separately the cases |x1| > |zs| and |z1| < |xg].

- Suppose first that |z1] > |zs].
Then, there exists « such that z{'x; satisfies Q1 ((z1, z5)) = Q1 ((xzs)) X

O ((z1)) = i ((2f2s) x D ((2s))-

—1+4+4 _
(L4, 1, _

_ n—1 _ n—1
NOW, (x%xs)b = 1+4r+2 axs 4r+-4rs+2 a

xfTs)
and so we get that 2% = x;1+4”+2"710‘.

If |#{"| < 2, then the subgroup (z{xs,br1) is not metacyclic, because
it contains the 3-generated elementary abelian subgroup € ((z§'zs))
(1) x (Bal).

Therefore, we have that |z{"| = 4.

Now, up to replacing z with x4b?, we get that (z1,...,zb?) is abelian
on which b acts as a universal automorphism, and the lemma holds
with X = (x1,79,...,2:b%).

- Suppose now that |zs| > |z1].
Since (z1,xs) is modular and 2-generated, there exists an even inte-
ger a such that Oy ((z1,z5)) = Q1 ({x122)) X Q1 ((z1)) = U ((z129)) %
Q1 ((zs))-

In particular, (z12%)" = (12) #5274 and so we get that
xb = x4 (otherwise the subgroup (122, b) is not metacyclic).

Since |x47¢| < 4, we get that |21™| < 2.
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If Q1((z1)) # 21((xs)), then the subgroup (x4, bxi) is not meta-
cyclic, because it contains the 3-generated elementary abelian sub-
group 0 ((zy, 21)) x (P,

Therefore, we have that Q;({(x1)) = Q1 ({xs)), and so, in particular, the
subgroup (z1,...,xs_1) is such that (z1,...,2,_1)%" = N ((z1)) =
0 ((z4)).

If [247s| < 2, then the subgroup (x12¢,bx,) contains the 3-generated
elementary abelian group Qi ((x1,zs)) x (b?x¥"s). Therefore, we have
that |z%"s| = 4, and so, up to replacing x1 with x1b?, we get that
(w102, 29, ..., 1,) is abelian, on which b acts as a universal automor-

phism. So the lemma holds with X = (x1b?, o, ..., 7).

Lemma 5.23. Let G, X, b, and L be as in Remark 5.18.
Suppose that | X N (b)| = 2.
Then L is in €5 or in s or in 67.

Proof. Let z € X. Since X is normalized by (b) and X N (b) = Q1((b)), we
have that (z,b) N X is normalized by b. This intersection is contained in
(z, 62" 1.

Since Q1((b)) < Q1(X), we get that Qq((b)) is central in (X,b) (see
Lemma 5.19), and we can consider the quotient (X,b)/Q1((b)).
The first paragraph of this proof shows that b acts as a power automorphism
on (X, b) /1 ((0)).
Since b£21((b)) has order at least 4 and X/Qq((b)) N (b1 ({b))) = 21((b)),
by Lemma 5.21 and Lemma 5.22, we may assume that b€2;((b)) acts as a
non-modular universal automorphism on the abelian group X/Q;((b)).

We distinguish two cases, depending on the structure of X.

1. Suppose first that X is abelian. Hence, there exists {z1,..., 25} in X
such that X = (x1) x --- % (xg), |x;| > |z;| for every ¢ and j with ¢ < j
and x% = $;1+4rb2k71ki, where k; € {0,1}.

Put |x1| = 27, |2;| = 2™ (for i € {2,...,5s}) and |b| = 2*.
We treat separately two cases depending on the size of (z1) N (D).

(a) Suppose first that (z1) N (b) = 1.

The element 62 is central in X, and so [b2| > exp((z1,. . ., x))".
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Since exp((x1,...,rs)) = |71|, we obtain that |z}"| < |b?.
We deal separately with the cases [b?| > |z{"| and |b?| = |2{7].
Suppose first that |b?| > |z{"].

. k-2 . . . k=2,
Since b*" "~ is central in X, up to replacing x; with z;6> ¥, we

may assume that b2 % = 1 for every i € {1,...,s}. It follows
that L is in 5.
So, from now on, we assume that |b?| = |z{"|. In order to prove

that this condition implies that L is in %5, we divide the proof
in two parts: in Claim 1 we study the case p2"7'k1 = 1 and in
Claim 2 we study the case |2 #1| = 2.

Claim 1: if b2* "% = 1, then 2" ki = 1 for every i € (2,-+-,8).

1+4r

In particular, this would yield that a? = 2~ for every x € X,

and so L is in 5.

Suppose that p2 R = 1, and suppose, by contradiction, that
for some i > 2 we get that [b** '%| = 2. This implies that
(i) N (b,x1) # 1. In fact, if (x;) N (b,z1) = 1, then the subgroup
(x4, bx1) is not metacyclic (it contains the 3-generated subgroup

<b2k71x%n71 , (L‘?ni71 ’ b2k71>)‘

Since (z;) N (x1) = 1 and Q;((x1,b)

n;—1 k-1
S

)= (22", 271, we ob-
tain that either z or 22" = 22" 2"

In the first case, the subgroup (x{z;, bx1), where |z{| = |x;|, is
not metacyclic, because it contains the 3-generated elementary
abelian group <x§ni_2b2k_2, x%k_l, b2k_1>.

On the other hand, if 22" = 22" '82""", then (z;,bz1) is not
metacyclic, because it contains the 3-generated elementary abelian
group <x?ni72(b$1)2k72,x%kil,b2k71>.

This contradiction shows that there are no ¢ > 2 such that
62" 7"%i| = 2, and so Claim 1 is proved.

Claim 2: if [p*""%1| = 2, then L is in .

We divide the proof of the claim in three steps.

The first step consists in proving that for every i such that (z;) N
(b,z1) =1 or |z5] < |z, then b2 ki = 1.

Suppose that there exists ¢ € {2, ..., s} such that (z;)N(b,z1) =1
and |b2k71ki| = 2. Then, the subgroup (z;,bzr;) is not meta-
cyclic (it contains the 3-generated elementary abelian subgroup

<b2k—1x%n—1 7 x?ni—l ’ b2k_1>).
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Suppose now that there exists i € {2,...,s} such that (z;) N
(b, 1) # 1, with |2 < |z1] and [p2" 5| = 2. Since (z;) N (1) =

1, (z;) N (b,x1) # 1 and Q((z1,b)) = (22", 62""), we get that

cither 22" = p2"" or 22" = 22" 2", In the first case,
let & be an even integer such that |z$f| = |z;|. The subgroup
(x{'z;, bxr1) is not metacyclic, because it contains the 3-generated
elementary abelian subgroup (x?ni_2b2k_2, ka_lm%n_l,b2k_l>. On
the other hand, if 22" " = 22" 2"
is not metacyclic, because it contains the 3-generated elementary

. n;—2,9k—2 n—1 k—1
abelian subgroup (z7 " b T, x?" [ b? ).

, then the subgroup (z;, bz1)

In both cases, we
reach a contradiction and so the proof of the first step of Claim

2 is concluded.

We now show that (z1,...,2:)2" " = Qi ((21)).

Suppose that there exists x; such that |z;| = 2". By construction,
we have that Qq((z;)) # Q1((z1)).

If (z;) N (b, z1) = 1, then, as seen in the first step of Claim 2, we
have b2° ki = 1, Now, the subgroup (x1,bz;) is not metacyclic

(it contains the 3-generated subgroup (z2" ' p2" 22" ")

, & con-
tradiction.

Therefore, we obtain O ((z;)) < Q1((b,z1)). Since (x;) N (z1) =1
and O ((z1,b)) = (@', b2"7"), it follows that either 2" =
_ kafl

i .

n—1,9k—1 n—1
22" or a2

Suppose first that x?n_l = x%n_lb2k_1. If ]b2k_1ki\ = 2, then the
subgroup (x;,br;1) is not metacyclic because it contains the 3-
generated subgroup (x%n72b2k72, b2k7133%n71 , b2k71>.

Hence, we get that if x%Thl = x%n71b2k71 then b2° ki = 1. Now,
being Q;({bz;)) = (x%n_1>, the subgroup (z1,bz;) contains the
3-generated subgroup (z2" ", 22" % (bz;)2 *, 2" "), a contradic-

tion.

In particular, this shows that x?%l = p2*"". Now, up to repla-
cing x; with x;x1, we have a generator of order 2", such that
Q) ((ziz1)) = 22" 2" and, using the argument in the previous
paragraph, we reach a contradiction.

This concludes the proof of the second step of Claim 2.

Summarizing, the first step and the second step show that if
n—1
2" =

627"k = 2, then (z1,...,x,) is abelian with (z1,.. ., 2,
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Q1((z1)), and b2 "*1 =1 for every i > 2.
Now, since the element 2" centralizes the subgroup (xa, ..., Zs)
and (2162 °)0 = (202" 7) 12" up to replacing 21 with

2102 "?, we obtain that the group L is in %5.

(b) Suppose now that (z1) N (b) # 1.
We may assume that (z1,...,25)2" " = Qi((z1)) = Qi((0)). In
fact, otherwise, up to reordering the indices, we are in the case
la. Since, by construction, (z;) N (x1) = 1 for every i > 2, we
have that (z;) N (b) = 1. Moreover, since b2~ is not in X and
Q1 ((b, 1)) = (b2, 22" b2 ), we obtain that (z;) N (b, z1) = 1
for every i > 2.
Since b? acts as a universal automorphism on (x1,...,zs) and
exp((xa,...,25)) < |r1], it follows that 2" commutes with
(x9,...,2s). Therefore, we may assume, up to replacing in case
21 with 21027, that b2 "% = 1. Since 2** = =816 and
b2""" centralizes X, we get that [b2| > 287, i.e. [b2| > |a7].
We treat separately the cases [b?| > |z1"| and |b?| = z7".
Suppose first that [b%| > |2"]. Since b2 is central in X, we
get that, up to replacing x; with xika_Qki, we may assume that
p2t Ttk
Cs.
From now on, we assume that |b%| = |z7"|.
From (z;) N (z1,b) = 1, it follows that b2 % = 1. In fact, if

’bgk—lki‘ = 2, then the subgroup (z;,bz1) is not not metacyclic,

i =1 for every i € {1,...,s}, and so the group (X,b) is in

. . ;—1 k—2 —2 k—1 .
because it contains the subgroup (mlznz 02 22" b2 ), which

is 3-generated. This shows that the group (X,b) is in %5.

This concludes the investigation when X is abelian. Summarizing the
result, we have that if X is abelian and | X N (b)| = 2, then L = (X, b)

is a group in %s.

. Suppose now that X is not abelian.

Since X is modular, and X/Q;((b)) is abelian, we have that X =

((z1) x -+ X (xs—1))(xs) and x]* = 3:21+2n_1, where 2" = exp((x1) X
cx (ws_1)) and (z1, ..., 22" = Q1 ((m1)) = (b))

We also have, 20 = :1:;1+4’"b2k71k", for every i in {1,...,s}.

Since b2 7 is not in X and Qi ((b,z1)) = 0¥ 22 02 ifz e X
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and (z) N (x1) = 1, then (z) N (z1,b) = 1.
In particular, this means that for every ¢ € {2,...,s — 1}, we get that
<.’L‘Z> N <.’L‘1,b> =1.

We treat separately the following two cases: Q1 ((b, zs)) # Q1((b, x1))
and Q;((b, zs)) = Q1((b, 1))

(a) Suppose that Q;((b,zs)) # Q1((b,z1)). We distinguish three

cases depending on |xs| with respect to |x1].

i. Suppose that |z1| > |zs].
In order to complete the investigation of this case, we distin-
guish two more cases depending on Q((z5)). Namely, in the
first part, we show that if O ((zs)) # Q1((b)), then L is in %.
In the second part, we deal with the case Q1 ((zs)) = Q1((b)).

Suppose first that Q;((zs)) # Q1((b)). Then (zs) N (z1,b) =
1, and O ((zs, b)) = (b2, 22" ). Now, since [b?| > |z?7],

rs

we deal separately with the cases |z}"| = [b?| and |z{"| < [b?|.
If |z7"| = |b?], then, up to replacing x5 with $562k_2, we have
that (z1,...,zs) is abelian and we are in case (1).

Suppose now that [b?| > |z{"|. The element v com-
mutes with X. In particular, up to replacing x; with xikaiz,

Ml 1 for every i € {1,‘--73}'

we may assume that b2
Clearly, |b?| < |x1|, otherwise the subgroup (b*%x1, x,), with
|b%%| = |21], is not metacyclic. Therefore, L is in %5, and this
concludes the case Q1 ((zs)) # Q1((b)).

Suppose now that Q;((zs)) = Q1((b)). Since Q;((b,x1)) #
Q1 ((b, zs)), we have that there exists a even, such that |z{| =
2l 1 ((me29)) = (22" 53 ) and () 0 (byo1) = 1.
Moreover, (z,2%)" = (zs2$) 14702 7' 51 for some s;.
Hence, up to replacing x5 with z,z{, we may assume that

() 0 (B) = 1, Q1 ((ms, b)) # Qi ((@1, b)), ab = 2] T FAp> 7 hs
for every i € {1,...,s} and z}* = mZHQn_l for every i €
{1,...,s—1}. So, we reduced to the case Q1 ((xs)) # Q1((b))

studied in the first paragraph of 2(a)i.

ii. Suppose that |z1]| = |xs].
We distinguish two more cases depending on Q2 ((z5)). Namely,
in the first part, we show that if Q({(zs)) # Q1((b)), then L
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iii.

is in 6. In the second part, we deal with the case Q;((xs)) =
Q1((b))-

Suppose first that Qq((zs)) # Q1((b)). Then (zs) N (z1,b) =
1, and Q4 ((zs, b)) = (b2, 22" ). Since |b?| > |2%7|, we deal

separately with the cases |z7"| = |b?| and |2{"| < [b?|.
If |b?| = |x{"|, then, up to replacing zs with 262", we have
that (x1,...,7s) is abelian, and 2 = x;1+4rb2k_1ki. There-

fore, we are in case (1).

If [b?| > |o{"|, then b2 commutes with X. In particu-

lar, up to replacing x; with xib2k72ki, we may assume that

p2" ki = 1 for every i € {1,...,s}, i.e. 20 = a:2-_1+4r for ev-

ery i € {1,...,s}. Moreover, if |b?| > |z1|, then the subgroup

(b8, x), with [b?3| = |z1|, is not metacyclic. This means

that |b?| < |x1| and so (X, b) is in G5.

Suppose now that Q1 ((zs)) = Q1((b)).

Since Q1 ((b, z1)) # Q1({b, zs)), there exists a odd, such that
m—2 n—2

|2§| = Jos|, n({zs2f)) = (@3 2" ) and (z2)N (b, 21) =

1.

Moreover, (z8)? = (2,2%)"#6?1 for some I.

Therefore, up to replacing z; with z;x{, we may assume that

(@)N(b) = 1, 2 (s, b)) # 2 ((21,)), &b =z I Hip? ke

for every i € {1,...,s}, xj* = xinnil for every i €

{1,...,s — 1} and |zs] < |z1]. Therefore, we reduced to

the case studied in the first paragraph of 2(a)i.

Assume, to conclude, that |z1| < |xs|.

We now divide the proof in two part. Namely, in the first
part we deal with the case Q1 ({xs)) = Q1((b)), whereas, in
the second case we study the case Q1 ((zs)) # Q1((b)).
Suppose first that Q1 ((xs)) = Q1((b)). The group (xa, ..., zs)
is abelian and such that (2o, ..., 252" = O ((zs)).

142

m—1
for every x € (xa,...,xy), :ci? =

2 R R for every i € {1,. .., s}, Qu((b, x5)) # Q1 ((b, 1))

7

Moreover, z*! = x

and |xs| > |z1]. Therefore, up to interchanging x; and zs,
we reduced to the case studied in 2(a)i.

So from now on, we assume that Qq((zs)) # Q1((b)).

Since b2"* ¢ X and (z,) N (b) = 1, we have that (z,) N
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(1,b) = 1. Hence, Qi ((zs,b)) = (b2, 2" ).

Since |2¥| < |b?|, we distinguish the cases |z3"| = |b?| and
25" | < |67

Suppose first that |z47| < [b?].

The element 2" centralizes X and so, up to replacing z;
with xib2k72ki, we may assume that :cg? =z, 147 for every
i € {1,...,s}. Moreover, if [b?| > |z1|, then the subgroup
(b1, xy), with [b?°| = |21], is not metacyclic. Therefore,
we have that |b?| < |z1| and so L = (X, b) is in %.

4'r| — |b2|.

From now on, we assume that |z

Since |z1] < |zs|, we have that b2°° commutes with 1 and
so with (z1,...,25-1). Therefore, up to replacing x with
2502 ks we may assume that b2° ks = 1.

We now show that L is in é%. In order to do that, we divide
the proof in three parts. Namely, in Claim 1, we prove that
b2 "'k1| = 2. In Claim 2, we show that b2 % =1 for every
i €42,...,5—1}. In the third part, we sum up the results
and conclude the investigation of this case.

Claim 1: we show that |2 '%1| = 2.

This would imply that 2} = 27 T47p2* " = g1 +2"7"

Let a be an even integer such that |z%| = |z1]|. Now, we
have Q;((z129)) = Qi((bzs)). Moreover, we obtain that
(xlx?)bxs — (xlx?)fl+4rx%"_162k_lk1.

If 82" 'F1 = 1, then the subgroup (x12%,bxs) is not meta-
cyclic, because it contains the 3-generated elementary abelian
subgroup (b2 22" 22" (2129)2" 7 (bas)2 7).

Hence, b2 'F1| =2, ie. b = xl_1+4rb2k_1 = x%r+2n71. This
concludes the proof of Claim 1.

Claim 2: we show that b2 "% = 1 for every i € {2,...,s—1}.
In particular, this would imply that xf = $;1+4T‘

For every i € {2,...,s — 1}, we have that |z;|] < 2" and
(x;) N {(x1) = 1. Since Q1 ({x1)) = Q1({b)), we obtain that
(i) N (b) = 1.

We now show that, if x; is such that (z;) N (xs,b) = 1, then
b2 i =1,

Suppose that x; is such that (z;) N (zs,b) = 1 and suppose,

- 111 -



Chapter 5. Monotone 2-Groups of exponent greater than 4 in which G = H4(G)

by contradiction, that ]kaflkﬂ = 2. The subgroup (x;, bxy) is
not metacyclic, because it contains the 3-generated subgroup
Q1 ((z1,x5,b)).

We now prove that, if (z;) N (zs,b) # 1, then p2 ki = 1
Since (z;) N (b) = 1, we have that either 27! = 22"

) s
ng __ m—1 k—1
or 27 = 2"

teger 3 such that |z;| = |27] and Q1 ((wsz?)) = O (bx,). If

’b2k71]ﬁ| — 27 then the Subgroup <bms7 xe§> is not metacycliC,

. Therefore, there exists an even in-

because it contains the 3-generated elementary abelian sub-
k=1 om-—1 k—2 ni—2 jok—1

group (b 22", (bxo)® ()", 07 ).

Therefore, we get that v =1 for every i € {2,...,s — 1},

and this concludes the proof of Claim 2.

Summarizing, by Claim 1, we get xlf = xf1+4r+2n_l and, by
Claim 2, we have z¥ = :zi_1+4r for every i € {2,---,s — 1}.
Since |z;| < |z1] for every ¢ € {2,---,s — 1}, we obtain
ab = Jci_1+4T+2n_1 for every i € {1,...,s — 1}.

Moreover, if |b?| > |z1|, then the subgroup (b*’x1, x,), where
b2%| = |21], is not metacyclic.

Therefore, we have |b?| < |z1|, and this shows that L is in
.

This concludes the investigation of the case Q1 ((b, z5)) # Q1 ((b, z1)).

Suppose now that Q1 ((b, zs)) = Q1((b, z1)).

We first show that (xs) N (b) # 1.

In fact, suppose, by contradiction, that (zs) N (b) = 1. Then,
since b2°° ¢ X and Q1 ((z1, b)) = (22" 277 b)Y, we get that
(xs)N(x1,b) = 1. It follows that Q1 ((b, zs)) # Q1 ({b, 1)), against
the assumption.

This shows that (zs) N (b) # 1.

In particular, we get that Q;((zs,b)) = (22" b2 "2 "), and
SO acg%z € (x1,b). Moreover, since 2" ¢ X, we have that
b2 ¢ (1, 2,). Tt follows that Qi ((z1,xs)) # Q1 ((b, 21)).

We deal separately with the cases |zi| > |z4|, |x1| = |zs|, and

1] < |-

i. Suppose that |z1| > |zs|. Since (z1,xs) is modular, there ex-
ists an even integer a such that Oy ((zsz$, 1)) = Q1 ((x1, xs))

and (z,2$) N {z1) = 1. Now, (z,2§)" = (w,af)Hp? v,
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for some w € {0,1}. This means that, up to replacing x
with z,2{, we are in case 2a.

ii. Suppose that |z1| = |zs|. Since (x1,xs) is modular, there ex-
ists an odd integer a such that Q; ((zsz{, z1)) = Q1 ((z1,xs))
and (zszf) N (x1) = 1.

Now, (z,29)? = (ze2$) 14702 for some w € {0,1}.
This means that, up to replacing z, with z,z{, we are in
case 2a.

iii. Suppose that |z1| < |zs|. Up to interchanging z; and z,, we

are in case 2(b)i.

This concludes the investigation of the case Q1 ((b, zs)) = Q1 ((b, z1)).

Hence, the lemma is proved.
O

The following lemmas complete the classification of the non-trivial mono-
tone 2-groups G, with Hy(G) = G and G//G* isomorphic to a group in 7.
More precisely, by the previous part, the group L is in %5 or in %5 or in %x.
In Lemma 5.24, we determine the group G when L is in 5. In Lemma 5.25,
we determine the group G when L is in 65. To conclude, in Lemma 5.26,

we determine the group G when L is in %7.

Lemma 5.24. Let G, L, X and b be as in Remark 5.18. Suppose that L is
i 65. Then G is in 65 or in 6.

Proof. The group L is in 5. Therefore, we may assume that X = (x1) x
... x (x5) where, if i > j, then |z;| > |z;| and 2° = 2714 for every z € X.
Now, the group G is equal to L{cy,...,¢c,), where {(c1,...,¢,) is elementary
abelian. Moreover, (X,b% ¢1,...,c,) is modular (see Lemma 5.16).

Put |b| = 2% and |z| = 2.

Consider the element ¢; of order 2.

For every z € X \ X2, we get that (z,¢;) is metacyclic with a generator
of order 2 and has a quotient isomorphic to Cy x Cy. Then, (z,¢;) is not
semidihedral and ¢; normalizes () (see Lemma 2.12). In particular, since
X is abelian, we get that ¢; induces a power automorphism on X. So, since
X is abelian, by Lemma 1.5.4. on page 32 of [13], we get that ¢; acts as a
universal automorphism of order at most 2 on X. Let 2% = z!*4" for every
x € X, where | X#hi| < 2,
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The group (b, ¢;) is metacyclic with a generator of order 2 and has a quo-
tient isomorphic to Cy x Cy. Then, (b, ¢;) is not semidihedral, ¢; normalizes
(b) and b% = b1+2" ki with k; € {0,1}.

Therefore, we have that 2% = 274" for every z € X, where |X%"| < 2,
and b = b2 ki with k; € {0,1}.

b —1+4r

Since z° = =z — pl-8rti6r?

, we get that 2 for every x € X. In
particular, this implies that |6?| > exp(X®"). Since exp(X) = |x1|, we have
that |b?| > |23"]. The rest of the proof is a case-by-case analysis depending
on the order of |b?| with respect of the order |§"| and on the size of the

intersection (x1) N (b).

- Suppose that [b?| = |z§"|.

The element b2 is not central in (x1,b) and so (x1) N (b) = 1. More-
over, we have that (bz1)? = b2x{" and so Qi ((bx1)) = Q1 ({z1)).

If |b2k71ki] = 2, then the subgroup (x1b,¢;) contains the 3-generated
elementary abelian subgroup <x%n71, b2k71,c@->. Moreover, up to repla-
cing ¢; with cikafl, we may assume that ¢; is in the centralizer of X.
Hence, we get that (X, cy,...,c,) is abelian and 2® = 2 =1+

z € (X,c1,...,¢,). This proves that G is in 65.

for every

- Suppose that [b?| = |:c‘1“"| and (b) N (x1) = 1.

We prove the following fact: if []"| = 2, then 627 "%i| = 2, whereas
if m‘llhl =1, then b2 R = 1.

Suppose first that |l‘411hi| = 2 and suppose, by contradiction, that
p2 Mk = 1 Then, the subgroup (bz1,¢;) is not metacyclic because
it contains the 3-generated subgroup (x%n_l,ci, b2k_1>.

Suppose now that x7° = z1, and suppose, by contradiction, that
]bzkilkﬂ = 2. Then, the subgroup (bx1,¢;) is not metacyclic because
it contains the 3-generated subgroup (x%nil,ci, b2k71>.

Suppose now that ¢; is such that ¢; ¢ Co((x1,b)). Then, 25 = x4

with |21 = 2 and b% = b1+2"" Now, the element ¢;b2° " has order

4, centralizes x; and is inverted by b.

Tt follows that, up to replacing ¢; with ;b2 ki for everyi € {1,...,u},
the group G is in 5.

- Suppose that [b?| = |z1"| and (b) N {x1) # 1.
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We prove the following fact: if |x%h"| = 2, then ]kaflkﬂ = 2, whereas
if 2" =1, then b2 'h = 1.

Suppose first that |x111hi| = 2 and suppose, by contradiction, that
p2 ke — 1 Then, the subgroup (bz1,c) is not metacyclic, because
it contains the 3-generated subgroup <$%n72b2k72, ci, b2k71>.

Suppose now that z{* = 1, and suppose, by contradiction, that
b2 '*i| = 2. Then, the subgroup (bz1,c) is not metacyclic because it
contains the 3-generated subgroup (:L‘%nﬁbzkﬂ,ci, b2k71).

Suppose now that ¢; is such that ¢; ¢ Ci({x1,b)). Then, z7' = xi+4hi

with |21 = 2 and b% = b1+2"" . Now, the element ¢;b%°~ has order

4, centralizes x1 and is inverted by b.

It follows that, up to replacing ¢; with ;b ki for every i € {1,...,u},
the group G is in 6.

- Suppose that [b?| > |z1"| and (z1) N (b) = 1.
In particular, [b?| > |z}"| implies that Q;((bx1)) = Q1({(b)). Moreover,

k—2 .
b2 centralizes X.

We first prove that ¢; is in the centralizer of X.

In fact, suppose, by contradiction, that there exists an i € {1,...,u}
such that z{' = ZL‘%+4hi with |:L'411hi‘ = 2. The subgroup (bz1,¢;) is not
metacyclic because it contains the subgroup <b2k71 , x%"il ,¢i), which is

3-generated.

It follows that, up to replacing ¢; with cibzk_Qki, the group G is in 5.

- To conclude, suppose that [b?| > |z1"| and (x1) N (b) # 1.
In particular, we have that (z2" ") = (62" ), Qi ((bx1)) = Q1((b)) and
b2 ~? centralizes X.
We distinguish two cases depending on the order of b with respect to

the order of 7.

Suppose first that |[b%] > |21].
We first prove that ¢; is in the centralizer of X. In fact, suppose, by

contradiction, that there exists ¢ € {1,...,u} such that 27" = xll +ahi
with |21"| = 2. Then, the subgroup (b**xy,¢;), where [b2*| = |z], is

not metacyclic, because it contains the 3-generated elementary abelian
2]972 2n72 2n71
group (b° “z{ ,x{ ,G).

It follows that, up to replacing ¢; with cz-b2k_2ki, the group G is in 5.
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Suppose now that [b?| < |x].
If ¢; € Cg(X) for every ¢ € {1,...,u}, then, up to replacing ¢; with

¢ib? *ki | we get that G is a group in €.

Suppose now that there exists an i € {1,...,u} such that z{" = :U}Hh"
where |x411h"| = 2. Up to reordering the indices, we may assume that c;
acts on X as a non-trivial automorphism of order 2. Up to replacing
in case ¢; with ¢;c1, we may assume that ¢; € Cg(X) for every i €
{2,...,u}.

It follows that, up to replacing c¢; with cib? %Ki for every i € {1,...,u},
the group G is in 6.

O

Lemma 5.25. Let G, L, X and b be as in Remark 5.18. Suppose that L is
i 6. Then G is in 6s.

Proof. We have that G is equal to L{cy, -+ ,¢,), with Lin G and (¢q,- -+ , ¢y)
elementary abelian.
Let L be (X,b). Since L is in %, we may assume that (X) = (x1, -+, zs),

where (1, -+ ,zs_1) is abelian and of exponent 2", (xy,--- ,x5_1>2n_1 =
Qu((B), |b| > 8, 2% = 2714 and 2™ = 272" foreveryz € (m1, -, z5_1),
2 = 271 and exp((xq, -, 25)%) < |B?| < 2™,

We also may assume that |71| = exp((x1,...,25s-1)). Let |b] = 2F, |zs| = 2™,
|z1| = 2™

Consider now the element c;.

For every z € X \ X2, we get that the subgroup (z,c¢;) is metacyclic
with a generator of order 2 and has a quotient isomorphic to Cyq x Cs.
Then, (z,¢;) is not semidihedral and ¢; normalizes (x) (see Lemma 2.12).
In particular, since X is modular not involving QJg, we get that ¢; induces
a power automorphism on X. So, by Lemma 2.3.24 on page 68 of [13], the
element ¢; induces a universal automorphism of order at most 2 on X.

Since (b, ¢;) is metacyclic with a generator of order 2 and has a quotient
isomorphic to C4 x Cy, the subgroup (b,¢;) is not semidihedral. So, ¢;
normalizes (b) and b% = b1+2"'%i with k; € {0,1}.

We distinguish two cases depending on the order of x1 with respect to

the order of z:
1. Suppose first that |z < |x1].
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If ¢; € Ca(X) for every ¢ € {1,...,u}, then, up to replacing ¢; with

cib? ki for every i € {1,...,u}, we get that G is in %.

So, from now on, we assume that ¢; induces a non trivial automorphism
of order 2 on X, for some 1.

Up to reordering the indices and up to replacing in case ¢; with c;cy,
we may assume that 2 = 212" for every x € X, and ¢; € Cg(X),

for every i € {2,...,r}.

Suppose first that |z1] = |z

We prove that this implies that Q;({xs)) = Q1 ((z1)).

In fact, suppose, by contradiction, that Q((z1)) # Q1 ((zs)).

Since Q,((b)) = Qi ((z1)), B¥° ¢ X and Qi((z1)) # N ((zs)), we
have that (zs)N(z1,b) = 1. Now, the subgroup (zc1, bz) is not meta-
cyclic because it contains the 3-generated elementary abelian subgroup
@ 2227 2271 Therefore, Q) ((z5)) = Q1 ((z1)) and, up to

replacing xs with z12, we may assume that |xi| > |zg4].

Therefore, from now on, we suppose that |x1| > |zs|. Up to replacing
¢; with ;b2 ki for every i > 2, and x5 with 516" "1, we get that

G is in 6. This concludes the investigation of the case |z1]| > |x|.

2. Suppose now that |z1| < |zs].

If (zs) N (b) # 1, then we may interchange x; and x5, and we are in

case 1.

So we may assume that (rs) N (b) = 1.
In particular, since p2" e ¢ X and Q1((b,21)) = <x%”_17x%"_2()2k_2>’

we have that (xs) N (z1,b) = 1.

1+4h
s

Suppose that % = xlt4hs with [z3hs| = 2.
Then, the subgroup (z1c1,bzs) is not metacyclic. In fact, since [b?| >

||, we have that Qo ((bxs)) = (b2k_2m§n71j> where j € {0,1}. Hence,

(z1¢i,bxs) contains the 3-generated subgroup (22" °, 6% * 22" "), a
contradiction.

It follows that ¢; is in Cg(X) for every i € {1,--- ,u}.

Up to replacing ¢; with ;b ki for every i € {1,...,u}, we have that
G is in %5.
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Lemma 5.26. Let G, L, X and b be as in Remark 5.18. Suppose that L is
i 67. Then G is in 67.

Proof. We have that G is equal to L{cy, - - ,¢,), with Lin 67 and (c1, -+ , ¢y)
elementary abelian.

Let L be (X,b). Since L is in %7, we may assume that X = (z1,...,x4)
where (21, ..., z,_1) is abelian of exponent 27, (z1, ..., 2zs_1)2" = Q1 ((b)),
1+2nt —LHAr 2" for every x € X, ab = py it
lzs] > |27, (xs) N (D) =1 and [{w1,..., 25 1,757 | = [B?| < 2"

Consider the element c¢;.

¥ = g and ¥ = z and

For every z € X \ X2, we get that (z,¢;) is metacyclic with a generator
of order 2 and has a quotient isomorphic to Cy x Co. Then, (x,¢;) is not
semidihedral, ¢; normalizes (z) and 2% = 't with |24 < 2. In parti-
cular, since X is modular and does not involve subgroups isomorphic to (g,
we get that ¢; induces a power automorphism on X. Therefore, ¢; acts as
a universal automorphism of order at most 2 on X (see Lemma 2.3.24 on
page 68 of [13]).

Since (b, ¢;) is metacyclic with a generator of order 2 and has a quotient
isomorphic to Cy x Ca, (b, ¢;) is not semidihedral. The element ¢; normalizes
(b) and b = b1+2" ki with k; € {0,1}.

Let |zs| = 2™ and |b] = 2%, |21| = exp({x1,...,25 1)) = 2". We note

that exp(X) = |xs|. Therefore, if ¢; induces a non-trivial modular auto-
morphism of order 2, then, in particular, we have that z§ = x;+4h’i, where
] = 2.

We now show that if 26 = z!*2"7" then [b2° 'Fi| = 2, whereas, if

. k—11..
z¢% = x4, then b2 ki =1.

S
1+2m71

. and suppose, by contradiction, that b2k = .

Suppose that 25 = x
Then, the subgroup (bzs,c;) is not metacyclic, because it contains the 3-
b2k72$2m72 x2mfl C->

S Y S =/

Suppose now that & = z, and suppose, by contradiction, that |b2k71ki| =2.

generated elementary abelian subgroup (

Then, the subgroup (bzs,c;) is not metacyclic, because it contains the 3-

generated elementary abelian subgroup (b2k_2x2m_2, p2" i)

S
This implies that if ¢; does not centralize (X, b), then 2¢ = xl+4" with
k—1
|z4hi| = 2 and b2 Ki| = 2.

It follows that, up to replacing ¢; with cika_zki, the group G is in 6. O

The following proposition sums up the results of the last part of the
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section, and shows that if G be a non trivial monotone 2-group with G =

Hy(G) and G/G* is in &, then G is in 65 or in 65 or in €.

Proposition 5.27. Let G be a non trivial monotone 2-group with G =
Hy(G). If G/G* is isomorphic to a group in <y, then G is in €5 or in g
or in 67.

Proof. Let G = {ay,...,as,c1,...,cu,b), where (a1G*) x --- x {a,G*) x
(c1G*) x (c,G*) is abelian with s > 2, |a;G*| = 4, |a;GY| = 2, [bG?| = 4,
b2G* ¢ (a1GY) x - -+ x {asGY) x (c1GY) x {c,GY), a®G* = a71G4, for every
A€ (A1y...,Q5,Cly...,Cy).

By Lemma 5.17, we may assume that G = (ai,...,asb){c1,...,cy),
where (cq,...,¢,) is elementary abelian.

Since (a;,b)G*/G* is isomorphic to Ka, by Lemma 2.13, we have that
G4 N (a;,b) = (a},b"). From a®(G* N (a;,b)) = a; *(G* N (a;,b)), it follows
that a? = a; ' Fhip2" ki,
Since (a;, b2} is modular, we get that there exists z; € (a;,b%"") with (z2) =

<a2‘_2+4hi b2k71k‘1‘>.

In particular, (x;,b) = {a;,b) and z¥ = x;1+4”.
Let X be the subgroup (z1,..., 7). We have that (a, ..., as, b*) = (X, b?),
and so X is a modular group that does not involve Qg.
By Lemma 5.20, we have that | X N (b)| < 2.

If X N (b) =1, then, by Lemma 5.21, we have that (X,b) is in %5, and
so by Lemma 5.24, we have that G = (X, b){(c1,...,¢,) is in 65 or in %.

If | X N (b)| = 2, then by Lemma 5.23, we have that (X,b) is in %5 or in
%s or in €7. Hence, by Lemma 5.24, by Lemma 5.25 and by Lemma 5.26,
we have that G = (X, b)(c1,...,¢,) is in G5 or in 6 or in 6.

This shows that the proposition holds.

O

This concludes the analysis of the monotone 2-groups G of exponent at
least 8 such that G = Hy(G) and G/G* is a group in 7. Namely, such
groups are in %5, or in %g, or in 7.

Also, this concludes the classification of the monotone 2-groups of expo-
nent at least 8 such that G = Hy(G), see Theorem 5.2.
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