
University of Padua
Department of General Psychology

PhD course in Brain, Mind and Computer Science

Curriculum: Computer Science and Innovation for Societal

Challenges

Remote Attestation for Secure
Internet of Things

Candidate Supervisor
Md Masoom Rabbani Prof. Mauro Conti

University of Padua, Italy

Co-Supervisor
Prof. Anna Spagnolli

University of Padua, Italy

and

Dr. Silvio Ranise

Fondazione Bruno Kessler, Italy

November 25th, 2019

Acknowledgments

First of all, I would like to express my sincere gratitude to my advisor Prof.
Mauro Conti for his invaluable insights, guidance, encouragement and for
helping me to pursue a career in research. I have been fortunate to have
continuous support despite his busy schedule.

Second, I want to sincerely express my thankfulness to my co-supervisors
Prof. Anna Spagnolli and Dr. Silvio Ranise, for their motivation and support.
Especially, they gave me insightful and useful comments and suggestions for
my papers and how to be a professional researcher.

I would like to sincerely thank Prof. Nele Mentens for hosting me at
KU Leuven, Belgium (COSIC and ES&S groups) during my period abroad
program and giving me insight and guidance since I have visited her group.
Additionally, I would like to thank Jo Vligen, Jori Winderckix, Thomas
Vandenabeele from ES&S group for not only welcoming me in their group
but also for their help, guidance and suggestions and support.

I would like to express my thankfulness to all the people in the secu-
rity and research community with whom I have the opportunity to work.
Mainly, I would like to thank Prof. Riccardo Lazzeretti (Sapienza University
of Rome, Italy) and Dr. Moreno Ambrosin (Google, USA) for guiding me
during my initial period as a researcher and helping me to shape my ideas.

A special thank goes to my officemates and SPRITZ group colleagues
(Chhagan, Eleonora, Riccardo, Qianqian, Dinh, Hassan, Ankit, Pallavi,
Maria Teresa, Giovanna, Yan, Faruk, Edlira) for their kind help and useful
remarks towards my research.

I also would like to thank Prof. Luigi V. Mancini (Sapienza University of
Rome) for his valuable comments and suggestions during our collaboration.
Additionally, I would like to give a special thank to the members of the
Thesis Committee for the valuable comments and suggestions they have
provided.

Last but not least, a huge thank goes to my family that always supported
me, especially in these years. Words can not express how grateful I am for

ii

their love, patience and sacrifices. Without their help, I would have never
achieved this goal.

Md Masoom Rabbani
Padova, November 25th, 2019

iii

Abstract

The Internet of things (IoT) are increasingly exposed to a wide range of
security threats. Despite the enormous opportunities that IoT world offers
in healthcare, smart cities, autonomous vehicles to name a few, the impor-
tance of IoT operations in such safety-critical domains makes IoT devices a
popular prey for many cyberattacks. Even worse, the resource-constrained
nature of IoT devices limits the implementation of complex traditional se-
curity protocols, simplifying, therefore, the exploitation of IoT devices. One
effective security mechanism to identify malicious entities in an IoT system
is Remote Attestation. Remote Attestation is an interactive protocol that
allows a remote trusted Verifier to assess the integrity of an untrusted de-
vice by typically checking whether the received data is authentic and the
received measurement conforms to an expected legitimate configuration.

In this thesis, we provide a four-fold contribution, (1) we review work-
ing mechanisms of state-of-the-art Collective Remote Attestation (CRA)
techniques and provide comparative security analysis, (2) we address the
problem of device mobility during attestation and secure attestation of asyn-
chronous communication among IoT services respectively, (3) we propose a
novel configurable-hardware enabled remote attestation techniques for low-
end embedded devices, and, (4) we show how remote attestation can be
employed as an application to provide security and safe operation to other
traditional applications.

More in detail, in the first part of the thesis, we provide a detailed
study of the state-of-the-art for different CRA schemes. Here, we discuss
the working mechanisms of various remote attestation schemes concerning
different threat model. Our main objective is (1) to understand the scope and
impact of security and privacy challenges over large-scale IoT networks, (2)
to investigate the feasibility and robustness of the state-of-the-art security
solutions with respect to different threat models, and (3) to summarize the
critical open challenges, and suggest directions for future research towards
provisioning stringent security and privacy solutions for CRA schemes.

iv

The second part of this dissertation focuses on improving CRA tech-
niques. First, we provide a practical attestation scheme for dynamic IoT net-
works, which releases the unrealistic assumptions of existing CRA schemes
for considering fully interconnected network and no device mobility during
attestation. Second, we introduce secure asynchronous remote attestation
technique for IoT services. In CRA literature, attestation verifies the trust-
worthiness of individual devices, but does not consider the communication
data among devices. In order to perform attestation over communication
data along with devices, our work exploits asynchronous communication ca-
pabilities among IoT devices to attest a distributed IoT service executed by
them.

In the third part of this thesis, we discuss configurable-hardware enabled
remote attestation techniques. First, we provide a Field-programmable gate
array (FPGA) enabled remote attestation technique for embedded devices.
Our proposed solution offers a self-attestation mechanism for an FPGA.
Thus, FPGAs can be used as a trusted hardware module in hardware-based
attestation schemes where a trusted tamper-resistant dedicated hardware
module is used as a root of trust. Second, we introduce a beyond state-of-
the-art CRA technique that employs FPGAs as edge devices for attestation
of large-scale IoT networks. The mechanism defines the use of edge verifiers
to perform the attestation of the underlying heterogeneous IoT nodes and
to report to the root verifier, which is typically the network owner. This
protocol is capable of managing device mobility during attestation.

The fourth and final part of the dissertation discusses security-enhancing
solution for de-facto routing protocol (RPL, i.e., Routing protocol for
low power and lossy networks) of IoT networks. We exploit the use of a
lightweight remote attestation scheme to improve the security of the data
communication process in RPL-based IoT networks. Our proposed solution
makes RPL more secure with respect to the traditional RPL without any
introduction of significant computation and memory cost. This kind of so-
lution has been proved very beneficial and efficient for securing the resource
constraint devices used in Low Power and Lossy Networks (LLNs).

v

Contents

1 Introduction 1

1.1 Research Motivation and Contribution 2

1.1.1 State of the art techniques of Collective Remote At-
testation . 3

1.1.2 Improving Collective Remote Attestation techniques . 3

1.1.3 Configurable-hardware enabled Remote Attestation . 5

1.1.4 Remote Attestation assisted applications 7

1.2 Publications . 8

1.2.1 Patent . 8

1.2.2 Journal Publications 8

1.2.3 Conference and Workshop Publications 8

I State-of-the-art Techniques of Collective Remote Attes-
tation 10

2 Collective Remote Attestation: A survey 12

2.1 Contribution . 12

2.2 Organization . 13

2.3 System and Security Model for Collective Remote Attestation 13

2.3.1 System Model . 13

2.3.2 Reference Attacker Model for CRA 14

2.4 Background: Device Remote Attestation 15

2.5 State-of-the-art for Collective Remote Attestation 19

2.6 Security Analysis . 26

2.7 Open Issues for Collective Remote Attestation 31

2.8 Future directions . 33

2.9 Summary . 34

vi

II Improving Collective Remote Attestation Techniques 36

3 Practical Remote Attestation for dynamic networks 38

3.1 Organization . 39

3.2 State of the Art and Limitations 39

3.3 Idea and Contribution . 40

3.4 System Model and Assumptions 41

3.4.1 System Model . 41

3.4.2 Security Model . 42

3.5 Requirements . 45

3.6 Preliminaries, Definitions and Notation 45

3.6.1 Best Effort Collective Self-Attestation 45

3.6.2 Minimum consensus 46

3.6.3 Notation . 48

3.7 Our Proposal: PADS . 48

3.7.1 Protocol Rationale and Overview 48

3.7.2 Protocol Details . 50

3.8 Implementation and Evaluation 53

3.8.1 Implementation . 53

3.8.2 Evaluation . 53

3.9 Security Analysis . 59

3.10 Discussion . 60

3.10.1 Advantages . 60

3.10.2 Limitations . 61

3.11 Summary . 62

4 Secure Asynchronous Remote Attestation for IoT systems 63

4.1 Organization . 65

4.2 Related Works . 65

4.3 Problem Statement . 67

4.4 Background . 69

4.4.1 Architectural properties of Publish/Subscribe 70

4.4.2 Logical Clock Synchronization 70

4.5 System model . 71

4.6 Adversary model and Security Requirements 73

4.6.1 Adversary model . 73

4.6.2 Security requirements 74

4.7 Our proposal: SARA . 74

4.7.1 Deployment and measurement 74

4.7.2 Attestation . 75

4.7.3 Verification . 78

4.8 SARA internal working mechanism 79

4.8.1 Interaction: SARA-Verifier 80

4.8.2 Interaction: SARA-Prover 80

vii

4.9 Evaluation . 81

4.9.1 Simulation environment 81

4.9.2 Runtime . 82

4.9.3 Energy Consumption 84

4.9.4 Memory consumption 85

4.10 Security Analysis . 85

4.11 Discussion . 86

4.12 Summary . 87

III Configurable-Hardware Enabled Remote Attestation 88

5 Self-Attestation of Configurable Hardware 90

5.1 Organization. 91

5.2 Preliminaries . 92

5.2.1 FPGA . 92

5.2.2 Attestation Concept 95

5.3 System and Adversary Model 96

5.4 Related Work . 97

5.4.1 Software-based Attestation 98

5.4.2 Hardware-based Attestation 99

5.4.3 Hybrid Attestation . 99

5.5 Our Proposal: SACHa . 100

5.5.1 Contribution . 100

5.5.2 FPGA Architecture 100

5.5.3 Attestation Protocol 102

5.6 Proof-of-concept Implementation 103

5.6.1 Implementation of the Protocol 103

5.6.2 Implementation of the Architecture 105

5.7 SACHa Evaluation . 108

5.7.1 Performance Evaluation 108

5.7.2 Security Evaluation 109

5.8 Summary . 111

6 Scalable Heterogeneous Layered Attestation 112

6.1 Organization. 114

6.2 Related Work . 114

6.3 System Assumptions and Adversary Model 116

6.3.1 System Model and Entities 116

6.3.2 Adversary Model . 118

6.3.3 Security Goals . 119

6.4 Our Proposal: SHeLA . 119

6.4.1 Tables . 120

6.4.2 Attestation Protocol 120

viii

6.4.3 Granularity depth . 124

6.4.4 Time and order . 125

6.5 Proof-of-concept implementation 125

6.5.1 Setup . 125

6.5.2 FPGA architecture . 126

6.5.3 IoT nodes . 128

6.6 Evaluation . 128

6.6.1 Resources . 128

6.6.2 Runtime . 129

6.6.3 Memory consumption 130

6.7 Security Analysis . 131

6.8 Discussion . 133

6.9 Summary . 134

IV Remote Attestation Assisted Applications 135

7 Secure routing in RPL based IoT networks 137

7.0.1 Contribution . 137

7.0.2 Organization . 138

7.1 Preliminaries . 138

7.1.1 Overview of Attestation 139

7.1.2 Routing Protocol for Low Power and Lossy Networks
(RPL) . 140

7.1.3 Threats and Previously proposed security solutions for
RPL . 140

7.2 Our Proposal: SPLIT . 142

7.2.1 System Model . 142

7.2.2 Adversary Model . 143

7.2.3 SPLIT Design Considerations and Functioning 144

7.2.4 SPLIT Working Methodology 145

7.3 Simulation and Performance Evaluation 147

7.3.1 Security Analysis . 148

7.3.2 Energy Consumption Analysis 151

7.4 Summary . 152

8 Conclusions 153

8.1 Summary of Contribution . 153

8.1.1 Security Issues in current Collective Remote Attesta-
tion Techniques . 154

8.1.2 Addressing shortcomings in CRA techniques 154

8.1.3 Configurable-Hardware Assisted Remote Attestation
Techniques . 155

8.1.4 Remote attestation assisted application 156

ix

8.2 Future Work . 157
8.2.1 Open challenges in State-of-the-art Techniques for

Collective Remote Attestation 157
8.2.2 Future works in Improving Collective Remote Attes-

tation Techniques . 158
8.2.3 Future works in Configurable-Hardware Enabled Re-

mote Attestation . 158
8.2.4 Future improvements in Remote attestation assisted

IoT applications . 159

x

List of Figures

2.1 Example of Swarm Network. 14

2.2 Interactive Remote Attestation 17

2.3 Self-Attestation . 18

2.4 Non-Interactive Attestation 19

2.5 Control-flow Attestation . 20

3.1 Target system model for PADS. Provers communicate wire-
lessly with entities withing their wireless coverage, and are
mobile; as such, at different points in time, the topology may
change (t and t+∆t in the picture). Similarly, the verifier can
communicate with any prover in its wireless coverage. 42

3.2 Consensus between two provers Prvi and Prvj 51

3.3 PADS protocol: selfAtt and cons. The figure shows consen-
sus only for a single reachable prover Prvj 51

3.4 Implementation of PADS based on SeED [85] and TrustLite [91]. 54

3.5 Runtime of PADS in mobile wireless setting, varying the num-
ber of provers and size of the area (proportionally to the
number of provers), and considering different values of ct

X ,
for X ∈ {85%, 90%, 95%}; broadcast frequency is 500 ms. . . 57

3.6 Variation of ct
95 and avg. steps number for n = 8196 57

3.7 Runtime of PADS vs SANA [32], varying number of nodes
and ct

X , with X = 95% for branching factor 2. We considered
up to 50 different configurations, and 60% compromised provers. 58

3.8 Runtime of PADS vs SANA [32], varying number of nodes
and ct

X , with X = 95% for branching factor 3. We considered
up to 50 different configurations, and 60% compromised provers. 58

3.9 Runtime of PADS vs SANA [32], varying number of nodes
and ct

X , with X = 95% for branching factor 4. We considered
up to 50 different configurations, and 60% compromised provers. 58

xi

4.1 Toy example of interacting services in a Smart city scenario . 68

4.2 Overview of service interactions in publish/subscribe paradigm 68

4.3 SARA system model . 72

4.4 Algorithm . 77

4.5 Sara approach . 78

4.6 Overview of service interactions in publish/subscribe paradigm 79

4.7 SARA FSM for Verifier . 80

4.8 SARA FSM for Prover . 81

4.9 Runtime of SARA, varying number of services 82

4.10 Runtime of SARA (using MD5), varying number of services . 83

4.11 Runtime of SARA (using SHA-256), varying number of services 83

4.12 Runtime of SARA (using AES), varying number of services . 83

5.1 Adversary models in the traditional hardware-based attes-
tation setting (left) and the setting considered in this work
(right), where µP and TR HW indicate the microprocessor
and the tamper-resistant hardware module, respectively. . . . 91

5.2 Conceptual representation of an FPGA (left) and basic build-
ing blocks of the configurable fabric (right). 93

5.3 FPGA design in which the ICAP in the static partition up-
dates the configuration of the dynamic partition. 94

5.4 FPGA design in which the ICAP in the static partition reads
back the configuration of the entire configuration memory. . . 94

5.5 Typical example of an attestation protocol between a verifier
and a prover. 95

5.6 System model. 97

5.7 High-level FPGA architecture of SACHa. 101

5.8 SACHa protocol. 103

5.9 Low-level communication steps. 106

5.10 The FPGA block diagram of the proof-of-concept implemen-
tation of SACHa. 108

6.1 The SHeLA topology. 117

6.2 The four SHeLA tables in an arbitrary network 124

6.3 Graphical representation of T̃ and offset on a timeline, with
example values and example events. 126

6.4 The proof-of-concept setup. 127

6.5 The architecture on the FPGA. 127

6.6 Number of supported IoT nodes as a function of the number
of edge verifiers. 131

6.7 Number of IoT nodes as a function of number of the number
edge verifiers for three different levels of mobility in the proof-
of-concept (PoC) implementation. 132

xii

7.1 Typical example of Remote Device-Attestation 139
7.2 SPLIT device attestation technique 143
7.3 Modified DAO ICMPv6 Control Message Format 145
7.4 SPLIT FSM-s for Prover (Device) and Verifier (Root) 147
7.5 APDR with respect to increasing simulation time 149
7.6 APDR with increasing number of nodes in the network 150
7.7 APDR with increasing number of attacker nodes in the network150

xiii

List of Tables

2.1 Features comparison. 26
2.2 Complexity comparison. 27
2.3 Adversarial Mitigation capabilities 28
2.4 Defensive capabilities against different attacks 28

3.1 Notation. 49

4.1 Notation Summary . 75
4.2 Energy Consumption while SARA Simulation for Sky motes . 84

5.1 Notation. 96
5.2 FPGA resources of the SACHa architecture. 108
5.3 Timing of the low-level steps in the SACHa protocol in the

proof-of-concept implementation. 109
5.4 Total timing of the SACHa protocol in the proof-of-concept

implementation. 110

6.1 The fields in tables TVrf, TEV,R, TEV,G, and TEV,E, where HE is
the hash value of the TEV,E table that the edge verifier sends
to the root verifier. 121

6.2 Proof-of-concept implementation results 129
6.3 The required time for different operations, constructed from

R(eceive), S(end), L(ookup), and H(ash) actions. 130

7.1 Simulation setup: Parameters for SPLIT Evaluation 148
7.2 Power Consumption while SPLIT Simulation for Sky motes . 151

xiv

Chapter 1

Introduction

In recent years, the booming of so-called low-cost, interconnected, “smart”
devices engulfed our surroundings. This rise of the smart devices has cre-
ated a new paradigm called as Internet of Things (IoT). IoT devices are
often employed in interconnected groups and perform critical operations
in a wide range of applications, ranging from wearable devices, e.g., life-
supporting medical applications, to smart cities, e.g., autonomous driving
applications. The growth of IoT devices and their potential in facilitating
new applications and services have a profound impact not only for our daily
lives but also for the traditional mechanisms of network security and pri-
vacy. Their low-cost nature and a reduced set of security capabilities make
IoT systems an attractive target for cyber attacks. As an example, in 2016,
hackers launched a Distributed Denial of Service (DDoS) attack on the web-
site krebsonsecurity.com [12] by using two botnets of 980,000 and 500,000
hacked devices, mostly cameras. Furthermore, researchers have shown that
security cameras affected by malware can receive covert signals and leak
sensitive information from the same surveillance system, which is meant to
protect the facility and/or data [81]. Moreover, as these devices deal with
mission-critical, sensitive data, any security breach on these devices or com-
munications among IoT devices can lead to catastrophic consequences for
our privacy and security [11, 98, 52, 102, 104]. Hence, to ensure the correct
operation in various IoT applications, it is crucial to maintain their software
integrity and protect them against attacks.

A key technique to check the software integrity of smart devices is known
as Remote Attestation (RA). It is a process that allows a verifier to validate
the integrity of software residing on a remote smart device that is poten-
tially “untrusted”. Traditionally, remote attestation schemes are designed for
single-device attestation, allowing the verifier to perform attestation of only

1

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

one device at a time. The single-device attestation techniques are hard to
scale and unable to provide a solution for large scale IoT networks. To ad-
dress this scalability challenge, researchers have recently proposed scalable
remote attestation techniques called Collective Remote Attestation (CRA)
or Swarm Attestation.

This thesis investigates remote attestation techniques for the Internet
of Things. We focus on identifying and mitigating various shortcomings of
existing attestation techniques previously introduced in the literature. To
address the gaps, we proposed and implemented new remote attestation pro-
tocols beyond state-of-the-art. Before diving into the content of the thesis
and its contributions, in this chapter, we first introduce the research moti-
vation and contribution, then the complete list of the publications during
my PhD is presented in chronological order.

1.1 Research Motivation and Contribution

Millions of heterogeneous IoT devices are interconnected in various applica-
tions such as health monitoring, automated buildings, military-applications,
and smart city, to name a few. Adoption of these “wonder-pills” in our ev-
eryday lives make daily-tasks easy, smarter, and automated. However, along
with benefits, it introduces new kind of threats as it opens a new cyber-
space for hackers to exploit. Attacks like Mirai-botnet [22, 36] and smart-tv
hack [23, 15, 20] fuel the concern of security and safety in the general public’s
mind. The research work presented in this dissertation looks at the IoT from
a security and privacy perspective. Our research analyzes various remote at-
testation techniques, mainly aiming towards large scale IoT deployments,
and providing novel practical solutions to solve the shortcomings.

In this dissertation, we present our research in four main parts as follows:

• State-of-the-art Techniques of Collective Remote Attestation, present-
ing a comparative study of state-of-the-art collective remote attesta-
tion techniques for large-scale IoT networks to identify research gaps
in the remote attestation literature.

• Improving Collective Remote Attestation Techniques, focusing on im-
proving the state-of-the-art by addressing the identified drawbacks. In
particular, we focus on addressing two main challenges. First consid-
ering device mobility during attestation phase and second, attesting
asynchronous IoT services.

• Configurable-Hardware enabled Remote Attestation, proposing
configurable-hardware enabled novel remote attestation techniques
for IoT and other low-end devices. Additionally, we scale our solution
to support large IoT networks.

2

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

• Remote Attestation Assisted Applications, proposing integration of RA
in routing protocols to improve security and privacy of routing proto-
cols.

In what follows, we briefly introduce each of the above parts and sum-
marize our contribution.

1.1.1 State of the art techniques of Collective Remote At-
testation

In order to overcome the scalability limitations of traditional RA techniques,
recently several research works proposed Collective Remote Attestation pro-
tocols (CRA), which allow a verifier to obtain a unique measurement from a
whole network of smart devices; such measurement expresses the collective
status of the network, rather than the individual status of every device, effec-
tively improving the scalability of the RA protocol. Different CRA schemes
proposed in the literature provide various approaches for scalable remote
attestation, e.g., they work on a hop-by-hop basis [40, 84, 85], or on an end-
to-end basis [32], and tackle different types of the attacker. Furthermore,
existing CRA schemes make different assumptions regarding device capabil-
ities which in turn define complexity of the employed security mechanisms
and adversarial assumptions.

Contribution: To the best of our knowledge we are first to provide sys-
tematic and thorough revision of the state-of-the-art CRA schemes and to
dissect the relevant security issues in [31]. Our main contributions include:
(1) we study the state-of-the-art CRA techniques which gives a very clear
map for new researchers who want to step into this field and do further study
of CRA techniques, (2) we analyze the different adversary typologies and at-
tacks that can be conducted on the IoT networks, (3) we perform a critical
comparison between the protocols proposed in the literature in terms of their
characteristics, adversarial mitigation capabilities and defensive capabilities
against different attacks.This review is illustrated in Chapter 2.

1.1.2 Improving Collective Remote Attestation techniques

Our primary focus is to address two main drawbacks of CRA schemes,
namely the device-mobility during remote attestation and secure remote
attestation for asynchronous IoT service communication. Despite the effi-
cient attestation over large IoT networks, CRA schemes provide solutions
only for the scenarios where devices remain static during attestation or for
fairly dynamic networks like the approach proposed in [35]. However, none of
the proposed schemes provides a solution for highly dynamic networks. Ad-
ditionally, data communication among IoT services is often overlooked while

3

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

performing device attestation. As a result, none of the proposed remote at-
testation schemes provide a secure solution for asynchronous communication
of IoT services.

Remote Attestation for highly dynamic networks
Remote attestation is an effective technique to detect software compromise
on a device. RA is usually an interactive protocol that runs between a veri-
fier and a prover, and allows the verifier to obtain a cryptographically secure
proof of the correctness of the prover’s configuration (e.g., software). The
typical remote attestation protocols show poor scalability when it comes to
large networks of devices (e.g., IoT systems with thousands of tiny smart
devices). This limit has recently received attention by the research com-
munity, which proposed collective remote attestation protocols that employ
in-network processing over spanning trees in order to reduce the computa-
tion and communication burden at the verifier side. Unfortunately, solutions
proposed so far require complex management to maintain an overlay topol-
ogy among provers and are thus unsuitable for networks where there is no
fixed topology and/or with intermittent connectivity.

Contribution: We designed PADS (Practical Attestation for Highly Dy-
namic Swarm Topologies) [30], an efficient, practical, and secure protocol for
attesting potentially large networks of resource-constrained devices with un-
structured or dynamic topologies. PADS starts from the very recent concept
of non-interactive attestation and turns the collective attestation problem
into a minimum consensus one. Via realistic simulation, we show the per-
formance of PADS measuring runtime, memory, energy and communication
overhead. We further compare PADS with a state-of-the-art collective attes-
tation protocol. Our results confirm the practicality and efficiency of PADS
in both dynamic and static settings. We present the design and the evalua-
tion of our protocol in Chapter 3.

Asynchronous Remote Attestation for IoT Services
Remote attestation is usually executed as an uninterrupted procedure, to
guarantee the integrity of software running on a single device. At the attes-
tation time, a device stops the normal operation and executes the attestation
of the entire device without interruption. The CRA protocols that aim to
attest a large number of devices also follow the assumption on uninterrupted
execution. When a device attests its network neighbours, each device veri-
fied in the neighbourhood suspends its usual operation until the attestation
protocol is completed. In addition to that, most of the existing remote at-
testation protocols focus on providing reliable evidence to guarantee that an
attacker did not modify the software running on a single device. However,

4

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

these protocols do not consider the communication data between intercon-
nected IoT devices. Due to the data exchanged with a compromised device,
an IoT device may exhibit malicious behaviour even though it runs a gen-
uine software. Tracing interactions and the communication data in remote
attestation schemes of IoT devices imposes particular challenges due to the
asynchronous mechanisms that IoT devices use for their communication.

Contribution: To avoid unnecessary suspension of the normal operation
of the devices, we developed SARA (Secure Asynchronous Remote Attes-
tation) [54] protocol that releases the constraint of synchronous interaction
among devices. In particular, SARA exploits asynchronous communication
capabilities among IoT devices in order to attest a distributed IoT service
executed by them. SARA verifies both that each IoT device is not com-
promised (device trustworthiness), and that the exchanged communication
data have not maliciously influenced the communicating devices (legitimate
operations). By tracing the execution order of each service invocation of an
asynchronous distributed service, SARA allows each service to collect accu-
rately historical data of its interactions and transmits asynchronously such
historical data to other interacting services. We present the design of SARA
in Chapter 4.

1.1.3 Configurable-hardware enabled Remote Attestation

Over recent years, the overwhelming growth of embedded systems has made
pervasive computing a reality. Nevertheless, issues like scalability, availabil-
ity and most importantly, the security of the software prevents its widespread
use. Indeed, remote code verification for these embedded systems is challeng-
ing. In particular, we developed Field Programmable Gate Array (FPGA)
based remote attestation solutions that addresses the scalability and secu-
rity related issues. The proposed approaches can be adopted not only by
next generations embedded systems but can also be implemented on exist-
ing FPGAs.

Self Attestation of Configurable-Hardware
Device attestation is a procedure to verify whether an embedded device is
running the intended application code or not. This procedure intends to de-
tect the presence of software and hardware adversaries on embedded devices.
With the wide adoption of Field-Programmable Gate Arrays or FPGAs, the
hardware also became configurable, and hence susceptible to attacks (just
like software). Also, an upcoming trend for hardware-based attestation is
the use of configurable FPGA hardware. Therefore, to attest a whole sys-
tem that makes use of FPGAs, the status of both the software and the
hardware needs to be verified, without the availability of a tamper-resistant

5

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

hardware module. As an example, a typical FPGA-based embedded system
combines a general-purpose microprocessor with configurable hardware. For
the microprocessor, several techniques have been proposed to verify that
it is running the intended software application, for example [89, 121, 37].
However, for the FPGA, it is not straightforward to remotely verify that it
is configured to the intended state. Many attestation mechanisms for micro-
processors rely on a tamper-resistant hardware module. Assuming that the
hardware module itself can be remotely reconfigured, the hardware prover
core needs to be able to prove its own state to the verifier, i.e., the config-
urable hardware needs to perform self-attestation.

Contribution: To address this issue of self-attestation for FPGA systems,
we proposed SACHa (Self-Attestation of Configurable Hardware) [135] in
which a prover core on the FPGA performs an attestation of the entire
FPGA, including a self-attestation. This way, the FPGA can be used to
perform hardware-based attestation of a processor that is either embedded
in the FPGA or externally connected to the FPGA, resulting in protection
of the entire hardware/software system against malicious code updates. We
illustrated the working mechanisms of SACHa in Chapter 5.

Scalable Remote Attestation for Heterogeneous IoT network
Thanks to recent technology advancements, IoT devices are capable of work-
ing as a group and of autonomous decision making. Consequently, these
devices are also employed to perform safety-critical operations in different
fields (e.g., medical, nuclear, military, and smart-vehicular applications). De-
spite the huge success of IoT applications, they also introduce major security
issues. As these devices deal with mission-critical, sensitive data, any secu-
rity breach on these devices or communications among IoT devices can lead
to catastrophic consequences for our privacy and security [11, 7]. Hence,
to ensure the correct operation in various IoT applications, it is crucial to
maintain their software integrity and protect them against attacks. For in-
stance, authors in [61, 86] show that large-scale industrial control systems
or robot swarms are vulnerable to the wide array of attacks. Nevertheless,
the resource constraints and low-cost features of these devices hinder the
adoption of specific hardware protection or complex cryptographic solutions,
which make them easy prey to malware attacks.

Contribution: We took a step forward from the classical approach of collec-
tive remote attestation techniques [40, 32] and developed SHeLA (Scalable
Heterogeneous Layered Attestation). Unlike traditional CRA approaches,
we introduce an alternative approach that consists of adding a layer of ge-
ographically spread edge devices in between the root verifier and the IoT

6

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

nodes. The edge devices have a larger computational power and storage
capacity than the swarm devices. Each higher-end edge device attests the
sanity of the swarm devices within its reach and exchanges information on
the attestation with the other edge devices through a dedicated synchro-
nization mechanism. Chapter 6 presents the design rationale and proof of
concept implementation of SHeLA.

1.1.4 Remote Attestation assisted applications

The IoT networks are often resource constrained and work for specific tasks
and mostly employed as a group. In particular, the group of IoT devices
employed in smart facilities (e.g., smart city, smart home, smart factories,
gas and oil exploration) is termed as “Swarm”. Overwhelming growth of
the IoT network requires security solutions to scale, however, scalable secu-
rity features incur costs in terms of complexity and computational overhead
for traditional routing protocols for low power and lossy networks (RPL).
Remote Attestation is an ideal candidate to provide a secure and efficient
(concerning attestation time, energy consumption, and network overhead)
mechanism for RPL.

Secure routing in RPL based IoT networks
The ever-increasing attacks on devices that are connected to an IoT infras-
tructure [18], where attackers exploit the low-computation and brittle pro-
tection of these devices; lead researchers to propose different schemes [114,
143, 79, 27] to safeguard these devices which leads to the safety of the whole
network. Apart from security, the IoT networks also pose other challenges.
For instance, the overwhelming exponential growth of the IoT network re-
quires security solutions to scale. However, scalable security features incur
costs in terms of complexity and computational overhead. Thus, we need a
light-weight, secure protocol that can scale and is compatible with dynamic
network demands.

Contribution: In order to overcome the challenge mentioned above, we
developed SPLIT (A Secure and Scalable RPL routing protocol for Inter-
net of Things) [59] for IoT networks. SPLIT uses the unique advantages of
RPL protocol [139] to provide an efficient periodic device attestation report
aggregation (concerning attestation time, energy consumption, and network
overhead) in large-scale IoT network. The use of device attestation improves
the security in the data communication process of RPL by making it robust
against various routing threats such as rank [71] and sybil [100] attacks.
Chapter 7 illustrates the protocol.

7

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

1.2 Publications

Part of the research presented in this thesis and developed during my Ph.D.
program produced peer-reviewed workshop, conference and journal publi-
cations. The complete list of published and currently submitted works are
listed, in chronological order, in Section 1.2.1 (patent), in Section 1.2.2 (jour-
nal papers) and Section 1.2.3 (conference and workshop papers).

1.2.1 Patent

[P1] Md Masoom Rabbani, Jo Vliegen, Mauro Conti, Nele Mentens.
Configurable hardware device. Patent Priority n. GB1806997,
2018. (Under Submission).

1.2.2 Journal Publications

[J1] Md Masoom Rabbani, Jo Vliegen, Jori Winderickx, Mauro Conti,
Nele Mentens. SHeLA: Scalable Heterogeneous Layered Attestation.
In (IEEE) Internet of Things Journal, in press, 2019. (JCR IF 2018:
9.515). DOI: 10.1109/JIOT.2019.2936988.

[J2] Jo Vliegen and Md Masoom Rabbani and Mauro Conti and Nele
Mentens. A Novel FPGA Architecture and Protocol for the Self-
attestation of Configurable Hardware. Cryptology ePrint Archive, Re-
port 2019/405, 2019.

[J3] Mauro Conti, Pallavi Kaliyar, Md Masoom Rabbani, Silvio Ranise.
Attestation-enabled Secure and Scalable Routing protocol for IoT Net-
works (SARP). (Elsevier) Ad Hoc Networks, in press, 2019 (IF: 3.490).

[J4] Moreno Ambrosin; Mauro Conti, Riccardo Lazzeretti, Md Masoom
Rabbani, Silvio Ranise. Collective Remote Attestation at the In-
ternet of Things Scale: State-of-the-art and Future Challenges.
Under submission at: (IEEE) Communications Surveys and Tutorials.

[J5] Mauro Conti, Edlira Dushku, Luigi V. Mancini, Md Masoom Rabbani,
Silvio Ranise. SARA: Secure Asynchronous Remote Attestation for
IoT systems. Under submission at: IEEE Transactions on Information
Forensics and Security.

1.2.3 Conference and Workshop Publications

[C1] Md Masoom Rabbani, Jo Vligen, Mauro Conti, and Nele Mentens.
SHeFU: Secure Hardware-Enabled Protocol for Firmware Updates.
IEEE International Symposium on Circuits Systems (ISCAS 2020).
Sevilla, Spain, May 17-20, 2020.

8

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

[C2] Mauro Conti, Edlira Dushku, Luigi V. Mancini, Md Masoom Rabbani,
Silvio Ranise. Remote Attestation as a Service for IoT. In Proceed-
ings of the 6th IEEE International Conference on Internet of Things:
Systems, Management and Security (IOTSMS 2019). Granada, Spain.
October 22-25, 2019.

[C3] Mauro Conti, Muhammad Hassan, Md Masoom Rabbani, Silvio
Ranise. RICe: Remote Attestation of Internet of Mobile Things in In-
formation Centric Networking. In Proceedings of CHITALY 2019 (the
Human-centered cybersecurity International workshop). (The Bian-
nual Conference of the Italian SIGCHI Chapter), in press, Padua, Italy,
September 23-25, 2019.

[C4] Jo Vliegen, Md Masoom Rabbani, Mauro Conti, and Nele Mentens.
SACHa: Self-attestation of configurable hardware. In Proceedings of
the Design Automation and Test in Europe Conference (DATE 2019),
in press, Firenze Fiera, Florence, Italy, March 25-29, 2019. DOI:
10.23919/DATE.2019.8714775.

[C5] Mauro Conti, Pallavi Kaliyar, Md Masoom Rabbani, Silvio Ranise.
SPLIT: A Secure and Scalable RPL routing protocol for Internet of
Things. In Proceedings of the 14th IEEE International Conference
on Wireless and Mobile Computing, Networking and Communications
(IEEE WiMob’18), in press, Limassol, Cyprus, October 15-17, 2018.
DOI: 10.1109/WiMOB.2018.8589115.

[C6] Moreno Ambrosin; Mauro Conti, Riccardo Lazzeretti, Md Masoom
Rabbani, Silvio Ranise. PADS: Practical Attestation for Highly Dy-
namic Swarm Topologies. In Proceedings of ESORICS 2018 (SIoT
2018), in press, Barcelona, Spain, September 3-7, 2018.

[C7] Moreno Ambrosin; Mauro Conti, Riccardo Lazzeretti, Md Masoom
Rabbani, Silvio Ranise. POSTER: Toward Secure and Efficient Attes-
tation for highly Dynamic Swarms. In Proceedings of the 10th ACM
Conference on Security and Privacy in Wireless and Mobile Networks
(ACM SIGSAC WiSec 2017). DOI: 10.1145/3098243.3106026.

9

Part I

State-of-the-art Techniques
of Collective Remote

Attestation

10

Chapter 2

Collective Remote Attestation: A
survey

The Internet of Things (IoT) has become a phenomenon which engulfs our
surroundings. It consists of tiny, so-called smart devices, that have unique
capabilities to act unsupervised and to communicate with each other in or-
der to perform tasks. These devices are capable of sensing, collecting and
processing personal and sensitive data. Additionally, the recent overwhelm-
ing growth of embedded device applications requires continuous or so-called
seamless connectivity, which leads to significant energy consumption. More-
over, low-cost, lack of testing and short time to market make these devices
vulnerable to cyberattacks. These vulnerabilities are prone to exploit and
expose the user to a wide category of attacks [14, 17, 109, 103, 81]. As often
these attacks lead to financial losses [19] or even worse. A low-cost solu-
tion to identify malicious entities in these devices is Remote Attestation.
However, naive applications of remote attestation do not scale for systems
that consist of device swarms1, such as intelligent transportation systems
and robots used for oil and gas search. In order to address the scalability
challenges, more recently, researchers have focused to provide solution for
large-scale IoT networks. In this chapter we discuss the proposed collective
remote attestation techniques with respect to different threat models and
discuss their shortcomings and provide potential areas for future works.

2.1 Contribution

This work makes an effort to provide the reader a systematic and thorough
revision of the state-of-the-art CRA schemes and to dissect the relevant

1more than one IoT devices make groups to perform tasks.

12

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

security issues. Our broader goal is to provide the reader with guidelines that
should be taken into account during the implementation of CRA protocols.
In particular, in this work we provide the following contributions:

• We describe the system and security model for collective remote at-
testation, and survey the state of the art for CRA.

• We analyze the different adversary typologies and attacks that can be
conducted on the IoT network.

• We perform a critical comparison between the protocols proposed in
the literature in terms of their characteristics, adversarial mitigation
capabilities and defensive capabilities against different attacks.

• We discuss open problems and future research directions in the field
of CRA.

2.2 Organization

The rest of the chapter is organized as follows. In Section 2.3 we discuss the
common system and adversarial model for CRA schemes. Section 2.4 dis-
cusses the different types of device attestation mechanisms along with their
pros and cons. In Section 2.5 we present state-of-the-art for CRA schemes
which includes their features and comparative studies. Security analysis of
different CRA protocols is provided in Section 2.6. In section 2.7 we have
highlighted open problems regarding CRA and their wide adaptability. Fi-
nally, in section 2.8 and section 2.9 we conclude the work done in this chapter
along with the possible directions of future work.

2.3 System and Security Model for Collective Re-
mote Attestation

2.3.1 System Model

In this section, we outline the general system model for CRA schemes. Typ-
ically, a system-model in CRA considers a large network of low-end, embed-
ded devices, e.g., IoT devices in smart environments, cyber-physical systems
in industrial settings. These devices are heterogeneous in terms of underlying
software and hardware configurations and act as provers (P). Along them,
the other major stakeholders are the network owner (O), the verifier (V),
and aggregators (A). In line with [32, 40, 118], we assume that devices in a
large network are able to communicate and identify their direct neighbours.

As shown in Figure 2.1, a brief description of the CRA system model is
as follows:

13

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

Verifier (V)Owner (O)

Swarm
Network

Aggregator (A)

Prover (P)

Prover (P)

Prover (P)

Figure 2.1: Example of Swarm Network.

• Owner or Operator (O): The network owner (O) is responsible for: (1)
network setup and maintenance; (2) provisioning of necessary crypto-
graphic material and credentials for attestation; and (3) (optionally)
delegate a third party entity to carry out periodic attestation rounds.

• Verifier (V): Throughout the CRA literature, the attestation process
is usually carried out by a third-party entity on behalf of the owner by
a verifier (V). V carries out the attestation process usually by sending
an attestation request to the network, and collecting the (global) at-
testation result in the form of an aggregated proof. As an alternative,
the attestation protocol can be triggered by provers.

• Prover (P): Each device that has to be checked by the verifier is re-
ferred to as prover (P). Provers in the network are assumed to be
heterogeneous w.r.t. the underlying software and/or hardware. As a
result of the attestation procedure, P can be considered “healty”2 or
“compromised”.

• Aggregator (A): The main purpose of an aggregator (A) is to relay
messages among entities in a network. This entity is introduced as a
distinctive one in [32]. In a decentralized environment, within a net-
work each prover can act as an aggregator.

2.3.2 Reference Attacker Model for CRA

In what follows, we summarize the attacker models for CRA considered in
the literature, and define a reference attacker model. The CRA and RA [25]
literature, typically deal with the following types of attacker:

2A device is healthy if it is running latest legitimate software version.

14

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

• Software Adversary (AdvSW). This type of adversary, also regarded as
Remote Adversary in [25], has the ability of running malicious code or
firmware on a device.

• Mobile Software Adversary (AdvMSW). This adversary is capable of
compromising the software configuration of a device and then to elim-
inate any trace of its presence from the device (e.g., he is capable of
erasing the malware used to compromise the device).

• Physical Non-Intrusive Adversary (AdvPNI). The attacker is in the
proximity of the device and may infer information from the devices,
e.g., using side-channel attacks.

• Stealthy Physical Intrusive Adversary (AdvSPI). This attacker is capa-
ble of capturing a device, and may attempt to exfiltrate information
from it.

• Physical Intrusive Adversary (AdvPI). This attacker is not only capable
of capturing a device, but also to introduce external hardware on them.

• Network Adversary (AdvNW). This attacker is in control of the commu-
nication channel among provers, and between provers and the verifier;
it resembles the Dolev-Yao model [69], and is capable of performing
several attacks described in the Wireless Sensor Network (WSN) liter-
ature, such as Sinkhole Attack or Black Hole / Selective Packet Drop-
ping Attack (see [137] for an extensive treatment of the subject).

2.4 Background: Device Remote Attestation

Device remote attestation is a well established technique and has been stud-
ied extensively in the context of IoT [131, 25]. Remote attestation allows
V to obtain a proof of the integrity of the configuration (e.g., software, or
data) of P. This is carried out over an interactive protocol between V and
P.

Remote attestation for IoT devices can be performed in several ways,
with different requirements in terms of device capabilities and equipment,
and security guarantees. In particular, we can distinguish between software-
based attestation, hardware-based attestation, and hybrid attestation. The
remaining of this section briefly describes each of them. Note that, the fol-
lowing does not intend to be a thorough treatment of the various attestation
techniques, for which we point the reader to the works in [77, 131]. Rather, in
this section we provide the necessary background information to the reader
on remote device attestation, in order to make the exposition self contained.

15

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

Software-Based Attestation

Software-based approaches typically rely on timing information to allow the
verifier to assess the correctness of the firmware running on the prover;
as such, these approaches usually imply strict timing requirements on the
network, which may not be feasible in any generic IoT environment. An ex-
ample is SoftWare-based ATTestation (SWATT) [126], which leverages the
fact that a malicious firmware running on a (compromised) node must re-
direct the memory access to the memory location where the original code
resides in order to get a valid response to an attestation request. The over-
head introduced by this memory re-direction will have a direct impact on
the overall runtime, and thus, on the necessary amount of time for the prover
to respond.

Typically software-only attestation schemes [126, 130, 125] depend
on strong assumptions regarding adversarial capabilities. Moreover, these
schemes work in scenarios where V communicates with P in a one-hop net-
work settings. This makes them hard to deploy over large networks with
multi-hop distance between the verifier and provers.

Attestation Based on Root of Trust

To overcome some of the limitations of the software-only based attestation,
hardware-based and hybrid attestation solutions were proposed. Both the
approaches make use of a Root of Trust RP within P, which is implicitly
assumed to be trusted, and is the endpoint of the attestation protocol.

RP can be either fully implemented in hardware, or as a combination
of hardware and software [77]. An example of the former is the Trusted
Platform Module3 (TPM [39, 121]), which can be used as a Root of Trust
for Storage, and enables the verification of the integrity of a system at boot
time.

Hybrid solutions implement RP as a combination of hardware and soft-
ware. When it comes to IoT security, these solutions typically leverage hard-
ware providing minimal security capabilities, in particular code and mem-
ory isolation [76]. Examples of research platforms for embedded systems
with such capabilities are SMART [72], SPM [132], SANCUS [105] and
TyTAN [47]; commercial solutions, such as ARM TrustZone4, are already
available on popular IoT platforms. We will refer to the above as Trusted
Execution Environment (TEE) technologies.

Remote attestation schemes based on Root of Trust in IoT assume either
a shared secret between V and P, i.e., a symmetric key k, or more sophis-
ticated public key cryptography technologies (e.g., traditional public key
cryptography, or aggregate multi-signature [32]). Clearly, symmetric cryp-
tography introduces a considerably lower overhead than public key cryp-

3 https://trustedcomputinggroup.org/trusted-platform-module-tpm-summary/

16

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

tography in resource-constrained devices [40], and as such, it is generally
considered to be the preferable security solution to adopt in the IoT space.

Independently from the cryptographic scheme in use, based on different
assumptions and/or hardware capabilities, we can distinguish three possible
strategies for a remote attestation protocol:

• Type 1: Interactive. This is the regular and most widely used method.
It consists of an interactive protocol between V and P: V sends a
challenge N to P’s RP, which responds with a proof p of the device’s
configuration. A proof p typically consists of a hash of P’s configu-
ration h, concatenated with N . This is signed, in case of public key
cryptography, or tagged, in case of symmetric cryptography, using a
Message Authentication Code (MAC). V verifies the integrity of P’s
configuration by (1) verifying the authenticity of p, and (2) checking
whether h is the hash of an allowed configuration for P. Note that,
in simple scenarios where the number of possible allowed configura-
tions is small, only the signature or MAC is sent to V. This process is
schematized in Figure 2.2.

Verifier (V)
Shared secret k

Expected configuration c'

c hash(conf(P))←

h mack(N||c)←

Shared secret k

Root of Trust (Rt)

h == mack(N||c') ?

Firmware

Nonce (N)

c||h

Prover (P)

Figure 2.2: Interactive Remote Attestation

• Type 2: Self-attestation. Leveraging the capabilities of the TEE, it
is possible to perform attestation at P’s side, provided that the list
L = {h1, h2, . . . , hn} of potential allowed configurations for P is se-
curely installed in a write-protected area of the device, and accessible
by RP. This type of attestation is depicted in Figure 2.3. In this case,
after receiving N from V, and computing a measurement h of P’s con-
figuration, RP produces a signed/MACed token indicating the binary
result of the attestation process TRUE/FALSE, which is then delivered
to V. Self-attestation allows RP to produce a customized token to
communicate the result to V, which may be needed in certain scenar-
ios, e.g., in [32] to scale attestation collection. The main disadvantage

17

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

of this approach is the need for L to be pre-installed in P’s memory,
and securely updated.

Verifier (V)
Shared secret k

Allowed conf. C = {c1,...,cn }

if conf(P) C then
 r = 1
else
 r = 0

∈

h mack(r||N)←

Shared secret k
Allowed conf. C = {c1,...,cn }

Root of Trust (Rt)

h == mack(N||r) and (r==1) ?

Firmware

Nonce (N)

r, h

Prover (P)

Figure 2.3: Self-Attestation

• Type 3: Non-interactive. Recently, Ibrahim et al. proposed SeED [85], a
solution that meets the needs of autonomous systems. SeED modifies
the attestation protocol flow by allowing P to autonomously deter-
mine the time at which attestation happens, and to locally generate a
pseudo-random N . This removes the need for V to initiate the process,
giving more freedom to the specific device. This technique, however,
requires additional hardware requirements compared to Type 1 and
Type 2 techniques. In particular, a non-interactive attestation scheme
requires [85]: (1) a reliable Real Time Clock (RTC), to correctly report
the time at which the attestation result refers to; and (2) an Attes-
tation Trigger (AT) circuit, which triggers the attestation process at
unpredictable points in time (using a pseudo-random function).

Control-Flow Attestation schemes

Recently, researcher also tried to address the issue of code-reuse at-
tack [116] or run-time attack, which are immune to attestation process.
In [24, 56, 64, 65] authors describe the techniques for control flow attesta-
tion. The main essence of the idea is that prover P computes the hashing of
its execution steps along with control flow details. V can validate whether
the prover followed the proper execution steps or not, from the intended
execution steps. Any deviation will be the indication of a malicious code
presence. Although this technique is better than naive software-based at-
testation schemes, its performance and use of trusted anchor make it costly

18

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

Verifier (V)
Shared secret k

Allowed conf. C = {c1,...,cn }
Pseud-random seed S

N genNonce(S)←

c conf(P)←

h mack(t||c||N)←

Shared secret k
Allowed conf. C = {c1,...,cn }

Pseud-random seed S

Root of Trust (Rt)

N getNonce(S)
(c C) and h == mack(t||c||N)?

←

∈

Firmware

Nonce (N)

t, c, h

Prover (P)

Figure 2.4: Non-Interactive Attestation

in terms of execution and performance. Furthermore, these schemes are not
capable of asynchronous execution of different control flows. Thus making
them unsuitable for large scale implementation of heterogeneous IoT envi-
ronments.

2.5 State-of-the-art for Collective Remote Attes-
tation

In this section, we overview the CRA literature. All of the works pro-
posed in the literature adopt a similar approach: reduce the communica-
tion and computation of the attestation process by securely “offloading” the
execution of certain operations to the nodes themselves. Furthermore, all
the CRA schemes presented in the literature assume provers are equipped
with a hardware-enabled Trusted Execution Environment (TEE) (e.g., Ty-
TAN [47]).

SEDA. The work by Asokan et al. [40] first highlighted the scalability chal-
lenges of remote attestation for large swarms of low-end devices; the authors
proposed SEDA (Scalable Embedded Device Attestation), a scalable proto-
col for collective attestation. SEDA allows the verifier to efficiently perform
attestation over an (overlay) spanning tree, rooted at the verifier. The pro-
tocol comprises two phases: an offline phase, and an online phase. The of-
fline phase comprises (1) Device Initialization, performed by the owner (or
operator) O, which provides provers with their expected correct configura-
tion conf (Pi) = ci, signed by O (it may be different per each prover Pi),
and credentials; and (2) Device Registration, where nodes securely establish

19

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

H1 = (0, CF1)

H3 = H (H2 , CF3)

H2 = H (H1 , CF2)

H4 = H (H2 , CF4)

Attest H5 = H(H4 , CF5) ∨ H(H3 , CF5)

Figure 2.5: Control-flow Attestation

pairwise keys with their neighbors (e.g., wirelessly reachable devices) using
their credentials. The online phase of the protocol is initialized by V, which
broadcasts an attestation request to the swarm creating a spanning tree.
Each prover, after verifying the authenticity of the request, propagates it to
their children in the spanning tree. Every prover Pi then attests its children
using the shared keys established during the offline phase, and sends an “ac-
cumulated” result to the parent node indicating whether the subtree routed
at Pi has correct configuration (1) or not (0). This process continues along
the spanning tree until reaching V, which verifies the status of the swarm by
verifying only the last attestation report. SEDA offers some degree of pro-
tection against DoS attacks by limiting the “join-request” frequency or by
making them low-priority tasks in the network. The authors also proposed a
variant of SEDA where every device piggybacks the IDs of the compromised
devices in the subtree alongside the aggregated attestation result. While a
noteworthy first step towards a more scalable attestation protocol, SEDA
has some important limitations. First, it requires the network to be “sta-
ble”, that is, every node will maintain a fixed set of neighbors throughout
the operation time. Second, configurations are statically deployed during the
offline phase, and it is unclear how they are updated, e.g., in case of Over-

20

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

The-Air (OTA) firmware update. Third, the protocol considers an attacker
model comprising AdvSW and AdvNW .
DARPA. Ibrahim et al. [84] proposed DARPA as an attempt to com-
plement SEDA [40] to detect device captures by stronger attackers, i.e.,
AdvSPI and AdvPI , which may evade detection through attestation. The
main essence of this protocol is to detect whether an attack has been oc-
curred rather than detecting the individual malicious devices, i.e., detecting
whether a device has been captured. The assumption is that any physical
attack requires a non-negligible time tcap to be captured. Nodes periodically
run an absence detection protocol with their neighbors, recording present
devices in a secure log. Devices generates “heartbeat” messages, along with
a timestamp, signed with their secret key and share them to the immedi-
ate neighbours. During every absence detection protocol run, every device
initiates its own heartbeat based on either an internal secure timer, or an
heartbeat message received from one of its neighbours. The neighbouring
devices exchange their respective heartbeats. In this way this timestamp-
based “hearbeats” of the devices are stored into a log file, which is then
transferred to V upon the protocol time out.
SANA. Ambrosin et al. [32] proposed SANA that addresses some of the
limitations of SEDA [40]. SANA relies on a novel cryptographic method,
called as Optimistic Aggregate Signatures (OAS) to aggregate the attesta-
tion result of a network through untrusted aggregators. OAS is a multi-party
signature scheme which enables SANA to efficiently aggregate attestation
report irrespective of the number of the signers due to its short signature
size and short verification time. SANA also employs token for verifier as-
signed by the network owner. This step helps to counter DoS attack, as
only legitimate verifiers can initiate attestation requests for the devices in
the network. In SANA, the attestation report is publicly verifiable and it
provides details of compromised devices in the network. Although SANA re-
solve many shortcomings of SEDA, it still requires full connectivity among
devices; furthermore, the aggregate signature scheme introduces severe over-
head on low-end devices with respect to computation.
LISA. In [49], Carpent et al. proposed two Lightweight Swarm Attestation
(LISA) protocols, LISAα and LISAs. These protocols improve SEDA [40]
with respect to scalability and resiliency to physical adversaries. Further-
more, [49] introduces a metric named “Quality of Swarm Attestation”
(QoSA) to compare the quality of different swarm-attestation protocols.
Based on the report generated by swarm-attestation protocols and the in-
formation they yield, the metric defines the “QoSA” of that specific pro-
tocols. Furthermore, LISA uses a shared master key in order to make the
swarm attestation less complex. As a consequence, in this scenario even a
single compromised node can jeopardize the whole network. To solve this
problem, the authors suggest to use Public-key-infrastructure (PKI), which
however introduces additional complexity in the system. Despite the effort

21

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

for bringing collective remote closer to reality, LISAα and LISAs require
full connectivity among nodes during the attestation process, which may
limit their applicability dynamic networks or where there is intermittent
connectivity among nodes.
SeED. The protocol proposed in [85], SeED, enables attestation to be ini-
tiated by provers, rather than the verifier. This translates in a reduced en-
ergy cost, communication overhead and run-time compared other verifier-
initiated protocols, such as [40], as well as additional protection against DoS
attacks on end devices (e.g., from a malicious verifier). SeED per se is not
a CRA protocol, but relies on SEDA [40] to efficiently deliver attestation
reports to the verifier. The security of SeED relies on a secure random seed
shared between every device and O during the initial device bootstrapping
phase; end devices (provers) store their seed in a Memory Protection Unit
(MPU). This shared seed is used to generate a pseudo-random sequence
of times at which execute attestation (based on a pseudo-random number
generator), preventing an mobile attacker AdvMSW to anticipate the next
scheduled attestation round. Every device in the network generates its re-
spective attestation report based on the randomly generated time, which is
delivered to V using SEDA [40]. As a consequence, SeED inherits the same
limitations of SEDA.
SCAPI. Kohnhauser et al. [92] presented SCAPI, which improves
DARPA [84] by reporting the exact captured devices. In SCAPI authors
propose to distribute periodically a session key among all the devices that
are not physically compromised. A “leader” device generates secret session
key for the subsequent time-period. When a new session key is generated,
devices will need to authenticate with the old session key in order to receive
the updated session key. SCAPI’s security relies on the assumption that a
AdvPI cannot capture a device without turning a device off for a notice-
able amount of time.In this way, the captured devices will not be able to
get the updated session key and consequently the protocol can detect physi-
cal attacks. SCAPI improves DARPA w.r.t. network communication, energy
consumption and run time. However, SCAPI relies on other CRA protocols
like [40, 32] for scaling and consequently inherits their limitations. There-
fore, SCAPI has limited application in highly dynamic networks or where
there is intermittent connectivity among nodes.
ERASMUS. In [50], Carpent et al. proposed ERASMUS, a remote attes-
tation protocol which, unlike other RA schemes, promises to identify mobile
adversaries by observing two successive attestation periods. The main ad-
vantage provided by ERASMUS is that it substantially minimizes prover’s
computation due to self-initiated attestation, rather than verifier initiated
attestation. The major difference ERASMUS has over other CRA scheme
is the use of predefined schedule to perform self-measurement and storing
the results. Later, V collects the history of self-measurement results from
provers. This technique enables V to identify whether there is any mobile

22

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

adversary presence between two successive attestation time. Due to this
non-interactive and device initiated measurements ERASMUS has shown
commendable improvements in terms of performance over on-demand attes-
tation. This unique feature makes ERASMUS as an ideal candidate for de-
vice attestation of unattended or safety-critical resource constraint devices.
However, in case of CRA, ERASMUS leverages SEDA or LISA [40, 49] for
collective attestation of swarms. Thus, it inherits their shortcomings.

SALAD. More recently Kohnhauser et al. proposed Secure and Lightweight
Attestation for Highly dynamic or disruptive networks (SALAD) [93]. In
SALAD, authors do not provide any distinctive attestation mechanisms.
The main focus is to provide a lightweight message aggregation scheme for
highly dynamic networks which has intermittent connectivity. Unlike pre-
vious attestation schemes SALAD performs better in disruptive networks
and works in a distributed fashion. All devices attest each-others software
integrity before exchanging their respective knowledge about the network
(information about other devices). Eventually they corroborate the attesta-
tion result for the whole network. In order to exchange attestation report,
authors rely on two types of MAC schemes, namely MACGreedy and MAC-
Smart. MACGreedy aims for minimizing the device storage by aggregating
all the received attestation tuples with the existing report in a device. On
the other side, MACSmart focuses on minimizing the number of transmitted
messages between devices, but as the network is dynamic and connection is
intermittent thus bigger message size may leads to packet loss and MACS-
mart provides efficient message transmission among two devices (i.e. MAC-
Smart stores received report tuples separately and only aggregate them for
transmission, reducing communication costs).

PADS. Ambrosin et al. [30] present an idea for unstructured and highly dy-
namic networks named PADS. The main essence of this work is based on con-
sensus. It is a fusion between attestation mechanism and sensor technology.
The aim for this work is to provide efficient attestation report aggregation
for a disruptive network of intermittent connectivity while keeping low-end
device’s capabilities in mind. Contrary to other CRA schemes [40, 32, 84],
PADS does not rely on spanning tree for efficient attestation report aggrega-
tion. The consensus among devices plays the critical role for attestation re-
port aggregation. For attestation PADS employs self-attestation mechanism
as described in [85]. The devices will attest themselves and share attestation
reports with the neighbors, enriching their knowledge of the network status
thanks to consensus mechanism. In fact PADS employs a pragmatic ap-
proach for network health monitoring which relies on self-attestation of the
low-end embedded devices and turns the attestation results into a minimum-
consensus problem. This unique feature enables the V to get the snapshot
of the network without waiting for all the devices to finish the attestation
process.

23

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

On one hand SALAD [93] uses asymmetric cryptography and each device
has its key, hence it provide an high security level w.r.t PADS. On the other
hand PADS uses symmetric cryptography and a single key is shared in all
the devices like [49]. On the other side PADS uses symmetric cryptography
and a single key is shared in all the devices. On the other side PADS uses
symmetric cryptography and a single key is shared in all the devices. This
assumption reduces the overall security but permits to have a protocol that
can be efficiently incorporated in real environment.

The evaluation also proves the effectiveness of [30] over SALAD and
other CRA schemes. Unlike SALAD, PADS has shown its effectiveness on
large disruptive network. Based on simulation results PADS performance
over large dynamic network (i.e. consisting of 18000 devices) is better than
SALAD (i.e. consisting of 3000 devices).

WISE. Ammar et al. [35] recently proposed a novel approach to perform
remote attestation of large-scale IoT network by employing resource efficient
machine learning techniques based on Hidden Markov model. The main idea
behind the approach is to make the RA process efficient, light-weight and
smart. The authors argue that performing attestation over large scale mesh
network of IoT devices introduces a great burden on tiny IoT devices in terms
of communication overhead, memory consumption and most importantly
battery consumption. Unlike other CRA schemes which perform attestation
for all the devices in the network irrespective of their underlying heterogene-
ity and impose “equality” in terms of performing attestation, WISE aims to
minimize the communication overhead by performing attestation for a sub-
set of devices based on historical record of attestation results. Additionally,
this way of performing attestation will help to reduce the communication
overhead, memory consumption, and the V can perform attestation only
for those devices which are most likely compromised. The simulation re-
sults illustrates the effectiveness of WISE for performing remote attestation
in a clusterized fashion, where only a subset of devices performs attesta-
tion and sends the result to the V through cluster-head. However, WISE is
based on the same approach of creating virtual spanning tree for attestation
challenge propagation or report aggregation in the network. Thus, WISE
inherits all the drawbacks and suffers the same shortcomings of other CRA
schemes. Apart from providing smart, efficient and clustering based RA ap-
proach, WISE also provides a certain degree of security against the roving
malware5.

slimIoT. More recently, Ammar et al. presented slimIoT [35], a scalable,
lightweight remote attestation protocol for swarms consisting of resource
constrained IoT devices. This protocol improves SCAPI [92] in the following

5An advanced type of malware that is knowledgeable about the attestation schedule
and therefore only active between any two successive attestation routines. It also has the
ability to delete iself at the beginning of the attestation to avoid detection.

24

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

factors: (1) unlike SCAPI, it does not assume that half of the total devices in
the network should be healthy, slimIoT can accurately identify the compro-
mised devices with the assumption that at least one device in the network
remains healthy; (2) it allows device mobility during attestation. In [35], au-
thors subdivide the devices into clusters and periodically perform attestation
in order to identify physical-attacks. The motivation of periodical checking
is that physical attacks are time consuming, thus the absence of any device
from the cluster will indicate the possibility of a physical adversary. slimIoT
uses symmetric key cryptography to rely on authenticated parameterized
broadcast messages. To provide higher security and safeguard the entire
network in the event of a physical attack, authentication of the broadcasted
messages should require asymmetric encryption. slimIoT achieve asymme-
try by relying on a delayed disclosure of symmetric keys generated by using
a one-way hash-chain mechanism on the V. Furthermore, authors in [35]
argues that using nonce (i.e., the same nonce employed to prevent replay
attack), slimIoT can detect physical adversaries. All nonce in different at-
testation phases are securely updated in a linked manner, hence a missing
nonce update prevents the corresponding device from joining the swarm.
SAP. Nunes et al. [106] propose Timely Collective Attestation (TCA) model
definition and systematically design a Synchronous Attestation Protocol
(SAP) based on TCA. The TCA model serves as an analyzing base for
the other proposed CRA schemes and helps in identifying the main design
requirements for a CRA approach. The design specifications include param-
eters like network topology, devices specifications (e.g., hardware and soft-
ware), adversarial model, device computation power, network communica-
tion and attestation results. Attestation results are again further subdivided
based on the Quality of Attestation, as proposed in [49]. The proposed TCA
model systematically treats any CRA based on the TCA-Efficiency, TCA-
Soundness and TCA-Security.

In SAP, the authors propose construct the swarm network as a balanced
binary tree in which the root is the verifier. The attestation challenge propa-
gates along the tree and a secure clock on every device guarantees the verifi-
cation of the attestation challenge at time tatt. Upon receiving the challenge,
each device performs attestation and sends the result to its parent.

Unlike SEDA [40], in [106] a parent node performs XOR operation over
received result along with own attestation result and forwards the result to
its own parent. Upon successful completion of the network-wide attestation,
the V receives the XORed result of the swarm S and validates the result.
SAP depends on symmetric key based cryptography and employs secure,
read-only clock to synchronize the attestation time with other nodes in S.
In this work, the clock is instrumental to provide security against DoS or
man in the middle attack by validating the attestation time. While SAP
provides the base for comprehensive and categorical analysis of any CRA
based on the TCA-model, it does not support device mobility. In addition,

25

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

SAP is not resilient against a stronger attacker such as a physical adversary
or a run-time attack. Moreover, SAP does not allow the V to identify specific
malicious nodes in the network because the attestation result of SAP is only
a binary output which only shows whether the entire S is trustworthy or
not.

In Table 2.1 we summarizes the main characteristics of the CRA schemes
presented above.

Table 2.1: Features comparison.

Scheme
DoS Report collection Specialized Spanning-Tree

Mitigation SW Based HW Based HW Formation

SANA [32] ✗ ✓ ✗ ✗ ✓

SEDA [40] ✗ ✓ ✗ ✗ ✓

LISA[α, s] [49] ✗ ✓ ✗ ✗ ✓

DARPA [84] ✗ ✓ ✓ ✓ ✓

SeED [85] ✓ ✓ ✓ ✓ ✓

SCAPI [92] ✓ ✓ ✓ ✓ ✓

ERASMUS [50] ✗ ✓ ✗ ✓ ✓

SALAD [93] ✓ ✓ ✗ ✗ ✗

PADS [30] ✓ ✓ ✗ ✗ ✗

WISE [34] ✗ ✓ ✗ ✗ ✓

slimIoT [35] ✗ ✗ ✓ ✓ ✓

SAP [106] ✓ ✓ ✗ ✓ ✓

In addition to the aforementioned characteristics, in Table 2.2, we also
pointed out the following attributes of different schemes in terms of scala-
bility and protocol runtime to present a comparative view for the reader.
Table 2.2 provides the complexity statistics of the CRA protocols as shown in
the original works. Due to unavailability of the simulation results in terms
of scalability and runtime, we exclude ERASMUS [50] out of the current
context.

2.6 Security Analysis

In this section we compare the various CRA schemes proposed in the liter-
ature according to the attacker model presented in subsection 2.3.2.

Broadly, we can classify the CRA techniques into three main categories
based on the choice of their respective adversarial assumptions.

• Remote-only attacker model: Adversaries in this model performs only
attacks on the software of the device. Several schemes, such as [40, 32,
49, 85], provide security against it. Adversaries can be also subdivided
in Software and Mobile adversaries.

26

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

Table 2.2: Complexity comparison.

Scheme
Number of Devices Runtime Communication

in the Simulation simulation protocol

SANA [32] 1, 000, 000 2.5 sec ZigBee

SEDA [40] 1, 000, 000 ≈ 1.4 sec ZigBee

LISA[α, s] 40 10-1 sec WiFi

DARPA [84] 1, 000, 000 ≈ 0.4 sec ZigBee

SeED [85] 1, 000, 000 ≈ 0.8 sec ZigBee

SCAPI [92] 5,00,000 ≈ 128 sec ZigBee

SALAD [93] 3,000 ≈ 10 to 20 minutes ZigBee

PADS [30] 16, 000 ≈ 2 sec IEEE 802.15.4

WISE [34] 10, 000 ≈ 12.5 sec IEEE 802.15.4

slimIoT [35] 1, 000, 000 ≈ 18 sec IEEE 802.15.4

SAP [106] 1, 000, 000 ≈ 0.6 sec NA

• Physical attacker model: This type of attackers can also manipulate a
P through physical attacks. CRA schemes like [84, 92, 93, 35] consider
this type of stronger adversary. Physical attacks can be non-intrusive,
stealthy intrusive and intrusive. We remind that, once physically at-
tacked a device, the adversary can also perform software attacks.

• Network attacker model: Attackers can control the communication
channel and interfere with the devices activities by manipulating the
messages exchanged between devices or injecting new messages. How-
ever, this type of attacks largely consider in Remote Adversarial ca-
pabilities.

The security model discussed in subsection 2.3.2 provides an overview of
attacker capabilities considered by different CRA schemes in their respective
adversarial assumption.

Table 2.3 summarises different CRA scheme’s vulnerabilities against the
adversarial capabilities as discussed in subsection 2.3.2. As shown in the
table, all the discussed CRA schemes can detect software adversary, due to
their core motivation of finding the legitimacy of the underlying software
of P. On the other side, only ERASMUS [50], SeED [85] and WISE [34]
can identify the mobile adversary (i.e., adversary which changes its location
continuously to evade detection and perform malicious activities during two
successive attestation periods). ERASMUS relies on continuous monitor-
ing, irrespective of attestation period and stores the respective attestation
results in tamper-resistant hardware module in order to save form unautho-
rized access. Thus, during attestation period V can get the chain of previous
attestation results and the presence of a mobile adversary is notified. Instead

27

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

Table 2.3: Adversarial Mitigation capabilities

Scheme
Remote Adv. Intrusive Non-Intrusive Hybrid

Software Mobile Stealthy Physical Physical Adv.

SANA [32] ✓ ✗ ✗ ✗ ✗ ✗

SEDA [40] ✓ ✗ ✗ ✗ ✗ ✗

LISA [49] ✓ ✗ ✗ ✗ ✗ ✗

DARPA [84] ✓ ✗ ✓ ✓ ✗ ✓

SeED [85] ✓ ✓ ✗ ✓ ✗ ✗

SCAPI [92] ✓ ✗ ✓ ✓ ✗ ✗

ERASMUS [50] ✓ ✓ ✓ ✗ ✗ ✗

SALAD [93] ✓ ✗ ✓ ✗ ✓ ✗

PADS [30] ✓ ✗ ✗ ✗ ✗ ✗

WISE [34] ✓ ✓ ✗ ✗ ✗ ✗

slimIoT [35] ✓ ✗ ✗ ✓ ✗ ✗

SAP [106] ✓ ✗ ✗ ✗ ✗ ✗

Table 2.4: Defensive capabilities against different attacks

Scheme
Selective

Tampering Eavesdropping
Blackhole Jamming Wormhole

Forwarding Attack Attack Attack

SANA [32] ✓ ✓ ✗ ✓ ✗ ✓

SEDA [40] ✗ ✗ ✗ ✗ ✗ ✗

LISAα [49] ✓ ✓ ✗ ✓ ✓ ✗

LISAs [49] ✗ ✗ ✗ ✗ ✗ ✗

DARPA [84] ✗ ✗ ✗ ✗ ✗ ✗

SeED [85] ✗ ✗ ✗ ✗ ✓ ✗

SCAPI [92] ✗ ✓ ✗ ✗ ✗ ✗

ERASMUS [50] ✓ ✗ ✗ ✓ ✓ ✓

SALAD [93] ✓ ✗ ✗ ✓ ✓ ✓

PADS [30] ✓ ✗ ✗ ✓ ✓ ✓

WISE [34] ✓ ✗ ✗ ✓ ✗ ✓

slimIoT [35] ✓ ✓ ✗ ✓ ✗ ✗

SAP [106] ✗ ✗ ✗ ✗ ✗ ✗

WISE adopts fine-grained, multi-clustered, intelligent techniques to perform
the attestation process. This smart attestation process is device specific and
does not depend on any pre-scheduled attestation time6. Based on historical
records of adversarial presence, individual devices are monitored in a clus-
tered subsection of the network. Thus mobile adversary can not evade the
continuous monitoring and their presence is notified to V.

6In general the V initiate attestation process in a network or the attestation process
starts by the device itself based on a pre-scheduled time which is maintained by the secure
read-only clocks.

28

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

Intrusive attacks, which are further sub-categorized into two different
types (i.e., Stealthy and Physical), requires adversary to capture the device
for a non-negligible amount of time in order to tamper with the hardware. So
far none of the CRA schemes provide any mechanisms to prevent physical
attacks. Nonetheless, CRA schemes like [84, 85, 92] are capable of notic-
ing the absence of any device in the network, as these specific attestation
schemes runs an absence detection protocol and register their neighbour’s
“heartbeat” along with the session key. As per their respective assumption a
physical adversary require non-negligible time to capture and perform ma-
licious activities. Thus the compromised nodes will be absent during attes-
tation run. Detection of missing devices is a possible indication of physical
attack. Thus these schemes unlike other schemes [40, 32, 49] can identify
the presence of an Intrusive adversary. PADS [30] use a specific label to
identify devices whose state is unknown. Despite this state can depend on
the possibility that a device is not reached by the attestation protocol or is
inactive during the protocol, several successive attestation rounds reporting
the unknown state can be related to the presence of an Intrusive adversary.
Only [93] considers physical non-intrusive attacks (i.e., attacker is compar-
atively near to the device and capable of launching side-channel attacks)
in their adversarial model assumption. In fact, authors argue that the use
of computationally expensive HMAC scheme makes the probability of non-
invasive physical attack irrelevant.

CRA techniques such as [84, 85, 92, 93, 35] consider stronger adversaries
(e.g., physical adversary). These scheme relies on specialized hardware and
absence detection rather than protecting the devices from being captured.

Furthermore, several CRA schemes rely on an overlay of spanning tree
for the efficient collection of aggregated attestation report. Attestation result
report in a spanning tree needs that the whole network is static and message
transmission becomes hierarchical. A malicious node (i.e., parent node in
any layer of the spanning tree) can launch attacks like blackhole or packet
drop or selective forwarding attack. Those attacks are often overlooked in
CRA literature, because in general, the attacker model does not consider
existing attacks on Wireless Sensor Networks. Note that SEDA [40] employs
spanning tree architecture to efficiently propagate the attestation request
over a large swarm and the same virtual spanning tree is used to collect
the attestation report. However, in the proposed architecture, the parent
node performs the attestation of their respective children node. Eventually,
a node sends only a boolean output attesting the state of the subtree having
it as root to its parent, i.e., it sends 1 in case of successful attestation of
the subtree, or 0 in case the attestation of any of the nodes in the subtree
fails. This mechanism of attestation report aggregation is effecient in terms
of communication overhead and time. Nevertheless, the same is susceptible
to attacks like selective forwarding, blackhole and wormhole attack. For
instance a malicious parent node in a spanning tree can fake the attestation

29

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

report of its children node either by selective forwarding or blackhole attacks.
CRA schemes like [40, 49, 84, 85, 92] employ spanning tree for collective
attestation report gathering for swarm. Thus they are prone to these attacks.
However, SANA [32] is immune to attacks like selective forwarding, sinkhole
or sybil attacks due to its publicly verifiable optimistic aggregation signature
scheme. Unlike SEDA [40], in SANA [32] device details are associated with
the attestation report. Thus compromised device details along with missing
device details are easily identifiable.

In general, CRA schemes [40, 32, 84, 85, 106] do not allow device mo-
bility during attestation. However, schemes like [30, 93, 35] contemplate
device mobility during attestation, which make spanning tree unsuitable for
the implementation, thus they are immune to the aforementioned attacks.
In [30], authors use minimum-consensus to aggregate attestation results over
a dynamic network: individual devices upon mutual authentication exchange
their respective knowledge about the network and corroborate the results
and reach on a consensus, in order to share the status of each device through
the whole network. In [93], authors employ MACgreedy and MACsmart
techniques to broadcast attestation results over a dynamic network. Fur-
thermore, also schemes like WISE [34] and slimIoT [35] are unsusceptible
to attacks like selective forwarding and Blackhole due to their fine-grained,
clusterized approaches where every device is attested and monitored by the
cluster-head, so that the V can perform attestation frequently over a subset
of devices based on the historical records.

Table 2.4 outlines resiliency of CRA schemes against different common
types of attacks.

Attacks like tampering are considered in the category of physical at-
tacks. Undoubtedly, the use of specialized hardware such as TPM or se-
cure hardware module can prevent this attack and facilitates better se-
curity against stronger adversaries (i.e., physical adversaries). Schemes
like [84, 85, 92, 50, 35] employ tamper-resistant hardware module or read-
only clocks. However, not all the IoT class devices can accommodate these
modules, as, these specialized hardware modules are costly and unsuitable
for most of the IoT devices (especially IETF class-1 [45]).

The consideration of the cryptographic measures also plays a cru-
cial role in the security of the CRA schemes. On one hand schemes
like [49, 92, 35, 30, 106] employ symmetric key or naive master key approach,
which undoubtedly provides better performance in terms of lightweight com-
putation. However, the naive master-key approach can prove fatal in case
of any of the P in the network become compromised. On the other hand
[32, 93] utilize public key cryptography, which provides V with the ability to
publicly verify the attestation results but demands computationally expen-
sive operations from the resource-constrained devices. Additionally, schemes
like [40, 84] utilize both symmetric and public key cryptography in different
stages of their respective operations.

30

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

2.7 Open Issues for Collective Remote Attestation

As the world is pushing for an “Automation” era, the use of sophisticated
smart applications like self-driving car or delivery drones, robots in smart
factory 4.0 will pervade the coming future. Undeniably, mobility of these
smart-devices are mandatory. However, the safety concerns for these de-
vices grow when we consider mobility aspects as it introduces concerns like
network coverage, connectivity, energy need, etc.

The wide employment of swarms in different applications have in-
troduced challenges to incorporate mobility and intermittent connectivity
among devices in a network. There is a gap in existing literature to ad-
dress these aforementioned issues. On one hand, the emergence of attestation
schemes for addressing security vulnerabilities in “swarms” have highlighted
there effectiveness. On the other hand, few schemes consider device mobility
during attestation phase. The assumption of being static during attesta-
tion phase is highly unlikely for mobile devices. Moreover, full connectivity
among devices during attestation is another strong assumption taken in the
literature, which is also unfeasible due to network uncertainty. Clusteriza-
tion can be the basis for more efficient protocols. A small number of mobile
devices in a cluster can be considered static for the attestation runtime.
Then attestation of larger networks can be performed with existing or new
solutions that allow mobility. Moreover the absence of devices during swarm
attestation has been so far considered related to the presence of Physical
adversaries. However IoT devices can have intermittent activities and we
need attestation protocols able to distinguish between the two cases.

Another serious concern is physical adversaries, which is mostly over-
looked in literature. However, few schemes like [32, 84, 92] are capable of
mitigating hardware attacks up to certain extents (i.e., detection of adver-
sarial presence).

In the following we detail few open challenges associated with CRA.

Key Management

Choosing the most appropriate key mechanism is critical from security
and privacy perspective and indeed crucial for CRA schemes. Communi-
cations among devices and between device (P) and verifier (V) need to be
secured along with establishing trust between two devices or group of devices
in a network.

Key management schemes are broadly classified into two main cate-
gories [137].

• Centralized: In this type of scheme one central authority is responsible
for key generation and distribution. CRA schemes predominantly use
centralized key distribution and usually network owner performs this

31

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

role. However, this method of key generation and distribution is tedious
(i.e., in case of large network) and time-consuming.

• Decentralized: In this approach key generation, distribution and re-
generation are not under the control of any central authority. They
are managed by more than one entity. This key management has ad-
vantages over the centralized approach due to its fault tolerance and
sacalability. However, so far none of the CRA schemes is employing
decentralized key management for their respective operations.

In addition to that different attacks for example jamming attack is com-
pletely overlooked in the CRA literature and none of the CRA schemes
provide security against jamming attacks.

Mobility Unfortunately, most of the CRA protocols [40, 32, 49] do not al-
low device mobility during attestation phase. However, recently proposed
protocols like PADS [30], SALAD [93] facilitates device mobility during at-
testation. As, in reality device mobility is a must and the assumptions of
being static is not applicable for real life scenarios which includes mobile ob-
jects (autonomous-cars, drones, etc.). In case of mobility, the network will
become highly dynamic and this will pose difficulty for gathering attesta-
tion report for the whole network as most of the CRA techniques relies on
spanning tree for collective attestation report.

Intermittent Connectivity Connectivity among IoT devices is neces-
sary for swarm’s overall performance. It is assumed in CRA literature that
swarms are always connected [40] during attestation process. In reality con-
nectivity among IoT devices is a concern. Range and limited connectivity
often hamper data communication or transfer. In case of highly dynamic net-
works or unstructured network of mobile devices, achieving full connectivity
during attestation is not possible all the time.

However, there is a gap in existing literature to cope with this issue.
Thus it requires further investigation.

More recently, in [93, 30] authors address the issue by providing effi-
cient mechanism for attestation report aggregation. In [30] authors em-
ploy self-attestation mechanisms for device attestation purpose and fused
it with consensus mechanism to collect attestation reports over a dynamic
network.Furthermore, in [30] authors tries to mitigate this challenge by em-
ploying “coverage” concept in IoT networks. Coverage implies the knowledge
of one device about other devices in the network (e.g., for instance a prover
P has 80% coverage implies that P has the knowledge about 80% other
devices in the network).

32

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

Time of Check to Time of Use
One of the biggest issue of swarm-attestation is the gap between the

Time of check to Time of use (TOCTTOU) [48]. In general attestation re-
port comes with time-stamp which guarantees time-specific authenticity.
However, it neither guarantees whether the prover was malicious before the
attestation time nor it guarantees the state of the prover right after the attes-
tation. An intelligent adversary can evade the attestation by using TOCT-
TOU gap. In [142] authors have clearly demonstrated vulnerabilities of dif-
ferent attestation schemes e.g., C-FLAT [24], LO-FAT [65] and SMART [72]
against TOCTTOU attacks. Unfortunately, except ERASMUS [50] and Lite-
HAX [64] none of the attestation schemes consider TOCTTOU attack in
their respective adversarial model. It is still remain an open area to address
for the CRA schemes security.

2.8 Future directions

More and more adoption of IoT enabled applications in our environments
make the need of security evident and indeed Collective Remote Attestation
is an easy and low-cost solution to check the integrity of IoT swarms. More-
over, constraints and application specific employment make these swarms
very unique and challenging from security perspective. Low computational
capability, low storage and battery life demands lightweight security solu-
tions. These mentioned constraints make swarm applications unalike with
traditional WSN applications.

In particular we identify few gaps in existing state of the art for future
works, they are:

• As swarms are deployed in mobile scenarios as well (e.g., self-driving
cars, drones), it is indeed important to have secure and efficient mobile
network which will allow device mobility during attestation. In liter-
ature, there is gap and lack of CRA techniques that provide efficient
remote attestation technique for dynamic networks.

• Current CRA schemes do not provide run-time report of the network,
they yield time-specific reports. New secure CRA schemes need to
be developed for providing run-time state of the network. Most im-
portantly, CRA schemes work in a synchronous manner, whereas IoT
services work in an asynchronous manner for large network (for e.g.,
Publish/Subscribe model). Proposed CRA literature do not provide
solution for asynchronous IoT service communication.

• With the broad implementation of Field-Programmable Gate Arrays
or FPGAs, hardware has also become configurable and therefore vul-
nerable to attacks. Therefore, in order to attest to an entire system

33

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

that uses FPGAs, the state of both software and hardware must be
checked without the availability of a tamper-resistant hardware mod-
ule.

• Swarm attestation should be considered in innovative architectures
such as Fog Computing, which is a “horizontal, system-level archi-
tecture that distributes computing, storage, control, and networking
functions closer to the users along a cloud-to-thing continuum”. Fog
Computing supports a general model of edge computing, where data
processing tends to be close to the edge where they are generated [141].
Similarly, attestation can be first computed on the edge, still leverag-
ing on the clusterized nature of the architecture, and later aggregated
results are broadcasted to the verifier.

• Routing Protocol for Low power and Lossy Networks (RPL) is an
open routing protocol standardized by the IETF (Internet Engineer-
ing Task Force) Routing Over Low power and Lossy networks (ROLL)
working group in 2008, is used for data transportation and routing for
IoT networks. However, due to lack of security in RPL protocol, the
network becomes vulnerable and exposed to various security risks. For
instance, while routing, a malicious device can manipulate the network
operations, depletes nodes energy and can disrupt the complete net-
work functions. In order to prevent such attacks, to detect unintended
software modifications, and to ensure the safe and secure operation of
a device, it is essential to guarantee its software integrity and confi-
dentiality. A proper, light-weight CRA scheme is required to provide
secure, scalable and efficient operation for large scale IoT networks
which employs RPL.

2.9 Summary

To the best of our knowledge, this survey is the first one that outlines differ-
ent CRA schemes and security issues addressed by them along with the loop-
holes. We have also tried to stipulate state-of-the art immutability against
other attacks. Thanks to attestation, security can be provided for IoT de-
vices. However the deployment of efficient protocols in IoT swarm is still
in a preliminary stage. Current solutions are able to solve only some of the
open issues highlighted through the work. Some solutions are efficient, but
cannot be used in dynamic networks. Some works point out to provide high
security guarantees, but however security is expensive, while IoT devices are
often resource constrained.

Research community is still working to develop a CRA protocol that can
be implemented in large dynamic environment where IoT device can contin-
uously join or leave the network, able to work on devices not equipped with

34

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

trusted components, provides sounds security guarantees and low commu-
nication and computation complexity, etc. We would desire the possibility
to make IoT device as secure as other computing systems, but this is not
possible. We indeed believe that weaker security is preferable to no security,
as it currently is. For this reasons researchers should agree on some mini-
mum security requirement for any IoT device, and then develop innovative
attestation protocols able to work with heterogeneous devices, where pow-
erful devices can take care of the security of low power devices, connected
in both static and dynamic networks.

35

Part II

Improving Collective Remote
Attestation Techniques

36

Chapter 3

Practical Remote Attestation for
dynamic networks

The proliferation of smart objects is changing our lives. These smart de-
vices, commonly referred to as Internet of Things (IoT) devices, are used
in many different fields, ranging from simple small scale systems, e.g., for
home automation, to large scale safety-critical environments, e.g., in military
systems, drone-based surveillance systems, factory automation, or smart me-
tering. Unfortunately, their role in critical systems, their low cost nature,
and their wide usage, make IoT devices an attractive target for attack-
ers [94, 122]. In particular, malwares represent a major threat to IoT sys-
tems, through which attackers replace the original firmware from the devices
with malicious code, to perform larger attacks [9, 11]. Security in IoT is thus
a major concern, to guarantee both the correct operational capabilities of
devices, and prevent data thefts and/or privacy violations.

One effective way to detect these types of attacks is remote attestation,
an interactive protocol between a prover (P) and a remote verifier (V) that
allows V to assess the integrity of P’s configuration (e.g., firmware and/or
data). In a remote attestation protocol, V sends a challenge to P; P com-
putes a measurement (typically a hash) of its configuration, and returns such
measurement to V, integrity and authenticity-protected with a Message Au-
thentication Code (MAC) or digitally signed. V then checks whether: (i) the
received data is authentic; and (ii) if the received measurement conforms to
an expected “good configuration” (e.g., taken from a database of known
“good configurations”) [77, 76]. As reported in recent alternative solutions,
the device itself can check whether the configuration is correct, and simply
report a (signed or MAC-ed) binary value indicating whether attestation
was successful or not [32]. Furthermore, attestation can be started by P
rather than V, at predefined points in time [85].

38

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

While certainly effective, remote attestation in its basic form is hard to
scale. Indeed, its overhead is linear in the number of provers in a system,
making it potentially unpractical for very large deployments or networks of
autonomous and/or collaborating tiny devices. For this reason, in the past
years researchers tried to design novel protocols, called collective remote
attestation protocols, to allow attestation to scale, while retaining useful se-
curity properties [40, 32, 49, 92]. Despite these advances, current solutions
for attestation are still unsatisfactory because of their complex management
and strict assumptions concerning the topology (e.g., being time invariant or
maintaining a fixed topology). In this chapter we propose PADS a novel col-
lective remote attestation technique that enables secure and efficient remote
attestation over large dynamic or unstructured IoT networks.

3.1 Organization

The chapter is organized as follows. Section 3.2 and Section 3.3 present the
related work and main contribution of our work respectively. Section 3.4
introduces our reference system model, and security model and assump-
tions. In Section 3.5 identifies the requirements for a secure non-interactive
collective attestation in highly dynamic environments. Section 3.6 provides
the necessary background on minimum consensus, and introduces the no-
tation used in the rest of the chapter. Section 3.7 describes PADS, our
efficient attestation protocol, while section 3.8 provides a description of our
implementation and evaluation. Section 3.9 analyzes the security of PADS.
Section 3.10 compares PADS against previous work in the area, highlight-
ing and discussing its main advantages, and limitations, while section 3.11
concludes the chapter.

3.2 State of the Art and Limitations

Asokan et al. [40] first highlighted the challenges in remote attestation for
large swarms of low-end devices, and proposed SEDA, a scalable protocol
for collective attestation. SEDA allows V to efficiently perform attestation
over an (overlay) spanning tree, rooted at V; each device attests its neigh-
bors, and reports back to its parent (in the spanning tree). Each device in
SEDA is equipped with the minimal hardware requirements necessary for
attestation on embedded devices, i.e., a Read-Only Memory (ROM), and
a Memory Protection Unit (MPU) [77]. SEDA provides an efficient mech-
anism to perform attestation, but requires full connectivity among nodes
during the whole attestation process. The work in [84] proposes DARPA,
which improves the resiliency of SEDA against strong attackers, by allow-
ing nodes to collaboratively detect hardware-compromised devices. Unfortu-
nately, DARPA inherits most of the main limitations of SEDA when it comes

39

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

to dynamic networks. Ambrosin et al. [32] proposed SANA, an end-to-end
secure protocol for collective attestation that, compared to SEDA, limits the
strength of hardware attacks, is publicly verifiable, and does not require all
the nodes in the system to be equipped with a Trusted Execution Environ-
ment (TEE), making it usable in heterogeneous deployments. SANA allows
untrusted nodes to aggregate attestation proofs collected from provers, us-
ing a generalized aggregate multi-signature scheme. While resolving most
of the major shortcomings of SEDA, SANA still requires full connectivity
among devices; moreover, it introduces severe overhead on low-end provers.
More recently, [49] propose two remote attestation protocols that improve
SEDA with respect to scalability and resiliency to hardware attacks. How-
ever, [49] requires full connectivity among devices for the whole attestation
process. Remarkably, the recent work in [92] improves SEDA by supporting
more dynamic networks, at the price, however of additional complexity in
the system (election of clustered nodes, etc.). More recently, Ibrahim et al.
proposed SeED [85], a protocol that allows to perform a prover-initiated
series of attestation step at different random points in time. This represents
a good fit for several applications, and in dynamic networks. Unfortunately,
the work in [85] leverages SEDA to scale to collective attestation, and thus
inherits its limitations.

3.3 Idea and Contribution

The goal of this work is providing a way to efficiently and effectively collect
attestation proofs from provers in highly dynamic networks of autonomous
devices. This work, inspired by the sensor fusion literature [46], takes a
different approach with respect to previous works. We developed from the
non-interactive attestation concept [85], and turn the problem of efficiently
collecting attestation proofs from provers, into a distributed consensus prob-
lem: A network of agents (i.e., provers) attest themselves (through their in-
ternal TEE), and then corroborate their individual results into a “fused”
attestation result via a minimum consensus. The final collective result will
carry sufficient information to tell which devices in the network are in an
healthy state, i.e., run a correct version of the firmware, and which are com-
promised. Our solution perfectly fits with networks of autonomous devices
that operate without a central unit coordinating the operation, such as in
decentralized coordination of Unmanned Aerial Vehicles (drones) [134, 63]
or adaptive driverless cars traffic flow [136, 75, 80]. In such scenarios, com-
promised devices should be excluded from computation and communication
to avoid they compromise the operativity of the whole network and a V
must be able to immediately obtain a map of the devices status.

We achieve this goal through Practical Attestation for Highly Dynamic
Swarm Topologies (PADS), the first protocol that supports attestation on

40

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

highly dynamic and unstructured networks. We seek for a truly practical
and realistic collective attestation protocol, to overcome the limitations of
previous schemes in the literature. PADS presents several key advantages
w.r.t. existing literature: (1) It does not require the establishment of an
overlay spanning tree to carry out the collective attestation process, and as
such, it is suitable for unstructured networks; (2) It does not require provers
to be always online and/or reachable during the whole attestation process;
(3) Is computationally efficient and suitable for resource-constrained devices,
and protocols; (4) As in [85], PADS starts at (and is related to) given points
in time, and the verifier can at any time obtain the status of the network by
querying any prover, without having to wait the return of the attestation
results from other provers as in the state of the art; (5) Opens for intelligent
uses of attestation results, e.g., healthy nodes can know the status of other
nodes and exclude compromised nodes from computation.

We show the performance of PADS through simulations, and compared
it against SANA [32]. Our experimental results confirmed the suitability of
PADS for low-end devices, and highly unstructured networks.

3.4 System Model and Assumptions

In this section, we present our reference system model (Section 3.4.1), and
security model and assumptions (Section 3.4.2).

3.4.1 System Model

We consider a network G modeled as a graph with vertices V and edges E of
interconnected (possibly low-power) devices. G is highly dynamic, and thus
E varies over time. In other words, given two distinct points in time t and
t + ∆t > t, Et may not “be the same as” Et+∆t. Analogously, we indicate
with Ni,t the set of all the vertex neighbors of a vertex i, at time t, i.e.,
Ni,t = {j ∈ V | ∃ e ∈ Et s.t., e connects i and j}. From a communication
standpoint, a device (i.e., a vertex) could be either unresponsive, or inactive.
An unresponsive device is a device with which communications have been
interrupted for some reason, for example, intentionally or for physical causes,
e.g., the connection experienced interference. An inactive device is a device
which does not participate in any communication with other devices, e.g.,
an isolated device in the network.

From an attestation perspective, each vertex in G is a prover Prvi, and
thus, in the remaining of the chapter, we will use Prvi to refer to vertex i
in G. We assume the existence of at least one verifier V, which is not part
of G. Similarly to previous works in this area [40, 32], we define a collective
attestation protocol as a protocol between the following entities: prover (P),
verifier (V), and owner (Own). As shown in Figure 4.3, V can communicate
only with the provers that are in its coverage, at a certain point in time

41

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

t. Finally, Own owns the deployment, and is in charge of setting up the
network.

Figure 3.1: Target system model for PADS. Provers communicate wirelessly
with entities withing their wireless coverage, and are mobile; as such, at
different points in time, the topology may change (t and t + ∆t in the pic-
ture). Similarly, the verifier can communicate with any prover in its wireless
coverage.

3.4.2 Security Model

Prover Capability Requirements and Assumptions In line with all
the previous works in swarm attestation [40, 84, 32, 49], and in particular
according to very recent works on non-interactive attestation [85], we assume
each device presents the following minimal features:

• A Read-Only Memory (ROM), where integrity-protected attestation
code should reside;

• A Memory Protection Unit (MPU), that allows to enforce access con-
trol on areas of the memory, e.g., read-only access to certain memory
areas exclusively to attestation protocol code [77];

• A secure Real-Time Clock (RTC) [84], to tie the generation of the
attestation proof to the current time;

• A secure attestation trigger (AT), i.e., a dedicated circuit that should
be non-interruptible by the operating system running on the device.

Existing popular designs for embedded devices, such as SMART [72],
TrustLite [91], or TyTAN [47], natively provide ROM and MPU capabil-
ities, and have been used in most (if not all) previous works as reference

42

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

architectures. The latter two features, RTC and AT, are provided by addi-
tional (yet minimal) dedicated hardware components, as shown in [85].

On-device Attestation From a security standpoint, in line with previous
works, we classify a device with a provably correct (i.e., attestable) config-
uration as healthy; in case the configuration is not correct, we classify the
device as compromised.

On provers behavior Network dynamicity and mobility play an impor-
tant role in defining the attestation outcome. Indeed, as we deal with very
dynamic networks, i.e., where G over time may be a disconnected graph, V
should not be able to always determine the status of a device as healthy or
compromised.

On one hand, while healthy nodes usually are assumed to correctly follow
the attestation protocol, it may happen that they do not reply to commu-
nication requests from other devices because inactive, e.g., they are busy,
or decide to turn into an idle state to save battery during inactivity, or
unresponsive for physical causes (e.g., a prover device moving out of range
during a communication). On the other hand, a compromised prover may
refuse to respond to try to evade detection. As a consequence, considering
an unresponsive or inactive prover as compromised is, in principle, a wrong
conclusion.

From a communication perspective, we refer to provers that cannot be
reached over the whole duration of the attestation protocol as unreachable,
while we refer to provers that at least at one point in time take part to the
protocol as reachable.

Furthermore, given the above, from a security perspective we consider
three possible outcomes of the attestation process, for a prover:

• Healthy, which means that the device is reachable, and has a correct
configuration.

• Compromised, which means that device is reachable, but the running
software configuration is incorrect.

• Unknown, which means that the device was unreachable, and thus
not “covered” by the attestation protocol.

Adversary Model We consider an adversary that is both local and re-
mote, according to the taxonomy in [25]. In particular, a local adversary can
eavesdrop, insert or modify all messages exchanged between all provers in G;
a remote adversary can exploit vulnerabilities in provers’ software, e.g., to
remotely inject malware (i.e., modify existing code, introduce new malicious

43

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

code, or read unprotected memory locations). As in most remote attestation
literature, the adversary cannot physically attack provers.

We can further classify attackers based on potential evasion strategies,
as discussed in the previous paragraph; in particular, we consider two types
of attackers:

• An attacker that tries to evade detection by forging the attestation
protocol.

• An attacker that tries to evade detection adopting a strategy for which
it looks unresponsive. As an example, a malicious strategy for com-
promised provers is to keep sufficient distance from other provers to
remain “undetected” by other approaching devices.

Finally, we consider DoS attacks on provers to be out of the scope of this
work.

Key Management An important design choice for a large scale swarm
attestation system is key management. Key management has been studied
extensively over the years in several fields, among which in the context of
Wireless Sensor Networks and Internet of Things. In this fields researchers
proposed sophisticated key pre-distribution systems, both symmetric and
asymmetric (the reader may refer to [144] for a comprehensive survey of
the main approaches). Asymmetric encryption keys are clearly easier to de-
ploy and inherently more secure to device compromise, but have a high cost
in terms of performance (ECDSA signature generation can take a thou-
sand time more compared to a SHA-1 based MAC, to be computed on a
resource-constrained platform [40]), which is critical in resource constrained
environments. While several previously proposed schemes may be adopted
in our design, for the sake of simplicity we consider two main options: (1)
enable the use of a näıve master key katt shared by all the n devices in G, sim-
ilar to [49], or (2) adopt individual public/private key pair (and certificate)
for each device, in order to allow message authentication or to exchange
pair-wise symmetric keys. The choice here, as suggested in [49], depends
on the type of adversary from which the scheme wants to protect against:
indeed, it is clear that a shared master key would not mitigate an hardware
attacker. Both options are valid, and the decision should be made depending
on the trade-off between performance and security. In what follows, for ease
of exposition, considering that we target a software-only attacker, similarly
to [49], we will consider the symmetric case (1) to describe and evaluate
PADS. In Section 3.10 we will briefly discuss potential consequences of hav-
ing a stronger adversary in the system.

44

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

3.5 Requirements

We consider the following requirements for a secure non-interactive collective
attestation in highly dynamic environments:

• Resiliency. The protocol must be resilient to cases where nodes mobil-
ity causes failures in (and consequent modifications to) the communi-
cation links between devices.

• Efficiency. The lack of a topology makes collective attestation harder;
nevertheless, the protocol should be efficient for large scale network of
resource-constrained devices.

• Heterogeneity. The collective attestation protocol shall support an het-
erogeneous population of devices, with different configurations.

• Unforgeability. The collective attestation protocol shall guarantee that
no software compromised device can forge an attestation result.

• Low complexity. The collective attestation protocol should not require
complex network and/or routing management.

3.6 Preliminaries, Definitions and Notation

In this work we rely on the minimum consensus protocol to share the attes-
tation results among provers, and iteratively converge to a “snapshot” of the
status of the network. Respect to previous solutions [40, 32, 84, 85], network
attestation is precomputed by the nodes (provers) before the verifier asks
for it. In this way, a V can immediately identify some corrupted devices by
interacting with any single node. Therefore, this section defines the concept
of Best Effort Collective Self-Attestation (Section 3.6.1), provides the neces-
sary background on minimum consensus (Section 3.6.2), and introduces the
notation used in the rest of the chapter (Section 3.6.3).

3.6.1 Best Effort Collective Self-Attestation

To deal with the highly dynamic and autonomous nature of G, we need a
new relaxed definition of collective attestation. Based on recent work [85]
and following the attestation literature [77], we introduce the concept of
Best-Effort Collective Self-Attestation (BECSA), that we will use is this
chapter.

Informally, a best-effort collective self-attestation protocol P, is a pro-
tocol between a network G of provers P and a verifier V, which allows V
to reliably collect and verify the authenticity of an attestation token α that
represent the status of the network. After the execution of P, V outputs a

45

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

final result value (r, ρ), where r = 1 iif α is a valid representation of the
status of the network, and ρ ∈ [0, 1] is the representativity of the data, i.e.,
a measure on α that quantifies “how well” it represents the status of G.

More formally a BECSA protocol is defined as:

Definition 1 (Best-Effort Collective Self-Attestation). A Best-Effort Col-
lective Self-Attestation (BECSA) protocol P over a network G comprises the
following operations:

• Setup(1k): is a probabilistic algorithm that, given a security parameter
1k, outputs a symmetric key k.

• Attest(k, s): is a deterministic algorithm that, given a key k, and a
device configuration s, outputs an attestation token α.

• Verify1 (k, s, α): is a deterministic algorithm that, given a key k,
a device configuration s, and an attestation token α, computes r =
1, if Attest(k, s) = α, and r = 0 otherwise, and finally outputs a
verification token φ ∈ {0, 1}ℓφ.

• Combine(k, φ1, φ2): is a deterministic algorithm that, given two ver-
ification tokens φ1 and φ2, generates a new verification token φ̃ that
“combines” the two results according to a combination function f .

• Verify2 (k, φ): is a deterministic algorithms that, given a verification
token φ and a symmetric key k, outputs a tuple (r, ρ).

The output of Verify2 (k, φ) is the result of the collective attestation pro-
cess r, identifying if something failed during the attestation protocol, and
the representativity value ρ, that is a measure of the ratio of devices the ver-
ifier is obtaining the status. Attestation information regarding the network
(either attestation of single provers, or one unique value representing the
whole network) can be obtained from the verification token φ that records
all the goods and compromised devices. Informally, it is easy to see that the
above definition can cover previous works on collective attestation schemes
that employ in-device integrity verification, such as SANA [32], where ρ = 1.

3.6.2 Minimum consensus

With the advent of wireless sensor networks, consensus algorithms have been
proposed to overcome the necessity of distributed and fault-tolerant com-
putation and information exchange algorithms. These protocols perfectly fit
the constrains of networks characterized by: (i) no centralized entity coordi-
nating computation, communication and time-synchronization, (ii) topology
not completely known to the nodes of the network, and (iii) limited compu-
tational power and energy resources [46]. Consensus algorithms have wide

46

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

application in wireless sensor networks [107, 108], unmanned air vehicles
(UAVs) coordination [115], swarm flocking [42], and many other application
scenarios attributable to IoT.

In an asynchronous consensus protocol [119, 107, 108], nodes periodically
broadcast their status to neighbors within their connectivity radius. When
a node receives a consensus message, he corrects its status according to it.
Iterating such step several times for each node, the state of all the network
nodes converges to the same consensus.

The minimum consensus protocol we are using in PADS, distributively
computes the minimum of the observations (attestation) provided by the
nodes of the network. The input sequence of the minimum consensus pro-
tocol is represented by the sequence x0 = (x0

1, x0
2, . . . , x0

n)⊤. According to
[119, 107], given x0, the protocol generates a sequence of observation states
{xt}inf

t=0 and in the step t any node i of the network updates its status by
computing xt+1

i = minj∈Ni∪{i}xt
j , where Ni is the set of neighbors of the

node i, i.e. each node updates its value to the present minimum value in its
neighborhood (more details are provided in Section 3.7). In practice there is
no need that steps are synchronized and in a step t only nodes that received
some new information are updating the status.

In [140], authors demonstrate that in static networks, minimum consen-
sus protocol converges to the minimum in finite time T ≤ D, where D is
the diameter of the graph, i.e. the longest shortest path between any couple
of nodes i and j. However in dynamic networks with switching topology,
new edges between vertices are added or removed during the time, accord-
ing to the effective range of communication link. Similarly some vertices
can be unreachable for long time, and hence it is not possible to exactly
define a convergence finite time T for the minimum consensus protocol in
dynamic network. On the other hand [140] also shows that minimum con-
sensus converges faster than average consensus, hence the convergence time
of an average consensus protocol in the switching system for any arbitrary
input sequence [107] can be used as an upper-bound for the minimum con-
sensus in dynamic networks. In [67], authors show that convergence speed
depends on the graph connectivity. In detail, given an error ǫ, in a pairwise
(gossip) consensus algorithm (where in a step t only a couple of nodes i
and j update their status), all the nodes reach a consensus ǫ away from the
normalized true average with probability greater than 1− ǫ in a ǫ-averaging
number of steps

T(ǫ) ≤
3 log ǫ−1

log λ2(E [W])−1
, (3.1)

where E [W] is the expected value operator of randomly selected averaging
matrices W (t) and λ2(E [W]) is its second largest eigenvalue. Such value can
be used as an upperbound also for minimum consensus protocol.

47

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

3.6.3 Notation

Table 5.1 introduces the notation we will use in this chapter. Let {0, 1}ℓ

represent the set of all bit strings of length ℓ. We use ←R M to represent a
uniformly random sampling from a set M , and with |M | the cardinality of
a set M . Let Pr(Ev) be the probability of an event Ev occurs; we say that
Pr(Ev) is negligible if for all polynomials f , Pr(Ev) ≤ 1/f(ℓ), for sufficiently
large ℓ ∈ N.

A message authentication code (MAC) is a tuple of probabilistic polyno-
mial time algorithms (mac keygen, mac, mac verif). mac keygen takes as in-
put a security parameter 1ℓmac , and outputs a symmetric key k; σ ← mack(m)
and mac verifk(σ, m) ∈ {1, 0} are, respectively, the computation of a MAC
on a message m using a key k, and the verification of the MAC σ computed
on a message m using key k (1 = valid MAC, 0 otherwise).

A pseudo-random number generator (PRNG) is a probabilistic polyno-
mial time algorithm prng gen. prng gen takes as input the previous state
(at time t− 1) µt−1, and outputs a (pseudo-)random value θt ∈ {0, 1}ℓθ , as
well as its current state µt.

3.7 Our Proposal: PADS

Here, we first provide an overview of PADS (Section 3.7.1), and then dive
into its details (Section 3.7.2).

3.7.1 Protocol Rationale and Overview

The goal of PADS is to cope with settings with a high mobility degree. To
this end, PADS achieves network attestation by corroborating individual
attestation proofs from devices, via consensus.

At a high-level, PADS works as follows. At the same point in time Tatt ,
each prover Prvi performs a local self- attestation step, checking whether
its software configuration (i.e., its measurement h) corresponds to a known
“good configuration”; this is achieved by matching it against a list of pre-
installed configurations H (similar to [32]). If the configuration is “good”,
i.e., h ∈ H, Prvi’s local attestation procedure outputs ri = 1, and ri = 0
otherwise.

Minimum consensus is used to spread the knowledge about each node
state through the network. In order to let V to obtain a “snapshot” of the
status of the network from any prover, we let each prover maintain the
status of the whole network, and update it iteratively. To ease an hardware
implementation (see Section 3.7.2 for the details), we represent the three
attestation outcomes introduced in section3.4.2 using the following 2 bits
values:

48

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

Table 3.1: Notation.

Entities

Gt = (Et, Vt) Network of provers at time t, with edges Et and vertices Vt

P, V Prover and verifier, respectively.

Ni,t Neighbors of prover Prvi at time t, in Gt.

Rt Set of active and responsive provers at time t.

Parameters

n Size of the network, i.e., number of provers in G.

katt Symmetric attestation key shared among provers in V .

Tatt Time at which an attestation is performed.

∆Tmax Maximum time interval between two consecutive attestation pro-
cedures.

ν PRNG secret seed, shared among provers.

xt
i Observation of network’s (attestation) status from Prvi at time t,

in the form of a bitmask of 2 × n bits.

xt
i[j] j-th bits couple in xt

i representing the status of the j-th prover in
G.

Cryptographic Functions

mac(),
mac verif()

MAC generation and verification, respectively.

prng gen() PRNG function.

PADS Functions

getSoftConf() Returns a measure h of P’s software configuration

verifySoftConf() Checks a given measure h against a set of known good configura-
tion measurements H; returns 1, if h ∈ H, and 0 otherwise.

schedule() Schedules an attestation trigger at a given point in time T , given
as input.

minAtt() Performs a minimum consensus as for Equation 3.2.

• Compromised (00): responsive compromised prover.

• Healthy (10): responsive healthy prover.

• Unknown (11): healthy and/or compromised prover that is unreach-
able.

It follows that, from a consensus perspective, an observation for a prover
Prvi xt

i is a bitmask of 2× n bits, reporting attestation information for the
whole network G. We indicate with xt

i[j], the attestation information relative
to prover j in G, i.e., the j-th couple of bits in xt

i.
When the consensus protocol starts after attestation, a prover Prvi has

only knowledge about its attestation outcome ri, and thus sets x0
i [i] = ri ∈

{00, 10}; having no knowledge on the state of other devices yet, the re-
maining couples of bits in x0

i are set to 11, i.e., to represent the “unknown”

49

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

state. In subsequent steps, provers exchange and combine their observations
through the consensus algorithm, this way iteratively building a unique
“view” of the status of the network. During a generic step t any generic
node i broadcasts its (MAC-ed) observation xt

i about the network and re-
ceives (MAC-ed) observations xt

j from active devices j ∈ Ni,t
1. Note that,

a compromised device transmitting a fake message can be identified from a
wrong MAC. The minatt function combines the observations of Prvi and the
received observations Prvj as:

xt+1
i = minatt(x

t
i, {x

t
j}Prvj∈Ni,t∩Rt

) = x; (3.2)

x, s.t., x[l] = min(xt
i[l], {x

t
j [l]}Prvj∈Ni,t∩Rt

), l = 0, ..., n.

Similarly other nodes update their status.
Figure 3.2 shows an example of how observations of two neighboring

devices are combined. Note that, if we restrict the set of possible values for
every xt

i[j] to {00, 10, 11}, Equation 3.2 can be efficiently computed using
the AND operator.

In order to guarantee the correctness of the consensus results, the value of
xt

i is stored in a access-restricted area of Prvi, protected by MPU inside the
device; furthermore, messages are integrity protected by a MAC computed
using a common key katt shared by all devices. Repeating updates following
the consensus algorithm through all the network, the knowledge is spread
to all nodes.

Finally, in order to obtain the knowledge about the network, V queries
any device in the network, if the latter is not compromised (detectable from
V by asking ri,t), it will return the consensus state representing its knowledge
about each node. This allows V to obtain an immediate approximation of the
status of the network, limited by some uncertainty; such uncertainty derives
from provers not replying, and/or information that has not yet reached the
node.

3.7.2 Protocol Details

PADS is an instantiation of a BECSA protocol. We divide PADS into four
phases: initialization, self-attestation, consensus, and verification.

Initialization Similar to [49], we assume for simplicity that nodes in the
network are pre-provisioned with a shared symmetric key katt . As discussed
in [49], this is sufficient in a software-only adversarial setting. Furthermore,
we assume each prover is provisioned with the set H = {h1, h2, . . . , hM} of
known good configurations (i.e., hash values); this list is either assumed to
be static, or infrequently securely updated. Finally, as in [85], provers are

1Synchronization among devices is not really needed in the protocol and has been
introduced for simplicity.

50

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

Figure 3.2: Consensus between two provers Prvi and Prvj .

else

katt , x
t
i, H = {h1, . . . , hM} katt , x

t′

j , H = {h1, . . . , hM}

Prv i Prv j ∈ Ni,t ∩Rt

Self-attestation (selfAtt)

Consensus (cons)

{θt, µt} ← prng gen(µt−1)

Tatt ← Tatt + (θt mod ∆Tmax)

schedule(Tatt)

h← getSoftConf()

if h ∈ H then

x0
i [i]← {00}

x0
i [i]← {10}

xt
i ← {11}

n

T̃ ← timestamp()

σ ← mackatt
(xt

j || T̃ || Tatt)[xt
j , T̃ , Tatt , σ]

if mac verifkatt
(σ, xt

j || T̃ || Tatt) ∧ Tatt −∆T < T̃ < Tatt +∆T then

xt+1

i ← minAtt(xt
j , xt

i)

end if

end if

// Every time t

Figure 3.3: PADS protocol: selfAtt and cons. The figure shows consensus
only for a single reachable prover Prvj .

provisioned with a shared secret seed νatt that they will use to autonomously
calculate a pseudo-random sequence of attestation times. This phase corre-
sponds to the Setup algorithm introduced in section 3.6.1. Alternatively, the
whole sequence of attestation times may be securely stored inside the device,
at the price however, of a larger memory occupation.

init(1ℓk)→ (katt , νatt, H)

51

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

Self-attestation The next attestation procedure is performed at a certain
point in time Tatt , which is computed by device’s secure clock using the
function prng gen, and triggered by secure clock’s function schedule. Each
prover Prvi executes a self-attestation procedure. This procedure is similar
to the one in [85], but with a major difference: Prvi measures its configu-
ration producing a measurement value h, but instead of sending h to V,
it performs a “self-assessment”. More precisely, at time Tatt each Prvi com-
putes the hash h of a predefined area of the memory – getSoftConf2. As
in [32], this result is then checked against the (set of) good configuration(s)
H, pre-stored inside the device, using the check function. The result of this
operation is ri ∈ {0, 1}, i.e., 1 if the configuration is a good one, and 0 other-
wise. Prvi further sets x0

i [i] = 10 if ri,t = 1, and x0
i [i] = 00 otherwise. Note

that, getSoftConf and check implement, respectively, algorithms Attest
and Verify1 ; furthermore, h corresponds to the token α, and x0

i [i] is the
verification token returned by Verify1 (.)

selfAtt(Tatt)→ (ri, x0
i)

Consensus In this phase, provers corroborate their “observations” of the
status of the network, using the distributed minimum consensus introduced
in section 3.6.2. The goal is to jointly converge to the same “view” of the
network, represented as a bitmask. To do that, periodically each prover Prvi

broadcasts its observation, i.e., xt
i at time t; this is the bitmask representing

a snapshot of the status of the network, together with a timestamp T̃ , and
a MAC σ taken over xt

i, T̃ , and Tatt . Every other prover Prvj receiving
a (broadcast) message, verifies the MAC σ– mac verif, checks whether T̃
resides within a valid time interval (to prevent reply attacks), and finally
performs the minimum consensus calculus according to Equation 3.2. This
phase corresponds to the BECSA algorithm Combine.

cons[Prvi : katt , xt−1
i ; {Prvj : katt , xt−1

j }j∈Ni,t−1∩Rt]

→[Prvi : xt
i, T̃ , Tatt , σ; {Prvj : −}j∈Ni,t−1∩Rt]

Verification V collects the final network status xt, i.e., the result of the
collective attestation protocol, from a prover Prvi, randomly chosen from
G. V executes this final step in any moment after a “reasonable” amount
of time TMAX, which can be estimated by V, or simply fixed. Furthermore,
the choice of Prvi may be dictated by physical conditions, e.g., Prvi is in
proximity of V. The final verification step is as simple as listening the mes-

2The part of the memory measured during attestation can vary, and depends from the
specific applicative scenario

52

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

sage broadcasted by Prvi, verifying the MAC σ on it (using mac verif),
and check whether T̃ resides within a valid time interval (i.e., within the
range [Tatt−∆T, TMAX]). If any of the above checks fail, V outputs rV = 0,
i.e., the result of the collective attestation process rV is 0; otherwise, V will
output rV = 1, and the representativity value ρ, and records all the goods
and compromised devices. It is easy to see that this final phase matches
algorithm Verify2 .

verif[V : katt ; Prvi : katt , xt
i, T̃ , Tatt , σ]

→[V : rV, ρ; Prvi : −]

3.8 Implementation and Evaluation

We now discuss implementation (Section 3.8.1) and evaluation (Sec-
tion 3.8.2) of PADS.

3.8.1 Implementation

We discuss the system design of PADS based on SeED [85], a recently pro-
posed protocol for devices self-attestation. In particular, we describe the im-
plementation design of PADS on top of the enhanced version of TrustLite [91]
described in [85].

TrustLite [91] is a security architecture for tiny embedded devices that
provides hardware-assisted isolation of secure tasks (i.e., trusted software
components). TrustLite prevents unintended access to data from malicious
software components through a Memory Protection Unit (MPU), which al-
lows memory access control enforcement for memory regions, based on the
code that wants to access them, and further protects trusted tasks by mak-
ing them safe against malicious interrupts, and callable only at specific entry
points [91]. SeED [85] extends TrustLite with a Real-Time Clock (RTC) that
is not modifiable via software (i.e., that is write protected), and an Attesta-
tion Trigger (AT) that updates and monitors the value of a timer stored in
a secure register.

The implementation of PADS based on SeED is shown in Figure 3.4.

3.8.2 Evaluation

We now present our evaluation results, in terms of memory and communi-
cation overhead, energy consumption, and runtime.

We quantify PADS performance based on runtime, energy consumption,
and memory overhead. Furthermore, we evaluate the ability for PADS to
“cover” a sufficiently wide area of the “reachable” provers population, within
a certain time t, using the following notion of coverage:

53

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

Memory Protection Unit (MPU)

Allowed Code
Region

Memory
Region

Access Policy

CPU

R
0

R
0

R
1

R
3

r

r

SW

v
att

H = {h
1

, …, h
M

}

OS

k
platform

secureBoot()

RAM

ROM

CLOCK

R
1

R
0

R
3

R
2

RTC AT

PADS
routines

...

R
3

R
2

r & w

k
att

Figure 3.4: Implementation of PADS based on SeED [85] and TrustLite [91].

Definition 2 (Coverage). We say that at time t PADS has coverage ct
X = Y ,

if at least a portion X ∈ [0, 1] of the provers in G hold information of at least
a portion Y ∈ [0, 1] of the reachable provers population.

As an example, a network of 100 provers, where 10% of them are un-
reachable, ct

80 = 90% means that 80% of the 90 reachable provers in G hold
information about the 90% of them. Intuitively, the higher the level of cov-
erage, the higher the number of update steps that are required. This has
clearly an impact in the performance of the protocol, that we estimate and
present in the following.

Memory Overhead In a shared key setting, i.e., a setting where all the
provers share a symmetric key katt for attestation, the required memory
overhead for PADS depends on ℓkatt , the number of allowed configurations
in H, and the size of the bitmask, which grows linearly with the number
of provers n. Overall, let M = |H|, and considering each element of H of
20 B, regardless from the coverage, we can quantify the memory overhead
of PADS as ℓkatt + 2× n + 160 ∗ |H| bits.

Communication Overhead During PADS’s consensus phase, each prover
Prvi transmits (and/or receives), at every time t: its bitmask xt

i (2×n bits),
the attestation time Tatt (32 bits) , the timestamp T̃ (32 bits), and a HMAC
(160 bits). In total: 2 × n + 224 bits. Clearly, depending on the underlying
layer 2 protocol and the size of the network, we may have more or less
fragmentation of the transmitted data. In low-power settings, it is desirable

54

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

to limit the number of transmitted frames, and thus, the “maximum” size
of the network that PADS can serve depends on the payload size offered by
the underlying layer 2 protocol provides.

Energy Consumption We base our estimation of the overall energy con-
sumption on the required energy for sending and receiving a single PADS
message, and to compute the main cryptographic operations.

Let Esend , Erecv , Ehmac, Emin and Eatt denote, respectively, the energy
required to send a byte, receive a byte, calculate an HMAC, calculate the
minimum consensus over the received bitmask, and perform self-attestation.

Recall that, at each round t each prover Prvi sends: the bitmask xt
i, the

attestation time Tatt , a timestamp T̃ , and a HMAC. Thus, we can estimate
the energy consumption for sending a single PADS message for Prvi as:

EPrvi

send ≤ Esend × (28 +
2× n

8
)

Similarly, the energy cost for receiving a protocol message is:

EPrvi
recv ≤ Erecv × (28 +

2× n

8
)

Let m be the number of rounds of consensus required by the protocol.
To provide an overall estimate of the energy required by PADS, without
loss of generality we assume each prover shares its bitmask at fixed time
intervals t1, t2, . . . , tm. Recall that Ni,t is the set of neighbors of prover Prvi

at time t. At each time t, a prover Prvi computes a HMAC, broadcasts a
packet, receives a number of broadcast messages from its neighbors Ni,t,
and verifies the HMAC associated with them. We can estimate the overall
energy required by PADS for a prover Prvi as:

EPrvi

PADS ≤ Tatt+

tm∑

t=t1

Ehmac + EPrvi

send + (Ehmac + EPrvi
recv) ∗ |Ni,t ∩Rt|

Runtime Similar to previous works, we evaluated PADS’s runtime using
Omnet++ [16], and the MiXiM [5] framework (for realistic communication
protocol simulation and mobility). We considered networks of medium-large
sizes, from 128 to 16,384. In our simulation we consider provers to have
specifications comparable to the one in [85], and thus used their reported
micro-benchmarks as parameters of our simulation. All the communications
are carried out over the IEEE 802.15.4 MAC layer protocol, the de-facto
standard protocol for IoT [40, 32, 33]. The IEEE 802.15.4 protocol provides
a maximum data rate of 250 Kbps, a maximum coverage of 75 m, and a frame
size of 127 B. We investigated the performance of PADS in two scenarios:

55

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

1. A scenario where provers move following a random path. To model
provers mobility, we randomly deployed provers over a simulated area
of size proportional to the number of devices (e.g., simulating an area
covered by a swarm of drones), starting from 1, 000×1, 000 m2 for 128
provers. The random movement of provers makes the network dynamic
and loosely connected.

2. A static scenario, as considered in previous work, where provers are or-
ganized in three topologies of various branching factor; in this setting,
we compare the runtime of PADS w.r.t. SANA [32].

Before presenting our results, in order to measure the runtime of PADS
we define the notion of Minimum Coverage Time (MCT):

Definition 3 (Min Coverage Time). The Minimum Coverage Time (MCT)
for PADS, given a desired coverage level ct

X = Y , is the minimum amount
of time t necessary to reach ct

X . Formally,

arg min
t

ct
X = Y.

We evaluated the runtime of PADS as the average MCT. We used delays
to simulate provers internal operations, according to [40] and [85]. Thus,
we considered 48 ms as the time it takes to compute both a hash, and
a HMAC [40]. Furthermore, for every generated attestation response, the
overhead introduced by the self attestation part of PADS is 187 ms [85].
This is approximated by the generation of 32 random bits, and the cal-
culation of a hash over the amount of memory to be attested. Note that,
different from [85], we do not compute an HMAC on the measurement, as
the measurement is not sent to the verifier, but checked locally; thus, our
evaluation is conservative in this sense.

For different levels of coverage, we measured the average time for that
coverage to be reached (average of 50 runs), considering network of small-
large sizes, from 128 to 8,196 devices; we adopted a static rate for broadcast-
ing the bitmask, i.e., 500 ms. Furthermore, we considered all the provers, ei-
ther good or compromised, to participate to the attestation process. Results
are presented in Figure 3.5. As we can see, PADS can reach, on average,
95% of coverage for the 95% of the population (i.e., ct

0.95 = 0.95) with a
MCT lower than 50 seconds, for populations of 8,196 devices. Furthermore,
as indicated in Figure 3.6, the coverage grows more than linearly over time
(shown for ct

95 and n = 8196). Additionally, in a completely loosely con-
nected and dynamic setting, PADS runtime shows a non-negligible growth.
This is mainly due not only to the increase of the population, but also on
the amount of data to be transmitted (which grows linearly in the number
of provers). Despite this growth, PADS presents a remarkably manageable

56

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Number of devices

0

10

20

30

40

50

T
im

e
 (

se
c)

c95 =85

c95 =90

c95 =95

Figure 3.5: Runtime of PADS in mobile wireless setting, varying the number
of provers and size of the area (proportionally to the number of provers),
and considering different values of ct

X , for X ∈ {85%, 90%, 95%}; broadcast
frequency is 500 ms.

0 10 20 30 40 50 60 70
Time (sec)

0

20

40

60

80

100

ct 95
(%

)

0

50

100

150

200

250

A
v
g
.

st
e
p
s

n
u
m

b
e
rct

95(%)

Avg. steps number

Figure 3.6: Variation of ct
95 and avg. steps number for n = 8196

overhead for large networks, which makes it a good match for practical ap-
plications.

We further compare PADS with respect to SANA [32], a recently pro-
posed collective attestation scheme, which outperformed previous work in
the literature. We run both protocols on static tree topologies of branching
factor 2, 3 and 4, using for PADS a broadcast frequency of 100 ms. Results
are shown in Figure 3.7, Figure 3.8 and Figure 3.9. As we can see, PADS
has a lower runtime (i.e., MTC) compared to SANA, mainly due to the
more lightweight cryptography involved. Furthermore, we can see how the
runtime of PADS diminishes with the branching factor of the tree topology.
This confirms the low overhead of our protocol, even for large networks of
more than 16,000 devices.

57

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Number of devices

0

2

4

6

8

10

12

14

16

T
im

e
 (

se
c)

Tree topology -- branching factor 2

SANA
PADS, c95 =85

PADS, c95 =90

PADS, c95 =95

Figure 3.7: Runtime of PADS vs SANA [32], varying number of nodes and
ct

X , with X = 95% for branching factor 2. We considered up to 50 different
configurations, and 60% compromised provers.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Number of devices

0

2

4

6

8

10

12

14

16

T
im

e
 (

se
c)

Tree topology -- branching factor 3

SANA
PADS, c95 =85

PADS, c95 =90

PADS, c95 =95

Figure 3.8: Runtime of PADS vs SANA [32], varying number of nodes and
ct

X , with X = 95% for branching factor 3. We considered up to 50 different
configurations, and 60% compromised provers.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Number of devices

0

2

4

6

8

10

12

14

16

T
im

e
 (

se
c)

Tree topology -- branching factor 4

SANA
PADS, c95 =85

PADS, c95 =90

PADS, c95 =95

Figure 3.9: Runtime of PADS vs SANA [32], varying number of nodes and
ct

X , with X = 95% for branching factor 4. We considered up to 50 different
configurations, and 60% compromised provers.

58

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

We finally remind that the time necessary so that the verifier obtains
the attestation results in PADS is the time necessary for a query to a single
device, because the protocol already run. On the other side in SANA the
protocol starts after the verifier queries a node and it has to wait the protocol
is concluded.

3.9 Security Analysis

We now analyze the security of PADS against the adversary model intro-
duced in section 3.4.2. In a collective attestation protocol, the goal of a local
and/or remote adversary Adv is to modify the configuration (e.g., firmware
and/or data) of one or more provers P, and evade detection from the veri-
fier V. This can be formalized as a security experiment ExpAdv , where Adv
interacts with P and V during the execution of the protocol. After a poly-
nomial number of steps in ℓmac, ℓprng gen, V outputs (r,ρ), where r = 1 if
it accepts the attestation result, and r = 0, otherwise (ρ is a measure of
the quality of the fetched attestation result). We define the result of the
experiment as the output of V, i.e., ExpAdv = (r, ρ). We can define a secure
Best-Effort Collective Self-Attestation protocol (BECSA) as follows:

Definition 4 (Secure BECSA protocol). A secure BECSA protocol scheme
is secure if Pr(r = 1|ExpAdv(1ℓ) = r) is negligible in ℓ = g(ℓmac, ℓprng gen),
with g polynomial in ℓmac, ℓprng gen.

Theorem 1 (Security of PADS). PADS is a secure BECSA scheme if the
MAC in use is selective forgery resistant, and the pseudo-random number
generator is cryptographically secure.

Proof sketch. As we base the self attestation part of the protocol on the
work in [85], we refer the reader to that work for a proof of the security of a
self-attestation scheme, and we use it as a building block. In what follows,
we will focus on the consensus part of the protocol, and sketch a security
proof of the security of PADS w.r.t. a communication adversary Advcom , a
software adversary Advsoft , and a mobile adversary Advcom .

Communication Adversary. A communication adversary Advcom is as-
sumed to be fully in control of the communication channel among provers,
and between provers and the verifier. In order to achieve its goal, Advcom

can either forge a message exchanged among provers, or the ones exchanged
among a prover and V, or try to “reuse” an old good attestation message.
Both attacks will fail, since: (i) the probability for V, or a prover P to accept
a message with a forged HMAC is negligible in ℓmac; and (ii) each attesta-
tion message contains both the time of attestation Tatt , and a timestamp T̃ ,
which guarantee the freshness of the received message.

Software Adversary. A purely software (remote) adversary Advsoft may
try the following attack strategies: (1) modify the process responsible for

59

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

measuring prover’s configuration and computing the self-attestation check;
(2) extract the authentication key katt used to authenticate each packet;
or (3) manipulating P’s clock. Both attacks are unfeasible; the proof is
analogous to the one in [85].

Mobile Adversary. A mobile (software-only) adversary who compromised
a prover Prvj , may try to avoid detection by simply not taking part to the
protocol. However, this would cause other provers to never modify the part
of the bitmask related to the compromised prover, x∗

j [j]; this information
will not affect the decision of V, and be used to determine whether Prvj

actually participated or not to the protocol.

3.10 Discussion

We now compare PADS against previous work in the area, highlighting and
discussing its main advantages, and limitations.

3.10.1 Advantages

The first and probably most important advantage that PADS has w.r.t.
previous works, is that is suitable for highly dynamic, mobile unstructured
topologies, as confirmed by our evaluation. The use of consensus makes the
whole proliferation of the attestation results resilient to both temporary
device disconnections, and topology changes. Most of the previous works
in the area have been designed for static topologies, over which a spanning
tree should be maintained, with non-negligible overhead; as such, they would
most certainly fail in this scenario [40, 32, 84, 49, 85]; one exception is the
work in [92], which provides adaptability to changes in the topology, at the
price, however, of a complex topology maintenance.

The second main contribution brought by our work, is the introduction
of a new definition of collective attestation, that we have called Best-Effort
Collective Self-Attestation (BECSA) and introduced in Section 3.6.1. The
concept of BECSA encompasses cases in which exact collective attestation
is not always possible (e.g., due to failure in attesting one or more provers),
and where a measure of the “goodness” of the solution exists. For PADS, we
used coverage as a measure for the goodness of our protocol, and tried to
identify tradeoffs between coverage and runtime. We leave as a future work
formally defining BECSA, and comparing it against previous definitions of
collective attestation.

The third main advantage of PADS, is the capability of the verifier to ob-
tain the status of the population by simply contacting a random prover. This,
again, makes PADS very resilient against node failures or sudden changes in
the topology. This is due to the fact that the whole status of the network is
shared among every prover; furthermore, a verifier has the ability to query a

60

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

device for the status of the network at any point in time, being assured that
this would return a valid attestation result, with a utility (i.e., a coverage)
dependent on the status of the protocol.

Finally, while growing more than linearly in the number of devices, the
overhead introduced by PADS is manageable (and in the same scenario as
previous work, comparable to the state of the art) in resource-constrained
environments, as showed by our simulations in section 3.8.2. This makes
PADS a good candidate for attestation in scenarios where other exact meth-
ods would fail, e.g., in swarms of drones used for surveillance.

3.10.2 Limitations

While PADS brings numerous advantages w.r.t. the state of the art, we are
conscious that network dynamics is not network security’s friend and we
acknowledge that PADS is not perfect. We believe that protocols for swarm
attestation in dynamic networks are necessary. The probable impossibility
of developing swarm attestation protocols perfectly secure and efficient for
dynamic networks is not a good reason to restrict swarm attestation only
to static networks. For the first time, PADSenables adaptable and resilient
swarm attestation in dynamic topologies of autonomous devices, while pre-
vious protocols work only on static networks.

A first limitation of PADS is its limited scalability in very large dy-
namic scenarios; indeed, while sufficient for medium-large networks, at large
scale PADS is not comparable to the performance that would be offered by
previous works. In fact, the amount of information that each prover must
exchange grows linearly in the number of nodes in the system.

A second limitation of PADS in its simplest form, i.e., using a shared
symmetric key w.r.t. using a certificate-based approach, is the lack of re-
silience against stronger attackers, i.e., physical attackers. These types of
attacks have been considered in [32] and [84], respectively, using an aggregate
multi-signatures approach over a spanning tree, and using topology-related
and timing information. However, as previously stated, both works are un-
suitable for dynamic topologies, and the first, as shown in our evaluation, is
quite costly in terms of required computation.

A third limitation of PADS is that the consensus is not a representation
of the current state of the devices composing the network, but is carrying
information of their state at the time the last attestation has been triggered
by the devices’ secure clock. A device compromised after such timestamp
can be identified as healthy and compromise other devices. However, in the
next consensus instance, the device will be identified as compromised.

Finally PADS aligns with previous works that considered a software-
only attacker [40, 85, 49], and thus a single physically compromised device
is sufficient to reveal the secret shared among all other devices, enabling the
attacker to inject completely fake attestation reports in the network. How-

61

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

ever, even in the simplest case, we argue that PADS shows some degree of
resiliency with respect to previous works that made the same assumptions.
Intuitively, this is provided by the combination of the following two proper-
ties of PADS: (a) in a generic setting, information is not processed along a
tree; (b) data combination uses a minimum consensus approach.

Property (a) suggests that there will be a certain degree of redundancy in
the propagated information, which every (honest) device will receive from a
non-constant neighborhood of (honest and malicious) devices; furthermore,
V will collect the final result from one or more random provers. In this case,
the dynamic nature of the network topology is a friend of security. Consider
for example the protocol in [40]: here, a single physically compromised device
at a specific position in the spanning tree could “fake” the attestation report
of a whole subtree of devices, even if the devices in the tree are only software
compromised. In PADS, instead, in order to make sure a whole group of
devices can evade detection, the attacker will have to physically compromise
all of them (to be able to have access to the shared key, and craft a bitmask
for each). Indeed, due to Property (b), it is unfeasible even for a powerful
attacker with access to the shared secret, to change the value of a software-
compromised device from 00 to 10, if previously “propagated” in the network
by honest provers as 00. This requires a much higher effort for the attacker
compared to [40].

3.11 Summary

This Chapter illustrates PADS, an efficient, practical, and secure protocol
for attesting potentially large and highly dynamic networks of resource-
constrained autonomous devices. PADS overcomes the limitations of pre-
vious works in the literature on collective attestation. It uses the recently
proposed concept of self attestation, and turns the collective attestation
problem into a minimum consensus one. We showed the performance of
PADS via realistic simulations, in terms of devices capabilities and commu-
nication protocol, confirming both the practicality and efficiency of PADS.

As a future work, we will investigate ways to address the limitations.
In particular, our immediate future work will include development of re-
mote attestation technique that facilitate uninterrupted network operation
during attestation and secure attestation techniques for IoT services that
communicate asynchronously among each other.

62

Chapter 4

Secure Asynchronous Remote At-
testation for IoT systems

The recent Internet of Things (IoT) evolution is leading towards multi-
functional IoT devices that are capable of performing several operations
concurrently. With IoT services increasingly provided by IoT devices, IoT
systems are expected to deliver large-scale distributed applications that in-
clude a wide range of interacting services. For instance, a smart city applica-
tion comprises enormous number of services that interact among themselves
to provide various distributed services such as smart lighting, autonomous
vehicles support, smart grids etc. In general, large-scale systems require
scalable communication mechanisms that can deal with potential network
reliability issues. In IoT setting, asynchronous communication is accepted as
an effective communication method which allows the communication among
IoT devices that are decoupled in space (i.e., interacting parties may not
address directly each other) and time (i.e., interacting parties are not online
at the same time during the communication).

For this reason, the major asynchronous protocols which adopt the Pub-
lish/Subscribe paradigm [74, 82] such as MQTT [8], DDS [10], AMQP [6]
etc., are very popular and stable communication protocols in IoT sys-
tems [68, 88]. Also, the asynchronous protocols are de-facto present in real-
life IoT applications, for instance, both Google Core IoT1 and Amazon Web
Services (AWS) IoT2 adopt MQTT protocol to handle the communications
among IoT services.

Due to the large number of interacting IoT services, the importance of
the operations that these services perform, and the lack of complex secu-

1https://cloud.google.com/iot-core/
2https://docs.aws.amazon.com/iot/latest/developerguide/mqtt.html

63

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

rity protection, the IoT systems are becoming a favorite target for cyber-
attacks. Many adversaries aim to exploit these services to access sensitive
information of the IoT devices, disrupt their normal operation, and even
corrupt the data and software to violate the legitimate operations of the
devices [133, 109, 94]. Remote attestation can serve as a suitable security
protocol to provide evidence about the integrity of individual devices. A re-
mote attestation protocol runs between two parties: a trusted party called
Verifier and an untrusted party called Prover. Traditionally, at the attesta-
tion time, the Prover sends evidence about the current content of its memory
to the Verifier, whereas the Verifier checks the information, and establishes
whether a Prover is trustworthy.

Due to mobile adversaries which try to evade detection by getting relo-
cated during the attestation, the execution of remote attestation protocol is
typically uninterrupted. The non-interruptibility is generally preserved even
for collective attestation protocols which attests a large number of devices
synchronously [40, 32, 26, 29, 93, 106]. In these schemes, when a Prover A
interacts with Prover B during the attestation, Prover A has to wait for a
response from Prover B and then proceeds with further operations. More-
over, the integrity of the Prover does not only depend on the integrity of the
software and the data that are running on Prover’s memory. The commu-
nication data exchanged among previous service interactions also affect the
current state of the Prover [57, 55, 26]. Therefore, an important prerequisite
for remote attestation protocols is to provide evidence about the interactions
and the communication data exchanged during these interactions.

Contribution In this Chapter, we propose a novel protocol for Se-
cure Asynchronous Remote Attestation (SARA) of a group of devices that
communicate among themselves by publish/subscribe paradigm [74, 82] to
provide distributed IoT services. Overall, SARA provides the following main
contributions:

1. Asynchronous attestation. SARA performs the attestation of a
group of IoT devices without interrupting the normal operation of
all the devices at the same time. In particular, SARA considers the
typical and most common scenario of IoT systems where the interac-
tion among devices is event-driven and follows the publish/subscribe
paradigm. The design of the remote attestation protocol based on this
paradigm allows a device that completes the local attestation to re-
sume its normal operation although the attestation may progress on
other devices.

2. Selective attestation. SARA allows the Verifier to establish both
the trustworthiness and the legitimate operations of a portion of the
IoT system by interacting only with a subset of the devices in the
network. For example, after that SARA has collected asynchronously
the historical data of the services in a large-scale IoT system, the

64

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

Verifier can interact only with the actuators that perform the final
action, to establish the trustworthiness of all the devices involved in the
provision of that specific service and verify their legitimate operations.

3. Historical evidence. SARA aims at providing each Prover with his-
torical information about its own interactions with other IoT services.
This allows SARA to detect not only the malicious IoT devices, but
also other devices which are performing a non-intended operation due
to their interactions with the infected device. However, collecting his-
torical secure evidence is particularly challenging in event-driven asyn-
chronous communication models because it is difficult to predict the
time and the order of the service interactions. In this context, the
existing approaches that aim to periodically check software integrity
and data integrity (e.g., in [51, 85]) will not be useful. Also, some of
the proposed attestation protocols that require the synchronization of
clocks between devices does not seem realistic in large IoT systems.
In order to overcome the challenge of ordering asynchronous events,
SARA uses the concept of vector clock [87, 101] which enables the
precise tracing of event occurrences.

4. Performance evaluation. SARA is implemented in Cooja, the Con-
tiki [2] network simulator. The simulation results are promising, and
demonstrate the effectiveness of SARA for asynchronous IoT commu-
nication.

4.1 Organization

The remainder of this Chapter is organized as follows: In Section 4.2 we
discuss the state-of-the-art. We describe the problem setting in Section 4.3
and provide a background overview in Section 4.4. In Section 4.5 we present
the system model. In Section 4.6, we present the adversary model and define
the required security properties. Section 4.7 and Section 4.8 present the pro-
tocol details. In Section 4.9, we provide the evaluation of SARA along with
security analysis in Section 4.10. Finally, we discuss the proposed solution
in Section 4.11 and the Chapter concludes in Section 4.12.

4.2 Related Works

In this section, we discuss related works in the domain of Remote Attesta-
tion. In general, remote attestation is a well-known security protocol that
aims to identify adversarial presence in device(s). Based on architectural
designs, remote attestation is typically classified into three main categories;
(1) software-based attestation (e.g., [126, 130, 127]), (2) hardware-based at-
testation schemes (e.g., [37, 89, 121]), and (3) hybrid attestation schemes

65

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

(e.g., [72, 91, 47]). The aforementioned schemes have their distinctive ad-
vantages and disadvantages regarding the hardware assumptions, adversary
capabilities, and the security level that they provide. For instance, due to
the lack of requirement for a trusted hardware, software-based attestation
schemes are low-cost solutions compare to hardware-based attestation ap-
proaches, but they provide less security guarantees. On the other hand,
hardware-based attestation schemes provide better security than software-
based attestation schemes due to the use of a specialized hardware plat-
form as secure execution environment, such as Trusted Platform Module
(TPM) [39], ARM TrustZone [38], and Intel Software Guard Extensions
(SGX) [21], which guarantee the untampered execution of security-critical
parts of the attestation protocol. However, the requirement for costly spe-
cialized hardware-security modules makes hardware-based schemes usually
unsuitable for low-cost Internet of Things (IoT) devices. The recent remote
attestation protocols for IoT devices have generally adopted the hybrid ar-
chitecture which relies on the presence of a minimal read-only hardware-
protected memory to guarantee uninterrupted, safe and secure code execu-
tion of the remote attestation protocol.

Remote attestation schemes for large networks aim to address the scal-
ability issue of single-device attestation schemes. The large networks are
often described as swarm3. Typically, the swarm attestation techniques em-
ploy hybrid architecture and based on the network typology assumption,
swarm attestations approaches are classified in two categories: (1) swarm
attestation of static networks and (2) swarm attestation of dynamic net-
works. The static swarm attestation techniques [40, 32, 49] assume that the
network is interconnected and static, thus, they enable a overlay of span-
ning tree to construct the network as a balanced binary tree, in which de-
vices have the relationship parent-child. Due to the presence of spanning
tree, these schemes allow individual devices to execute parallelly the remote
attestation protocol. Thus, these schemes efficiently collect remote attesta-
tion report along the spanning tree root. Creation of spanning tree for the
collective attestation make the above mentioned schemes static in nature,
which also affect them for employing in dynamic networks or network with
intermittent connectivity. However, in Dynamic swarm attestation [29, 93]
authors provide a mechanism to address the challenges introduce by highly
dynamic networks by fusing consensus techniques in remote attestation. In
this approach, devices will share their respective “knowledge” with other de-
vices and through minimum-consensus these interacting devices will agree
in a common knowledge about the whole network. Here, the devices interact
synchronously at the attestation time, even though these schemes do not

3A group of devices or embedded systems that work together for a specific system or
task.

66

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

require the construction of a spanning tree for the collection of attestation
report.

Comparison Different from the aforementioned remote attestation
techniques, our work performs attestation of IoT services asynchronously.
In addition, we focus on the communication data exchanged among IoT ser-
vices while interactions among services have occurred in an asynchronous
manner. Considering the wide adoption of the asynchronous mechanisms
on large-scale distributed applications, our work aims to provide secure ev-
idence regarding order of the asynchronous interactions between different
services and the exchanged data between them. Our prototol aims to de-
tect compromised services and the legitimate services that are maliciously
influenced due to the interactions with a compromised service.

4.3 Problem Statement

We consider an IoT system which involves many multi-functional IoT de-
vices. Each functionality offered by a specific device is performed by an
independent software component called Service. To determine the state of
a service, we define a Service as trustworthy when its software has not
been modified by an attacker. We say that a Service is performing a le-
gitimate operation when the service is currently performing an intended
operation and the current operation is not maliciously affected directly or
indirectly by the previous interactions among services. A subset of Services
across an IoT system may interact among themselves and compose what we
call a Distributed IoT Service.

Figure 6.2 shows a toy example of a distributed IoT service in a smart
city that consists of four IoT devices: a Brightness sensor, a Smart bulb, an
Electric power-hub and a Fire sensor. For simplicity, we assume that each of
these four devices runs only one service. In general, a large-scale IoT appli-
cation, such as smart cities, smart homes, connected cars, etc., can be seen
as a collection of many devices running many distinct distributed IoT ser-
vices, each composed by many services that interact with each other. Here,
a Brightness sensor monitors continuously the light intensity of the envi-
ronment and provides the measurements to the Smart bulbs of a building.
Based on the light intensity, a Smart bulb automatically turns on and off.
When a Fire sensor detects fire in a building, it will also send an alert to the
nearby Electric power-hub which will stop providing power to the building.
As a consequence, the Smart bulb will turn off.

For simplicity, the goal of the Verifier in this scenario is to check both
the trustworthiness and the legitimate operations executed by the Smart
bulb device. Note that, the data received directly from the Brightness sen-
sor and indirectly from the Fire sensor define the correct behavior of the
Smart bulb. For example, even though it is dark and the light is off, the

67

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

Fire sensor

Electric power

fire alert

Smart bulbBrightness sensor Verifier

Attest

Figure 4.1: Toy example of interacting services in a Smart city scenario

Smart bulb can still be in a legitimate state if a fire alarm has happened.
Consider an attacker that compromises the Brightness sensor and influences
maliciously the Smart bulb by reporting always high light intensity which
will affect the Smart bulb to remain turned off even in darkness. There-
fore, any of the existing remote attestation protocols that validates only the
program binaries and the data memory of the Smart bulb device, without
considering the exchanged communication data with the Brightness sensor,
will report the Smart bulb as not compromised even though the Smart bulb
is in an incorrect state, that is, being off instead of on. In order to verify the
trustworthiness and the legitimate operation executed by the Smart bulb,
the Verifier has to know the previous interactions of the services that directly
or indirectly affected the current state of the Smart bulb. Note that the ver-
ification process of the Verifier is particularly complex, since the Smart bulb
could be correctly off if a fire alarm has happened.

Service 1

Service 2

Service 3

Service 4

Service 5

Figure 4.2: Overview of service interactions in publish/subscribe paradigm

One crucial point has to do with the interactions that happen concur-
rently. Consider for instance the abstract model of event-driven interactions
among 5 services depicted in Figure 4.2. Here, these services implement a
distributed publish/subscribe communication pattern where the publisher
can multicast events (i.e., messages or data) to subscribers. In Figure 4.2,

68

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

Service 2 and Service 3 concurrently receive an event from Service 1, while
Service 3 is triggered by events of anyone of the two services: Service 1 or
Service 2. Thus, for a Verifier that checks both the trustworthiness and the
legitimate operations of Service 5, it is critical to determine whether the
interaction Service 1 → Service 3 has happened before or after the inter-
action Service 2 → Service 3. Indeed, different order of these interactions
may possibly yield different results, and consequently the expected legiti-
mate state of Service 5 would be different. Thus, the legitimate state of a
service depends on the ordering of the service interactions.

One could think of solving such an ordering problem by relying on a
centralized publish/subscribe model [74], in which a broker receives all the
events, assigns a sequence order to each event, and routes the events to-
ward the subscribers by enforcing the order. In realistic IoT scenarios, a
publish/subscriber model consists of multiple distributed brokers that route
the events from publishers to subscribers through different multi-hop paths.
When distributed brokers handle overlapping groups of subscribers, events
ordering still remains an issue. For instance, when two subscribers share
several subscriptions managed by different brokers, each broker will assign
the same events with different sequence order which may differ among bro-
kers. Thus, the published events will be notified in different order to the
subscribers. To develop a solution that has general applicability, we con-
sider completely decentralized publish/subscribe model (with or without
brokers), and we focus on a secure solution to guarantee events ordering
among IoT services.

In an event-driven interaction model, in which a publisher publishes an
event that triggers the next action, the occurrence of events is not pre-
dictable. Moreover, the clocks in IoT devices are typically inaccurate which
makes impossible the perfect synchronization of different clocks among IoT
devices. Even if the devices are initially synchronized, their clock will drift.
Given the different communication delays that the event delivery may intro-
duce, it is difficult to determine exactly when the events occurred. However,
it is fundamental for the Verifier to know what is the logical sequence of the
events interacting with a device, i.e., the order of occurrence of the events
and the data exchanged.

This article proposes a solution, in the context of the issues described
above, both to verify the integrity of the device D, and to detect if D has
been maliciously influenced by another compromised service.

4.4 Background

We now provide some background knowledge about Publish/Subscribe
paradigm and Clock Synchronization across IoT devices.

69

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

4.4.1 Architectural properties of Publish/Subscribe

Large-scale distributed IoT applications usually implement Pub-
lish/subscribe communication paradigm to enable the asynchronous
communication among the services. In a typical publish-subscribe commu-
nication pattern, publishers produce data in the form of events, subscribers
use subscriptions to register their interests on an event or a pattern of
events [74, 82]. Each subscriber gets notified when a published event
matches at least one of its subscriptions. In principle, the interacting
services in a publish/subscribe paradigm are decoupled on space and time.
This means that the interacting services do not need to know each other
and do not need to participate on the interaction at the same time.

Publish/subscribe paradigm can be categorized in centralized and dis-
tributed model. In a centralized publish/subscribe, publishers and sub-
scribers are both attached to a message broker which handles the implicit
invocation of the services. The IoT protocols such as CoAP [128], MQTT [8],
AMQP [6] follow the centralized approach. In practice, publish/subscribe
protocols in large IoT systems may consist of multiple distributed brokers
such as MQTT brokers.

On the other side, other popular IoT protocols such as Data Distribution
Service (DDS) [10] rely on publish/subscribe pattern to provide a completely
decentralized architecture with dynamic service discovery that automati-
cally establishes communication between matching peers. This model offers
scalability, increases reliability, and is suitable for efficient and secure data
sharing.

Considering that the focus of this chapter is on checking the trustworthi-
ness and the legitimate operations of the asynchronous interactions among
services, recording events in the order of their occurrence is very important.
When an IoT system consist of multiple brokers, the order of the events
handled on a single broker and across different distributed brokers becomes
fundamental. To preserve the generality of our work, we assume that IoT
devices employ distributed publish/subscribe model.

4.4.2 Logical Clock Synchronization

Clock synchronization is an important procedure that allows a large number
of IoT devices to agree on the same time reference. In general, the accuracy
of a typical quartz-based oscillator is affected by the manufacturing im-
precision and environmental conditions to which the clock is exposed, in
particular temperature [43]. These factors affect mostly the accuracy of the
clocks deployed on IoT devices due to their low-cost design and their usual
exposure to environment. Since a global reference time is usually not avail-
able for IoT devices and the local physical clocks are not accurate, the clock
synchronization among IoT devices is a challenging issue.

70

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

To get around the physical clocks synchronization problem, this work
propose the usage of logical clocks, in particular, vector clocks. The concept
of logical clock (LC) was introduced by Lamport [97] to produce “happens-
before” relation among distributed events, in which a→ b denotes that the
event a happens before the event b. Here, a function LC assigns an integer
timestamp to events to satisfy the condition: a → b ⇒ LC(a) < LC(b). In
this way, the causally ordered events are represented as a linearly ordered
set of integers. This approach does not order every pair of events, since there
can be distinct events with the same timestamp.

Since Lamport’s logical clock does not allow a precise time-stamping of
the messages, we use vector clocks. Vector clocks (VC) [87, 101] enhance
Lamport’s logical clock by identifying precisely the events that are causally
related. When events are not causally related, they are concurrent. Overall,
a vector clock algorithm follows three basic steps:

• Each service Si maintains a vector clock V Ci, where the value V Ci[i]
is initially assigned to zero.

• When a service Si sends a message, it first computes V Ci[i] = V Ci[i]+
1, and then includes V Ci with the message.

• Upon receiving a message with another vector clock OV C, Si will set:
(1) V Ci[j] = max{V Ci[j], OV C[j]},∀j ∈ [1..N]
(2) V Ci[i] = V Ci[i] + 1.

In our work, each service maintains a vector clock that is updated during a
remote attestation execution according to the aforementioned algorithm.

4.5 System model

We consider an IoT distributed system, in which devices adopt asynchronous
communication mechanisms by following a completely distributed pub-
lish/subscribe communication pattern for the interaction among their ser-
vices. Our system model consists of the following entities:

• Devices (D): Each IoT device D provides many services. Each ser-
vice instance is identified by a unique id servID. Devices adopt pub-
lish/subscribe communication pattern to implement the interaction
among services across the network. One service can be both a pub-
lisher and a subscriber.

• Verifier (V rf): The Verifier is an external trusted party that verifies
both the trustworthiness and the legitimate operations of the services
running on IoT devices. We assume that V rf has access to the bina-
ries of each service and has pre-computed the legitimate hash values

71

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

for each genuine service. We also assume that Verifier knows the le-
gitimate interactions among services. This is a realistic assumption
since publish/subscribe protocols generally provide an interface that
handles the subscription process.

• Network Operator (OP): OP guarantees the secure bootstrap of the
software deployed on each Di and the secure key distribution among
devices at the beginning of the IoT system operation.

Publisher: P

Subscriber: S

Verifier
Time T0

Verifier
Time T1

Initiate attestation1 Compute:
GHV1 = Hash(P)2

Publish:
Output data + GHV1

3

Compute:
GHV2 = Hash(S) + GHV1

4

Send a challenge5

6 Challenge + GHV2

Figure 4.3: SARA system model

The Verifier performs the attestation in two steps: initialization at time
T0 and attestation at time T1, as shown in Figure 4.3. During the initializa-
tion time, V rf initiates the attestation procedure to one (or more) services
which will be typically publishers. (Step 1O). Upon receiving the attestation
request, the publisher perform the local attestation process and publishes
the attestation result together with the data that it produces (Step 2O - 3O).
Consequently, every subscriber service which retrieves the published data
will also perform the attestation (Step 4O).

At attestation time, V rf sends an attestation request to one (or more)
subscriber services (Step 5O) which will act as Prover for the entire distributed
IoT service. Each subscriber will report to V rf an attestation result that
includes the attestation result of all the previous services that were directly
or indirectly involved in triggering a given event to which the subscriber
was registered (Step 6O). Note that the initialization and the attestation can
be launched at any services of the IoT system devices. However, consider-
ing that the functionality of a distributed IoT services typically flows from
sensors to actuators, the Verifier’s action is more effective if the attestation
procedure starts from publishers and get verified from subscribers.

72

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

4.6 Adversary model and Security Requirements

In this section, we first discuss the adversarial capabilities and security re-
quirements for our proposal SARA.

4.6.1 Adversary model

We consider the following possible actions of an Adv against distributed IoT
services:

Software adversary (Advsw) Adv can compromise the program binary of
an IoT service either remotely by introducing malware (i.e., remote adver-
sary), or by being present physically near (i.e., local adversary). In both the
scenarios the Adv can also eavesdrop or control the communications among
services.

Mobile adversary (Advmob) Adv is intelligent and able to move between
different devices within the IoT system in order to avoid being detected.

Replay attack Any of the Adv listed above can also launch replay at-
tack, that is, Adv precomputes the results of the attestation procedure, and
reports to V rf a previous valid response which hides the attack.

Assumptions. Like in other remote attestation schemes in the liter-
ature, we assume that Adv cannot compromise hardware-protected mem-
ory. In addition, a Physical Adversary (Advhw) that is capable of physically
manipulating the services is out of our current scope. An adversary that
launches a Denial of service (DoS) attack during the attestation will be no-
ticed by the Verifier due to the incomplete attestation response. Thus, we
assume that an adversary will try to evade detection and we keep DoS at-
tacks out of our current scope, in line with other RA schemes [40, 32]. An
adversary may also delay or refuse to publish the result. However, if the
Verifier expects that a particular interaction happens in a predicted time
interval, a long delayed message will be noticed. Likewise, the Verifier can
detect a missing interaction in case the service does not publish the data.

Device trust assumptions Following common assumptions reported
in the literature, we assume the presence of three trusted components that
reside on a device:

• Read-Only Memory (ROM): Memory region in ROM where is loaded
the code of attestation protocol SARA along with the attestation-
related details.

• Secure Key Storage: Memory region that stores keys and is read-
accessed only by SARA. This memory region is generally not updated
during attestation.

73

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

• Secure writable memory: Memory region that can be read-write ac-
cessed only by SARA and is used to securely store the vector clock
value.

The aforementioned memory regions are secure and can be accessed only by
authorized entities.

4.6.2 Security requirements

Any asynchronous remote attestation protocol for IoT services should satisfy
the following security properties:

Trustworthiness of services The protocol should provide secure evidence
to guarantee the integrity of each individual service that compose a asyn-
chronous distributed IoT system.

Legitimate operations The protocol should provide time-stamped evi-
dence such as: the previous interactions, the interactions timestamp, and
the exchanged data. In this way, the Verifier will be able to verify the legit-
imate operation of the Prover as defined in section 4.3.

Freshness The protocol should be able to detect a compromised service
that reports a precomputed value that could hide an ongoing attack on the
service.

4.7 Our proposal: SARA

SARA consists of three main phases: (1) Deployment and measurement, (2)
Attestation, and (3) Verification. We present the notation of SARA in Ta-
ble 4.1, and in the following, we provide comprehensive details for each of
the phases of the protocol.

4.7.1 Deployment and measurement

Deployment and measurement is an offline phase that is performed to guar-
antee a secure setup of the devices on an IoT system before the attestation
procedure. A network operator OP is responsible for deploying the devices
in a secure manner. Moreover, OP is responsible for the key management
of the network and the installation of the secure applications on the device.
A trusted external party called Verifier V rf knows the installed version of
the applications on the devices and has access to the device binaries. During
the measurement, V rf measures all the legitimate states of each services
running on a device. In addition, the Verifier knows the services that are
publishers and subscribers and the legitimate interactions among them.

74

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

Table 4.1: Notation Summary

Term Description

V rf Verifier
Di IoT Device i
P ID of a Publisher
S ID of a Subscriber
servID Unique ID of a service
LHVP Local Hash of the service P
GHVP Global Hash of the service P
GHVprev Global Hash of previous service

interactions
PKV rf Public key of Verifier
SKV rf Secret key of Verifier
kps shared key among service P and S
At Number of active services

at time t

Procedure Description

Enc(pk; m) encrypts a message m with a public
key pk

Dec(sk; m) Decrypt a message m with a secret
key sk

σ ← sig(sk; m) signs a message m using a secret
signing key sk and outputs
a signature σ

{0, 1} ← vrfsig(pk; m, σ) verifies validity of σ on a message
m using public key pk

attest() performs attestation of a service
publish() include attestation result on the data

Key management. We assume that V rf uses an asymmetric key-pair
(SKV rf , PKV rf) to communicate to each Prover. For simplicity, we assume
that each Prover uses an asymmetric key-pair (SKP rv, PKP rv) to commu-
nicate to the Verifier and to other devices. In section 4.11 we describe the
alternative key management schemes that devices may potentially adopt to
communicate among themselves.

4.7.2 Attestation

Clock Synchronization As we discussed in section 4.4, it is challenging
to have the clock counter synchronized among devices. Therefore, we adopt
the concept of vector clock to obtain a consistent view of time across all
the services in an IoT system. In the logical vector clock model, initially

75

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

all clocks are set to zero. From this moment onward, each time a service
sends a message, it increments its own logical clock in the vector by one
and then sends a copy of its own vector. To preserve the generality of our
protocol SARA, we use the term timestamp to refer to the vector clock of
a given service at a given time. Note that in our approach timestamp is
not the taken from the physical clock, it is an array that represents the
vector clock. Alternatively, to reduce the complexity of large vector clocks,
the timestamp can be encoded as a number, aligned with the proposed
mechanism in the recent work [96]. We assume that timestamp is running
in a protected memory and can be updated only by SARA.

Attestation. To describe the attestation protocol, we assume that
an asynchronous distributed IoT service is composed of two services: a
publisher P and a subscriber S. Each service takes an input from an-
other service or from the sensed data. Figure 4.4 depicts SARA’s algo-
rithm for attestation of asynchronous distributed IoT services. At time
T0, the V rf initiates the attestation protocol by sending an attestation
challenge to P (Step 1O). Upon receiving the challenge, P reads an input
from environment and registers the input to InputP . SARA uses GHV
to accumulate the attestation results among interacting services. Since
P is not triggered by any previous service, SARA sets GHVprev = 0.
Afterwards, P performs its own operation, registers the output data to
OutputP , and then starts attestation. The attestation procedure (Step 2O)
consists on computing the checksum4 of P’s program binary which gets as-
signed to LHVP . Then, P increments by one its timestampP and computes
= servID||timestampP ||LHVP ||OutputP ||InputP ||GHVprev. This informa-
tion will serve as a complete evidence of service P for the Verifier and does
not need to be accessed by other services. Therefore, SARA encrypts this
evidence with PKV rf and assigns it to GHVP .

When P publishes a message (Step 3O), P computes a message msgP =
OutputP ||GHVP ||timestampP and signs this message with SKP . Once S
gets the signed message from P , S verifies the signature of the received
message and stores the input and timestamp sent by P . Next, S gets exe-
cuted on the received input and uses the received timestamp to update its
own timestamp timestampS following the vector clock algorithm explained
in Section 4.4.2. Next, S triggers the attestation procedure (Step 4O), incre-
ment by one its corresponding value of the vector clock and compute GHVS .
An abstract overview of this process is shown in Figure 4.5.

At time T1, V rf will send an attestation request to S (Step 5O). Upon
verifying the request, Service S will send to the Verifier the GHVS (Step 6O).
Optionally, the V rf can register its subscription to S. In this case, when S

4Note that the checksum can be replaced with the protocol that performs data-memory
attestation, however, it does not affect the generality of SARA.

76

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

 Verifier

 Time T0 R ⟵{0,1}n;

 σVrf←sig(SKVrf; P || R);

 vrfsig(PKS ; msg, σPrv)

 Time T1 R ⟵{0,1}n;
 σVrf ⟵sig(SKVrf; S || R);

 vrfsig(PKS ; GHVS, R, σPrv)

 Publisher P

if (vrfsig(PKVrf; P || R, σVrf)) then

 Begin
If (timestampP is null) then
 timestampP [P] = 0;
ServID ⟵ P;
GHVprev ⟵ 0;
InputP ⟵ read();
OutputP ⟵ exec (ServID, Input);
attest()

 Begin
 LHVP⟵ checksum(P);

 timestampP [P] ⟵ timestampP [P] +1;
 τ⟵ ServID || timestampP || LHVP || OutputP || InputP || GHVprev;
 GHVP ⟵ Enc(PKVrf; τ);
 End

 publish()
 Begin

msgp ⟵ OutputP || GHVp || timestampP ;

 σp⟵ sig(SKp; msgp);
 End

Else
 Reject Ch;
End.

 Subscriber S

 If (vrfsig(PKp; msgP, σP)) then

 Begin
 If (timestampS is null) then

 timestampS [S] = 0;
 ServID ⟵ S;

 OutputP || GHVp || timestampP ⟵ msgP;
 for (i=0; i< length(timestampp); i++) {
 timestampS [i] = max(timestampp [i], timestamps [i]);
 }
 InputS ⟵ OutputP;
 GHVprev⟵ GHVp;
 OutputS ⟵ exec (ServID, InputS);

 attest()
 Begin
 LHVS⟵ checksum(S);
 timestampS [S] ⟵ timestampS [S] + 1;
 τ⟵ ServID || timestamp || LHVS || OutputS || InputS || GHVprev;

 GHVS⟵ Enc(PKVrf ; τ);
 End
 Else

 Reject data;
 End.

 /* optional */
 publish_to_verifier()

 Begin
 timestampS [S] ⟵ timestampS [S] + 1;
 msg ⟵ OutputS || GHVS || timestampS;
 σPrv ⟵ sig(SKS ; msg);
 End

 if (vrfsig(PKVrf; S || R, σVrf)) then

 σPrv ⟵ sig(SKS ; R || GHVS);

 Ch = {P, R, σVrf}

data = {msgP, µP}

 Result = {GHVS, R, σPrv}

1

2

3

4

6

 Ch = {S, R, σVrf}5

 Result = {msg, σPrv}

Figure 4.4: Algorithm

77

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

completes the attestation, S executes the function publish to verifier() in
order to send the final attestation result GHVS to V rf .

Publisher: P

Hash of previous
service (GHVprev) Input Output TimestampHash of current

service (LHVP)
Input

Hash of previous
service = 0

Start

Subscriber: S

GHVP

Hash of previous
service (GHVprev) Input Output TimestampHash of current

service (LHVS)

GHVS

Figure 4.5: Sara approach

4.7.3 Verification

In SARA, the verification starts at time T1 (as shown in Figure 4.4) when the
Verifier retrieves the attestation result GHVS from service S which serves
as a Prover. Along with the timestamped attestation results of S, GHVS

contains also the timestamped attestation result of P . In order to read the
evidence, Verifier uses its own secret key SKV rf to decrypt each attestation
result included in the evidence. In this way, the Verifier is able to verify the
checksum of each individual service that has been included in the evidence
(i.e., service P and service S) and verify the exchanged data among these
services. By using the timestamps, the V rf is able to confirm that P caused
S.

In general, the timestamped evidence allows the V rf to order the interac-
tions between services. Consider for instance, the service interactions in Fig-
ure 4.2 where the Verifier collects the final attestation result from Service 5.
In this scenario, the attestation evidence may contain two different sequences
of service: (1) Service 1 → Service 3 → Service 4 → Service 5, or (2)
Service 1→ Service 2→ Service 3→ Service 4→ Service 5, as shown in
Figure 4.6. By using the timestamps, the V rf is able to construct a graph
that provides insights about the relation among services.

Once a compromised service is detected, the Verifier will identify the
cases when the occurrence of a compromised service has maliciously caused
the execution of other services. In particular, the identification of services
that directly or indirectly have influenced the current state of the Prover
relies on the properties of the vector clock mechanism that represent the
casuality among events [87, 101]. According to the vector clock implementa-
tion, each service has a vector of pairs (s, k), where s is the service’s id and
k is number of the events the service s produced. The Verifier claims that
Service P has influenced the state of Service S, if all the pairs of the vector

78

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

clock of P (i.e., V CP) have k value less or equal to the corresponding k
value in the vector clock of S (i.e., V CS), and at least one k value is smaller:
V CP < V CS ⇔
∀j ∈ [1..k], V CP [j] ≤ V CS [j] ∧ ∃ j, V CP [j] < V CS [j]

For instance, in Figure 4.6 if the Verifier detects a non-valid checksum
reported by Service 2 at time VC (2) = [(1,1), (2,1)], the Verifier will identify
that VC (3”), VC(4”), VC(5”) have equal corresponding values for Service 1
and Service 2, while they have other values greater than V C(2). Thus, the
Verifier identifies that the malicious Service 2 has influenced Service 3,
Service 4, and Service 5.

Service 1

Service 2

Service 3 Service 4 Service 5

Service 3 Service 4 Service 5

VC (1) = [(1,1)]

(1,1)
(3,1)
(4,1)

VC (4') =(1,1)
(3,1)VC (3') =

(1,1)
(3,1)
(4,1)
(5,1)

VC (5') =

(1,1)
(2,1)VC (2) =

(1,1)
(2,1)
(3,1)

VC (3'') =
(1,1)
(2,1)
(3,1)
(4,1)

VC (4'') =

(1,1)
(2,1)
(3,1)
(4,1)
(5,1)

VC (5'') =

Figure 4.6: Overview of service interactions in publish/subscribe paradigm

In addition, the vector clock allows the service interactions to be rep-
resented as a direct acyclic graph (DAG). This derives from the definition
of vector clocks properties, in which the values can only be incremented.
At the time of attestation, a malicious service might attempt to evade the
detection by sending pre-computed legitimate data to other services. In this
case the “used” timestamp (i.e., vector clock) is old and it will create a cy-
cle in the final graph that the Verifier constructs. Thus, DAG structure of
vector clocks allows the Verifier to detect a replay attack by identifying the
presence of a cycle in the DAG graph.

4.8 SARA internal working mechanism

In this section, we provide a simplified explanation of the attestation proce-
dures of SARA (described in section 4.7) using finite-state machine (FSM)

79

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

diagrams. In SARA, the main entities that operate to perform attestation
are the V rf and the device Di, which runs one or many services.

4.8.1 Interaction: SARA-Verifier

The V rf in SARA performs the following main actions:

• Initialization: The V rf initializes the attestation process at a random
time.

• Sending challenge: The V rf sends the attestation challenge to any of
the services in Di to initiate the attestation.

• Report collection: The V rf collects the attestation result from any of
the devices in the network at any random point of time (i.e., after the
initialization of the attestation).

• Verify: The V rf verifies the attestation result received from the de-
vice(s) in the network.

Initialize
Attestation

Send
challenge

to a Service

Collect
Attestation

Report

Start

Verify

FSM of Verifier

Figure 4.7: SARA FSM for Verifier

4.8.2 Interaction: SARA-Prover

In SARA, the Prover has four main functions as follows:

• Receiving challenge: Prover(s) take part in attestation process once it
receive the attestation challenge from the Verifier.

• Perform attestation: Upon receiving the attestation challenge, the
Prover performs attestation by computing the checksum over the pro-
gram binary.

80

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

• Global Hash Operation: The Prover computes the global hash by in-
cluding GHVP = servID||timestampP ||LHVP ||OutputP ||InputP ||
GHVprev, where timestampP is the current timestamp, LHVP is the
hash of the program binary of the current service P , Output is output
of the current service, InputP is the input of the current service and
GHVprev is the previous hash value.

• Publish: The current service publish the global hash.

Global hash
computation

Figure 4.8: SARA FSM for Prover

4.9 Evaluation

We present our evaluation results in terms of runtime, energy-consumption,
and memory-consumption.

4.9.1 Simulation environment

We evaluated SARA on realistic (random) networks using the Instant Con-
tiki environment, and in particular, the Cooja simulator [2]. Cooja is a plat-
form that can be used to emulate networks of resource-constrained devices,
communicating with realistic protocols. We used Cooja to investigate the
robustness of SARA in a scenario where devices (i.e., provers): (1) run one
or multiple services, (2) are resource constrained, and (3) opportunistically
communicate using the IEEE 802.15.4 protocol. Even though mobility is
not our main focus, we modelled prover’s mobility by randomly deploying
provers over a simulated area of 100 × 100 m2. Each prover repeatedly se-
lects a random speed as well as random direction. The random movement
of provers make the network dynamic and loosely connected.

81

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

We simulated the execution of SARA on a network of Tmote Sky de-
vices [60]. The Tmote sky is equipped with a 16-bits 8 MHz MCU, 10 KB
of RAM, and 48 KB of non-volatile memory. Communications among ser-
vices in SARA are carried out over the IEEE 802.15.4 MAC layer protocol
and use 6LoWPAN as an adaptation layer (using Contiki modules). This
configuration is very popular in IoT settings [40, 32, 33]. IEEE 802.15.4 is
a wireless standard that supports up to 250 Kbps data rate, 75 m coverage
and 127 B frame size.

4.9.2 Runtime

SARA considers that communication among different devices is asyn-
chronous, thus, each device can receive or send multiple messages concur-
rently. In order to provide an idea of runtime of SARA, we present a simu-
lated result of runtime for 250 services which communicate asynchronously
among themselves. In our simulation environment of 250 services, SARA
takes ≈ 19 seconds to perform attestation for the whole network. In Fig-
ure 4.9 we show the runtime for SARA over a network comprising an in-
creasing number of services from 50 to 250. The result proves that SARA is
lightweight and does not introduced significant overhead during the attes-
tation.

50 100 150 200 250

Number of services

4

6

8

10

12

14

16

18

Ru
nt

im
e

(s
)

SARA runtime

Figure 4.9: Runtime of SARA, varying number of services

Although, SARA’s runtime grows linearly, nevertheless, SARA shows a
remarkably manageable overhead for large networks. This make SARA a
realistic remote attestation technique for practical IoT applications.

In addition, we provide a runtime comparison of SARA over a IoT net-
work of 100 services by deploying these services on skymote [60], ESB5 and
Z16. We measured SARA’s overhead for three different cryptographic func-
tions: SHA-256, AES and MD5 and present comparative runtime differences

5http://contiki.sourceforge.net/docs/2.6/a01781.html
6https://zolertia.io

82

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

of skymote, ESB and Z1 in Figure 4.10, Figure 4.11 and Figure 4.12. Con-
sidering the runtime for all three different cryptographic functions, skymote
performs better than ESB and Z1 mote even though the differences among
the three motes are negligible. The simulation results show that SARA can
be employed by any sensor motes on real networks.

25 50 75 100

Number of Devices

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Ru
nt
im

e
(s
)

Comparison of motes that use MD5 encryption
SKY
ESB
Z1

Figure 4.10: Runtime of SARA (using MD5), varying number of services

25 50 75 100

Number of Devices

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ru
nt
im

e
(s
)

Comparison of motes that use SHA-256 encryption
SKY
ESB
Z1

Figure 4.11: Runtime of SARA (using SHA-256), varying number of services

25 50 75 100

Number of Devices

4

6

8

10

12

14

16

18

Ru
nt
im
e
(s
)

Comparison of motes that use AES encryption
SKY
ESB
Z1

Figure 4.12: Runtime of SARA (using AES), varying number of services

83

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

4.9.3 Energy Consumption

We measured the energy consumption for SARA based on the energy re-
quired to send and receive one byte of data and the energy required to per-
form the cryptographic operation for attestation process. Let Esend be the
required energy to send a byte, Erecv be the required energy to receive a byte,
Egh be the required energy to calculate global hash, Ehmac be the required
energy to sign the message, Emsg be the energy required to communicate the
attestation result, Eatt be the energy required to compute checksum, and N
be the total number of services participating in the attestation. Then, the
required energy to send a message in SARA is:

EDi

send ≤ Ehmac + Egh + Emsg.

Similarly, the required energy for receiving messages in SARA is:

EDi
recv ≤ Ehmac + Egh + Emsg.

In an asynchronous network that consists of N number of services, the V rf
aims to attest a subset of services (At). The overall energy consumption for
the subset of services attested in SARA is given as follows:

EDi

SARA ≤ Eatt + Ehmac + Egh + EDi

send + (Ehmac + EDi
recv) ∗ (N ∩At).

We compute the energy consumption based on standard contiki mea-
surement7. The CPU energy consumption are demonstrated in Table 7.2.

Table 4.2: Energy Consumption while SARA Simulation for Sky motes

Time (In sec) CPU Energy consumption (mJ)

10 0.58503296

20 0.1965921

30 0.38838043

40 0.39161316

50 0.39992157

60 0.19716614

Based on our simulation results, the energy consumption of the nodes
performing SARA is low and, SARA does not introduce a significant over-
head for the energy consumption of the nodes that are performing attesta-
tion. Given that IoT nodes are resource-constrained, the energy consumption
results confirm that SARA is an appropriate attestation protocol for these
devices.

7http://thingschat.blogspot.com

84

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

4.9.4 Memory consumption

We simulated our experiment using Tmote sky which has memory of 48k
Flash + 1024k serial storage [60]. In our experimental setup, each prover
(Di) needs to store at least the (1) services running on the particular de-
vice; (2) key pairs (ski and pki); (3) Local hash for recording the result
at attestation time; (4) Global hash value. Thus, in our experimental set-
ting the storage cost for SARA is 3.03 KB of storage for the services (i.e.,
running by skymotes) and 93B for storing the local hash and global hash.
Nevertheless, the memory consumption can vary based on different size of
services and cryptographic choices. However, Tmote sky node has consider-
able amount of memory which can contributes to scale the operation based
on future need.

4.10 Security Analysis

In this section, we informally discuss the security guarantees of SARA in sat-
isfying the security properties introduced in section 4.6. In an asynchronous
distributed IoT service, the goal of an Adv is to compromise and/or affect
maliciously one or more services and evade detection from the V rf . Our
main objective is to prove that it is computationally infeasible for an Adv
to forge the attestation result and persuade the V rf .

Trustworthiness of Services An Advsw can attempt to manipulate
remotely the program binary of Prover(s). By infecting one service, the ad-
versary can create a cascade effect and maliciously affect other services. We
assume that the attestation code in SARA runs inside a hardware protected
memory which cannot be modified by Advsw. Although a Advsw can ma-
nipulate the program binary of any service, the checksum performed by the
attestation code will detect the adversarial presence. The output of check-
sum is then encrypted with the public key of the V rf preventing other
interacting services to modify this output.

Legitimate operations Along with the checksum, SARA stores the
current timestamp, the input and the output of a given service. Following
the assumption that SARA is able to securely intercept the input and out-
put data, SARA securely stores these results in ROM memory that is not
modifiable by a Advsw. At the end of the attestation procedure, the V rf
will receive the attestation result that reports for each executed service the
checksum, the timestamp, and the exchanged communication data. Consid-
ering that the timestamps are stored in a secure writable memory that can
be read-write only by SARA and following the features of the vector clock
mechanisms that provide a precise causality between event occurrence, the
Verifier is able to identify all the compromised services and their malicious
impact over other services. Thus, SARA guarantees the legitimate opera-
tions of asynchronous distributed IoT service against a software adversary

85

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

(Advsw). In addition, SARA is able to detect a mobile adversary Advmob

that tries to evade detection by changing location. Since SARA attests the
program binary along with the communication data, when the Advmob gets
relocated across different the services, the historical evidence will report the
adversarial presence.

Freshness Adv can launch a replay attack to evade detection by sending
precomputed valid attestation results. However, in SARA all the services in-
clude timestamps maintained by the vector clock (as discussed in section 4.4)
with their published output. This evidence allows the V rf to construct a
graph using the timestamps included in the attestation report. When all the
service interactions occur in a legitimate timestamp, the service interactions
can be represented as a directed acyclic graph (DAG) in which timestamps
are the edges and services are the vertices over the attestation report. The
presence of a loop in the graph will represent the usage of an old timestamp
and will allow the V rf to detect the cases when the Adv launched a replay
attack.

4.11 Discussion

In SARA, each service stores a timestamped evidence, encrypts this evidence
and then sends it to other services. SARA stores such evidence for each
service interaction.

Bounding the length of the attestation evidence. While SARA
allows the Verifier to accurately reconstruct historical attestation evidence,
the length of the attestation evidence increases with the number of the
services that are executed. In real IoT scenarios, the de-facto communication
protocols (i.e., 6LoWPAN, ZigBee etc.) provide a maximum packet length
of 128 Bytes out of which 102 bytes can be used for data transfer [66].
In a large network (e.g., with more than N devices), this packet size will
be insufficient to transmit whole network attestation results. Thus, devices
need to send multiple packets, which will eventually increase their energy
consumption. One promising direction to bound the length of the attestation
evidence in SARA could be the possibility of flagging some of the services
in the IoT network as cluster-heads. In this approach, the cluster-heads
are pre-configured with the maximum length of the evidence. The cluster-
heads check the cases when the length of the attestation results exceeds the
maximum predefined length-limit and then notify the Verifier.

The Verifier communicates with the cluster-heads through the pub-
lish/subscribe protocol. Specifically, upon initiating the attestation proce-
dure, the Verifier will register a subscription to the cluster-heads. The Ver-
ifier chooses as cluster-heads the services that are more likely to be called
based on the potential service interactions for a given attestation procedure.
Once the length exceeds a predefined length limit, the cluster-heads will no-

86

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

tify the Verifier. The cluster-heads publish the attestation result to the Ver-
ifier according to the function publish to verifier() as shown in Figure 4.4.
The freshness of the attestation result published from the cluster-heads is
guaranteed by the vector clock mechanism which gets incremented by one
when the function publish to verifier() is getting executed. Upon receiving
the attestation results from the cluster-heads, the Verifier can immediately
decide to re-initiate the attestation procedure starting from the cluster-heads
in order to check the rest of the services that have not been attested yet.
In this case, the attestation will be initialized using the latest vector clocks
published by the cluster-heads, thus, at the end the Verifier will still be able
to reconstruct a complete history of the service interactions.

Key management. For simplicity we assumed that SARA uses pub-
lic/private key pair for every device in the network. SARA could also employ
the naive symmetric key sharing approach among devices which reduces the
operational cost in terms of memory and computation with respect to the
use of public/private key structure. However, this approach does not provide
a secure communication among services since an attacker that manages to
extract one key will be able to encrypt/decrypt all the exchanged messages
over the network. One potential alternative could be to use Attribute-based
Encryption (ABE) [44, 41]. ABE allows the data publishers to specify the ac-
cess policy by defining the attributes of the entities that are allowed to access
the data. In the publish/subscribe paradigm, this authentication mechanism
can ensure only the subscribers that match with the predefined attributes
can decrypt the received data.

4.12 Summary

This chapter presents SARA, an efficient and effective remote attesta-
tion protocol that performs attestation over a potentially large number
of resource-constrained IoT devices. The main achievement of SARA is to
overcome the shortcomings of other attestation schemes by performing at-
testation of asynchronous communication in IoT systems. We demonstrated
SARA’s performance through realistic simulation over the Contiki platform
in terms of runtime and energy consumption of the device. As a future work,
we intend to investigate configurable-hardware enabled remote attestation
techniques that will facilitate embedded devices to perform self-attestation
securely.

87

Part III

Configurable-Hardware
Enabled Remote Attestation

88

Chapter 5

Self-Attestation
of Configurable Hardware

Field-Programmable Gate Arrays (FPGAs) combine the flexibility of soft-
ware with the performance of hardware: they allow device reconfiguration
in the field while offering a higher performance per consumed energy unit
than general-purpose microprocessors. In comparison to Application-Specific
Integrated Circuits (ASICs), FPGA applications have a shorter time to mar-
ket and can be designed with a lower non-recurring engineering (NRE) cost.
ASICs are not configurable after deployment but lead to circuits with a
higher speed, a lower power consumption and a smaller area than FPGAs.
Nevertheless, the performance gap between FPGAs and ASICs is continu-
ously shrinking thanks to two phenomena: (1) the high-volume production
of FPGAs makes it economical to closely follow the latest technology nodes,
and (2) FPGA vendors improve the performance of FPGAs by integrating
dedicated application-specific building blocks. These evolutions make the
use of FPGAs in embedded systems increasingly popular.

A typical FPGA-based embedded system combines a general-purpose
microprocessor with configurable hardware. For the microprocessor, several
techniques have been proposed to verify that it is running the intended
software application. However, for the FPGA, it is not straightforward to
remotely verify that it is configured to the intended state. Many attesta-
tion mechanisms for microprocessors rely on a tamper-resistant hardware
module. Assuming that the hardware module itself can be remotely recon-
figured, the hardware prover core needs to be able to prove its own state to
the verifier, i.e., the configurable hardware needs to perform self-attestation.
This is shown in Fig. 5.1, where µP and TR HW indicate the microproces-
sor and the tamper-resistant hardware module, respectively. The left side of
the figure shows the traditional adversary model, in which the adversary is

90

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

assumed to be capable of changing the software code in the processor. The
right side of the figure shows the scenario we consider in this work, where
the adversary can additionally tamper with the FPGA configuration.

Adversary

µP

FPGA

P
ro

v
er

V
er

if
ie

r

software code

tampering

hardware

configuration

tampering

Adversary

µP

TR HW

P
ro

v
er

V
er

if
ie

r

software code

tampering

Figure 5.1: Adversary models in the traditional hardware-based attesta-
tion setting (left) and the setting considered in this work (right), where µP
and TR HW indicate the microprocessor and the tamper-resistant hardware
module, respectively.

The mechanism we propose, is inspired by the work of Perito and
Tsudik [110], who apply proofs of secure erasure and secure code updates
to embedded processors. They assume that the processor platform contains
a small amount of immutable read-only memory (ROM) that stores a basic
program, taking care of communication and memory read/write. FPGAs,
however, do not have the possibility of directly storing and accessing their
basic program/functionality in an immutable piece of ROM. Since this basic
functionality is stored in configurable memory, it is far from straightforward
to apply the results of [110] directly to FPGAs. Our solution, which we call
SACHa (Self-Attestation of Configurable Hardware), consists of (1) a novel
hardware design, mapped on an off-the-shelf FPGA and (2) a communica-
tion protocol that executes the attestation process based on the proposed
FPGA design.

5.1 Organization.

The chapter is structured as follows. First, Section 5.2 gives some back-
ground information. Section 5.3 discusses the assumed system model and
adversary model. In Section 5.4, we revisit the concepts of remote attestation
by discussing related work. Section 5.5 introduces our proposed solution and

91

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

Section 5.6 presents a proof-of-concept implementation. The performance
and security of SACHa are evaluated in Section 5.7. Finally, Section 5.8
concludes the chapter and gives directives for future work.

5.2 Preliminaries

This section starts with explaining the basic structure of an FPGA. Sub-
sequently, it elaborates on two specific features that we use in our SACHa
proposal, namely partial reconfiguration and configuration memory read-
back. Finally, the concept of attestation is introduced as well as the specific
attestation solution that is at the basis of this work.

5.2.1 FPGA

Basic Structure

The FPGA has been around for more than 30 years. It consists of config-
urable fabric which gets its configuration from a configuration memory, as
shown on the left side of Fig. 5.2. Through this configuration, the function-
ality of the configurable fabric is determined. The data that are stored in
the configuration memory are referred to as the bitstream. Depending on
the type of FPGA, the configuration memory can be (volatile) SRAM or
(non-volatile) Flash memory. This work focuses on SRAM-based FPGAs,
which are the most frequently applied types of FPGAs. More specifically, in
the remainder of this work, we concentrate on Xilinx FPGAs and use the
corresponding terminology. Nevertheless, the concepts we propose can be
applied to most SRAM-based FPGAs.

The basic building blocks of the configurable fabric are Configurable
Logic Blocks (CLBs), embedded memory blocks called Block RAMs
(BRAMs), Input/Output Blocks (IOBs) and Switch Matrices (SMs), as
shown on the right side of Fig. 5.2. The CLBs consist of combinatorial
logic and distributed storage elements, while the BRAMs provide central-
ized memory. The actual functionality of the FPGA design is configured
on the CLBs and the BRAMs. The SMs interconnect the CLBs and the
BRAM to each other and to the IOBs. The latter connect the internal hard-
ware to the external environment through the pins of the FPGA. All of the
mentioned elements are configured by the bits in the configuration memory.

Note that FPGAs also contain other dedicated hardware primitives,
which we omit from this overview, since they are not necessary for the im-
plementation of our solution. However, it is possible to use these primitives
in combination with the proposed FPGA architecture.

92

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

configuration memory

configurable fabric

IOB

SM

IOB

SM SM

IOB

IOB

SM SM SMIOB

SM SM SMIOB

CLB

CLB

CLB

BRAM

Figure 5.2: Conceptual representation of an FPGA (left) and basic building
blocks of the configurable fabric (right).

Partial Reconfiguration

An FPGA can be logically partitioned, which implies that the configurable
fabric is segmented in two or more partitions. These partitions can be config-
ured separately while the other partitions continue to operate normally. The
part of the configuration memory that configures a specific partition is then
updated at run-time through a bitstream of which the size is proportional
to the size of the partition. This is referred to as partial reconfiguration.

The configuration memory of Xilinx FPGAs is not only accessible from
the outside of the FPGA, but also from the configurable fabric inside the
FPGA. This is done through a dedicated primitive called the Internal Con-
figuration Access Port (ICAP). When dealing with multiple partitions, one
partition usually stays unchanged and contains the ICAP together with con-
trol logic. This partition is referred to as the static partition. Typically, the
configuration of the static partition is loaded from an on-board non-volatile
Flash memory into the (volatile) SRAM-based configuration memory when
the power is turned on.

Next to the static partition, there can be one or more run-time config-
urable partitions, which are referred to as dynamic partitions. This is shown
in Fig. 5.3, in which the ICAP is used to write a bitstream into the part
of the configuration memory that is connected to the dynamic partition.
This results in the reconfiguration of the dynamic partition. Note that, in
principle, the ICAP is capable of updating the entire configuration mem-
ory, including the static partition. Nevertheless, this setting is rarely used in
practice, because the control logic in the static partition that interacts with
the ICAP should not be changed.

93

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

ICAP

STATIC

configuration memory

configurable fabric

DYNAMIC

Figure 5.3: FPGA design in which the ICAP in the static partition updates
the configuration of the dynamic partition.

Configuration Memory Readback

Considering applications in which (un)intended faults occur in the configu-
ration memory, the readback capabilities of the ICAP can be used for error
detection and correction. This is important in e.g., space applications, in
which Single Event Upsets (SEUs) cause bit flips in the configuration mem-
ory. The configuration memory readback mechanism allows the ICAP to
read out the entire configuration memory, as shown in Fig. 5.4.

ICAP

STATIC

configuration memory

configurable fabric

DYNAMIC

Figure 5.4: FPGA design in which the ICAP in the static partition reads
back the configuration of the entire configuration memory.

94

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

5.2.2 Attestation Concept

In general, attestation is a challenge-response protocol between a verifier
and an untrusted prover. Through attestation, the verifier determines the
“health” of the prover. In a typical attestation protocol, the prover sends
a cryptographic checksum of its current state upon request of the verifier.
Based on the received checksum, the verifier determines if the prover is oper-
ating in the intended state. In order to ensure the freshness of the response,
a nonce generated by the verifier is included in the checksum. This is shown
in Fig. 5.5.

Attestation challenge || Nonce (N)

H’ MAC
K
(N || internal state)

H’

H == H’ ?

H MAC
K
(N || expected state)

Prover Verifier
KK

Figure 5.5: Typical example of an attestation protocol between a verifier
and a prover.

The attestation mechanism we use in this chapter relies on proofs of
secure erasure, which ensure that the memory/state of an embedded device
is erased. This way secure code updates can be done to ensure that the
memory/state of an embedded device is updated. It takes advantage of the
bounded memory model of an embedded device, which assumes the verifier
knows the exact size of the prover’s (bounded/limited) memory. The original
proposal, as introduced by Perito and Tsudik in [110], from which our work is
inspired, can be summarized as follows. When the verifier sends data or code
to the prover that fills the entire (limited) memory of the prover’s embedded
device, this implies that all prior code is overwritten and thus erased. The
device can then compute the checksum of the memory content and send
it back to the verifier. The embedded device is supposed to have a small
amount of immutable ROM that takes care of (1) receiving code updates
and writing them to the device’s memory, and (2) reading out the checksum
and sending it back to the verifier. The algorithm for the computation of
the checksum can either be included in the code that is sent by the verifier
as part of the protocol, or it can be a (fixed) part of the immutable ROM.

95

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

When we apply the mechanism proposed in [110] to Fig. 5.5, the attestation
challenge and the nonce correspond to the code that is sent by the verifier to
fill the entire memory of the prover’s device. The MAC corresponds to the
cryptographic checksum of the whole memory content. This way, the goal is
not to detect the presence of malicious code, but to make sure there is no
malicious code remaining after the code erasure/update.

We apply a similar concept to FPGAs. In order to do so, we overcome
the challenges that occur due to the differences between embedded processor
platforms and FPGAs. The resulting FPGA architecture uses partial recon-
figuration and configuration memory readback to make sure that it does not
contain malicious hardware modules. This way, the FPGA can perform self-
attestation, which is crucial for hardware-based attestation solutions that
use an FPGA as the trusted hardware module.

5.3 System and Adversary Model

Table 5.1 lists the notation we use for the entities in the attestation scheme
and the components of the system on the prover’s side. The system model,
consisting of the entities and components in the table, is depicted in Fig. 5.6.

Table 5.1: Notation.

Entities

P, V prover and verifier, respectively

Adv adversary

Components of the P

StatPart static partition of the P’s FPGA

DynPart dynamic partition of the P’s FPGA

StatMem configuration memory for StatPart

DynMem configuration memory for DynPart

BootMem non-volatile memory to boot StatMem

The system model consists of the P and V who communicate with each
other over a public channel. The V is not constrained in computing power
and is typically a laptop, a desktop computer or a server. The P is an em-
bedded system that consists of an FPGA and a BootMem, that initializes
the StatMem when the power is turned on. The DynMem can be repeat-
edly reconfigured afterwards. The StatMem and the DynMem provide the
configuration for the StatPart and the DynPart, respectively.

The adversary model depicts the scenario where the Adv compromises or
impersonates the P to fake its current state or behavior to the V. In most
of the attestation literature, software-only attackers are considered. In the

96

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

Bo
ot
M
em

St
at
Pa
rt

D
yn
Pa
rt

St
at
M
em

D
yn
M
em

Prv Vrf

Adv

Figure 5.6: System model.

scenario that we consider, a processor running software is connected to an
FPGA-based trusted component. Our Adv can modify both the software of
the processor and the hardware configuration of the FPGA. Note that the
Adv is capable of modifying the configuration memory of the FPGA, not of
applying hardware modifications to the configurable fabric of the FPGA. In
this work, we concentrate only on the attestation of the FPGA configuration.
We can classify our Adv based on the taxonomy introduced in [25]:

• The Adv can be a “remote adversary” that aims at inserting malicious
hardware components on the P remotely. An example of an attack
performed by a remote adversary is the 2010 Stuxnet incident [7].

• The Adv can be a “local adversary” (subsuming a remote adversary)
that aims at impersonating or cloning the P’s device and/or at col-
lecting information. The Adv does this by eavesdropping and/or con-
trolling the communication between P and V.

We consider side-channel analysis attacks and physical attacks that actively
modify the configurable fabric or the FPGA-based system out of our current
scope.

5.4 Related Work

We explore related work in remote attestation in this section. The discussed
methods mainly belong to either software-based or hardware-based attes-
tation. Apart from that, we also consider hybrid techniques which employ
minimum hardware support.

97

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

5.4.1 Software-based Attestation

In general, most of the software-based attestation mechanisms do not require
hardware support and rely on a challenge-response protocol. Typically, in
software-based attestation methods, a V sends a challenge to a P (device).
The P computes the cryptographic checksum of its own memory or under-
lying software along with the challenge provided by the V and sends it back
to the V. Based on the received response, the V verifies the “state” of the
P.

In [130], Spinellis et al. propose a mechanism in which the P computes
the hash of two randomly colluding memory areas. The hash value is then
sent to the V, who compares it to the expected hash values. This technique
relies on sequential memory read-out for the hash calculation and the data
memory is not verified. In case of an intelligent adversary, malicious code
can evade detection by shifting its locations; this flaw occurs due to the
non-simultaneous hash calculation of the two randomly overlapping areas.

Seshadri et al. propose a software-based attestation scheme called
SWATT [126]. It assumes that malicious code running on a (compromised)
P must re-direct the memory access to the location where the actual code
resides in order to get the valid response for the attestation challenge. The
authors assume that the timing overhead introduced by the memory re-
direction will be noticed during the protocol execution. SWATT relies on
strict timing constraints, thus making it unfeasible for real-world employ-
ment over a network.

Shaneck et al. propose a remote software-based attestation scheme to
detect a malicious P [127] in a network. The attestation challenge is gener-
ated at run-time and is shared with the P using symmetric-key encryption
to achieve secure communication. A vulnerability occurs when the node is
compromised and the shared symmetric key is extracted. The authors also
use self-modifying code to prevent an adversary from evading detection.
However, this technique does not verify the data memory and an intelli-
gent adversary can still evade detection by relocating its position during
attestation.

In other software-based attestation schemes like the one proposed by
Choi et al. [53], the P’s memory is filled by pseudo-randomness using a
Pseudo Random Function (PRF). The V sends a nonce to the P, after
which the P uses the nonce as a seed for the PRF. The value generated by
the PRF then fills the empty memory region of the P. Next, the P computes
the hash of the memory and sends the result to the V for verification. The
main idea is to fill the empty memory regions, such that the adversary will
have no place to hide malicious code. However, a compromised P having
access to the PRF can still evade detection by computing a valid hash.

In summary, software-based attestation schemes are interesting, thanks
to their easy and low-cost “hardware-less” approach. However, most of the

98

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

schemes have flaws or are not practical due to strict timing constraints,
due to the absence of data memory attestation and/or due to the lack of
protection of stored secrets when the node is compromised.

5.4.2 Hardware-based Attestation

Hardware-based attestation methods predominantly rely on the use of spe-
cialized hardware. Arbaugh et al. propose the “AEGIS” architecture to en-
sure the integrity of the P [37]. The essence of this method is a list of security
checks on the BIOS that are done from power-on until the kernel is loaded.
Failure of any of these checks will reboot the P and bring it back to a known
saved state.

In order to check the trustworthiness of the P, Sailer et al. propose
to extend the Trusted Platform Module (TPM) with additional functional-
ity [121]. The main idea is that the TPM maintains a sequence of trust which
covers the application layer and the system configuration. Furthermore, a
kernel-maintained checksum list is also included in the TPM for preserving
its integrity.

In [73], England et al. propose to segregate a system into two parts,
namely a trusted and an untrusted part. Both parts have distinct operating
systems. Only the trusted part of the system will be checked to maintain
the integrity of the system.

Kil et al. propose ReDAS (Remote Dynamic Attestation System) in [89].
Their approach consists of extracting the properties from application source
code. At the time of program execution, all activities, including malicious
activities, are recorded. The P is equipped with a TPM which stores the
recorded values in order to protect them against adversarial modification.
Upon receiving the attestation request (challenge) from the V, the P sends
the TPM-protected information to the V. Although this approach is bet-
ter than the other discussed approaches, it has a drawback: ReDAS does
not consider all the available properties; it only checks a subset of the dy-
namic system properties. As a result, an adversary can still be successful by
modifying properties which are not covered by ReDAS.

5.4.3 Hybrid Attestation

Hybrid attestation schemes employ software/hardware co-design that fa-
cilitates effective, low-cost, secure solutions without a dedicated hardware
module (e.g., a TPM) to thwart the inefficiency of software based-attestation
schemes. The goal of hybrid architectures is to provide more security to the
attestation schemes against all adversaries except for physical adversaries.

In [72], El Defrawy et al. propose SMART (Secure and Minimal Archi-
tecture for (Establishing a Dynamic) Root of Trust), a software/hardware
co-design for low-end embedded devices. The essence of this architecture is

99

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

to provide a secure memory location for attestation code and for an attesta-
tion key. The processor, to which minimal changes in the form of these secure
memory locations have been applied, protects the secure memory locations
from “non-SMART” codes.

With TrustLite, Koeberl et al. provide an OS-independent seclusion
of specific software modules, known as Trustlets [91]. They introduce an
Execution-Aware Memory Protection Unit (EA-MPU), which has a simi-
lar working principal as the SMART-based memory protection unit. The
EA-MPU enforces code-specific data use.

Ferdinand et al. propose Tiny Trust Anchor for Tiny Devices (Ty-
TAN) [47]. The core idea of this architecture is based on an EA-MPU. Apart
from providing secure inter-process communication, TyTAN facilitates ro-
bust scheduling and run-time loading and unloading of tasks.

The aforementioned schemes are designed while keeping in mind low-end
tiny devices. Apart from providing better resiliency against stronger adver-
saries in networks, their development and deployment in low-end devices
make large-scale “swarm” attestation feasible, i.e., a number of low-end,
tiny embedded devices that are employed as a group for a specific task.

5.5 Our Proposal: SACHa

5.5.1 Contribution

The mechanism we introduce in this chapter improves the security of FPGA-
based attestation methods. From the observation that the trusted hardware
module itself needs to be verified when it is based on configurable hardware
(i.e., an FPGA), we propose the SACHa architecture and attestation proto-
col. SACHa allows the self-attestation of the FPGA-based module, such that
the FPGA can be trusted by the V when it is used for the hardware-based
attestation of the software running on a processor. In this work, we con-
centrate on the self-attestation of the FPGA, not on the connection of the
FPGA-based trusted module with a processor. Nevertheless, our solution
can easily be combined with existing hardware-based attestation mecha-
nisms. SACHa consists of a novel FPGA architecture (implemented on an
off-the-shelf FPGA) and attestation protocol.

5.5.2 FPGA Architecture

We apply the bounded memory model, introduced in [110] and summarized
in Section 5.2.2, to the configuration memory of an FPGA. We rely on the ob-
servation that the FPGA does not have enough memory in the configurable
fabric to store the configuration data sent by the V, so we can be sure that
the configuration data are stored in the configuration memory. This auto-
matically implies that the configurable fabric of the FPGA is running the

100

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

application contained in the stored configuration. The platform used in [110]
is assumed to have an immutable ROM that contains a program for basic
send/receive and read/write functionality. Since FPGAs do not have this as
a part of their configuration memory, we propose an architecture that makes
use of partial reconfiguration. In our solution, the communication with the
V and the configuration memory read/write mechanism are implemented in
the StatPart. The code updates are applied to the (bounded) DynMem. A
cryptographic checksum is computed on the entire configuration memory,
including the StatMem. Figure 5.7 gives a high-level overview of the FPGA
architecture.

MAC
attestation

nonce

StatPart

ETH

core
ICAP

 intended application

DynPart

key

PUF

PUF

constant

Figure 5.7: High-level FPGA architecture of SACHa.

Static Partition

In the StatPart, the ICAP takes care of writing the configuration memory in
order to (re)configure the DynPart. It is also used for reading out the entire
configuration memory, which contains both StatMem and DynMem. Further,
the ethernet core (ETH core) provides a communication link with the V.
The Message Authentication Code (MAC) core computes the cryptographic
checksum of the entire configuration memory content. The MAC serves two
purposes: (1) it guarantees that the checksum is computed by the FPGA
and not by another device impersonating the FPGA (this is achieved by a
shared key between P and V); (2) it guarantees that the configuration data
are not tampered with.

There are three options for storing the key for the MAC in the device.
The first option is to foresee a key register with a constant value in the
StatPart. In this case, the readback of the configuration memory needs to
be prohibited in the part of the memory where the key is stored. The second
option is to implement a (weak) Physical(ly) Unclonable Function (PUF) in
the StatPart that generates the key. Even if the Adv has access to the PUF

101

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

circuit in the StatMem, the key cannot be retrieved to clone the device. The
third option is to include a PUF in the DynPart as a new hardware module
from the V as part of the attestation protocol. This allows the V to update
the shared key by updating the PUF circuit. In this case, each PUF circuit
sent by the V needs to have gone through an enrollment phase before the
deployment of the FPGA.

The StatPart needs to be configured and running on the FPGA at all
time. Since we focus on SRAM-based FPGAs, the configuration memory is
volatile. This means that the static configuration needs to be loaded from
a non-volatile memory every time the power of the FPGA is turned on.
Therefore, we foresee BootMem, a small Flash memory to load the StatMem
of the FPGA at power-on. We minimize the size of the BootMem, such
that it is not capable of storing the configuration bitstream of the DynPart,
since that would undermine our assumption that the dynamic configura-
tion bitstream can only be stored in the configuration memory. In order to
achieve a minimum-size static configuration bitstream and thus a minimum-
size BootMem, we make the area of the StatPart as small as possible and
for sure significantly smaller than the area of the DynPart. Note that, on
commercial FPGA boards, it is only possible to program the BootMem by
decoupling it from the board and connecting it to a programming device.
This means that, even if the BootMem was capable of storing the full bit-
stream of the FPGA, it would still not be possible to store the dynamic
bitstream sent remotely by the P. So we can safely assume that the bit-
stream sent by the V can only be stored in the configuration memory.

Dynamic Partition

The DynPart contains the intended configuration of the FPGA and a register
that stores a nonce, i.e., an arbitrary number that can only be used once.
The nonce can be updated by the V in order to achieve freshness when
requesting a MAC from the P. Optionally, the DynPart contains a PUF
for key generation, as explained in Section 5.5.2. In practice, we propose to
use a separate partition for the nonce, such that the nonce can be updated
without updating the intended application in the DynPart. This way, the V
can request a fresh checksum of the P’s configuration without changing the
intended application.

5.5.3 Attestation Protocol

Figure 5.8 shows the attestation protocol that is applied between V and P,
in which the SACHa FPGA architecture is on the side of the P. First, the
V sends a configuration bitstream to the P, who stores the bitstream in
the configuration memory through the ICAP. As explained in Section 5.5.2,
the architecture facilitates the independent configuration of the intended

102

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

application and the nonce. Therefore, the dynamic configuration consists of
two steps, as shown in Fig. 5.8. After the two configuration steps, the entire
dynamic configuration memory is (over)written by the V. Note that, even if
the intended application and the nonce register do not need all the resources
in the configurable fabric of the dynamic partition, the dynamic bitstream
still fills the entire dynamic configuration memory. Optionally, the bitstream
that configures the intended application also contains configuration data for
the key-generating PUF.

Intended application configuration

H’ MAC
K
(full configuration (Prv))

H’

H == H’ ?

H MAC
K
(expected configuration)

Nonce configuration

Prv VrfKK

Figure 5.8: SACHa protocol.

When the bitstream is written into the configuration memory, the FPGA
runs the intended application and stores the received nonce. To prove this to
the V, the entire configuration memory is read out by the ICAP. A MAC is
generated and sent back to the V, who generates the same MAC using the
shared key and compares the two values to verify the internal configuration
of the entire FPGA.

5.6 Proof-of-concept Implementation

As a proof of the SACHa concept, an implementation is made on a Xilinx
Virtex 6 FPGA (XC6VLX240T). To generate configuration bitstreams, we
use the Xilinx ISE 14.7 Suite. The implementation of the protocol and the
architecture are discussed in this section.

5.6.1 Implementation of the Protocol

The configuration memory of the XC6VLX240T FPGA consists of 28’488
frames. A frame is the smallest addressable part of the configuration memory

103

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

and contains 81 words of 32 bits for the considered FPGA. Since we want to
make the StatPart as small as possible, we foresee a BRAM-based memory
to store a single frame. This means that the V sends one frame per network
packet until the DynMem of the FPGA is completely (over)written and the
DynPart is completely (re)configured. A trade-off between the size of the
BRAM-based memory and the number of communication steps can be made,
as long as the memory is not capable of storing the entire dynamic bitstream
at once, since that would undermine our initial assumption that only the
DynMem has enough space to store the dynamic bitstream. Note that, in
practice, if the DynPart is large enough, which is the case in our proof-of-
concept implementation, there are not enough BRAMs in the FPGA to store
the entire dynamic configuration.

After the DynPart is completely (re)configured, the P computes the
MAC of the entire configuration memory. Therefore, the ICAP reads out
the memory frame per frame, in an order chosen by the V. For each frame,
a new step in the MAC calculation is computed. Before the first step, the
MAC is initialized. When the entire configuration is read out and included
in the MAC computation, the MAC is finalized. The P sends back the
checksum. The V then compares the received value to a locally generated
golden reference.

In practice, there is a complication that needs to be overcome to imple-
ment the above procedure. The bitstream that is sent to the FPGA does not
exactly correspond to the data that the ICAP reads from the configuration
memory. The reason is that the ICAP also reads out the content of all regis-
ters, which depends on the current state of the running FPGA application.
Since the scope of this work is the attestation of the FPGA configuration,
the V needs to be able to make a comparison of the checksum generated by
the P with the locally generated golden reference, and therefore, the register
content needs to be masked out. When creating bitstreams using the Xilinx
tools, this mask, which we call Msk, can be generated. We apply the Msk
on the side of the V. Therefore, the P does not only send back the MAC
value to the V, but also the content, i.e., the frames. This way, the V can
apply the Msk to the received frames in order to compare with the golden
reference. Note that another option is to send the Msk to the P whenever
a frame readback is requested, such that the Msk can be applied to the
configuration memory content before each MAC step. This would lead to a
similar communication latency: the frames would not need to be sent from
P to V, but the Msk values for each frame would need to be sent from V
to P.

In more detail, the attestation of the FPGA configuration occurs by a
repetition of three commands that are sent by the V to the P:

104

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

1. ICAP config(frame): update the configuration memory with the frame
data, which contains both the configuration memory address and the
content that needs to be written;

2. ICAP readback(frame nb): read out the content of the configuration
memory at the address given by frame nb, send back the content to
the V and compute the next step in the MAC calculation (in case this
is the first step in the MAC calculation, it is preceded by the MAC
initialization);

3. MAC checksum: finalize the MAC computation and send back the
checksum to the V.

The low-level communication steps are shown in Fig. 5.9. The attestation
protocol is initiated by the V, who sends ICAP config commands to the P.
First, the V instructs the ICAP to configure the intended application in
the DynPart by transmitting the corresponding frames (from frame m to
frame n). The number of frames that is sent this way depends on the size of
the DynPart. The second step in the dynamic configuration is the update of
the nonce, which consists of 64 bits in our implementation.

After these initial steps, the entire DynMem is (over)written. Next, the V
sends the ICAP readback command to the P together with a frame address,
telling the ICAP to read out a frame from the configuration memory and
to perform a calculation step in the computation of the MAC. Before the
first calculation step, an initialization of the MAC computation is done.
The frame addresses are applied starting from address i, where i is chosen
by the V, up to address 28’487, and then from address 0 up to address
i-1. The V chooses the starting address i. In Fig. 5.9, %28’488 is used to
indicate a modular reduction with modulus 28’488. This way, all the frames
in the configuration memory are included in the computation of the MAC.
It is pointed out that this ascending order starting from an offset i, is in
no way required. The order in which the frames are read back can be any
permutation. If desirable by the V, a number of frames could also appear
multiple times.

When the V sends the MAC checksum command to the P, the MAC is
finalized and the cryptographic checksum is sent to the V. Upon verification
of the checksum, the V is assured that the configuration originates from the
P and is not tampered with. Next, the V applies the Msk to all of the
received frames, thus obtaining BP rv. Similarly, the V applies the Msk to
the golden reference to obtain BV rf . When the comparison of BP rv and
BV rf results in equality, the V has attested the P.

5.6.2 Implementation of the Architecture

The high-level view of the SACHa architecture is given in Fig. 5.7. A block
diagram of the proof-of-concept implementation of the StatPart is shown in

105

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

Prv Vrf

command: ICAP_config(frame_m)

H
Prv

B
Prv

 Apply Msk (received configuration)

B
Vrf

 Apply Msk (golden configuration)

(B
Prv

 == B
Vrf

) ?

K

Msk

K

command: ICAP_config(nonce) D
y

n
am

ic

co
n

fi
g

u
ra

ti
o

n

command:

ICAP_readback(i)

command:

ICAP_readback((i+1)%28’488)

..
.

..
. F
u

ll
 c

o
n

fi
g

u
ra

ti
o

n

re
ad

b
ac

k
 i

n
 a

 c
h
o

se
n

 o
rd

er

command: ICAP_config(frame_n)

Update MAC
K

step 1

Init MAC
K

Update MAC
K

step 2

command:

ICAP_readback((i+28’487)%28’488)

Update MAC
K

step 28’488

H
Prv

 finalize MAC
K

M
A

C
K
(f

u
ll

 c
o

n
fi

g
u

ra
ti

o
n

 (
P
rv
))

frame i

frame (i+1)%28’488

frame (i+28’487)%28’488

command: MAC_checksum

H
Vrf

 MAC
K
(received configuration)

(H
Prv

 == H
Vrf

) ?

Figure 5.9: Low-level communication steps.

Fig. 5.10. The StatPart is divided into three parts that each operate in a
different clock domain:

106

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

• the RX clock domain for receiving data from the V: the RX clock is
derived from the incoming network packets; it runs at 125 MHz and
drives the receiving port of the ETH core and the other components
in the RX domain;

• the ICAP clock domain for reading and writing data from/to the con-
figuration memory: the ICAP clock is generated by the DCM; it runs
at 100 MHz and drives the ICAP and the other components in the
ICAP domain.

• the TX clock domain for transmitting data to the V: the TX clock is
generated by the Digital Clock Manager (DCM); it runs at 125 MHz
and drives the transmitting port of the ETH core and the other com-
ponents in the TX domain;

The DCM is a clock synthesizer that derives the TX clock and the ICAP
clock from the on-board 200 MHz system clock. Note that the RX and TX
clocks run at the same frequency. They cannot originate from the same clock
source, though, since there might be a phase shift between the incoming
and outgoing network packets. The role of the components in the three
domains is explained below. The clouds between two components in Fig. 5.10
provide glue logic that translates the signals coming from one component
to the format expected by the other component. The ETH core provides a
Gigabit network connection by receiving/transmitting one byte per cycle of
the 125 MHz clock.

In the RX clock domain, the incoming network packets from the V are
received by the ETH core. The network packets are stored in the BRAM-
based memory; the packets contain one of the three commands explained in
Section 5.6.1. The Finite State Machine of the RX clock domain (RX FSM)
either triggers the glue logic in the TX clock domain to initiate the running
of the ICAP program or triggers the Finite State Machine of the TX clock
domain (TX FSM) to transmit a network packet back to the V.

In the ICAP clock domain, the command stored in the BRAM-
based memory is executed by the ICAP. In case the stored command is
ICAP config, the ICAP takes the configuration frame, that is also stored in
the BRAM, and writes it to the configuration memory. In case the stored
command is ICAP readback, the frames read out by the ICAP are stored in
a FIFO, that can be read out in the TX clock domain.

In the TX clock domain, the outgoing network packets are generated.
First, the packet header is loaded into a FIFO. Then, either a frame is loaded
into the FIFO (by copying the content from the preceding FIFO) or the
checksum generated by the MAC block (through the AES-CMAC algorithm)
is loaded into the FIFO. The content of the FIFO is transmitted to the
V by the ETH core. We use 128-bit AES for the AES-CMAC algorithm,
such that we need to store/generate a 128-bit key. In the proof-of-concept

107

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

implementation, we use a key register in the StatPart to store the key. For
a foolproof solution, a key-generating PUF would need to be implemented
instead of the key register.

attestation nonce
MAC

StatPart

ETH

core
ICAP

PUF

DynPart

PUF

Figure 5.10: The FPGA block diagram of the proof-of-concept implementa-
tion of SACHa.

5.7 SACHa Evaluation

5.7.1 Performance Evaluation

The occupied FPGA resources of the proof-of-concept implementation of
the SACHa architecture on a Xilinx XC6VLX240T FPGA are presented in
Table 6.2. The table shows the number of CLBs, (18-kbit) BRAMs, ICAPs
and DCM in the considered FPGA. Further, it summarizes the occupied re-
sources of the implemented components. The StatPart occupies less than 9%
of the FPGA (when considering both CLBs and BRAMs). The AES-CMAC
core in the StatPart is optimized towards low area, resulting in an imple-
mentation using 283 CLBs and 8 BRAMs (including the FIFO from which
the incoming data are read). This leaves the majority of the configurable
fabric to the intended application (including the nonce) in the DynPart.

Table 5.2: FPGA resources of the SACHa architecture.

Component CLB BRAM ICAP DCM

Entire FPGA 18 840 832 1 12

StatPart 1 400 72 1 1
MAC

283 8 0 0
(+ FIFO)

DynPart 17 440 760 0 11

Table 5.3 shows the duration of the low-level actions in the SACHa pro-
tocol. Table 5.4 lists the number of times each action needs to be executed.

108

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

The actions related to the configuration of a frame in the DynMem are
repeated 26’400 times, which corresponds to the number of frames in the
DynMem. The actions related to the readback of a frame are repeated 28’488
times, which corresponds to the total number of frames in FPGA. The ini-
tialization and finalization of the MAC need to be performed only once. The
same holds for the V’s request to compute the final checksum and the trans-
mission of the MAC by the P. The sum of the duration of these actions is
around 1.5 s. We also measured the actual duration of the execution of the
SACHa protocol in a lab network, resulting in a duration of 28.5 s. From
this result, we can conclude that the measured duration is dominated by
the delay of the network communication. As a reference for the reader, it is
pointed out that a direct configuration of the targeted FPGA takes around
28 s over a JTAG cable, which shows that the measured duration of our
protocol is very reasonable.

Table 5.3: Timing of the low-level steps in the SACHa protocol in the proof-
of-concept implementation.

Action Time

A1 V sends ICAP config 8 856 ns
A2 P performs ICAP config 1 834 ns

A3 V sends ICAP readback 13 616 ns
A4 P performs ICAP readback 24 044 ns
A5 P performs MAC init 120 ns
A6 P performs MAC update 128 ns
A7 P performs MAC finalize 136 ns
A8 P performs frame sendback 2 928 ns

A9 V sends MAC checksum 344 ns
A10 P performs MAC sendback 472 ns

5.7.2 Security Evaluation

We use the classification of adversaries introduced in Section 5.3 to evaluate
the security of our SACHa proposal. We consider the following threats:

• A local adversary, e.g., the owner of the FPGA platform, adds a mali-
cious hardware module to the P’s FPGA: since the configuration data
sent by the V can only be stored in the configuration memory, the ma-
licious hardware module has to be overwritten, which is then proven
to the V, making the attack infeasible.

• A local adversary impersonates the P: the key is only contained in
the legitimate device (P) and never exchanged over a public channel,
such that the MAC cannot be computed on another device (P). In the

109

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

Table 5.4: Total timing of the SACHa protocol in the proof-of-concept im-
plementation.

Action Number of times Time

A1 26 400 0.234 s
A2 26 400 0.050 s

A3 28 488 0.388 s
A4 28 488 0.685 s
A5 1 0.120 µs
A6 28 488 3.646 ms
A7 1 0.136 µs
A8 28 488 0.083 s

A9 1 0.344 µs
A10 1 0.464 µs

Theoretical duration 1.443 s
Measured duration 28.5 s

scenario where we do not use a PUF, the control logic in the StatPart
needs to make sure that the frame containing the key is not sent back
to the V (while it is included in the MAC computation). Note that, if
the Adv manages to modify the StatPart in order to change the control
logic, the key can be read out. Therefore, the solution using a PUF,
either in the StatPart or the DynPart, is preferred and prevents the
Adv from impersonating the P.

• A local adversary connects another computing device to the P’s
FPGA, such that the MAC can be computed on that device and the
FPGA can run malicious code: the bitstream reflects which FPGA
pins are connected to peripherals, such that the V exactly knows if
there are additional connections to external devices. The presence of
the key (generated by a PUF) ensures that the computation is done
on the FPGA.

• A local adversary performs a replay attack: the presence of the nonce
in the initial dynamic configuration challenge makes the replay attack
detectable by the V. Further, the order in which the V triggers the
readback of the configuration frames determines the order of the steps
in the MAC computation, which changes the MAC in each repetition
of the protocol, even if the Adv manages to prevent the nonce from
being updated.

110

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

5.8 Summary

In this chapter, we implemented and evaluated SACHa. The SACHa mech-
anism (Self-Attestation of Configurable Hardware) proposes a solution for
the self-attestation of an FPGA. This way, the FPGA can be used as a
trusted hardware module in hardware-based attestation schemes. These
schemes usually rely on the presence of a trusted tamper-resistant dedicated
hardware module. SACHa allows FPGAs, which are configurable after de-
ployment and thus inherently not tamper-resistant, to be used inside these
trusted hardware modules.

The contribution of this work is that it is the first work that does not
assume that the FPGA is a tamper-resistant hardware module in hardware-
based attestation schemes. The proposed solution consists of a novel FPGA
architecture, suitable for implementation on an off-the-shelf FPGA, and at-
testation protocol.

We have proven the efficiency and effectiveness of our approach based on
a proof-of-concept implementation on a Xilinx Virtex 6 FPGA. The SACHa
architecture occupies less than 9% of the configurable resources on the con-
sidered FPGA. The execution of the SACHa protocol to attest the complete
configuration memory of the FPGA (without taking into account the net-
work delay) takes 1.5 seconds. The duration of the protocol measured in a
lab network is 28.5 seconds (including the network delay).

The next step will be to also take the content of the registers of the
running application into account (which is filtered out in the current solu-
tion by the use of a mask). This makes it possible to not only attest the
FPGA configuration, but also the current state of the FPGA application.
This way, the trend of embedding softcore processors in an FPGA can be
followed, allowing the attestation scheme to verify both the FPGA config-
uration and the current state of the FPGA application (including the state
of the embedded processor) at once. Our immediate future work include
the exploitation of SACHa to achieve large-scale IoT networks (i.e., both
structured and unstructured) attestation.

111

Chapter 6

Scalable Heterogeneous Layered
Attestation

The exponential proliferation of low-cost embedded devices or so-called
internet-of-things (IoT) devices [18] in our day-to-day lives poses challenges
such as: scalability, data security and privacy, maintenance, and network in-
tegrity. Thanks to recent technology advancements, IoT devices are capable
of working as a group and of autonomous decision making. Consequently,
these devices are also employed to perform safety-critical operations in differ-
ent fields (e.g., medical, nuclear, military, and smart-vehicular applications).
Despite the huge success of IoT applications, they also introduce major secu-
rity issues. Incidents like Stuxnet [7], Distributed Denial of Service (DDoS)
attacks [95], and the Jeep-Cherokee incident [11] fuel security and privacy
concerns. As these devices often act autonomously, any security loopholes
may have a catastrophic impact in terms of data loss, financial loss or even
physical fatality [18]. Unfortunately, the competition for producing devices
at the lowest cost and the shortest time to market leads to software and
hardware bugs that can be exploited by malicious entities.

An effective mechanism to identify a malicious node in a network, is
remote attestation (RA). The goal of RA is for the verifier to check the
integrity of the software on the prover’s device. When many potentially
untrusted nodes are grouped in a swarm of interconnected devices, it is
not efficient to establish a connection between each node and the verifier
directly. CRA schemes offer a solution by using the nodes both as verifier
and as prover such that they can attest their neighbors. By connecting all
nodes in a tree topology, the root verifier can check the sanity of the entire
network.

In this chapter, we introduce an alternative approach that consists of
adding a layer of geographically spread edge devices in between the root

112

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

verifier and the IoT nodes. Note that this geographical spread can be on
a local scale (e.g. a factory floor) or wide scale (e.g. intercontinental). The
edge devices have a larger computational power and storage capacity than
the IoT devices. Each higher-end edge device attests the sanity of the under-
lying devices within its reach and exchanges information on the attestation
with the other edge devices through a dedicated synchronization mechanism.
Consequently, our approach introduces redundancy, reducing the risk of a
mobile device being temporarily unavailable or invisible to other devices
when its position in the network changes. Moreover, we assume that the
higher computational power of the edge devices allows them to deal with
heterogeneous IoT nodes, i.e. nodes using different wireless communication
protocols. Further, our approach enables the root verifier to gain informa-
tion on the sanity of the individual nodes in the network, as opposed to
traditional collective remote attestation techniques that can only verify the
sanity of the network as a whole. Finally, our approach is scalable in two
ways. One way is to extend the edge layer with additional higher-end edge
devices. The other way is to add additional edge layers to the topology, in
which each layer attests the devices in the lower-level layer in the hierarchy.

We call our solution “SHeLA: Scalable Heterogeneous Layered Attesta-
tion”. Our contributions are the following:

• To the best of our knowledge, SHeLA is the first remote attestation
protocol for large IoT network or swarm using distributed edge com-
puting. SHeLA can effectively detect malicious provers in the network
and efficiently manage large swarms.

• The SHeLA approach retains its generality regardless of the one-to-
one attestation scheme implemented between the edge devices and the
swarm nodes. In this regard, it follows the approach of existing CRA
solutions, which also operate irrespective of the one-to-one attestation
mechanisms between the nodes.

• The design principle of SHeLA is scalable in terms of edge devices
(hence the ‘S’ for ‘Scalable’ in the SHeLA acronym) and edge layers
(hence the ‘L’ for ‘Layered’ in the SHeLA acronym). Consequently,
SHeLA operates on large IoT networks in a cost-effective manner. The
edge devices synchronize among themselves in regular intervals. Hence,
the root verifier or network owner can achieve a full network view from
any one of the edge devices at any time.

• The edge devices in the SHeLA mechanism are capable of communicat-
ing with IoT nodes using different wireless communication protocols.
This way, a heterogeneous IoT network is supported (hence the ‘He’
for ‘Heterogeneous’ in the SHeLA acronym).

113

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

• Unlike most of the RA schemes [40, 32, 49], SHeLA supports device
mobility. Through built-in redundancy, it allows the Iot nodes to be
temporarily unavailable or invisible to one or more edge devices. There-
fore, even during attestation, the prover does not have to be static.

• SHeLA allows the root verifier to obtain detailed information on the
sanity of the individual devices in the network. This is different from
most existing schemes, in which the granularity of the attestation is
limited to a binary outcome on the sanity of the entire network. SHeLA
satisfies all the properties of Quality of Swarm Attestation (QoSA), as
proposed by Carpent et al. in [49].

• We build and evaluate a proof-of-concept implementation with field-
programmable gate arrays (FPGAs) in the edge layer and ARM pro-
cessors in the IoT nodes.

6.1 Organization.

The remaining of the chapter is organized as follows. Section 6.2 discusses
related work on CRA. In Section 6.3, the system assumptions and adversary
model are introduced. Section 6.4 explains our solution “SHeLA”, and Sec-
tion 6.5 describes the proof-of-concept implementation. Subsequently this
implementation is evaluated in Section 6.6 and a security analysis is pre-
sented in Section 6.7. Section 6.8 elaborates on the limitations of SHeLA and
discusses the future work. Finally, we conclude the chapter in Section 6.9.

6.2 Related Work

RA is broadly classified into three main categories: (1) software-based attes-
tation schemes (e.g., [126, 124, 123]), (2) hardware-based attestation schemes
(e.g., [121]), and (3) hybrid (i.e., software/hardware co-design) attestation
schemes (e.g., [72, 91, 105, 132]). All these techniques work for a one-to-one
setting, with one prover and one verifier, and are therefore hard to scale.
Nevertheless, in a realistic setting, scalability is a must due to the over-
whelming growth and size of current IoT networks [13, 129]. Additionally,
IoT devices often collaborate in swarms for specific tasks, and existing one-
to-one RA schemes fail to attest the whole swarm in an acceptable time
frame.

Although one-to-one RA schemes have been studied for some time al-
ready, CRA is a relatively new concept. The goal of CRA is to prove the
sanity of the whole swarm to a root verifier while avoiding the one-to-one
RA of each node. In this section, we will discuss different CRA techniques
and their advantages along with disadvantages.

114

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

Asokan et al. proposed the first CRA technique, known as scalable em-
bedded device attestation or SEDA [40], in 2015. The idea is that the whole
network forms an overlay of spanning trees in which every device is attested
by its parent and the report is aggregated alongside. At the end of the attes-
tation, the verifier is notified about the health of the whole network through
a report in a binary form: 0 in case there is a malicious device in the network,
and 1 in case there are no malicious devices in the network. Although this
technique scales well and provides an efficient runtime, it is assumed that
during the attestation process, the whole network is connected and there
are no nodes unavailable due to mobility. Further, the authors mention that
SEDA can be extended to allow to report the identity of the individual ma-
licious device(s) to the verifier. We apply this idea in the proposed SHeLA
mechanism.

In [32], Ambrosin et al. present SANA, a scalable remote attestation
scheme for low-end embedded devices. Unlike [40], in SANA minimal hard-
ware protection support (e.g., trusted execution environment or TEE) for all
devices are not required and provide device details. SANA relies on an pub-
licly verifiable Optimistic Aggregation Signature (OAS) scheme. Although
the OAS scheme helps to identify the details of each device and provides
better verifiabilty and resiliency against a strong attacker, it incurs an over-
whelming computation overhead and performance degradation in low-end
embedded devices. Moreover, while SANA provides better security in com-
parison to SEDA, it still needs full connectivity during the device attestation
phase.

Ibrahim et al. propose DARPA [84], in which the essence is to collabo-
ratively detect when a device is being compromised by an adversary. This
is done by monitoring the presence of a device in the network and assum-
ing that the temporary absence is the consequence of an attack. DARPA
improves SEDA [40] with respect to resilience against a strong adversary,
but also inherits SEDA’s limitation in terms of assuming full network con-
nectivity during device attestation and in terms of not providing an easy
mechanism to identify which devices are infected.

In [49], Carpent et al. propose a lightweight remote attestation tech-
nique (LISA). LISA consists of two different protocols: LISAα and LISAs.
It improves SEDA [40] in terms of scalability and resilience against strong
adversaries. Apart from introducing two distinct protocols, LISA also coins
the term Quality of Swarm Attestation (QoSA), which helps to compare dif-
ferent RA protocols with respect to the granularity of the attestation report,
i.e. the level to which the sanity of the individual devices is reported to the
verifier. LISA leverages the same assumptions of full network connectivity
during the attestation phase, thus limiting the possibility of device mobility
during attestation.

More recently, in 2017, Ibrahim et al. proposed SeED [85]. The essence
of this idea is that the attestation is initiated by the devices rather than by

115

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

the verifier. The attestation time is controlled by a pseudo-random number
generator (PRNG), which is secured by a memory protection unit in every
device. SeED provides a better strategy to counter DoS attacks and requires
less energy to operate compared to other RA schemes. Nevertheless, SeED
is based on SEDA [40] for collective attestation, thus inheriting SEDA’s
limitations.

Unfortunately, none of the aforementioned attestation techniques sup-
port device mobility during the attestation phase as full network connectiv-
ity is a must. However, device mobility is indispensable in real life scenarios
(e.g., self-driving cars, drones). To address this unique challenge, Ambrosin
et al. proposed practical attestation for dynamic networks (PADS) [29]. The
authors fuse the idea of self-attestation (i.e.,[85]) and sensor technology. The
main idea of PADS is that devices will perform self-attestation and share
their “knowledge” about the network through mutual attestation. Unlike
earlier attestation schemes, PADS does not rely on a spanning tree over-
lay for the efficient collection of attestation reports. In PADS, devices will
share their respective knowledge with each other and apply a “minimum-
consensus” mechanism between stored and received data. The authors in-
troduce the term “coverage” to indicate how many devices have undergone
attestation. PADS improves the state of the art by enabling device mobility
during attestation, but it cannot guarantee a 100% coverage - the cover-
age grows, however, with an increasing number of interactions between the
devices in a network.

In summary, the SHeLA mechanism, proposed in the chapter at hand,
improves existing CRA schemes in terms of scalability, availability, hetero-
geneity and QoSA.

6.3 System Assumptions and Adversary Model

6.3.1 System Model and Entities

There are three main categories of entities in the SHeLA system, as depicted
in the topology in Figure 6.1.

• the root verifier (V): this is the owner of the network that runs the
attestation. The root verifier has unlimited computational power and
communicates with the edge verifiers via a wired or wireless channel.

• the edge verifiers (EVi): these are higher-end devices with a larger com-
putational power and storage capacity than the underlying IoT nodes.
They possess wireless interfaces that allow them to communicate with
all the devices in (part of) the network. A connection with the root
verifier can be either through a wireless or wired interface. In any case,
the interface is assumed to be highly reliable, such that each edge ver-
ifier has a permanent connection to the root verifier. In the unlikely

116

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

Vrf

EV
0

Prv
0

Prv
1

Prv
2

Prv
m-1

EV
1

EV
n-1

S
W
A
R
M

R
O
O
T

V
E
R
IF
IE
R

E
D
G
E

Figure 6.1: The SHeLA topology.

event of an edge verifier being unavailable, this will be reflected in the
collective attestation response. Further, we assume that the high-end
edge verifiers are trusted entities with secure hardware support that
allows them to be attested by the root verifier. Moreover, edge veri-
fiers are expected to attest each other prior to communication. This
is feasible given their more powerful nature. This mutual attestation
falls out of the scope of this work.

• the IoT nodes, i.e. the provers (Prvi): these are low-end IoT devices
that communicate using a specific wireless communication protocol,
e.g. Zigbee, Bluetooth or WiFi. They can be static or mobile. We
assume that the IoT nodes have minimal (hardware) support [72, 91]
to enable a secure one-to-one RA. This is in line with other CRA
schemes.

The edge verifiers perform one-to-one attestations of the provers; SHeLA
allows any one-to-one RA scheme to be used. A prover is potentially un-
trusted and is registered with one edge verifier when it enters the network.
Nevertheless, a prover can be a mobile device that is temporarily unavail-
able to the edge verifier that registered its participation in the network.
When a IoT node is mobile and moves between the coverage of the edge
verifiers, redundancy is introduced through the consecutive one-to-one RA
of the IoT node by different edge verifiers. By geographically spreading the

117

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

edge verifiers, the entire network is covered. In case a node is unavailable to
all edge verifiers, the edge verifier that performed the last successful attes-
tation keeps track of the timestamp of that attestation. It is up to the root
verifier’s policy to take action when a node is unavailable for a longer time.

The edge verifiers keep track of the integrity of the provers that they
attest. A dedicated synchronization mechanism between the edge verifiers
guarantees that each edge device has an image of the sanity of the entire
network. Consequently, the root verifier can connect to any of the edge
verifiers to request the status of the entire network. We assume that the
edge verifiers have sufficient storage to keep track of the attestation status
of each individual node, ensuring the highest level of QoSA, as defined in [49].

In this work, we assume that the edge verifiers are trusted entities. How-
ever, in a realistic setting, the edge devices might be accessible to potential
adversaries. In that case, traditional one-to-one RA can be enabled between
the root verifier and the edge devices in addition to the presented SHeLA
scheme.

The system is scalable in the sense that edge verifiers can easily be added
as well as additional edge layers. When there is more than one edge layer in
the SHeLA topology, each edge layer resides on a distinct hierarchical level,
where each level receives information from and attests the lower-level layer
in the hierarchy. Only the lowest edge layer is in direct contact with the
nodes.

Note that our goal is to make sure that the root verifier can successfully
monitor and attest the nodes in the network. Securing the communication
channels between the different entities is not discussed in this work, but
this means to no end that this should not be done. Moreover, we encourage
proper encryption and authentication mechanisms to be used, but these fall
out of scope of this work.

6.3.2 Adversary Model

The main objective of an adversary is to incur damage or interrupt network
operations without being detected during attestation. In line with other
CRA schemes [40, 32, 49, 85, 29], we consider software-only adversaries.
We follow the classification proposed by Abera et al. [25] to categorize the
capabilities of our presumed adversaries:

• Remote adversary: capable of remotely contaminating one or more
devices in a network with malicious software;

• Local adversary: physically present in the vicinity of the device(s) and
thus capable of eavesdropping and mounting communication attacks.

We do not consider physical adversaries, i.e. adversaries that are even closer
to the device(s) than local adversaries; they are capable of mounting side-
channel attacks or capturing the device(s) in order to retrieve information

118

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

in a non-intrusive or intrusive manner. Additionally, network-wide attacks
like denial-of-service (DoS) attacks are outside of our current scope.

6.3.3 Security Goals

In this section, we list the goals that we aim to achieve through the SHeLA
mechanism. Note that some of these goals are also reached in existing CRA
protocols [40, 32, 28].

• Successful attestation: the main objective of SHeLA is to allow the
root verifier to attest all the nodes in the network.

• Freshness: an important aspect is the freshness of the attestation pro-
cess in order to prevent replay attacks.

• Information on the sanity of the individual nodes: unlike most existing
attestation schemes, in SHeLA, the root verifier should have the ability
to find out which node(s) cause(s) the overall attestation to fail.

• Parallel execution: SHeLA should support the parallel attestation of
several nodes, thus making it suitable for adoption in large-scale net-
works thanks to techniques that are more efficient than the individual
attestation of the IoT nodes. Moreover, the request of the root ver-
ifier to get an attestation report based on the current status of the
entire network should be fulfilled in parallel to the ongoing one-to-one
attestations in the network.

6.4 Our Proposal: SHeLA

In order to obtain the layered topology, as already briefly introduced in Sec-
tion 6.3.1, each edge verifier needs to (1) perform one-to-one attestation of
the nodes within its reach, (2) synchronize with the other edge verifiers, and
(3) send attestation reports on the sanity of the whole network to the root
verifier. Both the attestation results of the individual nodes and the synchro-
nization data are stored in tables. The structure of these tables is explained
in Section 6.4.1. Further, we explain the attestation protocol, which consists
of an offline setup phase and an online attestation phase. In the online phase,
four types of actions are performed by each edge verifier: (1) the one-to-one
attestation of the nodes, (2) the storage of attestation information on nodes
that are (temporarily) out of reach, but that were originally registered with
the considered edge verifier, (3) the exchange of information with other edge
verifiers on the attestation results of all nodes in the network (i.e. synchro-
nization), and (4) the reporting on the status of the whole network to the
root verifier.

119

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

6.4.1 Tables

SHeLA is built using four tables. One table is stored at the root verifier
(TVrf), and three tables are stored on each edge verifier: TEV,R, TEV,G and
TEV,E, where R, G, and E stand for registration, guest and edge, respectively,
as explained in the following paragraphs. The columns in these tables are
summarized in Table 6.1. The content of the tables can be summarized as
followed:

• TVrf stores information on the swarm nodes and the edge verifiers.

• In the offline bootstrapping phase, each node is registered on one edge
verifier by the root verifier before it enters the network. The informa-
tion on the nodes that belongs to a specific edge device is stored in
that device’s registration table TEV,R.

• In the online attestation phase, it is possible that nodes are temporarily
unavailable to the edge verifier in which they are registered. That is
why SHeLA enables the attestation of nodes by another edge device,
which stores information on these nodes in its guest table TEV,G.

• To make sure that the root verifier can check the sanity of the entire
network through any of the edge verifiers, a synchronization mech-
anism is applied between the edge devices. Information on all edge
verifiers is stored in each edge verifier in the edge table TEV,E.

The exact use of these fields in the offline bootstrapping phase and the
online attestation phase is explained in Section 6.4.2. The final column in
Table 6.1 indicates the contribution of the different fields to two hash values
(HR and HE). The exact use of these values is covered in Section 6.4.2.

6.4.2 Attestation Protocol

SHeLA has two main phases: (1) the offline phase, in which the provers
and edge verifiers are introduced in the network and bootstrapped with
the necessary data to enable the attestation process; (2) the online phase,
in which the attestation between the provers and the edge verifiers, and
the synchronization between the edge verifiers take place. We describe the
different steps in these phases.

Offline phase

Edge verifier enrollment

When a new edge verifier EVi is added to the network, the root verifier
registers this edge verifier with every other edge verifier. Each of those edge
verifiers adds a line to its TEV,E table with the new EVi.

120

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

Table 6.1: The fields in tables TVrf, TEV,R, TEV,G, and TEV,E, where HE is the
hash value of the TEV,E table that the edge verifier sends to the root verifier.

TVrf

IDPrv
The identifier of each Prvi in the
network

∈ HR

flag
A value that reflects the current and
past attestation results of each Prvi

∈ HR

HPrv
The hash value of the expected
internal state of each Prvi

IDEV The identifier of each EVi ∈ HE

TEV,R

IDPrv
The identifier of each Prvi

registered with this edge verifier
∈ HR

flag
A value that reflects the current and
past attestation results of each Prvi

∈ HR

T̃
The timestamp in which the table
was most recently updated

∈ HR

HPrv
The hash value of the expected
internal state of each Prvi

TEV,G

IDPrv

The identifier of each Prvi attested in this
edge verifier but registered with another
edge verifier

H′
Prv

The received response of each Prvi

attested by this edge verifier

offset
The time offset within T̃ when the most
recent attestation of each Prvi took place

IDEV
The identifier of the edge verifier in which
Prvi was initially registered

TEV,E

IDEV The identifier of all edge verifiers ∈ HE

HR
The hash value of a combination of
selected fields in the TEV,R table

∈ HE

Device enrollment

When a new node Prvi is added to the network, the root verifier registers
this device with one specific EVi. Only this EVi will add a line in its TEV,R

table and stores the relevant data. This means that the root verifier assumes
an initial node connectivity to a specific edge device. If it turns out that the

121

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

node is not within reach of this edge device, the node will be associated with
another edge device in the online phase. Furthermore, the reason that the
device enrollment is done by the root verifier, is to make sure that the root
verifier can store the initial view of the whole network together with the
associated hash values. In order to reduce the memory usage of the tables,
each node is initially only registered with one edge verifier.

Online phase

Device migration

If a node migrates within the reach of an edge verifier different from the
one that it was registered with, it announces itself with that edge verifier.
The receiving edge verifier will add a line to its TEV,G table and stores the
relevant data. During device migration, there might be a small time interval
in which a device is attested by more than one edge verifier. This specific
corner case is not a problem, since the synchronization protocol between the
edge verifiers has a built-in mechanism to deal with this redundancy.

Swarm node attestation

Initiated by the edge verifier, a challenge-response attestation is done on
each Prvi. In the case that Prvi was registered with this edge verifier, it
verifies the response and updates the flag and the T̃ in its TEV,R table for
the targeted node Prvi. In case Prvi has migrated to the edge verifier, the
response is stored but not verified, and the received hash value H′

Prv, the
offset value are updated in the TEV,G table. The timestamp T̃ indicates the
time interval in which the attestation was done. The offset value reflects
the time offset within this interval. The exact use of T̃ and offset is further
detailed in Section 6.4.4.

Edge verifier update

The goal of an edge verifier update is to provide the edge verifier with at-
testation information of nodes that were originally registered with the con-
sidered edge verifier, but that are currently outside of the wireless coverage
of the edge verifier. Edge verifiers update their TEV,E table with information
from other edge verifiers. Each edge verifier groups the entries in the TEV,G

table that belong to a specific other edge verifier and sends them to that
edge verifier. The receiving edge verifier then verifies the incoming data as if
they were responses from locally executed device attestations and updates
its own TEV,R.

122

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

Edge verifier synchronization

The goal of edge verifier synchronization is to make sure that each edge ver-
ifier gets updated with information on the whole network. This is done with
periodic intervals (determined by the T̃ value). During edge verifier synchro-
nization, each edge verifier calculates the hash value HR of selected content
in its TEV,R table, as indicated in Table 6.1: HR = H(IDPrvj

|| flagj || T̃). The
resulting hash HR is then sent to every other edge verifier, who uses the in-
coming HR to update its TEV,E table; each edge verifier also updates its EVi

table with its own HR value. In summary, the result of the synchronization
step is that the TEV,E table of each edge verifier contains information on the
HR of all edge verifiers.

Network attestation

When the root verifier wants to attest the entire network, it makes a request
to any edge verifier, which hashes its complete TEV,E table into HE and sends
back this value to the root verifier. The root verifier can calculate the same
hash value and compare the expected value with the received value. When
the check is successful, the root verifier concludes that the network is in
the expected state. When there is no match between the expected and the
received hash value, the root verifier can track down which edge verifier has
an infected node, or which individual node was infected. This is explained
in more detail in Section 6.4.3.

Figure 6.2 illustrates the content of the four tables (TVrf at the root veri-
fier; TEV,R, TEV,G and TEV,E in each edge verifier) for an arbitrary network that
consists of two edge verifiers (EV0 and EV1), which each have two devices
registered (Prv0 and Prv1 are registered with EV0; Prv2 and Prv3 are regis-
tered with EV1). To illustrate the use of TEV,G, Figure 6.2 assumes that Prv2

moved within the reach of EV0, while it was initially registered in EV1.

The figure shows that the TVrf table at the root verifier contains infor-
mation on all four nodes. Each edge verifier has two lines in its TEV,R table,
one for each node that it initially registered. The TEV,G table of EV0 stores
the attestation result of Prv2. This result is sent to the TEV,R table of EV0

during the edge verifier update step, which happens in each time interval
when the TEV,G table is not empty. The TEV,G table of EV1 remains empty
because Prv0 and Prv1 did not migrate within the reach of EV1. After edge
verifier synchronization, both TEV,E tables contain exactly the same informa-
tion; the synchronization process is indicated in the figure with two full and
two dashed single-ended arrows.

123

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

EV
0

ID
Prv

H’
Prv

offset ID
EV

ID
Prv,2

H’
Prv,2

offset
Prv,2

ID
EV,1

ID
Prv

flag H
Prv

ID
EV

ID
Prv,0

flag
Prv,0

H
Prv,0

ID
EV,0

ID
Prv,1

flag
Prv,1

H
Prv,1

ID
EV,0

ID
Prv,2

flag
Prv,2

H
Prv,2

ID
EV,1

ID
Prv,3

flag
Prv,3

H
Prv,3

ID
EV,1

ID
Prv

flag TS H
Prv

ID
Prv,0

flag
Prv,0

TS H
Prv,0

ID
Prv,1

flag
Prv,1

TS H
Prv,1

Prv
1

H
R,0

Prv
0

Prv
3

Prv
2

R
O
O
T

V
E
R
IF
IE
R

E
D
G
E

S
W
A
R
M

Vrf

H
E,0

EV
1

ID
Prv

H’
Prv

offset ID
EV

ID
Prv

flag TS H
Prv

ID
Prv,2

flag
Prv,2

TS H
Prv,2

ID
Prv,3

flag
Prv,3

TS H
Prv,3

H
E,1

H
R,1

ID
EV

H
R

ID
EV,0

H
R,0

ID
EV,1

H
R,1

ID
EV

H
R

ID
EV,0

H
R,0

ID
EV,1

H
R,1

T
Vrf

T
EV,R

T
EV,G

T
EV,E

Figure 6.2: The four SHeLA tables in an arbitrary network

6.4.3 Granularity depth

We define the granularity depth as the level to which the attestation in-
formation is refined by the root verifier. Attesting the entire network as
described in Section 6.4.2, results in a binary result: either the network is
“as expected” or it is not. This, we define as granularity depth 0 (GD0). The
root verifier assesses the sanity of the network by comparing the received
hash value HE,i from any of the edge verifiers, with a hash value calculated
by the root verifier. The root verifier calculates the value as follows:

124

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

for each EVi: HR,i = H(∀j(IDPrvj
|| flagj || T̃))

and once: HE = H(∀j (IDEV,j || HR,j)).

In case the comparison of the calculated and received HE value results
in an inequality, the root verifier can request the HR of a specific edge ver-
ifier. By comparing this value with the expected HR value, the sub-network
which produces the issue, can be determined. This, we define as granularity
depth 1 (GD1).

One additional level of granularity depth (GD2) can be achieved by
requesting the hash value of each line in the TEV,R table. This allows the root
verifier to narrow down the issue to a single node.

6.4.4 Time and order

SHeLA uses a timestamp T̃ and an offset value to add the concepts of
time and order in the one-to-one attestations between the edge verifiers and
the IoT nodes. T̃ is a nonce (reflecting the absolute time) that is known
throughout the whole network. The frequency with which T̃ is updated
should be chosen sufficiently small to reduce the time that the edge verifiers
are out of sync. In the period between two T̃ updates, multiple network
node attestations, edge verifier updates and edge verifier synchronizations
can occur. To distinguish between consecutive actions, an offset value is
used.

As stated above, an edge verifier can decide when to initiate attestations,
updates and synchronizations. When an edge verifier performs the attesta-
tion of a migrated node, it stores the offset value in its TEV,G table together
with the attestation response. Figure 6.3 illustrates the use of T̃ and offset

with an example in which T̃ reflects a day and an hour (e.g. 20190101 0900
stands for January 1st 2019, at 9 am), and the offset reflects the number of
seconds that have passed in this T̃ (e.g. 1 for 09:00:01, or 120 for 09:02:00).
This example illustrates that a T̃ is unique and easily synchronized between
each EV and the V. The offset is a value that is unique in combination
with the T̃ . The process of edge verifier synchronization is done at the start
of every T̃ interval. After that, node attestations and edge verifier updates
are performed, and the corresponding offset values are stored in the ta-
bles. The T̃ value, i.e. the synchronization frequency, is determined by the
application.

6.5 Proof-of-concept implementation

6.5.1 Setup

As a proof of the proposed SHeLA concept, an implementation of the whole
system is made. The edge verifiers are implemented on field-programmable
gate arrays (FPGAs). The use of FPGAs for the implementation of the edge

125

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

...

time
TS

i-1
TS

i
TS

i+1

swarm node attestation
edge verifier update
edge verifier synchronisation

off
se

t
=

 1
off

se
t

=
 2

off
se

t
=

 1

... ...

... ...

20190101_0900 20190101_1000 20190101_1100

...

off
se

t
=

 1

off
se

t
=

 3
50

0

off
se

t
=

 3
59

9

...

Figure 6.3: Graphical representation of T̃ and offset on a timeline, with
example values and example events.

verifiers is justified by the assumption that the edge verifiers should have
hardware assistance and should be capable of communicating to a heteroge-
neous IoT network. Furthermore, FPGAs are capable of processing informa-
tion in parallel from many communication interfaces. This way, the different
processes in Secion. 6.4.2 can be executed in parallel. In the lab setup, de-
picted in Figure 6.4, two Xilinx ML605 boards [4] are configured as EVx

and EVy; and one IoT node is implemented on a simpleLink microcontroller
development kit [3]. A larger number of IoT nodes are emulated in Python
using software that runs on a laptop. Finally, another laptop acts as the
root verifier V. For this proof-of-concept setup, the laptops and FPGAs are
interconnected through a wired network switch, while the microcontroller
participates in the network using a WiFi connection.

The software on the microcontroller is developed in C and is compiled
using the ARM compiler of Texas Instruments (version 18.1.3), while the
software on both laptops is written in Python. The configurations of the
Virtex-6 FPGAs are generated with Xilinx ISE Design Suite (version 14.7).

6.5.2 FPGA architecture

The top-level FPGA architecture is shown in Figure 6.5. It is a system-on-
chip FPGA architecture built around Xilinx’ softcore MicroBlaze processor.
This processor is supported by a 64kBytes instruction and data memory and
is attached to an AXI4 bus. Two custom peripherals are attached to this bus:
(1) a co-processor that is able to execute the SHA256 [62] hashing algorithm
and perform clock-cycle precise time measurements, and (2) an interface to
the network core. The processor and hardware are separate systems because
they operate on different clock speeds. The processor uses a 100 MHz clock,

126

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

EV
x

EV
y

E
D

G
E

S
W

A
R

M
R

O
O

T
V

E
R

IF
IE

R

Prv
0
 - Prv

m-1

Vrf

Figure 6.4: The proof-of-concept setup.

while the hardware system uses a 125 MHz clock to support a Gigabit-speed
network.

MicroBlaze

BRAM

I D

debug uart

clock
generator

processor
synchronous

reset

FIFO
in

FIFO
out

p
ro

ce
ss

o
r

sy
st

em

RX
FIFO

TX
FIFO

h
a
rd

w
a
re

 s
y
st

em

SHA256 CTR

network
interface

frame filter

Figure 6.5: The architecture on the FPGA.

The management of the three tables (TEV,R, TEV,G, and TEV,E) is done in
software on the MicroBlaze processor. To facilitate the flexibility of the

127

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

SHeLA protocol, the tables are stored in the dynamic memory (heap) of
the processor.

The software that runs on the MicroBlaze handles incoming requests
from the network using a custom UDP/IP protocol. The requests originate
from other FPGAs (for edge verifier updates or synchronizations) or from
the root verifier (for attestation requests and for adding IoT nodes to the
network).

6.5.3 IoT nodes

The microcontroller used to implement one IoT node, is a development kit
with a MSP432P401R MCU which features a 32-Bit ARM Cortex-M4F With
Precision ADC, 256KB Flash and 64KB RAM and it runs on a frequency
up to 48 MHz. Furthermore, the CC3120 network processor [1] is added to
enable the WiFi connection.

The software that runs on this device handles incoming challenges from
the FPGA. The one-to-one attestation in the proof-of-concept setup is done
as follows: the timestamp T̃ and the offset value are sent to the IoT node
as a challenge, after which the node responds with the hash value of the
challenge, concatenated with the hash value of the content of the internal
program memory. We assume that the node has minimal (hardware) support
to make sure that this process cannot be tampered with. For evaluation
purposes, we also foresee the situation in which malicious code is added to
the IoT node. To allow the validation of a larger network, more IoT nodes
are emulated on a laptop.

6.6 Evaluation

In this section, we discuss the performance evaluation of SHeLA in terms of
resources, runtime and memory consumption, based on our proof-of-concept
implementation described in Section 6.5.

6.6.1 Resources

Table 6.2 summarizes the resource requirements of the implementation. It
also provides the relative resource usage in the most recent family of Xilinx
FPGAs, namely the 7-series. The smallest device in this family that fits
the proof-of-concept implementation is the Artix-7 15T, which is the second
smallest family member; and (one of) the largest FPGA(s) is the Virtex-7
X1140T. The number of slices and DSP blocks is almost independent of the
size of the SHeLA tables. Most of the memory usage (BRAM) in the proof-of-
concept implementation (16 out of 22) is taken by the 64-kByte instruction
and data memory of the processor. 24 kBytes of BRAM (6 out of 22 blocks)
are occupied by the networking hardware. The remaining BRAM available

128

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

on the FPGA can be used for the SHeLA tables. The exact size depends on
the number of edge verifiers and the number of IoT nodes in the network.
It is discussed in Section 6.6.3.

Table 6.2: Proof-of-concept implementation results

Slices BRAM DSP

P
ro

ce
ss

o
r HW interface 33 0 0

Co-processor 664 0 0
MicroBlaze & periph 862 16 3
subtotal 1559 16 3

H
a
rd

w
a
re

framefilter 20 0 0
network interface 177 4 0
RX buffer 62 1 0
TX buffer 62 1 0
subtotal 324 6 0

Total (including glue) 1931 22 3
usage in ML605 5.1% 5.3% 0.4%
usage in XC7A 15T* 74.3% 88% 6.7%
usage in XC7V X1140T* 1.0% 1.1% 0.1%

* interpolated results

6.6.2 Runtime

This section describes the runtime performance of SHeLA messages from
the point of view of the FPGA. The delays for sending and receiving the
messages over the network are not considered.

When a network message arrives, there is an amount of overhead which
is required to retrieve the message from the FIFO and to parse it. The clock
cycle overhead is a deterministic value that depends on the message size.
For our analysis, we round it up to treceive = 3000 cycles. With the clock
for the processor system running at 100 MHz, this makes treceive = 30 µs.

When a network message is sent, again there is an amount of overhead
similar to receiving a message. From the measurements on the proof-of-
concept implementation, this runtime can be rounded up to tsend = 35 µs.

When a new node or a new edge verifier is registered in the network,
this results in adding an entry in the corresponding table of each existing
edge verifier. Although this addition can be done in fixed time, performing
a look-up in the table takes a runtime that is proportional to the size of
the table. For the proof-of-concept implementation, this results in 5 µs <
tlookup < 10 µs, which is rounded up to tlookup = 10 µs.

Finally, when a hash is to be calculated, the processor system uses the
co-processor. Sending a correctly padded, single 512-block message to the
co-processor and running the SHA256 core takes thash = 14 µs.

129

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

With these empirical values, Table 6.3 can be constructed. Table 6.3 pro-
vides the reader with a rough idea on the timing of the different operations.
These results are based on the actual measured values of the lab implemen-
tation. In practice, however, we expect the network delay to dominate over
the delays of the operations on the FPGA.

Table 6.3: The required time for different operations, constructed from
R(eceive), S(end), L(ookup), and H(ash) actions.

Operation R S L H time

registering device X X X 75 µs
registering FPGA X X X 75 µs
device attestation TX X X 45 µs
device attestation RX X X X 54 µs
FPGA synchronization TX X X X 59 µs
FPGA synchronization RX X X X 54 µs
FPGA update TX X X 45 µs
FPGA update RX X X X 54 µs
attestation RX X X X X 89 µs

6.6.3 Memory consumption

To make an estimate on the memory usage, we first give an overview of the
sizes that are used: IDPrv, IDEV, T̃ and offset 32-bit value, the flag is 8
bits and each hash value is 256 bits. Taken into account these sizes, each
entry in TEV,R uses 328 bits, each entry in TEV,G uses 352 bits, and each entry
in TEV,E uses 288 bits. The number of entries in each table is determined by
the number of IoT nodes registered in the FPGA (in TEV,R), the number of
migrated attested IoT nodes that are registered by another FPGA (in TEV,G),
and the number of FPGAs in the edge (in TEV,E).

To determine the number of entries in the tables and thus the occu-
pied memory size in the FPGA, we first consider the case that all nodes
are stationary (0% mobility), i.e. the FPGA only attests IoT nodes that it
registered itself. When we assume that the tables fill the entire embedded
memory of the FPGA, Figure 6.6 presents a plot that visualizes the maxi-
mum number of IoT nodes as a function of the number of edge verifiers. This
relation is plotted for the same three FPGAs as described in Section 6.6.1:
the FPGA used in the proof-of-concept implementation (ML605); the sec-
ond smallest low-end 7-series FPGA of Xilinx (XC7A15T); and the most
recent high-end 7-series FPGA of Xilinx (XC7VJ870T).

The proposed SHeLA protocol can deal with migrating devices. The
more devices that are capable of moving within the reach of other FPGAs,
the more memory they will claim. This is because of the entries of migrated
devices in the TEV,G table. Figure 6.7 plots the maximum number of nodes

130

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

Figure 6.6: Number of supported IoT nodes as a function of the number of
edge verifiers.

that can be hosted by an edge verifier on the ML605 board for three distinct
cases: 1% of the nodes migrate, 10% of the nodes migrate, and 50% of the
nodes migrate. Note that, if the number of migrating nodes causes the TEV,G

table to overflow, the edge verifier will not be able to handle additional
migrating nodes. This can be solved by introducing a new edge verifier.
Further, we assume that, for a given application, the maximum number of
migrating nodes can be determined in advance to avoid this situation.

From Figure 6.6, we can conclude that with five low-end XC7A 15T
FPGAs, a network of 10’000 devices can be attested with SHeLA, at the
price of around 30 USD per FPGA. From Figure 6.7, we can be conclude
that if 50% of the nodes migrate within the reach of another FPGA, this
has an impact of an order of magnitude on the number of supported nodes
in the network.

6.7 Security Analysis

The main motive of an adversary is to infect an IoT node in the network
and to carry out malicious activities. Our main purpose in SHeLA is to
detect the adversaries through remote attestation in an efficient way for
large IoT networks. As already mentioned in Section 6.3.1, the edge verifiers
are assumed to be trusted. In a scenario where this is not the case, the
SHeLA scheme needs to be completed with a traditional one-to-one remote
attestation mechanism between the root verifier and the edge verifiers. The

131

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

Figure 6.7: Number of IoT nodes as a function of number of the number
edge verifiers for three different levels of mobility in the proof-of-concept
(PoC) implementation.

remainder presents the security analysis of SHeLA under the assumption
that only the IoT nodes are potentially untrusted. We first analyze the
resistance of SHeLA against a number of threats, after which we match the
security goals presented in Section 6.3.3 with the implemented scheme.

Security against remote adversaries. As discussed, a remote adver-
sary can affect one or more devices in a network by introducing malware to
those devices. However, during the attestation of the device, it has to per-
form the checksum operation which includes the underlying software. Thus,
malicious code will not evade detection.

Security against local adversaries. In SHeLA we cannot prevent a lo-
cal adversary from carrying out eavesdropping or snooping attacks. As men-
tioned earlier, we encourage the proper use of message encryption and au-
thentication during every communication step. This threat should be fought
off by these measures.

Security against replay attacks. Replay attacks are mitigated in
SHeLA, as we introduce fresh timing-related information in the challenge
through the T̃ and offset values. This way, an IoT node cannot repeat a
previous attestation response to fake its sanity.

Security against hardware attacks. Unlike software adversaries,
hardware adversaries can circumvent the minimal hardware support in the
IoT nodes that ensures a properly secured one-to-one attestation between
the edge verifiers and the IoT nodes. The SHeLA scheme does not protect

132

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

against hardware attacks; it assumes that the underlying one-to-one remote
attestation can be executed in a secure way.

Security against a malicious edge verifier. We assume that the edge
verifier is a device that is more powerful than the IoT nodes and therefore
has the capabilities of hardware-assisted security. This allows for mutual
authentication with the root verifier and for being securely attested by the
root verifier. Only upon successful attestation of the edge verifier, the root
verifier accepts the collective attestation result.

Now we discuss SHeLA’s performance with respect to the goals men-
tioned in Section 6.3.3. SHeLA satisfies those security goals as follows:

• Successful attestation. In SHeLA, each edge verifier performs the
attestation for a subset of underlying IoT nodes. Thanks to the pro-
posed synchronization mechanism between the edge verifiers, the root
verifier can receive the attestation report of the entire network from
any of the edge verifiers.

• Freshness. In SHeLA, during each attestation phase, a unique chal-
lenge is introduced which is included in the attestation response to
maintain the freshness of the attestation operation. This unique attes-
tation challenge prevents replay attacks as an adversary cannot use a
pre-computed attestation result to forge the attestation process.

• Information on the sanity of the individual nodes. The SHeLA
scheme supports a maximum granularity depth (GD), as defined in this
chapter. The root verifier can choose between verifying the sanity of the
entire network (GD0), the sanity of a subset of the network belonging
to a specific edge verifier (GD1), or the sanity of each individual IoT
node (GD2).

• Parallel execution. The edge verifiers are capable of parallelizing
multiple operations: one-to-one IoT node attestations, edge verifier
updates, edge verification synchronization, and reporting to the root
verifier. Although the proof-of-concept implementation does not sup-
port full parallel execution yet, it is perfectly possible to support this
feature in an FPGA.

6.8 Discussion

In this chapter, our main objective is to obtain clear security guarantees
and maximize the efficiency and performance of CRA in dynamic networks.
Particularly, we aim to investigate whether efficient remote attestation of
large network is possible in real time without imposing a static nature of
the network. However, despite its many advantages, SHeLA has limitations
too.

133

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

In particular, in line with other attestation schemes [40, 49, 85], we do
not consider physical adversaries in our security model. A physical adversary
that can manipulate the IoT devices can forge the result of the attestation.
A more formal approach is needed to counter this threat.

Furthermore, the authenticity of the edge verifiers and the root verifier is
required in a real-world setting. Although it will introduce an overhead for
the underlying devices, the authentication is necessary to counter attacks
like Distributed-Denial-of-Service (DDoS) attacks and side-channel attacks.

We have plans to make the four following improvements to the proof-of-
concept implementation of SHeLA. The first one is to move the storage of
the three tables (TEV,R, TEV,G and TEV,E) to a Content Addressable Memory
(CAM), probably in hardware. As can be seen from Table 6.3, all operations
need to perform a look-up. By using a CAM, we can significantly reduce the
amount of time required to perform a look-up; the use of a CAM also results
in a constant look-up time. The second and third improvements we plan
to implement, are the following: (1) the incorporation of data encryption
and authentication for all network messages, and (2) the implementation of
parallel execution of RA, updating, synchronization and reporting. Finally,
the fourth improvement is related to heterogeneity. In the current proof-of-
concept, the IoT nodes use WiFi communication. It is, however, perfectly
possible to support multiple communication protocols using FPGAs as edge
verifiers.

6.9 Summary

In this Chapter we present “SHeLA: Scalable Heterogeneous Layered Attes-
tation”, an architecture and protocol for the remote attestation of large-scale
heterogeneous IoT networks. The mechanism defines the use of edge verifiers
to perform the attestation of the underlying IoT nodes and to report to the
root verifier, which is typically the network owner. The edge layer can easily
be extended to give the network owner the flexibility to anticipate a growing
network demand and scalability issues. We define the term granularity depth
to indicate the level to which the root verifier can gain information on the
sanity of the individual devices in the network; SHeLA provides a maximal
granularity depth. We present a proof-of-concept implementation based on
FPGAs and IoT devices to demonstrate the efficiency and effectiveness of
the SHeLA scheme. Even with a small number of low-cost edge devices, a
large-scale IoT network can be attested using SHeLA. As a future work we
will employ remote attestation as an application to secure other traditional
network protocols.

134

Part IV

Remote Attestation Assisted
Applications

135

Chapter 7

Secure routing in RPL based IoT
networks

Due to recent notorious security threats, like Mirai-botnet [22, 94], it is chal-
lenging to perform efficient data communication and routing in low power
and lossy networks (LLNs) such as Internet of Things (IoT) networks, in
which huge data collection and processing are predictable. The Routing
Protocol for low power and Lossy networks (RPL) is recently standardized
as a routing protocol for LLNs. However, the lack of scalability and the
vulnerabilities towards various security threats still pose a significant chal-
lenge in the broader adoption of RPL in LLNs [112, 78]. To address these
challenges, we propose SPLIT, a secure and scalable RPL routing protocol
for IoT networks. SPLIT effectively uses a lightweight remote attestation
technique to ensure software integrity of network nodes. To avoid additional
overhead caused by attestation messages, SPLIT piggybacks attestation pro-
cess on the RPL’s control messages. Thus, SPLIT enjoys the low energy
consumption and scalability features of RPL protocol, which are essential
in resource-constrained large scale networks such as IoT. The simulation re-
sults for different IoT scenarios show the effectiveness of SPLIT compared
to the state-of-the-art in presence of different types of attacks, concerning
metrics such as packet delivery ratio and energy consumption.

7.0.1 Contribution

In this Chapter, we propose a new secure and scalable RPL based routing
protocol called as (SPLIT) for IoT networks. SPLIT uses the unique advan-
tages of RPL protocol [139] to provide an efficient periodic device attesta-
tion report aggregation (concerning attestation time, energy consumption,
and network overhead) in large-scale IoT network. The use of device at-

137

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

testation improves the security in data communication process of RPL by
making it robust against an array of routing threats such as rank [71, 79]
and sybil [100, 143, 27] attacks. The primary aim of SPLIT is to ensure the
integrity of the IoT devices as well as the data packets they exchange as
these are considered the significant challenges in deployment of large-scale
secure IoT networks. In particular, the work has the following contributions.

• We propose a secure and scalable RPL based routing protocol called
SPLIT for IoT networks. Our proposed approach make optimized use
of RPL protocol’s route discovery process and periodic topology main-
tenance messages to send and receive attestation related information.
Thus, SPLIT achieves the attestation scalability while keeping the
attestation caused overhead and the device attestation time to the
minimum.

• We fully implemented SPLIT in Cooja [117, 2], the Contiki network
simulator, which is widely used for deploying energy-constrained and
memory-efficient low power and lossy networks (LLNs) such as IoT.
The security and energy efficiency evaluation show substantial im-
proved simulation results with respect to the state-of-the-art. We show
the correctness and effectiveness of SPLIT. Additionally, the results in-
dicate that SPLIT is able to effectively perform the device attestation
in moderate mobility scenarios, which is a major drawback for the
state-of-the-art attestation schemes.

7.0.2 Organization

The rest of the chapter is organized as follows. In Section 7.1, we briefly
explains background and state-of-the-art concerning device attestation pro-
cess and RPL protocol. Section 7.2 provides description of our proposed
approach SPLIT along with its working methodology and design considera-
tions. In Section 7.3, we present the simulation and performance evaluation
of SPLIT regarding its security and energy analysis. Finally, Section 7.4
concludes our work with possible directions of future work.

7.1 Preliminaries

In this section, we discuss typical attestation technique and the related state-
of-the-art for the RPL protocol along with threats and its limitations, which
lead us towards the motivation of our research work. Recently, attacks on
smart devices are on the rise as they are gaining wider adoption. These at-
tacks have caught the attention of the common public as the adoption of
smart devices in all aspects of life make the attack surface broaden than ever.
When these devices control personal data, any security breach in these de-
vices or over communication channel can have a disastrous effect. SmartTV

138

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

hacking [138] is a recent example of how a security breach in these devices
can have a dramatic impact on users’ privacy. In this era, where everything
connects to everything, it is indeed crucial to look after the security concern.
As there is no panacea to resolve all the IoT related security concerns, we
are exploring RPL enabled security measures, which will guarantee reliable
and low-cost solutions for the IoT networks.

7.1.1 Overview of Attestation

Remote Attestation (RA) is a well established technique to identify adver-
sarial presence in a device. Since past decade researchers have proposed
many RA schemes [126, 121, 24, 110, 83] having different working proce-
dure. However, typically RA is a technique where a trusted entity (V) check
the integrity of an “untrusted” device (P) by validating whether the device
is indeed running the latest updated version of the software or data without
any adversarial presence. As depicts in Figure 7.1 a V sends a challenge
to an untrusted P. Upon receiving the challenge, the P will perform the
intended operation and sends back the response to V. Based on the received
response V validate the “health” of the device.

Verifier Prover

[Attestation challenge || Nonce (N)] (2)

 H’ MAC
K
[N || State(Prover)]

H’ (3)

H==H’ ?

Shared Key (K) (1)

Figure 7.1: Typical example of Remote Device-Attestation

Although RA is an efficient method to validate device’s health, it is hard
to implement on large networks due to its one-to-one verification model. In
order to achieve low-cost and secure networks, RPL along with RA can be
a suitable solution due to their unique interoperability.

139

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

7.1.2 Routing Protocol for Low Power and Lossy Networks
(RPL)

The IETF ROLL work-group developed RPL for routing in LLN such as
IoT, where devices are highly resource constraint. RPL is a proactive dis-
tance vector routing protocol, and it organises network devices into Directed
Acyclic Graphs (DAGs), which is a spanning tree topology. In a DAG, all
nodes are connected in a way to ensure that there are no loops, and the data
is routed to reach one or more root nodes. Additionally, a DAG could consist
of one or more Destination-Oriented DAG (DODAG), where each DODAG
work towards to satisfy the requirements of a particular application running
on top of it, thus it enables multiple applications to work simultaneously,
but independently, inside the same network. To create and maintain the
DODAG, RPL uses a set of control messages which includes DODAG In-
formation Object (DIO), DODAG Information Solicitation (DIS), and Des-
tination Advertisement Object (DAO) [99] and its Acknowledgment (DAO-
ACK) messages. The detailed working of RPL and its features are out of
the scope of this chapter, hence we direct the interested users to more com-
prehensive literature given in [90] and [139].

7.1.3 Threats and Previously proposed security solutions for
RPL

As we previously mentioned, due to new standardization of RPL routing pro-
tocol and in quest of providing best Quality of Service (QoS) while routing,
RPL is exposed to many security threats. RPL is very strong against the
external intruders given the cryptographic and authenticating techniques.
But when it comes to a malicious node present internally in the system,
important parameters such as Rank, Node ID, DODAG and version number
can be compromised.

Few of the researcher proposed solution to solve these attacks, for ex-
ample, in [71] a security service against internal attacks is named “VeRA”
is presented, which stops the malicious nodes from illegitimately increasing
their DODAG Version Number and manipulating the Rank. An increase
in DODAG Version Number causes a load on energy and energy consump-
tion due to Global Repair. To address this attack authors proposed an ap-
proach [71], in which a version hash chain is created and for each member of
this chain, a rank chain is created. So, whenever there is an illegal increase,
each node can check it by comparing original values and a chained hash of
current value using the MAC mrh function. Each node is able to counter
the illegitimate increase in the parent rank. However, in [111] the authors
show that despite of all the hashing, VeRA is still vulnerable to rank attack,
and proposed a new approach TRAIL (Trust Anchor Interconnection Loop).
TRAIL is based on the topological authentication. Unlike VeRA it utilizes

140

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

very less cryptographic efforts and provides protection against the internal
attacks such as Rank Spoofing and Rank Replay. Validation of upward path
through round-trip messages is the key idea. On receiving a message from
the parent, child sends an authentication message with its rank and a nonce.
Each upward node check for two things that are 1) rank of the node sending
that test messages is higher than its own, and 2) difference of rank between
the sending node and his own.

In [120], the author describe the vulnerabilities and attacks adhered due
to rank property in RPL. To analyze the rank attack and its vulnerabilities
in RPL, authors proposed an approach named attack graph, which helps to
analyze the attacks by providing all the possible action sequences taken to
do the attack. Mostly using the form of a state diagram. The authors mainly
focused on three categories of rank manipulation, which are first “Decrease
Rank Attack” that gives rise to sniffing, identity attacks; second “Worst
Parent Attack” that creates sinkhole and blackhole attacks; third “Increase
Rank Attack” that can cause Dag Inconsistency attack.

In [113] an internal attack to RPL is presented. Authors discuss the
effects of DAO inconsistency attack, and proposed a solution to mitigate it
using a Dynamic Threshold Mechanism (DTM). In DAO inconsistency at-
tack, a malicious node intentionally drops the received packets and forwards
a new packet with setting the Forward Error Bit. It makes ancestors nodes
to drop the route in their routing table and again look for new root, which
increases overhead and energy consumption. To provide a solution, every
node has a limited threshold of 20 forwarding error messages. Each node
also has a mischief threshold counter, if a node is found not adhering to the
error function, its mischief counter is increased by one. Once the counter
value crosses the threshold, it is declared mischievous. The main drawback
of this approach is that it is not energy efficient, and as RPL is used for
energy constraint devices it is a serious issue to consider. Recently, in [27],
a trust-based mechanism is presented to detect and isolate sybil and rank
attacks. A sybil attack is basically defined as when a malicious node repli-
cates its id in a DODAG in large quantity. The proposed trust mechanism
has five phases, which are Trust Calculation, Trust Monitoring, Detection
and Isolation, Trust Rating, and Backup to detect and mitigate the rank
and sybil attack in the system.

A new Secure RPL (SRPL) is proposed in [79], which stops mischief
caused by the internal attacks in RPL to make it more secure. The au-
thors uses the concept of threshold rank and hash chains for authentication.
Rank boundaries are determined by two factors “Decreased Rank Thresh-
old” and “Increased Rank Threshold” and their function is related to the
set of parents and descendants respectively (in an inverse manner), which
causes stabilizing of the structure. The approach uses three phases to make
the protocol more secure: 1) Initialization- DODAG formation with hashed
rank distribution; 2) Verification- Parent of a child node is actor in this pro-

141

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

cess and verifies the child and its descendants by multi-step hashing; and
3) Rank Update- Checking of old rank, new rank and verify the threshold
using mentioned rank change algorithm. The main drawback of proposed
threshold mechanism is that it acts against all the nodes including the non-
malicious nodes with a large set of descendants, which causes additional
overhead in the start due to the use of hashing technique.

Previous research on the RPL protocol has focused on making communi-
cation among IoT devices more secure and reliable for routing, but none has
considered the problem of device authenticity. Due to the lack of any device
authenticity mechanism, the RPL is vulnerable to security threats such as
rank attack and sybil attack, which decreases the communication efficiency
and disrupt the correct working of the network. It could lead to severe conse-
quences if critical IoT applications use the network. However, RPL provides
energy efficiency, adaptivity to work in various environments, and scalability,
which makes it best suited routing protocol for resource-constrained large
IoT networks [58]. Due to all these positive features of RPL, in our proposed
approach, we consider device integrity and confidentiality to make the whole
communication system more secure and reliable.

7.2 Our Proposal: SPLIT

In this section, first, we present the details of the system and adversary
models on which SPLIT is implemented and evaluated. Then we discuss
SPLIT’s design considerations, functioning, and working methodology.

7.2.1 System Model

• The network consists of a set N = {N1, N2, ...Nn} of size n resource
constraint IoT nodes (i.e., sensors and actuators). These nodes are
static/mobile (for the different set of experiments) within the network
area and are homogeneous concerning resources. However, the nodes
could be heterogeneous regarding their functionalities (different un-
derlying software or hardware) depending upon the type of the device.

• RPL creates a virtual DODAG on top of the physical network topology.
For our experimental purpose, we have also assumed the presence of
malicious nodes (Adv) in our network. The root node plays a critical
role in creating and maintaining the DODAG in the existing network,
in our system it also plays the role of the verifier V.

• As it is common in most of the attestation literature, we are assum-
ing that the root node (V) is trusted and cannot be compromised.
All the other devices in the network have trusted execution environ-
ment [72, 47], which is not accessible by any unauthorized entities

142

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

Untrusted
Software

Trusted
Component

Root

4

1918

3 87

65 10 1211

21

20 24211713

9 14 15

262523

16

22

Verifier (V)

Device (D)
Device (D)

DAO Attestation
Message

Trusted Component
is used to calculate
hash and store the
cryptographic keys

Figure 7.2: SPLIT device attestation technique

and it stores the required keys along with the attestation-related de-
tails (e.g., attestation algorithm) for device attestation process as it is
shown in Figure 7.2.

7.2.2 Adversary Model

Based on the taxonomy in [25], we are considering remote and local adver-
saries (Adv) which are capable of mounting software-only attacks. We are
keeping physical Adv out of the scope of our work. However, we will address
possible detection mechanisms for physical tampering in SPLIT by employ-
ing a mechanism that could identify device absence in the network for a
non-negligible amount of time, thus signals the possible presence of physical
adversaries. In our target IoT network scenarios, the Adv are assumed to
have the following characteristics:

• SoftwareAdv : the Adv is capable of launching various attacks that in-
cludes cloning, sybil, rank, blackhole, eavesdropping, and wormhole
attacks. To perform all the mentioned attacks, either it can compro-
mise an existing node, or it can be part of an existing network as a
new node. However, we assume that the Adv cannot compromise the
DODAG Root (i.e., LBR).

• RoamingAdv : the adversary is mobile and, it can join the network for
a short time-period and try to perform malicious activities to disrupt
network integrity.

• PhysicalAdv : Although this type of adversary is out of the scope of
our work. In Section 7.3.1, we discuss the possible way to detect the
presence of the physical adversary.

143

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

7.2.3 SPLIT Design Considerations and Functioning

For SPLIT, we optimize and combine the best features of the RPL protocol
on the one hand and of device attestation on the other. The primary pur-
pose of the development of SPLIT is to improve the security by considering
scalability factor in large-scale IoT networks. SPLIT functioning is to use
device remote attestation method without introducing additional overheads
on network. In SPLIT, we effectively exploit the built in features (e.g., en-
ergy efficiency, scalability, and adaptability) of traditional RPL to collect
attestation reports without creating any additional network overhead and
energy consumption. SPLIT exploits the Destination Advertisement Object
(DAO) ICMPv6 control messages [90] of RPL to send attestation report.
Additionally, the use of hybrid attestation1 scheme ensures the authenticity
of nodes that take part in the routing process, hence it will make the routing
process more robust against various routing attacks.

SPLIT inherits the features from traditional RPL and exploits these fea-
tures for improving the data communication system via device attestation.
We show through our evaluations that SPLIT has significant advantages
over the traditional routing protocols concerning network overhead, energy
consumption, and communication security. Moreover, SPLIT can be adopted
in existing IoT infrastructures because its implementation is using the RPL
protocol, which is already a standard routing protocol for IoT networks.

• In our proposal, we use RPL’s DAO ICMPv6 control messages for
attestation purpose. We modify the required header fields in DAO
(please refer to Figure 7.3). The modified and newly added data struc-
tures are as follows: (i) a 4 bit “flag” field to send the node ID, (ii) 8
bit “reserved” field for sending the “attested report with time-stamp
where 6 bit is used for timestamp and 2 bit (00 in case of BAD node
and 11 in case of GOOD node) is for outcome of the self-attestation”
to the root, and (iii) a 32 bit “option” field to send attestation report
of the device. The attestation report will contain the hash value of
the underlying software of the device and a time-stamp to prove its
time-bound freshness. The attestation message for any device (say Di)
is as follow.

AttDi
= [hashDi

||Timestamp]Rootpk

,where AttDi
, hash, Timestamp and Rootpk denotes device specific at-

testation report, hash value of the underlying device specific software,
attestation timestamp, and root node’s (V) public key. The attesta-
tion report will be encrypted using root node’s public key, which allows
only the root node to decrypt.

• Our approach makes use of the RPL’s non storing mode (i.e., MOP2)
because it is best suited for resource constrained devices due to its

1Hardware-Software co-design to safeguard attestation related details from attackers.

144

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

support for minimal memory and computational requirements. Fur-
thermore, in this mode every device in the network sends the afore-
mentioned DAO control messages directly to the root node, hence no
intermediate device is allowed to alter these control messages.

• In RPL, the DAO message, apart from its various responsibilities (e.g.,
providing route support from downwards to upwards towards root in
the DODAG) also works as a beacon message, which will provide the
device attestation report to the root node after a specific time interval.
The “Trickle-Timer” controls the generation of beacon messages [99].
Based on the application scenario, the timer can be tuned to ensure
the time-based device attestation report generation. Additionally, the
root node can get the network health status using “Trickle-timer” after
a defined period interval, this will help to mitigate the threats deriving
from RoamingAdv .

• The DAO control message acts as regular DAO messages in the net-
work, the updated/modified DAO message is only used for the attes-
tation process. Whenever the attestation process starts, the fields of
DAO message takes the altered values to the root and perform the
device attestation process by sending a report to the root node (i.e.,
verifier). Then, on the basis of the attestation report, the verifier de-
cides the next step (please refer to Figure 7.4).

RPLInstanceID K D Flags Reserved DAOSequence

DODAGID

Option(s)

0 7 8 9 10 15 16 23 24 31

0 31(bits)

this 6 bit field
contains device ID

the 8 bits of this field
divides into 2 parts “6+2” 6
bits for TS (timestamp) & 2
bits for Attestation report

These 32 bits are used carry AttDi = (hash || Timestamp)RootPk

DAO ICMPv6 Control Message Format

Figure 7.3: Modified DAO ICMPv6 Control Message Format

7.2.4 SPLIT Working Methodology

SPLIT’s pseudo code for both prover and verifier are provided in algorithms
1 and 2, and the finite state machine (FSM) model is shown in Figure 7.4.
The primary stakeholders in SPLIT are (1) Verifier (V), and (2) Prover (P).

145

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

7.2.4.1 SPLIT-Prover

The prover has four main functions, which are as follows:

• Initial Joining: Prover(s) take part in DODAG formation and become
part of the network.

• Verify Trickle time: Based on the trickle time, prover(s) perform at-
testation and send the attestation report to the verifier.

• Attestation: Prover(s) in SPLIT will perform self-attestation. We have
assumed that every prover in the network is capable of performing
attestation as described in [85].

• Send Report: This operation is meant for attestation report corrob-
oration to the verifier through intermediary nodes using DAO-attest
message.

Algorithm 1: SPLIT execution for provers

(i.e., non-root devices)

Step1: Initial setup of the network(s),

devices are bootstrapped (with attestation

details and device-ID).

Step2: RPL DODAG formation.

Step3: SPLIT initialization.

Step4: if (trickle-timer = true) then perform

self attestation, send DAO-attest message to

root,

else send DAO-normal (RPL-default) to root

Step5: End and go to Algorithm 2 (SPLIT

execution for verifier/root)

7.2.4.2 SPLIT-verifier

From verifier perspective, SPLIT also consist of four main functions to fol-
low:

• DODAG creation: Verifier/Root node of the network will initialise the
DODAG formation.

• Verify Trickle time: Based on trickle time verifier receives aggregated
attestation report of the whole network through DAO-attest message.

• Attestation report gathering: Prover(s) in SPLIT will perform self-
attestation and corroborate the report along with DODAG-tree.

• Verify: This operation is meant for attestation report verification by
the verifier.

146

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

Algorithm 2: SPLIT execution for

verifier/root

Step1: Receive DAO-attest.

Step2: If (Flag == 00) then block/remove the

device from DODAG (as it is adversary)

else if (Flag == 11) then keep the device in

DODAG (as it is in healthy state)

Step3: End of Algorithm 2.

Wait for
DODAG
Creation

Verify
Trickle
Timer

Collect
Attestation

Report

Start

Verify

Start RPL
DODAG
Creation

DAO Flag
 Field value

is 00/11

Send
Attestation

report to
Verifier

Set/Reset
Trickle Timer

Start

FSM of Prover (Device) FSM of Verifier (Root)

Figure 7.4: SPLIT FSM-s for Prover (Device) and Verifier (Root)

7.3 Simulation and Performance Evaluation

In this section, we present the performance evaluation of SPLIT using the
simulation results. We have fully implemented SPLIT on top of the avail-
able open source code of RPL protocol for IoT networks. The implementa-
tion is performed in Cooja, the Contiki network simulator [117, 2], which is
widely used for deploying energy-constrained and memory-efficient devices.
We make available2 an open-source implementation of SPLIT. We have com-
pared the performance of SPLIT with SRPL [79], and the traditional RPL
protocol in different scenarios. The existing results of SRPL approach that
are presented in [79] have been taken on very small network (i.e., 22 notes
only including one Root node and two attackers node), which is not feasi-
ble for a scalable approach, so we took our results by increasing the same
ratio of attacker nodes with respect to node density in the network used in
SRPL [79]. Table 7.1 provides the details of various parameters along with
their values that we have used to configure the target IoT network scenarios
in Cooja simulator [70].

2https://github.com/pallavikaliyar/SPLIT

147

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

Table 7.1: Simulation setup: Parameters for SPLIT Evaluation

Parameters Values

Simulator Cooja on Contiki v2.7

Simulation time 10 to 60 Minutes

Scenario Dimension 200 x 200 to 800 x 800 sq.meter

Number of nodes 101 sky motes (including root for fixed scenario)

Number of nodes 25 to 100 sky Motes (for node varying scenario)

Transport layer protocol UDP

Routing Protocols RPL and SRPL and SPLIT

Root waiting timer t Depends on the value of α

Radio Medium Unit Disk Graph Medium (UDGM)

PHY and MAC Layer IEEE 802.15.4 with CSMA and ContikiMAC

Application protocol CBR

Transmission Range 25m

Number of attacker nodes 5% to 50%

Traffic rate 0.50 pkt/sec - 500 packets

Average Mobility Speed 3 m/s

7.3.1 Security Analysis

In Section 7.2.2, we have introduced the adversarial model. We now will
analyse SPLIT’s performance against those adversarial settings.

1. We consider a remote or local Adv who can launch software attacks on
any P in the network by introducing malicious software. Although this
attack is feasible, it will be recognized when the self-attestation is per-
formed by the “Trusted” part of the P. Thus, Adv cannot compromise
the attestation process.

2. The Adv mentioned in Section7.2.2 can launch attacks like eavesdrop-
ping and packet discarding. Firstly, eavesdropping, the Adv can eaves-
drop the ongoing messages among nodes in the network but will not
be able to compromise them. Use of asymmetric key crypto makes this
attack unfeasible. Secondly, in case of packet discarding or blackhole
attacks, the V can quickly identify which of the nodes are missing af-
ter receiving the attestation results of the nodes during every trickle
period.

3. Predominantly, we have considered software only attackers. But, use of
trickle timer can help us identify the presence of physical adversaries.
In fact, adversaries need a non-negligible amount of time to capture
and perform malicious activities. It is safe to assume that the time
required for mounting physical attacks is greater than two consecutive
trickle time gap. During each trickle time interval, every device has to

148

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

perform self-attestation and send the report to the V. Thus, the V
will identify missing attestation report.

4. As shown in Table 7.2, SPLIT requires negligible amount of extra
power with respect to traditional RPL protocol, while introducing su-
perior security feature in it. Thus, it leads to minimal overhead in the
network.

5. Mobility is another crucial feature to be taken care of for IoT networks.
However, most of the attestation literature has overlooked the mobil-
ity scenario. Unlike other attestation schemes [40, 32, 49], we consider
adversarial device mobility in our experiments, and the results witness
that the effectiveness of SPLIT to counter roaming adversary is similar
in case of static adversary. SPLIT substantially improves the reliabil-
ity and availability of the IoT network against the threats mentioned
above.

We now present an comparative analysis of SPLIT with respect to other
protocols (e.g., RPL, RPLAttack, SRPL) using the metric called Average
packet Delivery Ratio (APDR). As the different types of attacker (e.g., topo-
logical and data communication) nodes present in a network can adversely
effect the APDR by altering different network parameters in order to dis-
rupt the network. Therefore, it is indeed critical to show the performance
of a network using APDR metric. The simulation results clearly depict the
considerably better performance of SPLIT with respect to aforementioned
protocols.

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 10 20 30 40 50 60

A
v
er

ag
e

p
ac

k
et

 d
el

iv
er

y
 r

at
io

 (
%

)

Simulation time (in mins)

RPL
RPL_Attack

SRPL
SPLIT

Figure 7.5: APDR with respect to increasing simulation time

As shown in Figure 7.5, the APDR of SPLIT with respect to increasing
time frame is substantially higher than RPLAttack (i.e.,with attacker node),
and SRPL. At the same time SPLIT is providing better security by iden-
tifying attacker nodes. Thus, it provides better resiliency against attacker

149

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

nodes in a network. Figure 7.6 shows SPLIT’s significantly higher perfor-
mance of APDR with respect to increasing number of nodes in a network.
The comparison was drawn among SPLIT and RPL, RPLAttack protocols.

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 25 50 75 100

A
v

er
ag

e
p

ac
k

et
 d

el
iv

er
y

 r
at

io
 (

%
)

Number of nodes

RPL RPL_Attack SPLIT

Figure 7.6: APDR with increasing number of nodes in the network

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 10 20 30 40 50

A
v

er
ag

e
p

ac
k

et
 d

el
iv

er
y

 r
at

io
 (

%
)

Attacker nodes (%)

RPL_Attack SRPL SPLIT

Figure 7.7: APDR with increasing number of attacker nodes in the network

Figure 7.7 exhibits SPLIT’s superior performance compared to other
aforementioned protocols with increasing number of attacker nodes in a
network. These simulation results demonstrate SPLIT’s better performance
compared to other protocols. The main advantage apart from security and
scalability is that SPLIT introduce minimal overhead, and the Figure 7.5
shows that SPLIT has high APDR like traditional RPL protocol. The main
reason behind SPLIT’s high APDR is, during initial attestation phase,
SPLIT is able to identify and bar malicious nodes to adversely effect DODAG

150

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

in the later phase. Thus making SPLIT an ideal candidate to replace general
RPL over a legacy network.

7.3.2 Energy Consumption Analysis

We compute the overall energy consumption based on energy required to
send and receive SPLIT messages and to perform the main cryptographic
operations. Let Esend be the energy required to send a byte, Erecv the energy
required to receive a byte, Ehash the energy required to calculate a hash, and
N the number of devices participating in attestation process. As mentioned
in Section 7.2.3 based on trickle time at each round t all P sends the attes-
tation time , and a hash. Thus, we can estimate the energy consumption for
sending a single SPLIT message for prover Pi as follow:

EPrvi

send ≤ Ehmac + DAOMessage.

Similarly the energy consumption for receiving a message is calculated as
follow:

EPrvi
recv ≤ (Ehmac + DAOMessage) ∗N.

Furthermore, we consider the power consumption and duty cycle based
on standard contiki measurement3. The energy consumption and duty cycle
are mention in Table 7.2.

Table 7.2: Power Consumption while SPLIT Simulation for Sky motes

Time (In sec) CPU Power consumption (mW) Duty Cycle (mW)

10 0.007528931 0.007228695

20 0.02099762 0.022265709

30 0.007731354 0.007289762

40 0.007423187 0.006024465

50 0.007767609 0.015067756

60 0.128571899 0.224695261

70 0.031744171 0.039779544

80 0.092942413 0.136530826

Based on our simulation results, the energy consumption of nodes in
SPLIT is less, and most importantly it does not have a significant differ-
ence from general RPL energy consumption. The important achievement
of SPLIT is that we are performing attestation of network devices without
introducing additional high overheads from energy consumption perspec-
tive as mentioned in Table 7.2. This minimal cpu power consumption and
duty-cycle proves its efficiency for large-scale network implementation.

3http://thingschat.blogspot.com/2015/04/contiki-os-using-powertrace-and.html

151

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

7.4 Summary

In this chapter we presented SPLIT, a RPL based energy efficient and scal-
able device attestation approach for IoT networks that consists of large
swarms. On one hand, SPLIT helps to substantially improve the attestation
time with minimal additional overheads for large IoT networks, while on the
other hand, it increases the security and availability in data communication
process of RPL. The performance analysis of SPLIT, which is done on Cooja
emulator on various IoT network scenarios regarding essential metrics such
as communication security, network overheads, scalability, and energy ef-
ficiency clearly shows its effectiveness. Finally, we also noted that SPLIT
provides security, scalability and energy efficient solution to the traditional
RPl networks with no network delays.

152

Chapter 8

Conclusions

As the Internet of Things (IoT) plays an essential role in our daily lives, it
is increasingly becoming an attractive space for cyber attacks. In particular,
malware infection of IoT devices is a major issue, which can lead to severe
consequences for user safety and privacy. Considerable researches have been
carried out, and significant advances have been made in the area of remote
attestation and in particular remote attestation techniques to secure IoT
networks. However, the state-of-the-art of security-related development still
needs to be improved in the aspect of Remote Attestation (RA). For this
reason, there is a growing effort both in academia and industry to develop
efficient, secure and robust remote attestation techniques for IoT devices.

In this dissertation, we presented our contribution to RA techniques to
safeguard IoT networks. In what follows, we summarize the contribution of
the thesis (Section 8.1), and discuss future research directions (Section 8.2).

8.1 Summary of Contribution

We describe the contributions of this dissertation in four parts, (1) we pre-
sented a detailed survey of current collective remote attestation techniques
along with their respective advantages and disadvantages, (2) we discussed
two novel schemes which address the mobility of the devices during attesta-
tion and a remote attestation technique to guarantee secure asynchronous
IoT service communication. (3) we illustrated configurable-hardware assisted
beyond state-of-the-art remote attestation techniques which do not require
hybrid root of trust for remote attestation, and, (4) we proposed remote
attestation assisted application for securing routing protocol.

153

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

8.1.1 Security Issues in current Collective Remote Attesta-
tion Techniques

IoT devices are used in many applications such as in the military, “Smart-X”
and medical-application areas. These devices often include the monitoring
of safety-critical private and sensitive information. Security is, therefore,
important in the IoT domain. However, IoT systems suffer from several lim-
itations, including low computing capacity, limited memory, low energy re-
sources, susceptibility to physical capture, to name a few. These constraints
make security in IoT a problematic task. In order to provide security to
these tiny devices, Remote Attestation has been chosen as one of the best
methods. More recently, researchers have proposed collective remote attes-
tation techniques to perform attestation of a large IoT network. In Part I
we presented a survey for current collective remote attestation techniques.
First, we outline the generalized overview of CRA techniques, second, we
provided a comparative analysis of those techniques with respect to differ-
ent attacker models. We then present a holistic view of security gaps present
in the literature, along with open questions and future directions.

8.1.2 Addressing shortcomings in CRA techniques

Part II presented an important part of our research. Here, we proposed
new collective remote attestation techniques that address the shortcoming
of proposed CRA schemes. In particular, we are focused to address two main
issues, first, a lightweight collective remote attestation technique for dynamic
networks (Chapter 3) and second a collective remote attestation technique
for secure asynchronous communication among IoT services (Chapter 4).

• Practical attestation for large-scale dynamic IoT networks: In chap-
ter 3 we propose a novel remote attestation scheme (i.e., PADS) for
dynamic networks. In remote attestation literature device mobility
during attestation is ignored. However, device mobility is essential
in many business scenarios where mobile-IoT devices are used as a
backbone. Our main focus is to provide a solution for dynamic or un-
structured IoT networks. In order to achieve the goal, we fused the
“consensus” technique with classical remote attestation approach and
provided our novel solution. Our approach uses the recently proposed
concept of self-attestation, and turns the collective attestation problem
into a minimum consensus one. Our evaluation showed improved per-
formance in terms of devices capabilities and communication protocol,
confirming both the practicality and efficiency of PADS.

• Secure Asynchronous remote attestation for IoT: The Internet of
Things (IoT) systems adopt event-driven paradigm to enable com-
munication in large-scale applications which comprise a large number

154

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

of IoT services. Services are increasingly present on IoT devices due to
the recent evolution of IoT, which leads to multi-functional IoT devices
capable of simultaneous operation (i.e., concurrent operations). Large-
scale communication typically requires mechanisms that can deal with
possible network reliability issues. In IoT event-driven paradigm, the
publish-subscribe communication pattern is increasingly popular due
to the heterogeneous and mobile nature of IoT devices which arises the
need for loosely-coupled and asynchronous communication between
distributed services. In general, publish-subscribe serves as a com-
prehensive solution for distributed applications by enabling many-to-
many communication model, in which the interacting services operate
independently from each other. Due to a large number of interacting
IoT services that support limited security protection and the impor-
tance of the operations that these services perform, the IoT systems are
becoming a favourite target for cyber attacks. However, the integrity
of the prover does not only depend on the integrity of the software
and the data that are running on Prover’s memory. The communica-
tion data exchanged among previous service interactions also affect the
current state of the Prover [57, 26]. Therefore, an essential prerequisite
for remote attestation protocols is to provide evidence about the inter-
actions and the communication data exchanged during these interac-
tions. Unfortunately, none of the remote attestation schemes provides
a solution for the aforesaid issue. In chapter 4, we provided a solution
for the issue and proposed SARA. To the best of our knowledge, this
is the first secure remote attestation protocol for asynchronous dis-
tributed IoT services. SARA which can identify compromised services
in asynchronous IoT systems, and can efficiently detect the legitimate
services that are maliciously affected by interactions with a compro-
mised service. The simulation results are quite promising and validate
the effectiveness of SARA for asynchronous IoT communication.

8.1.3 Configurable-Hardware Assisted Remote Attestation
Techniques

Part III illustrated the influence of configurable-hardware assisted remote
attestation techniques. In particular, chapter 5 and chapter 6 provided an
experimental assessment of the performance of two novel FPGA assisted
remote attestation schemes.

• Self-attestation technique for configurable hardware platforms: Field-
Programmable Gate Arrays or FPGAs are popular hardware-based
attestation platforms. They offer security against physical and remote
attacks by verifying that an embedded processor is running the desired
application code. As FPGAs are configurable after deployment (i.e.,

155

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

not tamper-resistant) and are prone to attacks, just like microproces-
sors. Thus attesting an electronic system that uses an FPGA should
be done by verifying the status of both the software and the hardware,
without the availability of a dedicated tamper-resistant hardware mod-
ule. In chapter 5, we illustrated beyond the state-of-the-art solution to
achieve self-attestation of configurable hardware. The proposed solu-
tion consists of a novel FPGA architecture, suitable for implementation
on an off-the-shelf FPGA, and attestation protocol. We have proven
the efficiency and effectiveness of our approach based on a proof-of-
concept implementation on a Xilinx Virtex 6 FPGA.

• Scalable attestation for heterogeneous IoT devices: A large network
poses a scalability challenge for the traditional RA schemes. More re-
cently, researchers started to address these scalability issues associated
with the classical RA approaches as they are not efficient for a large-
scale swarm. Researchers employed spanning tree-based static struc-
tures [40, 32] to efficiently aggregate network attestation reports at the
root of the tree. Despite being an efficient way for swarm attestation,
this technique has some major demerits:

(i) Unrealistic assumption of adversarial capabilities (i.e., software
only adversaries and mostly remain passive during attestation);

(ii) Single point of failure (i.e., attestation reports aggregate along
the root of the spanning tree);

(iii) Unsuitable for Mobile of Internet of Things (MIoT) devices due
to the static nature;

(iv) Unable to monitor devices frequently as running RA incurs sub-
stantial cost in terms of power consumption and memory usage.

In order to address these issues, in chapter 6, we propose an innova-
tive collective remote attestation protocol called SHeLA for large-scale
heterogeneous IoT networks. In SHeLA we introduce an alternative ap-
proach that consists of adding a layer of geographically spread edge
devices in between the root verifier and the IoT nodes. The edge layer
can easily be expanded to provide the network owner with the flexibil-
ity to anticipate increased network demand and scalability problems.
Additionally, SHeLA provides a solution for device mobility during
attestation.

8.1.4 Remote attestation assisted application

In part IV, in Chapter 7, we propose a secure and scalable RPL based
routing protocol called SPLIT for IoT networks. Our approach optimizes the
use of RPL protocol’s route maintenance process, where periodic topology

156

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

maintenance takes place by sending control messages to the Root node (i.e.,
Verifier). We show that SPLIT achieves the attestation scalability while
keeping the attestation caused overhead and the device attestation time
to the minimum. In particular, SPLIT uses RPL’s periodic DAO control
messages to send not only the usual route maintenance information but also
to send attestation report to the Verifier as DAOcrypt. Thus, SPLIT utilizes
the DAO control messages effectively and efficiently towards making the
RPL more secure over an extensive heterogeneous IoT network.

8.2 Future Work

In this section, we discuss possible future developments that naturally follow
from the research contribution presented in this dissertation.

8.2.1 Open challenges in State-of-the-art Techniques for Col-
lective Remote Attestation

A comparative analysis of proposed collective remote attestation techniques
have been presented in chapter 2.

In particular we identify few gaps in existing state of the art for future
works, they are:

• On one hand, the wide use of symmetric key cryptography in CRA
schemes simplifies the complexity of key management; on the other
hand, the use of public-private cryptography requires overwhelming
computation for resource-constrained tiny devices. Thus, a lightweight,
secure key cryptography is required for large-scale swarms to operate,
to not only provide reliability but also for lightweight computation.

• As swarms are deployed in mobile scenarios as well (e.g., self-driving
cars, drones), it is indeed important to have secure and efficient mo-
bile network which will allow device mobility during attestation. A
novel, beyond state-of-the-art CRA technique is required for decen-
tralized efficient attestation over a highly-dynamic network of mobile
IoT devices.

• Current CRA schemes do not provide a run-time report of the network,
and they yield time-specific reports. Additionally, the new scheme do
not facilitate robust and continuous monitoring even when the network
operates in intermittent connectivity. New secure CRA schemes need
to be developed for providing run-time state of the network.

• Most of the CRA scheme employ hybrid-architecture for the root of
trust of their respective attestation techniques. However, in real sce-
narios the presence of this hybrid architecture is far from reality, as

157

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

such architecture is not widely adopted by the current IoT market.
Thus we need a swarm attestation scheme which relies on more real-
istic assumptions and counter a broader range of adversary.

8.2.2 Future works in Improving Collective Remote Attes-
tation Techniques

• Practical attestation for large-scale dynamic IoT networks
In Chapter 3, we pointed out limitations for our proposed technique
PADS. In order to overcome the limitations our future works will inves-
tigate ways to reduce the complexity of the protocol in terms of both
communication and required processing for devices; we will explore the
use of Bloom Filters as a way to reduce the size of the payload, as well
as adopting more intelligent techniques to selectively pick messages
to use for consensus; finally, we will extend PADS to manage nodes
joining (or leaving) the network after the initial setup.

• Secure Asynchronous remote attestation for IoT
In Chapter 4 illustrates that asynchronous communication among IoT
services indeed demands our attention for secure operation. Our pro-
posed technique SARA can identify malicious services that affect other
legitimate services in a network. However, SARA has some limitations,
and our goal is to eliminate the limitations as part of our future work.
As future work, we evaluate SARA’s performance over a large net-
work of intermittent connectivity; we will also explore different ways
to reduce the overhead of resource-constrained IoT devices by adopt-
ing light-weight cryptographic operations. Another main area of our
future work will be minimizing the assumptions regarding adversarial
capabilities, reducing the code-size inside protective memory region
and the implementation of SARA over a real IoT system. Another
future direction will be making SARA immune to attacks like control-
flow attack or data-attack.

8.2.3 Future works in Configurable-Hardware Enabled Re-
mote Attestation

• Self-attestation technique for configurable hardware platforms
In Chapter 5, we provided a novel remote attestation scheme for the
configurable-hardware platform. Our future works will focus on two
main areas. Firstly, we will not only attest the FPGA configuration
but also the current state of the FPGA application; secondly, we will
explore the approach of SACHa to provide remote attestation solution
for large scale deployment, a formal approach for large scale “swarm”
attestation needs to be taken into account for future work.

158

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

• Scalable attestation for heterogeneous IoT devices
Large scale network attestation still remains a challenge. In chapter 6
demonstrates a novel solution to provide security to the large-scale
heterogeneous IoT networks. Although SHeLA clearly represents im-
provements with respect to the state-of-the-art in terms of scalability
and granularity, it has some limitations too. Our future work includes,
(1) encryption and authentication of data for all network messages;
(2) implementation of parallel RA execution, updating, synchroniza-
tion among edge devices. Additionally, we plan to extend our current
proof of concept implementation by incorporating heterogeneous com-
munication protocols among connected devices.

8.2.4 Future improvements in Remote attestation assisted
IoT applications

As a future work for our proposal in Chapter 7, we will further investigate the
impact of our RPL based attestation approach on the overall performance
in terms of energy consumption and communication delay. In particular, we
intend to run ad-hoc simulations evaluate its performance over the industrial
networks regarding the security as well as for scalability. We will also plan
to minimize the hardware assumptions of the devices due to their constraint
nature.

159

Bibliography

[1] CC3120 SimpleLink Wi-Fi Network Processor, Internet-of-Things So-
lution for MCU Applications. http://www.ti.com/product/

CC3120.

[2] Instant Contiki. http://www.contiki-os.org/start.html.

[3] SimpleLink MSP432P401R high-precision ADC LaunchPad Develop-
ment Kit. http://www.ti.com/tool/MSP-EXP432P401R.

[4] Virtex-6 FPGA ML605 Evaluation Kit. https://www.xilinx.com/

products/boards-and-kits/ek-v6-ml605-g.html.

[5] MiXiM framework for Omnet++. http://mixim.sourceforge.

net/, 2011.

[6] Oasis advanced message queuing protocol (amqp) version 1.0. 29 oc-
tober 2012. oasis standard. http://docs.oasis-open.org/amqp/

core/v1.0/os/amqp-core-overview-v1.0-os.html, 2012. [Online;
accessed 14-June-2019].

[7] Countdown to Zero Day: Stuxnet and the Launch of the World’s First
Digital Weapon. https://www.wired.com/2014/11/countdown-

to-zero-day-stuxnet, 2014.

[8] Mqtt.org. http://mqtt.org/, 2014.

[9] Target attack shows danger of remotely accessible hvac systems.
https://goo.gl/iLx4Zy, 2014.

[10] Dds. https://www.omg.org/spec/DDS/1.4/, 2015. Object Man-
agement Group.

[11] Jeep hacking 101. https://goo.gl/ulBt4U, 2015.

160

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

[12] How 1.5 million connected cameras were hijacked to make an un-
precedented botnet. https://www.vice.com/en_us/article/

8q8dab/15- million- connected- cameras- ddos- botnet- brian-

krebs, 2016. [By Lorenzo Franceschi-Bicchierai].

[13] 2017 Roundup Of Internet Of Things Forecasts. https://www.

forbes.com/sites/louiscolumbus/2017/12/10/2017-roundup-

of-internet-of-things-forecasts/#60af83c51480, 2017.

[14] Devil’s ivy: Flaw in widely used third-party code impacts millions.
https://blog.senr.io/blog/devils-ivy-flaw-in-widely-used-

third-party-code-impacts-millions, 2017.

[15] Here’s how to use the cia’s “weeping angel” smart tv hack. https://

www.theverge.com/2017/4/25/15421326/smart-tv-hacking-cia-

samsung-weeping-angel-vulnerability, 2017.

[16] Omnet++ Discrete Event Simulator. https://omnetpp.org/, 2017.

[17] Radware. brickerbot results in pdos attack. https : / /

security . radware . com / ddos - threats - attacks / brickerbot -

pdos-permanent-denial-of-service/, 2017.

[18] The 5 Worst Examples of IoT Hacking and Vulnerabilities in Recorded
History. https://www.iotforall.com/5-worst-iot-hacking-

vulnerabilities/, 2017.

[19] Fbi identifies biggest cyber threats as iot, ransomware, compro-
mised email. https : / / governmenttechnologyinsider . com /

fbi-identifies-biggest-cyber-threats-as-iot-ransomware-

compromised-email/#.XG05SPrPw2w, 2018.

[20] Is your smart tv at risk of being hacked? consumer reports warns
millions of samsung and roku devices have “easy-to-find security
flaws”. https://www.dailymail.co.uk/sciencetech/article-

5373619/Millions-smart-TVs-hacked-Consumer-Reports-says.

html, 2018.

[21] Intel Software Guard Extensions. https://software.intel.com/

en-us/sgx, 2019. [Online; accessed October 15, 2019].

[22] Mirai botnet ddos attack type. https://www.corero.com/

resources / ddos - attack - types / mirai - botnet - ddos - attack .

html, 2019.

[23] Pewdiepie hackers take over google smart tv systems. https://www.

bbc.com/news/technology-46746592, 2019.

161

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

[24] Tigist Abera, N. Asokan, Lucas Davi, Jan-Erik Ekberg, Thomas Ny-
man, Andrew Paverd, Ahmad-Reza Sadeghi, and Gene Tsudik. C-
FLAT: control-flow attestation for embedded systems software. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, Vienna, Austria, October 24-28, 2016,
pages 743–754, 2016.

[25] Tigist Abera, N Asokan, Lucas Davi, Farinaz Koushanfar, Andrew
Paverd, Ahmad-Reza Sadeghi, and Gene Tsudik. Invited – Things,
Trouble, Trust: on Building Trust in IoT Systems. In Proceedings
of the 53rd Annual Design Automation Conference, page 121. ACM,
2016.

[26] Tigist Abera, Raad Bahmani, Ferdinand Brasser, Ahmad Ibrahim,
Ahmad-Reza Sadeghi, and Matthias Schunter. Diat: Data integrity
attestation for resilient collaboration of autonomous system. In 26th
Annual Network & Distributed System Security Symposium (NDSS),
January 2019.

[27] David Airehrour, Jairo A. Gutierrez, and Sayan Kumar Ray. Sectrust-
rpl: A secure trust-aware rpl routing protocol for internet of things.
Future Generation Computer Systems, pages 1–18, 2018.

[28] M. N. Aman and B. Sikdar. Att-auth: A hybrid protocol for industrial
iot attestation with authentication. IEEE Internet of Things Journal,
2018.

[29] M. Ambrosin, M. Conti, R. Lazzeretti, M. Masoom Rabbani, and
S. Ranise. PADS: Practical Attestation for Highly Dynamic Swarm
Topologies. ArXiv e-prints.

[30] M. Ambrosin, M. Conti, R. Lazzeretti, M. Masoom Rabbani, and
S. Ranise. PADS: Practical Attestation for Highly Dynamic Swarm
Topologies. In International Workshop on Secure Internet of Things,
SIoT’18. IEEE, 2018.

[31] M. Ambrosin, M. Conti, R. Lazzeretti, MM. Rabbani, and S. Ranise.
Collective remote attestation at the internet of things scale: State-of-
the-art and future challenges. Under Submission in IEEE Communi-
cations Surveys Tutorials, 2019.

[32] Moreno Ambrosin, Mauro Conti, Ahmad Ibrahim, Gregory Neven,
Ahmad-Reza Sadeghi, and Matthias Schunter. SANA: Secure and
Scalable Aggregate Network Attestation. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Secu-
rity, CCS ’16, pages 731–742, 2016.

162

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

[33] Moreno Ambrosin, Hossein Hosseini, Kalikinkar Mandal, Mauro Conti,
and Radha Poovendran. Despicable me (ter): Anonymous and fine-
grained metering data reporting with dishonest meters. In Porceedings
of the 2016 IEEE Conference on Communications and Network Secu-
rity, CNS ’16, pages 163–171, 2016.

[34] Mahmoud Ammar, Mahdi Washha, and Bruno Crispo. Wise:
Lightweight intelligent swarm attestation scheme for iot (the verifier’s
perspective). In 2018 14th International Conference on Wireless and
Mobile Computing, Networking and Communications (WiMob), pages
1–8. IEEE, 2018.

[35] Mahmoud Ammar, Mahdi Washha, Gowri Sankar Ramabhadran, and
Bruno Crispo. slimiot: Scalable lightweight attestation protocol for
the internet of things. In 2018 IEEE Conference on Dependable and
Secure Computing (DSC), pages 1–8. IEEE, 2018.

[36] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie
Bursztein, Jaime Cochran, Zakir Durumeric, J. Alex Halderman, Luca
Invernizzi, Michalis Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma,
Joshua Mason, Damian Menscher, Chad Seaman, Nick Sullivan, Kurt
Thomas, and Yi Zhou. Understanding the mirai botnet. In 26th
USENIX Security Symposium, USENIX Security 2017, Vancouver,
BC, Canada, August 16-18, 2017., pages 1093–1110, 2017.

[37] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A secure and reliable
bootstrap architecture. In IEEE S&P ’97, 1997.

[38] ARM ARM. Security technology building a secure system using trust-
zone technology (white paper). ARM Limited, 2009.

[39] Will Arthur and David Challener. A practical guide to TPM 2.0: using
the Trusted Platform Module in the new age of security. Apress, 2015.

[40] N Asokan, Ferdinand Brasser, Ahmad Ibrahim, Ahmad-Reza Sadeghi,
Matthias Schunter, Gene Tsudik, and Christian Wachsmann. SEDA:
Scalable embedded device attestation. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Secu-
rity, CCS ’15, pages 964–975, 2015.

[41] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-
based encryption. In 2007 IEEE Symposium on Security and Privacy
(SP ’07), 2007.

[42] Vincent D Blondel, Julien M Hendrickx, Alex Olshevsky, and John N
Tsitsiklis. Convergence in multiagent coordination, consensus, and

163

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

flocking. In Proceedings of the 44th IEEE European Control Confer-
ence on Decision and Control, CDC-ECC ’05, pages 2996–3000. IEEE,
2005.

[43] IEEE Standards Board. Ieee guide for measurement of environmental
sensitivities of standard frequency generators. IEEE Std 1193-2003
(Revision of IEEE Std 1193-1994), 2004.

[44] Dan Boneh and Matt Franklin. Identity-based encryption from the
Weil pairing. SIAM J. of Computing, 32(3), 2003.

[45] Carsten Bormann, Mehmet Ersue, and Ari Keranen. Terminology for
Constrained-Node Networks. RFC 7228, May 2014.

[46] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah.
Randomized gossip algorithms. IEEE/ACM Transactions on Network-
ing (TON), 14(SI):2508–2530, 2006.

[47] Ferdinand Brasser, Brahim El Mahjoub, Ahmad-Reza Sadeghi, Chris-
tian Wachsmann, and Patrick Koeberl. Tytan: tiny trust anchor for
tiny devices. In Proceedings of the 52nd Design Automation Confer-
ence, DAC ’15, pages 1–6, 2015.

[48] Sergey Bratus, Nihal D’Cunha, Evan Sparks, and Sean W. Smith.
Toctou, traps, and trusted computing. In Proceedings of the 1st Inter-
national Conference on Trusted Computing and Trust in Information
Technologies: Trusted Computing - Challenges and Applications, Trust
’08, 2008.

[49] Xavier Carpent, Karim ElDefrawy, Norrathep Rattanavipanon, and
Gene Tsudik. LIghtweight Swarm Attestation: a Tale of Two LISA-s.
In Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security, ASIACCS ’17, pages 86–100. ACM, 2017.

[50] Xavier Carpent, Norrathep Rattanavipanon, and Gene Tsudik. ERAS-
MUS: efficient remote attestation via self- measurement for unat-
tended settings. CoRR, abs/1707.09043.

[51] Xavier Carpent, Gene Tsudik, and Norrathep Rattanavipanon. Eras-
mus: Efficient remote attestation via self-measurement for unattended
settings. In 2018 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 1191–1194. IEEE, 2018.

[52] Stephen Checkoway, Damon McCoy, Danny Anderson, Brian Kan-
tor, Hovav Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis,
Franziska Roesner, and Tadayoshi Kohno. Comprehensive experimen-
tal analyses of automotive attack surfaces. In David Wagner, editor,
Proceedings USENIX Security 2011. USENIX, 2011.

164

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

[53] Y.-G. Choi, J. Kang, and D. Nyang. Proactive code verification pro-
tocol in wireless sensor network. In ICCSA’07, pages 1085–1096.
Springer-Verlag, 2007.

[54] M. Conti, E. Dushku, LV. Mancini, MM. Rabbani, and S. Ranise.
Sara: Secure asynchronous remote attestation for iot systems. Un-
der Submission in IEEE Transactions on Information Forensics and
Security, 2019.

[55] Mauro Conti, Edlira Dushku, and Luigi V. Mancini. Distributed ser-
vices attestation in iot. From Database to Cyber Security: Essays Ded-
icated to Sushil Jajodia on the Occasion of His 70th Birthday, 2018.

[56] Mauro Conti, Edlira Dushku, and Luigi V. Mancini. Radis: Remote
attestation of distributed iot services. 2019 Sixth International Con-
ference on Software Defined Systems (SDS), pages 25–32, 2018.

[57] Mauro Conti, Edlira Dushku, and Luigi V. Mancini. RADIS: remote
attestation of distributed iot services. CoRR, abs/1807.10234, 2018.

[58] Mauro Conti, Pallavi Kaliyar, and Chhagan Lal. Remi: A reliable
and secure multicast routing protocol for iot networks. In Proceedings
of the 12th International Conference on Availability, Reliability and
Security, ARES ’17, 2017.

[59] Mauro Conti, Pallavi Kaliyar, Md Masoom Rabbani, and Silvio
Ranise. Split: A secure and scalable rpl routing protocol for inter-
net of things. In 2018 14th International Conference on Wireless and
Mobile Computing, Networking and Communications (WiMob), pages
1–8. IEEE, 2018.

[60] Moteiv Corporation. Tmote sky details. http://www.snm.ethz.ch/

snmwiki/pub/uploads/Projects/tmote_sky_datasheet.pdf, 2006.

[61] Andrei Costin, Jonas Zaddach, Aurélien Francillon, and Davide
Balzarotti. A large-scale analysis of the security of embedded
firmwares. In Proceedings of the 23rd USENIX Conference on Security
Symposium.

[62] Quynh Dang. Changes in federal information processing standard
(fips) 180-4, secure hash standard. Cryptologia, 37(1):69–73, 2013.

[63] P. Dasgupta. A multiagent swarming system for distributed automatic
target recognition using unmanned aerial vehicles. IEEE Transactions
on Systems, Man, and Cybernetics - Part A: Systems and Humans,
38(3):549–563, 2008.

165

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

[64] Ghada Dessouky, Tigist Abera, Ahmad Ibrahim, and Ahmad-Reza
Sadeghi. Litehax: Lightweight hardware-assisted attestation of pro-
gram execution. In Proceedings of the International Conference on
Computer-Aided Design, ICCAD ’18, pages 106:1–106:8, 2018.

[65] Ghada Dessouky, Shaza Zeitouni, Thomas Nyman, Andrew Paverd,
Lucas Davi, Patrick Koeberl, N Asokan, and Ahmad-Reza Sadeghi.
Lo-fat: Low-overhead control flow attestation in hardware. In Proceed-
ings of the 54th Annual Design Automation Conference 2017, page 24,
2017.

[66] Ketan Devadiga. Ieee 802 . 15 . 4 and the internet of things. 2011.

[67] Alexandros G Dimakis, Soummya Kar, José MF Moura, Michael G
Rabbat, and Anna Scaglione. Gossip algorithms for distributed signal
processing. Proceedings of the IEEE, 98(11):1847–1864, 2010.

[68] Jasenka Dizdarević, Francisco Carpio, Admela Jukan, and
Xavi Masip-Bruin. A survey of communication protocols for internet of
things and related challenges of fog and cloud computing integration.
ACM Comput. Surv., 51(6).

[69] Danny Dolev and Andrew Yao. On the security of public key protocols.
IEEE Transactions on information theory, 29(2):198–208, 1983.

[70] A. Dunkels. Contiki OS. http://www.contiki-os.org/download.

html.

[71] A. Dvir, T. Holczer, and L. Buttyan. Vera - version number and rank
authentication in rpl. In 2011 IEEE Eighth International Conference
on Mobile Ad-Hoc and Sensor Systems.

[72] Karim Eldefrawy, Gene Tsudik, Aurélien Francillon, and Daniele Per-
ito. SMART: Secure and Minimal Architecture for (Establishing Dy-
namic) Root of Trust. In Proceedings of the 19th Annual Network &
Distributed System Security Symposium, NDSS ’12, pages 1–15, 2012.

[73] P. England, B. Lampson, J. Manferdelli, and B. Willman. A trusted
open platform. Computer, 36(7):55–62, 2003.

[74] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-
Marie Kermarrec. The many faces of publish/subscribe. ACM Com-
put. Surv., 35(2):114–131, June 2003.

[75] Daniel J Fagnant and Kara Kockelman. Preparing a nation for au-
tonomous vehicles: opportunities, barriers and policy recommenda-
tions. Transportation Research Part A: Policy and Practice, 77:167–
181, 2015.

166

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

[76] Aurélien Francillon, Quan Nguyen, Kasper B Rasmussen, and Gene
Tsudik. A minimalist approach to remote attestation. In Proceedings
of the conference on Design, Automation & Test in Europe, DATE ’14,
page 244, 2014.

[77] Aurelien Francillon, Quan Nguyen, Kasper Bonne Rasmussen, and
Gene Tsudik. Systematic treatment of remote attestation. IACR Cryp-
tology ePrint Archive, 2012:713, 2012.

[78] B Ghaleb, A Y Al-Dubai, E Ekonomou, A Alsarhan, Y Nasser, L M
Mackenzie, and A Boukerche. A Survey of Limitations and Enhance-
ments of the IPv6 Routing Protocol for Low-Power and Lossy Net-
works: A Focus on Core Operations. IEEE Communications Surveys
Tutorials, 21(2):1607–1635, 2019.

[79] G. Glissa, A. Rachedi, and A. Meddeb. A secure routing protocol based
on RPL for internet of things. In 2016 IEEE Global Communications
Conference (GLOBECOM), pages 1–7, Dec 2016.

[80] Pawe l Gora and Inga Rüb. Traffic models for self-driving connected
cars. Transportation Research Procedia, 14:2207–2216, 2016.

[81] Mordechai Guri and Dima Bykhovsky. aIR-Jumper: Covert Air-Gap
Exfiltration/Infiltration via Security Cameras & Infrared (IR). Com-
puters & Security, 82:15–29, 2019.

[82] Annika Hinze, Kai Sachs, and Alejandro Buchmann. Event-based ap-
plications and enabling technologies. In Proceedings of the Third ACM
International Conference on Distributed Event-Based Systems, DEBS
’09, pages 1:1–1:15, New York, NY, USA, 2009. ACM.

[83] A. Ibrahim, A. Sadeghi, and G. Tsudik. Us-aid: Unattended scalable
attestation of iot devices. In 2018 IEEE 37th Symposium on Reliable
Distributed Systems (SRDS), pages 21–30, Oct 2018.

[84] Ahmad Ibrahim, Ahmad-Reza Sadeghi, Gene Tsudik, and Shaza
Zeitouni. DARPA: Device attestation resilient to physical attacks.
In Proceedings of the 9th ACM Conference on Security and Privacy in
Wireless and Mobile Networks, WiSec ’16, pages 171–182, 2016.

[85] Ahmad Ibrahim, Ahmad-Reza Sadeghi, and Shaza Zeitouni. SeED:
Secure Non-Interactive Attestation for Embedded Devices. In Proceed-
ings of the 10th ACM Conference on Security and Privacy in Wireless
and Mobile Networks, WiSec ’17, pages 64–74, 2017.

[86] A. G. Illera and J. V. Vidal. Lights off! The darkness of the smart
meters. In In BlackHat Europe, 2014.

167

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

[87] Colin J. Fidge. Timestamps in message-passing systems that preserve
partial ordering. Proceedings of the 11th Australian Computer Science
Conference, 10:56–66, 02 1988.

[88] Vasileios Karagiannis, Periklis Chatzimisios, Francisco Vazquez-
Gallego, and Jesus Alonso-Zarate. A survey on application layer pro-
tocols for the internet of things. Transaction on IoT and Cloud com-
puting, 3(1):11–17, 2015.

[89] Chongkyung Kil, Emre Can Sezer, Ahmed M. Azab, Peng Ning, and
Xiaolan Zhang. Remote attestation to dynamic system properties: To-
wards providing complete system integrity evidence. 2009 IEEE/IFIP
International Conference on Dependable Systems & Networks, pages
115–124, 2009.

[90] H. S. Kim, J. Ko, D. E. Culler, and J. Paek. Challenging the ipv6
routing protocol for low-power and lossy networks (rpl): A survey.
IEEE Communications Surveys Tutorials, 19, 2017.

[91] Patrick Koeberl, Steffen Schulz, Ahmad-Reza Sadeghi, and Vijay
Varadharajan. TrustLite: A security architecture for tiny embedded
devices. In Proceedings of the 9th European Conference on Computer
Systems, EuroSys ’14, page 10, 2014.

[92] Florian Kohnhäuser, Niklas Büscher, Sebastian Gabmeyer, and Stefan
Katzenbeisser. Scapi: a scalable attestation protocol to detect software
and physical attacks. In Proceedings of the 10th ACM Conference on
Security and Privacy in Wireless and Mobile Networks, WiSec ’17,
pages 75–86, 2017.

[93] Florian Kohnhäuser, Niklas Büscher, and Stefan Katzenbeisser. Salad:
Secure and lightweight attestation of highly dynamic and disruptive
networks. In Proceedings of the 2018 on Asia Conference on Computer
and Communications Security, pages 329–342, 2018.

[94] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas. Ddos in the iot:
Mirai and other botnets. Computer, 50(7):80–84, 2017.

[95] Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and
Jeffrey Voas. DDoS in the IoT: Mirai and Other Botnets. Computer,
50(7):80–84, 2017.

[96] Ajay D. Kshemkalyani, Ashfaq Khokhar, and Min Shen. Encoded
vector clock: Using primes to characterize causality in distributed sys-
tems. In Proceedings of the 19th International Conference on Dis-
tributed Computing and Networking, ICDCN ’18, pages 12:1–12:8.
ACM, 2018.

168

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

[97] Leslie Lamport. Time, clocks, and the ordering of events in a dis-
tributed system. Commun. ACM, 21(7):558–565, July 1978.

[98] Ralph Langner. Stuxnet: Dissecting a cyberwarfare weapon. IEEE
Security & Privacy, 9(3):49–51, 2011.

[99] P. Levis, T. Clausen, J. Hui, O. Gnawali, and J. Ko. The trickle
algorithm (rfc 6206). 2011.

[100] Shahid Raza Linus Wallgren and Thiemo Voigt. Routing attacks and
countermeasures in the RPL-based internet of things. International
Journal of Distributed Sensor Networks, 2013.

[101] Friedemann Mattern et al. Virtual time and global states of distributed
systems. pages 215–226, 1989.

[102] F Meneghello, M Calore, D Zucchetto, M Polese, and A Zanella. IoT:
Internet of Threats? A Survey of Practical Security Vulnerabilities in
Real IoT Devices. IEEE Internet of Things Journal, 6(5):8182–8201,
oct 2019.

[103] S. Mohan, M. Asplund, G. Bloom, A. Sadeghi, A. Ibrahim, N. Sala-
jageh, P. Griffioen, and B. Sinipoli. Special session: The future of
iot security. In 2018 International Conference on Embedded Software
(EMSOFT), 2018.

[104] N Neshenko, E Bou-Harb, J Crichigno, G Kaddoum, and N Ghani.
Demystifying IoT Security: An Exhaustive Survey on IoT Vulnerabil-
ities and a First Empirical Look on Internet-Scale IoT Exploitations.
IEEE Communications Surveys Tutorials, 21(3):2702–2733, 2019.

[105] Job Noorman, Pieter Agten, Wilfried Daniels, Raoul Strackx, An-
thony Van Herrewege, Christophe Huygens, Bart Preneel, Ingrid Ver-
bauwhede, and Frank Piessens. Sancus: Low-cost trustworthy exten-
sible networked devices with a zero-software trusted computing base.
In USENIX Security Symposium, pages 479–494, 2013.

[106] Ivan De Oliveira Nunes, Ghada Dessouky, Ahmad Ibrahim, Nor-
rathep Rattanavipanon, Ahmad-Reza Sadeghi, and Gene Tsudik. To-
wards systematic design of collective remote attestation protocols. In
The 39th International Conference on Distributed Computing Systems
(ICDCS) 2019, 2019.

[107] Reza Olfati-Saber and Richard M Murray. Consensus problems in
networks of agents with switching topology and time-delays. IEEE
Transactions on automatic control, 49(9):1520–1533, 2004.

169

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

[108] Reza Olfati-Saber and Jeff S Shamma. Consensus filters for sensor
networks and distributed sensor fusion. In Proceedings of the 44th
IEEE Conference on Decision and Control, 2005 and 2005 European
Control Conference, CDC-ECC ’05, pages 6698–6703, 2005.

[109] Yin Minn Pa Pa, Shogo Suzuki, Katsunari Yoshioka, Tsutomu Mat-
sumoto, Takahiro Kasama, and Christian Rossow. Iotpot: Analysing
the rise of iot compromises. In 9th USENIX Workshop on Offensive
Technologies (WOOT 15), Washington, D.C., 2015. USENIX Associ-
ation.

[110] Daniele Perito and Gene Tsudik. Secure code update for embedded
devices via proofs of secure erasure. In ESORICS’10, pages 643–662.
Springer, 2010.

[111] Heiner Perrey, Martin Landsmann, Osman Ugus, Matthias Wählisch,
and Thomas C. Schmidt. TRAIL: Topology authentication in RPL. In
Proceedings of the 2016 International Conference on Embedded Wire-
less Systems and Networks, EWSN ’16.

[112] P. Pongle and G. Chavan. A survey: Attacks on rpl and 6lowpan in iot.
In 2015 International Conference on Pervasive Computing (ICPC),
pages 1–6, Jan 2015.

[113] C. Pu. Mitigating dao inconsistency attack in rpl-based low power
and lossy networks. In 2018 IEEE 8th Annual Computing and Com-
munication Workshop and Conference (CCWC).

[114] Shahid Raza, Linus Wallgren, and Thiemo Voigt. Svelte: Real-time in-
trusion detection in the internet of things. Ad Hoc Networks, 11:2661–
2674, 2013.

[115] Wei Ren, Randal W Beard, and Ella M Atkins. A survey of consen-
sus problems in multi-agent coordination. In Proceedings of the 2005
American Control Conference, ACC ’15, pages 1859–1864. IEEE, 2005.

[116] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage.
Return-oriented programming: Systems, languages, and applications.
ACM Transactions on Information and System Security, 15(1):2, 2012.

[117] Imed Romdhani, Ahmed Al-Dubai, Mamoun Qasem, Craig Thomson,
Barraq Ghaleb, and Isam Wadhaj. Cooja simulator manual. Technical
report, 2016.

[118] Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal. Pro-
grammable self-assembly in a thousand-robot swarm. Science,
345(6198):795–799, 2014.

170

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

[119] Reza Olfati Saber and Richard M Murray. Consensus protocols for
networks of dynamic agents. IEEE, 2003.

[120] Rashmi Sahay, G. Geethakumari, and Koushik Modugu. Attack graph
based vulnerability assessment of rank property in rpl-6lowpan in iot.
2018 IEEE 4th World Forum on Internet of Things (WF-IoT).

[121] Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert van Doorn.
Design and implementation of a tcg-based integrity measurement ar-
chitecture. In Proceedings of the 13th Conference on USENIX Security
Symposium - Volume 13, SSYM’04, pages 16–16, 2004.

[122] Symantec Security. IoT devices being increasingly used for DDoS at-
tacks. https://www.symantec.com/connect/blogs/iot-devices-being-
increasingly-used-ddos-attacks/.

[123] Arvind Seshadri, Mark Luk, and Adrian Perrig. Sake: Software at-
testation for key establishment in sensor networks. Ad Hoc Netw.,
9(6):1059–1067, August 2011.

[124] Arvind Seshadri, Mark Luk, Adrian Perrig, Leendert van Doom, and
Pradeep K. Khosla. Pioneer: Verifying code integrity and enforcing
untampered code execution on legacy systems. In Malware Detection,
pages 253–289. 2007.

[125] Arvind Seshadri, Mark Luk, Adrian Perrig, Leendert van Doorn, and
Pradeep Khosla. Scuba: Secure code update by attestation in sen-
sor networks. In Proceedings of the 5th ACM workshop on Wireless
security, pages 85–94. ACM, 2006.

[126] Arvind Seshadri, Adrian Perrig, Leendert Van Doorn, and Pradeep
Khosla. SWATT: Software-based attestation for embedded devices.
In Proceedings of the 2004 IEEE Symposium on Security & Privacy,
IEEE S&P ’04, pages 272–282, 2004.

[127] M. Shaneck, K. Mahadevan, V. Kher, and Y. Kim. Remote software-
based attestation for wireless sensors. In ESAS’05, pages 27–41.
Springer-Verlag, 2005.

[128] Zach Shelby, Klaus Hartke, and Carsten Bormann. The Constrained
Application Protocol (CoAP). RFC 7252, 2014.

[129] Sabrina Sicari, Alessandra Rizzardi, Luigi Grieco, and Alberto Coen-
Porisini. Security, privacy and trust in internet of things: The road
ahead. Computer Networks, 76, 01 2015.

[130] Diomidis Spinellis. Reflection as a mechanism for software integrity
verification. ACM Transactions on Information and System Security
(TISSEC), 3(1):51–62, 2000.

171

M. Rabbani REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS

[131] Rodrigo Vieira Steiner and Emil Lupu. Attestation in wireless sensor
networks: A survey. ACM Computing Surveys, 49(3):51, 2016.

[132] Raoul Strackx, Frank Piessens, and Bart Preneel. Efficient isolation
of trusted subsystems in embedded systems. In SecureComm, 2010.

[133] D. Chiu T. Yeh and K. Lu. Persirai. New internet of things (iot) botnet
targets ip cameras. https://blog.trendmicro.com/trendlabs-

security-intelligence/persirai-new-internet-things-iot-

botnet-targets-ip-cameras/.

[134] Kimon P Valavanis and George J Vachtsevanos. Handbook of un-
manned aerial vehicles. Springer Publishing Company, Incorporated,
2014.

[135] J. Vliegen, M. M. Rabbani, M. Conti, and N. Mentens. Sacha: Self-
attestation of configurable hardware. In 2019 Design, Automation
Test in Europe Conference Exhibition (DATE), pages 746–751, March
2019.

[136] M Mitchell Waldrop et al. No drivers required. Nature, 518(7537):20–
20, 2015.

[137] Y. Wang, G. Attebury, and B. Ramamurthy. A survey of security
issues in wireless sensor networks. IEEE Communications Surveys
Tutorials, 8(2):2–23, Second 2006.

[138] Rob Waugh. Smart TV hackers are filming people having sex on their
sofas and putting it on porn sites. http://metro.co.uk/2016/

05/23/smart-tv-hackers-are-filming-people-having-sex-on-

their-sofas-and-putting-it-on-porn-sites-5899248/, 2016.

[139] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pis-
ter, R. Struik, J. Vasseur, and R. Alexander. RPL: IPv6 routing pro-
tocol for low-power and lossy networks (rfc 6550). 2012.

[140] Vikas Yadav and Murti V Salapaka. Distributed protocol for deter-
mining when averaging consensus is reached. In 45th Annual Allerton
Conference, pages 715–720, 2007.

[141] Ashkan Yousefpour, Caleb Fung, Tam Nguyen, Krishna Kadiyala,
Fatemeh Jalali, Amirreza Niakanlahiji, Jian Kong, and Jason P Jue.
All one needs to know about fog computing and related edge comput-
ing paradigms: a complete survey. Journal of Systems Architecture,
2019.

[142] S. Zeitouni, G. Dessouky, O. Arias, D. Sullivan, A. Ibrahim, Y. Jin, and
A. R. Sadeghi. Atrium: Runtime attestation resilient under memory

172

REMOTE ATTESTATION FOR SECURE INTERNET OF THINGS M. Rabbani

attacks. In 2017 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), Nov 2017.

[143] K. Zhang, X. Liang, R. Lu, and X. Shen. Sybil attacks and their
defenses in the internet of things. IEEE Internet of Things Journal,
1(5):372–383, 2014.

[144] Yun Zhou, Yuguang Fang, and Yanchao Zhang. Securing Wireless
Sensor Networks: a Survey. IEEE Communications Surveys Tutorials,
10(3):6–28, 2008.

173

	Introduction
	Research Motivation and Contribution
	State of the art techniques of Collective Remote Attestation
	Improving Collective Remote Attestation techniques
	Configurable-hardware enabled Remote Attestation
	Remote Attestation assisted applications

	Publications
	Patent
	Journal Publications
	Conference and Workshop Publications

	I State-of-the-art Techniques of Collective Remote Attestation
	Collective Remote Attestation: A survey
	Contribution
	Organization
	System and Security Model for Collective Remote Attestation
	System Model
	Reference Attacker Model for CRA

	Background: Device Remote Attestation
	State-of-the-art for Collective Remote Attestation
	Security Analysis
	Open Issues for Collective Remote Attestation
	Future directions
	Summary

	II Improving Collective Remote Attestation Techniques
	Practical Remote Attestation for dynamic networks
	Organization
	State of the Art and Limitations
	Idea and Contribution
	System Model and Assumptions
	System Model
	Security Model

	Requirements
	Preliminaries, Definitions and Notation
	Best Effort Collective Self-Attestation
	Minimum consensus
	Notation

	Our Proposal: PADS
	Protocol Rationale and Overview
	Protocol Details

	Implementation and Evaluation
	Implementation
	Evaluation

	Security Analysis
	Discussion
	Advantages
	Limitations

	Summary

	Secure Asynchronous Remote Attestation for IoT systems
	Organization
	Related Works
	Problem Statement
	Background
	Architectural properties of Publish/Subscribe
	Logical Clock Synchronization

	System model
	Adversary model and Security Requirements
	Adversary model
	Security requirements

	Our proposal: SARA
	Deployment and measurement
	Attestation
	Verification

	SARA internal working mechanism
	Interaction: SARA-Verifier
	Interaction: SARA-Prover

	Evaluation
	Simulation environment
	Runtime
	Energy Consumption
	Memory consumption

	Security Analysis
	Discussion
	Summary

	III Configurable-Hardware Enabled Remote Attestation
	Self-Attestation of Configurable Hardware
	Organization.
	Preliminaries
	FPGA
	Attestation Concept

	System and Adversary Model
	Related Work
	Software-based Attestation
	Hardware-based Attestation
	Hybrid Attestation

	Our Proposal: SACHa
	Contribution
	FPGA Architecture
	Attestation Protocol

	Proof-of-concept Implementation
	Implementation of the Protocol
	Implementation of the Architecture

	SACHa Evaluation
	Performance Evaluation
	Security Evaluation

	Summary

	Scalable Heterogeneous Layered Attestation
	Organization.
	Related Work
	System Assumptions and Adversary Model
	System Model and Entities
	Adversary Model
	Security Goals

	Our Proposal: SHeLA
	Tables
	Attestation Protocol
	Granularity depth
	Time and order

	Proof-of-concept implementation
	Setup
	FPGA architecture
	IoT nodes

	Evaluation
	Resources
	Runtime
	Memory consumption

	Security Analysis
	Discussion
	Summary

	IV Remote Attestation Assisted Applications
	Secure routing in RPL based IoT networks
	Contribution
	Organization

	Preliminaries
	Overview of Attestation
	Routing Protocol for Low Power and Lossy Networks (RPL)
	Threats and Previously proposed security solutions for RPL

	Our Proposal: SPLIT
	System Model
	Adversary Model
	SPLIT Design Considerations and Functioning
	SPLIT Working Methodology

	Simulation and Performance Evaluation
	Security Analysis
	Energy Consumption Analysis

	Summary

	Conclusions
	Summary of Contribution
	Security Issues in current Collective Remote Attestation Techniques
	Addressing shortcomings in CRA techniques
	Configurable-Hardware Assisted Remote Attestation Techniques
	Remote attestation assisted application

	Future Work
	Open challenges in State-of-the-art Techniques for Collective Remote Attestation
	Future works in Improving Collective Remote Attestation Techniques
	Future works in Configurable-Hardware Enabled Remote Attestation
	Future improvements in Remote attestation assisted IoT applications

