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Abstract

Electron and nuclear magnetic spectroscopies are powerful tools for studying molecular dy-
namics, being particularly sensitive to motions with relaxation times in the range of 10−9

- 10−6 s. This time window includes rigid body motions in fluids and ”soft” internal mo-
tions of molecules. Moreover, dynamics in this range comprehend proteins internal motions
responsible for relevant chemical-physical properties, like substrate recognition, activity and
folding.
In a typical electron spin resonance (ESR) experiment molecular motions affect considerably
the shape of the spectral line. In a nuclear magnetic resonance (NMR) experiment character-
istic relaxations times of the spin magnetization, i.e. T1, T2 and NOE, are directly affected
by internal mobility.
The aim of this Ph.D. work is the implementation of integrated theoretical / computational
methodologies for characterization of dynamical properties of molecules gathered from ESR
and NMR measurements. The starting point is a ”time coarse-graining” procedure that leads
to simplified models in which we introduce only dynamical characteristics that are relevant
to the physical observables considered. In particular, stochastic models are employed, based
on a number of structural parameters which are calculated. The idea is to treat these pa-
rameters at atomistic and / or mesoscopic level depending on their nature.
Software packages have been developed, comprehending E-SpiReS (Electron Spin Resonance
Simulation) for cw-ESR simulations, C++OPPS (COupled Probe Protein Smoluchowski) for
NMR simulations and DITE (DIffusion TEnsor) for the evaluation of dissipative proper-
ties of molecules. These programs have been built as user-friendly tools targeted for use by
experimentalists, as a kind of in silico extension of the laboratory equipment.
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Sommario

Tecniche efficaci nello studio della dinamica molecolare sono le spettroscopie di risonanza
elettronica e nucleare, essendo particolarmente sensibili a moti caratterizzati da scale dei
tempi nell’intervallo da 10−9 a 10−6 s, nel quale rientrano sia i moti globali (di corpo rigido),
sia le dinamiche interne di molecole in soluzione. È da notare che questa finestra comprende
anche la dinamica delle proteine, responsabile di proprietà chimico-fisiche molto importanti,
quali il riconoscimento del substrato, l’attività ed il folding.
Tipicamente, in un esperimento di risonanza di spin elettronico (RSE) i moti molecolari sono
responsabili dell’allargamento inomogeneo delle righe spettrali. Per quanto riguarda la riso-
nanza magnetica nucleare (RMN), invece, la dinamica molecolare influisce sui rilassamenti
T1, T2 e NOE.
Lo scopo di questo lavoro è l’implementazione di metodologie integrate teorico / com-
putazionali per la caratterizzazione della dinamica molecolare a partire da misure RSE e
RMN. In particolare, si proiettano i moti non importanti (”time coarse-graining”), otte-
nendo modelli per la dinamica relativamente semplici, che descrivono esclusivamente i moti
rilevanti rispetto all’osservabile fisico in esame. In particolare, si impiegano modelli stocastici
nei quali intervengono anche parametri strutturali che devono essere calcolati. Questi ultimi
sono descritti a livello atomistico e / o mesoscopico in base alla loro natura.
Sono stati sviluppati tre nuovi programmi: E-SpiReS (Electron Spin Resonance Simulation)
per la simulazione di spettri RSE in onda continua, C++OPPS (COupled Protein Probe
Smoluchowski) per simulazioni di misure di RMN e DITE (DIffusion TEnsor) per il calcolo
di proprietà dissipative di molecole con gradi di libertà interni. Nell’implementazione dei
programmi si è fatto attenzione alla semplicità d’uso, occupandosi anche dello sviluppo di
interfacce grafiche, con l’obiettivo di affiancare i programmi alla strumentazione di labora-
torio, come una sorta di estensione in silico della stessa.
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Chapter 1

Methodology: experiments and theory

It should be natural for a chemist to think about molecules as dynamical systems. Ther-

mal effects and interaction with other molecules cause both internal and global dynamics.

As a consequence, macroscopic chemical and physical properties of molecules depend on

their dynamics, in varying degrees depending on the physical observable considered. Mod-

ern physical-chemistry presents several examples: collision theory is built on the assumption

that molecules move (in order to collide) to react; temperature is a macroscopic physical

observable which is related to the average square velocity of particles; osmotic pressure in

biological cells is a macroscopic observable and it is kept at a set point value by the action

of Na / K pumps, which are molecular machines that carry out their function thanks to

internal dynamics; many enzymes can react and transform a substrate because of change of

conformation occurs in bonding and serve to create the right chemical environment around

the substrate.

If the role of theoretical chemistry is to interpret macroscopic observations in terms of

physico-chemical properties of molecules, dynamics is therefore a fundamental ingredient,

together with structural properties, that needs to be taken into account. Moreover, any

theoretical chemistry approach aimed at some degree of predictivity needs to include dy-

namics, especially in models targeted to the interpretation of processes occurring in large

biomolecules or complex (”soft”) materials.

In this work our main purpose is the development of integrated theoretical / computational
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Chapter 1. Methodology: experiments and theory

approaches for interpreting slow motions1 in complex molecular systems. The ideal final

target is the application to the study of dynamics (mobility) of proteins, or rather the inter-

pretation of spectroscopic data for gathering information on their dynamics.

Indeed, information on dynamics can be gathered only indirectly from experiments. A the-

oretical framework is therefore required to link macroscopic observations to molecular dy-

namics. A sensible plan of action is then i) choose a reference experimental technique which

is particularly sensible to the kind of motions we are interested in; ii) set up a framework for

describing dynamics and its influence on the chosen physical observable; iii) make a selection

of model systems, which serve to build and test theoretical models.

1.1 Experiments: using magnetic resonance to unravel

molecular motions

Interpretation of structural properties and dynamic behaviour of molecules in solution is of

fundamental importance to understand their stability, chemical reactivity and catalytic ac-

tion. High interest is especially on the development of new materials and study of biological

macromolecules. In general one has to treat complex systems in which motions are present

in a wide range of time scales encompassing global dynamics (µs), domains dynamics (ns),

localized fluctuations involving selected chemical groups (ps and fs).

Experimental determination of dynamical properties of molecular systems is based on sophis-

ticated spectroscopic techniques, which are employed to investigate the dynamic behaviour

of molecules and macromolecules in solutions and to understand their reactivity. Physico-

chemical properties of molecules in solution depend on the action of different motions at

several time and length scales, and information on multiscale dynamics can be gained, in

principle, by a variety of spectroscopic techniques, magnetic (nuclear magnetic resonance,

NMR, and electron spin resonance, ESR) and optic (fluorescence polarization anisotropy,

FPA, dynamic light scattering, DLS, and time resolved Stokes shift, TRSS). In this work

we are interested in the investigation of slow motions, such as solvent cage effects in liquid

crystals, collective dynamics in proteins, fluctuations of membranes, etc. The most sensible

1i.e. for all practical purposes in the range 10−9 − 10−6 s
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1.1. Experiments: using magnetic resonance to unravel molecular motions

spectroscopic techniques to such motions are magnetic spectroscopies, both electron spin

resonance (ESR) and nuclear magnetic resonance (NMR). This means that slow motional

processes have characteristic time scales that are comparable to that of spin (electronic or

nuclear) relaxation.

ESR

ESR and theoretical chemistry have been entangled since the beginning of ESR studies. On

one hand the rich and detailed information hidden in ESR spectra has been a challenge for

physico-chemical interpretations and computational models. On the other hand ESR spec-

troscopists have been always looking for better tools helping in interpreting the spectra. The

intrinsic resolution of ESR spectra, together with the unique role played by paramagnetic

probes in providing information on their environment, make in principle ESR one of the

most powerful methods of investigation on the electron distribution in molecules, and on

the properties of their environments. The tools needed by ESR spectroscopists are from the

world of quantum mechanics calculations, as far as the parameters of the spin Hamiltonian

are concerned, and from the world of molecular dynamics and statistical thermodynamics

for the spectral line shapes.

Because of its favourable time scale, ESR experiments can be highly sensitive to the details

of the rotational and internal dynamics. In particular, with the advent of very high field

ESR corresponding to frequencies above 140 GHz, the rotational dynamics of spin-labeled

molecules observed by ESR is more commonly found to be in the so-called slow motional

regime than is the case at conventional ESR frequencies (e.g., 9.5 GHz). For this regime,

the spectral line shapes take on a complex form which is found to be sensitive to the mi-

croscopic details of the motional process. This is to be contrasted with the fast motional

regime, where simple Lorentzian line shapes are observed, and only estimates of molecular

parameters (e.g., diffusion tensor values) are obtained independently from the microscopic

details of the molecular dynamics. The interpretation of slow motional spectra requires an

analysis based upon sophisticated theory, as it will be underlined in the next section.

ESR spectroscopy is applied extensively to material science and biochemistry. An example is

given in the search of new materials with tailored magnetic properties, which has intensified

in recent years. Here ESR can be employed profitably for characterizing novel stable radicalic
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systems, and a currently studied case is given, for instance, by nitronylnitroxide free radicals

[2, 3, 4].

High interest is focused on the study of the dynamics of biological molecules, like proteins

and, in particular, electron spin resonance measurements performed on proteins via site

directed spin labelling (SDSL) is highly informative [5, 6, 7]. The wealth of dynamic infor-

mation which can be extracted from a continuous wave electron spin resonance (cw-ESR)

or electron - nuclei double resonance (ENDOR) spectrum in SDSL measured is, at present

limited experimentally by the difficulty of obtaining extensive multi frequency data on spin-

labelled protein and theoretically by the necessity of employing computationally efficient

dynamic models. Nitroxide radicals are widely employed as spin probes. Nitroxide spin-label

studies with high-frequency ESR and two-dimensional Fourier transform ESR, due to sensi-

tivity of the spin label to its surroundings, enable one to monitor the details of the complex

molecular dynamics. These studies can, for instance, provide time resolution to studies of

functional dynamics of proteins.

NMR

NMR spectroscopy is nowadays considered ”the” most important experimental technique

in the interpretation of molecular dynamics of proteins [8, 9]. The most relevant physical

observables in standard NMR measurements are the T1, T2 and NOE relaxations of 15N, 2H

and 13C nuclei, which are very sensitive to local dynamics. Usually, 15N relaxation is em-

ployed in the study of backbone dynamics of the protein [10, 11, 12]. 13C relaxation allows

to investigate both backbone and lateral chain dynamics [10, 12, 13, 14]. Finally, deuterium

relaxation is mainly informative for motions of lateral chains, especially via dynamical re-

laxation of methyl groups [13, 14].

The large amount of potential information, which can be extracted from NMR observa-

tions, comes from the fact that isotopic enrichment can be targeted to single residues of

the protein, leading to the possibility to understand localized dynamics (e.g. studying con-

formational motions specifically in the active site of the protein). Moreover, comparison of

data coming from different residues of the same protein permits to make spatial (structural)

considerations.

NMR relaxation data depends on dipolar (15N and 13C) and quadrupolar (2H) interactions,
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chemical shift anisotropy and cross-correlation effects. It is well known from Bloch theory

[15] that NMR observables can be described as the spectral densities of the magnetic inter-

actions. This is the conjunction point between macroscopic and molecular descriptions: the

spectral densities are calculated within the theoretical framework describing the dynamics

of the system.

1.2 Theory: stochastic modelling

It is convenient to clarify some assumptions that will be used in this work for both electronic

and nuclear spectroscopies.

We shall treat only diluted solutions, for which we can say that every probe in solution is

independent (”isolated”) and the total spin magnetization is simply the sum of the spin

magnetizations of all the molecules. So we concentrate our attention only on single probe

systems unless more paramagnetic centres are present on the same probe. In dilute solutions

we can treat independently the dynamics of the probes. So, instead of averaging the physical

observable, i.e. the spin magnetization, over the instantaneous positions of all the probes we

simply average over the trajectory of only one representative probe.

A second assumption is that spin relaxation occurs without disturbing the equilibrium dis-

tribution of the dynamical coordinates. This means that the average of a physical observable

is done over a macroscopic system at equilibrium.

Finally, we consider only linear responses, i.e. no intense fields causing saturation and no

presence of oscillating fields are accounted for. We are indeed interested in systems in which

at a time t < 0 a field disturbs the spin steady state, causing a deviation from equilibrium

linear with the field. Then at t = 0 the perturbation is turned off and we describe the spin

relaxation back to the steady state. Treatment of non-linear responses is well known [16],

but it goes beyond the purposes of this work.

In general, the physical observable that gives the instantaneous spin state is the spin magne-

tization M(t). Following the spin relaxation means following the decay of the magnetization

back to its steady state value M(0) determined by the static external field. When the magne-

tization decays to its equilibrium value, it dissipates the effect induced by the perturbation.

In magnetic resonance, we say that the dynamics of the molecule induces relaxation. On
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the basis of standard linear response theory we are interested in the evaluation of the auto-

correlation function

G(t) = 〈M(t)M(0)〉 (1.1)

which describes how the spin magnetization relaxes to the steady state.

The calculation of ESR and NMR observables can be in principle based on the complete

solution of Schrödinger equation for the system made of paramagnetic probe + explicit

solvent molecules. Given the Hamiltonian Ĥ({ri}, {Rk}, {qα}), we can write the general

expression

Ĥ({ri}, {Rk}, {qα}) = Ĥprobe({ri}, {Rk}) + Ĥprobe−solvent({ri}, {Rk}, {qα}) +

+Ĥsolvent({qα}) (1.2)

where probe and solvent terms are separated. Here we are explicitly considering i) electronic

coordinates {ri} of the paramagnetic probe (where index i runs on all probe electrons), ii)

nuclear coordinates {Rk} (where index k runs on all ρ-vibrational nuclear coordinates) and

iii) coordinates {qα}, in which we include all degrees of freedom of all solvent molecules,

each labelled by index α. The basic object of study, to which any spectroscopic observable

can be linked, is given by the density matrix ρ̂({ri}, {Rk}, {qα}, t), which in turn is obtained

from the Liouville equation

∂

∂t
ρ̂({ri}, {Rk}, {qα}, t) = −i

[
Ĥ({ri}, {Rk}, {qα}), ρ̂({ri}, {Rk}, {qα}, t)

]

= −L̂({ri}, {Rk}, {qα})ρ̂({ri}, {Rk}, {qα}, t) (1.3)

Solving eq. 1.3 in time - for instance via an ab initio molecular dynamics scheme - allows in

principle the direct evaluation of ρ̂({ri}, {Rk}, {qα}, t) and hence calculation of any molec-

ular property. However, significant approximations are possible, which are basically rooted

in time-scale separation.

Averaging a probe Hamiltonian with respect to femtoseconds and sub-picoseconds dynamics,

pertaining to probe electronic coordinates, leaves us with only nuclear coordinates of probe

and solvent molecules. Averaging on the electron coordinates is the usual implicit procedure

for obtaining a spin Hamiltonian from the complete Hamiltonian of the radical. This system
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can be treated within the framework of classical molecular dynamics (MD), where the ef-

fect of the electrons is introduced in the classical potential terms describing the interactions

among nuclei. Time evolution of the system is calculated solving the Newton’s equations

of motion. Given the shape of the Hamiltonian function, it is possible solve the Liouville

equation for the density matrix of the system

∂

∂t
ρ({Rk}, {qα}, t) = −i [H({Rk}, {qα}), ρ({Rk}, {qα}, t)] (1.4)

and from the density matrix, the spin magnetization is given as

MXY (t) = Tr {(MX + iMY ) ρ({Rk}, {qα}, t)} (1.5)

To follow this approach it is important to ensure that the MD trajectory is at equilibrium,

allowing to sample the whole phase space of conformations. This requirement implies that

the trajectory covers all the time scales of the dynamics of the system.

Our main purpose is to apply the modelling of magnetic resonance to complex systems with

many degrees of freedom. The overall mobility of these systems is characterized by time scales

ranging from fs - ps motions of small groups of atoms to ns - µs motions (e.g. of proteins

domains). Magnetic relaxation is mostly affected by slow motions, so the trajectory should

be of length of µs. Also, fast motions may, in general, be coupled to the relaxation of slow

motions, implying that the time steps in the MD simulation have to be kept on the order of

fs. At present it is not possible to perform such simulations in large molecular systems (say

above 20 - 30 kDalton). An alternative strategy is based on the explicit introduction of a

modellistic approach. The main idea is that given a physical observable, we can identify a

subset of the coordinates of the system which we refer to as relevant coordinates, that are

strongly coupled to the observable. In other words, only part of the dynamics of the system

influences in a relevant way the physical observable of interest. A usual way to proceed is

to separate the nuclear coordinates of the probe into two main sets: fast probe vibrational

coordinates Rfast and slow probe coordinates, i.e. intermolecular rotation degrees of freedom

and, if required, intra molecular ”soft” torsional degrees of freedom, Rslow, relaxing at least in

a picoseconds time scale. Then the probe Hamiltonian is averaged with respect to picoseconds

dynamics, pertaining to probe internal vibrational degrees of freedom. In the frame of a

Born-Oppenheimer approximation, the averaging on the picosecond dynamics of nuclear

coordinates allows to introduce in the calculation of magnetic parameters the effect of the
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vibrational motions, that can be very relevant in some cases [17, 18, 19]. In this way a probe

Hamiltonian is obtained characterized by magnetic tensors:

Ĥ(Rslow, {qα}) = Ĥspin(Rslow, {qα}) + Ĥprobe−solvent(Rslow, {qα}) + Ĥsolvent({qα}) (1.6)

The first term is the probe spin Hamiltonian. In ESR spectroscopy it will contain terms

as Zeeman interaction of the unpaired electron with the field, hyperfine interactions of the

unpaired electron with spin-active nuclei, electron dipolar and exchange terms in case of

bi-radicals. In NMR, Ĥspin will be written in terms of Zeeman interaction of nuclei with

the external field, chemical shifts, hyperfine interactions among nuclei. Additional terms

in eq. 1.6 may account for interactions between the probe and the medium which do not

affect directly the magnetic properties (e.g. solvation energy); Ĥsolvent({qα}) accounts for

solvent-related terms. An explicit dependence is left in the magnetic tensor definition from

slow probe coordinates (e.g. geometrical dependence upon rotation), and solvent coordinates.

The averaged density matrix becomes ρ̂(Rslow, {qα}, t) = 〈ρ̂({ri}, {Rk}, {qα}, t)〉{ri},Rfast

and the corresponding Liouville equation, in the hypothesis of no residual dynamic effect of

averaging with respect to sub-picoseconds processes, can be simply written as in eq. 1.3 with

Ĥ(Rslow, {qα}) instead of Ĥ({ri}, {Rk}, {qα}).

Finally, the dependence upon solvent or bath coordinates can be treated at a classical me-

chanical level, either by solving explicitly the Newtonian dynamics of the explicit set {qα}

or by adopting standard statistical thermodynamics argument. This is formally equivalent

to averaging the density matrix with respect to solvent variables

ρ̂(Rslow, t) = 〈ρ̂(Rslow, {qα}, t)〉{qα}.

The modified time evolution equation for ρ̂(Rslow, t) can be interpreted within the framework

of explicit stochastic modelling according to the so-called stochastic Liouville equation (SLE)

formalism, defined by the direct inclusion of motional dynamics in the form of stochastic

(Fokker-Planck / diffusive) operators in the Liouvillean governing the time evolution of the

system [16, 20]

∂

∂t
ρ̂(Rslow, t) = −i

[
Ĥ(Rslow), ρ̂(Rslow, t)

]
− Γ̂ρ̂(Rslow, t) = −L̂ρ̂(Rslow, t) (1.7)

where the effective Hamiltonian, averaged with respect to the solvent coordinates, is only

the probe spin Hamiltonian, i.e. Ĥ(Rslow) ≡ Ĥspin(Rslow), while Γ̂ is the stochastic (Fokker-

Planck or Smoluchowski) operator modelling the dependence of the reduced density matrix
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on relaxing processes described by stochastic coordinates Rslow.

This is a general scheme, which can allow for additional considerations and further approx-

imations. First, the average with respect to picoseconds dynamic processes is carried on, in

practice, together with the average with respect to solvent coordinates to allow the evalua-

tion at quantum mechanical level of magnetic tensors corrected for solvent effects. Secondly,

time-separation techniques can be applied to treat approximately relatively faster relax-

ing coordinates included in the relevant set Rslow, like restricted (local) torsional motions.

Thirdly complex solvent environments like e.g. highly viscous fluids, can be described by

an augmented set of stochastic coordinates, to be included in Rslow, which describes slow

relaxing local solvent structures [21].

Time dependence of slow coordinates is usually assumed to be a stationary Markov process,

and the density probability of finding the system in configuration Rslow(t) at some time t if

its configuration was Rslow(t−∆t) at time t−∆t is given by

∂

∂t
P (Rslow, t) = −Γ̂(Rslow)P (Rslow, t) (1.8)

being Γ̂(Rslow) a diffusive / Fokker-Planck operator [22, 23, 24, 25, 26, 27, 28, 29]. It is

assumed that the stochastic process has a unique time-independent equilibrium distribution

of the kind of a Boltzmann equation

Peq(Rslow) = exp [−V (Rslow/kBT ]/〈exp [−V (Rslow/kBT ]〉Rslow
(1.9)

with V (Rslow) the potential acting on the slow coordinates, kB the Boltzmann constant, T

the absolute temperature and 〈. . .〉Rslow
means averaging over Rslow.

Once that the set of coordinates Rslow and the stochastic Liouville operator L̂ have been

defined, the correlation function of the magnetization can be calculated as

G(t) = 〈M(t)|e−L̂t|M(t)Peq(Rslow)〉 (1.10)

where now 〈. . .〉 means average over Rslow and trace over spin states.

The shape of the stochastic operator Γ̂ is defined accordingly to the physical interpretation

of the system under exam.

The selection of the relevant coordinates Rslow is tantamount to introduction of a ”time

coarse-graining” procedure. For large rigid molecules in isotropic media, time coarse graining

is quite simple: fast coordinates are essentially the ”solvent” degrees of freedom, where
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we may define as the solvent the bath generating random noise affecting the rigid body

coordinates (global rotation) of the molecule. Notice that, in the case of magnetic resonance,

translations have no effect on the spin relaxation if the molecule is moving in a region of

constant external static field, so for rigid molecules we can identify Rslow ≡ Ω, and the only

relevant coordinates are the Euler angles giving the global orientation of the molecule with

respect to the laboratory inertial frame 2 .

In case of ordered media and / or glasses it is necessary to preserve some information about

the dynamics of solvent [30, 31, 32]. The leading idea is that in such systems, the solvent

molecules around the probe constitute a cage with a slow relaxation rotational dynamics

coupled to the rotational motion of the probe. This is the so-called slowly relaxing local

structure (SRLS) model, which has also been extended conveniently to the interpretation of

NMR spectroscopy of biomolecules, as discussed in the following chapters.

When the probe molecule has internal degrees of freedom, time coarse graining procedure

is more difficult. For relatively small molecular systems, as it will be shown in Chapter 3,

it is often possible to use mainly chemical insight to identify the relevant coordinates. In

case of complex molecules (biomolecular systems), the definition of relevant dynamics is an

open problem. At present there are no satisfactory methodologies to clearly detect relevant

coordinates in large molecules and this fundamental topic will be pointed out at the end of

this work. In this work we shall concentrate only on the application of simple, but essentially

phenomenological approaches (e.g. SRLS).

1.3 Work plan

Most of the research activities during this Ph.D. work were related to ESR spectroscopy and

in particular to the development and validation of an integrated computational approach

(ICA) aimed to the ab initio calculation of continuous wave (cw) ESR spectra. The protocol

merges ad hoc theoretical / computational methodologies for the evaluation of structural

2in principle, inertial effects related to the relaxation of conjugate generalized momenta V slow = Ṙslow

should also be taken into account. However, in this work we assume that momenta have a smaller relaxation
time compared to their conjugate generalized coordinates, i.e. that a high friction regime is always achieved.
Practically, this means the system relaxation is observed only when momenta have already reached an
equilibrium distribution, and therefore only the probability density depending on the coordinates is needed,
governed by diffusion (or Smoluchowski) operators [22, 23, 24, 25, 26, 27, 28, 29].
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1.3. Work plan

parameters of the molecule (magnetic tensors, dissipative properties, etc.) with the mod-

elling of dynamics in slow-motion regime coupled to spin relaxation based on the stochastic

Liouville equation formalism. A description is provided in Chapter 3. A number of model

systems have been taken into account, with the dual aim of developing and testing the the-

oretical models / computational approaches included in the ICA protocol. The case-studies

considered are quite different in nature and include rigid and flexible (one internal degree

of freedom) molecules in both isotropic and ordered phases. As a main outcome, the new

software E-SpiReS (Electron Spin Resonance Simulation) [33] has been developed, which in-

cludes and automatically interfaces the different theoretical / computational methodologies

scheduled in the ICA protocol. In principle, E-SpiReS is meant to be useful to both theoreti-

cians, interested in further development of new models, and experimentalists as a tool to be

coupled to a spectrometer in the laboratory. The presence of a graphical user interface makes

the program simple to use and it should free users from being concerned about boring input

/ output operations. Moreover, E-SpiReS is based on a parallelized algorithm and runs on

computer clusters. A Java web interface has been developed for remote usage, which runs on

the user’s computer (from any web browser) and automatically handles the communications

with the remote computer.

As part of the development process of E-SpiReS, a tool for the investigation of dissipative

properties of rigid and flexible molecules has been implemented. The stand alone program

DITE (DIffusion TEnsor) [34] is based on the methodology introduced by Moro [35, 36] for

the hydrodynamic calculation of the full friction / diffusion tensor of molecules with internal

degrees of freedom represented by torsional angles. The methodology has been generalized

and implemented in such a way it can in principle automatically handle molecular topology.

Finally, a first attempt to tackle to the study of nuclear magnetic spectroscopy, and in par-

ticular to its application in the field of proteins, has been carried on in the final semester of

activity. This preliminary work consists in the development of a new software for the inter-

pretation of NMR data based on the SRLS model for the description of the dynamics of the

system. The software, C++OPPS (COupled Protein Probe Smoluchowski) [37] implements

the SRLS model for the dynamics of the system and includes the cores of the DITE program

for the evaluation of the diffusion tensor of the protein. Like DITE and E-SpiReS, it has

a graphical user interface to simplify its usage, it is parallelized and has a web interface

11



Chapter 1. Methodology: experiments and theory

for remote access to a cluster. Because C++ is an object-oriented language, C++OPPS is

highly modular, allowing in a near future, to introduce easily new advanced models for the

description of relevant dynamics in proteins.

This work is organized as follows: in Chapter 2 we discuss the calculation of dissipative prop-

erties of rigid and flexible molecules in which internal degrees of freedom are represented by

torsional angles; Chapter 3 is dedicated to the presentation of the ICA for ESR spectroscopy;

in Chapter 4 the C++OPPS approach and code is described; finally in Chapter 5 some per-

spectives for further advancements are provided. The three central chapters (2, 3 and 4)

have purposely the same organization with an introductory part recalling the theoretical

methodology, a section describing the software and a final part presenting the application

to selected case-studies.
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Chapter 2

Friction tensor of flexible molecules

Experimental data from magnetic and optical spectroscopic measurements provide rich struc-

tural and dynamic information on molecular systems. However, deriving information from

the experiments requires proper theoretical models in which molecular motions are carefully

taken into account [38, 39, 40]. In many cases motions of the whole molecule (e.g. the global

tumbling of a molecule in a fluid) and internal degrees of freedom (e.g. rotation of two molec-

ular fragments around a bond) can be defined as a diffusive process, which depends, in turn,

on a tensorial quantity, the diffusion tensor.

Evaluation of translational and rotational diffusion tensors of molecules can be based either

on molecular dynamics (MD) simulations [41] or on mesoscopic, hydrodynamics-based ap-

proaches [42, 43]. In the former set of methods, explicit microscopic definition of diffusion

coefficients in term of velocity correlation functions are computed from MD trajectories.

In the latter set of treatments the molecular system under investigation is assimilated to a

collection of elementary rigid bodies (usually spherical beads) or to a generic triaxial ellip-

soid, immersed in a low-Reynolds number fluid. While methods based on MD simulations

are time consuming, but apt to describe even small molecules with a minimum usage of free

parameters, mesoscopic treatments are suited to the treatment of large molecules (e.g. glob-

ular proteins), although they usually require some adjustable parameters. Several authors

have described the principles and applications of hydrodynamic approaches, starting with

the seminal work of Bloomfield [43, 44]. Basically, the molecule is partitioned into a collec-

tion of beads, which are chosen to describe the overall shape of the molecule as closely as

possible. In the classical bead approximation each atom or group of atoms is represented by

13



Chapter 2. Evaluation of dissipative properties

a single bead; the overall rotational diffusion tensor is obtained by classic arguments [45, 46].

A remarkable implementation of these principles is provided by the HYDRONMR code [46].

In a further development beads can be chosen in order to describe only the external surface

of the molecule (i.e. the part of the molecule ”exposed” to the solvent); this method has

been implemented in both the HYDRONMR and FAST-HYDRONMR codes [47, 48]. An

alternative route, which has been the subject of recent investigation, is the definition of an

equivalent triaxial ellipsoid description of the molecular shape [1]. Current implementations

available as organized software tools share the partial inability of accounting for non-rigid

molecules [36], and they are unrelated to current continuum solvent models also relying on

solvent accessible surfaces [49].

Therefore, we would like to present here the implementation and validation of a new hydro-

dynamic model for direct evaluation of diffusion (friction) tensorial properties, applicable

to flexible molecules for which the internal degrees of freedom are represented by torsional

angles, and coupled to evaluation of solvent accessible surfaces by the same linear scaling

algorithms developed for the last implementations of the so called polarizable continuum

model (PCM) [50]. In particular we discuss an effective computational procedure for evalu-

ating the diffusion tensor for a generic molecule in the presence of internal degrees of freedom:

a comparison with existing literature data is also presented to show the effectiveness of the

approach for a large range of molecular dimensions and solvent environments.

2.1 Computational methodology

Let us consider a molecule made of NA atoms, which has been partitioned into NF fragments.

The i-th fragment is composed of Ni atoms and its orientation relative to the i+1-th fragment

is defined by the torsional angle θi. We limit our discussion to non-cyclic molecules, so that

a generic molecular systems is considered in general as a sequence of NF fragments, and the

total number of torsional angles is NT = NF − 1. Notice that
∑NF

i=1 Ni = NA. Figures 2-1

and 2-2 show schematic representations of linear and branched molecular systems in which

sequences of fragments are highlighted. We define a molecular frame (MF) fixed on a chosen

fragment ν (hereafter referred to as main fragment), which is placed for convenience in the

centre of mass of the main fragment itself. The atoms in the main fragment are characterized

14



2.1. Computational methodology

Figure 2-1: Example of molecule partitioning into a linear chain of fragments: three frag-
ments, two torsional angles; MF is set on the second fragment.

by translational and rotational motions, while atoms belonging to the other fragments have

also additional internal motions. We define the set of generalized coordinates R = [r,Ω, θ]

for describing the translational and rotational coordinates of the main fragment and internal

torsional motions. Associated to R is the set of velocities V =
[
v, ω, θ̇

]
(where the dot stands

for time derivative) and also the total force consists of three contributions F = [f , τ , τ i]

corresponding, respectively, to the translational force and the global torque and internal

torque moments. Forces and velocities are related by the friction tensor ξ which is defined

as a (6 + NT )× (6 + NT ) matrix




f

τ

τ i




= −ξ





v

ω

θ̇




(2.1)

or simply F = −ξV . If one considers the system without constraints (bonds), i.e. the position

of each atom is independent by the positions of the other atoms, the friction tensor Ξ of the

NA independent atoms is represented as a 3NA×3NA matrix. If F i and V i are, respectively,

the translational force and velocity of the i-th atom, we can write




F 1

...

F NA




= −Ξ





V 1

...

V NA




(2.2)

or F = −ΞV . Following standard geometrical arguments [36] one can show that F = AF

and V = BV , where A and B are (6 + NT ) × 3NA and 3NA × (6 + NT ) matrices which
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Chapter 2. Evaluation of dissipative properties

Figure 2-2: Example of molecule partitioning into a branched chain of fragments: four frag-
ments, three torsional angles; MF is set on the central fragment.

depend on the molecular geometry; additionally, B = Atr. It follows that

ξ = BtrΞB =





ξTT ξTR ξTI

ξRT ξRR ξRI

ξIT ξIR ξII




(2.3)

where the subscripts stand for T = translational, R = rotational and I = internal. The

diffusion tensor is obtained from Einstein relation, as the inverse of ξ

D = kBTξ−1 =





DTT DTR DTI

DRT DRR DRI

DIT DIR DII




(2.4)

where kB is the Boltzmann constant and T the absolute temperature. The friction tensors

are linked to the diffusion tensors D (constrained spheres) and d (unconstrained spheres)

via the generalized Einstein relations D = kBTξ−1 and d = kBTΞ−1. It follows that the

molecular diffusion tensor for the joint translation, rotation and internal conformational

motion for the molecule, i.e. D, is obtained as

D = (Btrd−1B)−1 (2.5)

Main ingredients for the calculation of the diffusion tensor are the geometric matrix B and

the unconstrained diffusion tensor d. Let us first consider the calculation of the geometric

matrix. We define ri
j as the vector of the i-th atom in the j-th fragment, un as the unitary

vector defining the rotation θn, taken to be parallel to the n-th torsional angle and pointing
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2.1. Computational methodology

away from the main fragment, and ri
j,k the distance vector between the j-th atom of i-th

fragment and the atom at the origin of the unitary vector uk. Atoms in the main fragment

are characterized only by translational and global rotational velocity

vν
j = v + ω × rν

j (2.6)

while for the remaining fragments (i &= ν) torsional contributions must be included

vi
j = v + ω × ri

j +
∑

k

θ̇kuk × ri
j,k (2.7)

where the summation is taken over the angles that link the main fragment to the i-th

fragment. Equations (2.6) and (2.7) can be rewritten in matrix form

vi
j = T Bi

jv + RBi
jω +

∑

k

IBi
j,kθ̇k (2.8)

where T Bi
j = 13, RBi

j = ri ×
j and IBi

j,k = ri ×
j,k uk or 0 depending on k and i, and r×αβ = rkξαβγ ,

where ξαβγ is the Levi-Civita tensor with α, β, γ = 1, 2, 3. For a linear chain of fragments,

numbered sequentially from the first to the last one, the general form of the B matrix is

B =





13 r1 ×
j r1 ×

j,1 u1 . . . r1 ×
j,ν−1uν−1 0 0 . . . 0

13 r2 ×
j 0 . . . r2 ×

j,ν−1uν−1 0 0 . . . 0

...
...

...
...

...
...

...

13 rν−1 ×
j 0 . . . rν−1 ×

j,ν−1 uν−1 0 0 . . . 0

13 rν ×
j 0 . . . 0 0 0 . . . 0

13 rν+1 ×
j 0 . . . 0 rν+1 ×

j,ν uν 0 . . . 0

...
...

...
...

...
...

...

13 rNF−1 ×
j 0 . . . 0 rNF−1 ×

j,ν uν rNF−1 ×
j,ν+1 uν+1 . . . 0

13 rNF ×
j 0 . . . 0 rNF ×

j,ν uν rNF ×
j,ν+1uν+1 . . . rNF ×

j,NF−1uNF−1





(2.9)

The form of the geometric matrix B is dependent on the topology and also on the numbering

scheme chosen for the fragments. While for a linear chain of fragments it is quite natural

to number the fragments sequentially, finding a simple and generalized scheme for branched

systems is not straightforward. However, in the software developed by us (see next section),

users need not to be concerned with the topological problem. The numbering scheme is

decided by an automatic procedure, following a very simple algorithm, implemented in our

code. Users need only to supply information on the pairs of atoms which define the rotating

bonds: this information is used by the program to recognize the fragments and to compute

the correct form of the geometric matrix. The algorithm is completely general for systems

partitionable in a non-cyclic sequence of fragments, while cyclic structures are not included
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Chapter 2. Evaluation of dissipative properties

in the present implementation.

Evaluation of d can be carried out at the simplest possible level assuming the model of

non-interacting spheres in a fluid, or one can include hydrodynamic interactions. We have

followed the second route, based on the Rotne-Prager (RP) approach [51, 52], which ensures

a satisfactory albeit not too cumbersome treatment of sphere-sphere hydrodynamic interac-

tions. The resulting elements of D depend upon a purely geometrical tensorial component

D and the translational diffusion coefficient for an isolated sphere D0, i.e.

D = D0D (2.10)

where D0 = kBT/CReηπ = kBT/Ξ0: here C is a constant depending upon hydrodynamic

boundary conditions, Re is the average radius for the spheres, η is the local viscosity. The

RP unconstrained diffusion tensor is given as

dii =
kBT

Ξ0
13






dij =
kBT

Ξ0

3Re

4r3
ij

[(
r2
ij +

2

3
R2

e

)
13 +

(

1− 2
R2

e

r2
ij

)

rij ⊗ rij

]

, if rij > 2Re

dij =
kBT

Ξ0

[(
1− 9

32

rij

Re

)
13 +

3

32

rij ⊗ rij

r2
ij

]

, if rij < 2Re

(2.11)

where i and j are two generic atoms, rij = ri − rj and with the symbol ⊗ we intend the

dyadic product. Notice that the general methodology reported above can be applied with

minor changes to other types of internal motions, like stretching of bonds, bending of bond

angles, domain and loop motions.

2.2 DITE software

DITE (DIffusion TEnsor) is the newly developed package for the calculation of dissipative

parameters (friction and / or diffusion tensors) of small and large molecular systems, in the

presence of internal (conformational) degrees of freedom. DITE is based on a computational

approach which combines PCM-based calculations of molecular shape and hydrodynamic

modelling described in the previous section. As it will be shown in Section 2.3.1 this ap-

proach is able to reproduce accurately experimental diffusion coefficients, both translational

and rotational, for molecules of diverse extensions ranging from a few atoms to proteins. In
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2.2. DITE software

Cut-off Beads τ / ns DXX / 10−7 Hz DY Y / 10−7 Hz DZZ / 10−7 Hz t / s
0% 563 5.0 3.11 3.27 3.55 2.30
5% 558 5.028 3.12 3.37 3.56 2.25
10% 518 5.011 3.12 3.29 3.57 1.87
15% 411 4.9380 3.17 3.34 3.62 1.06
20% 351 4.8091 3.23 3.40 3.76 0.73
25% 315 4.7425 3.29 3.45 3.80 0.56

Experiment 5.0 3.12 3.21 3.67

Table 2.1: Rotational diffusion tensor and correlation time of ubiquitin calculated at different
cut-offs.

particular, successful application to the interpretation of spectroscopical observables, like for

instance continuous-wave electron spin resonance measurements has been demonstrated, for

spin-labelled systems ranging from 20 to 200 atoms. Comparison with other current method-

ologies has also been carried out. DITE computational times are comparable with existing

established software in the field, due to the combination of the fast determination of the

molecular surface and the optimization of the linear algebra operations required to evalu-

ate the friction tensors. Moreover, the direct inclusion of conformational degrees of freedom

is made possible, at negligible additional computational cost, at least when compared to

the evaluation of friction / diffusion tensors of rigid molecular systems of similar dimen-

sions, which are the only ones treated by approaches like HYDRONMR [46] and the triaxial

ellipsoid method [1].

Implementation

Our purposes in the course of this study have been i) the testing and validation of an efficient

version of the standard hydrodynamic model which is expected to perform effectively both

for large and relatively small molecular systems and ii) an implementation of the aforemen-

tioned model compatible with the evaluation of solvent accessible surfaces developed in the

framework of the PCM [50]. In particular, the new code post-processes a modified version of

the G03 code providing the exposed atoms and their surfaces by very effective linear scaling

algorithms [53].

A fast and reliable implementation of the procedure, briefly sketched in Section 2.1, is based

on the availability of efficient routines for matrix inversion (in order to evaluate eq. (2.5)).
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Chapter 2. Evaluation of dissipative properties

Our strategy is based on two very simple choices: first of all optimized open-source code (LA-

PACK) is employed [54]; next, we introduce the possibility to exclude from the calculation

atoms that are not ”wetted” by the solvent, assuming that they give vanishing contribution

to the total friction. Thus only the (non-hydrogen) atoms with a solvent exposed surface

above a suitable threshold are taken into account in the contracted or pruned molecule used

to calculate the unconstrained diffusion tensor and geometric matrix.

DITE consists of a graphical user interface (GUI) written in Java in which the user is able,

by a simple point-and-click procedure, to i) model the partitioning into fragments of flexible

molecules, ii) set the physical parameters and also iii) launch an automatically generated

input for the G03 program [53] if geometry optimization and/or PCM analysis is required in

the calculation of the diffusion tensor. The core of DITE that performs all the calculations is,

instead, written in the C language because a Java program is only interpreted (not compiled

in machine code) and so it should result in too slow computations.

Figure 2-3: Representation of wetted (blue) and unwetted (yellow) extended atoms of Ubiq-
uitin, based on the threshold of 10% of area per atom outside of the effective molecular
surface calculated by Gaussian 03.
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2.3. Applications

We tested the effect of the cut-off on the ubiquitin protein. Calculations were performed

with Re = 4.1 Å and C = 6, parameters that give the best agreement with experimental

data obtained at 300 K in aqueous solution [55]. The last five residues have been clipped off

from the PDB file because of the flexibility of the C-terminus. This procedure was followed

also in references [1, 46] to compare calculated and experimental diffusion tensors. Also, ex-

perimental data has been scaled to 293 K in order to further compare our results with that

reported in Ref. [1]. Table 2.1 sketches the changes of the diffusion tensor with the cut-off,

together with the number of ”wetted” beads and the calculation time. As can be seen, a

10% exposed surface per extended atom can be considered a safe cut-off for considering an

atom wetted. In Figure 2-3 the selection procedure results are shown for Ubiquitin: blue

atoms expose more than 10% of their area to the solvent, i.e. they extend themselves of this

amount outside the effective molecular surface, while yellow atoms are below this threshold.

If a cut-off larger than 10% is chosen, a higher percentage of atoms could be excluded to

improve calculation time but, of course, introducing some error.

Notice that in all the cases presented here, no geometry optimization has been performed,

but one can easily use the whole procedure to obtain at once both structural information

(from QM, MM or mixed methods including PCM for taking into account bulk solvent ef-

fects) and diffusion properties. As a matter of fact, this approach has been adopted in the ab

initio integrated approach to the simulation of electron spin resonance (ESR) spectroscopy

of different systems [56, 57, 58, 59] as will be pointed out in the next chapter.

2.3 Applications

2.3.1 Case studies

We compare our results with available experimental values for a number of model systems.

We present in this Section some of our results both for linear and branched flexible molecules.

To check the code performance and capabilities we compare our findings, for rigid molecules

only, with an established paradigm software in the field, the well-known HYDRONMR pro-

gram by Josè Garcia de la Torre et al. [46]. Table 2.2 summarizes our first set of results,

for rigid molecules of increasing size, chosen on the basis of available experimental data in
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Chapter 2. Evaluation of dissipative properties

the literature. Parameters are chosen as follows: the temperature is 298.15 K for all small

molecules and BPTI, and 293.15 K for Ubiquitin and lysozyme. The boundary constant C

has been always taken equal to 6 (stick boundary conditions). The sphere effective radius is

chosen first according to the following expression:

Re =
∑

α

nαRα/
∑

α

nα (2.12)

where nα is the number of atoms of type α and Rα is the associated VdW radius (we employ

the standard UA0 set of van der Waals radii, used in the latest PCM implementations [50]).

The overall agreement of calculated results (column 3) with experimental data is satisfac-

tory, even for small molecules. Theoretical calculations over-estimate diffusion parameters

for the proteins BPTI and Ubiquitin. Adjustment of the effective radius in different solvents

reduces significantly this discrepancy (column 5). Notice that results are in good agreement

with HYDRONMR predictions, and that the computational effort required, even for the

largest system considered here (lysozyme in water) is about 11 seconds on a standard Intel

Dualcore 2.16 GHz processor.

We then performed calculations over the five globular proteins of different dimensions re-

ported in Table 2 of ref. [1] to compare our results with the ones obtained with HYDRONMR

and with the method of the triaxial ellipsoid. Results are given in Table 2.3. For all the pro-

teins an augmented effective radius is needed to fit experimental data due to the presence

of a layer of hydration water which increases the exposed surface, which leads, in turn, to a

larger friction. With our model we needed an effective radius of 3.7 Å and stick boundary

conditions, while for HYDRONMR the atomic effective radius (AER) is set to 3.2 Å (keeping

the default settings for the minibeads) and for the triaxial ellipsoid method the value for the

hydration layer thickness (HLT) is set to 2.8 Å . Differences in the adjustable parameter of

the three methods are related to the different approximations used for the solvent exposed

surface of the molecule, which is responsible of the friction. As mentioned above, the calcu-

lation time for our program increases with the cubic power of the number of effective atoms,

since the algorithm involves inversion of a 3N × 3N matrix.
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Å
4.

1
·1

0
9

H
z

2.
01

Å
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Å
6.

6
·1

0
7

H
z

3
.2

0
Å
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Å
2.

5
·1

0
7

H
z

2
.6

0
Å
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Chapter 2. Evaluation of dissipative properties

We decided to avoid further approximations, beyond the mesoscopic approach to the prob-

lem, even if the resulting algorithm is slower than other existing methods.

FAST-HYDRONMR employs the so-called double summation approximation (DSA) [48]

which is based on the truncation to the second term of the expansion formula for the inver-

sion of a matrix. With this approximation the computational cost becomes proportional to

N2 instead than N3. De La Torre and co-workers found that the ”exact” diffusion tensor is

just the approximated one scaled by a factor. The method is very fast, but at the price of

the introduction of a new parameter.

τ / ns DXX / 10−7 Hz DY Y / 10−7 Hz DZZ / 10−7 Hz N beads time / s
Protein G, 1igd.pdb

experiment 3.7 3.73 4.15 5.63
HYDRONMR 3.9 3.67 3.81 5.19

PCA 3.9 3.89 4.05 4.83
DITE 3.9 3.71 3.86 5.26 434 1.2

Ubiquitin, 1ubq.pdb
experiment 5.0 3.12 3.21 3.67

HYDRONMR 5.0 3.14 3.28 3.61
PCA 4.9 3.24 3.37 3.61
DITE 4.7 3.33 3.50 3.82 563 2.3

Cytochrome c2, 1c2n.pdb
experiment 10.4 1.42 1.62 1.77

HYDRONMR 7.9 1.81 1.98 2.52
PCA 7.7 1.95 2.09 2.44
DITE 7.7 1.86 2.02 2.62 907 8.0

Ribonuclease H, 2rn2.pdb
experiment 11.7 1.34 1.34 1.59

HYDRONMR 11.6 1.28 1.38 1.64
PCA 10.4 1.45 1.56 1.78
DITE 11.5 1.29 1.39 1.65 1238 18.6

HIV-1 protease, 1bvg.pdb
experiment 13.0 1.11 1.18 1.55

HYDRONMR 13.8 1.02 1.05 1.56
PCA 13.0 1.12 1.17 1.67
DITE 13.2 1.07 1.10 1.63 1554 35.0

Table 2.3: Rotational correlation time and diffusion tensor for a selection of five globular
proteins. Calculations were performed by choosing, AER = 3.2 Å for HYDRONMR, HLT =
2.8 Å for the ellipsoid model and Re = 3.7 Å for our program. As in ref. [1]: protein G has
the first five residues from the PDB file clipped off; ubiquitin has the last five residues from
the PDB file clipped off due to the mobility of the C-terminus; of the 20 structures in the
PDB file of Cytochrome c2 the second was taken into account. All experimental data are
normalized to 293 K and the rotational correlation time is calculated as τ = 1/ (6tr{DRR}).
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2.3. Applications

Also the triaxial ellipsoid method involves a very fast algorithm, which takes fractions of

seconds even for very large molecules (104 atoms), but it is based on the assumption that

a molecule can be approximated by an ellipsoid. While this assumption is reasonable for

globular proteins it can break down for molecules of complex shapes. We preferred to keep

generality and lowest number of free parameters as possible, even if this places a limit on

the dimensions of the molecules that can be treated, and to concentrate on the aspect of

flexibility which represents in our opinion an important advancement for a tool intended

to supply a molecular property for the interpretation of experimental measurements. As

mentioned above, our program is able to post-process the output of codes including solvent

accessible surface evaluation and, with a cut-off of 10%, molecules of medium-large size can

be treated quite reasonably in terms of computer resources and time.

Next, we report the calculation of the diffusion tensor for the FeCo2(CO)9(µ3-PPh) system,

represented in Figure 2-4, in which the single bond between the phenyl group and the cobalt

atom can rotate. Data for global and internal diffusion parameters are available [64]. To

proceed, we partition the molecule into two fragments, i.e. the metal cluster (fragment 1)

and the phenyl ring (fragment 2). The reference fragment is chosen on the cluster and the

molecular frame is located for convenience on the P atom. Global tumbling diffusion is defined

by two coefficients D⊥ and D‖, as indicated in Figure 2-4, internal diffusion is described

by DII . Experimental data, obtained from 13C NMR spin-lattice relaxation measures are

available for D⊥ = 4.9 · 109 Hz and DS = D‖ + DII = 4.8 · 1010 Hz.

Figure 2-4: Representation of FeCo2(CO)9(µ3-PPh) complex.
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Chapter 2. Evaluation of dissipative properties

Figure 2-5: Dependence upon internal angle of scaled rotational components (above: DXX

full line, DY Y dashed line, DZZ dotted line) and scaled internal component (below) of the
diffusion tensor of the FeCo2(CO)9(µ3-PPh) complex in CDCl3 at 330 K.

The best agreement with experimental data in chloroform at 298.15 K is obtained by choos-

ing Re = 1.03 Å (with stick boundary conditions, C = 6): calculated values are D⊥ = 4.3·109

Hz and DS = D‖ + DII = 4.7 · 1010 Hz. Strictly speaking these are values averaged with

respect to the torsional angle. The weak dependence of all the theoretical diffusion tensor

components on the internal torsional angle is shown in Figure 2-5, where the scaled values of

calculated diffusion tensor are represented. Absolute values can be obtained multiplying by

D0 = 3.9 · 1011Å
2
s−1. In this example, internal rotation can be safely assumed to be essen-

tially free from steric hindrance (no internal torsional potential), so that one can compare

directly the measured internal diffusion parameter DS = D‖ + DII , obtained as the inverse

of correlation times of the motion obtained by NMR relaxation measures [65] with the calcu-

lated diffusion coefficients. It has to be noticed that in the presence of an internal potential

acting on the torsional angles, diffusion coefficients are not simply the inverse of correlation

times of the motion. It is a common practice to interpret correlation times as the inverse

of diffusion coefficients even in such situations, leading to the conclusion that diffusion (so

friction) is a quantity that depends on the steric hindrance. In our formalism, the molecule

is considered as a flexible ”mechanical” body made by discrete masses joined by constraints

and hubs and moving in a continuum fluid. Friction acting on such a body moving in the

fluid is independent on obstacles that it could encounter along its trajectory; it only de-

pends on the geometry of the body and on the macroscopic characteristics of the fluid. The
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2.3. Applications

Figure 2-6: Structure of tris(2,2,6,6 tetramethyl - 1 - oxyl -4 - piperidyl) phosphite (TMP)
with minimum energy. Rotations about the P-O bonds have a high energy barriers so those
angles were fixed, giving only the three torsional angles indicated ad θ1, θ2 and θ3.

interpretation of experimental data in the presence of a torsional potential can be done by

introducing ad hoc models for the dynamics of the molecule, in which the diffusion tensor

and the torsional potential are two ingredients which both act on the relaxation of the mo-

tion. An example of this approach is the slowly relaxing local structure (SRLS) model where

two bodies rotate one with respect to the other under the influence of an internal potential.

A large literature is available concerning the use of the SRLS model in the interpretation of

magnetic resonance data, both electronic and nuclear [16, 32, 56, 57, 58, 59, 66, 67]. Diffusion

coefficients can also be obtained from the analysis of electron spin resonance (ESR) spectra

as will be discussed in detail in the next chapter.

Finally we performed calculations on two molecules involving three significant internal ro-

tations which define four fragments connected in such a way to lead to a branched topol-

ogy, i.e. a central fragment with the other three fragments attached to it. We analysed the

small Tris(2,2,6,6 tetramethyl-1-oxyl-4-piperidyl) phosphite (TTP), Figure 2-6, and a hypo-

thetical tri-labeled T4 lysozyme (3R2T4), Figure 2-7, with the 1-oxyl-2,2,5,5-tetramethyl-

3-pyrrolidine-3-(methyl)-mathanethiosulfonate spin label, known as R2 spin label and rep-

resented in Figure 2-8. We chose spin labelled molecules because, experimentally, diffusion

tensors could be extracted from the analysis of their cw-ESR spectra.

In both cases we generated 1000 conformations by taking ten points from 0 to 2π for each

torsional angle to study the dependence of the different parts of the diffusion tensor on the
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Chapter 2. Evaluation of dissipative properties

internal dynamics. Calculations have been performed with a standard effective radius of 2.0

Å and slip boundary conditions. In all cases we will present the reduced form of the diffusion

tensor, i.e. the tensor divided by the quantity kBT/πReCη, which depends only on geometric

properties of the molecule and not on physical properties of the fluid.

For the TTP molecule we found that the rotational part of the diffusion tensor is strongly

dependent on the values of the internal angles obtaining an overall variation of about 10%

for the trace of the rotational part and variations of 9% for the DXX component, 13% for

the DY Y component, and 23% for the DZZ component. We also found that the internal part

of the diffusion tensor shows off-diagonal terms of the same order, or at most one order

smaller, of the diagonal part, leading to a strong coupling between the three internal mo-

tions. Furthermore, the dependence of the tensor coefficients on the θ3 angle is higher than

the variation given by the rotation of the two angles θ1 and θ2. The X-band ESR spectrum

of the 3R2T4 molecule would be affected mainly by the angle indicated in Figure 2-8 of the

three spin probes (and of course on global tumbling), while the other four internal angles

can be considered frozen [67].

Figure 2-7: T4 lysozyme mutant with three R2 spin labels placed on residues 65, 82 and 131.
Also torsional angles are indicated which correspond to the three χ4 angles.
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2.3. Applications

Figure 2-8: T4 lysozyme mutant with three R2 spin labels placed on residues 65, 82 and 131.
Also torsional angles are indicated which correspond to the three χ4 angles.

Analysis of the diffusion tensor for each conformation shows that the global rotational dif-

fusion tensor is negligibly affected by the internal rotations (deviations under 5%) due to

the very small size of the three rotating frames with respect to the overall extension of the

molecule. Moreover, the internal part of the diffusion tensor reveals that the three motions

are practically decoupled, with the off-diagonal terms 2 - 3 orders of magnitude smaller than

the diagonal values: this can be attributed to both the small dimensions of the rotating

fragments and to their large distances. In Figure 2-10 the dependence is shown of the trace

of the rotational part and the three diagonal components of the internal part of the diffusion

tensor on the three internal angles.

Figure 2-9: Representation of the trend of the trace of the rotational part of the diffusion ten-
sor of tris(2,2,6,6 tetramethyl-1-oxyl-4-piperidyl) phosphite as function of the three internal
angles.
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Chapter 2. Evaluation of dissipative properties

Figure 2-10: Representation of the trend of, from the top, the trace of the rotational part
of the diffusion tensor and the D11, D22 and D33 components of the internal part of the
diffusion tensor of the tri-labeled T4 lysozyme as function of the three internal angles.

Finally we performed some additional calculations on a singly labelled T4 lysozyme: Figures

2-11 and 2-12 show the dependence of the internal diffusion coefficient and of its trace of

the rotational part as a function of the internal angle. The average value of the trace of the

rotational part of the diffusion tensor for the singly and tri labelled proteins are, respectively,

1.56 ·10−4 Å2 and 1.62 ·10−4 Å2, a small difference being possibly attributed to the fact that

the two structures have 22 beads of difference. Another interesting result is that the internal

diffusion coefficient of the singly labelled lysozyme shows the same value and behaviour of the

corresponding angle in the 3R2T4 (the D33 coefficient), which can be taken as a confirmation

of the independence of the three internal motions in the 3R2T4 molecule.
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2.3. Applications

Figure 2-11: Trend of the internal coefficient of the diffusion tensor of the singly labelled T4
lysozyme vs. the internal angle.

Figure 2-12: Trend of the trace of the rotational part of the diffusion tensor of the singly
labelled T4 lysozyme vs. the internal angle.
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Chapter 2. Evaluation of dissipative properties

2.3.2 Mobility of proteins

Describing the internal mobility of proteins is a very important task in order to understand

their physical and chemical properties, the way they explicate their functions, interact with

other molecules and fold. Such big molecules are characterized by very complex dynamics,

including all time scales ranging from fs to µs. Once the relevant coordinates have been

identified it is possible to define stochastic models that take into account only the relevant

dynamical relaxation processes in a sort of ”time coarse-graining” procedure. Specific models

for proteins however are still lacking, mostly for the difficulty to define relevant coordinates.

A secondary aspect which limits the modellization of internal mobility of macromolecules

is the lack of a convenient tool to define friction / diffusion properties in the presence of

internal degrees of freedom. Introducing internal mobility without a proper tool signifies

increasing the number of free parameters in the calculation, procedure that could cause a

number of problems, i.e. technical difficulties in the simulations, more uncertainty in the

physical interpretation of fitted parameters, the need of getting more experimental data to

avoid correlations among parameters that emerge when their number is comparable to that

of data points to be fitted (this is a very important issue especially in NMR).

DITE is therefore a potentially useful tool to start, at least, to define the basic internal

/ external diffusion processes of proteins. Here we present a report on the evaluation of

diffusion properties of proteins with large-amplitude internal motional degrees of freedom of

domains. Our results are preliminary and concerning roto-translational and internal diffusion

tensorial parameters of two case studies: calmodulin and E. Coli adenylate kynase (AKeco)

proteins.

The case of calmodulin

Two domains, connected by a flexible linker, characterize the structure of calmodulin. Figure

2-13 shows the system, evidencing the two fragments.

The linker flexibility is described in terms of the torsional angles of its constitutive residues.

We select the two angles θ1 and θ2 as main degrees of freedom (dof) describing the molecular

geometry, as shown in Figure 2-14. One should notice that no fundamental reason stands

for selecting only two relevant dof, and that the whole set of torsional angles defining the
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2.3. Applications

Figure 2-13: Linked domains of calmodulin.

linker should be considered; however, this choice is a reasonable compromise between having

a manageable dynamic model for the system and assuring at least at coarse grained level

the introduction of flexibility in the system.

Figure 2-14: Torsional angles selected as main dof in calmodulin flexible linker.

DITE allows defining the domains, selecting the relevant dof and set-up and solving ex-

pressions, based on standard hydrodynamic theory, for evaluating the roto-translational and

internal diffusion tensor. In Appendix A a brief tutorial is provided for this system, with a

step-by-step description of operations.

Results can be summarized as follows. The physical parameters (requested by the hydrody-

namic approach employed by DITE) have been set to: Re = 2.0 Å, C = 6, η = 1.0 cP, T =
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Chapter 2. Evaluation of dissipative properties

293 K. The general structure of the diffusion tensor is

D =





DTT DTR DTI

Dtr
TR DRR DRI

Dtr
T I Dtr

RI DII




(2.13)

where DTT , DRR are the 3× 3 translation and rotation blocks; DTR = Dtr
RT are the 3× 3

roto-translational coupling blocks; DTI = Dtr
IT , DRI = Dtr

IR are the 3×2 internal-translation

and 2 × 3 internal-rotation coupling blocks; DII is the 2 × 2 internal block. Naturally all

blocks elements are functions of the internal and orientational angles. One can define an

instantaneous geometry (i.e. set of values for torsional angles) and define a reference frame

(Molecular Frame, MF) based on one of the protein residues; finally one can choose the

orientation of the MF either to minimize some of the coupling blocks or to diagonalize one

of the diagonal blocks. Our choice is to put the MF on the central residue of the flexible

linker, with an orientation such that DRR is diagonal. For the geometry characterized by

both torsional angles equal to zero, the full diffusion tensor assumes for instance the form

D =





1.63·10−10 −2.80·10−12 −1.95·10−11 −1.32·10−3 2.82·10−3 4.65·10−2 2.39·10−2 −1.43·10−2

−2.80·10−12 1.14·10−10 −1.28·10−11 −1.51·10−3 −1.18·10−2 1.84·10−3 6.03·10−3 9.84·10−3

−1.95·10−11 −1.28·10−11 1.42·10−10 −6.37·10−4 1.55·10−2 −2.34·10−2 −1.08·10−2 1.34·10−2

−1.32·10−3 −1.51·10−3 −6.37·10−4 1.27·107 0.00 0.00 1.07·107 −1.12·107

2.8·10−3 −1.18·10−2 1.55·10−2 0.00 1.61·107 0.00 −9.36·106 2.42·106

4.65·10−2 1.84·10−3 −2.34·10−2 0.00 0.00 3.58·107 1.36·107 −1.13·107

2.39·10−2 6.03·10−3 −1.08·10−2 1.07·107 −9.36·106 1.36·107 3.71·107 −1.15·107

−1.43·10−2 9.84·10−3 1.34·10−2 −1.12·107 2.42·106 −1.13·107 −1.15·107 2.64·107





where the translation-translation (TT, red box) block elements are in m2s−1, the translation-

rotation (TR, green box) and translation-internal (TI, brown box) blocks in ms−1 and the

rotation-rotation (RR, orange box), rotation-internal (RI, blue box), internal-internal (II,

magenta box) blocks in Hz. General characteristics can be observed such as the weak coupling

between translations and rotation plus conformational dof. We report in Table 2.4 a summary

of values for the diagonal elements of D for the rotational and internal blocks, for a range

of values of conformational angles. It should be stressed that a different choice of the MF

would have lead, naturally, to different values in the above table; the relevant dynamics

should always be discussed in terms of a complete model for the roto-translational plus

internal dof (i.e. for instance of a properly defined diffusive operator) [36].
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The case of AKeco

The LID domain of AKeco is a rigid body moving with respect to the rest of the molecule

through two hinges (H5 and H6) located at residues 115 and 158 [68]. Figure 2-15 shows the

cartoon of the AKeco protein evidencing the LID domain (in blue).

Figure 2-15: Cartoon structure of AKeco.

The internal mobility of AKeco can be described choosing the two torsional angles between

residues 114-115 and 158-159, respectively, as relevant dof, as depicted in Figure 2-16.

The procedure for choosing the torsional angles and evaluating the diffusion tensor, which

is formally equivalent to the one obtained for calmodulin, leads to the equivalent expression

for the full diffusion tensor in the case of both angles

D =





1.28·10−10 −1.29·10−11 2.43·10−12 1.42·10−3 −1.99·10−2 −1.43·10−3 7.01·10−5 −5.06·10−4

−1.29·10−11 1.03·10−10 5.44·10−12 2.41·10−3 8.56·10−3 4.86·10−4 4.49·10−4 −1.01·10−3

2.43·10−12 5.44·10−12 1.31·10−10 1.96·10−2 4.93·10−4 1.71·10−3 8.36·10−5 1.22·10−4

1.42·10−3 2.41·10−3 1.96·10−2 1.00·107 0.00 0.00 1.79·105 3.23·105

−1.99·10−2 8.56·10−3 4.93·10−4 0.00 1.06·107 0.00 3.97·105 −3.13·105

−1.43·10−3 4.86·10−4 1.71·10−3 0.00 0.00 1.48·107 4.13·105 −6.33·105

7.01·10−5 4.49·10−4 8.36·10−5 1.79·105 3.97·105 4.13·105 1.28·106 −4.03·105

−5.06·10−4 −1.01·10−3 1.22·10−4 3.23·105 −3.13·105 −6.33·105 −4.03·105 1.18·106





while Table 2.5 shows the variation of rotational and internal diagonal coefficient with tor-

sional angles.
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Figure 2-16: Relevant dof chosen for describing AKeco mobility.

2.3.3 Discussion

Combination of cost-effective PCM-based calculations of molecular shape and hydrodynamic

modelling for the evaluation of diffusion (friction) tensors of molecules (both rigid and with

internal torsional degrees of freedom) is able to reproduce accurately experimental diffusion

coefficients, both translational and rotational, for molecules of diverse extensions ranging

from a few atoms to proteins, with two adjustable parameters. The most important free

parameter is the average radius for all extended atoms (beads). This parameter governs the

effective shape of the molecule and, therefore, the friction tensor of the unconstrained system

of beads. The other parameter is the threshold on the exposed area, which determines if a

given bead is wetted and therefore included in the computation of the total friction: this has

to be considered as a ”computational” rather than a physical parameter of the method. As

shown in the implementation section, a threshold of 10% can be safely employed to boost the

computational performances without introducing important errors in the calculated diffusion

tensor.

Computational times are comparable with existing established software in the field, due to

the combination of the fast determination of the molecular surface and the optimization of

the linear-algebra operations required to evaluate the friction tensors.
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Chapter 3

Electron Spin Resonance

Electron spin resonance (ESR) is one of the most powerful tools in the interpretation of struc-

tural properties and dynamic processes of molecules in fluids. Because of their favourable

time scale, ESR experiments can be highly sensitive to the details of global and internal dy-

namics. In the so-called slow motional regime, the spectral line shapes take on complex forms,

which are found to be sensitive to the microscopic details of motional processes. Hence, the

interpretation of slow motional spectra requires an analysis based upon sophisticated theory,

and it is usually carried out via explicit modelling of the dynamics of radicalic species.

ESR spectroscopy is applied extensively to material science. An example is given in the

search of new materials with tailored magnetic properties, which has intensified in recent

years. Here ESR can be employed profitably for characterizing novel stable radicalic systems,

and a currently studied case is given, for instance, by nitronylnitroxide free radicals [2, 3, 4].

Highly valuable information can also be gathered from ESR studies of complex biomolecules.

Studying the dynamical relaxation processes in proteins and enzymes is of fundamental im-

portance in order to understand their chemical and physical properties, such as substrate

recognition, reactivity, folding [6, 7, 69, 70]. Thanks to the development of the so called site

directed spin labelling (SDSL) technique [5, 6], which consists of attaching a small molecule

with an unpaired electron to a molecule which is not natively a radical, ESR is beginning to

be accepted as a comprehensive way to study proteins, encompassing both structural and

dynamic information. The SDSL technique allows to add one or more spin probes to the

protein with a minimal effect on its original dynamics / structure.

In a typical standard continuous wave ESR (cw-ESR) experiment the molecular information
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Chapter 3. Electron Spin Resonance

of interest is hidden in the line shape of the spectrum. It is important to employ a fast,

reasonably accurate theoretical approach for the interpretation of the experimental spectra

which allows a correct link between the macroscopic observables and the microscopic pa-

rameters of the molecule.

An advanced theoretical approach to the interpretation of ESR spectra is based on the

definition and solution of the stochastic Liouville equation (SLE) [16] of the system. This

is essentially a semi-classical approach based on the Liouville equation for the magnetic

probability density of the molecule augmented by a stochastic operator which describes the

relevant relaxation processes that occur in the system, responsible of the broadening of the

spectral lines [15]. The SLE approach can be linked profitably to advanced density func-

tional theory (DFT) evaluation of geometry and magnetic parameters of the radical in its

environment [57]. Dissipative parameters, such as rotational diffusion tensors, can in turn

be determined at a coarse-grained level by using standard hydrodynamic arguments. The

combination of the evaluation of structural properties, based on quantum mechanical ad-

vanced methods, with hydrodynamic modelling for dissipative properties and, in the case of

multilabeled systems, determination of dipolar interaction based on the molecular structures

beyond the point approximation are the fundamental ingredients needed by the SLE to pro-

vide a fully integrated computational approach (ICA) that gives the spectral profile [57]. As

it will become clear in the next sections, a number of parameters enter in the definition of

the SLE and customarily a multi-component fitting procedure is employed. ICA attempts to

replace fitting procedures as much as possible with the ab initio evaluation of parameters in

order to give them a sound physical interpretation and fitting may be retained as a ”refining”

step.

The ICA protocol has been implemented in the new software E-SpiReS (Electron Spin Res-

onance Simulation), which includes and automatically interfaces the different theoretical /

computational methodologies in a transparent way to the user. The graphical user interface

(GUI), which renders the program very user-friendly, has been thought in such a way that

the work flow of the calculation is clearly pointed out. Users are asked to define input by

point-and-click, i.e. indicating the magnetic probes on the molecule and setting some phys-

ical data like frequency of the spectrometer, temperature, viscosity of the fluid. Then, to

obtain the cw-ESR spectrum it is sufficient to follow a number of guided steps that require
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3.1. Integrated Computational Approach

as little intervention as possible from the user because most of the work (especially input /

output operations) is handled by the computational tool.

3.1 Integrated Computational Approach

The integrated computational approach (ICA) to the interpretation of electron magnetic

resonance merges a number of theoretical / computational methodologies that, starting from

the geometry of the molecule, permit to evaluate, in principle, all the molecular properties

that enter as parameters in the equations describing the time evolution of the system. In order

to realize this ab initio approach it is important to include in the computational protocol ad

hoc methodologies that treat the molecule at different coarse-grained levels, depending on

the physical nature of the parameter to be evaluated. The ICA is effectively a multi-scale

approach to ESR spectroscopy [57].

As was underlined in the introduction of this chapter, the theoretical methodology that we

employ is based on the definition and numerical solution of the stochastic Liouville equation,

which describes the time evolution of the density probability of the system [16, 21, 32]. Given

the set of spin variables, σ, and the set of stochastic variables, X, the SLE is written as [16]

∂ρ(σ, X, t)

∂t
= −i

[
Ĥ(σ, X), ρ(σ, X, t)

]
− Γ̂(X)ρ(σ, X, t)

= −
[
iĤ×(σ, X) + Γ̂(X)

]
ρ(σ, X, t)

= −L̂(σ, X, t)ρ(σ, X, t) (3.1)

where the Liouvillean L̂ = iĤ× + Γ̂ is given by the sum of the stochastic operator Γ̂,

describing the time evolution of the stochastic variables X, and the commutator Ĥ× which

is the quantum Liouville operator, that is, the super-operator defined with respect to the

magnetic Hamiltonian of the system, Ĥ. It depends on both spin and stochastic coordinates

so spin relaxation is coupled to the dynamics of the molecule. In particular, the dependence

of the magnetic part on dynamical variables can be separated in i) a contribution that

comes from the anisotropy of that magnetic tensors that enter the spin Hamiltonian, e.g.

the tumbling of the molecule changes the orientation of the magnetic tensors relative to the

laboratory frame (where both the magnetic field and the spin operators are defined); ii) a
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Chapter 3. Electron Spin Resonance

contribution from internal variables via changes on the electronic distribution, e.g. motion

around a torsional angle leads to modifications on the geometry that may imply important

changes in electron structure so affecting the principal values of the magnetic tensors.

In the present implementation of the ICA protocol within the code E-SpiReS (see next

section), it is possible to treat singly and doubly spin-labelled molecules. For each probe a

maximum of two nuclei can be coupled with each electron. In case of biradicals, the dipolar

and exchange terms appear in the Hamiltonian, together with the electron Zeeman and

nucleus - electron hyperfine interaction terms. So, the general form of the spin Hamiltonian

is

Ĥ/h̄ =
2∑

i=1



ωg,iZ∆giŜi +
2∑

j=1

ωA,ij Î ij∆AijŜi



 + Ŝ1T Ŝ2 (3.2)

where i is the summation index over the electrons and j over the nuclei. For every electron

three terms are present, i.e. the Zeeman interaction of the electron with the magnetic field and

the two hyperfine interactions of the electron with the two nuclei of spin Iij. In the equation,

∆gi is the traceless Zeeman interaction tensor of i-th atom, ωg,i = βeB0Tr{gi}/3h̄, Z is the

axis of the laboratory inertial frame parallel to the magnetic field, Ŝi is the spin operator for

the i-th electron; ∆Aij is the traceless hyperfine coupling tensor of i-th electron with j-th

nucleus, ωA,ij = γeTr{Aij}/3, Î ij is the spin operator of j-th nucleus coupled to the i-th

electron. The last term in the expression of the Hamiltonian is the interaction term coupling

the two electrons

T = T J + T DD = −2γeJ13 + T DD (3.3)

where J is the exchange interaction energy between the two electrons and T DD is the dipolar

interaction tensor. If the two unpaired electrons are localized in sufficiently distant orbitals,

it is possible to introduce the point dipole approximation, so

T DD =
µ0

4π

g2
eβ

2
e

h̄r3

(
13 −

3

r2
r ⊗ r

)
(3.4)

with r the distance vector between the two electrons and ⊗ the dyadic product. On the

other hand, if the two orbitals containing the unpaired electrons are close one to the other,

it becomes necessary to consider the delocalization of the electrons and the tensor is given

as

T DD ∝ 〈Ψ1(r1)Ψ2(r2)−Ψ1(r2)Ψ2(r1) |T̂
DD|Ψ1(r1)Ψ2(r2)−Ψ1(r2)Ψ2(r1)〉 (3.5)
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3.1. Integrated Computational Approach

where the wave functions Ψ1 and Ψ2 are the two singly occupied molecular orbitals (SOMO)

containing the unpaired electrons. The components of the tensorial operator T̂DD
α,β (α, β =

X, Y, Z) are

T̂DD
α,β =

r2δα,β − 3(r)α(r)β

r5
(3.6)

with (r)α being the α component of vector r.

Depending on the radical under study only the needed terms of the spin Hamiltonian 3.2

are taken into account. From the general equation of the spin Hamiltonian it is evident that

a number of parameters are required, i.e. the g tensors of the electrons, the A hyperfine

coupling tensors for all considered nuclei, the exchange interaction energy J and the dipolar

interaction tensor T DD. All these quantities are purely quantum mechanical properties and

their evaluation requires a first principles treatment. The ICA protocol schedules quantum

mechanical calculations based on the most advanced DFT techniques. More details are given

in Section 3.1.1.

The stochastic operator, Γ̂, is a very important ingredient in the methodology because de-

pending on how we describe the time behaviour of the relaxation processes in the system

we influence the inhomogeneous broadening of the spectral lines. In Chapter 1 we have just

discussed about the importance of choosing the relevant dynamics of the system. The next

step is determining their time evolution, depending on their physical origin. Usually Fokker

Planck / diffusive operators are employed and this choice for the relaxation of dynamics is

presently implemented in the ICA protocol. In particular, two dynamical models are im-

plemented which are i) a rigid body model, where the molecule is seen as a rigid rotator

diffusing in the fluid and the stochastic variables are X = Ω, the set of Euler angles which

give the relative orientation of the molecule with respect to the inertial laboratory frame;

ii) a ”flexible” body model, where the molecule is described as a rotator with one internal

degree of freedom represented by a torsional angle, so the stochastic variables, X = (Ω, θ),

are the set of angles Ω (for the global rotation) and the torsional angle θ. In both models

the stochastic variables are considered as diffusive processes and the stochastic operator has

the general form

Γ̂ = −∇̂tr
XD(X)Peq(X)∇̂XP−1

eq (X) (3.7)
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Chapter 3. Electron Spin Resonance

where ∇̂X is the vector operator of partial derivatives over the stochastic variables, D(X) is

the full diffusion tensor of the system (which in general depends on the stochastic variables)

and Peq(X) is the equilibrium distribution probability of the system for which a Boltzmann

form is considered

Peq(X) = exp [−V (X)/kT ]/〈exp [−V (X)/kT ]〉 (3.8)

Here, V (X) is the potential acting on the stochastic coordinates and 〈. . .〉 represents the

integration over X. We make the assumption that the potential has two separated contri-

butions, an ”external” term acting on the global orientation (e.g. ordering effects in liquid

crystals) and an internal term acting on the torsional angle (if present) which is the torsional

potential, i.e.

V (X) = Vext(Ω) + Vint(θ) + Vcoupling(X) ≈ Vext(Ω) + Vint(θ) (3.9)

Once that the shape of the stochastic operator has been decided, new parameters enter in

the SLE, being the full diffusion tensor of the system and the terms of the orienting po-

tential acting on the stochastic coordinates. The evaluation of the diffusive properties is

fully described in Chapter 2 and it is based on a mesosopic coarse-grained description of

the molecule. The internal potential can be evaluated from a potential energy surface scan

over the torsional angle θ. For small molecules this operation can be easily conducted ad

QM level, while for big molecules, such as proteins, mixed quantum mechanical / molecular

mechanics (QM/MM) methodologies can be employed. Finally, for the orienting potential

we usually adopt a phenomenological shape based on ”chemical insight”. As an example:

in considering a molecule of cylindrical shape in a nematic environment it is reasonable to

model the orienting potential with a second order Legendre polynomial.

Just to summarize, several parameters are needed to properly define the SLE, which are quite

different in their nature. For each a different ad hoc computational methodology is however

generally available which attempts, in controlled conditions, a determination in terms of

the molecular topology and shape and solvent macroscopic properties. A picture of the full

ICA methodology is given in Figure 3-1 and all the mentioned techniques are implemented

within the new software E-SpiReS (Electron Spin Resonance Simulation - see Section 3.2.3)

which integrates quantum mechanical (QM) methods for magnetic and structural properties
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3.1. Integrated Computational Approach

Figure 3-1: Chart of the ICA for the simulation of cw-ESR spectra in solution. Steps (2) and
(3) are based on the optimized geometry and electronic structure obtained in step (1).

and a hydrodynamic approach to the diffusive properties, and finally takes care of the nu-

merical solution of the SLE. Some details on the different approaches are given in the next

subsections.

3.1.1 Quantum mechanical properties

The introduction of the Density Functional Theory (DFT) is a turning point for the calcula-

tions of the spin Hamiltonian parameters [38, 71, 72, 73]. Before DFT, ab initio calculations

of the magnetic parameters of spin Hamiltonians were either prohibitively expensive already

for medium size radicals [74, 75, 76, 77] or less reliable than semiempirical methods. These

latter were based on the approaches introduced by McConnell [78, 79] and Stone [80, 81] for

the calculations of the hyperfine coupling and the g tensors respectively. Based on semiem-

pirical parameters taking into account separately the spin density on the SOMO and that

due to spin polarization [82], the method for the evaluation of hyperfine tensors has been an

invaluable tool for understanding the correlation between the magnetic parameters of the

spin Hamiltonian, the spin distribution, the conformation of radicals, the molecular prop-
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Chapter 3. Electron Spin Resonance

erties in general. However the reliability of the method was very restricted, as limited to

predictions inside groups of similar radicals for which the same set of semiempirical param-

eters were sound, and the parameters to be calculated were only the SOMO spin densities

[82]. Within these limits the calculated hyperfine tensors were quite reliable. On the other

hand, the agreement between calculated and experimental values for g tensors used to be

in general much worse. To this end, it should be noted that the recently achieved chances

of calculating reliable g tensors principal values by DFT on one hand [83, 84, 85, 86, 87],

and to measure them by High Frequency ESR on the other one, has provided a new largely

unexplored source of information on molecular properties attainable by ESR analysis.

Today, the agreement between experimental and calculated parameters of the spin Hamil-

tonian by DFT is outstanding [38, 71, 72, 73, 83, 87]. Both the vibrational averaging

of the parameters [17, 18, 19] and the interactions of the probe with the environment

[88, 89, 90, 91, 92, 93] is taken into account, therefore providing a set of tailored parameters

that can be used confidently for further calculations. It should be noted that this approach

is a step forward with respect to the traditional starting point, i.e. the use of a set of exper-

imental hyperfine and g tensors generally obtained for a different system, and extrapolated

to the case of interest.

The g tensor can be dissected into three main contributions [83, 84, 85, 86, 87]

g = ge13 + ∆gRMC + ∆gGC + ∆gOZ/SOC (3.10)

where ge is the free electron value (ge = 2.002319) and 13 is the 3 unit matrix. ∆gRMC and

∆gGC are first order contributions, which take into account relativistic mass (RMC) and

gauge (GC) corrections, respectively. The last term, ∆gOZ/SOC , is a second-order contribu-

tion arising from the coupling of the Orbital Zeeman (OZ) and the Spin-Orbit Coupling

(SOC) operators. The SOC term is a true two-electron operator, but here it will be ap-

proximated by a one-electron operator involving adjusted effective nuclear charges [94]. This

approximation has been proven to work fairly well in the case of light atoms, providing re-

sults close to those obtained using more refined expressions for the SOC operator [83, 84, 85].

In our general procedure, spin-unrestricted calculations provide the zero-order Kohn-Sham

(KS) orbitals and the magnetic field dependence is taken into account using the coupled-

perturbed KS formalism described by Neese, but including the GIAO approach [83, 84, 85].
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Solution of the coupled perturbed KS equation (CP-KS) leads to the determination of the

OZ/SOC contribution.

The second term is the hyperfine interaction contribution, which, in turn, contains the so-

called Fermi-contact interaction (an isotropic term), which is related to the spin density at

the corresponding nucleus n by [95]

An,0 =
8π

3

ge

g0
gnβn

∑

µ,ν

Pα−β
µ,ν 〈ϕµ |δ (rkn) |ϕν〉 (3.11)

and an anisotropic contribution, which can be derived from the classical expression of inter-

acting dipoles [96]

An,ij =
ge

g0
gnβn

∑

µ,ν

Pα−β
µ,ν 〈ϕµ |r−5

kn

(
r2
knδij − 3rkn,irkn,j

)
|ϕν〉 (3.12)

A tensor components are usually given in Gauss (1 G = 0.1 mT); to convert data to MHz

one has to multiply by 2.8025.

Magnetic tensors evaluated at this level do not give sufficiently accurate estimates of exper-

imental values, especially if one considers a molecule in a solvent with high polarity and /

or a solvent that can form hydrogen bonds. Environmental effects (e.g. solvent) need to be

taken into account and the most promising general approach to the problem can be based

on a system-bath decomposition. Calculations can be performed on the system including

the part of the solute where the essential part of the process to be investigated is localized

together with, possibly, the few solvent molecules strongly and specifically interacting with

it. This part is treated at the electronic level of resolution, and is immersed in a polarizable

continuum, mimicking the macroscopic properties of the solvent. So, the solution process

can then be dissected into the creation of a cavity in the solute, process requiring an en-

ergy Ecav, and the successive switching on of dispersion-repulsion, with energy Edis−rep, and

electrostatic, with energy Eel, interactions with surrounding solvent molecules. All of these

contributions, for both isotropic and anisotropic solutions, are included into the so-called

polarizable continuum model (PCM) [97, 98, 99, 100]. Taking into account solvent effects

gives the corrections required in order to predict values of the tensors very close to the ex-

perimental ones (see Tables 2 and 7 of ref. [57]).

While in some cases considering the environment is sufficient to reproduce experimental

values of the g and hyperfine tensors, there are molecules presenting fast motions in the
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neighbours of the unpaired electron. Dependence of the magnetic parameters on these small

geometry variations can be very significative [17, 101, 102, 103]. These motions are usually

too fast with respect to ESR time scales window so the effective contribution is a correc-

tion that can be calculated as an average over short time dynamics calculated at QM level

[104, 105]. Quantum mechanical calculations are also important when there is the need of

calculating the electrons dipolar interaction, in bi-radicals, as given in equation 3.5, that we

rewrite here

T DD ∝ 〈Ψ1(r1)Ψ2(r2)−Ψ1(r1)Ψ2(r2) |T̂
DD|Ψ1(r1)Ψ2(r2)−Ψ1(r1)Ψ2(r2)〉 (3.13)

To evaluate tensor T DD one needs to know information about the two singly occupied molec-

ular orbitals (SOMO) containing the unpaired electrons. In the current implementation of

the ICA methodology we included only the approximated formula for the evaluation of the

dipolar interaction (eq. 3.4). However in one of the case studies that were treated in the

validation of the ICA (cfr. Section 3.3.4) we needed to use the correct formula. To this pur-

pose we have just introduced a calculation routine, but it still presents some limitations and

further work is going to be done in the next future in order to include this feature in our

software. Details on the present implementation are given in Appendix B.

Finally, in the case of flexible molecules it is important to evaluate also the torsional po-

tential, i.e. the potential acting on the torsional angle which, together with the diffusion

coefficient, determines the relaxation properties of the internal dynamics. Evaluation of the

potential is performed at a QM or quantum mechanical/molecular mechanics (QM/MM)

level, by calculating the energy of the molecule at different values of the free internal tor-

sional angle between 0◦ and 360◦.

3.1.2 Diffusive properties

We just stressed in the previous sections that dissipative properties are very important pa-

rameters. The diffusion tensor is one of the two ingredients determining the time scales of

the relaxation processes in the system. The other ingredient is the potential, if present.

The general methodology to the evaluation of diffusive properties has just been presented

and discussed in Chapter 2. The approach is fully implemented into the ICA protocol giving
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the possibility of treating both rigid molecules and molecules that present internal flexibility

in terms of a torsional angle.

In the particular case of a rigid molecule only six coordinates completely describe the config-

uration of the system (the position of the centre of mass and the global orientation) and the

full diffusion tensor is represented by a 6×6 matrix containing only translational, rotational

and coupling terms. When we consider an internal torsional angle, together with the six

degrees of freedom of the rigid body, another coordinate has to be taken into account and

in this case the diffusion tensor is represented by a 7 × 7 matrix containing, now, also an

internal coefficient and coupling terms among the internal part and the translational and

rotational parts.

Usually translational motion is poorly coupled to rotational and internal motions so it is

easy to project the translational part, which has no effect on the spectrum if the molecule

is supposed to move in a region of space where the applied magnetic field is uniform.

Generally the diffusion tensor depends on all the stochastic coordinates. To simplify the

formalism we express the diffusion tensor on a frame fixed on the molecule, that we call

molecular frame (MF), so that the tensor does not depend more on the orientation. Depen-

dence on the internal torsional angle, instead, is not generally negligible so in principle it

has to be taken into account. This dependence could be omitted as a further approximation

based on a preliminary study of the molecule that is going to be studied. In the present

implementation of the ICA, however, we assume that the dependence of the diffusion tensor

on the internal angle can be always neglected. This approximation gives some restrictions

on the molecules that can be treated to those that do not change significantly their shape

with a change of the internal angle.

3.1.3 Solution of the SLE

Once magnetic, structural and dissipative parameters have been estimated the SLE is com-

pletely defined. At this point, physical properties can be calculated, with the knowledge

of Γ̂ and Peq, either directly from the conditional probability P (X, t) or in terms of time

correlation functions, which are defined, for two correlated observables f(X, t) and g(X, t)
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as

G(t) = 〈f(X, t) | exp (−Γ̂t)| g(X, t)Peq(X)〉 (3.14)

from which it is possible to calculate the spectral density, i.e. the Fourier-Laplace transform

of G(t) as

J(ω) =
1

π

∫ ∞

0
dωG(t)e−iωt =

1

π
〈f(X, t) |

(
iω + Γ̂

)−1
| g(X, t)Peq(X)〉 (3.15)

The formalism for evaluating cw-ESR spectra is now easily interpreted in terms of spectral

densities. In the SLE framework, the stochastic operator Γ̂ is part of the generic stochastic

Liouvillean L̂ (eq. 3.1) and the cw-ESR spectrum given by

I(ω − ω0) =
1

π
Re

{
〈〈v |

[
i(ω − ω0) + L̂

]−1
| vPeq〉〉

}
(3.16)

i.e., as the real part of the spectral density for the auto-correlation function for the observable,

usually called ”starting” vector corresponding to the X-component of the magnetization.

It is usual to transform the Liouvillean with the symmetrization

L̃ = P−1/2
eq L̂P 1/2

eq = iĤ× + P−1/2
eq Γ̂P 1/2

eq = iĤ× + Γ̃ (3.17)

and now we are following the time evolution of the density matrix ρ̃(Q, t) = ρ(Q, t)/ρeq(Q)

and the equilibrium probability density of the stochastic coordinates is P̃eq(X) = P 1/2
eq (X).

The spectral density becomes now:

I(ω − ω0) =
1

π
Re

{
〈〈vP 1/2

eq |
[
i(ω − ω0) + iĤ× + Γ̃

]−1
| vP 1/2

eq 〉〉
}

(3.18)

Definition of the starting vector depends on the radical that is going to be studied. Consider

as an example the case of a monoradical in which the unpaired electron is coupled to a

nucleus of spin I: the starting vector takes the form

| vP 1/2
eq 〉〉 = (2I + 1)−1/2| ŜX × 1I × P 1/2

eq 〉〉 (3.19)

The cw-ESR spectrum is obtained by numerically evaluating the spectral density defined

in eq 3.18 and here we adopt the standard methodology of spanning the Liouvillean over a

proper basis set defined by the direct product

|Σ〉〉 = |σ〉〉 ⊗ |Λ〉 (3.20)
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The basis set for the spin coordinates, |σ〉〉, is the space of spin transitions and is defined

elsewhere [16, 21, 32]. For the stochastic part we make the standard choice of employing

Wigner rotation matrices for the global rotation and complex exponentials for the internal

torsional angle, i.e. |Λ〉 = |LMK〉 ⊗ |n〉 with

|LMK〉 =

√
2L + 1

8π2
DL

M K (Ω) (3.21)

|n〉 =
1√
2π

e−inθ (3.22)

To obtain the spectral density usually iterative algorithms, like Lanczos [20, 106] or conjugate

gradients [107] are employed. In particular we make use of the Lanczos algorithm, a recursive

procedure to generate orthonormal functions which allows a tridiagonal matrix representa-

tion of the system Liouvillean. Assuming as a first function the normalized zero-average

observable, | 1〉〉 = | vP 1/2
eq 〉〉/〈〈v |Peq| v〉〉1/2, the following functions are obtained recursively

βn+1|n + 1〉〉 =
(
L̃− αn

)
|n〉〉 − βn|n− 1〉〉 (3.23)

αn = 〈〈n |L̃|n〉〉 (3.24)

βn = 〈〈n |L̃|n− 1〉〉 (3.25)

Coefficients αn and βn actually form the first and second diagonal of the tridiagonal (com-

plex) symmetric matrix representation of the symmetrized Liouvillean, and the spectrum

can be written in the form of a continued fraction [20]

I(ω) =
1

iω − α1 −
β2

2

iω − α2 −
β2

3

iω − α3 − . . .

(3.26)

Evaluation of eqs. 3.23-3.25 is carried on in finite arithmetic by projecting the symmetrized

Liouvillean and the the starting vector on the basis set 3.20, defining the matrix operator

and starting vector elements

L = 〈〈Σ |L̃|Σ′〉〉 (3.27)

v = 〈〈Σ |1〉〉 (3.28)
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so that the matrix-vector counterparts of eqs. 3.23-3.25 become

βn+1vn+1 = (L− αn) vn − βnvn−1 (3.29)

αn = vn ·L · vn (3.30)

βn = vn ·L · vn−1 (3.31)

Symmetry arguments can be employed to significantly reduce the number of basis function

sets required to achieve convergence, together with numerical selection of a reduced basis

set of functions based on ”pruning” of basis elements with negligible contributions to the

spectrum [16].

3.2 E-SpiReS software

We present in this section a new software tool, named E-SpiReS (Electron Spin Resonance

Simulation), aimed at the interpretation of dynamical properties of molecules in fluids from

electron spin resonance (ESR) measurements. The code implements the integrated compu-

tational approach, described in the previous section, for the calculation of relevant molecular

properties that are needed in order to obtain spectral lines. The protocol encompasses in-

formation from atomistic level (quantum mechanical) to coarse-grained level (hydrodynam-

ical), and evaluates ESR spectra for rigid or flexible single or multi-labelled paramagnetic

molecules in isotropic and ordered phases, based on a numerical solution of a stochastic

Liouville equation.

E-SpiReS automatically interfaces all the computational methodologies scheduled in the ICA

in a way completely transparent to the user, who controls the whole calculation flow via a

graphical interface.

Parallelized algorithms are employed in order to allow running on calculation clusters, and

a web applet Java has been developed with which it is possible to work from any operating

system, avoiding the problems of recompilation.

Due to the modular nature of the ICA protocol, E-SpiReS is not a single program, but rather

a package of many applications. The main distinction is from the calculation core programs

which work from the command line and the graphical user interface (GUI) which is the high

52



3.2. E-SpiReS software

Figure 3-2: Schematic representation of all the operations handled by the graphical user
interface of E-SpiReS in function of user’s actions. Red arrows represent output, green arrows
input data and red boxes the core programs

level wrapper that interfaces all the core applications and also other external programs like

Gaussian 03 [53], for QM calculations, and Babel [108], for translating among molecular file

formats. Figure 3-2 shows a scheme illustrating the work flow that the graphical interface

automatically handles for each specific request of the user.

Simulations are organized in projects. The first and only permitted operation when using the

program is the specification of the molecular geometry. Once the user has feeded E-SpiReS

with the geometry file, in Z-matrix (ZMT) or protein data bank (PDB) format, E-SpiReS

sets as project directory the one where the geometry file is located. In this folder all the

input / output and supporting files are stored. It is possible to keep more projects in the

same folder without making confusion because E-SpiReS appends the name of the geometry

file as a prefix to the names of all the produced files. As an example, if one puts in the same

directory the two geometry files, say ”tempol.pdb” and ”toac.pdb”, all files related to the

first project will start with ”tempol ” and those related to the second project will start with

”toac ”. In any case, a lot of files are created during a simulation so it is recommended to

work in separate folders.

Users which feel at ease working with command line can perform a simulation completely by
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calling the calculation core programs in sequence. This can be a tedious process, however,

and the GUI is really helpful in managing the different operations, especially for I/O.

In the subsections below some details on the implementation and usage of E-SpiReS are

given.

3.2.1 Graphical user interface

The GUI of E-SpiReS is written in Java. The choice of writing the interface in such a lan-

guage came in part from the relative simplicity of developing graphical applications and

for the possibility of creating, with a minimal effort, a web applet that works on internet

browsers. This aspect will be discussed in the ”Web interface” subsection.

As it can be seen in Figure 3-3, the interface has a very simple outlook. It is made of a

window representing the 3D space where the molecule is plotted and some point-and-click

input is done when preparing a simulation, and a small control panel with five buttons, which

stand for the guided work flow that users should follow in order to complete the simulation

and obtain the cw-ESR spectrum. Every button represents a procedure in the simulation

work flow where some decisions need to be taken by the user. Unfortunately, the intrinsic

complexity of the methodology does not permit to write a ”single button” or black-box

program: users have freedom of choice in several crucial steps, e.g. in deciding which param-

eters to evaluate theoretically or fix or fit, changing the defaults settings for the calculations

and so on. This fact implies that the work flow to follow is not predetermined, but changes

depending on user’s knowledge, expertise and so on. As an example, suppose that a user is

dealing with a flexible molecule and wants to focus only on the internal potential. There are

two possibilities: calculating the potential via QM or setting a custom shape. The difference

between the two choices is that the first case implies that the user enters the ”Gaussian”

environment in order to calculate the torsional potential, while in the second case he / she

can avoid completely the ”Gaussian” step following a different work flow.

In the next subsections a description of the five steps (or environments) of a typical cal-

culation is given. Each environment collects a number of correlated numerical and physical

aspects.
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Figure 3-3: Graphical User Interface of E-SpiReS. It consists of a window (on the left) which
is the 3D space where the molecules are plotted and a control panel (on the right) with
which setting and running the calculations.

Set Project

The ”Set Project” environment is the starting step of a simulation. Here the user configures

the system and makes basic choices about the calculation strategy. The initialization of a

new calculation is automatically handled by E-SpiReS once a molecular geometry file (either

in ZMT of PDB formats) is loaded. Once the molecule is displayed in the 3D space window,

a number of decisions have to be taken. Firstly it is necessary to select the dynamical model

for the molecule. At present, there are only two models implemented: the first is the ”rigid

body model” (RBM) in which the molecule is seen as a rigid rotator reorienting in the fluid.

The second is the ”flexible body model” (FBM) where, together with the global tumbling,

also internal degrees of freedom are taken under consideration. In this case, the user has to

specify the two atoms bonded by the torsional angle and this definition can be done directly

on the molecule by clicking the two atoms. In the near future more complex motional models

will be added as complementary modules to E-SpiRes (two and three body diffusive models,

membrane environments and locally vibrating motions). After the selection of the dynamical

model it is fundamental to give to E-SpiReS some basic information on the magnetic probe,

which is tantamount to defining the effective spin Hamiltonian. The user can again select
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Figure 3-4: Representation of the panels aimed to the definition of the physics of the system.
The Modelling Panel (up, left) is aimed to the point-and-click definition of the spin Hamil-
tonian and the diffusive operator; in the Physical Data Panel (up, right) users introduce
important experimental data (field, field sweep, temperature and viscosity); the Numerical
Data panel (bottom right) contains the information about numerical parameters (basis trun-
cation numbers, Lanczos iterations); finally, the Additional Data panel (bottom left) serves
to optionally introduce some more information on the system (the shape and strength of ap-
plied potentials, hydrodynamic properties, molecular charge, spin multiplicity and intrinsic
linewidth).

directly on the molecule the atoms bearing the unpaired electrons and the nuclei coupled to

the electrons. At present, it is possible to define up to two spin probes on the molecule and

two nuclei per spin probe. E-SpiReS takes a default set of magnetic properties (principal

values of tensors, orientations, nuclear spin, etc.) which can be modified by the user in a

further step (the ”Diffusion” environment, see below).

At this stage the user has decided the Liouvillean shape and the ensemble of physical pa-

rameters is well defined. Some of these parameters are chosen initially with default values by

E-SpiReS, but they can be modified by the user if needed; four important parameters must

be inserted because they represent the experimental conditions and these are the frequency
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of the spectrometer, the field sweep (i.e. the range of fields of acquisition of the signal), the

temperature and the viscosity of the solution. All the parameters that enter the SLE are

collected into three different panels, as shown in Figure 3-4. The first panel includes the four

most relevant parameters reported before. The second panel shows generic information like

the truncation limit of the basis. Finally, the third panel collects the remaining data, such

as potentials, radius of the spheres, intrinsic linewidth etc.

Diffusion

The ”Diffusion” environment is the next step in the simulation. When it is entered, E-SpiReS

automatically launches the calculation of the diffusion tensor. The atoms of the molecule

are highlighted with a different colour in order to show clearly different fragment of the

molecules. As it can be seen in Figure 3-5a in the case of RBM the molecule is a unique rigid

fragment, so all the atoms have the same colour (blue). Figure 3-5b shows the case of FBM,

for which the atoms are coloured blue or red depending on which fragment they belong to.

Atoms in the reference fragment, which is the fragment which defines the global orientation

of the molecule with respect to the inertial laboratory frame, are blue.

The output of the diffusion tensor calculation reports the rotation matrix that transforms

from the laboratory to the instantaneous local molecular frame (MF), so E-SpiReS uses this

information to transform the position vectors of the atoms in the MF and then plots the

diffusion tensor, i.e. a right-handed system of coordinates collinear to the principal axes of

the diffusion tensor and with the three axes of length proportional to the principal values.

Users have the possibility to adjust the single eigenvalues and / or the trace of the diffusion

tensor simply in the ”diffusion tensor editor” window that appears after clicking on the

diffusion tensor. The orientation of the tensor, instead, cannot be changed; all the variations

in the orientation will be reflected in adjustments of the orientation of the magnetic tensors.

Due to the fact that the orientations of the magnetic tensors are relative to the MF, the

”diffusion” environment gives the users the possibility to modify the magnetic tensors, i.e.

the orientation relative to MF and also the principal values of all g and A tensors, via a

simple point-and-click procedure. Figure 3-6 shows the mask that appears when a magnetic

tensor is clicked.
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Figure 3-5: In the ”diffusion” environment the atoms of the molecule are coloured depending
on the fragments to which they belong: (a) in a rigid molecule there is only one fragment and
all the atoms have the same colour; (b) in a molecule with one internal degree of freedom
there are two fragments and the colours of the atoms clarify the partitioning of the molecule.
The diffusion tensor is always referred to a frame fixed on the blue fragment.

Gaussian

The ”Gaussian” environment is dedicated to the calculation of structural parameters, i.e.

the magnetic tensors and / or the internal torsional potential in the case of FBM model.

E-SpiReS is programmed to interface with the Gaussian 03 package for QM calculations [53].

The program automatically writes an input file for Gaussian starting from the geometry file

given by the user and the modelling of the magnetic part. This input file is prepared using a

standard basis set and DFT functional for what concerns magnetic calculations [73] and also

the PCM (polarizable continuum model) flag is added in order to perform the calculation

with implicit solvent [50]. In case of a flexible molecule, E-SpiReS appends to the Gaussian

input file also the directives to perform a scan of the torsional angle so to evaluate the

potential energy surface (PES). This input file can be edited at will directly from the GUI,

via a simple internal text editor of E-SpiReS as Figure 3-7 shows, and then the file can

be submitted to the Gaussian program right from E-SpiReS. At the end of the calculation,

E-SpiReS automatically reads the output of Gaussian and updates the principal values and
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Figure 3-6: Each magnetic tensor can be edited by the user in the ”diffusion” environment.
With a simple mask, users can change the three Euler angles giving the orientation with
respect to the molecular frame, the three principal values and the trace of the tensor.

orientations of the magnetic tensors. In case of flexible molecules, E-SpiReS reads the PES

and spans the calculated potential over complex exponentials e−inθ which is the same basis

set over which the diffusive operator of the internal angle is spanned. All these operations are

completely automatic and transparent to the user. It is also possible to import a precalculated

QM calculation, but attention must be payed to the fact that the atoms numbering must be

the same of the geometry file feeded to E-SpiReS in the ”Set Project” environment.

Checking or un-checking the ”use Gaussian out” box in this environment makes E-SpiReS

entering in the ”Diffusion” environment and automatically adjusting the orientations and

principal values of the magnetic tensors and then back to the ”Gaussian” environment.

Esr

The ”Esr” environment launches the calculation of the spectrum and plots, directly from the

GUI, the result. The SLE is solved following a standard variational approach (see Section

3.1.3), by spanning the Liouville operator over a proper basis set, obtained as the direct

product of the space of spin transitions and the rotational space defined by stochastic vari-

ables. The spectrum is evaluated by standard algebraic methods [16]. Matrix dimensions
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Figure 3-7: The Gaussian Editor window is a very basic text editor where users can mod-
ify the standard Gaussian 03 input file produced by E-SpiReS before to submit the QM
calculation.

in a typical cw-ESR simulation can be quite large. As an example, the simplest case of a

rigid nitroxide probe with one electron interacting with a nitrogen nucleus and subject to

free fast rotation needs roughly 1260 basis functions, while adding a second equal probe the

dimension makes this number grow to 45360, i.e. simply adding another electron and an-

other coupled nitrogen nucleus the dimension of the basis grows of one order of magnitude.

This makes it impossible to use the simple techniques for solving algebraic problems, even

if the matrix associated to the Liouvillean is sparse. Symmetry arguments can be taken into

account in order to reduce the dimensions, but in many cases the number of basis functions

required remains high. Handling big matrices does not imply only large calculation times, a

problem which is in part solved by using iterative algorithms. It also carries problems with

storage. Even if the Liouvillean matrix is very sparse and only non-zero elements are kept in

memory, the situation becomes critical when the dimensions reach orders of magnitudes of
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Figure 3-8: Snapshot of the plotter window that appears when the ”Plot” button is clicked
in the ”ESR” environment. Here the last calculated spectrum is represented.

millions. If one considers a basis with dimensions of 106, and only 1% of non-zero elements,

if each element occupies 16 bytes (numbers are complex, so we need to store two floating

point numbers per element) and considering that only half of the out-of-diagonal elements

have to be stored (matrices are in general complex symmetric), the memory required is

about 80 Gbytes and it cannot be handled by a single computer (at the present, comput-

ers usually have less than 16 GB of RAM memory). To deal with both time and memory

problems, the ”esr” core routine of E-SpiReS has been parallelized. In particular two parts

of the program are parallel, the construction of the matrix associated to the Liouvillean and

the matrix vector product in the Lanczos tridiagonalization. Parallelization of the code is

done under the message passing interface (MPI) [109, 110] paradigm which is a non-shared

memory methodology. The code is written in such a way that it is scalable with the number

of processors given by the user at run time so it can take advantage of running on a cluster

of computers. In the ”Esr” environment it is also possible to run a fitting of an experimental

spectrum, but the choice of the fitting parameters is placed in a dedicated environment and

the reasons will be given in the next subsection. At every fit step two files are produced,

one with the values of the free parameters at that step and one containing the theoretical
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spectrum calculated with that values of the parameters.

At the end of the calculation, the ”Plot” button, as shown in Figure 3-8, opens a window

where the calculated spectrum is plotted. In case of fitting, clicking on ”Plot” shows the last

calculated spectrum superposed to the experimental one.

Refining

Fitting in E-SpiReS is considered an operation to be used as sparingly as possible; the main

idea is the ab initio calculation of all the physical parameters. In this context, fitting is

seen more as a ”refinement” operation, i.e. it is considered a step where parameters are

smoothed to overcome little discrepancies from the ”real” values due to approximations of

the calculation methodologies. This means that the initial guess passed to the fitting routine

are supposed to be in a region of the phase-space of the free parameters near the global

minimum of the surface, so avoiding problems of getting stuck in local and / or non-physical

minima.

As shown in Figure 3-9, in the ”refining” environment the user have to decide which param-

eters are to be fitted just by checking the relative check-boxes; the experimental spectrum

in (field, signal) double column ASCII format must be supplied. Once the free parameters

have been set, the calculation is launched from the ”Esr” environment. The fitting algorithm

is based on the Levenberg-Marquardt method of non linear least squares minimization, i.e.

the routine searches for the set of parameters p that minimizes the function

χ2 =
∑

i

[yexp (xi)− ytheo (xi, p)]2 (3.32)

where yexp(xi) is the i-th experimental data point and ytheo(xi, p) is the theoretical approx-

imating data point calculated for a certain set of values of the parameters p.

At every n-th step of the fitting the program dumps a file containing the values of the fitting

parameters at that step, pn, and a file containing the theoretical spectrum calculated with

those parameters. While the fitting routine is running, users have the possibility to see the

progress by clicking the ”Plot” button in the ”Esr” environment which puts in graph both

the experimental spectrum and the last theoretical spectrum calculated.
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Figure 3-9: In the refinement mask users can decide which parameters are to be fitted and
supply the experimental spectrum file to E-SpiReS.

3.2.2 Calculation core

Figure 3-2 shows how E-SpiReS works, i.e. how the GUI responds to the requests of the user.

The GUI handles a number of core programs, represented by red boxes in the figure. The

core programs, written in C, are:

- connectivity extract : aimed to call the Babel [108] program to convert from the ZMT

or PDB format to the Cartesian XYZ coordinates and also to extract the atoms con-

nectivity matrix;

- diffusion: is the core program of the DITE package and its task is to calculate the diffu-

sion tensor of the molecule; if a Gaussian calculation has been performed, it reads the

output of Gaussian to get the geometry and also updates orientations of the magnetic

tensors;

- esr : is the program that solves the stochastic Liouville equation producing the spec-

trum, for both single calculation of fitting procedure.
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Two other programs are involved, which are the Babel program for the conversions among

molecular file formats and, optionally, the Gaussian 03 package for the quantum mechanical

calculations.

The three core programs connectivity extract, diffusion and esr were developed introducing

a number of libraries, summarized in Appendix D, in order to handle different base tasks,

like fitting, linear algebra operations, numerical integration and so on.

3.2.3 Web interface

The choice of employing the Java programming language to build the graphical interface

stems from the fact that with a minimal effort it is possible to transform an application to

an applet that runs on a web browser. The program is configured to work under the applet

- servlet paradigm, i.e. the applet runs locally on the user’s browser and every request of

calculation or upload / download of files is sent by the applet to a servlet running on the

cluster. The communications between applet and servlet are handled with the standard

Apache Web Server program.

Interfacing users and calculation cluster through a Java web interface present a number of

advantages, i.e. no installation is required (the Java virtual machine is a standard), the same

version works on every browser and on every operating system and users do not need to be

concerned about questions of remote access, graphics forwarding etc. because the Apache

Web Server does automatically all that is needed.

3.3 Case-study calculations

We present in this section studies conducted over a number of different model systems.

The selected cases were used for the purpose of setting up, implementing and testing our

integrated computational approach and E-SpiReS. In particular we considered the following

systems:

- [C60]fulleropyttolidine bisadducts with nitroxide probes in toluene [111]: a paradigm

of rigid bi-radical species. Rigidity of the fullerene structure permits to study spatial

effects on the electrons exchange interaction energy;
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- p-(methylthio)phenyl nitronylnitroxide molecule in toluene [58]: an important molecule

in material sciences. It is a rigid small radical in which the unpaired electron has

important hyperfine coupling with two 14N atoms;

- bi-labeled small peptides in different solvents [56, 59, 112]: due to the sensitivity of cw-

ESR spectra on both dynamics and structure and the quality of quantum mechanical

and hydrodynamic evaluation of molecular parameters, the integrated computational

approach show to be promising in the possibility of assigning secondary structure to

biological molecules;

- tempo-palmitate in 5-cyanobiphenyl [113]: an example of flexible molecule in orienting

environments. This study underline the importance of taking into account relevant

dynamical processes and to introduce dynamical models based on a detailed atomistic

description of the internal motions of molecules;

- polymerization of methyl methacrylate radical in toluene [114]: an example of how

modelling based on the interpretation of relevant dynamical and structural details of

the molecule give the possibility of well describing the behaviour of complex systems

with relatively simple models.

This systematic study, which took most of the doctoral work, led to the present version of

E-SpiReS that is able to handle rigid and flexible (with one torsional angle) molecules, with

one or two spin probes, in both isotropic and oriented phases.

3.3.1 [60]fulleropyrrolidine bisadducts with nitroxide probes

We address the interpretation of continuous wave electron spin resonance (cw-ESR) spectra

of fulleropyrrolidine bisadducts with nitroxide addends. The approach is based on the defi-

nition of the spin Hamiltonian which includes exchange and dipolar interactions and on the

complete numerical solution of the resulting stochastic Liouville equation, with inclusion of

diffusive rotational dynamics. Cw-ESR spectra are simulated for a series of C60 bisadducts

made up of four trans isomers and the equatorial isomer. A non-linear least square fitting

procedure allows to extract directly from the available experimental spectra a wide range
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of parameters, namely inter-probes relative distances, diffusion tensors and values of ex-

change parameter J . Results are in good agreement with previous more phenomenological

estimates, proving that the combination of sensitive ESR spectroscopy based on multiple

spin labelling with nitroxide radicals and sophisticate modelling can be highly helpful in

providing structural and dynamic information on molecular systems.

Introduction

Most of the available studies are concentrated on mono-nitroxides derivatives, although

nitroxide biradicals and polyradicals have been used in the past for liquid crystal studies [115,

116] and are being employed as spin labels in biopolymer and peptide model systems [117].

Biradicals are characterized by anisotropic tensor g and 14N hyperfine coupling tensor A

like monoradicals, but contain additional interaction terms in the spin Hamiltonian, namely

the exchange interaction and the dipolar interaction between the unpaired electrons. The

distance between the radicals is inferred from the measurement of the dipolar interaction

[118], but structural information can be gained also from measuring the exchange constant J

between radicals. Conformations of macromolecules have been studied in this way [119, 120].

Measurements of the exchange interaction are somewhat difficult to interpret, because of

the lack of knowledge of its dependence on relative distance and orientation of the radicals.

Theoretical calculations have been conducted to evaluate the exchange interaction in different

molecular geometries [121, 122], which however can hardly be tested by comparison with

controlled experimental findings, given the difficulty of preparing binitroxides model systems

with defined relative distance and orientation in rigid molecular structures.

As a rigid template, C60 has been shown to be an ideal candidate to support nitroxide groups

placed at fixed distances and orientations. An ESR study was recently presented [123] for a

series of C60 bisadducts, which provides a good example of geometrically-controlled molecular

system where the relative positions of the unpaired electron couple is exactly determined.

As such, it is amenable to an advanced theoretical modelling which includes explicitly the

molecular rotational dynamics based on the SLE formalism, employed extensively for the

interpretation of ESR spectra of monoradicals [16].

In this work we propose to apply the standard SLE approach to interpret experimental ESR

observables for this series of bisadducts, elucidating the formal aspects and summarizing the
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necessary computational steps, with an emphasis on the general strategy more than on the

technical details.

Molecular system and modelling

The series of biradicals studied in [123] are C60 bisadducts containing the C2v symmetric

tetramethylpyrrolidine-1-oxyl group. The bisadducts series includes all four trans-isomers

1-4 and the equatorial isomer 5, and they are shown in Figure 3-10. Notice that for isomers

1-4 the exchange magnitude, J , is of the same order of magnitude of the hyperfine coupling;

the measured ESR spectra are complex and showing the presence of several transitions. A

description of the synthetic procedures, together with ESR sample preparation and magnetic

resonance measurements are provided in ref. [123].

We start by defining the magnetic Hamiltonian of the system which includes Zeeman, hy-

perfine, exchange and dipolar interaction for the two nitroxides labelled 1 and 2

Ĥ/h̄ =
βe

h̄

∑

i

B0giŜi + γe

∑

i

Î iAiŜi − 2γeJŜ1Ŝ2 +

+
µ0

4π

g2
eβ

2
e

h̄r3

[
Ŝ1Ŝ2 −

3

r2

(
Ŝ1 · r

) (
Ŝ2 · r

)]
(3.33)

where the first term is the Zeeman interaction of each electron spin with magnetic field

B0, depending on the gi tensor; the second term is the hyperfine interaction of each couple

14N / unpaired electron, defined with respect to hyperfine tensor Ai; the third and fourth

term represent the exchange and dipolar term, respectively. Here tensors gi, Ai are diagonal

in the local frame NiF rigidly fixed on the i-th nitroxide (we assume here for simplicity

Figure 3-10: Structures of biradicals 1-4 (trans isomers) and 5 (equatorial isomer).

67



Chapter 3. Electron Spin Resonance

Figure 3-11: Reference frames employed in the stochastic Liouville equation.

that both tensors are diagonal in the same local frame); operators Î i, Ŝi are defined in the

laboratory or inertial frame (LF); finally r is the distance between the two nitroxides. The

system geometry is summarized in Figure 3-11. The set of Euler angles Ω defines the relative

orientation of the generic molecular frame (MF), fixed rigidly on the fullerene backbone, with

respect to the LF; the local frames NiF are in turn defined with respect to MF by a set of

angles Ωi. Each nitroxide is finally identified by a set of polar coordinates ri = (ri, φi, θi),

where we take the centre of the fullerene backbone as origin and we assume that the centre

of the N-O bond represents the nitroxide effective position, and r = r2 − r1.

The Hamiltonian in eq. (3.33) can be also written in the compact form

Ĥ =
βe

h̄

∑

i

B0giŜi + γe

∑

i

Î iAiŜi + Ŝ1T Ŝ2 (3.34)

with

T =

(

−2γeJ +
µ0

4π

g2
eβ

2
e

h̄r3

)

1− µ0

4π

g2
eβ

2
e

h̄r5





r2
X rXrY rXrZ

rY rX r2
Y rY rZ

rZrX rZrY r2
Z




(3.35)

being the interaction tensor summarizing both exchange and dipolar interaction. Following

the standard approach of description of ESR signals in liquids, we define the SLE given in

eq. 3.1.

∂

∂t
ρ (Q, t) = −

[
iĤ× (Q) + Γ̂ (Ω)

]
ρ (Q, t) (3.36)
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Here we adopt the simple choice of considering as only relevant variables the orientation

of MF in the LF, i.e. the Euler angles set, Q = Ω. We shall also assume that the system

reorients freely in space, subject to a simple diffusive motional regime, i.e.

Γ̂ = DXX Ĵ2
X + DY Y Ĵ2

Y + DZZ Ĵ2
Z (3.37)

where Ĵi is the i-th component of the angular momentum operator in the molecular frame.

The ESR spectrum is obtained as the Fourier-Laplace transform of the correlation function

for the X-component of the magnetization, defined as | v〉〉 = (2I+1)−1| ŜX,1 + ŜX,2〉〉, where

I is the nuclear spin. Following standard definitions [16] we obtain

I (ω − ω0) =
1

π
Re

{
〈〈v |

[
i (ω − ω0)1−

(
iĤ× + Γ̂

)]−1
| vPeq〉〉

}
(3.38)

where Peq = 1/8π2 is the (isotropic) distribution in the Ω space. Here ω is the sweep

frequency and ω0 = g0βeB0/h̄, and g0 is one third of the trace of each gi tensor, which is

the same for the two electrons. The starting vector | v〉〉, with respect to which the resolvent

in eq. (3.38) is evaluated, is related to the allowed ESR transitions, and it is actually an

operator acting on the electron spin degrees of freedom [32].

To summarize, a bisadduct is described as a diffusive rotator, bearing two spin probes rigidly

fixed. Parameters are i) the principal values of the diffusion tensor DXX , DY Y and DZZ ;

ii) the principal values of g and A tensors, and Euler angles Ωµ (µ = g, A) specifying

the orientation of magnetic local tensors with respect to MF, and finally iii) the exchange

interaction J . The computational implementation of eq. (3.38) is accomplished by converting

the problem to a standard linear algebraic formulation of the resolvent in terms of matrices

/ vectors by projecting the Liouvillean L̂ and the starting vector | v〉〉 on a suitable basis set

that in our case can be initially defined as

|Σ〉〉 = | pS
1 qS

1 , pI
1q

I
1〉〉 ⊗ | pS

2 qS
2 , pI

2q
I
2〉〉 ⊗ |LMK〉 = |σ1, σ2, LMK〉〉 (3.39)

where the same notation of ref. [16] is used: the basis set is given by the direct product of spin

operators of nitroxides 1 and 2, defined by electron and nuclear spin quantum numbers pS
i , qS

i ,

pI
i , qI

i [16, 32], globally indicated as σi, and of normalised Wigner rotation matrices |LMK〉,

which correspond to the rotational degrees of freedom, with L > 0, −L ≤ M, K ≤ L.

It is convenient to introduce a symmetrized basis set, which allows exploiting symmetry

properties of the Liouville operator [16, 21]

|Σ〉〉K = |σ1, σ2, LMK, jK〉〉 = [2 (1 + δK,0)]
−1/2 e−iπ(jK−1)/4

(
|+〉〉+ jKsK |−〉〉

)
(3.40)
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where sK = (−)L+K , with K ≥ 0, and jK = ±1 for K > 0, (−)L for K = 0; ket symbol |+〉〉,

|−〉〉 stand for |Σ〉〉 and |Σ〉〉 with K → −K. Matrix elements of the stochastic Liouvillean

in the symmetrized basis set are real. A symmetric matrix representation of the Liouville

operator is given as:

〈〈Σ |L̂|Σ′〉〉 =
1

2
[(1 + δK,0) (1 + δK′,0)]

−1/2 ×
[
δjK ,jK′Re

{
〈〈+ |L̂|+〉〉+ jK′

sK′〈〈+ |L̂|−〉〉
}

+

+δjK ,−jK′Im
{
〈〈+ |L̂|+〉〉+ jK′

sK′〈〈+ |L̂|−〉〉
}]

(3.41)

The basis set has twelve indexes, leading to very large matrices that need to be treated in

order to evaluate each spectrum. Fortunately, a number of established techniques profitably

exploited in the past for the study of many-body stochastic Liouville and Fokker-Planck

operators can be employed to reduce the computational burden. Exact procedures can be

used to reduce the basis dimension invoking rotational symmetries and approximate tech-

niques, based on pruning schemes of the complete basis set, can be employed. First however,

in order to evaluate explicitly symmetrized or unsymmetrized matrix elements, one needs

to make explicit the dependence of the super-hamiltonian iĤ× from magnetic and orienta-

tional parameters. Following the established route used for monoradicals [16, 32] we adopt

a spherical irreducible tensorial representation

Ĥ× =
∑

µ

∑

l=0,2

l∑

m,m′=−l

Dl
m m′ (Ω) F (l, m′) ∗

µ, MF Â(l, m) ×
µ, LF (3.42)

where µ runs over all possible interactions, Dl
m m′(Ω) is a generic Wigner matrix, F (l, m) ∗

µ, MF is

built from elements of gi, Ai, T in the MF, Â(l, m) ×
µ, MF is obtained from spin operators. Next

the Liouvillean matrix elements are straightforwardly calculated in the unsymmetrized basis

set and the symmetrized matrix is built. The starting vector is also easily calculated, since

〈〈Σ |v〉〉K ∝ δjK ,1〈〈Σ |v〉〉. Explicit matrix element in the unsymmetrized set are obtained

following standard arguments reported elsewhere [16, 21]. Finally, eq. (3.38) can be converted

in matrix / vector and standard algorithms for tridiagonalization and direct evaluation of

spectral densities in continuous fraction form can be employed, like Lanczos or conjugate

gradient [16]. The basis set dimension is given by the product of the number of possible

magnetic transitions for each spin (electrons and nuclei) and the number of normalized
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Wigner rotation matrices up to a given truncation value Lmax. In our case, with two electrons

and two 14N nuclei, the total number of magnetic basis functions is 4×4×9×9 = 1296, while

for a given Lmax the number of Wigner functions is given by (Lmax +1)(2Lmax +1)(2Lmax +

3)/3, for instance for Lmax = 2, which has been employed throughout this work, the number

of rotational basis functions is 35, leading to a basis set dimension of 45360.

These are the typical dimensions matrices that need to be employed for evaluating the

ESR spectrum. Albeit relatively large, this is not a prohibitive dimension. On a desktop

Pentium IV PC, a C program based on Lanczos algorithm is able to calculate a spectrum,

for a given set of parameters, in less than 15 minutes. Furthermore, it is possible to reduce

significantly the computational burden by selecting relevant basis set elements, adopting

the so-called pruning scheme which has been extensively used by Freed and co-workers for

mono-radicals. Details on the pruning scheme are given elsewhere [124], and we give here,

for sake of completeness, just a general description. The pruning scheme is based on the

conjugate gradient algorithm, and it looks at the spectrum, at a given frequency, as obtained

in the form I(ω) = 〈〈v |u(ω)〉〉; the vector |u(ω)〉〉 is found solving, via conjugate gradient

algorithm, a linear system of equations. Basis elements can be classified in term of their

projection on |u(ω)〉〉. Sampling the spectrum in a representative range of frequencies, one

can find a reduced basis set made only of elements whose projection is higher that a given

tolerance. Our extensive tests have shown that even adopting rather conservative criterion in

determining the relevant basis element based on the pruning scheme, in the system studied

here we are often left with an effective dimension less than 10 - 20 % of the original one,

without any significant loss of accuracy in the spectrum evaluation. This fact allows us to

determine accurately and quickly the overall spectrum (less than 30 seconds per spectrum),

and a systematic fitting procedure of parameters becomes feasible.

Results

The following fitting strategy has been adopted. Principal values of the magnetic tensors

have been chosen in accordance with previous knowledge [125]; for both nitroxides we have

therefore gXX = 2.009, gY Y = 2.006, gZZ = 2.003 and AXX = 5.0, AY Y = 5.0, AZZ = 34.5

Gauss. Geometry has been also chosen according to molecular structure of each isomer. Fi-

nally, the following dissipative and magnetic parameters have been left freely changing, and
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Figure 3-12: (a) Experimental (full line) and simulated (dashed line) ESR spectrum of isomer
1; (b) principal axis of diffusion tensor of isomer 1.

therefore determined via a least-square fitting of simulated spectra to experimental data:

the principal values of the diffusion tensor DXX , DY Y , DZZ and the exchange coupling con-

stant J . As far as geometrical parameters are concerned, Euler angle set Ωi specifying the

relative orientation of the magnetic tensors, i.e. local frames NiF, with respect to MF have

been inferred from molecular geometry, as shown in Figure 3-10. Similarly, both spin probes

and polar angles θi, φi have been estimated from the conformer geometry. Fitting has been

employed explicitly instead, only to determine the effective value of the distance from centre

for the two nitroxides, r1 = r2 = R.

A well established search algorithm based on Levenberg-Marquardt approach has been em-

ployed [16]. However, a preliminary analysis has shown that in all cases the experimental

spectra could not be fit to a single component, i.e. a single simulated ESR result. Essentially,

in all cases the intensity of the hyperfine components corresponding to Iz,1 &= Iz,2 were shown

to be rather overemphasized in the simulated spectra. By accepting as a working hypothesis

that the molecules are essentially rigid objects, without additional degrees of freedom such

as fast local libration of the nitroxide residues, we have attempted to add to the simulated

one a second component corresponding to a monoradical, which is calculated with standard

SLE [16, 21]. For the monoradical the same diffusion tensor of the biradical was assumed:

I (ω) = (1− p) Imono (ω) + pIbi (ω) (3.43)
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Figure 3-13: (a) Experimental (full line) and simulated (dashed line) ESR spectrum of isomer
2; (b) principal axis of diffusion tensor of isomer 2.

The additional parameter p was considered free to change. Although the analytical data for

1-5 are fully in agreement with the proposed structures, we cannot exclude the presence, in

the samples of the bisadducts, of traces of a monoradical species. The synthesis of binitrox-

ides 1-5 is in fact based on the oxidation, with chloroperbenzoic acid, of the corresponding

bisamines [123], through a postulated intermediary of an hydroxylamine species [126], so it

is reasonable to assume an incomplete oxidation and the presence of a monoradical hydrox-

ylamine component. This derivative cannot be easily distinguished from the corresponding

biradical by, for example, UV-Vis spectroscopy. Although UV-Vis spectra of C60 derivatives

have been extensively used for the discrimination between mono- and bisadducts and among

isomeric bisadducts, they cannot be employed to characterize fullerene bisadducts with the

same addition pattern but different functionalities. Also mass spectrometry failed to reveal

the mentioned impurity, whose molecular mass coincides with that of the 13C containing

biradical.

After allowing for the presence of the monoradical component, the overall agreement with

experimental data was found to be rather good. The overall procedure was proven to be

very stable, and the full set of parameters (DXX , DY Y , DZZ and J ; distance R and weight

p) described in the previous Section was fitted together, i.e. in a single search. In all cases

convergence to a unique set of optimized parameters required less than 100 spectrum eval-

uations, indicating the existence of a relatively sharp region of validity of the model in the

parameter space, or in other words, that the model is sensitive in its discrimination of struc-
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Figure 3-14: (a) Experimental (full line) and simulated (dashed line) ESR spectrum of isomer
3; (b) principal axis of diffusion tensor of isomer 3.

tural changes. This is in fact due to several reasons: i) the five isomers present very different

values of the constant J and four of these values fall in a region where even small changes

of J involve appreciable changes in the spectrum shape, and one therefore expects and finds

relatively sharp minima with respect to the J parameter: ii) initial values employed in the

fitting for inter-radical distance R is based on good estimates coming from molecular me-

chanics calculations of the overall geometry of each conformer (see below); and iii) finally

the only effect of p on the spectrum is related to the intensity of the three principal lines,

having no effect on their position or width. In this way, three of the six parameters (J , R

and p) are limited to vary within a restricted range of values which is characteristic of each

conformer.

Results are summarized in Table 3.1 and in Figures 3-12-3-16, in which the simulated and

experimental spectra are accompanied by the molecular geometry to which an ellipsoid is

superimposed, representing the principal values of diffusion tensor and the directions of prin-

cipal axes of MF.

As an exercise, a comparison has also been carried between values of the nitroxide-nitroxide

distance obtained from fitting of the experimental ESR spectra and estimates of the same

quantities obtained by a standard molecular mechanics (MM) program, Tinker [127]. The

values reported in Table 3.2 are in accord within 10% with the inter-radical distance taken

from the mid points of the N-O bonds. This is an approximation based on the considera-

tion that in nitroxide the spin density is equally distributed between the nitrogen and the
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Figure 3-15: (a) Experimental (full line) and simulated (dashed line) ESR spectrum of isomer
4; (b) principal axis of diffusion tensor of isomer 4.

oxygen atoms [128, 129]. The rather good overall agreement of the model with experiments

is best seen in Figures 3-12-3-16, where the experimental spectra of the biradicals 1-5 are

shown together with the best fit spectra. Some small discrepancies in the line shape are

present in the case of 2 (see Figure 3-13) for which a spectrum with very narrow lines has

been recorded, showing additional small splittings caused by the hyperfine interaction of

the methyl protons. For the other biradicals these splittings are unresolved, but contribute

to the line shapes giving them a Gaussian contribution. 13C satellites appearing in some

of the spectra, particularly evident in those of isomers 1 and 2, are not reproduced, since

they are not included in the model. Moreover, the width of the small intensity lines due

to singlet to triplet transitions [115, 116] occurring in the wings region of the spectra (see

Figures 3-14 and 3-15) is poorly reproduced, but their position is properly obtained. This is

not unexpected since these lines are severely affected by small-amplitude modulation of J

interaction, which also is not included in the model [115, 116].

Isomer R / nm φ1,θ1 φ2,θ2 Ω1 Ω2 D / 109 Hz J / mT p
1 0.66 0, 0 180, 0 0, 90, 0 180, 90, 0 0.15, 2.5, 4.6 -8.94 0.83
2 0.58 -75, 0 75, 0 75, 45, 90 -75, 45, 90 0.31, 2.0, 2.2 2.29 0.85
3 0.61 -60, 0 60, 0 90, 72, 90 90, 60, -45 0.93, 0.95, 0.1 -1.70 0.84
4 0.66 -50, 0 50, 0 120, 135, 90 60, 55, 90 0.66, 4.9, 0.98 0.95 0.73
5 0.73 -45, 0 45, 0 -90, 135, 0 0, 90, -45 0.04, 1.0, 1.6 30.5 0.85

Table 3.1: Geometrical and rotational parameters obtained for conformers 1-5 (all angles
are expressed in degrees).
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Figure 3-16: (a) Experimental (full line) and simulated (dashed line) ESR spectrum of isomer
5; (b) principal axis of diffusion tensor of isomer 5.

Cw-ESR spectrum shape is severely affected by the magnitude of J . To provide didactic

illustration of the model flexibility, we have calculated a series of spectra for isomer 1, main-

taining constant all the magnetic and geometric parameters as obtained by the best fit, and

varying the exchange interaction J . In Figure 3-17, we show the progression of simulated

spectra obtained for decreasing values of the adimensional ratio J/a (where a is the trace of

the A tensors) which takes the value of -5.387 in the experimental-related case. In principle

all J/a ratios can be determined reliably, although the fitting procedure may become uncer-

tain when |J/a| >> 1. In practice, in our case, simulated spectra are essentially independent

from variation of |J/a| for |J/a| > 50.

Isomer rNN / Å rOO / Å (rNN + rOO)/2 / Å rfit % error
1 12.03 14.30 13.16 13.12 -0.3
2 11.65 14.04 12.84 11.31 -11.9
3 10.24 12.02 11.13 10.77 -3.2
4 9.72 11.57 10.64 10.34 -2.8
5 8.74 10.72 9.73 10.33 +6.2

Table 3.2: Comparison between probe-probe distances estimated by fitting SLE simulated
spectra to experimental one (rfit) and obtained by standard molecular mechanics calculation
(rNN = nitrogen-nitrogen distance, rOO = oxygen-oxygen distance, obtained by Tinker MM
program. Percentage errors are given to compare fitted values and calculated (rNN +rOO)/2.
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Figure 3-17: Variation of calculated ESR spectra (molecular geometry of isomer 1) with
respect to ratio J/a.

Conclusions

In this work, our main goal has been to show the potential usefulness of the stochastic

Liouville approach in dealing with multi-probe systems by starting to analyse relative well-

known, clearly defined chemical model systems. Our results are encouraging, since structural,

energetic and dynamic parameters are promptly obtained by the SLE approach. Structural

parameters are directly recovered in the form of inter-radicals distance.

Energy parameters, namely the exchange interaction constant J , are also evaluated. It is

worth to mention that the fitted parameters include the exchange interaction constant J with

its sign. For all the examined derivatives, the resulting signs coincide with those obtained
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Figure 3-18: Variation of calculated ESR spectra with respect to the sign of J . Parameters
for isomer 1 are considered, solid line (J/a = -5.387); opposite J sign, dashed line (J/a =
+5.387).

by ENDOR spectroscopy [123]. This is worth to be pointed out since the sign of J does not

influence the ESR line positions and its determination is not straightforward. However, for

structural information it is important to take the sign into proper consideration, and any

way to determine it is welcome, because the ENDOR technique is not always applicable. The

dependence of the spectrum on the sign of J is shown in Figure 3-18. Finally, reasonable

estimates of dynamic parameters, such as the rotation diffusion tensors, are directly obtained

by the SLE solution, which is in accordance with the known molecular structure. Figure 3-19

shows the effect of altering the diffusion tensor values on the spectrum, moving away from

the optimal set of parameters. The nice agreement between experimental and calculated

spectra, verified for all biradicals in the examined series, confirms the idea that the described

methodology can be applied with good confidence for investigating structural and dynamic

properties of more complex systems, such as doubly labelled peptides and biopolymers. Of

course, for such cases the model should be extended and modified. For a start, in the case of

rigid systems of unknown structure, the necessary straightforward improvement consists in

the inclusion among the fitting parameters of the angles specifying the nitroxide orientation

relative to the diffusion tensor. For flexible systems the internal motions should be also
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Figure 3-19: Variation of calculated ESR spectra with respect to diffusion. Parameters for
isomer 1 are considered, solid line (values of D reported in Table 3.1); one-third of the values
of D, dashed line.

explicitly considered. Work in this direction require a careful definition of primary relaxation

processes, i.e. motional contributions to the SLE, based on many-body stochastic formalism

(e.g. N-body diffusive operators to allow the description of lateral and backbone motions).

3.3.2 On the interpretation of cw-ESR spectra of tempo-palmitate

in 5-cyanobiphenyl

In this section we present the application of the ICA approach to the case of nematic liq-

uid crystalline environments, by performing simulations of the ESR spectra of the proto-

typical nitroxide probe 4-(hexadecanoyloxy)-2,2,6,6-tetramethylpiperidine-1-oxy in isotropic

and nematic phases of 5-cyanobiphenyl. We recall that the basic ingredients of the integrated

approach are i) determination of geometric and local magnetic parameters by quantum me-

chanical calculations taking into account solvent and, when needed, vibrational averaging

contributions; ii) numerical solution of the stochastic Liouville equation in the presence of

diffusive rotational dynamics, based on iii) parametrization of diffusion rotational tensor

provided by the hydrodynamic model discussed in Chapter 2. Next we shall present simu-
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lated spectra with minimal resorting to fitting procedures, proving that the combination of

sensitive ESR spectroscopy and sophisticated modelling can be highly helpful in providing

3D-structural and dynamic information on molecular systems in anisotropic environments.

Introduction

Our main objective here is to apply integrated theoretical tools to the modelling of con-

tinuous wave electron spin resonance of a model system which combines two significant

complications, namely the presence of internal dynamics, coupled with overall rotation and

the effect of an anisotropic environment, i.e. a liquid crystalline nematic phase. These choices

are meant to shed light on methodological aspects that will be needed to deal with complex

macromolecular systems (proteins), and they are interesting per se, since they allow to ex-

tend the integrated computational approach to the case of flexible molecules and complex

fluid environments.

Recent progresses were made by Ferrarini et al. [66, 67] in the introduction of internal dy-

namics of flexible spin probes, such as methanthiosulfonate (MTSSL), in the interpretation

of cw-ESR spectra of spin labelled proteins. They assumed a jump model to treat transitions

between probe conformations and made the hypothesis of fast dynamics. In this way they

could obtain the conformational probability distribution for the internal dynamics, which is

used to mediate the magnetic tensors that enter in the SLE.

Properties of liquid crystals as order parameters, dynamics and cage effects have been

studied by several authors using ESR spectroscopy of dissolved spin probes and an SLE-

based approach for interpretation. For instance, Sastry and co-workers [30, 130] studied

two-dimensional Fourier transform (2D-FT) electron spin resonance (ESR) of the rigid rod-

like cholestane (CSL) spin-label in the liquid crystal solvent butoxy benzylidene octylaniline

(4O,8) and of the small globular spin probe perdeuterated tempone (PDT) in the same sol-

vent. Experimental spectra are collected in a wide range of temperatures in such a way to

include isotropic, nematic, smectic A and B and crystal phases of 4O,8. 2D-FT-ESR was

chosen because it provides greatly enhanced sensitivity to rotational dynamics than cw-ESR

analysis. For both the CSL and PDT spin probes, experimental spectra were interpreted via

the Slowly Relaxing Local Structure (SRLS) model [32] in which dynamic of the system is

described with two coupled relaxing processes which are interpreted as a fast global tumbling
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of the probe and a slow relaxation of the solvent cage collective motions. In [131] Zannoni

and co-workers used the ESR spin-probe technique to study the changes in phase stability,

orientational order and dynamics of the nematic 5-cyanobiphenyl (5CB) doped with differ-

ent cis/trans p-azobenzene derivatives. CSL was again adopted as spin probe to monitor

the order and the dynamics of the liquid crystal system, owing to its size, rigidity and rod-

like shape analogous to that of the 5CB [132, 133]. In particular Zannoni et al. studied the

variations induced by the 4-R-phenylazobenzenes on the order parameter 〈P2〉 and on the

nematic-isotropic transition temperature TNI of the 5CB, for different R (H, F, Br, CH3, CF3,

On-Bu, Ot-Bu) and different mole fractions. Interpretation of the experimental spectra was

carried out by simulations with the one body model implementation by Freed [134, 135, 136],

by assuming the probe as a rigid rotator that reorients under the action of a potential of the

type −εD2
0,0 (Ω). A multicomponent fit procedure was employed to find the coefficient of the

orienting potential, the diffusion tensor and an inhomogeneous line width. They found that

only cis p-azobenzenes at high mole fraction have visible effects on the order parameter and

on the transition temperature. Dynamics, instead, appears to be essentially independent of

the nature, configuration and concentration of the different solutes and very similar to that

observed in the pure 5CB. In [133] and [137] Zannoni and co-workers employed ESR spec-

troscopy to study, respectively, the effects of hydrophobic and hydrophilic aerosil nanoparti-

cles on the order and dynamics of 5CB and the effects of hydrophobic aerosol nanoparticles

on the order and dynamics of the nematic liquid crystal forming 4-n-octyl-4’-cyanobiphenyl

(8CB). In the first case they used CSL as spin probe, while to study effects on 8CB they em-

ployed the 5-doxyl stearic acid probe. In both the works Zannoni et al. were interested in the

changes of the order parameter of the liquid crystal and variations on the rotational dynamics

of the probes. In the following we perform a complete a priori simulation of the ESR spectra

of the prototypical nitroxide probe 4-(hexadecanoyloxy)-2,2,6,6-tetramethylpiperidine-1-oxy

(usually referred to as Tempo-palmitate, TP), Figure 3-20, in isotropic and nematic phases

Figure 3-20: Molecular structure of tempo-palmitate.
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of 5-cyanobiphenyl, for which detailed cw-ESR data are available in the literature [138]. We

will show that our integrated approach provides remarkable results also in this more complex

playground, provided that internal dynamics is taken into the proper account.

Method

We sketch here the principal points of the basic methodology described in Section 3.1.3.

Simulation of the ESR spectra is based on the implementation of the stochastic Liouville

equation (SLE) which was first applied to ESR by Freed, Moro, and other authors [16, 20,

21, 139]

∂

∂t
ρ (Q, t) = −L̂ρ (Q, t) (3.44)

describing the time evolution of the density matrix of the system, depending upon general

stochastic coordinates X, dynamically evolving under the action of the stochastic operator

Γ̂, and quantum coordinates σ.

The magnetic Hamiltonian of the system includes the Zeeman and hyperfine interactions for

the nitroxide probe

Ĥ/h̄ =
βe

h̄
B0 · g · Ŝ + γeÎ ·A · Ŝ (3.45)

where βe and γe are the Bohr magneton and gyromagnetic ratios; here the first term is the

Zeeman interaction of the unpaired electron spin with magnetic field B0 depending on the

g tensor; the second term is the hyperfine interaction 14N / unpaired electron, defined with

respect to hyperfine tensor A. Here tensors g and A are diagonal in the same local frame

rigidly fixed on the nitroxide fragment; spin operators are defined in the laboratory or in-

ertial frame (see next Section). Notice that in general, several relaxation processes can be

invoked, corresponding to different fast and slow degrees of freedom X subject to Brownian

motions and described by many-body Fokker-Planck operators. In the next section we shall

specialize our choice to the molecular system under investigation by choosing a form for the

Γ̂ operator and for the equilibrium probability Peq(X)

The cw-ESR spectrum is obtained as the Fourier-Laplace transform of the correlation func-

tion for the X-component of the magnetization, defined as | v〉〉 = [I]−1/2| ŜX ⊗ 1I〉〉, where

I is the nuclear spin. The cw-ESR signal is then defined as [16, 20]

I(ω − ω0) =
1

π
Re

{
〈〈v |

[
i(ω − ω0) + L̂

]−1
| vPeq〉〉

}
(3.46)
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where ω is the sweep frequency, ω0 = βeB0Tr{g}/3h̄. Here the double brackets 〈〈. . .〉〉 stand

for integration on X and trace over spin states σ. More conveniently, one usually adopts a

symmetrized equivalent of the previous expression, given by

I(ω − ω0) =
1

π
Re

{
〈〈vP 1/2

eq |
[
i(ω − ω0) + L̃

]−1
| vP 1/2

eq 〉〉
}

(3.47)

where L̃ = iĤ× + Γ̃ and Γ̃ = P−1/2
eq Γ̂P 1/2

eq .

The spectrum is evaluated numerically by employing Lanczos algorithm [16, 20] assuming as

a first vector the normalized zero-average observable, | 1〉〉 = | vP 1/2
eq 〉〉/〈〈v |Peq| v〉〉. Finally,

the spectrum can be written in the form a continued fraction [20].

Model

According to Section 3.3.2, we need i) to define the molecular geometry and evaluate, via

QM approaches, the structural and magnetic properties (magnetic tensors g and A), ii) to

identify the relevant set of stochastic coordinates which are next included explicitly in the

SLE, iii) to estimate the system energetics, i.e. to define the dependence of the internal

potential energy upon geometrical variations, iv) to evaluate the diffusion tensor D for the

joint dynamics described by relevant set of coordinates. In the present case, the system

is described as a flexible body re-orienting under the influence of an external field, which

favours the orientation along the nematic director, which is assumed parallel to the external

magnetic field along the Z-axis of the inertial laboratory frame (LF). Due to the intrinsic

complexity of the system, we shall adopt a number of simplifying hypotheses, aimed at

keeping the required computational effort at a reasonable level. The molecule is considered

as split into two fragments, the alkyl chain and the paramagnetic probe (Tempo). Geometry

and dynamics are described by two stochastic variables, as can be seen in Figure 3-21: i)

the set of Euler angles (Ω) which describes the orientation between the LF and a molecule

fixed frame (MF), and ii) an internal angle (θ) which defines the relative orientation between

the Tempo fragment and the alkyl chain. Structural properties were obtained by means of

quantum mechanical calculations, performed to find the minimum energy geometry of the

molecule, evaluate the magnetic tensors and calculate the internal potential [38]. On the

ground of a previous study [140], the alkyl chain of TP was replaced by an ethyl group.

Internal torsional potentials and magnetic tensors were then evaluated by the PBE0 hybrid
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Figure 3-21: Relevant stochastic coordinates.

functional [141] and the purposely tailored N06 basis set. Solvent effects were taken into

account by our anisotropic version of the polarizable continuum model [140]. Of course, the

diffusion tensor was evaluated for the true TP radical using the geometry optimized for the

all-trans conformer. The MF is fixed on the alkyl chain, which is considered as a rigid entity

in all-trans conformation; the MF is chosen in such a way that the rotational part of the

diffusion tensor (see below) is diagonal. Magnetic tensors are diagonal in the same reference

frame (µF) fixed on paramagnetic probe, as shown in Figure 3-21.

The total potential energy of the system is defined according to the following expression

V (X) = Vext (Ω) + Vint (θ) + Vcoup (Ω, θ) ≈ Vext (Ω) + Vint (θ) (3.48)

i.e. we neglect potential coupling terms Vcoup (Ω, θ) between internal (θ) and external vari-

ables (Ω). A complete factorization of the distribution probability ensues from this choice,

Peq (X) ≈ Peq (Ω) Peq (θ), where Peq (Ω) and Peq (θ) are the Boltzmann distributions with

respect to Vext (Ω) and Vint (θ). The external potential is chosen according to a simple Maier-

Saupe form [142, 143, 144]

Uext = Vext/kBT = −εD2
0,0 (Ω) (3.49)

This is the simplest potential which assures the presence of an energy minimum when the

alkyl chain is parallel to the nematic director.

An accurate evaluation of the internal potential is obtained directly by QM calculations.

An energetic barrier is observed in correspondence of θ = 180◦. In general we may define

84



3.3. Case-study calculations

the potential via the expansion Vint/kBT = −
∑

χn e−inθ, where χn = χ∗−n is assumed to

ensure that the potential is real. In practice terms up to n = 1 have been retained to fit the

potential to the shifted cosine form

Uint = Vint/kBT ≈ A(1− cos θ) (3.50)

To summarize, energetics is defined by the following simplified expression

U = Uext + Uint = −εD2
0,0 (Ω) + A(1− cos θ) (3.51)

defined by parameters ε and A.

In the case under investigations, which includes, nematic (anisotropic) phase environments,

we shall assume the usual approximation of considering isotropic local friction, and the

macroscopic local viscosity is taken equal to half of the fourth Leslie-Ericksen coefficient η4

[145, 146, 147, 148]. The diffusion tensor of the system is obtained, neglecting translational

contributions, as a 4× 4 matrix, i.e.

D =




DRR DRI

DIR DII



 (3.52)

where the 3 × 3 DRR block is the purely rotational contribution, the DIR = Dtr
RI blocks

describe the roto-conformational interaction and DII is the conformational diffusion coeffi-

cient. The general outcome of the elements of the 4× 4 diffusion tensor shows, as expected

a weak dependence upon the internal angles. We express the tensor as

D(T ) = D(T )d (3.53)

in order to separate the purely geometrical tensorial component d and the translational

diffusion coefficient for an isolated sphere D(T ), i.e. D(T ) = kBT/CRπη(T ): here C is a

constant depending on hydrodynamic boundary conditions, R is the average radius for the

spheres, η is the local viscosity.

Selected tensor functions of the diffusion tensor, namely Tr{DRR}, |DRI | and DII are shown

for T = 316.92 K in Figure 3-22 as function of θ: variation is indeed minimal, therefore we

assume the diffusion tensor calculated for the minimum energy configuration (θ = 0). A

summary of the physical parameters and calculated coefficients is discussed in the next

Section. As it can be seen in Figure 3-21, we chose the alkyl chain as the main fragment for
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Figure 3-22: Values of TrDRR×10−7s (full line), |DRI |×10−7s (dashed line) and DII×10−7s
(dotted line) are shown for T = 316.09 K plotted vs. the conformation angle θ.

localizing the MF. The orientation of MF is such that the rotational part of the diffusion

tensor is diagonal and practically the Z-axis of MF lies along the alkyl chain. This allows

us to define the simple form (3.49) for Uext without the need of introduction of tilt angles.

Next we need to define the form of the time evolution operator (Liouvillean) for the density

matrix described by the SLE. Before doing that, we wish to summarize and clarify the

various reference frames explicitly employed to define the model, sketched in Figure 3-23.

The molecule being partitioned in two fragments, as described above, we have i) two local

frames respectively fixed on the palmitate chain (CF) and on the tempo probe (PB): these

are chosen with their respective z-axes directed along the rotating bond, for convenience; ii)

the molecular frame (MF), fixed on the palmitate chain: this is the frame which diagonalizes

the rotational part of the diffusion tensor DRR; the magnetic frame, fixed on the probe (µF)

where magnetic tensors are diagonal. Several set of Euler angles are defined: ΩMC is the set

of Euler angles that transforms MF to CF, which has the z-axis parallel to the rotating bond,

Ωµ is the set of Euler angles that transforms from PF to µF; the set (0, 0, θ) is the rotation

from CF to PF; finally Ω transforms from the laboratory frame LF to MF. Following the

estabilished methodology [16, 20, 21, 139] the general form of the spin super-Hamiltonian is

cast in the contracted tensorial form

Ĥ× =
∑

µ

ωµ

∑

l=0,2

l∑

m=−l

F (l,m) ∗
µ,LF Â(l,m) ×

µ,LF (3.54)
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Figure 3-23: Molecular frames and Euler angle sets employed in the model.

where µ = g, A runs over the magnetic interactions, i.e. the Zeeman interaction between the

electron and the external field (g) and the hyperfine interaction between the electron and

the 14N nucleus (A). Parameters ωµ, with µ = g, A are defined as βeB0Trg/3h̄ and γeTrA/3

respectively. Notice that for the generic irreducible spherical tensor F one can write

F (l,m) ∗
µ,LF =

∑

m′,m′′
Dl

m,m′ (Ω) e−im′′θG(l,m′,m′′)
µ (3.55)

with

G(l,m,m′)
µ = Dl

m,m′ (ΩMC)
∑

m′′
Dl

m′,m′′ (Ωµ) F (l,m′′) ∗
µ,µF (3.56)

Explicit forms for F (l,m) ∗
µ,µF and superoperators Â(l,m) ×

µ,LF are provided in the literature [21].

We turn now to define the form of the diffusion operator. In a symmetrized form we write

Γ̃ = −P−1/2
eq




M̂
∂

∂θ





tr

DPeq




M̂
∂

∂θ



 P−1/2
eq = Γ̃RR + Γ̃II + Γ̃RI (3.57)

where Γ̃ acts on X = (Ω, θ), the set of relevant variables; M̂ is the infinitesimal rotation

operator. Finally, for the explicit evaluation of matrix elements, it is convenient to define

Γ̃RR = −P−1/2
eq M̂

tr
DRRPeqM̂P−1/2

eq

Γ̃II = −DIIP
−1/2
eq

∂

∂θ
Peq

∂

∂θ
P−1/2

eq (3.58)

Γ̃RI = −P−1/2
eq

(

M̂
tr
DRIPeq

∂

∂θ
+

∂

∂θ
DIRPeqM̂

)

P−1/2
eq
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The detailed form of the rotational, internal and rotational-internal operators is reported in

Appendix E.2. Although rather cumbersome, the whole algebraic derivation is straightfor-

ward.

Results

The numerical solution is based on the standard methodology [16, 20, 139], by projecting the

symmetrized time evolution operator and the starting vector on a suitable basis set that is

defined as |Σ〉〉 = |pSqSpIqI〉〉⊗|Λ〉. The basis is given by the direct product of spin operators

of the nitroxide and defined by electron and nuclear spin quantum numbers pS, qS, pI , qI

[21], and of a complete, usually orthonormal for sake of simplicity, basis set in the X space,

which is indicated here generically by

|Λ〉 = |LMK, n〉 = |LMK〉 × |n〉 (3.59)

where

|LMK〉 =

√
[L]

8π2
DL

M,K (Ω) (3.60)

|n〉 =
1√
2π

e−inθ (3.61)

One needs to define the matrix operator and starting vector elements, LΣ,Σ′ = 〈〈Σ|L̂|Σ′〉〉

and vΣ = 〈〈Σ|1〉〉. Implementation of the Lanczos scheme, cfr. Section (3.1.3), follows along

the lines presented for instance in [20]. Symmetry arguments can be employed to signifi-

cantly reduce the number of basis function sets required to achieve convergence, together

with numerical selection of a reduced basis set of functions based on ”pruning” of basis

elements with negligible contribution to the spectrum. A symmetrized basis set convenient

for our systems is defined in Appendix E.2. In all the cases treated in this work, matrices

of dimensions of order 104-105 before pruning have been treated, while after pruning dimen-

sions of order 103 are usually found.

Let us first report the calculated set of parameters, obtained from the QM calculations for

structural and magnetic properties and the hydrodynamic modelling for diffusion proper-

ties. The principal values of the magnetic tensors minus the isotropic part are gxx = 0.00221,

gyy = 0.00020, gzz = −0.00240, Axx = −9.19 Gauss, Ayy = −8.98 Gauss and Azz = 18.18
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T / K Aiso / Gauss giso ε η / mPa s
316.09 15.5 2.00615 0.0 18.89
309.03 15.5 2.00629 0.0 23.80
308.72 15.7 2.00659 0.0 25.78
307.88 14.7 2.00679 0.9 26.80
299.02 13.5 2.00706 1.0 31.70

Table 3.3: Parameters employed in the simulations.

Gauss. Orientation of internal frames of references are specified by angles ΩMC = (90, 35, 0)

degrees and Ωµ = (0, 55, 180) degrees. The isotropic values of hyperfine and gyromagnetic

tensors are significantly different for different phases and are taken from experiment (see

Table 3.3). A comparison with QM computed values is discussed in the next section. The

computed torsional barrier of 1.8 kcal/mol for the θ angle leads to a potential (adimensional)

parameter A = 453 K/T . The diffusion tensor is expressed by eq. (3.53) with

d =





2.387 · 10−3 0.0 0.0 1.560 · 10−2

0.0 2.989 · 10−3 0.0 1.313 · 10−2

0.0 0.0 4.513 · 10−2 −3.071 · 10−2

1.560 · 10−2 1.313 · 10−2 −3.071 · 10−2 5.884 · 10−2





Å
2

(3.62)

and D(T ) = D(T0)
η(T0)

η(T )

T

T0
, where D(T0) is the translational diffusion coefficient for a sphere

of radius R at reference temperature T0 given by D(T0) =
kB

RCπ

T0

η(T0)
. Choosing R = 2.0

Å, C = 6, T0 = 316.92 K (as reference temperature) and η(T0) = 18.89 · 10−3 Pa s one gets

D(T0) = 6.12 · 109 Hz.

We can now simulate the cw-ESR spectra of the tempo-palmitate in 5-cyanobiphenyl in

the range of temperatures from 316.92 K (isotropic phase) to 299.02 K (nematic phase). In

Figure 3-24 five simulated spectra are reported, superimposed to experimental spectra taken

from the literature [138].

Discussion

The results of the previous section show that our integrated approach to cw-ESR spectra

performs a remarkable job also in the quite demanding playground represented by large

nitroxides in nematic phases. In particular, the spectra at different temperatures and in
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Figure 3-24: Experimental (full line) and simulated (dashed line) cw-ESR spectra of tempo-
palmitate in 5-cianobiphenyl at 316.09, 309.03 K (isotropic phase), 308.72 K (isotropic-
nematic transition), 307.88, 299.02 K (nematic phase).

different phases are reproduced with a very limited number of fitting parameters (ordering

potential and isotropic parts of magnetic tensors), which could be possibly replaced by a

priori computations in the near future. As a matter of fact, the computed value for the iso-

tropic hyperfine splitting (15.3 G) nicely fits the experimental value in the isotropic phase.

However, at lower temperature local effects come into play which cannot be reproduced by

the continuum solvent model employed in our computations. Explicit dynamic simulations

would be necessary to investigate the details of probe - solvent interactions, but they are

out of the scope of the present work. In any case, already reduction of the number of fitting

parameters, and definition of a limited range of variation represents, in our opinion, a re-

markable result of QM computations. From another point of view, our results unequivocally

show that a rigid model of the probe is not sufficient to reproduce experimental spectra
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Figure 3-25: Experimental (full line) and simulated with internal dynamics (dashed line)
and without internal dynamics (dotted line) cw-ESR spectra of tempo - palmitate in 5 -
cianobiphenyl at 316.09 K.

and that, at least a moderately accurate description of internal dynamics is needed. The

necessity of introducing an explicit description, albeit approximate, of the most important

internal degrees of freedom is evidenced in Figure 3-25, where simulations with and without

explicit description of internal dynamics are compared with the experimental spectra at a

given temperature. Exclusion of other internal degrees of freedom was based on the analysis

of QM calculated torsional potentials. The internal rotation shown in Figure 3-21 is the only

(of the explored torsions) that present a barrier in the motion for which rotation is possible

in the temperature range taken into account. Alternative treatments can be based on lattice

description of the internal chain approximately coupled to overall molecular rotations; our

approach has been, instead, based on the idea that relevant effects on the physical observable

are mainly the consequence of a unique internal degree of freedom, described according to

a fully off-lattice approach, exactly coupled with overall rotation. In summary, our results

show that we have at our disposal a general computational tool for the a priori descrip-

tion of cw-ESR spectra of complex systems in different phases allowing the extension of

magneto-structural relationships to different dynamical regimes.
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3.3.3 Modeling of cw-ESR spectra p - (methyl - thio) phenyl -

nitronyl - nitroxide in toluene

We discuss the interpretation, via our ab initio integrated computational approach, of con-

tinuous wave electron spin resonance (cw-ESR) spectra of p-(methyl-thio) phenyl-nitronyl-

nitroxide (MTPNN) dissolved in toluene. In this case it is important to introduce averaging

with respect to fast vibrational motions of magnetic tensor parameters (Zeeman and hyper-

fine tensors) in order to reproduce the experimental values and so the spectra. The stochastic

Liouville equation is completed with inclusion of diffusive rotational dynamics by describing

the molecule as a free Brownian rotator. Cw-ESR spectra of MTPNN are simulated for a

wide range of temperatures (155-292 K) with minimal resorting to fitting procedures.

Introduction

ESR spectroscopy is an essential tool in material science. In particular, the search of new

materials with tailored magnetic properties has intensified in recent years. In this field the

most popular stable radicals are nitronyl nitroxide (NIT) free radicals. They exhibit a large

variety of magnetic behaviour: paramagnetism down to very low temperature, ferromag-

netism, antiferromagnetism [2]. Moreover, the nitronyl nitroxides have also been known as

bidentate ligands for various transition and rare-earth metal ions. Ferromagnetic ground

states have been observed also in these complexes [3, 4, 149, 150, 151]. For these particular

magnetic properties NIT radicals are particularly appealing as molecular units for composite

new materials. One of the driving forces of the present work was the demand for simulations

of ESR spectra of NIT in any régime of motion, not available up today.

In the path towards new magnetic materials, the characterization of the electronic distribu-

tions and magnetic properties of isolated radicals is of primary interest. Theoretical predic-

tions of the spin distribution on the radicals by DFT calculations are necessary in order to

understand the radical-radical interactions in bulk and composite materials. On the other

hand, the spin density depends strongly on the interaction with the environment that can

be very complex in a composite material.

Here, we will show that for a prototypical nitronyl nitroxide radical (p-(methylthio)-phenyl-

nitronyl-nitroxide, hereafter MTPNN) [152] in a simple environment as a toluene solution,
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starting simply from the formula of the radical and the physical parameters of the solvent,

it is possible to calculate ESR spectra showing afterwards an exceptionally good agreement

with the experimental ones, from room temperature to a temperature very near to the glassy

transition.

Modeling and interpretation

Commonly employed paramagnetic probes in ESR studies are nitroxide derivatives, which

have been extensively used for characterization of structural and dynamic behaviour of iso-

tropic and ordered phases and complex molecular systems [21, 32, 107, 139, 153], with par-

ticular accent on biological macromolecules [115, 116, 153, 154]. They are widely employed in

cw-ESR, pulsed ESR or ENDOR spectra. As probes or spin labels they are employed exten-

sively to obtain information on structural and dynamic properties of biomolecules, micelles,

and membranes [153]. In particular, measurements performed on proteins via site directed

spin labelling (SDSL) are highly informative [115, 116, 154]. They are well characterized

systems, both in terms of magnetic properties (A and g tensors) and dynamical properties

(rotational diffusion). The development of simulation programs of their cw-ESR spectra in

presence of several relaxation processes due to motions in different dynamical ranges (see

for example the slowly relaxing local structure model, SRLS) has led to a number of ap-

plications in liquids, liquid crystalline phases, composite materials, and biological systems

[21, 32, 107, 139, 153].

On the other side, the employment of NIT radicals in cw-ESR experiments is relatively re-

cent, and it appears to be of relevance for their significant stability, and variety of magnetic

behaviour, mostly in the context of materials science. NIT free radicals are particularly ap-

pealing as molecular units for composite new materials, and ESR is the tool of election to

monitor structural and dynamic characteristics. However, the presence of the coupling of

the unpaired electron with two nitrogen nuclei makes this probe different from nitroxides,

and specific simulation programs of ESR spectra of NIT in any régime of motion are not

available up today. They are approached in this work for the first time.

We shall consider p-(methyl-thio)-phenyl-nitroxyl-nitroxide (MTPNN) as a prototype NIT

radical. A schematic overview of the molecule is shown in Figure 3-26, which illustrates the

chemical structure of the paramagnetic probe stressing the coupling of the unpaired elec-
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Figure 3-26: Structure of p-(methylthio)phenyl nitronylnitroxide (MTPNN).

tron with two 14N. The molecule is characterized by a nitroxylnitroxide group linked to a

methyl-thio-phenyl group.

In the case of MTPNN, we adopt the following hypotheses. We neglect explicit coupling

with nuclei other than 14N and we consider a planar geometry for the molecule. This is

equivalent, in many cases, to renounce to describe accurately any super-hyperfine structure

or inhomogeneous broadening in the spectra resulting from coupling with hydrogen nuclei.

Estimates of inhomogeneous broadening line-widths can be obtained from calculated values

of An tensors.

Although at least two relevant internal degrees of freedom i.e. dihedral angles can be iden-

tified, between the CH3S- group and the phenyl ring and between the two rings; the former

motion affects very slightly the magnetic parameters, and therefore it can be neglected,

while we may assume that the second angle is affected by localized librations around the

planar conformation (see next section). To simplify our methodology we shall not consider

explicitly the coupling with this relatively soft degree of freedom which will be addressed

elsewhere [155]. The final set of stochastic relevant coordinates is therefore restricted to the

set of orientational coordinates Ω; these are described in terms of a simple formulation for

a diffusive rotator, characterized by a diffusion tensor D. The diffusion tensor is determined

by the shape of the molecule, deriving from the minimum energy conformations obtained

from the QM calculations. Our choice is formalized by adopting the following simple form

for Γ̂ [155]

Γ̂ = Ĵ
tr

(Ω) DĴ (Ω) (3.63)
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where Ĵ(Ω) is the angular momentum operator for body rotation [156, 157, 158]. The Boltz-

mann distribution (equilibrium solution) is simply Peq = 1/8π2. By defining Ĵ(Ω) and D

in the molecule-fixed frame where the diffusion tensor is diagonal (molecular frame, MF), a

convenient form of eq. (3.63) is obtained which is directly written in terms of the diffusion

tensor principal values.

Then we need to write the specific form of the spin Hamiltonian of the molecule. By taking

into account only the electron Zeeman and the hyperfine interactions with 14N nuclei, we

can define

Ĥ/h̄ =
βe

h̄
B0gŜ + γe

2∑

n=1

ÎnAnŜ (3.64)

The first term is the Zeeman interaction depending upon the g tensor, external magnetic field

B0 and electron spin momentum operator Ŝ ; the second term is the hyperfine interaction

of the n-th 14N nucleus and the unpaired electron, defined with respect to hyperfine tensor

An and nuclear spin momentum operator În.

We can summarize the ICA applied to MTPNN as follows. Modelling based on the SLE

approach requires the characterization of magnetic parameters (e.g. hyperfine for 14N nuclei

and Zeeman tensors). Integration among i) evaluation of magnetic tensor parameters via

QM calculation, with corrections based on averaging of fast motions, ii) explicit modelling

of slow motional processes via stochastic treatment and iii) evaluation of ESR spectra via

SLE is the basic strategy behind a sound ab initio approach to interpretation of ESR data.

Once the effective Liouvillean is defined, the direct calculation of the cw-ESR signal is

possible without resorting to a complete solution of the SLE. Rather one can evaluate the

spectral density from the expression [16, 20, 21]

I (ω − ω0) =
1

π
Re

{
〈〈v |

[
i (ω − ω0) + iL̂

]−1
| vPeq〉〉

}
(3.65)

where the Liouvillean L̂ acts on a starting vector which is defined as proportional to the

X-component of the electron spin operator ŜX : in the present case one has | vP 1/2
eq 〉〉 =

√
(2I1 + 1)(2I2 + 2)| ŜX ⊗ 1I1 ⊗ 1I2 ⊗ P 1/2

eq 〉〉, where I1 = I2 = 1 in this case; here Peq is the

Boltzmann distribution in Ω-space, ω is the sweep frequency and ω0 = g0βeB0/h̄, where

g0 = Tr{g}/3. Basic parameters for the direct evaluation of eq. (3.65) are therefore the

following: principal values and orientation of hyperfine tensor for the two 14N nuclei A1

and A2; principal values and orientation of Zeeman tensor g; finally the knowledge of the
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rotational diffusion tensor D is required, for the specific solvent (toluene).

The system geometry is summarized in Figure 3-27. A set of Euler angles Ω defines the

relative orientation of a molecular frame (MF), fixed rigidly on the nitroxide ring, with

respect to the LF; the local magnetic frames are in turn defined with respect to MF by

proper sets of Euler angles.

Evaluation of structural parameters and magnetic tensors

All the computations have been performed by the G03 package [53] using the parameter-

free PBE0 functional [141] and the 6-31+G(d,p) basis set [159]. Solvent effects on energies

and magnetic tensors have been evaluated by the latest implementation of the so-called

polarizable continuum model (PCM) [97, 100, 160]. This computational approach has been

validated in a number of studies of magnetic properties of free radicals in non-protic solvents

[103, 161, 162].

A full geometry optimization of MTPNN in the gas-phase leads to a nearly planar arrange-

ment in which all the structural parameters are close to those reported in a previous study

for related nitronylnitroxides [163, 164], except for a slight non planarity of the nitronyl-

nitroxide ring, related to the steric hindrance of the four methyl groups. Since the general

agreement with available experimental data [152] is satisfactory and no unexpected trends

are found, we do not discuss in detail structural aspects. Then, a relaxed scan around the

C7-C8-S18-C19 dihedral angle (Figure 3-26) results into a quite small energy barrier for

the perpendicular orientation of the ring and the methyl group (about 2 kcal/mol in gas

phase). In any case, the dependence of magnetic tensors on this dihedral angle is completely

negligible. The situation is more involved for the N1-C2-C3-C4 dihedral angle (hereafter τ ,

which has an energy minimum for τ ≈ 0◦ and a significant barrier for τ ≈ 90◦ (about 7 and

5 kcal/mol in gas-phase and toluene, respectively). At the same time, the magnetic tensors

show a significant dependence on this dihedral angle. For purposes of illustration the trend

of the isotropic parts of hyperfine and g tensors are shown in Figures 3-28 and 3-29, respec-

tively. It is noteworthy that the variation of g is dominated by its gXX component directed

along the N-O bond.

In view of the very low polarity of toluene we expect quite small solvent effects for both

g and hyperfine tensors and this expectation is confirmed by explicit PCM computations,
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Figure 3-27: Reference frames employed in the stochastic Liouville equation.

which leads to differences between gas phase and toluene solution never exceeding 0.00004

ppm and 0.10 Gauss for g and hyperfine tensors, respectively. It seems, therefore, quite

justified to use, in the following dynamical treatment, averaged values of magnetic tensors

computed in the gas phase, i.e. gXX = 2.00683, gY Y = 2.01142, gZZ = 2.00226 and A1,XX

= A2,XX = 18.2 · 10−4, A1,Y Y = A2,Y Y = 1.997 · 10−4, A1,ZZ = A2,ZZ = 1.743 · 10−4. Euler

angles specifying the relative orientation of magnetic tensors with respect to the molecular

frame MF, which is chosen by definition as the molecule-fixed frame which diagonalize the

rotational diffusion tensor are given in the next section.

Evaluation of rotation diffusion tensor

Calculations via hydrodynamic methodology described in Chapter 2 are performed in order

to evaluate the full diffusion tensor. In the SLE the molecule is described as a rigid body, so

the full diffusion tensor is

D (qint) =




DTT DTR

Dtr
TR DRR



 = kBTξ−1 (qint) (3.66)

being ξ (qint) the friction tensor of the molecule calculated with eq. 2.3. Neglecting off-

diagonal couplings, an estimate of the rotational diffusion tensor is given by D(qint) ≡

DRR(qint), which depends directly from the atomic coordinates, temperature, and the sol-
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Figure 3-28: Dependence of the two nitrogen (N1 and N13) isotropic hyperfine coupling
constants on the τ dihedral angle.

Figure 3-29: Dependence of the gXX component on the τ dihedral angle.
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vent viscosity.

The diffusion tensor generally is a function of the internal coordinates (qint), but in this case

dependence of the molecular geometry upon the two most relevant torsional angles does not

affect substantially the overall steric hindrance (cfr. Figure 3-30). Therefore, dependence of

D upon internal degrees of freedom is neglected altogether.

Assuming a completely planar geometry, we can write the diffusional tensor (already diago-

nalized in the MF) in the form D(T ) = D(T )d where D(T ) = kBT/ξ(T ) is the translational

diffusional coefficient of a sphere or radius Re at temperature T , and d is a diagonal ten-

sor depending only on the molecular geometry, with values dXX = 0.1795 · 1018, dY Y =

0.2238 · 1018 and dZZ = 1.072 · 1018 m−2.

Absolute determination of the rotational diffusion tensor is difficult within the limitation of

Figure 3-30: Sterical hindrance of MTPNN upon variation of torsional angles.
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the present coarse-grained approach, which describes the molecules as a macroscopic object

immersed in a continuous fluid. Rather, it is convenient to refer the temperature dependence

to a standard state by defining

D(T ) = D(T0)
η(T0)

ηT

T

T0

where

D(T0) =
kB

CReπ

T0

η(T0)
is the translational diffusion coefficient for a sphere of radius Re at reference temperature

T0. The number can be chosen once for all as an adjustable parameter. Taking as reference

temperature T0 = 292 K for which η(T0) = 595 µPa s [165, 166], the best agreement (see

below) with experimental data has been achieved by choosing D(T0) = 1.498 m2 s−1.

The relative orientation of the magnetic frames GF, AiF can now be given explicitly, in

terms of sets of Euler angles; the relative orientation of GF with respect to MF is given

by Ωg = (0◦, 45◦, 89◦) while A1F and A2F are rotated of ΩA1 = (17◦,−84◦, 81◦) and

ΩA2 = (−164◦,−81◦, 66◦), respectively. A slightly asymmetric disposition of A1F and A2F is

due to molecular distortion of the minimized conformation from perfectly planar geometry

and averaging.

Results and discussion

The series of experimental spectra is compared with the outcome of eq. 3.1. Magnetic and

diffusion tensors principal values and orientation have been taken from QM calculations,

according to the computational approaches described in the previous sections. The only ad-

justable parameters, valid for the entire set of spectra are the reference translational diffusion

coefficient, D(T0), and an inhomogeneous broadening constant which has been taken equal

to 4.7 Gauss for T > 190 K, 2.8 Gauss for 190 K < T < 170 K and zero for T < 170 K.

Inhomogeneous broadening is required in order to account for residual line-width resulting

from super-hyperfine coupling with hydrogen nuclei, which are not accounted for explicitly

in the simplified Hamiltonian defined in eq. 3.64. Notice that it is feasible i) on the basis

of the evaluation of coupling constants resulting from the QM calculation, to estimate A

coupling terms for all hydrogen atoms and ii) via a partial averaging of an extended SLE

which include super-hyperfine coupling, to evaluate the inhomogeneous broadening constant

and its weak temperature dependence [155].
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T / K gexp
0 estimated error

292 2.00681 ±0.0001
280 2.00727 ±0.0002
230 2.00695 ±0.0002
210 2.00720 ±0.0002

Table 3.4: Measured values of gexp
0 for four temperatures.

The spectra are then calculated without further adjustments of temperature-dependent fitted

parameters. In Figure 3-31, we compare the experimental (full line) and simulated (dashed

line) cw-ESR spectra of MTPNN in toluene in the temperature range 155-292 K. Since exper-

imental spectra at different temperatures have been measured at slightly varying frequencies

ν0, in Figure 3-31 spectra are reported relative to their respective central field B0, for the

readers convenience, i.e. implementing eq. 3.65 as such. Notice however that no adjustment

is required in the absolute position of the spectra. In fact the measured value of g0 at room

temperature (g0 = 2.00681) is matching perfectly the predicted theoretical value, obtained

as 1/3 of the trace of the g tensor, gcalc
0 = 2.00686. On the other hand the measured g0

values are independent of the temperature inside the experimental error, see Table 3.4.

On the other side, the overall very satisfactory agreement of the spectra band-shape, par-

ticularly at low temperatures, is a convincing proof that the simplified dynamic modelling

implemented in the SLE through the purely rotational stochastic diffusive operator Γ̂, eq.

3.63, and the hydrodynamic calculation of the rotational diffusion tensor, is sufficient to

describe the main slow relaxation processes. In our opinion, the above results show the po-

tentialities of an integrated computational approach and the validity of the assumptions

made in the specific application. In particular, the complete Hamiltonian of a radical inter-

acting with the solvent molecules has been reduced by means of a series of approximations

based on separations of motions taking advantage of their different time scale. In the two

main steps of the calculation, first by a QM treatment the spin Hamiltonian of the para-

magnetic probe is extracted, with magnetic parameters averaged on the electron and fast

vibrational nuclear motions, and corrected for solvent effects. The minimum energy confor-

mations of the molecule are evaluated. The motions in solution are then approached by a

classical mechanical treatment within the framework of the stochastic Liouville equation. A

stochastic operator Γ̂ is built up in terms of the diffusion tensor principal values, based on
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Figure 3-31: Experimental (full line) and simulated (dashed line) cw - ESR spectra of
MTPNN in toluene in the temperature range 155 - 292 K.

the previously calculated molecular geometry and solvent thermodynamic properties. The

spectral profile is then obtained by numerical integration of the Liouville equation.

The excellent agreement between calculated and experimental spectra shows that the ICA

can start a new page in the field of ESR spectra interpretation. This procedure has been

applied here to a radical in a single phase, but with magnetic interactions more complex than

those typical of a nitroxide spin probe. The success of this method when applied to more

challenging systems can be foreseen, as it is based on the link between sophisticated QM

calculations of molecular properties giving amazingly reliable magnetic parameters tailored

for each environment of the probes, and refined stochastic models for their reorientational
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motions in any dynamical régime and orienting potential symmetry.

As in the applications to complex systems (biological systems, composite materials) one must

take into account different phases embedding the radical, or motions in different dynamical

ranges, or both, the results obtained by the traditional simulation approach are doomed to

a substantial ambiguity, as the number of adjustable parameters increases beyond the limit

of a trustable unique set. On the other hand in the ICA, a self-consistent model for each

molecular environment of the radical is used, where all the relevant parameters are entangled

and no one can be changed independently. The larger reliability of this approach is evident.

3.3.4 Unraveling solvent-driven equilibria between α- and 310- he-

lices

Site directed spin labelling (SDSL) of biological molecules coupled to advanced interpre-

tation methodologies is able to give information about the dynamics of the system, but

not only. Also structural aspects can be understood from the analysis of the spectra if the

molecule is labelled with two radical probes. In particular, interest is about the possibility

of determining the secondary structure. To this purpose it is required that the approach

to the interpretation of the spectra must be very sensitive to molecular geometry changes.

Here we present the work conducted on a small peptide. The usefulness and reliability of our

ICA protocol are demonstrated on this very demanding playground, i.e. the tuning of the

equilibrium between 310- and α-helices of polypeptides by different solvents. The starting

point is the good agreement between computed and X-ray diffraction structures for the 310-

helix adopted by the double spin labelled heptapeptide Fmoc-(Aib-Aib-TOAC)2-Aib-OMe.

Next, DFT computations, including dispersion interactions and bulk solvent effects, suggest

another energy minimum corresponding to an α-helix in polar solvents, which, eventually,

becomes the most stable structure. Computation of magnetic and diffusion tensors provides

the basic ingredients for the building of complete spectra by methods rooted in the SLE.

The remarkable agreement between computed and experimental spectra at different tem-

peratures allowed us to identify helical structures in the various solvents. The generality of

the computational strategy and its implementation in effective and user-friendly computer

codes pave the route toward systematic applications in the field of biomolecules.
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Introduction

In the specific field of proteins, it is well recognized that polypeptides represent suitable

models for a number of properties, and several experimental techniques have been system-

atically applied to their study. Unfortunately, interpretation of experimental results is not

without ambiguities either because of the role of different environmental effects (e.g. crystal

state for X-ray diffraction) or because the relationship between spectroscopic and structural

/ dynamics characteristics is only indirect. Here, theoretical approaches come into play pro-

vided that they are able to couple reliability and feasibility for large systems.

Until quite recently, quantum mechanical (QM) computations of biomolecules were essen-

tially restricted to the structural characteristics of relatively small models in the gas phase.

However, the development of powerful methods, integrating the most recent models rooted

into the density functional theory (DFT) [167] and discrete - continuum descriptions of sol-

vent effects [97], is paving the route toward the description of more realistic systems in their

natural (aqueous) environment [168, 169, 170]. Direct comparison with experimental results

then calls for the concomitant computation of reliable structural and spectroscopic param-

eters taking dynamical effects into the proper account [39, 40, 171, 172]. Although this is,

in general, a quite ambitious long-term target, under some favourable circumstances we can

already obtain remarkable results. Extension and validation of ICA to labelled biomolecules

would then provide access to information of unprecedented richness and reliability by com-

bining experimental and computational methodologies. Since peptides are well recognized

models for studying stability and folding of helical regions of proteins, we decided to tackle

the complete task of characterizing the solvent-driven equilibrium between different helical

forms of a nitroxide doubly labelled peptide by characterizing at the same time its 3D-

structure and complete ESR spectrum in different solvents and at different temperatures.

It should be pointed out that the ESR spectral features depend not only on the distance

between the labels but also on the relative orientations of the principal axes of the elec-

tron dipolar interaction tensor, the nitroxide label g tensor, the 14N hyperfine tensors, and

the diffusion tensor. Thus, agreement between experimental spectra and their counterparts

issuing from QM structures and magnetic tensors through solution of the SLE represents

a convincing demonstration of the correctness of the predicted structure. This approach is
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particularly interesting when different peptide conformations with slightly diverging energies

(like, e.g., 310- and α-helices) are available and the peptide can predominantly fold in one of

them biased by temperature and / or solvent characteristics.

In the past decades, double spin labelling of peptides and proteins by stable nitroxide rad-

icals has provided remarkable information: in particular, continuous wave (CW) and pulse

[e.g. double quantum coherence (DQC) and PELDOR] ESR spectra of double spin labelled

systems have been studied [6, 7, 118]. The sensitivity of DQC and PELDOR [173, 174] spec-

tra allows the reliable determination of distances between labels in the range 1.6 - 6.0 nm

in frozen solution, whereas shorter distances are not accessible because the electron dipolar

interaction becomes too large and the presence of relevant scalar electron exchange inter-

actions prevents the irradiation of a single electron spin, which is the prerequisite for their

application [175].

On the other hand, when the spin labels are at short distances, the liquid solution cw-ESR

spectrum could be very informative because its shape depends on several structural and

dynamic parameters which characterize the double labelled peptide.

Here we present the results of a cw-ESR investigation of the double spin labelled, ter-

minally protected, heptapeptide Fmoc-(AibAib-TOAC)2-Aib-OMe (1) (Fmoc, fluorenyl-

9-methoxycarbonyl; Aib, α-aminoisobutyrric acid; TOAC, 2,2,6,6-tetramethylpiperidine-1-

oxyl-4-amino, 4-carboxylic acid; OMe, methoxy), which is characterized by the presence of

two TOAC nitroxide free radicals at relative positions i, i+3 (Figure 3-32) in different sol-

vents and at several temperatures. Aib [176, 177, 178] and TOAC [179, 180] are two strongly

helicogenic, Cα-tetrasubstituted, α-amino acids. The cw-ESR spectra have been compared

with their theoretical counterparts pertaining to the deepest energy minima obtained by QM

computations (310- and α-helix). It will be shown that in specific solvents the experimental

spectra agree well with those expected for the 310-helix, in other solvents with those pre-

dicted for the α-helix, while for a final set of solvents with those associated with a mixture

of α- and 310-helices with temperature-dependent relative percentages.

In the last part of this chapter we discuss the preliminary simulations of a similar system: a

nonapeptide with formula Fmoc-Aib-TOAC-(Aib)5-TOAC-Aib-OMe. The α- and 310-helices

are two common polypeptide conformations [181, 182, 183, 184]. The former helix is a well-

known secondary structural element in proteins. The 310-helix it not as widespread as the
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Figure 3-32: Chemical structure of Fmoc-(Aib-Aib-TOAC)2-Aib-OMe (heptapeptide 1). R1

= 9-fluorenylmethoxy and R2 = Me.

α-helix, but it is still rather frequently found in proteins, especially as a N- or C-terminal ex-

tension of an α-helix. The 310-helices are usually quite short (about four residues in length),

although 310-helices of 712 residues [177, 182, 185, 186] in length have been authenticated in

proteins. 310-Helices have been proposed as intermediates in the folding / unfolding processes

of α-helices [119] because there is a lower entropic penalty for the onset of the bend required

for the formation of the intramolecular i ← i + 3 versus i ← i + 4 hydrogen bonds. The

relative stability in solution of these two ordered secondary structures depends on various

factors. The major parameters are the peptide main-chain length, the amino acid sequence,

the Aib content, and the solvent dielectric properties [177, 182, 185, 186, 187, 188, 189].

Relatively short oligopeptides rich in Aib have been observed to largely prefer 310-helical

structures in nonaqueous solutions [178, 182, 190]. It has been also suggested that the asym-

metric geometry adopted by the Aib residue can favour the 310- over the α-helix [191].

Modelling

From the cw-ESR spectra it is possible to obtain both dynamic and structural information.

Our approach requires self-consistency between magnetic and diffusive parameters, which

are both related to the geometrical structure issuing from a priori geometry optimization or

short-time dynamics.

As in the previous cases, we have to firstly define the SLE of the system. One of the ingre-

dients is spin Hamiltonian, which here takes the form

Ĥ/h̄ =
βe

h̄

∑

i

B0giŜi + γe

∑

i

Î iAiŜi − 2γeJŜ1Ŝ2 + Ŝ1T Ŝ2 (3.67)

where the first term is the Zeeman interaction of each electron spin with magnetic field B0,

depending on the gi tensor; the second term is the hyperfine interaction of each 14N/unpaired
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electron, defined with respect to the hyperfine tensor Ai; the third and fourth terms are the

electron exchange and spin-spin dipolar terms, respectively. Although all hyperfine tensors

are available from our quantum mechanical (QM) computations, we neglect explicit coupling

with nuclei other than 14N since the small inhomogeneous broadening in the spectra resulting

from coupling with hydrogen nuclei is essentially temperature and solvent independent. No-

tice, however, that hydrogen hyperfine tensors could be used to perform a partial averaging

of an extended SLE equation leading to explicit evaluation of broadening constants and of

their weak temperature dependence.

Several relaxation processes can be invoked and modelled accordingly within the SLE formal-

ism by carefully choosing the time evolution operator Γ̂. Here we shall limit our description

to the case of a freely (and rigidly) orienting molecule in space, subjected to a simple diffu-

sive motional regime. So the only stochastic variables are the Euler angles Ω describing the

overall orientation of the molecule with respect to the laboratory inertial frame. Due to the

isotropy of the environment, the stochastic diffusive operator is simply the Smoluchowski

operator

Γ̂ = Ĵ
tr
DĴ (3.68)

being Ĵ the angular momentum operator and D the rotational diffusion tensor of the

molecule.

The ESR spectrum is obtained as the Fourier-Laplace transform of the correlation function

for the X-components of the magnetizations which is dependent on the nuclear spin.

Results and discussion

The structure of heptapeptide 1, as determined by single-crystal X-ray diffraction analysis,

is illustrated in Figure 3-33. Relevant geometrical parameters are listed in Table 3.5. With

the peptide being achiral and crystallizing in a centrosymmetric space group, molecules of

both handedness are found in the crystals. A molecule of the right-handed screw sense has

been chosen as the asymmetric unit. The peptide backbone is folded into a regular 310-helix,

stabilized by five, consecutive, N-H. . .O=C intramolecular hydrogen bonds of the i + 3 → i

type. The C-terminal Aib(7) residue, external to the H-bonding pattern, adopts a helical

conformation with a screw sense opposite to that of the preceding residues. The piperidinyl
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Figure 3-33: X-ray diffraction structure of heptapeptide 1. Intramolecular H-bonds are rep-
resented by dashed lines.

rings of the two TOAC residues are oriented roughly perpendicular to the helix axis and

parallel to each other, the angle between normals to their average planes being 4.5(1)◦. The

angle between the two N-O bonds is 10.9(4)◦. The piperidinyl rings of both TOAC residues

are found in the 6T2 twist conformation (relative to the ring atom sequence Nδ-Cγ2-Cβ2-Cα-

Cβ1-Cγ1, where Cβ1 refers to the pro-S Cβ atom). For a statistical analysis of TOAC ring

conformations in the crystal state, see ref [180]. The puckering parameters are the following:

QT = 0.595(4) Å, φ2 = 92.3(4)◦, θ2 = 86.2(4)◦ for TOAC(3), and QT = 0.634(4)◦ , φ2 =

88.8(4)◦, θ2 = 90.1(3)◦ for TOAC(6) [192]. The hydroxyl groups of the two cocrystallized

TFE molecules are H-bonded to the nitroxide and to the carbonyl oxygen atoms, respectively,

of TOAC(6) within the same asymmetric unit. In the packing mode, peptide molecules are

linked head-to-tail through an intermolecular H-bond between the NH group of Aib(1) and

the Aib(7) carbonyl oxygen atom of a (x, y - 1, z) symmetry related molecule, giving rise to

rows of molecules along the b direction.
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Å
an

d
an

gl
es

in
d
eg

).
E

st
im

at
ed

st
an

d
ar

d
d
ev

ia
ti

on
s

fo
r
th

e
cr

ys
ta

ll
og

ra
p
h
ic

al
ly

d
er

iv
ed

p
ar

am
et

er
s

ar
e

in
th

e
ra

n
ge

s
0.

00
4-

0.
00

7
Å
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Chapter 3. Electron Spin Resonance

Figure 3-34: Optimized structure of heptapeptide 1: View along (right) and orthogonal (left)
the helix axis of the (a) 310-helix and (b) α-helix secondary structure.

In the 310-helix the distance (d) between the nitroxide oxygen atoms of the two TOAC

residues at relative positions i, i+3 is about 6.5 Å, while in the α-helix this distance is signif-

icantly longer (8.0 Å). In general, the 310-helix exhibits d(i, i+3) < d(i, i+4), whereas in the

α-helix the opposite holds true. The experimentally observed peptide helices are somewhat

distorted from their ideal geometries [181, 182], but the difference in the relative side-chain

distances between the 310- and α-helices persists.

The above 3D-structures have been next used to compute the magnetic tensors in different

solvents, including in the case of chloroform and methanol the solvent molecules forming

hydrogen bonds with the nitroxide group. Typical optimized structures are shown in Figure

3-35.

Let us recall that the orbitals determining the magnetic properties of non-conjugated ni-

troxides are strongly localized onto the N-O moiety (Figure 3-36), so that the principal axes

of both hyperfine and g tensors are well aligned along the N-O bond (by convention the

X-axis) and with the average direction of π-orbitals (Z-axis).

The g tensors computed by last generation density functionals are usually in good agreement

with the experiments [19, 87] and have been used without further corrections in the simula-
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3.3. Case-study calculations

Figure 3-35: Structures of the TOAC-solvent complexes: twist conformation with CHCl3
(A1); twist conformation with methanol (A2). R = peptide chain.

tion of ESR spectra. Table 3.6 shows the values of the principal axes components reported

in ppm units relative to the free electron value in order to highlight the difference between

the values in different solvents. The most important contribution to g shifts comes from an

electronic excitation from the SOMO-1 (an in-plane lone pair, hereafter referred to as n)

to the SOMO (an out-of-plane π∗ orbital), both of which are sketched in Figure 3-36. The

dependence of the g tensor on solvent polarity is related to the selective stabilization of lone

pair orbitals by polar solvents: his increases the n → π∗ gap with the consequent reduction of

g tensor shifts (especially gXX). Together with this purely electrostatic contribution, forma-

tion of solute-solvent H-bonds also concurs to the stabilization of lone pair orbitals and, once

again, to a decrease of g tensor shifts. In any case, structural and solvent effects on g are well

within experimental uncertainty: thus, constant values of 2.009, 2.006, and 2.003 have been

used in the fitting of all spectra for the principal axes of the g tensor. The situation is more

complex for nitrogen hyperfine tensors A, which can be decomposed into two terms: the

isotropic hyperfine term (aiso) and dipolar contributions (B). The results reported in Table

3.7 show that the B tensor has the same behaviour as the g tensor and that, to a good
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Chapter 3. Electron Spin Resonance

Figure 3-36: Sketch of SOMO (A) and SOMO1 (B) of TOAC (R1 = COOH, R2 = NH2) in
two different orientations.

approximation, its principal axes are parallel (BZZ) or perpendicular (BXX , BY Y ) to the

N-O orbital with BXX = BY Y . It is well-known that accurate estimates of isotropic hyper-

fine couplings for nitroxides can be obtained only using very demanding theory levels, like,

e.g., quadratic configuration interaction including single and double excitations (QCISD)

with purposely tailored basis sets, possibly integrated into an ONIOM-like approach [193].

We have, however, recently developed a new basis set (N06) that, coupled to the PBE0

functional, promises to overcome this problem. Indeed, the computed aiso for the closely re-

lated TEMPO (2,2,6,6-tetramethylpiperidine-N-oxyl) radical in cyclohexane (15.23) and in

toluene (15.32) are in remarkable agreement with the experimental values (15.28 and 15.40

G, respectively) [194, 195]. The computed values for the chair conformation of TOAC are

very close, whereas significantly lower values (12.38 and 12.54 G) are obtained for the twist

structure. This is related to the different pyramidality around nitrogen: in particular, the

nearly planar arrangement characterizing the twist structure leads to the lack of any contri-

bution of nitrogen s orbitals to the orbital formally containing the unpaired electron with the

consequent strong reduction of aiso. However, vibrational averaging effects, which are essen-

gXX gY Y gZZ

gas-phase 6829 3787 262
toluene (ε = 2.3) 6674 3754 262

chloroform (ε = 4.9) 6579 (6349) 3733 (3598) 262 (232)
methanol (ε = 32) 6472 (5912) 3709 (3580) 262 (253)

acetonitrile (ε = 36) 6470 3709 262

Table 3.6: g tensors (ppm) computed in different solvents. Values in parentheses are obtained
including one specific solvent molecule for each N-O moiety (see Figure 3-35).
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3.3. Case-study calculations

BXX BY Y BZZ

gas-phase 8.70 8.46 17.16
toluene (ε = 2.3) 8.92 8.70 17.62

chloroform (ε = 4.9) 9.05 (9.38) 8.85 (9.24) 17.90 (18.62)
methanol (ε = 32) 9.19 (9.59) 9.01 (9.48) 18.20 (19.06)

acetonitrile (ε = 36) 9.19 9.02 18.21

Table 3.7: Dipolar hyperfine tensors (in Gauss) computed for heptapeptide 1 in different
solvents. Values in parentheses are obtained including one specific solvent molecule for each
nitroxide moiety (see Figure 3-35).

tially negligible for chair structures, become quite significant for the nearly planar nitroxide

moieties characterizing twist structures. Without entering into a detailed description of the

effective one-dimensional model we have used to estimate these effects [17, 38, 103, 196] we

just mention that a nearly constant vibrational correction of 1.7 G is obtained for all twist

structures. It is noteworthy that, after this correction, twist and chair conformations have

comparable hyperfine couplings, which show, furthermore, a distinct solvent dependence (see

Table 3.8). In particular, solvent polarity and formation of solute-solvent hydrogen bonds

concur to the selective stabilization of the nitroxide resonance structure involving at the

same time formal charge separation and increased spin density on nitrogen [38]. The final

values computed for the different solvents are as follows: 14.3 (toluene), 14.8 (acetonitrile),

15.0 (chloroform), and 15.3 G (methanol), where 1 G = 10−4 T. To fine-tune the simu-

lated spectra we set AXX = AY Y = A⊥ and AZZ = A‖ and then fit the isotropic value

aiso = (2A⊥ + A‖) by keeping constant the anisotropy ratio R = A⊥/A‖ = 0.13.

Hyperfine and gyromagnetic tensors have a local character and are thus only marginally

aiso ∆vib ∆1S best calcd best fit
gas-phase 12.2 1.7
toluene 12.6 1.7 - 14.3 14.5

chloroform 12.8 1.7 0.58 15.1 15.0
methanol 13.1 1.7 0.61 15.4 15.3

acetonitrile 13.1 1.7 - 14.8 14.8

Table 3.8: Calculated nitrogen isotropic hyperfine couplings (in Gauss) for the optimized 310-
helix of heptapeptide 1 are compared with fitted values (best fit). The final calculated values
(best calcd) include electronic values at the energy minimum (aiso), vibrational averaging
(∆vib), and, for protic solvents, the contribution of a single explicit solvent molecule (∆1S).
The last column reports the optimized values of the isotropic hyperfine coupling.
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Chapter 3. Electron Spin Resonance

influenced by the long-range interactions modified by conformational changes (e.g. transition

from the 310- to the α-helix). The other magnetic terms (J and spin-spin dipolar interaction)

have a long-range character and can provide, in principle, a signature for the different helical

structures. The J terms have been calculated from differences between triplet and singlet

energies by the so-called broken-symmetry approach [197]. Although the computed J values

are slightly different for the 310- and the α-helix (140.8 and 139.5 G, respectively, at the

PBE0/N06 level), this trend does not allow us to gain further structural information, since

(as we shall see) all values larger than 130 G are compatible with experimental data.

Usually, the spin-spin dipolar term is calculated by assuming that the two unpaired elec-

trons are localized at the centre of the N-O bonds of the two TOAC residues. Then, the two

electrons are considered just as two point magnetic dipoles and the interaction term depends

on the distance between the two localized electrons:

T =
µ0

4π

g2
eβ

2
e

h̄r3




13 −

3

r2





r2
X rXrY rXrZ

rY rX r2
Y rY rZ

rZrX rZrY r2
Z








(3.69)

Obviously, this is just a rough approximation which could break down at not too long

distances. On the other hand, a complete QM computation is hardly feasible for the large

systems we are interested in. Thus, the strong localization of the magnetic orbitals of non-

conjugated nitroxides (see Figure 3-36) suggests that, for not too short distances between

N-O moieties, a reliable approximation would be to fit the SOMO electron density by linear

combinations (with equal weights) of effective nitrogen and oxygen valence Slater orbitals.

Then, the tensorial operator T̂ has components

T̂α,β =
r2
1,2δα,β − 3 (r1,2)α (r1,2)β

r5
1,2

(3.70)

where r1,2 = |r1,2| = |r1 − r2| is the vector between the two electrons, α, β = X, Y, Z, and

(r1,2)α is the component along α of vector r1,2. In the present case, only the T (2,0) component

(proportional to TZZ in Cartesian coordinates) contributes significantly to the dipolar tensor.

Figure 3-37 shows the trend of |T (2,0)| versus the distance between the two TOAC nitroxides

and highlights the position of the 310-helix and the α-helix with respect to the distance be-

tween the TOAC residues. The difference between the point-dipole approximation and the

quantum mechanical values of the dipolar tensor is higher in the 310-helix structure, in which
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3.3. Case-study calculations

Figure 3-37: Trend of |T (2,0)| versus distance calculated with the point dipole (dashed line)
and localized quantum mechanical (solid line) approaches.

the distance between the two nitroxides is lower if compared to that of the α-helix. Details

on the calculation are given in appendix B. The rotational dynamics is controlled by the

rotational diffusion tensor D, which is evaluated with the hydrodynamic approach discussed

in Chapter 2. We can write the rotational diffusional tensor (already diagonalized in the

molecular frame) in the form D(T ) = D(T )d, where D(T ) = kBT/ξ(T ) is the translational

diffusional coefficient of a sphere of radius Re at temperature T and d is a diagonal tensor

depending only on the molecular geometry, with values dXX = 1.71 · 1016, dY Y = 1.83 · 1016

and dZZ = 5.75 · 1016 m−2 for the 310-helix and dXX = 1.88 · 1016, dY Y = 2.01 · 1016, and

dZZ = 4.91 · 1016 m−2 for the α-helix. Available viscosity data for the solvents considered

[198] is used to calculate the temperature- and solvent-dependent rotational diffusion ten-

sors. The larger difference between the value of the diffusion tensor for the 310-helix and the

α-helix is computed for the ratio of the Z component (dZZ) and the X component (dXX) of

the tensor. For all the temperatures and solvents investigated, this ratio is 3.36 for the 310-

helix and 2.61 for the α-helix. These different values can be explained by simply considering

the shape of the two secondary structures illustrated in Figure 3-34. A higher value of the

ratio is related to a long and slim shape of the molecule (Figure 3-34b) while a lower value

indicates that the molecule is shorter and wider (Figure 3-34a).

Simulated spectra in different solvents exhibit different sensitivities with respect to the mag-

netic and diffusion calculated parameters. In particular, simulations, as expected, are not
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Chapter 3. Electron Spin Resonance

Figure 3-38: Experimental (solid lines) and theoretical (dashed lines) cw-ESR spectra of
heptapeptide 1 in MeCN at temperatures 330, 310, 290, and 270 K.

sensitive to changes in the electron exchange interaction J when J > 130 G. The depen-

dence on the values of the components of the diffusion tensor D is more significant: variations

within a 10% range of the proposed values, calculated according to the hydrodynamic ap-

proach, cause a significant change in the intensity and widths of the peaks. Moreover, the

spectra dependence on the temperature is perfectly reproduced by the calculated D tensor.

Sensitivity upon the dipolar interaction tensor T is also relevant. The spectrum is controlled

by the dominant T (2,0) component, which causes noticeable variations when changed within

10%. An overestimation of T , corresponding for instance to use of the approximate point

dipole formulation, leads to an increase of the width and a decrease of the intensity of all

peaks. Finally it is well-known that the general dependence of cw-ESR spectra upon the g

and A tensor component values and orientation Euler angles is highly pronounced and no

significant adjustment is possible with respect to the calculated values which are in very

good agreement with the experimental observations.

The SLE computations were performed for four different solvents: acetonitrile (MeCN),

116



3.3. Case-study calculations

Figure 3-39: Experimental (solid lines) and theoretical (dashed lines) cw-ESR spectra of
heptapeptide 1 in methanol at temperatures 320, 310, 300, and 280 K.

methanol, toluene, and chloroform. It is worthwhile to remark that the overall computa-

tional protocol has been organized in a novel suite of computational codes which present

significant advancements with respect to the existing packages for the interpretation of ESR

spectra, namely the integration of the QM and stochastic dynamics parts, the extension to

multiple radicals and nuclei, and finally the increased computational efficiency based on a

partial on-the-fly evaluation of matrix elements.

For each solvent we examined different temperatures, and at every step a different value

of the diffusion tensor was employed owing to the temperature dependence of the viscos-

ity. A common assumption for all solvents is the presence of a monoradical impurity that

might arise from the reduction of one of the nitroxide functions. The estimated amount of

the impurity is below 4%, a low but still appreciable percentage. It is noteworthy that the

optimized values of aiso (the only adjustable parameters in our protocol) are very close to

their QM counterparts for all solvents (see Table 3.8).

Figure 3-38 collects four theoretical spectra for the heptapeptide 1 in MeCN and their ex-
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Chapter 3. Electron Spin Resonance

Figure 3-40: Experimental (solid lines) and theoretical (dashed lines) cw-ESR spectra of
heptapeptide 1 in toluene at temperatures 350, 340, 330, 320, 310, 300, 290, 280, and 270
K.

perimental counterparts at four different temperatures: 330, 310, 290, and 270 K. From the

simulations it appears that in this solvent only the 310-helix occurs, i.e. pα = 0, p310 = 98,

pmono = 2% at all temperatures. Figure 3-39 shows five theoretical and experimental spectra

in methanol solution in the temperature range 280 to 320 K. The simulations, which consider

that in solution only the α-helix is present, closely reproduce the experimental spectra, pα

= 97, p310 = 0, pmono = 3% at all temperatures.

Figure 3-40 collects the simulated and the experimental spectra for a toluene solution in the

temperature range 270 to 350 K. At high temperatures (350, 340, 330, 320 K) the exper-

imental spectra are well reproduced using comparable percentages of α-helix and 310-helix

structures, pα = 60, p310 = 38, pmono = 2%. At lower temperatures (below 310 K) the exper-

imental spectra are correctly reproduced by progressively increasing the α-helix percentage,

with pα = 70, 75, 78, 92, 98% at 310, 300, 290, 280, 270 K (and constant pmono = 2%).

Figure 10 shows the spectra for chloroform solutions in the range 290 to 250 K. The exper-

imental spectra are reproduced using only an α-helix structure, pα = 96, p310 = 0, pmono
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3.3. Case-study calculations

Figure 3-41: Experimental (solid lines) and theoretical (dashed lines) cw-ESR spectra of
heptapeptide 1 in chloroform at the temperatures 290, 280, 270, 260, and 250 K.

= 4% at all temperatures. From the available literature data [179] we could expect a high

310-helix percentage in solution induced by the low polarity of the solvent. However, QM

computations show that quite stable hydrogen bonds can be formed between chloroform and

both nitroxide and carbonyl groups (see, e.g., Figure 3-35), which, in turn, could lead to a

switch from the 310- to the α-helix [185, 186, 187].

Examples of peptides possessing a main-chain length comparable to that of heptapeptide 1,

and largely [199] based upon Cα-tetrasubstituted amino acid residues, able to switch from

the 310- to the α-helical conformation upon increasing medium polarity, have been only

recently reported.

Conclusions

We have reported a detailed analysis of the structural and magnetic properties of a double

labelled peptide by an integrated computational and experimental strategy. From a chemical

point of view, our results provide evidence on the property of Aib-rich peptides changing
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their conformation from 310- to α-helix as a function of increasing polarity and hydrogen-

bond donor capability of the solvent: α-helix in protic solvents and at low temperature,

whereas 310-helix in aprotic solvents. The X-ray diffractometric analysis reveals that the

peptide assumes a 310-helical conformation in the crystal state. The 310-helix is very well

reproduced by DFT computations in vacuo and in aqueous solution. Our computational

results indicate that in aqueous solution the α-helical conformation becomes the deepest

conformational minimum when dispersion interactions are taken into account. Computation

of magnetic and diffusion tensors and their feeding in a general computational protocol

based on the stochastic Liouville equation allowed us to reproduce in a remarkable way

the ESR spectra in different solvents and at different temperatures without any adjustable

parameter except the relative percentage of 310- and α-helices. The favourable scaling of our

computational protocol with the dimensions of the system and its remarkable performances

for both structural and magnetic properties might pave the route for systematic studies of

spin labelled peptides and proteins.

3.3.5 Modeling of cw-EPR Spectra of Propagating Radicals in

Methacrylic Polymerization at Different Temperatures

We investigate the temperature dependence of the cw-ESR spectra corresponding to the

propagating radical responsible of the polymerization of methacrylic monomers. The system

can be modelled as a rotator with only one relaxation process, the rotation around the Cα-

Cβ bond. The simulations clearly indicate that the change of the spectral shape with the

temperature is essentially related to the internal flexibility of the radical end.

Introduction

In the last decades, ESR spectroscopy has been a very useful tool to study radical polymer-

ization, [200] allowing a deeper insight in the structure and properties of propagating species,

particularly in methacrylic propagating radicals. [200, 201, 202, 203] It has been pointed out

the effect of the reaction temperature in these systems not only on the magnitude of the

kinetic parameters, [204, 205, 206] but also in the line shape of the spectra obtained at the

first steps of the polymerization.
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3.3. Case-study calculations

Figure 3-42: Schematic diagram of the methacrylic propagating radical model.

The 13-line spectrum, usually observed in the radical polymerization of methacrylic

monomers, is assigned to the propagating radical, resulting from the coupling of the un-

paired electron with two methylene and three methyl protons, all in β position to the radical

centre (Figure 3-42). The relative peak-to-peak distances in the lines of the spectra deviate

from those resulting for a system in fast motional regime. The deviation is more pronounced

as the temperature is lowered. This behaviour is not surprising if we take into account that

the spectra are a consequence of the internal rotation through the Cα-Cβ bond, [207] move-

ment that is expected to be temperature dependent.

The aim of this work is to relate the temperature dependence of the spectral line shape with

the internal dynamics at the radical centre by application of the ICA to the simulation of

the experimental spectra.

Modelling and interpretation

Simulation of the cw-ESR spectra is based on the implementation and solution of the SLE,

so we have to firstly define the main ingredients, i.e. the spin Hamiltonian of the system

and the stochastic operator describing the time evolution of the relaxing processes. In ref.

[207] it was shown qualitatively that the shape of the spectra is influenced by the internal

torsional angle θ, defined in Figure 3-42, describing rotation through the Cα-Cβ bond. This

fact is due mainly to the high dependency of the hyperfine coupling tensors of the β and

β′ protons on this torsional angle [208]. The system has been modelled as a flexible rotator

with an internal degree of freedom, the torsional angle around the Cα-Cβ bond. Furthermore,

all magnetic tensors have been found to be nearly isotropic (cfr. next section). This implies

that the overall tumbling of the molecule is not coupled to the magnetic properties, so the

internal angle θ is the only stochastic variable to be considered.
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The magnetic Hamiltonian of the system in our case can be expressed as

Ĥ (θ) /h̄ =
βe

h̄
gB0Ŝ + γe

5∑

n=1

an (θ) ÎnŜ (3.71)

where the first term is the Zeeman interaction of the electron spin with the magnetic field

B0, and the second term describes the hyperfine interaction of the unpaired electron with

the five hydrogen nuclei in β position. We assume that the g-factor is independent on the

stochastic variable. Furthermore, for what concerns the hyperfine constants, we consider that

only those of the β and β′ protons depend on θ, while for the methyl group we use an average

value, assuming that its rotation is very fast compared with other relaxation processes in

the system.

The spin super-Hamiltonian Ĥ× is usually expressed as the contraction of rank zero of

spherical irreducible tensors and tensorial operators of rank zero and two [16, 32]. Due to

the isotropy of the magnetic tensors, here the super-Hamiltonian takes the very simple form

Ĥ× (θ) = ω0F
(0, 0) ∗
g, LF Â(0, 0) ×

g, LF +
5∑

n=1

ωAn (θ) F (0, 0) ∗
An, LF Â(0, 0) ×

An, LF (3.72)

being ω0 = gβeB0/h̄, F (0, 0) ∗
g, LF = F (0, 0) ∗

An, LF = −
√

3, Â(0, 0) ×
g, LF = − 1√

3
ŜZ , ωAn = γean (θ) and

Â(0, 0) ×
An, LF = − 1√

3

[
ŜZ ÎZ,n + 1

2

(
Ŝ+Î−,n + Ŝ−Î+,n

)]
.

To describe the time evolution of the internal torsional angle, we assume that it is subjected

to two kinds of motion: i) a diffusive motion, which is the rotation about the Cα-Cβ bond,

and ii) a random walk motion, which can be thought to be originated by the propagation

reaction: when a monomer molecule reacts with a propagating radical, the new formed radical

may have a different value of the internal angle, generating the random jump.

The time evolution of the probability density P (θ, t) is

∂

∂t
P (θ, t) = −Γ̂P (θ, t) = −Γ̂DP (θ, t)− Γ̂RW P (θ, t) (3.73)

where the subscripts D and RW stand for diffusive and random walk, respectively. The

diffusive operator is

Γ̂D = − ∂

∂θ
DII (θ) Peq (θ)

∂

∂θ
P−1

eq (θ) (3.74)

where DII(θ) is the diffusion coefficient and Peq(θ) is the Boltzmann distribution in the

θ space, defined as Peq(θ) = exp [−V (θ)/kBT ]/〈exp [−V (θ)/kBT ]〉, being V (θ) the internal
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3.3. Case-study calculations

potential.

The random walk operator, in its integrated form, is given by

Γ̂RW P (θ, t) = −
∫ 2π

0
dθ′ [P (θ, t) W (θ ← θ′)− P (θ′, t) W (θ′ ← θ)] (3.75)

and its properties depend on the transformation kernel. We take the simplest choice

W (θ ← θ′) = ωRW Peq (θ′) (3.76)

i.e. the probability of jumping from θ to θ′ depends only on the arriving value of the angle

and on the jumping frequency ωRW .

The substitution of the kernel (3.76) in the expression of the operator (3.75) reads

Γ̂RW P (θ, t) = ωRW

[
P (θ, t)− Peq (θ)

]
(3.77)

It is useful to transform the time evolution operator in such a way that it becomes Hermitian;

this is achieved by the symmetrization operation Γ̃ = P−1/2
eq (θ)Γ̂P 1/2

eq (θ), that gives

Γ̃P̃ (θ, t) = −P−1/2
eq (θ)

∂

∂θ
DII (θ) Peq (θ)

∂

∂θ
P−1/2

eq (θ) P̃ (θ, t) +

−ωRW

[
P̃ (θ, t)− P 1/2

eq (θ)
∫ 2π

0
dθ′P 1/2

eq (θ′) P̃ (θ′, t)
]

(3.78)

with P̃ (θ, t) = P (θ, t) /P 1/2
eq (θ).

Finally, the cw-ESR signal is calculated as the spectral density [16]

I (ω − ω0) =
1

π
Re

{
〈〈vP 1/2

eq (θ) |
[
i (ω − ω0) + L̃

]−1
| vP 1/2

eq (θ)〉〉
}

(3.79)

where ω is the sweep frequency, and | vP 1/2
eq (θ)〉〉, called starting vector, is an operator

representing the physical observable, i.e. the magnetization along the X-axis; in the current

case we have

| v〉〉 = 2−5/2| ŜX ⊗ 1I1 ⊗ 1I2 ⊗ 1I3 ⊗ 1I4 ⊗ 1I5 ⊗ P 1/2
eq (θ)〉〉 (3.80)

The basis set that we choose to span the operator and calculate the spectrum is given by

the direct product |Σ〉〉 = |σ〉〉 ⊗ |n〉〉 where

|σ〉〉 = | pSqS, pI
1q

I
1 , p

I
2q

I
2 , p

I
3q

I
3 , p

I
4q

I
4 , p

I
5q

I
5〉〉 (3.81)

|n〉〉 =
1√
2π

e−inθ (3.82)
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Chapter 3. Electron Spin Resonance

The spin part, |σ〉〉, is obtained from the direct product of the transitions spaces [16] of the

electron and the five hydrogen atoms.

To calculate the spectrum via the Lanczos algorithm we need to build the matrix represen-

tation of the Liouvillean, which is constituted by elements of the type 〈〈Σ |L̂|Σ′〉〉. They are

given in detail in Appendix E.3 together with the evaluation of the projections of the basis

on the starting vector.

Different aspects related to the structural, dynamical and magnetic properties of the system

under investigation are considered by the SLE just defined. There are seven parameters: five

hyperfine coupling constants, the internal diffusion coefficient and the jumping frequency.

The ICA protocol gives us the possibility to predict ab inito all the parameters but the

jumping frequency. The latter has not a clear molecular interpretation so it is consider as a

free parameter (the only) to be fitted.

Quantum mechanical calculations According to the results reported in a previous

work, [207] a simple system consisting of two monomeric units of methyl methacrylate can

be considered as an adequate propagating radical model to reproduce the magnetic proper-

ties of the radical centre (Figure 3-42). As above explained, the shape of the spectra depends

on the internal torsional angle θ, since the hyperfine coupling tensors of the two β and β′ pro-

tons vary on this angle [208]. In order to assess quantitatively this dependency, we evaluate

the tensors on the structures resulting when varying θ from 0◦ to 360◦. DFT methodology

has been employed, specifically the B3LYP functional, which is an hybrid method including

the Beckes three parameter exchange functional with the non-local correlation functional of

Lee, Yang and Parr. Due to the large size of the analysed system, the computations were

performed using two basis sets of contracted Gaussian functions, namely 6-31G* and TZVP

[53]. The first one, 6-31G*, is a relatively small basis set including a quality double-ζ plus

polarization and a contraction scheme for the second-row elements of (10s4p1d)/[3s2p1d],

whereas TZVP is a DFT-optimized valence triple-ζ basis set. The smaller one, 6-31G*, was

used to optimize the geometry of the most stable conformation of the radical model, and

the TZVP was employed later to obtain the hyperfine tensors as a function of θ. It has

been demonstrated that this computational protocol, B3LYP/TZVP//B3LYP/6-31G*, is

very adequate to carry out calculations of coupling constants of medium size radicals since
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3.3. Case-study calculations

Figure 3-43: Dependence of the reduced internal diffusion coefficient on the internal torsional
angle.

it provides accurate values of this property [209, 210]. From these computations, the internal

torsional potential is obtained too, which is needed to evaluate the Boltzmann distribution

in the θ space. Finally, we obtain also the g tensor of the unpaired electron, which is weakly

dependent on θ.

These quantum mechanical calculations reveal a low anisotropy in both Zeeman and hyper-

fine tensors so, as a rough approximation, we consider them as isotropic. As a consequence,

the coupling with overall rotation can be assumed as negligible. The decoupling of spin and

global rotational coordinates lead to simplified numerical procedure for solving the resulting

SLE, which contains only the internal angle θ as relevant relaxation process, but includes

coupling explicitly with all the five hydrogen nuclei that give the main contribution to the

shape of the spectrum via hyperfine interaction.

Evaluation of diffusion properties The evaluation of the diffusion properties of the

propagating radical model is based on the hydrodynamic approach [36, 57] discussed in

Chapter 2. Due to the fact that we are assuming isotropic magnetic tensors, only one dy-

namical process has to be taken under consideration, i.e. the rotation about the Cα-Cβ bond

described by the stochastic variable θ, so from the full diffusion tensor of the molecule, rep-

resented by a 7 × 7 matrix, only the pure internal part, DII , is needed. It is a scalar and,

in general, it depends on the geometry, so in principle it has to be considered as a function

of the internal angle θ. Figure 3-43 represents the dependence of the reduced internal dif-

fusion coefficient on θ. The reduced coefficient is given as dII = DII(πCReη/kBT ), which

depends only on molecular geometry and not on fluid properties and temperature. As can be
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Chapter 3. Electron Spin Resonance

Figure 3-44: Potential energy curve of the propagating radical model as a function of the
internal torsional angle θ at 333K (U = V/kBT ), computed at B3LYP/TZVP level.

seen, there is only a little dependence on the internal angle, so we approximate the diffusion

coefficient to a constant equal to the value calculated in the minimum energy configuration.

Results and discussion

Torsional potential From the DFT calculations, we extract the internal torsional po-

tential, V (θ). The computed dependence at 333 K, in kBT units, that is U(θ) = V (θ)/kBT ,

is represented in Figure 3-44. The function is almost symmetric, with two potential wells

corresponding to the most stable conformations, located at 96◦ and 264◦. There are two very

large barriers (U ≈ 200) at about 30◦ and 330◦ and two other lower, but still large barriers

(U ≈ 30) at about 160◦ and 200◦. This kind of potential implies that the motion about the

Cα-Cβ bond is confined within the two minima.

The explicit dependence on the torsional angle θ of the potential is obtained expanding the

potential over the set of basis functions (3.82). We employ a truncated Fourier sum to rep-

resent the potential trend U(θ) =
∑

n

εne
−inθ, where εn = ε∗−n is assumed to assure that the

potential is a real quantity.

Hyperfine coupling constants and g-tensor Figure 3-45 shows the computed iso-

tropic hyperfine coupling constants (hfccs) corresponding to Hβ and Hβ′ as functions of the

internal torsional angle. According to these calculations, the hyperfine constants of the β and

β′ protons corresponding to the most stable conformations (θ = 96◦ and 264◦) are 14.0 and

8.8 G, and the calculated average value corresponding to the protons of the methyl group

is 22.5 G. These computed hfccs are in very good agreement with the data obtained from
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3.3. Case-study calculations

Figure 3-45: Isotropic hyperfine coupling constants of β (left) and β′ (right) protons of
the propagating radical model as a function of the internal torsion angle , computed at
B3LYP/TZVP level.

the experimental spectra [206], which are 14.1, 8.6 and 22.5 G, respectively. Besides, the

predicted constants for Hβ and Hβ′ follow the expected dependence with θ, that is, the well

known empirical relation proposed by Heller and McConnell, in which the hfccs of β pro-

tons belonging to carbon-center π radicals, such as methacrylic ones, vary with the squared

cosine of θ [208]. The agreement between the predicted hfccs by DFT methodology and by

Heller and McConnell relation is excellent. These results support the validity of the proposed

computational protocol for the calculation and prediction of this magnetic property.

To obtain the explicit dependence of both the coupling constants on θ, we proceed again by

expanding over complex exponentials: a(θ) =
4∑

n=−4

ane
−inθ.

Finally, the DFT calculations showed that the g-tensor has a weak anisotropy and that it is

also independent on the value of the internal angle. Thus, we considered it as an isotropic

term, the computed value of which is 2.0046.

Diffusion coefficient The values of the diffusion coefficient, DII , at temperatures in

the range 273 - 393 K have been obtained according to the above described hydrodynamic

approach, employing an effective radius of 2.0 Å, stick boundary conditions (C = 6), and

the viscosity of the solution of monomer in toluene at each temperature, η(T ) (Table 3.9).

We performed the calculations on radicals with different chain length, from the dimer till a

100-monomer units system. Figure 3-46 shows how the reduced internal diffusion coefficient

changes as the number of monomeric units increases. As we expected, the value of this co-

efficient reaches a plateau and we decided to use this limit value in the calculation of the
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Figure 3-46: Dependence of the reduced internal diffusion coefficient on the number of
monomeric units constituting the propagating radical.

spectra.

The values of the diffusion coefficient obtained at the five considered temperatures are gath-

ered in Table 3.9.

Cw-ESR spectra The cw-ESR spectra were simulated according to the defined approach

that integrates all the parameters previously computed. The only free parameter, determined

via fitting, is the jumping frequency. In fact, we do not really know the origin of the random

walk, so it is not possible to calculate this frequency a priori. We think that the random

walk is related to the propagation reaction, which is taking place during the registration of

the spectra. It is plausible that the new radical generated by the addition of a monomer unit,

has a different value of the torsional angle than the original one. In this way, the chemical

reaction disturbs the relaxation of θ, giving an effective higher relaxation time. The reaction

can occur if one reactant encounters the other and the approach of the two molecules is

governed by the translational diffusion. This hypothesis is supported by the temperature be-

T / K η / 103 Pa s DII / 108 Hz ωRW / 107 Hz
273 1.667 1.5 1.84
303 1.047 2.6 1.06
333 0.715 4.1 0.61
363 0.520 6.2 0.44
393 0.397 8.8 0.31

Table 3.9: Viscosity of the monomer in toluene solution (η), diffusion coefficient (DII) and
jumping frequency (ωRW ) at different temperatures.
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3.3. Case-study calculations

haviour that we found, reported in Table 3.9. As can be seen, the jumping frequency follows

the same temperature dependence that the viscosity.

Figure 3-47 shows the theoretical spectra compared with the experimental ones registered at

the beginning of the photopolymerization of TRIS in the temperature range from 273 to 393

K. It is well known that the shape of these spectra changes with monomer conversion due to

the increase of the viscosity [207]. In order to avoid this effect, the spectra were registered

at the very beginning of the polymerization, when the conversion of monomer into polymer

is very low and, thus, the viscosity of the medium has scarcely increased. Therefore, we can

assume that the changes in the shape of these spectra are mainly due to the effect that the

temperature prompts on the internal rotation.

The experimental 13-lines ESR spectra shown in Figure 3-47 can be interpreted as the result

of the hyperfine coupling of the unpaired electron with the methylene protons (β and β′) and

the three protons of the methyl group, with the overlap of some lines. For comparison sake,

spectra have been normalized. The relative peak-to-peak intensities of the lines deviate from

the 1:1:1:4:3:3:6:3:3:4:1:1:1 ratio expected for a system in fast motional regime where the

internal dynamics does not affect the spectral profile. In particular, the heights of the inner

pairs (lines 2, 3, 5, 6, 8, 9, 11 and 12) are lower. As it can be easily seen in this figure, the

variation in relative intensities becomes more pronounced when lowering the temperature.

Comparison of simulated and experimental spectra shows that the agreement between ex-

perimental and simulated results is reasonably good, qualitatively and even quantitatively,

in all the temperature range.

Conclusions

Simulation of the cw-ESR spectra of the propagating radical present during the polymeriza-

tion of methacrylic monomers at different temperatures have been carried out by using an

Integrated Computational Approach that provides the spectral profile solving the Stochastic

Liouville Equation. The propagating radical has been modelled as a flexible rotator with an

internal degree of freedom, the rotation around the Cα-Cβ bond, the motion of which is not

purely diffusive but has also a random walk component.

The jumping frequency follows the same temperature dependence that the viscosity, which

suggests that the origin of the random walk is related to the propagation reaction.
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Figure 3-47: Experimental (solid lines) and simulated (dashed lines) spectra of polymeriza-
tion of TRIS at different temperatures.

Although the employed theoretical model is quite simple (isotropic magnetic tensors and only

one relaxing process), it has the main ingredients to describe and interpret the properties of

a complex system, as the one investigated in this work. Furthermore, it has to be underlined

the accuracy of the methodologies integrated in the ICA to predict magnetic and diffusive

parameters that enter in the SLE. This is a very important point in the interpretation of cw-

ESR spectra because the parameters have a clear physical molecular interpretation, which

is not always ensured if all them are fitted.

The simulated spectra agree well with the experimental ones, qualitatively and even quan-

titatively, for all the studied range of temperature, which confirms the hypothesis that the

internal torsion around the Cα-Cβ bond is responsible of the variation in the relative inten-

sities of the spectral lines with temperature.

130



Chapter 4

Nuclear Magnetic Resonance

Spectroscopic techniques, both magnetic and optical, are widely used in structural and dy-

namical investigation of microscopic parameters of biomolecules [211] and, in particular,

nuclear magnetic resonance (NMR) spectroscopy is an important and powerful experimental

technique for characterizing the microdynamics of proteins. Main physical observables are

the T1, T2 and NOE relaxation parameters of 15N, 2H and 13C nuclei, which are very sensi-

tive to dynamics, i.e. molecular motions have characteristic relaxation times comparable to

the nuclear spin relaxations. Isotopic enrichment can be targeted to single residues of the

protein, leading to the possibility of understanding localized dynamics (e.g. studying confor-

mational motions specifically in the active site of the protein) and, moreover, comparison of

data coming from different residues of the same protein allows to make spatial (structural)

considerations.

NMR relaxation data depend on dipolar (15N and 13C) and quadrupolar (2H) interactions,

on chemical shift anisotropy and cross-correlation effects. NMR relaxations can be written

as functions of the spectral densities of the magnetic interactions, calculated within the the-

oretical framework describing the dynamics of the system.

A first approach was proposed by Lipari and Szabo [212, 213] with their ”Model Free” (MF)

analysis. This approach is based on considering the presence of two uncoupled motions in the

system: the global tumbling of the protein and the local motion of the probe. The assumption

of decoupling leads to an easy formulation for the spectral density, as the sum of spectral

densities calculated from two different motions. Simple mathematical expressions and fast

calculations come from this approach, together with a number of limitations, leading to a
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restricted range of validity. The two most important shortcomings of the approach at least

in its primitive formulation are: i) MF considers an isotropic global tumbling of the protein

so that is works well with globular proteins, but not with other molecules having markedly

non-spherical shapes; ii) fails to reproduce NMR data when the time scales of the motions

are similar, i.e. where the decoupling approximation cannot be assumed a priori.

An advanced phenomenological model describing two coupled dynamical processes was in-

troduced by Polimeno and Freed [32, 139], originally for the interpretation of electron spin

resonance (ESR) of probes in ordered phases like liquid crystals and glasses [31, 130]. The

model is known as the slowly relaxing local structure (SRLS) approach, and it is based on

a two-body Smoluchowski equation describing the coupled motion of two rigid rotors. SRLS

has been applied by Meirovitch et al. [214, 215, 216] to the interpretation of NMR data.

Due to the fact that coupled relaxation is taken into account rigorously and because the

interaction potential can be interpreted in terms of local ordering imposed by the protein to

the probe, the SRLS model has been shown to give good fittings even in that cases that are

out of the range of validity of the MF approach.

On the minus side, SRLS is less intuitive than MF and requires some considerable mathemat-

ical apparatus. In order to favour the usage of this approach, it is required a simple-to-use

implementation that ”hides” as much as possible the computational details, letting the user

work routinely in a simple way. To this purpose, we developed the C++OPPS (COupled

Protein Probe Smoluchowski) package, which is a program aimed to the interpretation of

NMR data based on the SRLS model.

C++OPPS implementation takes advantage of the potentiality of C++ for writing fast pro-

grams with dynamic allocation of memory. Moreover, thanks to object oriented program-

ming, the classes that build-up the program are easily re-usable and modifiable.

From physico-chemical point of view includes: 1) the possibility of considering full diffusion

tensors for both the protein and the probe, 2) potential expansion till fourth rank terms,

3) the possibility to predict the diffusion tensor of the protein via a hydrodynamic model

reducing the number of free parameters.

From a strictly computational point of view, parallelization was employed where possible.

C++OPPS can run on a local machine (with and without parallelization), or on clusters

with access via a web interface. Finally, C++OPPS has a Graphical User Interface (GUI) to
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control the work flow of a calculation in a simple and friendly way.

4.1 Two-body stochastic models

Magnetic relaxation times T1, T2 and NOE of 15N, 13C and 2H nuclei, depend on dipolar

(15N and 13C) and quadrupolar (2H) interactions, on chemical shift anisotropy and cross-

correlation effects. At present C++OPPS includes as spin probe the 15N-1H bond for which,

following standard Bloch theory [15], it is possible to express the NMR relaxation times

as functions of the spectral densities JD(ω) (dipolar interaction) and JC(ω) (chemical shift

anisotropy):

1

T1
= d2

[
JD (ωH − ωN) + 3JD (−ωN) + 6JD (ωH + ωN)

]
+ c2JC (−ωN)

1

T2
= d2

[
4JD(0) + JD (ωH − ωN) + 3JD (−ωN) + 3JD (ωH) + 6JD (ωH + ωN)

]
+

+
c2

3

[
3JC (−ωN) + 4JC (0)

]

NOE = 1 + d2γH

γN
T1

[
6JD (ωH + ωN)− JD (ωH − ωN)

]
(4.1)

where d = µ0γHγN/4πr3
NH , c =

√
2/15ωN/δCSA, δCSA is the anisotropy of chemical shift

tensor and ωA is the Larmor frequency of nucleus A.

Spectral densities are calculated within the framework of the theoretical model for the dy-

namical evolution of the system. As underlined in the introduction section, an advanced

approach that is actually available is the so called slowly relaxing local structure (SRLS)

model [32, 139]. It consists on a two-body Smoluchowski equation that describes the time

evolution of the density probability of two relaxation processes (at different time scales)

coupled by an interaction potential. In the application of this model to the description of

protein dynamics, the two relaxing processes are interpreted as the slow global tumbling of

the whole protein and the relatively fast local motion of the spin probe, the local motion of

the 15N-1H bond in our case. Both the processes are described as rigid rotators the motion

of which is coupled by a potential correlating their relaxation and that is interpreted as the

local ordering that the molecule imposes to the probe.

In this Chapter we give a summary overview on how the SRLS model is applied to the

interpretation of NMR data. Although the implementing code is written so that the user
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Figure 4-1: Definition of frames and Euler angles in the SRLS model applied to NMR.

does not need to be concerned with technical details, it is of fundamental importance to

understand the physical interpretation of the system in order to fully comprehend the input

data to pass to the program and to provide a sensible interpretation. Physical data can be

classified in dissipative (diffusion tensors) and structural (Euler angles, potential coefficients)

parameters. Figure 4-1 shows a schematic picture of the model. It is necessary to introduce

a number of reference frames, taking Figure 4-1 as reference:

- LF is the fixed inertial laboratory frame;

- M1F is the protein fixed frame where the diffusion tensor of the protein, M1D1, is

diagonal;

- M2F is the protein fixed frame where the diffusion tensor of the probe, M2D2, is diag-

onal;

- VF is the protein fixed frame having the z-axis aligned with the director of the orienting

potential;

- OF is the probe fixed frame the z-axis of which tends to be aligned to the director of

the potential;

- DF is the probe fixed frame where the dipolar interaction is diagonal;
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- CF is the probe fixed frame where the chemical shift tensor is diagonal.

To complete the picture, we need to define the set of Euler angles that transform one frame

to the other:

- ΩL transform from LF to VF, while ΩLO transform from LF to OF;

- Ω transform from VF to OF;

- ΩV transform from M1F to VF;

- ΩO transform from M2F to OF;

- ΩD transform from OF to DF, while ΩOC transform from OF to DF;

- ΩC transform from CF to DF.

The system dynamics is fully described by two independent sets of stochastic Euler angles

and in particular our choice is for the set of Euler angles ΩL, giving the orientation of the

protein respectively to the laboratory frame, and Ω, which represent the relative orientation

of the probe and the protein. Using this set of stochastic variables, X = (Ω,ΩL), the

diffusion operator describing the time evolution of the density probability of the system is

Γ̂ (X) = OĴ
†
(Ω) OD2Peq (X) OĴ (Ω) P−1

eq (X) +

+
[
V Ĵ (Ω)− V Ĵ (ΩL)

]† V D1Peq (X)
[
V Ĵ (Ω)− V Ĵ (ΩL)

]
P−1

eq (X) (4.2)

where OD2 is the diffusion tensor of the probe in OF, V D1 is the diffusion tensor of the

protein in VF and the equilibrium distribution, Peq (X) is given by

Peq (X) = N exp [−V (Ω,ΩL) /kBT ] (4.3)

with kB the Boltzmann constant and T the absolute temperature.

We shall assume that the protein is immersed in an isotropic medium, so the equilibrium

distribution is independent on ΩL and the total potential is only the interaction potential

between the two processes for which we take the following expansion over Wigner matrices:

− V (Ω) /kBT = c2
0D2

0 0 (Ω) + c2
2

[
D2

0−2 (Ω) +D2
0 2 (Ω)

]
+ c4

0D4
0 0 (Ω) +

+c4
2

[
D4

0−2 (Ω) +D4
0 2 (Ω)

]
+ c4

4

[
D4

0−4 (Ω) +D4
0 4 (Ω)

]
(4.4)

135



Chapter 4. Nuclear Magnetic Resonance

Due to the fact that this is a pure rotational problem, observables are expressed as spectral

densities, i.e. Fourier - Laplace transforms of correlation functions of Wigner functions of

the absolute probe Euler angles, ΩLO = Ω + ΩL

jk,k′ (ω) = 〈Dj
m k (ΩLO) Peq (ΩLO) |

(
iω − Γ̂

)−1
|Dj′

m′ k′ (ΩLO) Peq (ΩLO)〉 (4.5)

Considering the symmetry of the magnetic interactions (dipolar and chemical shift aniso-

tropy) contributing to the spin Hamiltonian of the system for 15N-1H probe, only physical

observables with j = j′ = 2 and m = m′ = 0 have to be considered.

From these spectral densities it is possible to calculate the spectral densities for every mag-

netic interaction, µ (dipolar, CSA), as

Jµ (ω) =
2∑

k,k′=−2

[
D2 ∗

k 0 (Ωµ)D2
k′ 0 (Ωµ)

]
jk,k′ (ω) (4.6)

being Ωµ the set of Euler of angles transforming from OF to the frame where the µ-th

magnetic tensor is diagonal.

Calculation of spectral densities jk,k′ (ω) is achieved by spanning the diffusive operator over

a proper basis set. In such a way one moves the problem of calculating integrals in eq. (4.5)

to a classical linear algebra problem. The basis onto which the operator is spanned is given

by the direct product |Λ〉 = |λ1〉 ⊗ |λ2〉 = |L1M1K1〉 ⊗ |L2M2K2〉, where

|L1M1K1〉 =

√
(2L1 + 1)

8π2
DL1

M1 K1
(ΩL) (4.7)

|L2M2K2〉 =

√
(2L2 + 1)

8π2
DL2

M2 K2
(Ω) (4.8)

This basis is infinite and to practically solve the problem the expansion have to be truncated

at a certain value of the principal numbers L1 and L2. For what concerns the basis expansion

for the protein ({λ1}) the truncation is fixed by the symmetry of the physical observables to

L1 = 2 and M1 = 0. So only one truncation parameter remains, i.e. L2. Given a maximum

value, L2,MAX , the dimension of the basis (in absence of other symmetries) will be

N = 5
L2,MAX∑

i=0

(2i + 1)2 =
5

3
(L2,MAX + 1) (2L2,MAX + 1) (2L2,MAX + 3) (4.9)

It is simpler to work with auto-correlation functions so instead of calculating directly spectral

densities in eq. (4.5) we define the function 2Ck,k′ = D2
0 k+D2

0 k′ and calculate the symmetrised
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spectral densities

jS
k,k′ (ω) = 〈Ck,k′ (ΩLO) Peq (ΩLO) |

(
iω − Γ̂

)−1
|Ck,k′ (ΩLO) Peq (ΩLO)〉 (4.10)

and then obtain the jk,k′ (ω) functions as linear combinations of the symmetrised spectral

densities:

jk,k′ (ω) =
[
2 (1 + δk,k′) jS

k,k′ (ω)− jS
k,k (ω)− jS

k′,k′ (ω)
]
/10 (4.11)

Using the closure relation for the basis |Λ〉, integral in eq. (4.10) can now be re-written in

matrix form as

jS
k,k′ = vt (iω1− Γ)−1 v (4.12)

where

(Γ)i,j = 〈Λi|Γ̂|Λj〉 (4.13)

(v)i = 〈Λi|Ck,k′ (ΩLO) Peq (ΩLO)〉 (4.14)

Details on evaluation of equations 4.13 and 4.14 are reported in appendix G.

Because of the high dimensions of the basis we employ the Lanczos tridiagonalization [20, 106]

an iterative algorithm that creates, at every step n, a tridiagonal symmetric matrix T n, which

is an approximation of the matrix associated to the diffusive operator. The transformation

between the two matrices is achieved via the orthonormal matrix Qn:

T n = Qt
nΓQn (4.15)

so at a given iteration step n, the approximant jS
k,k′,n (ω) to jS

k,k′ (ω) is given by

jS
k,k′,n (ω) =

(
Qt

nv
)t

(iω1n + T n)−1
(
Qt

nv
)

(4.16)

and by making use of the orthonormality of Qn it is possible to see that the last equation

reduces to

jS
k,k′,n (ω) = (iω1n + T n)−1

1,1 (4.17)
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i.e. the n-th approximant to the symmetrised spectral density is the (1,1) element of the

inverse of the matrix (iω1n + T n). Finally, it can be shown that jS
k,k′,n (ω) can be expressed

as a continued fraction

jS
k,k′,n (ω) =

1

α1 − iω − β2
1

α2 − iω − β2
2

α3 − iω − · · ·

(4.18)

where α is the n-dimensional vector containing the diagonal of T n and β is the (n − 1)-

dimensional vector containing the sub-diagonal of the tridiagonal matrix.

Just to summarize, the whole procedure that is implemented in C++OPPS is divided in the

following steps:

1) build the matrix associated to the diffusive operator Γ, eq. (4.13);

2) build the starting vector v eq. (4.14);

3) perform Lanczos tridiagonalization to calculate symmetrised spectral densities jS
k,k′ (ω),

eq. (4.5);

4) build the spectral densities jk,k′ (ω) as linear combination of the symmetrised ones, eq.

(4.11);

5) build the spectral densities of magnetic interactions Jµ (ω), eq. (4.6);

6) calculate T1, T2 and NOE relaxation times as linear combinations of Jµ (ω) functions,

eq. (4.1).

4.2 C++OPPS software

C++OPPS is a modular software, a package of programs each having a particular specific

task in the work flow of a simulation. The main division is between core programs, written

in C/C++, which are aimed to perform the heavy computations, and the graphical user

interface (GUI) that is the front-end program that interprets user’s decisions and calls the

right core programs. A pictorial view of the organization of C++OPPS is given in Figure 4-2.

First, a call to the Babel program [108] is required in order to translate the input geometry,
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Figure 4-2: Structure of the C++OPPS package. Red arrows represent output, green arrows
input and black arrows represent calls to core programs.

given in the usual formats z-matrix (ZMT) or protein data bank (PDB), into Cartesian

coordinates and to extract the matrix describing the connectivity among atoms. Figure 4-2

shows (light blue rectangles) that the user is guided in performing the simulation, following

a number of steps aimed to the preparation of the whole input informations needed, which

will then automatically merged by the interface before calling the last step core program,

i.e. the ”copps” program that calculates the NMR relaxation data.

The GUI has been written in Java due to the potentialities of such a language in building

graphical interfaces and because i) Java applications are interpreted, not binary, code so

they work on every operating system without the need of recompilation and ii) with just a

minimal effort it is possible to transform the application into an applet that runs on web

browsers.

The core program having the highest requirements of computational resources is ”copps”

because it has to handle the matrix associated to the diffusive operator. Due to the exponen-

tial growth of basis dimensions with the truncation parameter, see eq. (4.9), with relatively

small values of L2,MAX the dimensions reach values of 104− 105. Treating such big matrices

requires a substantive amount of RAM memory in order to store the matrix elements and a

high calculation time for linear algebra operations. To face these problems, the core program
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Figure 4-3: Snapshots of C++OPPS graphical user interface: (A) Modelling Panel, (B) Phys-
ical Data Panel, (C) Experimental Data Panel and (D) Simulation Panel.

”copps” has been parallelized under the MPI paradigm, obtaining a code that scales with

any number of processors and that can be run on calculation clusters.

In the subsections below a brief description of how C++OPPS GUI works, some details on

the parallelization and an overview of the web version of the code will be given.

4.2.1 GUI organization

The graphical user interface of C++OPPS is simply a tagged panel where every panel rep-

resents a logical step in the work flow that leads from the definition of the system to the

achievement of the NMR data. In every panel users are asked to introduce some data and

/ or provide informations specific for that panel. The complexity of the problem does not

permit to create a ”single button” program because the work flow of the simulation is not
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completely predetermined (e.g. a user can perform a single calculation or a fitting) and a

number of decisions have to be taken in the ”nodes” of the simulation flow. This fact also

implies that the user needs to have an overview, even if not detailed, of the chemical-physical

interpretation of the system. Also, this summary knowledge on the theoretical methodology

is in general useful in order to give the right interpretation and importance to the numbers

returned by the program.

As depicted in Figure 4-2, there are a total of four panels, representing the critical nodes

asking to the user to intervene, which are briefly described in what follows.

Initialization of a job - Modelling Panel

Initialization of a simulation and protein modelling are the two tasks handled by the first

panel, the Modelling Panel (MP) shown in Figure 4-3A.

C++OPPS works by projects, i.e. every new calculation must be given a name that will be

used as a prefix in the names of all the files that will be produced during the simulation. In

this first panel a user has the possibility to start a new project or to load an existing one.

Here it is possible to specify the geometry of the protein via a ZMT or a PDB file.

C++OPPS integrates the ”diffusion” core program for the evaluation of diffusion tensors,

which is part of the DITE (DIffusion TEnsor) [34] package described in Section 2.2. If the

geometry of the protein has been loaded, its diffusion tensor can be evaluated directly in the

Modelling Panel just after the selection of four parameters that are the effective radius of

the atoms, the boundary conditions, the viscosity of the fluid and the absolute temperature.

These parameters are used to build the elementary friction of the atoms that, in turn, is

employed in the calculation of the friction of the molecule. The methodology is based on a

hydrodynamic approach, described in Section 2.1. In C++OPPS the protein diffusion tensor

is calculated assuming the molecule as a rigid body, so the system has only six degrees of

freedom which are the taken as the position of the centre of mass and the three Euler angles

defining the orientation with respect to an inertial frame. For a rigid body the diffusion

tensor is represented by a 6 × 6 matrix containing the translational, rotational and mixed

parts

D =




DTT DTR

DRT DRR



 (4.19)
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Here, we are assuming that the response of the system does not depend on the position of the

centre of mass of the molecule, so it is possible to project the translational part and remain

with only the rotational diffusion tensor, i.e. D = DRR. In particular, the ”diffusion” core

program calculates the diffusion tensor in the frame where the rotational part is diagonal

and then the GUI obtains from the output file the principal values of the rotational part and

copies them in the Physical Data Panel. The calculation of the diffusion tensor of the protein

is optional, but it represents a good opportunity to reduce the number of free parameters, in

case of fitting, also because it has been shown that the methodology has a good predictivity

for molecules of any size [34].

The actual implementation of C++OPPS includes only the SRLS model for the dynamics of

the system, so effectively the modelling of the motion is determined. However, work is being

done for the development of new theoretical models for the dynamics that are going to be

included in the program and users could select which model to employ directly on the MP.

Definition of microscopic data - Physical Data Panel

As can be seen in the theoretical discussion of SRLS, a number of molecular parameters

enter in the definition of the model, i.e. dissipative parameters (diffusion tensors), geometric

properties (Euler angles) and the interaction potential between the protein and the probe.

C++OPPS offers the possibility to perform a single calculation if the parameters are known,

or to perform a Levemberg-Marquardt non-linear least square fitting in order to search for

the set of parameters that better reproduces experimental data. In both cases, a choice of

the values of the parameters is required; in the case of fitting the program needs an initial

guess, i.e. a point where to start searching for the global minimum of the hypersurface in the

phase-space of the parameters. The input of the data is done directly on the GUI through

the Physical Data Panel (PDP), shown in Figure 4-3B. Just to give a complete view, the

full set of parameters that enter in the model are:

- principal values of the diffusion tensor of the protein, M1D1;

- principal values of the diffusion tensor of the probe, M2D2;

- Euler angles ΩV that transform from the frame that diagonalizes the protein diffusion

tensor (M1F) to the protein fixed frame (VF) where the orienting potential is defined;
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- Euler angles ΩO that transform from the frame that diagonalizes the probe diffusion

tensor (M2F) to the probe fixed frame (OF) respect to which the stochastic set of Euler

angles Ω is defined (describing the relative orientation of the two bodies);

- Euler angles ΩD that transform from OF to DF, where the dipolar interaction is

diagonal;

- Euler angles ΩC that transform from DF to CF, where the chemical shift interaction

is diagonal;

- the five coefficients of the coupling potential, c2
0, c2

2, c4
0, c4

2 and c4
4.

Differently from the older version of COPPS, there is no fixed symmetry for the diffusion

tensors, i.e. the three principal values can be all different. However, users have the possibility

to decide to add the constraint Dxx = Dyy so imposing an axial symmetry during the fitting.

It is also possible to fit only a multiplicative coefficient of all the three principal values, i.e.

only the isotropic part of the diffusion tensor is changed during the fitting.

As shown in Figure 4-3B, a check-box is placed near to every physical parameter giving the

possibility to easily choose which parameters have to be fit and which not. In general, the

number of free parameters depends on i) the physical interpretation of the system, e.g. if the

protein - probe interaction is modelled as axial, only the c2
0 coefficient of the potential will

be a free parameter, while the other four coefficients will be fixed to zero; ii) the number

of experimental data available, i.e. it is not possible to fit a number of parameters greater

than the number of experimental points. The second point, together to the problem of

physical iterpretability and consistency (not always assured) of fitted parameters and the

problem of searching a global minimum in a hypersurface that could present also a number

of local minima, are the reasons for which in the last years theoreticians started to move to

a new kind of approach that considers the set-up of multi-scale protocols aimed to collect all

the theoretical / computational methodologies for the evaluation of the microscopic data,

reducing as possible the number of free parameters. This idea has just been applied with

success [56, 58, 59, 111, 113, 114] to the interpretation of electron spin resonance spectroscopy

of a number of different systems, as discussed in Chapter 3. An analogous protocol for the

interpretation of NMR data of proteins is being worked out and is part of the development
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of C++OPPS. However, a little step forward has been done, with respect to the past, in

integrating in C++OPPS the possibility of calculating the diffusion tensor of the protein.

Under the philosophy of ”predicting is better than fitting”, if the diffusion tensor of the

protein is calculated starting from its structure (in the Modelling Panel), the principal values

will automatically set in the PDP and the fit check-boxes will be unchecked. Of course, before

running the simulation, users are free to modify the values and / or decide what to fit: the

behaviour of the GUI is set to follow the idea of reducing to the minimum the number of

fitting parameters, but also to follow user’s wills.

Input of experimental data - Experimental Data Panel

The Experimental Data Panel (EPD) node of the work flow requires the intervention of the

user only if a fitting calculation has been set in the PDP, i.e. at least one fitting check-box

has been checked.

Usually NMR data is collected at different spectrometer frequencies and for a certain number

of residues of the protein, depending on the possibility of interpretation of the 2D/3D-NMR

spectra.

As can be seen in Figure 4-3C, experimental data is introduced directly on the GUI by

filling a table for each residue registered. Note that in the actual implementation, fitting is

conducted on the residues separately. Work is in progress to introduce in the algorithm the

possibility of running a global multi-residue fitting.

For each residue, it is possible to introduce data collected at up to three different frequencies

and, together with the T1, T2 and NOE relaxation times, users possibly have to introduce

the associated experimental errors, respectively ∆T1 , ∆T2 and ∆NOE, which will be used as

weighting factors in determining the chi-squared parameter during the fitting procedure, i.e.:

χ2 =
∑

i





(
T exp

1 (ωi)− T theo
1 (ωi)

)2

∆2
T1

(ωi)
+

(
T exp

2 (ωi)− T theo
2 (ωi)

)2

∆2
T2

(ωi)
+

+

(
NOEexp(ωi)−NOEtheo(ωi)

)2

∆2
NOE(ωi)



 (4.20)

indicating the goodness of the fitting and in particular nearer is χ2 to zero, more the theo-

retical NMR relaxation times resemble the experimental ones within the experimental error.
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Launching the simulation - Simulation Panel

In the Simulation Panel (SP), a snapshot of which is given in Figure 4-3D, users (optionally)

set some numerical parameters and run the simulation. The numerical parameters are:

- L2,MAX , see eq. (4.9), which is the maximum rank of the Wigner matrix at which stop

the basis expansion for the probe (the expansion for the rotational space of the protein

is fixed by the physical properties of the observables);

- the maximum number of iterations in the Lanczos tridiagonalization;

- the number of processors in a parallel calculation.

The first two parameters are defaulted to zero in the GUI, indicating to C++OPPS that their

values have to be estimated at runtime, basing on the other input. For both the truncation

parameter and the number of Lanczos steps, the selection criteria inside the code are written

in order to over-estimate the needed values and so to ensure convergence of the calculation.

However, it is always a better practice to take control on these two numbers, especially of

the L2,MAX parameter respect to which the convergence of the calculation is more sensible.

As can be seen in Figure 4-3D, it is also possible to choose, on the right part of the panel, if

the program has to calculate the correlation functions and spectral densities. In particular

C++OPPS will return the symmetrised correlation functions and spectral densities, i.e. those

for the Ck,k′ (ΩLO) functions, and the spectral densities Jµ (ω), where µ indicates dipolar

or chemical shift magnetic interactions. Calculation of such functions is based on solving

the eigensystem for the T n tridiagonal matrix via the standard TQLI algorithm [217] that

returns the eigenvalues, λi, and their weights, wi, so that the correlation functions and the

spectral densities are calculated as

c(t) =
n∑

i=0

wie
−λit (4.21)

j(ω) =
n∑

i=0

wi
1/λi

1 + ω2/λ2
i

(4.22)

The text area in the lower part of the panel reports the job progress and, at the end of

calculation, the output of the job is also saved on a file reporting the meaningful physical
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Figure 4-4: C++OPPS internal plotting tool for the inspection of the correlation functions
and spectral densities.

results, i.e. the values of the fitted parameters, the theoretical T1, T2 and NOE data and

the order parameters

S2
0 = 〈D2

0 0 (Ω)〉 (4.23)

S2
2 = 〈

[
D2

0−2 (Ω) +D2
0 2 (Ω)

]
〉 (4.24)

where 〈· · ·〉 indicates the average over the Ω space.

Correlation functions and spectral densities are produced in a different file and can be plotted

directly from the GUI, as shows Figure 4-4, and also saved in PNG graphic format.

4.2.2 Parallelization

As it was outlined above, even small values of the truncation parameter L2,MAX lead to

high dimensions of the basis set and technical problems arise when the dimensions reach

105 because of the need of a sufficient quantity of RAM memory to store the matrix and

because of the exponential increasing of computation time required to complete the simu-

lation, especially for fitting procedures with many free parameters. To face these problems,

the most computational heavy parts of the algorithm have been parallelized under the MPI

(message passing interface) paradigm, and in particular C++OPPS belongs to the family of
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the so called ”single program multi processor” (SPMP) programs, i.e. every processor, to

which a rank is assigned at runtime, executes the same program but performs different tasks

basing on the directives present into the code for its specific rank. Implementation has been

carried out so that C++OPPS scales with any number of processors: the work is dynamically

distributed among the processors, whichever is their number.

Three are the parts that represent the bottle-necks of the calculation and their time of execu-

tion sensibly increases with the dimensions of the basis, so that they require parallelization:

the construction of the starting vector, the construction of the matrix associated to the dif-

fusive operator and the matrix vector product inside the Lanczos algorithm.

The construction of the starting vector requires the evaluation of a number of numerical

integrals, which are the projections of the physical observables Ck,k′ (ΩLO) over the basis

functions, eq. (4.14). These numerical integrations involve also the evaluation of modified

Bessel functions of the first kind, so that they could require a substantial computational

effort. If N is the dimension of the basis and NC the number of Ck,k′ functions that have to

be projected (by using symmetry arguments NC is reduced from 25 to a maximum of 9), the

total number of numerical integrations to perform are N ×NC . Given the number of proces-

sors, NP , the basis functions are equally distributed so that every processor has to calculate

only a portion of the numerical integrals, i.e. for every physical observable the number of

projections is N ′ = N/NP . Note that if NP is not a divisor of N , in the code the reminder of

the division, R, will be distributed so that R processors will calculate N ′ + 1 integrals and

the other NP −R processors will handle N ′ integrations. This is an embarrassingly parallel

piece of code, i.e. all the processors work independently. Only at the end every processor

scatters its piece of starting vector to the other processors so that all processors have the

complete starting vector.

The construction of the matrix is parallelized for two important reasons. The first, very in-

tuitive motivation is to save time, even if in this kind of problems construction of the matrix

is quite optimizable and also in a sequential run the building time is not so restrictive. The

second and, maybe, more important reason is a memory issue: given the dimension of the

basis N , the sparsity of the matrix S and considering that the matrix is symmetric, the

number of elements to store are Ne = S × N(N + 1)/2 and the total memory required if

numbers are double precision is 8×Ne bytes. As an example, considering L2,MAX = 25 (case
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of very slow motion and / or high interacting potential), one obtains N = 117130 and, if

S = 0.1 (only 10% of the elements are different from zero) the memory required is about

5.5 GBytes, which in general is too much for a dekstop/laptop computer. Parallelization

solves the problems with memory because, under the MPI paradigm, the total memory at

disposal is the sum of the memory of each processor. In C++OPPS, R processors will build a

(N ′+1)×N rectangle of the matrix, while NP−R processors will build a N ′×N rectangle of

the matrix. Due to symmetry, only half of the out of diagonal elements have to be calculated

and to balance the computational weight, matrix is built following this standard simple rule:

build element Γi,j if i + j is even or Γj,i if i + j is odd. Also this part is embarrassingly par-

allel: no communication between processors is required because calculation of every matrix

element is independent on the others and each processor keeps all data required to build its

part of the matrix.

Finally, also the matrix vector product in the Lanczos routine is parallelized. When Lanczos

tridiagonalization is called, every processor is keeping in memory a rectangular slice of the

matrix and the complete starting vector (for each Ck,k′ function). The iteration step of the

Lanczos algorithm contains the multiplication of the matrix with a vector (updated ad every

cycle) and a number of linear scaling operations. Our parallelized version of the Lanczos

routine implements the parallel matrix vector multiplication followed by an all-to-all scat-

tering so that at the end all processors have in memory the result of the multiplication and,

independently, proceed the Lanczos iteration. One single step of the Lanczos algorithm is

embarrassingly parallel, but the complete tridiagonalization involves data exchange at every

iteration step, so globally the Lanczos algorithm is not embarrassingly parallel.

An analysis of the efficiency of the parallelization is reported in Appendix A where it is

shown that the building of the matrix is nearly linear scaling, while the Lanczos routine has

the worst scalability. Globally the parallelization of C++OPPS ensures an effective gain in

computational time within ten processors. An improvement of parallelization efficiency is

part of the further work scheduled for the next developments of C++OPPS.

4.2.3 Web implementation

In order to take advantage of the parallelization of C++OPPS, we also developed a cluster

version of the program. In this part of the work it came very useful the fact that the GUI

148



4.3. Case study: AKeco protein

has been written in Java. The passage from an application to an applet was possible with

a minimal programming effort. In this way, users that want to run the cluster version work

on an interface which has the same appearance of that of the local version and do not have

to be concerned about remote computer access because the applet is loaded simply by using

any internet browser (Internet Explorer, Firefox, Safari, etc.) on any operating system.

The functionality of local and web interfaces is the same from the point of view of the user.

The GUI automatically, and in a completely transparent way, works differently in the case

of web or local execution. There are only a couple of small differences that are i) a project is

created on the server so that, when the simulation is finished, the files have to be downloaded

from the server using a dedicated button present only in the web version of the interface;

ii) each calculation must be submitted to the PBS (portable batch system) queue manager,

but also this operation is handled directly from the GUI: users simply have to indicate the

number of processors that they want to use before to launch the simulation.

4.3 Case study: AKeco protein

A set of residues of the E. Coli Adenylate Kinase (AKeco) protein has been selected in order

to show and test the application of the methodology and of the program to the simulation

of real experimental data. In Figure 4-5 are highlighted the chosen residues with different

colours. The colour scheme is: yellow for the AMPbd domain, red for the CORE domain,

blue for the LID domain and green for the small P-loop. We followed the standard definition

in dividing the protein in that domains [214]. For the experimental values see the supporting

information of ref. [214].

The diffusion tensor of the protein, in water, was evaluated with slip boundary conditions,

effective radius of the spheres of 2.0 Å, room temperature and viscosity of 0.9 cP. With this

parameters we obtained 1DXX = 1.11 · 107 Hz, 1DY Y = 1.20 · 107 Hz and 1DZZ = 1.65 · 107

Hz. Because of near axiality of the tensor, in the calculations we assumed the average values

1D
XX = 1DY Y = 1.15 · 107 Hz.

We imposed an axial orienting potential coupling the two bodies. As underlined above, the

first body describes the motion of the protein, while we interpret the second body as the

collective local motions in the neighbours of the magnetic probe, the 15N-1H bond. In this
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Figure 4-5: Pictorial overview of the distribution of the residues chosen for the calculations.
In yellow are the aminoacids belonging to the AMPbd domain, in red those of the CORE
domain, in blue the residues of the LID domain and in green those belonging to the small
P-loop.

picture we assume, for the second body, a diffusion tensor which is diagonal in a frame having

the Z-axis parallel to the 15N-1H bond and the X-axis perpendicular to the peptidic bond

plane. Moreover, we consider the tensor to be axially symmetric in such frame. To interpret

data we make the further assumption that the coupling potential tends to align the Z-axis

of the second body (i.e. of the OF frame), parallel to the direction containing the 15N=1H

bond in the equilibrium geometry of the protein. This is reproduced by defining a frame

VF having the Z-axis parallel to the 15N-1H bond, which in general is tilted from the M1F,

where the diffusion tensor of the protein is diagonal. So, for every residue, we extracted from

the geometry of the protein the set of Euler angles that transform from M1F to VF, Ω1.

We assume that the magnetic tensors are diagonal in the same frame, i.e. ΩC = (0.0, 0.0, 0.0)

deg and the constant tilt with respect to the OF ΩD = (0.0, 18.0, 90.0) deg, following ref.

[215].

A set of four parameters were considered free and obtained via fitting: the parallel and

perpendicular components of the diffusion tensor of the second body, OD⊥ and OD‖, the

strength of the axial potential, c2
0, and a parameter called rate of exchange, Rex, which
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Domain Residue OD⊥ / 107 Hz OD‖ / 1010 Hz Rex / Hz c20 S
AMPbd 32 1.69 10.5 2.95 2.64 0.55

33 2.04 13.0 1.51 3.65 0.68
36 1.55 12.7 1.38 2.82 0.58
41 2.56 5.42 0.277 4.81 0.77
42 2.54 4.23 0.873 4.80 0.77
46 2.09 7.02 1.16 4.32 0.74
48 1.38 7.27 1.30 2.50 0.53
50 2.23 6.84 1.09 4.69 0.76
52 2.12 7.09 0.118 4.34 0.74
53 1.93 5.34 0.882 4.06 0.72
55 2.36 6.55 1.01 5.13 0.78
56 2.25 6.29 0.427 4.40 0.74
60 2.29 5.27 0.196 5.01 0.78

CORE 2 1.29 17.7 1.60 1.77 0.39
3 1.40 35.1 1.24 2.24 0.49
16 1.83 11.4 4.21 3.40 0.65
77 1.32 20.9 1.75 2.06 0.45
86 1.69 15.6 2.38 2.70 0.56
97 1.72 19.5 0.54 4.00 0.71
107 1.33 28.1 2.14 1.83 0.41
117 1.42 31.5 2.36 2.37 0.51
170 1.63 8.95 0.898 3.47 0.66
191 2.20 5.21 0.000 4.27 0.73
210 1.35 25.4 1.51 3.15 0.62

LID 122 1.70 25.4 6.05 4.16 0.72
123 1.70 12.4 2.90 3.58 0.67
126 1.84 15.4 0.000 4.28 0.73
132 2.58 6.59 0.000 5.38 0.80
136 2.05 6.87 1.54 5.06 0.78
137 2.25 6.77 0.000 5.73 0.81
145 1.64 9.07 1.42 3.53 0.67
151 1.35 14.7 1.20 3.09 0.62
158 2.30 3.96 1.49 4.37 0.74
159 1.79 8.82 0.458 4.28 0.73

P-loop 8 1.84 15.4 0.161 4.33 0.74
11 1.46 13.5 2.30 2.96 0.60

Table 4.1: Values of the model parameters obtained from fitting.

gives a correction due to a very slow change in configuration of the protein [215]. Table 1

summarizes the values obtained for the 37 residues considered.

Figures 4-6 - 4-8 show the experimental and theoretical values of the T1, T2 and NOE at

600.0 MHz, while 800.0 MHz data are reported in Figures 4-9 - 4-11. It can be seen that

the overall agreement is good: all the relative errors between theoretical and experimental

values are within 5%.

Figure 4-12 plots the values of the order parameters obtained with the standard formula

S = 〈D2
0 0 (ΩO) Peq (ΩO)〉 (4.25)
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4.4 Conclusions

Extensive usage of NMR analysis to the investigation of microscopic dynamics is very promis-

ing and many experimental measures are available to advanced for interpretative tools. The

SRLS model is a phenomenological approach to the problem which is able to give a good

physical interpretation in terms of both dynamical and also structural (through the inter-

action potential) properties. But it is relatively difficult to handle because of the complex

mathematical details. C++OPPS provides a framework for applying a complex theoretical

methodology to the interpretation of NMR data and it is principally targeted to experimen-

tal scientists as a software of routinary usage in the analysis of experimental measurements.

Figure 4-6: Experimental (black rhombi) and theoretical (coloured circles) T1 values at 600.0
MHz. The values are grouped by domains following the colour scheme described in text.
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Figure 4-7: Experimental (black rhombi) and theoretical (coloured circles) T2 values at 600.0
MHz. The values are grouped by domains following the colour scheme described in text.

Figure 4-8: Experimental (black rhombi) and theoretical (coloured circles) NOE values at
600.0 MHz. The values are grouped by domains following the colour scheme described in
text.
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Figure 4-9: Experimental (black rhombi) and theoretical (coloured circles) T1 values at 800.0
MHz. The values are grouped by domains following the colour scheme described in text.

Figure 4-10: Experimental (black rhombi) and theoretical (coloured circles) T2 values at
800.0 MHz. The values are grouped by domains following the colour scheme described in
text.
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Figure 4-11: Experimental (black rhombi) and theoretical (coloured circles) NOE values at
800.0 MHz. The values are grouped by domains following the colour scheme described in
text.

Figure 4-12: Order parameters obtained from fitting. The values are grouped by domains
following the colour scheme described in text.
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Conclusions and final remarks

The three years of this doctoral work were dedicated to the development of algorithms and

their implementation in the form of integrated software packages (E-SpiReS, C++OPPS,

DITE) providing an organized toolbox for gathering information on molecular dynamics from

magnetic resonance spectroscopies in solution. The general purpose of the algorithms and

the modular structure of the implemented codes, make possible to upgrade the description

to new models for molecular dynamics, particularly in the case of complex dynamics in

biomolecules.

This research activity shows that a multi-scale physics approach to the interpretation of

structural and dynamical properties of complex molecular systems can be very profitable.

The main philosophy is, roughly, that it is possible to select a relevant subset of degrees of

freedom, from all the molecular details. The ”not-relevant” details can be projected and / or

treated in an approximated way. This is done for both space and time scales. For example,

clearly different spatial scales are used to calculate magnetic tensors and diffusive properties.

Structural magnetic properties need the employment of atomistic modelling of the probe and

first principles quantum mechanical calculations because electronic structure is required. In

the case of dissipative properties one introduces a mesoscopic approach, at a coarse-grained

level (e.g. hydrogen atoms are neglected in the calculation). In the hydrodynamic approach

the molecular shape is the fundamental parameter; the neglected details are ”hidden” into

the shape of the molecule.

More pointedly, a ”time coarse-graining” approach has been always employed. This is the key

point of most modellistic approaches, and therefore at the core of this work. Starting from
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the hypothesis that a subset of dynamical processes exists having a relevant effect on a given

physical observable, one can use ”simple” models to describe complex systems, with good or

at least satisfactory results. As an example, the study conducted on the methyl methacrylate

polymerization (see Section 3.3.5) demonstrates that a simple dynamical model with only

one stochastic coordinate is able to give qualitative and quantitative interpretation of a very

complex system such as a polymerizing solution at least for some properties. Moreover, an

important fact pointed out by the calculations of cw-ESR spectra of tempo-palmitate in

5-cyanobiphenyl (see Section 3.3.2) is that it is crucial to include all the dynamical details

relevant to the experimental time-window in order to reproduce the physical observable.

This is clear in Figure 3-25 that shows the importance of using a more detailed description

(flexible body) instead of the simple rigid rotator to model the dynamics1. This has an

important implication on the study of complex molecules: a self-consistent methodology is

required in order to guide the recognition and selection of relevant dynamics. In all the

cases presented in Chapter 3 we treated substantially simple molecules, for which some

chemical insight and the support of QM calculations is sufficient to reach the objective.

A future and more ambitious target is the application of stochastic modelling to complex

biomolecules, such as proteins, that is to molecules presenting a high number of degrees

of freedom leading to a very complex dynamics, characterized by a widespread set of time

scales, from fs to µs. As discussed in Chapter 4, where the problem of using NMR to probe

proteins dynamics was introduced, an effective and rational methodology to extract relevant

dynamics in large biomolecules is still missing. This represents the challenge to be tackled in

the next future, which requires not only new computational developments (i.e. ”brute force”

approaches, for instance based on massive MD simulations), but also new theoretical methods

ad hoc developed for large systems, which allow to take into account internal mobility in a

cost-effective albeit comprehensive way. The main problems that have to be faced can be

summarized as follows:

1. the introduction and implementation of a self-consistent methodology apt to identify

and define the relevant motions, e.g. based on the analysis of molecular dynamics

trajectories;

1To quote Einstein: ”Everything should be made as simple as possible, but not simpler.”
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2. the development of a theoretical framework to describe the relevant dynamics, for-

malised in terms of stochastic operators;

3. the introduction of a numerical approach, based on time scales separation, that would

have to consider an approximate solution of the dynamical problem due to the general

high number of relaxation processes that will enter in the model.

These three major goals represent a possible way to set up a protocol, within a clearly

stated framework, aimed at gathering information on molecular mobility from ESR and

NMR observables, in large biomolecules.
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Appendix A

Sample calculation with DITE

We present in this appendix a tutorial of the DITE program using the case of Calmodulin

discussed in Section 2.3.2.

Step 1 - load the PDB file with the geometry (1CFC.pdb file from Protein Data Bank

website)

Figure A-1: Use the left mouse button to rotate the molecule, the right mouse button to
translate and the middle button to zoom. If middle button is not available, zoom in/out can
be done with keys Z/X.
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Step 2 - set the number of torsional angles

Figure A-2: Move the ”Number of torsions” bar to the value of 2.

Step 3 - define first torsional angle

Figure A-3: Select Torsion 1 in the menu of torsions and click the Choose atoms button.
Then select atoms 1174 and 1173 directly on the molecule or by inserting them in the text
areas.
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Step 4 - define second torsional angle

Figure A-4: Select Torsion 2 in the menu of torsions and click the Choose atoms button.
Then select atoms 1175 and 1174 directly on the molecule or by inserting them in the text
areas.

Step 5 - build fragments

Figure A-5: With this operation DITE is informed on the topology of the molecule and assigns
a colour code to atoms in order to visibly identify the fragments in which the molecule has
been partitioned.
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Step 6 - set physical data

Figure A-6: In the Parameters panel one can choose the effective radius of spheres, (Re),
the boundary conditions (C), the viscosity of the fluid (η) and the temperature (T ). All
these parameters are required in the definition of the translational friction of one sphere
given by the Stokes relation Ξ = πCReη. The temperature is required in Einstein’s relation
D = kBT/Ξ.

Step 7 - set the discretization and sweep for the torsional angles and run simulation

Figure A-7: Here we choose 7 points in the range ±30◦ for a total of 49 configurations. Once
the discretization grid is set, the user can run the simulation with the Run diffusion tensor
calculation button.
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Step 8 - analyse results

Figure A-8: The ”projectName diffusion” files contain informations on both friction and
diffusion tensors.

164



Appendix B

Evaluation of dipolar interaction

tensor

Let us consider a point in spherical coordinates r = (r, θ,ϕ) If Ψ′(r) and Ψ′′(r) are the two

singly occupied molecular orbitals (SOMO) where the two unparied electrons are delocalized,

the dipolar tensor is calculated as

D = 〈Ψ′(r1)Ψ
′′(r2)−Ψ′(r2)Ψ

′′(r1) |D̂|Ψ′(r1)Ψ
′′(r2)−Ψ′(r2)Ψ

′′(r1)〉 (B.1)

where the tensor operator D̂ has Cartesian components

D̂α,β =
r2
1,2δα,β − 3(r1, 2)α(r1, 2)β

r5
1,2

(B.2)

with r1,2 = |r1,2| = |r2−r1|, α, β = X, Y, Z and (r)α representing the α Cartesian component

of vector r.

The two SOMO orbitals are given as linear combinations of hydrogenic orbitals φi
j(r), with

i ranging over the number of atoms that contribute to the orbital and j ranging on the
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number of hydrogenic orbitals of i-th atom giving a contribution to the expansion. This

means that the calculation of integral B.1 is a linear combination of integrals over four

hydrogenic orbitals:

〈φA
NA,LA,MA

(r1 − RA)φB
NB ,LB ,MB

(r2 − RB) |D̂|φC
NC ,LC ,MC

(r1 − RC)φD
ND,LD,MD

(r2 − RD)〉 (B.3)

where φi
NI ,LI ,MI

(rj −Ri) is a orbital centred on the i-th atom, occupied by the j-th electron

and N, L,M are the three quantum numbers. In the last expression we considered the general

case in which all the four atoms are translated from the origin of the reference frame. To

be more general, we need to consider also the orientation of orbitals others than s orbitals.

So, in the general case that the φN,L,M orbital is centred on a frame translated of a vector

R = (R, Θ, Φ) from the reference frame, and with a relative orientation Ω = (α, β, γ), it is

possible to apply the transformation:

φN,L,M(r −R) =
L∑

M ′=−L

DL
M ′ M(Ω)φN,L,M ′(r −R) (B.4)

So, in any case, we need to calculate integrals like that given in eq. B.3 because the rotation

introduces only corrections to the coefficients of the expansion.

Integration in Cartesian coordinates is computationally heavy and difficult, because it re-

quires an integration over six coordinates. Is is more convenient to express both the orbitals

and the operator in spherical coordinates because i) it is possible to separate the radial part

from the angular part and ii) it is easier to make symmetry considerations.

B.1 Expansion of hydrogenic orbitals

In a reference frame the origin of which is the centre of the orbital, the expression of the

latter is, in general

φN,M,L(r) = RN,L(r)YL,M(θ, ϕ) (B.5)

with RN,L the radial part and YL,M the spherical harmonic describing the angular part.

If the orbital is translated of a vector R = (R, Θ, Φ), than it is possible to write

φN,L,M(r −R) =
∞∑

l=0

l∑

m=−l

ρL,M
l,m (r,R)Yl,m(θ, ϕ) (B.6)

166



Appendix B. Evaluation of dipolar interaction tensor

For a Slater type orbital (STO) we have [218]

φN,L,M(r −R) =
∞∑

l=0

(l+L)∑

λ=|l−L|
νl,λ,L(r, R)

l∑

m=−l

ςλ,L,M,l,mYλ,M−m(Θ, Φ)Yl,m(θ, ϕ) (B.7)

where

ςλ,L,M,l,m =
∫

dωY ∗
λ,M−m(θ, ϕ)Y ∗

l,m(θ, ϕ)YL,M(θ, ϕ) (B.8)

νλ,l,L(r, R) =
2π(−)l

R

(l+λ+L)/2∑

s=0

(l+λ+L)/2−s∑

t=0

Ξl,λ,L,s,t

(
r

R

)2t−l−1

×

×
∫ r+R

|r−R|
dr′

(
r

R

)2s−L+1

RN,L(r′) (B.9)

Ξl,λ,L,s,t = [(2s)!!(2s− 2L− 1)!!(2t)!!(2t− 2l − 1)!! ×

×(L + l + λ− 2s− 2t)!!(L + l − λ− 2s− 2t− 1)!!]−1 (B.10)

In the particular case of a 2pZ = φ2,1,0(r) = α5/2
√

π re−αr cos (θ) orbital, with α = Zeff/2a0,

one has

φ2,1,0(r −R) =
α5/2

√
π

∞∑

l=0

(l+1)∑

λ=|l−1|
νl,λ,1(r, R)

λ∑

m=−λ

ςλ,1,0,l,mYl,−m(Θ, Φ)Yl,m(θ, ϕ) (B.11)

with

ςλ,1,0,l,m =
∫

dωY ∗
λ,−m(θ, ϕ)Y ∗

l,m(θ, ϕ)Y1,0(θ, ϕ)

=
∫

dωYλ,m(θ, ϕ)Yl,−m(θ, ϕ)Y1,0(θ, ϕ)

=

√
3(2λ + 1)(2l + 1)

4π




λ l 1

0 0 0








λ l 1

m −m 0



 (B.12)

To evaluate νl,λ,1(r, R) we need to calculate the integral in equation B.9

∫ r+R

|r−R|
dr′(r′)2s−L+1RN,L(r′) =

∫ r+R

|r−R|
dr′(r′)2s+1e−αr′ (B.13)

This integral can be solved by parts:

∫
drrne−αr = −rn

α
e−αr +

n

α

∫
drrn−1e−αr =

= −rn

α
e−αr − nrn−1

α2
e−αr +

n(n− 1)

α2

∫
drrn−2e−αr =

= −rn

α
e−αr − nrn−1

α2
e−αr − n(n− 1)rn−1

α3
e−αr +
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+
n(n− 1)(n− 2)

α3

∫
drrn−3e−αr = . . . =

= −
n∑

µ=0

1

αµ+1

n!

(n− µ)!
rn−µe−αr (B.14)

So, substitution in eq. B.9 reads

νl,λ,1(r, R) =
2π(−)l+1

R

(l+λ+1)/2∑

s=0

(l+λ+1)/2−s∑

t=0

Ξl,λ,1,s,t

(
r

R2s

)2t−l−1

×

×
s2+1∑

µ=0

1

αµ+1

(s2 + 1)!

(2s + 1− µ)!

[
|r + R|2s+1−µe−α|r+R|+

−|r −R|2s+1−µe−α|r−R|
]

(B.15)

Finally

Ξl,λ,1,s,t = [(2s)!!(2s− 3)!!(2t)!!(2t− 2l − 1)!!×

×(l + λ− 2s− 2t + 1)!!(l − λ− 2s− 2t)!!]−1 (B.16)

B.2 Expression of operator in spherical coordinates

The tensor operator D̂ depends on the relative distance of the two electrons. We write its

spherical components D̂ = D̂(0)⊕D̂(1)⊕D̂(2). Because it is a traceless symmetric tensor, only

the rank 2 component is not zero. Its expression as function of the Cartesian coordinates is

D̂(2,0) =

√
3

2
D̂ZZ =

√
3

2

1

r3
1,2

[

1− 3
(r1,2)2

Z

r2
1,2

]

D̂(2,±1) = ∓
(
D̂XZ ± iD̂Y Z

)
= ± 3

r3
1,2

[
(r1,2)Xr1,2)Z ± i(r1,2)Y r1,2)Z

r2
1,2

]

(B.17)

D̂(2,±2) =
D̂XX − D̂Y Y

2
± iD̂XY = − 3

r3
1,2

[
(r1,2)2

X − (r1,2)2
Y

2r2
1,2

± i
(r1,2)X(r1,2)Y

r2
1,2

]

Given the expression of the components of the vector r1,2 in spherical coordinates, i.e.

(r1,2)X = r1,2 sin (θ1,2) cos (ϕ1,2)

(r1,2)Y = r1,2 sin (θ1,2) sin (ϕ1,2) (B.18)

(r1,2)Z = r1,2 cos (θ1,2)
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we obtain

D̂(2,0) =

√
3

2

1

r3
1,2

[
1− 3 cos2 (θ1,2)

]
= −

√
24π

5

1

r3
1,2

Y2,0(θ1,2, ϕ1,2)

D̂(2,±1) = ± 3

r3
1,2

sin (θ1,2) cos (θ1,2)e
±iϕ1,2 = −

√
24π

5

1

r3
1,2

Y2,±1(θ1,2, ϕ1,2) (B.19)

D̂(2,±2) = − 3

r3
1,2

sin2 (θ1,2)e
±i2ϕ1,2 = −

√
24π

5

1

r3
1,2

Y2,±2(θ1,2, ϕ1,2)

Let’s recall the following expansion for the radial component of vector r1,2 = r2 − r1 =

(r1,2, θ1,2, ϕ1,2) [219]

1

rL+1
1,2

YL,M(θ1,2, ϕ1,2) =

√
4π

(2L)!

∞∑

l1,l2=0

√√√√ (2l2)!

(2l1 + 1)!

rl1
1

rl2+1
2

×

× [Y l1(θ1, ϕ1)⊗ Y l2(θ2, ϕ2)]
L
M (B.20)

where it is assumed that r1 < r2 and (l2 − l1) = L.

Now, it is possible to express the irreducible spherical components of D̂ as a sum of products

of a function that depends only on the distance multiplied by a function that depends only

on the orientation, i.e.

D̂(2,M) =
1

r3
1,2

Y2,M(θ1,2ϕ1,2)

=
√

π

6

∞∑

l1=0

l1+2∑

l2=max (0,l1−2)

(−)l2

√√√√ (2l2)!

(2l1 + 1)!

rl1
1

rl2+1
2

×

× [Y l1(θ1, ϕ1)⊗ Y l2(θ2, ϕ2)]
2
M =

=
∞∑

l1,l2=0

(−)l2dl1,l2(r1, r2) [Y l1(θ1, ϕ1)⊗ Y l2(θ2, ϕ2)]
2
M (B.21)

where (l2 − l1) = 2.

B.3 Evaluation of four-centers integral

Now that both the expressions for the orbitals and for the operator have been factorized in

a radial and angular parts, it is possible to rewrite integral B.3, I = 〈φAφB |D̂2,M |φCφD〉, as

I = 〈ρ1,0
lA,mA

(r1, RA)ρ1,0
lB ,mB

(r2, RB) |dl1,l2| ρ
1,0
lC ,mC

(r1, RC)ρ1,0
lD,mD

(r2, RD)〉 ×
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×〈YlA,mA(ω1)YlB ,mB(ω2) | [Y l1(ω1)⊗ Y l2(ω2)]
2
M |YlC ,mC (ω1)YlD,mD(ω2)〉 =

= Ir × I(2,M)
ω (B.22)

where ωi = (θi, ϕi) and to keep notation simple we used the Einstein’s notation for indexes

lA, mA, lB, mB, lC , mC , lD and mD, for which the summation limits are given in eq. B.6,

and l1 and l2 for which the summation limits are given in eq. B.21.

The last equality in eq. B.22 underlines that for each of the five components of D̂(2), the radial

part (Ir) is the same. Moreover, calculations of the angular part (I(2,M)
ω ) can be simplified

by using the Wigner-Eckart theorem, i.e.

I(2,M)
ω = 〈YlA,mA(ω1)YlB ,mB(ω2) | [Y l1(ω1)⊗ Y l2(ω2)]

2
M |YlC ,mC (ω1)YlD,mD(ω2)〉 =

= [(2lA + 1)(2lB + 1)]−1/2 ∑

m1,m2

C lAmA
lCmC ,l1m1

C2 M
l1m1,l2m2

C lBmB
lDmD,l2m2

×

×〈lA||Y l1||lC〉〈lB||Y l2||lD〉 (B.23)

where the reduced matrix elements are [219]

〈l||Y L||l′〉 =

√
(2L + 1)(2l′ + 1

4π
C l 0

l′ 0,L 0 (B.24)

and C l3m3
l1m1,l2m2

is a Clebsh - Gordan coefficient, which can be written in terms of 3j symbols

as

C l3m3
l1m1,l2m2

= (−)l1+l2−m3(2l3 + 1)1/2




l1 l2 l3

m1 m2 −m3



 (B.25)

The integral B.23 becomes

I(2,M)
ω =

[l1, l2, lA, lB, lC , lD]1/2

4π

∑

m1,m2

(−)mA+mB+M




lC l1 lA

mC m1 −mA



×

×




lC l1 lA

0 0 0








l1 l2 2

m1 m2 −M








lD l2 lB

mD m2 −mB



×

×




lD l2 lB

0 0 0



 (B.26)

where [l1, l2, . . . , ln] = (2l1 + 1)(2l2 + 1) . . . (2ln + 1).

For the first and fourth 3j symbols in the last equation to be different from zero, we must
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have

m1 = mA −mC

m2 = mB −mD

so only one term survives in the summation over m1 and m2 and we have

I(2,M)
ω =

[l1, l2, lA, lB, lC , lD]1/2

4π
(−)mC+mD




lC l1 lA

0 0 0








lD l2 lB

0 0 0



×

×




lC l1 lA

mC mA −mC −mA








l1 l2 2

mA −mC mB −mD −M



×

×




lD l2 lB

mD mB −mD −mB



 (B.27)

Considering the symmetries of the 3j symbols, we can impose these constraints to the indexes

mA + mB −mC −mD = M

l1 + lA + lC = even

l2 + lB + lD = even

|l1 − l2| ≤ 2 ≤ (l1 + l2)

Moreover, eq. B.21 imposes the constraint (l2 − l1) = 2, so it is possible to write

I(2,M)
ω =

[l1, l1 + 2, lA, lB, lC , lD]1/2

4π
(−)mC+mD




lC l1 lA

0 0 0








lD l1 + 2 lB

0 0 0



×

×




lC l1 lA

mC mA −mC −mA








l1 l1 + 2 2

mA −mC mB −mD −M



×

×




lD l1 + 2 lB

mD mB −mD −mB



 (B.28)

with the following new constraints

mA + mB −mC −mD = M

l1 + lA + lC = even

l1 + lB + lD = even
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B.4 Calculation of the dipolar tensor in a simple case

We report the calculation of the dipolar tensor for a simple geometry and an approximated

expansion of the two SOMO orbitals. This is the evaluation of the dipolar interaction that

we used in the spin Hamiltonian of the bi-labelled heptapeptide (see Section 3.3.4.

In what follows we take as reference the image below We have four nuclei placed at the edges

of a rectangle, having spherical coordinates

RN1 = (R,−Θ, 0)

RO1 = (R, Θ, 0)

RN2 = (R,−π + Θ, 0)

RO2 = (R, π −Θ, 0)

Then, we make the further approximation of considering this simple form for the two SOMO
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orbitals

Ψ′ =
1√
2

[
φN1

2,1,0(r −RN1)− φO1
2,1,0(r −RO1)

]
(B.29)

Ψ′′ =
1√
2

[
φN2

2,1,0(r −RN2)− φO2
2,1,0(r −RO2)

]
(B.30)

i.e., we consider that only the two 2pZ orbitals of a N −O couple contribute to the SOMO,

with the same weight. Also, we consider all the four orbitals parallel among them and parallel

to the Z-axis of the reference frame in which we are calculating the tensor in order to avoid

complications of rotations.

The dipolar tensor is calculated as the expectation value of the operator D̂ over the state

|−〉 = 1√
2
|Ψ′(1)Ψ′′(2)−Ψ′2Ψ′′(1)〉, so that

D =
1

2

µ0

4π

g2
eβ

2
3

h̄
〈− |D̂|−〉 (B.31)

In spherical coordinates we have

D(2,M) =
1

2

µ0

4π

g2
eβ

2
3

h̄
〈− |D̂(2,M)|−〉 (B.32)

Finally, the following symmetry

D(2,−M) ∝ 〈− |D̂(2,−M)|−〉 = (−)M〈− |D̂(2,M) ∗|−〉 = (−)M〈− |D̂(2,M)|−〉∗ ∝

∝ (−)MD(2,M) ∗ (B.33)

gives the possibility to calculate only three of the five components.
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Sample calculation with E-SpiReS

In this appendix we show how to calculate ab initio the cw-ESR spectrum of tempone in

water at 298.15 K. This tutorial assumes that the quantum mechanic calculation of magnetic

parameters has previously been performed.

Step 1 - launch E-SpiReS and click on ”Set Project” button. A window called ”Parameter

Selector” appears, where all the physical properties of the system under study can be set.

Firstly click on ”Load Z-Matrix” button to load the molecule.
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Step 2 - select the ”tempone.zmt” file; the molecule appears in the 3D space in the laboratory

frame, LF (also plotted). In the ”Parameter Selector” window the Z-matrix is written in the

white text area. This area is reactive to mouse clicking, i.e. when a row is clicked, the

corresponding atom is highlighted in green.

Step 3 - clicking on the ”Set Dynamics” button a new window appears. Here one chooses

the form of the diffusive operator. Tempone is a small and rigid molecule, so the ”One Rigid

Body” model is chosen.
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Step 4 - to define the spin Hamiltonian of the molecule choose the ”Spin Probes” button.

Use the ”Choose Atom” button of the first tag of the window to select the N-O bond as

probe. The O atom becomes green and a frame appears for the g tensor.

Step 5 - the second and third tags allow to add spin active nuclei (min 1, max 2) to the

probe(s). In the ”Spin Probe 1” tag click on ”Choose Atom” and select the N atom in the 3D

space. The atom becomes green and a reference frame appears for the hyperfine A tensor;

set to 1 the spin number of the nucleus.
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Step 6 - in the ”Physical Data” tag of the ”Parameter Selector” a number of relevant pa-

rameters are set. Use the ”Frequency”, ”B Sweep”, ”Viscosity” and ”Temperature” buttons

to set the four parameters at, respectively, 8.89 GHz, 75.7 Gauss, 0.89 cP and 298.15 K.

Step 7 - select the ”Additional Data” tag to set the intrinsic linewidth to 0.40 Gauss, to

take into account the unresolved super-hyperfine coupling of the electron with the twelve

surrounding hydrogen atoms.
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Step 8 - click the ”Diffusion” button in the ”Main Control Panel”: the diffusion tensor of

the molecule is automatically calculated and a new frame appears in the 3D space, i.e. the

one that diagonalizes the tensor. The molecule changes its colour: atoms assume different

colours if they belong to different fragments.

Step 9 - to use the magnetic tensors evaluated via QM calculations enter the ”Gaussian

Environment” and check the ”Use output” checkbox. When Gaussian output is loaded,

all the tensors are updated.
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Step 10 - tensors can be modified manually in the ”Diffusion” environment. Just click on the

tensor that needs corrections, and change orientation and / or principal values in the mask.

Set the trace of the A tensor to 16.14 Gauss (the Gaussian ’03 package underestimates the

value of the coupling of about 2 Gauss). After changes, click the ”Apply” button.

Step 11 - further adjustments can be obtained by fitting (although, as a general rule, small

corrections should be necessary), in the ”Refine” environment. In this case we adjust the

traces of g and A tensors and the intrinsic linewidth, checking the proper boxes.
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Step 12 - next we load a reference experimental spectrum, by clicking the ”Load Spectrum”

button and we choose the exp.dat file.

Step 13 - now enter in the ”ESR” environment and, to refine the parameters, check the ”Fit

Mode” check box.
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Step 14 - by clicking on the ”Calculate” button the spectrum is obtained by solving the

stochastic Liouville equation.

Step 15 - after few seconds the calculation ends. In the present case, very small corrections of

the refined parameters are obtained. The theoretical (red) and experimental (black) spectra

can be visualized by clicking the ”Plot” button.
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List of libraries

In the implementation of the three software packages developed in this doctoral work, a

number of GPL (Gnu Public License) and free libraries has been employed. Here we report

a list of such libraries, with a brief description of their function.

E-SpiReS

- BLAS: the Basic Linear Algebra Software library is the most optimized package of

routines to handle vector / matrix operations;

- CBLAS: C wrapper for the BLAS library;

- SPBLAS: sparse BLAS library that provides optimized algorithm to store and use

sparse matrices;

- CLAPACK 3.0: optimized routines for high level linear algebra operations, such as

matrix inversion and diagonalization, which uses BLAS to perform basic linear algebra;

- CQUADPACK: quadrature routine for the calculation of integrals in one variable;

- LEVMAR 2.1.3: routine to perform Levenberg - Marquardt non linear least square

fitting;

- MPICH 1.0: message passing interface routine for code parallelization.
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C++OPPS

- CMINPACK 1.0.1: C++ routine to perform Levenberg - Marquardt non linear least

squares fitting;

- CQUADPACK: quadrature routine for the calculation of integrals in one variable;

- SPARSELIB++ 1.6: C++ library that handles sparse matrices and provides level 1

BLAS routines for basic linear algebra operations and the MV++ basic matrix/vector

library; small modifications have been made by us in the library in order to meet the

particular demanding of low level control of matrices and vectors construction;

- CLAPACK 3.0: optimized routines for high level linear algebra operations, such as

matrix inversion and diagonalization, which uses BLAS to perform basic linear algebra;

- MPICH 1.0: message passing interface routine for code parallelization;

- BESSIK: C++ routine for the evaluation of Bessel functions of first and second kind.

DITE

The following libraries are called by DITE:

- BLAS: the Basic Linear Algebra Software library is the most optimized package of

routines to handle vector / matrix operations;

- CLAPACK 3.0: optimized routines for high level linear algebra operations, such as

matrix inversion and diagonalization, which uses BLAS to perform basic linear algebra;
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Matrix elements of the stochastic

Liouville operator

In this appendix we report the explicit expressions for the matrix elements of the Liouvillean

L̂ = iĤ×+Γ̂ which are needed to be evaluate in the calculation of cw-ESR spectra. Given the

generalized set of coordinates X = (Ω, qint), being Ω the global orientation of the molecule

and qint the set of internal degrees of freedom, the diffusive operator takes the general shape

Γ̂ = −∇tr
XD(X)Peq(X)∇XP−1

eq (X) (E.1)

where ∇X is the differentiation operator with respect to X, D is the full diffusion tensor

(which in general depends on X) and Peq(X) is the equilibrium distribution, for which we

choose a Boltzmann relation

Peq(X) = exp [−V (X)/kBT ]/〈exp [−V (X)/kBT ]〉X (E.2)

with V (X) the potential acting on the stochastic coordinates, kB the Boltzmann constant,

T the absolute temperature and 〈. . .〉X indicating integration over the X space.

The spin super Hamiltonian is usually expressed in terms of irreducible spherical tensors

Ĥ× =
∑

µ

ωµ

∑

l=0,2

l∑

m,m′=−l

Dl
m m′(Ω)F (l, m′) ∗

µ, MF (qint)Â
(l, m) ×
µ, LF (E.3)

where µ runs over all the magnetic interactions, Dl
m m′(Ω) is a Wigner matrix and the explicit

expressions for the spherical tensors F (l, m) ∗
µ, MF and tensor operators Â(l, m) ×

µ, LF are given elsewhere

[21].
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Appendix E. Matrix elements of the stochastic Liouville operator

We span the Liouvillean over the state |Σ〉〉 = |σ〉〉⊗ |LMK〉⊗ |λ〉〉, obtained by the direct

product of the spin transitions space ({σ}), the space of rigid rotations ({LMK}) and the

space defined by the internal degrees of freedom ({λ}). Then, the matrix elements to be

evaluated are

〈〈Σ |L̂|Σ′〉〉 = i〈〈Σ |Ĥ×|Σ′〉〉+ δσ,σ′〈LMK, λ |Γ̂|L′M ′K ′, λ′〉 (E.4)

with

〈〈Σ |Ĥ×|Σ′〉〉 =
∑

µ

ωµ

∑

l=0,2

l∑

m,m′=−l

〈LMK |Dl
m m′|L′M ′K ′〉〈λ |F (l, m′) ∗

µ, MF |λ′〉 ×

×〈〈σ |Â(l, m) ×
µ, LF |σ′〉〉 (E.5)

In the following section we give the expressions of the matrix elements to be calculated in

the models implemented in E-SpiReS.

E.1 Free rigid rotator

The simplest model is that of a rigid molecule reorienting in an isotropic fluid. Here, the

only stochastic variables are the Euler angles Ω = (α, β, γ) giving the orientation of the

molecule fixed frame (MF) with respect to the inertial laboratory frame (LF). Defining MF

as the frame that diagonalizes the rotational diffusion tensor, the diffusive operator takes

the simple form

Γ̃ = Ĵ
tr
DĴ =

D−

4

(
Ĵ2

+ + Ĵ2
−

)
+

D+

4

(
Ĵ+Ĵ− + Ĵ−Ĵ+

)
+ DZZ Ĵ2

Z (E.6)

where D± = DXX ±DY Y and Ĵ is the angular momentum operator acting on Ω.

The operator is spanned over the basis set

|LMK〉 =

√
2L + 1

8π2
DL

M K(Ω) (E.7)

and matrix elements are easily found to be

〈LMK |Γ̃|L′M ′K ′〉 = δL,L′δM,M ′

{
δKK′

[
DZZK2 +

D+

4

(
c− 2
L,K + c+ 2

L,K

)]
+

+
D−

4

(
δKK′+2c

+
L,K−2c

+
L,K−1 + δKK′−2c

−
L,K+1c

−
L,K+2

)}
(E.8)
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with c+
L,K =

√
L (L + 1)−K (K ± 1).

The general expressions for the matrix elements of the spin super Hamiltonian are

〈〈Σ |Ĥ×|Σ′〉〉 =
√

[L, L′](−)M−K
∑

µ,l

ωµ




L l L′

−M M ′ −M M ′



×

×




L l L′

−K K ′ −K K ′



 F (l, K′−K) ∗
µ, MF 〈〈σ |Â(l, M ′−M) ×

µ, LF |σ′〉〉 (E.9)

Expressions for the reduced matrix elements 〈〈σ |Â(l, M ′−M) ×
µ, LF |σ′〉〉 can be found in the liter-

ature [21]. The effective form of the matrix elements of the spin super Hamiltonian depends

on the kind of radical, i.e. on the magnetic interactions, µ, that have to be taken into ac-

count.

It is also important to evaluate the projections over the basis set of the starting vector, which

describes the physical observable. Here that the equilibrium distribution of the stochastic

coordinates is a constant, it is possible to write

| v〉〉 = N| ŜX × 1I〉〉 (E.10)

where N is the normalization constant, 1I the identity operator over the space of nuclear

transitions of all Nn nuclei and ŜX =
Ne∑

i=1

ŜX,i, that is the total X magnetization which is

given by the sum of the contributions of all the unpaired electrons (Ne) in the radical. The

projections are given by

〈〈Σ |v〉〉 = N δL,0δM,0δK,0〈〈σ |ŜX〉〉 (E.11)

where (see ref. [21, 111])

〈〈σ |ŜX〉〉 =
Nn∏

i=1

δpI
i ,0

Ne!∑

j=0

Pj

(
δpS

1 ,|1|δpS
2 ,0 . . . δpS

Ne
,0

)
(E.12)

being Pj(x) the j-th permutation of indexes in set x.

E.2 Flexible rotator in external field

We give here the matrix elements of a rigid rotator coupled with a planar rotator. This model

has been introduced in the study of the cw-ESR spectroscopy of tempo-palmitate spin probe
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in liquid crystal (see section 3.3.2). The diffusion operator is

Γ̃ = −P−1/2
eq




M̂
∂

∂θ





tr

DPeq




M̂
∂

∂θ



 P−1/2
eq = Γ̃RR + Γ̃II + Γ̃RI (E.13)

where Γ̃ acts on X = (Ω, θ), i.e. the global orientation Ω and the internal torsional angle θ;

M̂ is the infinitesimal rotation operator. The three operators introduced in the last equality

of previous equation are give by

Γ̃RR = −P−1/2
eq M̂

tr
DRRPeqM̂P−1/2

eq (E.14)

Γ̃II = −DIIP
−1/2
eq

∂

∂θ
Peq

∂

∂θ
P−1/2

eq (E.15)

Γ̃RI = −P−1/2
eq

(

M̂
tr
DRIPeq

∂

∂θ
+

∂

∂θ
DIRPeqM̂

)

P−1/2
eq (E.16)

where DRR, DII and DRI are, respectively, the rotational, internal and coupling parts of

the diffusion tensor.

Matrix elements are defined with respect to basis functions |LMK, n〉 = |LMK〉× |n〉, with

|LMK〉 =

√
[L]

8π2
DL

M,K (Ω) (E.17)

|n〉 =
1√
2π

e−inθ (E.18)

Pure rotational operator

By defining the angular momentum operator as Ĵ = iM̂ , the pure rotational part of the

diffusion operator is Γ̃RR = Ĵ
tr
DRRĴ + FRR (X), which has been separated in a operator

which is independent on the potential and a function that depends on the potentials.

We express the operator in the molecular frame (MF) where the rotational diffusion tensor

DRR is diagonal.

Potential independent part

The potential independent operator is substantially the free rigid rotator

Ĵ
tr
DRRĴ =

D−
RR

4

(
Ĵ2

+ + Ĵ2
−

)
+

D+
RR

4

(
Ĵ+Ĵ− + Ĵ−Ĵ+

)
+ DZZ

RRĴ2
Z (E.19)
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where D±
RR = DXX

RR ±DY Y
RR . The matrix elements are easily found to be

〈LMK, n|Ĵ tr
DRRĴ |L′M ′K ′, n′〉 = δn,n′δL,L′δM,M ′ ×

×
{

δKK′

[

DZZ
RRK2 +

D+
RR

4

(
c− 2
L,K + c+ 2

L,K

)]

+

+
D−

RR

4

(
δKK′+2c

+
L,K−2c

+
L,K−1 + δKK′−2c

−
L,K+1c

−
L,K+2

)}

(E.20)

with c+
L,K =

√
L (L + 1)−K (K ± 1).

Potential dependent term

The function that depends on the potential is defined as

FRR (X) = −P−1/2
eq (X) Ĵ

tr
DRRĴP 1/2

eq (X) =

= −D−
RR

16

[(
Ĵ+U

)2
+

(
Ĵ−U

)2
− 2

(
Ĵ2

+ + Ĵ2
−

)
U

]
+

−D+
RR

8

[(
Ĵ+U

) (
Ĵ−U

)
−

(
Ĵ+Ĵ− + Ĵ−Ĵ+

)
U

]
=

= F−
RR (Ω) + F+

RR (Ω) (E.21)

We select an axial external potential Uext(Ω) = −εD2
0 0(Ω). The following derivatives are

provided to write the matrix elements:

Ĵ±Uext =
√

6εD2
0,±1 (E.22)

Ĵ2
±Uext = −2

√
6εD2

0,±2 (E.23)

Ĵ±Ĵ∓Uext = −6εD2
0,0 (E.24)

(
Ĵ±Uext

)2
= 6ε2

∑

l=0,2,4

[l]




2 2 l

0 0 0








2 2 l

1 1 −2



Dl
0,±2 (E.25)

(
Ĵ+Uext

) (
Ĵ−Uext

)
= 6ε2

∑

l=0,2,4

[l]




2 2 l

0 0 0








2 2 l

1 −1 0



Dl
0,0 (E.26)

And the matrix elements are

〈LMK,n|F−
RR|L′M ′K ′, n′〉 = −δn,n′δM,M ′(−)(M−K)

√
[L, L′]ε

D−
RR

8
×
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×
∑

l

f−RR,l




L l L′

−M 0 M












L l L′

−K 2 K ′



 +




L l L′

−K −2 K ′









〈LMK, n|F+
RR|L′M ′K ′, n′〉 = −δn,n′δM,M ′δK,K′(−)(M−K)

√
[L, L′]3ε

D+
RR

4
×

×
∑

l

f+
RR,l




L l L′

−M 0 M








L l L′

−K 0 K



 (E.27)

where

f−RR,l = 3ε[l]




2 2 l

0 0 0








2 2 l

1 1 −2



 + δl,22
√

6 (E.28)

and

f+
RR,l = ε[l]




2 2 l

0 0 0








2 2 l

1 −1 0



 + δl,22 (E.29)

Pure internal operator

The term related to internal dynamics can be written as Γ̃II = −DII
∂2

∂θ2
+ FII (X). For

the case of a generic potential Uint = −∑
ν χν |ν〉 useful expressions for evaluating matrix

elements are

∂Uint

∂θ
= i

1∑

ν=−1

νχν |ν〉 (E.30)

(
∂Uint

∂θ

)2

= −
1∑

ν,ν′=−1

νν ′χνχν′|ν + ν ′〉 (E.31)

∂2Uint

∂θ2
=

1∑

ν=−1

ν2χν |ν〉 (E.32)

Matrix elements of the first term are

−DII〈LMK,n| ∂2

∂θ2
|L′M ′K ′, n′〉 = δL,L′δM,M ′δK,K′δn,n′DIIn

2 (E.33)

Function FII is written explicitly as

FII (θ) =
DII

4




(

∂U

∂θ

)2

− 2
∂2U

∂θ2



 (E.34)

The matrix elements are diagonal in the indexes L, M,K, so that

〈n|FII |n′〉 = −DII

4

∑

ν+ν′=n−n′
f II

ν,ν′ (E.35)

where f II
ν,ν′ = νν ′χνχν′ + 2δν′,0ν2χν .
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Rotational-internal coupling operator

We define the quantities D±
RI(θ) = [DXI(θ)∓ iDY I(θ)] /2. The operator that couples the two

stochastic coordinates can be written in the following form

Γ̃RI = −iP−1/2
eq (X)

∑

α=±,Z

Dα
RI

(
∂

∂θ
Peq (X) Ĵα + ĴαPeq (X)

∂

∂θ

)

P−1/2
eq (X) (E.36)

which can be rearranged into:

Γ̃RI = 2i
∑

α=±,Z

Dα
RI

[

Ĵα
∂

∂θ
− 1

4

(
ĴαU

) ∂U

∂θ

]

(E.37)

The matrix elements for the first term are reported here for the three values of the α index;

for α = ±1 one obtains

〈LMK, n|2iD±
RI Ĵ±

∂

∂θ
|L′M ′K ′, n′〉 = −δLL′δMM ′δK,K′±1δn,n′2D

±
RIc

±
L,K∓1n (E.38)

and for α = Z

〈LMK, n|2iDZI ĴZ
∂

∂θ
|L′M ′K ′, n′〉 = −δLL′δMM ′δK,K′δn,n′2DZIKn (E.39)

Due to the simple form of the external potential adopted the component α = Z of the

potential dependent part is null; only matrix elements derived from α = ±1 remain:

〈LMK, n|− i

2
D±

RI

(
Ĵ±U

) (
∂U

∂θ

)

|L′M ′K ′, n′〉 = δM,M ′δK,K′±1(−)M−K ×

×
√

[L, L′]×
√

3

2
εD±

RI




L 2 L′

−M 0 M ′








L 2 L′

−K ±1 K ∓ 1



 (n− n′) χn−n′ (E.40)

Spin super Hamiltonian

The spin super-Hamiltonian is defined in Eq. (3.54). The matrix elements of the spin super-

Hamiltonian are

〈σ, LMK, n|Ĥ×|σ′, L′M ′K ′, n′〉 = (−)M−K ×

×
√

[L, L′]
∑

µ

ωµ

∑

l=0,2




L 2 L′

−M M −M ′ M ′








L 2 L′

−K K −K ′ K ′



×

× G(l,K−K′,n−n′)
µ 〈〈σ|Â(l,M−M ′) ×

µ,LF |σ′〉〉 (E.41)
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with

G(l,m,m′)
µ = Dl

m,m′ (ΩMC)
∑

m′′
Dl

m′,m′′ (Ωµ) F (l,m′′) ∗
µ,µF (E.42)

where ΩMC is the set of Euler angles that transforms MF to a frame, CF, which has the

z-axis is parallel to the rotatable bond. Ωµ is, instead, the set of Euler angles that transforms

from a frame rotated of (0, 0, θ) from CF, to the frame µF that diagonalizes the magnetic

tensors.

Starting vector

The starting vector for the system can be written as |v〉〉 ∝ |Ŝx ⊗ 1I ⊗ P 1/2
eq (X)〉〉 and the

projection over the basis is

〈〈σ, LMK, n|v〉〉 ∝ 〈〈σ|Ŝx〉〉〈LMK|P 1/2
eq (Ω)〉〈n|P 1/2

eq (θ)〉 (E.43)

where

〈〈σ|Ŝx〉〉 = δ|pS |,1δpI ,0

〈LMK|P 1/2
eq (Ω)〉 ∝ δM,0δK,0

√
[L]

∫ π

0
dβ sin (β)DL

0,0 (β) e
1
2 εD2

0,0(β) (E.44)

〈n|P 1/2
eq (θ)〉 ∝

∫ 2π

0
dθ cos (nθ) eχ1 cos (θ) (E.45)

Symmetrization

If P̂Kn is an operator that changes simultaneously sign to K and n, one finds

P̂Kn〈〈σ, LMK, n|L̂|σ′, L′M ′K ′, n′〉〉 = (−)L−L′+K−K′
×

× 〈〈σ, LMK, n|L̂|σ′, L′M ′K ′, n′〉〉∗ (E.46)

Therefore we introduce the symmetrized basis set

|σ, LMK, n, j〉〉Kn = N e−i π
4 (j−1)

(
|σ, LMK, n〉〉+ j (−)L−K |σ, LM −K,−n〉〉

)
(E.47)
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where N = [2 (1 + δK,0δn,0)]
1/2; σ, L and M are defined as in the old basis set, while for K,

n and j we have





K = 0 n = 0 j = (−)L

K = 0 n > 0 j = ±1

K > 0 −Nmax ≤ n ≤ Nmax j = ±1

(E.48)

E.3 Planar diffusive rotator with random walk

In one of the case-stadies calculations (see section 3.3.5) we needed to modify the dynamics of

the internal torsional angle (planar rotator) adding a random walk contribution to simulate

random jumps due to propagation of the polymerization reaction. Here we consider the

expressions for the only planar rotator, without coupling it to the rigid body rotator because

it is straightforward (see previous section). We also consider that the magnetic tensors are

affected by the stochastic variable.

Diffusive operator

The diffusive operator can be written in the convenient form Γ̃D = −DII(∂2/∂θ2) + F (θ).

Given a potential in the general form U = −
∑

ν

εν | ν〉, the useful expressions for evaluating

matrix elements are

∂U

∂θ
= i

∑

ν

νεν | ν〉 (E.49)

(
∂U

∂θ

)2

= −
∑

ν,ν′
νν ′ενεν′| ν + ν ′〉 (E.50)

∂2U

∂θ2
=

∑

ν

ν2εν | ν〉 (E.51)

The matrix elements of the first (potential independent) term are

−DII〈n |
∂2

∂θ2
|n′〉 = δn,n′DIIn

2 (E.52)

Function F (θ) is written explicitly as

F (θ) =
DII

4




(

∂U

∂θ

)2

− 2
∂2U

∂θ2



 (E.53)
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and by making use of eqns. (E.50) and (E.51) the matrix elements are

〈n |F (θ) |n′〉 = −DII

4

f∑

ν+ν′=n−n′ν,ν′

(E.54)

where fν,ν′ = νν ′ενεν′ + 2δν′,0ν2εν .

Random walk operator

Let’s recall the definition of the random walk operator given in section 3.3.5. In its integrated

form, the operator is

Γ̂RW P (θ, t) = −
∫ 2π

0
dθ′ [P (θ, t) W (θ ← θ′)− P (θ′, t) W (θ′ ← θ)] (E.55)

We make the simplest choice for the transformation kernel:

W (θ ← θ′) = ωRW Peq (θ′) (E.56)

i.e. the probability of jumping from θ to θ′ depends only on the arriving value of the angle

and on the jumping frequency ωRW .

The substitution of the kernel (E.56) in the expression of the operator (E.55) reads

Γ̂RW P (θ, t) = ωRW

[
P (θ, t)− Peq (θ)

]
(E.57)

It is useful to transform the time evolution operator in such a way that it becomes Hermitian;

this is achieved by the symmetrization operation Γ̃ = P−1/2
eq (θ)Γ̂P 1/2

eq (θ), that gives

Γ̃P̃ (θ, t) = −P−1/2
eq (θ)

∂

∂θ
DII (θ) Peq (θ)

∂

∂θ
P−1/2

eq (θ) P̃ (θ, t) +

−ωRW

[
P̃ (θ, t)− P 1/2

eq (θ)
∫ 2π

0
dθ′P 1/2

eq (θ′) P̃ (θ′, t)
]

(E.58)

with P̃ (θ, t) = P (θ, t) /P 1/2
eq (θ).

Evaluation of matrix elements of the random walk operator is straightforward and one gets

〈n |Γ̃RW |n′〉 = ωRW

[
δn,n′ − 〈nP 1/2

eq (θ)〉〈n′P 1/2
eq (θ)〉

]
(E.59)

where the integrals 〈nP 1/2
eq (θ)〉 are evaluated numerically.
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Spin super-Hamiltonian

The matrix elements of the spin super-Hamiltonian are

〈〈Σ |Ĥ×|Σ′〉〉 = δn,n′ω0F
(0, 0) ∗
g, 〈〈σ |Â(0, 0) ×

g, |σ′〉〉

+
5∑

j=1

〈n |ωA,j (θ) |n′〉F (0, 0) ∗
A,j, 〈〈σ |Â(0, 0) ×

A,j, |σ′〉〉 (E.60)

where the explicit form of the reduced matrix elements 〈〈σ |Â(0, 0) ×
µ, |σ′〉〉 (µ = g, A) is given

elsewhere [21] and assuming the truncated Fourier expansion ωA,j(θ) =
∑4

η=−4 ωη
A,je

−iηθ (with

ωη ∗
A,j = ω−η

A,j) the reduced matrix elements that depend on the stochastic variable are

〈n |ωA,j (θ) |n′〉 =
4∑

η=−4

ωη
A,j〈n |η|n′〉 = ωn−n′

A,j (E.61)

Starting vector

The projections of the starting vector over the basis functions are given by

〈〈Σ |v〉〉 = 2−5/2〈〈σ |ŜX〉〉〈nP 1/2
eq (θ)〉 (E.62)

where

〈〈σ |ŜX〉〉 = δ|pS |,1δpI
1,0δpI

2,0δpI
3,0δpI

4,0δpI
5,0 (E.63)

〈n |P 1/2
eq (θ)〉 ∝

∫ 2π

0
dθe−inθe−U(θ)/2 (E.64)

where the last integral is evaluated numerically.
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Sample calculation with C++OPPS

In this appendix we report a step by step example simulation of NMR relaxation times

of residues 50 and 165 of E. Coli Adenylate Kinase (Akeco) enzyme in water. The global

diffusion tensor of the protein will be obtained from its structure.

First of all, the 4ake.pdb file must be downloaded from the protein data bank website1. The

file contains also water molecules that have to be removed, for example with the Pymol

program2.

Place the PDB file with only the structure of the protein in a directory which will represent

the job working path (the directory where all the files produced during the calculation will

be stored).

Launch C++OPPS and follow these instructions:

1. In the Project Panel, click on ”Load protein” and select the PDB file prepared before;

2. In the Project Panel, set:

Effective Radius = 2.00 Å,

Periodic Boundary Conditions = 6,

Temperature = 303.0 K,

Viscosity = 0.9 cP. Then click on ”Calculate Diffusion” button. The GUI will freeze

until the diffusion tensor has been calculated and the principal values will appear below

the button;

1File can be found at URL: http://www.rcsb.org/pdb/explore/explore.do?structureId=4AKE
2Pymol can be obtained from URL: http://pymol.sourceforge.net/
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3. In the Physical Data Panel set the initial guess and fitting parameters as depicted

here: Red circles were put for higher clarity on modifications to make. Totally 6 fitting

parameter are set: a multiplicative constant of the global diffusion tensor, parallel and

perpendicular coefficients of the (axial) diffusion tensor of the probe, the βD tilt angle

between probe molecular frame and dipolar interaction frame, the c2
0 coefficient of the

axial potential and the rate of exchange, Rex.

4. In the Experimental Data Panel set to ”2” the number of residues. Then input, for each

residue, the experimental data by completing the data. Remember that the program

accepts a number in the table only if the ”Return” key is pressed after the input. The

experimental values are [214]:

Residue 50
Field T1 / ms T2 / ms NOE

14.1 T (600.13 MHz) 1102.40 ± 32.20 54.69 ± 1.33 0.6239 ± 0.0075
18.79 T (800.13 MHz) 1499.10 ± 40.50 43.66 ± 0.99 0.6724 ± 0.0069

Residue 165
Field T1 / ms T2 / ms NOE

14.1 T (600.13 MHz) 1274.80 ± 38.20 45.09 ± 0.99 0.7695 ± 0.0092
18.79 T (800.13 MHz)165 1900.70 ± 53.00 37.08 ± 0.86 0.8100 ± 0.0074
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5. In the ”Simulation Panel” set Lmax to 20 and, if C++OPPS is running in parallelized

local mode, the number of processors. Then click the ”Run Simulation” button. If the

cluster version is being used, user will be asked to decide some properties of the PBS

job. Select the ”Avogadro PD” cluster, the ”Long-large” queue and 4 processors. Then

click on the ”Submit” button. Now the simulation in running and periodically the text

area in the Simulation Panel will be updated with the current status of the fitting.

This simulation will show that the global diffusion tensor is not changing much during the

fitting, so it could be fixed to the predicted one.

Now, run again the simulation, but with only 5 fitting parameters. Just step back to point

3) and set the initial guess as shown below Once the modifications have been done, return

to the ”Simulation Panel” and run the new simulation.

Finally, let’s try a third calculation with only three parameters. Together with the global

diffusion tensor, also fix the βD angle to 14◦ and the exchange rate to 2.5 Hz, so only the

axially symmetric diffusion tensor of the probe and the coefficient c2
0 will be fitted. The

starting guess is shown below The three simulations will give the following results:
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Fit 1 - 6 parameters fitting

Calculation time is about 6 hours parallelized on 32 processors (about 10 seconds per

fit step). The output file reads:

Component 1

Parameters:

Protein Dxx = 1.9969e+07 Hz

Protein Dyy = 2.1573e+07 Hz

Protein Dzz = 2.9597e+07 Hz

Probe Dxx = 2.5270e+07 Hz

Probe Dyy = 2.5270e+07 Hz

Probe Dzz = 7.2806e+10 Hz

Beta D = 13.2530 deg

c20 = 7.6581 kT

R exchange = 2.4457 Hz

Relaxation data: Chi square = 0.0000

Fitting procedure terminated for component 1

Final l2 norm of the residual = 0.0000
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Field/MHz T1(th)/ms T1(exp)/ms T2(th)/ms T2(exp)/ms NOE(th) NOE(exp)
600.13 1102.40 1102.40 54.69 54.69 0.6239 0.6239
800.13 1499.10 1499.10 43.66 43.66 0.6724 0.6724

Exit parameter = 2

Component 2

Parameters:

Protein Dxx = 2.9099e+07 Hz

Protein Dyy = 3.1437e+07 Hz

Protein Dzz = 4.3129e+07 Hz

Probe Dxx = 1.4664e+07 Hz

Probe Dyy = 1.4664e+07 Hz

Probe Dzz = 2.1534e+13 Hz

Beta D = 10.6750 deg

c20 = 12.2089 kT

R exchange = 1.2550 Hz

Relaxation data: Chi square = 0.5006

Field/MHz T1(th)/ms T1(exp)/ms T2(th)/ms T2(exp)/ms NOE(th) NOE(exp)
600.13 1292.41 1274.80 45.13 45.09 0.7719 0.7695
800.13 1878.38 1900.70 37.06 37.08 0.8085 0.8100

Fitting procedure terminated for component 2

Final l2 norm of the residual = 0.7075

Exit parameter = 5

Fit 2 - 5 parameters fitting

Global diffusion fixed to Hz

Calculation time is about 30 minutes parallelized on 32 processors (about 10 seconds

per fit step). The output file reads:

Component 1

Parameters:

Probe Dxx = 2.4659e+07 Hz

Probe Dyy = 2.4659e+07 Hz

Probe Dzz = 8.3075e+10 Hz
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Beta D = 18.3082 deg

c20 = 4.1016 kT

R exchange = 3.1302 Hz

Relaxation data: Chi square = 1.1298

Field/MHz T1(th)/ms T1(exp)/ms T2(th)/ms T2(exp)/ms NOE(th) NOE(exp)
600.13 1126.84 1102.40 54.82 54.69 0.6255 0.6239
800.13 1471.24 1499.10 43.59 43.66 0.6714 0.6724

Fitting procedure terminated for component 1

Final l2 norm of the residual = 1.0629

Exit parameter = 1

Component 2

Parameters:

Probe Dxx = 1.4262e+07 Hz

Probe Dyy = 1.4262e+07 Hz

Probe Dzz = 3.7507e+11 Hz

Beta D = 16.3966 deg

c20 = 3.2317 kT

R exchange = 2.1360 Hz

Relaxation data: Chi square = 1.9606

Field/MHz T1(th)/ms T1(exp)/ms T2(th)/ms T2(exp)/ms NOE(th) NOE(exp)
600.13 1309.94 1274.80 45.21 45.09 0.7745 0.7695
800.13 1855.85 1900.70 37.00 37.08 0.8079 0.8100

Fitting procedure terminated for component 2

Final l2 norm of the residual = 1.4002

Exit parameter = 1

Fit 3 - 3 parameters fitting

Global diffusion fixed to Hz

angle fixed to

R exchange fixed to 2.5 Hz

Calculation time is about 15 minutes parallelized on 32 processors (about 10 seconds
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per fit step). The output file reads:

Component 1

Parameters:

Probe Dxx = 3.0475e+07 Hz

Probe Dyy = 3.0475e+07 Hz

Probe Dzz = 1.2749e+11 Hz

c20 = 5.2798 kT

Relaxation data: Chi square = 83.3298

Field/MHz T1(th)/ms T1(exp)/ms T2(th)/ms T2(exp)/ms NOE(th) NOE(exp)
600.13 1059.15 1102.40 48.99 54.69 0.5957 0.6239
800.13 1317.47 1499.10 39.33 43.66 0.6940 0.6724

Fitting procedure terminated for component 1

Final l2 norm of the residual = 9.1285

Exit parameter = 1

Component 2

Parameters:

Probe Dxx = 1.1590e+07 Hz

Probe Dyy = 1.1590e+07 Hz

Probe Dzz = 1.5030e+11 Hz

c20 = 1.6331 kT

Relaxation data: Chi square = 5.6361

Field/MHz T1(th)/ms T1(exp)/ms T2(th)/ms T2(exp)/ms NOE(th) NOE(exp)
600.13 1282.81 1274.80 45.41 45.09 0.7876 0.7695
800.13 1876.70 1900.70 36.60 37.08 0.8022 0.8100

Fitting procedure terminated for component 2

Final l2 norm of the residual = 2.3740

Exit parameter = 1
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Evaluation of matrix elements in a

two body model

G.1 Diffusive operator

Let us summarize all the reference frames that define the model (cfr as reference Figure 4-1,

which is also reported below for clarity)

- LF is the laboratory inertial frame;

- BiF is the frame where the diffusion tensor of the ith body is diagonal. The system is

fixed on the ith body;
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- V F is the frame fixed on the first body (the generator of the potential) in which is

defined the orienting potential;

- OF is a frame fixed on the second body which ”feels” the orientation effect;

- µF the reference frame where the magnetic tensor µ is diagonal.

The sets of Euler angles that transform among the various frames are:

- ΩLB1 to transform from LF to B1F ;

- ΩB1V to transform from B1F to V F ;

- ΩV to transform from LF to V F ;

- ΩB1B2 to transform from B1F to B2F ;

- Ω to transform from V F to OF ;

- ΩB2O to transform from B2F to OF .

- ΩB2µ to transform from B2F to µF .

The system is completely described by two stochastic variables and we make the choose

X = (ΩV ,Ω) so that the Smoluchosky operator is written as

Γ̂ = OĴ†(Ω)OD2Peq(q)OĴ(Ω) + (G.1)

+
[
V Ĵ(Ω)− V Ĵ(ΩV )

]† V D1Peq(q)
[
V Ĵ(Ω)− V Ĵ(ΩV )

]

where the right O and V apexes mean that an operator or a tensor are defined in OF or

V F and D1 and D2 are the diffusion tensors of the two bodies. Both diffusion tensor ar in

general full tensors.

In eq. G.1, Peq(q) is the distribution equilibrium of the system. We take the case of isotropic

environment so the energy of the system is independent on ΩV :

Peq(q) = Peq(Ω) = N exp [−V (Ω)/kBT ] (G.2)
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For the orienting potential we choose

U(Ω) = V (Ω)/kBT = c2
0D2

0,0(Ω) + c2
2

[
D2

0,2(Ω) +D2
0,−2(Ω)

]
+ (G.3)

+c4
0D4

0,0(Ω) + c4
2

[
D4

0,2(Ω) +D4
0,−2(Ω)

]
+

+c4
4

[
D4

0,4(Ω) +D4
0,−4(Ω)

]

and foo more convenience let’s write the potential as

U(Ω) =
4∑

ν=0

ν∑

µ=−ν

εν
µDν

0,µ(Ω) (G.4)

where both ν and µ take only even values and εν
µ = (−)µεν ∗

−µ to ensure that the potential is

real.

We symmetrize the diffusive operator to make it Hermitian:

Γ̃ = Peq(Ω)−1/2Γ̂Peq(Ω)−1/2 (G.5)

Now, we can interpret the operator as composed of a part independent on the potential and

a function which depends on the interaction between the two bodies

Γ̃ = Ĵ + F (Ω) (G.6)

The first part is composed of terms of the type Ĵ
†
DĴ , while the explicit form of the function

is obtained by remembering that Γ̃P 1/2
eq = 0:

F (Ω) = −P−1/2
eq ĴP 1/2

eq (G.7)

The operator will be spanned on the space of rotations defined by

|λ1, λ2〉 = |L1M1K1〉 × |L2M2K2〉 (G.8)

where

|L1M1K1〉 =

√
[L1]

8π2
DL1

M1,K1
(ΩV ) (G.9)

|L2M2K2〉 =

√
[L2]

8π2
DL2

M2,K2
(Ω) (G.10)

and [L] = 2L + 1.

In appendix H are reported some properties of the Wigner matrices that will be useful in

the calculation of matrix elements.
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Potential independent part

The potential independent part of the diffusive operator is made of four terms

Ĵ = Ĵa + Ĵb + Ĵc + Ĵd (G.11)

with

Ĵa = OĴ
†
(Ω)OD2

OĴ(Ω) (G.12)

Ĵb = V Ĵ
†
(Ω)V D1

V Ĵ(Ω) (G.13)

Ĵc = V Ĵ
†
(ΩV )V D1

V Ĵ(ΩV ) (G.14)

Ĵd = −
[
V Ĵ

†
(Ω)V D1

V Ĵ(ΩV ) + V Ĵ
†
(ΩV )V D1

V Ĵ(Ω)
]

(G.15)

It is convenient to change from Cartesian to spherical representation of the operator. In

appendix I it is shown how it is possible write the operator as:

Ĵ =
∑

l=0,2

l∑

m=−l

Ĵ (l,m)
a + Ĵ (l,m)

b + Ĵ (l,m)
c + Ĵ (l,m)

d (G.16)

with

Ĵ (l,m)
a = OD(l,m)

2
OK̂(l,m)

a (Ω) (G.17)

Ĵ (l,m)
b = V D(l,m)

1
V K̂(l,m)

b (Ω) (G.18)

Ĵ (l,m)
c = V D(l,m)

1
V K̂(l,m)

c (ΩV ) (G.19)

Ĵ (l,m)
d = −2 V D(l,m)

1
V K̂(l,m)

d (Ω,ΩV ) (G.20)

and the specific expressions for the components D(l,m) and the operators K̂(l,m) are given in

appendix I.

A first convenience in employing irreducible spherical tensors and tensorial operators is that

the components of the diffusion tensors in OF and V F are easily found

OD(l,m)
2 =

l∑

m′=−l

Dl
m,m′(ΩB2O) B2D(l,m′) ∗

2 (G.21)

V D(l,m)
1 =

l∑

m′=−l

Dl
m,m′(ΩB1V ) B1D(l,m′) ∗

1 (G.22)

Secondly, we will make use of the Wigner-Eckart theorem to evaluate the matrix elements.
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Operator Ĵa

This operator acts only on λ2 so matrix elements are diagonal in λ1 and we have:

for l = 0

〈λ2(Ω)|OK̂(0,0)
a (Ω)|λ′2(Ω)〉 = − 1√

3
δλ2,λ′2

L2(L2 + 1) (G.23)

for l = 2

〈λ2(Ω)|OK̂(2,m)
a (Ω)|λ′2(Ω)〉 = δL2,L′2

δM2,M ′
2
(−)(L2−K2)

√√√√ (2L2 + 3)!

24(2L2 − 2)!
×

×




L2 2 L2

−K2 m K ′
2



 (G.24)

In the last equation we made use of the Wigner-Eckart thorem, as explained in Appendix J.

Now it is possible to write the matrix element:

〈λ1λ2|Ĵa|λ′1λ′2〉 = δλ1,λ′1
δL2,L′2

δM2,M ′
2

[

−δK2,K′
2

1√
3

OD(0,0)
2 L2(L2 + 1)+

+(−)(L2−K2) OD
(2,K2−K′

2)
2

√√√√ (2L2 + 3)!

24(2L2 − 2)!
×

×




L2 2 L2

−K2 K2 −K ′
2 K ′

2







 (G.25)

Operator Ĵb

Also this operator acts only on λ2 but it is defined in V F .

For l = 0

〈λ2(Ω)|V K̂(0,0)
b (Ω)|λ′2(Ω)〉 = − 1√

3
δλ2,λ′2

L2(L2 + 1) (G.26)

for l = 2

〈λ2(Ω)|V K̂(2,m)
b (Ω)|λ′2(Ω)〉 = δL2,L′2

δK2,K′
2
(−)(L2−M2)

√√√√ (2L2 + 3)!

24(2L2 − 2)!
×

×




L2 2 L2

−M2 −m M ′
2



 (G.27)
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In the last equation we made use of the Wigner-Eckart thorem, as explained in appendix J.

Now it is possible to write the matrix element:

〈λ1λ2|Ĵb|λ′1λ′2〉 = δλ1,λ′1
δL2,L′2

δK2,K′
2

[

−δM2,M ′
2

1√
3

V D(0,0)
1 L2(L2 + 1)+

+(−)(L2−M2) V D
(2,M ′

2−M2)
1

√√√√ (2L2 + 3)!

24(2L2 − 2)!
×

×




L2 2 L2

−M2 M2 −M ′
2 M ′

2







 (G.28)

Operator Ĵc

This operator is analogous to Ĵa, but acting only on λ1 and defined in V F , so:

for l = 0

〈λ1(ΩV )|V K̂(0,0)
c (ΩV )|λ′1(ΩV )〉 = − 1√

3
δλ1,λ′1

L1(L1 + 1) (G.29)

for l = 2

〈λ1(ΩV )|V K̂(2,m)
c (ΩV )|λ′1(ΩV )〉 = δL1,L′1

δM1,M ′
1
(−)(L1−K1)

√√√√ (2L1 + 3)!

24(2L1 − 2)!
×

×




L1 2 L1

−K1 m K ′
1



 (G.30)

In the last equation we made use of the Wigner-Eckart thorem, as explained in appendix J.

Now it is possible to write the matrix element:

〈λ1λ2|Ĵc|λ′1λ′2〉 = δλ2,λ′2
δL1,L′1

δM1,M ′
1

[

−δK1,K′
1

1√
3

V D(0,0)
1 L1(L1 + 1)+

+(−)(L1−K1) V D
(2,K1−K′

1)
1

√√√√ (2L1 + 3)!

24(2L1 − 2)!
×

×




L1 2 L1

−K1 K1 −K ′
1 K ′

1







 (G.31)

Operator Ĵd

The spherical tensorial operator K̂(2)
d acts on both the sub-spaces of the rotations and the

Wigner-Eckart theorem would be useful if we employed the coupled representation. Because
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we are working with the uncoupled representation, it is easier to use the explicit formulas:

for l = 0

〈λ1λ2|V K̂(0,0)
d |λ′1λ′2〉 = − 1√

3
δL1,L′1

δM1,M ′
1
δL2,L′2

δK2,K′
2
×

×
[
1

2

(
δK1,K′

1−1δM2,M ′
2−1c

−
L1,K1+1c

−
L2,M2+1+

+δK1,K′
1+1δM2,M ′

2+1c
+
L1,K1−1c

+
L2,M2−1

)
+

+ δK1,K′
1
δM2,M ′

2
K1M2

]
(G.32)

for l = 2

〈λ1λ2|V K̂(2,0)
d |λ′1λ′2〉 =

1√
6
δL1,L′1

δM1,M ′
1
δL2,L′2

δK2,K′
2
×

×
[
−1

2

(
δK1,K′

1−1δM2,M ′
2−1c

−
L1,K1+1c

−
L2,M2+1+

+δK1,K′
1+1δM2,M ′

2+1c
+
L1,K1−1c

+
L2,M2−1

)
+

+ δK1,K′
1
δM2,M ′

2
2K1M2

]
(G.33)

〈λ1λ2|V K̂(2,±1)
d |λ′1λ′2〉 = ∓1

2
δL1,L′1

δM1,M ′
1
δL2,L′2

δK2,K′
2
×

×
(
δK1,K′

1±1δM2,M ′
2
c±L1,K1∓1M2+

+δK1,K′
1
δM2,M ′

2∓1K1c
∓
L2,M2±1

)
(G.34)

〈λ1λ2|V K̂(2,±2)
d |λ′1λ′2〉 =

1

2
δL1,L′1

δM1,M ′
1
δL2,L′2

δK2,K′
2
δK1,K′

1±1δM2,M ′
2∓1 ×

×c±L1,K1∓1c
∓
L2,M2±1 (G.35)

and the matrix element will be

〈λ1λ2|Ĵd|λ′1λ′2〉 = −2
∑

l=0,2

l∑

m=−l

V D(l,m)
1 〈λ1λ2|V K̂(l,m)

d |λ′1λ′2〉 (G.36)

Potential dependent part

To evaluate the potential dependent function it sufficient to remember that Γ̃P 1/2
eq = 0, so

F (Ω) = −P−1/2
eq (Ω)Ĵ (Ω,ΩV )P 1/2

eq (Ω) =

= −P−1/2
eq (Ω)Ĵa(Ω)P 1/2

eq (Ω)− P−1/2
eq (Ω)Ĵb(Ω)P 1/2

eq (Ω) =

= Fa(Ω) + Fb(Ω) (G.37)
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The operators Ĵc and Ĵd do not contribute to F (Ω) because they contain derivatives with

respect to ΩV and the equilibrium distribution probability depends only on Ω.

To build F (Ω) it is useful to evaluate some derivatives (all operators act on Ω so this

dependence will be omitted):

OĴZU = −
∑

ν,µ

εν,µµDν
0,µ (G.38)

V ĴZU = 0 (G.39)

OĴ±U = −
∑

ν,µ

εν,µc
±
ν,µDν

0,µ±1 (G.40)

V Ĵ±U = −
∑

ν,µ

εν,µc
∓
ν,0Dν

∓1,µ (G.41)

where ν takes the even values from 0 to 4 and µ the even values from −ν to ν.

From these derivatives one obtains:

OĴ2
ZU =

∑

ν,µ

εν,µµ
2Dν

0,µ (G.42)

V Ĵ2
ZU = 0 (G.43)

OĴ2
±U =

∑

ν,µ

εν,µc
±
ν,µc

±
ν,µ±1Dν

0,µ±2 (G.44)

V Ĵ2
±U =

∑

ν,µ

εν,µc
∓
ν,0c

∓
ν,∓1Dν

∓2,µ (G.45)

OĴ+
OĴ−U =

∑

ν,µ

εν,µc
−
ν,µc

+
ν,µ−1Dν

0,µ (G.46)

OĴ−
OĴ+U =

∑

ν,µ

εν,µc
+
ν,µc

−
ν,µ+1Dν

0,µ (G.47)

V Ĵ+
V Ĵ−U = V Ĵ−

V Ĵ+U =
∑

ν,µ

εν,µν(ν + 1)Dν
0,µ (G.48)

OĴZ
OĴ±U =

∑

ν,µ

εν,µc
±
ν,µ(µ± 1)Dν

0,µ±1 (G.49)

OĴ±
OĴZU =

∑

ν,µ

εν,µc
±
ν,µµDν

0,µ±1 (G.50)

V ĴZ
V Ĵ±U = ∓

∑

ν,µ

εν,µc
∓
ν,0Dν

∓1,µ (G.51)
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V Ĵ±
V ĴZU = 0 (G.52)

(
OĴZU

)2
=

∑

ν,µ

∑

ν′,µ′
(−)µ−µ′εν,µεν′,µ′µµ′

∑

j

[j]




ν ν ′ j

0 0 0



×

×




ν ν ′ j

µ µ′ −(µ + µ′)



Dj
0,µ+µ′ (G.53)

(
V ĴZU

)2
= 0 (G.54)

(
OĴ±U

)2
=

∑

ν,µ

∑

ν′,µ′
(−)µ−µ′εν,µεν′,µ′c

±
ν,µc

±
ν′,µ′

∑

j

[j]




ν ν ′ j

0 0 0



×

×




ν ν ′ j

µ± 1 µ′ ± 1 −(µ + µ′ ± 2)



Dj
0,µ+µ′±2 (G.55)

(
V Ĵ±U

)2
=

∑

ν,µ

∑

ν′,µ′
(−)µ−µ′εν,µεν′,µ′c

∓
ν,0c

∓
ν′,0

∑

j

[j]




ν ν ′ j

∓1 ∓1 ±2



×

×




ν ν ′ j

µ µ′ −(µ + µ′)



Dj
∓2,µ+µ′ (G.56)

(OĴ+U)(OĴ−U) =
∑

ν,µ

∑

ν′,µ′
(−)µ−µ′εν,µεν′,µ′c

+
ν,µc

−
ν′,µ′

∑

j

[j]




ν ν ′ j

0 0 0



×

×




ν ν ′ j

µ + 1 µ′ − 1 −(µ + µ′)



Dj
0,µ+µ′ (G.57)

(V Ĵ+U)(V Ĵ−U) =
∑

ν,µ

∑

ν′,µ′
(−)µ−µ′εν,µεν′,µ′c

−
ν,0c

+
ν′,0

∑

j

[j]




ν ν ′ j

−1 1 0



×

×




ν ν ′ j

µ µ′ −(µ + µ′)



Dj
0,µ+µ′ (G.58)

(OĴZU)(OĴ±U) = −
∑

ν,µ

∑

ν′,µ′
(−)µ−µ′εν,µεν′,µ′µc±ν′,µ′

∑

j

[j]




ν ν ′ j

0 0 0



×
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×




ν ν ′ j

µ µ′ ± 1 −(µ + µ′ ± 1)



Dj
0,µ+µ′±1 (G.59)

(V ĴZU)(V Ĵ±U) = 0 (G.60)

where c±ν,µ =
√

ν(ν + 1)− µ(µ± 1) and [j] = (2j + 1).

Finally let’s recall that

P−1/2
eq ĴαĴβP 1/2

eq =
1

4

[(
ĴαU

) (
ĴβU

)
− 2ĴαĴβU

]
(G.61)

with α, β = ±, Z.

Function Fa(Ω)

The first addend of the function F is given by

Fa = −
∑

l,m

OD(l,m)
2 P−1/2

eq K̂(l,m)
a P 1/2

eq = −
∑

l,m

OD(l,m)
2 F (l,m)

a (G.62)

All the components can be written as

F (l,m)
a = −

∑

µ,µ′

∑

j

f (l,m)
a (µ, µ′, j)Dj

0,µ+µ′+m (G.63)

with

f (0,0)
a (µ, µ′, j) = − 1

4
√

3

∑

ν





(−)µ−µ′ [j]

∑

ν′
εν,µεν′,µ′




ν ν ′ j

0 0 0



×

×








ν ν ′ j

µ + 1 µ′ − 1 −(µ + µ′)



 c+
ν,µc

−
ν′,µ′+

+




ν ν ′ j

µ µ′ −(µ + µ′)



 µµ′









− δj,νδµ′,02εν,µν(ν + 1) (G.64)

f (2,0)
a (µ, µ′, j) =

1

4
√

6

∑

ν





(−)µ−µ′ [j]

∑

ν′
{εν,µεν′,µ′




ν ν ′ j

0 0 0



×

×



−




ν ν ′ j

µ + 1 µ′ − 1 −(µ + µ′)



 c+
ν,µc

−
ν′,µ′+




ν ν ′ j

µ µ′ −(µ + µ′)



 2µµ′









+
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+δj,νδµ′,02εν,µ

[
ν(ν + 1)− 3µ2

]
(G.65)

f (2,±1)
a (µ, µ′, j) = ±1

4

∑

ν



(−)µ−µ′ [j]
∑

ν′
εν,µεν′,µ′µ c±ν′,µ′




ν ν ′ j

0 0 0



×

×




ν ν ′ j

µ µ′ ± 1 −(µ + µ′ ± 1)







 + δj,νδµ′,0εν,µc
±
ν,µ(2µ± 1) (G.66)

f (2,±2)
a (µ, µ′, j) =

1

8

∑

ν



(−)µ−µ′ [j]
∑

ν′
εν,µεν′,µ′c

±
ν,µc

±
ν′,µ′




ν ν ′ j

0 0 0



×

×




ν ν ′ j

µ± 1 µ′ ± 1 −(µ + µ′ ± 2)







− δj,νδµ′,02εν,µc
±
ν,µc

±
ν,µ±1(G.67)

As can be seen from the above equations, we have changed the ”natural” order of the

indexes, i.e. summation ordered as
∑

ν
∑

µ
∑

ν′
∑

µ′
∑

j, to the quite ”non-natural” order
∑

µ
∑

µ′
∑

j
∑

ν
∑

ν′ . This ordering permits us to write the matrix elements in such a way

that the selection rules are evident and all the components f (l,m)
a can be calculated only

once, speeding up the algorithm. The matrix element, diagonal in λ1, is

〈λ2|Fa|λ′2〉 = −
∑

l,m

OD(l,m)
2

∑

µ,µ′,j

f (l,m)
a (µ, µ′, j)〈λ2|Dj

0,µ+µ′+m|λ′2〉 =

= −δM2,M ′
2
(−)M2−K2

√
[L2, L′2]

∑

l,m

OD(l,m)
2

∑

µ,µ′,j

f (l,m)
a (µ, µ′, j)×

×




L2 j L′2

−M2 0 M2








L2 j L′2

−K2 µ + µ′ + m K ′
2



 =

= −δM2,M ′
2
(−)M2−K2

√
[L2, L′2]

∑

l

∑

µ,µ′,j

OD
(l,K2−K′

2−µ−µ′)
2 f (l,K2−K′

2−µ−µ′)
a (µ, µ′, j)×

×




L2 j L′2

−M2 0 M2








L2 j L′2

−K2 K2 −K ′
2 K ′

2



 (G.68)

and the variability of the indexes is





−4 ≤ µ ≤ 4

max{−4, (K2 −K ′
2 − µ + 2)} ≤ µ′ ≤ min{4, (K2 −K ′

2 − µ− 2)}

max{0, |K2 −K ′
2 − µ− µ′|, |L2 − L′2|} ≤ j ≤ min{8, (L2 + L′2)}

|µ| ≤ ν ≤ 4

max{|µ′|, |ν − j|} ≤ ν ′ ≤ min{4, (ν + j)}

(G.69)
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which represent the ranges that avoid the explicit zeroes of the 3j symbols in the expressions.

Function Fb(Ω)

Analogously, the second addend of the function F is given by

Fb = −
∑

l,m

V D(l,m)
1 P−1/2

eq K̂(l,m)
b P 1/2

eq = −
∑

l,m

V D(l,m)
1 F (l,m)

b (G.70)

All the components can be written as

F (l,m)
b = −

∑

µ,µ′

∑

j

f (l,m)
b (µ, µ′, j)Dj

−m,µ+µ′ (G.71)

with

f (0,0)
b (µ, µ′, j) = − 1

4
√

3

∑

ν





(−)µ−µ′ [j]

∑

ν′
εν,µεν′,µ′




ν ν ′ j

1 1 0



×

×




ν ν ′ j

µ µ′ −(µ + µ′)



 c−ν,0c
+
ν′,0 − δj,νδµ′,02εν,µν(ν + 1)

f (2,0)
b (µ, µ′, j) =

1√
2
f (0,0)

b (µ′, 0, j)

f (2,±1)
b (µ, µ′, j) = −1

4

∑

ν

δj,νδµ′,0εν,µc
∓
ν,0

f (2,±2)
b (µ, µ′, j) =

1

8

∑

ν



(−)µ−µ′ [j]
∑

ν′
εν,µεν′,µ′c

∓
ν,0c

∓
ν′,0




ν ν ′ j

∓1 ∓1 ±2



×

×




ν ν ′ j

µ µ′ −(µ + µ′)







− δj,νδµ,µ′2εν,µc
∓
ν,0c

∓
ν,∓1 (G.72)

As can be seen from the above equations, we have changed the ”natural” order of the

indexes, i.e. summation ordered as
∑

ν
∑

µ
∑

ν′
∑

µ′
∑

j, to the quite ”non-natural” order
∑

µ
∑

µ′
∑

j
∑

ν
∑

ν′ . This ordering permits us to write the matrix elements in such a way

that the selection rules are evident and all the components f (l,m)
b can be calculated only

once, speeding up the algorithm. The matrix element, diagonal in λ1, is

〈λ2|Fb|λ′2〉 = −
∑

l,m

V D(l,m)
1

∑

µ,µ′,j

f (l,m)
b (µ, µ′, j)〈λ2|Dj

−m,µ+µ′|λ′2〉 =

= −(−)M2−K2

√
[L2, L′2]

∑

l,m

V D(l,m)
1

∑

µ,µ′,j

f (l,m)
b (µ, µ′, j)×
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×




L2 j L′2

−M2 −m M ′
2








L2 j L′2

−K2 µ + µ′ K ′
2



 =

= −(−)M2−K2
∑

l

∑

µ,µ′,j

V D
(l,M ′

2−M2)
1 f

(l,M ′
2−M2)

b (µ, µ′, j)×

×




L2 j L′2

−M2 M2 −M ′
2 M ′

2








L2 j L′2

−K2 K2 −K ′
2 K ′

2



 (G.73)

and the variability of the indexes is






−4 ≤ µ ≤ 4

max{−4, (K2 −K ′
2 − µ)} ≤ µ′ ≤ min{4, (K2 −K ′

2 − µ)}

max{0, |K2 −K ′
2 − µ− µ′|, |L2 − L′2|} ≤ j ≤ min{8, (L2 + L′2)}

|µ| ≤ ν ≤ 4

max{|µ′|, |ν − j|} ≤ ν ′ ≤ min{4, (ν + j)}

(G.74)

which represent the ranges that avoid the explicit zeroes of the 3j symbols in the expressions.

Symmetrization of diffusive operator

The diffusive operator Γ̃ is Hermitian and its associated matrix, with the basis set given

in eq. (G.8), is Hermitian. It would be desirable to work with a real symmetric matrix in

order to simplify the further operations to be done during the Lanczos tridiagonalization.

Inspecting the matrix elements one observes that there is a symmetry for the concerted

change in sign of the indexes K1, M2 and K2. Precisely, if T̂ is an operator which changes

the sign of the three indexes, we have:

T̂ 〈L1M1K1, L2M2K2|Γ̃|L′1M ′
1K

′
1, L

′
2M

′
2K

′
2〉 =

= 〈L1M1 −K1, L2 −M2 −K2|Γ̃|L′1M ′
1 −K ′

1, L
′
2 −M ′

2 −K ′
2〉

= (−)K1+M2+K2(−)K′
1+M ′

2+K′
2〈L1M1K1, L2M2K2|Γ̃|L′1M ′

1K
′
1, L

′
2M

′
2K

′
2〉∗ (G.75)

This symmetry permits to introduce a unitary transformation which transforms the Hermi-

tian matrix into a real symmetric one. Instead of applying the transformation to the matrix

associated to the diffusive operator we prefer to define a transformed basis. The matrix el-

ements of the operator in the new basis are written as linear combinations of the elements
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Appendix G. Evaluation of matrix elements in a two body model

in the original basis. This procedure complicates a little bit the formalism but saves a lot of

computational time. The new basis set is

|Λ〉 = N ei π
4 (j−1) (|L1M1K1, L2M2K2〉+ js|L1M1 −K1, L2 −M2 −K2〉) (G.76)

where the indexes L1, M1 and L2 have the same variability of the old base, while for the

other indexes we have





K1 = 0 K2 = 0 M2 = 0 j = (−)L1+L2

K1 = 0 K2 = 0 0 < M2 ≤ L2 j = ±1

K1 = 0 0 < K2 ≤ L2 −L2 ≤ M2 ≤ L2 j = ±1

0 < K1 ≤ L1 −L2 ≤ K2 ≤ L2 −L2 ≤ M2 ≤ L2 j = ±1

(G.77)

The other two symbols to be defined are

s = (−)K1+M2+K2 (G.78)

and

N = [2 (1 + δK1,0δM2,0δK2,0)]
−1/2 (G.79)

It is straightforward to proof that in the new basis the matrix elements of the diffusive

operator are

〈Λ|Γ̃|Λ′〉 = 2NN ′
[
δj,j′Re

{
〈+|Γ̃|+〉+ j′s′〈+|Γ̃|−〉

}
+

+δj,−j′ j
′ Im

{
〈+|Γ̃|+〉+ j′s′〈+|Γ̃|−〉

}]
(G.80)

where |+〉 = |L1M1K1, L2M2K2〉 and |−〉 = T̂ |+〉.

G.2 Starting vector

Let’s recall that the diffusive operator is spanned over the following basis:

|λ〉 = |L1M1K1〉 ⊗ |L2M2K2〉 (G.81)

with

|L1M1K1〉 =

√
[L1]

8π2
DL1

M1,K1
(ΩV ) (G.82)

|L2M2K2〉 =

√
[L2]

8π2
DL2

M2,K2
(Ω) (G.83)
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The starting vector is defined by the physical observable:

|v〉 =

√√√√ 2[J ]

(1 + δK,K′)
CJ

M,KK′(ΩO)P 1/2
eq (G.84)

Using the of properties of Wigner matrices (see appendix H

CJ
M,KK′(ΩO) =

∑

M ′
DJ

M,M ′(ΩV )CJ
M ′,KK′(Ω) =

=
1

2

∑

M ′
DJ

M,M ′(ΩV )
[
DJ

M ′,K(Ω) +DJ
M ′,K′(Ω)

]
(G.85)

Given:

P 1/2
eq (ΩV ,Ω) = N e−U(Ω)/2 (G.86)

the starting vector can be rewritten as

|v〉 =

√√√√ [J ]

2(1 + δK,K′)

∑

M ′
DJ

M,M ′(ΩV )
[
DJ

M ′,K(Ω) +DJ
M ′,K′(Ω)

]
P 1/2

eq (Ω) (G.87)

The projection of starting vector on basis is

〈v|λ〉 = 〈v|L1M1K1, L2M2K2〉 =

=

√√√√ [J ]

2(1 + δK,K′)

∑

M ′
〈DJ

M,M ′|L1M1K1〉 ×

×
[
〈DJ

M ′,KP 1/2
eq |L2M2K2〉+ 〈DJ

M ′,K′P 1/2
eq |L2M2K2〉

]
=

=

√√√√ [J ]

2(1 + δK,K′)

∑

M ′

√
[L1]

8π2

∫
dΩVDJ

M,M ′DL1
M1,K1

×

×
√

[L2]

8π2

[∫
dΩDJ

M ′,KDL2
M2,K2

P 1/2
eq +

∫
dΩDJ

M ′,K′DL2
M2,K2

P 1/2
eq

]
=

= N

√√√√ [L2]

2(1 + δK,K′)
δJ,L1δM,M1δK1,M2 ×

×
[
(−)M2−K

∫ π

0
dβ sin(β)dL1

−K1,−K(β)dL2
K1,K2

(β)
∫ 2π

0
dγe−i(K2−K)γe−U(β,γ)/2+

+(−)M2−K′
∫ π

0
dβ sin(β)dL1

−K1,−K′(β)dL2
K1,K2

(β)
∫ 2π

0
dγe−i(K2−K′)γe−U(β,γ)/2

]

(G.88)

The orienting potential is

U(β, γ) = c2,0D2
0,0 + c2,2

(
D2

0,2 +D2
0,−2

)
+
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+c4,0D4
0,0 + c4,2

(
D4

0,2 +D4
0,−2

)
+ c4,4

(
D4

0,4 +D4
0,−4

)
(G.89)

and given that

d2
0,−2(β) = d2

0,2(β) (G.90)

d4
0,−2(β) = d4

0,2(β) (G.91)

d4
0,−4(β) = d4

0,4(β) (G.92)

(G.93)

the coefficients cl,m are real and the potential can be rewritten as

U(β, γ) = −2u0(β)− 2u2(β) cos(2γ)− 2u4(β) cos(4γ) (G.94)

with

u0(β) = −
[
c2,0d

2
0,0(β) + c4,0d

4
0,0(β)

]
/2 (G.95)

u2 = −c2,2d
2
0,2(β)− c4,2d

4
0,2(β) (G.96)

u4 = −c4,4d
4
0,4(β) (G.97)

So we are left to evaluate the following integral:

∫ π

0
dβ sin(β)dL1

−K1,−K(β)dL2
K1,K2

(β)eu0(β)
∫ 2π

0
dγe−i(K2−K)γeu2(β) cos(2γ)+u4(β) cos(4γ) (G.98)

The idea is to try to evaluate analytically the integral in γ:

A(β) =
∫ 2π

0
dγe−i(K2−K)γeu2 cos(2γ)+u4 cos(4γ) = (G.99)

=
∫ 2π

0
dγ cos((K2 −K)γ)eu2 cos(2γ)+u4 cos(4γ) = (G.100)

=
1

2

∫ 4π

0
dθ cos(nθ)eu2 cos(θ)+u4 cos(2θ) = (G.101)

= 2
∫ π

0
dθ cos(nθ)eu2 cos(θ)+u4 cos(2θ) (G.102)

where n = (K2 −K)/2 and the integral is non zero only for integer values of n.

It seems that it is not possible to give an analytical expression for A(β), but it is possible

to give an explicit evaluation. The modified Bessel functions of first kind represent the
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coefficients of the expansion of exponentials of trigonometric functions over cosines, so we

can write:

eu4cos(2θ) = I0(|u4|) + 2
∞∑

s=1

(−)sIs(|u4|)cos(2sθ) (G.103)

with In(z) a modified Bessel function of first kind of integer order n and argument z.

Substituting the last expression in A(β) one obtains:

A(β) = 2
∫ π

0
dθ cos(nθ)eu2 cos(θ)eu4 cos(2θ) =

= 2
∫ π

0
dθ cos(nθ)eu2 cos(θ)

[

I0(|u4|) + 2
∞∑

s=1

(−)sIs(|u4|)cos(2sθ)
]

=

= 2π(−)nI0(|u4|)In(|u2|) + 4
∞∑

s=1

(−)sIs(|u4|)
∫ π

0
dθcos(nθ)cos(2sθ)eu2cos(θ) =

= 2π(−)nI0(|u4|)In(|u2|) +

+2
∞∑

s=1

(−)sIs(|u4|)
∫ π

0
dθ [cos ((n− 2s)θ) + cos ((n + 2s)θ)] eu2cos(θ) =

= 2π(−)nI0(|u4|)In(|u2|) + 2π(−)n
∞∑

s=1

(−)sIs(|u4|) [In−2s(|u2|) + In+2s(|u2|)]

(G.104)

As can be seen if the potential does not depend on γ than the integral is A(β) = 2π,

while in the case of only u4 = 0 the integral has the explicit ”simple” expression A(β) =

2π(−)nIn(|u2|). In the general case the integral is expressed as an infinite sum of products

of modified Bessel functions of first kind.

Let’s call ∆n(|u2|, |u4|) = (−)n
∞∑

s=1

(−)sIs(|u4|) [In−2s(|u2|) + In+2s(|u2|)] and n(′) = |K2 −

K(′)|/2, then the projection of the starting vector on the basis is:

〈v|λ〉 = N

√√√√ [L2]

2(1 + δK,K′)
δJ,L1δM,M1δK1,M2 ×

×
[
(−)M2−K+n

∫ π

0
dβ sin(β)dL1

−K1,−K(β)dL2
K1,K2

(β)I0(|u4|)In(|u2|)+

+(−)M2−K
∫ π

0
dβ sin(β)dL1

−K1,−K(β)dL2
K1,K2

(β)∆n(|u2|, |u4|) +

+(−)M2−K′+n′
∫ π

0
dβ sin(β)dL1

−K1,−K′(β)dL2
K1,K2

(β)I0(u4)In′(|u2|)+

+(−)M2−K′
∫ π

0
dβ sin(β)dL1

−K1,−K′(β)dL2
K1,K2

(β)∆n′(|u|2, |u4|)
]

(G.105)
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The starting vector is non zero if L1 = J , M1 = M and K1 −M2 = 0. Due to the global

spatial rotational invariance, the two indexes L1 and M1 are diagonal in matrix elements, so

once the physical observable has be chosen, they can be set equal to, respectively, J and M .

Moreover, only functions with J = 2 and M = 0 will be employed so only basis functions

with L1 = 2 and M1 = 0 will contribute to the determination of spectral densities.

By a simple substitution it is possible to change, in the matrix elements, the two indexes

K1 and M2 with the two linear combinations M± = K1 ±M2. This substitution is useful in

the case that ΩV = 0 and the diffusion tenor V D1 is axial. In this case also M− becomes

diagonal and only basis functions with M− = 0 are needed. Considering the transformation

given in eq. (G.76), the representation of the starting vector on the new basis will be in

general complex. It is easier to write the Lanczos algorithm is the vector is only real (or only

complex), so we define the following observables

C±
K,K′ = C2

0,KK′ ± C2 ∗
0,KK′ =

[
D2

0,K + (−)KD2
0,−K

]
±

[
D2

0,K′ + (−)K′D2
0,−K′

]
(G.106)

The starting vector for the two observables is

|v±〉 = N±
KK′C±

KK′P 1/2
eq (G.107)

where the normalization constant is

N±
KK′ =

4(1 + δK,K′)± 2(δK,0 + δK′,0)± 4(−)K+K′
δK,−K′

[2]
(G.108)

The representation on the basis is given by

〈v±|Λ〉 ∝ N±
KK′N ei π

4 (j−1)
(
〈C±

KK′P 1/2
eq |L1M1K1, L2M2K2〉+

+js〈C±
KK′P 1/2

eq |L1M1 −K1, L2 −M2 −K2〉
)

(G.109)

With some boring passages it is possible to proof that

js〈C±
KK′P 1/2

eq |L1M1 −K1, L2 −M2 −K2〉 = ±j〈C±
KK′P 1/2

eq |L1M1K1, L2M2K2〉∗ (G.110)

implying that

〈v±|Λ〉 ∝ N±
KK′N ei π

4 (j−1)
(
δj,±1Re

{
〈C±

KK′P 1/2
eq |L1M1K1, L2M2K2〉

}
+

+δj,∓1Im
{
〈C±

KK′P 1/2
eq |L1M1K1, L2M2K2〉

})
(G.111)
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Due to the fact that the representation of the starting vector on the new basis is a linear

combination of integrals (G.105) only the real part is non zero, i.e. the starting vector |v+〉

is non-zero only for j = 1 (real vector) and |v−〉 is non-zero only for j = −1 (imaginary

vector):

〈v+|Λ〉 ∝ N+
KK′N δj,1〈C+

KK′P 1/2
eq |L1M1K1, L2M2K2〉 (G.112)

〈v−|Λ〉 ∝ N−
KK′N δj,−1〈C−

KK′P 1/2
eq |L1M1K1, L2M2K2〉 (G.113)

In the equation for |v−〉 we omitted the complex i factor because before running the Lanczos

tridiagonalization the starting vector is normalized and being the complex i factor is only a

scaling factor that is removed in the normalization procedure and the vector, effectively, is

real. In the case that DY Z and DXY for both the probe and the cage are zero in the OF and

VF, respectively, than only matrix elements with j = 1 contribute to the spectral densities.
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Properties of Wigner matrices

In this appendix we report some useful properties of Wigner matrices.

Definition

A Wigner matrix is a function of the set of Euler angles Ω:

DL
M,K (Ω) = e−iMαdL

M,K (β) e−iKγ (H.1)

where dL
M,K (β) is the so called reduced Wigner matrix. A common formula to calculate its

values is:

dL
M,K (β) =

∑

h

(−)h [(L + M)!(L−M)!(L + K)!(L−K)!]1/2

(L + M − h)!(L−K − h)!h!(h + K −M)!
×

×(cos β/2)2L+M−K−2h(sin β/2)2h+K−M

(H.2)

where the summation runs over all values of h for which the arguments of the factorials are

non negative.

Symmetry

DL ∗
M,K (Ω) = (−)M−KDL

−M,−K (Ω) = DL
K,M(−Ω) (H.3)

Product

DL1
M1,K1

(Ω)DL2
M2,K2

(Ω) =
∑

L3

[L3]




L1 L2 L3

M1 M2 M3



×

×




L1 L2 L3

K1 K2 K3



DL3 ∗
M3,K3

(Ω)

(H.4)
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with |L1−L2| ≤ L3 ≤ (L1 + L2), M3 = − (M1 + M2), K3 = − (K1 + K2) and [L3] = 2L3+1.

Internal product

given two Wigner matrices (Ω dependence will be omitted):
∫

dΩDL1 ∗
M1,K1

DL2
M2,K2

=
8π2

[L1]
δL1,L2δM1, M2δK1,K2 (H.5)

among three Wigner matrices:

∫
dΩDL1

M1,K1
DL2

M2,K2
DL3

M3,K3
= 8π2




L1 L2 L3

M1 M2 M3








L1 L2 L3

K1 K2 K3



 (H.6)

Transformation by rotation

give and irreducible spherical tensor T (l, m)
a defined in frame a, it’s expression in frame b is

given by:

T (l,m)
a =

∑

k

Dl
m,k (Ωa→b) T (l,k)

b (H.7)

where Ωa→b is the set of Euler angles transforming from a to b. The inverse transformation

is:

T (l,k)
b =

∑

m

Dl ∗
m,k (Ωb→a) T (l,m)

a (H.8)

Angular momentum operators

a Wigner matrix which depends on a set of Euler angles Ω transforming from a frame a to a

frame b is an eigenfunction of the angular momentum operators defined on the two frames,

and also of their z projections.

In frame a:




aĴ2DL
M,K (Ω) = L (L + 1)DL

M,K (Ω)

aĴZDL
M,K (Ω) = −MDL

M,K (Ω)

aĴ±DL
M,K (Ω) = −c∓L,MDL

M∓1,K (Ω)

(H.9)

In frame b:




bĴ2DL
M,K (Ω) = L (L + 1)DL

M,K (Ω)

bĴZDL
M,K (Ω) = −KDL

M,K (Ω)

bĴ±DL
M,K (Ω) = −c±L,K DL

M,K±1 (Ω)

(H.10)

with c±L,M =
√

L (L + 1)−M (M ± 1).
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Irreducible spherical representation of

a Smoluchowski operator

In the SRLS model it is convenient to express the potential independent rotational diffusion

operator in its spherical irreducible representation. It is substantially a sum of terms of the

type Ĵ
†
DĴ . It is possible to write this operator, which is expressed in Cartesian coordinates,

as the contraction of rank zero of a spherical tensor of rank two, D(2), and a spherical tensor

operator of rank two, K̂(2)
, i.e.

Ĵ
†
DĴ =

[
D(2) ⊗ K̂(2)

]0

0
(I.1)

The contraction is the combination of three components

[
D(2) ⊗ K̂(2)

]0

0
= D(0)K̂(0) ⊕D(1)K̂(1) ⊕D(2)K̂(2) (I.2)

The component of rank zero gives informations on the isotropic characteristics, the rank one

part is linked to the asymmetry and the rank two component contains informations of the

anisotropy.

Because the diffusion tensor is symmetric then D(1) = 0 so only the components of rank zero

and two remain to be considered. Using the standard procedure it is possible to write:

D(0,0) = − 1√
3

(DXX + DY Y + DZZ) (I.3)

D(2,0) =
1√
6

(2DZZ −DXX −DY Y ) (I.4)

D(2,±1) = ∓ (DXZ ± iDY Z) (I.5)

223



Appendices

D(2,±2) =
DXX −DY Y

2
± iDXY (I.6)

and

K̂(0,0) = − 1√
3

[
1

2

(
Ĵ+ Ĵ− + Ĵ− Ĵ+

)
+ Ĵ2

Z

]
(I.7)

K̂(2,0) =
1√
6

(
3Ĵ2

Z +
√

3K̂(0,0)
)

(I.8)

K̂(2,±1) = ∓1

2

(
ĴZ Ĵ± + Ĵ± ĴZ

)
(I.9)

K̂(2,±2) =
1

2
Ĵ2
± (I.10)

Operator Ĵd has a little different structure from the other three operators:

Ĵd = −V Ĵ
†
(ΩV )V D1Ĵ(Ω)− V Ĵ

†
(Ω)V D1Ĵ(ΩV ) (I.11)

The two angular momentum operators V Ĵ(Ω) and V Ĵ(ΩV ) act on two orthogonal sub-

spaces, so they commute and it is possible to sum the two contributions. The spherical

representation of Ĵd is the same of that given in equations I.7-I.10, multiplied by a factor of

−2.
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Calculation of matrix elements using

the Wigner-Eckart theorem

In SRLS model we introduce the irreducible spherical representation of the diffusive operator.

This is possible, and useful, because SRLS describes a pure rotational problem. Moreover,

we can make use of the Wigner-Eckart theorem [219] to simplify the calculation of matrix

elements.

Let us consider two frames a and b; Ωa→b being the set of Euler angles that transforms

from a to b. Thanks to the Wigner-Eckart theorem we can write, for the components of the

operator K̂(2,m)
a defined in a:

〈LMK|K̂(2,m)
a |L′M ′K ′〉 = (−)L−K




L 2 L′

−K m K ′



 〈LM‖K̂(2)
a ‖L′M ′〉 (J.1)

so if the reduced matrix element is known, the calculation of all the five matrix elements of

the rank 2 tensorial operator simply reduces to the evaluation of five 3j symbols.

The calculation of the reduced matrix element is quite simple if one considers the (2, 2)

component, for which:

〈LMK|K̂(2,2)
a |L′M ′K ′〉 = δLL′δMM ′δK,K′+2

1

2
c+
L,K−1c

+
L,K−2 (J.2)

From Wigner-Eckart theorem one can independently write:

〈LMK|K̂(2,2)
a |L′M ′K ′〉 = (−)L−K




L 2 L′

−K 2 K ′



 〈LM‖K̂(2)
a ‖L′M ′〉 (J.3)
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The last two equations must be equal and this is true only if L = L′ and M = M ′ in the

last equation, that is

〈LMK|K̂(2,2)
a |L′M ′K ′〉 = δLL′δMM ′δK,K′+2(−)L−K




L 2 L

−K 2 K − 2



×

×〈LM‖K̂(2)
a ‖L′M ′〉

(J.4)

Using the Racah formula for 3j symbols one can write



L 2 L

−K 2 K − 2



 = [4! (L−K)! (L + K)! (L−K + 2)! (L + K − 2)!]1/2×

×
√

∆ (L, 2, L)
∑

t

(−)t+L−K

t! (2− t)! (L− 2−K + t)! (4− t)! (L + K − t)! (t− 2)!

(J.5)

where ∆ (L, 2, L) = 4(2L− 2)!/(2L + 3)! and the summation is over all integers t such that

the arguments of the factorials are non-negative.

The formula is different from zero only for t = 2, so the 3j symbol can be expressed in a

simple analytic form



L 2 L

−K 2 K − 2



 = (−)L−K

√
3

2

√
∆ (L, 2, L)

[
(L + K)! (L−K + 2)!

(L−K)! (L + K − 2)!

]

(J.6)

and by expressing

(L + K)! = (L + K − 2)! (L + K − 1) (L + K)

(L−K + 2)! = (L−K)! (L−K + 1) (L−K + 2)

(J.7)

one obtains



L 2 L

−K 2 K − 2



 = (−)L−K

√
3

2

√
∆ (L, 2, L)×

×
√

(L + K − 1) (L−K + 1) (L−K + 2) (L + K)

(J.8)

After some passages one gets:

√
(L + K − 1) (L−K + 1) (L−K + 2) (L + K) = c+

L,K−1c
+
L,K−2 (J.9)

so by comparison the reduced matrix element can be found to be

〈LM‖K̂(2)
a ‖L′M ′〉 = δLL′δMM ′

√√√√ (2L + 3)!

24 (2L− 2)!
(J.10)
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Appendix J. Calculation of matrix elements using the Wigner-Eckart theorem

We can make analogous considerations for the operator defined in b, K̂(2,m)
b . Remembering

that the action of shift operators bĴ± have the opposite behaviour of the shift operators in

a, it can be found that

〈LMK|K̂(2,m)
b |L′M ′K ′〉 = (−)L−M




L 2 L′

−M −m M ′



 〈LK‖K̂(2)
b ‖L′K ′〉 (J.11)

with

〈LK‖K̂(2)
b ‖L′K ′〉 = δLL′δKK′

√√√√ (2L + 3)!

24 (2L− 2)!
(J.12)
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Appendix K

Parallelization analysis

In both E-SpiReS and C++OPPS three parts are parallelized: the building of the matrix, that

building of the starting vector and the matrix vector multiplication in the Lanczos algorithm.

In this appendix we present a short analysis on the efficiency of the parallelization taking as

reference a calculation performed with C++OPPS in the case of basis dimension N = 8855

and rhombic potential. Figures K-1, K-2 and K-3 show, respectively, the calculation time,

speed-up and efficiency of parallelization as functions of the number of processors. The trends

of the three routines and of the global execution are reported as function of the number of

processors. The speed-up, SP , of a calculation is defined as

SP =
t1
tP

(K.1)

where t1 is the calculation time for a sequential run (one processor), while tP is the calculation

time for a parallel run with NP processors. Efficiency, percent, is given by

EP = 100
SP

NP
(K.2)

The speed-up parameter is an index of how faster runs a parallel calculation on NP processors

with respect to the sequential execution. Efficiency, instead, is an index of how efficient is

the speed-up normalized by the number of processors and it indicates how much is the

parallelization efficient, i.e. how much processors are occupied in calculations with respect

to the time spent in communications. In the ideal case of linear scaling, the efficiency would

remain constant at 100%. In the real case of deviation from linearity, efficiency decays while

increasing the number of processors.
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Appendix K. Parallelization analysis

Figure K-1: CPU time as function of the number of processors for N = 8855 calculated for
the starting vector building routine (red line), matrix building routine (green line), Lanczos
algorithm (blue line) and the total simulation (magenta line).

Figure K-2: Speed-up of calculation as function of the number of processors for N = 8855
calculated for the starting vector building routine (red line), matrix building routine (green
line), Lanczos algorithm (blue line) and the total simulation (magenta line).
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Appendices

Figure K-3: Efficiency of parallelization as function of the number of processors for N = 8855
calculated for the starting vector building routine (red line), matrix building routine (green
line), Lanczos algorithm (blue line) and the total simulation (magenta line).

From Figure K-2 it can be seen that the speed-up is not linear with the number of processors.

Part of this deviation should be attributed to the fact that work is not well balanced during

the evaluation of the starting vector. Moreover, there is a not embarrassingly parallel part

in the algorithm: the Lanczos routine. This is due by the fact that before any new iteration

data exchange among processors is required. In particular, the scaling stays quite linear while

the time required for the matrix vector multiplication is lower than that required for the

communication of results. Increasing the number of processors, NP , the computational weight

of the multiplication decreases as 1/NP while the communication time grows as NP log2 (NP )

because scattering is done with a binary tree. An estimation of computational time for a

given dimension N of the basis is

t (N, NP ) ∝ N(N + 1)

NP + 0.3
+ 2NNP log2 (NP ) (K.3)

In the examined case of N = 8855 the minimum is located around 32 processors with an

estimated speed-up of 11 - 12.

To conclude we can say that the matrix build up has been well parallelized, with an efficiency

that remains to about 70% independently on the number of processors. The less efficient

routine, in parallelization, is the Lanczos algorithm and a better parallelization is part of

the future work that will be done on the code.
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