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Riassunto 

Dal 1987 anno in cui il Dott. Pariza e il suo gruppo di ricerca scoprirono i Coniugati 

dell’Acido Linoleico (CLA) molti sono stati gli studi che hanno cercato di definire le 

principali caratteristiche di queste molecole. Caratterizzati da un alto valore biologico gli 

furono attribuiti molti effetti benefici sulla salute umana, come l’effetto anticancerogeno, la 

riduzione del rischio di malattie cardiovascolari e la riduzione del rischio di sviluppo 

dell’aterosclerosi. In seguito gli fu attribuita anche importanza nel miglioramento delle 

performance animali, come l’aumento delle capacità di accrescimento, dell’efficienza 

alimentare e una riduzione della deposizione di grasso con conseguente aumento della massa 

magra. I Coniugati dell’Acido Linoleico (CLA) sono un gruppo d’isomeri geometrici e 

posizionali dell’Acido Linoleico caratterizzati da una catena di 18 atomi di carbonio 

contenente due doppi legami non in posizione classica (cis), ma coniugati dal carbonio 9, 10 o 

11. I doppi legami possono presentare diversa disposizione spaziale dando origine a quattro 

diverse configurazioni: cis/trans, trans/cis, cis/cis e trans/trans. Secondo i carboni ai quali 

sono legati, possono avere diverse posizioni: ([7,9], [8,10], [9,11], [10,12], [11,13] e [12,14]) 

con un totale d’isomeri identificati pari a 24. I due più presenti e più identificati sono il 

C18:2cis9,trans11 (60-85% degli isomeri presenti nella carne e >90% nel latte) e il 

C18:2trans10,cis12. Altri isomeri molto presenti nella carne sono anche il C18:2trans7,cis9 e 

il C18:2trans11,cis13. Grazie alla capacità del rumine di produrre acidi grassi e in particolare 

CLA, si possono trovare soprattutto nei prodotti di origine animale (latte, prodotti lattiero 

caseari e carne). La presenza del doppio legame rende i CLA delle molecole complesse da 

identificare, perché può essere facilmente soggetto a fenomeni d’isomerizzazione o 

epimerizzazione che possono portare a un aumento delle forme di tipo trans/trans con 

conseguente riduzione delle forme cis/trans o trans/cis. Diversi studi hanno cercato di definire 

quale sia il metodo più adatto per l’estrazione del grasso (determinazione estratto etereo, EE) 

e per la successiva trasformazione in composti volatili, ovvero, esteri metilici degli acidi 

grassi (FAME). Per questo motivo parte della mia tesi è stata improntata su un approccio 

metodologico allo scopo di capire tra i tanti metodi quale fosse il più idoneo e che differenze i 

diversi metodi potessero avere. I dati contenuti nei contributi legati all’approccio 

metodologico sono stati raccolti da vitelloni maschi nati da un incrocio tra vacche da latte di 

razza Bruna e tori di razza Bianca Blu del Belgio. Questi animali sono stati allevati presso 

l’azienda sperimentale dell’Università degli Studi di Padova Lucio Toniolo. Durante tutta 

prova sono stati allevati in azienda e alimentati con una dieta a base di unifeed caratterizzata 
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da tre diverse integrazioni di CLA rumino protetti (rpCLA): 0, 8 e 80 g di CLA al giorno per 

ogni animale. La prova è terminata con la macellazione avvenuta in un macello esterno 

all’Università situato a Pergine (Provincia di Trento, Trentino Alto Adige). I tessuti utilizzati 

per le analisi sono stati prelevati in macello ed in laboratorio di Qualità carne durante lo 

svolgimento delle analisi di qualità. I tessuti prelevati e studiati sono stati tre: muscolo 

Longissimus Thoracis, grasso sottocutaneo e fegato. Nel primo contributo (Chapter 2) i tessuti 

(Longissimus Thoracis, grasso sottocutaneo e fegato) sono stati analizzati allo scopo di 

determinare il profilo acidico, confrontando tre diversi metodi di estrazione del grasso (Folch 

(1957), Acellerated Solvent Extraction (ASE) e Jenkins (2010)) e utilizzando come tecnica 

cromatografica la Gas Cromatografia a due dimensioni (GCxGC). La scelta di eseguire un 

confronto metodologico è legata al fatto che secondo il metodo d’analisi utilizzato i risultati 

sono diversi. Di conseguenza, uno degli obiettivi era trovare un metodo che fosse in grado di 

salvaguardare i CLA senza provocare isomerizzazioni. A questo è dovuta la scelta del metodo 

Folch (1957), uno dei più antichi e più utilizzati in matrici di diversa natura. Nato per essere 

usato in campioni con grasso molto ricco di fosfolipidi (come il grasso presente nel cervello), 

lavora a temperatura ambiente utilizzando una miscela di solventi composta da 

cloroformio:metanolo (2:1, v/v). Il metodo Acellerated Solvent Extraction (ASE) è stato 

utilizzato allo scopo di confrontare una metodica che lavora con alte temperature e pressioni 

(120°C e 20 MPa) con una miscela di solventi identica a quella usata nel metodo Folch (1957) 

(cloroformio:metanolo (2:1, v/v)). Grazie alle caratteristiche positive il metodo ASE, negli 

ultimi anni si è molto diffuso. Esso è caratterizzato da una maggiore velocità d’estrazione, un 

ridotto utilizzo di solventi e una minore laboriosità da parte degli operatori. Si pensa che le 

condizioni (temperatura e pressione) a cui lo strumento lavora possano provocare 

isomerizzazioni incrementando gli isomeri con configurazione trans/trans. L’ultimo è un 

metodo diretto che in seguito ad una fase preparativa (di liofilizzazione del campione fatta 

con lo scopo di rimuovere l’acqua) permette di ottenere gli esteri metilici degli acidi grassi 

(FAME) da poter analizzare in GCxGC. Questo metodo richiede un’esterificazione di tipo 

acido-basico. Il lavoro è stato suddiviso in quattro passaggi in modo da: identificare il potere 

di risoluzione e l’incidenza di picchi non identificati, lo studio delle fonti di variazione, test di 

Levene per determinare l’omoscedasticità o eteroscedasticità delle varianze e infine degli 

studi per valutare la correlazione tra metodi. L’incidenza di valori non identificati è legata al 

numero di picchi osservati, che dipendono dalla sensibilità del metodo e dal tessuto 

analizzato: fegato, grasso e muscolo (da 0.04 a 0.08, da 0.05 a 0.06 e da 0.05 a 0.12, 

rispettivamente). La maggiore incidenza di valori nulli è stata osservata nel fegato e in 
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particolare negli acidi grassi a corta/media catena (C8:0 e C10:0) e nel muscolo negli acidi 

grassi C24:0, C20:1t1t unknown isomers e nei PUFAn3 (C20:3n3, C20:4n3, C22:5n6) sempre 

con il metodo Jenkins (2010). Tra tutte le fonti di variazione analizzate lo scopo, era 

considerare le due principali che sono state molto significative (P<0.001) e sono rappresentate 

dal tessuto, dal metodo e dalla loro interazione. L’effetto della dieta è stato significativo per 

gli acidi grassi facenti parte dell’integrazione (C18:0, C18:1cis9 e C18:2trans10,cis12). Dai 

test di Levene è emerso che le varianze sono eteroscedastiche, tranne la dieta che è risultata, 

omoscedastica.  

Il passo successivo è stato considerare una tecnica cromatografica alternativa al GCxGC 

che fosse più specifica per lo studio degli isomeri dei CLA (Chapter 7) Nonostante, il GCxGC 

abbia un maggiore potere di risoluzione non è in grado di identificare tutti gli isomeri dei 

CLA, ma solo i due principali (C18:2cis9,trans11 e C18:2trans10,cis12). Per questo motivo 

sono presenti altre tecniche cromatografiche che permettono un’identificazione più precisa 

come la cromatografia liquida su colonna d’argento (Ag
+
HPLC). Il lavoro è stato svolto in 

collaborazione con il Leibniz Insitute for Farm Animal Biology (Dummerstorf, Germany) e in 

particolare l’unità di Muscle and Biology Growth. L’obiettivo in questo caso era identificare il 

maggior numero d’isomeri dei CLA presenti nel campione. I tessuti analizzati erano: muscolo 

(Longissimus Thoracis), grasso sottocutaneo e fegato. Il grasso (estratto etereo, EE) è stato 

ottenuto con il metodo Folch (1957) cui è seguita poi un’esterificazione acido-basica. Le 

analisi statistiche sono state eseguite considerando gli effetti di dieta, tessuto e ripetizione 

sulla distribuzione degli isomeri. La prima cosa che differenzia questa metodica dal GCxGC è 

il numero di picchi identificati che sono molto più elevati (13 isomeri). Questo tipo di tecnica 

premette un’identificazione precisa di molti isomeri dei CLA con un unico problema 

nell’identificazione dei picchi che si trovano nella regione dei cis/cis (l’ultima a comparire nel 

cromatogramma), per la quale è difficile identificare l’isomero C18:2cis9,cis11. Dai risultati è 

emerso che il tessuto è molto significativo (P<0.001) e la distribuzione degli isomeri è tessuto 

dipendente, con una concentrazione più alta nel grasso. L’effetto della dieta, in particolare 

quella con integrazione 8.0 g di CLA al giorno, è risultato significativo per gli isomeri 

principali (C18:2cis9,trans11 e C18:2trans10,cis12).  

Nella seconda parte della tesi sono state prese in considerazione le fonti di variazione 

del profilo acidico, come razza, sesso, dieta, ordine di parto, età e tessuto (Chapter 3 e Chapter 

4). Gli animali usati in queste prove appartengono a quattro razze ovine Venete: Alpagota, 

Brogna, Foza e Lamon che presentano diversa condizione di criticità; valutata in base al 

numero di capi allevati, di maschi arieti utilizzati per gli accoppiamenti e di allevamenti. Al 
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fine di salvaguardare e recuperare queste razze, Veneto Agricoltura, su indicazione della 

Regione Veneto ha creato l’azienda sperimentale di Villiago, un importante centro di 

conservazione di queste razze, che mira a produrre nuovi giovani riproduttori (agnelle e 

montoni) per gli allevatori interessati e a organizzare azioni a sostegno dello sviluppo 

dell’allevamento.  

I dati riportati in questa tesi coinvolgono animali che sono stati allevati seguendo un 

piano di conservazione in-situ che prevedeva la collaborazione tra l’azienda sperimentale di 

Veneto Agricoltura “Villiago” e l’azienda sperimentale dell’Università di Padova “Lucio 

Toniolo”. In totale gli animali utilizzati sono stati 115 e sono stati allevati tra Dicembre 2010 

e Luglio 2012. Macellati a età diverse, erano considerati appartenenti a tre categorie: 31 

agnelli da latte, 36 agnelli leggeri, 24 agnelloni pesanti e 24 pecore. Le tre prove (agnello 

leggero, agnellone pesante, agnello da latte-pecora) erano caratterizzate da diete diverse. 

Nella prima prova “agnello leggero” le diete utilizzate erano: pascolo (PAS), fieno e 

concentrati con integrazione CLA rumino protetti (rpCLA, 8.0 g/d/animale) (CLA+) e dieta 

con fieno e concentrati senza integrazione di rpCLA (CLA-). Nelle prove “agnellone pesante” 

e “agnello da latte-pecora” le diete erano composte da concentrati con integrazione rpCLA 

(8.0 g/d/animale per gli agnelloni pesanti, 12 g/d/animale per le pecore e 4.0 g/d/animale per 

gli agnelli da latte) (CLA+) e concentrati senza integrazione rpCLA (CLA-). Dai risultati è 

emerso che diversi fattori possono influenzare il profilo acidico e in particolare dalla prima 

prova che la dieta può avere un ruolo molto importante (P<0.001). La presenza del pascolo è 

risultata significativa per molti acidi grassi a catena dispari e catena ramificata (forme iso e 

anteiso) che tendono a essere meno elevati al pascolo. Il motivo è che con la dieta è possibile 

alterate il PH ruminale e la flora microbica in esso presente modificando così anche gli acidi 

grassi che questa può produrre. Il ruolo del pascolo è importante anche per quanto riguarda gli 

acidi grassi a lunga catena (LC-PUFA). Il pascolo può aumentare gli Ω3 (rispettivamente, 

PAS=2.70, CLA-=1.46 e CLA+=1.54) riducendo gli Ω6 (rispettivamente, PAS =3.76, CLA-

=4.41 e CLA+=4.75) e di conseguenze anche il rapporto Ω6/Ω3. Rispetto alla dieta a base di 

concentrati con integrazione (CLA+) il pascolo ha portato a un aumento dei CLA 

(rispettivamente, PAS=0.80, CLA-=0.56 e CLA+=0.71). La dieta si conferma significativa, 

anche nelle prove “agnellone pesante” e “agnello da latte-pecora” con il confronto tra le diete 

a base di concentrati (CLA- e CLA+). L’integrazione di rpCLA nella dieta è risultata 

significativa (P<0.001 e P<0.01) per gli acidi grassi considerati i suoi principali costituenti, 

per cui il C18:0 e il C18:2trans10,cis12. Gli agnelli da latte hanno presentato dei risultati 

diversi dagli altri animali, soprattutto in relazione ai CLA. Sono risultati significativi gli 
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isomeri C18:2cis11,trans13 (P<0.01), C18:2cis11,cis13 (P<0.001) e C18:2cis9,cis11 

(P<0.001). Il motivo di questa diversa distribuzione è stato attribuito al ruolo del latte di 

pecora, usato come alimento per gli agnelli e che può aver influito sulla composizione acidica 

dei loro tessuti. La razza in tutte le prove è stata un effetto che non ha portato a delle 

differenze significative dal punto di vista statistico, come anche il sesso e l’età di 

macellazione. Dai contrasti effettuati tra tessuti, è emerso, com’era stato osservato per i 

vitelloni, che la distribuzione degli acidi grassi è tessuto specifica e può cambiare secondo il 

tessuto analizzato. Differenze sono evidenti in tutti i tessuti ma in particolare tra i magri e 

quelli grassi. Il fegato in tutte e prove è stato il tessuto che presenta delle caratteristiche 

particolari perché caratterizzato da una maggiore quantità di acidi grassi polinsaturi (PUFA) e 

in particolare da una maggiore quantità di Ω3 e CLA. La diversa composizione di questo 

tessuto è legata alla composizione in termini di tipologia di lipidi che lo costituiscono e dai 

processi metabolici ai quali quest’organo partecipa che portano alla produzione, oppure 

all’assorbimento degli acidi grassi assunti con la dieta (Chapter 3 e Chapter 4).  

Sempre in animali appartenenti alle razze (Alpagota, Brogna, Foza e Lamon) sono state 

prese in esame le performance animali ed i vari fattori che le possono influenzare. E’ noto che 

l’utilizzo di rpCLA può provocare un incremento dell’efficienza alimentare favorendo 

l’aumento della massa magra con la successiva riduzione di quella grassa. Negli animali in 

lattazione (vacche, pecore e capre) è dimostrato che l’integrazione di rpCLA può provocare 

una riduzione nel contenuto di grasso presente nel latte. Nella mia tesi è stato considerato 

l’effetto della dieta sul latte di pecore (Chapter 5) al fine così di valutare quelle che vengono 

definite proprietà di qualità del latte espresse in termini di composizione chimica e proprietà 

di coagulazione (MCPs). Gli animali utilizzati in questa prova sono i medesimi utilizzati per 

lo studio dei profili acidici delle carni. Dal punto di vista della qualità della carne alla 

macellazione per cercare di definire se dieta, sesso e razza potessero influire sulle rese di 

macellazione (Chapter 6). Gli animali usati in questa prova sono i medesimi della prova vista 

in precedenza, ovvero la prova “agnello leggero”. I risultati ottenuti in questo lavoro sono dei 

risultati che comprendono solo parte del lavoro che invece comprenderà anche le prove 

“agnellone pesante” e “agnello-pecora”. Da questo lavoro quello che si vuole esprimere è che 

gli animali appartenenti a queste razze sono in grado di produrre delle carcasse che presentano 

caratteristiche ottimali e idonee al mercato alimentare. La caratteristica in più che queste 

presentano è che le modalità di allevamento, ben lontane da quelle di tipo industriale o più 

specializzato ci permettono di ottenere un prodotto allevato nel rispetto delle tradizioni e che 
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può far parte di presidi ampiamente riconosciuti come l’Agnello Alpagoto noto per essere un 

presidio Slow Food. 
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Summary 

Conjugated Linoleic Acid (CLA) are a group of positional and geometric isomers of 

Linoleic Acid characterized by a carbon chain containing 18 carbon atoms and two double 

bonds, not in the classic position (cis), but conjugated from the carbons atoms 9, 10 or 11. 

Double bonds have different position in the carbon chain ([7,9], [8,10], [9,11], [10,12], 

[11,13] and [12,14]) and four different geometric distribution (cis/trans, trans/cis, cis/cis and 

trans/trans). In total 24 possible isomers are identify, but the two most present and often 

most identified are: C18:2cis9,trans11 (60-85% of the isomers identify in meat and >90% in 

milk) and C18:2trans10,cis12 isomers. Observing meat samples other isomers are 

commonly identified, as example, C18:2trans7,cis9 and C18:2trans11,cis13. In 1987, CLA 

have been discovered thanks to the research group of Dr. Pariza that studying some 

carcinogenic components in grilled meat, identify these molecules with anticancer activity, 

called Conjugated Linoleic Acid. After the discovery, they still receive many attention 

because of their biological activities and implication on human health. The biological effect 

are due to the separate actions of the main isomers (C18:2cis9,trans11 and 

C18:2trans10,cis12) and sometimes by the synergistic action of both. Also, minor isomers 

have biological effect, as examples, C18:2trans9,trans11 that inhibits platelet aggregation 

and has anti-proliferative effect and C18:2cis9,cis11 that showed anticancer effect. In animal 

model, CLA not only reduce initiation, promotion and progression steps of cancer 

development, but also reduce metastasis. Nevertheless, was show that CLA isomers are 

important because of they have effect on animal performance and the principal effects are: 

prevent chemically-induced tumors, protect against the catabolic effects of immune 

stimulation, improve feed efficiency, reduce excess body weight gain, reduce body fat, 

increase lean body mass and lower blood lipids. In human diet, the main sources of CLA are 

representing by ruminants products, in particular milk, dairy product and beef. The higher 

concentration of CLA in these products is linked to the presence of rumen that through 

microbial biohydrogenation (Butyrivibrio fibrisolvens) can transform Linoleic Acid to the 

major isomer C18:2cis9,trans11 (Rumenic Acid). Conjugated Linoleic Acid (CLA) can be 

analyze with different methods of lipid extraction and derivatization, but always after 

transformation in methyl ester derivatives of fatty acids (FAMEs) that is carried out in a 

simple reaction. This simple reaction becomes more complicated because of conjugated 

fatty acids are involved and the presence of conjugated double bond makes them unsuitable 

for the most common techniques employed for fatty acids analysis. The presence of double 
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bonds may increase isomerization and epimerization of these bonds, increasing CLA with 

trans/trans configuration and reducing cis/trans or trans/cis configuration. For this reason is 

very important find a suitable method for lipid extraction (and the resulting determination of 

crude fat) and subsequently for the transformation in methyl ester derivatives of fatty acids 

(FAMEs). For this reason at the first part of my thesis was given a methodological approach 

in order to understand the differences between methods and which is the most suitable 

(Chapter 2 and Chapter 7). All the data used, belonging to a trial carried out at “Lucio 

Toniolo”, the Experimental Farm of the University of Padova in Legnaro (Padova, Italy). 

Animals used are a crossbreed between Belgian Blue bulls and Brown Swiss dairy cows fed 

with one of 3 experimental diets. Diets were composed by unifeed and differ depending on 

the rumen protected CLA supplementation (rpCLA), overall, three supplementation are 

available 0, 8 and 80 g/d/animal. The trial ended in March 2011 when animals were 

slaughtered outside the faculty in a slaughterhouse located in Pergine province of Trento 

(Trentino Alto Adige Region). Samples were collected and in particular three tissues were 

subjected to analysis for fatty acids profile and CLA content: muscle Longissimus Thoracis, 

Subcutaneous Fat and Liver. In the main Chapter (Chapter 2) tissues (Longissimus Thoracis, 

Subcutaneous Fat and Liver) were analyzed for determine fatty acids profile comparing 

three different methods of extraction (Folch (1957), Accelerated Solvent Extraction (ASE) 

and Jenkins (2010)) using as chromatography technique two dimensional GC (GC×GC). 

The purpose of this trial was identify among the different methods of extraction, one method 

that is able to identify CLA isomers without causing isomerization. Folch (1957) is one of 

the older and most used methods. It was born for analyze samples rich in phospholipids (as 

lipids of brain). It works at room temperature using a mixture of solvents composed by 

chloroform/methanol (2:1, v/v). Accelerated Solvent Extraction (ASE) was used with the 

purpose to compare a room temperature method with a method that works at high 

temperature and pressure (120°C and 20MPa) with the same mixture of solvents 

(chloroform/methanol, 2:1, v/v). This method, which have recently been introduced; reduce 

the use of solvent and saving time at work, giving results that were similar or better if 

compared with the conventional Folch (1957) extraction. On the contrary, it is expected to 

increase the isomerization of double bonds and the isomers with trans/trans configuration. 

The last method, Jenkins (2010), is a direct method, which reduces the length of the total 

procedure, saving time at work, reducing the sample amount, reducing the use of solvents, 

giving analysis less expensive and easier. The main characteristic is that lipid extraction step 

is avoided and fatty acids are extracted and trans-esterified in the same time. The statistical 
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analysis was performed in four steps: resolution power and assessment of the number of 

undetected FA, study the main sources of variation, using Levene’s test explored the 

variances homogeneity for the main sources of variations and relationships between 

methods. The incidence of undetectable values on the total number of expected observation, 

which depend on the sensitivity of the method used, for liver, fat and muscle, ranged 0.04 to 

0.08, 0.05 to 0.06, and 0.05 to 0.12, respectively, with incidences greater for the Jenkins 

method compared to the other two for liver and muscle samples but not for subcutaneous fat. 

In liver the highest incidence of null values with the Jenkins method was mainly observed 

for short chain FA (C8:0 and C10:0), whereas in the case of muscle the highest incidence of 

undetectable values was mainly observed for the C24:0, for two C20:1t unknown isomers, 

and for Ω3 (C20:3n3, C20:4n3, C22:5n6). Many sources of variation result high significant 

(P<0.001). Diet was significant in particular for the FA that are the main components of the 

supplementation (C18:0, C18:1cis9, C18:2cis9,trans11 and C18:2trans10,cis12). The results 

of the Levene’s test evidenced, except for diet, as the variances among levels within tissue, 

method or method×tissue were not homoscedastic for the large majority of the FA. The 

second part of the methodological approach is reported in Chapter 7 (Minor Chapter) and 

considers the effect of the chromatography technique on CLA isomers content. Despite the 

high resolution power of GC×GC this technique allows to identify all the FA and the CLA 

isomers recognized by internal standard. However, it is not able to identify the other isomers 

and for this reason is necessary to find a new method that allows a clear and complete 

identification of CLA. Silver Ion High Performance Liquid Chromotography (Ag
+
HPLC) is 

currently the most effective way to separate and quantitate individual isomers of CLA in 

beef. This part was performed with the contribution of the Leibniz Institute for Farm Animal 

Biology (Dummerstorf, Germany) and in particular the Muscle and Biology Growth Unit. 

Tissue analyze in this trial were Longissimus Thoracis, Subcutaneous Fat and Liver. Lipids 

were extracted using Folch (1957) and methylated using and acid-base catalysis. Data were 

analyzed considering as main sources of variation: diet, tissue and repetition. Tissue resulted 

always significant (P<0.001) with a tissue depending distribution of the isomers and a 

higher concentration in subcutaneous fat. Diet was significant for the main isomers 

(C18:2cis9,trans11 and C18:2trans10,cis12) because of constituents rpCLA 

supplementation.  

In the second part of my thesis are considered the effects that can modify FA profile, 

such as, breed, gender, diet, type of birth, age and tissue. Animals used belonging to four 

native alpine sheep breeds: Alpagota, Brogna, Foza and Lamon. All these breeds represent 
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an important genetic resources and the purpose is created a program of conservation for 

increase the number of animals in these populations. For this reason Veneto Agricoltura 

created the experimental farm “Villiago” (Belluno province, Veneto Region, North Italy). 

Animals used for this research belongs to two flocks undergoing an in situ conservation 

program between “Lucio Toniolo” Experimental Farm of the University of Padova and the 

Experimental Farm of Veneto Agricoltura located in Villiago. In total 115 animals were 

used and reared in the period between December 2010 and July 2012. Animals are slaughter 

at different age and they are considered belonging to three different categories: 31 suckling 

lambs, 36 lambs, 24 heavy lambs and 24 ewes. The different trial were characterized by 

different diets: pasture (PAS), penned in the open barn and fed with hay, concentrate and 

supplemented with rumen protected Conjugated Linoleic Acid (rpCLA) product (CLA+) 

and penned in an open barn and fed with hay and concentrate (CLA-). In trials with “lambs” 

and “heavy lambs” animals were supplement with 8.0 g/d/animal of rpCLA. In “suckling 

lambs” and “ewes” animals were supplement with 4.0 g/d/animal of rpCLA and 12 

g/d/animal of rpCLA, respectively. From the results, is possible observe that diet is highly 

significant (P<0.001) and in particular pasture. Fatty acids are statistically influenced by 

pasture and mainly fatty acids with odd chain and branched fatty acids (iso and anteiso) that 

tend to be lower in diet at pasture. The reason is that the diet can influence ruminal Ph and 

microorganisms that consequently change reactions and final products. Pasture is also 

important because it can influence the amount of long chain fatty acids (LC-PUFA), 

increasing Ω3 (respectively, PAS=2.70, CLA-=1.46 and CLA+=1.54), reducing Ω6 

(respectively, PAS=3.76, CLA-=4.41 and CLA+=4.75) and Ω6/Ω3 ratio. CLA isomers 

content is higher in pasture than in diet with concentrate supplement with rpCLA 

(respectively, PAS=0.80, CLA-=0.56 and CLA+=0.71). In the other two trials characterized 

by CLA+ and CLA- diet was considered an important and significant effect. rpCLA 

supplementation reported significant effect (P<0.001 and P<0.01) for FA constituents of 

supplementation, such as C18:0 and C18:2trans10,cis12. In suckling lambs results were 

different from other trials, in particular for CLA isomers, such as, C18:2cis11,trans13 

(P<0.01), C18:2cis11,cis13 (P<0.001) and C18:2cis9,cis11 (P<0.001). The reason is the 

different distribution is ewe’s milk that was used in suckling lambs diet and could have 

influence their fatty acids profile. Breed was not a significant effect, such as, gender and age 

at slaughter. Observing data about orthogonal contrast FA and CLA isomers distribution is 

tissue specific and there are many differences between lean tissues (muscle) and fat tissues. 

Liver has particular characteristics, in fact, its content of PUFA and particular Ω3 and CLA 
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is higher than in the others tissues. Differences of this tissue are linked to its specific lipid 

composition and metabolic process which lead to the production and absorption of fatty 

acids.  

In Chapter 5 and Chapter 6 were evaluate effects that CLA supplementation can have 

on animal performance because of many research have been conduct in vitro, but other 

research are needed. 

In Chapter 5 was examined the effect of rpCLA supplementation in lactating ewes on 

their milk composition and Milk Coagulation Properties (MCPs) of sheep’s milk. Animal 

used in this trial are the same of the trial describe above and in particular of the trial call 

“suckling lambs” and “ewes”.  

This study allowed to know that rpCLA supplementation in sheep can change the 

composition and cheese-making properties of milk, as example, delaying gelation, slowing 

curd firming and accelerated syneresis and future studies are necessary to know the effect of 

CLA on cheese yield/ quality. rpCLA supplementation affect milk composition, reducing 

protein content, solid non-fat content, casein index and increasing SCS. rpCLA 

supplementation had negative effects on parameters of coagulation and curd firming.  

In Chapter 6 was evaluate the effect of breed and sex on growth rate, slaughter traits 

and meat quality traits of lambs of Alpagota, Brogna and Foza breeds. Animals used in this 

trial are the same of the trial describe above and in particular of the trial call “lambs”. These 

results are part of a bigger study which comprises also growth rate, slaughter traits and meat 

quality of the trial call “heavy lambs”, “suckling lambs” and “ewes”. Observing the results 

of this trial is possible obtain lamb carcasses and meat with valuable characteristics that can 

be exploited through typical products and food preparation in local markets and gastronomy, 

according to tradition. The valorisation of these productions can be an important tool for the 

in situ conservation of these breeds. As example, Slow Food organization has recognized 

“Agnello Alpagoto” (lambs of Alpagota breeds) as a Slow Food Presidium. 
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CHAPTHER 1: General Introduction 

 

PART I: LIPID GENERAL INTRODUCTION  
 

1.1 Lipid classification and major sources 

 

The first study carried out on the chemistry of lipids begin from pioneering researcher, 

such as Robert Boyle, Poulletier de la Salle and Antoine François de Fourcroy from the 17
th

 

and 18
th

 century. In the 19
th

 century the chemist Chevreul, identified several fatty acids (FA) 

called “cholesterine” and for the substance identify in gallstones coined the word 

“glycerine” showing that fats are made by glycerol and fatty acids. In 20
th 

century many 

discoveries are made in term of understanding lipids structures and functions, studying the 

relationship between lipids and health diseases. Lipids include waxes, oils, fats, steroids and 

related compounds ranging from soap to petrochemicals, triacylglycerols and phospholipids. 

Triacylglycerols (TAG), which are neutral lipids, are made up of three fatty acids attached to 

a molecule of glycerol and they vary in their physical properties according to the chemical 

structure of these fatty acids. Phospholipids (PL) are lipids that contain phosphoric acid as 

mono o diester and are the main components of cell membranes. Fatty acids are 

“amphiphilic” molecules that have a carboxyl group at the polar end (hydrophilic) and 

hydrocarbon chain at the non polar tail (hydrophobic). In relation to the double bond 

composition, they are divided in two groups: Saturated Fatty Acid (SFA) characterized by a 

carbon chain with only single bonds and Unsaturated Fatty Acid (UFA) characterized by 

carbon-carbon double bonds in the carbon chain. Unsaturated Fatty Acid are divided in: 

Monounsaturated Fatty Acid (MUFA), such as Oleic Acid (C18:1cis9) that contain one 

double bond in the carbon chain and Polyunsaturated Fatty Acid (PUFA) that contains more 

than one double bonds. Normally PUFA are derived from vegetables oil but Polyunsaturated 

Fatty Acids with twelve or more double bonds in their carbon chain (called Long-Chain 

Polyunsaturated Fatty Acids, LC-PUFA) are typical of fats from animals origins. According 

to the geometric configuration and the position of the double bond in the space, fatty acids 

have two different configuration: cis and trans (Figure 1) (Webb & O’Neill, 2008).  
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Figure 1: Cis and Trans double bonds configuration in the carbon chain. 

 

Fatty acids described above are associated to human health benefits or diseases. Many 

studies have indicated that meat and its content in SFA, especially Miristic Acid (C14:0), 

Palmitic Acid (C16:0) and trans-fatty acids (TFA), are responsible of many diseases, such as 

cardiovascular diseases, atheroscelosis diseases and colorectal cancer (De Smet et al., 2004; 

Turk and Smith, 2009). In next twenty years, and in line with an increasing of world 

population, the consumption of meat and milk is predicted to increase in all the world. These 

two products are found to supply 25% of total dietary energy intake, contributing also to half 

of the Saturated Fatty Acids (SFA) intake and the largest MUFA intake if referred to meat 

products (Woods and Fearon, 2009). As consequence, International Medical Institution 

recommend to pay attention at the dietary fat intake, the type of fats and daily amount of 

calories. In most developed countries is recommended to the population a decrease in the 

total fat, SFA and TFA intake and an increase in the consumption of Long Chain 

Polyunsaturated Fatty Acids (LC-PUFA) in particular of the Ω3 family, such as C20:5n3 

and C22:6n3 (Chizzolini et al., 1999, Shingfield et al., 2013; Givens, 2010). Regarding these 

potential effects of red meat and its products, the German Nutrition Society (DGE) 

recommends the restriction of its consumption to 600 g per week and a daily fat intake of up 

on 30% of the total daily energy intake (<10% should be SFA, approximately 7-10% should 

be PUFA and the remaining 10% should be MUFA). Red meat is a sources of high 

biological value protein a significant source of important trace elements (iron, zinc, 

selenium), water, fat soluble vitamins (A, B6, B12, D and E) and phosphatidylcholine 

(Dannenberger et al., 2013). It is also a sources of essential fatty acids, which have 

important biological activities: Omega 3 (Ω3), Omega 6 (Ω6) and Conjugated Linoleic Acid 

(CLA). Omega 3 (Ω3) and Omega 6 (Ω6) are require with the diet because they cannot be 

synthesized de novo and they play an important role in the immune response and as carriers 

of fat-soluble vitamins (vitamins A, D, E and K). Other essential fatty acids are Linoliec 

Acid (C18:2n6), α-Linolenic Acid (C18:3n3), Arachidonic Acid (C20:4n6) and 
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Eicosapentaenoic Acid (EPA-C20:5n3). The C20:4n6 and EPA-C20:5n3 are formed 

respectively by desaturation and elongation of Linoleic Acid and desaturation and 

elongation of α-Linolenic Acid. Also, Conjugated Linoleic Acid are responsible of many 

biological effects on human health and in particular the two major isomers 

(C18:2cis9,trans11 and C18:2trans10,cis12) (Webb & O’Neill, 2008). Many factors can 

influence this fat and fatty acids composition and we shall see below the main. 

 

1.2 Factors affecting meat fatty acid profile 

 

As well as the fat level could be up to 15% depending on the breed, age and diet also 

the fatty acids profile can be modified by many factors. Beef fat contains 25-30% of the C16 

carbon fatty acid palmitate, known for his hypercholesterolemic affect. On the other hand, 

C18 carbon chain fatty acids (C18:0) has a lower atherogenic effect, very similar to short 

chain fatty acids. Furthermore, Stearic Acid in liver is subjected to a conversion in Oliec 

Acid by Δ
9
desaturase. For this reason has prompted attempts to modify the fatty acids 

composition on beef increasing C18 carbon fatty acid at the expense of palmitate. Fatty 

acids composition can be changed by altering the diet, fatness, the selective breeding, age, 

body weight, gender, application of hormones, tissue, type of lipids and post harvest related 

factors. These factors can be classified into different groups: intrinsic to the animal (breed, 

gender, age, fatness and tissue) and extrinsic (diet). Below, the main factors are briefly 

described: 

 Diet: This effect is strictly connected with the assumption that lipids in 

various tissues (adipose and skeletal) strongly reflect the major dietary fatty acids (FA). 

This potential effect is greater on FA composition of monogastric animals depots than 

in ruminants. It’s because of Saturated (SFA) and Unsaturated Fatty (UFA) acids from 

the diet pass through the digestive system without changing and after they are 

deposited. The possible ways in which the diet can act are the addiction of particular 

supplementation, as example, linseed or linseed oil that increase the concentration of 

C18:3n3 in tissue with a decrease in the Ω6/Ω3 ratio. On the contrary, sunflower oil can 

increase the concentration of C18:3n6 in tissue with an increase in the Ω6/Ω3 ratio. The 

inclusion of C18:3n3 generally increase the concentration of EPA but not of DHA 

(Scollan et al., 2006). Consumption of rumen protected lipids and in particular rumen 

protected CLA (rpCLA) is possible and it is responsible to the increase of their content 

in tissues. In particular the two main CLA isomers, that normally are part of the 



20 
 

supplementation (C18:2cis9,trans11 and C18:2trans10,cis12). The CLA 

supplementation is another possibility to change the FA profile, but it dramatically 

reduces milk fat yield (Banni et al., 1996; Schiavon et al., 2011; Chouinard et al.,1999). 

Pasture can influence FA profile but the nutritional improvement is dependent on the 

duration of grazing. Many studies report that pasture has been shown to increase the 

CLA concentration and decrease the Ω6/Ω3 ratio. The C18:2cis9,trans11 isomer 

percentage concentration increase significantly and was higher in grass-based system 

(0.87% vs 0.72% in German Simmental bulls and 0.84% vs 0.75% in German Holstein) 

(Noci et al., 2007; Nuernberg et al., 2005). However, pasture can increase Stearic Acid 

(C18:0), Vaccenic Acid (C18:1trans11) and reduce Linoleic Acid (C18:2n6) as part of 

the family of Ω6 (Noci et al., 2007; Pordomingo et al., 2012a ). Grass based diet 

showed an higher lipid oxidation capacity than the indoor-fed animals and the growth 

performance of animals are lower, producing leaner animals with lower intramuscular 

fat content (and different color characteristic) (Pordomingo et al., 2012b); 

 Carcass fatness: not many study are reported, but Wood et al. (2008) report 

an increase of fatness with the increase of CLA supplementation; 

 Age and body weight: the amount of adipose tissue increases with age and 

the effect of age on fatty acids profile is also related to body fatness and the capacity of 

fatty acids to change during the life of animals. As example, in lambs the accumulation 

of Saturated Fatty Acids (SFA) increase with age and growth of animals but PUFA 

decrease (Matsushita et al., 2010). Slaughter weight results significant in fatty acids 

profile because of an increase of it correspond a reduction in the percentage of 

phospholipids (PL) and monoglycerides (MG) and a reduction of Cholosterol (C) and 

Cholesterol Esters (CE). Changing in the FA composition correspond to an increase of 

SFA and MUFA percentage and the decrease of PUFA with increasing of slaughter 

weight was observed and this is likely due to the increasing importance of neutral lipids 

in total lipids as fattening proceeds (Indurain, Beriain; Sarries and Insausti, 2010). 

Lambs slaughter at different body weight have different CLA isomers content, in fact, 

animals slaughter at 17 months contain an higher amount total FA in compare to 

animals slaughter at 11 months (1422.97 mg/100 g of total lipids vs 1689.87 mg/100 g 

of total lipids) (Serra et al., 2009); 

 Gender: important mainly for the effect on carcass fatness because at equal 

slaughter weights male are leaner than gilts which in turn are leaner than male castrates. 

As example, PUFA and Linoleic Acid content in cover fat decrease in order of: males > 
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females > male castrates but on the contrary SFA increased. Borys et al. (2007) confirm 

this result reporting that gender not influence SFA content but MUFA content is higher 

in rams compared to ewes. In lambs no differences were found in mean CLA content 

according to sex of lambs; 

 Breed: this effect significantly affect FA profile and it is connect with the 

carcass fatness (Demirel et al., 2006). In cattle, there are genetic-based differences in 

intramuscular fatty acid composition of Longissimus muscle. An example of genetic 

effect is give by the double muscle genotype (mh/mh) within the Belgian Blue Breed 

that has low proportions of C18:1cis9 and high proportion of C18:2n6 in muscle lipid 

compared with normal genotype. De Smet at al. (2004) report that CLA content was 

positively related to the total intramuscular fatty acid content due to the fact that CLA 

are mainly found in the triacylglicerol fraction. Also in dairy cow is suggested that 

Holstein-Friesian have a greater activity and expression of Δ
5
 and Δ

6
 desaturase 

enzymes. Belgian Blue genotype converts a higher proportion of C18:3n3 to 

C20:5n3(EPA) and C22:5n3 but not C22:6n3 (Wood et al., 2008). Smith et al. (2009) 

suggest that breeds type differ in the ability to accumulate MUFA in their adipose 

tissues and for this reason Brahman cows and steers contain a greater proportion of 

MUFA and less SFA than adipose tissue from Hereford steers when cattle are raised 

under identical condition; 

 Applications of hormones: A variety of hormonal and neural influences 

allowing the hydrolysis of adipose tissue triacylglycerols, stored in adipose tissue, 

releasing their energy. The key enzymes of lipolysis are two lipases: lipoprotein lipase 

and hormone sensitive-lipase (Nürnberg, Wegner and Ender, 1998).  

 Type of lipids: the major lipid class in adipose tissue are neutral lipid. In 

muscle an high amount is given by phospholipids which has a high amount of PUFA in 

order to perform their function as constituent of cellular membranes. Wood et al. (2008) 

reported that in different species analyzed (pigs, sheep and cattle) Oleic Acid is much 

more present in neutral lipid. On the contrary, Linoleic Acid and Linolenic Acid (both 

C18:3n3 and C18:3n6) are much higher in phospholipids. In pigs and sheep muscles 

Linoleic Acid and Linolenic Acid are detected also in neutral lipids. CLA are higher in 

neutral lipids than in phospholipids. As confirm by Raes et al. (2004) phospholipids 

content is constant and not influenced by species, breed, nutrition and age. The only 

factor that can influence their content are the metabolic fibre type of muscle: if they are 
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more oxidative muscle contain a higher phospholipids proportion due to the higher 

amount of mitochondria 

 Tissue: FA composition change in relation to the anatomical location and the 

tissue. As example, muscle contains an higher concentrations of the long chain Ω6 and 

Ω3 fatty acids. Many studies report an important effect of tissue, Garcia et al. (2008) 

studying FA composition of Longissimus Dorsi and leg muscle from Patagonia lambs 

reports the existence of differences also between muscles (leg muscle has higher content 

of FA if compare to Longissimus Dorsi). Also Schiavon et al. (2011) report a different 

composition of tissues between muscle and fat tissues and in particular between 

different fat tissue (inter-muscular fat and cover fat). 

Finally, CLA content can be influences by post-harvest related factors, such as 

processing conditions, storage, cooking, aging and converting one product to another (milk 

into cheese or yogurt). Therefore, many studies found that CLA content in this case depend 

largely on the CLA content of the original milk or meat (Khanal and Olson, 2004). 

Regarding meat products, for example, studies conducted on cooking methods and 

temperature methods concluding that neither the method and the temperature has significant 

effects on CLA composition (Fritsche and Steinhart, 1998).  

 

1.3 Conjugated Linoliec Acid (CLA) and Biosynthesis 

 

The usual configuration of fatty acids which contain double bonds is the cis 

configuration and the double bonds are normally positioned at the 3rd, 6th or 9th carbons 

atom from the terminal methyl group, as example, Oleic Acid (C18:1cis9) and Linoleic Acid 

(C18:2cis9,cis12 or C18:2n6). However, some fatty acids have one or more double bonds in 

the trans configuration and they are called Trans Fatty Acids (TFA) and Conjugated 

Linoleic Acid (CLA). The term Conjugated Linoleic Acid and its acronym CLA represent a 

group of positional and geometric isomers of the Ω6 essential fatty acid, Linoleic Acid 

(Fritsche and Steinhart, 1998; Kelly, 2001). CLA would have 24 possible isomers, because 

they have been reported to contain conjugated double bonds in different positions in the 

carbon chain and in particular at the positions: [7,9], [8,10], [9,11], [10,12], [11,13] and 

[12,14]. These double bonds could have four different geometric configurations in relation 

to the position of bonds: cis/trans, trans/cis, cis/cis and trans/trans.  

They were firstly discovered (1987) by Dr. Pariza and his group at the University of 

Wisconsin-Madison when studying the carcinogenic component of grilled beef, surprisingly 
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and for the first time, were found one of their principal effect, the anticancer capacity 

(Whale et al., 2004; Park, 2009). Not all the isomers are identify though gas 

chromatographic analysis but it was assume that the two main isomers, in which have 

focused the early study, are C18:2cis9,trans11 and C18:2trans10,cis12. A number of study 

reported the presence of CLA isomers in human adipose tissue, bile, blood and milk. CLA 

are incorporated into both neutral lipids and phospholipids (Kramer et al., 1998). Two main 

isomers are the most common found in meat from ruminant species and bovine dairy food 

products, but minor components, such as the [t7,c9], [t8,c10], [t11,c13], [c11,t13] and 

[t12,t14] isomers and their cis/cis and trans/trans isomers were also present in these 

products. As reported by Dhiman et al. (1999), the high presence of CLA in milk and meat 

products from ruminants is because there have two different ways of production: 

 Ruminal Biohydrogenation: in which, lipids that come from the diet are 

transform as a result of rumen microbial biohydrogenation. Lipids composition of 

forage consist in glycolipids and phospholipids and the major fatty acids are the 

unsaturated fatty acids, as example, Linoleic and Linolenic Acid (C18:2n6 and 

C18:3n3). On the contrary, lipids composition of feedstuffs are predominantly 

triglycerides containing Linoleic and Oleic Acid (C18:2n6 and C18:1cis9). The main 

isomer C18:2cis9,trans11 (Rumenic Acid) is formed by Linoleic Acid isomerase 

enzyme activity generated by Butyrivibrio fibrisolvens and other endogenous bacteria 

found in the rumen of cattle and dairy cows. Rumen bacteria are divided in two main 

groups, based on the reactions and end products of biohydrogenation: Group A or 

bacteria that are able to hydrogenate Linoleic and Linolenic Acid to Vaccenic Acid 

(C18:1trans11). Group B: bacteria that utilize Vaccenic Acid (C18:1trans11) 

transforming this in Stearic Acid (C18:0). As reported in Figure 2, ruminal 

biohydrogenation is divided into two important transformation: the initial that is a 

prerequisite for the second transformation, and consist in an hydrolysis of the esters 

linkages catalyzed by microbial lipase. The second transformation or biohydrogenation 

of unsaturated fatty acid that consist in a reduction of C18:2cis9,trans11 to 

C18:1trans11. Other studies, have isolate also a Propionibacter that converts Linoleic 

Acid to C18:2trans10,cis12, confirming that certain rumen bacteria has the possibility 

to produce this isomer as the main Rumenic Acid (Bauman et al., 1999); 

 

 Endogenous synthesis of CLA (De novo synthesis): was introduced by the 

precursor C18:1trans11 (Vaccenic Acid) that is converted to C18:2cis9,trans11 by 
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oxidation at the ninth carbon of the fatty acid by the enzyme Δ
9
desaturase, that is 

encoded by the Stearoyl-CoA-desaturase (SCD) gene, present in mammary gland, in 

muscle, duodenal mucosa and liver (Mir et al., 2010; Corl et al.,2001). Adipose tissue 

seems to be the major site of endogenous synthesis of C18:2cis9,trans11 in growing 

ruminants and mammary glands in lactating animals (Bauman et al., 1999; Duffy et al., 

2006). Regarding this synthesis that occurs in the tissues there are three different fatty 

desaturases (Δ
5
,Δ

6
 and Δ

9
) and one elongase. The elongase adds 2 carbon unit of fatty 

acid chain and thus converts C16 to C18. Δ
5
,Δ

6
desaturase were involved in the 

conversion of C18 PUFA to their long chain derivatives. Δ
9
desaturase insert a double 

bond at the ninth carbon atom of the fatty acid chain and in this way is responsible to 

the conversion of saturated to monounsaturated. The activity of this enzyme is far 

greater for C18 fatty acids than for C16 fatty acids (Malau-Aduli et al.,1997; Mele et al., 

2007). On the contrary, mammary gland doesn’t possess Δ
12

desaturase, so this tissue 

could not convert C18:1trans10 to C18:2trans10,cis12, that is absorbed from the 

gastrointestinal tracts; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Role of rumen biohydrogenation and tissue Δ
9
desaturase in the production of 

C18:2cis9,trans11 (Modified by: Bauman et al., 1999). 

 

Some study, report that C18:2trans10,cis12 isomer, present in food in low amount, is 

considered “man-made” and may not have much relevance if CLA is obtained from natural 
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sources (Park, 2009). Recent studies, investigated the effect of the diet and in particular the 

supplementation of lipid and mainly rumen protected lipid. As reported by Schiavon et al. 

(2011), ruminants CLA content can be influences also with the addition of commercial 

rumen protected CLA (rpCLA) preparations containing the two main isomers 

C18:2cis9,trans11 and C18:2trans10,cis12 and able to increase the content of these CLA in 

tissues. In non-ruminants (rats) was investigated the capability to produce CLA and it was 

discovered that the intestinal bacterial flora of rats is capable to convert Linoleic Acid to 

C18:2cis9,trans11 and C18:2trans9,cis11 (Fritsche and Steinhart, 1998). 

According to the sources of origin, food products derived from ruminant animals are 

the major source of CLA in human diet, in particular, dairy products and beef fat. The CLA 

content can change in relationship to the kind of food analyzed, as it is possible to observe in 

Table 1. Therefore, the amount found in milk and meat are small if compared to the 

recommended daily intake for appreciation of health benefits in humans (3500 mg/d). Many 

studies summarize the amount of CLA really obtained from the diet and the amount is from 

1.2 to 12.5 mg/g fat, much lower than expected amount (Mir et al., 2010). The most 

abundant CLA isomer in dairy and beef fats is C18:2cis9,trans11 (60-85% of the CLA 

isomers in beef and >90% in milk), with smaller concentrations of C18:2trans7,cis9 and 

C18:2trans11,cis13 (Nuernberg et al., 2007). 

As reported by Fritsche and Steinhart (1998), the concentration of CLA in milk fat 

ranged from 0.24% to 1.77%, in dairy products range from 2.9 to 8.92 mg CLA/g fat and as 

saw before the C18:2cis9,trans11 isomer is the most abundant and makes up between 73-

93% of the total CLA. Conjugated Linoleic Acid in cheeses typically range from 3.59 to 

7.96 mg CLA/g fat and some cheeses as Blue, Brie, Edam and Swiss cheeses have been 

found to have significantly higher CLA content than other cheeses. It was reported that 

C18:2cis9,trans11 values for sheep and goat cheeses range 0.4 to 0.5%, according to cheese 

type and aging period (Weiss et al., 2004). The wide variability is caused by the range of 

CLA content in raw milk, in turn influences by different dairy cow breeds, feeding system, 

content of PUFA in fed and processing parameters (heat treatment, composition of starter 

cultures, storage and ageing).  

In meat and meat products, the content is higher in ruminants than non-ruminants 

because of the lack of rumen and because of the main source in non-ruminants is mainly 

determined by feedstuffs that they eat. Comparing different meat breeds, it was shown that 

lambs contain the highest amount of CLA that is 5.6 mg/g if compared to other breeds, as 

example, beef (2.9-4.3 mg/g) and veal (2.7 mg/g). Non ruminant meats such as chicken and 
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pork contain 0.9 mg/g and 0.6 mg/g respectively and the levels of C18:2cis9,trans11 in 

chicken fat ranging from 0.120-0.130 mg/g (Hur et al., 2007). Therefore in small amount 

was found C18:2trans10,cis12. Reports suggest that CLA concentration in beef fat varies 

among countries: Australian beef had the highest values, with CLA representing 1% of total 

fatty acids, German values are intermediate with concentration at an average of 0.65% of 

total fat and USA beef had the lowest values with CLA representing 0.3-0.5% of total fat 

(Griinari & Bauman 1999).  

Not all the non-ruminants are unable to produce CLA isomers, in rats it was found that 

CLA synthesis (C18:2cis9,trans11 and C18:2trans9,cis11) may occur because of the 

contribution of  intestinal bacteria (Fritsche et al., 1999).  

 

Food 

mg/

g fat 

 

Food 

mg/g 

fat 

Dairy Product 

  

Meats/Fish 

 Condensed milk 7.0 

 

Lamb 5.8 

Colby 6.1 

 

Fresh Ground Beef 4.3 

Butter Fat 6.1 

 

Veal 2.7 

Ricotta 5.6 

 

Fresh Ground 

Turkey 2.6 

Homogenized Milk 5.5 

 

Chicken 0.9 

Cultured Buttermilk 5.4 

 

Pork 0.8 

American Processed Cheese 5.0 

 

Egg yolk 0.6 

Mozzarella 4.9 

 

Salmon 0.3 

Plain Yogurth 4.8 

   Custard Style Yogurth 4.8 

   Butter 4.7 

 

Vegetable oils 

 Sour Cream 4.6 

   Cottage 4.5 

 

Safflower oil 0.7 

Low Fat Yogurth 4.4 

 

Sunflower oil 0.4 

2% milk 4.1 

 

Peanut 0.2 

Mediam Cheddar 4.1 

 

Olive 0.0 

Ice Cream 3.6 

   Parmesan 3.0 

   Frozen Youghrt 2.8       

Table 1: CLA content of various food (Modified by: Evans et al. 2002) 
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1.4  Biological activities on human health and animal performance 

 

The fatty acids composition of meat has long been studied and still receives a lot of 

attention in research because of its implication on human health. Many studies confirm that 

an alteration of the level of fatty acids in blood can affect immune function in both 

physiological and pathological conditions. FAs added with the diet are the factors that most 

influence fatty acid composition of blood and cell membrane and in particular the effect of 

saturated fatty acids (SFA) and monounsaturated fatty acid (MUFA) on the inflammatory 

processes has been widely studied.  

Some guidelines report the importance to reduce fat intake, but increase intake of 

polyunsaturated fatty acids (PUFA) especially Ω3 fatty acids, bringing the polyunsaturated 

fatty acid/saturated fatty acid ratio (PUFA/SFA) of meat closer to the recommended value, 

as well as for the Ω6/Ω3 ratio. The CLA isomers have received much attention for their 

health promoting effects. However, few and controversial information are found about the 

effect of CLA isomers on human health. Many studies reported that, CLA isomers present 

numerous biological effects, due to the separate actions of the main C18:2cis9,trans11 and 

C18:2trans10,cis12 isomers and in some case by the synergistic action of both isomers. Also 

minor isomers has biological effect, as examples, C18:2trans9,trans11 isomer inhibits 

platelet aggregation and has an anti-proliferative effect, C18:2cis9,cis11 have show anti-

cancer effect. In contrast, C18:2cis11,trans13 incorporating into mitochondrial cardiolipin 

could adversely affect the activity of keys enzymes in the cellular energetic economy (De La 

Fuente et al., 2006; Park, 2009). The multiple beneficial effects of CLA could be a results of 

multiple interactions of the biologically active CLA isomers with numerous metabolic 

signaling pathways. However, studies focused on the two major isomers, report that there 

are three possible interactions between CLA isomers: additive, independent or antagonistic 

effects. Therefore, studies to define the beneficial effect of each CLA isomers are necessary 

and should be undertaken. Regarding the biological effects of CLA isomers and the different 

interaction: 

 both C18:2cis9,trans11 and C18:2trans10,cis12 isomers have anti-cancer 

effect; 

 independent effects of C18:2trans10,cis12 is the body fat reduction, 

inhibition of Stearoyl-CoA desaturase and reduction of hepatic alipoprotein B 

secretion; 
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 independent effect of C18:2cis9,trans11 improves growing performance in 

rodents; 

 C18:2cis9,trans11 and C18:2trans10,cis12 can work against each other 

because of C18:2trans10,cis12 isomer increase insulin resistance but 

C18:2cis9,trans11 would compensate for this (Park & Pariza, 2007).  

These research has relied entirely on animal models and cell culture system employing 

isomeric mixtures of CLA. Recent studies in human subjected has been carried out with 

contrasting results (Watkins & Li, 2002). Nevertheless, the potential biological activities of 

CLA isomers, discovered in the last years, can be summarized as follow:  

 Anti-cancer effect: this effect became known as a consequence of isolation 

and identification experiments from cooked beef that was screened for bacterial mutagens. 

It was identify in many animal models, such as skin, forestomach, colon, mammary gland 

and liver with a dose-dependent effect. CLA not only reduce initiation, promotion and 

progression steps of cancer development, but also reduce metastasis of cancer. In rodents, 

CLA induce reduction in colon cancer incidents, probably through mechanisms involving 

apoptosis (Khanal, 2004). This effect, was exclusively tested in animal model and in cell 

culture system and there is no direct evidence that this fatty acids protect against 

carcinogenesis in human (Pariza et al., 2001). Afterwards, anti-cancer effect was tested in 

various human cell culture model and the results was that this properties might be limited 

to certain types of cancers and may not be effectives under some experimental conditions. 

Study on Finnish women found a significant effect of CLA supplementation in the 

reduction of mammary cancer when the intake was >200 mg/d (Weiss et al., 2004). Smith 

et al. (2009) reported that C18:2trans10,cis12 strongly depresses SCD gene expression in 

hepatic and human breast cancer cell lines. C18:2cis9,trans11 is without effect except at  

the highest concentrations; 

 Prevention of cardiovascular disease: CLA has been reported to reduce 

atherosclerotic lesions in rabbits and hamsters, reducing total cholesterol, triacylglycerides, 

LDL-cholesterol (Low Density Lipoprotein-cholesterol) and increasing HDL-cholesterol 

(high density lipoprotein-cholesterol) in a number of animal model. Using rabbit model, 

diet that contain 1% of CLA mixture showed 30% regression of the experimentally induces 

atherosclerosis; 

 Body fat reduction: reported for the first time in 1995 when 

C18:2trans10,cis12 was recognize as the isomer responsible of this activity. It is currently 

the most studied of the reported physiological effects of CLA. This is the effect of multiple 
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mechanism that increase energy expenditure by reducing lipid accumulation in adipose 

tissues and/or adipocytes differentiation by increasing adipocyte apoptosis, by modulating 

adipokines and cytokines (Evans et al., 2002); 

 Effects on skeletal muscle: this possible effect is poorly understood if 

compared with the effect on adipocityes. This is known as a “possible effect” that enhanced 

CPT activity (phosphocholine cytidylyltranserase) in skeletal muscle in CLA-fed mice, 

increasing lean body mass gain relative to fat mass gain; 

 Reduce the risk of diabetes: this capacity is confused and related to the 

differences in species response. Park (2009) and Park and Pariza, (2007), reported that not 

only in animal model the CLA effect was study, but also in human clinical trial, using a 

commercial CLA preparation used for human and composed by >90% of the two 

biologically active isomers in equal amount (C18:2cis9,trans11 and C18:2trans10,cis12). 

From these studies were reported that the duration of CLA supplementation can influence 

the benefit effects and an improving glucose metabolism as show by decreasing glucose 

and increasing insulin concentration. Khanal (2004) report that the role of CLA in 

regulating type-2-diabetes is linked to obesity. The effect of C18:2trans10,cis12 linked to 

body fat reduction is implicated also as an antidiabetic; 

 Immune and inflammatory responses: The activity of CLA isomers is not 

only enhances immune response, but also protects tissues from collateral damage. The 

effect of CLA is connect with the capacity of modulate eicosanoic and immunoglobulin 

production and it is usually associated with anorexia and wasting;  

 Bone health: Finally research indicates that CLA may play a role in bone 

health. It was demonstrate that through altered fatty acid composition and PGE2 

(Prostaglandine E2) production in bone organs cultures, CLA isomers have the potential to 

influence bone formation and resorption (McGuire and McGiure, 2000); 

 Antioxidant Action: It is recognized for first time in 1990 from in vitro 

experimental result. Ha et al. (1990) report that CLA are an effective antioxidant more 

potent than α-tocopherol an butylated hydroxytoluene (BHT) and it may be partly 

responsible for the anticarcinogenic effect of CLA. Dietary CLA reduces Arachidonic 

Acid, Linoleic Acid and Oleic Acid content in fat and shifts the whole fatty acid 

composition to more saturated side. Therefore, meat from animal fed CLA may be less 

susceptible to lipid oxidation, colour changes and volatile production than those from 

control diet (Hur et al., 2007); 
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Until now little have been reported about the effect on humans by CLA isomers, 

important information have been found in animal models where they prevent chemically-

induced tumors, protected against the catabolic effects of immune stimulation, improved 

feed efficiency, reduced excess body weight gain, reduced body fat, increased lean body 

mass and lowered blood lipids. Bisosnauth et al. (2006) reported that C18:2trans10,cis12 

rather than C18:2cis9,trans11 is responsible of the biological effects on plasma lipids and 

body condition, increasing LDL-C. There is evidence that feeding CLA 

(C18:2trans10,cis12) may affect liver metabolism in mice, increasing its weight 

independently of body weight. The biological action of the C18:2trans10,cis12 depress the 

SCD enzyme activity during growth, it may decrease carcass adiposity, reducing body fat 

accretion (Pariza, 2004; Archibeque et al., 2005). Many study with beef cattle and dairy 

cows, confirm this capacity to reduce body fatness in growing animals. Low protein (LP) 

diets supplement with rpCLA, in DMB bulls, are thought to increase feed efficiency, 

increasing the lean tissue deposition and reducing fat deposition (Schiavon et al., 2012). 

Besides rpCLA has been proposed to exert some protein-sparring effects that can be better 

exploited using DMB bulls under condition of protein restriction (Park et al., 1997; Pariza et 

al., 2001; Schiavon et al., 2011). The importance of rpCLA has been recognize also by other 

authors: in dairy cows, during lactation, abomasal infusion of CLA or feeding rpCLA result 

in a strong reduction of milk fat content (Baumgard, Sangster, & Bauman, 2001). Perfield II 

et al (2002) identified a relationship between the supplementation of rpCLA and the 

reduction of milk fat content in lactating cows and demonstrated that C18:2trans10,cis12 

inhibited milk fat synthesis. In contrast Sinclar et al. (2007) reported no significant effect of 

C18:2trans10,cis12 supplementation on milk performance but supplemented animals were 

found to be in a greater positive energy balance compared to control. At the same time 

supplementing dairy cows with C18:2trans10,cis12 has been associated with increases in 

milk and milk protein yields and in early lactation was observed beneficial effects on 

reproduction performance. All this effects are seen to be dose–dependent (Weerasinghe et 

al., 2011; De Veth et al., 2009). Park et al. (1997) and Pariza et al. (2001) also suggested that 

muscle mass may be preserved or enhanced as a result of CLA induced changes in the 

regulation of some cytokines that profoundly affect skeletal muscle catabolism and immune 

function.  
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PART II: CLA ISOMERS ANALYSIS 

 
Fatty acids may be found in the free form, but in general they are combined in more 

complex molecules through ester or amide bonds. As reported in Figure 3, the most common 

methods used to analyzed fatty acids profile and CLA isomers consist in multiple-steps 

method which include: 

 Sample preparation, carried out in order to homogenize the sample before 

analysis. This step includes drying, size reduction or hydrolysis and the purpose is 

obtain an ideal sample that should be identical in all of its intrinsic properties to the bulk 

of the material from which is taken. This preparation for lipids analysis depends on the 

type of food and the nature of its lipids and it is not possible to devise a single standard 

method for extraction of all kinds of lipids in different foods; 

 Extraction procedure to extract lipids from the samples carried out using 

organic solvents and generally based on Folch (1957), Hara & Radin (1978) or modified 

Folch and Hara & Radin methods. Lipids extraction use organic solvents to avoid 

interference in the next step or in the FAME synthesis; 

 Derivatization of fatty acids (FA) to methyl esters (FAMEs), more volatile 

compounds that can analyzed by chromatography analysis; 

 Chromatography analysis. Establish mainly by gas chromatographic 

analysis (GC), two-dimensional gas chromatographic analysis (GCxGC) and silver ion 

high performance liquid chromatographic (Ag
+
HPLC). 

 

Figure 3: Different steps of lipid extraction (Modified by: Carrapiso & Garcia, 2000). 
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2.1 Fat extraction procedures 

 

Actually a large number of methods are available for extract lipids from biological 

materials and an accurate determination of fatty acids composition is the main problem in 

total fatty extraction. A large number of methods are currently used for this purpose and 

they are divided in relation to the type of solvent used. There are: 

 Method that use single organic solvent as Soxhlet (which is an AOAC 

recommended method) and Goldfish; 

 Method that use a combination of organic solvents, in which, the most important 

are: Folch (1957), Bligh & Dyer (1959), Hara & Radin (1978); 

      Other methods, that use non-organic solvents, such as microwave, supercritical 

fluid extraction (SFE), acid digestion method, detergent method, and physical 

method (percolation, maceration, digestion and stream distillation).  

The use of combination of organic solvents is because a single non polar solvent may 

not extract the polar lipids from the tissues and to ensure a complete recovery of tissue lipids 

a solvent system composed of varying proportions of polar and non polar components may 

be used. The type of solvent and the method depend both on the chemical nature of the 

sample and the type of lipid extract desired. The main characteristics of the ideal solvent for 

lipid extraction is the high solubility of lipids, this solvent may also to prevent enzymatic 

hydrolysis of lipid and should penetrate in sample particles having a low boiling point. 

Solvents used for isolation of lipids are: alcohols (methanol, ethanol, isopropanol, n-

butanol), acetone, acetonitrile, ethers (diethyl ether, isopropyl ether, dioxane, 

tetrahydrofuran), halocarbons (chloroform, dichloromethane), hydrocarbons (hexane, 

benzene, cyclohexane, isooctane) or their mixtures. The results of these extractions is the 

“fat” content, sometimes called ether extract, neutral fat or crude fat, that is refers to “free” 

lipid constituents that can be extracted into less polar solvents, such as petroleum ether or 

diethyl ether (Akonh and Min, 2002). 

Between methods see above, the most important is the traditional or modified Folch 

(1957) procedures which employs a mixture of organic solvents, chloroform/methanol (2:1, 

v/v). This is one of the oldest methods to extract lipids from brain and biological samples 

rich in phospholipids. Bligh and Dyer method was created with the purpose to separated 

lipids from non-lipids in samples containing 80% of water (as fresh tissues) and use a 

different combination composed by chloroform/methanol/water. Bligh and Dyer method 
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thought to yield recovery of >95% of total lipids but samples with an high lipid content 

(>2%) were greatly underestimated (Iverson, Lang and Cooper, 2001). 

Many research about fat extraction on biological samples recognized that the method 

choose is related to the composition of samples: Lee et al (1996) reported a modified version 

of Folch were the proportion of solvents use were different in relation to the fat content 

(chloroform/methanol (2:1, v/v) or chloroform/methanol (1:1, v/v)). Biochemists in the last 

year have paid more attention to the fat extraction procedures and the potential health hazard 

of these techniques, as example, chloroform can produce tumors in animal and methanol is 

known for its damage to the visual system. For these reasons, studies on the various 

available solvents led to the conclusion that hexane/isopropanol (HIP) shows significant 

advantages and a low toxicity. Hara & Radin (1978) created a new technique that use this 

solvents mixture in particular for milk and cheese samples. Causes of the toxicity of solvent, 

others procedures were employed to extract lipid reducing solvent use. One of these is, 

Pressurized Liquid Extraction (PLE) or Accelerated Solvent Extraction (ASE), an automated 

extraction techniques that have been introduced. This use the same solvents of the current 

extraction methods but in smaller amount, with the minimal analyst exposure and under 

varying extraction parameters such as temperature, pressure and volume process (Dionex- 

Application note n. 334 and 345; Toschi et al. (2003)). Solid sample are packed into an 

extraction vessel. Temperatures used, where above the boiling point of the solvent, due to 

the elevate pressure used in the process and for enhances solubilization and diffusion of 

lipids from samples to the solvent (Richter et al., 1996). According to Schafer (1998), 

content of fatty acids of the lipid extracted from muscles using ASE was similar or better in 

comparison with the conventional Folch extraction. As confirmed by many comparative 

study, it has been demonstrated that the use of different methods results in different lipid 

recoveries and the results varied widely due to the different extraction methodology. Pérez-

Palacious et al. (2008), reported an higher capacity of Folch to extract lipid if compared with 

Soxhlet method. As consequence Folch can be considered suitable for meat and meat 

products with low, intermediate, high or very high lipid content and on the contrary Soxhlet 

was not adapt for lipid extraction in meat with very high lipid content. Also, FA content in 

cereal and yolk lipids extracted by ASE are highest when isopropanol/hexane is used. 

However, in muscle lipids results higher FA content when chloroform/methanol was used 

(Ruiz-Rodriguez et al.2010). 
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2.2 Fatty acids derivatization (FAME) 

 

Lipid extract from animal sources are a complex mixture of individual class of 

compounds (triglycerides, free fatty acids, steryl esters, free sterols, phospholipids, 

glyceroglycolipids, gangliosides, ceramides and sphingolipids) with a complex structures 

that require further separation to purify components. For example fatty acids found in meat 

lipids are bond to an alcohol (glycerol) via ester bonds (triacylglycerols, phospholipids and 

sterol esters) or to a long-chain base (sphingosines) via amide bonds (sphingolipids). For 

these reasons, FA are converted to more non-polar and volatile derivatives by different 

derivatization methods.  

Between the different type of formation of alkyl-esters (methyl, ethyl, propyl or butyl 

esters), fatty acids methyl ester preparation is the most common and esters formed with 

higher molecular weight alcohols (ethanol, propanol, isopropanol, butanol) are useful in 

determining volatile short chain fatty acids as found in dairy products and milk. 

Derivatization with isopropanol separates the low molecular analytes from the solvent front 

and improves the determination of the C4–C10 group of fatty acids, reducing the loss of 

such acids during the preparation procedure. The preparation of the methyl ester derivatives 

of fatty acids is carried out in a simple reaction, but it becomes more complicated when 

derivatization of conjugated fatty acids are involved, because of the conjugated double bond 

makes them unsuitable for the most common techniques employed for fatty acids analysis 

(Aldai et al., 2005 and 2006). Various methods are employed and everyone have advantages 

and disadvantages. For this reason is necessary optimize the derivatization procedure in 

order to obtain accurate quantitative and qualitative results. The most common problems 

include: 

 Incomplete conversion of the fatty acids to their methyl esters homologues 

(often as result of the presence of water); 

 Alteration of the original FA profile during esterification, because of 

chemical mediated changes in the proportion of different positional and/or geometric 

isomers; 

 Formation of artifacts which can be wrongly identify as fatty acids; 

 Contamination and subsequent damage of the GC column resulting from 

unclean samples. 

For milk and rumen lipids, several mehtylation methods are available and included the 

following catalysts in anhydrous condition: HCl/methanol, BF3/methanol, acetyl 
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chloride/methanol, NaCOH3/methanol, tetramethylguanidine/methanol, H2SO4/isopropanol 

and diazomethane in diethyl ether/methanol (Kramer et al., 1997).  

These mechanism may be divide in two groups: 

 Base-catalyzed: performed using NaOCH3 or KOH in methanol at room 

temperature. It is considered as a reference procedure to derivatize milk fat because of it 

reduce loss in short chain fatty acids. It is not use for matrices such as ruminal liquid and 

for tissues with high concentration of phospholipids, because it does not esterify free fatty 

acids (FFA) and phospholipids (PL) are not completely methylated. However, it is 

considered the most reliable for determining CLA isomers distribution because avoid 

migration and isomerization of double bonds; 

 Acid-catalyzed: is very common and performed using BF3, HCl or H2SO4. 

Esterify all complex and simple forms of fatty acids but may causer isomerization of 

conjugated double bonds and contribute to forming allylic methoxy artifacts. (De la 

Fuente et al., 2006). One of the many disadvantages of BF3/methanol is the limited shelf-

life of the reagents (Nuernberg et al., 2007). 

There is a need to investigate exactly the concentration of CLA isomers in all the 

different lipids fractions, including free fatty acids, N-acyl lipids and plasmalogens of 

ruminant meat and meat products because of their different functions and effects on 

metabolism. The determination of CLA is complex because of their unstable nature, due to 

the presence of unsaturated double bonds that are subjected to epimerization and 

isomerization (Fuchs et al., 2011; Dance et al., 2010). As saw before, this step of 

methylation was found to be a critical step for the determination of CLA content in various 

lipids samples, and to overcome this problem of the methylation Jenkins (2010) proposed a 

modification of Sukhija and Palmquist (1988) method given by a combination of acid and 

base catalyst for shorter incubations times minimizing the problems given in other methods 

(epimerization and isomerization of double bonds). This method was give by a combination 

of basic catalysis with Sodium Metoxide (0.5M in methanol) and acid catalysis with 

Methanolic HCl (5%) at 50°C and 80°C for short time (respectively 5 and 8 minutes). 

Nuernberg et al. (2006) reported a comparison between four different methylation methods 

for quantified CLA isomers content and coming to the conclusion that temperature can 

produced artifacts if they are high (80-100°C) and if the exposure time are high. Also Park et 

al. (2001) and (2002) measure up to 13% of total artifacts and impurities at the reaction 

temperatures of 80°C and 20-60 minutes of reaction time with BF3/MeOH. Many studies on 

CLA isomers, report that from 50 to 60% of the main isomers is given by C18:2cis9,trans11 
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and C18:2trans10,cis12 and only <10% of the C18:2trans9,trans11. Artifacts product by 

acid-catalyzed on CLA isomers can hinder the chromatography analysis, because of 

increasing temperature and/or incubation time decrease Rumenic Acid (RA, 

C18:2cis9,trans11) and C18:2trans10,cis12 but increase levels of C18:2trans9,trans11 and 

C18:2trans10,trans12. When HCl and BF3 are used is possible to observe an increase of 

trans/trans isomers and a decrease of cis/trans and trans/cis isomers (Jenkins, 2010; 

Murrieta et al., 2003). Sometimes all these methods involve in a loss during the singles 

extraction steps, for these reasons and for increase the efficiency of the method, Internal 

Standard (IS) is added. Internal Standard is added to quantify the single fatty acid according 

to a known amount of a given fatty acid used as standard. Many fatty acids can use as IS and 

the requirements for the most suitable are: 

 It be unique and not present in the sample. If it is present in the sample 

separate runs with and without the standard must be run; 

 It must have chemical characteristics that are similar to the unknowns; 

 Readly available;  

 Economical. 

The choice of the Internal standard may sometimes be important for obtain accurate 

results. The most commonly standard FA were indicated to be the C17 and C19. As 

example, applying direct trans-esterification procedure to a fat supplement high in saturated 

fatty acids yielded 613 mg/g of total fatty acids when C17:0 was used as IS compared with 

930 mg/g of total fatty acids when C19:0 was used as IS. However, fatty acids content 

increased to 952 mg/g when a unique unsaturated fatty acid (C13:1) was used as IS 

(Palmquist & Jenkins, 2003; Jenkins, 2010). 

 

2.3 In-situ method  

 

As reported in Figure 3 methods with the previous fat extraction are not the only 

possibility. In fact, a very large number of analytical approaches based on initial extraction 

have been employed, but many critical condition and limitation of their application were 

found, in particular during the isolation of lipids and methylation of FAME. To avoid this 

problem most attention was paid to in-situ trans-esterification methods. In this case the 

derivatization technique is mainly a trans-esterification because of FA in biological samples 

are included in triacylglycerols (TAG) and phospholipids (PL). The main characteristics is 

that the lipid extraction step is avoided and fatty acid are extracted and trans-esterified in the 
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same time. This method reduce the length of the total procedure, saving time at work, 

reducing the sample amount, reducing the use of solvents, giving analysis less expensive and 

easier. The two rules to follow in this method are: lipid solubilization in solvents and 

prevention of the interference of water or other compounds. Samples must be submitted to a 

previous step to remove water. Bibliographical references, report that is necessary a 

pretreatment for removing water and facilitate the penetration of solvents. If water is 

present, it must also be integrated into the system and if it is present above specific levels, 

triacylglycerols, particularly those with long-chain saturated, tend to precipitate and react 

much more slowly. Water can also interfere because it is a strong electron donor compared 

to methanol. Regarding the other rule or the lipid solubilization, the choose of catalytic 

reagent is very important and is made in relation to free fatty acids (FFA), type of bond of 

the fatty acids linked and the feasibility of using strong heating conditions (Carrapiso & 

García, 2000). 

In the study of O’Fallon et al. (2007) an alternative method was reported. In this study 

the researcher of Dr. O’Fallon’s group present a method that is based on a surprising 

concept that the addition of water was considered part of the method and not an antagonist. 

Also Ulberth and Henninger (1994) found that a small amount of water in samples did not 

interfere with the formation of methyl esters using methanol-HCl/toluene. 

Many studies have focused on this one-step method: MacGee and Allen (1974) in 

biological tissues, Outen et al. (1974, 1976) in feeds, Shimasaki et al. (1977) in mammalian 

tissues, Haan et al.(1979) in human tissues, Lepage and Roy (1986, 1988) in plasma, Browse 

et al. (1986) in leaves and Sukhija & Palmquist (1988) in feed, forages and feces. Among all 

the in-situ existing methods, in this thesis is descript and use only one. This method is very 

popular in many laboratories and is described in Sukhija and Palmquist (1988) with changes 

made by Jenkins (2010). This is used for the first time to analyze fatty acids of feed and 

digesta and is based on a mild acid-base methylation. As reported in Cesaro et al. (2011, 

2013) this method was found to be similar or better than others for determining the FA 

profile in feces, which is a complex matrix for presence of un-esterificable fractions such as 

soaps. As reported by Meier et al. (2006) in the analysis of marine sample’s FA the 

challenge was relate to the high content of PUFA and in 1985 was reported the first one-step 

procedures for FA determination. The most used reagent for this methylation is methanolic 

HCl applied with a large variation in reaction parameters, such as type of catalysis, polarity 

of solvent, water content of sample, reaction temperature and time. The condition of reaction 

can influence results, for example regarding CLA isomers, the most common adjustments 
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needed to the Sukhija and Palmquist (1988) and reported by Jenkins (2010) are alteration in 

methylating conditions and the selection of an appropriate Internal Standard (IS) suitable for 

the samples test. Modification were made to prevention CLA isomerization and were based 

on the work done by Kramer et al.(1997) that considered the effects of acid and base 

catalysts on CLA isomerization during methylation. As reported by Juárez et al. (2008) in-

situ method had low variation values, show high precision, repeatability and reproducibility. 

To our knowledge this method was not tested to evaluate the FA profile of meat samples. 
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PART III: CHROMATOGRAPHY ANALISYS 
 

3.1 Chromatographic separation and identification of fatty acids profile and 

CLA isomers 

 

In addition to esterification and methylation another problem is given by the 

chromatography technique used, because often the most common is not the one that give the 

most optimal results. Considering past studies, the first references on chromatography process 

come from the Old Testament, after that other informations come from Venice in the Middle 

Ages but the real discovery was made by a russian botanist called Michail Semënovič Cvet 

(Tswett). In 1903 and 1906 he presents his experiments at the First International Petroleum 

Conference and named the process “chromatography” after the Greek words “chromos” 

meaning “color” and “graphy” which means “to write”. After this discovery the development 

of chromatography until the early 1930s was very slow and Tswett’s experiments were 

forgotten. Chromatography was reborn with the work of Kuhn et al. (1931) and after that a 

significant development is seen in the early 1940s by the Nobel Prize winner, Martin. Martin 

and Synge (1941) revitalized chromatography by developing the theory for liquid–liquid 

chromatography. Also gas chromatography was improve, in fact, GC was divided into two 

different analytical methods: gas–solid chromatography (GSC) and gas–liquid 

chromatography (GLC) (Brondz, 2001). Actually, a number of methods have been developed 

for analysis of fatty acids and octadecenoic fatty acids in food are many and the main are 

infrared spectroscopy (FTIR), gas chromatography (GC) combined with flame ionization 

detector (FID) or mass spectrometry (MS) and silver ion high performance liquid 

chromatography (Ag
+
HPLC) or reverse phase HPLC (Villegas et al., 2010).  

In the last two decades, Infrared Spectroscopy (IR) was the classical and routinely 

method used to determine trans fatty acids and conjugated trans double bonds in food. 

Generally, IR measurements are carried out using FAMEs and the main principle of this 

techniques is isolated trans double bonds that show absorbption at 966cm
-1

 deriving from the 

C-H out-plane deformation band for trans R1-HC=CH-R2, groups accompanied by the CH3 

in-plane rocking band for saturated fatty acid methyl esters (FAMEs). The major problem 

with IR is that samples analyzed, as methyl esters, produce trans levels which are 1.5-3.0% 

lower for trans values from 1% to 15%. As consequence, correction factors to compensate this 

lower absorption were proposed by the Association of Official Analytical Chemists (AOAC). 

Conjugated trans double bonds can interfere with the isolate trans isomers measurement 

because they are absorb very closely to the isolate trans bond. The overlap of the trans 
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absorption by other bands in the spectrum produces a strongly sloping background that 

converts the trans band into a shoulder levels below 2% and reduces the accuracy of 

determination. (Fritsche and Streinhart, 1998). Another technique called Attenuated Total 

Reflection (ATR) is created to avoid the problem of IR and give results that are close to those 

found with Gas Chromatography (GC). For the minor unknown fatty acids, as example CLA 

isomers, GC techniques are associated with others. One example is when Gas 

Chromatography (GC) is coupled with IR spectroscopic creating the Gas Chromatography-

Furier Transformation Infrared Spectrometry (GC-FTIR) or when for analyze the structures 

of fatty acids a mass spectrometer is connected to a GC (GC-MS). As reported by Manzano et 

al. (2009) GC-FTIR and GC-MS are the most employed techniques to study fatty acids and 

the conjunction with FID and MS detector permit more fatty acids and isomers separation as 

happened with linoleic acid. Regarding CLA isomers and their study, in the second half of 

1990s a lot of research was undertaken and at the present the most important for determining 

the CLA isomers profile are GC-MS and Ag
+
HPLC with columns in series and a UV detector 

of FAME. However, GC-FTIR can contribute to confirm the geometric configuration (cis or 

trans) of the double bonds as nuclear magnetic resonance (NMR) spectroscopy (De la Fuente, 

2006). 

All the chromatography analysis of CLA isomers are hindered by a lack of well-

characterized references material. Most commercial CLA mixtures contain only four major 

positional isomers (C18:2trans8,cis10, C18:2cis9,trans11, C18:2trans10,cis12 and 

C18:2cis11,trans13) with smaller amount of the corresponding cis/cis and trans/trans 

isomers. Moreover, only few pure isomers are available in the marked (C18:2cis9,trans11, 

C18:2trans10,cis12, C18:2cis9,cis11, C18:2cis11,trans13 and C18:2trans9,trans11) (De la 

Fuente, 2006). Below, are shown some of the chromatography techniques mentioned above 

and used in my thesis for the high ability to represent the fatty acids profile and CLA isomers. 

 

3.2a One Dimensional Gas-Chromatographic Analysis  

 

Gas chromatography (GC) is the routine procedure and the most important to 

investigate fatty acid composition. Compared to the past, GC has many important 

presupposes:  

 Good resolution as show by the symmetric peaks; 

 High repeatability and reproducibility of retentions times; 

 High precision and accuracy in quantitation based on peak area measurements; 
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 Minimal termal and catalytic decomposition of sensitive samples components 

(Seppänen-Laakso, Laakso and Hiltunen, 2002). 

GC separation is based on partitioning and/or adsorption of the lipid components 

between solid and liquid (mobile) phases. The most common stationary phases for column are 

silica, alluminia and ion exchange resins, whereas the preferred column material for lipid 

analysis are silicic acid and magnesium silicate (Akonh and Min, 2002). The separation 

requires volatile analytes as fatty acids methyl esters (FAMEs). Identification is limited to the 

comparison of retention time (RT) with a limited number of references standards (IS). FAME 

analysis demand an high power resolution especially to provide evidence of positional and 

geometrical isomers of unsaturated fatty acids in complex mixtures. GC should be equipped 

for a capillary column with a detected by a flame ionization detector (FID), a split/splitless 

injection system, an autosampler and a computer software to collect, integrated and transform 

the results data. In GC important is the column used and in particular the main parameters 

involved, as example: the weight of the absorbent, conditioning of the absorbent (moisture 

content), polarity, column size (in particular length because is able to influence its capacity 

and elution order). Regarding the column size, is known that long narrow column give the 

best resolution, but a large diameter columns increase sample capacity. However, elution 

order is strongly influences by the different stationary phases and polarities, as well as the 

temperature program (Roach et al., 2002). For this reason temperature programs are chosen in 

order to obtain the best resolution of the major FAMEs with emphasis on the 

octadecadecenoate cis and trans isomers and non-conjugated C18:2 and C18:3 isomers. 

Concerning the length of column, shorter columns are more prone to interferences than 100m 

column. The capillary column length and diameter are, also, the major determinants of the 

time of analysis. With this column the elution order of CLA isomers is: first the cis/trans and 

trans/cis, followed by cis/cis and finally all the trans/trans positional isomers. As reported by 

Aldai et al. (2006) GC yields satisfactory results on analysis of major and minor fatty acid in a 

single run. On the contrary, Fritsche and Steinhart (1998) and the Americal Oil Chemists’ 

Society (AOCS) have found a difficulty in identifying C18:1 cis and trans isomers and the 

total trans unsaturated fatty acids, however it seemed possible improve the separation 

increasing the length of the column. The column can influence FA profile also through the 

order and the resolution power of branched-chain with odd-chain and even-chain lengths, that 

is distinctive depending and where iso and anteiso branched-chain configuration elute prior to 

the corresponding saturated FAME. For example C15:0iso and C15:0anteiso, C16:0iso and 

C16:0anteiso, C17:0iso and C17:0anteiso, C18:0iso and C18:0anteiso have shorter retention time 



42 
 

compare to C15:0, C16:0, C17:0, C18:0 respectively. Also in the determination of CLA 

isomers many problems are presents and in particular some CLA are co-elutes with others: 

 C18:2trans8,cis10 co-elutes with C18:2cis9,trans11; 

 C18:2trans9,cis11 can be separated by C18:2cis9,trans11; 

 C18:2cis10,trans12 elutes between both the 9,11 CLA; 

 C18:2cis11,trans13 co-elutes between 10,12 CLA.  

In the last case, in many samples, when the amount of C18:2trans10,cis12 is high 

C18:2cis11,trans13 may be overestimated due to the inappropriate resolution power (Alves 

and Bessa, 2004; Ruiz-Rodriguez et al.2010). Also Christie (2001) reported the low capacity 

of GC to give distinct peaks of CLA isomers, confirming a well separation of the two main 

isomers (C18:2cis9,trans11 and C18:2trans10,cis12) but not from the other isomer. Other 

important parameter is the type of carrier gas used (frequently, hydrogen and helium) and the 

velocity of this gas. In conclusion, considering the gas chromatography (GC), often the single 

GC using the currently available columns is not always the best option to identify components 

from natural samples.  

 

3.2b Two Dimension Gas-Chromatographic Analysis  

 
Recently gained much more attention, especially in relation to food analysis, the two-

dimensional gas chromatography (GC×GC) a multidimensional technique that may resolve 

some limitation in FAMEs analysis due to the increased power separation in comparison with 

one-dimensional GC according to carbon length and the number of double bonds. It allow a 

great versatility in separating complex mixture in a single run and were very reproducible in 

retention times in both dimensions. In GC×GC the first column effluent is separated into 

small fractions according to the resolution of the first-dimension and then effluent is subjected 

to a second dimensional study using another column. The interface between the two columns 

is a modulator that has like main function increase the amplitude of the signal and to facilitate 

its transfer to the second dimension. Normally the various types of geometrical isomers give 

distinct peaks but whiting these groups, positional isomers are not always completely 

resolved, for these reasons a single run give an approximate idea of the total content of CLA 

relative to other components. In order to establish a complete isomeric distribution it is 

essential use a combination of analytical methods, as example GC×GC and Ag
+
HPLC (Zabala 

et al., 2007). 
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Figure 4: Example of two dimensional chromatogram (GCxGC). 

 

 

3.3 Silver Ion High Performance Liquid Chromatographic (Ag
+
HPLC) 

 

A suitable separation of all CLA isomers present in biological tissues is not possible by 

GC, for this reason the complementary use of Ag
+
HPLC is currently the most effective way to 

separate and quantitate individual isomers of CLA in beef (Roach et al., 2002; Nuernberg et 

al., 2007). Ag
+
HPLC has been one of the most important technique available to lipid analyst 

for the separation of molecular species of lipids since its introduction by Morris in 1963. It 

can separate FA according to the configuration and the number of their double bonds and also 

according to the position of the double bonds (Fritsche and Steinhart, 1998; Fritsche et al., 

2000). CLA FAME are detect thanks to their characteristic UV absorbance at 233nm. The 

identities of the isomers in HPLC chromatograms are based on co-injections of known 

reference materials obtained from commercial sources or synthesized. The main proprieties of 

this techniques are: 

 The retention increases rapidly with increasing number of double bonds in the 

molecule; 

 cis-(Z) isomers are retained stronger than trans-(E) isomers; 

 Compounds with conjugated double bonds are retained less strongly than 

compounds with methylene interrupted double bonds; 

 FA with longer chain eluite ahead of shorter-chain components of the same 

unsaturation; 

 RT of dienes with separated double bonds depends on the distance between the 

double bond passing through a maximum at 1.5-diene system; 

 RT decreases with the increasing of chain-length. 

Regarding, CLA isomers quantification, the problem of this technique as saw for GC 

analysis, is that only a limited number of CLA isomers were available and pure isomers are 

C18:2cis9,trans11, C18:2trans10,cis12, C18:2cis9,cis11 and C18:2trans9,trans11. In opposite 
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to GCxGC, Ag
+
HPLC profile is show to separate first trans/trans compounds followed by 

cis/trans and trans/cis regions and in the end the cis/cis region. However in some samples, as 

example milk fat, a wide peak can mask the cis/cis area and as reported by Luna et al. (2005), 

in ewes milk 12 CLA isomers have been identified. The existence of other minor interference 

in CLA area have also been reported. Experiments show that retention order of the positional 

isomers of each group of configurationally isomeric CLA is the same and is determined by the 

position of the double bonds in the carbon chain: 

  trans: C18:2 -12,14- < 11,13- < 10,12- < 9,11 < 8,10- < 7,9; 

 cis/trans: C18:2 - 11t,13c-<10t,12c-<9c,11t- <∼9t11c-+8c,10t-<8t,10c; 

 cis:  C18:2 - 11,13- < 10,12- < 9,11- < 8,10 (Nikolova-Damyanova, 2009). 

Also in this technique the column is very important, operating from one to six columns 

in series progressively improve the resolution of methyl esters of CLA isomers both from 

natural and commercial products (De La Fuente, 2006). However Roach et al. (2002), report 

that the use of three columns in the best compromise because increase the resolution of the 

peaks but in the contrary more than three columns in series provide a decrease of the benefits. 

The presence of silver ions, like the ions of other transition metals, interact specifically with 

unsaturated compounds to form weak charge transfer complexes with olefinic double bonds. 

Regarding the mobile phase, it plays an important rule, because it will be affect the Retention 

Time (RT) and the elution of CLA. Depending to the mixture of solvents use for the mobile 

phase the retention time shift can be totally eliminated (the addition of diethylether in hexane 

can stabilized solvents mixtures). Many studies try to evaluate which is the best solvent 

systems with the best stability in retention times and resolution. They found that 0.2% 

propionitrile in hexane showed the highest stability compared to the reference acetonitrile 

system, even though it give not a good resolution in CLA isomers determination if compared 

to acetonitrile (Ruiz-Rodriguez et al.2010). 

 
Figure 5: Example of Silver Ion High Performance Liquid chromatogram (Ag

+
HPLC). 
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3.4 Thin Layer Chromatography (TLC) 

 
Thin Layer Chromatography (TLC) is one of the main analytical tools used for lipid 

analysis. It is used for fractionation of lipid complex mixtures, assay of purity, identification, 

information on the structure, as well as for monitoring extraction and separation of 

components via preparative column chromatography for routine and experimental purposes. 

Regarding the fractionation of lipid complex mixtures, lipid extract are a mixture of 

individual class of compounds: triglycerides, free fatty acids, steryl esters, free sterols, 

phospholipids, glyceroglycolipids, gangliosides, ceramides and sphingolipids and TLC is used 

to identify some of these components, as example, triglycerides, free fatty acids and 

phospholipids. The main components of TLC are the stationary phase, mobile phase and it is 

based on the difference in the affinity of a component toward a stationary and mobile phase. 

Analysis, need a prior extraction of fat and after are carried out in different steps: (1) samples 

lipids extract are applied as spots or as narrow streaks 1.5-2 cm from the bottom of the plate; 

(2) plate is developed in a chamber containing a solvent or a mixture of solvents (mobile 

phase); (3) in the chamber mobile phase moves up the plate by capillary action, taking the 

various components with at different rates, depending on their polarity; (4) after that, when 

solvents approaches the top, plate is removed from the chamber and dried under a flow of 

nitrogen and a specific reagent, such as, 2,7-dichlorofluorescin in 95% methanol (1, w/v %); 

(5) lipids exhibit a yellow color and produce a different color under UV light; (6) the different 

lipid fractions are separated from the plate (Akonh and Min, 2002). As reported by Pérez-

Palacious, Ruiz and Antequera (2007), TLC is used for phospholipids (PL) separation and it is 

associated to High Performance Liquid Chromatography (HPLC) due to the excellent 

quantification and resolution.  
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General Aim 

Fatty acids profile of meat, as saw in the general introduction is very important for the effect 

that fatty acids can have on human health. Diseases and potential negative effect were connect 

with meat consumption, but its rule is controversial because of it is an important source of 

trace elements (minerals), fat soluble vitamins and other molecules with and high biological 

value, as example, Conjugated Linoleic Acid (CLA) and Long Chain Fatty Acids (LC-

PUFA). In this thesis, the principal aim is the study of Conjugated Linoleic Acid (CLA) 

according to different point of view. CLA can have many important effects but also many 

problems in their identification and analysis. The different aims of this study regarding, 

firstly, methods of analysis (in terms of extraction procedure and chromatographic 

techniques), effects that can affected the FA profile and CLA content and effects of CLA 

supplementation on animal performance.  

Summarizing the purposes of this thesis can be divided as follow:  

Methodological Approach: 

 use the two-dimensional gas chromatography (GC×GC) to compare the effects of 

three different procedures of fat extraction in terms of mean, repeatability, and 

variance homoscedasticity, of the measures of single and groups of FA in three tissues 

collected from young growing bulls (liver, subcutaneous fat and muscle); 

 use the Ag
+
HPLC to analyze the CLA isomers content in three tissues collected from 

young growing bulls fed increasing rpCLA supplementation (liver, subcutaneous fat 

and muscle). 

Effects of rpCLA supplementation and source of variation on FA profile: 

 study the effect of feeding system (pasture, penned in an open barn and fed with hay 

and concentrate and penned in the open barn and fed with hay and concentrate added 

with rpCLA supplement), breed (Foza, Brogna, Alpagota and Lamon), gender (raw 

and ewe) and tissue (liver, round, rib eye, other muscle, cover fat and kidney fat) on 

fatty acids profile composition in lambs slaughtered at different age; 

 Study the effect of feeding system, paying attention to the role of ewe’s milk as one of 

the main component of suckling lamb’s diet. 

Effects of rpCLA supplementation on animals performance in term of: 

 Milk composition of lactating ewes and their milk coagulation proprieties (MCPs); 

 Growth rate, slaughter traits and meat quality of lambs belonging to three Alpine 

sheep breeds. 
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CHAPTER 2 

 

 

 

 

Two-dimensional gas chromatography to 

evaluate the effect of different procedures of 

fat extraction on fatty acid profile and 

repeatability of the measures on liver, 

subcutaneous fat and muscle of beef cattle. 
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2.1 ABSTRACT 

Aim of this study was to use the two-dimensional GC to compare the effects of 3 

different procedures of fat extraction in term of mean, repeatability and variance 

homoscedasticity, of the measures of single and groups of FA in 3 tissues collected from 

young growing bulls (liver, subcutaneous fat and muscle). The first method (F) used a mixture 

of chloroform/methanol (2:1, v/v) at room temperature. The second (A) accelerated solvent 

equipment, used a mixture of chloroform/methanol (2:1, v/v) associated to these conditions of 

extraction: 120 °C of temperature and 10 MPa of pressure. The third method (J) was based on 

a one-step mild acid-base methylation treatment performed directly on sample, firstly, 

subjected to a treatment of freeze-drying. The experimental design involved 9 crossbred 

young bulls fed with a supplementation of 0, 8 or 80 g/d of rumen protected CLA (rpCLA). 

Samples analyzed were collected from these animal and came from 3 tissues (subcutaneous 

fat, muscle and liver). Data were analyzed in different phases: the first, was an analysis of the 

resolution power and the number of undetected FA for each tissue and for each method. The 

second, was the analysis of the main sources of variation carried out using a MIXED 

procedure that considered as fixed effect diet, tissue, diet×tissue, method and method×tissue. 

Considering the hierarchical structure of the model the fixed effects were tested on different 

error line: animal (diet), animal (diet×tissue) and residual. The third phase, was an analysis of 

the variances homogeneity for the main sources of variations using Levene’s test. In the 

fourth phase, linear regression was used to explore the relationship between FA values 

obtained using the three methods. The incidence of undetectable values depend on the 

sensitivity of the method used; liver has the highest incidence of null values with the J method 

in short chain FA (C8:0 and C10:0). In muscle the highest incidence of undetectable values 

with the J method was mainly observed for the C24:0, for two C20:1t unknown isomers, 

C20:3n3, C20:4n3 and C22:5n6. Among the sources of variation the effect of tissue was 

highly significant, the interaction diet×tissue was significant (P <0.001) only in the case of the 

CLAt10,c12 isomer and both the method and the interaction method×tissue for the majority of 

the FA. The results of the Levene’s test evidenced, except for diet, as the variances among 

levels within tissue, method or method tissue were not homoscedastic for the large majority of 

the FA. 
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2.2 INTRODUCTION 

The complexity of meat fatty acid profile and the current interest in the health effects 

of some fatty acids (Ruiz-Rodriguez et al., 2010) are increasing the research effort to improve 

the methods of analysis. In recent years, comprehensive two-dimensional gas chromatography 

(GC×GC) has proven to be a powerful separation method for different substances in many 

types of samples (Hyötyläinen et al., 2004; Adahchour et al., 2008; Cesaro et al., 2013). To 

our knowledge, little or no application of GC×GC for the analysis of meat fatty acids (FA) 

have been reported so far. The availability of this technique allow to achieve a good precision 

and accuracy in the separation of different FA and this permits to achieve a major detail about 

the effect of different sample preparation methods on the resulting FA profile. 

Comparisons among GC methods for measuring FA profile were mainly focused to 

evaluate the effects of different combined extraction and methylation procedures and reagents 

(Kramer et al., 1997; Yamasaki et al., 1999; Fritsche et al., 2000; Park et al., 2002; Aldai et 

al., 2005; Ficarra et al., 2010). In general, a major emphasis was put on methylation and less 

on the extraction. Methylation was found to be a critical step for a contextual determination of 

FA and CLA contents in various lipid samples (Park et al., 2002). Base catalysts avoid 

migration and isomerization of double bonds but do not esterify free FA (Kramer et al., 1997). 

On the opposite, acid catalysis esterifies all complex and simple forms of FA but cause 

isomerization of conjugated double bonds (Kramer et al., 1997; Christie et al., 2007). Much 

less is known about the effect of different extraction procedures when the same methylation 

procedure is applied. Cold extraction methods, using different organic solvents to quantify the 

solvent extract contents of feeds and foods, are popular but time consuming and often 

uneconomical (Sukhija and Palmquist, 1988). To reduce the analytical times, the labor, the 

use of solvent and the analytical cost the extraction could be completed with an accelerated 

solvent extraction technique (ASE). Schafer (1998) evidenced as the content of FA extracted 

with ASE from muscle matrices was similar or better in comparison to the conventional 

extraction methods (Folch et al., 1957).  

Meat contains a high number of FA, and many of these have been found or are 

supposed to exert considerable effects in biological system at low or very low concentrations, 

such as the conjugated linoleic acid isomers (CLA), C20:5n3 (EPA), C22:6n3 (DHA) and 

various Ω3 and Ω6 polyunsaturated FA (PUFA). Thus, the interest for determining a high 

number of FA, even those present in trace is increasing. The quantification of unsaturated FA 

is complicated by their unstable nature, due to the presence of unsaturated double bonds 
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which makes these isomers easily subjected to epimerization and isomerization (Park et al., 

2002; Jenkins and Lee, 2007; Nuernberg et al., 2007). To overcome the extraction and 

methylation shortcomings, Jenkins (2010) proposed a one-step method based on a mild acid-

base methylation. This method was found similar or better than others for determining the FA 

profile even when applied in feces, which is complex matrix for presence of un-esterificable 

fractions such as soaps (Cesaro et al., 2011, 2013). To our knowledge this method was not 

tested to evaluate the FA profile of meat samples. The aim of current experiment was to use 

the two-dimensional gas chromatography to compare the effects of 3 different procedures of 

fat extraction in terms of  mean, repeatability, and variance homoscedasticity, of the measures 

of single and groups of FA in 3 tissues collected from young growing bulls (liver, 

subcutaneous fat and muscle). 

 

2.3 MATERIAL AND METHODS 

Animals, diets, tissues collection and experimental design 

All experimental procedures were approved by the Ethical Committee for the Care and 

Use of Experimental Animals of the University of Padova (CEASA). 

Fifty-four crossbred young bulls and heifers were fed ad libitum a total mixed ration 

containing 108 g/kg DM of CP, 35 g/kg of FA and supplemented with 0, 8 or 80 g/d of rumen 

protected CLA (rpCLA) supplement from 5 to 16 months of age (18 animals for each rpCLA 

dose) and they consumed 9.3 kg/d of DM on average. The total mixed ration was composed, 

on DM basis, of corn meal (400 g/kg), corn silage (276 g/kg), soybean meal (33 g/kg), dried 

sugar beet pulp (113 g/kg), wheat bran (70 g/kg), wheat straw (66 g/kg), vitamin and mineral 

mixture (26 g/kg), calcium soap (9 g/kg), and hydrogenated soybean oil (7 g/kg). The rpCLA 

supplement consisted of methyl esters of CLA bound to a silica matrix and coated with 

hydrogenated soybean oil. The lipid-coated rpCLA was composed of 800, 178, and 22 g/kg of 

lipid, ash, and moisture, respectively, and 456 g/kg of palmitic and stearic acids, 79.2 and 

76.8 g/kg of CLAc9,t11 and CLAt10,c12, respectively, and 91 g/kg of other FA. A detailed 

description of the chemical composition of the rpCLA used is given in Schiavon et al. (2011).  

At the end of fattening the calves were fasted for one day and then slaughtered. 

According to the reference meat market, heifers or bulls were slaughtered when they reached 

an estimated in vivo fatness score around 3 or 2 points on a scale from 1 (very lean) to 5 (very 

fat), respectively (Schiavon et al., 2013). Immediately after slaughter the liver was collected 
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from each animal. Twenty-four hours after slaughter from the left half part of the carcass the 

whole cut of the 5th rib was collected (from the cranial edge of the 5th rib to the cranial edge of 

the 6th rib). The entire rib was vacuum packed, moved to the laboratory, and aged at 4 °C in a 

chilling room for 10 days. At the end of ageing, the rib cut was dissected into muscles 

(Longissimus Thoracis: LT, and other muscles), fat (subcutaneous fat) and bones. Each 

fraction was weighted. 

In current work, after an anticipated power analysis, 3 tissues (liver, LT and 

subcutaneous fat) collected from 3 young bulls randomly chosen within each rpCLA dose 

groups were used to be analyzed according to the following experimental design: 3 bulls × 3 

rpCLA doses × 3 methods × 3 tissues × 2 replications for a total of 162 subsamples analyzed.  

 

Sample preparation methods 

The left lobe of liver was cutted in slices which were grinded, mixed and homogenized 

for 10 sec at 4500 g (Grindomix GM200 - Retsch, Haan, Düsseldorf, Germany). From the 

final mixture 2 subsamples of about 50 to 60 g were collected to be analysed. A slice of LT 

(around 100 g), and all the subcutaneous fat collected from each rib (40 to 90 g) were 

homogenized with the same equipment and 2 subsamples (20 to 30 g) were collected for each 

tissue. All the samples were packed and conserved at -20°C till the analysis.  

Three methods for fat extraction and FAME preparation were applied. The first two 

methods differed from the third because they included a fat extraction step and methylation 

was performed on the solvent extracted fat, while in third method extraction and methylation 

were performed contextually and directly on the freeze-dried sample. With all methods 

methylation was performed with the mild acid-base treatment proposed by Jenkins (2010). 

With the first method (F) fat extraction was performed according to Folch (1957) 

using as a solvent chloroform/methanol (2:1, v/v) at room temperature. Fresh weighted 

samples (3.0 ± 0.22 g for liver, 1.0 ± 0.18 g for fat and 3.0 ± 0.04 g for LT) were blended 3 

times with the solvent (20 ml/ g tissue), by filtering 3 times with 250 ml Hollow glassware 

(Duran Group GmbH, Mainz, Germany), and by adding saline solution (0.88% KCl wt/vol, 

12 ml/g tissue) to allow the phases separation. After one night of resting, the two solution 

phases were separated, the upper methanol aqueous fraction was collected a part, and the 

remaining lipid chloroform solution was transferred into another ml Hollow glassware (Duran 

Group GmbH, Mainz, Germany). To recover additional residues of fat, a distilled 

water/methanol (1:1, v/v) solution was added to lipid chloroform solution (7 ml/g tissue/g 
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tissue) and the resulting solution was agitated, rested for 30 min. After this step the upper 

methanol-water phase was separated from lipid chloroform phase which was collected and 

transferred into the flat bottom flask (Duran Group GmbH, Mainz, Germany).This final 

solution was heated at 50 °C under N2 stream for about 20 min to complete solvent 

evaporation and the resulting extracted fat material was weighted. About 44 mg of fat were 

transferred into culture tubes to be immediately methylated according to Jenkins (2010), as 

later described. The resulting FAME solution was stored in GC vials at −20 °C prior the 

GC×GC analysis. 

With the second method (A), fat extraction was performed using an accelerated 

solvent equipment (ASE, Dionex, Sunnyvale, USA). The weighted fresh samples (3.0 ± 0.06 

g for liver, 0.9 ± 0.07 g for fat and 3.0 ± 0.07 g for LT) were homogenized with Hydromatrix 

(Phenomenex, Castel Maggiore, Bologna, Italy) and transferred into 10 mL stainless steel 

extraction cells for ASE (Dionex ASE 350, Thermo Fisher Scientific Inc., MA, USA) with 

chloroform/methanol (2:1, v/v) as solvent. The conditions of extraction were (Schafer, 1998; 

Toschi et al., 2003): 120 °C of temperature, 10 MPa of pressure, 1 min of static time, 3 static 

cycles, rinse 100%, purge 60 s, with about 8 mL/sample of re-flushing volume of fresh 

solvent (giving a total solvent consumption of <20 mL/sample). Like in the method described 

above (F), after the extraction procedure was added saline solution (0.88% KCl, 7 ml/g 

tissue). After one night of resting, the two solution phases were separated, the upper methanol 

aqueous fraction was discarded, and the remaining lipid chloroform solution was transferred 

into another 250 ml Hollow glassware (Duran Group GmbH, Mainz, Germany). A distilled 

water/methanol (1:1, v/v) solution was added to lipid chloroform solution (6 ml/g tissue), to 

recover additional residues of fat. The resulting solution was agitated, rested for 30 min. After 

this step the upper methanol-water phase was separated from the remaining lipid chloroform 

solution which was collected and transferred into the flat bottom flask (Duran Group GmbH, 

Mainz, Germany). Thereafter, the solution was heated at 50 °C under N2 stream for about 20 

min to complete solvent evaporation, placed in an oven at 60 °C for 15 min, cooled in a 

desiccator and the resulting EE was weighted. About 44 mg of extracted fat were transferred 

into culture tubes to be methylated according to Jenkins (2010), as later described. The 

resulting FAME solution was stored in GC vials at −20 °C prior the analysis. 

The third method (J), detailed by Jenkins (2010), was based on a one-step mild acid-

base methylation treatment performed on sample (2.0 ± 0.005 g for liver, 0.07 ± 0.001 g for 

fat and 2.0 ± 0.04 g for LT, in order to treat approximately 40 mg of fat in all tissues) 
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subjected to a treatment of freeze-drying (CooSafe 90-80, Scanvac, Stockholm, Sweden), as 

suggested by Jenkins (2010).  

 

Methylation 

The J dried tissue samples, as well as the F and the A fat extracted samples, were 

placed in culture tubes with 2 mL of sodium methoxide (0.5 M in methanol) and 2 mL of 

toluene, containing 2 mg/mL of methyl 12-tridecenoate as internal standard (# U-35 M, Nu-

chek prep inc., MN, USA). Each sample was incubated in a 50 °C water bath for 10 min, 

removed from the bath and cooled for 5 min. After the addition of 3 mL of freshly prepared 

methanolic HCl (1.37 M) the sample was incubated again in an 80 °C water bath for 10 min, 

removed from the bath and cooled for 7 min. Thereafter, 5 mL of K2CO3 (0.43 M) and 2 mL 

of toluene were added to each tube. The tube was vortexed for 30 sec and centrifuged for 5 

min at 400 g and 4 °C. The organic phase (the upper layer) of the tube was transferred into a 

screw-capped tube, and 0.5 g of anhydrous sodium sulphate and 0.5 g of active charcoal 

(Sigma-Aldrich, MO, USA) were added. The solution was vortexed for 5 min and rested for 1 

h. After centrifugation for 5 min at 400 g at 4 °C the clear upper layer containing the FAME 

was transferred in a GC vial and stored at −20 °C prior the GC analysis. 

Gas chromatographic analysis 

The samples obtained with the 3 different methods were analyzed for their FA profile 

using a GC×GC instrument (Agilent Technologies 7890A, CA, USA) with two columns in 

series, equipped with a modulator (Agilent G3486A CFT, CA, USA), an automatic sampler 

(Agilent 7693A, Agilent Technologies, CA, USA) and a flame ionization detector (FID) 

connected with a chromatography data system software (Agilent Chem Station, Agilent 

Technologies, CA, USA). Between the two columns the modulator unit collects in a fixed 

volume channel the analyte bands of the first column and these are successively launched into 

the short second column in narrow bands. The operative conditions of the GC apparatus were: 

 first column of 75 m × 180 µm (internal diameter) × 0.14 µm of film thickness 

[23348U (polar), Supelco, PA, USA], H2 carrier flow of 0.2 mL/min increased to 0.3 

mL/min at a rate of 0.002 mL/min;  

 second column of 3.5 m × 250 µm (internal diameter) × 0.14 µm of film thickness 

[J&W 19091-L431 (nonpolar), Agilent Technologies,CA, USA], H2 carrier flow of 22 

mL/min held for 2 min and then increased to 30 mL/min at a rate of 0.08 mL/min. 
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 Planned oven temperature variation: increase from 50 °C (held for 2 min) to 150 °C 

(held for 15 min) at 2 °C/min and then increased to 240 °C (held for 20 min) at 2 

°C/min.  

 Valves: modulation delay, 1 min; modulation period, 2.9 s; sample time, 2.77 s.  

 Gas flows: hydrogen, 20 mL/min; air, 450 mL/min.  

 Sample injection: 0.8 µL (pulsed split mode, injection pressure 0.172 MPa × 0.3 min, 

split ratio 150:1).  

 Splitless Inlet: temperature 270°C, pressure 20.804  MPa, Septum Purge 3mL/min, 

Split Ratio 35.2mL/min.  

 The resulting three-dimensional chromatograms were analyzed with the 

comprehensive GC×GC software (Zoex Corp., TX, USA) to evaluate the cone volume 

of each fatty acid.  

 

Identification of fatty acids 

Fifty-eight FA were identified by comparison of the cone position in the bi-

dimensional chromatogram with the cone position of FA contained in GC reference standards. 

The reference standards used were mixtures of pure FA [(#674, Nu-chek prep inc., MN, 

USA), (#463, Nu-chek prep inc., MN, USA), (47080-U Bacterial Acid Methyl Esters - 

BAMEs, Sigma-Aldrich, MO, USA), (47085-U PUFA-3 Menhaden Oil, Supelco, PA, USA)] 

plus CLAc9,t11 (#UC-60M, Nu-chek Prep Inc., MN, USA), CLAt10,c12 (#UC-61M, Nu-

Chek Prep, Inc. MN, USA), CLAc9,c11 (#1256, Matreya LLC, PA, USA), CLAt9,t11 (#1257, 

Matreya LLC, PA, USA) and CLAc11,t13 (#1259, Matreya LLC, PA, USA). The 

identification of other 9 FA: C14:0iso, C18:0iso, C19:0iso, C19:0anteiso, C18:1n6, C19:1c9, 

C19:1c (uncertain position of the double bound), C20:1n7, C18:5n3, was made considering 

their elution order and their position in the bi-dimensional chromatogram on the basis of 

comprehensive GC×GC software (GC Imagine Software, Zoex Corporation, TX, USA).  

Other 15 unidentified FA were detected in specific regions of the bi-dimensional 

chromatogram grouping FA with similar characteristics (i.e. region of the 18:1, 18:2 or 20:1 

isomers). In the region of the C18:1 isomers were detected 5 peaks (2 unknown isomers, two 

isomers partially co-eluted, likely the C18:1c4 and the C18:1t2, and a fifth isomer, likely the 

C18:1c3). In the region of the C18:2 isomers other 5 peaks (4 unknown isomers and another 

one likely the C18:2c11,c14, were detected. In the region of the C19:1 one peak indicated as 

C19:1t was also detected. In the region of the C20:1 isomers other 4 unknown peaks, of which 
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2 C20:1t isomers in the region of the trans forms were detected. As the identification of these 

molecule was uncertain, these FA were indicated as unidentified FA isomers. 

 

Quantification of Fatty Acid Methyl Esters 

Quantification of FAME was based on the internal standard technique and the cone 

volume of each FA was corrected using FID response factors (RF). These RF values were 

computed on the basis of a calibration based on 5 dilution points of the solution containing the 

standard FA (1, 0.5, 0.25, 0.125, 0.062). All the calibration curves were linear with an R
2
 > 

0.998. The RF factor was computed as: 

RFFA = (FAconc/STDconc) × (STDvolume/FAvolume) 

where RFFA is the response factor for a given standard FA, FAconc is the concentration 

(mg/ml) of the standard FA in the solution, STDconc is the concentration (mg/ml) of the 

internal standard, STDvolume is the chromatogram volume of the internal standard and FAvolume 

is chromatogram volume of the standard FA. For the FA identified by position the RF values 

were assumed to be the mean of the RF factors found for the standard FA located in the same 

region of the bi-dimensional chromatogram. The cone volumes of each FA, adjusted for RFFA, 

were summed excluding the volume of the methyl 12-tridecenoate (internal standard), and the 

relative proportion of each FA was expressed in terms of mg/g total FA. 

 

Fatty acid groups and indexes 

The various FA were summed according to various criteria as follow.  

 Saturated fatty acids (SFA) category were the sum of: C8:0, C10:0, C12:0, C13:0, C14:0, 

C14:0iso, C15:0, C15:0iso, C15:0anteiso, C16:0, C16:0iso, C16:0anteiso, C17:0, C17:0iso, 

C17:0anteiso, C18:0, C18:0iso, C18:0anteiso, C19:0, C19:0iso, C19:0anteiso, C20:0, C21:0, C22:0, 

C23:0 and C24:0.  

 Monounsaturated fatty acids (MUFA) were the sum of C14:1n5, C14:1t, C15:1, C16:1c7, 

C16:1c9, C16:1t7, C17:1, C17:1t7, C18:1c9, C18:1c7, C18:1t7, C18:1t9, C18:1n6, 5 

unidentified C18:1 isomers, C19:1c9, C19:1t9, C19:1t12, C19:1c (uncertain),C19:1t 

(uncertain), C20:1n7, C20:1n9, C20:1n11, C20:1t9, 2 uncertain C20:1t isomers, 2 

uncertain C20:1 isomers, C22:1n9, C22:1n11). 

 Polyunsaturated fatty acids (PUFA) were the sum of C18:2n6, C18:2t9,t12, 4 C18:2 

unknown isomers (C18:2), C18:2c11,c14 (uncertain), C20:2, C20:2n3, C18:3n3, C18:3n6, 

C20:3n3, C20:3n6, C18:4, C20:4n3, C20:4n6, C22:4n6, C18:5n3, C20:5n3(EPA), 
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C22:5n3, C22:5n6, C22:6n3 (DHA), CLAc9,t1,1 CLAt10,c12, CLAc11,t13, CLAc9,c11 

and CLAt9,t11.  

 Branched fatty acids were calculated as the sum of C13:0anteiso, C14:0iso, C15:0iso, 

C15:0anteiso,C16:0iso, C16:0anteiso, C17:0iso, C17:0anteiso, C18:0iso, C18:0anteiso, C19:0iso and 

C19:0anteiso according to Raes et al.(2004). 

 Odd Chain fatty acids were calculated according to Or-Rashid et al.(2007). 

 The sum of the identified CLA isomers (CLAc9,t11, CLAt10,c12, CLAc11,t13, 

CLAc9,c11 and CLAt9,t11) was indicated as CLA. Other CLA isomers, such as the 

CLAt7,c9 which has been found in beef meat (Nuernberg et al., 2007), were not identified.  

 The sum of Ω3PUFA or Ω6PUFA were calculated according to Givens et al. (2006) and 

Connor (2000), as example Ω3PUFA was computed as the sum of C18:5n3, C20:2n3, 

C20:3n3, C20:4n3, C20:5n3(EPA), C22:5n3, C22:6n3 (DHA). 

 The Δ
9
-desaturase indices for C14, C16, C18, CLAc9,t11, CLA t10,c12, and total Δ

9
-

desaturase index were also calculated according to Kelsey et al. (2003) and Capoprese et 

al. (2010) as product/substrates ratios, as example the Δ
9
-desaturase C14 index was 

computed as C14:1n5/(C14:1n5 + C14:0).  

 The atherogenic index (AI) and thrombogenic index (TI) were calculated according to 

Ulbricht and Southgate’s (1991) as: AI = (C12:0 + 4 × C14:0 + C16:0)/(Ω3PUFA + 

Ω6PUFA + MUFA); and TI = (C14:0 + C16:0 + C18:0)/(0.5 × MUFA + 0.5 × Ω6PUFA + 3 

× Ω3PUFA/Ω6PUFA). 

 

Statistical Analysis 

The statistical analysis was performed in the following steps. 

First phase: resolution power. An analysis was carried out in order to assess the number of 

undetected FA related values for each tissue and for each method. Basically, in the cases 

where for a given FA all the methods provided more than 9 undetectable values in one or 

more tissues, the values for those tissues were considered missing.  

Second phase: main sources of variation. Data of FA, FA category and FA indices (18 data 

for each tissue and each method) were analyzed using the MIXED procedure (SAS Institute 

Inc., Cary, NC) according to the following linear model: 

yijklmn = µ + Di + Bull(D)i:j  + Tissuek + D×Tissueik + Bull(D×Tissue)i:jk + Ml + M×Tissuelm + eijklmn 
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where yijklmn is the observed trait; µ is the overall intercept of the model; Di is the fixed effect 

of the ith diet (i = 1,…,3); Bull(D)i:j is the random effect of the jth animal within diet (j = 

1,…,9); Tissuek is the fixed effect of kth tissue (k = 1,…,3); D×Tissueik is the fixed effect of 

the ikth diet×tissue interaction; Bull(D×Tissue)i:jk is the random effect of the sample, 

expressed as bull within the D×Tissue interaction; Ml is the fixed effect of lth method of fat 

extraction (l = 1,…,3); M×Tissuelm is the fixed effect of the lmthe method×tissue interaction; 

and eijklmn is the random residual. Bull(D)i:j, Bull(D×Tissue)i:jk and residuals were assumed to 

be independently and normally distributed with a mean of zero and variance , 

 and ,respectively. 

Considering the hierarchical structure of the experimental design, the hypothesis of testing for 

fixed effects was accomplished considering different error lines. Basically the effect of D was 

tested using Bull(diet) as error line, the effects of Tissue and of D×Tissue interaction were 

tested using the Bull(D×tissue) as error line, whereas the effects of M and M×Tissue 

interaction were tested on the residual error. When in 2 of the 3 tissues analyzed the presence 

of a given FA was undetectable, the model was simplified by omitting the Tissue and its 

corresponding interactions as sources of variations. Least square means for each source of 

variation, the root of the residual error (RMSE), considered as an index of repeatability, and 

the 162 residual values for each individual FA, FA category and FA index were computed.  

Third phase: homogeneity of variances Variances homogeneity for the main sources of 

variations was explored using Levene’s test (Milliken and Johnson, 1984). As the Levene’s 

test showed that variances were generally homoscedastic among different levels of diets and 

heteroschedastic among different tissues, methods and their interaction, the residual variance 

was calculated for each group of 18 analytical values (9 groups) within each tissue and 

method. This was done for each of the 76 individual FA and the 27 categories and indices 

(927 analyses) with a simplified linear model with the effect of sample/animal (8 df) and the 

residual (9 df). The root mean square error (RMSE) was considered a measure of repeatability 

for each tissue and method relatively to each FA, category or index.  

Fourth phase: relationships between methods. As the large majority of FA evidenced 

heteroscedasticity of variances for Methods, Tissue, and Method×Tissue interaction, linear 

regression (SAS Institute Inc., Cary, NC) was used to explore the relationship between FA 

values obtained using different methods (i.e., A or the J method were regressed against the 

values obtained with the F method which was assumed to be the reference) in each tissue. The 

F-test was used to test the significance of any slope that deviated from unity and any intercept 

that was not zero (P < 0.05). 
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 2.4 RESULTS 

The comparison among different analytical methods was performed in terms of: 1) resolution 

power, i.e. the incidence of samples with non-detectable amount of the substance searched; 2) 

fixed effect of method (bias) and of other sources of variation; 3) homoscedasticity or 

heteroscedasticity of residual variances (equal or different repeatability); and, in case of 

heteroscedasticity, 4) correlations between methods. 

 

Resolution power 

The GC×GC comprehensive system revealed the presence of 76 peaks (Table 2.1 and 

Table 2.2), corresponding to 23 SFA, 26 MUFA, and 27 PUFA. Nine FA present in the 

standards, (C13:0anteiso, C16:0anteiso, C18:0anteiso, C21:0. C15:1, C16:1t7, C19:1t12, C22:1n9 

and the C22:1n11) were never found in any the 3 tissues analyzed, and were omitted from the 

analysis. Among the 76 FA detected, the which raw means and standard deviations are given 

in order of elution per band in Table 2.1, 51 FA were identified through the use of standards. 

Of the remaining 25 FA, 10 FA were identified on the basis of their position in the two-

dimensional chromatogram, 6 were identified as uncertain isomers, and 9 unidentified FA 

only the pertaining group was identified. Some FA were absent in one or two tissues. In 

particular, the number of undetected FA in liver, sub-cutaneous fat and LT muscle were 5, 14 

and 9, respectively. There were only two cases of a clear co-elution of FA as under the 

operative conditions adopted the GC×GC system was unable to clearly separate the C18:1t7 

from the C18:1t9, and the C18:1c4 from the C18:1t2.  

For each method and each tissues 18 observations were expected, but many FA 

evidenced some observations with null values (undetectable values). The incidence of 

undetectable values on the total number of expected observation, which depend on the 

sensitivity of the method used, for liver, fat and muscle, ranged 0.04 to 0.08, 0.05 to 0.06, and 

0.05 to 0.12, respectively, with incidences greater for the J method compared to the other two 

for liver and muscle samples but not for subcutaneous fat. In the case of liver the highest 

incidence of null values with the J method was mainly observed for short chain FA (C8:0 and 

C10:0), whereas in the case of muscle the highest incidence of undetectable values with the J 

method was mainly observed for the C24:0, for two C20:1t unknown isomers, and for 3 

PUFA (C20:3n3, C20:4n3, C22:5n6). 
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Sources of variation and effect of method (bias) 

The effect of diet was not significant for almost all the various FA, with exception of 

C18:0 (P = 0.037), C14:1n5 (P =0.031), C18:1c9 (P = 0.018), for one of the two C20:1t (P = 

0.046), C20:1n7 (P = 0.027), C22:5n3 (P = 0.026) and, more notably, for the CLAt10,c12 (P 

<0.001) and the CLAt9,t11 (P = 0.004) CLA isomers, that were added to diets, together with 

palmitic and stearic acids, to two of the three groups of young bulls fed rumen protected CLA 

during fattening (Table 2.3 and 2.4). On the opposite, the effect of tissue was always highly 

significant, even if the data were expressed as proportion of the total amounts of FA and not 

as absolute amount in the tissue sample. The effect of the interaction diet×tissue was highly 

significant (P <0.001) only in the case of the CLAt10,c12 isomer (Figure 1). Interesting, from 

the methodological point of view, were the significant effects of both the method and the 

interaction method×tissue for the majority of the FA. Significant effects of tissue, method and 

method×tissue were also observed for the various groups of FA and for the desaturase indices 

(Table 2.5). With regard to the amount of fat extracted, there were, as expected, significant 

effect of tissue, but the F and the A methods did not significantly differed (P = 0.66) and on 

average 27, 594 and 22 mg/g fresh sample were extracted from liver, sub-cutaneous fat and 

muscle, respectively. 

Heteroscedasticity of residual variances and repeatability of the methods in 

different tissues 

The results of the Levene’s test evidenced, except for diet, as the variances among 

levels within tissue, method or method×tissue were not homoscedastic for the large majority 

of the FA (Table 2.6 and 2.7). In other words, the RMSE values given in these tables for each 

FA, considered as an index of repeatability, differed significantly not only among methods 

but also among the 6 levels of the interaction M×T. Nevertheless, the RMSE values for the 

various single FA were in the large majority of the cases smaller than 1 mg/g total FA. In the 

case of liver the overall mean of these coefficients was 0.68 0.89 and 0.47 mg×g
-1

 total FA for 

A, F and for J, respectively. In the case of sub-cutaneous fat the mean RMSE averaged 0.48, 

0.42 and 0.30 mg×g
-1

 total FA, and in the case of muscle the RMSE averaged 0.46, 0.41 and 

0.69 mg×g
-1

 total fat, respectively. 

Nevertheless, when the various FA were grouped in SFA, MUFA and PUFA the 

effects of method and of method×tissue interaction became not significant (Table 2.8). For 

SFA the magnitude of the RMSE was in the order of 7, 5 and 6 mg×g
-1

 total FA for liver, fat 

and muscle, respectively, in the order of 0.01 ± 0.004 of the mean SFA proportion. In the case 
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of MUFA the RMSE values averaged 9, 5, and 10 mg×g
-1

 total FA for liver, sub-cutaneous fat 

and muscle, respectively, corresponding to about 0.06, 0.01, and 0.03 of the corresponding 

mean MUFA proportions. In the case of PUFA, the RMSE values were in the order of 12, 1, 

and 8 mg×g
-1

 total FA, for liver, fat and muscle, respectively, corresponding to relative errors 

of 0.04, 0.03 and 0.10 of the corresponding mean PUFA proportions. Among the various 

tissues, subcutaneous fat showed the better repeatability for MUFA and PUFA. Liver and 

muscle showed similar repeatability for MUFA, but for PUFA the repeatability observed on 

liver was better than that observed on muscle, likely because the liver contained a greater 

proportion of PUFA (295 mg×g
-1

 total FA) than muscle (86 mg×g
-1

 total FA), whereas the 

amount of fat extracted from these two tissues was similar (27 and 22 mg/g fresh tissues, 

respectively).  

For the CLA groups homoscedastic variances among levels of method, and 

method×tissue were found, too, with the exception for Σ CLA t/t were a significant 

method×tissue interaction was found (P = 0.008). In this case the three methods showed a 

similar repeatability for liver, whereas in subcutaneous fat the J method showed the best 

repeatability and in muscle the best repeatability was observed for both F and A. 

Heteroscedasticity among the 6 levels of the method×tissue interaction was also 

observed for the Ω6 and Ω3 FA groups, but not for their ratio, for the branched and the odd 

chain FA, likewise for the groups of FA with less or more than 16C in their chain. No 

influence of method or method×tissue was found for ΣC18:1 FA, whereas for ΣC18:2 there 

was a significant effect of method, not of the method×tissue interaction. 

Method and method×tissue interaction evidenced homoscedastic variances for the 

major part of the desaturase indexes, including the total one, and for the thrombogenic index, 

whereas the method×tissue heteroscedastic variances were detected for the atherogenic index.  

 

Relationships between methods for different tissues 

The regression approach was used to compare the mean contents of all the FA within 

each tissue. Within tissue, when the mean values obtained for the 76 FA with the A or the J 

method were regressed against those obtained with the F method, considered as the reference, 

very strong relationships were found (Figure 2). The intercepts of these regression were never 

significant. The slopes of the regressions relating ASE with Folch et al. (1957) methods were 

always significantly different from the unity, whereas those relating the Jenkins (2010) with 

Folch et al. (1957) methods differed significantly from the unity only in the case of 
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subcutaneous fat. However, in all cases the slopes were very close to the unity and the 

significant difference with respect to the unity was due to the very low residual variation, as 

indicated by the RMSE values given in the figure. The logarithmic representation of the 

distribution of the data in the figure, that expand the small values and contracts the greater 

ones, evidenced that the linearity between methods was maintained even for very little FA 

concentrations. 

There were evident deviations from the linearity only for few FA. In the liver 

deviation from linearity with respect to the F method were observed for the C8:0 measured 

with the J method, as the proportions of this FA were 0.70 and 0.15 mg×g
-1

 total FA, 

respectively for the two methods. It should be also remembered that the C10:0 was undetected 

with the J method whereas with both F and A the presence of this FA was about 0.57 mg×g
-1

 

total FA (Table 2.3). With respect to F and A, the J method indicated a lower proportion of 

C19:1c (Table 2.3), and a greater amount of an unknown C18:2 isomer (Table 2.4). In the 

muscle there were deviation from linearity of J versus F method, for the proportions of about 

6 FA. These were the C20:4n3, two unknown C20:1t isomers, the C22:5n6, the C24:0, and 

the C20:3n3, and the proportions of these FA were always smaller than 0.18 mg×g
-1

 total FA 

(Table 2.3 and 2.4). 

The relationships between the RMSE values provided by A or J compared to those of 

F method are given in Figure 3. In this case the correlations between methods were still high 

but far from the identity. The distribution of the points above or below the y=x function 

evidenced that both the repeatability of the A and the J methods was correlated and 

proportional to that achieved from the F method, with few very exceptions. In general the 

repeatability of the J method was consistently smaller (more favorable) than that achieved by 

the other methods in the case of liver, slightly smaller in the case of fat, and slightly greater in 

that of muscle.  

In the liver, the notable deviations from the y=x function, and the consequent low 

correlation with the F method (R
2
 = 0.54), regarded in particularly the J method: C8:0 (we 

previously evidenced that this FA was likely underestimated with this method), C14:1n5, 

C14:0, C18:2 unknown isomer, and for the A method the C20:2. Even excluding these points 

the correlation of J with F had an R
2
 < 0.55 because for a number of other important FA, 

among which the C16:0, C181c9, C18:2, C20:4n6, evidenced RMSE smaller than those 

obtained with F and A (Table 2.6 and 2.7). In subcutaneous fat for both A or J with F showed 

an R
2
 > 0.80 and in muscle both A and J had correlations with F with R

2
 > 0.74. 
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2.5 DISCUSSION 

The statistical approach followed in this experiment was structured to provide a full 

representation of different sources of variation on the analytical results. Different sources of 

variation were analyzed: diet, method, tissue and interactions (diet×tissue and tissue×method). 

Despite the significant effect of diet, the methodological approaches used in this study, given 

a greater interest to the effects of tissue and method. In total GC×GC identify 76 peaks in one 

run. Fatty acids identified were the product of reactions that occur in rumen. These reactions, 

that transform dietary lipids, were composed by a first step of hydrolysis through microbial 

lipases, followed by a second step of bio-hydrogenation of unsaturated fatty acids through 

rumen bacteria. When the process of bio-hydorgenation was not complete, become available 

for deposition in microbial biomass and in animal tissues many intermediates, such as, odd- 

and branched-chain fatty acids (Or-Rashid et al., 2007). Odd- and branched- chain fatty acids 

were important for the influence on fluidity of cellular membranes and they were used also for 

calculated the concentration of volatile fatty acids (VFA), mainly acetate, propionate and 

butyrate (Castro Montoya et al, 2011; Kaneda, 1991). This FA distribution is tissue specific 

(P<0.001). SFA were higher in subcutaneous fat, MUFA in subcutaneous fat and muscle and 

the higher amount of PUFA was observed in liver. In these three tissue, C14:0, C16:0 and 

18:0 were the main SFA. Palmitoleic (C16:1) and Oleic (C18:1c9) the main MUFA. Linoleic 

(C18:2n6) the most abundant PUFA. Nevertheless, some fatty acids were found only in liver 

and in muscle and others only in subcutaneous fat (C14:1t, C17:1t7 and C17:1). In liver many 

Ω6 and Ω3PUFA were found (C20:3n6, C20:3n3, C20:4n6, C20:4n3, C20:5n3, C22:4n6, 

C22:5n6, C22:5n3, C22:6n3). The concentration of PUFA in liver was 10-fold higher than the 

concentration in muscles from the same animals (Enser, 1998-b). Enser et al (1998), confirm 

the higher amount of Linoleic acid (12.3% of fatty acid) follow by C20:4n6 (7.6%), C20:3n6 

(3.8%), C22:4n6 (2.6%) and C22:5n3 (3.0%). Differences, in ruminants, were study and are 

related to the activity of rumen, liable to produce Stearic Acid (C18:0) by hydrogenation of 

dietary Oleic acid (C81:1c9) (Turk and Smith, 2009). Nevertheless, many tissues were 

involved in fatty acids metabolism and the most important were subcutaneous fat, skeletal 

muscle and liver. The content of FA can be regulated by enzyme activities, in particular by 

many desaturases (Δ
5
,Δ

6
 and Δ

9
) and elongase, that were involved in the conversion of 

C18PUFA to their long chain derivatives (Δ
5
,Δ

6 
desaturase) and in the insertion of a double 

bond at the ninth carbon atom of the fatty acid chain and in this way is responsible to the 

conversion of saturated (SFA) to monounsaturated (MUFA) (Δ
9
-desaturase) (Malau-Aduli et 
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al.,1997; Mele et al., 2007; Wang et al., 2013). Tissues were the store of lipids and an high 

content of triacylglycerol (TAG), as in subcutaneous fat, causes a low content of very long 

chain Ω3PUFA. On the contrary, liver is rich in phospholipids and it had an high content of 

very long chain Ω3PUFA (Sinclair, 2007). Moreover, adipose tissue was considered a storage 

of fatty acids that may be released into the blood circulation for delivery to other tissue. 

Muscle was the principal substrate for oxidation, directly proportional to their total volume of 

mitochondria, which was higher in small animals than in ruminant. Liver produced long chain 

fatty acid (LCFA) mainly from plasma NEFA that were removed in 7-25% from blood flow. 

Therefore, hydrolysis of circulating triglycerides by a lipase may also be a minor source of 

hepatic LCFA (Hocquette and Bauchart, 1999; Frayn et al., 2006; Zabala et al., 2006).  

FA distribution was method specific (P<0.01 and P<0.001). GC×GC has been 

recognized as a tool offering higher peak capacities than others chromatography techniques. 

Samples were separated on two different columns, with different polarity, ensuring an 

improve in resolution power with no loss of time (Adahchour et al., 2006; Adahchour et al., 

2008; Manzano et al., 2011). The advantage of this improve of power resolution was that the 

odd numbered FAME, which normally were not present o present in small amount, can now 

be recognize easily (Adahchour et al., 2006a).  

Compared with other biological samples, beef meat fat is a complex matrix. 

Particularly, the diversity of 18-carbon chain acids in meat fat is large in contrast to other 

biological materials. For example only seven C18-FA components were found in marine oil 

even with the highly efficient GC×GC (Western et al., 2002) and in milk at least 17 different 

C18-fatty acids have been identified with the use of GC×GC by Hyötyläinen et al. (2004). 

Brugiapaglia et al. (2014), using a traditional GC, identified 31 FA in the Longissimus 

Thoracis muscle of different breeds, among which 10 were C18-FA. In the tissues of current 

experiment, because of the use of various reference standards and the ordered structure of the 

GC×GC chromatograms, 76 different FA have been quantified, among these 26 were C18-

FA. The GC×GC is also well suited for the analysis of samples where compounds are present 

in very different concentrations, for this reason, were identified fatty acids between 372 mg/g 

total FA for C18:0 in liver analyzed by ASE and 0.01 mg/g total FA for C20:1t and C20:4n3 

in muscle analyzed by Jenkins. Considering the presence of FA in very different 

concentrations, the resolution achieved under the operative conditions applied was considered 

good. Even if, irrespective by the method of extraction and by the tissue, the incidence of null 

values with respect to the number of expected measures for the various FA averaged 0.06.  
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The presence of undetermined values can be due to different reasons. Among these, an 

important role is played by the concentration of FAME in the final solvent solution injected 

into the system. A low FAME concentration of this solution reduce the detection of FA 

present in trace, and on the opposite, a high FAME concentration increases the co-elution of 

FA present in large proportion but with similar retention times (C18:1t9 and C18:1t11). In the 

current experiment, after preliminary attempts to identify the best operative conditions of the 

GC×GC equipment, a concentration of about 22 mg fat/ml solvent was found to be the best 

compromise to achieve a good separation and quantification of FA over a very extended range 

of concentration. In the case of the two methods based on fat extraction, Folch and ASE, the 

preparation of the FAME-solvent solution was accurate as it was based on the measured 

amount of fat extracted from the sample. Differently, in the case of J method it was necessary 

to compute, assuming a given fat content, the amount of fresh tissue to be treated to achieve a 

solvent FAME solution FAME with approximately 22 g fat/ml. This uncertainness explains in 

part the slightly greater incidence of null values obtained with J for liver and muscle 

compared to that achieved with the other two methods. However, no explanation was found 

about the fact that the J method, compared to the other two, presented a greater incidence of 

null values and lower concentrations for some saturated short chain fatty acid (C8:0, C10:0 

and C12:0) in the liver, not in other tissues, and a greater incidence of null values and lower 

concentrations of some long chain FA (C24:0, two C20:1t uncertain isomers, C20:3n3, 

C20:4n3, C22:5n6) only in muscle.  

 

2.6 CONCLUSIONS 

In conclusion, the results of this experiment confirm that fatty acid can be influence by 

different sources of variation. Despite the diet, the most important effects considered, are 

tissue and method. The experiment confirm that fatty acid are tissue specific and each tissue 

has a specific fatty acid profile related to lipids composition and the different type of lipid 

present. SFA were higher in subcutaneous fat, MUFA in subcutaneous fat and muscle and 

PUFA in liver. As confirm by other study PUFA in liver were 10-fold higher than the 

concentration in muscles from the same animals and the main Ω6 and Ω3 found were: 

C20:3n6, C20:3n3, C20:4n6, C20:4n3, C20:5n3, C22:4n6, C22:5n6 and C22:5n3. CLA 

isomers has the same concentration on the muscle and this concentration is lower than 

subcutaneous fat. Some fatty acids, as example C22:6n3(DHA) were identify only in liver and 

not in the other tissue. The result shown that 18 observation were expected but many FA 



65 
 

evidenced some observations with undetectable values: This depend on the sensibility of 

method and it was for liver, fat and muscle, ranged 0.04 to 0.08, 0.05 to 0.06, and 0.05 to 

0.12, respectively. GC×GC chromatography techniques used in this experiment, caused to the 

use of two different columns with different polarity, offer the higher resolution power. In total 

GC×GC identify 76 peaks in one run because of the use of various reference standards and the 

ordered structure of the GC×GC chromatograms. The reference standard allowed the 

identification also of 5 CLA isomers, not only the two main isomers (CLAc9,t11 and 

CLAt10,c12) but also, CLAc11,t13, CLAc9,c11 and CLAt9,t11. FAME concentration 

influence the resolution power because of low FAME concentration reduce the detection of 

FA present in trace, and a high FAME concentration increases the co-elution of FA present in 

large proportion but with similar retention times (C18:1t9 and C18:1t11). 
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Table 2.1: Saturated (SFA) and monounsaturated fatty acids (MUFA) identified by standard (Std) or position 

(Pos) in liver, subcutaneous fat, and longissimus thoracis muscle and number of undetermined values for each 

tissue and each method of fat extraction [F = Folch et al. (1957); A = ASE; J = Jenkins et al. (2010)] (n = 18 

within each tissue and method). 

FA Identification* 
Mean 

mg×gFA-1 
SD 

 Number of undetermined values (on a total of 18 per group) 

 Liver  Fat  Muscle 

 F A J  F A J  F A J 

C8:0 Std1 0.353 0.283    10        2 

C10:0 Std1 0.565 0.282  
 

1 18         

C12:0 Std1, Std2, Std3 0.593 0.288  1 2 8         

C13:0 Std1, Std2, Std3 8.491 3.770             

C14:0iso Pos 0.299 0.093  5 3 6   1     4 

C14:0 Std1 23.08 13.86             

C15:0iso Std3 1.221 0.259             

C15:0anteiso Std3 1.719 0.539             

C15:0 Std1, Std2, Std3 3.135 0.794             

C16:0iso Std3 1.399 0.257             

C16:0 Std1 214.2 75.88             

C17:0iso Std3 3.117 0.529             

C17:0anteiso Pos 6.406 1.379             

C17:0 Std1 8.746 1.585             

C18:0iso Pos 1.230 0.228             

C18:0 Std1 248.0 90.13             

C19:0iso Pos 0.205 0.121  1 1 2  3 1 3  2 4 4 

C19:0anteiso Pos 0.932 0.650    1  
 

1 1  
 

1 1 

C19:0 Std3 1.364 0.778  5 4 6  3 3 9  3 4 5 

C20:0 Std1 8.536 8.190             

C22:0 Std1 2.785 3.342      13 8 7     

C23:0 Std1 0.225 0.147  4 
 

5  n.d. n.d. n.d.  n.d. n.d. n.d. 

C24:0 Std1 0.050 0.062  1 1 3  n.d. n.d. n.d.  5 7 14 

C14:1t9 Std1 0.130 0.177  n.d. n.d n.d.      n.d. n.d. n.d. 

C14:1n5 (c9) Std1 6.969 6.629    1         

C16:1c7 Std1, Std2, Std3 2.271 0.385             

C16:1c9 Std1 25.47 17.98             

C17:1t7 Std1 0.042 0.059  n.d. n.d n.d.  2 6 1  n.d. n.d. n.d. 

C17:1c10 Std1 0.036 0.059  n.d. n.d n.d.  4 2 2  n.d. n.d. n.d. 

C18:1t9 (+t7) c Std1 25.03 6.822             

C18:1c9 Std1 235.9 102.8             

C18:1c7 Std1 14.71 3.206             

C18:1n6b Pos 3.587 1.663    1  3 8 4     

C18:1a Pos 2.226 1.817      7 6 3     

C18:1c4 (+t2) c Pos 1.262 0.504      1 2      

C18:1c3b Pos 0.680 0.419      
 

1      

C18:1a Pos 0.724 0.701  
 

3 4  3 3 1  7 9 6 

C19:1t9 Std1 0.164 0.143  n.d. n.d n.d.  1    1 1 5 

C19:1t a Pos 0.551 0.300             

C19:1c9b Pos 0.527 0.356       1 1   2 1 

C19:1c b Pos 0.206 0.302  5 6 4  n.d. n.d. n.d.  n.d. n.d. n.d. 

C20:1t b Pos 0.456 0.592      6 5 2  6 5 17 

C20:1t b Pos 0.332 0.386      3 5 4  9 2 16 

C20:1n9t Std1 0.879 0.748          5 4 3 

C20:1n11 Std1 1.645 0.642      n.d. n.d. n.d.     

C20:1n9c Std1 0.391 0.370  2 2 2   3 4  2 5 5 

C20:1n7b Pos 0.195 0.274   1   n.d. n.d. n.d.  n.d. n.d. n.d. 

C20:1 a Pos 0.095 0.125   4 4  n.d. n.d. n.d.  n.d. n.d. n.d. 

C20:1 a Pos 0.273 0.495    1  n.d. n.d. n.d.  n.d. n.d. n.d. 
a Unidentified isomers 
b Uncertained isomers 
c Coeluited isomers 

* The term “Std” is used to evidence  that identification of a given FA was based on standard, the number superscript indicates the type of 

standard (Std1: #674, Nu-chek prep inc., MN, USA; Std2: #463, Nu-chek prep inc., MN, USA; Std3: #47080-U Bacterial Acid Methyl Esters 
(BAMEs), Sigma-Aldrich, MO, USA; Std4:#UC-60M, Nu-chek Prep Inc., MN, USA; Std5:#UC-61M, Nu-Chek Prep, Inc. MN, USA; Std6: 

#1256, Matreya LLC, PA, USA; Std7: #1257, Matreya LLC, PA, USA; Std8: #1259, Matreya LLC, PA, USA; Std9: #47085-U PUFA-3 

Menhaden Oil, Supelco, PA, USA. The term Pos means that idenification was based on the position of that FA in the bi-dimensional 
chromatogram in regions grouping specific kind of fatty acids.The single FA are presented in order of elution. 
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Table 2.2: Polyunsaturated fatty acids (PUFA) identified by standard (STD) or position (POS) in liver, 

subcutaneous fat, and longissimus thoracis muscle and number of undetermined values for each tissue and each 

method of fat extraction [F = Folch (1957); A = ASE; J = Jenkins (2010)]. 

FA Identification* 
Mean 

mg×gFA-1 
SD 

 Number of undetermined values (on a total of 18 per group) 

 Liver  Fat  muscle 

 F A J  F A J  F A J 

C18:2t9,t12 Std1 0.557 0.330  4 4 5   1   1   

C18:2 a Pos 2.164 0.991   1 1      1  5 

C18:2 a Pos 3.642 0.462             

C18:2n6 (c9,c12) Std1 67.67 45.03             

C18:2 c11,c14b Pos 0.192 0.150  1  1   2 3  1 6 1 

C18:2 a Pos 0.231 0.131           1  

C18:2 a Pos 0.321 0.221  9 11 5       1 1 

C18:3n6 (c6c9c12)  Std2 1.201 0.900             

C18:3n3 (c9,c12,c15) Std2 2.724 1.201             

CLAc9,t11 Std4 2.965 1.012             

CLAc11,t13 Std8 0.216 0.098  7 6 6  1     1  

CLAt10,c12 Std5 0.316 0.264  7 8 5   1    2 4 

CLAc9,c11 Std6 0.262 0.135       1   2 3 3 

CLAt9,t11 Std7 0.640 0.192  1 1 2        1 

C18:4n3  Std9 0.437 0.407  1 5 1  3 3 4  1 2 1 

C18:5n3 b Pos 0.459 0.427      1 1     1 

C20:2n3 b Pos 0.750 0.821      n.d. n.d. n.d.     

C20:2n6 Std3 1.507 1.528   2 1  1 3 1   4 3 

C20:3n6 Std1 12.40 15.86             

C20:3n3 Std1 0.414 0.496      n.d. n.d. n.d.  2 1 10 

C20:4n6   Std1 28.35 33.01        1     

C20:4n3 Std9 0.766 1.038      n.d. n.d. n.d.  7 7 17 

C20:5n3 (EPA) Std1 0.639 0.722      n.d. n.d. n.d.     

C22:4n6  Std9 7.165 8.769      5 4     1 

C22:5n6 Std1 1.652 2.244      n.d. n.d. n.d.  2 3 13 

C22:5n3 Std3  Std9  2.904 3.812      n.d. n.d. n.d.  n.d. n.d. n.d. 

C22:6n3 (DHA) Std3 Std9 0.771 1.140      n.d. n.d. n.d.  n.d. n.d. n.d. 

null/expected values     0.04 0.05 0.08  0.05 0.06 0.05  0.05 0.06 0.12 
a Unidentified isomers 
b Uncertained isomers 
c Coeluited isomers 

* The term “Std” is used to evidence  that identification of a given FA was based on standard, the number superscript indicates the type of 

standard (Std1: #674, Nu-chek prep inc., MN, USA; Std2: #463, Nu-chek prep inc., MN, USA; Std3: #47080-U Bacterial Acid Methyl Esters 
(BAMEs), Sigma-Aldrich, MO, USA; Std4:#UC-60M, Nu-chek Prep Inc., MN, USA; Std5:#UC-61M, Nu-Chek Prep, Inc. MN, USA; Std6: 

#1256, Matreya LLC, PA, USA; Std7: #1257, Matreya LLC, PA, USA; Std8: #1259, Matreya LLC, PA, USA; Std9: #47085-U PUFA-3 

Menhaden Oil, Supelco, PA, USA. The term Pos means that identification was based on the position of that FA in the bi-dimensional 
chromatogram in regions grouping specific kind of FA. The single FA are presented in order of elution. 
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Table 2.3: Mean content of saturated and monounsaturated fatty acid (mg/g total FA) in 3 tissues (T: liver, 

subcutaneous fat and longissimus thoracis muscle) determined with 3 methods of fat extraction [M: F = Folch et 

al. (1957); A = ASE; J = Jenkins et al. (2010)], and effects (P values) of Diet (D), T, D×T, M and M×T [n=18; 

the various FA are listed in order of elution within band]. 
Tissue Liver 

 
Fat 

 
Muscle  P 

Method F A J 
 

F A J 
 

F A J  D1 T D×T M M×T 

C8:0 0.70 0.64 0.15 
 

0.20 0.13 0.09 
 

0.61 0.30 0.21  0.53 <0.001 0.68 <0.001 <0.001 

C10:0 0.57 0.56 n.d. 
 

0.61 0.55 0.51 
 

0.98 0.67 0.65  0.91 <0.001 0.76 <0.001 <0.001 

C12:0 0.19 0.22 0.19 
 

0.82 0.79 0.79 
 

0.78 0.64 0.66  0.27 <0.001 0.87 0.07 0.033 

C13:0 10.2 9.8 9.7 
 

6.1 5.6 3.8 
 

9.0 6.90 15.4  0.26 <0.001 0.24 <0.001 <0.001 

C14:0iso 0.19 0.23 0.22 
 

0.38 0.39 0.36 
 

0.30 0.29 0.25  0.11 <0.001 0.22 0.013 0.028 

C14:0 5.2 6.0 4.8 
 

38.0 37.8 38.4 
 

26.1 26.2 25.2  0.08 <0.001 0.78 0.028 0.001 

C15:0iso 1.11 1.15 1.17 
 

1.49 1.50 1.50 
 

1.03 1.02 1.03  0.08 <0.001 0.81 0.076 0.23 

C15:0anteiso 1.40 1.44 1.38 
 

2.21 2.20 2.23 
 

1.54 1.54 1.54  0.04 <0.001 0.74 0.87 0.44 

C15:0 2.49 2.59 2.44 
 

3.89 3.90 3.93 
 

2.96 3.05 2.96  0.15 <0.001 0.27 0.012 0.10 

C16:0iso 1.23 1.30 1.27 
 

1.65 1.66 1.67 
 

1.26 1.25 1.31  0.61 <0.001 0.23 <0.001 0.001 

C16:0 109 113 106 
 

275 275 275 
 

257 262 256  0.82 <0.001 0.45 <0.001 0.002 

C17:0iso 2.61 2.70 2.67 
 

3.50 3.42 3.53 
 

3.09 3.11 3.43  0.23 <0.001 0.41 0.006 0.028 

C17:0anteiso 5.03 5.25 5.11 
 

7.92 8.05 8.09 
 

5.94 6.05 6.21  0.42 <0.001 0.42 <0.001 0.017 

C17:0 10.3 10.5 10.5 
 

7.6 7.7 7.7 
 

8.0 8.2 8.2  0.58 <0.001 0.16 <0.001 0.52 

C18:0iso 1.34 1.35 1.35 
 

1.29 1.28 1.30 
 

1.03 1.05 1.09  0.12   0.006 0.30 0.26 0.56 

C18:0 367 372 370 
 

168 168 164 
 

206 201 217  0.037 <0.001 0.55 0.020 <0.001 

C19:0iso 0.22 0.31 0.30 
 

0.12 0.12 0.12 
 

0.27 0.14 0.23  0.16 <0.001 0.45 0.28 <0.001 

C19:0anteiso 1.67 1.76 1.85 
 

0.52 0.51 0.67 
 

0.37 0.40 0.60  0.30 <0.001 0.61 <0.001 0.57 

C19:0 2.38 2.43 2.34 
 

0.82 0.84 0.77 
 

0.99 0.77 0.94  0.44 <0.001 0.52 0.24 0.002 

C20:0 20.7 19.7 18.2 
 

1.63 1.64 1.49 
 

4.52 3.88 5.07  0.60 <0.001 0.09 0.16 0.009 

C22:0 7.55 7.08 7.20 
 

0.01 0.03 0.05 
 

0.75 0.68 0.66  0.26 <0.001 0.26 0.06 0.08 

C23:0 0.15 0.31 0.18 
 

n.d. n.d. n.d. 
 

n.d. n.d. n.d.  0.70 n.d. n.d. 0.002 n.d. 

C24:0 0.10 0.13 0.08 
 

n.d. n.d. n.d. 
 

0.06 0.05 0.03  0.33 <0.001 0.65 0.014 0.07 

C14:1t n.d. n.d. n.d.  0.40 0.27 0.17  n.d. n.d. n.d.  0.32 n.d. n.d. <0.001 n.d. 

C14:1n5 0.71 0.87 0.44  14.73 14.51 15.01  5.28 5.54 5.25  0.031 <0.001 0.026 0.73 0.006 

C16:1c7 2.58 2.53 2.88  2.13 2.19 2.18  1.96 2.01 1.99  0.60 <0.001 0.76 <0.001 <0.001 

C16:1c9 5.4 5.9 5.0  47.2 45.8 46.6  24.1 26.0 23.3  0.15 <0.001 0.65 0.06 0.006 

C17:1t7 n.d. n.d. n.d.  0.10 0.09 0.08  n.d. n.d. n.d.  0.30 n.d. n.d. 0.78 n.d. 

C17:1 n.d. n.d. n.d.  0.09 0.08 0.09  n.d. n.d. n.d.  0.46 n.d. n.d. 0.69 n.d. 

C18:1t9 (+t7) c 16.6 18.6 17.2  30.5 30.0 30.7  26.5 30.7 24.6  0.14 <0.001 0.016 <0.001 <0.001 

C18:1c9 95 97 91  316 320 325  294 301 284  0.018 <0.001 0.46 <0.001 <0.001 

C18:1c7 15.2 15.2 17.3  16.6 16.8 14.9  12.0 11.7 12.7  0.41 <0.001 0.32 0.039 <0.001 

C18:1n6b 4.21 4.10 4.81  3.97 2.65 3.97  2.98 2.98 3.12  0.32 0.031 0.013 0.008 0.10 

C18:1 a 1.07 1.21 1.13  2.31 2.61 2.48  3.08 3.04 3.10  0.08 <0.001 0.49 0.90 0.99 

C18:1c4 (+t2) c 0.95 0.94 1.18  1.42 1.31 1.33  1.41 1.55 1.25  0.08 0.005 0.06 0.99 0.10 

C18:1c3b 0.64 1.11 0.95  0.84 0.46 0.65  0.52 0.55 0.39  0.56 <0.001 0.14 0.78 <0.001 

C18:1 a 1.09 1.35 1.08  0.28 0.73 0.33  0.35 0.36 1.00  0.31 <0.001 0.35 0.07 0.003 

C19:1t9 n.d. n.d. n.d.  0.24 0.26 0.17  0.21 0.26 0.20  0.32 <0.001 0.52 0.29 0.07 

C19:1t a 0.35 0.44 0.46  0.85 0.62 0.62  0.67 0.51 0.43  0.77 0.001 0.70 0.048 0.025 

C19:1c9b 0.52 0.45 0.25  0.60 0.83 0.83  0.39 0.49 0.42  0.50 <0.001 0.47 0.23 0.013 

C19:1c b 0.31 0.29 0.46  n.d. n.d. n.d.  n.d. n.d. n.d.  0.18 n.d. n.d. 0.21 n.d. 

C20:1t b 0.95 0.93 1.15  0.14 0.13 0.15  0.11 0.11 <0.01  0.55 <0.001 0.77 0.83 0.43 

C20:1t b 0.72 0.74 0.78  0.14 0.10 0.12  0.06 0.13 0.01  0.046 <0.001 0.06 0.91 0.49 

C20:1t9 1.51 1.37 1.74  n.d. n.d. n.d.  0.24 0.40 0.49  0.14 <0.001 0.20 0.08 0.38 

C20:1n11 1.43 1.39 1.39  1.90 2.13 2.05  1.47 1.58 1.49  0.23 0.003 0.04 0.09 0.22 

C20:1n9 0.15 0.14 0.20  0.65 0.51 0.30  0.60 0.50 0.52  0.32 0.002 0.31 0.11 0.10 

C20:1n7b 0.50 0.41 0.51  n.d. n.d. n.d.  n.d. n.d. n.d.  0.027 n.d. n.d. 0.31 n.d. 

C20:1 a 0.21 0.18 0.25  n.d. n.d. n.d.  n.d. n.d. n.d.  0.25 n.d. n.d. 0.45 n.d. 

C20:1 a 0.81 0.62 1.04  n.d. n.d. n.d.  n.d. n.d. n.d.  0.77 n.d. n.d. 0.08 n.d. 
a Unidentified isomers 
b Uncertain isomers 
c Co-eluted isomers 
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Table 2.4: Mean content of polyunsaturated fatty acid (mg/g total FA) in 3 tissues (T: liver, subcutaneous fat 

and longissimus thoracis muscle) determined with 3 methods of fat extraction [M: F = Folch et al. (1957); A = 

ASE; J = Jenkins et al. (2010)], and effects (P values) of Diet (D), T, D×T, M and M×T [n=18; the various FA 

are listed in order of elution]. 

 
Liver 

 
Fat 

 
Muscle    P - value   

 
F A J 

 
F A J 

 
F A J  D T D×T M M×T 

C18:2 t9,t12 0.68 0.87 1.02  0.34 0.25 0.28  0.50 0.79 0.50  0.47 <0.001 0.88 0.010 <0.001 

C18:2 a 1.14 0.95 1.54  3.20 2.91 3.18  2.24 2.07 2.17  0.54 <0.001 0.09 0.012 0.29 

C18:2 a 3.21 4.47 3.63  3.73 3.74 3.64  3.34 3.61 3.39  0.17 0.037 0.55 <0.001 <0.001 

C18:2n6 127.9 121.9 131.9  21.2 21.4 21.8  56.9 51.6 54.4  0.15 <0.001 0.25 <0.001 <0.001 

C18:2 c11,c14b 0.20 0.23 0.25  0.13 0.11 0.10  0.22 0.17 0.29  0.71 0.002 0.52 0.30 0.23 

C18:2 a 0.24 0.20 0.31  0.18 0.17 0.11  0.34 0.23 0.30  0.21 0.001 0.33 0.029 0.002 

C18:2 a 0.08 0.09 0.24  0.36 0.33 0.42  0.59 0.44 0.33  0.94 <0.001 0.60 0.16 <0.001 

C18:3n6  2.18 2.35 2.36  0.32 0.31 0.20  1.04 0.75 1.30  0.13 <0.001 0.10 <0.001 <0.001 

C18:3n3  4.12 4.01 4.50  1.61 1.55 1.40  2.54 2.02 2.78  0.45 <0.001 0.16 <0.001 <0.001 

CLAc9,t11 2.19 1.82 2.27  4.08 4.09 4.12  3.03 2.27 2.83  0.74 <0.001 0.96 <0.001 <0.001 

CLAc11,t13 0.17 0.14 0.20  0.23 0.23 0.24  0.28 0.17 0.21  0.06 0.048 0.019 0.022 0.034 

CLAt10,c12 0.23 0.20 0.20  0.33 0.32 0.30  0.41 0.25 0.38  <0.001 0.003 <0.001 0.006 0.006 

CLAc9,c11 n.d. n.d. n.d.  0.29 0.27 0.29  0.23 0.17 0.32  0.57 0.21 0.06 0.003 0.19 

CLAt9,t11 0.55 0.57 0.56  0.78 0.70 0.66  0.74 0.68 0.50  0.004 <0.001 0.008 <0.001 <0.001 

C18:4 0.31 0.51 0.46  0.18 0.20 0.12  0.60 0.41 1.02  0.90 <0.001 0.41 0.010 <0.001 

C18:5n3 b 0.29 0.44 0.45  0.22 0.24 0.14  0.87 0.52 0.97  0.61 <0.001 0.66 0.22 0.003 

C20:2n3 b 0.54 0.56 0.56  n.d. n.d. n.d.  0.74 0.68 0.50  0.62 <0.001 0.89 <0.001 0.003 

C20:2 3.13 3.41 3.76  0.32 0.34 0.36  0.71 0.64 0.64  0.99 <0.001 0.99 0.14 0.05 

C20:3n6 34.59 33.34 34.69  0.36 0.38 0.37  2.76 2.35 2.77  0.11 <0.001 0.04 0.027 0.15 

C20:3n3 0.76 1.51 0.54  n.d. n.d. n.d.  0.18 0.33 0.08  0.76 <0.001 0.34 <0.001 <0.001 

C20:4n6   75.81 70.47 75.27  0.39 0.42 0.38  10.83 9.17 10.85  0.36 <0.001 0.29 <0.001 <0.001 

C20:4n3 2.10 1.96 2.11  n.d. n.d. n.d.  0.02 0.02 0.01  0.20 <0.001 0.15 0.004 <0.001 

C20:5n3 (EPA) 1.66 1.54 1.66  n.d. n.d. n.d.  0.33 0.25 0.31  0.08 <0.001 0.08 <0.001 <0.001 

C22:4n6  19.26 18.06 18.97  0.05 0.10 0.10  1.46 1.28 1.36  0.08 <0.001 0.08 <0.001 <0.001 

C22:5n6 4.86 4.43 4.81  n.d. n.d. n.d.  0.15 0.14 0.03  0.65 <0.001 0.74 <0.001 <0.001 

C22:5n3 8.38 7.75 8.41  n.d. n.d. n.d.  0.63 0.55 0.41  0.026 <0.001 0.008 0.001 <0.001 

C22:6n3(DHA) 2.38 2.17 2.38  n.d. n.d. n.d.  n.d. n.d. n.d.  0.33 n.d. n.d. 0.10 n.d. 
a Unidentified isomers 
b Uncertain isomers 
c Co-eluted isomers 
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Table 2.5: Mean content of solvent fat extracted (mg/g fresh sample) and of groups of fatty acid (mg/g total FA) 

in 3 tissues (T: liver, subcutaneous fat and longissimus thoracis muscle) determined with 3 methods of fat 

extraction [M: F = Folch et al. (1957); A = ASE; J = Jenkins et al. (2010)], and effects (P values) of Diet (D), T, 

D×T, M and M×T. 

 

Liver    Fat    Muscle 

 

  P value   

  F A J   F A J   F A J   D T D×T M M×T 

Fat extracted 25 29 n.d.  602 586 n.d.  25 19 n.d.  0.45 <.0001 0.66 0.66 0.82 

SFA 551 560 546 

 

521 521 515 

 

532 529 548 

 

0.17 0.002 0.15 0.46 0.001 

MUFA 151 156 150 

 

441 441 447 

 

378 390 365 

 

0.029 <0.001 0.65 <0.001 <0.001 

PUFA 298 284 304 

 

38 38 38 

 

91 81 87 

 

0.09 <0.001 0.34 <0.001 <0.001 

Σ CLA 3.08 2.72 3.14 

 

5.70 5.59 5.60 

 

4.67 3.49 4.11 

 

0.11 <0.001 0.62 <0.001 <0.001 

Σ CLA c/t 2.46 2.05 2.56 

 

4.63 4.63 4.65 

 

3.72 2.67 3.37 

 

0.17 <0.001 0.79 <0.001 <0.001 

Σ CLA c/c - - - 

 

0.29 0.27 0.29 

 

0.23 0.17 0.32 

 

0.57 0.210 0.06 0.003 0.19 

Σ CLA t/t 0.55 0.57 0.56 

 

0.78 0.70 0.66 

 

0.74 0.68 0.50 

 

0.004 0.001 0.008 <0.001 <0.001 

Ω6  268 254 272 

 

23 23 23 

 

74 66 71 

 

0.11 <0.001 0.43 <0.001 <0.001 

Ω3  22 22 22 

 

3 2 2 

 

6 4 6 

 

0.016 <0.001 0.030 <0.001 <0.001 

Ω6 /Ω 3 12.3 11.8 12.1 

 

11.5 11.8 13.8 

 

13.5 15.1 12.7 

 

0.90 0.003 0.78 0.17 <0.001 

Branched 14.7 15.4 15.1 

 

19.1 19.1 19.4 

 

14.8 14.8 15.6 

 

0.21 <0.001 0.41 <0.001 0.001 

Odd Chain 38.1 39.1 37.8 

 

35.9 35.5 33.7 

 

34.6 32.4 41.5 

 

0.24 0.05 0.53 <0.001 <0.001 

<C16 23 23 20 

 

69 68 67 

 

49 46 53 

 

0.036 <0.001 0.49 0.034 <0.001 

  C16 118 123 115 

 

326 325 325 

 

284 291 283 

 

0.37 <0.001 0.90 <0.001 <0.001 

>C16 859 854 865 

 

605 607 608 

 

667 662 664 

 

0.16 <0.001 0.97 0.003 <0.001 

ΣC18:1 129 133 127 

 

366 370 373 

 

336 347 326 

 

0.040 <0.001 0.61 <0.001 <0.001 

ΣC18:2 133 128 138 

 

29 29 29 

 

64 58 60 

 

0.14 <0.001 0.22 <0.001 <0.001 

Δ9 desaturases1:                  

 C14 1.02 1.20 0.78 

 

2.74 2.72 2.75 

 

1.67 1.73 1.70 

 

0.022 <0.001 0.20 0.019 0.002 

 C16 0.45 0.49 0.43 

 

1.46 1.43 1.45 

 

0.86 0.90 0.83 

 

0.13 <0.001 0.80 0.11 0.16 

 C18 2.05 2.07 1.97 

 

6.54 6.56 6.66 

 

5.88 6.00 5.70 

 

0.018 <0.001 0.61 <0.001 <0.001 

CLAc9,t11 1.16 0.90 1.18 

 

1.18 1.20 1.18 

 

1.03 0.69 1.04 

 

0.86 <0.001 0.30 <0.001 <0.001 

CLAt10,c12 0.10 0.06 0.08 

 

0.10 0.10 0.09 

 

0.15 0.07 0.12 

 

<0.001 0.043 0.048 0.001 0.08 

 Total Index 1.65 1.71 1.60 

 

4.65 4.65 4.71 

 

4.03 4.16 3.90 

 

0.045 <0.001 0.80 <0.001 <0.001 

AI2 2.90 3.12 2.76 

 

8.97 8.90 8.89 

 

7.79 7.86 7.95 

 

0.43 <0.001 0.17 0.011 <0.001 

TI3 4.50 4.52 4.49   2.07 2.07 2.01   2.38 2.30 2.51   0.036 <0.001 0.98 0.37 0.002 
1  Δ9-desaturase indices 
2 Atherogenic Index 

3Thrombogenic Index 
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Table 2.6: Coefficient of repeatability of the measurements (RMSE) of saturated and monounsaturated fatty 

acids (mg/g total FA) content in 3 tissues (T: liver, subcutaneous fat and longissimus thoracis muscle) obtained 

by 3 different methods of fat extraction [M: F = Folch et al.(1957), A = ASE, J = Jenkins et al. (2010)] and 

heteroscedasticity of the variances (P - values) among levels of Diet (D), T, D×T, M and M×T evaluated by the 

Levene’s test. 

 

Liver 

 

Fat 

 

Muscle  Heteroscedasticity of variances (P value) 

 

F A J 

 

F A J  F A J  D T D×T M M×T 

C8:0  0.218 0.390 0.003 

 

0.046 0.029 0.016  0.246 0.117 0.032  0.53 <0.001 0.68 <0.001 <0.001 

C10:0  0.135 0.189 n.d. 

 

0.036 0.016 0.011  0.244 0.067 0.031  0.02 <0.001 0.08 <0.001 <0.001 

C12:0  0.054 0.055 0.028 

 

0.021 0.014 0.016  0.305 0.020 0.016  0.33 0.051 0.42 0.022 0.010 

C13:0 1.211 0.790 0.908 

 

0.713 0.936 0.300  1.009 0.761 2.253  0.63 0.003 0.05 0.05 <0.001 

C14:0iso 0.038 0.051 0.045 

 

0.021 0.024 0.040  0.053 0.009 0.055  0.69 0.037 0.45 0.003 0.031 

C14:0  1.039 1.806 0.116 

 

1.272 0.336 0.325  0.998 0.301 0.844  0.09 0.11 0.16 0.38 0.004 

C15:0iso 0.023 0.034 0.029 

 

0.037 0.042 0.023  0.033 0.018 0.161  0.80 0.27 0.89 0.09 0.004 

C15:0anteiso 0.040 0.172 0.131 

 

0.052 0.057 0.043  0.064 0.024 0.127  0.50 0.16 0.54 0.49 0.66 

C15:0 0.065 0.119 0.265 

 

0.098 0.068 0.043  0.093 0.056 0.123  0.75 0.16 0.38 0.73 0.71 

C16:0iso 0.042 0.046 0.028 

 

0.038 0.039 0.028  0.029 0.018 0.065  0.35 0.45 0.25 0.57 0.33 

C16:0  5.047 6.161 0.995 

 

2.589 2.056 1.545  3.297 1.573 1.295  0.36 0.002 0.19 0.14 0.055 

C17:0iso 0.050 0.064 0.053 

 

0.048 0.447 0.054  0.039 0.041 0.606  0.78 0.29 0.30 0.20 0.007 

C17:0anteiso 0.096 0.150 0.058 

 

0.158 0.149 0.099  0.113 0.125 0.392  0.27 0.69 0.59 0.41 0.027 

C17:0 0.125 0.123 0.074 

 

0.159 0.093 0.113  0.136 0.311 0.318  0.41 0.09 0.50 0.52 0.11 

C18:0iso 0.022 0.108 0.040 

 

0.035 0.150 0.021  0.021 0.023 0.123  0.63 0.96 0.19 0.47 0.045 

C18:0  4.938 7.706 4.806 

 

3.870 3.185 2.312  1.129 2.814 3.809  0.14 0.018 0.51 0.87 0.22 

C19:0iso 0.130 0.085 0.045 

 

0.048 0.069 0.070  0.136 0.144 0.106  0.58 0.027 0.76 0.90 0.96 

C19:0anteiso 0.224 0.111 0.080 

 

0.114 0.088 0.180  0.352 0.033 0.334  0.75 0.21 0.43 0.001 0.002 

C19:0 0.058 0.114 0.650 

 

0.210 0.101 0.022  0.139 0.035 0.111  0.41 0.29 0.72 0.30 0.36 

C20:0  1.883 3.502 2.754 

 

0.047 0.060 0.275  0.405 0.455 0.800  0.56 0.003 0.67 0.10 0.08 

C22:0  0.334 0.430 0.475 

 

0.027 0.034 0.013  0.152 0.099 0.334  0.76 0.004 0.75 0.049 0.16 

C23:0 0.114 0.125 0.105 

 

n.d. n.d. n.d.  n.d. n.d. n.d.  0.23 n.d. n.d. <0.001 n.d. 

C24:0 0.065 0.085 0.048 

 

n.d. n.d. n.d.  0.024 0.012 0.087  0.59 0.003 0.67 0.11 0.05 

C14:1t n.d. n.d. n.d. 

 

0.108 0.097 0.137  n.d. n.d. n.d.  0.05 n.d. n.d. 0.77 n.d. 

C14:1n5 0.627 0.437 0.056 

 

1.196 0.303 0.206  0.243 0.283 0.272  0.47 0.043 0.25 0.14 0.07 

C16:1c7 0.076 0.231 0.071 

 

0.280 0.057 0.150  0.041 0.026 0.054  0.22 0.015 0.24 0.034 <0.001 

C16:1c9 1.741 1.481 0.754 

 

1.508 0.517 0.859  3.099 0.875 3.907  0.51 0.19 0.81 0.65 0.033 

C17:1t7 n.d. n.d. n.d. 

 

0.035 0.072 0.053  n.d. n.d. n.d.  0.12 n.d. n.d. 0.07 n.d. 

C17:1 n.d. n.d. n.d. 

 

0.034 0.034 0.026  n.d. n.d. n.d.  0.99 n.d. n.d. 0.07 n.d. 

C18:1t9(+t7) c 0.587 2.014 2.034 

 

1.884 0.990 0.499  0.792 0.703 2.297  0.72 0.047 0.16 0.12 0.002 

C18:1c9 5.80 8.06 1.62 

 

4.09 3.05 2.10  4.49 5.80 10.05  0.94 0.035 0.26 0.35 0.19 

C18:1c7 0.226 1.146 0.390 

 

0.900 0.807 0.924  0.544 0.396 1.024  0.44 0.040 0.62 0.58 0.55 

C18:1n6b 0.129 0.217 0.191 

 

1.835 3.033 1.747  0.082 0.093 0.063  0.15 <0.001 0.06 0.006 <0.001 

C18:1 a 0.231 0.186 0.188 

 

2.936 2.668 2.427  0.474 0.088 0.214  0.18 <0.001 0.14 0.66 0.84 

C18:1c4(+t2) c 0.364 0.548 0.532 

 

0.295 0.393 0.332  0.386 0.029 0.462  0.07 <0.001 0.96 0.05 0.005 

C18:1c3b 0.190 0.211 0.251 

 

0.549 0.366 0.382  0.309 0.248 0.271  0.26 0.002 0.82 0.03 0.015 

C18:1 a 0.491 0.366 0.152   0.119 0.801 0.164  0.502 0.422 0.985  0.45 0.004 0.21 0.25 <0.001 

C19:1t9 n.d. n.d. n.d. 

 

0.186 0.172 0.183  0.077 0.070 0.057  0.73 0.032 0.41 0.21 0.10 

C19:1t a 0.079 0.210 0.365 

 

0.265 0.442 0.415  0.392 0.340 0.228  0.21 0.010 0.28 0.22 0.07 

C19:1c9b 0.354 0.469 0.146 

 

0.028 0.446 0.475  0.234 0.427 0.455  0.44 0.062 0.10 0.014 0.002 

C19:1c b 0.339 0.262 0.400 

 

n.d. n.d. n.d.  n.d. n.d. n.d.  0.61 n.d. n.d. 0.07 n.d. 

C20:1t b 0.939 0.442 0.776 

 

0.032 0.055 0.083  0.031 0.060 0.023  0.87 <0.001 0.97 0.40 0.22 

C20:1t b 0.519 0.343 0.495 

 

0.085 0.043 0.059  0.091 0.039 0.058  0.20 <0.001 0.17 0.36 0.53 

C20:1t9 0.828 0.411 0.752 

 

n.d. n.d. n.d.  0.216 0.362 0.337  0.70 0.005 0.022 0.62 0.87 

C20:1n11 0.057 0.239 0.378 

 

0.651 0.068 0.326  0.381 0.252 0.377  0.29 0.44 0.024 0.34 0.019 

C20:1n9 0.089 0.061 0.214 

 

0.807 0.447 0.058  0.399 0.402 0.295  0.11 0.001 0.004 0.56 0.43 

C20:1n7b 0.239 0.334 0.201 

 

n.d. n.d. n.d.  n.d. n.d. n.d.  0.74 n.d. n.d. 0.031 n.d. 

C20:1 a 0.240 0.151 0.198   n.d. n.d. n.d.  n.d. n.d. n.d.  0.59 n.d. n.d. 0.45 n.d. 

C20:1 a 0.540 0.517 0.751   n.d. n.d. n.d.  n.d. n.d. n.d.  0.49 n.d. n.d. 0.035 n.d. 
a Unidentified isomers 
b Uncertained isomers 
c Coeluited isomers 
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Table 2.7: Coefficient of repeatability of the measurements (RMSE, mg/g total FA) of polyunsaturated fatty 

acids content in 3 tissues (T: liver, subcutaneous fat and longissimus thoracis muscle) obtained by 3 different 

methods [M: F = Folch et al. (1957); A = ASE; J = Jenkins et al. (2010)] and heteroscedasticity of the variances 

(P - values) among Diet (D), T, D×T, M and M×T evaluated by the Levene’s test. 

 

Liver 

 

Fat  

 

Muscle   P value 

  F A J   F A J  F A J  D T D×T M M×T 

C18:2 t9,t12 0.233 0.426 0.154  0.079 0.093 0.045  0.053 0.115 0.164  0.49 <0.001 0.41 0.08 0.207 

C18:2 a 1.041 0.786 0.154  0.088 1.120 0.047  0.074 0.048 1.127  0.94 0.015 0.24 0.13 0.001 

C18:2 a 0.122 0.142 0.349  0.149 0.155 0.105  0.222 0.221 0.465  0.80 0.006 0.75 0.92 0.820 

C18:2n6 4.040 4.862 1.835  0.340 0.486 0.286  3.245 4.102 4.207  0.65 <0.001 0.009 0.07 0.155 

C18:2 c11,c14b 0.193 0.111 0.244  0.059 0.081 0.065  0.073 0.073 0.406  0.67 0.15 0.31 0.07 0.235 

C18:2 a 0.120 0.049 0.189  0.114 0.106 0.071  0.120 0.158 0.184  0.63 0.027 0.47 0.20 0.196 

C18:2 a 0.124 0.129 0.146  0.312 0.204 0.069  0.316 0.177 0.195  0.52 0.028 0.10 0.007 0.005 

C18:3n6  0.150 0.200 0.134  0.101 0.127 0.129  0.349 0.278 0.437  0.71 0.002 0.69 0.38 0.141 

C18:3n3  0.130 0.245 0.210  0.108 0.117 0.066  0.275 0.152 0.413  0.18 <0.001 0.004 0.37 0.001 

CLAc9,t11 0.211 0.156 0.107  0.160 0.145 0.074  0.258 0.197 0.261  0.06 0.004 0.37 0.79 0.088 

CLAc11,t13 0.145 0.065 0.164  0.061 0.058 0.033  0.071 0.038 0.059  0.34 0.16 0.14 0.135 0.067 

CLAt10,c12 0.203 0.133 0.205  0.092 0.084 0.025  0.198 0.016 0.082  0.19 0.016 0.27 0.198 0.981 

CLAc9,c11 n.d. n.d. n.d.  0.054 0.103 0.076  0.106 0.144 0.110  0.26 0.021 0.37 0.412 0.108 

CLAt9,t11 0.095 0.081 0.084  0.098 0.047 0.022  0.098 0.094 0.157  0.71 0.023 0.06 0.405 0.008 

C18:4 0.322 0.202 0.353  0.164 0.118 0.084  0.379 0.193 0.726  0.40 <0.001 0.10 0.291 0.012 

C18:5n3 b 0.246 0.293 0.276  0.088 0.216 0.074  0.740 0.343 0.768  0.28 <0.001 0.17 0.059 0.003 

C20:2n3 b 0.112 0.159 0.075  n.d. n.d. n.d.  0.041 0.118 0.282  0.47 <0.001 0.027 0.213 <0.001 

C20:2 1.696 0.170 1.168  0.112 0.072 0.011  0.039 0.142 0.259  0.13 0.009 0.05 0.263 0.040 

C20:3n6 1.375 4.687 1.191  0.046 0.034 0.011  0.357 0.389 0.412  0.48 0.004 0.39 0.079 0.043 

C20:3n3 0.140 0.247 0.163  n.d. n.d. n.d.  0.089 0.069 0.143  0.49 0.001 0.54 0.005 0.431 

C20:4n6   4.111 5.935 1.338  0.098 0.089 0.021  1.316 1.669 1.580  0.53 <0.001 0.19 0.007 0.002 

C20:4n3 0.135 0.099 0.057  n.d. n.d. n.d.  0.030 0.062 0.021  0.93 0.001 0.56 0.076 0.183 

C20:5n3 (EPA) 0.066 0.186 0.067  n.d. n.d. n.d.  0.056 0.068 0.105  0.24 <0.001 0.35 0.019 0.001 

C22:4n6  1.113 1.644 0.576  0.013 0.060 0.024  0.231 0.202 0.481  0.54 <0.001 0.21 0.022 0.001 

C22:5n6 0.293 0.335 0.147  n.d. n.d. n.d.  0.049 0.089 0.032  0.90 <0.001 0.41 0.041 0.005 

C22:5n3 0.499 1.149 0.288  n.d. n.d. n.d.  0.106 0.149 0.221  0.30 <0.001 0.11 0.006 <0.001 

C22:6n3(DHA) 0.513 0.333 0.535   n.d. n.d. n.d.  n.d. n.d. n.d.   0.34 n.d. n.d. 0.820 n.d. 
a Unidentified isomers 
b Uncertained isomers 
c Coeluited isomers 
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Table 2.8: Coefficient of repeatability of the measurements (RMSE, mg/g total FA) of fat extracted, groups of 

FA, and the main indices content in 3 tissues (T: liver, subcutaneous fat and longissimus thoracis muscle) 

obtained by 3 different methods [M: F = Folch et al. (1957); A = ASE; J = Jenkins et al. (2010)] and 

heteroscedasticity of the variances (P - values) among Diet (D), T, D×T, M and M×T evaluated by the Levene’s 

test. 

 

Liver 

 

Fat  

 

Muscle   P value 

  F A J 

 

F A J   F A J  D T D×T M M×T 

SFA 4.53 6.63 8.79 

 

8.06 5.71 2.76 

 

6.03 5.20 8.15  0.57 0.08 0.54 0.32 0.07 

MUFA 10.65 12.26 4.87 

 

7.25 4.79 3.27 

 

4.78 9.82 15.45  0.65 0.033 0.28 0.98 0.62 

PUFA 13.12 15.21 7.21 

 

1.34 1.42 0.62 

 

7.03 8.37 9.95  0.75 <0.001 0.05 0.05 0.06 

Σ CLA 0.278 0.365 0.190 

 

0.249 0.121 0.099 

 

0.495 0.234 0.375  0.14 <0.001 0.37 0.41 0.37 

Σ CLA c/t 0.167 0.247 0.109 

 

0.168 0.112 0.076 

 

0.238 0.131 0.223  0.27 0.004 0.20 0.84 0.15 

Σ CLA c/c n.d n.d n.d. 

 

0.054 0.103 0.076 

 

0.106 0.144 0.110  0.26 0.021 0.37 0.41 0.11 

Σ CLA t/t 0.095 0.081 0.084 

 

0.098 0.047 0.022 

 

0.098 0.094 0.157  0.71 0.023 0.06 0.41 0.008 

Ω 6 12.15 14.56 6.10 

 

0.48 0.83 0.49 

 

6.44 8.21 8.53  0.75 <0.001 0.06 0.03 0.047 

Ω 3 1.01 1.74 1.04 

 

0.28 0.39 0.20 

 

0.96 0.67 1.32  0.75 0.001 0.16 0.15 0.039 

Ω6 /Ω 3 2.99 4.13 5.67 

 

13.61 20.39 16.40 

 

21.14 27.93 30.28  0.26 <0.001 0.13 0.38 0.22 

Branched 0.348 0.326 0.474 

 

0.400 0.580 0.301 

 

0.461 0.200 1.211  0.93 0.45 0.31 0.50 0.028 

Odd Chain 2.434 1.993 3.056 

 

1.144 1.995 1.022 

 

1.249 1.179 3.186  0.15 0.001 0.009 0.017 <0.001 

<C16 2.249 2.682 0.845 

 

2.098 1.046 0.694 

 

2.085 0.658 1.577  0.19 0.024 0.002 0.16 <0.001 

  C16 6.607 7.708 1.555 

 

3.491 2.420 2.122 

 

1.947 1.862 4.321  0.18 0.005 0.55 0.44 0.06 

>C16 8.501 9.889 1.598 

 

4.588 2.538 2.041 

 

3.459 2.092 4.697  0.20 0.008 0.31 0.24 0.014 

ΣC18:1 4.959 7.760 4.798 

 

3.857 3.162 2.331 

 

1.145 2.810 3.813  0.81 0.09 0.13 0.80 0.07 

ΣC18:2 5.668 4.678 2.918 

 

0.879 1.416 0.445 

 

4.507 5.893 6.317  0.72 <0.001 0.015 0.11 0.25 

Δ9 desaturases1: 

           

 

     C14 0.277 0.437 0.159 

 

0.203 0.022 0.027 

 

0.070 0.050 0.090  0.17 <0.001 0.23 0.32 0.018 

C16 0.113 0.080 0.077 

 

0.035 0.009 0.020 

 

0.109 0.026 0.136  0.30 0.048 0.44 0.75 0.044 

C18 0.169 0.235 0.061 

 

0.107 0.086 0.055 

 

0.045 0.088 0.167  0.62 0.016 0.42 0.34 0.62 

CLAc9,t11 0.110 0.154 0.201 

 

0.069 0.049 0.030 

 

0.110 0.047 0.164  0.41 <0.001 0.26 0.002 0.12 

CLAt10,c12 0.095 0.095 0.098 

 

0.024 0.029 0.007 

 

0.072 0.005 0.043  0.09 <0.001 0.013 0.31 0.38 

Total Index 0.132 0.147 0.041 

 

0.091 0.063 0.030 

 

0.047 0.099 0.153  0.67 0.033 0.31 0.56 0.60 

AI2 0.298 0.407 0.066 

 

0.321 0.130 0.074 

 

0.297 0.130 0.185  0.23 0.13 0.07 0.039 <0.001 

TI3 0.143 0.207 0.168   0.066 0.054 0.026   0.059 0.039 0.117  0.58 0.008 0.64 0.22 0.23 
1  Δ9-desaturase indices 
2 Atherogenic Index 

3 Thrombogenic Index 
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Figure 1: Effect of increasing dietary rumen protected conjugated linoleic acid (CLA) 

supplementation on CLAc10,t12 content (mg/g total FA) of liver, subcutaneous fat and 

longissimus thoracis muscle (vertical bars indicate RMSE, interaction of CLA dose × tissue: 

P < 0.001, n = 18). 
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Figure 2: Single FA contents (mg/g total FA) in liver (a), subcutaneous fat (b) and 

longissimus thoracis muscle (c) determined with ASE or Jenkins et al (2010) plotted against 

those determined with Folch et al. (1957), and linear relationships between methods [Each 

point is one of the FA determined as a mean of 18 measures; data distribution is evidenced in 

logarithmic base 10 scale; Significance of the F-test was computed for a slope different from 

1 and intercept different from 0 (P < 0.05).  
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3.1 ABSTRACT 

The aim of this study was to investigate the effect of feeding system, gender and the 

tissue on the fatty acid (FA) profiles of lambs. Thirty-six weaned lambs, belonging to three 

autochthonous breeds of Veneto Region, were divided in three groups, balanced for breed, 

gender, age and weight, that were fed according to different systems: at pasture (P); penned in 

an open barn and fed with hay and concentrate (Indoor-control); and penned in the open barn 

and fed with hay and concentrate plus a rumen protected conjugated linoleic acid mixture 

(Indoor-CLA). Lambs were slaughtered at puberty and samples of 3 muscles (leg, rib eye, and 

other chop muscles), 2 fatty depots (sub-cutaneous cover and kidney fats) and liver were 

collected and analyzed for FA profile by two-dimensional gas chromatography. Data were 

analyzed considering the effect of the feeding system, breed, gender, and tissue. The random 

effect of animal was used to test feeding system, gender, and their interaction whereas the 

effects of tissue and corresponding interactions were tested on the residual.  

Fifty-two FA were identified using standard references, among which 8 PUFA were 

found only in liver or kidney or both, other 70 were classified in 6 groups of FA according to 

their carbon chains length and unsaturation degree from their position in the two-dimensional 

chromatograms, and 12 FA were excluded because present in trace only in some samples. 

Irrespective by the tissue, the replacement of pasture with both the Indoor diets decreased the 

proportions of PUFA (-12%), ω3 FA (-45%), and increased the proportions of ω6 (+17%), 

branched (+36%) and odd chain FA (+20%) and the ω6/ω3 FA ratio was increased from 2.1 

to 4.1 (P = 0.01). Compared to Indoor-control, Indoor-CLA increased the relative contents of 

CLA isomers (CLAc9,t11, P = 0.01, and CLAt10,c12, P = 0.002) without alteration of the 

relative contents of others FA, towards values similar to those observed for P. Despite the 

presence feeding system × tissue interaction for almost all FA, the effects on FA profile 

induced by the feeding systems with or without rpCLA showed similar trends for all tissues. 

Liver presented a FA profile very different from that of muscles and fatty tissues and, among 

fatty tissues, kidney fat was very peculiar. Considering the ω6/ω3 FA ratio suggested for 

human nutrition and those greater than 10.0 frequently observed for many ruminant meat 

products, the ω6/ω3 FA ratio of lamb fed indoor diets can be considered acceptable in the 

perspective of extending the period of seasonal availability of lambs in the market. The 

effectiveness of using rumen protected molecules to deliver specific bioactive FA in the lamb 

tissues was demonstrated. 
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Key words: Lambs, Fatty acids, Two-dimensional gas chromatography, Conjugated linoleic 

acid, liver, muscle. 

 

3.2 INTRODUCTION 

Fatty acid (FA) profile of meat from ruminants is often addicted as a cause of health 

problems for humans because of the high content of saturated FA (SFA) and also for the high 

ω6/ω3 FA ratio and the content of trans FA (Scollan et al., 2006; Shingfield et al., 2013), but 

it can be also an important source of beneficial FA, and for some of these high levels of 

biological activity have been reported, for example conjugated linoleic acid (CLA) (Wood 

and Fearon, 2009; Dilzer and Park, 2012). Nevertheless the effect of FA and micronutrient 

profiles on human health remains a controversial topic (Dannenberger et al., 2013). Ruminant 

meat has a high content of SFA and a low content of polyunsaturated fatty acids (PUFA). The 

main reason of this higher amount is the rumen hydrogenation of monounsaturated FA 

(MUFA) and PUFA (Gatellier et al., 2005). Following the guidelines for a healthy nutrition, 

meat quality can be improved by reducing SFA, and increasing MUFA and PUFA, reducing 

ω6/ω3 FA ratio, and increasing CLA content of red meat (Kouba and Mourot, 2011). Fatty 

acid composition can be affected by factors such as diet, species, breed, gender, age and 

weight, fatness, and fat deposit site (Scollan et al., 2006; Faria et al., 2012). With some 

feeding systems an increase of the ω3 PUFA content, in particular of the C18:3 α-linoleic, and 

a reduction of the ω6/ω3 FA ratio can be achieved (Realini et al., 2004; Webb and O’Neil, 

2008). The CLA content can be increased by different dietary strategies, for example pasture 

feeding resulted in a significant increase of CLAc9,t11 in muscle lipids of German Holstein 

and German Simmental bulls compared with concentrate fed bulls (Nuernberg et al., 2005). 

However, pasture is subjected to seasonal availability, and has negative effects on the growth 

performance of animals, so that alternatives need be studied. For example, some feeds 

containing oil, such as soybean, linseed and sunflower seeds were found to influence the n-3 

PUFA level in tissues (Kim et al., 2007), and a supply of a commercial rumen protected 

conjugated linoleic acid (rpCLA) was found to increase CLA content in the meat of growing 

cattle (Schiavon et al., 2011). The availability of new powerful analytical methodology and 

equipment, such as the two-dimensional gas-chromatography (GC × GC) allows to achieve a 

detailed and accurate assessment of FA profile (Manzano et al., 2011). 

A better knowledge about the nutritional properties of meat can be important to improve 

the value of local endangered breeds reared at pasture. Sheep breeding has an important role 



80 
 

in rural, marginal and mountain areas, where the links with territory and traditions are 

pronounced and the use of native breed is predominant (Casabianca and Matassino, 2006). In 

Veneto region (North-East Italy) four native breeds are at risk of extinction (Pastore and 

Fabbris, 1999; Pastore, 2002; Bittante, 2011): Foza, Brogna, Alpagota, and Lamon with 

different characteristics (Bittante and Pastore, 1988; Ramanzin et al., 1991; Bittante et al., 

1996). These breeds are used for the production of traditional dairy and meat products, for 

example “Alpagota lamb” is labelled by the “Slow Food Presidium”  if lambs are reared 

according to specific norms (Slow Food Foundation, 2008), but it is also used for the 

production of a typical fermented sausage called Pitina (Bovolenta et al., 2007). The lambing 

of these local breeds is normally concentrated during late winter and both ewes and lambs are 

kept at pasture from spring to autumn. However, there is a tendency to distribute parturitions 

also in other seasons to offer in the market lamb carcasses for longer periods of time. This 

implies the use of an indoor feeding system based on hay and concentrate which would cause 

alterations of carcass and meat characteristics which need to be evaluated in relation to their 

possible effects on human health (Wood et al., 2003).  

The aim of this study was to evaluate the effects of different feeding systems (lambs at 

pasture vs lambs fed indoor diets composed of hay and concentrate with or without rpCLA 

supplementation) and of gender on a detailed fatty acid profile and content of CLA isomers of 

different tissues (liver, fat depots and muscles) by means of a two-dimensional gas 

chromatography.  

 

3.3 MATERIAL AND METHODS  

Animals, feeding system and in vivo measurements 

The present project followed the Guideline for the Care and Use of Agricultural Animals 

in Agricultural Research and Teaching (Consortium, 1988). This experiment was conducted at 

the “Lucio Toniolo” Experimental Farm of the University of Padova in Legnaro (Padova, 

Italy) and results about growth performance and carcass traits are given in a previous study of 

Pellattiero et al. (2011). Briefly, the lambs used for this research belongs to two flocks 

undergoing to an in situ conservation program. In total 36 weaned lambs belonging to 3 

autochthonous Alpine breeds from the Veneto Region were used: 12 each, 6 males and 6 

females, of Foza, Brogna, and Alpagota breeds. According to different feeding systems, lambs 

were divided in 3 groups (2 males and 2 females for each breed in each group): a) grazing a 
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permanent pasture (P), b) penned in an open barn and fed with hay and concentrate (Indoor-

Control), and c) penned in the open barn and fed with hay, concentrate and daily 

supplemented with 8.0 g/head (Indoor-CLA) of a commercial rpCLA product (SILA, Noale, 

Venice, Italy). The first group (pasture) was introduced in a fenced meadow of the 

Experimental Farm, the second group (Indoor-control) was penned in an open barn and feed 

with hay from the same meadow given ad libitum plus, on average, 267 g/d of a commercial 

concentrate mixture. The last group (Indoor-CLA) was penned in the same open barn and fed 

the same diet of group (Indoor-Control) but the concentrate was daily supplemented with 8 

g/head of rpCLA product  containing 0.71 g/d of CLAc9,t11 and 0.69 g/d of CLAt10,c12. 

The characteristics and composition of the rpCLA product used is given by Schiavon et al. 

(2010). At the beginning of the trial lambs were weighed and evaluated for their body 

condition score (BCS) according to a scale from 1 (emaciated) to 5 (obese). The mean initial 

BW was 20.1 kg for ewe lambs and 21.8 kg for ram lambs, the initial BCS was 3.1 for ewe 

lambs and 3.0 for ram lambs. The trial lasted 113 d and the final BW was 28.1 and 31.7 kg for 

ewe and ram lambs, respectively. The average age, BW and BCS at slaughter and the killing 

out of the three groups are shown in Table 3.1. 

 

Tissues sampling  

Immediately after slaughter, liver and kidney fat samples were collected from all the 

animals and stored at -20°C. Carcasses were divided in two halves, that were weighed and 

cold stored at 4 °C. The day after slaughter, the semi-carcasses of each lamb were weighed 

again and the right semi-carcass was dissected into five cuts (hind-leg, fore-leg and shoulder, 

ribs-loin, withers, brisket). Each cut was weighed and  the ribs-loin and the hind-leg were 

collected and stored under vacuum for 6 d at 4°C. Thereafter, these two cuts were dissected 

and weighed. Rib-loin was divided in ribs and loin. Ribs were dissected, and weighed, in rib 

eye muscle, other chop muscles, bones and subcutaneous fat. From hind-legs, only the inner 

part of the leg (Quadriceps femoris) was separated and weighed. Samples of subcutaneous fat, 

rib eye muscle, other chop muscles and leg muscle were collected and stored at -20°C prior 

the analysis.  
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Lipid extraction, FA esterification and GC × GC analysis 

All the tissues collected were ground and mixed for 10 s at 4500 × g (Grindomix GM200,  

Retsch, Haan, Düsseldorf, Germany). Fresh samples were weighted and homogenized with 

Hydromatrix (Phenomenex, Castel Maggiore, Bologna, Italy) and transferred into 10 mL 

stainless steel extraction cells for ASE (Dionex ASE 350, Thermo Fisher Scientific Inc., MA, 

USA) with petroleum ether as solvent (#32044, Sigma-Aldrich, MO, USA). The conditions of 

extraction, reported in the ASE Application note 334 for meat samples (ASE, Dionex, 

Sunnyvale, USA),  were those also applied by Schafer (1998) and Toschi et al. (2003). After 

the extraction the solution was heated at 50 °C under N2 stream for about 20 min to complete 

solvent evaporation, placed in an oven at 60 °C for 15 min, cooled in a drier and the resulting 

extracted fat (EE) was weighted. About 40 mg of extracted fat were transferred to test tubes to 

be methylate according to Christie (2001) using sodium methoxide 1 M in methanol at room 

temperature. Briefly, 2 mL of n-exane, containing 2 mg/mL of methyl 12-tridecenoate as 

internal standard (#U-35 M, Nu-chek prep inc., MN, USA), 100 μl of sodium methoxide (1 

M) in methanol were added to the EE obtained from lipid extraction. The solution containing 

the EE and solvents were mixed for 10 min using a laboratory multi mixer (717+, ASAL s.r.l., 

FI, Italy) at room temperature. After this step 150 μL of oxalic acid in ethyl ether  was added 

to stop the reaction and obtained the fatty acids methyl esters (FAME) solution. The solution 

was mixed for 30 s and centrifuged at 8000 × g for 10 min (Sigma Laborzentrifugen 3K15, 

Osterode am Harz, Germany). The upper phase was collected (1 mL) and transferred to a vial 

for the GC × GC analysis. The resulting FAME solution was stored in GC vials at −20 °C 

prior the analysis. 

 

Gas chromatographic analysis 

The samples obtained were analyzed for their FA profile by GC × GC (Agilent 

Technologies 7890A, CA, USA) with two columns in series, equipped with a modulator 

(G3486A CFT, Agilent, CA, USA), an automatic sampler (7693, Agilent, CA, USA) and a 

flame ionization detector (FID) connected with a chromatography data system software 

(Agilent Chem Station, CA, USA). This instrument was used because the use of a double 

column allows a much better separation and identification of FA on a two-dimensional basis, 

compared to the traditional one column GC (Cesaro et al., 2013). Between the two columns 

the modulator unit collects in a fixed volume channel the analyte bands of the first column 
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and these are successively launched into the short second column in narrow bands. The 

operative conditions of the GC apparatus were:  

 First column of 20 m × 100 µm (internal diameter) × 0.1 µm of film thickness (J&W 127-

0122 Agilent Technologies, CA, USA), H2 carrier flow of 0.3 mL/min.  

 Second column of 5 m × 250 µm (internal diameter) × 0.15 µm of film thickness (Agilent 

19091N-030, Agilent Technologies, USA), H2 carrier flow of 24 mL/min. 

 Planned oven temperature variation: increase from 40 °C (held for 2 min) and then 

increased to 260 °C (held for 5 min) at 5 °C/min. 

  Valves: modulation delay, 0.115 min; modulation period, 2.0 s; sample time, 1.75 s.  

 Detector (FID): heater, 250°C, H2 carrier flow 20mL/min, air flow 450mL/min. 

 Splitless Inlet: temperature 250°C, pressure 37.758 MPa, Septum Purge 3mL/min, Split 

Ratio 15mL/min.  

 The resulting three-dimensional chromatograms were analyzed with the comprehensive 

GC × GC software (Zoex Corp., TX, USA) to evaluate the cone volume of each FA.  

 

Identification and quantification of FA 

The identification was made first by comparing the cone position in the chromatogram 

with the cone position of FA contained in reference standards. The reference standards used 

were mixtures of pure FA (#674, Nu-chek prep inc., MN, USA; Bacterial Acid Methyl Esters 

(BAMEs), Sigma-Aldrich, MO, USA) plus CLAc9,t11 (#UC-60M, Nu-chek Prep Inc., MN, 

USA) and CLAt10,c12 (#UC-61M, Nu-Chek Prep, Inc. MN, USA). The second FA 

identification method was based on the elution order and position of each FA in the two-

dimensional chromatogram of the comprehensive GC × GC software (GC Imagine Software, 

Zoex Corporation, TX, USA). In the region of the C18:1 isomers different peaks were 

detected and two of them C18:1t9 (elaidic acid) and C18:1t11 (vaccenic acid) were partially 

co-eluted. Quantification of each FA was made considering the cone volume of each FA peak 

with respect to the volume of total FA and it was expressed in terms of g FA/g of total FA 

×100 on the basis of the concentration in weight of the methyl 12-tridecenoate contained in 

the solution used as internal standard. In the statistical analysis and in the tables some peaks 

were excluded (C4:0, C6:0, C7:0, C13:0iso, C13:0anteiso, C19:0anteiso, C23:0, C24:0, 

C13:1unknown isomer, ΣC14:1unknown isomers, ΣC19:1unknown isomers, ΣC20:1unknown 

isomers, C23:1, C24:1) because the relative peaks were lacking in many samples. Some long 
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chain PUFA (LC-PUFA) were reported separately because they were detected in significant 

amount only in liver and kidney fat.  

 Moreover, the various FA were summed in categories according to various criteria as 

follow. 

 Saturated FA (SFA) was the sum of: C4:0, C6:0, C7:0, C8:0, C9:0 C10:0, C11:0 C12:0, 

C13:0, C13:0iso, C13:0anteiso, C14:0, C14:0iso, C15:0, C15:0iso, C15:0anteiso, C16:0, 

C16:0iso, C16:0anteiso, C17:0, C17:0iso, C17:0anteiso, C18:0, C18:0iso, C19:0, C19:0iso, 

C19:0anteiso, C20:0, C21:0, C22:0, C23:0 and C24:0; 

 Monounsaturated fatty acids (MUFA) were the sum of: C13:1unknown isomer, C14:1c9, 

ΣC14:1unknown isomers, ΣC15:1others, C16:1n5, C16:1t7, C16:1c7, C16:1c9, 

ΣC16:1others, C17:1c10, ΣC17:1others, C18:1t7, C18:1t9(+t11), C18:1c9, C18:1c7, 

C18:1n3, ΣC18:1others, C19:1n9t, C19:1n9c, ΣC19:1unknown isomers, C20:1n7, 

C20:1n9, C20:1n11, C20:1n9t, ΣC20:1unknown isomers, C23:1, C24:1; 

 Polyunsaturated FA (PUFA) were the sum of: ΣC16:2unknown isomers, C18:2n6, 

ΣC18:2unknown isomers, ΣC19:2unknown isomers, C20:2n6, C20:2n3, ΣC20:2unknown 

isomers, ΣC16:3unknown isomers, C18:3n3, C18:3n6, ΣC18:3unknown isomers, 

C20:3n3, C20:3n6, ΣC20:3unknown isomers, C18:4n3, C20:4n3, C20:4n6, 

ΣC20:4unknown isomers, C20:5n3 (EPA), C20:5n6, ΣC20:5unknown isomers, C22:2n6, 

C22:4n6, C18:5n3, C22:5n6, ΣC22:5unknown isomers, C22:6n3 (DHA), CLAc9, t11 

CLAt10, c12, and ΣCLA unknown isomers; 

 Unknown FA are the sum of 10 peaks not identified by standard or by position of the 

peaks in relationship to elution time. 

 Branched FA were calculated according to Raes et al. (2004) and were the sum of: 

C13:0iso, C13:0anteiso ,C14:0iso, C15:0iso, C15:0anteiso,C16:0iso, C16:0anteiso, C17:0iso, 

C17:0anteiso, C18:0iso, C19:0iso and C19:0anteiso;  

 Odd chain FA were calculated according to Or-Rashid et al. (2007); 

 The sum of the identified CLA isomers was indicated as ΣCLA and was calculated by the 

sum of isomers identify by standard and position: CLAc9, t11 CLAt10, c12 and ΣCLA 

unknown isomers. Other CLA isomers, such as the CLAt7, c9 and CLAc11, t13; 

 The sum of Omega-3 PUFA (ω3) or Omega-6 PUFA (ω6) were calculated according to 

Givens et al. (2000) and Connor (2000), as example ω3 PUFA was computed as the sum 

of C18:3n3, C18:4n3 C18:5n3, C20:2n3, C20:3n3, C20:4n3, C20:5n3(EPA), C22:5n3, 

C22:6n3 (DHA);  
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 The Δ9-desaturase indices were calculated, according to Kelsey et al. (2003), for four 

pairs of FA that represent products and substrates for Δ9-desaturase. These fatty acid pairs 

were 14:1c9/14:0, 16:1c9/16:0, 18:1c9 /18:0, and C18:2c9,t11/C18:1t11. We defined the 

desaturase index as follows: [product of Δ9-desaturase]/[product of Δ9-desaturase + 

substrate ofΔ9-desaturase]; 

 The Atherogenic Index (AI) and Thrombogenic Index (TI) were calculated according to 

Ulbricht and Southgate (1991) as: AI = (C12:0 + 4 × C14:0 + C16:0)/(ω3 PUFA + ω6 

PUFA + MUFA); and TI = (C14:0 + C16:0 + C18:0)/(0.5 × MUFA + 0.5 × ω6 PUFA + 3 

× ω3 PUFA/ω6 PUFA). 

 

Statistical analysis 

Statistical analysis of experimental data was performed using MIXED procedure of SAS 

(SAS, 2005). Data were analyzed using a linear mixed model considering the effect of the 

feeding system, breed, gender, age and tissue as fixed effects. The random effect of animal 

was used to test feeding system, breed, gender and age, whereas the effects of tissue and of its 

interaction with feeding system were tested on the residual. The model includes also the 

orthogonal contrasts listed in the corresponding tables. As the effect of breed and of age of 

lambs were seldom significant and as a preliminary analysis excluded interactions with the 

other fixed effects considered, their least square means were not reported in the tables and 

discussed in the text.  

 

3.4 RESULTS  

The GC×GC comprehensive system revealed the presence of 52 peaks identified using 

standard references, 21 SFA, 15 MUFA, and 16 PUFA. Fifty-four others peaks were found 

but as their FA identification was not based on standard references they were grouped in 6 

categories (ΣC15:1 others, ΣC16:1 others, ΣC17:1 others, ΣC18:1 others, ΣC16:2 others, and 

ΣC18:2 others) on the basis of their position in the ordered GC×GC chromatograms. Twelve 

peaks were excluded because present in trace only in some samples. 
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Effects of feeding system, gender and the interaction between these two effects 

The least square means of the proportions of single SFA (Table 3.2), MUFA and PUFA 

(Table 33.) are based on the data of all tissue analyzed, with the omission of the unsaturated 

FA found only in liver, kidney or both which are separately given in Table 4. 

 Feeding system affected the proportion of the large majority of individual FA. Lambs 

reared at pasture exhibited a FA profile different from those reared in the barn pens fed hay 

and concentrates, as evidenced by the P-values achieved for the pasture vs B contrast. The 

only important FA which were not affected by pasture were C14:0 among SFA, and C16:1c9, 

and C18:1c9 among MUFA. Even if pasture differed from the other treatments for the large 

majority of individual FA proportion, when the FA were summed in groups it resulted that the 

feeding system had little influence the proportions of SFA and of MUFA (Table 3.5). The 

PUFA proportion was slightly greater in lambs reared at pasture than the average value found 

in lambs fed the indoor diets mainly because of the increase of C18:3n3, C20:5n3 (EPA), and 

C22:6n3 (DHA) proportions in grass fed lambs. Pasture caused also an increase of the sums 

of CLA, of ω3 FA, and a decrease of ω6 FA proportions so that the ω6/ω3 ratio was lowered 

compared to the other feeding treatments. In addition, pasture increased long chain FA, 

decreased the proportions of medium and short chain FA as well as the incidence of both 

branched and odds FA. The effect of pasture on the desaturation indices was null or small, but 

the atherogenic index was reduced compared to the other treatments (Table 5). The effect of 

rpCLA supplementation with the indoor diet affected only individual CLA isomers (Table 3), 

their sum and the C18:2c9t11desaturation index (Table 3.5). 

Gender affected only marginally the FA profile of lamb tissues (the proportion of C15:0, 

C15:0anteiso, and C16:1c7 was always greater in males compared to females) and interact with 

feeding system only for C15:0. 

 

Differences among  tissues FA profile and interaction with feeding system  

Notable differences of FA profile were observed among tissues or groups of tissues (Table 

3.6, 3.7). The FA profile of liver differed from that of the other tissues for the large majority 

of the single SFA, MUFA PUFA. In addition, 5 long chain FA were found only in liver 

samples, among which the C22:6n3 (DHA) and other 3 long chain FA were detected only in 

liver and kidney fat (Table 3.8).  

Compared to the other tissues, liver contained smaller proportions of SFA and MUFA and 

a much greater proportion of PUFA (Table 3.9). In addition, the proportion of unknown FA 
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was greater in liver compared to the average of the other tissues. Liver tended to contain a 

slightly greater proportion of ΣCLA (P = 0.06), but also contained a greater proportion of ω3 

and ω6 FA, being the ω3 and the ω6 contents 6 to 7-fold and 3 to 4-fold greater than the 

average of the other tissues, respectively. The ω6/ω3 ratio in liver was about 50% smaller 

than the average value found for the other tissues. Liver also evidenced a smaller proportion 

of short- and medium-chain FA, and a greater proportion of long- and odd-chain FA 

compared to the other tissues. The overall Δ
9
-desaturation index was lower in liver than in 

other tissues (Table 3.9), mainly because the incidence of smaller values found for the C18 

index. On the opposite, the CLAc9,t11 desaturation index was greater in liver compared to the 

other tissues. Both the thrombogenic
 
and atherogenic indices values computed for liver were 

about 50% smaller (more favorable) than the values computed for the other tissues.  

The FA profile of the two fatty tissues was different from that of muscles, with exceptions 

for some FA (Table 3.6). In the case of saturated FA the differences between fat and muscle 

tissues in the FA proportions regarded the large majority of individual FA, in particular of the 

minor FA (those representing less than 1% of total FA). In the case of unsaturated FA, 

differences in the FA proportions between fats and muscles were found also for all the major 

FA (Table 3.7). 

In terms of FA categories (Table 3.9), fatty depots had greater SFA and smaller MUFA 

and PUFA proportions, greater proportions of unknown FA and ω3 FA, smaller proportion of 

ω6 FA, lower ω6/ω3 ratio, similar short- medium- and long-chain FA proportions, and greater 

proportions of branched and odds chain FA compared to muscles. The total desaturation index 

of fatty tissues was lower and the thrombogenic
 
and atherogenic indices were greater 

compared with that of muscles. 

The FA profile of kidney fat frequently differed from that of cover fat, particularly for the 

greater proportion of SFA (Table 3.9), almost exclusively due to a greater incidence of C18:0 

(Table 3.6), and a smaller proportion of MUFA, mainly due to a smaller proportion of 

C18:1c9 (Table 3.7). In addition, in kidney fat 7 very long-chain unsaturated FA that were not 

detected in the subcutaneous cover fat were found (Table 3.8). Kidney fat compared to 

subcutaneous cover fat was characterized by the presence of unknown FA in trace, a greater 

proportion of ΣCLA, a smaller proportion of ω6 FA, and a lower ω6/ω3 ratio. Kidney, had 

greater proportion of short- and long-chain FA, a smaller proportion of medium-chain FA, 

and a greater incidence of odd-chain FA, compared to cover fat. In kidney fat the values of the 

desaturase indices were smaller, particularly for C16 and C18, and the thrombogenic
 
and 

atherogenic indices were greater compared to cover fat (Table 3.9). 
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Also within the 3 muscles several differences were found in all classes of FA, but in this 

case, even if statistically significant, the magnitude of the differences among muscles was 

smaller compared to that found in the previous comparisons (Tables 3.6, 3.7 and 3.9). The 

general trend was that the other chop muscles tended sometimes to have a FA profile 

intermediate between that of the leg and rib-eye muscles and that of the fatty depots. 

Lastly, the large majority of individual FA and of their groups and indices showed 

interactions regarding the effects of feeding system in different tissues. The number of traits 

that evidenced a significant interaction (41 among FA, groups and indices) and the 

complexity of the interaction (18 least square means with 10 df for each one) make impossible 

to detail all these interactions, but some examples of interest for human health are presented 

and discussed. Pasture and rpCLA supply increased the proportion of the CLAt10,c12 isomer 

in all tissues compared to the system based on hay and concentrate, and the magnitude of 

response to rpCLA supply was similar to that achieved with pasture, except for kidney fat 

where a notable increase of this isomer was found when rpCLA was offered to the lambs 

(Figure 1). Among tissues, liver evidenced the highest proportions of both ω3 and ω6 FA, and 

in all tissues pasture increased the proportion of ω3, decreased the proportion of ω6 and 

decreased the ω6/ω3 ratio compared to the other feeding systems (Figure 2). The ω6/ω3 ratio 

was lowest with pasture in all tissues. Irrespective of the feeding treatment this ratio ranged 

1.0 to 2.5 and 2.5 to 6.0 in liver and other tissues, respectively. With pasture the proportions 

of branched and odd FA were lower compared to those found for the other feeding systems in 

almost all tissues, but pasture decreased the proportion of these FA more in liver and kidney 

than in other tissues (Figure 3). 

 

3.5 DISCUSSION 

The GC×GC technique offers high separation efficiency and enhanced sensitivity compared 

to single column GC (Adahchour et al., 2008). A further characteristic of the GC×GC 

technique is the ordered structure of the chromatograms (Vlaeminck et al., 2007; Adahchour 

et al., 2008), which makes the identification of compounds more reliable than in traditional 

GC, particularly when columns with different polarity are used (Manzano et al., 2011). The 

GC×GC is also well suited for the analysis of samples where compounds are present in very 

different concentrations. Compared with other biological samples, beef meat fat is a complex 

matrix. To our knowledge this is one of the first time that such technique has been applied to 

analyse the FA profile of lamb’s meat. The potential of this technique is highlighted by the 
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106 different FA detected. This would open new perspectives to improve the knowledge of 

lipid metabolism in ruminants. 

 

Feeding system 

Dietary manipulation is considered to be one of the most effective way to improve the FA 

composition of sheep meat (Nuernberg et al., 1998; Shingfield et al., 2013; Sinclair, 2007). 

Pasture exerts a positive effect on the FA profile of meat of ruminants because it increases the 

proportion of MUFA and PUFA and decreases the proportion of SFA with respect to indoor 

fed animals (Nuernberg et al., 2002; Realini et al., 2004). Also in the case of growing lambs 

pasture increased the proportion of PUFA, in particular of ω3 PUFA, and decreased the 

proportion of ω6 PUFA (Aurousseau et al., 2004; Serra et al., 2009; Gallardo et al., 2011) 

compared to diets based on hay and concentrates, so that the ω6/ω3 ratio was lowered (Kouba 

and Mourot, 2011). The main reason of this influence of pasture on meat FA profile is that 

grass is a natural source rich of C18:3n3, a precursor of other ω3 FA, whereas concentrates 

are rich in C18:2n6, a precursor of others ω6 FA (Sinclair, 2007).  

These effects of pasture were confirmed in the current experiment where it was found that 

grazing lambs had an average ω3/ω6 FA ratio of 2.1 and that lambs fed hay and concentrate 

reached an average ω3/ω6 FA ratio of 4.1. For healthy human diets it has been suggested that 

the optimal ω3/ω6 ratio should range between 2.3 to 8.1, according to different authors (Kim 

et al. 2006) with a preferred ratio ≤ 5.0 (Nurberg et al., 2005). Kim et al. (2006) observed that 

typical western type foods that are consumed have an average ω3/ω6 FA ratio of equal or 

greater than 10:1, as also confirmed in the meat of different beef breeds produced in Italy by 

Brugiapaglia et al. (2014). This suggests that, for conditions similar to those of current trial, 

lambs grew on hay and concentrates would be characterized by a ω3/ω6 FA ratio still within 

the range considered to be adequate for human health. 

Conjugated linoleic acids are considered to be beneficial FA for human health, especially 

the C18:2c9,t11 and the C18:2t10,c12 isomers, even if the topic remains controversial (Park, 

2009; Penedo et al., 2013). The C18:2c9,t11 is the main CLA isomer in ruminant tissues and 

it is formed as partial hydrogenation product during ruminal fermentation (Williams, 2000; 

Perfield et al., 2007; Bhattacharya, Banu, Rahman, Causey & Fernandes, 2006). The major 

part of it is synthesized in tissues from trans vaccenic acid (C18:1t11) in a desaturation 

reaction catalyzed by the stearoyl-CoA-desaturase enzyme (SCD), encoded by a specific gene 

(Griinari et al., 2000; Pariza et al., 2001; Cecchinato et al., 2011). The C18:1t11 is formed in 
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the rumen from C18:1n9, C18:2n6 and C18:3n3 (Kim et al., 2007), but diets that promoted 

the greatest activity of SCD (i.e. starchy concentrate diets) were also associated with a lower 

duodenal flow of the C18:1t11 precursor, with forage-based diets resulting in the highest flow 

of this FA from the rumen (Sinclair, 2007). As a consequence tissues of ruminants kept on 

pasture commonly present greater content of C18:1t11 and C18:2c9t11 compared to those of 

animals fed concentrate diets (Sinclair, 2007). Drying and storage of forages decrease 

C18:3n3, precursor of CLA, and increase C16:0 (Sinclair, 2007). In addition an immature 

fresh grass has a higher rate of rumen lipolysis and hydrogenation that would reduce C18:1t11 

formation in comparison with grass from mature pasture (Realini et al., 2004; Dhiman et al., 

2005; Scerra et al., 2007).  

These results were confirmed in the current experiment, as the proportions of C18:1t11, 

even if this FA was partially co-eluted with C18:1t9, and of C18:2c9,t11 were greater on 

tissues of lambs kept on pasture compared to those of lambs fed hay and concentrate. In 

addition, pasture decreased the proportion of both branched and odd FA in the various tissues, 

compared with the other treatments. According to Serra et al. (2009) this would reflect a 

lower rumen activity and a likely greater rumen escape of intermediary products of bio-

hydrogenation, as also suggested by the greater proportions of PUFA and CLA found in the 

tissues of lambs kept at pasture compared to the other treatments of current experiment. The 

increased proportion of branched FA, caused by the use of the concentrated-based indoor 

diets compared to pasture, might also be due to a greater availability of propionic acid for 

lipogenesis, occurring, in particular, in adipose tissues (Demirel et al., 2004).  

From experiments conducted with monogastrics, it was suggested that C18:2c9,t11 would 

exert a prevalent action on protein metabolism increasing lean growth and feed efficiency 

(gain:feed intake), whereas the C18:2t10,c12 is effective on lipid metabolism, particularly in 

lactating cows and sheep where it induces a dose-dependent milk fat depression (Pariza et al., 

2001; Pulina et al., 2006). The effects of these isomers on lipid and protein metabolism are 

likely inter-related (Pariza et al., 2001). For example the C18:2t10,c12 reduces the SCD 

activity and its gene expression so that an increased presence of this isomer would also reduce 

the endogenous synthesis of the C18:2c9,t11 by desaturation of C18:2t11 (Dhiman et al., 

2005). To this regard it is interesting to observe that in double-muscle Piemontese young 

bulls, a rpCLA supplementation did not affected fat deposition (Schiavon and Bittante, 2012), 

but increased feed efficiency (gain:feed) and N efficiency (N retained/N intake), particularly 

with low-protein diets (Dal Maso et al., 2009; Schiavon et al., 2012). Differently, in dairy 

cows rpCLA supply increased feed efficiency (milk yield/DMI) with conventional protein 
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diets, not with low protein diets (Schiavon et al., 2014), but in any case a notable reduction of 

milk fat content was found, in agreement with others (Baumgard et al., 2000; Bauman et al., 

2008;Glasser et al., 2010). This was observed also in lactating ewes of the local sheep breeds 

of Veneto, with an alteration of milk technological properties (Bittante et al., 2014).  

The C18:2t10,c12 isomer is produced in the rumen from the bio-hydrogenation of linoleic 

acid, especially when starchy and low fiber diets are used in cows, sheep and lambs (Bauman 

et al., 1999; Pulina et al., 2006) or when oils rich in linoleic acid are supplemented (Mir et al., 

2000; Antongiovanni et al., 2004; Dhiman et al., 2005). However, the proportion of this CLA 

isomer in ruminant products is commonly low (Park, 2009), and a supply of rpCLA is 

considered the most effective way to increase the presence of both these two CLA isomers. In 

the current study, the indoor diet with rpCLA increased the average tissue contents of 

CLAc9,t11 and of CLAt10,c12 by about 30% and 100%, respectively, compared to the same 

diet without rpCLA supply. The different trends observed for the two isomers partially 

depend by the average tissue level observed for the indoor control diet (without rpCLA 

addition), which was notably lower for CLAt10,c12 compared to CLAc9,t11 (0.05 vs 0.43 % 

of total FA, respectively), so that the same daily dietary supply of the two isomers with the 

commercial rpCLA mixture had a relative greater effect for C18:2t10c12, compared to 

C18:2c9,t11. In a trial on Mule × Charolais ewe lambs fed a concentrate diet supplemented 

with a mixture of rpCLA at high dosage, Wynn et al. (2006) observed a notable increase of 

the tissues content of both isomers and an effect also on the proportions of other FA in 

different tissues. On Ripollesa young lambs Terrè et al. (2011) tested different doses of not 

rumen protected CLA, smaller than that tested by Wynn et al. (2006) but greater than that 

used in the present study. They observed a dose dependent increase of the proportion of 

CLAc9,t11 and of CLAt10,c12 in the Longissimus thoracis muscle that ranged +15 to +50% 

and -7 to +254%, respectively. In agreement with current study, they did not observed 

significant effects on other FA proportions. This would suggest that in growing lamb the 

effects of rpCLA supply has an effect on the tissue FA profile smaller than that which is 

commonly observed for the milk produced by the mammary gland (Pellattiero et al., 2014). 

 

Gender 

Gender is an important factor for FA composition, also because its relation with carcass 

fatness (Vacca et al., 2008). In this study no significant effect of gender was observed likely 
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because the fatness of males and females did not differed as they were slaughtered at the onset 

of puberty (Pellattiero et al., 2011). 

 

Tissues and interaction tissue × feeding system 

The tissues analyzed in current experiment had very different FA profile, in general 

agreement with literature (Enser et al., 1998; Mir et al., 2000; Demirel et al., 2004). The liver 

in ruminants has less effect on de novo synthesis  and disposal of lipids than adipose tissue or 

muscles  (Herdmann et al., 2010). Nevertheless, there is a low rate of de novo biosynthesis 

where acetate is the main carbon source, and the pool of long chain FA in the liver is mainly 

derived from plasma NEFA (Hocquette and Bouchart, 1999). In the current experiment the 

mean FA profile of liver was particularly rich in PUFA (21%) when in other tissues they 

represented not more than 6.3%, in agreement with literature (Demirel et al., 2004). This 

notable proportion of PUFA in the liver was mainly due to a greater incidence of C18:2, 

C18:3 and of FA with chains longer than 18 carbon atoms, including some FA present in trace 

or not detectable in other tissues. The most important, in quantitative terms, were C20:4n6 

(4.2%), C20:5n3 (1.2%), and C22:6n3 (1.4%). Greater incidences in the liver compared with 

other tissues were also detected for very long chain SFA, C20:0 (1.3%), C22:0 (0.9%) and 

C23:0 (0.1%). In addition, the liver showed the higher content of both ω3 (6.5%) and ω6 

(10.8%) FA and the most favorable ω3/ω6 FA ratio (1.99) compared to all other tissues. This 

confirm that lamb’s liver is potentially a good source of beneficial FA for human diet (Enser 

et al., 1998), although it represents a minor part of the edible carcass (Demirel et al., 2004).  

The adipose tissue is one of the major site of de novo FA synthesis, with palmitic acid 

(C16:0) being the main product, which can be further elongated to stearic acid (C18:0), and 

desaturated to oleic acid by SCD (Sinclair, 2007). Ward et al. (1998) demonstrated that in 

sheep SCD is produced from a single gene whose expression is under hormonal control, 

independent of total fat synthesis, and whose activity varies with fat depot, being higher in 

subcutaneous fat that in internal depots. In the current experiment cover fat and kidney fat 

differed substantially, being the first richer in C16:0 (22.6 vs 20.4%) and C18:1c9 (28 vs 19%, 

respectively) but poorer in C18:0 (26 vs 34%).  

In the current experiment differences among muscles in the FA profile were less 

pronounced than those observed between fat depots, and in general the 3 muscles showed 

greater  proportions of C18:1c9 (32%), C18:2n6 (3.1%), similar proportion of C16:0 (23.1%) 

and smaller proportion of C18:0 (21.5%) compared to subcutaneous fat. Differences among 
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muscles are related to differences in the presence of fibre with different oxidative, glycolytic 

or oxido-glycolitic properties nature of the muscles (Garcia et al., 2008). These fibres are 

present in various proportion in muscles depending on the animal species, the location of the 

muscle in the body and other nutritional and physiological characteristics such as physical 

movement. Red oxidative fibers have a higher proportion of phospholipids than the white and, 

in consequence, a higher percentage of PUFA (Hocquette and Buchart, 1999). 

In the present study, interaction between feeding system and tissues was significant for 

many FA. Liver presents a much greater proportion of both ω3 and ω6 PUFA than any other 

tissue sampled, and the effect of pasture, compared to both indoor diets, is greater in liver than 

in any other tissues (Figure 1). About CLA isomers, only the CLAt10,c12 isomer showed a 

significant FS × T interaction, mainly caused by the different trends observed for the two fatty 

tissues (Figure 2). In fact, in subcutaneous cover fat the proportion of this isomer was not 

affected by the feeding system, but in kidney fat there was a large difference between the two 

indoor diet as a result of the rpCLA supplementation, and the responses in lean tissues were 

intermediate. Also on beef cattle the response to rpCLA was much more pronounced for 

CLAt10,c12 isomer than for CLAc9,t11, and for muscles compared to subcutaneous fat 

(Schiavon et al. 2011). Another example of interaction regards the proportions of branched 

and odd-chain FA. The major differences regard the comparison between the lambs reared at 

pasture or indoor (Figure 3). This difference is much greater for liver and kidney fat compared 

to the tissues sampled from the carcass (subcutaneous cover fat and muscles). 

 

3.5 CONCLUSIONS  

The results of this experiment confirms that the tissues FA profile of lambs kept on 

hay and concentrate was altered compared to that based on pasture, with a decrease of the 

proportions of PUFA (-12%) and  ω3 FA (-45%), and an increase of ω6 FA (+17%), branched 

(+36%) and odd chain FA (+20%). Nevertheless in the lambs fed hay and concentrate the 

tissues ω6/ω3 FA ratio averaged 4.1, an in the 3 muscles this ratio ranged from 4.5 to 6.0. In 

the perspective of extending the period of availability of lamb in the marked using indoor 

diets, these values can be still considered acceptable, if compared to the values suggested for 

human nutrition (< 5.0) and to those greater than 10.0 commonly observed for others typical 

western meat products. The rpCLA supply in diets based on hay and concentrate permits to 

increase the tissues proportions of CLA, especially the C18:2t10,c12, towards values similar 

or greater than those achievable on pasture. The results of this experiment also evidence the 
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effectiveness of using rumen protected molecules to deliver specific bioactive molecules in 

the lamb tissues. The use of rpCLA does not appear to exert notable influence on the tissues 

proportions of the various categories of FA, except the CLA component itself. This 

experiment also evidences that the effects on FA profile induced by the feeding systems with 

or without rpCLA had similar trends in all the tissues analyzed. 
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Table 3.1: Descriptive statistics of lambs used for the study. 
 

 
Feeding system

1
 

 
Pasture Indoor-Control Indoor-CLA 

Rearing and feeding conditions Pasture Barn (pens) Barn (pens) 

Lambs, n. 12 12 12 

Males, n. 6 6 6 

Females, n. 6 6 6 

Feedstuffs offered:    

grass ad libitum - - 

hay - ad libitum ad libitum 

concentrate, g/d - 267 267 

rpCLA supplement
2
 g/d - - 9 

Slaughter:    

age, d 221 ± 26 220 ± 24 216 ± 28 

body weight, kg 33.9 ± 3.6 27.5 ± 6.5 28.6 ± 9.2 

body condition score
3
 3.4 ± 0.3 3.2 ± 0.3 3.1 ± 0.3 

killing out, % 45.4 ± 2.4 41.1 ± 1.9 40.3 ± 2.5 
1 
B-CLA: Barn feeding based on hay and concentrates without supplementation of rpCLA; B+CLA: Barn 

feeding with  supplementation of rpCLA;
  

2 
rpCLA:

 
Rumen protected CLA (SILA, Noale, Venice, Italy). 

3 
Body condition score on a 1 to 5 points scale, where 1 = Emaciated and 5 = Obese 
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Table 3.2: Effects of feeding system (P: pasture; B-CLA: barn feeding based on hay and 

concentrates; B+CLA: barn feeding with supplementation of rpCLA), gender and of their 

interaction (FS×G) on the proportion of saturated FA (g/g total FA × 100) of six different 

tissues of lambs autochthonous of Veneto region. 

 

 

Feeding system (FS) 
 

FS contrasts  (P) 

 

Gender (G) FS×G RMSE 

Pasture 
Indoor 

 Pasture 

vs Indoor 

CLA 

vs control 
Ram Ewes P P  

Control CLA  

C8:0 0.03 0.03 0.03 
 

0.59 0.59 
 

0.03 0.03 0.69 0.86 0.01 

C10:0 0.17 0.20 0.19 
 

0.06 0.28 
 

0.18 0.19 0.58 0.97 0.04 

C12:0 0.16 0.19 0.19 
 

0.18 0.88 
 

0.18 0.17 0.56 0.57 0.06 

C13:0 0.33 0.30 0.33 
 

0.61 0.31 
 

0.32 0.31 0.80 0.65 0.18 

C14:0iso 0.10 0.13 0.14 
 

<0.001 0.46 
 

0.13 0.11 0.07 0.34 0.03 

C14:0 2.70 3.04 2.95 
 

0.17 0.74 
 

2.93 2.87 0.79 0.73 0.58 

C15:0iso 0.30 0.37 0.37 
 

<0.001 0.71 
 

0.35 0.34 0.18 0.99 0.06 

C15:0anteiso 0.33 0.43 0.44 
 

<0.001 0.56 
 

0.43 0.38 0.03 0.36 0.08 

C15:0 0.83 0.91 0.93 
 

0.006 0.64 
 

0.93 0.85 0.01 0.01 0.13 

C16:0iso 0.25 0.37 0.37 
 

<0.001 0.91 
 

0.34 0.33 0.43 0.72 0.06 

C16:0 20.7 22.1 21.6 
 

0.02 0.40 
 

21.3 21.6 0.49 0.72 1.55 

C17:0iso 0.52 0.66 0.64 
 

<0.001 0.40 
 

0.62 0.59 0.12 0.97 0.08 

C17:0anteiso 0.68 0.95 0.93 
 

<0.001 0.65 
 

0.87 0.84 0.48 0.83 0.12 

C17:0 1.71 1.96 1.94 
 

0.005 0.85 
 

1.88 1.86 0.74 0.70 0.25 

C18:0iso 0.18 0.26 0.25 
 

<0.001 0.41 
 

0.23 0.23 0.53 0.40 0.04 

C18:0 26.3 24.1 24.9 
 

<0.001 0.40 
 

25.2 25.0 0.75 0.66 3.03 

C19:0iso 0.03 0.03 0.03 
 

0.30 0.55 
 

0.03 0.03 0.78 0.83 0.02 

C19:0 0.22 0.29 0.27 
 

<0.001 0.51 
 

0.27 0.25 0.33 0.48 0.07 

C20:0 0.34 0.41 0.41 
 

0.02 0.86 
 

0.41 0.36 0.07 0.21 0.15 

C22:0 0.21 0.17 0.18 
 

0.46 0.81 
 

0.21 0.16 0.18 0.46 0.18 

C23:0 0.02 0.02 0.02 
 

0.37 0.91 
 

0.02 0.02 0.98 0.68 0.02 
1 
P: Pasture; B:Barn; CLA -: B-CLA; CLA +: B+CLA. 
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Table 3.3: Effects of feeding system (Pasture: grass grazing; Indoor-Control: barn feeding 

based on hay and concentrates; Indoor-CLA: barn feeding with supplementation of rpCLA), 

gender and of their interaction (FS×G) on the proportion of monounsaturated and 

polyunsaturated fatty acids and unidentified isomers sums (g/g total FA × 100) of six different 

tissues of lambs autochthonous of Veneto region. 

 

 

Feeding system (FS) 
 

FS contrasts  (P) 

 

Gender (G) FS×G RMSE 

Pasture 
Indoor 

 Pasture 

vs Indoor 

CLA 

vs control 
Ram Ewes P P  

Control CLA  

C14:1c9 0.07 0.08 0.08 
 

0.66 0.98 
 

0.08 0.07 0.80 0.95 0.04 

ΣC15:1 others 0.06 0.07 0.08 
 

0.01 0.45 
 

0.07 0.07 0.85 0.91 0.04 

C16:1n7 0.04 0.02 0.03 
 

0.03 0.60 
 

0.03 0.03 0.91 0.68 0.03 

C16:1t7 0.16 0.09 0.10 
 

<0.001 0.44 
 

0.11 0.12 0.49 0.27 0.06 

C16:1c7 0.53 0.53 0.52 
 

0.95 0.73 
 

0.55 0.50 0.01 0.93 0.12 

C16:1c9 1.05 1.18 1.12 
 

0.11 0.38 
 

1.12 1.11 0.75 0.76 0.26 

ΣC16:1 others 0.21 0.24 0.25 
 

0.40 0.84 
 

0.25 0.22 0.56 0.76 0.31 

C17:1c10 0.53 0.61 0.62 
 

0.02 0.87 
 

0.58 0.59 0.64 0.26 0.13 

ΣC17:1 others 0.31 0.38 0.34 
 

0.33 0.48 
 

0.37 0.32 0.23 0.14 0.21 

C18:1t9(+ t11)
*
 4.23 3.48 3.72 

 
<0.001 0.27 

 
3.81 3.81 0.97 0.12 0.61 

C18:1c9 26.2 27.3 26.2 
 

0.46 0.17 
 

26.2 26.9 0.25 0.50 2.48 

ΣC18:1 others 1.19 0.82 0.83 
 

0.004 0.93 
 

0.95 0.95 0.99 0.88 0.59 

C19:1n9t 0.01 0.03 0.03 
 

0.01 0.28 
 

0.02 0.03 0.83 0.75 0.02 

C19:1n9c 0.11 0.12 0.11 
 

0.84 0.48 
 

0.12 0.11 0.48 0.37 0.07 

C20:1n9t 0.02 0.02 0.02 
 

0.81 0.49 
 

0.02 0.02 0.63 0.57 0.02 

C20:1n9 0.03 0.06 0.05 
 

0.002 0.65 
 

0.05 0.05 0.86 0.90 0.03 

C20:1n7 0.03 0.05 0.05 
 

0.01 0.24 
 

0.04 0.04 0.96 0.46 0.04 

ΣC16:2 others 0.06 0.03 0.03 
 

<0.001 0.25 
 

0.04 0.04 0.77 0.52 0.02 

C18:2n6 2.94 3.22 3.49 
 

0.007 0.12 
 

3.15 3.29 0.32 0.94 0.56 

ΣC18:2 others 1.27 0.92 0.91 
 

<0.001 0.92 
 

1.05 1.02 0.70 0.80 0.37 

CLAc9t11 0.56 0.43 0.52 
 

0.003     0.010 
 

0.51 0.49 0.59 0.61 0.13 

CLAt10c12 0.07 0.05 0.10 
 

0.64  0.002 
 

0.09 0.07 0.11 0.21 0.06 

C18:3n6 0.06 0.12 0.11 
 

<0.001 0.39 
 

0.10 0.10 0.82 0.30 0.05 

C18:3n3 1.44 0.72 0.71 
 

<0.001 0.95 
 

0.98 0.93 0.50 0.87 0.30 

C18:4n3 0.06 0.06 0.05 
 

0.90 0.58 
 

0.07 0.05 0.21 0.90 0.06 

C20:2n6 0.03 0.03 0.04 
 

0.81 0.89 
 

0.03 0.04 0.23 0.65 0.01 

C20:3n6 0.09 0.12 0.13 
 

0.002 0.80 
 

0.11 0.11 0.88 0.08 0.05 

C20:4n6 1.12 1.58 1.71 
 

0.005 0.52 
 

1.52 1.42 0.58 0.40 0.05 

C20:5n3 (EPA) 0.59 0.30 0.37 
 

0.01 0.63 
 

0.51 0.33 0.10 0.42 0.06 
1 
P: Pasture; B:Barn; CLA -: B-CLA; CLA +: B+CLA; 

*
Co-eluted isomers. 
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Table 3.4: Effects of feeding system (P: pasture; B-CLA: barn feeding based on hay and 

concentrates; B+CLA: barn feeding with supplementation of rpCLA), gender and of their 

interaction (FS×G) on the proportion of long chain monounsaturated and polyunsaturated FA 

(g/g total FA × 100) present only in liver and kidney fat of lambs autochthonous of Veneto 

region.  

 

 

 Feeding system (FS) 
 

FS contrasts  (P) 

 

Gender (G) FS×G RMSE 

 
Pasture 

Indoor 
 Pasture 

vs Indoor 

CLA 

vs control 
Ram Ewes P P  

 Control CLA  

C18:1c7 L,K 0.52 0.78 0.78  <0.001 0.83  0.69 0.69 0.99 0.88 0.11 

C20:1n11 L,K 0.03 0.05 0.05  0.01 0.24  0.05 0.05 0.87 0.45 0.03 

C20:2n3 L,K 0.15 0.40 0.35  <0.001 0.32  0.31 0.29 0.70 0.57 0.15 

C20:3n3 L 0.07 0.09 0.08  0.23 0.82  0.09 0.07 0.14 0.49 0.04 

C20:4n3 L 0.07 0.03 0.03  <0.001 0.31  0.05 0.04 0.26 0.22 0.02 

C22:4n6 L 0.14 0.51 0.55  <0.001 0.57  0.43 0.38 0.42 0.64 0.17 

C22:6n3 (DHA) L 2.03 1.01 1.23  0.004 0.47  1.55 1.31 0.41 0.67 0.63 

C22:5n6 L 0.09 0.32 0.34  <0.001 0.75  0.28 0.23 0.26 0.66 0.12 
1
 L: liver, K = kidney fat; 

2 
P: Pasture; B: Barn; CLA -: B-CLA; CLA +: B+CLA. 
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Table 3.5: Effects of feeding system (P: pasture; B-CLA: barn feeding based on hay and 

concentrates; B+CLA: barn feeding with supplementation of rpCLA), gender and of their 

interaction (FS×G) on the proportion of groups of fatty acids (g/g total FA × 100) and on their 

indices in six different tissues of lambs autochthonous of Veneto region. 

 

1 
P: Pasture; B:Barn; CLA -: B-CLA; CLA +: B+CLA; 

2 
Δ

9
-desaturase indices: calculated according to Kelsey et al. (2003); 

3 
Thrombogenic

 
Index: calculated according to Ulbricht and Southgate’s (1991); 

4 
Atherogenic Index: calculated according to Ulbricht and Southgate’s (1991).

 

 

 

 

Feeding system (FS) 

 

FS contrasts  (P) 

 

Gender (G) FS×G RMSE 

Pasture 
Indoor Pasture 

vs Indoor 

CLA 

vs control 
Ram Ewes P P  

Control CLA 

SFA 56.1 57.0 57.3 
 

0.19 0.75 
 

57.0 56.6 0.58 0.85 2.82 

MUFA 34.8 35.1 34.2 
 

0.83 0.25 
 

34.4 35.0 0.31 0.56 2.51 

PUFA 8.91 7.78 8.33 
 

0.03 0.22 
 

8.44 8.23 0.57 0.79 1.98 

FA unknow 0.17 0.08 0.08 
 

<0.001 0.96 
 

0.12 0.11 0.16 0.16 0.06 

ΣCLA 0.80 0.56 0.71 
 

0.002 0.007 
 
0.72 0.66 0.24 0.62 0.20 

ω 3 2.70 1.46 1.54 
 

<0.001 0.70 
 

2.00 1.80 0.24 0.63 1.10 

ω 6 3.76 4.41 4.75 
 

<0.001 0.17 
 

4.26 4.36 0.64 0.82 0.95 

ω 6/ω3 2.11 4.05 4.19 
 

<0.001 0.63 
 

3.33 3.56 0.36 0.85 1.13 

<C16 5.07 5.77 5.84 
 

0.008 0.82 
 

5.72 5.40 0.22 0.90 0.88 

C16 22.9 24.5 24.0 
 

0.01 0.41 
 

23.7 23.9 0.65 0.83 1.67 

>C16 71.9 69.7 70.1 
 

0.009 0.62 
 

70.5 70.6 0.92 0.94 2.17 

Branched 2.37 3.26 3.21 
 

<0.001 0.69 
 

3.04 2.85 0.14 0.95 0.43 

Odd chain 5.88 7.11 7.04 
 

<0.001 0.80 
 

6.84 6.51 0.16 0.93 0.89 

Desaturases:
2
 

           
 

C14 0.04 0.02 0.03 
 

0.18 0.75 
 

0.03 0.03 0.41 0.18 0.07 

C16 0.05 0.05 0.05 
 

0.21 0.52 
 

0.05 0.05 0.32 0.54 0.01 

C18 0.49 0.53 0.51 
 

0.07 0.32 
 

0.50 0.52 0.39 0.51 0.05 

CLAc9,t11 0.12 0.11 0.13 
 

0.60 0.04 
 

0.12 0.12 0.51 0.67 0.03 

Total Index 0.39 0.39 0.38 
 

0.73 0.38 
 

0.39 0.39 0.43 0.47 0.03 

IT
3
 1.81 1.83 1.86 

 
0.57 0.67 

 
1.85 1.82 0.63 0.97 0.22 

IAT
4
 0.77 0.85 0.84 

 
0.03 0.92 

 
0.83 0.81 0.69 0.78 0.09 
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Table 3.6: Proportion of saturated fatty acids of lamb (g/g total FA × 100) in six different tissues of lambs autochthonous of Veneto region. 

 

 

Tissue
1 
(T) 

 

T contrasts ( P values) FS×T RMSE 

Liver Fat depots  Muscles 
Liver vs  

(fats+muscles) 

Fats vs 

Muscles 

KF vs 

CF 

Leg vs 

Chop 

RE vs 

OM 
P 

 

 
KF CF Leg 

Chop 

 RE OM 

C8:0 0.03 0.03 0.03  0.03 0.03 0.03 
 

0.36 0.14 0.27 0.32 0.13 0.10 0.01 

C10:0 - 0.18 0.19  0.21 0.19 0.18 
 

- - 0.71 0.09 0.07 0.34 0.04 

C12:0 0.04 0.15 0.17  0.31 0.20 0.21 
 

<0.001 <0.001 0.25 0.20 0.80 0.53 0.06 

C13:0 0.91 0.60 0.07  0.06 0.04 0.23 
 

<0.001 0.30 <0.001 0.01 <0.001 0.17 0.18 

C14:0iso 0.08 0.15 0.15  0.12 0.10 0.12 
 

<0.001 <0.001 0.77 <0.001 <0.001 0.09 0.03 

C14:0 0.89 2.76 3.13  3.98 3.27 3.36 
 

<0.001 0.42 0.01 0.88 0.49 0.83 0.58 

C15:0iso 0.31 0.43 0.44  0.27 0.28 0.35 
 

<0.001 <0.001 0.42 <0.001 <0.001 <0.001 0.06 

C15:0anteiso 0.38 0.47 0.47  0.36 0.33 0.4 
 

0.08 <0.001 0.95 <0.001 <0.001 <0.001 0.08 

C15:0 0.78 0.91 1.02  0.89 0.77 0.97 
 

<0.001 <0.001 0.001 <0.001 <0.001 0.04 0.13 

C16:0iso 0.28 0.38 0.40  0.32 0.30 0.33 
 

<0.001 <0.001 0.23 <0.001 0.01 <0.001 0.06 

C16:0 16.4 20.4 22.6  23.7 23.2 22.4 
 

<0.001 0.72 <0.001 0.05 0.05 0.32 1.55 

C17:0iso 0.64 0.61 0.66  0.57 0.58 0.59 
 

0.02 0.001 0.003 0.01 0.70 0.002 0.08 

C17:0anteiso 0.79 0.91 1.00  0.77 0.80 0.86 
 

0.001 <0.001 0.001 <0.001 0.05 <0.001 0.12 

C17:0 1.77 2.06 2.20  1.62 1.66 1.91 
 

0.01 <0.001 0.03 <0.001 <0.001 <0.001 0.25 

C18:0iso 0.23 0.19 0.27  0.22 0.25 0.23 
 

0.45 0.81 <0.001 0.51 0.25 <0.001 0.04 

C18:0 26.5 33.9 25.7  19.6 20.4 24.5 
 

0.003 <0.001 <0.001 <0.001 <0.001 0.002 3.03 

C19:0iso 0.04 0.06 0.01  0.02 0.01 0.03 
 

0.001 0.03 <0.001 0.24 0.01 <0.001 0.02 

C19:0 0.53 0.36 0.17  0.13 0.12 0.25 
 

<0.001 0.33 <0.001 <0.001 <0.001 <0.001 0.07 

C20:0 1.27 0.35 0.16  0.15 0.13 0.24 
 

<0.001 <0.001 <0.001 0.02 0.003 0.03 0.15 

C22:0 0.94 0.08 0.03  0.01 0.02 0.03 
 

<0.001 <0.001 0.30 0.94 0.94 0.56 0.18 

C23:0 0.06 0.02 0.01  0.01 0.03 0.01 
 

<0.001 0.02 0.01 0.02 0.05 0.45 0.02 
1  

KF = kidney fat, CF = subcutaneous cover fat, Leg = leg inner muscle (Quadriceps femoris); RE = rib eye muscle, OM = other chop muscles  
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Table 3.7: Content of monounsaturated, polyunsaturated fatty acids and unidentified isomers sum (gFA×100 g total FA) in six different tissues of 

lambs autochthonous of Veneto region. 

 

Tissue
1 
(T) 

 
T contrasts ( P values) FS×T RMSE 

Liver Fat depots  Muscles 

 

Liver vs  

(fats+muscles) 

Fats vs 

Muscles 

KF vs 

CF 

Leg vs 

Chop 

RE vs 

OM 
P 

 

 KF CF Leg 
Chop 

RE OM 

C14:1c9 0.02 0.04 0.07  0.12 0.10 0.09 
 

<0.001 <0.001 0.02 0.007 0.11 0.80 0.04 

ΣC15:1 others 0.06 0.10 0.07  0.05 0.05 0.08 
 

0.26 <0.001 0.004 0.002 <0.001 0.69 0.04 

C16:1n7 0.03 0.03 0.03  0.02 0.04 0.03 
 

0.64 0.98 0.64 0.20 0.28 0.25 0.03 

C16:1t7 0.23 0.08 0.09  0.12 0.10 0.07 
 

<0.001 <0.001 0.72 0.27 0.20 0.12 0.06 

C16:1c7 0.59 0.56 0.53  0.47 0.51 0.48 
 

<0.001 0.08 0.37 0.97 0.44 0.06 0.12 

C16:1c9 0.82 0.65 1.18  1.46 1.37 1.22 
 

<0.001 <0.001 <0.001 0.003 0.02 0.03 0.26 

ΣC16:1 others 0.48 0.30 0.10  0.17 0.16 0.19 
 

<0.001 0.23 0.009 0.78 0.73 0.78 0.31 

C17:1c10 0.11 0.39 0.77  0.74 0.75 0.75 
 

<0.001 0.79 <0.001 0.79 0.99 0.66 0.21 

ΣC17:1 others 0.73 0.41 0.17  0.27 0.15 0.32 
 

<0.001 0.10 0.004 0.15 0.02 <0.001 0.13 

C18:1t9(+ t11)
*
 3.32 4.99 4.19  3.38 3.49 3.50 

 
<0.001 <0.001 <0.001 0.007 0.99 0.003 0.61 

C18:1c9 15.8 19.2 28.4  32.9 33.7 29.6 
 

<0.001 <0.001 <0.001 <0.001 <0.001 0.007 2.48 

ΣC18:1 others 1.51 1.59 0.63  0.68 0.51 0.77 
 

<0.001 0.005 <0.001 0.12 0.07 <0.001 0.59 

C19:1n9t 0.03 0.02 -  - - 0.02 
 

- - - - - 0.04 0.02 

C19:1n9c 0.07 0.02 0.14  0.15 0.14 0.18 
 

<0.001 <0.001 <0.001 0.29 0.04 0.11 0.07 

C20:1n9t 0.06 0.02 0.01  0.01 0.02 0.01 
 

<0.001 0.33 0.34 0.52 0.43 0.003 0.02 

C20:1n9 0.11 0.05 0.02  0.03 0.03 0.04 
 

<0.001 0.002 <0.001 0.37 0.07 <0.001 0.03 

C20:1n7 0.03 0.06 0.02  0.05 0.04 0.06 
 

0.04 0.28 <0.001 0.99 0.02 0.28 0.04 

ΣC16:2 others 0.05 0.07 0.03  0.03 0.04 0.03 
 

0.002 <0.001 <0.001 0.56 0.55 <0.001 0.02 

C18:2n6 5.39 1.93 2.54  3.33 3.19 2.92 
 

<0.001 <0.001 <0.001 <0.001 0.05 0.26 0.56 

ΣC18:2 others 1.45 1.17 0.98  0.88 1.02 0.72 
 

<0.001 0.25 0.02 0.03 <0.001 0.06 0.37 

CLAc9t11 0.52 0.51 0.42  0.53 0.47 0.56 
 

0.30 0.004 0.003 0.34 0.002 0.25 0.13 

CLAt10c12 0.04 0.07 0.10  0.06 0.08 0.11 
 

<0.001 0.13 0.11 0.14 0.16 0.02 0.06 

C18:3n6 0.32 0.08 0.04  0.04 0.05 0.05 
 

<0.001 <0.001 0.004 0.96 0.56 <0.001 0.05 

C18:3n3 1.34 0.87 0.90  0.83 0.89 0.90 
 

<0.001 0.01 0.74 0.89 0.86 <0.001 0.30 

C18:4n3 0.16 0.09 0.02  0.02 0.02 0.04 
 

<0.001 0.72 0.02 0.73 0.52 0.52 0.06 

C20:2n6 0.09 0.01 -  0.02 - 0.02 
 

<0.001 <0.001 - - - 0.001 0.01 

C20:3n6 0.38 0.02 -  0.03 - 0.02 
 

- - - - - <0.001 0.05 

C20:4n6 4.21 0.06 -  - - 0.14 
 

- - - - - <0.001 0.05 

C20:5n3(EPA) 1.17 0.07 -  - - 0.01 
 

- - - - - 0.003 0.06 
1  

KF = kidney fat, CF = subcutaneous cover fat, Leg = leg inner muscle (Quadriceps femoris); RE = rib eye muscle, OM = other chop muscles  
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Table 3.8: Content of long chain monounsaturated and polyunsaturated fatty acids present only on liver and kidney fat (gFA×100 g total FA) of 

lambs autochthonous of Veneto region. 
 

 
 

Tissue
1 

Tissue (T) Tissue FS×T RMSE 

 
Liver KF P P  

C18:1c7 L, KF 0.83 0.56 <0.001 <0.001 0.11 

C20:1n11 L, KF 0.08 0.02 <0.001 0.01 0.03 

C20:2n3 L, KF 0.57 0.03 <0.001 <0.001 0.15 

C20:3n3 L 0.08 - - - 0.04 

C20:4n3 L 0.04 - - - 0.02 

C22:4n6 L 0.41 - - - 0.17 

C22:6n3(DHA) L 1.43 - - - 0.63 

C22:5n6 L 0.26 - - - 0.12 
1
 L = liver, KF = kidney fat; 
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Table 3.9: Content of groups of fatty acids of lamb (gFA×100 g total FA), and on their indices in six different tissues of lambs autochthonous of 

Veneto region. 

 
 

1
 KF = kidney fat, CF = subcutaneous cover fat, Leg = leg inner muscle (Quadriceps femoris); RE = rib eye muscle, OM = other chop muscles  

2 
Δ

9
-desaturase indices: calculated according to Kelsey et al. (2003) and Capoprese et al. (2010); 

3 
Thrombogenic

 
Index: calculated according to Ulbricht and Southgate’s (1991); 

4 
Atherogenic Index: calculated according to Ulbricht and Southgate’s (1991). 

 

Tissue
1 
(T) 

 

T contrasts (P values) FS×T RMSE 

Liver Fat depots  Muscles 
Liver vs  

(fats+muscles) 

Fats vs 

Muscles 

KF vs 

CF 

Leg vs 

Chop 

RE vs 

OM 
P 

 

 KF CF Leg 
Chop 

RE OM 

SFA 53.2 65.6 58.8  53.3 52.7 57.3 
 

<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 2.82 

MUFA 25.1 28.9 36.1  40.3 41.0 36.9 
 

<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 2.51 

PUFA 21.2 5.44 5.15  6.31 6.18 5.79 
 

<0.001 <0.001 0.54 0.09 0.42 0.98 1.98 

FA unknow 0.56 0.05 0.02  0.03 0.01 0.01 
 

<0.001 <0.001 0.009 0.92 0.99 <0.001 0.06 

ΣCLA 0.75 0.74 0.58  0.67 0.59 0.80 
 

0.06 0.19 0.001 0.02 <0.001 0.07 0.20 

ω 3 6.50 1.13 0.90  0.94 0.96 0.98 
 

<0.001 <0.001 0.39 0.95 0.93 <0.001 1.10 

ω 6 10.8 2.09 2.58  3.71 3.52 3.14 
 

<0.001 <0.001 0.03 0.001 0.10 <0.001 0.95 

ω 6/ω3 1.99 2.16 3.61  4.65 4.43 3.85 
 

<0.001 <0.001 <0.001 0.004 0.04 0.28 1.13 

<C16 3.57 6.23 5.73  6.35 5.40 6.08 
 

<0.001 <0.001 0.02 0.008 0.002 0.32 0.88 

C16 18.8 22.4 24.9  26.3 25.6 24.7 
 

<0.001 0.48 <0.001 0.02 0.02 0.70 1.67 

>C16 77.1 71.2 69.3  67.4 69 69.2 
 

<0.001 0.26 <0.001 0.53 0.68 0.92 2.17 

Branched 2.91 3.26 3.34  2.64 2.64 2.88 
 

0.65 <0.001 0.46 <0.001 0.03 <0.001 0.43 

Odd chain 7.76 7.68 6.87  5.59 5.57 6.59 
 

<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.89 

Desaturases:
2
 

  
 

          
 

C14 0.03 0.02 0.02  0.03 0.03 0.05 
 

0.80 0.09 0.88 0.63 0.16 0.44 0.07 

C16 0.05 0.03 0.05  0.06 0.05 0.05 
 

0.48 <0.001 <0.001 0.12 0.28 0.01 0.01 

C18 0.37 0.36 0.53  0.63 0.62 0.55 
 

<0.001 <0.001 <0.001 <0.001 <0.001 0.004 0.05 

CLAc9,t11 0.14 0.09 0.09  0.14 0.12 0.14 
 

<0.001 <0.001 0.73 0.63 0.005 0.37 0.03 

Total Index 0.30 0.31 0.40  0.45 0.45 0.41 
 

<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.03 

IT
3
 1.15 2.73 2.02  1.61 1.59 1.90 

 
<0.001 <0.001 <0.001 <0.001 <0.001 0.20 0.22 

IAT
4
 0.48 0.99 0.90  0.88 0.80 0.88 

 
<0.001 <0.001 <0.001 <0.001 0.001 0.15 0.09 
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Figure 1. Effect of feeding system (Indoor-Control refers to indoor feeding based on hay and concentrate, Indoor-CLA refers to the same diet 

supplemented with CLA) on content of ω3 and ω6 fatty acids and on their ratio in six lamb’s tissues. 
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Figure 2. Effect of feeding system (Indoor-Control refers to indoor feeding based on hay and 

concentrate, Indoor-CLA refers to the same diet supplemented with rumen protected CLA) on 

content of CLAt10,c12 in six lamb’s tissues. 
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Figure 3. Effect of feeding system (Indoor-Control refers to indoor feeding based on hay and 

concentrate, Indoor-CLA refers to the same diet supplemented with CLA) on content of 

branched chain and odd chain fatty acids in six lamb’s tissues. 
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4.1 ABSTRACT 

The aim of this study was evaluate the effects of rumen protected conjugated linoleic acid 

(rpCLA) supplementation, breed, initial days in milk, sampling period, and number of lambs 

suckling, on fatty acid (FA) profile and CLA content of milk from ewes of 3 autochthonous 

breeds of the Veneto Alps (Brogna, Foza and Lamon). Twenty-four ewes with their 31 

suckling lambs were used. They were divided in 6 pens (2 pens/ breed), according to DIM (38 

± 23 d) and live weight (61 ± 13 kg) of ewes. The ewes and their offspring of 3 pens (one 

pen/breed) were fed a total mixed ration offered ad libitum (Control), and the animals of the 

others pens were fed the control diet top dressed with 12 g/d per ewe, plus 4 g/d for each lamb 

older than 30 d, of a rpCLA mixture. The study lasted 63 d. Every 10 d, in the morning, the 

ewes were separated from their offspring for 2 h, and milk samples were individually 

collected and analyzed for fat and protein content. An aliquot of each milk sample was 

conserved at -80 °C. Individual milk samples were thawed and pooled in two composite 

samples for each ewe: the first regarded the 3 milk samples collected during the first month of 

trial (period A) and the second the 3 samples collected during the second month of trial 

(period B). These composite samples were analyzed for their FA profile by two-dimensional 

gas chromatography. Data of milk were analyzed by PROC MIXED of SAS considering the 

effect of the diet, breed, number of lambs suckling, DIM and sampling period. The random 

effect of animal was used to test diet, breed, and DIM, whereas the effects of period was 

tested on the residual. From the results was confirm that many effects can influence fatty acid 

profile of milk, such as period of sampling and lactation. Diet and in particular CLA 

supplementation was considered one of the principal effect, because of it can increase the two 

main CLA isomers. However, in milk was rich in CLA isomers, not only the two main 

components of the supplementation (CLAc9,t11 and CLAt10,c12) but also the others 

(CLAc11,t13, CLAc9,c11, CLAc10,c12 and CLAt9,t11).  

 

Key words: conjugated linoleic acid (CLA); sheep milk; fatty acids; sheep breeds. 

 

4.2 INTRODUCTION 

Compared to bovine, ovine products are known for their greater content of some fatty 

acids (FA), considered to be beneficial for human health (Sinclair, 2007; Tsiplakou and 

Zervas, 2008; Barłowska, 2011), such as polyunsaturated fatty acids (PUFA), and among 

these  linolenic acid, Ω3 PUFA and isomers of conjugated linoleic (CLA) (Dilzer and Park, 
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2012; Shingfield et al., 2013). Sheep milk is seldom consumed as fresh product, so that these 

effects would be exploited by the consumption of processed milk (Prandini et al., 2007), 

especially cheese (Nudda et al., 2005; Buccioni et al., 2010; Cattani et al., 2014), or meat of 

suckling lambs of sheep populations (Sinclair, 2007). However, the recovery from milk to 

ripened cheese have been recently found to be very high and greater than 80% for the 

majority of PUFA and CLA in the case of bovine milk (Cattani et al., 2014). 

The FA profile of ovine milk partially depends by the genetic and physiological 

characteristics of the ovine species, but also because ewes are most commonly reared on 

pasture, according to traditional extensive techniques particularly in harsh environment 

(Pulina et al., 2006; Sanz Sanpelajo et al., 2007; De La Fuente et al., 2009). Fresh grass from 

pasture is rich in PUFA, particularly of linolenic acid, which is precursor of PUFA of the Ω3 

series, vaccenic acid (C18:1t11), and CLA isomers which are found in the rumen and in 

animal tissues and milk (Bauman et al., 2008). Milk obtained from animals kept on grass-

based diets is commonly richer in these FA compared to that obtained from animals kept on 

hay-, silage- or concentrate-based diets (Jutzeler van Wijlen and Colombani, 2010; Shingfield 

et al., 2013). The FA profile of milk and cheese also depends by the type of grass used (Addis 

et al., 2005). The intensification of the production systems, with increased use indoor of corn 

silage and concentrates, and the abandonment of seasonality in favor of continuous production 

system, are factors that would impair the quality of the lipid component of sheep milk. 

Nevertheless, the use of some rumen protected fat can be a tool to deliver beneficial FA in 

tissues and milk, and the use of rumen protected CLA (rpCLA) supplements, containing the 

two most promising CLA isomers, the C18:2c9,t11 and the C18:2t10, c12, has been found to 

be effective both for beef meat (Schiavon et al., 2011) and cow’s milk (Pappritz et al., 2011; 

Schiavon et al., 2014). Less known is the possibility to influence the FA profile of sheep milk 

(Huswéth et al., 2010; Weerasinghe et al., 2012) and lamb tissues (Mir et al., 2000; Terré et 

al., 2011) through a supplementation of rpCLA on indoor diets based on corn silage and 

concentrate-based diets.  

In recent years, improved analytical methods and equipment permit to obtain detailed 

FA profiles, including a number of CLA isomers even if present in very small amount. One of 

the most powerful technique is the GC×GC or two-dimensional gas-chromatography 

(Manzano et al., 2011; Pellattiero et al., 2014). 

The aim of this study was evaluate, by GC×GC, the effects of rpCLA supplementation and 

of other factors (breed, days in milk, sampling period, number of lambs suckling, individual 
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animal) on a detailed FA profile of milk from ewes belonging to 3 breeds autochthonous of 

the Veneto Alps (Brogna, Foza and Lamon). 

 

4.3 MATERIAL AND METHODS 

Animals, feeding and milk sampling 

This experiment was carried out at the “Lucio Toniolo” Experimental Farm of the University 

of Padova in Legnaro (Padova, Italy) on animals undergoing an in situ conservation program 

of the sheep breeds autochthonous of the Alpine areas of the Veneto region (Northeast Italy). 

Animals were treated according to the Guideline for the Care and Use of Agricultural 

Animals in Agricultural Research and Teaching (Consortium, 1988). 

Twenty-four ewes with their 31 suckling lambs, of Brogna, Foza and Lamon breeds, were 

allotted in 6 pens (3 m × 6 m each) of an open barn (two pens/ breed), homogeneous for DIM 

(38 ± 23 d) and ewe’s live weight (61 ± 13 kg). The animals of 3 pens (one pen/breed) were 

fed a control diet (Control), and those of the other pens received the same diet top dressed 

with 12 g/d per ewe, plus 4 g/d for each lamb older than 30 d, of a commercial rpCLA 

supplement (SILA, Noale, Venice) that contained, as detailed in Schiavon et al. (2010), 79.2 

and 76.8 g/kg of C18:2c9,t11 and C18:2t10,c12 isomers, respectively.  

The experimental condition and the composition of diets have been described in detail by 

Bittante et al. (2014). Briefly, the control diet was composed by 37.3, 26.0, 11.1, 11.0, 6.4, 

6.6, 1.6 % of DM by corn grain, corn silage, dried sugar beet pulp, soybean meal, wheat bran, 

wheat straw and a vitamin mineral mixture, respectively. From chemical analysis performed 

on each feed ingredient and from ingredient composition of diet resulted that the diet 

contained 13.0, 29.3, 14.6, and 34.7% of DM of crude protein (CP), NDF, ADF, and starch, 

respectively, and that the metabolizable energy content was 11.4 MJ/kg DM (Bittante et al., 

2014). Diets ingredients were mixed with addition of water to reach an average dietary DM 

content of 50.4% and fed as total mixed ration (TMR), offered ad libitum. The amount of each 

feed ingredient loaded into the mixer-wagon and the weight of the mixture uploaded in the 

manger of each pen were recorded daily. The orts remained in the mangers were weighed by 

pen weekly. The study lasted 63 d. At the beginning and at the end of the trial the ewes and 

their offspring were individually weighed and scored for body condition (BCS), and change in 

body weight (ADG) and BCS.  

Every 10 d, in the morning, the ewes were separated from their offspring for two hours, 

and milk samples were collected from each ewe (6 times over the whole experiment), 
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refrigerated and analyzed for fat, protein and lactose content using a MilkoScan FT2 (Foss, 

Hillerød, Denmark) according to Bittante et al. (2014). For the purposes of current work an 

aliquot of each milk sample was conserved at -80°C. Prior of the analysis, milk samples were 

thawed and pooled in two composite samples for each ewe: the first pooled the 3 milk 

samples collected during the first month of the trial (period A) and the second pooled the 3 

samples collected during the second month of the trial (period B).  

 

Lipid extraction and Fatty Acid methylation 

The lipid extraction procedure was performed according to Hara and Radin (1978) and 

Chouinard et al. (1999) using as a solvent hexane/isopropanol (3:2, v/v) solution at room 

temperature. Fresh milk samples were mixed, homogenized and 5 ml were poured in a 

Hollow glassware (Duran Group GmbH, Mainz, Germany). Samples were blended 3 times 

with hexane/isopropanol (3:2, v/v). The washings were made with 7.5 ml of hexane and 10 ml 

of isopropanol and the solution was allowed to rest for one hour to allow the phases 

separation. In each of the 3 washing steps after resting, the two phases were separated, and the 

lipid isopropanol one was transferred into another Hollow glassware, blended by adding a 

saline solution (Na2SO4 0.47 M, 5 ml/g) to permit the separation of the upper hexane-water 

phase from the lipid isopropanol phase. The final isopropanol solution was collected and 

transferred into a flat bottom flask, heated at 35 °C under N2 stream for about 20 min to 

complete solvent evaporation and the resulting extracted fat material was weighted. About 44 

mg of fat were transferred into culture tubes to be immediately methylated according to 

Christie (2001) using sodium methoxide 1 M in methanol at room temperature. Two mL of n-

exane, containing 2 mg/mL of methyl 12-tridecenoate as internal standard (#U-35 M, Nu-chek 

prep inc., MN, USA), 100 μl of Sodium Methoxide (1M) in methanol were added to the 

extracted fat (EE). The solution containing the EE and solvent was mixed for 10 min using a 

multi mixer (717+, ASAL s.r.l., Florence, Italy) at room temperature. After this step 150 μl of 

oxalic acid in ethyl ether was added to stop the reaction in the solution containing the FA 

methyl esters (FAME). The solution was agitated for 30 s and centrifuged at 8000 × g for 10 

min (Sigma Laborzentrifugen 3K15, Osterode am Harz, Germany). The upper phase was 

taken (1 ml) and transferred to a vial for the GC×GC analysis. 
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Gas chromatographic analysis 

The samples obtained were analyzed for their fatty acid profile using a GC×GC instrument 

(Agilent Technologies 7890A, CA, USA) with two columns in series, equipped with a 

modulator (Agilent G3486A CFT, CA, USA), an automatic sampler (Agilent 7693, CA, USA) 

and a flame ionization detector (FID) connected with a chromatography data system software 

(Agilent Chem Station, CA, USA). This instrument was used because the use of a double 

column allows a much better separation and identification of FA on a two-dimensional basis, 

compared to the traditional one column GC (Cesaro et al., 2013). Between the two columns a 

modulator unit collects in a fixed volume channel the analyte bands of the first column and 

these are successively launched into the short second column in narrow bands. The operative 

conditions of the GC apparatus were:  

 First column of 75 m × 180 µm (internal diameter) × 0.14 µm of film thickness (23348U, 

Supelco, Sigma Aldrich, PA, USA), H2 carrier flow of 0.22 mL/min;  

 Second column of 3.8 m × 250 µm (internal diameter) × 0.25 µm of film thickness (J&W 

19091-L431, Agilent Technologies,CA, USA), H2 carrier flow of 22 mL/min; 

 Planned oven temperature variation: increase from 50 °C (held for 2 min), then increased 

to 150 °C (held for 15 min) at 50 °C/min and then increased to 240 °C (held for 84 min) 

at 2 °C/min 

  Valves: modulation delay, 1.00 min; modulation period, 2.90 s; sample time, 2.77 s.  

 Detector (FID): heater, 250°C, H2 carrier flow 20mL/min, air flow 450mL/min. 

 Splitless Inlet: temperature 270°C, pressure 20.698 MPa, Septum Purge 3mL/min, Split 

Ratio 20mL/min.  

 The resulting bi-dimensional chromatograms were analyzed with the comprehensive 

GC×GC software (Zoex Corp., TX, USA) to evaluate the cone volume of each FA.  

 

Identification and quantification of Fatty Acid Methyl Esters (FAME) 

The FA identification was completed in two different ways, the first by comparison of 

the cone position in the chromatogram with the cone position of FA contained in the GC 

reference standards. The reference standards used were mixtures of pure fatty acids [(#674, 

Nu-chek prep inc., MN, USA), (#463, Nu-chek prep inc., MN, USA), (47080-U Bacterial 

Acid Methyl Esters - BAMEs, Sigma-Aldrich, MO, USA), (47085-U PUFA-3 Menhaden Oil, 

Supelco, PA, USA)] plus individual CLA isomers: CLAc9,t11 (#UC-60M, Nu-chek Prep Inc., 

MN, USA), CLAt10,c12 (#UC-61M, Nu-Chek Prep, Inc. MN, USA), CLAc9,c11 (#1256, 
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Matreya LLC, PA, USA), CLAt9,t11 (#1257, Matreya LLC, PA, USA) and CLAc11,t13 

(#1259, Matreya LLC, PA, USA). The second FA identification procedure was completed by 

considering the elution order and the position of each peak in the two-dimensional 

chromatogram on the basis of comprehensive GC×GC software (GC Imagine Software, Zoex 

Corporation, TX, USA). In the region of the C18:1 isomers were detected different peaks and 

two of them C18:1t9 (Elaidic Acid) and C18:1t11 (Vaccenic Acid) were partially co-eluted. 

Quantification of each FA was made considering the cone volume of each FA peak with 

respect to the volume of total FA and it was expressed in terms of g FA/g of total FA ×100 on 

the basis of the concentration in weight of the methyl 12-tridecenoate contained in the 

solution used as internal standard. The various FA were summed in categories according to 

various criteria as follow. 

 Saturated fatty acids (SFA) categories were the sum of: C4:0, C6:0, C7:0, C8:0, C9:0 

C10:0, C11:0, C11:0iso, C12:0, C12:0iso, C13:0, C13:0iso, C13:0anteiso, C14:0, C14:0iso, 

C14:0anteiso, C15:0, C15:0iso, C15:0anteiso, C16:0, C16:0iso, C16:0anteiso, C17:0, C17:0iso, 

C17:0anteiso, C18:0, C18:0iso, C18:0anteiso, C19:0, C19:0iso, C19:0anteiso,  C20:0, C21:0, 

C22:0, C23:0 and C24:0.  

 Monounsaturated fatty acids (MUFA) were the sum of C10:1, C11:1, C12:1, C12:1t, 

C12:1c, ΣC13:1, C14:1c9, C14:1t9, ΣC14:1, C15:1, C15:1t, ΣC15:1, C16:1t7, C16:1c7, 

C16:1c9, ΣC16:1, C17:1c10, C17:1t, ΣC17:1, C18:1t9(+t11), C18:1c9, C18:1c7, 

C18:1t12, C18:1c12, ΣC18:1, C19:1, C19:1c, C19:1c9, C19:1t9, C19:1n12, ΣC19:1, 

C20:1n9, C20:1n7, ΣC20:1, ΣC21:1, ΣC22:1 and C24:1.  

 Polyunsaturated fatty acids (PUFA) were the sum of ΣC16:2, ΣC17:2, C18:2n6, ΣC18:2, 

ΣC19:2, C20:2n6, C20:2n3, ΣC20:2, ΣC16:3, C18:3n3, C18:3n6, C20:3n3, C20:3n6, 

ΣC20:3, ΣC16:4, C18:4n1, C18:4n3, C18:4n4 C20:4n3, C20:4n6, ΣC20:4, C18:5n3, 

C20:5n3(EPA), C20:5n6, ΣC20:5, C22:4n6, C22:5n3, C22:5n6, C22:6n3(DHA), 

CLAc9,t11 CLAt10,c12, CLAc11,t13, CLAt9,t11, CLAc9,c11 and CLAc10,c12.  

 Branched fatty acids were calculated according to Raes et al. (2004) as the sum of 

C13:0iso, C13:0anteiso ,C14:0iso, C14:0anteiso, C15:0iso, C15:0anteiso,C16:0iso, C16:0anteiso, 

C17:0iso, C17:0anteiso, C18:0iso, C18:0anteiso, C19:0iso and C19:0anteiso.  

 Odd Chain fatty acids were calculated according to Or-Rashid et al. (2007) as sum of: 

C7:0, C9:0, C11:0iso, C11:0, C13:0iso, C13:0anteiso, C13:0, C15:0iso, C15:0anteiso, C15:0, 

C17:0iso, C17:0anteiso,C17:0, C19:0iso, C19:0anteiso, C19:0, C21:0, C23:0, C15:1tisomer, 

C15:1tisomer, C15:1n5t, C13:1isomer,C15:1isomer, C15:1isomer, C15:1, C17:1n7t, 
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C17:1n9, C17:1n7, C19:1n12t, C19:1n9t, C19:1n12, C19:1n9c,C19:1c, C19:2isomer, 

C19:2isomer, C19:2n6, C19:4isomer, C19:5.  

 The sum of the identified CLA isomers (ΣCLA) was calculated as the sum of: CLAc9,t11 

CLAt10,c12, CLAc11,t13, CLAc9,c11, CLAc10,c12 and CLAt9,t11.  

 The sum of Omega-3 PUFA (Ω3) or Omega-6 PUFA (Ω6) were calculated according to 

Givens et al. (2000) and Connor (2000), as example Ω3 PUFA was computed as the sum 

of C18:3n3, C18:4n3 C18:5n3, C20:2n3, C20:3n3, C20:4n3, C20:5n3 (EPA), C22:5n3, 

C22:6n3 (DHA). 

 The Δ
9
-desaturase indices were calculated, according to Kelsey et al. (2003), for four 

pairs of FA that represent products and substrates for Δ
9
-desaturase. These FA pairs were 

14:1c9/14:0, 16:1c9/16:0, 18:1c9 /18:0, and C18:2c9,t11/C18:1t11. We defined the total 

desaturase index as follows: [products of Δ
9
-desaturase]/[products of Δ

9
-desaturase + 

substrates ofΔ
9
-desaturase]; 

 The Atherogenic Index (AI) and Thrombogenic Index (TI) were calculated according to 

Ulbricht and Southgate (1991) as: AI = (C12:0 + 4 × C14:0 + C16:0)/(Ω3PUFA + 

Ω6PUFA + MUFA); and TI = (C14:0 + C16:0 + C18:0)/(0.5 × MUFA + 0.5 × Ω6PUFA + 

3 × Ω3 PUFA/Ω6PUFA). 

 

Statistical Analysis 

Fatty acid proportion (g FA×100 g total FA) of milk samples were analyzed using MIXED 

procedure of SAS (SAS, 2005). Data were analyzed with a linear mixed model considering 

the effect of the diet (Control vs rpCLA), breed (Brogna, Foza and Lamon), number of 

suckling lambs (single vs twins), linear covariate of DIM at the beginning of the trial, and 

period of sampling (period A vs B) as fixed effects. The random effect of animal (24 ewes, 18 

df) was used to test diet, breed and number of suckling lambs and DIM, whereas the effects of 

period of sampling was tested on the residual. The following orthogonal contrast were 

calculated: Brogna vs (Foza+Lamon), i.e. the dairy vs the average of the two meaty breeds, 

and Foza vs Lamon breed. Data regarding ewes and lambs live weight, growth rate and BCS 

variation (one observation per animal) were analyzed using a linear model similar to that used 

for FA profile, but without the effect of period and the random effect of animal. Lastly, data 

regarding average DM intake (one observation per pen) were analyzed with a linear model 

including only the effects of diet and breed. 
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4.4 RESULTS 

The GC×GC comprehensive system revealed the impressive presence in milk of 170 peaks 

corresponding to 33 SFA, 53 MUFA, 76 PUFA, and other 8 unidentified FA peaks. For 

reason of space, FA partially identified were summed in groups according to the length of 

their carbon chain and degree of unsaturation. In total, 29 SFA, 17 MUFA and 5 sums of 

other MUFA, 9 PUFA and 3 sums of other PUFA, and 6 CLA isomers are presented in the 

tables. As the effect of the number of suckling lambs never influenced the milk FA profile, 

with the only exception of C17:0anteiso (0.65 vs 0.73 % for milk of ewes suckling 1 or 2 lambs, 

respectively, P = 0.04), results about this effect were ignored. The rpCLA supplementation 

had no effect on liveweight, average daily gain, body condition score variation and DM intake 

of ewes and their suckling lambs (Table 4.1). Results about major milk constituents contents, 

as well as on cheese making properties, have been previously given in Bittante et al. (2014), 

but some results, for the purpose of current work, are summarized in Figure 1. The rpCLA 

supplementation reduced milk protein content, and numerically reduced milk fat content by 

10% compared to the control diet. In this last case the difference was not significant because 

the residual variation observed for this trait was great. 

 

Effects of breed and animal within breed on fatty acids profile of ewe’s milk 

Difference in milk SFA profile due to the breed was scarce (Table 4.2). Milk from Foza 

and Lamon (large size meaty breeds) compared to that of Brogna (small size, multipurpose 

breed) differed for only some iso forms and odd-numbered SFA: a lower content of C15:0iso, 

a tendency for lower content of both C17:0iso  and C17:0anteiso, and a greater content of C19:0. 

Milk from Foza ewes contained a greater proportion of iso forms of C13:0, C14:0, C15:0 and 

C16:0 compared to that from Lamon ewes. The relative incidence of the animal within breed 

variance on the sum of residual plus animal variance, an index of animal repeatability, 

showed a large range of variation among FA (Table 4.2). For even-numbered FA this index 

was low or null for C4:0, C10:0, C20:0 and C22:0, and moderate for other FA of the same 

category ranging from 0.15 to 0.30 for C6:0 and C14:0, respectively. For odd-numbered not 

branched SFA this index was small or null for short-chain FA (till C13:0), great for C15:0 

(0.44) and C17:0 (0.62), and low for C19:0 (0.12) and C21:0 (0.05). For short chain branched 

SFA animal repeatability was small (≤ 0.22), with the only exception of C13:0anteiso (0.65), 

but for long chain branched SFA animal repeatability was equal or greater than 0.23.  
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The effect of breed on the proportion of various MUFA and PUFA was scarce, too (Table 

4.3). Milk from Brogna ewes differed from that of the other two breeds only for a smaller 

proportion of ΣC19:1 FA, not for C19:1n12, and of C18:2c9,t11. Compared to the milk 

obtained from Lamon ewes, that collected from Foza ewes had a smaller proportion of 

ΣC19:1 and a greater proportion of C12:1, C14:1t9, ΣC20:2, C18:3n6, CLAc11t13, and 

C18:4n3. Animal repeatability was medium-high for all MUFA, as for 15 FA or sums the 

value of this index was equal or greater than 0.30, with only some exceptions with null values 

for ΣC16:1 and C17:1c10, and moderate to low values for C10:1 (0.22), C18:1c9 (0.13), 

C18:1c7 (0.23), and for the two C19:1 groups. On opposite, animal repeatability for the 

various PUFA was always lower than 0.30, and often null, with exception for C18:2n6 (0.49), 

CLAt10,c12 (0.39), and C20:4n6 (0.37). 

In terms of FA categories and indices (Table 4.4), the milk produced by Brogna tended to 

present smaller proportion of PUFA, ΣCLA, and branched FA compared to the other breeds, 

and Foza ewes produced a milk with smaller proportion of medium-chain FA (C16) compared 

to the Lamon ewes. 

Animal repeatability was moderate to great (0.15 to 0.48) for all the FA categories and indices 

considered, except for the sums of unknown FA and for the ratio Ω 6/Ω 3 that showed null 

values.  

 

Effects of CLA supplementation, of DIM and sampling period on fatty acids profile of 

ewe’s milk 

The rpCLA supply increased the proportion of C4:0, decreased that of all other SFA 

with chains ranging 6 to 13 carbons, excluding the branched FA, tended to increase that of 

C20:0 and notably increased that of C22:0 (Table 4.5). Initial stage of lactation had small 

effect of the SFA proportions, but a decrease of C6:0, C8:0 and C18:0 proportions, and a 

tendency for an increase of C14:0 and C15:0 proportion was observed with increasing initial 

stage of lactation. Differently, sampling period affected almost all the SFA proportions, as 

compared to the first period the second one increased the proportions of short chain SFA (till 

C14:0) and a decrease those of SFA with longer carbon chain.  

The rpCLA supply also affected the proportion of several MUFA (Table 4.6), as it 

decreased or tended to decrease those regarding C10:1, C12:1, ΣC16:1, and ΣC20:1, and 

increased those of C16:1t7, C18:1c9 and the sum of C18:1t9 and C18:1t11 (in the GC×GC 

chromatograms these last two FA were co-eluted). In general, the rpCLA supply did not 

influenced the total proportion of PUFA, but increased the proportions of ΣC16:2, of the two 
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CLA isomers supplied with the rumen protected mixture (CLAc9,t11 and CLAt10,c12), and 

also of the cis-cis and the trans-trans forms of isomers with double bounds in position 10 and 

12 (CLAc10,c12 and CLAt10,t12). 

Like in the case of SFA, also in the case of MUFA and PUFA (Table 4.6) the stage of 

lactation at the start of the trial had small influences with some increase of the proportion of 

C12:1t, ΣC14:1, ΣC16:1, C16:1c7, CLAc9,t11, and CLAc9c11. Differently, the period of 

sampling affected the large majority of unsaturated FA. In this case, passing from the first to 

the second period of sampling it was observed a relevant decrease of C18:1c9 which was 

compensated by an increased proportion of major part of others unsaturated FA. 

Considering the FA categories given in Table 4.7, it was observed that rpCLA supply 

decreased the proportion of SFA and short chain FA and increased those of MUFA and long 

chain FA and the sum of CLA isomers. The rpCLA addition also increased the Ω6/Ω3 FA 

ratio, the CLAt10,c12 desaturation index and the total desaturation index. The initial stage of 

lactation affected only the Ω6/Ω3 FA ratio and the C14 and C18 desaturation indices, but the 

sampling period influenced the large majority of FA categories and indices. 

 

4.5 DISCUSSION 

Differences in milk fatty acid profile among sheep breeds 

Brogna, Foza, Lamon and Alpagota are native breeds reared in the Veneto region with 

different morphological and production abilities (Pastore and Fabbris, 1999; Pastore, 2002; 

Bittante, 2011). Brogna is represented by few thousands of red spotted medium-sized sheep 

reared in the hills of Verona province (Bittante et al., 1990). This breed is similar to the 

Alpagota breed, not considered in current work, which is represented by few thousands of a 

medium-sized black spotted sheep reared in small farms of Alpago mountain and known for 

lamb production labelled by the Slow Food Presidium as “Agnello dell’Alpago” or Alpagota 

lamb (Slow Food Foundation, 2014). The Brogna ewes are also commonly used for the 

production of milk to be processed in a cheese locally called “Pegorin”. Foza and Lamon 

breeds are represented by large-sized black spotted sheep used for lamb production. In the 

past these breeds were widely reared in the pre-Alps mountains of Vicenza and Belluno 

provinces by transhumant shepherds, but they are currently endangered of extinction (Bittante 

and Pastore, 1988; Ramanzin et al., 1991; Bittante et al., 1996). In the companion study 

conducted with the same animals, Bittante et al. (2014) showed that milk composition for 

major nutrients was not affected by the breed of ewes, with the only exception of a slightly 
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lower content of non-fat solids of the milk from Lamon compared to that from Foza ewes 

(11.7% vs 12.1%, respectively, P = 0.05).  

In the current paper, as the typical flavor of sheep milk and cheese is strongly 

influenced by the presence of some FA (Guinee and O’Brien, 2010), and considering that 

current literature on sheep milk commonly reports data about a limited number of major FA, 

major emphasis was given to achieve a detailed FA profile of milk, and to evaluate the 

influences of breed and other possible sources of variation. The effect of breed on the FA 

profile of sheep milk have been object of some studies with contradictory results, and none of 

them studied the autochthonous sheep breeds of North-East Italy. Signorelli et al. (2008), 

comparing the FA profile (15 fatty acids and 3 groups) of the milk of three Italian sheep 

breeds in very different conditions (pasture-based in the Southern Italy) compared to the 

present study, found several breed’s differences. In particular, the milk from the specialized 

dairy Sarda ewes, respect to that produced by Altamurana and Gentile di Puglia local ewes, 

was characterized by a tendency for a smaller proportion of the even-numbered short-chain 

SFA and of the MUFA with 10, 14 and 16 carbon chain a greater proportion of C18:0. None 

of these fatty acids was affected by breed in the case of the breeds from North-East Italy of 

the present study. On the contrary, the fatty acids affected were the odd- and branched-chain 

fatty acids and some PUFA (Table 4.3 and 4.3), that were not analyzed (odd- and branched-

chain fatty acids) or only as a group (C18:2 and C18:3) or individual isomer (CLAc9t11) by 

Signorelli et al. (2008).  

Tsiplakou et al. (2008) compared the fatty acid profile (16 fatty acids,5 groups and 2 indices) 

of milk obtained from ewes belonging to four breeds of very different origin and 

characteristics: Awassi, Lacaune, Friesland and Chios. The ewes were reared indoor during 

winter and on pasture from spring. The level of milk production was not very different among 

breeds and the fatty acid profile was profoundly affected by season/feeding system but not by 

breed. The interaction between breed and season/feeding system was often significant 

reflecting a different entity of individual breed reaction to environmental factors, but not a 

opposite trend.  

Mierlita et al. (2011) found greater differences in milk fatty acid profile (23 fatty acids, 7 

groups and 4 indices) due to breed (Spanca and Turcana, Romania) respect to those found in 

the present study. The major differences regarded the even-numbered SFA between C6 and 

C16, the C18:1c9 and t11, the CLAc9,t11 and all groups and indices with the exception of 

Ω6/ Ω3 ratio. 
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Recently Soják et al. (2013) compared the fatty acid profile (15 fatty acids, 6 groups and 2 

indices) of the milk of a specialized sheep dairy breed of French origin, Lacaune, with two 

Slovakian breeds, Tsigai and Improved Valachian, reared at pasture. Also these authors 

reported several differences between all the breeds. The specialized breed tended to produce 

milk with a greater proportion of C10:0, C12:0, and C14:0 fatty acids and a smaller 

proportion of C4:0, C16:0, C16:1c9, and C18:1c9. Like in the present study, also Soják et al. 

(2013) found no breed effect on Ω6 and Ω3 fatty acids, while the dairy sheep breed was 

characterized by a slightly lower desaturase activity respect to local breeds. 

Regarding the CLA isomers content of sheep milk fat, while in the present study was 

observed a smaller amount of the most important isomers, the C18:2c9,t11, in the Brogna 

ewes respect to the large-sized Foza and Lamon sheep, Rozbicka-Wieczorek et al. (2013) 

found significant difference between two Polish sheep breeds only for the sums of cis-cis 

CLA isomers. 

 

Variability of milk fatty acid profile among individual ewes within breed 

It is interesting to note that in the present study it does not appear some relationships between 

the significance of the breed effects and the entity of variability among individuals within 

breed. If a significant individual variability is expected for even-numbered normal SFA, it is 

not expected that a similar individual variability was found for odd-numbered and branched-

chain SFA in the interval C14-C19 (Table 4.2). Moreover, MUFA generally presented a 

medium-great individual variability while PUFA did not (Table 4.3). 

In the literature, few studies analyzed variation of milk fatty acid profile of individual ewes 

within breed. De La Fuente et al. (2009), with a different approach than that used in the 

present study, found that individual ewe explained a greater fraction of total variation of milk 

fatty acid proportions respect to age and lactation stage of the animal and a much smaller 

fraction respect to flock and to day of testing. Moreover individual variation was greater for 

SFA, excluded C16:0, than UFA, excluded C18:2c9,c12. Soják et al. (2013) observed that the 

ranking of individual ewes for the CLA proportion in their milk, changed a lot moving from 

indoor feeding to pasture. 

In a large survey on a back-cross Sarda×Lacaune population, Carta et al. (2008) calculated the 

individual repeatability of fatty acids proportion in milk and obtained estimates varying from 

about 15% of the C18:3 fatty acid to almost 60% of C4:0 and C17:0. Also the desaturase 

indices were characterized by large variations among individual ewes. The order of magnitude 

of the common fatty acids was not much different in that study and in the present one, 
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suggesting that a genetic variability could affect fatty acid profile and be the basis for a 

possible selection aimed at increase the fatty acids characterized for favorable effects on 

human health and decrease the negative ones. This was corroborated by the estimates from the 

same authors who found that the sire variance seldom was greater than 10% of total variance 

and specifically it happened for C4:0, C10:0, C12:0, C16:0, and C17:0, but was never null.  

More recently, from another very large survey on Churra sheep in Spain, Sánchez et al. 

(2010) estimated heritability values of fatty acid proportion in sheep milk. The obtained 

values were low, generally below 10%, and around half the value found for milk yield and fat 

and protein content.  

In bovine species several heritability estimates were carried out on the proportion of 8 to 17 

milk fatty acids analyzed by gas chromatography with results going from values similar to 

those found on sheep (Mele et al., 2009) to values much greater (Stoop et al, 2008). Only 

recently Cecchinato et al. (2013) estimated the heritability coefficients of a detailed fatty acid 

profile (47 fatty acids) obtaining values greater than 20% for C10, C12, C16, and C18 SFA, 

for C14:1c9, and C16:1c9 MUFA. All the other fatty acids and also the groups and indices 

were characterized by smaller heritability estimates (<20%).  

New prospective can interest also the improvement of the knowledge of phenotypic and 

genetic aspects of fatty acid profile of sheep milk because it can also be predicted using 

Fourier-transform Infrared Spectroscopy at population level (Soyeurt et al. 2007; De Marchi 

et al., 2011; Bittante and Cecchinato, 2013). 

Lastly new knowledge could be achieved from molecular genetics. In fact, some authors 

found significant associations between the proportion of some sheep milk fatty acid and 

specific candidate genes (Moioli et al., 2012).  

 

4.4 CONCLUSION 

 

The results of this experiment confirms that different source of variation can influence 

FA profile of ewe’s milk. Amoung the various effects, CLA supplementation was considered 

one of the most important. It can decrease the proportions of SFA (carbon chain 6 to 13) and 

MUFA and increase C20:0, C22:0, C16:1t7, C18:1c9, CLAc9,t11 and CLAt10,c12 that were 

isomers supplied with the rumen protected mixture. The CLA addition increase also the 

Ω6/Ω3 ratio, total desaturase index and CLAt10,c12 desaturase index. 

Moreover, stage of lactation and period of sampling affect the composition fo few FA, 

such as, MUFA that increase in particular in the second period of sampling.  
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In conclusions from these results, is important underline the high number of peaks 

identify through GC×GC and considered milk fatty acids composition because of it is 

important for the effect that ewes milk can have on lamb’s tissues. 
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Table 4.1: Effect of rpCLA supplementation on liveweight, growth rate, variation of body 

condition score (BCS) and dry matter intake (DMI) of ewes and suckling lambs belonging to 

three breeds autochthonous of the Veneto Alps. 

 

 Diet (LSM): 
P-value RMSE 

 Control CLA 

Ewes’ liveweight:     

initial, kg 64.2 61.1 0.57 11.8 

final, kg 65.4 63.5 0.72 11.6 

ADG, g/d 40 20 0.44 56 

Lambs’ liveweight:     

initial, kg 12.9 13.7 0.51 3.0 

final, kg 20.9 21.5 0.72 4.0 

ADG, g/d 134 130 0.76 33 

BCS variation:     

ewes, score 0.38 0.25 0.25 0.25 

lambs, score 0.21 0.11 0.10 0.15 

DMI, g/d/ewe 2.67 2.63 0.74 0.11 
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Table 4.2: Effects of breed, and of animal within breed on the proportion of Saturated Fatty 

Acids (g FA×100 g total FA) of milk of three sheep breeds autochthonous of the Veneto Alps 

(the individual FA are listed in order of elution).  

 

 
Breed LSM: 

 
Contrasts (P-value)

1
 Animal 

effect
3
 

RMSE
4
 

 
Brogna Foza Lamon 

 
B vs(F+L) F vs L 

C4:0  3.44 3.45 3.77 

 

0.38 0.15 0.00 0.49 

C6:0 3.01 3.02 2.93 

 

0.66 0.37 0.15 0.20 

C7:0  0.15 0.18 0.14 

 

0.82 0.23 0.00 0.07 

C8:0 2.87 2.86 2.70 

 

0.54 0.31 0.27 0.28 

C9:0  0.17 0.19 0.17 

 

0.54 0.37 0.00 0.05 

C10:0  9.48 9.19 7.39 

 

0.11 0.04 0.01 1.85 

C11:0iso 0.03 0.04 0.04 

 

0.41 0.65 0.06 0.01 

C11:0  0.25 0.29 0.25 

 

0.61 0.33 0.00 0.08 

C12:0 6.46 6.48 5.56 

 

0.35 0.09 0.16 1.04 

C13:0iso 0.05 0.05 0.07 

 

0.50 0.02 0.00 0.02 

C13:0anteiso 0.03 0.03 0.03 

 

0.59 0.55 0.65 0.01 

C13:0 0.25 0.27 0.25 

 

0.49 0.39 0.00 0.06 

C14:0iso 0.16 0.16 0.22 

 

0.22 0.03 0.22 0.05 

C14:0 12.4 11.7 11.7 

 

0.30 0.99 0.30 1.21 

C15:0iso  0.33 0.37 0.43 

 

0.03 0.09 0.00 0.08 

C15:0anteiso 0.74 0.78 0.84 

 

0.20 0.35 0.15 0.12 

C15:0  1.44 1.51 1.56 

 

0.31 0.63 0.44 0.15 

C16:0iso  0.32 0.33 0.40 

 

0.14 0.06 0.30 0.06 

C16:0 23.5 22.2 24.1 

 

0.59 0.04 0.16 1.65 

C17:0iso 0.48 0.54 0.56 

 

0.09 0.66 0.23 0.08 

C17:0anteiso  0.65 0.72 0.71 

 

0.09 0.70 0.23 0.07 

C17:0  0.81 0.87 0.87 

 

0.31 0.99 0.62 0.08 

C18:0iso  0.11 0.11 0.14 

 

0.36 0.33 0.50 0.03 

C18:0  6.64 6.26 7.17 

 

0.89 0.16 0.23 1.16 

C19:0iso  0.02 0.03 0.01 

 

0.99 0.23 0.98 0.00 

C19:0  0.08 0.04 0.06 

 

0.04 0.20 0.12 0.03 

C20:0  0.19 0.19 0.22 

 

0.66 0.28 0.07 0.07 

C21:0  0.05 0.05 0.06 

 

0.46 0.63 0.05 0.03 

C22:0 0.10 0.10 0.11   0.64 0.53 0.05 0.05 
1
 B=Brogna, F=Foza, L=Lamon;  

2
 Slope of the linear regression on initial DIM (g FA×100 g total FA × d

-1
);

 

3 
Expressed as the ratio between the variance of animals within breed and the total variance (animal plus 

residual); 
4 
Residual

 
RMSE=Root mean square error.  
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Table 4.3: Effects of breed and of animal within breed on the proportion of Monounsaturated 

and Polyunsaturated Fatty Acids (g FA×100 g total FA) of milk of 3 sheep breeds 

autochthonous of the Veneto Alps (the individual FA are listed in order of elution).  

 
Breed 

 
Contrasts (P-value)

1
 Animal 

effect
3
 

RMSE
4 

 
Brogna Foza Lamon 

 
B vs (F+L) F vs L 

C10:1  0.35 0.37 0.32 

 

0.87 0.14 0.22 0.06 

C12:1t  0.11 0.12 0.09 

 

0.64 0.11 0.35 0.02 

C12:1 0.19 0.21 0.15 

 

0.77 0.04 0.30 0.05 

ΣC14:1 0.22 0.24 0.20 

 

0.96 0.11 0.49 0.04 

C14:1t9  0.02 0.03 0.01 

 

0.68 0.05 0.69 0.00 

C14:1c9 0.33 0.32 0.29 

 

0.61 0.61 0.76 0.05 

ΣC15:1 0.13 0.14 0.13 

 

0.77 0.61 0.40 0.03 

C15:1t isomer
*
  0.06 0.07 0.07 

 

0.73 0.95 0.36 0.02 

C15:1t isomer
*
 0.03 0.03 0.02 

 

0.63 0.31 0.32 0.01 

C15:1t5 0.02 0.02 0.02 

 

0.48 0.80 0.96 0.00 

ΣC16:1 0.40 0.47 0.38 

 

0.69 0.24 0.00 0.16 

C16:1t7  0.08 0.12 0.11 

 

0.36 0.68 0.58 0.04 

C16:1c9 0.42 0.47 0.45 

 

0.18 0.44 0.67 0.03 

C16:1c7  1.20 1.16 1.22 

 

0.96 0.73 0.57 0.19 

C17:1c10 0.29 0.32 0.16 

 

0.55 0.12 0.00 0.22 

ΣC18:1 0.47 0.56 0.53 

 

0.22 0.68 0.36 0.11 

C18:1t9(+t11)  1.39 2.07 1.69 

 

0.25 0.42 0.31 0.78 

C18:1c9  15.2 15.3 16.4 

 

0.40 0.19 0.13 1.62 

C18:1c7  0.56 0.61 0.58 

 

0.49 0.61 0.23 0.10 

ΣC19:1 others 0.01 0.02 0.03 

 

0.04 0.04 0.09 0.00 

C19:1n12 0.02 0.02 0.02 

 

0.53 0.75 0.16 0.01 

ΣC20:1 0.06 0.07 0.09 

 

0.41 0.51 0.63 0.03 

ΣC16:2 0.08 0.10 0.10 

 

0.21 0.92 0.20 0.03 

ΣC18:2 0.66 0.78 0.73 

 

0.13 0.55 0.26 0.13 

C18:2isomer
*
 0.24 0.23 0.24 

 

0.89 0.53 0.00 0.06 

C18:2isomer
*
 0.26 0.29 0.27 

 

0.41 0.37 0.06 0.04 

C18:2n6  2.17 2.64 2.32 

 

0.16 0.19 0.49 0.32 

ΣC20:2 0.02 0.03 0.01 

 

0.52 0.06 0.00 0.01 

C18:3n6  0.13 0.15 0.12 

 

0.75 0.03 0.03 0.03 

C18:3n3  0.30 0.35 0.34 

 

0.11 0.69 0.24 0.06 

CLAc9t11  0.36 0.48 0.43 

 

0.01 0.20 0.09 0.08 

CLAt10c12 0.04 0.04 0.05 

 

0.78 0.64 0.39 0.03 

CLAc11t13 0.02 0.05 0.03 

 

0.90 0.06 0.26 0.02 

CLAc9c11 0.02 0.03 0.02 

 

0.51 0.14 0.00 0.02 

CLAc10c12 0.01 0.02 0.02 

 

0.10 0.70 0.00 0.01 

CLAt9t11 0.04 0.04 0.04 

 

0.66 0.49 0.05 0.02 

C18:4n3  0.01 0.02 0.01 

 

0.77 0.06 0.00 0.01 

C18:5n3 0.01 0.01 0.02 

 

0.26 0.19 0.00 0.00 

C20:3n6 0.02 0.03 0.03 

 

0.34 1.00 0.00 0.02 

C20:4n6  0.20 0.24 0.21   0.22 0.15 0.37 0.03 
* 
Isomer identifies by position in the chromatograms.

 1
 B=Brogna, F=Foza, L=Lamon; 

2
 Slope of the linear regression (g FA×100 g total FA × d

-1
);

 

3 
Expressed as the ratio between the variance of the animals within breed and the total variance (animal plus 

residual); 
4 
Residual

 
RMSE=Root mean square error. 
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Table 4.4: Effects of breed and of animal on milk fat content (%) and on the proportion of 

groups of Fatty Acids (g FA×100 g total FA) and on some indices of milk of three sheep 

breeds autochthonous of the Veneto Alps.  

 
Breed 

 
Contrasts (P-value)

1
 Animal 

effect
3
 

RMSE
4 

 
Brogna Foza Lamon 

 
B vs(F+L) F vs L 

Milk fat content 5.23 3.91 5.47  0.42 0.18 0.73 0.85 

Milk protein content 5.77 6.19 5.24 

 

0.75 0.56 0.85 0.46 

Milk lactose content 5.11 5.29 5.18 

 

0.94 0.46 0.04 0.51 

SFA 74.2 72.0 72.4 

 

0.12 0.78 0.48 1.88 

MUFA 21.3 21.3 23.0 

 

0.14 0.89 0.40 1.63 

PUFA 4.35 5.26 4.73 

 

0.08 0.18 0.40 0.59 

FAunknown 0.07 0.06 0.05 

 

0.21 0.66 0.00 0.03 

ΣCLA 0.49 0.63 0.56 

 

0.07 0.21 0.25 0.11 

Ω6 2.53 3.08 2.68 

 

0.14 0.13 0.47 0.35 

Ω3 0.33 0.38 0.36 

 

0.17 0.48 0.15 0.06 

Ω 6/ Ω 3 7.75 8.10 7.49 

 

0.91 0.22 0.00 1.11 

Branched 2.91 3.13 3.42 

 

0.04 0.14 0.19 0.36 

Odd chain 6.10 6.61 6.51 

 

0.16 0.79 0.46 0.50 

<C16 42.6 42.1 39.3 

 

0.23 0.13 0.17 3.41 

C16 26.1 25.1 26.9 

 

0.93 0.05 0.20 1.64 

>C16 31.3 32.9 33.9 

 

0.24 0.61 0.44 2.85 

Desaturase indices: 

        C14  0.02 0.03 0.03 

 

0.25 0.35 0.15 0.01 

C16 0.04 0.05 0.05 

 

0.23 0.69 0.12 0.01 

C18 0.70 0.71 0.70 

 

0.63 0.31 0.37 0.02 

CLAc9,t11 0.22 0.21 0.21 

 

0.76 0.98 0.27 0.04 

Total 0.29 0.32 0.31   0.14 0.66 0.28 0.03 

IT 2.07 1.81 2.02 

 

0.12 0.06 0.39 0.16 

IAT 3.33 2.92 2.97 

 

0.12 0.85 0.33 0.45 
1
 B=Brogna, F=Foza, L=Lamon;  

2
 Slope of the linear regression (g FA×100 g total FA × d

-1
);

 

3 
Expressed as the ratio between the variance of the animals within breed and the total variance (animal plus 

residual); 
4 
Residual

 
RMSE=Root mean square error. 
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Table 4.5: Effects of rumen protected CLA supplementation,  of the days in milk at the 

beginning of the trial (DIM), and of sampling period on the proportion of Saturated Fatty 

Acids (g FA×100 g total FA) of milk of three sheep breeds autochthonous of the Veneto Alps 

(the individual FA are listed in order of elution).  

 

 

CLA supplementation 

 

DIM 

 

Sampling period   

  Control CLA P-value   Slope P-value   A B P-value 

C4:0  3.28 3.82 <0.01 

 

-0.002 0.64 

 

3.30 3.80 <0.01 

C6:0 3.18 2.79 <0.01 

 

-0.007 <0.01 

 

2.90 3.08 0.01 

C7:0  0.18 0.13 0.08 

 

0.0003 0.66 

 

0.13 0.18 0.04 

C8:0 3.13 2.49 <0.001 

 

-0.008 0.04 

 

2.67 2.95 <0.01 

C9:0  0.20 0.15 0.01 

 

0.0003 0.52 

 

0.16 0.20 0.02 

C10:0  9.56 7.82 0.01 

 

-0.002 0.89 

 

7.65 9.73 <0.01 

C11:0iso 0.03 0.04 0.29 

 

0.0003 0.09 

 

0.03 0.04 0.01 

C11:0  0.31 0.22 0.01 

 

0.001 0.25 

 

0.23 0.30 0.01 

C12:0 6.88 5.46 <0.01 

 

0.012 0.31 

 

5.47 6.87 <0.001 

C13:0iso 0.06 0.06 0.84 

 

-0.0002 0.45 

 

0.06 0.06 0.73 

C13:0anteiso 0.03 0.02 0.14 

 

0.0002 0.39 

 

0.03 0.03 0.02 

C13:0 0.28 0.24 0.07 

 

0.001 0.11 

 

0.24 0.28 0.03 

C14:0iso 0.18 0.18 1.00 

 

-0.0001 0.82 

 

0.21 0.15 <0.01 

C14:0 12.0 11.9 0.79 

 

0.028 0.09 

 

11.5 12.4 0.02 

C15:0iso  0.37 0.38 0.76 

 

-0.0004 0.61 

 

0.42 0.33 <0.01 

C15:0anteiso 0.78 0.79 0.78 

 

-0.0003 0.83 

 

0.86 0.71 <0.01 

C15:0  1.51 1.50 0.91 

 

0.004 0.09 

 

1.57 1.43 0.01 

C16:0iso  0.34 0.35 0.78 

 

-0.0002 0.84 

 

0.38 0.31 <0.01 

C16:0 23.1 23.5 0.56 

 

0.017 0.36 

 

23.9 22.6 0.02 

C17:0iso 0.50 0.56 0.11 

 

-0.0003 0.76 

 

0.60 0.46 <0.001 

C17:0anteiso  0.67 0.71 0.14 

 

0.236 0.24 

 

0.76 0.62 <0.001 

C17:0  0.83 0.86 0.58 

 

-0.003 0.10 

 

0.93 0.76 <0.001 

C18:0iso  0.12 0.12 0.90 

 

-0.001 0.14 

 

0.13 0.11 0.02 

C18:0  6.30 7.08 0.13 

 

-0.044 0.01 

 

7.63 5.75 <0.001 

C19:0iso  0.02 0.01 0.37 

 

0.0005 0.10 

 

0.02 0.02 0.04 

C19:0  0.06 0.06 0.72 

 

-0.0004 0.21 

 

0.06 0.06 0.44 

C20:0  0.18 0.22 0.09 

 

0.0002 0.81 

 

0.19 0.21 0.44 

C21:0  0.05 0.05 0.80 

 

0.0001 0.59 

 

0.06 0.04 0.06 

C22:0 0.08 0.13 0.01   0.0003 0.62   0.12 0.09 0.07 
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Table 4.6: Effects of rumen protected CLA supplementation, of the days in milk at the 

beginning of the trial (DIM), and of sampling period on the proportion of Monounsaturated 

and Polyunsaturated Fatty Acids (g FA×100 g total FA) of milk of three sheep breeds 

autochthonous of the Veneto Alps (the individual FA are listed in order of elution).  

 

 

CLA supplementation 

 

DIM 

 

Sampling period 

  Control CLA P-value   Slope P-value   A B P-value 

C10:1  0.40 0.30 <0.001 

 

0.001 0.05 

 

0.29 0.41 <0.001 

C12:1t  0.12 0.10 0.13 

 

0.001 <0.01 

 

0.08 0.13 <0.001 

C12:1 0.22 0.15 0.01 

 

0.001 0.06 

 

0.13 0.23 <0.001 

ΣC14:1 0.23 0.21 0.36 

 

0.002 0.05 

 

0.19 0.25 <0.01 

C14:1t9 0.02 0.02 0.28 

 

-0.00003 0.84 

 

0.02 0.02 0.56 

C14:1c9  0.30 0.33 0.48 

 

0.004 0.01 

 

0.26 0.37 <0.001 

ΣC15:1 0.12 0.14 0.27 

 

0.0003 0.57 

 

0.15 0.11 <0.01 

C15:1t isomer
*
  0.06 0.07 0.79 

 

0.0003 0.25 

 

0.07 0.06 0.01 

C15:1t isomer
*
 0.03 0.03 0.59 

 

0.0001 0.72 

 

0.03 0.03 0.08 

C15:1t5 0.02 0.02 0.50 

 

-0.00004 0.84 

 

0.02 0.03 0.13 

ΣC16:1 0.46 0.37 0.09 

 

0.003 0.05 

 

0.31 0.52 <0.001 

C16:1t7  0.08 0.13 0.07 

 

0.0002 0.77 

 

0.11 0.10 0.38 

C16:1c9 0.44 0.45 0.71 

 

0.0002 0.79 

 

0.46 0.44 0.09 

C16:1c7  1.16 1.23 0.61 

 

0.01 0.03 

 

1.13 1.26 0.05 

C17:1c10 0.26 0.26 0.94 

 

-0.003 0.21 

 

0.27 0.24 0.68 

ΣC18:1 0.48 0.56 0.15 

 

-0.0002 0.91 

 

0.49 0.54 0.12 

C18:1t9(+t11)  1.33 2.10 0.05 

 

0.01 0.60 

 

1.86 1.57 0.24 

C18:1c9  14.9 16.4 0.02 

 

-0.02 0.19 

 

16.6 14.7 <0.01 

C18:1c7  0.58 0.58 0.95 

 

0.0002 0.84 

 

0.58 0.59 0.64 

ΣC19:1 0.02 0.02 0.06 

 

0.02 0.31 

 

0.01 0.02 0.14 

C19:1n12 0.02 0.02 0.79 

 

0.000 0.44 

 

0.02 0.02 0.19 

ΣC20:1 0.09 0.05 0.08 

 

0.001 0.34 

 

0.08 0.06 0.36 

ΣC16:2 0.08 0.11 0.02 

 

-0.0003 0.38 

 

0.08 0.11 0.01 

ΣC18:2 0.71 0.74 0.62 

 

-0.0001 0.94 

 

0.71 0.74 0.39 

C18:2isomer
*
 0.25 0.22 0.21 

 

-0.0001 0.90 

 

0.21 0.26 0.01 

C18:2isomer
*
 0.27 0.28 0.60 

 

-0.0002 0.64 

 

0.26 0.28 0.12 

C18:2n6  2.26 2.49 0.23 

 

0.002 0.74 

 

2.43 2.33 0.30 

ΣC20:2 0.02 0.02 0.24 

 

0.0005 0.07 

 

0.01 0.03 0.07 

C18:3n6  0.14 0.12 0.19 

 

0.0005 0.11 

 

0.12 0.14 0.01 

C18:3n3  0.34 0.33 0.77 

 

-0.001 0.41 

 

0.33 0.34 0.57 

CLAc9t11  0.39 0.46 0.03 

 

0.002 0.04 

 

0.38 0.47 <0.01 

CLAt10c12 0.02 0.06 0.01 

 

-0.0001 0.85 

 

0.04 0.04 0.64 

CLAc11t13 0.03 0.04 0.55 

 

0.0002 0.44 

 

0.03 0.04 0.05 

CLAc9c11 0.02 0.03 0.09 

 

0.0004 0.07 

 

0.02 0.03 0.01 

CLAc10c12 0.01 0.02 0.18 

 

0.0000 0.47 

 

0.01 0.02 <0.01 

CLAt9t11 0.02 0.05 <0.01 

 

0.0002 0.46 

 

0.04 0.04 0.95 

C18:4n3  0.01 0.01 0.36 

 

0.00003 0.78 

 

0.01 0.02 0.06 

C18:5n3 0.01 0.01 0.31 

 

-0.00002 0.65 

 

0.01 0.02 <0.01 

C20:3n6 0.03 0.03 0.67 

 

0.0002 0.21 

 

0.03 0.03 0.49 

C20:4n6  0.23 0.20 0.13   0.0004 0.42   0.20 0.24 <0.001 
* 
Isomer identifies by position in the chromatograms. 
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Table 4.7: Effects of rumen protected CLA supplementation (rpCLA), days in milk at the 

beginning of the trial (DIM), and of sampling period on milk fat content (%) and on the 

proportion of groups of Fatty Acids (g FA×100 g total FA) and some indices of milk of three 

sheep breeds autochthonous of the Veneto Alps.  

 

 

rpCLA 

 

DIM 

 

Sampling period 

  Control CLA P-value   Slope
2
 P-value   A B P-value 

Milk fat content 5.25 5.23 0.98  -0.018 0.47  4.94 5.53 0.04 

Milk protein content 6.04 5.30 0.18 

 

0.004 0.85 

 

5.61 5.72 0.44 

Milk lactose content 5.23 5.18 0.79 

 

-0.005 0.40 

 

5.25 5.16 0.55 

SFA 74.2 71.6 0.02 

 

-0.01 0.81 

 

72.2 73.5 0.03 

MUFA 21.3 23.5 0.02 

 

0.00 0.89 

 

23.1 21.7 0.01 

PUFA 4.59 4.97 0.66 

 

0.00 0.66 

 

4.68 4.88 0.29 

FAunkwon 0.07 0.05 0.14 

 

0.00 1.00 

 

0.05 0.07 0.03 

ΣCLA 0.48 0.64 <0.001 

 

0.00 0.12 

 

0.51 0.62 <0.01 

Ω6 2.66 2.86 0.33 

 

0.00 0.59 

 

2.79 2.74 0.69 

Ω 3 0.36 0.35 0.62 

 

0.00 0.21 

 

0.35 0.37 0.34 

Ω 6/ Ω 3 7.26 8.30 <0.01 

 

0.04 <0.01 

 

8.06 7.51 0.12 

Branched 3.08 3.22 0.35 

 

0.00 0.45 

 

3.48 2.82 <0.001 

Odd chain 6.44 6.38 0.84 

 

0.00 0.88 

 

6.76 6.06 <0.001 

<C16 43.4 39.2 <0.01 

 

0.04 0.37 

 

38.5 44.1 <0.001 

C16 25.8 26.2 0.58 

 

0.03 0.13 

 

26.6 25.5 0.04 

>C16 30.8 34.6 0.02 

 

0.07 0.15 

 

34.9 30.5 <0.001 

Desaturase indices: 

    

  

    C14  0.02 0.25 0.81 

 

0.00 <0.001 

 

0.02 0.03 <0.001 

C16 0.05 0.05 0.67 

 

0.00 0.02 

 

0.05 0.05 0.16 

C18 0.71 0.70 0.88 

 

0.00 <0.001 

 

0.69 0.72 <0.01 

CLAc9,t11 0.23 0.20 0.10 

 

0.00 0.34 

 

0.18 0.25 <0.001 

Total 0.29 0.32 0.05   0.00 0.95   0.31 0.30 0.18 

IT 2.04 1.90 0.10 

 

0.00 0.16 

 

1.96 1.97 0.81 

IAT 3.24 2.91 0.14 

 

0.00 0.43 

 

2.91 3.24 0.02 
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Figure 1. Effect of rpCLA supplementation on the content of fat (P-value = 0.41; RMSE = 

2.00 %), protein (P-value = 0.02; RMSE = 0.07 %), and lactose (P-value = 0.77; RMSE = 

0.04 %) of milk of ewes belonging to three autochthonous breeds of the Veneto Alps. 
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5.1 ABSTRACT 

 

The aim of this study was to test the modeling of curd-firming (CF) measures and to 

compare the sheep of three Alpine breeds supplemented with or without rumen-protected 

conjugated linoleic acid (rpCLA). Twenty-four ewes of the Brogna, Foza and Lamon breeds 

were allotted to six pens (two pens/breed) and fed a diet composed of corn grain, corn silage, 

dried sugar beet pulp, soybean meal, wheat bran, wheat straw and a vitamin-mineral mixture. 

The rpCLA supplement (12 g×d
-1

 per ewe plus 4 g×d
-1

 for each lamb older than 30 d) was 

mixed into the diet of one pen per sheep breed (three pens/treatment), to provide an average of 

0.945 and 0.915 g/d per ewe of the C18:2c9,t11 and C18:2t10,c12 CLA isomers, respectively. 

The trial started at 38±23 d after parturition, and individual morning milk samples were 

collected on days 16, 23, 37, 44 and 59 of the trial. Milk samples were analyzed for 

composition, and duplicate samples were assessed for milk coagulation properties (MCPs). A 

total of 180 CF measures for each sample (one every 15 sec) were recorded. Model 

parameters were the rennet coagulation time (RCT), the asymptotic potential curd firmness 

(CFP), the curd firming instant rate constant (kCF), the syneresis instant rate constant (kSR), the 

maximum curd firmness achieved within 45 min (CFmax) and the time at achievement of 

CFmax (tmax). The data were analyzed using a hierarchical model which considered the fixed 

effects of breed, diet, lambs birth, and initial days in milk (DIM), which were tested on 

individual ewe (random) variance; the fixed effect of sampling day, which was tested on the 

within-ewe sample (random) variance; and the fixed effect of instrument/cuvette position 

(only for MCPs), which was tested on the residual (replicates within samples) variance. The 

local Alpine sheep breeds displayed similar milk compositions, traditional MCPs, and CF 

modeling parameters. Supplementation with rpCLA triggered changes in milk composition 

and MCPs (e.g., delayed RCT, slower kCF, and a doubling of kSR), but did not influence CFP. 

Overall, our results indicate that rpCLA supplementation reduced the actual maximum CF 

(CFmax) but did not modify the interval between rennet addition and CFmax (tmax).  

 

Keywords: ovine milk, milk coagulation property, conjugated fatty acids (CLA), curd-firming 

modeling 
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5.2 INTRODUCTION 

 

For decades, bovine milk coagulation properties (MCPs) have been evaluated using 

mechanical lactodynamographs (Bittante et al., 2012). Three single-point parameters are 

defined: the rennet coagulation time (RCT, min), which is the interval from the addition of the 

enzyme to the gelation of the milk; the curd-firming (CF) rate (k20, min), or the time from 

gelation to a curd firmness of 20 mm; and the curd firmness measured 30 min after rennet 

addition (a30, mm). Combinations of these parameters are used to categorize milk samples for 

their cheese-making properties. Computerized lactodynamographs can record continuous 

repeated measurements of CF. Bittante (2011b) and Bittante et al. (2013b) proposed a model 

that fully represents the temporal evolution of CF on the basis of rennet coagulation time 

(RCT), the asymptotical potential curd firmness at infinite time (CFP, mm), the curd-firming 

instant rate constant (kCF) from RCT to infinite time, and the syneresis instant rate constant 

(kSR). Although MCPs have not been widely studied among small ruminants. Partial studies in 

this field have been made on sheep (Pellegrini et al., 1997; Jaramillo et al., 2008; Pazzola et 

al., 2013) and goats (Park et al., 2007; Pazzola et al., 2011; Pazzola et al., 2012). Notably, the 

traditional MCP procedure is sometimes considered inadequate for evaluating the milk of 

these animals (Bittante et al., 2012). Compared to bovine milk, the milk-coagulation process 

of small ruminants is typically much faster and of greater magnitude; thus, a30 often measures 

CF after the maximum value has been reached, and k20 measures only a limited tract of the 

steep increase in CF (Bittante et al., 2012). Thus, the use of the model proposed by Bittante 

(2011b) and Bittante et al. (2013b) could provide new insights into the coagulation properties 

of ewe’s milk, and permit us to evaluate if these properties can be influenced by breed and/or 

different diets and feed additives.  

Conjugated linoleic acid (CLA) has gained attention in recent years for its beneficial effects 

on human health (Dilzer and Park, 2012). Although these effects have largely been studied in 

animal models and in vitro (McCrorie et al., 2011), further research is needed (Gebauer et al., 

2011). The main source of natural CLA for humans is the consumption of food from ruminant 

species, especially those fed on pasture or diets containing oil seeds (Nuernberg et al., 2005; 

Scollan et al., 2006; Woods and Fearon, 2009). However, supplementing the animals’ diets 

with rumen-protected CLA (rpCLA; produced by the feed industry) is an effective way to 

increase the CLA content of beef (Gillis et al., 2004; Schiavon et al., 2011) and lamb (Terrè et 

al., 2011) meat.  The rpCLA has shown favorable effects on the efficiency of energy and 

nitrogen utilization in growing young bulls, and appears to exert a limited effect on fat 
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deposition (Schiavon and Bittante, 2012; Schiavon et al., 2010 and 2012). In dairy ruminants, 

however, the most notable effect of rpCLA is its ability to decrease the fat content in milk 

from cows (Baumgard et al., 2000; Bauman et al., 2008; Glasser et al., 2010), goats (Lock et 

al., 2008; Shingfield et al., 2009; Ghazal et al., 2012) and sheep (Oliveira et al., 2012; 

Weerasinghe et al., 2012). However, while there are numerous studies regarding the effects of 

rpCLA on dairy ruminants, little is known about its influence on MCP. 

The aims of the current study were to: (i) examine the effect of rpCLA supplementation of 

lactating ewes on their milk composition; (ii) model the CF process of sheep’s milk; (iii) 

compare the effect of three different sheep breeds on milk quality and MCPs; and (iv) study 

the effects of rpCLA supplementation on the composition and MCPs of sheep’s milk.  

 

5.3 MATERIALS AND METHODS 

 

Animals 

The present study was carried out at the “Lucio Toniolo” Experimental Farm of the 

University of Padova (Legnaro, Italy), using a flock of sheep representing endangered Alpine 

breeds native to the Veneto Region (Northeast Italy). Animals were treated following the 

Guideline for the Care and Use of Agricultural Animals in Agricultural Research and 

Teaching (Consortium, 1988). The study involved 24 ewes; of them, 10, 9, and 5 ewes 

belonged to the Brogna, Foza and Lamon breeds, respectively. The 24 ewes were allotted to 

six pens of 3 m × 6 m (two for each breed) with their 31 suckling lambs (15, 10 and 6 

respectively for Brogna, Foza and Lamon breed). At the start of the trial, the ewes were 38 ± 

23 days in milk (DIM) and weighed 61 ± 13 kg (body weight, BW). The trial lasted 63 days 

(d). Ewes and lambs were individually weighed each week. Animals were monitored daily by 

a technician, and health status was controlled three times per week by a veterinarian, 

following the experimental protocol for animal care. 

 

Feeds and Feeding 

The basal diet was composed of corn grain, corn silage, dried sugar beet pulp, soybean 

meal, wheat bran, wheat straw and a vitamin mineral mixture (Table 1). Dietary ingredients 

were mixed and fed as  total mixed ration (TMR), offered ad libitum, and prepared daily using 

a mixer-wagon equipped with a computer-assisted weighing scale that was calibrated 

monthly. Three pens, one for each breed, were top dressed, and then mixed with TMR, with 

an rpCLA product (SILA, Noale, Italy) equal to 12 g×d
-1 

per ewe plus 4 g×d
-1

 per lamb aged 
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30 d or more. This rpCLA dose was established to provide averages of 0.945 and 0.915 g×d
-1

 

per ewe for the C18:2c9,t11 and C18:2t10,c12 CLA isomers, respectively. The composition 

of the utilized commercial rpCLA was previously reported by Schiavon et al. (2010). The 

amount of each feed ingredient loaded into the mixer-wagon and the weight of the mixture 

uploaded in the manger of each pen were recorded daily. The orts (uneaten residues of feed) 

remaining in the mangers were weighed weekly by pen. The average dry matter intake (DMI) 

was computed on a pen basis. 

Samples of each feed ingredient were analyzed for their proximate compositions 

(AOAC, 2000), and their neutral detergent fiber (NDF) and acid detergent fiber (ADF) 

contents (Van Soest et al., 1991). The metabolizable energy of the basal ration was computed 

from the actual ration ingredient composition and tabular values of each feed ingredient 

(NRC, 2007).  

 

Milk Sampling and Analyses 

The ewes were separated from their lambs for at least 2 h and then hand milked on 

days 16, 23, 37, 44 and 59. After collection, milk samples (without preservative) were 

immediately divided into subsamples A (35 mL) and B (20 mL), stored in portable 

refrigerators (4°C) and transported to the Cheese-Making Laboratory at the DFANAE 

Department of the University of Padova (Legnaro, Padova, Italy) for analyses. All samples 

were processed within 5 h after collection.  

For each ewe, milk subsample A was analyzed for fat, protein, lactose, total solids, 

and solid non-fat contents using a MilkoScan FT2 (Foss, Hillerød, Denmark). In addition, 

somatic cell counts were performed using a Fossomatic FC counter (Foss, Hillerød, 

Denmark). Each somatic cell count (SCC) was converted to the  somatic cell score (SCS) by 

means of logarithmic transformation, as follows: SCS = (log2SCC×100,000
-1

)-3. The energy 

of milk was calculated using the values proposed by the National Research Council (2007) 

and converted to kJ×g
-1

 (fat = 38.89 kJ×g
-1

; protein = 23.90 kJ×g
-1

; lactose = 16.53 kJ×g
-1

). 

 

Analysis of MCPs 

The B subsamples were assessed for MCPs using two mechanical lactodynamographs 

(Formagraph; Foss Electric, Hillerød, Denmark). All experimental conditions (milk 

temperature, rennet concentration, and rennet type) were applied as described in detail by 

Cipolat-Gotet at al. (2012). In brief, a rack containing 10 cuvettes (one rack per instrument) 

was prepared. Two milk sub-samples (10 mL) for each ewe were randomly allotted to the two 
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racks, heated at 35°C, and mixed with 200 μL of rennet solution (Hansen Standard 215 with 

80±5% chymosin and 20±5% pepsin; Pacovis Amrein AG, Bern, Switzerland) diluted to 1.2% 

(w/v) in distilled water (to yield 0.051 IMCU×mL
-1

). The instruments recorded the width (in 

mm) of the oscillatory graph during the test every 15 s. The observation period lasted for 45 

min after rennet addition. Traditional MCPs (RCT, k20 and a30) were provided directly by the 

instrument. Recording was prolonged to 45 min after enzyme addition, to achieve an 

additional measure of curd firmness (a45, mm). Relatively few samples (8 of 206 samples) 

failed to coagulate within the 45-min duration of the test. 

 

Modeling Curd Firmness and Syneresis 

As CF was measured every 15 s for 45 min, a total of 180 CF values were recorded for 

each sample. The comparison of the much shorter RCT values of ovine milk to those of 

bovine milk, and the prolongation of recording to 45 min enabled the use of the four-

parameter model described by Bittante et al. (2013b): 

 

where CFt is the curd firmness at time t (mm), CFP is the asymptotic potential maximum 

value of curd firmness (mm), kCF is the curd-firming instant rate constant (%×min
-1

), kSR is 

the curd syneresis instant rate constant (%×min
-1

), and RCT is the rennet coagulation time 

(min). 

This model uses all available information to estimate the four parameters, so (unlike 

the traditional MCPs) these are not single-point measurements. The CFP parameter is 

conceptually independent from test duration and (unlike a30) is not intrinsically dependent on 

RCT. The parameter kCF is assumed to increase CF toward the CFP asymptotic value, whereas 

kSR is assumed to decrease CF toward a null asymptotic value. In the initial phase of the test, 

the first rate constant prevails over the second, so CFt increases to a point in time (tmax) at 

which the effects of the two parameters are equal but opposite in sign and CFt attains its 

maximum level (CFmax). Thereafter, CFt begins to decrease, tending toward a null value 

because of the effect of curd syneresis and the corresponding expulsion of whey. The RCT 

parameter is still a traditional measure, but it is now estimated using all available data.  

 

Statistical Analyses 

The CFt observations available for each sample were fitted with curvilinear 

regressions using the non-linear procedure (PROC NLIN) of SAS (SAS Inst. Inc., Cary, NC, 

SAS, 2001). The parameters of each individual equation were estimated employing the 
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Marquardt iterative method (350 iterations and a 10
-5

 level of convergence). In some late-

coagulating samples (6 of 206 samples), the data did not converge. Samples in which the CFP 

exceeded the replicate (3 cases) or the mean (3 cases) by three SD were considered outliers 

and excluded from our analysis of all equation parameters. No data editing was performed for 

the other parameters.  

The data regarding milk analyses, traditional MCPs and CF modeling were analyzed 

using a linear mixed model employing the MIXED procedure of SAS. The statistical model 

used to analyze the traditional MCPs and the parameters of the CFt model included the fixed 

effects of breed (Brogna, Foza and Lamon), dietary treatment (control vs. rpCLA addition), 

number of lambs suckling (single or twin lambing), a linear covariate of days in milk (DIM) 

at the start of the trial, sampling day (16, 23, 37, 44 and 59 d from the start of the trial), and 

the cuvette location within the two instruments (18 levels). The random effects included in the 

model were the individual animal (24 ewes, 16  df), the milk samples within each ewe (77 df), 

and the replicates within each milk sample (residual, 70 df). The significances of breed, diet, 

number of lambs and DIM were tested on the error line of animal variance; sampling day was 

tested on the error line of milk sample variance within animals; and cuvette location within 

instruments was tested on the residual variance. For milk quality traits, the two replicates 

were averaged and the within-ewe samples were assumed to  coincide with the residual 

variance. 

In the case of each ewe’s live weight (one observation per animal, data not shown), the 

model was simplified because it did not include the effects of sampling day or the cuvette 

location within the instrument, and the only random effect included (residual) coincided with 

the animal. In the case of DMI (one observation per pen, data not shown), the model included 

only the effect of diet and breed, and the residual coincided with their interaction. 

 

5.4 RESULTS 

 

Brogna ewes presented a lower BW compared to the Foza and Lamon ewes (51.8 vs. 

71.1 and 71.2 kg, respectively; P < 0.01), and Brogna and Foza ewes consumed less DM than 

Lamon ewes (2.45 and 2.50 vs. 3.00 kgDM×d
-1

, respectively; P < 0.05). Supplementation with 

rpCLA did not influence the DM intake of ewes and lambs (expressed per unit of ewe present; 

2.63 vs. 2.67 kgDM×d
-1

, respectively, for control and supplemented diets), or influence the 

BW and average body gains of ewes and lambs, regardless of breed.  
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However, rpCLA supplementation did affect the milk composition, reducing the 

protein  and solid non-fat contents, while increasing the SCS (Table 2). All of the other 

factors included in the model, with the exception of sampling day (which was significant for 

almost all traits), had limited effects: the Lamon breed yielded milk with a lower solid non-fat 

content compared to Foza ewes; and ewes that had lambed twins and/or had longer intervals 

DIM at the beginning of the trial produced milk with greater protein and solid non-fat 

contents. 

The only breed effect observed among the traditional traits used to depict MCPs was a 

lower a45 for Lamon versus Foza sheep (Table 3). MCPs were significantly worse when 

rpCLA was added to the basal diet: RCT was delayed, curd firming was slowed, and curd 

firmness was lower after 30 and 45 min from rennet addition. Twin lambing had positive 

effects on both measures of curd firmness. Days in milk at the beginning of the trial did not 

affect any MCP, while sampling day and cuvette location influenced all traits except RCT. 

For the CFt model parameters, milk from Lamon ewes was characterized by slower 

curd firming and faster syneresis compared to the Foza breed (Table 4). Similar to the 

traditional MCPs, the parameters obtained from CFt modeling showed that rpCLA 

supplementation had negative effects on the parameters of coagulation and curd firming, 

except for the asymptotic CF value and the interval between the addition of the enzyme and 

the moment of maximum curd firmness. In milk sampled from rpCLA-supplemented ewes, 

the expulsion of whey from the curd (i.e. the syneresis rate) was much faster and the number 

of samples showing no detectable syneresis within 45 min from rennet addition was halved.  

The birth type affected the CF modeling, as samples from ewes with twin lambs 

showed more rapid decreases of CF after reaching the maximum (i.e., more rapid syneresis). 

A higher initial DIM tended to be associated with increased CF and fewer samples that failed 

to undergo syneresis, and appeared to anticipate the reaching of maximum curd firmness. The 

sampling day and instrument/cuvette location affected all modeling parameters except for 

RCT (both factors) and CFP (sampling day). 

 

5.5 DISCUSSION 

 

Traditional Coagulation Properties of Sheep’s Milk 

The enzymatic coagulation of milk, the firming of curd, and the subsequent expulsion 

of whey (syneresis) are the key processes in cheese-making, and thus affect cheese yield and 

quality (Cipolat-Gotet et al., 2013; Bittante et al., 2013a). However, the mechanical and 
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optical NIR-lactodynamographs (Cipolat-Gotet et al., 2012) that are generally used to 

measure these traits are non-automated and time-consuming. In the bovine dairy industry, the 

Fourier-transform infrared (FTIR) spectrum of milk, which is heritable (Bittante and 

Cecchinato, 2013), was recently introduced as a method for predicting the parameters 

traditionally measured by lactodynamographs. The FTIR prediction is very rapid and 

inexpensive, does not need enzymes or mechanical tools, and does not require milk 

coagulation to occur. Such indirect predictions may also prove useful for breeding programs 

(Cecchinato et al., 2009). To our knowledge, however, these techniques have not previously 

been tested on milk from small ruminant species and more research is needed on this topic. 

The data obtained in the present study confirmed that there are large differences 

between ovine and bovine MCPs as reported in Table 3. The average RCT measured from 

control ewes (6.5 min) was much shorter than that commonly found in bovine species (10 to 

20 min), as reviewed by Bittante et al. (2012). The average k20 revealed that there is a much 

steeper increase in the CF of ovine milk (1.5 min) compared to bovine milk (5 to 10 min). The 

average CF after 30 min was also greater for sheep’s milk (61 mm) than cow’s milk (25 to 42 

mm). Notably, the rennet concentration used in the present study (0.051 IMCU×mL
-1

) was 

smaller than those in all but one of the papers on bovine MCP reviewed by Bittante et al. 

(2012) (0.061 to 0.150 IMCU×mL-1), and this disparity widens if the amount of rennet is 

expressed per unit protein instead of per unit of milk. Moreover, the milk of cows and ewes 

reacts differently to acidification, temperature changes, calcium addition, and variation in 

rennet concentration (Bencini, 2002).  

 

Modeling the Coagulation, Curd Firming and Syneresis of Sheep’s Milk 

Two other shortcomings of the traditional MCP parameters are the increasing 

percentage of bovine milk samples that do not coagulate (NC) within the commonly used time 

interval of 30 min from rennet addition (Ikonen et al., 1999; Cecchinato, 2013), and the 

increasing proportion of milk samples that do not allow computation of the k20 trait. These 

increases reflect the worldwide spread of the Holstein breed, which are known for having 

inferior MCPs compared to breeds of Alpine origins (Cecchinato et al., 2011). A similar 

problem has been noted in small ruminants (Pazzola et al., 2012 and 2013). The traditional 

MCP analysis uses only three data points, while computerized rennet meters 

(lactodynamographs) use continuous repeated measurements. Bittante (2011b) modeled a 

dataset recorded from individual bovine milk samples using computerized rennet meters over 

30 min (120 records, one every 15 sec, in the case of Formagraph lactodynamographs) and 
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proposed to use the obtained CF curve to estimate the RCT, the asymptotical potential CF at 

infinite time (CFP, mm), and the CF instant rate constant (kCF, %×min
-1

) from RCT to infinite 

time. Later, Bittante et al. (2013b) expanded the CF model to account for the decrease in curd 

firmness often recorded after (though sometimes before) 30 min from rennet addition, using a 

forth parameter called the syneresis rate constant (kSR, %×min
-1

). 

In the case of sheep’s milk, the traditional MCP traits are considered even less reliable 

in depicting the process of curd firming, largely because the process is much faster and of 

greater magnitude compared to bovine milk, such that a30 often measures CF after the 

maximum value has already been reached and k20 measures only a limited tract of the steep 

increase in curd firming (Bittante et al., 2012). 

The present study showed that the model proposed by Bittante et al. (2013b) 

overcomes the concerns linked to traditional MCP measures, yielding results that can depict 

the evolution of CF over time for sheep’s milk. In fact, the large majority of individual 

samples converged, allowing us to estimate the values for all four parameters of the model. 

Compared to the bovine milk studied by Bittante et al. (2013b), the control sheep’s milk 

samples analyzed in the present study showed on average a much earlier gelation (RCT: 7.0 

vs. 19.3 and 20.7 min compared to Brown Swiss and Holstein Friesian cows, respectively), a 

greater asymptotic potential CF (CFP: 67 vs. 54 and 36 mm, respectively), a much steeper 

increase in CF (kCF: 49.5 vs. 12.0 and 13.0 %×min
-1

, respectively), and a slower decrease in 

CF due to syneresis (kSR: 0.5 vs. 1.4 and 1.7 %×min
-1

, respectively). Regarding this last 

parameter, ~ 30% of milk samples from control ewes did not exhibit any apparent decrease of 

CF during the 45 min after rennet addition, meaning that the kSR could not be estimated and 

was assumed to be null. If we excluded these samples, the average kSR of the remaining 

samples was 0.6 %×min
-1

. In practice, the CF equation of the samples characterized by non-

estimable kSR values coincided with the three-parameter model that was initially proposed by 

Bittante (2011b) to depict the CF trends of lactodynamograms generated over a short 

observation interval (30 min for cow’s milk). It is probable that prolonging the observation 

interval beyond 45 min would have allowed us to estimate kSR for the samples that failed to 

show any significant decrease within the test period. Bittante et al. (2013b) prolonged their 

recording interval to 90 min and observed that almost all of their bovine milk samples 

presented an inflection, allowing them to compute kCF for all samples. In any case, the 

samples with late CF decreases were characterized by very slow syneresis rate constants. 

For each milk sample, knowing  the four parameters of the CF curve allowed us to 

calculate: the maximum CF value (CFmax), which reflects the potential CF attainable and the 
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two opposite effects of curd-firming rate and syneresis rate; and the time interval from rennet 

addition to the attainment of the maximum CF (tmax), which also incorporates the RCT. 

Compared to the milk of Brown Swiss cows tested by Bittante et al. (2013b), the sheep’s milk 

examined in the current study evidenced a greater CFmax (64 vs. 35 mm, respectively) and 

reached tmax earlier (24 vs. 41 min, respectively). The average tmax of the sheep’s milk samples 

presented in Table 4 includes samples that failed to show any decrease within 45 min from 

rennet addition; for these last samples, tmax was assumed to be 45 min. When these samples 

were excluded from the analysis, we obtained an average tmax of 15 min. We cannot compare 

these parameters to others in the literature, because the present study is the first to model the 

output of computerized rennet meters when examining ovine milk.  

 

Comparison among the Sheep Breeds of the Veneto Alps 

Brogna, Foza, Lamon, and Alpagota are the only autochthonous sheep breeds of the 

Italian Alps still present in the Northern part of the Veneto region (Bittante, 2011a). Brogna 

sheep, which are  reared in the province of Verona, are of medium size (similar to Alpagota) 

and characterized by red spots on a white coat (Pastore, 2002; Pellattiero et al., 2011). Of the 

three breeds studied herein, Brogna is the only breed that was often used (and in some cases is 

still used today), as a dairy ewe; its milk can be used to produce a local pecorino (Pegorin) 

cheese. The other two local breeds, which are both in danger of extinction, are reared in very 

low numbers in the provinces of Vicenza (Foza) and Belluno (Lamon). Both are large breeds 

with high growth rates among their lambs; they have long ears and small black spots 

(especially on the head) against a white coat (Pastore, 2002). These breeds are traditionally 

reared for meat production (mainly from weaned lambs and castrated yearlings). The Lamon 

breed has been studied in the past decades (Bittante et al., 1988 and 1996; Ramanzin et al., 

1991), but no previous study has examined the quality and coagulation properties of milk 

from the Veneto sheep breeds. 

The contents of fat, protein and lactose in the Veneto sheep breeds are close to the 

average values reported by Barłowska et al. (2011) for ovine milk in their literature review on 

the composition of ruminant milk, and are very good if compared to milk traits recorded for 

specialized dairy ewes, such as the Sarda sheep (Mura et al., 2012; Vacca et al., 2013). The 

milk compositions of the three local Alpine breeds were very similar, with the sole exception 

of a higher non-fat solid content in Foza milk compared to Lamon milk (Table 2).  

The two larger breeds also presented some differences in terms of the traditional 

MCPs, as Foza milk samples tended to have greater a30 (P = 0.07) and a45 (P = 0.01) values. A 
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picture of the difference between the two breeds, given in Figure 1, shows that milk from 

Foza ewes was characterized by a steeper increase (kCF) and a slower decrease (kSR) in curd 

firmness compared to the milk of Lamon ewes. The graphical representation of CF evolution 

over time provides a much clearer picture of the pattern of coagulation, curd firming and 

syneresis than we would obtain using only the three points considered by the traditional MCP 

procedure (RCT, a30 and k20). From the shapes of the curves, we see that traditional k20 

measures only about one third of the increase of the CFt curve, and that a30 is in the 

decreasing tract of the curve, and not in the increasing one like for bovine milk, and it is 

influenced by all the other parameters. Finally, the differences in the milk CFt curves due to 

single or twin lambings (Fig. 2) were mainly caused by differences in syneresis.  

 

Effect of rpCLA on the Composition of Sheep’s Milk  

We found that rpCLA supplementation strongly modified both milk composition in 

sheep, even though the ewes received less than 1 g of each CLA isomer per day.  

The rpCLA-induced decrease in milk fat content was only nominal (-0.62 percentage 

points; not significant), but it was similar in magnitude to that found in dairy cows that 

received similar CLA dosages expressed per unit of metabolic weight (Baumgard et al., 2000; 

Selberg et al., 2004; Castaneda-Gutierrez et al., 2005). The rpCLA-induced decrease in milk 

fat observed herein was much lower than that previously observed in sheep (~ -2.57 and -2.26 

percentage points; P < 0.001) (Weerasinghe et al., 2012). However, while the authors of the 

prior paper used sheep (breed unspecified) of similar BW and DIM compared to those used in 

the present study, their sheep were milked twice a day and received a restricted diet (DMI: 1.8 

vs. 2.6 kg×d
-1

 in the prior and present studies, respectively) that had a lower dietary energy 

concentration (ME: 10.9 vs. 11.4 MJ×kgDM
-1

, respectively) and a greater dietary crude 

protein (CP) content (CP: 163 vs. 130 g×kgDM
-1

, respectively). In addition, while the CLA 

source was the same, the daily supply in the prior study was about twice that used in the 

current study. In dairy cows, the effect of rpCLA supplementation on milk fat content was 

lower in animals fed high-concentrate diets compared to those fed low-concentrate diets. The 

available energy supply may influence the response of the mammary gland to CLA isomers, 

particularly C18:2t10,c12, as suggested by Glasser et al. (2010). Oliveira et al. (2012) too 

recorded a large reduction (-1.76 percentage points) of milk fat content in CLA-supplemented 

ewes of the Lacaune breed (a specialized dairy sheep breed), but the authors used 10-fold 

more (not rumen-protected) CLA isomers compared to the current study.  
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 Supplementation with rpCLA decreased the protein and non-fat solid contents, of 

sheep’s milk (-0.34, -0.40, and -2.7 percentage points, respectively) compared to the control. 

The above-cited studies found inconsistent effects of CLA on milk protein content. In sheep, 

Weerasinghe et al. (2012) found a negative effect while Oliveira et al. (2012) found a positive 

effect. In cows, the effect of CLA on milk protein content generally appears to be low or null 

(Maxin et al., 2011; Hötger et al., 2013). 

In terms of other possible effects on milk quality, we observed that rpCLA 

supplementation tended to increase the SCS compared to the control. In bovine milk, the 

observed changes in milk composition (especially those in protein content) are generally 

considered negative for MCP because of their well-known phenotypic and genetic 

correlations (Cecchinato et al., 2011; Bittante et al., 2012).  

 

Effect of rpCLA on Curd Firmness and Syneresis 

In the literature, there is no information regarding the effects of rpCLA administration 

on coagulation, curd firming and syneresis in both bovine and sheep’s milk. In the present 

study almost all parameters of the CF model were affected by rpCLA supplementation of 

ewes (Table 4). Supplementation did not affect the potential curd firmness; however, it 

delayed milk gelation (RCT: 7.0 vs. 9.8 min for control and rpCLA, respectively), slowed 

curd firming (kCF: 49.5 vs. 34.8 %×min
-1

, respectively) and doubled the rate of whey 

expulsion (kSR: 0.51 to 1.00 %×min
-1

, respectively). Furthermore, the incidence of samples 

that did not show any CF decrease during the test period was halved in ewes receiving rpCLA 

supplementation (no kSR: 30.8 vs. 15.7%, respectively). When we excluded the samples with 

an apparent lack of syneresis, the average values of kSR increased to 0.6 and 1.2 %×min
-1

, 

respectively, for control and rpCLA-treated ewes. The effect of rpCLA on the CF curve is 

shown in Figure 3. The rpCLA-induced changes in the two first parameters would be 

considered negative for cheese-making, whereas the impact of the change in the third 

parameter on cheese-making is not yet known.  

 

5.6 CONCLUSIONS 

The present study provides new insights into the complex processes of coagulation, 

curd firming and syneresis in ovine milk, and shows that rpCLA supplementation can 

influence these processes. Despite the phenotypic and genetic diversity of the three local 

sheep breeds tested herein, the ewes produced milk with similar compositions and 

technological properties. Ovine milk is very different from bovine milk, not only in terms of 
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composition, but also because of a faster gelation after rennet addition, a steeper increase of 

CF, and a slower decrease of curd firmness caused by syneresis. These trends are not 

effectively captured by the single-point analysis of traditional coagulation traits (RCT, k20, 

and a30), but the present study showed that they can be  fully captured by modeling the entire 

CF curve over time. This modeling requires the estimation of only four parameters, which can 

be achieved by prolonging the observation time up to 45 min from rennet addition. 

In sum, we herein show that rpCLA supplementation of sheep can change the 

composition and the cheese-making properties of their milk (i.e., by delaying gelation, 

slowing curd firming, and accelerating syneresis). Future studies are warranted to examine the 

effects of CLA on cheese yield/quality; assess the relationships with milk coagulation, curd 

firming and syneresis; and identify causal mechanisms. 
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Table 5.1: Ingredients, chemical composition, dry matter (DM) and metabolizable energy 

(ME) of total mixed ration (TMR) and of its ingredients  

 

 TMR DM Chemical composition (g×kgDM
-

1
): 

ME
1
 

 g×kgDM
-1

 g×kg
-1

 PG NDF ADF Starch MJ×kgDM
-1

 

TMR ingredients        

    Corn grain, ground 373 884 89 127 25 686 13.1 

    Corn silage 260 351 77 402 228 365 10.6 

    Dried sugar beet pulp 111 897 93 439 252 0 11.4 

    Soybean meal 110 891 491 139 90 0 13.3 

    Wheat bran 64 881 169 375 113 0 10.7 

    Wheat straw 66 917 23 810 491 0 6.0 

    Vitamin mineral 

mixture
2
 

16 920 - - - - - 

TMR  1000 504
3
 130 293 146 347 11.4 

1
Values taken from NRC (2007).  

2 
Content per kilogram of DM: 12.4 g of  Ca, 1.7 g of P, 2.5 g of  Na, 100 mg of Cu, 300 mg 

of Zn, 1.0 mg of Co, 3 mg of I, 1 mg of Se, 200 mg of  Mn, 22,000 IU of vitamin A, 83 IU of 

vitamin E, and 2750 IU of vitamin D3.  
3
Including water added to the mixer wagon to increase moisture of the TMR. 
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Table 5.2: Effect of breed, rumen-protected conjugated linoleic acid (rpCLA) 

supplementation, birth type, days in milk at first sampling, and date of sampling on quality 

traits of ewe’s milk 

 

 Fat Protein Lactose Total solids 
Solids  

non-fat 
Energy  SCS 

 % % % % % MJ/kg  Units 

Breed:         

  Brogna (Br) 6.60 5.74 5.06 17.9 12.0 4.77  4.89 

  Foza (Fo) 5.45 5.71 5.28 17.0 12.1 4.35  4.35 

  Lamon (La) 6.69 5.51 5.08 17.7 11.7 4.75  5.96 

    Contrasts, P-value         

    Br vs (Fo+La)/2 0.52 0.34 0.40 0.45 0.47 0.50  0.74 

    Fo vs La 0.21 0.22 0.24 0.41 0.05 0.29  0.09 

Diet:         

  Control 6.56 5.82 5.12 18.0 12.1 4.79  4.37 

  rpCLA addition 5.94 5.48 5.16 17.1 11.7 4.47  5.76 

    P-value 0.41 0.02 0.77 0.21 0.007 0.29  0.06 

Birth type:         

  Single 6.25 5.46 5.12 17.3 11.7 4.58  5.22 

  Twin 6.24 5.85 5.16 17.7 12.1 4.68  4.90 

    P-value 0.99 0.01 0.79 0.56 0.01 0.77  0.69 

Days in milk:         

  <50d 6.68 5.60 5.16 17.9 11.9 4.79  5.18 

  50-75d 6.39 5.42 5.12 17.4 11.7 4.63  4.57 

  >75d 5.67 5.93 5.14 17.3 12.2 4.47  5.44 

    P-value 0.75 0.04 0.95 0.82 0.05 0.83  0.59 

Ewe RMS
1 

1.88 0.05 0.06 1.53 0.06 0.29  1.89 

Sampling day,  

P-value 
<0.001 0.08 0.01 <0.001 0.02 <0.001  0.13 

RMSE
2 

2.00 0.07 0.04 1.44 0.08 0.28  0.84 
1
Ewe RMS = ewe root mean square  

2
RMSE = root mean square error 

P-value < 0.05 are highlighted in bold print  
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Table 5.3: Effect of breed, rumen-protected conjugated linoleic acid (rpCLA) 

supplementation, birth type, days in milk at first sampling, date of sampling and 

instrument/cuvette position on traditional milk coagulation properties of ewe’s milk
1
  

 

  RCT  

min 

k20 

min 

a30 

mm 

a45 

mm 

Breed:     

  Brogna (Br) 8.68 1.62 59.3 54.8 

  Foza (Fo) 7.18 1.57 58.7 55.2 

  Lamon (La) 8.05 1.67 54.6 47.8 

    Contrasts, P-value     

    Br vs (Fo +La)/2 0.36 0.99 0.17 0.16 

    Fo vs La 0.51 0.41 0.07 0.01 

Diets:     

  Control 6.50 1.46 60.6 56.9 

  rpCLA addition 9.44 1.78 54.5 48.3 

    P-value 0.01 0.004 0.003 <0.001 

Lambs born:     

  Single 7.66 1.66 55.2 50.0 

  Twin 8.29 1.58 59.9 55.2 

    P-value 0.59 0.44 0.02 0.03 

Days in milk:     

  Linear regression, b -0.028 -0.004 -0.006 -0.113 

    P-value 0.38 0.17 0.91 0.08 

Ewe RMS
2
  1.78 0.16 2.10 2.14 

Sampling day, P-value 0.56 0.02 <0.001 0.002 

Sample RMS
3 

2.46 0.20 n.e. n.e. 

Instrument/position, P-value 0.11 <0.001 <0.001 <0.001 

RMSE
4
  1.08 0.16 7.86 10.46 

1
RCT = rennet coagulation time; k20 = time interval between coagulation and attainment of a curd firmness of 20 

mm; a30 (a45) = curd firmness after 30 (45) min from rennet addition. 
2
Ewe RMS = ewe root mean square. 

3
Sample RMS = sample root mean square. 

4
RMSE = root means square error. 

P-value < 0.05 are highlighted in bold print  
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Table 5.4: Effect of breed, rumen-protected conjugated linoleic acid (rpCLA) 

supplementation, birth type, days in milk at first sampling, date of sampling and 

instrument/cuvette position on modeling of coagulation, curd firming and syneresis of ewe’s 

milk
1
  

 

 
RCT 

min 

CFp 

mm 

kCF 

% ×min
-

1
 

kSR 

% ×min
-1

 

no kSR 

% 

CFmax 

mm 

tmax 

min 

Breed:       

  Brogna (Br) 9.1 68.6 42.8 0.70 25.2 63.2 25.3 

  Foza (Fo) 7.6 66.8 45.9 0.58 28.2 62.7 24.6 

  Lamon (La) 8.4 67.5 37.8 0.99 16.4 59.1 22.5 

    Contrasts, P-value        

    Br vs (Fo+La)/2 0.33 0.35 0.77 0.53 0.69 0.19 0.37 

    Fo vs La 0.54 0.69 0.04 0.01 0.17 0.08 0.37 

Diets:        

  Control 7.0 67.3 49.5 0.51 30.8 64.0 24.1 

  rpCLA addition 9.8 68.0 34.8 1.00 15.7 59.3 24.2 

    P-value 0.01 0.64 <0.001 <0.001 0.03 0.007 0.96 

Birth type:        

  Single 8.1 67.6 41.6 0.90 26.7 60.4 24.6 

  Twin 8.7 67.7 42.7 0.61 19.9 63.0 23.7 

    P-value 0.58 0.99 0.73 0.04 0.35 0.15 0.66 

Days in milk:        

Linear regression, b -0.027 0.086 0.162 0.005 -0.409 0.038 -0.173 

    P-value 0.39 0.05 0.08 0.13 0.05 0.42 0.003 

Ewe RMS
2 

1.75 1.14 4.28 n.e. 4.8 2.61 2.35 

        

Sampling day, P-value 0.52 0.38 <0.001 0.003 0.002 0.001 <0.001 

Sample RMS
3 

2.43 n.e. 3.88 n.e. 9.7 n.e. 2.77 

Instrument/position, P-

value 
0.16 <0.001 0.02 <0.001 <0.001 <0.001 <0.001 

RMSE
4 

1.04 7.54 10.92 0.69 33.7 4.99 7.69 
1
RCT = rennet coagulation time; CFP = asymptotic potential curd firmness; kCF = curd firming instant rate 

constant;  kSR = syneresis instant rate constant; no kSR =  incidence of milk samples with not estimable kSR;  

CFmax = maximum curd firmness achieved within 45 min; tmax = time at achievement of CFmax. 
2
Ewe RMS = ewe root mean square. 

3
Sample RMS = sample root mean square. 

4
RMSE = root means square error. 

P-value < 0.05 are highlighted in bold print  
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Figure 1: Effect of sheep breed on coagulation, curd firming, and syneresis processes of ewe’s 

milk. 

 
Figure 2 Effect of number of lambs born on coagulation, curd firming, and syneresis processes 

of ewe’s milk. 

 
Figure 3: Effect of rumen-protected conjugated linoleic acid (rpCLA) supplementation to diet 

on coagulation, curd firming, and syneresis processes of ewe’s milk. 
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6.1 SUMMARY 

 

A fattening and slaughter trial was carried out on 36 lambs of Alpagota, Brogna and 

Foza sheep breeds native of Veneto Region Alps (6 male and 6 female lambs per breed) 

divided in three groups depending on the type of feed used: pasture, hay and concentrate, hay 

and concentrate supplemented with conjugated linoleic acid. Lambs were slaughtered at 225 

days (mean weight: 30 kg). Infra-vitam and post-mortem data were analyzed by using a linear 

model which included the cross-classified effect of breed, sex, feeding system and age of 

lambs as linear covariate. The three breeds shows some specificity: Foza lambs, of both sexes, 

were larger-sized and faster growing, with a lower incidence of gastro-intestinal tract and 

lower cooking losses of the hind-leg samples compared to the other two middle-sized breeds. 

Alpagota breed tended to be leaner, with heavier shin and greater cooking losses than Brogna 

breed. In conclusion the three Alpine breeds of the Veneto Region confirmed to be able to 

produce lamb carcasses and meat with valuable characteristics that can be exploited through 

typical products and food preparation in local markets and gastronomy, according to the 

tradition. The valorisation of these production can be an important instrument for in situ 

conservation of these breeds. 

 

Key words: lamb, meat quality, carcass traits, breed 

 

6.2 AIM 

 

Alpagota, Brogna and Foza, together with Lamon, are the sheep breeds originated in 

the mountain (Italian eastern Alps) of Veneto Region. Alpagota, Brogna and Foza have shown 

a genetic specificity that identify them as genetic resources to be protected (Bittante, 2011; De 

Marchi et al., 2005; Dalvit et al., 2008, 2009). All these breeds are endangered because of the 

low number of existing animals. They are reared in small farms at pasture, according to 

tradition, even if some researches to increase their productivity have been carried out (Bittante 

and Pastore, 1988; Bittante et al., 1996; Bonsembiante et al., 1988). These sheep populations 

are still used for some traditional conserved meat preparation (Paleari et al., 2006; Bovolenta 

et al., 2008). The aim of this study was to estimate the effect of breed and sex on growth rate, 

slaughter traits and meat quality traits of lambs of Alpagota, Brogna and Foza breeds. 
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6.3 MATERIAL AND METHODS 

 

This experiment was conducted from July 2010 to, November  2010 at the “Lucio 

Toniolo” Experimental Farm of the University of Padova in Legnaro (Padova, Italy).The 

lambs used for this research belongs to two flocks undergoing an in situ conservation program 

(Legnaro – Villiago). In total 36 animals were used: 6 males and 6 female for each breed, 

Alpagota, Brogna and Foza. Lambs were divided in three groups (2 males and 2 females for 

each breed) with different feeding systems: a) pasture, b) penned in an open barn and fed with 

hay and concentrate, and c) penned in the open barn and fed with hay, concentrate and 

supplemented with 8.0 g/d of a rumen protected conjugated linoleic acid (rpCLA ) product 

(Sila, Noale, Italy). Each month lambs were weighed and measured, recording live weight, 

height at withers, thoracic circumference and body condition score (BCS). At the age of 225 

days and mean weight of 30 Kg lambs were slaughtered. At the slaughterhouse the following 

weighs were recorded: live weight, skin, feet, head, gastro-intestinal tract, offal (trachea, 

lungs, heart and spleen), liver, and genitals. Carcasses were divided in two halves, weighed 

and cold stored at 4 °C. The day after slaughter, halves were weighed again and the right half-

carcasses were measured and dissected into five cuts (hind-leg, fore-leg and shoulder, ribs-

loin, withers, brisket). On the hind leg and the rib-loin muscle pH and temperature were 

measured. The pH and temperature were measured using a Crison PH 25 pH-meter equipped 

with a penetrating electrode. Each cut was weighed and stored under vacuum at 4 °C. After 6 

days the packages were open, the cuts were dried and weighed and the drip loss were 

computed. 

In the Meat Quality Laboratory of the Department of Animal Science of Padova 

University, two cuts (hind-leg and rib-loin) were weighed and dissected. Rib-loin was divided 

in ribs and loin sections. Ribs were dissected, and weighed, in meat and bones. Loins were 

dissected, and weighed, in bones, subcutaneous fat and muscle (Longissimus lumborum). 

From hind-legs, only the inner part of the round (Quadriceps femoris) was separated and 

weighed. From each muscle sample pH, temperature and drip loss were obtained.  

All traits were analyzed with the following linear model, using the PROC GLM of 

SAS (2008): 

yijklm = μ + agei + feedingj + breedk + sexl + eijklm 

where y = experimental observation, μ = overall mean, agei: linear covariate of age , 

feedingj: effect of feeding treatment (j = pasture; hay and concentrates; hay, concentrates and 
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rpCLA), breedk: effect of breed (k = Alpagota, Brogna and Foza); sexl: effect of sex (l = F 

and M); eijklm: random residual term ~ N (0, σ
2

e). 

6.4 RESULTS AND DISCUSSIONS 

 

Initial and final live-weight and growth rate of Alpagota, Foza and Brogna lambs are 

reported in Table 5.1. The initial and final live-weight of the lambs reflects the different size 

of the three Veneto sheep breeds. The Alpagota and Brogna breeds lies at the two extremes 

for  genetic and geographic distances, but not in terms of size (P = 0.083 and n.s., respectively 

at the beginning and at the end of the trial). The Foza lambs, genetically and geographically 

intermediate between Alpagota and Brogna, were heavier than the lambs of the other breeds at 

both dates (P < 0.001). The differences in growth rate of the lambs of the three breeds were 

not significant, even if the contrast between the Foza breed and the other two breeds 

approached the statistical significance (P = 0.066). It was observed that when growth rate was 

expressed in relation to the initial size of animal - allometric coefficient – the growth rate of 

the three breeds was very similar. The differences among breeds of body condition score 

(BCS), i.e. of fatness of animals, were much more pronounced at the beginning than at the 

end of the trial (Table 5.1), reflecting, probably, different maternal milk production. The 

Brogna lambs were fatter than Alpagota lambs at both dates, while Foza lambs were fatter 

than the other two breeds at the beginning but not at the end of the trial.  

Sex of lambs influenced only the final live-weight with the males heavier than females 

(+11.1%, P < 0.05). It should be considered that the majority of animals were in their pre-

pubertal period. The effect of age (linear regression) was significant on initial and final live-

weight (P < 0.001), on allometric coefficient (P = 0.012) and on final BCS (P = 0.011), but 

not on daily growth rate and initial BCS.  

The effect of breed, sex and age of lambs on slaughter data are summarized in Table 

5.2. Respect to Alpagota, Brogna lambs were characterized by a smaller incidence of the pelt 

and by a tendency for a higher dressing percentage, while Foza lambs were heavier at 

slaughter and yielded heavier carcasses with comparable dressing percentages respect to the 

lambs of the other two breeds. Moreover, they were characterized by a higher incidence of 

feet and by lower incidences of gastrointestinal tract and offal. The males were heavier at 

slaughter (P < 0.05) but yielded carcasses not significantly different because of their lower 

killing out percentage. The tendency for a lower skin and liver was counterbalanced, in males, 

by higher incidence of genitals and of gastro-intestinal tract. Age influenced significantly the 
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weight of lambs at slaughter and of their carcasses, but also of their dressing percentage and 

incidence of feet and gastro-intestinal tract. 

Table 5.3 shows the effects of breed, sex and age of lambs on some physical quality 

traits of two meat sample joints. 

While pH and drip loss were not significantly affected by breed, cooking losses were 

greater for meat samples from Alpagota than from Brogna lambs and smaller for Foza meat 

samples from hind-leg but not from loin. Female lambs were characterized by lower pH, 

greater drip losses and smaller cooking losses, but only on meat samples from hind-legs, also 

because of the greater residual variability found on loin samples. The only effect exerted by 

age of lambs was on the cooking losses of Quadriceps femoris. Several authors observed that 

the effect of breed is often associated with differences in muscle distribution and consequently 

in the proportions of the various joints in the carcass (Santos-Silva et al., 2001). Breed effects 

on meat quality seems to be not important when referred to pH, amount of pigments, physical 

color, instrumental hardness and sensorial characteristics (Santos-Silva et al., 2002) but is 

important for the evolution of sensory traits that were not reported in this paper (Solomon et 

al., 1980; Arsenos et al., 2002; Martìnez-Cerezo et al., 2005). Lind et al. (2011), results 

support the hypothesis that the difference for meat quality between different breeds could be 

small when lambs are slaughtered at equal degrees of maturity. The most important 

differences often found in literature are referred to color and texture and can be justified by 

differences precociousness or in the muscularity degree (Sanudo et al., 1998).  

 

6.5 CONCLUSIONS 

 

In conclusion the three Alpine breeds of the Veneto Region confirmed to be able to 

produce lamb carcasses and meat with valuable characteristics that can be exploited through 

typical products and food preparation in local markets and gastronomy, according to tradition. 

The valorisation of these productions can be an important tool for the in situ conservation of 

these breeds. As an example of that, Slow Food organization has recognized “Agnello 

Alpagoto” (lambs of Alpagota breeds) as a Slow Food Presidium. Moreover the three breeds 

confirmed also some differences among them. In particular Foza breed is characterized by a 

large size and growth rate, a lower incidence of gastro-intestinal tract and by lower cooking 

losses of the hind-leg samples compared to the other two middle-sized breeds. Alpagota breed 

tended to be leaner, with heavier shin and higher cooking losses than Brogna breed. These 
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differences evidenced some peculiarity of the three breeds that can be of value for their 

possible use in different segments of the food-service chain. 
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Table 6.1: Least square means (LSM) of breed and sex and significance of breed contrasts 

and of initial age covariate on average growth rate, allometric coefficient and BCS of 

Alpagota (A), Foza (F) and Brogna (B) lambs. 

 
 Breed LSM Breeds contrasts (P) Sex LSM Age (P) RMSE 

A F B AvsB Fvs(A+B) M F   

Live weight  (kg) 

Initial 17.3 25.0 20.6 0.083 <0.001 21.7 20.3 < 0.001 3.60 

Final 25.8 35.9 28.9 n.s. <0.001 31.8 
b
 28.6 

ª 

<0.001 4.17 

Growth rate (g/d) 75.7 96.8 74.6 n.s. 0.066 90.9 73.7 n.s. 25.7 

Allometric coef. 1.14 1.11 1.12 n.s. n.s. 1.13 1.12 0.012 0.04 

BCS (1-5) 

Initial 2.65 3.31 3.14 0.002 0.002 3.00 3.07 n.s. 0.28 

Final 3.02 3.25 3.28 0.019 n.s. 3.23 3.14 0.011 0.22 

a, b P<0.05  

 

 

 

Table 6.2: Least square means (LSM) of breed and sex and significance of breed contrasts 

and of initial age covariate on slaughter traits  of Alpagota (A), Foza (F) and Brogna (B) 

lambs. 
 

 

α, β P<0.10; a, b P<0.05; A, B :P<0.01 

1
: trachea, lungs, heart and spleen. 

 

 Breed LSM Breed contrasts (P) Sex LSM Age (P) RMSE 

 A F B AvsB Fvs(A+B) M F   

Slaughter-wt, kg 26.17 36.24 28.95 n.s. <0.001 32.18
b
 28.73

a
 <0.001 4.41 

Skin, % 13.84 12.80 11.48 0.009 n.s. 12.2
α
 13.2

β
 n.s. 1.67 

Head, % 6.07 5.98 6.00 n.s. n.s. 5.91 6.11 n.s. 0.36 

Feet, % 2.24 2.62 2.20 n.s. <0.001 2.37 2.34 0.023 0.17 

Gastroint. tract, % 30.72 27.53 30.15 n.s. 0.006 30.48
b
 28.45

a
 <0.001 2.19 

Offal
1
, % 2.55 2.26 2.52 n.s. 0.024 2.37 2.51 n.s. 0.27 

Liver, % 1.41 1.34 1.34 n.s. n.s. 1.34
α
 1.38 

β
 0.097 0.06 

Genitals, % 0.39 0.37 0.47 n.s. n.s. 0.69
B
 0.13 

A
 n.s. 0.23 

Dressing, % 41.08 43.65 42.64 0.083 n.s. 41.64
A
 43.28

B
 <0.001 1.63 

Carcass wt:          

hot, kg  10.75 15.87 12.46 n.s. <0.001 13.51 12.54 <0.001 2.05 

cold, kg  10.09 14.60 11.74 0.090 <0.001 12.84 11.90 <0.001 1.98 
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Table 6.3: Least square means (LSM) of breed and sex and significance of breed contrasts 

and of initial age covariate on meat pH, drip and cooking losses of meat from Alpagota (A), 

Foza (F) and Brogna (B) lambs.  
 

       Breed LSM Breed contrasts (P) Sex LSM Age (P) RMSE 
 A F B AvsB Fvs(A+B) M F   

pH:          

loin  5.61 5.63 5.64 n.s. n.s. 5.67
b
 5.58

a
 n.s. 0.12 

hind-leg 5.50 5.56 5.54 0.097 0.089 5.53 5.53 n.s. 0.05 

Drip loss (%):          

loin  1.43 1.26 0.91 n.s. n.s. 0.98 1.41 n.s. 1.28 

hind-leg 0.47 0.53 0.63 n.s. n.s. 0.32
a
 0.76

b
 n.s. 0.49 

Cooking loss (%):          

Longissimus 

thoracis 

26.7 24.1 23.1 0.006 n.s. 24.1 25.1 n.s. 2.39 

Quadriceps femoris 40.7 37.8 39.0 0.034 0.005 39.9
B
 38.4

A
 0.012 1.53 

   a, b P<0.05; A, B :P<0.01 
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CHAPTER 7 

 

 

 

Use of Ag
+
HPLC for analyzing fatty acids 

including CLA isomers in beef fed rpCLA 

supplements 
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7.1 ABSTRACT 

 

Aim of this study was to use the Silver Ion High Liquid Performance (Ag
+
HPLC) to 

analyze CLA isomers content of 3 different tissues collected from young growing bulls (liver, 

subcutaneous fat and Longissimus Thoracis). The experimental design involved 9 crossbred 

young bulls fed with a supplementation of 0, 8 or 80 g/d of rumen protected CLA (rpCLA). 

Samples analyzed came from 3 tissues (liver, subcutaneous fat and Longissimus Thoracis). 

Data were analyzed using the MIXED procedure considering as fixed effects feeding system, 

tissue and repetitions. Considering the hierarchical structure of the experimental design, fixed 

effects was tested using different error lines:  feeding system was tested using as error line, 

repetition (feeding system) and tissues on the residual error line. Effect of diet and tissue were 

important for CLA distribution suggesting that isomers has a tissue-depending distribution 

and CLA isomers composition can change in relationship to the rpCLA supplementation. In 

total 13 CLA isomers, belonging to the three regions (cis/cis, trans/trans and cis/trans), were 

identify. In muscle the most abundant are C18:2cis9,trans11, C18:2trans7,cis9 and 

C18:2trans10,cis12. In liver  C18:2cis9,trans11, C18:2trans7,cis9, C18:2trans9,trans11 and 

CLAtrans10,cis12. In subcutaneous fat are C18:2cis9,trans11, C18:2trans7,cis9 and 

C18:2trans10,cis12. The amount was different in relation to the diet and CLA 

supplementation, in muscle diet was significant for C18:2trans10,cis12 (P=0.02) and 

C18:2trans10,trans12 (P=0.07) with a higher amount in 80 g/d/animal. In liver diet influence 

C18:2trans7,cis9 (P=0.05) and C18:2trans10,cis12 (P=0.02) with a high amount of 

C18:2trans7,cis9 in 8 g/d/animal and of C18:2trans10,trans12 in 80 g/d/animal. 

Subcutaneous fat has a similar isomers distribution with a significant effect on 

C18:2trans10,cis12 (P<0.001) and the isomers of trans/trans region (C18:2trans9,trans11, 

C18:2trans10,trans12 and C18:2trans8,trans10) with an higher amount in 80 g/d/animal 

dose. 

 

7.2 INTRODUCTION 

 

Conjugated Linoleic Acid (CLA), is a collective term for indicate a mixture of 

geometric and positional isomers of Linoleic Acid with double bonds in different position on 

the carbon chain, known for their biological activity on human health and animal performance 

(Schmid et al., 2006; Park et al., 2007; Park et al., 1997; Pariza et al., 2001; Perfield II et al., 

2002; Sinclar et al., 2007; Weerasinghe et al., 2011). The quantification of CLA isomers is of 

particular interest, but it is necessary make attention to evaluate a method that allows the 
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complete determination of CLA isomers. CLA determination is complex because of the 

presence of unsaturated double bonds that give an unstable nature, as easily subjected to 

epimerization and isomerization (Fuchs et al., 2011; Dance et al., 2010). The first critical step 

is the methylation because of base catalysis do not esterified free fatty acids (FFA) but avoid 

migration and isomerization of double bonds. On the contrary acid catalysis esterified all 

complex and simple forms of FA causing isomerization of conjugated double bonds. To 

overcome this problem of the methylation Jenkins (2010) proposed a modification of Sukhija 

and Palmquist (1988) method given by a combination of acid and base catalyst for shorter 

incubations times minimizing the problems given by other methods (Jenkins,2010; Sukhija 

and Palmquist,1988). Another problem is given by the chromatography technique used, 

because often the most common is not the one that gives the most optimal results. A number 

of methods have been developed for analysis of octadecenoic fatty acids (FA) in food such as 

infrared spectroscopy (FTIR), gas chromatography (GC) combined with flame ionization 

detector (FID) or mass spectrometry (MS) and silver ion high performance liquid 

chromatography (Ag
+
HPLC) or reverse phase HPLC (Villegas et al., 2010). Considering the 

gas chromatography (GC), often the single GC, using the currently available columns, is not 

always the best option to identify components from natural samples. In fact, conjunction with 

mass spectroscopy (MS) detector permit more fatty acids and isomers to be separated, as 

happened with Linoleic Acid but sometimes is not possible to achieve the separation of all the 

fatty acid isomers as in the case of Linolenic Acid (Manzano et al., 2011). Gas 

Chromatography (GC) is the most popular and often the only methods used, for the analysis 

of fatty acids and for CLA, but the information on CLA isomeric composition gave by GC are 

incomplete. Normally the various types of geometrical isomers give distinct peaks but in this 

group, positional isomers are not completely resolved. GC well separate the two main 

isomers, but not the other positional isomers. The reason of this lack of capacity are that 

information on the double bonds position is usually not directly available and identifications 

are limited to comparison of retention times with a limited number of internal standard 

(Roach et al., 2002). Despite the long column, is difficult obtain a good separation and 

reproducibility of isomers and a single run give an approximate idea of the total content of 

CLA relative to other components. One of the reasons is that when CLA is added in 

nutritional experiments, other FA such as, C21:0 and C20:2 can be eluting in the same region 

of the chromatogram as the cis/cis and trans/trans isomers (Christie et al., 2001). The most 

important component of the GC, that allows a clear definition of the peaks, is the column 

used. Many authors observed that consider a long column is very important for require a 
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resolution of CLA isomers. In conclusion is possible say that the GC exhibits rapidity, high 

resolution and sensitivity however a complete separation of all CLA isomers is not yet 

achievable and it is recognized that the combination of methods will be required to provide 

the full isomeric distribution of sample (Aldai et al., 2005). The suitable separation of CLA 

isomers present in biological tissues is not possible by GC, for this reason the complementary 

use of Ag
+
HPLC is currently the most effective way to separate and quantitate individual 

isomers of CLA in beef (Roach et al., 2002; Nuernberg et al., 2007). Ag
+
HPLC has been one 

of the most important techniques available to lipid analysis for the separation of molecular 

species of lipids since 1974. It can separate FA according to the configuration and the number 

of their double bonds and also according to the position of the double bonds (Fritsche and 

Steinhart, 1998).CLA FAME were detect thanks to their characteristic UV absorbance at 

233nm. The identities of the isomers in HPLC chromatograms are based on co-injections of 

known reference materials obtained from commercial sources or synthesized. The problem of 

this technique is that only a limited number of CLA isomers were available and the pure 

isomers are C18:2cis9,trans11, C18:2trans10,cis12, C18:2cis9,cis11 and 

C18:2trans9,trans11. Also in this technique the column is very important, the use of three 

columns increase the resolution of the peaks but in the contrary more than three columns in 

series provide a decrease of the benefits (Roach et al., 2002). Considering the importance of 

CLA and the problems related to their determination, the aim of this study was to analyze 

through Ag
+
HPLC, CLA isomers in three different tissues (liver, subcutaneous fat and 

Longissimus Thoracis) taken from beef fed with “low protein” diet and three different rpCLA 

dose.  

 

7.3 MATERIAL AND METHODS 

 

The present project followed the Guideline for the Care and Use of Agricultural 

Animals in Agricultural Research and Teaching (Consortium, 1988) and all the experimental 

procedure were approved by the Ethical Committee for the Care and Use of Experimental 

Animals of the University of Padova (CEASA, Legnaro, Italy). 

 

Animal breeding and diets  

The trial was carried out at “Lucio Toniolo”, the Experimental Farm of the University 

of Padova in Legnaro (Padova, Italy). Fifty-four crossbred young bulls and heifers were used. 

For the first 28 days of adaption animals were fed with an adaptation diet, composed only of 



163 
 

hay but after this period animals of each group were progressively fed with one of 3 

experimental diets.  

Experimental diets were fed ad libitum and total mixed ration containing 108 g/kg DM 

of CP, 35 g/kg of FA and supplemented with 0, 8 or 80 g/d of rumen protected CLA (rpCLA) 

supplement from 5 to 16 months of age (18 animals for each rpCLA dose) and they consumed 

9.3 kg/d of DM on average. The total mixed ration was composed, on DM basis, of corn meal 

(400 g/kg), corn silage (276 g/kg), soybean meal (33 g/kg), dried sugar beet pulp (113 g/kg), 

wheat bran (70 g/kg), wheat straw (66 g/kg), vitamin and mineral mixture (26 g/kg), calcium 

soap (9 g/kg), and hydrogenated soybean oil (7 g/kg). The rpCLA supplement consisted of 

methyl esters of CLA bound to a silica matrix and coated with hydrogenated soybean oil. The 

lipid-coated rpCLA was composed of 800, 178, and 22 g/kg of lipid, ash, and moisture, 

respectively, and 456 g/kg of palmitic and stearic acids, 79.2 and 76.8 g/kg of 

C18:2cis9,trans11 and C18:2trans10,cis12, respectively, and 91 g/kg of other FA (SILA, 

Noale,Italy). A detailed description of the chemical composition of the rpCLA used is given 

in Schiavon et al. (2011).  

 

Muscle, fat and liver collection 

The trial started in July 2010 ended in March 2011 for heifers and May 2011 for bulls, 

when all animals were slaughtered at the mean weight of 512.4 ± 64.3 Kg for heifers and 

646.5 ± 47.46 Kg for bulls. At the end of fattening the calves were fasted for one day and then 

slaughtered. According to the reference meat market, heifers or bulls were slaughtered when 

they reached an estimated in vivo fatness score around 3 or 2 points on a scale from 1 (very 

lean) to 5 (very fat), respectively (Schiavon et al., 2013). Animals were slaughtered outside 

the faculty in a slaughterhouse located in Pergine (Province of Trento, Trentino Alto Adige 

Region, North Italy). Immediately after slaughter, liver was collected from each animal and 

stored at -20°C in the Department of Agronomy, Food, Natural Resources, Animals and 

Environment (DAFNAE) for further analysis on fatty acids profile. Twenty-four hours after 

slaughter from the left half part of the carcass the whole cut of the 5th rib was collected (from 

the cranial edge of the 5th rib to the cranial edge of the 6th rib). The entire rib was vacuum 

packed, moved to the Laboratory and aged at 4 °C in a chilling room for 10 days. At the end 

of ageing, the rib cut was dissected into muscles (Longissimus Thoracis, and Other Muscles), 

fat (Subcutaneous Fat) and bones. Each fraction was weighted. Therefore samples used for 

these investigations were choosing randomly between 9 bulls belonging to each of the three 
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diets: 9 of Longissimus Thoracis samples, 9 of Subcutaneous Fat and 9 of Liver. Part of these 

samples collected in Italy was sent to the Leibniz Institute of Farm Animal Biology 

(Dummerstorf, Germany) for CLA isomers analysis.  

 

Lipid extraction and transesterification (FAMEs) for Ag
+
-HPLC 

This part of the experiment was carried out at Leibniz Institute of Farm Animal 

Biology (Dummerstorf, Germany). Lipid extraction was made according to Folch (1957). 

Briefly, samples of Longissimus Thoracis, Subcutaneous Fat and Liver were thawed at 4°C. 

After homogenisation (Ultra Turrax, IKA, Staufen, Germany; T25, 3 x 15 sec, 12,000 rpm) 

and the addition of the fatty acid C19:0 as an internal standard, the total lipids were extracted 

in duplicate using chloroform/methanol (2:1, v/v) at room temperature. The detailed sample 

preparation procedure has been previously described by Nuernberg et al. (2011). The lipid 

extracts were re-dissolved in 300 µL of toluene, and a 25 mg aliquot was used for methyl 

ester preparation. Next, 2 ml of 0.5 M Sodium Methoxide in methanol (Fluka, Buchs, 

Switzerland) was added to the samples, which were shaken in a 60 ºC water bath for 10 

minutes. Subsequently, 1 ml of 14% Boron Trifluoride (BF3) in methanol (Sigma-Aldrich, 

Deisenhofen, Germany) was added to the mixture, which was then shaken for an additional 10 

minutes at 60 ºC. Saturated NaHCO3 (2 ml) solution was added, and the fatty acid methyl 

esters (FAMEs) were extracted three times in 2 ml of n-hexane. The solvent containing the 

FAMEs was reduced to dryness under an oxygen-free nitrogen stream, and the FAMEs were 

re-suspended in n-hexane and stored at -18 ºC until used for Silver-ion HPLC/DAD analysis. 

Identification and quantification analysis of the CLA isomers in Muscle, Subcutaneous Fat 

and Liver extracts of the bulls was performed by Ag
+
-ion HPLC involved an HPLC system 

(LC 10A, Shimadzu, Japan) equipped with a pump (LC-10AD VP), auto sampler (SIL-10AF), 

50 µL injection loop, a photodiode array detector (SPD-M 10Avp, Shimadzu, Japan), and a 

Shimadzu CLASS-VP software system (Version 6.12 SP4). Four ChromSpher 5 Lipids 

analytical silver ion-impregnated columns (4.6 mm i.d. × 250 mm stainless steel; 5 µm 

particle size; Agilent, USA) were used in series. The mobile phase (0.1% acetonitrile in n-

hexane) was prepared fresh daily and pumped at a flow rate of 1.0 mL/min as described  by 

Nuernberg et al. (2011). The injection volume varied between 20 and 50 µL, according to the 

content of minor CLA isomers in the different adipose tissues. The detector was operated at 

233 nm to identify CLA isomers based the measurement of integrated area under the 233 nm 

peaks attributed to conjugated dienes. The identification of CLA isomers was made by the 
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retention time of individual CLA methyl esters (C18:2cis9,trans11, C18:2trans9,trans11, 

C18:2trans10,cis12, C18:2cis9,trans11, C18:2cis9,cis11 and C18:2cis11,trans13). The 

external calibration plots of the standard solutions were adapted to different concentration 

levels of individual CLA isomers in the lipid extracts, recently in detail described (Nuernberg 

et al., 2011; Shen et al., 2011).  

 

Reagents 

A reference standard ‘Sigma-FAME mixture’ was obtained from Sigma-Aldrich 

(Deisenhofen, Germany). Additionally, individual isomers of CLA methyl esters (CLA-ME), 

C18:2cis9,trans11, C18:2trans9,trans11, C18:2trans10,cis12, C18:2cis9,cis11 and 

C18:2cis11,trans13 (as a free fatty acid) were purchased from Matreya (Pleasnet Gap, United 

States). All solvents used for Ag
+
-HPLC were HPLC grade from AppliChem (Darmstadt, 

Germany). The derivatization reagents, sodium methylate and borontrifluoride/methanol (14 

% w:v), were respectively obtained from Fluka (Buchs, Switzerland) and from Sigma-Aldrich 

(Deisenhofen, Germany). 

 

Statistical analysis 

The statistical analysis was performed using the MIXED procedure (SAS, Institute 

Inc., Cary, NC). The main sources of variation of the 13 isomers were considered. Feeding 

system, tissue and repetitions were considered as fixed effects. Considering the hierarchical 

structure of the experimental design, fixed effects was tested using different error lines. The 

effect of feeding system was tested using as error line, repetition (feeding system). Besides, a 

tissue was tested on the residual error line. 

 

7.4 RESULTS  

Tables 1, 2 and 3 shows the distribution of the CLA isomers in the three tissues 

subjected to analysis (respectively, Longissimus Thoracis, Liver and Subcutaneous Fat). All the data 

are expressed in mg/g of tissue and the order in which they are report in tables is in accord to 

their amount in samples, from the most abundant to the least abundant. Firstly, was report the 

sum of CLA isomers identify and after that the individual isomers. In total 13 isomers are 

identify. 
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In Table 1 are report CLA isomers of Longissimus Thoracis. The most abundant 

isomers are  C18:2cis9,trans11, C18:2trans7,cis9 and C18:2trans10,cis12 normally known to 

be the most important in beef and milk products from ruminants. C18:2cis9,trans11 amount is 

higher in diet with 8 g/d/animal (LSM=2.08) and C18:2trans10,cis12 in diet with 80 

g/d/animal (LSM=0.30), besides C18:2trans7,cis9 is higher in diet with 0 g/d/animal 

(LSM=0.46). Observing the results of the statistical analysis and the column with the P-value 

of the feeding system (FS), no significant effect of the diet is observed. Therefore, two 

isomers are on the threshold of significance C18:2trans10,cis12 and C18:2trans10,trans12 

that present a P-value respectively of P=0.02 and P=0.07. Observing the orthogonal contrasts 

between diets, C18:2trans10,cis12 and C18:2trans10,trans12 are on the threshold of 

significance with P-value respectively P=0.01 and P=0.05. 

In Table 2 are report CLA isomers of Liver with a different order if compare to 

Longissimus Thoracis. The different order is due to the different isomers distribution and the 

tissues specific distribution of them. The most abundant are the C18:2cis9,trans11, 

C18:2trans7,cis9, C18:2trans9,trans11 and CLAtrans10,cis12. Observing the diet (FS), no 

significant effects are report, but C18:2trans7,cis9 and C18:2trans10,cis12 are on the 

threshold of significance with respectively P=0.05 and P=0.02. Observing the orthogonal 

contrast there are only some isomers on the threshold of significance: C18:2trans7,cis9, 

C18:2trans10,cis12, C18:2cis12,trans14 and C18:2trans8,trans10. Normally, the effect of 

diet is observe in the contrast 8 vs (0.9thesis0+0.1thesis80) excluding C18:2trans10,cis12 

where significance is on both contrasts. From the contrast 8 vs (0.9thesis0+0.1thesis80) is 

observe an high amount of these isomers in the diets with 8 g/d/animal (C18:2trans7,cis9,  

C18:2cis12,trans14 and C18:2trans8,trans10), but for C18:2trans10,cis12 the higher amount 

is observe in the 80 g/d/animal supplementation, as one of the main components of the 

supplementation. 

In Table 3 are report CLA isomers of Subcutaneous Fat. The order is different from 

the other two tissues because of the tissue’s isomer dependency and the amount is higher than 

in the other two tissues. The major isomer is C18:2cis9,trans11 follow by C18:2trans7,cis9 

and C18:2trans10,cis12. Diet results highly significant (P<0.001) for the C18:2trans10,cis12, 

significant (P<0.01) for the C18:2trans9,trans11 and on the threshold for 

C18:2trans10,trans12 and C18:2trans8,trans10 (P=0.01). Observing the contrast between the 

different supplementation, as expected C18:2trans10,cis12 is highly significant (P<0.001) and 

also C18:2trans9,trans11 and C18:2trans10,trans12 (P<0.01). From the contrast it has been 

deduced that C18:2trans10,cis12 is higher in 80 g/d/animal supplementation (LSM=2.55) as 
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consequence of supplementation and its composition. In fact, this isomer is one of the main 

components of the rpCLA supplementation that  

consisted of methyl esters of CLA bound to a silica matrix and coated with 

hydrogenated soybean oil (Palmitic, Setaric Acid, C18:2cis9,trans11 and 

C18:2trans10,cis12). C18:2trans9,trans11 and C18:2trans10,trans12 are higher in 80 

g/d/animal supplementation (respectively, LSM=0.48 and LSM=0.36). C18:2trans8,trans10 is 

higher in 80 g/d/animal supplementation (LSM=0.06). 

 

7.5 DISCUSSION 

According to the bibliography references, CLA isomers composition change in 

relation to different factors, such as, diet, tissue, methods of analysis, gender, breed and 

repetition. Significant effect of the tissue was observe and the tissues specific distribution 

between fat, liver and muscle has been demonstrated (Hoehne et al., 2012; Jiang et al., 2013). 

As report by Jiang et al (2013) and confirm from these results the concentration of CLA is 

higher in the Subcutaneous Fat (ΣCLA=29.4) if compared to Longissimus Thoracis 

(ΣCLA=3.01) and Liver (ΣCLA=1.39). Regarding the single isomers and in particular the 

main components of the supplementation, the amount of C18:2cis9,trans11 is higher than 

C18:2trans10,cis12 in all tissues. As reported by Cordero et al. (2010), pig feed with 1% 

supplementation involves in a higher accumulation of C18:2cis9,trans11 if compare to 

C18:2trans10,cis12 both in Longissimus Thoracis and Subcutaneous Fat. Nuerberg at al. 

(2002) report that Subcutaneous Fat show an higher concentrations of C18:2cis9,trans11 if 

compared to Intramuscular Fat (P<0.01). Whereas the opposite was observed for 

C18:2trans10,cis12 (P<0.01) (Nuerberg at al.,2002; Schiavon et al., 2011).The reason of the 

higher concentration of C18:2cis9,trans11 in lipid tissues is because fat tissue is rich in 

neutral lipids. Observing differences between muscle and fat was observe that in muscle the 

percentage of CLA is lower than in fat (7.72% subcutaneous fat vs 2.64% Longissumus 

Thoracis muscle). Not only between muscle and fat there are differences, but also between 

different fat tissues (for example kidney fat is totally different from subcutaneous fat) because 

of the anatomical location and its lipids composition (Jiang et al., 2013). No particular effect 

of liver has been reported in this study because of the amount of CLA isomers in liver is lower 

than in muscle. Regarding liver, Tous et al. (2013) observe that supplementation with rpCLA 

can increase the liver weight and the metabolic potential process. In general the different 

composition between tissues confirm that the lymphatic recovery of Linoleic acid (LA) is 
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higher than CLA and that not all the isomers are absorbed in the same amount, for example 

the most preferentially absorbed are C18:2trans9,trans11 and C18:2trans10,trans12 (Sugano 

et al., 1997). It was estimate that rumen CLA synthesis was 4 to 7% and the rest part derived 

through endogenous synthesis, despite, not many studies were report to investigate the 

importance of endogenous synthesis in the adipose tissue of ruminant muscles (Dannenberger 

et al., 2005). Effect of the diet is important because the CLA isomers composition can change 

in relationship to the rpCLA supplementation. The reason of the use of rumen protected CLA 

is linked to increase the passage of CLA into the duodenum, protecting against rumen 

biohydrogenation (Albertì et al., 2013). Scarce information are available about the influence 

of rpCLA on CLA content in beef, as example, in this trial it is observed, that not all the 

isomers are higher in the diet with supplementation 80 g/d/animal, but some are higher in the 

supplementation 8 g/d/animal. From results of this trial, rpCLA supplementation influences 

mainly the two main isomers C18:2cis9,trans11 and C18:2trans10,cis12, otherwise, Poulson 

et al.(2004) found that rpCLA mixture increase C18:2trans10,cis12 but not 

C18:2cis9,trans11. In Schiavon et al. (2011) was found that supplementation of rpCLA 

increased the C18:2trans10,cis12 isomer on average by +5.6 times with respect to HSO 

(Hydrogenate Soybean Oil) and when the CLA mixture was included in the rations the 

concentration of this isomer is increased with respect to control much more in muscles (+20.4 

times), than in subcutaneous fat (CF) and intramuscular (IF) (where this increase respectively 

of +0.2 and +0.9 times). This shows that C18:2trans10,cis12 isomer present in the tissues 

seem to originate only from the gastrointestinal tract.  

From the analytical point of view It has been demonstrated that the use of different 

extraction methodology results in different lipid recoveries in biological samples. The main 

problem in this step are due to the incomplete extraction which means an underestimation of 

CLA isomers and an increase of the proportions of trans/trans isomers. The analytical 

methodology for CLA isomers are important now that are recognized their various effect in 

biological system. To overcome isomerization and epimerization problems, in this study, is 

used Folch (1957) for the extraction and an acid-base methylation characterized by different 

mixture of solvents if compare to Jenkins, (2010). Regarding, the chromatography technique 

one dimensional GC and two dimensional GCxGC may have some limitation in CLA isomers 

analysis (Jover et al., 2005; Manzano et al.,2012) and they are considered not suitable for a 

complete separation. It is recognized that the combination of methods will be required to 

provide the full isomeric distribution (Aldai et al., 2005). With Ag
+
HPLC CLA FAME are 

selectively detected by their characteristic UV absorbance at 233 nm and isomer identities in 
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HPLC chromatograms are based on co-injections of known reference materials obtain from 

commercial sources of synthesized. The quantification is based on the measurement of the 

integrated area under the peaks (Rodríguez-Castaňedas et al., 2011). The use of three columns 

in series increase the resolution of this system allows a clearly separation of the four isomers 

C18:2cis9,trans11, C18:2trans10,cis12, C18:2cis11,trans13, and C18:2trans8,cis10 that are 

found in a commercial CLA preparation, plus the identification of the trans/trans and 

cis/trans groups. In our study the number of columns used are three because the use of more 

than three columns in series provide diminishing benefits (Roach et al., 2002; Kramer et 

al.,1998). As report by Sehat et al. (1999), the importance of use column in series is that in the 

two C18:2 11,13 geometric isomers are clearly resolved. 

 

7.6 CONCLUSIONS 

CLA content, as the fatty acid profile, can change according to many effects. Diets and 

tissue are probably the most important and as report in this trial CLA distribution is tissue-

specific and highly dependent on the diet. rpCLA supplementation increase CLA isomers 

content but in particular increase the amount of the two main isomers that are also main 

components of the supplementation (C18:2cis9,trans11 and C18:2trans10,cis12). The 

different distribution among tissue is related to the different capacity of the tissue to absorb 

CLA isomers. Subcutaneous fat is the tissue with the high amount of CLA if compare to the 

others two and no differences where identify between muscle and liver. The knowledge 

obtained in this experiment are linked to the use of a different chromatography technique. The 

most common is the two dimensional GC (GCxGC) a technique with an high resolution 

power, able to separated fatty acids according to their carbon chain length but not able to 

identify more than the two main CLA isomers (C18:2cis9,trans11 and C18:2trans10,cis12). 

Actually this method permit to separate 5 CLA isomers according to the number of pure 

isomers use as references standards. Otherwise, Silver Ion High Performance Liquid 

Chromotography (Ag
+
HPLC) identify 13 CLA isomer belonging to the three regions cis/cis, 

trans/trans and cis/trans. In this situation is possible separated not only the main isomers but 

also the minor with only a problem in the region of cis/cis due to a lack of references. In 

conclusion is possible to say that analysis of the complete fatty acids profile and CLA isomers 

are very important, because of the biological activity of the different groups (Saturated, 

Monounsaturated and Polyunsaturated) and CLA isomers. However, it is necessary linked the 
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common analytical gas-chromatography to others, such as, liquid-chromatography to have a 

complete knowledge of fatty acids profile and the content of CLA isomers. 
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Table 7.1: CLA isomers distribution in Longissimus Thoracis (LT). Effect of Feeding System (FS, 0, 8, 80 g/d/animal) on their distribution (CLA 

isomers are report according to the amount, from the most abundant to the least abundant). All the data are express in mg/g tissue.  
 

 
Feeding System 

 
P

2
 FS 

P 

Animal 

Effect 

RMSE 

 
0

1
 8

1
 80

1
 

 
0 vs 80 8 vs (0.9 thesis0+0.1thesis80) 

ΣCLA
3
 3.24 2.59 3.20 

 

0.96 0.44 0.69 929837 141659 

C18:2c9,t11 2.50 2.08 2.26 

 
0.71 0.53 0.80 736 267 

C18:2t7,c9 0.46 0.30 0.42 

 
0.72 0.20 0.41 127 87.0 

C18:2t10,c12 0.09 0.07 0.30 

 
0.01 0.47 0.02 74.0 23.0 

C18:2t11,c13 0.05 0.04 0.04 

 
0.32 0.42 0.54 16.8 10.2 

C18:2t9,t11 0.04 0.03 0.06 

 
0.35 0.42 0.29 17.2 5.62 

C18:2t8,c10 0.03 0.02 0.03 

 
0.97 0.14 0.24 4.97 10.4 

C18:2t10,t12 0.02 0.02 0.05 

 
0.05 0.80 0.07 14.8 3.75 

C18:2t7,t9 0.01 0.01 0.01 

 
0.61 0.34 0.60 3.27 2.69 

C18:2c11,t13 0.01 0.01 0.01 

 
0.51 0.29 0.53 2.44 2.05 

C18:2t11,t13 0.01 0.01 0.01 

 
0.64 0.97 0.86 3.59 1.28 

C18:2c12,t14 0.01 0.01 0.01 

 
0.33 0.70 0.42 1.61 1.75 

C18:2t8,t10 0.01 0.004 0.004 

 
0.38 0.21 0.38 0.47 1.66 

C18:2t12,t14 0.004 0.002 0.005   0.48 0.41 0.38 1.66 0.86 
 

1
:rpCLA supplementation (g/d/animal) 

2
: Orthogonal Contrast between diet. 

3
: ΣCLA= C18:2c9,t11+ C18:2t7,c9+ C18:2t10,c12+ C18:2t11,c13+ C18:2t9,t11+ C18:2t8,c10+ C18:2t10,t12+ C18:2t7,t9+ C18:2c11,t13+ C18:2t11,t13 

               + C18:2c12,t14+C18:2t8,t10+ C18:2t12,t14 
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Table 7.2: CLA isomers distribution in Liver. Effect of Feeding System (FS, 0, 8, 80 g/d/animal) on their distribution (CLA isomers are report 1 

according to the amount, from the most abundant to the least abundant). All the data are express in mg/g tissue.  2 

 3 

 
Feeding System 

 
P

2
 FS 

P 

Animal 

Effect 

RMSE 

  0
1
 8

1
 80

1
  0 vs 80 8 vs (0.9 thesis0+0.1thesis80) 

ΣCLA
3
 1.05 1.77 1.31 

 

0.55 0.13 0.29 337 542 

C18:2c9,t11 0.84 1.35 1.01 

 
0.64 0.18 0.38 272 441 

C18:2t7,c9 0.07 0.20 0.07 

 
0.98 0.03 0.05 38.8 51.4 

C18:2t9,t11 0.04 0.04 0.04 

 
0.86 0.98 0.98 7.00 17.9 

C18:2t10,c12 0.03 0.08 0.11 

 
0.01 0.07 0.02 18.6 25.9 

C18:2t11,c13 0.02 0.03 0.02 

 
0.59 0.16 0.34 7.78 11.5 

C18:2t8,c10 0.02 0.02 0.02 

 
0.22 0.51 0.44 0.00 10.0 

C18:2t7,t9 0.01 0.01 0.01 

 
0.43 0.54 0.68 3.47 4.50 

C18:2t10,t12 0.01 0.01 0.01 

 
0.84 0.29 0.52 2.36 4.00 

C18:2c11,t13 0.005 0.01 0.01 

 
0.64 0.12 0.27 1.23 2.73 

C18:2c12,t14 0.003 0.01 0.003 

 
0.95 0.06 0.12 0.96 1.95 

C18:2t11,t13 0.002 0.003 0.003 

 
0.38 0.38 0.56 0.19 1.29 

C18:2t8,t10 0.001 0.004 0.003 

 
0.26 0.05 0.13 0.57 2.08 

C18:2t12,t14 0.000 0.001 0.001   0.32 0.12 0.26 0.00 0.50 
 

4 
1
: rpCLA supplementation (g/d/animal). 5 

2
: Orthogonal Contrast between diet. 6 

3
: ΣCLA= C18:2c9,t11+ C18:2t7,c9+ C18:2t9,t11+C18:2t10,c12+ C18:2t11,c13+ C18:2t8,c10+ C18:2t10,t12 + C18:2c11,t13+ C18:2c12,t14+C18:2t11,t13+C18:2t8,t10+  7 

                 C18:2t12,t14.8 
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Table 7.3: CLA isomers distribution in Subcutaneous Fat. Effect of Feeding System (FS, 0, 8, 80 g/d/animal) on their distribution (CLA isomers are 

report according to the amount, from the most abundant to the least abundant). All the data are express in mg/g tissue.  
 

 
Feeding System 

 
P

2
 FS 

P 

Animal 

Effect 

RMSE 

  0
1
 8

1
 80

1
   0 vs 80 8 vs (0.9 thesis0+0.1thesis80) 

ΣCLA
3
 21.8 33.6 32.8 

 

0.16 0.16 0.24 5782 8769 

C18:2c9,t11 17.4 26.6 24.8 

 
0.26 0.19 0.33 5359 7063 

C18:2t7,c9 2.74 3.91 3.49 

 
0.20 0.07 0.16 0.00 908.3 

C18:2t10,c12 0.42 0.68 2.55 

 
<0.001 0.79 <0.001 161.0 245.2 

C18:2t11,c13 0.38 0.47 0.36 

 
0.85 0.46 0.64 0.00 199.1 

C18:2t8,c10 0.26 0.49 0.36 

 
0.47 0.14 0.30 131.5 136.8 

C18:2t9,t11 0.22 0.31 0.48 

 
<0.01 0.18 <0.01 0.00 82.6 

C18:2t10,t12 0.09 0.18 0.36 

 
<0.01 0.31 0.01 0.00 95.8 

C18:2c11,t13 0.08 0.40 0.07 

 
0.95 0.19 0.32 267.5 54.6 

C18:2t7,t9 0.08 0.24 0.13 

 
0.69 0.18 0.38 56.6 173.3 

C18:2c12,t14 0.07 0.20 0.07 

 
1.00 0.35 0.56 167.6 26.6 

C18:2t11,t13 0.04 0.05 0.06 

 
0.19 0.84 0.36 0.00 17.1 

C18:2t8,t10 0.04 0.04 0.06 

 
0.01 0.71 0.01 0.00 10.8 

C18:2t12,t14 0.02 0.02 0.02   0.15 0.21 0.26 1.77 5.88 
 

1
: rpCLA supplementation (g/d/animal). 

2
: Orthogonal Contrast between diet. 

3
: ΣCLA= C18:2c9,t11+ C18:2t7,c9+ C18:2t10,c12+ C18:2t11,c13+ C18:2t8,c10+C18:2t9,t11+ C18:2t10,t12+C18:2c11,t13+C18:2t7,t9+C18:2c12,t14+C18:2t11,t13+ 

                 C18:2t8,t10+ t14C18:2t12,t14. 
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General Conclusions 

As the title suggest the main purpose of this thesis was study Conjugated Linoleic 

Acid (CLA) content in animal, belonging to different breeds (beef and lambs), fed with rumen 

protected CLA supplementation (rpCLA). The study of CLA is very difficult, due to the 

presence of double bonds that make them unstable and more frequently subject to 

isomerization and epimerization. The topic of my thesis was thought considering the previous 

results on CLA for study in deep this important molecules paying attention to their effects on 

animal performance and the effects that can influences their amount in ruminant products 

(meat, milk and dairy products). As saw before the general objectives are divided as follow: 

the methodological approach, the study of the sources of variation on CLA isomers and fatty 

acids profile and the effect of rpCLA on animal performance.  

Firstly was evaluate the importance of the method of extraction comparing three 

different methods in terms of mean, repeatability, and variance homoscedasticity, of the 

measures of single and groups of FA in 3 tissues collected from young growing bulls (liver, 

subcutaneous fat and muscle). In this first part only two dimensional gas-chromatography 

(GCxGC) was use for analyze fatty acids and it is found to be not the suitable method for 

CLA isomers. Initially, this technique identifies only the two main isomers by reference 

standards and one by position (C18:2cis9,trans11, C18:2trans10,cis12 by references 

standards and C18:2trans11,cis13 by position), but was not able to identify the minor isomers. 

After that, our purpose was to increase the power resolution of our GCxGC increasing CLA 

isomers identify by references standards. Actually, with five pure isomers as reference it is 

able to identify more than the two most important (C18:2cis9,trans11, C18:2trans10,cis12, 

C18:2trans11,cis13, C18:2cis9,cis11 and C18:2trans9,trans11). Despite, the importance and 

the high resolution power of our two dimensional GC, the best method for CLA isomers was 

the Silver Ion High Performance Liquid Chromatography (Ag
+
HPLC). The second step was 

used Ag
+
HPLC for analyzed CLA isomers with the objective to identify the 24 possible 

isomers normally present in matrix samples. Method, in particular extraction and methylation, 

was considered as a source of variation due to the potential effect that it can have on CLA 

content. As consequence, we try to increase the knowledge about the sources of variation, 

considering that method is not the only one. There are other many effects directly connected 

to animals that can change the FA profile and CLA content.  

The main results obtain from my thesis are briefly report below. It was observe that 

many effects can influence FA profile, such as; methods and tissues. FA and CLA are tissues-
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specific. Method should be chose in relation to the type of samples analyze and in my 

experiment is seen that many methods can give undetectable value. The number of this value 

is 5, 14 and 9 respectively in liver, subcutaneous fat and Longissimus Thoracis. The incidence 

of undetectable values on the total number of expected observation, which depend on the 

sensitivity of the method used was calculated for liver, fat and muscle, ranged 0.04 to 0.08, 

0.05 to 0.06, and 0.05 to 0.12, respectively, with incidences greater for the J method 

compared to the other two for liver and muscle samples but not for subcutaneous fat. 

Regarding GC×GC comprehensive system revealed the presence of 76 peaks and 5 CLA 

isomers corresponding to the 5 pure isomers present like standards used as references. Using 

Ag
+
HPLC, CLA FAME are detect thanks to their characteristic UV absorbance at 233nm and 

the CLA identify are in total 13 for each tissues and belonging to cis/trans, trans/trans and 

cis/cis regions. The only problem with Ag
+
HPLC is the resolution power in the cis/cis region 

because of, very often, the identification of C18:2cis9,cis11 isomer is difficult and not 

accurate. Other effects considered in the second part of my thesis are still important for the 

influences that they can have on fatty acids profile. Among these factors diet and tissue are 

probably the most important. Diet is important and in particular the rule of pasture is very 

significant. Pasture can increase PUFA and MUFA content, in particular Ω3 and CLA 

decreasing SFA content and changing Ω6/Ω3 ratio. The supply of rpCLA increased the 

concentration of C18:2trans10,cis12. In some case there is also a relation between suckling 

lamb’s tissues composition and ewe’s milk. Tissues effect influence fatty acids composition 

and each tissue have a different composition, related to lipids composition and the type of 

lipids present. Tissue with the most different characteristic was liver, rich in polyunsaturated 

fatty acids and in particular in long chain fatty acids (LC-PUFA). Is known that in meat and 

milk samples different fatty acids can be found, as example, saturated (SFA), 

monounsaturated (MUFA) and polyunsaturated fatty (PUFA) and they can have different 

consequence (positive or negative) on human health. SFA are known to be a potential health 

risk but MUFA and PUFA have positive effect on health and in particular, LC-PUFA, CLA 

and Ω3.  

Regarding animals performance, was observe that the rpCLA supplementation can 

have many effects such as increase the lean body mass and decrease fat deposition increasing 

as consequence  the efficiency of energy. In young growing bulls CLA has favorable effects 

on nitrogen utilization and in ruminant rpCLA can reduce the fat content in milk  from dairy 

cows, sheep and goats. In my thesis these effects are evaluate considering lamb reared with 
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different feeding system and the effects on milk and meat, considering the influences on 

animal growth and slaughter traits and the composition and the coagulation properties of milk.   

In conclusion, is possible to say, that is important known which are the sources of 

variation because in this way is possible created meat and milk with an higher content of the 

fatty acid positive for health reducing fatty acid with negative effect. The idea is to change FA 

profile of meat, milk and dairy products, increasing PUFA, CLA and Ω3 but decreasing SFA. 

Regarding CLA content, it can increase with diet, especially pasture and rpCLA 

supplementation. The complex nature of these molecules introduces the necessity to identify 

new methods of analysis that not increase the isomers with trans/trans configuration that is 

considered man made and not naturally presents. Moreover, this geometric configuration is 

connected with an increase of negative effect on human health. Many new studies are 

necessary for identify which is the best method considering that it has been adapt to the 

sample matrix for obtain a real quantification of CLA isomers. Extraction methods and in 

particular methylation methods could have an important rule. Regarding, the chromatography 

technique CGxCG is the most important if the aim is the complete fatty acids profile however 

if the objective is analyzed CLA isomers, Ag
+
HPLC is considered the most important and the 

most used.  
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