
DIPARTIMENTO

DI INGEGNERIA

DELL'INFORMAZIONE

From scans to models: Registration of 333D human
shapes exploiting texture information

Ph.D. Candidate

Federica Bogo

Advisor

Prof. Enoch Peserico

School Director

Prof. Matteo Bertocco

Coordinator

Prof. Carlo Ferrari

2015

Ph.D. School in
Information Engineering

Series XXVI

University of Padova

Dept. of Information Engineering





Sede amministrativa: Università degli Studi di Padova
Dipartimento: Ingegneria dell’Informazione

Scuola di dottorato di ricerca in: Ingegneria dell’Informazione
Indirizzo: Scienza e Tecnologia dell’Informazione
Ciclo: XXVI

From scans to models: Registration of 333D human shapes
exploiting texture information

Direttore della Scuola

Prof. Matteo Bertocco

Coordinatore

Prof. Carlo Ferrari

Supervisore

Prof. Enoch Peserico

Dottoranda

Federica Bogo





P U B L I C AT I O N S

This thesis presents scientific results published in:

• F. Bogo, J. Romero, M. Loper, M. J. Black. FAUST: Dataset and evaluation for 3D

mesh registration. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 3794–3801, 2014. [34]

• F. Bogo, J. Romero, E. Peserico, M. J. Black. Automated detection of new or evolv-

ing melanocytic lesions using a 3D body model. Medical Image Computing and
Computer-Assisted Intervention (MICCAI), Lecture Notes in Computer Science,
vol. 8673, pp. 593-600, 2014. [35]

In the last years I worked on several research topics. The main results obtained led to
the following publications, that are not included in the corpus of this thesis:

• F. Bogo, F. Peruch, A. Belloni Fortina, E. Peserico. Where’s the lesion? Variabil-

ity in human and automated segmentation of dermoscopy images of melanocytic skin

lesions. Book chapter in Dermoscopy Image Analysis, M. E. Celebi, T. Mendonca,
J. S. Marques eds., CRC Press/Taylor & Francis. To appear.

• F. Peruch, F. Bogo, M. Bonazza, V. Cappelleri, E. Peserico. Simpler, faster, more ac-

curate melanocytic lesion segmentation through MEDS. IEEE Transactions on Biomed-
ical Engineering, 61(2), pp. 557–565, 2014.

• F. Peruch, F. Bogo, M. Bonazza, M. Bressan, V. Cappelleri, E. Peserico. Simple,

fast, accurate melanocytic lesion segmentation in 1D colour space. 8th International
Conference on Computer Vision Theory and Applications (VISAPP), pp. 191–
200, 2013.

• F. Bogo, E. Peserico. Optimal throughput and delay in delay-tolerant networks with

ballistic mobility. ACM 19th Annual International Conference on Mobile Comput-
ing & Networking (MobiCom), pp. 303–314, 2013.

• F. Bogo, M. Samory, A. Belloni Fortina, S. Piaserico, E. Peserico. Psoriasis seg-

mentation through chromatic regions and Geometric Active Contours. 34th Annual
International Conference of the IEEE Engineering in Medicine and Biology Soci-
ety (EMBC), pp. 5388–5391, 2012.

v





A B S T R A C T

New scanning technologies are increasing the importance of 3D mesh data, and of
algorithms that can reliably register meshes obtained from multiple scans. Surface reg-
istration is important e.g. for building full 3D models from partial scans, identifying
and tracking objects in a 3D scene, creating statistical shape models.

Human body registration is particularly important for many applications, ranging
from biomedicine and robotics to the production of movies and video games; but
obtaining accurate and reliable registrations is challenging, given the articulated, non-
rigidly deformable structure of the human body.

In this thesis, we tackle the problem of 3D human body registration. We start by
analyzing the current state of the art, and find that: a) most registration techniques
rely only on geometric information, which is ambiguous on flat surface areas; b) there
is a lack of adequate datasets and benchmarks in the field. We address both issues.

Our contribution is threefold. First, we present a model-based registration technique
for human meshes that combines geometry and surface texture information to provide
highly accurate mesh-to-mesh correspondences. Our approach estimates scene light-
ing and surface albedo, and uses the albedo to construct a high-resolution textured
3D body model that is brought into registration with multi-camera image data using
a robust matching term.

Second, by leveraging our technique, we present FAUST (Fine Alignment Using
Scan Texture), a novel dataset collecting 300 high-resolution scans of 10 people in a
wide range of poses. FAUST is the first dataset providing both real scans and automat-
ically computed, reliable "ground-truth" correspondences between them.

Third, we explore possible uses of our approach in dermatology. By combining our
registration technique with a melanocytic lesion segmentation algorithm, we propose
a system that automatically detects new or evolving lesions over almost the entire
body surface, thus helping dermatologists identify potential melanomas.

We conclude this thesis investigating the benefits of using texture information to
establish frame-to-frame correspondences in dynamic monocular sequences captured
with consumer depth cameras. We outline a novel approach to reconstruct realistic
body shape and appearance models from dynamic human performances, and show
preliminary results on challenging sequences captured with a Kinect.
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S O M M A R I O

Lo sviluppo di nuove tecnologie di scansione sta accrescendo l’importanza dei dati
tridimensionali (3D), e la necessità di algoritmi di registrazione adeguati per essi. Re-
gistrare accuratamente superfici 3D è importante per identificare oggetti ed effettuarne
il tracking, costruire modelli completi a partire da scansioni parziali, creare modelli
statistici.

La registrazione di scansioni 3D del corpo umano è fondamentale in molte appli-
cazioni, dal campo biomedico a quello della produzione di film e videogiochi; ottenere
registrazioni accurate e affidabili è però difficile, poiché il corpo umano è articolato, e
si deforma in maniera non rigida.

In questa tesi, affrontiamo il problema della registrazione di scansioni 3D del corpo
umano. Iniziamo la nostra analisi considerando lo stato dell’arte, e rilevando che: a)
la maggior parte delle tecniche di registrazione 3D usa solo informazione geometrica,
che è ambigua in zone in cui le superfici sono lisce; b) c’è una mancanza di adeguati
dataset e benchmark nel settore. L’obiettivo di questa tesi è quello di risolvere questi
problemi.

In particolare, portiamo tre contributi. Primo, proponiamo una nuova tecnica di
registrazione per scansioni 3D del corpo umano che integra informazione geome-
trica con informazione cromatica di superficie. La nostra tecnica dapprima stima
l’illuminazione nella scena, in modo da fattorizzare il colore della superficie osser-
vata in effetti di luce e pura albedo; l’albedo estratta viene quindi usata per creare un
modello 3D del corpo ad alta risoluzione. Tale modello viene allineato a una serie di
immagini 2D, acquisite simultaneamente alle scansioni 3D, usando una funzione di
matching robusta.

Secondo, sulla base delle registrazioni prodotte dalla nostra tecnica, proponiamo un
nuovo dataset per algoritmi di registrazione 3D, FAUST (Fine Alignment Using Scan
Texture). FAUST colleziona 300 scansioni 3D relative a 10 soggetti in differenti pose.
È il primo dataset che fornisce sia scansioni reali, sia registrazioni accurate e affidabili
("ground truth") per esse.

Terzo, esploriamo possibili usi del nostro approccio in dermatologia. Combinando
la nostra tecnica di registrazione con un algoritmo di segmentazione per lesioni me-
lanocitiche, proponiamo un sistema di screening in grado di rilevare l’insorgenza di
nuove lesioni o modifiche in lesioni preesistenti su quasi tutta la superficie cutanea;

ix



x

tale sistema è di aiuto per i dermatologi nell’individuazione di potenziali melanomi.
Concludiamo questa tesi esaminando l’importanza di usare informazione cromatica

per registrare scansioni 3D acquisite in sequenze dinamiche. In particolare, propo-
niamo un nuovo approccio per ottenere modelli 3D realistici e completi del corpo
umano a partire da sequenze acquisite con un singolo Kinect.
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1 I N T R O D U C T I O N

1.1 problem and thesis statement

This thesis addresses the problem of registering 3D real scans of human bodies. How

can one reliably establish dense correspondences between articulated, deformable surfaces like

the human body? Can one assess the accuracy of such correspondences in a quantitative,

rigorous manner? And, in this light, are current state-of-the-art registration techniques

accurate enough, or do they exhibit some limitations? We would like to put virtually no
constraints on the body surfaces we consider. Humans have different shapes, and
move assuming a variety of different poses; furthermore, in generic setups, we cannot
assume the presence of predefined markers on their bodies.

Studying humans has always been extremely important in computer vision and
graphics. Detecting people in images or videos, estimating their shape and pose, mod-
eling hair, clothing or muscle deformations are just a few examples of tasks that have
received a lot of attention during recent years. With the diffusion of new, low-cost
scanning technologies, the amount of 3D data on humans that is gathered is con-
stantly increasing. Effectively exploiting this data has an impact on different fields,
ranging from entertainment and garment industry to medicine and surveillance.

Data captured with scanner devices, however, cannot be used "as is". Most scanning
systems provide partial 3D surfaces, with different resolutions and topologies. Prereq-
uisite to extract useful information from these scans is registering them – i.e. defining
a set of correspondences between their surfaces (see Fig. 1).

Registering human scans is a challenging task. Scanner devices suffer from noise
and outliers, as a result of software and hardware limitations; they can acquire only
a portion of the body surface at each capture, due to occlusions. Human bodies are
extended and articulated, and they deform in a non-rigid manner. Even though similar
geometric features are important indicators for matching surface regions, they can
significantly differ when the body is deforming.

In particular, there is a delicate interplay between shape and pose in the geometry
of the human body. For instance, the area around the elbow deforms in different ways,
depending on whether or not the arm is flexed. And such deformations vary if the
subject is more or less muscular.

1



2 introduction

Figure 1: Registering two 3D scans means finding a set of correspondences between their sur-
faces: here, corresponding surface points are represented using the same color.

We find that geometric features alone are not enough to establish accurate corre-
spondences between human bodies, particularly in smooth regions that are devoid of
strong geometric features (e.g. the belly or the back). Due to this ambiguity, source
and target surfaces may "slide" freely during registration.

The errors caused by sliding might be particularly significant when one considers
bodies in motion: the wider the range of poses considered, the higher the difficulty in
capturing non-rigid deformations based on geometry information alone.

We show that combining geometry with additional surface information that we call
appearance (including texture and color), is a powerful tool for a) improving the quality
of geometry-based registrations and b) quantitatively assessing their accuracy.

We develop a novel technique for registering 3D human scans that produces reliable
correspondences by exploiting both geometric and dense texture features, and use it
to create realistic body shape and appearance models.

To assess the accuracy of the correspondences produced by our algorithm, we ini-
tially rely on a high-frequency texture pattern applied to the skin. While assuming
high-frequency texture can be reasonable when registering dressed people, it is some-
what restrictive when dealing with naked bodies. We later remove our initial assump-
tion, and show that even the texture provided by the naked human skin (e.g. by the
presence of moles or birthmarks) provides enough information to produce accurate
registrations.
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1.2 motivating applications

Obtaining accurate and reliable registration of 3D surfaces, and in particular of human
bodies, has an impact on a variety of fields – ranging from graphics and computer
vision to robotics and medicine.

graphics When we play a video game, watch an animated film, or interact with
a 3D virtual environment, we often look at digital 3D representations of humans. A
large number of these representations is inspired or directly adopted from the real
world. For example, in the Digital Ira project [13], high-resolution scans and video
recordings of an actor are combined to create a real-time, photoreal digital human
character (see Fig. 2).

In general, data-driven approaches collect huge amounts of 3D data, and then ag-
gregate this information to build representative 3D models. Prerequisite to this task is
the definition of meaningful correspondences for the captured data.

Corpora of registered human scans have been used to learn statistical models of
body shape and pose variation across people [15, 44, 65, 68]. These models find ap-
plications in a variety of tasks, like shape completion [14, 20, 68, 100], animation of
motion capture sequences [89], morphing [14, 65], transfer of texture [14] and anima-
tion controls [14, 15, 127].

Surface registration is also used by data-driven approaches to model clothing [61]
and specific body dynamics, like skin and muscle deformations [94, 99] and facial ex-
pressions [128]. Recent work on breath modeling [127] uses the registration technique
proposed in this thesis.

Besides shape, texture plays an important role in digital rendering too. Recover-
ing high-quality textures makes digital 3D reconstructions more realistic and appeal-
ing [13, 29, 32, 145]. Furthermore, accurate models of scene lighting and surface re-
flectance can help in capturing and reproducing fine geometric details [122, 137, 138].

computer vision As mentioned above, defining dense correspondences between
human scans in a given corpus allows the creation of low-dimensional statistical shape
models. These models have been used to estimate human shape and pose from im-
ages [24, 62] and body shape under clothing [22, 64], and to predict anthropometric
measurements [45, 126]. Tracking is another important task that can benefit from the
introduction of a generative body model [67, 73, 93].

Although this thesis focuses on human body registration, we think that the insights
we provide might be useful also in applications targeted to different object classes. Reg-
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Figure 2: In the Digital Ira project [13], high-resolution scans and video recordings of an actor
(top row) are combined to render a real-time digital character (bottom row).

istration of generic 3D surfaces is important for object identification and retrieval [36],
and for building complete 3D models from partial scans [19, 29].

robotics Computer vision systems for autonomous robots can benefit from more
accurate and robust 3D registration techniques, for instance in tasks like scene recon-
struction [55], object identification or object retrieval [63]. Additionally, human body
registration and modeling may have importance in the development of realistic hu-
manoid robots.

medicine One straightforward application of 3D human body registration is the
monitoring of body shape evolution over time. This can be useful in nutrition and
sport science: for example, in the analysis of the relations between physical exercise,
diet and body shape, and in the prevention and treatment of eating disorders. It
can also aid doctors in planning and monitoring rehabilitative activities for patients
with motor disabilities. Furthermore, collecting corpora of registered body scans can
help in understanding correlations between body shape and particular diseases (e.g.
diabetes).

An example in this sense is given by the MPI BMI Visualizer [1] (Fig. 3). It is a
web application that uses a statistical body shape model, learned from a corpus of



1.3 contributions 5

Figure 3: The MPI BMI visualizer [1] is a web application that uses a statistical human body
model to associate a Body Mass Index (BMI) value provided by the user to a specific
body shape.

registered scans, to visualize body shape variations as a function of the Body Mass
Index (BMI).

Recovering appearance, besides shape, opens even further scenarios. Recently, our
technique has been employed in a psychological study aimed at analyzing the influ-
ence of shape and appearance in the perception of self [104]. In Chapter 5, we show
how our approach can be used to accurately track skin lesion changes over almost the
entire body surface. This has potential applications in dermatology, for early diagnosis
of melanoma.

1.3 contributions

In this thesis, we tackle the problem of defining accurate, dense correspondences be-
tween 3D surfaces, represented as polygonal meshes. We start by analyzing the current
state of the art, and find that: a) most registration techniques rely only on geometric
information, which is ambiguous on flat surface areas; b) there is a lack of adequate
datasets and benchmarks in the field. The goal of this thesis is to overcome these limi-
tations. While we focus on registration of human bodies, we believe that many of our
insights can be of value also for more general approaches.

Our main contributions can be summarized as follows:

1. We identify an important shortcoming of current state-of-the-art registration tech-
niques: accurate correspondences cannot be established in geometrically smooth
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areas if we consider only geometry information. To quantitatively evaluate these
inaccuracies, we combine the information given by geometry with another, com-
plementary source of information: surface appearance.

2. We develop a novel registration technique for human bodies that provides dense
and reliable correspondences. Our approach estimates scene lighting and surface
albedo, and uses the albedo to construct a high-resolution textured 3D model
that is brought into registration with multi-camera image data using a robust
matching term.

3. We propose a quantitative evaluation metric for 3D mesh registration, that con-
siders inaccuracies not only in terms of geometry, but also in terms of appear-
ance.

4. Based on our technique and evaluation metric we build FAUST, a novel dataset
collecting 300 high-resolution scans of different people in different poses. This
is the first dataset providing both real meshes, and automatically computed
"ground-truth" correspondences between them.

5. We evaluate several state-of-the-art registration techniques on our dataset and
show that they have difficulties dealing with this real-world data.

6. We explore possible uses of our approach in the dermatological field. By combin-
ing our registration technique with a lesion segmentation algorithm, we propose
a system that automatically detects new or evolving melanocytic lesions over
almost the entire body surface.

7. We investigate the benefits of using appearance information to establish frame-to-
frame correspondences in dynamic sequences; in particular, we propose a novel
technique to obtain realistic shape and appearance models from challenging hu-
man performances captured with a consumer RGB-D camera.

1.4 thesis outline

The remainder of this thesis is organized in six chapters.
Chapter 2 briefly reviews some basic notions. This preliminary background helps

in contextualizing our work and makes subsequent chapter easier to understand. We
address three major areas: scanning technologies, presenting the most widely used
high- and consumer-quality acquisition systems; registration techniques, identifying
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challenges and achievements in model-free and model-based non-rigid registration;
appearance modeling, introducing the notions of texture map, albedo and shading,
and common approaches to recover them.

The core of our work is presented in Chapter 3. After reviewing the most related
approaches in the literature, we present our model-based registration technique for
human scans. Our discussion proceeds in five steps. First, we describe our body
model in detail. We then introduce our approach to estimate scene lighting and de-
compose scan surface color into albedo and shading. Based on this, we define our
robust appearance-based error term and introduce the global objective function we
minimize during registration. After providing some details about optimization, we
qualitatively evaluate the impact of considering appearance, besides geometry, when
defining dense scan-to-scan correspondences.

Our technique produces highly reliable registrations. We propose to use them to
build a novel dataset collecting real human scans, FAUST. The dataset is described in
Chapter 4. We discuss the main novelties introduced by FAUST in comparison with
previous work, and provide details about its structure. We also present a novel eval-
uation methodology, that allows us to assess dense "ground-truth" correspondences
between real scans. Finally, we define on FAUST a new 3D registration benchmark
and evaluate, according to it, various state-of-the-art techniques, both model-based
and model-free.

Chapter 5 explores possible uses of our approach for medical applications. We
propose a novel system to monitor the evolution of melanocytic lesions over almost
the entire body surface, and evaluate its accuracy through a preliminary pilot study.

Chapter 6 leverages our appearance-based technique to deal with data acquired
with a consumer RGB-D camera. We identify the main challenges posed by this kind
of data, outline a solution to recover body shape and appearance from challenging
human motions, and show a set of preliminary results.

Finally, Chapter 7 summarizes our work and looks at directions of future research.





2 P R E L I M I N A R I E S

This chapter introduces some basic notions, that help contextualize our work and
facilitate the comprehension of the subsequent chapters. We address three main areas:
first, we briefly present the most important 3D scanning technologies currently used,
with a focus on full-body scanners (Section 2.1); second, we provide an overview
of 3D surface registration techniques, considering both model-free and model-based
approaches (Section 2.2); third, we discuss how the problem of recovering high-quality
appearance models for 3D data has been addressed so far in the literature (Section 2.3).
We conclude the chapter providing some details about the mathematical notation used
throughout this thesis (Section 2.4).

2.1 scanning systems

Different applications may require, in general, to deal with different types of data.
Some applications work with static 3D scans: a single "snapshot" of the object in time.
This might be enough, for example, in shape retrieval or statistical shape modeling.
For other applications, the temporal dimension is more important: for instance, to
track people in a scene, or to learn a model of clothing or human soft tissue deforma-
tions, one should capture multiple 3D scans per second. In the following, we introduce
for convenience a distinction between 3D and 4D scanning systems: the latter have a
frame rate (i.e. number of frames/scans generated per second) suitable for capturing
dynamic scenes, the former do not.

For both 3D and 4D systems, there is a tradeoff between quality of captured data
and equipment costs. Quality can refer to the accuracy and completeness of the recon-
structed surface geometry and texture, and to the absence of noise and outliers.

During recent years there has been an enormous diffusion of consumer depth cam-
eras (like the well-known Kinect [2]); these cameras are commonly referred to as 2.5D
devices, as they produce a depth image where each pixel contains the distance from
the camera plane to the nearest object in the scene.

In this section, we present a brief overview of the most widely used scanning
technologies available nowadays, ranging from expensive systems to home-scanning,

9
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Figure 4: A full-body laser scanner from Cyberware [3] and a laser scan from the CAESAR
dataset [107] (scan resolution: 124825 vertices). 3D reconstruction may be imperfect
in areas that are either unreachable by the laser or invisible by the camera.

lightweight devices. Our presentation is not meant to be exhaustive, and focuses
mainly on the technologies we will refer to in the rest of this thesis; we point the
reader to [31, 109] for two surveys.

2.1.1 3D systems

For 3D static capture, active systems provide the most accurate results. In these sys-
tems, the light sources are specially controlled, as part of the strategy to arrive at the
3D information. In the following, we briefly review three important active scanning
technologies: laser, structured light and active multi-stereo.

Triangulation-based laser scanners have been the state of the art for decades in 3D

reconstruction of static scenes. In these scanners the triangulation takes place between
a laser emitter and a camera. The emitter projects onto the target surface a single light
stripe, that is easily detectable in the image taken by the camera; since the position
and orientation of both emitter and camera are known, the 3D coordinates of all the
points along the stripe can be determined. From a large sequence of images taken as
the stripe sweeps across the target, a complete 3D surface can be reconstructed.

Laser triangulation produces highly accurate reconstructions [31]. One of the most
comprehensive datasets of body shapes, the CAESAR 3D anthropometric dataset [107],
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(a) (b)

Figure 5: Common structured light techniques project multiple parallel lines of light simulta-
neously on the target surface. To facilitate reconstruction, these patterns are usually
encoded temporally (a) or spatially (b). (Image courtesy of C. Piccolo).

was built using two laser scanners from Cyberware [3] and Vitronic [4] (see Sec-
tion 4.1.2 for details about the dataset).

To perform the "scanning" process (i.e. to sweep the laser stripe), these systems
require a precise mechanical apparatus (Fig. 4). This affects costs, acquisition time
(usually on the order of a few seconds or even minutes), and scanning volume; laser
scans often exhibit holes in areas that are either unreachable by the laser or invisible
by the camera (see again Fig. 4).

Structured-light scanners avoid the time-consuming "scanning" phase by directly
projecting a two-dimensional pattern on the target surface. Common approaches
project multiple parallel lines of light simultaneously, and rely on a precise tempo-
ral or spatial code to discriminate between the different lines in the pattern and the
corresponding projection planes (Fig. 5). Projecting multiple patterns in sequence in-
creases accuracy and robustness of the system [133], at the cost of a longer capture
time.

In this work, we will use a full-body 3D active multi-stereo system from 3dMD [5].
Instead of using structured light, the system projects speckle patterns on the target
surface; such patterns are captured and triangulated by multiple stereo cameras to
reconstruct geometry (Fig. 6). The flexible positioning of the cameras allows scan-
ning volumes which are larger than those available using laser scanners, reducing the
number of holes in the scans; on the other hand, inaccuracies in stereo matching may
produce noisier results in some areas (Fig. 7). The "one-shot" projection approach en-
sures acquisition times on the order of a few milliseconds; the recovery time between
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Figure 6: Example of projected speckle pattern captured by a pair of stereo cameras.

Figure 7: The full-body 3D active multi-stereo system from 3dMD [5] used to capture most
of the data in this thesis, and an example scan (scan resolution: 174499 vertices).
Reconstructions are comparable, in accuracy, to those produced by laser scanners.
Active stereo may help in reducing holes in some parts of the scans (e.g. head), at
the cost of increasing noise in others (e.g. hands).

subsequent scan captures requires a few seconds. Further details about the system are
provided in Section 3.2.
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2.1.2 4D systems

Laser sweeping or multiple structured pattern projection may be too time-consuming
to capture full bodies in motion at a high frame rate [129]. As for active multi-stereo,
3dMD recently proposed a 4D scanner that extends the previous technology based
on speckle projection to capture dynamic scenes too. The system captures and recon-
structs dynamic scenes at a rate of 60 scans per second; it can be considered the first
4D scanner providing an accuracy comparable to that of static scanners.

Other 4D scanners produce, in general, less accurate 3D reconstructions. In most
cases, these scanners are multi-camera systems that adopt passive approaches for 3D

surface reconstruction. Significant examples are multi-view passive stereo and shape
from silhouette.

Multi-view passive stereo approaches simultaneously capture multiple images of
the scene from different viewpoints, and then match them based on color information;
the 3D coordinates of a point visible from multiple views can be reconstructed via
triangulation. Matching accuracy may strongly affect the quality of the reconstruc-
tion; hence, the performance of these systems is highest with dense texture and many
camera viewpoints. Recently, Infinite Realities [6] showed compelling results in recov-
ering shape and high-resolution texture using more than one hundred synchronized
DSLR (Digital Single-Lens Reflex) cameras; the system, however, still requires manual
intervention in the reconstruction pipeline.

Shape-from-silhouette approaches extract silhouette images of an object captured
from multiple cameras. A common way to facilitate silhouette extraction is to provide
a simple background, like a homogeneous blue or green cloth. By backprojecting in 3D

the silhouettes according to the camera parameters and intersecting these volumes, the
visual hull of the object can be reconstructed. Customization of number, positioning
and resolution of the cameras allows recovery of shape and texture at different frame
rates and levels of detail. For instance, systems from 4D View Solutions [7] can ensure
a frame rate up to hundreds of frames per second.

Since visual hulls provide only an approximate estimation of the object’s geome-
try, shape-from-silhouette approaches are often combined with other techniques. For
instance, in [115] the authors merge shape from silhouette and multi-view stereo to
improve the quality of 3D reconstruction.

Shading cues can be exploited to infer high-frequency geometric details. Approaches
proposed in [122, 129] combine multi-camera systems with sophisticated lighting in
controlled studio setups to obtain highly detailed 3D reconstructions.
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(a) (b)

Figure 8: Example data captured with a Kinect 2: depth and RGB images (a), reconstructed
point cloud (b). The point cloud and the RGB image have been cropped for visual-
ization purposes. (Scan resolution: 217088 points, including background).

2.1.3 Consumer depth cameras

During recent years the diffusion of consumer depth cameras has promoted the devel-
opment of more lightweight, low-cost scanning systems.

These devices usually combine a depth sensor with a color (RGB) camera to produce
a depth and an RGB stream; typical frame rates are on the order of 30 frames per
second. Each frame of the depth data stream (a depth image) is made up of pixels
that contain the distance from the camera plane to the nearest object; a depth image
can be converted into a 3D point cloud, which contains a point for each pixel of the
depth image. Note that this represents only a partial 3D reconstruction of the scene
(areas not visible from the camera are not reconstructed). Throughout this thesis, we
will refer to these devices also as RGB-D cameras.

One of the most widely used RGB-D cameras is probably the Microsoft Kinect [2],
whose first version was released in 2010. The device uses a near-infrared camera and a
near-infrared laser source to recover depth via structured light. Other low-cost RGB-D
cameras rely on a similar technology [8, 9].
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The new Kinect 2, released recently, improves 3D reconstruction by replacing struc-
tured light with a time-of-flight sensor. The sensor indirectly measures the time it
takes for pulses of laser light to travel from a laser projector to the target surface, and
then back to the image sensor. Figure 8 shows example RGB and depth data captured
with a Kinect 2, together with the reconstructed point cloud.

Prices of consumer depth cameras are on the order of a hundred euros; professional
systems can cost ten or a hundred times more. Lower prices often mean lower quality:
cheaper devices produce more incomplete, noisier, lower-resolution data. Which ac-
quisition system to use is application-dependent, and registration techniques should
be carefully targeted to the data they must deal with.

2.2 model-free versus model-based non-rigid regis-

tration

Human bodies are articulated, non-rigid objects. Consider two scans of two different
subjects (or of the same subject in two different poses): the relation between their sur-
faces cannot be expressed by a rigid transformation. We need to model more complex
deformations.

Lifting the rigidity assumption makes the registration problem significantly more
challenging: registration of non-rigid shapes requires estimating both a set of cor-
respondences, and a suitable warping function that matches the deformation of the
target shape; false correspondences are debilitating, since they can lead to strong dis-
tortions that are not consistent with the target [83]. And indeed, while many effective
rigid registration techniques have been proposed in the last years, non-rigid registra-
tion remains an open problem [119].

This section briefly reviews the main approaches in the literature, dividing them
into model-free and model-based. Model-free techniques do not make any assumption
about the object to be registered; model-based techniques specifically address a class
of objects. Our discussion will mainly focus on techniques we will refer to in the
remainder of this thesis; we point the reader to [76, 119] for two exhaustive surveys.

2.2.1 Model-free approaches

Recent model-free techniques emphasize intrinsic surface representations, that are in-
variant to bending being based on properties like surface distances and angles. These
representations can be used to embed the surfaces to be matched into a new space,
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where their intrinsic geometry is preserved; in the embedded space, the matching
problem reduces to rigid registration.

While many intrinsic representations have been proposed in the literature [76], here
we focus on three of the most significant ones: geodesic distances, diffusion distances
and Möbius transformations.

The geodesic distance between two surface points is defined as the length of the
shortest path, traveling on the surface, that connects the points. Bronstein et al. [37]
represent surfaces as metric spaces, whose metric structure is defined by the geodesic
distance between pairs of points on the surface; a metric space is embedded into
another via Generalized Multidimensional Scaling (GMDS). In this framework, regis-
tering two surfaces corresponds to finding the embedding with minimum distortion
(i.e. the embedding that minimizes the discrepancy between the two metric spaces).
Geodesic distances can be computed efficiently, but are sensitive to topological trans-
formations (modifications in mesh connectivity alter the paths between points, and
can result in significant changes of the geodesic distances).

Alternative representations based on diffusion distances provide greater robustness
against topological changes [39]. Diffusion distances [46] are related to the probability
of traveling on the surface from one point to another in a fixed number of random
steps; they can be efficiently computed from the eigenvalues of a discrete approxima-
tion of the Laplace-Beltrami operator [105]. Mateus et al. [90] match articulated shapes
combining Laplacian embedding with probabilistic point matching. Powerful descrip-
tors used for shape analysis and matching, like the Heat Kernel Signature [36, 98, 117]
and the Wave Kernel Signature [21], are based on diffusion distances.

Lipman et al. [87] pioneer the use of the Möbius transformations, that are conformal
(preserve angles) and contain as a subset the group of isometric (distance-preserving)
transformations. In [87], the authors propose to compute multiple conformal map-
pings between the surfaces to be matched, and then combine them with an algorithm
that "votes" for the most reliable correspondences. Kim et al. [78] extend the approach,
blending different maps instead of adopting a voting scheme. Zeng et al. [143] take
a different direction, combining ideas from [87] with a Markov Random Field (MRF)
framework to perform surface tracking.

Despite the amount of work in the field, techniques based on intrinsic represen-
tations still present a number of limitations. Many approaches can deal only with
nearly isometric deformations. In some cases, they provide only sparse correspon-
dences; and, depending on the adopted intrinsic representation, they may fail for hu-
man shapes due to reflective symmetries [52, 78] (e.g. the front of the body is mapped
to the back). The main limitation, however, seems their scarce robustness to noise.
Most methods require watertight meshes as input; topological changes and presence
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of holes may severely affect the accuracy of these approaches, making them unsuitable
for real-world applications.

2.2.2 Model-based approaches

Many practical applications require to align ("fit") a common template mesh to noisy
scans [14, 18, 20, 65, 68, 82, 100, 139, 144] (see Fig. 9). The template represents a
strong geometric and topological prior, that provides automated hole filling and noise
removal; since it has fixed topology, fitting it to different scans is equivalent to defining
dense correspondences between them.

scan template
scan/
deformed template
overlay

Figure 9: In many practical applications, a common template mesh is deformed to fit noisy
scans.

The alignment process usually corresponds to the minimization of an error function,
combining one or more data terms with some form of regularization.

Classic data terms exploit geometric information. Most approaches use extensions
of the Iterative Closest Point (ICP) algorithm [30] to non-rigid surfaces [41, 71]. The
iteration takes place between two subproblems: estimating a set of correspondences
between scan and template surfaces, and, based on the current correspondences, esti-
mating a non-rigid transformation deforming the template to fit the scan. Non-rigid
ICP or variants have been used to align body parts like faces [18, 82], hands [82], and
full bodies [14, 65, 68, 93, 139].

Since non-rigid ICP is sensitive to local optima [71], the registration is often initial-
ized by identifying manually or automatically a set of corresponding landmarks on
both surfaces. Several approaches [14, 15, 65] use markers placed by a human op-



18 preliminaries

erator, typically in correspondence with key anatomical locations (e.g. where bones
are palpable through the skin). Wuhrer et al. [139] use automatically-detected land-
marks to initialize a skeleton-based template; Anguelov et al. [20] detect initial sparse
markers using the Correlated Correspondence algorithm [19].

More rarely, data terms consider color cues too. Dense texture information has
been used to register face scans [32], while sparse constraints based on SURF descrip-
tors [28] have been used for template-based tracking of human performances [85].

Common regularization terms used during alignment act on the deformations of
the template surface. They fall into two main classes: "as-rigid-as-possible" terms and
"smoothness" terms. As-rigid-as-possible terms penalize local deformation estimates
as they deviate from rigidity [114]; they assume near-isometric deformations, such as
those that occur when aligning scans of the same person [82, 83], so are commonly
not used when registering different body shapes. Smoothness terms penalize defor-
mations changing rapidly over the surface of the template [14, 18, 65, 68].

More informative regularization terms can be obtained using class-specific shape
models. For example, Amberg [17] aligns a template to face scans using a deformable
head model. The model is coupled to the aligned template by a prior that measures
smoothness of the deformation between the alignment and an optimized fit of the
deformed model. Compared to regularization acting only on geometric properties of
the template surface, this approach ensures more consistent registration across scans.

Finding expressive and manageable models for complex objects like the human
body, however, is challenging. The next section presents an overview of the most
significant human shape models proposed in the literature.

2.2.3 Human shape models

Once a corpus of scans has been registered to a common template, standard multi-
variate statistical methods can be used to model the distribution of shapes [68]. In
the case of faces [32] and bodies in a single pose [14, 110], low-dimensional models
have been obtained by performing Principal Component Analysis (PCA) [75] on the
aligned template vertices. For scans of multiple poses, approaches in the literature
propose articulated, parametric body models that represent both shape and pose of
each registered scan [15, 20, 44, 64, 65, 68]. These approaches may in general differ on
1) how they address registration and model learning stages and 2) how they model
the correlation between body pose and shape.

In most cases, registration and model learning stages are addressed separately: first,
a corpus of scans is brought into registration; then, model parameters are learned from
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the registered data. Consequently, the quality of the model heavily depends on the
quality of the registration.

Other approaches adopt different schemes. In [32], the authors bring a dataset of
3D face scans into registration in an iterative fashion: they alternate between learning
a model based on the current registrations, and then using the model to initialize a
new round of registration; iterations help in improving correspondence consistency
across scans. The coregistration framework proposed in [68] registers a corpus of scans
of different people in multiple poses and learns a set of body model parameters by
minimizing a unique objective function. This "concurrent" approach brings a number
of advantages: good data provided by some scans can be used to explain poor or
missing data in others; consistency of a subject’s shape across poses is modeled more
explicitly; similarities in the deformations of different bodies as they change pose are
captured more easily. Further details about the coregistration approach are provided
in Section 3.3.

The relationship between body pose and shape has been modeled in different ways.
The well-known SCAPE model [20] decouples pose and shape: it uses PCA to learn a
pose deformation model from scans of an individual in multiple poses, and a shape
model from many subjects in a neutral pose. SCAPE has been widely used for esti-
mating human shape and pose from images [23, 24, 62, 112], body shape under cloth-
ing [22] as well as for reshaping human body in images and videos [73, 146]. The major
limitation of SCAPE is that it does not capture the correlation between body shape and
pose: similar changes in pose result in similar surface deformations, independently of
the identity of the subject (e.g. male or female, more or less athletic).

Other approaches try to explicitly encapsulate the correlation between shape and
pose. Allen et al. [15] propose Maximum a Posteriori (MAP) framework to learn a cor-
related model of shape- and pose-dependent variation. The optimization procedure is
expensive, since it requires to solve a set of nonlinear functions with a high number
of degrees of freedom. The Tensor-based Body (TenBo) model introduced in [44] rep-
resents surface deformations as a joint function over both shape and pose parameters
using the tensor decomposition technique. Hasler et al. [65] introduce a translation-
and rotation-invariant surface representation, and use it to learn a single PCA space
of shape and pose variations. Since in this approach the shape and pose components
cannot be decoupled and analyzed separately, the authors propose to train a set of
regression functions to correlate PCA coefficients with significant values like weight,
pose or body fat content. Subsequent work [64] extends this approach by learning two
low-dimensional spaces of shape and pose, and combining them in a bilinear model.

In this thesis, we use the BlendSCAPE model, a modified version of SCAPE intro-
duced in [68]. A detailed description of BlendSCAPE is provided in Section 3.3.
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2.3 recovering appearance

In addition to surface geometry, most scanning systems also capture surface texture
and color, usually in the form of one or more RGB images. Combining such images
into a unique texture map, representing the scanned object’s appearance, helps in
obtaining more realistic 3D reconstructions. As we will see in the following chapters,
appearance may also represent a source of information complementary to geometry
when defining correspondences across scans.

This section first formalizes the notion of texture mapping (Section 2.3.1) and intro-
duces the fundamental distinction between surface albedo and shading (Section 2.3.2);
then, it presents the most significant techniques proposed in the literature to recover
high-quality appearance models from RGB and geometry data (Section 2.3.3).

2.3.1 Texture mapping

Texture mapping was introduced in computer graphics as early as 1974 [43] as a very
effective means to increase visual rendering complexity of 3D polygonal meshes with-
out the need to increase geometry details [54].

The most straightforward way to represent the appearance of a 3D mesh is to assign
a color (e.g. a RGB triplet) to each vertex. Reproducing appearance with a high level
of detail requires a high number of vertices, increasing computational complexity.

The introduction of texture mapping allows to decouple geometry and color. Surface
color is stored as a texture map, i.e. an image that corresponds to a parameterization
in 2D (texture space) of the original 3D surface (see Fig. 10). Each pixel (or texel) of the
texture map is identified by a unique pair of coordinates.

A mapping function uv defined from 3D to texture space assigns to each surface
vertex a pair of texture coordinates; the color assigned to vertex v is stored by texel
uv(v). Given this mapping, texture coordinates for an arbitrary surface point are
calculated via linear interpolation (see Fig. 10).

In this way, the level of detail that can be reproduced is determined by the resolution
of the texture map (i.e. by the number of texels), not by the number of mesh vertices.
This allows the generation of detailed textured 3D models, without increasing their
geometrical complexity.
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v0

v1

v2

x = α0v0 +α1v1 +α2v2

uv(x) = α0uv(v0) +α1uv(v1) +α2uv(v2)

Figure 10: The basic mechanism used in texture mapping. A mapping function uv assigns to
each mesh vertex a pair of texture coordinates; given this mapping, texture coor-
dinates for an arbitrary surface point x are obtained by linearly interpolating the
coordinates of the vertices of the face x belongs to.

2.3.2 Albedo and shading

Imagine observing a subject that is walking in the sunlight. Given a point x on his body
surface, the color observed at x varies over time, due to shading effects depending on
body pose. When recovering appearance models, it might be desirable to decompose
the observed surface color into its "constant" and "transient" components – that is, to
discriminate between albedo and shading. Albedo depends only on physical properties
of the surface itself (like its material), so it is invariant to changes in scene lighting.
Estimating it is necessary, for example, for rendering object appearance under novel,
different lighting conditions; in our work, we will exploit albedo constancy when
registering different scans of the same subject.

Albedo and shading can be estimated by inverting the pipeline used by common
graphic renderers. That is, one starts with a plausible image formation model, and
tries to estimate its components. The components combined to generate an image are
essentially three: scene lighting, object geometry and object reflectance. Different mod-
els of lighting and reflectance have been proposed in the literature. In the following,
we initially consider the simplest lighting model (a single point light source), and in-
troduce two widely used reflectance models: Lambertian and Blinn-Phong. Then, we
discuss how to capture more complex lighting environments.

Consider an object illuminated by a single light source. The color ix observed at
point x on the object’s surface depends on the incoming light at x, on the surface
normal nx and on the surface reflectance at that point.
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Different objects (or even different surface points of the same object) may have dif-
ferent reflectance. In the simplest case the surface is Lambertian, i.e. reflects the light
equally in all directions. For Lambertian surfaces, the color ix observed at surface
point x is explained as

ix = (nx · lx)axl (2.1)

where ax is the surface albedo at x, lx is the direction from x to the light source, and l

is the light intensity.

For glossy objects, reflectance may also have a specular component that depends on
the viewing direction. The Blinn-Phong reflectance model [33] adds a specular term
to the diffuse Lambertian one:

ix = (nx · lx)axl+ (ξx ·nx)
αssxl (2.2)

where sx is the specular coefficient, ξx is the halfway vector between lx and the direc-
tion from x towards the observer, and αs is the specular exponent.

Although human skin has a specular component [62, 135], the Lambertian model
provides a good approximation for body reflectance and is used for its simplicity [23,
60, 136, 138]. In Chapter 3, we will estimate body albedo combining a Lambertian
reflectance model with a visibility term that takes into account cast shadows.

In addition to reflectance, one can modify the lighting model to capture the scene
more realistically. While for outdoor scenes light intensity can be assumed constant
for each surface point (as in Eq. (2.1)), for a point light source in an indoor scene it
is common to use an attenuation term that grows quadratically with distance [23, 62].
Multiple light sources in the scene can be modeled by simply summing multiple terms,
one per light source.

With a high number of light sources – and, in general, for diffuse, low-frequency
lighting environments – efficient models proposed in the literature use a low-order
Spherical Harmonic basis [25, 113, 136, 138].

Spherical Harmonics (SH) define an orthonormal basis over the sphere, analogous to
the Fourier transform over the 1D circle [113]. In the SH model, reflectance and lighting
are represented as functions over the sphere, that are projected onto a low-order SH
basis. Usually, 9 to 25 basis vectors are enough to obtain a realistic model [26, 113]: in
this way, the computation of a rendering equation like the one in Eq. (2.1) boils down
to the computation of a dot product between vectors of no more than 25 elements.

In our approach, we will model scene lighting using a 9-dimensional SH basis; fur-
ther details are provided in Section 3.4.1.
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2.3.3 Image-based texture reconstruction

In image-based texture reconstruction, one faces the problem of integrating multiple
views of a 3D surface into a single texture map. These views may refer to a unique
time instant (e.g. a static scene captured by multiple cameras), or to different ones (e.g.
a dynamic scene captured by one or more cameras).

Integration across views is mainly addressed in two ways: blending information
from all the views on a per-texel basis [27, 29, 132], or building the texture as a mo-
saic of unique-view contributions, whose seam locations are optimized to minimize
appearance change between fragments [16, 74, 80, 81]. In both cases, one has to intro-
duce some heuristics to assess the "quality" of each view, for a given surface patch.
Common heuristics rely on viewing distance [80], angle between surface normal and
viewing direction [29, 80, 81, 132], color variation for corresponding surface patches in
multiple images [29], area of the patch projected on image space [16, 27, 74].

In general, the quality of the reconstructed texture is dependent on a good alignment
between 2D and 3D data: inaccuracies in geometry reconstruction and camera calibra-
tion, and wrong frame-to-frame surface correspondences in temporal sequences, may
result in blurring and ghosting (double imaging) artifacts. To address this, a num-
ber of methods employ some form of additional registration before estimating texel
color [29, 54, 81, 122, 132]. In particular, the approaches in [54, 122, 132] use optical
flow to warp and align texture data in dynamic sequences.

Achieving exact alignment between 2D and 3D data, however, is impractically dif-
ficult, particularly when computing high-resolution texture maps. Consequently, in
methods blending contributions on a per-texel basis, the fewer the cameras influenc-
ing the result for a single texel, the sharper the resulting texture is [59]. On the other
hand, if only the contributions of few cameras are blended for a given texture patch,
well-visible seams and discontinuities might arise at patch boundaries. Both kinds of
approaches do not exhibit scalability. To better exploit redundant information from
multiple views, Goldluecke et al. [59] propose a super-resolution framework, that op-
timizes for a super-resolved texture map, a set of camera calibration parameters and
a displacement field correcting local surface geometry. The approach works only for
static scenes. Tsiminaki et al. [125] adapt and extend the super-resolution framework
to deal with dynamic scenes, but only over very limited time intervals (no more than
7 frames).

In our work, we will explicitly address the problem of reconstructing a single texture
map from multiple images, and leverage this map, in combination with geometry in-
formation, to define more accurate scan-to-scan correspondences. In contrast to most
previous work, we consider bodies sampled at "arbitrary" (not necessarily close) time
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instants: this means that our technique should be able to handle significant non-rigid
deformations. Furthermore, we are mainly interested in solving the correspondence
problem in an accurate manner; obtaining high-quality texture maps is a related, sec-
ondary effect. This is why, instead of simply warping texture data to improve visual
quality, our approach optimizes for both an appearance and a shape body model.

2.4 mathematical notation

This section provides some details about the mathematical notation adopted through-
out this thesis. In particular, we would like to draw the attention of the reader to four
rules we adhere to:

• We denote objective functions using an upper-case E with a subscript (e.g. Ex(·)).
In general, we try to choose subscripts that provide an intuitive description of
the function. In some cases, we use the same subscript for functions that differ in
their formal definition, but are "operatively" analogous (e.g. they both compute
the distance in 3D between the surface of a scan and that of a template, as in
Eqs. (3.2) and (6.2)).

• Given a d-dimensional vector x, we denote by ||x|| its Euclidean norm
√∑d

i=1 x
2
i .

• When defining the parameters of our objective functions, we use a semicolon to
distinguish parameters that are optimized from those that are kept fixed. For
example, objective E(α,β;γ) depends on parameters α, β and γ; we minimize it
with respect to α and β.

• For simplicity, in some cases we refer to sets of elements using an abbreviated
notation: given a set of NX elements X = {Xi : i = 1, . . . ,NX}, we denote it by
{Xi}. We adopt this notation only if there is no ambiguity about the membership
of the set.
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U S I N G A P P E A R A N C E

This chapter introduces our registration technique for 3D human meshes.

We register a corpus of scans of different people in multiple poses by aligning a com-
mon template mesh to each scan. Our approach adapts and extends the coregistration

framework introduced in [68], that simultaneously builds a model of the body and its
deformations while registering the scans using the model. The main novelty of our
approach is the use of appearance information, in addition to geometry, during regis-
tration. We estimate scene lighting and surface albedo, and use the albedo to construct
a high-resolution textured 3D model; the model is then brought into registration with
multi-camera image data using a robust matching term. The use of appearance in-
formation helps in solving correspondence ambiguities in geometrically smooth areas,
producing highly reliable registrations.

The chapter is organized as follows. Section 3.1 reviews the most related techniques
in the literature. Section 3.2 describes the 3D scanning system we use to capture our
scans. Details about the coregistration framework are provided in Section 3.3. Sec-
tions 3.4, 3.5 and 3.6 present the key components of our approach, formalize the objec-
tive functions we minimize during registration and provide details about optimization.
Finally, Section 3.7 discusses – mainly from a qualitative point of view – the impact of
considering appearance information during registration. Quantitative results will be
provided in Chapter 4.

3.1 previous work

We briefly reviewed the rich literature on 3D surface matching in Section 2.2. Here we
summarize the key themes, with a focus on use of appearance information and human
body registration. Human body shape modeling has received a great deal of attention
recently [14, 15, 20, 44, 64, 65, 68, 110], but there is a paucity of high-quality registered
scan data for building and evaluating such models.

We can roughly split registration techniques in the literature into model-free and
model-based. The former do not make any assumption about the objects to be regis-
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tered; the latter specifically address a class of objects, relying on stronger shape priors.
We briefly review the most relevant techniques for both classes, and then analyze in
greater detail approaches that make use of appearance information.

Recent model-free approaches start by defining an intrinsic surface representation
that is invariant to bending. This representation is used to embed the surfaces to be
matched in a new space, where their intrinsic geometry is preserved. In the embed-
ded space the matching problem reduces to rigid alignment. Representative model-
free techniques are Generalized Multi-Dimensional Scaling (GMDS) [37], Möbius vot-
ing [87], Blended Intrinsic Maps [78], heat kernel matching [98]. These approaches
often provide only sparse correspondences, suffer from reflective symmetries (e.g. the
front of the body is mapped to the back), and typically require watertight meshes as
input; in some cases, they do not handle topological changes.

Model-based approaches for human body registration commonly fit a template
mesh to noisy scans. Often the template is of lower resolution. Classic approaches em-
ploy non-rigid ICP in conjunction with simple regularization terms favoring surface
smoothness [14, 18, 65, 68] or deformations that are as rigid as possible [82]. Since non-
rigid ICP is sensitive to local optima, the registration is often initialized by identifying
(manually or automatically) a set of corresponding landmarks on both surfaces [14, 15,
20, 65, 139]. The introduction of shape priors, by coupling the template to a learned
model during alignment [68], can increase accuracy and robustness.

These approaches rely only on geometry information. Geometry alone may not
prevent template vertices from being positioned inconsistently (i.e. sliding) across
smooth scan surface areas. While many regularization methods have been proposed,
without ground truth it is unclear how well they work at preventing this sliding.

A limited number of approaches exploits appearance information to solve geometry
ambiguities. In most cases, they rely on sparse photometric features. Thorstensen
and Keriven [123] extend GMDS adding a photometric-based error term to the for-
mulation provided in [37]; the technique works only with sparse correspondences,
and, like other model-free approaches, is not robust to mesh noise and topological
changes. Zaharescu et al. [141] propose local feature descriptors for 3D surfaces based
on geometric and photometric information, exploring possible applications to mesh
matching. In [85], the authors use sparse texture-based constraints (SURF feature
descriptors [28]) to improve their shape completion algorithm for dynamic scenes; cor-
respondences are defined only over short time windows.

Dense texture has been used for 3D model-based alignment of body parts like
faces [32]. Full bodies, however, are substantially different. Their articulated struc-
ture is too complex to represent with the cylindrical 2D parameterization in [32]; they
self occlude and self shadow; they are too extended to assume a simple lighting model;
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Figure 11: A scan reconstructed with our full-body 3D active multi-stereo system. Synchro-
nized with each scan, we have 22 RGB cameras capturing surface texture.

the size of the body typically means lower-resolution texture as compared with face
scans. We are aware of no full-body 3D mesh registration method that uses dense
texture.

3.2 scan acquisition

Our acquisition system is a full-body 3D active multi-stereo system, built by 3dMD [5]
(see also Section 2.1 for details about multi-stereo capture). The system is composed
by 22 scanning units; each unit contains a pair of stereo cameras for 3D shape recon-
struction, one or two speckle projectors, and a single 5MP RGB camera. For efficiency
purposes, we downsampled the RGB images to 612× 512 pixels.

A set of 20 flash units illuminate the subject during capture, rendering a fairly dif-
fuse light environment. The delay between speckle pattern projection and texture
acquisition is around 2ms.

Each reconstructed scan is a triangulated, non-watertight mesh with 100000−200000

vertices. Figure 11 shows a scan reconstructed with our system, together with the
corresponding camera images.

To obtain high-frequency appearance information over the entire body surface, we
painted the subjects with a dense texture pattern prior to scanning (see again Fig. 11).
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This pattern implicitly defines full-body ground-truth correspondences between scans
of the same subject; we will leverage it to quantitatively evaluate the accuracy of our
registrations (see Section 4.2). In Chapter 5, we will remove this assumption and rely,
during registration, only on texture information provided by the naked human skin
(e.g. by the presence of small artifacts like moles and birthmarks).

3.3 the coregistration framework

We adapt and extend the coregistration framework introduced in [68], that simulta-
neously brings a corpus of scans into registration and learns a set of body model
parameters. In its original formulation, coregistration does not leverage appearance
information; we add this and introduce a number of improvements.

Our approach proceeds in two stages: first, we coregister a corpus of scans based on
geometry information alone; then, we refine our registrations by introducing a novel
appearance-based error term. This section focuses on the first stage: it provides details
about the body model we use, BlendSCAPE, and introduces the objective function we
minimize to obtain a first round of registration and train our model. Sections 3.4
and 3.5 will focus on the second stage.

3.3.1 The BlendSCAPE body model

We assume we have a corpus of scans {Sk : k = 1, . . . ,Nscans}, collecting scans of Nsbj

different subjects in multiple poses. We index subjects by p; for simplicity, we identify
by pk the subject of scan Sk.

We register the corpus by aligning a triangulated template mesh T∗ to each scan.
In our model-based approach, the deformations that fit T∗ to a scan are regularized
towards a deformable, statistical human body model. We use the BlendSCAPE body
model, a modified version of SCAPE [20] introduced in [68]. For completeness we
include here a brief description of the model, trying to adopt a notation as similar as
possible to that used in the original work [68].

Let T∗ be pre-segmented in 31 parts, connected in a kinematic tree structure. Blend-
SCAPE parameterizes the deformations that fit T∗ to a scan Sk into a set of pose pa-
rameters θk and a set of shape (or "identity") parameters Dpk : θk collects the relative
rotations between neighboring kinematic tree parts, represented as Rodrigues vectors;
Dpk defines subject-specific deformations corresponding to the person’s body shape.
These deformations are applied to each triangle f of T∗.
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Figure 12: BlendSCAPE models the deformations that fit a template T∗ to a scan Sk as a se-
quence of pose- and shape-dependent transformations, applied to each triangle T∗

f

of T∗. Colors encode different segments of the underlying kinematic tree structure.

During alignment, T∗ is first unstitched into disconnected triangles, T∗

f ; each un-
stitched triangle is represented by a pair of its edge vectors, "forgetting" its location
but retaining its shape and orientation. Then, each triangle is individually fit accord-
ing to a sequence of pose- and shape-dependent deformations, represented with 3× 3

linear transformation matrices. Namely, a transformed triangle Mf is obtained as

Mf = Bf(θ
k,wf)D

pk

f Qf(θ
k)T∗

f (3.1)

where Bf(θ
k,wf) =

∑
iwf,iR

i(θk) is a linear blend of rigid rotations Ri(θk) of body
parts i, and D

pk

f and Qf(θ
k) account for non-rigid deformations dependent on the

subject’s identity and on the pose, respectively.
We denote by W the set of blending weights for all the Ntrg triangles in T∗: W =

{wf : f = 1, . . . ,Ntrg}. Analogously, Q and Dpk collect the set of pose-dependent and
shape-dependent per-triangle deformations: Q = {Qf : f = 1, . . . ,Ntrg} and Dpk =

{D
pk

f : f = 1, . . . ,Ntrg}.
As in [20], Q is a linear function of the pose vector: Q(θk) = Q0 +

∑
m θkmQm,

where θkm is the mth element of θk and Q0, {Qm} contain the linear coefficients, that
are learned during coregistration. While in [68] the blending weights W are fixed, we
optimize them together with Dpk and Q.

After deformation, the disconnected triangles are stitched into a watertight mesh,
M(θk,Dpk ,Q,W), by solving for vertex positions via least squares (as in [20]). Fig-
ure 12 provides an intuition of how each transformation contributes to the final de-
formed mesh.
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3.3.2 Geometry-based coregistration

The goal of the first stage is to perform a first round of registration and simultaneously
train the BlendSCAPE model.

Given a corpus of scans {Sk : k = 1, . . . ,Nscans} of Nsbj subjects in multiple poses,
we optimize for:

• a set of alignments (deformed templates) {Tk : k = 1, . . . ,Nscans}

• a set of body model parameters:

– a set of pose vectors {θk : k = 1, . . . ,Nscans};

– a set of shape-dependent deformations {Dp : p = 1, . . . ,Nsbj};

– a set of pose-dependent deformations Q;

– a set of blending weights W.

Note that, as mentioned above, we use the model as a regularizer during optimiza-
tion: consequently, Tk is encouraged to be similar (but not necessarily equal) to
M(θk,Dpk ,Q,W).

Coregistration defines a unique objective function, that combines a geometry-based
data term with a set of regularization terms; the data term penalizes distance in 3D

between scan and template surfaces, while the regularizers "couple" the alignment to
the learned model and encourage smoothness and rigidity of the deformations [68].
We now analyze each term in more detail.

The data term ES evaluates the distance in 3D between the surface of the deformed
template Tk and that of the scan Sk:

ES(T
k;Sk) =

∫
xs∈Sk

ρ

(

min
xt∈Tk

||xs − xt||

)

(3.2)

where ρ is the Geman-McClure robustifier [58]. The integral in Eq. (3.2) is approx-
imated using a set of fixed locations xs uniformly sampled over the surface of the
scan.

In addition to ES, we define four regularization terms: a "coupling" term Ecpl, a
smoothness prior ED, a rigidity prior EQ and a pose prior Eθ.

The coupling term Ecpl penalizes discrepancy between the aligned template and the
current model:

Ecpl(T
k,θk,Dpk ,Q,W) =

∑
triangle f

||Tk
f −Bf(θ

k,wf)D
pk

f Qf(θ
k)T∗

f )||
2
F. (3.3)
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The term evaluates the Frobenius distance between the pair of edge vectors Tk
f of

the unstitched triangle of Tk, and the corresponding pair in the current posed model
M(θk,Dpk ,Q,W).
ED promotes spatial smoothness of the shape deformations:

ED(Dp) =
∑

adjacent triangles f,f ′

||D
p
f −D

p
f ′ ||

2
F. (3.4)

The rigidity term EQ damps the pose-dependent deformations:

EQ(Q) =
∑

triangle f

(

||Q0
f − I3×3||

2
F +

∑
m

||Qm
f ||2F

)

(3.5)

where I3×3 is the identity matrix.
Finally, the pose prior Eθ penalizes the squared Mahalanobis distance from a mean

pose µθ:
Eθ(θ

k) = (θk − µθ)
TΣ−1

θ (θk − µθ). (3.6)

We compute µθ and Σθ from a corpus of about 2000 scans of different people in a
wide range of poses, pre-registered with the technique in [68].

Summarizing, given a corpus of scans of different people we obtain a set of prelimi-
nary alignments and learn a model of shape-dependent and pose-dependent deforma-
tions by minimizing the following objective function Ecoreg:

Ecoreg({T
k}, {θk}, {Dp},Q,W; {Sk}) = (3.7)∑

scank

λSES(T
k;Sk)+

∑
scank

(λcplEcpl(T
k,θk,Dpk ,Q,W) + λθEθ(θ

k))+

λQEQ(Q) +
∑

subjectp

λDED(Dp)

where λS, λcpl, λθ, λQ and λD are weights for the different addends, and pk identifies
the subject in each scan.

In Eq. (3.7), the optimization is guided by the geometric data term. As a result, we
obtain alignments that fit very closely the surface of the scans: the Euclidean distance
between any scan vertex and its closest point on the surface of the corresponding
alignment in no more than a few millimeters (see Fig. 13).

However, this is not sufficient to ensure consistent correspondence in areas where
the scan surface provides no high-frequency geometric information. Figure 13 exem-
plifies the problem. We select the same vertex on two alignments relative to the same
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Figure 13: Alignments obtained minimizing the geometry-based objective function (3.7). On
the left, we show two alignments and the corresponding scans; heat maps on the
right encode the distance in 3D between scan and alignment surfaces (we compute
the Euclidean distance between each scan vertex and its closest point on the align-
ment surface). Even though the deformed template fits very closely the scan surface,
this does not ensure accurate correspondences in flat surface areas. We solve ge-
ometry ambiguities using appearance information: projecting the same template
vertex (shown in red) on image space, we see that it maps to two different points
on the subject’s body.

subject, and project it onto the surface of the corresponding scan; since the alignments
share the same topology, the projected points should map to the same point on the
torso of the subject. In that area, however, the surface of the scans is smooth, making
geometry information ambiguous; projecting the vertex on image space, we can verify
that the correspondence is inconsistent.

In [68], the authors address this problem with a landmark-based error term. How-
ever, it is not clear how to precisely landmark smooth areas – exactly the places where
landmarks are needed.

Our solution uses dense texture information: we estimate an appearance model for
each subject and use this to define a novel appearance-based error term.

3.4 appearance model

Optimizing objective (3.7) provides us with a set of initial alignments of all the scans in
the corpus. These alignments are sufficient to build an initial subject-specific appear-
ance model. To this end, we assume that the albedo of a subject is consistent across
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Figure 14: Creation of a per-subject appearance model. Synchronized with each 3D scan, we
have 22 color cameras capturing images of the body from different views. We
estimate scene lighting and preprocess the original images to remove shadows, ob-
taining a set of albedo images. We use these images and the initial geometry-based
alignments to create a per-subject appearance model, represented as a texture map.

scans [24] – as is his shape Dp. Our key idea is to create a per-subject albedo model Up,
refining each alignment so that the estimated appearance model matches the observed
scan appearance.

Figure 14 provides an overview of our approach. Synchronized with each 3D scan
we have 22 color cameras capturing images of the body from different views. We
denote by Ik = {Ikj : j = 1, . . . , 22} the set of 22 images associated to scan Sk; fur-
thermore, we denote by Ck the set of camera calibration parameters associated to Ik:
Ck = {Ck

j : j = 1, . . . , 22}. Given the calibration parameters Ck
j of camera j, we can

project any 3D surface point x onto a 2D point πk
j (x) in the image plane of camera j;

Ikj [π
k
j (x)] returns x’s color if x is visible in Ikj .

As a preliminary step, we preprocess the original images to discriminate between
albedo and shading; based on the preprocessing results and on the initial alignments,
we create a per-subject appearance model, represented as a texture map. The following
sections describe each step in detail.
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3.4.1 Albedo estimation

To discriminate between albedo and shading in the original camera images, we need
to define an adequate model for human skin reflectance and scene lighting. Similarly
to previous work [23, 60, 136, 138], we assume Lambertian reflectance for human skin.
Given our diffuse lighting environment, we model illumination as a function defined
over the sphere, and project it onto a low-dimensional Spherical Harmonic (SH) ba-
sis [113] (see Section 2.3.2 for a brief review of these concepts).

Since human bodies are extended and articulated, it is critical to model self-casting
shadows. To account for this, we adopt a technique commonly used in real-time
rendering: given a scan surface point x, we compute a corresponding shadowed diffuse

transfer [113], that maps incoming to ongoing radiance taking into account surface
reflectance at x and occlusion effects.

We first formalize the definition of transfer function, and show how to combine it
with a SH lighting model; then, we introduce the objective function we minimize to
obtain a plausible lighting estimate; finally, based on the estimated lighting, we explain
how to extract a set of albedo images from the original ones.

We denote by Lx(ω) the incoming light at x from direction ω, and by ax and nx

the albedo and the surface normal at x, respectively. The shadowed diffuse transfer
Tx(Lx) at x is the function

Tx(Lx) =
ax

π

∫
ω∈Ω

Lx(ω)max(nx ·ω, 0)Vx(ω) (3.8)

where the integral is defined over the unit sphere Ω, and Vx(ω) is a visibility function
returning 1 if a ray from x in direction ω fails to intersect the scan again (i.e. is
unshadowed), 0 otherwise.

We assume that lighting variation over the body surface, not due to the presence
of the body itself, is negligible (i.e. we assume that Lx(ω) ≈ Lx′(ω), for any pair of
surface points x, x′). On the right side of Eq. (3.8), we have a product between two
functions, one depending on lighting and one depending on scan geometry: L(ω)

and max(nx ·ω, 0)Vx(ω). By projecting both functions on a SH basis separately, their
product reduces to a dot product of their coefficient vectors. In our approach we work
in a 9-dimensional SH space, obtaining two 9-element vectors: a light vector lSH and
a transfer vector τx, depending only on scan geometry.

We can now express the observed scan surface color as a function of SH coefficient
vectors – namely, as a function of τx and lSH. Note that we work on each RGB
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(a) (b) (c)

Figure 15: Results of light estimation in one camera image (original background not shown):
(a) observed color, (b) shading, (c) albedo.

channel separately; for simplicity, we omit channel indices in our notation. Given a
generic scan surface point x, its color ix and its albedo ax are related as:

ix = (τx · lSH)ax. (3.9)

In Eq. (3.9), both albedo and lighting are unknown. We initialize the albedo comput-
ing the average color iavg over the vertices of all the scans in the corpus, and estimate
lSH by minimizing

Elight(lSH; {Sk}, {Ik}, {Ck}) =
∑

scank

∑
camera j

∑
vertexh

Vvk
h
(Ck

j )||I
k
j [π

k
j (v

k
h)] − (τvk

h
· lSH)iavg||

2

(3.10)
where, like in Eq. (3.8), Vvk

h
(Ck

j ) is a visibility function returning 1 if vkh is visible
from a camera with parameters Ck

j , 0 otherwise. Recall that Ikj [π
k
j (v

k
h)] denotes vkh’s

color as observed in image Ikj .
We use lSH to obtain a set of albedo images Ak = {Ak

j : j = 1, . . . , 22} from the origi-
nal camera images Ik. Given lSH, we calculate the shading at vertex vkh as (τvk

h
· lSH);

at a generic scan surface point x this is given by interpolating between vertices belong-
ing to the same triangle. An albedo image Ak

j is then computed, for any pixel y with
corresponding surface point x such that y = πk

j (x), as

Ak
j [y] = Ikj [y]/(τx · lSH) (3.11)

Figure 15 shows the results of our lighting estimation in one camera image.
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3.4.2 From camera images to texture maps

Given the albedo images for each scan, we seek a per-subject appearance model Up

(represented as a texture map) that is consistent with all the scans of that particular
subject (see Fig. 14). To this end, we first compute a texture map Uk for each alignment
Tk; then, we combine the information given by all the maps corresponding to the same
subject into a single appearance model.

We follow an approach that is quite standard in image-based texture reconstruction
(see Section 2.3.3). We assume we have a 2D parameterization (a texture space) of the
3D surface of our template T∗. For any template surface point x, we denote by uv(x)

its mapping from 3D to texture space.

Given an alignment Tk and the corresponding set of albedo images Ak, we obtain
a texture map Uk by blending the contribution of each view on a per-texel basis;
specifically, for each texel y = uv(xy) we weight the contribution of each view by
computing the dot product between surface normal and viewing direction:

Uk[y] =

∑
camera j Vxy(C

k
j )A

k
j [π

k
j (xy)]max(ζxy(C

k
j ) ·nxy , 0)∑

camera j Vxy(C
k
j )max(ζxy(C

k
j ) ·nxy , 0)

(3.12)

where Vxy(C
k
j ) is the visibility function returning 1 if xy is visible from camera j, 0

otherwise, nxy is the surface normal at xy and ζxy(C
k
j ) is the direction from xy to the

center of camera j.

Texture maps computed from single alignments are usually noisy and incomplete,
since no single pose can provide full-body coverage. To compute a per-subject ap-
pearance model, we therefore integrate information over multiple per-subject poses:
for each subject p, we initialize an appearance model Up by averaging the set of per-
alignment maps relative to p.

3.5 appearance-based error term

The previous sections described how, given a corpus of scans of different people, we
obtain a set of preliminary alignments and an appearance model for each subject in
the corpus. We combine these components to define a novel appearance-based error
term.

Figure 16 outlines our approach. Given an alignment Tk, an appearance model Upk

and a set of camera calibration parameters Ck, we can render a set of synthetic images
A

k
= {A

k
j : j = 1, . . . , 22}. Informally, a synthetic image A

k
j is an "estimate", based on
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Figure 16: Our appearance-based error term penalizes differences between real albedo images,
obtained after light preprocessing, and synthetic images, rendered from the model.
We introduce a form of contrast normalization (RoG filtering) to account for inac-
curacies in lighting estimation.

our alignment and model parameters, of the real albedo image Ak
j . The higher the

similarity between synthetic and real images, the better our estimate is.
To define our appearance-based error term, we simply translate this intuition into

a mathematical formulation. The term compares real albedo images against a set of
synthetic ones, rendered from the model. We work on each RGB channel separately;
for simplicity, we omit channel indices in our notation. Note also that we do not repre-
sent image background. Let Fkj (T

k) be the intersection between the foreground masks

of Ak
j and A

k
j ; we can evaluate the discrepancy between Ak

j and A
k
j by computing a

sum of squared differences between pixels in Fkj (T
k):

∑
pixely:

y∈Fk
j (T

k)

||Ak
j [y] −A

k
j [y]||

2. (3.13)

We observed that a direct computation of Eq. (3.13) may be problematic for some
images: in some cases, shading artifacts may be still present due to inaccuracies in
lighting estimation. To address this problem, we modify our formulation introducing
a form of contrast normalization.
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Before computing per-pixel squared differences, we apply a Ratio-of-Gaussians (RoG)
filter to both synthetic and real images. The definition of a RoG filter of parameters
σ1,σ2 is straightforward, and we include it for completeness. For a generic grayscale
image Ibw, the corresponding RoG image Gσ1,σ2

(Ibw) is computed as:

Gσ1,σ2
(Ibw)[y] =

Ibw ∗
e−||y||2/2σ2

1

2πσ2
1

Ibw ∗
e
−||y||2/2σ2

2

2πσ2
2

(3.14)

where ∗ denotes the convolution operator and σ2 > σ1.
Including RoG filtering in Eq. (3.13), and summing over multiple images, we obtain

the appearance-based error term EU:

EU(Tk;Ak,Ck,Upk) =
∑

camera j

∑
pixely:

y∈Fk
j (T

k)

||G(Ak
j )[y] −G(A

k
j )[y]||

2. (3.15)

Note that EU is computed over each RGB channel separately.
EU can be incorporated into the original coregistration formulation as an additional

data term, that complements the geometry-based data term introduced in Eq. (3.2).
We define our objective function based on both geometry and appearance information
as:

Eapp−coreg({T
k}, {θk}; {Sk}, {Dp},Q,W, {Ak}, {Ck}, {Up}) = (3.16)∑

scank

λSES(T
k;Sk)+

∑
scank

λUEU(Tk;Ak,Ck,Upk)+

∑
scank

(λcplEcpl(T
k,θk;Dpk ,Q,W) + λθEθ(θ

k))

where, as in Eq. (3.7), λS, λU, λcpl and λθ are weighting coefficients; ES, Ecpl and Eθ

correspond to the error terms introduced in Eqs. (3.2), (3.3) and (3.6).
Objectives (3.7) and (3.16) are non-linear and exhibit a high-dimensional space of

solutions. Details about their optimization are provided in the next section.

3.6 optimization

For the first phase (i.e. for minimizing objective (3.7)), our approach is similar to that
proposed in [68]; we present it here for completeness.
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We consider two separate subproblems, optimizing {Tk} and {θk} first, and then
W, {Dp} and Q. Fixing W, {Dp} and Q decouples the scans: we consider Nscans

registration subproblems and minimize λSES(T
k;Sk) + λcplEcpl(T

k,θk,Dpk ,Q,W) +

λθEθ(θ
k) for each scan Sk separately. We use Powell’s dogleg method [96] with Gauss-

Newton Hessian approximation.

With {Tk}, {θk}, {Dp} and Q fixed, we solve for W via non-negative least squares,
encouraging the sum of per-triangle blending weights

∑
iwf,i to be 1. Keeping fixed

all parameters but {Dp}, the minimization with respect to each subject’s Dp is an inde-
pendent linear least squares problem for each subject p. Similarly, with all parameters
but Q fixed, minimization with respect to Qf is a linear regression problem (from pose
parameters to pose-dependent deformations) independent for each triangle f.

We initialize coregistration by fitting to each scan the BlendSCAPE model trained
in [68], using ES and a strong pose prior Eθ. During the model fit, shape is allowed
to vary only within a low-dimensional shape space; we learn this space from almost
4000 registered scans from the CAESAR dataset [107] (more details about this shape
space are provided in Section 6.3.1). For each subject p, Dp is initialized by averaging
the shape of the alignments relative to p.

In the second stage, we use the set of initial geometry-based alignments to compute
an appearance model Up for each subject p. We compute texture maps at a resolution
of 2048× 2048 texels. We refine each alignment Tk by minimizing objective (3.16) for
each scan separately. A single alignment, optimizing simultaneously over 22 images
(of size 612× 512 each), took less than 5 minutes on a common desktop machine.

Note that, after the refinement stage, one could compute again the model parameters
{Dp}, Q, W and {Up}. We observed that an iterative coarse-to-fine approach, in which
the variance of both Gaussians in Eq. (3.13) becomes progressively narrower, leads to
more accurate results. In our experiments, we ran two iterations; σ1 and σ2 decreased
from 4 to 2 and from 8 to 4, respectively.

The ratio between λcpl and λU in Eq. (3.16) turned out to be a crucial parameter; we
set it equal to 25 in the first iteration, and to 15 in the second one.

We observed good intra-subject consistency without the use of any "geometric" land-
marks, by relying on a strong pose prior Eθ. However, this did not provide fully sat-
isfactory inter-subject correspondence. In the absence of any constraint, D can induce
different deformations in different subjects. We therefore introduced a weak landmark
error term in the first phase, decreasing its weight progressively over several iterations.
No landmarks were used in the second phase.
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Figure 17: Example comparison between alignments obtained before and after appearance-
based refinement. For each alignment, we show details of the corresponding ap-
pearance models. The heat map shows the Euclidean distance per vertex between
the two alignments. Appearance information prevents sliding in geometrically
smooth areas, producing more accurate correspondences and therefore sharper es-
timated models.

3.7 results and discussion

In this chapter we have presented a novel registration technique for 3D human meshes.
Our technique combines a classic geometry-based error term with a novel appearance-
based error term, that uses dense surface texture information to solve correspondence
ambiguities in geometrically smooth areas.

Figure 17 illustrates the benefits of our approach. Texture information adjusts vertex
placement mostly in smooth 3D areas (like the stomach and back), complementing the
partial or ambiguous information provided by geometry. Computing the Euclidean
distance per vertex between the alignments obtained before and after appearance-
based refinement, we noticed that such distance can be on the order of 1 or even
2cm.

Using a learned appearance model improves intra-subject correspondences between
scans, resulting in much sharper appearance models (see again Fig. 17).
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In Chapter 4, we will introduce a precise quantitative metric to assess the accuracy
of our alignments; based on that, we will perform an extensive evaluation, compare
geometry-based and appearance-based registration from a quantitative point of view,
and discuss current limitations of our approach.

In this chapter we have relied on two assumptions. First, we painted the bodies
of the subjects with a high-frequency texture pattern. Without painting, human skin
provides much less texture information. It is therefore unclear how well our technique
would perform. Second, we captured scans with a high-quality multi-camera system
that provides, at each capture, almost full-body coverage. Ideally, the robustness of
our approach should be tested using more "lightweight" systems, equipped with fewer
cameras and producing lower-quality 3D data.

In Chapter 5 we will remove the first assumption, adapting our technique to work
on naked bodies without any artificial texture pattern applied on them. In Chapter 6,
we will extend our technique to deal with dynamic monocular sequences captured
with a single Kinect camera. This will allow us to evaluate accuracy and robustness of
our approach when registering lower-quality, noisier 3D and color data.





4 T H E FA U S T DATA S E T

Despite the rich literature on 3D surface registration, datasets and benchmarks are
scarce. This lack is mainly due to the difficulty of dealing with real data.

The popular TOSCA dataset [38] contains synthetic meshes of fixed topology with
artist-defined deformations. The SHREC benchmark [40] adds a variety of artificial
noise to TOSCA meshes, but both artificial noise and meshes and deformation models
created by artists lack sufficient realism.

To advance the field, datasets and benchmarks should contain noisy, realistically
deforming meshes that vary in topology: this is the data real-world applications deal
with. The problem is to establish dense ground-truth correspondences, and therefore
a reliable evaluation metric, on such meshes. Common approaches like manual land-
marking are time consuming, challenging and error-prone for humans – and provide
only sparse correspondences.

In this chapter we introduce FAUST (Fine Alignment Using Scan Texture), a novel
dataset and benchmark for 3D mesh registration. FAUST collects real scans of different
people in multiple poses, with automatically computed dense ground-truth correspon-
dences.

To build the dataset, we leverage our appearance-based registration technique. We
remove ambiguities in the definition of dense correspondences between scans by paint-
ing the subjects with a high-frequency texture, and placing textured markers on key
anatomical locations; then, we automatically compute dense scan-to-scan correspon-
dences by aligning a common template to each scan. To ensure accurate ground truth,
we verify the quality of our alignments through extensive validation.

This chapter describes our dataset in detail. Section 4.1 gives a brief overview on
existing datasets for 3D mesh registration. Section 4.2 describes how we captured the
data, presents our ground-truth creation process and introduces the FAUST bench-
mark. Benchmark results for different state-of-the-art registration techniques are pro-
vided in Section 4.3. Finally, Section 4.4 discusses the role played by texture informa-
tion in building our dataset, and identifies current limitations of our approach.

43
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4.1 previous datasets

We review the most widely used datasets for 3D mesh registration dividing them into
two classes, synthetic and real, based on the type of data they provide.

4.1.1 Synthetic data

Synthetic datasets collect meshes generated in an artificial fashion. Since establish-
ing ground-truth correspondences between these meshes is straightforward, datasets
in this class are widely used to evaluate 3D registration methods. In the following,
we focus on three of them: TOSCA [38], the dataset used in the SHREC ′10 robust
correspondence benchmark [40] and the "kids" dataset recently proposed in [108].

TOSCA [38] collects 80 meshes of animals and people (with 3 subjects in a dozen
different poses each); each mesh contains about 50000 vertices, and meshes in the
same class share the same topology. There exists also a lower-resolution version of
TOSCA (Non-rigid world 3D database [38]), that collects meshes with a resolution of
approximately 3000 vertices.

The dataset is very popular, and has been used to evaluate several 3D registration
techniques [39, 52, 78, 87, 98, 108]. Nonetheless, a major limitation of TOSCA is its lack
of realism. Figure 18 illustrates some differences between TOSCA meshes and scans
captured with our full-body 3D multi-stereo system: body deformations in synthetic
meshes look artificial, and there is no noise or missing data.

The SHREC ′10 robust correspondence benchmark [40] collects a subset of TOSCA
meshes and adds to them a variety of noise (see Fig. 19): small and big holes, scal-
ing, affine transformation, geometric Gaussian noise and shot noise, sampling, partial
(missing parts), rasterization (simulating non-pointwise topological artifacts due to oc-
clusions in 3D geometry acquisition) and view (simulating missing parts due to 3D

acquisition artifacts). Yet, this artificial noise does not seem similar enough to the noise
found in real-world applications.

The dataset proposed in [108] contains a set of 3D human meshes undergoing nearly-
isometric and within-class deformations; namely, it provides two shape classes ("kid"
and "fat kid") under different poses, where the same poses are applied to both classes.
All the meshes have identical topology and compatible vertex ordering; the typical
vertex count is about 60000. Unfortunately, the dataset exhibits the same limitations
of TOSCA and SHREC ′10: meshes are not representative of real-world data.
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Figure 18: Comparison between two TOSCA [38] meshes (left) and two scans captured with
our full-body 3D multi-stereo system. (right). Unrealistic deformations, plus the
absence of noise and missing data, make TOSCA meshes not representative of real-
world scans.

(a) (b) (c) (d)

Figure 19: Examples of artificial noise added to TOSCA meshes in the SHREC ′10 bench-
mark [40]: big holes (a), Gaussian noise (b), partial (c), shot noise (d).
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Figure 20: Three scans from CAESAR [107], exemplifying the three different poses included
in the dataset. The white dots on the scans represent landmarks.

4.1.2 Real data

Establishing dense accurate correspondences between real scans is challenging; for this
reason, real datasets usually do not provide dense ground truth. Three well-known
datasets in this class are CAESAR [107], SCAPE [20] and Hasler’s dataset [65].

CAESAR [107] contains several thousand laser scans of volunteers aged 18− 65 in
the United States and Europe. Prior to scanning, 74 white markers were placed on the
subjects at anthropometric locations, typically at points where bones can be palpated
through the skin. Each subject was scanned in 3 different poses (see Fig. 20). CAESAR
is widely used for alignment [14, 15, 20, 139] – though the only ground truth are sparse
landmarks.

SCAPE [20] and Hasler’s dataset [65] provide a set of registered scans.

The SCAPE dataset [20] contains 71 registered meshes of a single subject in different
poses. The original scans were acquired with a laser scanner; a "template mesh" was
selected among the scans, made watertight, and non-rigidly deformed to match the
surface of the other scans. The process gives a set of meshes with the same topology,
whose shape approximates well the surface of the original scans. These registrations
have been used to evaluate surface matching algorithms [78, 87, 98]. Since the meshes
are reconstructed from real scans, they are more realistic than synthetic data (e.g. they
do not have exactly the same local shape features). However, they all share the same
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(a) (b)

Figure 21: Meshes from the SCAPE dataset [20] (a) and from Hasler’s dataset [65] (b). They
exhibit artifacts in areas that are challenging to register (e.g. hands, feet, bent
knees). In both datasets, the quality of the registrations is not evaluated in any
manner; hence they cannot be trusted as ground truth.

topology and are watertight, simplifying the registration problem in comparison with
raw scans.

Hasler et al. [65] provide a dataset of more than 500 laser scans of 114 different
subjects (59 men and 55 women). All subjects were scanned in at least 9 poses selected
randomly from a set of 34 poses. A common template has been fitted to each scan,
and these alignments (together with the original scans) are publicly available.

In both datasets, registrations are obtained exploiting only geometry information;
they exhibit artifacts in areas that are challenging to register (e.g. hands, feet, bent
knees – see Fig. 21). Since the accuracy of these registrations is not quantified in any
manner, they cannot be considered reliable ground truth.
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4.2 building faust

FAUST addresses the limitations of previous datasets, providing both real scans of
different subjects in multiple poses and reliable dense ground-truth correspondences
between them. These correspondences are computed automatically, leveraging the
registration technique presented in Chapter 3.

Sections 4.2.1, 4.2.2 and 4.2.3 describe in detail all the phases involved in the cre-
ation of the dataset: scan capture and registration, definition of reliable scan-to-scan
correspondences based on a high-frequency texture pattern applied to the subjects’
skin, validation of the quality of the registrations. Finally, Section 4.2.4 introduces the
FAUST benchmark.

4.2.1 Scan capture and registration

The dataset collects 300 triangulated, non-watertight meshes of 10 subjects (5 male and
5 female), each scanned in 30 different poses. All the meshes were captured using the
3D multi-stereo system described in Section 3.2; the average mesh resolution is 172000

vertices.

The subjects are all professional models who have consented to have their data dis-
tributed for research purposes; their age ranges from a minimum of 18 to a maximum
of 70. During the scan sessions they all wore identical, minimal clothing: tight fitting
swimwear bottoms for men and women and a sports bra top for women. Figure 22

shows a set of example scans.

To compute scan-to-scan correspondences, we bring a common template into align-
ment with each scan using the technique described in Chapter 3. The alignments we
obtain are watertight meshes with identical topology and resolution of 6890 vertices.

4.2.2 Painted bodies

It is essentially impossible, for both an algorithm and a human, to define dense ground-
truth correspondences on a naked body’s skin. Large uniformly-colored areas are
uninformative, making the problem ill-posed. Note that unlike high-resolution face
scans, we do not have sufficient resolution to see pores.

In order to provide high-frequency information across the whole body surface, we
painted the skin of each subject. We applied body makeup of two different colors (red
and blue) by using two woodcut stamps with different patterns (see Fig. 23). Each
stamp has a surface of 45× 45mm and pattern details up to 2mm in width.
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Figure 22: Example scans of all 10 subjects (all professional models) showing the range of ages
and body shapes. A sampling of the poses shows the wide pose variation.

2mm

45mm
45mm

Figure 23: We define intra-subject correspondences by painting the skin of the subjects: we ap-
ply red and blue body makeup using two woodcut stamps with different patterns.
To define inter-subject correspondences, we rely on a set of sparse landmarks drawn
on key anatomical locations.

This painting provides reliable dense intra-subject correspondences. Between dif-
ferent subjects, we define only a set of sparse correspondences. Indeed, neither the
natural texture of different people, nor our painted texture, can be matched across
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1. Scan-to-alignment distance 2. Optical flow
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failing
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Figure 24: We evaluate the quality of our alignments in terms of both geometric error (mea-
suring the distance in 3D between scan and alignment surfaces) and sliding error
(measuring the optical flow between real and synthetic images). Scan vertices ex-
hibiting an error higher than 2mm in either test are deemed misaligned.

subjects. And in general, correspondences across different body shapes may not be
well defined – while key anatomical regions clearly can be matched, there are large
non-rigid regions for which correspondences are less clear. To address this we took an
approach that is common in the anthropometry and motion capture communities of
identifying key landmarks on the body, and we used these to establish sparse corre-
spondences. We drew a set of 17 easily identifiable landmarks on specific body points
where bones are palpable; each landmark corresponds to a half-filled circle, with a
diameter of approximately 2.5cm (see again Fig. 23).

4.2.3 Ground-truth correspondences

Our alignments implicitly define a set of scan-to-scan correspondences. Some corre-
spondences are less reliable than others, since scans are noisy and incomplete and
our alignments are the result of an optimization process. To ensure we have "ground
truth", we identify vertices that are not aligned to an accuracy of 2mm using two tests:
scan-to-alignment distance and optical flow between real and synthetic images (see
Fig. 24).

1: Scan-to-alignment distance. Since all scans have been registered to a common
template, we can compute the scan-to-scan correspondence between two scans, Sk and
Sk

′

, as follows.
For any vertex vkh on Sk, find the closest point on the surface of the aligned template

mesh Tk. Call this point PTk(vkh). If the distance between vkh and PTk(vkh) is greater
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than a threshold, tdist, we say that we are not able to provide any correspondence
for vkh. Otherwise, we can uniquely identify PTk(vkh) by a face index and a triplet of
barycentric coordinates. Since Tk and Tk ′

share the same topology, the same face and
barycentric coordinates identify a point PTk ′ (vkh) on Tk ′

. Given this point, we find the
closest point, PSk ′ (vkh), on the surface of scan Sk

′

.

Note our emphasis on the fact that this does not compute vertex-to-vertex corre-
spondence but vertex-to-surface (mesh) correspondence.

If the distance between PTk ′ (vkh) and PSk ′ (vkh) is larger than tdist, then we say that
the vertex vkh on Sk does not have a corresponding point on Sk

′

. We take tdist = 2mm.

2: Optical flow between real and synthetic images. Even scan vertices that are
"near enough" to the alignment’s surface can still suffer from sliding. This issue is
ignored in most matching techniques, that simply rely on some surface distance metric
for assessing correspondences. We quantitatively assess this sliding in image space
by measuring the optical flow between the real albedo images Ak and the synthetic
images A

k
rendered by our final model.

We compute the optical flow between Ak
j and A

k
j using Classic+NL [116] with de-

fault settings. This performs well when differences in lighting between the images are
homogeneous.

To better understand how we use the computed flow in our evaluation, it is useful
to recall the notation introduced in Section 3.4. Given a scan point x, we denote by nx

the surface normal at x and by ζx(C
k
j ) the direction from x to the center of camera j;

furthermore, πk
j (x) represents the projection of x onto the image plane of camera j.

For any vertex vkh that is sufficiently visible (i.e. nvk
h

· ζvk
h
(Ck

j ) > tvis, where
tvis = 0.7), we evaluate the flow magnitude at the image pixel πk

j (v
k
h). We set a

threshold tflow to 1 pixel; vertices mapped to pixels with flow magnitude higher than
tflow in at least one image are considered unmatched. In the 612× 512 images we
consider, this threshold corresponds to at most 2mm on the scan surface.

The two tests ensure that the accuracy of alignments is within 2mm. This excludes
20% of all scan vertices; note that test 1 alone excludes 10% (see Section 4.4 for a
detailed discussion about these results).

Inter-subject, sparse ground-truth correspondences are obtained from landmarks
manually drawn on the subjects’ skin (see Section 4.2.2). We easily detect the posi-
tion of each landmark in camera images, and backproject identified 2D points to scan

surface points. For completeness, we also evaluated the accuracy of these landmark
correspondences on our alignments. The average error for the inter-subject correspon-
dences defined by our alignments, computed over all the landmarks, is 3mm.
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Figure 25: The FAUST website [10] allows users to download training and test sets, to submit
their entries and visualize their results.

4.2.4 Benchmark

Based on the ground-truth correspondences defined by our alignments, we define a
benchmark that evaluates 3D surface matching algorithms on real scans.

We split FAUST into a training and a test sets. The training set includes 100 scans
(10 per subject) with their corresponding alignments; the test set includes 200 scans.
The partition between training and test sets was chosen uniformly at random.

The FAUST benchmark defines 100 preselected scan pairs, partitioned into two
classes – 60 requiring intra-subject matching, 40 requiring inter-subject matching. For
each scan pair, (Sk,Sk

′

), we require a 3D point on the surface of Sk
′

for every vertex
on Sk. If the matching point is not a surface point of Sk

′

, we compute the closest point
on the surface and use this.

To compute the error, we consider the Euclidean distance between the estimated
point and the ground truth. Benchmarking is performed on each class (inter and intra)
separately; for each class, we compute the average error over all the correspondences
and the maximal error.

The dataset and the evaluation website are freely accessible for research purposes [10].
The website provides information about data and file formats, and lets users submit
entries and visualize their results. Figure 25 shows two example webpages.
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4.3 experimental evaluation

We benchmark different state-of-the-art registration techniques on FAUST, partitioning
them into model-free and model-based. Our main goal is to evaluate the impact of
using real data when testing the performance of surface matching algorithms.

4.3.1 Model-free registration

We tested three embedding techniques, focusing on methods with publicly available
code: Generalized Multi-Dimensional Scaling (GMDS) [37], Möbius voting [87] and
Blended Intrinsic Maps (BIM) [78]. The first method achieves good results on TOSCA,
while the last two perform well on both TOSCA and SCAPE.

The three algorithms require watertight meshes as input. Technically none of these
methods can be evaluated on the FAUST benchmark, but to get a sense of how FAUST
compares in complexity to TOSCA and SCAPE we converted our original scans to
watertight meshes via Poisson reconstruction [77], keeping them at a fairly high reso-
lution.

The algorithms return as output a set of sparse (GMDS and Möbius voting) or dense
(BIM) correspondences. We computed the Euclidean distance between the returned
correspondences and the ground truth; to compare our results with those reported
in [78], we computed also a normalized sum of geodesic distances. We used only the
intra-subject test set; the inter-subject test was not used because it requires correspon-
dences of specific points on the scan, which are not provided by the sparse algorithms.
Möbius voting and BIM did not return any result for 6 and 15 pairs of scans, respec-
tively. While this does not comply with our benchmark, we report errors for successful
pairs. We could not run GMDS at all because the method does not handle meshes with
more than 4000 vertices; we chose not to downsample our meshes so drastically, since
we are interested in evaluating techniques on higher-resolution data.

Benchmark results are summarized in Table 1. Möbius voting and BIM achieved an
average error of 283mm and 120mm, respectively; the maximum errors were 1770mm
and 1698mm. For geodesic error, Möbius voting and BIM had error lower than 0.05
units for 38% and of 64% of the correspondences, respectively. For a rough comparison,
on 71 mesh pairs from SCAPE, [78] reports the same error threshold for 45% and 70%
of the correspondences; on 80 mesh pairs from TOSCA, the same error is reported for
60% and 85% of the correspondences. We noticed that the algorithms tend to return
many correspondences with high errors on challenging pairs.
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Figure 26: BIM algorithm [78] evaluated on two pairs of FAUST meshes made watertight. Cor-
respondences are rendered with identical color. BIM handles pose variation (left
pair), but fails to match meshes in the presence of self contacts (right pair).

In particular, we identify four principal challenges: missing data, differing mesh
topologies between scans, high resolution, and self contacts. The algorithms returned
correspondences with high error even for similar poses when meshes have missing
parts (e.g. truncated hands or feet) or self contacts. Pose variance had in general
minor (although not negligible) impact (see Fig. 26).

FAUST highlights the deficiencies of current algorithms when dealing with real scan
data. This should drive the field in a useful direction.

4.3.2 Model-based registration

We are aware of no publicly available code for model-based registration, so we evalu-
ated our method after removing its appearance-based component; this corresponds to
the geometry-based coregistration approach described in Section 3.3. In this case, to
obtain a fair evaluation, we used no landmarks during the alignment process.

On the full FAUST test set, the intra-subject error averaged 7mm; the maximal error
was 926mm. We observed a very large error over a limited set of vertices; in most
cases, this was due to self penetrations. When matching different subjects, the average
error was 11mm, while the maximal error was 74mm.

These numbers can be seen as a rough estimate of the error one can expect due to
sliding of surface points during mesh registration.
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Table 1: Results obtained by GMDS [37], Möbius voting [87], BIM [78] and geometry-based
coregistration [34] on the FAUST benchmark. All the errors are in millimeters.

Technique Intra-subject error ( avg/max ) Inter-subject error ( avg/max )
GMDS1 [37] - -

Möbius voting2 [87] 283 / 1770 -
BIM3 [78] 120 / 1698 -

Coregistration [34] 7 / 926 11 / 74

1. Not tested since it requires lower-resolution meshes.

2. Returns sparse correspondences. Tested over 54 scan pairs.

3. Returns dense correspondences. Tested over 45 scan pairs.

4.4 discussion

In this section, we discuss in greater detail the quantitative results presented in the
chapter. First, we try to identify the reasons why 20% of all FAUST scan vertices are
deemed misaligned by our validation process. Through this analysis, we identify the
current limitations of our registration technique. Second, we apply the same validation
process to judge the quality of the geometry-based registrations obtained after the first
stage of our approach (see Section 3.3); in this way we can assess, from a quantitative
point of view, the impact of using appearance information during registration. Finally,
we conclude with some observations about the role and the significance of FAUST
with respect to previous datasets for 3D mesh registration.

4.4.1 Unreliable correspondences

Our evaluation (see Section 4.2.3) defines as "reliably" registered (i.e. with an accuracy
within 2mm) 80% of the vertices of all the scans. In particular, the percentage of
reliably registered vertices per scan ranges from a minimum of 45% to a maximum of
93%.

Analyzing these results, we identify two main limitations of our approach: inade-
quate modeling of skin stretching, and scarce robustness against noise and missing
data in small, detailed areas like hands.

Capturing skin stretching is problematic particularly in old subjects. Figure 27 ex-
emplifies the stretching problem occurring for an old woman’s knee: our appearance
model erroneously captures skin wrinkles, that are present in most poses, generating
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(a) (b) (c)

(d) (e) (f)

Figure 27: Problems due to skin stretching when registering the knee of an old woman in two
different poses. For each pose, we show real image ((a),(d)), synthetic image ((b),(e))
and optical flow between the two ((c),(f)). Wrinkles are erroneously captured by
our appearance model, resulting in wrong synthetic image patches when the knee
is bent (green circle) – and therefore in a greater flow magnitude. The absence of
toes in image (d) is due to missing data in the original scan.

inadequate synthetic images when the knee is bent. Our approach is currently not
able to model these high-frequency details.

Besides creating inaccurate apperance models, this limits the applicability of our ap-
proach: wrinkles and small-scale deformations due to facial expressions, or clothing
folds, would not be captured by our models as well. We plan to extend our approach to
cope with these fine-scale details including a shape-from-shading component (similar
to [122, 138]). Currently, we estimate scene lighting and surface albedo in a prepro-
cessing stage. An alternative formulation of our appearance-based objective function
may include lighting and albedo as parameters to optimize, leading to more accurate
albedo estimates. Ideally, instead of using contrast normalization to obtain robust-
ness against shading artifacts, our technique could exploit shading cues to reconstruct
high-frequency geometric details.

Hands turn out to be very problematic areas, with nearly 100% of the scans having
at least one hand vertex not reliably registered (see also Fig. 30 in the next section).
Original scans are particularly noisy in these areas, due to the difficulty of capturing
low-level details like fingers in scans covering the full body of a subject: in many cases
fingers are missing or, when there is a contact between hands and other body parts,
they cannot be clearly distinguished. Figure 28 shows some significant failure cases
when registering hands.
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Figure 28: Failure cases when registering hands: self penetration (left) and unrealistic finger
shape (right).

4.4.2 Appearance vs. geometry information

By applying the same validation process presented in Section 4.2.3, we estimated the
number of "reliably" registered vertices obtained by our method after removing its
appearance-based component.

Only 37% of the vertices of all the scans are registered within an accuracy of 2mm
when scan textures ares not exploited. The percentage of reliably registered vertices
per scan ranges from a minimum of 8% to a maximum of 67%.

We find that, in general, sliding plays an important role. We evaluated the percent-
age of vertices failing test 1 alone, and compared this with the percentage of vertices
failing both tests. When the appearance-based component is considered during align-
ment, test 1 excludes 10% of all the scan vertices; test 1 and 2 together exclude 20% of
the vertices. When evaluating geometry-based alignments, test 1 excludes only 4% of
the vertices, but at the cost of a high sliding error: the final percentage of unreliably
registered vertices is 63%. Figure 29 shows the sliding error detected by optical flow
in one camera image when evaluating the geometry-based approach, and compares it
with the results obtained after appearance-based optimization.

Figure 30 shows the distribution along the body surface of vertices failing test 1

alone (first row) and failing both tests (second row), for all the scans in FAUST; the left
and right columns compare the results obtained when considering appearance during
alignment or ignoring it, respectively. Red represents vertices deemed misaligned in all
the scans; blue represents vertices accurately registered in all the scans. As expected,
the number of vertices failing test 1 decreases when appearance is not considered.
Sliding is still detectable even after appearance-based alignment, mostly in areas like
armpits, forearms and shoulders; in some cases, we noticed errors due to movement
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(a) (b) (c) (d) (e)

Figure 29: Sliding errors detected by optical flow significantly decrease after appearance-based
optimization. We show an example real image (a), two synthetic images generated
before (b) and after (d) appearance-based registration, and the corresponding com-
puted flow, (c) and (e). Misalignments due to stretching, well visible in (c), are
almost absent in (e).

of clothing between one scan capture and another. Without the appearance-based
component, sliding is high in all the areas providing low-frequency shape information.

4.4.3 About the dataset

FAUST was officially released in June 2014. After half a year, we collected some statis-
tics about its usage: more than a hundred people signed up to download the data; a
dozen users submitted benchmark entries privately (i.e. without making results pub-
lic); nobody submitted entries publicly. While FAUST alignments are used in statistical
body shape modeling, the benchmark itself is less widely used.

We can draw on these numbers, and on the feedback we received by the users, to
discuss the position of our dataset with respect to previous work. FAUST seems quite
different from previous datasets for 3D mesh registration, for two reasons: first, the
dataset is far more challenging; second, some choices we made, like the benchmark
evaluation metric, are somewhat "unusual" in the field. In the following, we try to
analyze both aspects in more detail.

As pointed out in Section 4.3.1, registration techniques have difficulties when deal-
ing with FAUST scans for the following reasons:

• high resolution: FAUST scans consist on average of 172000 vertices – more than
three times the average vertex count in TOSCA, the most popular dataset in
the field. Some techniques we tested just failed in handling meshes with this
resolution;
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with appearance-based
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without appearance-based
optimization
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Figure 30: Distribution along the body surface of vertices failing test 1 alone (first row) and
failing both tests (second row), for all the scans in FAUST; left and right columns
compare the results obtained when considering appearance during alignment or
not, respectively. Red represents vertices deemed misaligned in all the scans; blue
represents vertices accurately registered in all the scans.

• differing mesh topologies between scans: too many techniques still rely on the
(unrealistic) assumption that the meshes to be matched have identical number of
vertices and topology;

• missing data and self contacts: this particularly affects model-free techniques,
that seek intrinsic representations for the surfaces to be matched.
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As for our "implementation" choices, we identify two main aspects differentiating
FAUST from previous work:

• the computation of errors using Euclidean instead of geodesic distances: this
choice is due to the fact that computing geodesic distances on non-watertight
meshes is problematic;

• the computation of point-to-surface correspondences, instead of point-to-point
(i.e. vertex-to-vertex) correspondences.

These characteristics may make more difficult the adoption of the FAUST bench-
mark in the community. We are currently considering the addition of more evaluation
metrics, and the release of more training data. Our hope is that FAUST can encourage
the development of more robust, real-world oriented registration techniques.
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M E L A N O C Y T I C L E S I O N S

In previous chapters, we assumed the presence of a high-frequency dense texture
pattern painted on the skin of the subjects. This pattern was necessary to establish
dense ground-truth correspondences between scans, and we leveraged it to assess the
accuracy of our registrations.

A natural question that arises at this point is: can one exploit texture information
given by the human skin alone – for example, by the presence of small artifacts like
birthmarks or moles – to establish accurate scan-to-scan correspondences? To answer
this, we explore possible uses of our approach in dermatology.

The problem we target is the automated screening of melanocytic lesions. Detecting
lesion changes over time is crucial for a prompt diagnosis of melanoma, an aggres-
sive form of skin cancer. By adapting our technique and integrating it with a lesion
segmentation algorithm, we develop a fully automated pre-screening system for de-
tecting new lesions or changes in existing ones, as small as 2–3mm, over almost the
entire surface of the body. The system provides a first level of surveillance; putative
changes can then be evaluated by a dermatologist.

The integration of lesion segmentation with a 3D body model is a key novelty that
makes the approach robust to illumination variation, changes in subject pose and
shape, and presence of sparse body hair.

We provide some background on melanocytic lesion screening in Section 5.1. After
providing a brief overview of the most relevant literature (Section 5.2), we describe
our system in Section 5.3. In Section 5.4, we present experimental results obtained in
a pilot study using synthetic lesions. In Section 5.5, we draw some conclusions and
look at directions of future work.

5.1 melanocytic lesion screening

Malignant melanoma is an aggressive form of skin cancer whose incidence is rapidly
increasing worldwide [53]. In its early phases, a melanoma is almost indistinguishable
from a benign melanocytic lesion (a common "mole"). A sensitive sign of a malignant
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lesion is its evolution: the appearance of a new lesion or changes in an existing one
suggest an increased probability of a melanoma, while stability speaks against the
presence of a disease. Early detection promptly followed by excision is the key to
a favorable prognosis [53, 106]; this requires periodic monitoring of the skin and in
particular of melanocytic lesions (sometimes hundreds on an individual).

Monitoring typically takes place at three levels of detail. First, the dermatologist con-
ducts a naked eye, "full-body" inspection of the skin, detecting suspect lesions. Then,
these lesions are examined through a dermatoscope, which provides 10× to 60× mag-
nification and specific illumination revealing more details of the lesion’s 3D structure.
Finally, lesions deemed at risk are excised and, a posteriori, histopathologically ana-
lyzed.

Digital images are often acquired at both the first ("full-body") and at the second
("dermatoscopic") level of detail, allowing the dermatologist to track the evolution of
the patient’s melanocytic lesions. The periodic acquisition of these images at both
levels of detail is an extremely time-consuming task; it is rarely performed more than
once per year on a given patient. Furthermore, manual comparison – especially of
"full-body" images – is challenging and error-prone: there might be changes in the
pose (and in the shape) of the patient, and in the illumination of the scene.

The introduction of automated tools can help reduce the time spent by the derma-
tologist during a visit, costs and errors [51, 76]. In the next section, we review the
literature on automated melanocytic lesion screening, with a focus on the first ("full-
body") level.

5.2 previous work

Most previous work on lesion change detection addresses the problem at the "der-
matoscopic" level, analyzing high-magnification images of small regions surrounding
a lesion (see [76] for a survey). Tracking multiple lesions, however, is a challenging
problem that has received surprisingly little attention [76].

The task can be subdivided into two parts: segmentation/detection and registra-
tion/matching. Techniques proposed in the literature usually do not undertake both
tasks simultaneously, but rather focus either on one or on the other.

Segmentation/detection approaches usually identify a set of lesion candidates using
simple image processing methods [56, 101, 103, 118, 131] and then filter the results
using unsupervised [101, 103] or supervised [118] classification.
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Matching lesions in images taken at different times is challenging and approaches
take many forms. The diameter of a lesion is generally small compared to its displace-
ment between different images, making matching hard. One approach solves for a
rigid 2D transformation between images given user-provided matches [102]. In [91],
back torso images are mapped to a common 2D template. Pose variation and non-
rigid changes in body shape cause non-linear, anisotropic deformations of the skin,
further complicating matching. Other approaches focus on the topological relations
between lesions and use graph-matching methods to find the relationship between im-
ages [70, 91, 92, 130]. While able to produce robust matchings, these approaches may
have difficulty with large numbers of lesions.

Voigt and Classen [131] perform both segmentation and registration. Images of the
patient’s front and back torso are acquired with a single camera and a positioning
framework for adjusting the patient’s pose. Lesion borders are detected by threshold-
ing the output of a Sobel operation; due to the large number of skin features easily
mistaken for lesions, such as hair, this can lead to poor performance. The precise po-
sitioning of the patient attempts to remove the registration problem but, in practice,
humans are deformable and there will always be non-rigid changes in pose and shape.

Virtually all previous segmentation and registration techniques are evaluated only
on a small part of the body, commonly the back or front torso. These methods do
not provide a solution to the full-body analysis/screening problem. In contrast, we
consider the entire body surface (or most of it) at once, simplifying the acquisition
process for both patient and dermatologist.

5.3 method

To build our system, we adapt the registration technique presented in Chapter 3 and
integrate it with a novel lesion segmentation algorithm.

The approach proceeds in five steps (see Fig. 31). First, we capture a scan of the
subject, obtaining a triangulated non-watertight mesh and a set of camera images.
Given scans of a subject taken on different days there will be changes in lighting, pose,
shape, hair and skin texture. We preprocess the original images to remove shadows,
and perform a preliminary lesion segmentation in image space. Then, we bring the
scans into registration with our 3D body model. This defines dense correspondences
between scan surfaces, normalizing for variations in subject pose and shape. Once
scans have been registered, we refine our segmentation and detect lesion changes in
the parameterized space defined by the model.
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Figure 31: Overview of our approach. After scan capture, we preprocess camera images in
order to eliminate shadows and obtain a preliminary lesion segmentation. We
bring scans into registration with a 3D body model, that normalizes for pose and
shape variations. Once scans are registered, we compare them and identify changes
in the parameterized space defined by the model.

The following sections describe each step in detail.

5.3.1 Scan acquisition

We use the 3D multi-stereo system described in Section 3.2. Each scan is a trian-
gulated, high-resolution, non-watertight mesh. Synchronized with each scan are 22

color cameras, capturing images of the body from different views. Differently from
the approach described in Section 3.2, we now process images at a higher resolution
(1224× 1024 pixels).

5.3.2 Lesion segmentation

Automated lesion segmentation on the whole body may suffer from the presence of
shadow artifacts. To reduce these effects, we preprocess the original camera images
I = {Ij : j = 1, . . . , 22}, in order to discriminate between albedo and shading.
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We assume lighting is constant across scan sessions, and simply precompute it as de-
scribed in Section 3.4.1. The estimated lighting model is used for computing shadows,
which are then removed from each original image Ij to produce the corresponding
albedo image Aj (see Fig. 31).

After obtaining a set of albedo images A = {Aj : j, . . . , 22}, we segment them to
identify putative lesion borders.

As a preliminary step, in each image we isolate skin from background and clothing
by means of a simple thresholding of the hue. We choose a conservative threshold,
since subsequent steps can deal with skin false positives.

We obtain an initial estimation of lesion borders using Laplacian-of-Gaussian (LoG)
filtering [103, 118]. Since lesion radii can vary depending on the subject and on the
camera viewpoint, the LoG filter is applied at five different scales. Linear Discriminant
Analysis (LDA) [66] is used to classify each pixel in Aj into a lesion binary mask Hj

based on the output of the multi-scale LoG filter. LDA classification produces, for each
albedo image Aj, a binary mask Hj, marking each pixel as lesional or non-lesional. We
collect these masks in a set H = {Hj : j = 1, . . . , 22}.

Facial features and occlusion boundaries, due to their high second-derivative re-
sponse, may be erroneously identified as lesional. However, these artifacts tend to be
elongated, while lesions are spatially compact. We postprocess each mask Hj in order
to keep only compact connected components. For each connected component in Hj,
we consider its minimum bounding box; if the ratio between its major and minor side
is too high, or fewer than half of the pixels inside it are lesional, the component is
discarded (such components are colored in red in the preliminary masks in Fig. 31).

5.3.3 Scan registration

We register scans of the same subject captured in different sessions by aligning a com-
mon template T∗ to each scan. As in Chapter 3, we minimize an objective function
considering both geometry and appearance information, and couple the template to-
wards a BlendSCAPE body model during the alignment. However, in contrast with
the approach previously described, here we do not coregister a corpus of scans, but
rather register scans relative to a single subject. We therefore have to define how the
parameters of our body model are learned. After providing a few details about model
learning, we formalize our objective function.

model learning As described in Section 3.3.1, our BlendSCAPE model factorizes
human body deformations into a set of shape-dependent deformations, D, and a set
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of pose-dependent deformations, B(θ,W) and Q(θ). Both B(θ,W) and Q(θ) are pa-
rameterized by the pose vector θ; W collects a set of blending weights. We also model
subject appearance by means of a texture map U.

In our screening system, we are interested in obtaining a personalized model of
shape deformations and an appearance model of the subject, but do not define an
objective function including Q and W as parameters to optimize. Instead, we learn Q

and W from a corpus of 1832 scans of 78 people (41 women and 37 men) in a wide
range of poses, registered with the approach presented in Section 3.3.

To learn a subject-specific shape model D, we capture a set of initial scans {Sk : k =

1, . . . ,Ninit} of the subject and coregister them based on geometry information.
More precisely, we obtain a set of alignments {Tk : k = 1, . . . ,Ninit}, a set of pose

parameters {θk : k = 1, . . . ,Ninit} and a set of shape-dependent deformations D by
minimizing the following error function Einit:

Einit({T
k}, {θk},D; {Sk},Q,W) =

∑
scank

λSES(T
k;Sk)+ (5.1)

∑
scank

(λcplEcpl(T
k,θk,D;Q,W) + λθEθ(θ))

where ES, Ecpl and Eθ correspond to the geometric data term, the coupling term and
the pose prior introduced in Section 3.3.2 (Eqs. (3.2), (3.6) and (3.3)), and λS, λcpl and
λθ are weighting terms. Note that a very limited number of scans is sufficient to learn
an adequate shape model; in our experiments, we set Ninit = 2 (see also Section 5.4).

After obtaining a set of initial geometry-based alignments, we compute an appear-
ance model U using the same methodology described in Section 3.4.2.

Note that D and U need to be computed only once per subject, during the first ac-
quisition session. In the subsequent sessions, we use D and U during scan registration,
but do not optimize them.

registration Our formulation is similar to that provided in Section 3.5. The qual-
ity of the correspondence between the scan S captured during a generic session and
the corresponding deformed template T is measured in terms of an error with 4 com-
ponents: a geometry-based data term ES, a "coupling" term Ecpl, a pose prior Eθ and
a slightly modified appearance-based data term EUH

. ES, Ecpl and Eθ are analogous
to the terms defined in Eqs. (3.2), (3.3) and (3.6).

Differently from the original formulation introduced in Section 3.5, the appearance-
based error term now includes a weighting factor to give more importance to appear-
ance consistency around lesions. Given U, T and the calibration parameters Cj of
camera j, we render a synthetic image Aj (Fig. 32(b)). The appearance-based error
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term EUH
encourages consistency between each albedo image Aj and the correspond-

ing synthetic image Aj:

EUH
(T ;A,H,C,U) =

∑
camera j

∑
pixely

wHj
(y)||Gσ1,σ2

(Aj)[y] −Gσ1,σ2
(Aj)[y]||

2 (5.2)

where C is the set of camera calibration parameters C = {Cj : j = 1, . . . , 22}, and wHj
(y)

is a weighting function assigning higher weight to pixel y if y is marked as lesional in
Hj. As in the formulation provided in Section 3.5, Gσ1,σ2

defines a Ratio of Gaussians
(RoG) of parameters σ1 and σ2.

Summarizing, we deform the template T to fit the scan S minimizing the following
objective function:

Ealgn(T ,θ;S,A,H,C,U,D,Q,W) =λSES(T ;S)+

λUH
EUH

(T ;A,H,C,U)+

λcplEcpl(T ,θ;D,Q,W) + λθEθ(θ) (5.3)

where ES, Ecpl and Eθ are analogous to the terms defined in Eqs. (3.2), (3.3) and (3.6);
λS, λUH

, λcpl and λθ are weights assigned to the different terms.

5.3.4 Lesion segmentation refinement and change detection

The presence of sparse hair, small skin artifacts or generic image noise may affect the
performance of the pre-segmentation described above, producing a high number of
false positives. Using more restrictive classification thresholds or artifact removal algo-
rithms (as in [118]) may produce false negatives, i.e. discard actual lesions. Crucially,
these artifacts tend to be mistaken as lesions only from specific viewpoints.

We exploit our multi-camera capture framework to filter out lesions that are not
consistently detected by a number of relevant (i.e. with a good viewpoint) cameras.
While previously we were working in image space, now we perform our segmentation
refinement in texture space.

More formally, for any template surface point x, we denote by uv(x) its mapping
from 3D to texture space, and by πj(x) its projection onto the image plane defined
by camera j. Hj[πj(x)] equals 1 if x is classified as lesional according to camera j, 0
otherwise. Furthermore, we denote by nx the surface normal at x, and by ζx(Cj) the
direction from x to the center of camera j. Texel y = uv(xy) is classified as lesional if
and only if ∑

camera j Vxy(Cj)Hj[πj(xy)]max (ζxy(Cj) ·nxy , 0)∑
camera j Vxy(Cj)max (ζxy(Cj) ·nxy , 0)

> δ (5.4)
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(a) (b) (c) (d) (e)
Figure 32: A real (a) and a synthetic albedo (b) image of a subject’s back. Figures (c)-(e) show

the final segmentation obtained by setting δ in Eq. (5.4) to 0, 0.2 and 0.5, respectively.

where Vxy(Cj) is a visibility function returning 1 if xy is visible from camera j, 0

otherwise, and δ is a system parameter. This corresponds to computing a weighted
average of the classifications provided by different cameras – where the contribution
of each camera is weighted according to the quality of its viewpoint. Figure 32 shows
how the final segmentation varies depending on δ: artifacts like sparse hair tend not to
be consistently detected across different cameras, and are therefore filtered out; lesions
exhibit more consistency (see e.g. the bottom of the back and the right shoulder). We
quantitatively evaluate the sensitivity of the system to the value of δ in Section 5.4.

Detected lesions are integrated into a full-body texture map (see Fig. 31). This
greatly simplifies the tracking of changes in lesions compared to using multiple single
images. Each texel is associated with the same template surface point, independently
of subject pose and shape. Texture maps from different times are therefore directly
comparable. A detection that does not overlap with one in a previous map reveals a
new lesion; a detection that does overlap, but comprises a higher number of pixels, is
likely to reveal a lesion that has grown.

5.4 evaluation

We evaluated our system on a set of 6 male and 6 female subjects of ages 23 to 44

years, height 160 to 186 cm, and weight 55 to 82 kg. There was considerable variation
in terms of skin tone, number of melanocytic lesions, and presence of sparse body
hair (Fig. 33(b)). We trained the LDA classifier (Section 5.3.2) on a set of 50 images
of 10 different subjects, captured with our 3D multi-stereo system; there is no overlap
between the subjects used for evaluation and those used for training.
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(a) (b)

Figure 33: (a) Skin patch exhibiting a synthetic lesion (large lesion towards upper left). (b)
Scans of subjects, showing varied skin phenotype and pose.

For this pilot study, we artificially created and altered lesions by drawing with a
marker on the subjects’ skin. Note that these synthetic lesions look realistic at the
resolution of our images, as seen in Fig. 33(a).

Each subject was scanned in 2 poses, respectively with arms held horizontally ("T-
pose"), and pointing downwards at an angle ("A-pose") (Fig. 33(b)).

For each subject, we captured two initial scans in order to learn D and U (as de-
scribed in Section 5.3.3). After the initial scans, for each subject we created 10 syn-
thetic lesions with a diameter of 3mm, and re-scanned them in the 2 poses. We then
expanded each synthetic lesion first to a diameter of 5mm, and then to a diameter
of 7mm, re-scanning the subjects in the 2 poses each time. This yielded 4 timepoints
with increasing lesion diameter (0, 3, 5 and 7mm): 3 pairs of timepoints (0 → 3mm,
0 → 5mm, 0 → 7mm) correspond to the appearance of new lesions of different diame-
ters, while the other 3 pairs (3 → 5mm, 3 → 7mm, 5 → 7mm) correspond to changes
in existing lesions. For each pose, and pair of timepoints, our system identifies a set
of "suspect" lesions – lesions deemed either new or modified.

For different values of the parameter δ (see Section 5.3.4), our system yields different
values of precision (the fraction of suspect lesions that were actually new or modified
lesions) and recall (the fraction of new or modified lesions that were reported as sus-
pect lesions).

Figure 34 reports the results for the A-pose, since it was the most comfortable for all
subjects. The results for the other pose are almost identical. Precision and recall values
are computed by aggregating the values obtained for all the subjects. On average, a
high recall (> 90%) was achieved for all pairs of timepoints, with a precision > 50%
in the case of small (3mm) new lesions, > 80% in the case of larger new lesions (5mm
and 7mm), and 60− 80% in the case of changes in existing lesions. Note that, while
high precision is desirable, high recall is more important since the consequences of
missing a potential melanoma are much direr than those of a false alarm.
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Figure 34: Precision/recall curves for detecting new lesions (left) and increased lesion sizes
(right), for 100 values of the parameter δ evenly spaced between 0 and 1. Preci-
sion and recall values are computed by aggregating the values obtained for all the
subjects.

The acquisition of each scan requires a few milliseconds. Further processing (scan
generation, alignment, texture map analysis) can be performed off-line; in our experi-
ments, it required a few minutes per scan on a common desktop machine.

5.5 conclusions

In this chapter we have proposed a novel solution for "full-body" screening of mela-
nocytic lesions. A multi-camera system captures the 3D shape and skin texture of a
subject. Given two such scans of the same subject, taken at different times, we bring
them into registration by aligning each scan with a learned, parametric 3D body model.
Once scans are registered, we compare them across time and identify changes in skin
lesions. In a pilot study, we show that our method automatically detects changes on
the order of 2–3mm.

In comparison with previous work, our approach introduces a number of novelties.
Most techniques in the literature try to detect lesion changes by comparing 2D images
of a patient taken at different times. This comparison may be challenging due to il-
lumination variation, and due to non-rigid changes in the patient’s pose and shape.
In contrast, we propose to compare 3D textured scans, after bringing them into reg-
istration with a 3D body model. Working in 3D makes it easier to estimate shadows,
and remove them; the approach is robust to non-rigid deformations due to changes
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in body pose and shape, since lesion changes are detected in the parameterized space
defined by the model.

Based on our preliminary results, a longitudinal study of dermatological patients
should be pursued. We would be interested also in evaluating the usefulness of our
system for acquiring and analyzing data in epidemiological studies.

Future work should explore higher-resolution RGB imagery, and the effect of vary-
ing number/resolution of cameras on detection.

Currently, one major limitation of the system is its cost. A different, intriguing
research line would explore less expensive scanning devices (e.g. the Kinect) for the
acquisition of 3D data and texture. Here our 3D body model could be exploited
to integrate information from multiple poses and, given accurate alignment, image
super-resolution could be used to obtain high-quality texture. We tackle the problem
of registering data acquired with a single Kinect camera in the next chapter.





6 T E X T U R E D 3D B O DY M O D E L S F R O M K I N E C T

In this chapter we tackle the problem of learning personalized body shape and appear-
ance models from dynamic sequences captured with a single Kinect sensor.

Working with dynamic, monocular Kinect sequences poses novel challenges com-
pared to the ones we faced in the previous chapters. It represents a testbed to evaluate
the robustness of our approach, and highlight its shortcomings; and it is an opportu-
nity to push forward our algorithms to deal with more complex scenarios. In contrast
to previous chapters, here we present work that is not yet fully mature; we outline an
approach and show some preliminary results – but, mostly, we look ahead to future
research directions.

This chapter is organized in five sections. Section 6.1 introduces the problem we ad-
dress, identifying the main challenges involved. Section 6.2 presents the most relevant
literature. Section 6.3 describes our approach: we build on the algorithms presented in
previous chapters, extending and adapting them to work with noisier, incomplete data.
Section 6.4 presents preliminary results obtained on a set of 24 sequences, capturing
6 subjects in different motions. Section 6.5 discusses the significance of our results,
analyzes current limitations of our approach and proposes further improvements.

6.1 problem and challenges

During recent years there has been an enormous diffusion of consumer RGB-D cam-
eras. Tens of millions of devices have already been shipped, and new versions for
integration into laptops, tablets and smartphones are currently being developed [145].

A lot of research effort has been put into recovering high-fidelity geometric recon-
structions from depth data captured with such devices. People can now scan static
scenes or objects at home, and obtain shape models with an impressive level of detail.

But besides shape, appearance plays an important role in obtaining realistic models.
Recent devices offer good-quality RGB streams, often at a higher resolution than depth
ones. Crucially, RGB data at this resolution is useful not only to recover appearance:
it is also a source of (dense or sparse) features to accurately track moving objects.

73
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Leveraging this idea, we tackle the problem of building high-quality, personalized
appearance and shape body models from monocular RGB-D sequences captured with
a single Kinect. In contrast with most previous work, we try not to put any constraint
on the subject’s motion during capture. In fact, we consider large non-rigid deforma-
tions and viewpoint changes important to obtain complete, detailed models.

Working with Kinect monocular sequences poses a series of challenges. First, data
provided by the device is noisier and at a lower resolution than scans obtained from
professional scanning systems. Second, fast body motions may increase blurring and
outliers. Third, the body is never fully visible at once, so one faces the problem of
reconstructing a complete model from partial (per-frame) views.

Solutions proposed in the literature can be roughly divided into two classes. "Model-
free" approaches consider multiple depth frames, corresponding to different views of
the subject, and bring these frames into registration to obtain a complete model. To
minimize the presence of non-rigid deformations, the subject is usually asked to keep
a similar pose between frames (e.g. to turn around); this limits the amount of subject-
specific shape and appearance details that can be captured. "Model-based" approaches
fit a statistical body model to partial views, searching for optimal parameters into a
low-dimensional shape space; often, the range of poses that can be handled is limited.
The expressiveness of the model is bound to that of the low-dimensional space, so
high-frequency shape details are smoothed out.

Our goal is to develop a different solution, that a) can handle significant non-rigid
deformations and b) is not limited by a low-dimensional shape space. As in the pre-
vious chapters, we rely on the BlendSCAPE model described in Section 3.3.1. We
bring our model into registration with depth and RGB data captured in each frame,
obtaining a set of alignments (i.e. topologically coherent meshes deformed to fit data
in each frame). These alignments are used to learn a personalized model of shape
deformations, and an appearance model.

Note that, in our formulation, we are actually combining temporally coherent mo-
tion reconstruction and model learning: our approach produces a sequence of de-
formed meshes (one per frame), and use them to learn a set of body model parame-
ters.

6.2 related work

Our work tries to address two related, but different, problems: shape and appearance
modeling from consumer RGB-D cameras, and motion and geometry reconstruction
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from dynamic sequences. In the following, we briefly review the most significant
approaches proposed in the literature for either problem.

shape and appearance from consumer rgb-d cameras Early approaches try
to recover detailed geometry from rigid scenes. Systems such as KinectFusion [72,
95] enable a user holding and moving a Kinect camera to create highly detailed 3D

reconstructions of indoor scenes in real time; data captured in different frames is
registered using ICP to obtain a dense 3D model. Recent work [145] extends this
approach, correcting for optical distortions introduced by the camera to recover high-
quality appearance models.

Interestingly, a number of approaches to estimate human body shape draws inspira-
tion from KinectFusion [47, 84, 111, 124, 142]. In these systems, the user is often asked
to rotate in front of the device maintaining a roughly rigid pose; partial data captured
from different viewpoints is merged to produce a single mesh, using non-rigid regis-
tration algorithms to correct for small deviations in the motion between viewpoints.
These approaches treat non-rigid deformations as "noise", instead of explicitly captur-
ing and modeling them.

Model-based techniques [44, 134] rely on low-dimensional statistical body models
to handle a wider range of poses. These approaches fit a set of pose and shape pa-
rameters to one or multiple frames in order to recover complete models from partial
data. Working in a low-dimensional shape space tends to limit the expressiveness of
the reconstructed shape, smoothing out high-frequency geometry (e.g. subject-specific
face details).

Note that the goal of all these systems is to produce a single mesh as output from
an RGB-D sequence; they do not address non-rigid motion reconstruction.

To the best of our knowledge, no attempts have been made so far to learn an ap-
pearance body model, or even to recover high-quality texture maps from consumer
RGB-D cameras. Common approaches reconstruct per-scan appearance by averaging
RGB information from different views [47], and smoothing texture transitions between
views via Poisson blending [84, 111, 124]; in [84], the authors correct for illumination
changes between views using a general-purpose albedo estimation technique [25]. This
does not avoid artifacts such as ghosting or blurring, leading to low-quality textures.

non-rigid geometry and motion reconstruction Many approaches address
the problem in high-quality multi-camera systems. In such settings, impressive results
have been shown in the reconstruction of complex human motion and dynamic geom-
etry of non-rigid surfaces, including people with general clothing [42, 48, 49, 57, 85].
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In some cases, fine geometric details are captured by estimating surface reflectance in
controlled studio setups with sophisticated lighting [122, 129].

Recently, the availability of consumer depth cameras promoted the creation of more
"lightweight" setups. Some approaches employ multiple devices: Ye et al. [140] capture
multi-subject performances with three moving Kinects; Dou et al. [50] deform a human
template to match scans acquired with an eight-Kinect rig.

Working with monocular sequences, however, is more challenging; at each frame,
typically less than half of the considered object is visible [147], so the behavior of
unobserved parts has to be inferred.

Most approaches focus on capturing and modeling small objects. Li et al. [82] re-
construct non-rigid surface deformations from high-resolution monocular depth scans,
using a smooth template as geometric prior; the limited scanning volume makes the
approach suitable only for body parts like hands or faces. Zollhöfer et al. [147] try to
continuously reconstruct non-rigid motions of small objects or body parts, acquired
with a custom RGB-D camera, fitting a rough template to each frame in real time. Suc-
cessful model-based approaches have been proposed for real-time tracking of hands
from Kinect [97, 121]. These approaches do not recover object appearance.

Less effort has been put in reconstructing the motion of full human bodies. Liao et
al. [86] develop an algorithm to model complete 3D deformable objects (including hu-
man bodies) from monocular depth sequences, evaluating it on synthetic data. Helten
et al. [67] estimate a personalized body shape model from two Kinect depth images,
and then use it to track the subject’s pose in real time from a stream of depth images.
The system does not provide satisfactory tracking performance when the subject does
not face the camera, or when parts of the body are occluded or outside the recording
volume of the Kinect.

6.3 approach

Our approach takes as input a sequence of frames, acquired with a single Kinect
camera, capturing a subject in an arbitrary motion; it produces as output a subject-
specific shape and appearance model, together with a set of alignments – i.e. a set of
topologically coherent meshes deformed to fit depth and RGB data in each frame.

The task is challenging. At each frame, only part of the body is visible; data may suf-
fer from noise; furthermore, prior information about the motion is scarce. We address
this with a two-stage approach, summarized in Fig. 35. In the first stage, we rely on
a low-dimensional shape space; namely, we represent shape-dependent deformations
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Input: sequence of depth and RGB frames

Stage one: model-based registration Stage two: appearance-based refinement

Result: personalized shape and appearance
model, set of per-frame alignments

Figure 35: Our approach proceeds in two stages. First, we optimize a set of body model pose
and shape parameters over short windows of consecutive depth frames. We use
this estimate to initialize a second round of registration, in which we exploit both
RGB and depth data. After optimization, we obtain a personalized shape model D
and an appearance model U (here we show a model deformed according to D, and
textured with U), plus a set of alignments, one per frame.

in our BlendSCAPE model as a linear combination of shape basis vectors, learned via
Principal Component Analysis (PCA) from an aligned database of thousand bodies.
We exploit the fact that body deformations are continuous and predictable over short
time intervals, and jointly optimize pose parameters and shape coefficients over small
windows of consecutive depth frames. We use these shape and pose estimates to ini-
tialize a second round of registration. In the second stage, we exploit both depth and
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RGB data to obtain a set of refined alignments. Based on these alignments we learn
a personalized model of shape deformations, which is not constrained by the initial
low-dimensional space, and an appearance model.

Section 6.3.1 clarifies how we define a PCA shape space in BlendSCAPE; Sections 6.3.2
and 6.3.3 formalize the objective functions minimized during alignment and model
learning, while Section 6.3.4 provides some details about their optimization.

6.3.1 Introducing a low-dimensional shape space

Before introducing the low-dimensional shape space adopted in our approach, it is
useful to recall some details about BlendSCAPE. As described in Section 3.3.1, Blend-
SCAPE parameterizes the deformations that fit a template mesh T∗ to a scan into a set
of pose parameters θ and a set of shape parameters D. During alignment, T∗ is first
unstitched into disconnected triangles. Each triangle is fit according to a sequence of
pose- and shape-dependent deformations: B(θ,W), D and Q(θ). B(θ,W) is a linear
blend of rigid rotations of body parts: it is parameterized by a set of blending weights
W and by a pose vector θ, collecting relative rotations between neighboring parts. D

and Q(θ) account for deformations dependent on the subject’s identity and on the
pose, respectively. After deformation, the disconnected triangles are stitched into a
watertight mesh, M(θ,D,Q,W), by solving for vertex positions via least squares.

As already proposed in the original SCAPE formulation [20], given a corpus of
registered scans we can learn a low-dimensional space of shape deformations. In
Chapter 3, we explained how coregistration brings template T∗ into alignment with
a corpus of scans of Nsbj subjects, and simultaneously learns Q, W, and a set of
shape-dependent deformations {Dp : p = 1, . . . ,Nsbj}. Once a corpus of scans has
been coregistered, we can apply PCA to the set of deformations {Dp} to compute a
low-dimensional shape space. A shape in this space is fully described by a vector of
coefficients, β; we denote the corresponding deformations by D(β).

We compute a PCA shape space from 3803 coregistered scans (1700 men and 2103

women) from CAESAR [107]; note that we learn two separate spaces for men and
women. From these spaces, we extract the first 300 principal components. Further-
more, we learn Q and W from a corpus of 1832 scans of 78 people (41 women and 37

men) in a wide range of poses (note that these values of Q and W coincide with those
used in Section 5.3.3).

Since we use precomputed values for Q and W and do not optimize them when
fitting Kinect data, for simplicity we omit these parameters in our notation. We intro-
duce instead a novel parameter γ, representing the global translation center of model
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M. In Chapter 3, we did not need to introduce γ since our objective functions were
invariant to model translation (error terms were defined on pairs of edge vectors, and
not on vertices, of the model). In Section 6.3.2, we will introduce an error term defined
on model vertices, that does depend on γ; consequently, we represent our model as a
function M(θ,D(β),γ).

6.3.2 First stage: shape and pose estimation

Our approach takes as input a sequence of Kinect frames; let ℓseq denote the number
of frames in the sequence. In the following, we assume that the calibration parameters
of depth and color cameras, CZ and CRGB, are known.

For each frame t, the device produces a depth image Zt and a color image It. We
process Zt to obtain a triangulated mesh. Since we know CZ, we extract a 3D point
cloud, containing a 3D point for each pixel in Zt. To triangulate the point cloud, we
exploit neighboring relationships between pixels in Zt. Given a pixel y in Zt, denote
by left(y), right(y), up(y) and down(y) the pixels adjacent to y horizontally and
vertically: we connect in a triangle the triplets of 3D points corresponding to pixels
(y, right(y),down(y)) and (right(y), right(down(y)),down(y)). This produces a
triangulated scan St.

For each sequence, we assume we have a "background shot", i.e. one frame capturing
the scene without the subject. We denote background scan and RGB image by Sbg and
Ibg, respectively.

The goal of the first stage is to fit the model pose (θ), translation (γ) and shape (β)
parameters to the geometric data captured in each frame, St. We cannot assume prior
knowledge about the subject’s motion over long frame sequences; we exploit the fact
that body deformations are continuous and predictable over short time intervals.

We optimize model shape, pose (and translation) parameters over short frame inter-
vals of fixed length, ℓint. Consider an interval starting at frame t, including frames
t, t + 1, . . . , t + ℓint − 1 (for simplicity, we assume t + ℓint − 1 6 ℓseq for now). We
look for a set of pose vectors Θt (where Θt = {θt

i : i = 1, . . . , ℓint}), a unique shape
vector βt and a set of translation vectors Γt (Γt = {γt

i : i = 1, . . . , ℓint}). Adopting an
analogous notation, we denote by St the set of scans {St,St+1, . . . ,St+ℓint−1} captured
during the interval.
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Our objective function is a sum of four error terms: a data term ES and three reg-
ularization terms Eθ, EΘ and Eβ. Formally, over an interval starting at frame t, we
define the following objective Et:

Et(β
t,Θt, Γt; St,Sbg,CZ) =

∑
i∈[1,ℓint]

λSES(β
t,θt

i ,γt
i ;St+i−1,Sbg,CZ)+ (6.1)

∑
i∈[1,ℓint]

λθEθ(θ
t
i)+

λΘEΘ(Θ
t) + λβEβ(β

t)

where λS, λθ, λΘ and λβ are weighting factors. We now analyze each term in Eq. (6.1)
in detail.

Similarly to the geometry-based error term introduced in Section 3.3 (Eq. (3.2)), ES

penalizes distance between model and scan surfaces in 3D space. There are however
two differences to take into account. First, unlike the scanning system we used in
the previous chapters, Kinect produces scans including both the subject’s body and
the background: that is, St includes "foreground" vertices (reconstructing the subject),
as well as "background" vertices (reconstructing the static scene where the subject
moves). Background vertices should not be explained by our model. Hence, we define
ES between the surface of St and that of mesh Mbg(θ

t
i ,D(βt),γt

i), which includes
the vertices of M and those of Sbg. Second, since we deal with monocular sequences,
we need to take into account which model vertices are visible from the depth camera:
these are the vertices that should explain the data. For simplicity, we denote by Mvis

this set of vertices. Formally, we define the following error term:

ES(β
t,θt

i ,γt
i ;St+i−1,Sbg,CZ) =

∑
vs∈St+i−1

ρ

(

min
xMvis

∈Mvis

||vs − xMvis
||2

)

(6.2)

where ρ is the Geman-McClure robustifier [58].
We define two pose priors, EΘ and Eθ. EΘ assumes that changes in pose occurring

within the interval are smooth:

EΘ(Θ
t) =

∑
i∈[2,ℓint−1]

||2θt
i −θt

i−1 − θt
i+1||

2 (6.3)

Eθ penalizes the squared Mahalanobis distance from a mean pose vector µθ:

Eθ(θ
t
i) = (θt

i − µθ)
TΣ−1

θ (θt
i − µθ). (6.4)

To obtain µθ and Σθ, we compute the pose for 39 subjects across more than 700 mocap
(motion capture) sequences in the CMU dataset [11] (for a total of 1.7 million frames).
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Finally, Eβ penalizes the squared Mahalanobis distance from the mean CAESAR
shape µβ:

Eβ(β
t) = (βt − µβ)

TΣ−1
β (βt − µβ). (6.5)

As explained in Section 6.3.1, we learn the Gaussian parameters µβ and Σβ from a
corpus of almost 4000 CAESAR scans.

We optimize Et for each frame t in the sequence. We proceed sequentially, opti-
mizing Et, then Et+1, then Et+2 and so on; we initialize parameters in Et using the
values obtained after minimizing Et−1. Note that, when t+ ℓint − 1 > ℓseq, we simply
consider a shorter interval of frames (precisely, we consider frames within the interval
t, . . . , min(t+ ℓint − 1, ℓseq) ).

After optimization, for each frame we obtain one shape vector and ℓint pose and
translation vectors. Ideally, we would like to have a unique shape estimate for the
entire sequence, plus one pose vector and one translation vector per frame. We obtain
a shape vector βavg by averaging the set {βt : t = 1, . . . , ℓseq}. Analogously, for
each frame t we average the set of pose and translation parameters {θ

t−(j−1)
j : j =

1, . . . , ℓint} and {γ
t−(j−1)
j : j = 1, . . . , ℓint}, estimating a mean pose vector θt

avg and a
mean translation vector γt

avg.
Based on the shape vector βavg, on the pose parameters {θt

avg : t = 1, . . . , ℓseq}
and on the translation parameters {γt

avg : t = 1, . . . , ℓseq}, we obtain a set of meshes
{M(θt

avg,D(βavg),γt
avg) : t = 1, . . . , ℓseq}: they represent complete, topologically co-

herent 3D reconstructions of the data in each frame.
We use these meshes to compute an initial appearance model U. Analogously to the

technique described in Section 3.4 (Eq. (3.12)), we compute U by blending contribu-
tions from multiple views. While in the multi-camera setting considered in Section 3.4
multiple views correspond to a unique time instant and multiple viewpoints, here,
since we have one RGB camera, the viewpoint is unique; what changes is the time in-
stant considered. As in Eq. (3.12), weights assigned to different views are proportional
to the dot product between surface normal and direction towards the camera.

6.3.3 Second stage: appearance-based registration and model learning

We use the per-frame pose and translation parameters and the shape and appearance
models obtained during the first stage to initialize a second round of registration.

An important difference between first and second stage is the variables we optimize.
In Eq. (6.1), we optimize a set of body model parameters – namely, pose and trans-
lation, plus a vector of shape coefficients. The meshes {M(θt

avg,D(βavg),γt
avg)} we

obtain are fully determined by the optimized parameters of the model; the shape of
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the subject is approximated by a linear combination of shape basis vectors. In the
second stage, we additionally optimize template vertex positions. We obtain a set of
deformed templates (alignments) {Tt : t = 1, . . . , ℓseq} and a personalized model of
shape deformations, D, which is not constrained in the low-dimensional shape space.
During registration, we couple the deformed template Tt to the model, but allow Tt’s
surface to freely deform to better fit the data. To achieve more accurate registration,
in this stage we exploit both depth and color data; note that we do not consider frame
intervals, but work on each frame separately.

Our approach draws inspiration from the coregistration framework described in
Section 3.3. We define a unique objective function, Eseq, as the sum of five error
terms: a geometry-based data term ES, an appearance-based error term EU and three
regularization terms Ecpl, Eθ and ED. Formally, we minimize the following objective
function:

Eseq({T
t}, {θt},D; {St},Sbg,CZ,U, {It}, Ibg,CRGB) = (6.6)∑

frame t

λSES(T
t;St,Sbg,CZ)+

∑
frame t

λUEU(Tt;U, It, Ibg,CRGB)+

∑
frame t

(λcplEcpl(T
t,θt,D) + λθEθ(θ

t)) + λDED(D)

where λS, λU, λcpl, λθ, and λD are weights for the different terms.
The error term ES is formulated as in Eq. (6.2). Note, however, that here ES is

parameterized by Tt, not by the BlendSCAPE model parameters. The regularization
terms Ecpl and ED are analogous to those introduced in Section 3.3.2 (see Eqs. (3.3)
and (3.4)). The coupling term Ecpl penalizes discrepancy between the aligned template
and the model (recall that, as explained in Section 6.3.1, parameters W and Q are not
included in the optimization pipeline in this case, and for simplicity are omitted from
our notation); ED promotes spatial smoothness of the shape deformations.
EU simply computes the sum of per-pixel squared differences between the color im-

age It and the synthetic image I
t
. The synthetic image corresponds to our "estimation"

of the scene, according to the model: we obtain I
t

by projecting Tt, textured with tex-
ture U, over the background image Ibg, according to the calibration parameters CRGB.
Mathematically, we define EU as:

EU(Tt;U, It, Ibg,CRGB) =
∑

pixely

||It[y] − I
t
[y]||2 (6.7)

Note that Eq. (6.7) differs from the appearance-based error terms formulated in previ-
ous chapters in two ways: in this case, we do not estimate scene lighting and do not
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preprocess images applying Ratio-of-Gaussians (RoG) filtering. This is motivated by
specific implementation choices, which we discuss in Section 6.5.

6.3.4 Optimization

We minimize objective function (6.1) using Powell’s dogleg method [96], with Gauss-
Newton Hessian approximation. To compute the gradients of the objective functions,
we use an auto-differentiation package called Chumpy [12]. We adopt a a coarse-to-
fine approach, in which the resolution of template T∗ and the dimensionality of the
PCA shape space are progressively increased. We run two iterations: initially, we use
a template T∗ with 863 vertices and consider only the first 10 principal components;
in the second iteration, we increase the resolution of T∗ to 6890 vertices, and use
100 principal components. We observed that this helps in avoiding local minima, in
particular when aligning geometrically detailed parts like faces. In our experiments,
we set ℓint to 3.

Objective (6.6) is minimized in an iterative fashion. We consider two separate sub-
problems, optimizing for {Tt} and {θt} first, and then for D. As in the first stage, we
optimize {Tt} and {θt} using Powell’s dogleg method; minimization with respect to
D is a linear least squares problem. For efficiency purposes, the appearance-based
error term EU (Eq. (6.7)) is computed over gray-scale images. We run three iterations,
progressively increasing the resolution of the RGB images we consider (we use the
following scaling factors: 0.25, 0.5 and 1). We compute texture maps at a resolution
of 2048× 2048 texels. We keep fairly high the ratio between λcpl and λU, setting it to
15: this means that we adopt a strong regularization towards the model during align-
ment. We believe that a more accurate tuning of λcpl and λU could bring significant
improvements in the quality of our shape models (see also Section 6.4).

Optimizing objective (6.1) over ℓint = 3 frames took between 4 and 5 minutes on
a desktop machine; optimizing a single alignment in objective (6.6) took about 3 min-
utes.

6.4 preliminary results

We conduct a preliminary study to evaluate the quality of the shape and appearance
models provided by our approach. As already pointed out, our technique cannot
be considered fully mature: while providing encouraging results, it still exhibits a
number of limitations. We analyze them and propose further improvements.
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6.4.1 Data acquisition

We used a Kinect 2 device to capture dynamic performances of 6 subjects (4 female
and 2 male). For each subject, we captured 4 sequences, corresponding to 4 different
motions: walking, dancing, turning around, and an "arbitrary" motion chosen by the
subject. Most sequences included fast movements; in many cases, subjects changed
significantly their orientation with respect to the camera (providing frontal, lateral
and posterior views).

During the capture sessions all subjects wore tight clothing (bicycle shorts for men
and women and a sports bra for women). They were allowed to freely move at various
distances from the device, from a minimum of 40cm to a maximum of 2.5m. Note
that the minimum distance supported by the Kinect depth sensor is 50cm [2]; when
the subject is closer, the sensor tends to produce very noisy (and incomplete) data.
Prior to scanning, we applied to the skin of each subject black body makeup using a
woodcut stamp (the same described in Section 4.2.2), on a dozen locations across the
body; this allows us to visually assess the quality of our alignments. Not all subjects
gave consent to make their data public, so we show images only for a subset of them.

For each sequence, we captured 100 frames at 30fps. Resolutions of depth and color
images are 512× 424 and 1920× 1080, respectively.

6.4.2 Recovery of shape and motion

Our approach aims at recovering a subject-specific body shape model D, plus a com-
plete 3D reconstruction of the surface of the body (a deformed template T ) for each
sequence frame. We evaluate results achieved in each task separately.

To evaluate our estimation of D, we adopt an approach similar to [89]: we compute
how well this estimated model fits a registration obtained from a higher-quality device,
such a full-body 3D scanner. We scanned each subject with the high-resolution 3D

body scanner described in Section 3.2, and aligned a template mesh to each scan
using the technique presented in Chapter 3. This produces, for each scan, a registered
mesh that faithfully represents the scan and conforms the topology of our model.
We define a "registration error" in terms of model-to-registration distance: namely,
we compute the Euclidean distance per vertex between the registered mesh and our
model M(θ,D,γ), where θ and γ are adjusted to minimize such distance. Figure 36

shows original scan, registration and posed model for one subject.
Figure 37 (right) shows registration errors (average and standard deviation) for all

sequences. For comparison, we computed the same errors for the shape model D(β)

obtained after the first stage (Fig. 37 (left)). Note that for two sequences ("turning
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(a) (b) (c) (d)
0cm

2.5cm

Figure 36: Evaluation of estimated body shape. We capture a high-resolution 3D scan of the
subject (a), and align to it a template mesh with the same topology of our model;
this produces a registered mesh (b), that we compare against the estimated model
(c). We compute a "registration error" as the Euclidean distance per vertex between
registration and model. The heat map in (d) shows the error computed between (b)
and (c); blue means zero and red means 2.5cm.

around" for subject 4, and "walking" for subject 6), we were not able to run both stages
of our technique: alignments obtained after the first stage were not accurate enough
to compute an adequate appearance model. This was mostly due to the challenging
poses assumed by the subjects: arms adhering to the body in one case, face pointing
towards the floor instead of towards the camera in the other. Our approach is currently
not robust enough to deal with this.

For all subjects and sequences the average error is below 1cm, except for the "ar-
bitrary" sequence of subject 2 (which corresponds to a challenging "handstand", see
Fig. 38(b)). The average error computed over all sequences is 8mm. The approach
seems quite robust to variation in motions ("arbitrary" sequences do not exhibit signif-
icantly higher errors); this however should be verified on a wider range of motions.

The second stage produces only a minor improvement: errors decrease of 1–2mm
on average. We think that a more finely tuned optimization during the second stage
(in which, for instance, the weight λcpl assigned to the coupling term progressively
decreases) should help in obtaining more accurate reconstructions.

We evaluate the alignments produced by our method from a qualitative point of
view. Figure 38 shows the results obtained on three "arbitrary" sequences: shape and
pose estimates are adequate even in the presence of fast motions or challenging poses.
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Figure 37: Registration error (average and standard deviation) for all subjects and sequences,
showing the accuracy of the estimated body shape. We compute the error for the
shape estimated after the first stage of our approach (left) and for the final estimated
shape (right).

(a) (b) (c)

Figure 38: Example RGB frames from three sequences, with the corresponding alignments
produced by our method. Alignments adequately represent the data even in chal-
lenging situations: arms closed to the body (a), unusual pose (b), fast motion (c).

However, motion reconstruction for body parts that are not visible from the camera
over long time intervals tends to be inconsistent. Figure 39 exemplifies the problem.
The top row shows 7 subsequent RGB frames; the bottom row shows the correspond-
ing alignments, rendered from a point of view opposite to the camera. The estimated
motion of the subject’s left arm, not visible from the camera in most frames, is incon-
sistent: it unnaturally changes trajectory twice, in frames 3 and 4. The problem could
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0 1 2 3 4 5 6

Figure 39: Problematic motion reconstruction for body parts not visible from the camera. Top
row: 7 subsequent RGB frames. Bottom row: alignments obtained for those frames,
rendered from a point of view opposite to the camera. The estimated motion of the
left arm, not visible in most frames, is inconsistent.

be mitigated by including in objective (6.6) a more sophisticated temporal pose prior
for human motion (e.g. [79]).

Another limitation of our alignments is that they do not capture transient, fine-scale
geometric details (e.g. wrinkles and folds). Note that, in many cases, such details are
not captured by the Kinect depth sensor either; however, as recently shown in [138],
one could infer high-frequency surface geometry by exploiting shading information in
color images (similarly to what is done in shape-from-shading approaches).

6.4.3 Recovery of appearance

We evaluate the quality of our appearance models by comparing them with the texture
produced by our high-quality 3D scanner system.

Figure 40 shows a high-quality textured scan and our textured model (obtained from
a "walking" sequence). The overall appearance of our model looks realistic; however,
high-frequency details (e.g. those of the painted pattern) are not faithfully reproduced.
This means that the accuracy of the correspondences established by our alignments
should be improved: not surprisingly, "arbitrary" sequences gave worse (though com-
parable) results in terms of smoothness. Furthermore, textures exhibit seams and
discontinuities in some areas (see detail in Fig. 40); we think this is due to alignment
inaccuracies and problems of calibration/synchronization between cameras. In partic-
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(a) (b)

Figure 40: Comparison between a textured high-resolution scan (a) and our textured model
(b). Whereas the model looks realistic, our texture does not capture high-frequency
details (e.g. the pattern painted on the face is smoothed out) and exhibits some
artifacts (seams are well visible on the legs).

ular, we noticed synchronization problems between the shutters of color and depth
cameras, and optical distortions in color images.

Note also that the completeness of the appearance models we recover depends on
the percentage of body surface actually visible during capture: our approach currently
does not infer color information for body parts that are never observed.

To evaluate the impact of using color information during alignment, we compare
the appearance models obtained before and after optimizing the second stage of our
approach. Figure 41 shows a real image and two synthetic images, obtained after
the first and the second stage, respectively (the appearance model is obtained from
a "dancing" sequence). The use of color information improves correspondence con-
sistency across frames; we think, however, we could obtain more accurate results if
the aforementioned problems of synchronization and optical distortion were explicitly
addressed by our method.
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(a) (b) (c)

Figure 41: Comparison between a real camera image (detail) (a) and two synthetic images
obtained before (b) and after (c) the second stage of our approach.

6.5 the road ahead

In this chapter we have described an approach to estimate personalized body shape
and appearance models from monocular Kinect sequences, showing preliminary re-
sults on more than 20 sequences capturing 6 subjects in different motions. As dis-
cussed in Sections 6.4.2 and 6.4.3, our approach still suffers from a number of short-
comings; we believe that important extensions to our work would be the following:

• When estimating appearance, we do not exploit information about the distance,
at each frame, between subject and device; we could obtain higher-quality mod-
els by assigning to each view a weight inversely proportional to this distance.

• Our appearance-based error term (Eq. (6.7)) does not include any form of con-
trast normalization; instead of estimating lighting in a preprocessing stage and
then seeking robustness against residual light artifacts (as described in Section 3.5),
we would like to improve our estimate including lighting and surface albedo as
variables to optimize, following an approach that is quite standard in the litera-
ture [60, 88].

• Combining our technique with a shape-from-shading approach would allow us
to infer high-frequency geometric details: as in [138], shading cues detected in
color images could be exploited to enhance the depth data provided by the de-
vice.
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• During the second stage we refine each alignment independently from the oth-
ers; adopting a multi-frame approach (in which, for example, front and back
views of the subject are optimized simultaneously) could add more constraints
to our optimization, diminishing the need for a strong regularization towards
the model.

• Lack of synchronization between depth and RGB cameras and optical distortions
may affect the quality of our appearance model, and reduce the effectiveness of
our appearance-based error term. One way to mitigate the problem is to include
a subset of camera parameters in the optimization pipeline (similarly to [88]);
more sophisticated approaches seek non-rigid correction functions for each color
image [145].

• Frame-to-frame correspondences established during the first stage could be im-
proved including a color-based error term (dense optical flow or sparse SURF
features); another option to explore is the use of RGB-D flow algorithms [69].

• Even though our approach estimates a set of pose parameters per frame, com-
putational times on the order of a few minutes make it unsuitable for real-time
tracking. Whereas this is not one of our primary goals, it would be interesting
to combine our technique with a discriminative approach (e.g. for pose estima-
tion [120]), and evaluate the tradeoff between accuracy and efficiency.



7 C O N C L U S I O N S A N D F U T U R E D I R E C T I O N S

This chapter summarizes the contributions of our work, discusses its main limitations,
and introduces interesting directions of future research.

7.1 summary

In this thesis we have proposed novel techniques to accurately register 3D real human
scans, and build high-quality shape and appearance body models from registered 3D

data. Our contributions can be summarized as follows:

• We have developed a novel model-based registration technique for 3D human
bodies. Our approach adapts and extends the coregistration framework intro-
duced in [68], that brings a corpus of scans into registration and learns a set of
body model parameters defining a unique objective function. The main novelty
introduced by our approach is the use of appearance information, in addition
to geometry, during registration. While appearance has been used for 3D regis-
tration of body parts like faces, full bodies are substantially different: they self
occlude and self shadow, and are much more articulated and extended than faces.
Our approach estimates scene lighting and surface albedo, and uses the albedo to
construct a high-resolution textured 3D model; the model is brought into align-
ment with multi-camera image data using a robust matching term. Appearance
information complements the partial or ambiguous information provided by ge-
ometry in smooth 3D areas (like the stomach and the back), producing highly
reliable alignments.

• We have proposed FAUST (Fine Alignment Using Scan Texture), a novel dataset
and benchmark for 3D mesh registration. FAUST collects real scans of different
people in a wide range of poses, with automatically computed dense ground-
truth correspondences. To build the dataset, we leveraged our appearance-based
registration technique. We defined reliable full-body correspondences between
scans by painting the subjects with a high-frequency texture pattern, and placing
textured markers on key anatomical locations. Then, we automatically computed
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dense scan-to-scan correspondences by aligning a common template to each scan.
We verified the quality of our alignments in terms of both geometry and appear-
ance, ensuring that our correspondences are accurate within 2mm.

Previous datasets for 3D mesh registration either provide only synthetic data,
or lack reliable mesh-to-mesh correspondences. In this light, they represent an
inadequate testbed for real-world applications. We defined a new evaluation
methodology and tested on FAUST various well-known 3D registration algo-
rithms, revealing significant shortcomings of existing methods when tested on
real data.

• We have explored possible uses of our approach for dermatological applications
– namely, for the screening of melanocytic lesions. By adapting our technique
and integrating it with a lesion segmentation algorithm, we have developed a
fully automated pre-screening system for detecting new lesions or changes in
existing ones over almost the entire surface of the body. In a pilot study using
synthetic lesions, the system proved able to detect changes as small as 2–3mm.
The integration of lesion segmentation with a 3D body model is a key novelty
that makes the approach robust to illumination variation, changes in subject pose
and shape, and presence of sparse body hair.

• We have outlined a preliminary approach for learning personalized body shape
and appearance models from dynamic sequences captured with a single Kinect
camera. Many approaches in the literature propose to use the Kinect as a cheap
3D body scanner: these approaches either employ multiple devices, or require
the user to stand in one or more predetermined poses, at a constant distance from
the device. In contrast, we try not to put any constraints on the subject’s motion
during capture. Our approach proceeds in two stages: first, we optimize a set
of body model pose and shape parameters over short windows of consecutive
depth frames; then, we use these estimates to initialize a second round of regis-
tration, in which we exploit both depth and color data. We showed preliminary
results on a set of 24 sequences, capturing 6 subjects in a range of motions.

7.2 extensions and open problems

As pointed out in Section 4.4, our registration algorithm still suffers from a number of
limitations, and could be extended in several ways. In particular, we are interested in
the following directions:
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• Our approach is currently unable to adequately register hands and capture fine-
scale face details (e.g. wrinkles). Nonetheless, hands and faces are often the
most expressive parts of the body. We could obtain more accurate registrations
integrating the BlendSCAPE body model with an accurate model for faces and
hands.

• In some cases, alignments produced by our technique exhibit self penetrations;
the problem could be mitigated introducing an additional error term in our ob-
jectives (e.g. taking into account signed distances between scan and template
surfaces).

• Besides naked bodies, our approach should be extended to work with dressed
people too. This would require the integration of our technique with an appro-
priate model of clothing deformations.

• We are interested in evaluating the impact of combining appearance and geom-
etry information in different scenarios: for instance, when registering dynamic
sequences captured with high-resolution 4D scanning systems. We expect that
the importance of our appearance-based error term in preventing sliding errors
might be even greater in dynamic sequences; this would be of value in data-
driven modeling of clothing dynamics and human soft tissue deformations.

• Currently, we estimate scene lighting and surface albedo in a preprocessing stage.
A more complete formulation of our appearance-based objective function would
include lighting and albedo as parameters to optimize, leading to more accurate
albedo estimates. Ideally, instead of using contrast normalization to obtain ro-
bustness against shading artifacts, our technique could exploit shading cues to
reconstruct high-frequency geometric details that are not captured by the scan-
ning device (as in the shape-from-shading approach proposed in [122, 138]).

The system for melanocytic lesion screening introduced in Chapter 5 needs further
work to be adopted in the medical practice. In particular, we identify the following
areas of research:

• Based on our preliminary results, we should pursue a longitudinal study of
dermatological patients to evaluate accuracy and robustness of our approach on
a wider range of subjects, and on real lesions.

• The system could be used to monitor, in addition to melanocytic lesions, other
lesions (such as those from psoriasis or eczema); to this end, novel ad-hoc seg-
mentation algorithms should be developed.
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• In the long term, we would like to use less expensive scanning devices (e.g. con-
sumer RGB-D cameras), perhaps in combination with one or more DSLR (Digital
Single-Lens Reflex) cameras, to acquire 3D data and texture. This requires the
development of robust algorithms for alignment of single-view data, like the one
outlined in Chapter 6.

Currently, we estimate our appearance models by simply blending contributions of
different views on a per-texel basis. This approach scales poorly; another limitation is
that appearance for body parts that are not visible in any view is not recovered. Two
important research lines addressing these problems are the following:

• Analogously to the low-dimensional shape space introduced in Chapter 6, it
would be interesting to learn a low-dimensional space for appearance as well.
This – perhaps combined with a piecewise smoothness prior – could help in
extracting artifact-free models from incomplete/noisy data. Low-dimensional
appearance spaces have already been proposed for individual body parts (like
faces [32]); computing them for full bodies may present some problems (e.g.
due to shading artifacts, differences in clothing), but would have a number of
important applications.

• Another interesting line of research is the definition of a framework for super-
resolving the appearance of deformable 3D surfaces, bringing into correspon-
dence multiple reconstructions of the same object taken from different views
with sub-pixel accuracy. Recent work [59, 125] showed encouraging results in
this sense – but no super-resolution approaches proposed so far really handle
surfaces undergoing significant non-rigid deformations. Whether it is possible
to automatically compute accurate enough correspondences between deformable
3D surfaces still remains an open research problem.
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