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Abstract

The journey of underwater communication which began from Leonardo’s era took four

and a half centuries to find practical applications for military purposes during World War

II. However, over the last three decades, underwater acoustic communications witnessed a

massive development due to the advancements in the design of underwater communicating

peripherals and their supporting protocols. Successively, doors are opened for a wide range

of applications to employ in the underwater environment, such as oceanography, pollution

monitoring, offshore exploration, disaster prevention, navigation assistance, monitoring,

coastal patrol and surveillance. Different applications may have different characteristics

and hence, may require different network architectures. For instance, routing protocols de-

signed for unpartitioned multi-hop networks are not suitable for Delay-Tolerant Networks.

Furthermore, single-hop networks do not need routing protocols at all. Therefore, before

developing a protocol one must study the network architecture properly and design it ac-

cordingly.

There are several other factors which should also be considered with the network archi-

tecture while designing an efficient protocol for underwater networks, such as long propa-

gation delay, limited bandwidth, limited battery power, high bit error rate of the channel and

several other adverse properties of the channel, such as, multi-path, fading and refractive

behaviors. Moreover, the environment also has an impact on the performance of the pro-

tocols designed for underwater networks. Even temperature changes in a single day have

an impact on the performance of the protocols. A good protocol designed for any network

should consider some or all of these characteristics to achieve better performance.

In this thesis, we first discuss the impact of the environment on the performance of MAC

and routing protocols. From our investigation, we discover that even temperature changes

xv



xvi Abstract

within a day may affect the sound speed profile and hence, the channel changes and the

protocol performance vary. After that we discuss several protocols which are specifically

designed for underwater acoustic networks to serve different purposes and for different net-

work architectures. Underwater Selective Repeat (USR) is an error control protocol designed

to assure reliable data transmission in the MAC layer. One may suspect that employing an

error control technique over a channel which already suffers from long propagation delays

is a burden. However, USR utilizes long propagation by transmitting multiple packets in

a single RTT using an interlacing technique. After USR, a routing protocol for surveillance

networks is discussed where some sensors are laid down at the bottom of the sea and some

sinks are placed outside the area. If a sensor detects an asset within its detection range, it

announces the presence of intruders by transmitting packets to the sinks. It may happen

that the discovered asset is an enemy ship or an enemy submarine which creates noise to

jam the network. Therefore, in surveillance networks, it is necessary that the protocols have

jamming resistance capabilities. Moreover, since the network supports multiple sinks with

similar anycast address, we propose a Jamming Resistance multi-path Multi-Sink Routing

Protocol (MSRP) using a source routing technique. However, the problem of source routing is

that it suffers from large overhead (every packet includes the whole path information) with

respect to other routing techniques, and also suffers from the unidirectional link problem.

Therefore, another routing protocol based on a distance vector technique, called Multi-path

Routing with Limited Cross-Path Interference (L-CROP) protocol is proposed, which employs a

neighbor-aware multi-path discovery algorithm to support low interference multiple paths

between each source-destination pair. Following that, another routing protocol is discussed

for next generation coastal patrol and surveillance network, calledUnderwater Delay-Tolerant

Network (UDTN) routing where some AUVs carry out the patrolling work of a given area

and report to a shore based control-center. Since the area to be patrolled is large, AUVs

experience intermittent connectivity. In our proposed protocol, two nodes that understand

to be in contact with each other calculate and divide their contact duration equally so that

every node gets a fair share of the contact duration to exchange data. Moreover, a proba-

bilistic spray technique is employed to restrict the number of packet transmissions and for

error correction a modified version of USR is employed.

In the appendix, we discuss a framework which was designed by our research group to



xvii

realize underwater communication through simulation which is used in most of the simu-

lations in this thesis, called DESERT Underwater (short for DEsign, Simulate, Emulate and

Realize Test-beds for Underwater network protocols). It is an underwater extension of the

NS-Miracle simulator to support the design and implementation of underwater network

protocols. Its creation assists the researchers in to utilizing the same codes designed for the

simulator to employ in actual hardware devices and test in the real underwater scenario.





Sommario

Il viaggio delle comunicazioni acustiche sottomarine che cominció nell’era di Leonardo,

é durato quattro secoli e mezzo prima di vedere messe in pratica le prime applicazioni per

la Seconda Guerra Mondiale. Comunque, nelle ultime tre decadi le comunicazioni sottoma-

rine sono state protagoniste di un massiccio avanzamento a causa dell’avanzamento della

tecnologia costruttiva dei modem, delle periferiche e dei protocolli soprastanti. Inoltre, si

sono aperte le porte a una grande varietá di applicazioni che possono utilizzare le comuni-

cazioni sottomarine, come per esempio l’oceanografia, il monitoraggio dell’inquinamento,

sorveglianza delle coste, assistenza alla navigazione, esplorazione al largo e prevenzioni di

disastri che possono provenire dal mare. Diverse applicazioni potrebbero avere differenti

richieste e caratteristiche, quindi la struttura di rete richiesta potrebbe differire tra le varie

applicazioni. Per esempio, i protocolli di routing per reti multi-hop non connesse non sono

adatti a reti Delay-Tolerant. Inoltre, le reti single-hop non necessitano di un protocollo di

routing. Per questi motivi, prima di progettare un protocollo, bisogna studiare l’architettura

di rete e progettare i relativi protocolli concordemente.

Ci sono numerosi altri fattori che dovrebbero essere presi in considerazione nell’architettura

di rete nella progettazione di un protocollo di rete, come lunghi tempi di propagazione,

banda limitata, durata limitata della batteria dei modem, alto Bit Error Rate nel canale

e molte altre proprietá avverse del canale come multipath fading e un elevato grado di

rifrazione. Inoltre, l’ambiente ha un impatto sulle performance dei protocolli progettati per

le reti underwater. Per esempio, anche la variazione della temperatura in un singolo giorno

ha un impatto sulle prestazioni dei protocolli. Un buon protocollo dovrebbe tenere conto di

queste caratteristiche per raggiungere buone prestazioni.

In questa tesi, innanzitutto discutiamo l’impatto dell’ambiente sulle prestazioni di pro-
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tocolli MAC e routing. Dalle nostre sperimentazioni, abbiamo scoperto che anche i cambi-

amenti di temperatura in un giorno provocano la variazione dell’SSP, quindi il canale varia

e anche le prestazioni dei protocolli. Successivamente, abbiamo discusso numerosi proto-

colli progettati per varie applicazioni di comunicazione sottomarina con varie architetture

di rete. Underwater Selective Repeat (USR) é un protocollo per il controllo d’errore pro-

gettato per assicurare trasmissioni affidabili di dati a livello MAC. Si potrebbe pensare che

adottare un protocollo per il controllo d’errore su un canale giá affetto da grandi ritardi di

propagazione provochi un carico eccessivo di traffico. Tuttavia, USR utilizza costruttiva-

mente i grandi tempi di propagazione per trasmettere piú pacchetti in un Round Trip Time

utiiizzando una tecnica ad interlacciamento, quindi, diminuendo il carico di dati. Dopo

USR, un protocollo di routing per reti di sorveglianza dove alcuni nodi sono piazzati nel

fondale e alcuni sono fuori dall’acqua é stato discusso. Se un sensore intercetta una attivitá

nel suo raggio di copertura, annuncia la presenza di un intruso attraverso un messaggio

al SINK. Potrebbe succedere che l’intruso sia una nave nemica o un sottomarino nemico

che creano disturbi alla rete acustica sottomarina. Quindi, nelle reti di sorveglianza é im-

portante che i protocolli di rete abbiano una resistenza ai disturbi. Inoltre, siccome la rete

supporta una modalitá multisink con simile indirizzo anycast proponiamo un protocollo di

routing multicast resistente al jamming, Multi-Sink Routing Protocol (MSRP), che utilizza

tecniche di source-routing. Tuttavia, uno dei maggiori problemi delle tecniche di routing

basate su source-routing, é un grande over-head di dati (ogni pacchetto include tutti i dati

del percorso) e,inoltre,il problema dell’ ”unidirectional link”. Quindi, un altro protocollo

basato sulla tecnica Distance-Vector chiamato L-CROP (Multi-path Routing with Limited

Cross-Path Interference) é stato proposto, che impiega un algoritmo neighbour-aware per

instaurare un percorso multi-path a bassa interferenza tra mittente e destinatario del mes-

saggio. A seguire un altro protocollo di routing é stato discusso per le reti di sorveglianza e

di pattugliamento costiero di prossima generazione, chiamato UDTN (Undertwater Delay-

Tolerant Networks), dove alcuni AUV svolgono il lavoro di pattugliamento e riportano i

dati a un centro di controllo sulla costa. Siccome l’area da pattugliare é vasta, l’ AUV avrá

connessione intermittente con la base. Nel protocollo progettato, i nodi preposti a contattare

la base calcolano e dividono la durata delle loro connessioni in maniera equa, cosı́cché ogni

nodo abbia la stessa durata di connessione per scambiare dati. Inoltre viene impiegata, una
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tecnica ”probabilistic spray” per restringere il numero di trasmissioni. Per quanto riguarda

la correzione d’errore, una versione modificata di USR é stata adottata.

Nell’appendice, abbiamo presentato un simulatore che abbiamo progettato per realiz-

zare la maggior parte delle simulazioni presenti in questa tesi, chiamato DESERT (DEsign,

Simulate, Emulate and Realize Test-beds for Underwater Networks). É una estensione del

simulatore NS-Miracle progettato per supportare simulazioni di protocolli per reti acustiche

sottomarine. Questo simulatore assite il ricercatore nell’utilizzo di hardware e nel test dei

protocolli in uno scenario reale.
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1.1 Motivation

The concept of retrieving information by observing water started back from the time of

Leonardo Da Vinci who discovered the possibility of detecting a distant ship by listening to

a long tube submerged under the sea [1]. That journey of underwater communication which

began from Leonardo’s era took four and a half centuries to find practical applications for

military purposes during World War II. However, over the last three decades, underwa-

ter acoustic communications witnessed a massive development due to the advancements

in the design of underwater communicating peripherals and their supporting protocols [1].

Curiosity, necessity and security, these are the three principal aspects which are attracting

researchers, militaries and industries to spend valuable time and money in this field. Suc-

cessively, doors are opened for a wide range of applications to employ in the underwater

environment. Some possible applications of underwater communication are described be-

low:

• Oceanography: Underwater Networks can assist in the study of the deep sea and shallow

1
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coastal oceans. Sensors and AUVs can be used for collecting long-term scientific data

from the ocean. The Autonomous Ocean Sampling Network (AOSN) is one such kind

of network in Monterey Bay which employs AUVs for monitoring large areas of the

coastal ocean. Three field experiments were performed in 2000, 2003 and 2006, where

various of methods for monitoring were tested [2,4]. These experiments demonstrated

the advantages of employing sophisticated underwater devices to improve the obser-

vation ability and prediction capabilities of the oceanic environments. Another exam-

ple of a sensor network designed for such kind of application is proposed in [5] which

can be used to detect extreme temperature gradients that is considered as a suitable

breeding ground for some micro-organisms.

• Underwater explorations and monitoring: Exploration of underwater oil, gas and valu-

able mineral reservoirs can advance the economy of a country. Let’s consider the case

study of Brazil. At the end of 2007, Brazil discovered a huge underwater oil reservoir

which is going to establish them as the next major oil exporter in the world in the fu-

ture [6]. There are still many valuable minerals, gas and oil reservoirs under the sea

which are yet to be discovered. Underwater networks can help discovering those ma-

terials. It also can be employed to control and monitor the equipments used to collect

minerals at low cost and with more flexibility.

• Environmental pollution monitoring: Another major application of underwater commu-

nication is the pollution monitoring of the environmental systems. Lake, river or sea

water can be polluted in many ways like industrial and sewage waste, bilge bottom

waste, dumps, water transports, etc. Underwater sensor networks can be deployed to

detect such pollution by detailing the chemical slurry of the water [7].

• Coastal patrol and surveillance: Underwater networks comprising of sensors and/or AUVs,

like the one in Figure 1.1, can reduce the cost of coastal patrol and surveillance mis-

sions for which the governments (that own water territory) spend a lot of money. An

example of sensor network for surveillance is proposed in [4] where sensors (which

are planted at the bottom of the sea) inform the shore-based control center after detect-

ing an intruder. Another underwater network is proposed in [1] for coastal patrolling

and surveillance system, where AUVs patrol an area of interest. Whenever an AUV
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Figure 1.1. A coastal patrol and surveillance network comprising of sensors, AUVs, a sink and a ship.

detects an intruder, it starts following the asset and sends related information to the

shore-based control center to take appropriate action.

• Disaster prevention: Underwater sensor networks can be deployed to measure seismic

activity of the oceans. These types of networks can detect and provide tsunami warn-

ings to the coastal areas [10]. They also can be utilized to study submarine earth-

quakes [2].

•Mine reconnaissance: Deepwater drones or AUVs can be used to detect mines planted

at the bottom of the sea. According to a news published in [11], the US Army has

already developed underwater mine-detecting drones which can detect mines, but

cannot defuse them. It would be challenging to build robots which not only detect the

mine, but also defuse them without any risk.

It can be observed from the previous discussion that different applications have differ-

ent characteristics and hence, may require different network architectures. For instance, the

coastal patrol and surveillance network proposed in [1] experiences intermittent connectiv-

ity and hence, DTN architecture is employed; where as, pollution monitoring and disaster
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Figure 1.2. Networks classified with respect to spatial coverage.

prevention applications suggest a fixed deployment of the sensors. According to spatial cov-

erage we can divide these networks mainly in three types which are illustrated in Figure 1.2

• Single-hop networks: In these networks, all nodes remain in contact with each other. This

class can be further divided in centralized and distributed single-hop networks. If all

nodes deliver data to a centralized station also known as sink, it is called centralized;

whereas, in distributed, all nodes have sending and receiving capability. No special

routing protocol is necessary for the communication.

• Unpartitioned Multi-hop networks: When a network has to cover a large area where

single-hop is not possible and packets travel multiple hops to reach the destination,

multi-hop networks are employed. These types of networks require routing protocols

to deliver the data to the right destination. Every node must establish a path before

transmitting a packet.

• Delay-tolerant networks: There are some applications in underwater networkswhere it is

not possible to establish a path between the source and the destination, which implies
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that unpartitioned multi-hop networks are not suitable in these applications. Usually

routing protocols used in this kind of network architecture have store and forward ca-

pability. A node stores the data it receives from the upper layer or from the other

node(s) and forwards it to the other node(s) with the hope that the receiving node is

the destination or at least it can deliver the packet to the destination at a later time.

Since different networks have different characteristics, protocols designed for a specific

network architecture must take its characteristics into account. For instance, routing pro-

tocols designed for unpartitioned multi-hop networks are not suitable for Delay-Tolerant

Networks. Furthermore, single-hop networks do not need routing protocols at all. There-

fore, before developing a protocol one must study the network architecture properly and

design it accordingly. Beside network architecture, there are several other factors which

should also be considered when designing an efficient protocol for underwater networks;

described in the following:

• Usually in water, radio wave signals can travel long distances at extra low frequencies

(30Hz-300Hz) which however require large antennas and high transmitter power, and

therefore, are not preferable for underwater communication. On the other hand, opti-

cal waves do not suffer so much from attenuation, but scattering. Therefore, acoustic

signals are preferred which can cover large communication areas. However, the prop-

agation speed of acoustic signals is five orders of magnitude lower than that of radio

signals; hence, they suffer large propagation delays.

• The underwater channel faces several challenges due to multi-path, fading and refrac-

tive properties of the sound channel.

• The available bandwidth of the underwater channel is severely limited.

• Underwater channel experiences high bit error rates.

• Battery power is limited and most of the time batteries cannot be recharged since solar

energy cannot be exploited.

• Underwater channels can experience shadow zones which are spatial regions where

almost no acoustic signals exist and cause connectivity dropouts.
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• Environment also has an impact on the performance of the protocols designed for

underwater networks [12]. Not only do seasonal changes affect the performance of

the protocols, but also temperature changes in a single day have an impact on the

performance of the protocols.

A protocol designed for any underwater network should utilize these factors of the con-

dition to achieve better performance. The above described factors also make it different

from other existing wireless terrestrial networks. Therefore, protocols designed for terres-

trial networks are not suitable for underwater communication in general.

In this thesis, we describe several protocols which are specifically designed for underwa-

ter networks for various applications and for various network architectures. For instance,

Underwater Selective Repeat (USR) is an error control protocol designed to assure reliable

data transmission in the MAC layer, since underwater channels are vulnerable to error. USR

also utilizes long propagation by transmitting multiple packets in a single RTT using an

interlacing technique. The routing protocols proposed in this thesis employ a multipath

technique, which assists them in achieving higher packet delivery, jamming resistance and

fault tolerance capability. The DTNs routing protocols proposed, employ a modified ver-

sion of the USR technique for error correction and for utilizing long propagation delays.

Moreover, two nodes that understand to be in contact with each other calculate and divide

their contact duration1 equally so that every node gets a fair share of the contact duration to

exchange data.

1.2 Discussion and Organization of this Thesis

The rest of the thesis is subdivided into several chapters, each containing a specific topic

and the corresponding results, so that each chapter can almost be read separately.

In Chapter 2, we discuss the impact of the environment on the performance of MAC

and routing protocols. From our investigation, we discover that even temperature changes

within a day may affect the sound speed profile and hence, the channel changes and the

protocol performance varies.

1Unlike terrestrial networks, contact duration in underwater networks is usually long since the acoustic

signals can cover a longer area and the mobile devices move more slowly than in terrestrial networks.
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In Chapter 3, an error control protocol, named Underwater Selective Repeat (USR), is

discussed which is designed to assure reliable data transmission at the MAC layer. One

may suspect that employing an error control technique over a channel which already suf-

fers from long propagation delay is a burden. However, USR utilizes long propagation by

transmitting multiple packets in a single RTT using an interlacing technique.

In Chapter 4, a routing protocol for surveillance networks is discussed where some sen-

sors are laid down at the bottom of the sea and some sinks are placed outside the area. If a

sensor detects an asset within its detection range, it announces the presence of intruders by

transmitting packets to the sinks. It may happen that the discovered asset is an enemy ship

or an enemy submarine which creates noise to jam the network. Therefore, in surveillance

networks, it is necessary that the protocols have jamming resistance capabilities. More-

over, since the network supports multiple sinks with similar anycast address, we propose a

Jamming Resistance multi-path Multi-Sink Routing Protocol (MSRP) using a source routing

technique. However, the problem of source routing is that it suffers from large overhead (ev-

ery packet includes the whole path information) with respect to other routing techniques,

and also suffers from the unidirectional link problem. Therefore, another routing protocol

based on a distance vector technique, calledMulti-path Routing with Limited Cross-Path In-

terference (L-CROP) protocol is proposed, which employs a neighbor-aware multi-path dis-

covery algorithm to support low interference multiple paths between each source-destination

pair.

In Chapter 5, we discuss two routing protocols for DTNs, calledUnderwater DTN (UDTN)

and Underwater DTN with Probabilistic spray (UDTN-Prob) routing protocol. In both pro-

tocols, two nodes that understand to be in contact with each other calculate and divide

their contact duration equally so that every node gets a fair share of the contact duration

to exchange data. In addition, for error correction a modified version of the USR is em-

ployed. The major difference between UDTN and UDTN-Prob protocols is the utilization of

the probabilistic spray technique to restrict the number of packet transmissions.

Furthermore, in Appendix A, we discuss a framework which was designed in our group

to realize underwater communication through simulation which is used in most of the sim-

ulations in this thesis, called DESERT Underwater (short for DEsign, Simulate, Emulate and

Realize Test-beds for Underwater network protocols). It is an underwater extension of the
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NS-Miracle simulator to support the design and implementation of underwater network

protocols. Its creation assists the researchers in utilizing the same codes designed for the

simulator in actual hardware devices and test in the real underwater scenario.
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2.1 Overview

The recent advances in underwater acoustic modem technology have fostered the in-

terest in undersea exploration using autonomous fixed and mobile objects, and motivate

the investigation of new protocols and applications for underwater networking. In partic-

ular, considerable attention is being given to the feasibility of underwater wireless sensor

networks (UWSNs).

The CoLlAborative eMbedded networks for submarine surveillance (CLAM) project,

9
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funded by the European Commission under the 7th Framework Programme, has the ob-

jective to reduce the complexity and cost of pervasive and fine-grained underwater surveil-

lance. This problem, inherently a formidable task due to the harshness of the environment

and to the limited technology we can count on today, will be tackled via remotely controlled

and cooperating underwater sensor nodes. These nodes will be networked via acoustic com-

munications over multi-hop topologies. Information flows are foreseen to be bi-directional:

from a control center to the nodes (to change configuration parameters, perform task alloca-

tion, control node operation) and from the nodes to the control center (to provide reports on

the sensed data). For this purpose new protocol solution will be proposed with particular

attention to Medium Access Control (MAC) and routing protocols.

Recently, many solutions for underwater MAC and Routing have been proposed, mostly

based on variants of typical terrestrial radio approaches.Thesemethods rely on simplemodi-

fications of the ALOHA scheme [1], of Carrier-SenseMultiple Access (CSMA) without [3,21]

and with [16] collision avoidance, of TDMA [5,6], and CDMA [7]. Hybrid schemes have also

been proposed [8,9]. The performance of some of these schemes has also been compared by

means of simulations [10]. Similarly, several routing solutions have been proposed, for both

fixed and mobile networks (see, e.g., [11] for an overview).

For both routing and MAC protocols, most of the study and evaluation phases have

been carried out via simulations. However, every network simulation software needs to

approximate the behavior of sound propagation in the water: therefore, the reproduction of

actual channel variability will also be approximated (see, e.g., the discussion related to the

Bellhop ray tracing package in [12]). In turn the behavior of the protocols simulated on top

of approximated channel behaviors may be different than what would happen in practice.

Other than the error related to our knowledge of the environmental data and to the way

we exploit it to model sound propagation, simulation packages may also be subject to other

systematic errors, if they do not typically reflect the dynamics of the environment. In fact,

e.g., the sound speed profile changes over time, the profile of surface waves evolves, and

these changes can affect the accuracy of the simulation results. This is especially true for

shallow water scenarios, where the channel dynamics strongly affect the quality of network

links over time.
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Because typical scenarios in the CLAM project entail shallow water monitoring, the first

contribution of this work is to improve the network simulation tool of choice in what fol-

lows, namely ns2-Miracle [20] connected with the Bellhop propagation simulator [22] via

the WOSS extensions [21], to make it capable to track environmental changes over time.

This helps mitigate the problem introduced above, and makes the results of the simulations

more realistic, provided that actual data retrieved in situ is available, e.g., in the form of

SSP samples taken at fixed time intervals during one or more days. In particular, this fea-

ture is key to run evaluations that cover large spans of simulated time. In addition, we

also consider the reproduction of surface wave patterns according to standard surface wave

spectrum functions: this also makes the computation of propagation patterns more realistic.

Ultimately, this whole effort improves the convenience of simulation as a tool to experiment

what would be too difficult to test in real life.

It is worth noting that some works considered the behavior of networking protocols in

the presence of different environmental data. Among these, [15] focuses on the simulation

of MAC protocols using WOSS [21], using environmental data from both the summer and

the winter seasons. However, the authors do not consider changes over a shorter time scale

and their effects on protocols, as we do instead in the present investigation.

The second contribution of our work is a study of how the time-varying behavior of the

underwater acoustic channel (as accounted for in simulations) impacts the performance of

network protocols over time. We perform this evaluation over scenarios of practical interest

for the CLAM system.

We study the effects of different environmental conditions on the performance of net-

work protocols, with focus on MAC and routing. We also show that it is convenient to let

the network adapt to changing environmental conditions, e.g., by recalculating the routes

packets should follow on the way towards the sink over time. Our results show that this is

actually beneficial not only in terms of typical metrics such as throughput and packet deliv-

ery ratio (which improve by about 10 to 20%), but also in terms of transmission efficiency,

as the shorter routes devised by allowing adaptation to the environment help avoid useless

data replication over multiple hops.
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2.2 Considered Protocols

For the forthcoming comparison, we consider two different MAC protocols (CSMA-

ALOHA and DACAP), that have been implemented in our framework.

CSMA–ALOHA is a form of ALOHA with a very short channel sensing phase before

a packet is actually transmitted. Given that the typical balance between the packet trans-

mission time and the propagation delay in underwater networks makes CSMA inefficient,

the short sensing introduced here serves the only purpose to avoid a trivial collision sce-

nario (i.e., where the current node starts its own transmission while a different signal is

propagating in the same area where the node is located, resulting in a likely collision at the

intended receiver of such signal). The sensing time is randomized to avoid the synchroniza-

tion of channel access attempts and repeated collisions. In case the channel is found busy,

the transmitter employs a standard binary exponential backoff scheme. This protocol is a

mixed form of both ALOHA and CSMA, hence the name.

TheDistance Aware Collision Avoidance Protocol (DACAP) [16] uses an extended ver-

sion of a Request-To-Send/Clear-To-Send (RTS/CTS) handshake for reserving the channel

before packet transmission. More specifically, when a node has a packet to send, it senses

the channel: if the channel is idle, the node transmits an RTS. Upon receiving the RTS, the

destination replies with a CTS and then waits for the data packet. With respect to the usual

CSMA/CA scheme, DACAP adapts to the underwater channel characteristics by using the

following mechanism. If, while waiting for a data packet, a destination node overhears a

control packet for some other node, it sends a short warning packet to its transmitter. In

addition, every sender defers the data packet transmission for a prescribed amount of time,

after receiving a CTS. If it overhears another control packet or receives a warning packet

from the destination during this period, the sender aborts the current transmission attempt.

The length of the defer time depends on the distance between the source and its destina-

tion, which the sender can estimate using the RTS/CTS round-trip time.When the receiver

overhears an RTS and sends a warning, it does not know whether the warning will reach

the sender on time to make it abort the transmission. Since a data packet can still arrive, the

receiver must continue listening to the channel even after a warning has been sent. For this

reason, the defer time is defined as the minimumwaiting period between receiving the CTS
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and sending the data that guarantees the absence of harmful collisions.

2.3 Extensions to WOSS and Scenario Description

The World Ocean Simulation System (WOSS) [21] employs oceanographic databases for

environmental parameters in order to bring realistic acoustic propagation patterns into ns2-

Miracle using the Bellhop ray tracing software [22]. In particular, WOSS has been interfaced

with public databases such as the World Ocean Database for SSPs [20], the General Bathy-

metric Chart of the Oceans [21] for bathymetry and the National Geographic Data Center’s

Deck41 Database [18] for bottom sediments. Furthermore, it also supports data retrieval

from the user-custom datasets.

We extended the capabilities of WOSS to support the processing of time-varying envi-

ronmental conditions. For example, this allows to implement SSP changes over the duration

of a day. However, we note that SSP measurements are typically available only at certain

time epochs throughout a day, whereas the simulator should model the transition between

the current and the next SSP samples as well. This would include a much more detailed

representation of the environment (e.g., considering all phenomena that cause sudden tem-

perature changes such as currents and internal waves). In order not to put too much com-

plexity in the simulator, we model the transition from one SSP sample to the following one

via a simple convex combination as follows:

SSP(t) = SSP(ti)
ti+1 − t

ti+1 − ti
+ SSP(ti+1)

t− ti
ti+1 − ti

(2.1)

where ti and ti+1 are the time epochs when the ith and (i+1)th samples of the SSP have

been measured, respectively, and t is the current time epoch, ti ≤ t < ti+1. The user is

allowed to specify as many SSPs as needed, possibly spanning more days. In addition, we

implemented a random generation of surface wave profiles, which have been set to obey a

Bretschneider 2-parameter spectrum [19].1

The SSP samples we use in this investigation have been collected during the SubNet’09

sea trials, which took place off the eastern shore of the Pianosa Island, Italy (42.585◦N,

1The characteristic height has been set to H̄char = 1.5m and the average wave period to T̄ = 3 s. This yields

surface wave realizations matching a windy day.
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Figure 2.1. Sound speed profile realizations taken during the SubNet’09 campaign off the island of Pi-

anosa, Italy, between June 5 and 6, 2009. A monthly average of the SSP across the month of June, taken

from the WOD 2009 database [20], has been included for comparison

10.1◦E) [12]. This location has therefore been chosen as the simulation area. From the Sub-

Net’09 dataset, we pick 8 distinct SSP samples spanning the duration of one day on June

5th, 2009. Some SSP realizations used in the simulation are shown in Fig. 2.1: note that

the database samples do not include sound speed measurements at very shallow depths:

therefore, we linearly extrapolated the SSP starting from the last two known speed samples

(located at a depth of 18 and 13m, respectively). For comparison, we also depict in Fig. 2.1

the monthly average of the SSPs realizations in the WOD 2009 database, i.e., the realization

which WOSS would automatically retrieve if not supplied with external data. We observe

that the measurements and the monthly average are in fact similar, with the exception that

the latter yields slightly higher sound speed values at low depth. This difference is amplified

by the fact that the SubNet’09 SSPs we used have been taken on the 5th of June, whereas the

monthly SSP average contains a significant contribution from later June days, when surface

waters are typically warmer, yielding higher sound speed.

These variations can substantially affect the way sounds travel through water. In fact,

the change of sound speed across the water column causes the trajectory of sound waves to
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(a) Nighttime SSP (b) Daytime SSP (c) June SSP fromWOD 2009

Figure 2.2. Attenuation profiles obtained with Bellhop using (a) a nighttime SSP (b) a daytime SSP

and (c) the monthly averaged June SSP automatically retrieved by WOSS from the World Ocean Database

2009 [20]. In the bottom-left corner of the pictures we observe the bathymetry profile as extracted byWOSS

from General Bathymetric Chart of the Oceans [21].

bend, and can thus change the level of the sound pressure in time at any point in the net-

work area. To exemplify this phenomenon, two channel realizations obtained via Bellhop2

are shown in Figs. 2.2(a) and 2.2(b), using a nighttime and a daytime SSP, respectively. For

comparison, a realization generated using the June SSP from WOD 2009 has been shown in

Fig. 2.2(c). From these patterns we observe that the attenuation of a signal at a given point in

space can vary significantly due to the varying refraction effects caused by different temper-

ature gradients throughout the day. For example, acoustic rays bent downward relatively

sharply in the daytime, whereas during nighttime this refraction effect is less pronounced,

which makes the insonification more uniform and able to reach slightly larger distances. For

example, consider the attenuation in Figs. 2.2(a) and 2.2(b) at a depth of 0 to 15m from a dis-

tance of about 2000m from the source (located on the left in the pictures at a depth of 40m):

during daytime, the attenuation is very high and almost no sound reaches the area due to

strong downward refraction; conversely, the attenuation is estimated to about 70 dB during

nighttime, thanks to a more uniform SSP and to the bottom bounces which reach the top of

the water column thanks to milder downward refraction. For comparison, the WOD 2009

SSP in Fig. 2.2 shows an even larger shadow zone with little sound propagation extending

deeper than in Fig 2.2(b), whereas the insonification level before a distance of 2000m is com-

parable to that in Figs. 2.2(a) and 2.2(b). Such changes may have a significant impact on the

performance of networking protocols, as will be discussed in Subsections 2.4.1 and 2.4.2.

2We consider here the “incoherent” propagation profile calculation option.
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In the following evaluation, we assume that all nodes transmit using a Binary Phase

Shift Keying (BPSK) modulation technique at a bit rate of 4800 bps at a central frequency of

25 kHz, similar to one of the possible configurations of the WHOI micromodem [20]. The

length of data and ACK packets is fixed at LD = 125Bytes and LA = 10Bytes, respectively.

The traffic is generated randomly according to a Poisson process of fixed rate λ packets per

second in the whole network. We recall that the network area chosen for the simulations is

off the eastern coast of the Pianosa Island, in Italy, at about 42.585◦N, 10.1◦E. All nodes are

randomly placed within the network area except the sink, which is centrally placed. The

channel is periodically re-computed according to the new propagation conditions dictated

by the SSP changes as per Eq. 2.1.

We will now consider two different sets of network results: the first focuses on MAC

performance, whereas the second one focuses on routing performance. In the MAC test

scenario, we consider a network of 19 nodes plus one sink, centrally placed at a depth of

3m. The network is put under stress by considering a relatively small area of 3 km × 1.5 km

× 80m, where however the nodes located farthest from the sink still have a fair probability of

delivering a packet correctly (albeit this probability may decrease according to SSP changes).

In the routing test scenario, we consider a larger network area of 5 km × 5 km × 80m, in

order to increase the average distance between the nodes, their neighbors, and the sink. In

this case, the farthest nodes are not guaranteed any consistently good-quality link towards

the sink, and must therefore resort to routing in order to have their own packets delivered.

All simulation results are averaged over 25 different rounds of MAC experiments and 45

different runs for routing experiments.

2.4 Simulation Results

2.4.1 MAC results

We start our comparison by considering the MAC-level performance of static topologies.

We consider first the CSMA-ALOHA MAC protocol described in Sec. 2.2. Figs. 2.3 and 2.4

depict the normalized throughput (i.e., the average number of packets delivered to their

intended destination per packet transmission time) and the packet delivery ratio (i.e., the

ratio of the correctly received packets over all sent packets) for a network of 19 nodes and
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Figure 2.3. Normalized throughput as a function of the traffic generation rate in the network using

CSMA-ALOHA.

one sink. Each figure contains four curves, corresponding to two different versions of the

protocol, with and without Stop-and-Wait Automatic-Repeat reQuest, S&W ARQ: in the

latter case, the transmitter sends a packet and waits for the confirmation of correct reception

from the sender in the form of an acknowledgment message (ACK). The two versions have

been evaluated both under changing SSP conditions and under the same (fixed) SSP that

WOSS would retrieve from the WOD database.

By comparing the curves for fixed and varying SSP in Figs. 2.3 and 2.4, we have indeed

observed different performance, mainly due to the stronger downward refraction caused by

the averaged SSP in the WOD 2009 database, which deviates most of the sound pressure

towards the bottom and does not favor long-range transmissions, and in turn causes packet

reception errors. This effect is similar to that observed, e.g., in Fig. 2.2(b). Notice that, while

negligible in terms of absolute values, the difference between the two no-ACKCSMA curves

is about 10% and increasing for higher traffic, meaning that as the network approaches the

point of maximum throughput, the value obtained using WOD’s SSP is quite lower than

what would be obtained in a real scenario, and makes the usage of more frequent environ-

mental data samples worth whenever possible. However, when a more detailed data set is
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Figure 2.4. Packet delivery ratio as a function of the traffic generation rate in the network using CSMA-

ALOHA.

not available, the curves of the protocols under the monthly averaged SSP show the same

trend as those obtained with a varying SSP. Hence, higher-level performance indications,

such as the network load for which the maximum throughput is reached, are similar. For

example this is the case for the throughput and packet delivery ratio of CSMA-ALOHAwith

S&WARQ in Figs. 2.3 and 2.4, respectively. In fact, the throughput curves show a very sim-

ilar trend, and their difference is further mitigated by the inherently higher waiting times

caused by S&W, which translate into lower throughput in both the fixed and the varying

SSP cases. On the other hand, the slight difference between the two maxima of the through-

put curves in Fig. 2.3 can be explained via the higher delivery ratio obtained in the varying

SSP case (Fig. 2.4).

Similar observations apply to Figs. 2.5 and 2.6, which present normalized throughput

and delivery ratio results for DACAP. In this case the throughput is comparatively lower

than CSMA-ALOHA’s, due to the requirement to perform 3-way and 4-way handshakes in

the no-ACK and ACK cases, respectively. In addition, hidden terminal effects and collisions

between control and data packets [10] adversely affect the capability to set up links, and

decrease the throughput of the DACAP protocol.
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Figure 2.5. Throughput as a function of the traffic generation rate in the network using DACAP.
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Figure 2.6. Packet delivery ratio as a function of the traffic generation rate in the network using DACAP.

2.4.2 Routing results

As the variation of the sound propagation pattern over time has an impact on the perfor-

mance of MAC protocols, likewise such change affects the capability of a network to route
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(a) After 3:20 hours (b) After 10:00 hours (c) After 20:00 hours

Figure 2.7. Example of how optimal routes evolve as the SSP changes at different times during a day. The

deployment is actually three-dimensional, but is seen from above and therefore depicted as two-dimensional

for convenience.

data. In this section, we present some results to show this phenomenon. We consider static

topologies where 19 nodes are deployed in the same network area described above, with

a sink centrally placed at a depth of 3m. In this evaluation, the network must convey (or

converge-cast) the data generated by all nodes to the sink. Given the better performance

of CSMA-ALOHA in the previous evaluation, we employ it as the medium access control

technique in what follows. For simplicity, the network maintains static routes. This means

that each node knows exactly what the following neighbor is on the path toward the sink.

The objective of the study is to show that recalculating such routes once every so often yields

performance improvements both in terms of the maximum data throughput and in terms

of the length of the routes: these tend to be shorter, which avoids useless replication of

transmitted packets over multiple hops.

In more detail, we take 8 SSP samples from the SubNet’09 data set, which span the

duration of one day between June 5th and June 6th, 2009. For each of these samples, we run

Bellhop to get a measure of the attenuation over the link between all pairs of nodes. We then

calculate shortest paths to the sink via a simple Dijkstra algorithm, with the constraint that

the link between nearest neighbors should span the longest distance and guarantee a Signal-

to-Noise Ratio (SNR) of at least 15 dB.3 Network simulations are then performed by letting

3An even more realistic approach would require to perform multiple Bellhop runs for each link, each fea-

turing a small randomization of the environmental parameters. The links to form the routes could then be

constrained to have an average SNR (over all realizations) exceeding some threshold. However, this would sub-
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Figure 2.8. Normalized throughput as a function of the traffic generation rate in the network using fixed

and adaptive routes.

the SSP change over time according to the discussion in Sec. 2.3. However, at each time

epoch corresponding to one of the 8 SSP measurements taken from the SubNet’09 dataset,

we recalculate all the routes to match the new propagation conditions. Figures 2.7(a)–(c)

give an example of how such routes change over time at different epochs throughout the

simulation. Note that we do not explicitly implement a route dissemination protocol: the

study of a suitable approach for this is left as a future extension.

Figs. 2.8 and 2.9 show the throughput and packet delivery ratio as a function of the traffic

generation rate in the network. This time, throughput is defined as the number of packets

correctly delivered to the sink per packet transmission time. For each traffic rate, simulations

are run for about 24 hours of simulated time, spanning all considered SSP samples. Along

with the adaptive route case we will also evaluate a scenario with two different fixed routes,

one computed using a daytime SSP, and a second one using a nighttime SSP. From Fig. 2.8,

we observe that route changes cause a throughput increase of roughly 20% over fixed routes.

This improvement is mainly due to the better packet delivery ratio (Fig. 2.9), consistently

stantially increase the computational burden. We therefore decided to perform only one realization per link,

and compensated for small-scale changes by imposing a quite high threshold of 15 dB.
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Figure 2.9. Packet delivery ratio as a function of the traffic generation rate in the network using fixed and

adaptive routes.
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Figure 2.10. Packet delivery ratio experienced over time by a specific node, using adaptive and fixed routes.

10% better than both fixed route cases.

In spite of the relatively limited difference between the adaptive and fixed route cases,
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Figure 2.11. Average route length in the network over time using adaptive and fixed routes.
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Figure 2.12. Delivery delay as a function of the traffic generation rate in the network using fixed and

adaptive routes.

single nodes can suffer from worse performance and affect the network as a consequence.

For example, consider Fig. 2.10, which depicts the packet delivery ratio experienced by a
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specific node as a function of time, as it forwards its packets to the next hop towards the

sink. Each point corresponds to the packet delivery ratio measured over the preceding 3

hours. As environmental conditions change with the time of day, the link between the two

nodes can become quite unreliable. The usage of adaptive routes allows to choose next hops

according to howmuch the link towards them is reliable, and therefore leads to a better and

more stable performance. In addition, adapting routes allows to keep them short, avoid-

ing useless packet replication through multiple nodes. This effect can be seen in Fig. 2.11,

where we observe that the average route length decreases significantly with adaptive routes:

this makes the network almost single-hop towards the end of the simulation. These results

explain the quite sharp advantage gained by adaptive routes in terms of average delivery

delay, defined as the time elapsed between the generation of a packet and its delivery to the

sink. Fig. 2.12 details the comparison among the delivery delays as a function of traffic for

the adaptive routes and the fixed daytime and nighttime routes. The curves show that both

fixed routes lead to very long delays at low traffic; on the contrary, adaptive routes keep the

delay within more acceptable levels, and help reduce the rate at which delay increases with

traffic.

2.5 Conclusions

In this chapter, we have evaluated the effects of changing environmental conditions on

the performance of MAC and routing protocols in underwater acoustic networks. To this

end, we employ a modified version of the WOSS simulator where the sound speed profile

over the water column is allowed to change in time. Our results show that MAC proto-

cols are in fact impacted by the SSP employed to simulate, even though the performance

achieved using measured environmental data and that measured using the sound speed re-

trieved from the free World Ocean Database 2009 are relatively similar, and in any event

show the same trend.

We then showed that it is not convenient to set up static routes in a multihop network,

as SSP changes would make such routes suboptimal over time. We argued that even a route

update as rare as once every three hours achieves much better performance, especially in

terms of delivery delay and of the average length of the routes.
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Future work on this topic includes a more detailed study of the optimal route update

frequency and the implementation of a route dissemination and update protocol.
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3.1 Overview

Error control techniques are of prominent importance to counter reception errors in un-

derwater (UW) acoustic communications [1]. Usually, a Forward Error Correction (FEC)

code is natively implemented in the physical layer (PHY) of commercial UW communication

devices. Nevertheless, movement- or environment-induced fluctuations of the signal power

at the receiver, as well as the effect of multiple access interference in multiuser networks, can

27
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generate transmission errors that exceed the correction capabilities of the PHY-level FEC. In

this case, Automatic Repeat reQuest (ARQ) policies are needed to recover packet errors.

Such event is quite likely in real scenarios: for this reason, pioneering UW networks such as

SeaWeb [2] incorporate some form of ARQ.

Generally speaking, ARQ schemes prescribe that the receiver sends one acknowledg-

ment packet (ACK) back to the transmitter for every data packet correctly received. In

case of errors (e.g. as detected via a failed CRC check) the receiver transmits one not-

Acknowledged (NACK) packet, or remains silent. This allows the sender to detect the recep-

tion error and to take action for retransmitting erroneous packets. The policy most typically

employed to administer retransmissions is a form of Stop-and-Wait (S&W) ARQ [3], both

for simplicity and because S&W can be straightforwardly employed over half-duplex media

such as the UW acoustic channel. S&W ARQ prescribes that the sender transmits a packet

andwaits for the corresponding ACK/NACK packet, before sending the next data packet. If

no ACK is received within a timeout period, or a NACK packet is received, the correspond-

ing data packet is transmitted again. This choice is inherently inefficient for UWANs, as it

requires a sender to remain idle for one whole round-trip time (RTT). As the propagation

speed of the acoustic waves underwater is low, the throughput achieved by S&W is lim-

ited [4]. Therefore, several protocols are designed to perform multiple packet transmissions

back-to-back [4, 5], hence achieving a larger throughput via a more intense channel utiliza-

tion. However, this strategy requires prolonged channel usage, which would be unfair in

multiuser networks with random access techniques [6].

If full-duplex communications can be achieved bymeans of, e.g., time-division or frequency-

division duplexing (TDD and FDD, respectively), more effective techniques based on Selec-

tive Repeat (SR) ARQ can be employed. With SR-ARQ a whole sequence (or window) of

up toM consecutive packets can be transmitted before the sender stops to wait for an ACK;

moreover, retransmissions are limited to erroneous packets, at the price of a re-scheduling

buffer at the receiver to cope with out-of-order receptions. In any event, we note that such

buffer is well within the capabilities of any existing hardware to date.1

1The Go-Back-N (GBN) ARQ technique [3] was also introduced in terrestrial networks to avoid the acknowl-

edgement of out-of-order receptions, and thus save the storage space required for a re-sequencing buffer at the

receiver. GBN is known to be outperformed by SR whenever the re-sequencing buffer can be afforded [3], hence
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Figure 3.1. Example of Underwater Selective Repeat (USR) in operation, for a transmit windowM = 2.

Relevant timings are highlighted. (Adapted from [6].)

To realize ARQ schemes based on SR techniques, a natural approach is to obtain a time-

division duplex channel by leveraging on the propagation delays experienced by underwa-

ter sound. In typical shallowwater network scenarios [7], the distance between neighboring

nodes can be of the order of one or more kilometers, which turns into propagation delays of

1 s to 2 s.2 The packet transmission times obtained with typical modem hardware in many

underwater scenarios are shorter than these values [11], therefore employing S&W would

turn into very low throughput.

In this work, we jointly address the above issues by proposing and discussing Under-

water Selective Repeat (USR), a SR-ARQ scheme which employs a form of TDD, and works

well in combination with MAC protocols based on random access. The idea behind USR

is that the typically long UW propagation delays should be exploited to pack several data

packet transmissions within the same RTT, while keeping the receiver silent when it is ex-

pected to receive ACKs. This requires the transmitter to estimate the RTT. Note that, in the

it will not be considered here.
2Many modems available to date support transmissions over such distances. For instance, AquaComm sup-

ports ranges of 3 km [12], the LinkQuest UWM2000 and UWM3000 modems support 1.5 km and 3 km, respec-

tively [13], and the Evologics S2C R 48/78 modem supports 3.2 km [14].
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following, we define the RTT as the delay between the end of a data packet transmission

and the beginning of the reception of the corresponding ACK, with reference to the case

where both the data and the ACK transmissions are successful.3 An estimate of the RTT can

be obtained by starting USR in a S&W mode, and by measuring the RTT from the timing of

the data/ACK exchange. If the RTT is sufficiently large, any further packets for the same re-

ceiver can be sent sequentially: however, the timing of subsequent data transmissions must

be adjusted so that the transmitter is never deaf to incoming ACKs. Note that the transmis-

sion of data packets and the reception of ACKs are interlaced in time, thereby avoiding the

need to split data communications and feedback over separate channels.

While the RTT can be easily estimated with a preliminary S&W cycle as detailed above,

other design choices are required. For example, it has to be determined how many packets

should fit within one RTT. Intuitively, there is a tradeoff between a higher point-to-point

throughput if transmissions are packed tightly, and a better capability to avoid multiple-

access interference when transmissions are separated by longer waiting times. This tradeoff

will be detailed in Section 3.2.

The use of some form of TDD to support multiple packet transmission within a single

RTT has been also considered in [12–14]. In [12], the authors propose to share the RTT

equally between two communicating nodes, so that they may transfer an equal number of

packets. However, this technique requires perfect time synchronization between the nodes,

something that may be difficult to achieve even in static networks, and hinders the extension

of the technique to multiuser networks. Another TDD-like technique, named Juggling-like-

Stop-and-Wait (JSW), is proposed in [13]. With JSW, the sender transmits a fixed number of

data packets as specified by a pre-calculated window size, and then it waits for the related

ACK/NACK. This does not allow the implementation of plain S&W cycles in the presence

of low traffic (e.g., when a node has only one packet to transmit). Moreover, if the network

is randomly deployed, it is suboptimal to choose the same window size for all nodes, as

the RTT is generally different. Finally, the protocol in [14] is designed to reduce the packet

delivery delay over a single link, not in multi-user scenarios.

3We remark that this definition is slightly different from what is used in some other contexts, where the RTT

is defined as the time interval from the beginning of a data packet transmission to the end of the reception of

the corresponding ACK.
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Unlike the approaches above, the scheme we propose in this work adapts to the distance

between any two communicating nodes, hence to the value of the RTT over the respective

link. This adaptation does not have the objective to optimize the transfer of data over a

single link: instead, it seeks the optimization of the network performance as a whole. Such

result is achieved by avoiding to pack the largest possible number of data packet transmis-

sions within the same RTT, and by choosing transmission timings properly, i.e., in a way

that exploits the underlying Medium Access Control (MAC) protocol to avoid collisions.

Moreover, our proposed protocol does not require any time synchronization, and can be

applied to any randomly deployed network (unlike, e.g., [12]) with any number of nodes

(unlike, e.g., [13]). An option to make it more robust in the presence of mobility is described

in Section 3.3.3.

3.2 Underwater Selective Repeat (USR)

The USR protocol has been designed according to two guidelines: i) the underwater

propagation delays are typically long with respect to the packet transmission time, and

should be exploited for enabling a SR-ARQ scheme; ii) the scheme should be designed in a

way that makes it suitable to multiuser networks.

USR works as follows. Whenever a node has one or more packets for a certain destina-

tion, it first sends one packet using a common S&W scheme: namely, it performs the channel

access procedures required by the Medium Access Control (MAC) scheme in use, it sends

one data packet, and then waits for the corresponding ACK. At the reception of this ACK,

the node estimates the RTT between itself and the destination. If this time is too short to

allow the transmission of multiple packets within one RTT, while still ensuring that data

packet transmissions and the ACK receptions will not collide, the transmitter falls back to

S&W. The same action is taken if there is only one packet to send. The knowledge of the

RTT allows the transmitter to estimate the length of the transmit window, i.e., the maximum

number of packets that can be transmitted before waiting for ACKs.

With reference to Fig. 3.1, call τ the propagation delay, and TD and TA the transmis-

sion time of a data packet and of an ACK packet, respectively. The window size M can be
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computed as

M = max

(

1,

⌊

kτ

TD + TA +∆

⌋)

. (3.1)

where ∆ is a guard time (required to compensate for changes in the RTT during the trans-

mission of data packets and/or for changes in the speed of the nodes in case of mobility),

and k is an adaptation factor which limits the portion of the RTT to be considered in the

computation ofM , 0 < k ≤ 2. In the limit, if k = 2, the packets will be transmitted with the

minimum possible spacing, whereas if k = 0 the window M will be lower-bounded by 1,

which corresponds to falling back to S&W. The same happens if the communicating nodes

are very close: in this case, the expression
⌊

kτ
TD+TA+∆

⌋

in (5.9) is rounded to 0, butM would

be set to 1 as per the definition in (5.9). Note that, in a multiuser network, the RTT between

different pairs of nodes may be different, and in general this reflects on different values of

the maximum window size M . The estimate of the RTT performed during the first S&W

cycle makes USR adapt to these differences.

Whenever M > 1, the sender waits for a fixed time W before sending the next packet

of the window, in order to avoid receiving an ACK while transmitting a data packet. In

the following, we compute W in such a way that that the ACK reception takes place in

the middle of the waiting time, i.e., it is centered W/2 after the end of the reception of the

previous data packet, if the RTT is constant. The waiting timeW is defined by the following

relationship

TD +
TA
2

+ 2τ =MTD + (M − 1)W +
W

2
, (3.2)

where the left-hand sidemodels the time that elapses between the beginning of a data packet

transmission and the middle of the reception of the corresponding ACK, whereas the right-

hand side stands for the fact that this reception should take place in the middle of the corre-

sponding waiting time. By solving forW we get

W =
TA + 4τ − 2(M − 1)TD

2M − 1
. (3.3)

We remark thatW depends onM , which in turn is chosen such that there is always at least

one data packet and one ACK transmission within a time interval of duration kτ , 0 < k ≤ 2.

Since W is computed so that an ACK is received in the middle of the interval of duration

W (in case both the receiver and the transmitter are stationary and the propagation delay is

constant), a smaller windowM always results in longer waiting times between subsequent
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data packet transmissions. In any event, we observe that by imposing thatW ≥ TA in (5.10),

we getM − 1 ≤ 2τ/(TA + TD), which is verified as per the expression in (5.9).

In the following, we consider two versions of USR: in USR-SLidingWindow (USR-SLW),

a sender keeps sending packets whenever fewer than M packets are still to be acknowl-

edged; in USR-FiXed Window (USR-FXW), the sender transmitsM packets and then waits

until all the corresponding ACKs have been received; only after that does it perform a fur-

ther transmission of a window ofM packets. We finally note that the different behavior of

the two USR versions requires different channel access patterns: in particular, the USR-FXW

technique performs the access procedure before transmitting every window of M packets;

on the contrary, USR-SLW accesses the channel only before the transmission of the first

packet to a given node. For this reason, USR-SLW strikes a different balance between how

many transmissions are pushed towards the receiver per unit time and how much interfer-

ence is generated in the area nearby the transmitter and the receiver.

3.2.1 Remarks on the backoff algorithm

Backoff is commonly seen as part of the MAC scheme in use. However, USR’s timings

may be broken if backoff events and times are chosen in away that is completely oblivious of

the ARQ scheme. Hence, in this workwe prefer to let USRmanage backoff events. The event

that triggers backoff is the loss of an ACK. By virtue of (3.2), the ACK related to a certain

packet is expected 2τ after the packet transmission, and around themiddle of a timewindow

of length W . Hence, W also represents the timeout for the ACK reception. If the ACK is

missing, the sender refrains from further transmissions using a standard binary exponential

backoff scheme. In particular, the window of the backoff time is doubled at every failed

ACK reception, and reset at the first successful one. After a backoff timer expires, a node

always performs a fresh channel access attempt before transmitting again. In any event, the

backoff time is never less than the time required to receive all pending ACKs.4

4This choice proved to offer the best performance in all simulations, the main reason being that no two nodes

seize the channel for themselves for long periods of time.
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3.2.2 Accounting for mobility in USR

Normally, the setting of M and W in (5.9) and (5.10), respectively, guarantees that the

transmitter is never deaf to ACKs from the receiver. However, if the transmitter and the

receiver are mobile, the RTT may vary over time, and possibly lead to the superposition of

data transmissions and ACK receptions. This effect can be compensated for by reducing the

transmission windowM via a different estimation of the propagation delay. In the follow-

ing, we employ a conservative approach: first, when we computeM in (5.9), we assume that

the transmitter and the receiver move toward each other, and therefore that the propagation

delay will decrease over time. This has the net effect to yield a lower value ofM than in the

static case. Second, when computingW in (5.10), we still employ the actual estimate of the

RTT yielded by USR’s first S&W exchange. This translates into larger values of W , hence

larger spacing between subsequent packet transmissions, and ultimately longer guard times

for accommodating mobility.

In more detail, assume that node A transmits to node B at time t1 using USR, and in-

fers the propagation delay τAB between the two nodes using the timing of USR’s first S&W

exchange. This estimate of τAB will be employed in (5.10) to compute W . If A and B are

mobile, at a later time t2, A will compute M by employing the propagation delay esti-

mate τ ′AB = d′AB/c, where c is the speed of sound (approximated as a fixed value equal

to 1500 m/s for the purposes of this computation), and

d′AB = dAB − (t2 − t1)v . (3.4)

In (3.4), v is the maximum relative velocity of the nodes, computed as the sum of the speeds

of A and B (B can make A aware of its speed by piggybacking the corresponding value in

the ACK of USR’s first S&W exchange). Unlike in the static case, here d′AB is a worst-case

estimate of the distance between the moving nodes, and hence leads to computing a lower

bound of the propagation delay. We remark that the nodes need not know their position or

direction of movement.
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3.3 Simulation Results

This section presents the performance evaluation of the USR protocol in several scenar-

ios. First, we provide a description of the scenario and of the system parameters in Sec-

tion 3.3.1; we illustrate the simulation results in static networks in Section 3.3.2 and proceed

to the results related to mobile networks in Section 3.3.3; in Section 3.3.4, we show the im-

pact of the parameter k introduced in (5.9). Based on the considerations provided in the

latter section, an adaptive version of USR is proposed in Section 3.3.5.

3.3.1 Scenario definition and common parameters

The USR protocol is designed to complement a Medium Access Control (MAC) protocol

with error control capabilities. In this work, we stack USR on top of a 1-persistent Carrier-

Sense Multiple Access (CSMA) scheme tested in underwater networks in [21]. This instance

of CSMA is described as follows: a node that has a packet to transmit senses the channel

first. The sensing time is random, and very short with respect both to the transmission

time of a data packet and to the maximum RTT in the network. Moreover, the random

length of the sensing time makes it possible to avoid the synchronization of channel access

attempts performed by different nodes. If the channel is found busy, the node immediately

performs a second sensing phase, again of random length, and keeps repeating this until

the channel is eventually sensed idle. At this point the node transmits. CSMA’s preliminary

carrier-sensing period makes it possible to avoid some typical collision events via a less

aggressive access behavior (unlike what would happen, e.g., with ALOHA). In addition,

CSMA has been found to provide good performance [21] with respect to a scheme based

on collision avoidance [16] and to a contention-based scheme relying on wakeup tones [17]:

this motivates its adoption for evaluating USR in this work.

In this work, the USR-CSMApair will be compared against CSMAplus a plain Stop&Wait

(S&W) ARQ scheme, and against an ALOHA channel access protocol (whereby a node

transmits a packet as soon as it is generated, unless the node is already engaged in another

packet transmission), also coupled to S&W ARQ. For all protocols, the maximum number

of retransmissions allowed for a packet is limited to 5. If the reception of an ACK fails for

any reason, the transmitter resorts to exponential backoff. As for USR, the backoff window
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is doubled upon successive failed transmissions, and reset upon the reception of an ACK

(see Section 3.2.1).

We carry out the simulations using the ns2-Miracle framework [20] along with theWorld

Ocean Simulation System (WOSS) [21]. For producing realistic acoustic propagation via

the Bellhop ray tracing software [22], WOSS retrieves the geographical coordinates of the

nodes from ns2-Miracle and queries oceanographic databases for environmental data mea-

sured nearby the network deployment area. (In particular, a typical July SSP retrieved from

WOD [20] is employed throughout our simulation campaign.) Realistic channel profiles are

then obtained via Bellhop [22].

In all simulations, the network area is a square of side 2500 m located in the Mediter-

ranean Sea, near the Corsica Island, France. The upper left corner of this area is set at

(43.0625◦N, 9.3095◦E). All nodes are randomly deployed within the area. The nodes com-

municate using a Binary Phase Shift Keying (BPSK) modulation technique at a bit rate of

4500 bps at a center frequency of 25 kHz. The system bandwidth is set to 9 kHz and the

transmit power has been set to 200 dB re µPa. This configuration makes the network fully

connected, which in turn helps put the error control protocols under stress. We note that the

probability of error over each link may still vary, due to the different channel realizations

obtained from Bellhop.

The data packet and theACKpacket sizes are fixed toLD = 125 Bytes andLA = 10 Bytes,

respectively. In every simulation run, each node generates packets according to a Poisson

process of normalized rate λ packets per packet transmission time. Every node randomly

chooses a destination, and transmits all its packets to that destination throughout the whole

simulation period. All nodes are both sources of packets and potential destinations for the

packets of other nodes. The simulations have been performed for several values of λ, for

several network area sizes, and for different numbers of nodes. The performance of the pro-

tocols is evaluated in both static and mobile networks. The simulation results are averaged

over a total of 25 simulation runs, which yields sufficient statistical confidence.

3.3.2 Static network

We start by considering the case of a static network with a fixed number of nodes. For

clarity, from now on we will refer to the compared protocols with a shorthand name that
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Figure 3.2. PDR vs. λ for all protocols in a static network of 5 nodes.

includes both the ARQ scheme in use and the channel access protocol: S&W-ALOHA and

S&W-CSMA indicate the use of a S&W ARQ scheme on top of ALOHA and CSMA, respec-

tively, whereas USR-FXW-CSMA and USR-SLW-CSMA denote the use of either version of

USR along with the CSMA access protocol.

Figs. 3.2 and 3.3 show the average Packet Delivery Ratio (PDR) (defined as the ratio of

the number of packets correctly received by the intended destinations to the number of gen-

erated packets5) and the normalized throughput (defined as the number of packets correctly

delivered in the network per packet transmission time) in a static network of 5 nodes. All

protocols perform similarly for small values of λ, corresponding to a light network load and

a low probability of collision. As λ increases, S&W-CSMA’s channel sensing procedure pre-

vents some collisions, hence the protocol achieves better PDR and throughput thanALOHA.

In this scenario, the greatest throughput achieved by both S&W-ALOHA and S&W-CSMA

is around 0.08. However, S&W-CSMA’s sensing procedure makes it more robust in the face

of heavy traffic, hence its throughput curve remains stable at a value close to its maximum,

whereas S&W-ALOHA’s decreases.

For all values of λ, both versions of USR achieve a better PDR than the other protocol

stacks. This is due both to the use of a TDD scheme for duplexing data packets and ACKs,

5All packets left in the buffer of a node at the end of a simulation are counted as lost packets.
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Figure 3.3. Normalized throughput vs. λ for all protocols in a static network of 5 nodes.

and to the transmission of multiple packets within one RTT; altogether, these features trans-

late into a higher normalized throughput. In Section 3.3.4 we will discuss the impact of k in

more detail: at this time, we simply note that k = 1 leads to better performance than k = 2.

Intuitively, the reason is that a lower value of k leaves longer silence periods between any

pair of subsequent packets. In turn, this makes it less likely to experience collisions gener-

ated by the hidden terminal effect, or by the fact that transmitters are deaf to packets meant

for them. On the contrary, k = 2 yields a higher number of transmissions per unit time:

this would be optimal for a single link, but translates into greater interference in a multiuser

network. In turn, this originates more collisions, hence more backoff events, and results in a

loss of throughput due both to the transmission errors and to the silence periods that ensue.

Figs. 3.4 and 3.5 show the PDR and throughput for all protocols in a network of 10 nodes.

As λ is the packet generation rate per node, having 10 nodes effectively doubles the net-

work load with respect to the case of Figs. 3.2 and 3.3. The heavier contention that results

highlights the difference between S&W-ALOHA (which performs better at low traffic) and

S&W-CSMA (which outperforms S&W-ALOHA for λ > 0.022). The difference between the

k = 1 and the k = 2 cases still remains, and is explained in the same way as in the 5-node

scenario: k = 1 leaves longer periods of silence between subsequent data transmissions,

hence reducing the probability of collisions among different pairs of nodes, with beneficial



3.3. Simulation Results 39

10
−2

10
−1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized packet generation rate per node, λ

P
a
c
k
e
t 
D

e
liv

e
ry

 R
a
ti
o

 

 

S&W−Aloha
S&W−CSMA
USR−SLW−CSMA (k = 2)
USR−SLW−CSMA (k = 1)
USR−FXW−CSMA (k = 2)
USR−FXW−CSMA (k = 1)

Figure 3.4. PDR vs. λ for all protocols in a static network of 10 nodes.
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Figure 3.5. Normalized throughput vs. λ for all protocols in a static network of 10 nodes.

effects on both PDR and throughput.

We note that both versions of USR perform well: the difference between USR-SLW-

CSMA and USR-FXW-CSMA for high values of λ is explained by recalling that the latter

sends a train of packets and then waits for all their corresponding ACKs. This forces deter-

ministic silence periods for all transmitters and leads to a lower throughput.
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Figure 3.6. PDR vs. the number of nodes in the network for all protocols, λ = 0.22.

It is interesting to note that, for k = 2, both versions of USR perform worse than S&W-

CSMA in the scenario with 10 nodes for λ > 0.06. This further supports our observation

above, as S&W-CSMA employs a S&W ARQ scheme, which inherently gives rise to silence

periods longer than those employed by USR. In other words, the transmission of multiple

packets within the same RTT does not always result in good performance in multiuser net-

works: tuning USR’s k parameter as a function of the total network traffic is therefore key

to making USR outperform the S&W approaches.

Figs. 3.6 and 3.7 detail the PDR for varying number of nodes and for a varying network

area side length, respectively. In both cases, we fix λ = 0.22. From Fig. 3.6, we observe that,

when the network is sparse, the PDR of S&W-ALOHA is lower than that of S&W-CSMA.

This is expected, as the nodes do not coordinate their transmissions, increasing deafness

and hidden terminal effects. However, when the network is denser, the chance that some

transmitter-receiver pairs are very close increases: for these pairs, it hence becomes more

likely to capture even interfered packets. The merit of S&W-CSMA, in this case, is that its

PDR remains almost constant for every number of nodes.

Both USR-SLW-CSMA and USR-FXW-CSMA outperform S&W-based protocol stacks.

The PDR of both USR versions is comparable, whereas we notice the same difference be-

tween k = 1 and k = 2 observed in Figs. 3.2 and 3.4.
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Figure 3.7. PDR vs. the length of the side of the network area for all protocols, λ = 0.22.

It should be noted that USR inherently increases the level of coordination among the

nodes: for instance, the channel is not released after USR’s first S&W exchange, unlike in

S&W-CSMA: on the contrary, the receiver stays silent and waits for further packet trans-

missions from the sender. This makes the occurrence of deafness events and collisions less

likely, and leads to a PDR of nearly 100% in the presence of 2 nodes.

In Fig. 3.7, we consider a network of 5 nodes and increase the length of the side of the

network area from 0.1 km to 3 km. When nodes are very close to each other, the channel

sensing gives benefit to S&W-CSMA and to both USR versions, which are also coupled with

CSMA. However, the average RTT is lower, hence USR rarely has a chance to interlace data

packet transmissions and ACK receptions; as a consequence, the performance improvement

offered byUSR is limited. The opposite occurs for larger areas up to 3 km of side: in this case,

the average distance between a sender and its receiver is higher, and the longer propagation

delays that result are better exploited by USR than by S&W-ALOHA and S&W-CSMA. As

a result, the PDR of the two USR versions is still between 60% and 70%, whereas that of

S&W-ALOHA and S&W-CSMA drops to 30% or less.
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Figure 3.8. PDR vs. λ for all protocols in a mobile network of 5 nodes.

3.3.3 Mobile network

We now consider a mobile network of 5 nodes. Each node starts from a random posi-

tion and depth, and moves within the network area according to a Gauss-Markov mobility

model [23] with fixed correlation parameter α = 0.8. Note that according to this model, each

node periodically chooses a new random velocity vector which will be kept constant for a

random amount of time, after which a new vector is generated. Hitting the boundaries of

the network area causes the nodes to bounce back. The depth of each node is kept constant

throughout each simulation run.

Figs. 3.8 and 3.9 respectively show the PDR and the normalized throughput for all proto-

cols in a mobile network of 5 nodes. We recall that the maximum number of retransmissions

in case of errors is limited to 5: this limit is sometimes exceeded, leading to packet drops,

and explaining why the delivery ratio of the protocols never reaches 100%. We also note that

there is little difference between the PDR and throughput of the different versions of USR.

The dominating factor, in this case, is that USR adapts the transmission window M to the

RTTmeasured during its first S&W exchange; since such RTT varies over timewith the same

statistics for all USR versions, the average number of packets sent per unit time is the same

for all versions of USR. In addition, we recall that USR always assumes that the transmitter
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Figure 3.9. Normalized throughput vs. λ for all protocols in a mobile network of 5 nodes.

and its receiver move away from each other, hence the ARQ scheme employed eventually

falls back to S&W. This happens for both USR-SLW and USR-FXW, and tends to reduce

the difference between the protocols even further. In any event, the highest throughput is

achieved by USR-SLW-CSMA when k = 1, and is twice as high as that of S&W-CSMA.

3.3.4 The impact of k

In the previous subsections, we have observed that k can be used to adapt the behav-

ior of USR: in particular, k tunes the number of transmissions performed within one RTT,

and therefore the timings these transmissions are subject to. We have intuitively explained

that k = 2 is a good setting for the optimization of point-to-point scenarios, whereas any

value k < 2 reduces the frequency of transmissions in time, and therefore leads to a lower

probability of losing packets because of collisions. This suggests that k < 2 is a good choice

in multiuser networks. However, decreasing k too much would be detrimental in terms of

throughput, especially if the RTT between the transmitter and the receiver is very high.

In this section, we explain this tradeoff in more detail, and give some guidelines for the

choice of k as a function of the scenario parameters and of the metrics to be optimized. For

consistency with Subsection 3.3.5 and because USR-SLW-CSMA and USR-FXW-CSMA lead
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Figure 3.10. Contour curves of the PDR and of the collision ratio for USR-FXW-CSMA in a static

network of 10 nodes. Curves are plotted as a function of k and λ. Each contour curve is obtained as

the intersection of the PDR or collision ratio surfaces as a function of k and λ with a horizontal plane

corresponding to the PDR or the collision ratio value indicated by the label on each curve.

to similar PDR and throughput for a fixed value of k, we only consider USR-FXW-CSMA in

this subsection. We also focus on the case of a 10-node network: the conclusions for a 5-node

network are entirely analogous.

We start with Fig. 3.10, which depicts the PDR and the collision ratio (i.e., the fraction of

packets lost due to collisions) as a function of k and λ. The dependence of these metrics on

such parameters is shown by means of contour plots, where each curve is obtained as the

intersection of the PDR and collision ratio surfaces with a horizontal plane corresponding to

the value indicated by the label on the curve. First, we observe that for λ < 0.022, increasing

k improves the PDR by allowing the nodes to resort more often to large transmission win-

dows (M > 1 in 5.9); in turn, this reduces the chance that there are still packets in the queue

of the nodes at the end of a simulation, and that these packets are counted as lost. Note that

this does not increase the number of collisions, as the traffic generated by the nodes is still

very low. For higher values of λ, increasing k improves the PDR for the same reasons above,

but only roughly until k < 0.75, after which the PDR starts decreasing for increasing k. The

reason is the higher chance that two transmissions collide: in fact, the collision ratio also
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Figure 3.11. Contour curves of the PDR and of the delivery delay for USR-FXW-CSMA in a static

network of 10 nodes. Curves are plotted as a function of k and λ. Each contour curve is obtained as

the intersection of the PDR or delivery delay surfaces as a function of k and λ with a horizontal plane

corresponding to the PDR or the collision ratio value indicated by the label on each curve.

increases.

A similar analysis can be applied to the comparison of PDR and delivery delay, defined

as the average time required to deliver a packet to its destination node. Such analysis is

presented in Fig. 3.11. The figure shows that increasing k always leads to a lower delay, as

a consequence of the denser packing of packet transmissions within the same RTT. In turn,

if λ > 0.022, this leads to a lower PDR. For a given value of λ, Fig. 3.11 helps choose the

best value of k that achieves the desired PDR and delay, and also highlights which values of

these metrics are not achievable. For instance, k = 1 achieves a PDR of less than 60% and

a delay of about 2000 s for λ = 100 bps/node. Increasing k helps reduce the delay while

maintaining the PDR almost constant. However, it is impossible to achieve, e.g., a PDR of

80% and a delay of less than 10 s for λ = 0.022. However, if λ ≈ 0.015, such constraints can

be jointly achieved for any k ≥ 1.16.
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3.3.5 USR Additive Increase–Multiplicative Decrease (USR-AIMD)

The previous subsection explains that k can be tuned in order to achieve a given set of

constraints on such network metrics as the PDR, the collision ratio and the delivery delay.

Which value should be chosen depends on, e.g., the amount of traffic generated per unit

time in the network. As these conditions may be subject to change over time (for exam-

ple due to local congestion events), in this section we design an algorithm that adapts the

value of k depending on the capability of a transmitter to deliver packets without errors.

We name this technique USR-Additive Increase Multiplicative Decrease (USR-AIMD), as it

is inspired to the well-known window adaptation mechanism of the Transport Control Pro-

tocol (TCP)’s congestion avoidance mode. USR-AIMD is implemented as an extension of

USR-FXW (which sends a given number of packets within one RTT and then waits for all

ACKs to be received). This way, the updates of the window length occur only after both

the transmission of a window of packets and the reception of the corresponding ACKs have

been completed (or, in case of errors, after the ACK timeout has fired).

As the name suggests, for each successful transmission, the window size M increases

until any packet loss occurs, and a retransmission must be performed. Specifically, focus on

the link between a source A and its destination B. We increase the window size as follows

M ′ = min (MAB,M + 1) , (3.5)

where MAB is the maximum window size computed for A and B and M is the previous

window size. If any packet is lost (the corresponding ACK is not received), the window is

simply decreased according to the factor 0 ≤ α < 1.

M ′ = max (1, ⌊αM⌋) . (3.6)

Figs. 3.12 and 3.13 show the throughput achieved by all versions of USR, including USR-

AIMD, in a network of 5 nodes and in a network of 10 nodes, respectively. We excluded

S&W-ALOHA and S&W-CSMA from this comparison, since they are consistently outper-

formed by USR in terms of throughput. Note that we omit to mention CSMA in the keys,

as all versions of USR build on top of CSMA. In both figures, USR-AIMD shows the same

performance as the other USR versions at low traffic, and outperforms themwhen the traffic

is sufficiently high (λ > 0.07 in the 5-node network and λ > 0.04 in the 10-node network).
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Figure 3.12. Normalized throughput vs. λ for all versions of USR in a static network of 5 nodes.
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Figure 3.13. Normalized throughput vs. λ for all versions of USR in a static network of 10 nodes.

We notice that in the intermediate traffic regime, USR-AIMD is outperformed by the other

versions. This is due to the multiplicative decrease of the window length, which makes

USR-AIMD refrain from performing too many data transmissions, in case some packets do

not get through. The same feature also allows USR-AIMD to keep the throughput stable at

high traffic, reaching a larger value than what achieved by the other USR versions.
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3.4 Conclusions

In this work, we proposed Underwater Selective Repeat (USR), an Automatic Repeat

reQuest (ARQ) scheme for multiuser underwater acoustic networks. The scheme relies on

time division in order to set up a duplex channel between the transmitter and the receiver,

so that the transmission of data packets can be interlaced with the reception of the corre-

sponding acknowledgements (ACKs). We evaluated the performance of USR by means of

simulation in static and mobile networks, and showed that USR outperforms other protocol

stacks relying on plain Stop&Wait. We then observed that by limiting the ARQ window

length (i.e., the number of data packet transmissions that can be performed before receiving

an ACK) via the k parameter, the network achieves better delivery ratio and throughput; in

addition, we commented on the relationship between the traffic generation rate, k and such

network metrics as the packet delivery ratio and the delivery delay, showing how k should

be tuned in order to achieve a given set of constraints on these metrics. We finally designed

USR-AIMD, an adaptive version of USRwhich automatically adapts the window length and

achieves a stable throughput at high traffic. We endorse the latter as a good candidate for

implementation in real underwater multiuser networks.
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4.1 Overview

Multipath routing protocols trade off some network resources to convey data through

multiple available routes, and thereby achieves a variety of benefits such as fault tolerance,

improved delivery ratio and end-to-end delay. In the specific case of underwater acoustic

networks, multipath routing provides a good means of compensating for the typically high

packet error rates experienced [1, 2] and for the rapid channel dynamics that are typically

difficult to be modeled, predicted and compensated for in advance.
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Furthermore, several applications may explicitly require multipath routing in order to

achieve robustness in a specific scenario. For instance, in [4], the authors investigated an

underwater movement detection network where several sensors are deployed on the sea

bottom off a coastal area to be surveiled, and two sinks are placed on the surface on the

other side of the network, further offshore. Whenever a sensor detects the movement of a

passing ship, it generates data to be delivered to either sink through multihop routes. As

the movement of a ship generates acoustic noise in the communications band, the network

resorts to multipath routing to increase the robustness of data relaying.

Most multipath routing algorithms can discover link- or node-disjoint routes by means

of some local or global knowledge of the network topology graph [4]. However, administer-

ing the transmission of packets through these paths is as important as ensuring some type

of disjointness. For example, two transmissions over parallel paths located physically near

to each other would likely lead to mutual interference. A well designed multipath routing

protocol should not only identify multiple alternative paths, but also practically employ a

set of paths that avoids mutual interference. This specifically applies to multipath routing

in underwater acoustic networks, where the slow propagation speed of sound waves makes

interference endure over a longer period of time and over areas of significant size.

Several multipath routing protocols are proposed in the literature [5–7] for terrestrial

networks. For instance, Multipath-DSR (M-DSR) [5], extends the Dynamic Source Routing

(DSR) [8] protocol by selecting multiple routes by employing multipath link-disjoint algo-

rithm. Since in this protocol only link disjointness is the selection parameter of the alterna-

tive links, therefore, there exists a higher number of parallel paths which are located close

to each other and hence, experience higher interferences. Moreover, in MDSR, dropping of

duplicate RREQs at intermediate nodes hamper the discovery of disjoint paths. Split Mul-

tipath Routing (SMR) [6] counters this problem by introducing a different route discovery

mechanism which requires more control packets. For underwater networks, such a high

control overhead would not be feasible. Multipath AODV (MAODV) [7] is another distance

vector based multipath routing protocol which utilizes link-disjoint algorithm to discover

multiple alternative paths. Alike MDSR, MAODV also suffers from higher interferences

due to the transmissions trough multiple link disjoint paths in underwater networks. A dif-

ferent approach is taken in the Graph-based Multipath Routing (GMR) [9] protocol. GMR
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includes graph information in the control packets during route discovery, in order to build

a more complete network graph at the destination. A local graph search algorithm is used

to find disjoint paths. GMR will finally select only one path, while retaining the alternatives

for use in case of link breakage on the current path. This reduces the delivery delay, as no

route rediscovery is necessary. However, it requires a huge control packets to be exchanged

to build a complete network graph which again increases with increasing number of nodes

in the network. Moreover, alike other source based routing protocol, GMR also includes a

considerable amount of extra bytes with the payload to incorporate the full path description

in the packet. Moreover, architectural differences between the terrestrial networks and the

underwater networks also play a vital rule to be not chosen a protocol which is designed for

one architecture to be employed in another.

Therefore, there are a few multipath routing protocols which are proposed for underwa-

ter communication. For example, in [10], authors propose a multipath protocol which em-

ploysMultipath Power-control Transmission scheme, (MPT), for time-critical applications in

underwater sensor networks. In MPT, node-disjoint algorithm is employed to discover mul-

tiple paths. When a node has to transmit a packet, it transmits the same packet throughmul-

tiple paths to the same destination and combined at the destination upon receptions. It also

combines multipath schemes with a power control technique at the physical layer. Since, in

node-disjoint technique, there is no common node between any alternative links. Therefore,

it suffers lower interferences than link-disjoint algorithm, but still significant enough than

the neighbor-aware multipath discovery algorithm which we describe in Subsection 4.4.1.

Neighbor-aware multipath discovery algorithm is designed to find paths that create limited

interference to the other paths connecting the same source-destination pair and ensures node-

disjointness among these paths. Moreover, the algorithm eliminates unidirectional links in

the selected paths. Since we assume no a-priori knowledge of the network topology, the

paths are to be discovered on demand: the mechanism to do so is designed in such a way

that it reduces the packet overhead in the network, but provides sufficient discovery infor-

mation to select suitable paths.

Another important difference between our proposedmultipath protocols and other mul-

tipath protocols is that, they support multiple sinks alongwith the single sink in the network

unlike general-purpose communication networks.
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In this chapter, we discuss two multipath routing protocols which are designed specifi-

cally for underwater acoustic networks; they are: Multi-Sink Routing Protocol (MSRP) and

Multi-path Routing with Limited Cross-Path Interference (L-CORP) protocol. Among them,

MSRP is a source based routing protocol which employs graph based technique to discover

multiple alternative paths; whereas L-CORP is designed to overcome the limitations of the

MSRP protocol. This chapter is organized as follows: in Section 4.2, we state the problem

and the objective behind designing both the protocols. After that we describe and evaluate

the performance of the MSRP protocol in Section 4.3. Following that in Section 4.4, a details

description and the performance evaluation of the L-CORP protocol is enunciated.

4.2 Problem Statement

The development and experimentation of collaborative strategies are turning modern

navies into international cooperating forces, where vessels from different nations may col-

laborate to accomplish a common objective, often in international waters. In such a sce-

nario, communications and situational awareness are of primary importance; this includes

the surveillance not only of the sea surface, but also of the submarine environment. To es-

tablish and maintain a safe operating area, the use of autonomous sensors on the surface

and the seafloor is envisioned [2]. These networks may detect relevant information such

as movement via, e.g., magnetic or acoustic sensors; in addition, their acoustic communica-

tions equipment makes it possible to transmit such information to data-collecting endpoints

in contact with the rest of the fleet.

Acoustic communications, in this case, also obey a practical constraint, i.e., to deploy the

network rapidly without elaborated wiring. The nodes will be connected via acoustic links,

and build a self-configuring underwater network. For this purpose, a project with name Ro-

bust Acoustic Communication in Underwater Networks (RACUN) led by Atlas Elektronik, Ger-

many, was started in 2010 in the framework of the European Defense Agency (EDA), funded

by and in collaboration with the Governments/MoDs of Italy, Germany, Norway, Sweden

and The Netherlands. RACUN has the objective to develop and demonstrate the capability

to establish a robust ad hoc underwater acoustic network for multiple purposes, using both

mobile and stationary nodes. Among the purposes of the network, the project targets gen-
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eral support for surface vessel operations via data collection from underwater nodes. This

is also the case we consider in the simulations.

In more detail, we focus on an underwater intrusion detection network, deployed at the

entrance of a harbor in order to monitor outbound surface boats (also called “intruders”).

The presence of the network is unknown to the boats. In order to maintain this status, the

nodes forward data to collaborating surface vessels by means of acoustic communications

only. Also, no gateway buoys are placed very close to the harbor to act as surface sinks

and gateways. This measure avoids that such equipment may be detected and stolen, or

tampered with.

A further design objective regards the coverage of acoustic communications, which should

allow the network to monitor a sufficiently large area with only a few nodes. In turn, this

calls for a multihop configuration, where each hop spans 5 to 10 km, so that a line of nodes

can monitor a wide portion of the coast, while at the same time being able to haul the data

out to a sea base at a safe distance, several hops away. A basic design guideline stemming

from the sonar and empirical noise power spectral density equations in [11,12] suggests that

acoustic communications over such distances should be operated in the 4 to 8 kHz band, in

different shipping and wind conditions. The main concern with this band, however, is that

it is highly affected by the noise generated by boat propellers, especially by those of speed-

boats [13, 14], which are the main target of the movement detection network. This noise

may disrupt communications. In order to cope with this problem, we propose to exploit the

redundancy of multipath routing to increase the probability that detection data is correctly

delivered. In other words, multiple routes allow data to escape jamming,1 in that at least

one route is hopefully sufficiently free of the propeller noise generated by the boats. Note

that for this detection application it is not necessary that 100% of the detection data reaches

the sink: a subset of the generated packets would suffice to reconstruct the movement of

the boat to a rougher degree of accuracy: however the number of detections should not

be too low, otherwise the received data may be interpreted as a false alarm, and therefore

neglected.

1the word jamming describes possibly unintentional interference coming from a source other than the net-

work nodes.
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Figure 4.1. Example of route establishment in

MSRP.

4.3 Multi-sink routing protocol (MSRP)

MSRP is a proactive based routing protocol, i.e., they exchange routing information and

find paths before actual network operations, which is feasible for the static surveillance net-

works. Therefore, the delivery of data packets takes less time. An on-demand route discov-

ery process would take too long on a network with such long distances and propagation

delays, and in addition it may also be interfered by the jamming noise.

In MSRP, the route establishment phase employs a similar approach described in [9]

for the graph-based multipath routing where it is necessary to construct a topology graph,

which in turn requires that each signaling packet stores the identities of the nodes that relay

it downstream. Though this approach gives rise to the additional overhead during the route

establishment, but allows all bottom nodes to find disjoint paths to the different sinks.

A complete flooding is carried out in the route establishment phase to select multiple

suitable alternative paths which covers all the nodes and collect a sufficient number of al-

ternative routes involving potentially any neighbors. This way, there is a greater probability

that one of the known routes still works, even in the presence of a node generating jam-

ming noise. Every intermediate nodes wait a few seconds after receiving a control packet

before forwarding it to collect additional information about the topology. During this wait-

ing period, the node collects duplicates of the control packets transmitted via other routes.

The path information in each packet is merged, and a more complete topology sub-graph

is transmitted when forwarding the control packet further. Figure 4.1 shows how an ad-

ditional waiting period can lead to additional routes. If every node forwarded the control
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packet directly, node D would only learn the routes A→B→C→D and A→B→F→D, which

are not disjoint. The route A→E→C→D (which is disjoint from A→B→F→D) would not

be found, because C would forward the packet from B and therefore drop the packet com-

ing later from E. This problem can be mitigated by waiting before propagating signaling

messages, thereby merging route information at each intermediate node.

The route establishment in this protocol is initiated and conducted by the sinks. Each

sink broadcasts a control packet every 5 minutes, which includes the sink address, a se-

quence number and a hop count field. Using a shortened 2-byte network address, the size

of this packet is 6 bytes (2 bytes for each field). Every bottom node which receives the mes-

sage adds the sink to its routing table, and stores the hop distance and the last hop address,

which is included in the MAC header. If a node receives the control packet for the first time,

it increments the hop distance by one and rebroadcasts it. Duplicates received from other

neighbors are not discarded, but stored to have alternative routes available if the links break

due, e.g., to temporary interference or node failures. The MSRP employs source routing

approach to guarantee that the packets are routed along the chosen paths, i.e., every node

includes the full path description with every data packet injected into the network.

Routing entries are declared outdated i) after a period twice as long as the broadcast

interval of the message from the sinks, or ii) if a packet with a higher sequence number and

the same originating sink and the same last hop address as the current entry is received.

In practice, we consider a network of two sinks and therefore, two paths are selected

from the graph, one for each sink, possibly involving disjoint nodes. Whenever a node

detects any intruder passing by, it generates detection packets and transmits them through

the selected multiple paths to the multiple sinks.

4.3.1 Scenario and system parameters

With reference to Fig. 4.2, we assume that an underwater acoustic network is deployed

in the proximity of a harbor to be surveilled. All nodes are bottom-mounted and organized

in subsequent lines, or barriers. The first barrier is placed in front of the harbor, and is com-

posed of 5 nodes, in order to obtain good coverage along the coast. The distance between

nearest neighbors within a barrier is 3 km. The sensing range is 2 km. Every 8 km comes

another barrier which can sense movement as well as relay data, and has one node less than
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First Barrier
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trajectory of intruder

detection range

path of message

Figure 4.2. Harbor surveillance network, with 14 bottom nodes organized in 4 parallel barriers. A ship

and a buoy act as sea-borne sinks and gateways. Grey links show the forwarding paths obtained using the

RF strategy.

the previous one, so that 2 nodes constitute the fourth and last barrier. Again, this reflects

the need to provide finer movement readings near the coast. The network covers a total

area of 16 km × 32 km. The intended maximum transmission range of a node in RACUN

amounts to about 10 km, hence adjacent barriers are typically in range of each other. We

have finally assumed that a ship and a gateway buoy are deployed close to the last barri-

ers to act as sea-borne sinks and gateways towards the sea base. More details about this

scenario can be found in [15].

The traffic generation pattern in this scenario is inherently event-based. In a real appli-
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cation, the message generation frequency could also be tuned to provide finer knowledge

of the node movements: one of our objectives is to evaluate how this affects the network

performance. All messages will be relayed to the sink using one of the routing strategies

described in the next section. The size of a detection message is set to 16 bytes, according to

the Generic Underwater Application Language (GUWAL) [15].

Although the number of nodes is reduced after each barrier, the network features high

connectivity, and multiple paths exist between the nodes. This makes the network robust

against node failures, as well as against link breakage caused by jamming. In addition, it

makes no difference which sink first receives a given data packet, as they are assumed to be

connected to each other and to the sea base via other radio (terrestrial or satellite) links.

The evaluation of the network performance has been carried out using the nsMiracle

simulator [20]. The scenario reflects the topology of Fig. 4.2. All nodes are deployed at an

average depth of about 1000m, and each has a detection range of about 2 km. There are two

static sinks, one on the left side and a second one on the right side of the network. The boat

to be detected (or “intruder”) leaves the shore and enters the detection range of the nodes

in the first barrier. As long as the intruder is within the detection range of a node, that node

will generate detection packets, which are to be routed to either sink. These packets are

16Bytes long, and are generated at a fixed rate as long as the boat is within the detection

range. We test the network performance over typical packet generation rates of interest in

RACUN, from 1 to 6 packets per minute. We simulate imperfect detections by applying a 5%

chance that a detection fails: in this case, the corresponding packet is not generated. Control

packets are 6Bytes long, plus an additional 2Bytes for every source routing entry in MSRP.

The nodes communicate with the RACUN band, from 4 to 8 kHz. The transmission bit

rate is 256 bps, which corresponds to a transmission time of 0.5 s for a detection packet. The

transmit power of each node is 157.3 dB re µPa, and has been set so that two subsequent

barriers can communicate, but no node can reach two barriers away. The attenuation of the

acoustic signals is computed via the link budget model in [11, 12]. The noise in this case

is generated both by the environment and by the engines of the intruder, which acts as a

de-facto jammer. In order to test the network performance under different jamming power,

in our results we also vary such power from 120 to 180 dB re µPa.

The simulation results are averaged over several runs, each featuring a different, random
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position of the nodes within a circular area of radius 500m around their nominal location.

The trajectory of the node exiting the harbor is always a straight line, whose starting point

and direction are also randomized at each run. The speed of the intruder is fixed to 10 knots.

The background noise level, inferred from the empirical equations in [11], is 34 dB re µPa.

Before proceeding, we stress that since we focus only on the routing, therefore, we em-

ploy a medium access control protocol as simple as ALOHA. This separates the routing

performance results from the performance of lower-level protocols. In addition, ALOHA is

a feasible choice in large multihop networks as discussed in [17]: this is true also in our sce-

nario, where smaller packet size and large propagation delay to make it unlikely that many

collisions take place, and jamming noise is the major source of packet losses.

We evaluate the performance of the MSRP protocol with two other protocols, they are:

Singel-Path (SP) and Restricted-Flooding (RF) routing protocol. Brief descriptions of both

the protocols are given below:

4.3.1.1 Single-path routing (SP)

In this case, whenever a node wants to transmit data, it searches in its routing table for

the sink reachable with the smallest number of hops. Then, the node sends the data packet

by specifying a next hop field, so that only the node addressed in such field will receive

the packet and forward it further with the same technique. With this technique, the packet

is routed back to the closest sink on the shortest reverse path. If a node notices that the

next hop is not responding, it can select another neighbor from the routing table. Also, if

routing entries become obsolete the node can directly select another routing entry from the

list without being forced to wait until the next control packets are broadcast.

The advantage of this strategy is its low overhead, which sums up to only one address

field; moreover, no unnecessary duplicates are sent. However, this also makes the protocol

more vulnerable to jamming and broken links.

4.3.1.2 Restricted Flooding (RF)

The restricted flooding strategy (or selective flooding) [18] takes advantage of the fact

that all nodes know the minimum hop distance to a sink. If a node has data to send, it adds

only a time-to-live (TTL) field of the packet, before broadcasting it. The TTL field is set to the



4.3. Multi-sink routing protocol (MSRP) 61

hop distance of the closest sink. All nodes which receive this packet look into their routing

tables and forward the packet only if they know a route to that sink with shorter or equal

TTL.

This strategy is more robust than single-path routing, but such robustness comes at the

price of the additional overhead due to the possibly many duplicates generated. The robust-

ness can be improved (at the price of an increased overhead) by increasing the start value

of the TTL field. For example, if the TTL value is increased by one, all nodes in the same

barrier will also forward the data packet.

4.3.2 Simulation results

Figs. 4.3 to 4.6, depict the average packet delivery ratio (PDR), the packet overhead, the

average delivery delay and the number of hops traveled per packet, respectively. All metrics

have been calculated based only on the first copy that reaches either sink: the PDR is the

average fraction of generated packets that reach either sink; the delivery delay is the average

time elapsed from the generation of the original packet to when the first copy reaches either

sink; the number of traveled hops is similarly defined as the average route length incurred

by the first packet copy that correctly reaches either sink; finally, the packet overhead is

the average ratio of the number of duplicate packets that reach the sinks to the number of

generated packets.

In Fig. 4.3 we plot the average packet delivery ratio against the jamming noise power

caused by the intruder. The generation rate of detection packets is fixed to 6 pkt/min. As

expected, the single-path (SP) protocol fails to deliver 100% of the transmitted packets, even

in the presence of a low-power jammer. This is due to errors caused by noise and collisions

over the long-haul links in Fig. 4.2. (Recall that we focus on routing approaches, and thus

do not consider specific medium access protocols or error control schemes.) Multipath ap-

proaches may exploit the redundancy offered by multiple transmissions at the price of the

greater overhead, whereas the SP protocol cannot: an erroneous transmission over any link

of the only route leading from the source to the sink would result in a lost packet. For low

jamming power, both the restricted flooding (RF) algorithm and the multi-sink routing pro-

tocol (MSRP) achieve near-100% delivery ratios. On the contrary, for a high jamming MSRP

performs worse, as it saves on the number of replicas via a form of source routing, which
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Figure 4.3. Packet delivery ratio as a function of the jamming noise power for a packet generation rate of

6 pkt/min.
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Figure 4.4. Delivery delay as a function of the jamming noise power for a packet generation rate of 6

pkt/min.

requires updating before a new route can be established. This procedure is also subject to

errors as route update packets, albeit very short and frequently sent, may be corrupted by

the jamming noise. However, the multipath behavior still gives MSRP an advantage over
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Figure 4.5. Packet overhead as a function of the jamming noise power for a packet generation rate of 6

pkt/min.

SP. RF works best thanks to local flooding in the direction of the sinks, which gives rise to

more packet replicas.

The latter statement is proven by Fig. 4.5, which shows the much larger overhead in-

duced by RF with respect to MSRP. (The overhead of SP is 0.) At high jamming power,

around 2 of the many replicas generated by RF survive, whence its higher PDR.

The delivery delay and number of hops traveled by a packet are very similar for all poli-

cies (see Figs. 4.4 and 4.6 respectively). We observe that for low jamming power, the delay

is about 7.5 s, as the average is taken over both short and longer routes. As the jamming

noise increases, the detection packets traveling the longest routes get corrupted and are

sometimes lost, whence the decreasing PDR in Fig. 4.3. Conversely, the packets traversing

a lower number of hops reach the sink with high probability. As the average delay is com-

puted only over correctly received packets, its value decreases. When the jamming power

increases beyond 160 dB re µPa, the interference considerably affects even shorter routes,

and the delay increases again. The greater number of replicas created by RF (responsible

of the better PDR) comes also at the price of the longer routes, which also leads to longer

delays. We infer that RF’s performance would get worse if the routes got longer: a possible

countermeasure would be to increase the number of sinks if the number of nodes increases.
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Figure 4.6. Number of hops traveled per packet as a function of the jamming noise power for a packet

generation rate of 6 pkt/min.

As a final note on this first set of results, the average number of hops required to reach a

sink is always on the order of 1 to 2: this is a consequence of the deployment of the network

in barriers, and of the placement of the sinks on the left and right of the third barrier. In fact,

the packets generated by the first barrier require about 3 hops to reach one of the sinks (see

also Fig. 4.2), those generated by the second barrier require about 2 hops, whereas the last

two barriers make it to the closest sink in one hop.

We conclude our evaluation of the SP, RF and MSRP routing protocols by briefly noting

that their packet delivery ratio is almost constant as a function of the number of packets

generated by the bottom nodes. This is a consequence of two facts: i) the detection packets

are short, which helps keep them separated in time, and iii) the traffic generation pattern is

strongly event-based, which limits the amount of generated traffic. The same observations

apply also in the absence of the jammer. With respect to this case, the drop observed when

the jammer is present is about 15% for RF, and about 30% for SP andMSRP. The othermetrics

considered in the first part of this section are also quite insensitive to the packet generation

rates.
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4.4 Multi-path Routing with Limited Cross-Path Interference (L-

CROP)

One of the major drawbacks of the MSRP (which is described in Section 4.3) is that

every data packet carries along the description of its own path, which causes significant

overhead. Moreover, the protocol also assumes bidirectional link, and may become ineffi-

cient in the presence of significant link asymmetries. Therefore, we designed another effi-

cient proactive routing protocol which resolves the problems of the MSRP protocol, named

Multi-path Routing with Limited Cross-Path Interference (L-CORP) protocol. Moreover, a

new neighbor-aware multipath discovery algorithm is employed in the L-CORP protocol to

discover limited interference paths between the source-destination pair and hence, limited

interference paths for all the nodes in the network. The proposed multipath discovery algo-

rithm assures node-disjointness as well as link-disjointness among the paths. Moreover, the

request-relay based route discovery process assists the protocol to eliminate unidirectional

links in the selected paths. Furthermore, its rebroadcasting technique is designed in such a

way that it reduces the packet overhead in the network, but provides sufficient discovery

information to select suitable paths.

Like in AODV and DSR [19], we resort to a source-initiated path discovery procedure

started with the source through the transmission of a Path Discovery packet. A source that

needs to transmit data to a given sink(s) and know no route towards that sink transmits

a Path Discovery packet and waits for a fixed time period to receive Path Reply packets. In

order to limit the flooding of the discovery packet, the sender assigns a Time To Live (TTL)

field value equal to the maximum expected number of hops the packet should travel to

reach a sink.2 The TTL decreases at each hop; when it reaches zero, the packet is dropped.

The sender also incorporates a list of the last nodes: every node rebroadcasting the packet

puts its own address. Unlike in [7], which keeps track only of the address of the second-to-

last hop3 traveled by the Path Discovery packet to discover link-disjoint alternative paths.

However, we can argue that second-to-last hop information not always can assure link

2The diameter can be computed by knowing the size of the network deployment area and an estimate of the

transmission range of the acoustic modems in use.
3The last hop is the current forwarder, and its address is always present in the forwarded replica of the Path

Discovery packet.
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Figure 4.7. Example of network where keeping

track of the second-to-last hop information visited

by path discovery packets discovers link-disjoint

paths.

disjointness between the selected links. This fact is exemplified in Fig. 4.7 and Fig. 4.8.

In Fig. 4.7, two replicas of the Path Discovery reach the destination E, one through route

p1 = {A,B,C,E} and one through route p2 = {A,B,D,E}. For both, the hop traveled

before the last forwarder is B as they reach node E. Therefore E selects p1 and discards

p2. However, in Fig. 4.8, E also receives two path discovery packets, one through route

p1 = {A,B,C, F,E} and one through route p2 = {A,B,D,E}, which show a different

second-to-last hop. In this case, E wrongly selects both the paths as link-disjoint path since

their second-to-last hop is not similar. Therefore, L-CORP keeps track of its full path de-

scription. Although this approach increases the size of the packet, but it makes it possible to

safely achieve link disjointness between the selected alternative paths.

Whenever an intermediate node receives a Path Discovery packet, it does not immediately

rebroadcast the packet; instead, it takes the decision whether to rebroadcast using one of the

following techniques. One simple technique can be, a node can rebroadcasts only one Path

Discovery packet from the same source-destination pair and same sequence number. Through

this technique reduces the number of rebroadcasting packets in a considerable margin, but

it provides less options to the destination to select a suitable path. In other words, the des-

tination may receive only those packets which have lower hop count. However, a path with

higher hop count with better SNR may provide higher throughput than a path with lower

hop count. The intermediate hops between the source and the destination do not necessarily

forward all Path Discovery packets they receive. In another technique, a node maintains a
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Figure 4.8. Example of network where keeping

track of the second-to-last hop information visited

by path discovery packets is not sufficient to dis-

cover link-disjoint paths.

table for the rebroadcasting packets where it stores the information of the last hops in the

Path Discovery packets it rebroadcasts. After receiving a Path Discovery packet, an intermedi-

ate node checks whether it has any common link with respect to the already rebroadcasted

packets of the same sequence number like link-disjoint algorithm. Packet is not rebroadcasted

and dropped if there exist any common link. This technique does not reduce rebroadcast-

ing packets compare to the previous technique, but it provides sufficient information to the

destination to select a suitable path. Therefore, the latter technique is incorporated into our

proposed protocol. Before rebroadcasting, the intermediate node employs a cross-layermes-

sage to find out the SNR of the received signal and add this information in the packet header

with other SNRs.

When a Path Discovery packet reaches its intended destination, the destination notes

down the source, starts a timer, and keeps collecting path discovery packets from the same

source until the timer expires. At this point, the destination sorts all paths found in order

of decreasing average SNR, which is computed via the SNR information contained in the

Path Discovery. The destination then finds the node-disjoint paths through a standard search

algorithm [4] and, for each of them, it sends a Path Reply through the reverse of the route

stored in the respective Path Discovery packets. Note that Path Reply packets have the dou-

ble function to communicate valid paths to the source and at the same time eliminate those

paths which include unidirectional links (as the Path Reply would not be reliably returned

to the source through such paths).

Any intermediate node that receives a Path Reply packet, follows the neighbor-awaremul-
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tipath discovery algorithm before transmitting the Path Reply packet, which is described in

Subsection 4.4.1 in details. In this way, the paths which have the possibility to interfere with

each other are removed from the path list. The intermediate node only puts the information

of those paths in the routing table which it transmits. In the routing table it stores the in-

formation of the next hop, the source address, the destination address, hop count and expire time

of the path. Here, we store all the paths using both source address and destination address,

because, the proposed path discovery technique allows different source-destination pairs to

select different next hops. The source only stores the information of those paths through

which it receives Path Reply packets.

For discovering neighbor and maintaining the routing table, a node periodically trans-

mits Hello packets. A node presumes a neighbor is unavailable if it does not receive any

Hello packet for that neighbor for a fixed time period which is set equal to three consecu-

tive Hello transmits time. After discovering that one of its neighbors is not available, the

node announces this information by sending a Neighbor Unavailable message. Every node

that receives this message eliminates the routes containing this node from its routing table

and rebroadcasts the message once for the same source address and sequence number and

initiates a path discovery process after a random time.

4.4.1 Neighbor-aware Multiple path Discovery Algorithm

Our neighbor-aware multiple path discovery algorithm is basically a refinement over

node-disjoint path discovery procedures. It is a simple but effective algorithm to reduce

interference while transmitting a data packet simultaneously through multiple alternative

paths.

We start by recalling the definition of link- and node-disjointness. Assume that a sender

S has data to send to a destination D, and knows two different paths p1 = {x1, x2, ..., xn}

and p2 = {y1, y2, ..., ym}, where both paths are represented as the ordered sets of the relays

xi, i = 1, . . . , n and yj , j = 1, . . . ,m that are traversed to reach node D. Let us indicate

a link along either path with an ordered pair (xi, xi+1), and (yj , yj+1), respectively. The

paths p1 and p2 are said to be link-disjoint if (xi, xi+1) 6= (yj , yj+1) ∀ i = 1, . . . , n − 1 and

∀ j = 1, . . . ,m − 1. They are said to be node-disjoint if xi 6= yj ∀ i, j. Node-disjointness

implies link-disjointness. Note that even if two paths are node-disjoint, one or more nodes
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Figure 4.9. A network with 12 nodes which are randomly distributed within the area, 2 sinks which are

also placed randomly outside the area and 2 intruders trespassing the area following a random trajectory

across either path can still be neighbors, or anyways located sufficiently close to one another.

This means that two node-disjoint paths can still cause significant interference to each other.

Our neighbor-awaremultiple path discovery algorithm tries tomitigate such interference by

imposing that no nodes can be neighbors if they belong to two different paths connecting the

same source and destination, i.e., ∀xi ∈ p1 and ∀ yj ∈ p2, the links (xi, yj) and (yj , xi) must

not exist. Generally, a node can choose those paths only if it has the information about the

whole networks, which requires huge data exchange among the nodes. Therefore, we take

the help from the intermediate nodes and request-reply based path discovery process to find

out those paths. In this algorithm, after receiving discovery packets, a node selects paths

using node-disjoint technique and transmits reply packet(s) to the source. Any intermediate

node transmits this packet if and only if none of its neighbors had already transmitted the

reply for the same source-destination pair and same sequence number. A node overhears the

transmission of other nodes to learn their reply packet reception/transmission status. It also

learns about its neighbors from periodic beacon and irregular control packets.
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4.4.2 Simulation Scenarios and Results

We simulate all protocols using the ns2/MIRACLE-basedDESERT framework [25], along

with the WOSS libraries [21], which enable the use of realistic underwater channel realiza-

tions in our simulation software. We consider a network of 12 bottom-mounted nodes de-

ployed in an area of 9 km× 16 km, located near the coordinates (55.51◦N, 6.14◦E). The depth

of the area is extracted [21] from the GEBCO database [21]. The area is divided into 12 cells;

one node is placed at randomwithin each cell. Two sinks are located at opposite sides of the

network area, at a random location along one of the short sections. Both sinks are assigned

the same anycast address, so that one path discovery process can discover routes towards

both sinks.

We consider two use cases for this network. In Case 1, the network is run in environmen-

tal monitoringmode, and the nodes generate packets according to a Poisson process of given

rate. In Case 2, the network is run in event mode: two “intruders” cross the network area

following a linear trajectory with a random direction, and in doing so they generate noise of

given power within the communications band. An intruder is detected by a network node

whenever it enters a detection range of 2 km from that node. For each network node, the

packet generation rate is computed as 0.5 packets per minute times the number of intruders

located within the node’s detection range. The payload of all data packets is 512 bits. A

packet is considered delivered if any sink receives it correctly. The nodes communicate in

the 4-8 kHz band, at a bit rate of 256 bps. The results presented in the following are obtained

by averaging over 100 realizations of the network topology. The transmit power is set to

180 dB re µPa.

We start our performance evaluation from Case 1. Figs. 4.10 and 4.11 respectively show

the packet delivery ratio (PDR, defined as the number of unique packets delivered to any

sink divided by the total number of generated packets), and the packets dropped for inter-

ference ratio (PDIR, defined as the number of packets lost due to interference from concur-

rent transmissions divided by the total number of generated packets). Unlike the PDR, the

PDIR nominator includes relayed packets. All multipath protocols described in Section 4.4

are considered. The graphs are drawn as a function of the packet generation rate in packets

per minute per node. L-CROP outperforms both MLD and MND with respect to both per-

formance metrics. This is due to its capability to single out a few routes that do not interfere
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Figure 4.10. Packet delivery ratio as a function of packet generation rate per node, λ in packets per minute

for a grid network with 2 sinks.
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Figure 4.11. Packets dropped for interference as a function of various packet generation rate per node, λ

in packets per minute for a grid network with 2 sinks.

too much with one another. In fact, the protocols rank depending on the number of routes

obtained during the path discovery process: MLD discovers the largest number of routes,

which would potentially offer the highest reliability, as every data packet is always sent
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Figure 4.12. Packet delivery ratio as a function of the noise power of intruders for a grid scenario with 2

sinks and 2 intruders trespassing the area.

through all known routes. However, these transmissions create significant interference to

one another (Fig. 4.11), and the overall effect is a low PDR (Fig. 4.10). Hence, MND (which

discovers fewer routes) outperforms MLD, and L-CROP, which poses further constraints

on cross-path interference, outperforms both. Note that the PDIR decreases for increasing

packet generation rate, because deafness to incoming transmissions (e.g., because the de-

sired receiver is also transmitting) becomes a significant reasons for packet loss as well.

We now turn to Case 2. Figs. 4.12 and 4.13 respectively show the PDR and PDIR of the

three multipath routing algorithms. Unlike in Case 1, the performance metrics are plotted as

a function of the power of the noise originated by one intruder within the communications

band (we recall that the packet generation rate is not controllable in Case 2). When such

noise power is sufficiently low, the PDR of all protocols is around 1: this is due to the event-

based packet generation, which makes transmissions more erratic: hence, each transmission

is typically subject to negligible interference. For the same reason, the PDR achieved by L-

CROP is in line with that of MLD and MND. In the presence of significant intruder noise,

around 240 dB re µPa, the latter two protocols perform slightly better, as they allow multi-

path transmissions over more routes than L-CROP. Nevertheless, the cross-path interference

among these routes is quite high, as confirmed by Fig. 4.13, where L-CROP is again shown
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Figure 4.13. Packet dropped for interference as a function of the noise power of intruders for a grid scenario

with 2 sinks and 2 intruders trespassing the area.

to lead to very few interference-induced packet losses for comparable PDR.

4.5 Conclusions

In this chapter, we discussed two multipath routing protocols which are specifically de-

signed for underwater communication. Among them, MSRP is a source routing protocol

which discovers multiple alternative paths using the graph based technique. We compared

an MSRP protocol with single-path (SP) and multipath routing protocols for underwater

acoustic networks in terms of resilience against in-band jamming noise. The two multipath

protocols achieve jamming resistance via restricted flooding (RF) or via an adaptive source

routing (MSRP). Overall, we concluded that the best protocol in terms of PDR is RF, whereas

SP is the worst. However, the absence of multipath routing overhead in SP can make it a

good candidate whenever the power of jamming noise is known to be significantly lower

than the power of received signals. MSRP is a protocol with intermediate performance, and

represents a good tradeoff between the requirements of high PDR and limited overhead,

even though its PDR may suffer in the presence of very high jamming noise.

To overcome the limitations of the MSRP, we proposed L-CORP protocol which ex-
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periences less interference while transmitting packet through multiple alternative paths.

L-CORP employs a new neighbor-aware multipath discovery algorithm which assists it to

avoid interference because of concurrent transmission/reception from neighbors. In addi-

tion, reques-reply based route discovery process of L-CORP helps to avoid unidirectional

links and hence, avoid dropping packets due to link absence in a path. To avoid the huge

rebroadcasting of path discovery packet, it employs a link-disjoint algorithm which restrict

a node to rebroadcast a path discovery packet only if it receives through link-disjoint path.

All the path discovery packets receive at the destination are prioritized using average SNR

metrics and selected accordingly, which assists the protocol to select a higher throughput

path.

The performance of the proposed L-CORP protocol is compared with other two multi-

path protocols, MLD and MND. The simulation results demonstrate that L-CORP outper-

forms other protocols in terms of packets dropped due to interference ratio and also exhibits

higher or at least comparable performance in terms of packet delivery ratio.
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5.1 Overview

In a Delay-Tolerant Network (DTN) architecture, the nodes involved in communication

experience intermittent connectivity and long and variable propagation delays. This kind of

network architecture is essential for several applications in underwater communication. For

instance, the coastal patrol and surveillance system described in [1] has the characteristics of

intermittent connectivity: where Autonomous Underwater Vehicles (AUVs) patrol an area

of interest and inspect the surface ships or the underwater assets passing through the area,

and a shore-based control center monitors the behaviors of the AUVs. When an asset enters

into the surveilled area, one or more AUVs start following it. Since the area to be patrolled

is quite large and the AUVs may remain out of range of the shore center most of the time,

this type of network architecture can be considered as a DTN.

In DTNs, those routing protocols [2–5] which establish complete end-to-end routes be-

fore data transmission are not suitable due to the lack of connectivity; conversely, store-and-

forward based routing protocols are suitable, since they store a packet and employ an oppor-

tunistic strategy to deliver the packet to the destination. In the latter approach, when a node

receives a packet from the upper layer or from another node, it stores the packet until it gets

any opportunity to forward the packet to the other node(s) with a hope that the receiving

node is the destination or will at least forward the packet to the destination. A common

practice which is observed among various store-and-forward based routing protocols is that

they allow a node to replicate a packet several times in order to maximize the probability

that the packet is successfully delivered. This kind of routing protocols can be further classi-

fied as replication-based routing protocols which achieve a higher delivery ratio by imposing

higher replication overhead, and thereby possibly wasting the bandwidth. On the contrary,

there are a limited number of routing protocols which do not replicate any packet, instead,

they forward the same packet from one node to the other until it reaches its wanted desti-

nation. These routing protocols are known as forwarding-based: this technique reduces the

probability of successful delivery, but injects lower traffic in the network. Usually, from a

DTN routing protocol it is expected that it will provide a higher packet delivery ratio (like

replicaiton-based) with lower packet overhead (like forwarding-based). An efficiently designed

routing protocol should take these aspects into consideration. In addition, it should also take
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into consideration that the underwater channel is vulnerable to errors, requiring some form

of error control to be employed while developing an underwater DTN routing protocol.

In this chapter, we discuss two replication-based routing protocols for underwater DTNs,

named Underwater DTN (UDTN) routing protocol and Underwater DTNwith Probabilistic

spray (UDTN-Prob) routing protocol. The UDTN routing protocol is designed specifically

for coastal patrol and surveillance networks, whereas, the UDTN-Prob is designed for all

other applications where the DTN architecture is essential. Both protocols employ an ef-

ficient data exchange technique to utilize the infrequent contact among the nodes. They

estimate the contract duration among the two nodes that understand to be in contact with

each other by exchanging information through control packets, so that both nodes in contact

can have a fair share of the contact time to transmit their own data. It also incorporates a

modified version of Underwater Selective Repeat (USR) [6] ARQ technique to deal with the

erroneous characteristics of the underwater channel which is described in details in Chapter

3.

Though, both the protocols have similarities, but, since they are designed to serve differ-

ent applications, they have several major differences. For instance, since UDTN is designed

specifically for coastal patrol and surveillance network, one of the objectives of this proto-

col is to deliver the recent data about the assets being followed to the shore-based control

center. Therefore, data packets are assigned a priority (the newest data packets generated

are given the highest priority), in order to transmit the most important data first. When

two nodes setup the contact to exchange data to each other, they exchange the summary

of their buffer through the control packets so that other node can transmit packets accord-

ingly. On the other hand, UDTN-Prob routing protocol does not assign any strict priority

to the data packets and hence, does not exchange summary of the buffer. Another major

difference between the two protocols is the replication strategy they follow. UDTN follows

intensive replication strategy, i.e., a node replicates a packet until its lifetime expires. Al-

though this strategy assists UDTN in achieving higher packet delivery ratio, it increases

packet overhead. On the contrary, UDTN-Prob only transmits those packets which pass

a given criteria and hence, limit number of packets injected into the network. When two

nodes make contact, the UDTN-Prob employs a probabilistic approach and a binary spray

technique to replicate only those packets which have a higher chance to be delivered to their
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destination by the node that receives the replica. Details of the UDTN and the UDTN-Prob

routing protocols are described in Section 5.3 and Section 5.4, respectively.

5.2 Related Works

DTN routing protocols can be generally classified into repliaction-based and forwarding-

based protocols, as described in Section 5.1. Since the protocols presented in this chapter

are replication based protocols, in this section, we are going to discuss only the existing

replication based DTNs routing protocols.

Epidemic [7] routing is a replication based protocol where a node continuously replicates

and transmits packets to newly discovered contacts that do not already own any copy of the

same packets. Because of the flooding nature of the epidemic routing, it may achieve a very

high successful delivery ratio, but it typically always exhausts the network resources and

generates a very high amount of overhead.

To limit the replication overhead of flooding based protocols, other routing protocols

have been proposed. For instance, in the spray-and-wait (SAW) [8] protocol, the replication

of each packet is restricted to a fixed number of copies. In the vanilla version of the SAW

protocol, the originator of a packet only can replicate that packet and all others can deliver

the packet to the destination; on the contrary, the binary version allows also other nodes to

replicate. In the latter approach, a node keeps half of the replicated copies of a packet and

sends the other half to the node which is understood to be in contact if it has more than one

copy of the packet. When it has a single copy of a packet, it tries to deliver that by itself.

In [9], the authors demonstrate that the distribution nature of the binary technique helps

it achieving higher successful delivery than that of the vanilla version, which inspires us to

employ this technique in our proposed protocols.

PROPHET [10] is another protocol which also limits the replication by forwarding the

replicated copies only to those neighbors which have a higher probability of contacting the

packet’s destination in a short time. The main difference between the PROPHET and our

probabilistic spray approach is the Delivery Predictability Function (DPF). In PROPHET, the

DPF is computed based on the history of encounters for a mobility model where nodes

move in a predictable fashion based on repeating behavioral patterns. In our proposed



5.2. Related Works 81

technique, the assumption that the movement pattern is predictable is removed and the

statics of the encounters are adaptively derived based on the history of previous encounters.

In particular, the Cumulative Distribution Function (CDF) of the inter-contact duration is

obtained from the inter-contact information extrapolated from long time observation from a

mobility model where nodesmove randomly, contacts are very infrequent and do not follow

any repeating behavioral pattern; this CDF is stored in a table by every node.

Another such protocol that limits the replication is RAPID [11], which replicates only

those packets that exhibit the highest calculated utility. Every node computes the utility

of contacts based on a routing metric, such as average delay, missed deadlines, or maxi-

mum delay, to be optimized a specified by the network administrator. When a node gets

an opportunity to transfer packets, it replicates or allocates bandwidth resources to a set of

packets in its buffer in order to optimize the given routing metric. In our proposed protocol,

we employ a different utility function, which is the probable time of meeting the destination

directly or through other nodes by a given deadline. At each transfer opportunity, the nodes

exchange only those packets which have higher lifetime than the deadline and hence limit

the number of replicas injected in the network.

All these protocols described above are designed specifically for a terrestrial network

where the signals can be considered instantaneous and the transmission range of a modem

is limited to around one hundred meters. On the contrary, underwater networks experience

higher propagation delays, because of the lower speed of the acoustic signal and typical

underwater modems support ranges up to few kilometers [12–14] which is several times

higher than terrestrial networks. The vehicles that travel underwater or on the water sur-

face are slower than the vehicles traveling on land. Therefore, the duration of the contacts

among the communicating nodes in terrestrial networks are usually short-lived; on the con-

trary, such duration is longer in underwater networks. Moreover, underwater networks

experience more challenging erroneous channel condition than terrestrial channel.

Therefore, an efficiently designedDTN routing protocol for underwater networks should

leverage on the above properties to its own advantage. Like DTN routing protocols for ter-

restrial networks, most of the proposed underwater DTN routing protocols [15, 16] also do

not consider the properties of underwater networks. However, our proposed protocols are

designed in such a way that they exploit long contact duration by fairly distributing the
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Figure 5.1. Control and data packet exchange scheme of the proposed UDTN technique with the modified

USR protocol.

estimated contact duration between the communicating nodes. Moreover, modified USR

technique assists them to deal with erroneous channel as well as helping exploit the long

propagation delay by transmitting multiple packets in a single round trip time. Moreover,

priority-based packet exchanges make the UDTN protocol suitable for coastal patrol and

surveillance networks. On the other hand, the probabilistic spray and the binary spray

techniques which are employed in the UDTN-Prob protocol to reduce replication overhead

makes UDTN-Prob suitable for most of the underwater DTN applications.

5.3 Underwater Delay-Tolerant (UDTN) Network routing protocol

To explain both the protocols in more detail, consider a network with 4 nodes and call

them A, B, C andD; whereD is the destination and all the nodes have data to send to node

D. The UDTN routing protocol is described in the next two subsections. Subsection 5.3.1

provides the details of the preliminary signaling phase employed to discover neighbors and

organize the transfer of packets upon the occurrence of contacts, whereas Subsection 5.3.2

describes the ARQ technique employed for error control.
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5.3.1 Preliminary UDTN messaging for neighbor discovery and contact setup

The messaging scheme of UDTN is illustrated in Fig. 5.1. In UDTN, every node periodi-

cally broadcasts beacon messages to discover its neighbors whenever it has data to deliver.

Let us consider that node A has data to deliver to node D, therefore, it transmits a beacon

message and waits for a sufficiently enough time to receive answers from possible neigh-

bors. If no answer is received within the waiting period, A assumes that no node is located

within its transmission range, and retransmits a new beacon after a random amount of time.

Let us consider again that node B receives the beacon message and it is going to reply

with an info message. Node B includes its current position and velocity information in the

info message, which will allow the beaconing node to estimate the relative velocity of the

nodes, hence the contact duration. It also includes a summary of the contents of its buffer.

The summary is strictly related to the application to be supported (coastal surveillance, in

this work) where the network nodes are AUVs moving to track a certain asset. These AUVs

store data packets containing samples of the position of the asset being followed. Given that

the most recent packets have the highest priority, a good summary ofB’s buffer is composed

of the most recent data packets available about every asset currently being followed in the

network area.1 This is accomplished by putting several (asset ID, timestamp) pairs in the

info packet, one for each asset B stores information about. After sending the info message,

node B waits for the respective responsemessage by enabling a waiting time. If no response

message is received within the timeline, B goes back to the idle state.

When A receives the info message from B, it estimates the contact duration as follows.

Call ~PA and ~PB are the positions and ~VA and ~VB are the speed vectors (whose modulus

is in m/s) of nodes A and B, respectively. Therefore, the relative position of A and B is

~PR = ( ~PA − ~PB) + ζP and the relative velocity of those nodes is ~VR = ( ~VA − ~VB) + ζV . ζP

models the position calculation error and ζV models the velocity calculation error. Using ~PR

and ~VR, the instantaneous distance R(t) at time t can be found as

R(t) =

√

‖VR‖2t2 + 2(~PR · ~VR)t+ ‖PR‖2 (5.1)

1We stress that the summary includes information about every asset, not just the asset followed byB. In fact,

B may be storing data packets received from other nodes, which hence provide information about other assets.

These packets should be also be transmitted to A, in order to improve the chance that the sink receives them.
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where · denotes the inner product, and ‖ ‖ is the 2-norm. The approximate contact duration

can be computed as the time required for the nodes to exit the communication range of each

other. Therefore, if we replace R(t)with the transmission range TR of the modem in use, we

can compute the contact duration Tc. We define TR as the range where a probability Ptgt of

correct packet transmission is achieved.

To compute TR, we assume that BPSK modulation technique is employed which trans-

mits packets of the length L and the transmission power level is set such that it can achieve

a target Packet Error Rate (PER), Ptgt. We can calculate target PER or Ptgt as [17]

Ptgt = 1−

(

1−
1

2
erfc

√

SNR

ψ

)L

(5.2)

where SNR is the signal-to-noise ratio at the receiver and ψ is SNRmargin factor in dB at the

receiver. From equation (5.2), the SNRtgt can be found as

SNRtgt =
(

erfc−1(2− 2(1− Ptgt)
1/L)

)2

× ψ (5.3)

The SNR over an underwater acoustic channel access a distance R for a signal frequency f

can be expressed as

SNR =
Ptx × (R−ϕ × a(f)−R)

N
(5.4)

where Ptx is the transmission power, ϕ is the spreading factor, a(f) is the thorp absorp-

tion coefficient in kHz, R is in meters and N is the noise power which can be computed as

a function of the frequency in kHz, as described in [18]. The spreading factor ϕ describes

the geometry of the propagation, and ϕ = 1.75 provides a practical value for a typical un-

derwater channel [11]. Details of the relationship absorption coefficient and frequency is

demonstrated in [19].

Since at the edge of the transmission area, SNR and SNRtgt are equal, i.e., SNR =

SNRtgt; therefore, by replacing SNR with SNRtgt and solving (5.4), TR can be found as

TR =
ϕ

ln(a(f))
×W

(

(

SNRtgt ×N

Ptx

)

−1/k

×
ln(a(f))

ϕ

)

(5.5)

WhereW (.) is the practical branch of the Lambert-W function which is the inverse relation

of the function x = wew where ew is the exponential function and w is any complex number.
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Now, by replacing instantaneous distance,R(t), of equation (5.1) with a calculated trans-

mission range of a transducer, TR, we get

‖VR‖
2T 2

c + 2(~PR · ~VR)Tc + ‖PR‖
2 = T 2

R (5.6)

Solving Equation (5.6), the approximate contact duration can be found as

Tc =
−(~PR · ~VR) +

√

(~PR · ~VR)2 − ‖VR‖2(‖PR‖2 − T 2
R)

‖VR‖2
(5.7)

After A finishes computing the approximate contact duration, it will prepare a response

message for B only if the calculated contact duration is higher than a given threshold, ς . In

addition, if A receives multiple info messages from multiple neighbors, the response mes-

sage is sent to that node to which it can deliver the highest number of packets as the final

destination. It may happen that among the nodes from which A receives the info messages,

none is the destination, like in the example we are currently discussing. In such case, A

sends a response message to a node with whom it has the highest contact duration which

is also higher than ς . If no such node exists, A does not send any response message, goes

silently to the idle state and retransmits the beacon message after a random time. Node A

also includes a summary of its own buffer in the response message. Let us assume that the

contact duration calculated between node A and node B is higher than ς ; hence, A selects B

to send the responsemessage. In the message, A includes the share of the contact duration of

B, which is Ts = ηTc/2.
2 Since the response message is transmitted to only one node, other

info transmitters go back to the idle state.

When B receives the response message, it realizes the share of the time it acquires and

from the summary of A’s buffer, and it also realizes the recent information A is expecting

from it. Node B then retrieves packets from its buffer to be transmitted and it is done in

such a way that no packet is transmitted if A has no interest in it (referring again to our

coastal surveillance application, no packet is transmitted to A about a given asset if A has

more recent information about that asset). The packets are retrieved from the buffer so as

to maximize the transfer of information to A regarding the status of the assets. Assuming

that B is storing data about multiple assets, it will transmit one data packet per asset in a

2The only exception is when every node transmits response packet to the sink which is usually assumed to be

fixed in underwater scenario, where Awill be the only node to transmit, and hence, Ts = ηTc.
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round-robin fashion, starting from the most recent packets (i.e., those with highest priority),

until its transmission time is over.

After all packets are selected from the buffer, B enables a timer at the lower layer so

that it can only transmit within its own share of the contact. After that all data packets are

delivered to the lower layer, they waits for ACKs in accordance with the ARQ scheme im-

plemented in UDTN. While the details of the scheme are given in Subsection 5.3.2, here we

wish to highlight an inherently cross-layer behavior in UDTN. Namely, the ARQ scheme

always informs the routing protocol about the correct reception of the packets by the cur-

rent destination (in this case, by A) via cross-layer messages. This helps the routing layer

understand which messages have already been delivered to a node (in order not transmit

the same packets twice), and allows the nodes to remove the packets from the queue if they

have been correctly delivered to the final destination.

After the transmission of B is over, A starts transmitting its own packets. It may happen

that a node may not have enough data packets to transmit which can fill up the estimated

transmission time. To avoid the time allocation loss, a flag, called last packet, is set in the

header of the last packet which notifies the other node that reception time is over. Another

notable benefit of this approach is that if the transmission of the first node finishes earlier

than expected, the other node can transmit until the contact duration ends. Moreover, it also

may happen that a node may not have any new packet to transmit. To inform this status

to the other node, a node sends a proxy message and changes its state accordingly. When

transmission and reception of both the nodes are over, they move back to the idle state and

transmit beacon packets periodically after a random time.

One further control procedure is applied during the data transmission process. Namely,

if the nodes sending data packets do not receive ACKs for a given time, they will assume

that the receiver has moved out of range, and they will hence stop transmissions. The same

happens if the receiver does not receive any data for a given time.

5.3.2 Modified Underwater Selective Repeat (USR)

Though error control techniques are necessary to deal with the erroneous channel con-

ditions of underwater networks, one may assume that implementing the error control tech-

nique in underwater networks where propagation delay is already high enough is not ef-
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ficient. However, Underwater Selective Repeat (USR) is designed in such a way that it can

exploit the long propagation delay by transmitting multiple packets in a single Round-Trip-

Time (RTT) and thus, performs comparable to non error control based protocol. Packet trans-

mission in USR is spaced in such a way that the transmission of a data packet does not col-

lide with the reception of any ACK of previously transmitted packets. USR is adaptable and

can switch between the Selective Repeat (SR) and the Stop & Wait (S&W) ARQ protocols ac-

cording to the necessity. As the name suggests, USR usually behaves according to the SR

technique but reverts to plain S&W when, i) there is only one packet in the buffer to trans-

mit, ii) the distance between the source and destination does not allow to transmit more

than one packet, i.e., they are closer to each other and multiple packet transmission may not

be possible, and iii) a node is transmitting an initial data packet, which is used to deter-

mine whether to employ S&W or SR technique. From the reception of the ACK of the initial

packet, a node calculates the RTT between the nodes in contact which is equal to 2 × τAB

where τAB is the one-way propagation delay between node A and node B. Since the nodes

are usually mobile in an underwater DTN, the estimation of RTT also should consider this

aspect so that packet transmissions do not superimpose to ACK receptions as nodes move.

To achieve this, we employ a conservative approach where we assume that the nodes move

towards each other, i.e., the RTT is progressively reduced as time goes by. Let us assume

that node A previously met with node B at time t1. If node A and node B meet at any later

time t2, A can compute the updated approximate propagation delay, τ ′AB , as

τ ′AB = τAB −
NM (t2 − t1)v

c
(5.8)

where v is the maximum speed of the mobile node, c is the speed of the sound in the water

and NM can be 0 (if the sender and receiver both are static), or 1 (if one of the two move),

or 2 (if both move). Node A updates τ ′AB for every packet receptions performed using USR,

and thereby adapt to RTTs that vary over time.

If node A discovers that the RTT between itself and B is long enough to accommodate

more than one packet transmission, it computes the number of packets that fit within the

RTT and starts transmitting so that the reception of ACKs will be interlaced with time with

the packet transmission, demonstrated in Fig. 5.2. The number of packets (or “window
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Figure 5.2. Packet exchange scheme employed in the modified USR protocol (reproduced from [6]

size”)M that A can transmit to B within an RTT can be found as

M = max

(

1,

⌊

kτ ′AB

TD + TA +∆

⌋)

(5.9)

where TD and TA are the transmission time of the data packet and of the ACK packet, respec-

tively, ∆ is a guard time, which is required to compensate for mobility-induced changes of

the RTT and 0 ≤ k ≤ 2 is a tunable parameter, which specifies the portion of τ ′AB to be con-

sidered. If k = 0, from (5.9), it can be observed thatM = 1, therefore, USR employs a simple

S&W ARQ; on the contrary, for k = 2 the whole RTT will be considered when computing

the window size.

When a node is transmitting multiple packets within a single RTT, i.e., M > 1, it may

happen that transmission of a packet may block the reception of an ACK and thus induces

unnecessary retransmission in the network. To deal with this aspect, after transmitting one

packet, node Amust wait for a fixed waiting timeW before transmitting the next packet. W

is calculated in such a way that an ACK of a previously transmitted packet can be received
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in the middle ofW . Therefore,W can be expressed as

W =
TA + 4τ ′ − 2(M − 1)TD

2M − 1
. (5.10)

A detailed description of the USR protocol is given in Chapter 3.

For obtaining the best results from the lower layer protocols, it is necessary to adapt

them according to the necessity of the upper layer. In our case, we modified the original

USR according to the requirements of UDTN in such a way that we can get the best out of

it. Unlike the original USR, the modified USR is aware of the duration of the transmission

which is set using a cross-layermessage fromUDTN so that transmission of the both contact-

ing nodes do not overlap with each other. Every time before transmitting a packet, a node

checks whether within the remaining time period it can receive the ACK of this packet. A

packet is transmitted only when the condition is true. When the timer expires, the sender

deletes all the remaining packets in the queue. If one packet is not delivered correctly in

a contact, the same packet is retransmitted again at the next meeting between the nodes.

Another important modification to USR is that it also includes a cross-layer to notify about

the correct delivery of a data packet, thus reducing unnecessary transmission of the ACKs

at the routing layer. The reception of an ACK at the routing layer, assists a node to update

the status of the packets in its buffer. Namely, the packet is removed from the buffer if it

is correctly delivered to the destination; whereas, in other cases, the node information is

stored against that packet so that the same packet is not transmitted to the same node at a

later time.

5.3.3 Simulation scenario and settings

The performance of the UDTNprotocol is evaluated using the ns2-Miracle framework [20],

along with the World Ocean Simulation System (WOSS) package [21], which provides ns2-

Miracle with an interface to the Bellhop ray tracing tool [22]. The location chosen for sim-

ulation is an area of 8000m × 4000m in the Mediterranean Sea, whose upper-left corner is

placed at 43.0625◦N , 9.3095◦E. Network operations are assumed to take place in July: the

corresponding environmental properties are retrieved from the oceanographic databases

employed by WOSS.

All nodes transmit using a Binary Phase Shift Keying (BPSK) modulation, at a bit rate
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of 4800 bps. The size of the data packet is fixed to LD = 125Bytes, the ACK size is LA =

11Bytes, the beacon size is LB = 1Byte, the minimum length of an info packet is LI =

58Bytes and the minimum length of a response packet is LR = 11Bytes. The simulations

have been performed for various data generation rates per node, λ, from 0.18 to 6 packets

per minute per node. We considered two different numbers of assets to be inspected (hence

of AUVs in the DTN), 3 and 6. The nodes (both the assets and the inspecting AUVs) are ini-

tially deployed at random within the area. After this, the assets start moving freely around

the area according to a Gauss-Markov mobility model [23]; the follower AUVs start moving

to approach and follow the assets in accordance with the rules of the mobility model de-

scribed in Subsection 5.3.3.1. A sink is placed near the shore, and represents the transceiver

connected to the shore-based control center.

We compare the performance of UDTN against a modified version of the Spray-And-

Wait (SAW) [8] protocol. As the original version of SAW [8] assumes a reliable packet trans-

fer (which is quite unrealistic for underwater networks) we extended SAW to incorporate

a S&W ARQ technique for error control. This is also required for a more fair comparison

against the UDTN protocol, which implements ARQ via USR. The messaging pattern of the

SAW protocol has also been modified to favor the exchange of fresh information among

the nodes. To this end, all nodes periodically transmit beacon messages. Upon receiving

a beacon, a node sends a query packet with 40 message ids related to packets that are still

to be delivered to the sink. After receiving the query packet, the beacon sender transmits

a response packet mentioning which ones of these 40 packets it would like to receive. The

requested packets are then sent using a S&W technique. Note that, unlike in UDTN, the

communication is not bidirectional, i.e., only the nodes that receive a beacon can transmit.

In addition, no adaptation is performed to compensate for time-varying RTTs.

We set η = 0.5, k = 2 and NM = 2. The results are averaged over 100 simulation

runs. Each node stops generating packets after 86400 s or 24 hours and the simulation ends

at 100000 s or 27.78 hours.

5.3.3.1 Details on the mobility model

In order to simulate the trajectories of mobile assets within the network area, we employ

the leader-follower paradigm (or “group mobility model”) proposed in [24]. The model
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Figure 5.3. Example of group mobility realization. A “leader node” (representing an asset to be inspected)

is moving according to a Gauss-Markov model (black line), and a second node (representing an “inspector

AUV”) is following the leader (grey line).

in [24] was designed for 2D terrestrial radio networks: for this investigation, we have ex-

tended the movement to take place in a 3D space and to realistically represent an AUV

movement (e.g., by forbidding depth changes to be arbitrarily fast).

According to this model, a leader Li moves either randomly or by following a pre-

defined path, and each follower FLi,j tunes its movement so that it approaches the route

of the leader. In our scenario, the leader node represents any surface or underwater asset

that enters the coastal area under surveillance, and thereby has to be inspected; followers

represent instead the AUVs that approach these assets for performing the inspection. (In

the following, we will use the above terms interchangeably.) Note that a follower can follow

only one leader, whereas a leader may have several followers. From now on, wewill assume

that every leader has only one follower, i.e., an asset entering the patrolled area is inspected

by only one AUV.
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The movement of the followers consists of two components: i) a movement that attracts

the follower towards the leader, and ii) a randommovement. The attraction is obtained in a

way that is similar to the attraction of electrical charges. Therefore, the mobility model has

basically three parameters: the charge of the leader, CL, the charge of the follower, CF , and a

tunable parameter α which is used to tune the intensity of the attraction field. In particular,

a negative value of α attracts the follower towards the leader, whereas a positive value

pushes the follower away. By considering the above parameters one can get the following

expression for the attraction velocity ~va at time tk [24]:

~va(tk) = β(tk)
CLCF

dα
~ua (5.11)

where ~ua is the unit vector directed from the follower towards the leader and β(tk) is the

modulus of the attraction speed at a distance d = 1m, which is calculated as [24]

β(tk) = (1− ζa)β(tk−1) + ζasa,k (5.12)

where 0 ≤ ζa ≤ 1 is a tunable variable, and sa,k is a Gaussian random variable with mean sm

and standard deviation sv. Finally, the random velocity ~vr(t) of the follower’s movement is

obtained through a Gauss-Markov mobility model [23]. Hence, the speed vector of a given

follower at time t can be calculated as

~v(t) = ~vr(t) + ~va(t) (5.13)

Fig. 5.3 shows an example of leader-follower mobility pattern in a 3D area, obtained

using the technique described above, with parameters CL = 2, CF = 2, ζa = 0.8, sm = 0.02

and sv = 0.005. These parameters have also been used throughout the simulation campaign.

5.3.4 Simulation results

As a first comparison between UDTN and SAW, we show in Fig. 5.4 the Packet Delivery

Ratio (PDR) of the UDTN and SAW protocols, defined as the ratio of the number of packets

delivered to the sink to the number of packets generated in the network. The PDR is shown

as a function of the data generation rate per node, λ, for a first configuration with 3 assets

and 3 followers, and a second configuration with 6 assets and 6 followers.3 We also recall

3From now on, we will refer to these configurations as the 3-node and the 6-node networks, respectively: this

also reflects the fact that only the followers communicate.
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Figure 5.4. Packet delivery ratio as a function of the data generation rate per node for UDTN and SAW.

that a follower is always assigned to one and only one asset. The first observation is that

UDTN outperforms SAW for all chosen values of λ. When the data generation rate is low,

the 6-node network experiences a higher packet delivery ratio due to the denser deployment

of the nodes, which increases the chance of contact. In turn, this favors the delivery of data

to the sink, possibly across multiple intermediate store-and-forward steps. However, the

performance of the 6-node network decreases due to greater interference and contention as

the packet generation rate per node is increased. For higher values of λ, in fact, the 3-node

network experiences a higher packet delivery ratio, which also decreases more smoothly

due to the lower interference affecting the communications.

Similar observations hold for SAW, where however the PDR of the 3-node network is

always greater than the PDR of the 6-node network. In any event, SAW is consistently out-

performed by UDTN. There are several reasons for this. Namely, UDTN allows both nodes

to transmit during a contact, whereas in SAW only one node can transmit. Furthermore, the

S&W ARQ scheme in SAW introduces delays between subsequent packet transmissions,

whereas the modified USR technique employed with UDTN exploits the long RTTs typical

of underwater networks to improve the throughput of the data exchange [6]. Furthermore,

the packet transmission between communicating nodes in UDTN is adapted based on the
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Figure 5.5. Packet delivery ratio for one network node as a function of the simulation time for UDTN and

SAW for a randomly selected node in a scenario with 3 assets and 3 followers, for several values of λ in

packets per minute per node.

computation of Ts, as described in Subsection 5.3.1, whereas no adaptation is performed in

SAW.

The evolution of the PDR at different time epochs during the simulation is shown in

Fig. 5.5 for one network node, and for different values of the packet generation rate per

node. The PDR is initially low in all cases, as the few contacts that still occur are due to the

randomdeployment of the nodes. The PDR starts increasing as time goes by and subsequent

contacts allow the nodes to exchange packets and to deliver them to the sink using store-

and-forward. For UDTN, in the presence of packet generation rates of 1.5 packets perminute

per node and above, however, the number of generated packets exceeds the capability of the

network to transport the packets to the sink, so that the node buffers build up: eventually,

the nodes will drop old packets to free space for newly generated ones. As a result, the

PDR decreases towards the end of the simulation. Notably, the PDR of SAW is consistently

lower, at about 30% in all configurations, and is constant throughout the simulation. This is

due to the lower number of transmissions that take place in SAW, due both to the absence

of bidirectional communications within a contact and to the use of S&W. Fig. 5.5 can also
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Figure 5.6. Packet delivery ratio as a function of the packet generation rate per node, λ in packets per

minute per node, for several values of the asset and follower speed, in a scenario with 3 assets and 3

followers.

be used to understand the maximum packet generation rate per node that is sustainable in

the network. Namely, if the curves keep increasing or are stable with the simulation time,

we can infer that the network can correctly convey all generated traffic to the sink. In this

3-node network case, the maximum sustainable packet generation rate is between 0.12 and

1.5 packets per minute per node.

Fig. 5.6 shows the PDR of UDTN and SAW in a 3-node network for three values of the

speed of the assets and of the follower AUVs. Since a higher speed translates into more

frequent contacts, the PDR increases with increasing node speed for both protocols. In par-

ticular, for lower values of λ, the PDR of UDTN reaches a value close to 100% for speeds of 5

and 6 m/s, which is around 10–15% higher than that the PDR at 2 m/s. Some improvement

in the PDR is also observed for intermediate values of λ. For higher values, the shorter du-

ration of the contacts induced by the higher speeds (and the consequent lower number of

exchanged packets per contact) dominates, making the PDR equivalent to that of the lowest

speed case.

Finally, we recall that in the coastal surveillance application considered here, one of the
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Figure 5.7. Latest packet received by the sink as a function of the simulation time for UDTN in a scenario

with 3 assets and 3 followers, and for λ = 6 packets per minute per node.

objectives is to deliver timely information to the sink. In particular, we want to measure how

often the sink is updated by the network with new data about the assets being followed.

The evolution of the latest timestamp of the data delivered to the sink as a function of the

simulation time is shown in Fig. 5.7. We set λ = 3 packets per minute per node

From the figurewe can observe that the sink is typically up to datewith new information.

If long periods of “starvation” occur, it is a mobility issue (no node is in contact with the

sink for a long time), not a problem of the UDTN protocol. On the contrary, the capability of

UDTN to convey data to the sink via opportunistic transmissions, perhaps throughmultiple

store-and-forward steps, effectively keeps the sink up to date when nodes are in range, as

seen from the cases when the curves in Fig. 5.7 closely follow the ideal case line, and from

the packet delivery ratio values in Fig. 5.5.
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5.4 UnderwaterDTN routing protocol with Probabilistic Spray (UDTN-

Prob)

One of the major drawbacks of the UDTN protocol is the replication overhead. Every

node replicates packets as many times as it wants and hence, achieves a higher packet de-

livery ratio. However, a high number of replications imposes a high replication overhead,

wasting necessary bandwidth. Therefore, it is necessary to reduce the replication overhead

without affecting the delivery ratio. Therefore, we enhanced the UDTN protocol by employ-

ing a probabilistic binary spray technique. Probabilistic spray technique restricts every node

to deliver only those packets which pass a given criterion and hence, help decrease the repli-

cation overhead. In this technique, when two nodes are in contact with each other, they also

exchange the packet deadline information through control packets. As anticipated in Sub-

section 5.4.1, we assume that the nodes know the statistics of the contact durations and inter-

contact times between themselves and any other node, in particular with the sink.Therefore,

they only exchange those packets which have higher lifetime than the provided packet dead-

line. Thus, the proposed protocol decreases the number of packets injected into the network

by allowing every node to exchange only those packets which the other node may be able

to deliver in time to the destination by itself or through another node. Furthermore, when

transmitting the packets, a binary spray technique employed in order to reduce the replica-

tion of the packets.

Since the preliminary messaging technique and modified USR employment is almost

similar, therefore, in this section, we are going to discuss only the differences and enhance-

ments made over the UDTN protocol. Keeping the descriptions of the UDTN in mind, we

can further divide our descriptions in three Subsections. The details of the probability cal-

culation and their arrangement in a table are described in Subsection 5.4.1. The minimum

deadline computation procedure is illustrated in Subsection 5.4.2. In Subsection 5.4.3, we

are going to describe the changes made in the preliminary signaling messages so that the

UDTN-Prob can reduce replication overhead.
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5.4.1 Details on the Probability Distribution Table

Every node which employs UDTN-Prob protocol stores a probability table. In the prob-

ability distribution table, the CDF of the inter-contact duration of different nodes are stored.

We assume that this node is already available at everynode. In our implementation we de-

rive it by running a Gauss-Markov mobility model [23] and by collecting the mobility traces

of all the nodes for six months. From the mobility traces, we compute the number of con-

tacts between different nodes, inter-contacts time between them, the contact durations and

their statistics. We then compute the Probability Distribution Functions (PDF) for certain

inter-contact time, t. Recall the example previously mentioned and assume that node A has

several inter-contacts times, ∆iAB with node B, where i = 1, 2, 3, ..., n. The number of con-

tacts taking place at every t interval is δt where δt ≤ n. Using δt, we can compute PDF (fAB)

at t as

fAB(t) =
δt
n

(5.14)

Now, the CDF for t can be computed as

FAB(t) =

∫ t

0

fAB(t
′)dt′ (5.15)

The computed CDF value is then stored in the probability distribution table for the time

interval t. In practice, in the probability table, we store one value of the CDF for every

10minutes of inter-contact time.

5.4.2 Minimum Deadline Computation

In UDTN-Prob, the two nodes which are understood to be in contact with each other

also compute exchange the minimum of all the packets delivery deadlines for the packets in

their buffer, and exchange this information. This makes it possible to decrease the number

of transmissions by restricting the sender to send only those packets which have a lifetime

higher than the minimum deadline. Every node can compute this minimum deadline using

any technique of the two techniques described below:

5.4.2.1 One hop forwarding

In this technique, the minimum deadline is compared equal to the probability that the

contacted nodemeets the destination within a given time. Recall the example of 4 nodes and
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let us assume that node A meets with node B. Node A and node B query their probability

table to acquire the probability that it will meet the destination, D, before any given time.

For any node i, CDF can be found in the following way

FiD(t) = P [node i meets node D in less than t] (5.16)

Assuming that the meeting time must be lower than a threshold, θ, the amount of time

that satisfies this constraint is Ti = FiD
−1(θ). Node A and node B then exchange their

relative minimum deadlines, TA and TB , with each other through control packets. Since

nodeA knows the minimum deadline of nodeB, it only transmits those packets which have

a packet lifetime ≥ TB . Node B also applies the same condition in transmitting packets to

node A.

5.4.2.2 Two hop forwarding

In this case, minimum deadline is not computed by considering only its own meeting

time, but it also considers the probable meeting time of other nodes. Let us assume that

any node j knows the function FkD(t) for all other nodes k, 1 ≤ k ≤ N, k 6= j and k 6= i.

Therefore, node j knows that it is going to meet the destination with probability θ within a

time Tj . It also knows that it may be able to meet some other node who will then meet the

destination, and that this 2-hop forwarding process may in fact take less than Tj . In other

words, let us say that node j wants the packets to be forwarded to the destination within

L < Tj through another node k. This means that

FjkD(L) = P [node j meets node k in less than tjk AND node j meets node D in less than

L− tjk] = θ (5.17)

Assuming independence and in correlation of the encounter processes over time we have

FjkD(L) =

∫ L

0

Fjk(tjk)FkD(Ln − tjk)dtjk (5.18)

and if FjkD(L) ≥ θ, then node i can forward any packet with deadline greater than L to

node j, who will relay it to the destination via node k.

In practice, node j can query the probability table to get the function Fjk(t), but it can-

not obtain the function FkD(t) from the probability table. Node k only knows about that
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function and node j can realize this from node k. For this reason, when two nodes exchange

control packets, they also incorporate a sub-sampled version of the CDF, computed with

respect to various probabilities, e.g., in steps of θ = 0.05. Thus, both nodes realize about a

portion of the probability table of each other.

Recall the previous example where node A meets with node B and let’s assume that

both of them know the function FCD(T ) of node C. Node A computes LA such that LA =

FACD
−1(θ) and compare with TA. If LA < TA, then the minimum deadline is considered

equal toLA, else, it is considered equal to TA. NodeB also follows the similar computational

procedure to discover the minimum deadline.

5.4.3 Changes in the preliminary messages

Since UDTN-Prob routing protocol is not designed specifically for coastal patrol and

surveillance networks, it is not necessary to include the summary information of the buffer

in the control packets (both in the info and the response messages). Instead, the minimum

deadline and the information about meeting the destination by itself with respect to various

probabilities, θ, described in Subsection 5.4.2 are incorporated in the control packets (both

in the info and the responsemessages) to reduce the replication of the packets.

Aline with previous descriptions, in UDTN-Prob, the selection of the packets from the

buffer is performed according to theminimumdeadline information received from the other

node. In details, when a node queries the buffer with the minimum deadline informa-

tion, the buffer primarily selects those packets which fulfill the minimum deadline criterion.

Since UDTN-Prob also employs binary spray technique, it finally selects only those packets

which have more than one replication copies. For every selected packet, the node keeps the

half of the replicated copies and deliver the other half to the node with which it is exchang-

ing data. Note that the packets with single replication copy will be selected only if the other

node is the destination of that packet.

5.4.4 Simulation Scenario

The performance of the UDTN-Prob protocol is first compared with a modified version

of SAW [8] protocol which is another viable candidate for underwater DTNs. The details of

the modification of the SAW can be found in Subsection 5.3.3. After that, we further evalu-
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Figure 5.8. Example of the Gauss-Markov mobility pattern with correlation parameter = 0.8. The blue-

filled red circles correspond to the locations where the mobile randomly picks a new velocity vector.

ate the performance of the UDTN-Prob protocol with respect to various parameters which

are closely related to the protocol and uncover their relationships. The simulator we use

to evaluate the protocol performance is the DESERT framework [25], which is an extension

of the ns2-Miracle framework [20] for underwater communication. Network operations are

assumed to take place in an area of 9000m × 5000m whose upper left corner is placed at

39.97◦N, 11.82◦E in the Mediterranean sea in the month of July: the corresponding environ-

mental properties are utilized.

All the nodes are communicating using a Binary Phase Shift Keying (BPSK) modulation

technique at a bit rate of 4800 bps at a central frequency of 25 kHz. The size of the hello

packet is fixed to LH = 10Bytes, the info packet size is LI = 127Bytes, the response packet is

LR = 115Bytes, the proxy packet is LPX = 10Bytes, the data packet size is LD = 125Bytes

and the ACK size is LA = 11Bytes. Traffics are generated according to a Poisson process

of rate λ, from 0.12 to 3 packets per minute per node in the network. All the AUVs are
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first deployed randomly within the area. After that, they start moving freely around the

area using Gauss-Markov mobility model [23], with fixed correlation parameter α = 0.8, as

illustrated in Fig. 5.8. A sink is placed near the shore which is the destination of all the

generated packets in the simulation.

Each AUV generates packets for a whole day, i.e., 24 hours and the simulation stops after

27.78 hours. We set ψ = 10 sec, η = 0.5, k = 2, NM = 2, v = 2m/s, queue size = 1000

and packet lifetime = 3hours throughout the whole simulation campaign unless otherwise

mentioned. The results are taken as the average over 50 simulation runs with error bars

showing 95% confidence intervals.

5.4.5 Results and Analysis

The performance of the UDTN-Prob and the SAW are compared for various numbers

of nodes in the network and for various traffic generation rates, λ. The packet delivery ra-

tio (PDR) of both the protocols is depicted in Fig. 5.9 and Fig. 5.10. The delivery ratio of

the UDTN-Prob is further shown for 5 different θ values: 0, 0.25, 0.5, 0.75, 1. When θ = 0,

UDTN-Prob protocol acts like restricted flooding4 and hence, injects a lots of traffic in the

network and achieves higher PDR. For increasing θ, the traffic in the network decrease,

and hence, the PDR alo decrease in both networking scenarios. With respect to various

numbers of nodes in the network, the PDR of the UDTN-Prob is higher for higher num-

ber of nodes increases the contact possibility. In both the scenarios, the SAW demonstrates

lower performance than the UDTN-Prob for every θ considered. There are many reasons

which influences these performance differences, first of all, the UDTN-Prob allows both the

nodes to transmit during a contact, whereas in the SAW only one node can transmit. More-

over, thanks to the probabilistic spray technique of the UDTN-Prob which injects lower but

adequate number of packets in the network. Furthermore, the Stop-&-Wait (S&W) ARQ

scheme in the SAW introduces delays between subsequent packet transmissions, whereas

the modified USR ARQ employed with the UDTN-Prob exploits long propagation delays by

transmitting multiple packets in a single RTT. Therefore, the UDTN-Prob experiences lower

delay and increases throughput of the data exchanged [6]. Again, the packet transmission

4This technique is named as restricted flooding since the packet spraying is restricted by a fixed value and a

single packet is delivered only once to any node
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Figure 5.9. Packet delivery ratio as a function of the data generation rate per node per minute for a network

of 5 nodes and a sink.

in the UDTN-Prob is adapted based on the computation of Ts, whereas no adaptation is

performed in SAW. Because of the lower performance of SAW, we are excluding it from our

further results discussions. From this point onward, we will concentrate on the effects of

various parameters of UDTN-Prob.

As we have observed from the previous results discussion that with increasing θ, traffics

in the network decreases, which results in the lower PDR and lower overhead. Therefore, it

is essential to observe the the impact of θ over the PDR and the overhead. To account for this

aspect, we simulate various θ values in both a 5 nodes and a 9 nodes scenario for various

λ and the results are illustrated in Fig. 5.11 and Fig. 5.12. As it can be observed from the

results, in every case when θ is low, the packet overhead is high since the contacting nodes

typically exchange more packets; hence, the PDR is also higher. It can also be observed that

when there are a higher number of nodes in the network, the overhead is even higher since

more nodes in the network means more contact between the nodes. Therefore, the PDR is

also high for such scenario. In most of the scenarios, the overhead approaches to zero when

θ = 1. However, when the traffic generation rate is the highest, i.e., λ = 3, all the nodes have

data to send to the destination almost every time they meet with different nodes. Therefore,

the overhead is higher even for the higher θ values than the other traffic generation rates.
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Figure 5.10. Packet delivery ratio as a function of the data generation rate per node per minute for a

network of 9 nodes and a sink.
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Figure 5.11. Packet delivery ratio as a function of probability θ for various numbers of nodes in the

network and a sink.

Thus, UDTN-Prob keeps it open for the users to decide what delivery ratio they wish to

achieve and what overhead they can compensate.

In Fig. 5.13, we demonstrate the impact of the node velocity on the performance of the
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Figure 5.12. Packet delivery ratio as a function of the data generation rate per node per minute for a

network of 9 nodes and a sink.

protocol for the velocity of 2m/s and 4m/s in a network of 5 nodes. From a general point

of view it can be argued that if the velocity of the nodes increases, the contact probabilities

also increase if they are moving within a fixed area. This argument also seems true for the

velocity 4m/s. Therefore, in the higher θ values, the PDR of the UDTN-Prob with higher

velocity is larger than that of lower velocity.

The impact of the window size over their results performance of the protocol is given in

Fig. 5.14. To obtain the impact we fixed Ts to 40 s, so that every node tries to send a higher

number of packets within a shorter time epoch. Fixing the contact time epoch also indicates

that this protocol can be possible to employ in networks where it is hard to calculate Ts. As

it is demonstrated in Subsection 5.3.2 that window size M of the USR is adaptive, but we

need to fixMF in this scenario. Again, if the distance between the nodes are long enough to

be MF ≤ M ; multiple packet transmissions will not affect the reception of the ACK of the

earlier transmitted packet. On the contrary, whenMF > M , the reception of the ACK of the

previously transmitted packet will be affected by the packet transmission. Therefore, the

window size is considered as the min(M,MF ) and calledM ′ for the rest of the discussion.

From the figure it can be noticed that when the traffic generation rate λwas low,M ′ has little

impact on the PDR. However, when λ is high, with increasing M ′ the PDR also increases.
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Figure 5.13. Packet delivery ratio as a function of node velocity for a network of 5 nodes and a sink.
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Figure 5.14. Packet delivery ratio as a function of window sizeM for a network of 5 nodes and a sink.

Because, when M ′ is higher, a node can transmit more packets in a single RTT and hence,

achieves a higher delivery ratio.

All the results we have discussed so far are obtained employing a 1-hop forwarding tech-

nique, which is relatively easy and simple to implement. However, in Subsection 5.4.2,

another technique of selecting minimum deadline is also discussed, called 2-hop forwarding
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Figure 5.15. Packet Delivery Ratio as a function of probability θ for a network of 9 nodes and a sink.

technique. In Fig. 5.15 and Fig. 5.16, the PDR and the overhead of these two forwarding

techniques are shown for a network of 9 nodes. From the figures, it can be observed that

when θ is low, both the techniques assist a node to transmit an almost similar number of

packets to the other contacting nodes, hence, their PDR and overhead are comparable. How-

ever, for higher values of θ, the PDR of 2-hop forwarding is higher; because, it assists a node

to discover a lower minimum deadline than that of 1-hop forwarding. In 2-hop forwarding

technique, a node not only considers its own meeting time with the destination, unlike in

1-hop forwarding, but also consider whether or not the met node can deliver a packet earlier

through another node. Therefore, also in higher probability, every node exchanges relatively

higher number of packets which is again reflected in the overhead showed in Fig. 5.16. This

is up to the users of the protocol whether they want further complexity in the protocol to

achieve a slight improvement over the delivery ratio.

5.5 Conclusions

In this chapter, we described two replication-based routing protocols, named Underwa-

ter DTN (UDTN) and Underwater DTN routing protocol with probabilistic spray technique

(UDTN-Prob). Both the protocols employ an efficient data exchange technique to make the
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Figure 5.16. Overhead as a function of probability θ for a network of 9 nodes and a sink.

best use of the infrequent contacts among the nodes. The protocols estimate the contact du-

ration among the two nodes that understand to be in contact with each other by exchanging

information through control packets, so that both nodes in contact can have a fair share of

the contact time to transmit their own data. They also incorporate a modified version of

the USR ARQ technique in order to handle the erroneous characteristics of the underwater

channel.

Since UDTN is designed specifically for coastal patrol and surveillance networks, the

nodes exchange a summary of the information in their buffer so that they can feed the shore-

based control center with the newest information. UDTN does not employ any technique

to restrict replication of the packets other the expiration of packet lifetime. However, the

UDTN-Prob is designed for other DTN architectures. Therefore, it does not include any

buffer information in the header. It employs a probabilistic spray technique and a binary

spray technique for efficient forwarding of the packets and for restricting the number of

packets injected into the network. With other information, every node also includes the

minimum deadline information in the control packets which instructs the other node to

send only those packets which have higher lifetime than the provided minimum deadline.

Thus, the UDTN-Prob lower the number of packets injected into the network by allowing

every node to exchange only those packets which other node may be able to deliver to
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the destination by itself or through another node. The minimum deadline is computed

with the help of a probability distribution table where the CDF of meeting with different

nodes are stored for various inter-contact duration. Furthermore, a binary spray technique

is employed in the protocol which reduces the replication of the packets even more.

From the results discussed in the previous section, we can conclude that both the pro-

posed protocols perform better in their respective scenarios than other existing ARQ based

DTN routing protocols, i.e., SAW.
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Chapter6
Conclusions

In this thesis, we first presented the impact of the environment on the performance of

the MAC and routing protocol in a shallow water scenario. From our investigation, we

observed that the performance of the protocols may vary significantly because of the tem-

perature changes within a day. Then we discussed several protocols which are implemented

specifically for underwater acoustic networks to serve different purposes and for different

network architectures.

The first protocol we discussed is Underwater Selective Repeat (USR) which is an error

control protocol designed to assure reliable data transmission at the MAC layer. USR is

designed in such a way that it utilizes the long propagation delay by transmitting multiple

packets in a single RTT using an interlacing technique.

After USR, we presented two routing protocols for the surveillance networks, i.e., Multi-

Sink Routing Protocol (MSRP) andMulti-path Routingwith Limited Cross-Path Interference

(L-CROP). Among them, MSRP is a source routing protocol which selects multiple alterna-

tive paths employing the graph based technique. However, the problem of the MSRP is

that it suffers from large overhead (every packet includes the full path description) with

respect to other routing techniques, and also suffers from the unidirectional link problem.

To overcome these limitations, we proposed L-CORP protocol which employs a neighbor-

aware multi-path discovery algorithm to support low interference multiple paths between

each source-destination pair.

Following that, we discussed two routing protocols specifically designed for underwa-

113



114 Chapter 6. Conclusions

ter delay-tolerant networks, i.e., Underwater Delay-Tolerant Network (UDTN) and UDTN

Probabilistic (UDTN-Prob) routing. UDTN is designed for next generation coastal patrol

and surveillance networks, whereas, UDTN-Prob is for the other types of DTN networks.

Both protocols calculate and divide their contact duration equally so that every node gets

a fair share of the contact duration to exchange data and a modified version of USR is em-

ployed for error correction. Moreover, UDTN-Prob employs a probabilistic spray technique

to restrict the number of packet transmissions.

In the appendix, we presented a simulation framework, named DESERT Underwater

(short for DEsign, Simulate, Emulate and Realize Test-beds for Underwater network proto-

cols) which was designed to realize underwater communication through simulation. It is

an underwater extension of the NS-Miracle simulator to support the design and implemen-

tation of underwater network protocols, which assists the researchers in utilizing the same

code designed for the simulator in actual hardware devices.
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A.1 Overview

The ocean sensing and the monitoring via underwater acoustic networks is fostering a

lot of interest in the research community, as it can provide key information about the mech-

anisms that regulate our planet, as well as the ability to effectively survey water, sea floors,

and the coasts on a large scale, in support to various kinds of missions. Recent advances in
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robotics, acoustic modems, and advanced control, as well as the innovations expected in the

near future, provide most of the ingredients required for the realization of such tasks. One

of the missing key enablers for any practical application is, however, a communication and

networking architecture that allows heterogeneous nodes to communicate effectively and

reliably in the harsh underwater environment. When pursuing the latter goal, researchers

need to easily simulate and prototype their protocol solutions, as well as to share the ob-

tained results and allow others to easily repeat the same experiments. A flexible, reliable

and publicly accessible tool for performance evaluation is of fundamental importance to

test and improve the design of network protocols. Based on the well known andwidespread

network simulator ns2 [1], DESERT Underwater aims at becoming a useful tool to DEvelop,

Simulate, Emulate and Realize Test-beds for Underwater network protocols for the research

community interested in the applications of underwater acoustic communications.

The main objective of our work is the realization of a complete set of public C/C++ li-

braries [2] for supporting the design and implementation of underwater network protocols.

In this perspective, DESERT Underwater will extend the NS-Miracle [3] simulation software

library, developed at the University of Padova, in order to provide several protocol stacks

for underwater networks, as well as the support routines required for the development of

new protocols.

NS-Miracle enhances the network simulator ns2 with an engine for handling cross-layer

messages and, at the same time, for enabling the co-existence of multiple modules within

each layer of the protocol stack. In fact, NS-Miracle shows a high modularity and has been

designed to simulate nodes whose logical architecture is as close as possible to what would

be found on actual devices.

The set of libraries called World Ocean Simulation System (WOSS) [4] endows the net-

work simulator with the chance to simulate the desired protocols over realistic underwater

acoustic channel realizations, and has also been developed based on the NS-Miracle. The

design of protocol solutions for underwater networks in NS-Miracle yields two main ad-

vantages: i) the developers can reuse a lot of code already written for ns2 with minor mod-

ifications, and exploit the modularity of NS-Miracle to better organize the design of their

solutions; ii) it is possible to evaluate the performance of the designed protocol stack via

simulations that employ accurate channel model tools such as WOSS (introduced above).



A.2. Contributions 117

Moreover, DESERT Underwater will make it possible to evolve from pure simulation to-

wards the realization of actual prototypes by framing the hardware of real acoustic modems

into NS-Miracle itself. In line with recent papers such as [5,6], the idea is to wrap all the com-

mands required to communicate with the modem hardware within an NS-Miracle module.

In this perspective, the developer can rely on two supported experimental settings: i) a

(small-scale) EMULATION setting, where multiple acoustic modems are connected with a

single device (e.g., PC, laptop) and controlled by a single NS-Miracle process as illustrated in

Fig. A.1; ii) a TEST-BED setting, where each acoustic modem is controlled by its correspond-

ing unique device (or by a unique NS-Miracle instance, independent of other instances), as

depicted in Fig. A.2.

The rest of this chapter is organized as follows. In Section A.2, my contributions in the

DESERT simulator are discussed. The different DESERT Underwater libraries are presented

in Section A.3; in Section A.4, we discuss preliminary tests that confirm the feasibility of a

network prototype exploiting the code of DESERT; Section A.5 concludes the chapter.

A.2 Contributions

The DESERT came to the light because of the contributions of the several people. In this

framework, I developed a couple of protocols specifically designed for underwater com-

munication; they are: UnderWater Transport Layer (UWTP), UnderWater ALOHA (UW-

ALOHA), UnderWater Medium access Link Layer (UWLL), UnderWater Selective Repeat

(UWSR), WOSS Gauss-Markov Mobility in 3D space (WOSSGMMOB3D) andWOSS Group

Mobility in 3D space (WOSSGROUPMOB3D). I also developed a couple of other protocols

which are going to be included in the next version of the DESERT; they are: Multipath

Interference-Limiting Underwater Routing (MILUR) protocol, Probabilistic Spray (Prob-

spray) DTN protocol, Undetwater DTN (UDTN) protocol, Underwater DTN with Proba-

bilistic Spray (UDTN-Spray) and Underwater FiXed Way Point (UFXWP) mobility model.

Nevertheless, for better understanding of this chapter and for realizing the full essence

of the DESERT simulator, I include all the descriptions of the modules currently present in

it and the experiments which are performed using it.
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Figure A.1. Illustration of the EMULATION setting: a single host (or a single NS instance) controls

multiple modems.

Figure A.2. Illustration of the TEST-BED setting: each modem is controlled by a single host (or a single

NS instance).
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A.3 The DESERT Underwater libraries

In this section we summarize and briefly describe all the NS-Miracle modules that com-

pose the first release of the DESERT Underwater libraries [2]. The objective is to provide a

clear picture of the currently available DESERT protocols, in the form of an accessible list

of modules grouped according to the stack layers defined by the TCP/IP standard. The

presentation follows a top-down approach, i.e., it starts from the upper layers (Application

and Transport layers), and proceeds through the Network and Data Link layers. Finally,

the modules implemented for the Physical layer are illustrated: these include the interface

between the network simulator and the actual modem hardware. At the end of the sec-

tion, we also illustrate four additional modules implemented to simulate node mobility for

underwater network scenarios.

To distinguish NS-Miracle modules that belong to DESERT from those coming from dif-

ferent libraries (e.g., the original NS-Miracle libraries or the libraries of WOSS), all the mod-

ules in DESERT are named with a prefix UW-. This prefix, however, does not mean that the

protocol solution implemented by a given module is optimized for underwater networking

(as a matter of fact, some modules are the same as their terrestrial radio counterparts, as

is the case for the UDP module). Since ns2, and therefore NS-Miracle, is a simulator based

on two different languages (C/C++ for module development and Tcl/OTcl for parameter

settings1), generally we can refer to a given module by means of three names: i) the name

of the module (which corresponds to the name of the folder that contains the C/C++ source

files); ii) the name of the corresponding dynamic library that must be loaded before using

the module itself, and iii) the name2 of the corresponding OTcl object (that we must use in

the parameter configuration file to create the module itself). Since we need to know all three

names in order to use a given NS-Miracle module, in the following we report them for all

the presented modules. If not otherwise specified, all the DESERT modules implemented

for communication protocols can be used for simulation as well as for both emulation and

test-bed purposes.

1Tcl is a scripting language that allows simple access to a set of library functions, whilst OTcl is an extension

of Tcl to provide object-oriented functionality.
2Technically speaking, this is the name of the “shadow” OTcl object associated with the C++ object imple-

mented in the source files. For more details, we refer the reader to the ns2 manual [1].
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A.3.1 Modules for the Application Layer

Currently, in DESERT there are two modules for the application layer: the uwcbr and

the uwvbr modules, detailed in the following. Both modules send dummy packets (i.e.,

with a random payload) and serve to generate network traffic according to two different

mechanisms. To work correctly, all the modules of the application layer must be connected

to a module of the transport layer (for the technical details on how to connect two or more

NS-Miracle modules, the reader may refer to the NS-Miracle documentation [3]).

Name: uwcbr

Description: This module implements a Constant Bit Rate (CBR) packet traffic between a

sender and a receiver. The data traffic can be generated either by injecting packets in the

network with a constant time period or according to a Poisson process with given mean. A

single uwcbr module represents a data flow between a pair of nodes: if there are two or

more nodes transmitting to the same destination, the latter should have an equal number of

uwcbrmodules, one for each flow.

Library name: libuwcbr.so

Tcl name: Module/UW/CBR

Name: uwvbr

Description: This module implements a Variable Bit Rate (VBR) packet traffic between a

sender and a receiver. The data packet generation process takes place by switching be-

tween two different CBR processes, e.g., having different average packet inter-arrival times.

The switch between the processes can be configured by the user by providing the switch-

ing epochs. Otherwise, the simulator can be instructed to switch at constant or exponen-

tially distributed intervals. A single uwvbrmodule represents a data flow between a pair of

nodes: if there are two or more nodes transmitting to the same node, the latter should have

an equal number of uwvbrmodules, one for each flow.

Library name: libuwvbr.so

Tcl name: Module/UW/VBR
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A.3.2 Modules for the Transport Layer

In DESERT Underwater, two modules are provided for the transport layer: a simple

module called uwudp and a more sophisticated one named uwtp, short for underwater

transport protocol. The main features of these two modules are detailed below.

Name: uwudp

Description: This module implements the flow multiplexing and demultiplexing from and

to the upper layers, respectively. It does not support link reliability, error detection or flow

control.

Library name: libuwudp.so

Tcl name: Module/UW/UDP

Name: uwtp

Description: As the previous uwudp, this transport layer module handles the multiplexing

and demultiplexing of data flows, but it also supports an error control technique, as well as

in-order data delivery to the upper layers. In more detail, uwtp includes an Automatic Re-

peat reQuest (ARQ) error control technique. This module can handle both ACK and NACK

messages, as well as cumulative ACKs. To work correctly, uwtp has to know the destination

port number of each application flow it handles: this information must be provided during

the setting of the parameters for the simulations or tests that have to be conducted.

Library name: libuwtp.so

Tcl name: Module/UW/TP

A.3.3 Modules for the Network Layer

The Network Layer is in charge of providing tools for the network interfaces (e.g., ad-

dresses) and mechanisms for data routing. In DESERT, we have developed three algorithms

for routing and a simple module to manage network addresses whose format are compliant

with the IP standard. The details of these modules follow.

Name: uwstaticrouting

Description: This module makes it possible to simulate and test data traffic which has to

follow predetermined routes. For each network node, there is an option to choose a default
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gateway and/or fill a static routing table (whose maximum size is hard-coded and fixed to

100 entries). This information is then exploited locally at each node to forward the network

packets, hop by hop, throughout the predetermined paths.

Library name: libuwstaticrouting.so

Tcl name: Module/UW/StaticRouting

Name: uwsun

Description: This module implements a dynamic, reactive source routing protocol. The

generation of routing paths can bemade based on different criteria, such as theminimization

of the hop-count or the maximization of the minimum Signal to Noise Ratio (SNR) along the

links of the path. uwsun is also designed to collect and process different statistics of interest

for the routing level. Currently, this module supports all application modules provided in

the DESERT (i.e., uwcbr and uwvbr), and it can be easily extended.

Library name: libuwsun.so

Tcl name: Module/UW/SUNNode for the nodes; Module/UW/SUNSink for the sinks.

Name: uwicrp

Description: This module, which requires very few configuration parameters, implements a

simple flooding-based routing mechanism called Information-Carrying Based Routing pro-

tocol, see [7].

Library name: libuwicrp.so

Tcl name: Module/UW/ICRPNode for the nodes; Moudle/UW/ICRPSink for the sinks.

Name: uwip

Description: This module is used to assign an address to the nodes in a given network ac-

cording to the standard IPv4 addresses; it provides the Time-To-Live (TTL) functionality and

does not implement any routing mechanism. It can be configured to provide all the func-

tional and procedural means intended for an Internet Protocol module (e.g., fragmentation,

data reassembly and notification of delivery errors).

Library name: libuwip.so

Tcl name: Module/UW/IP
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A.3.4 Modules for the Data Link Layer

The core of the data link layer is the Medium Access Control (MAC), that administrates

the access to the acoustic communication channel. The DESERT Underwater libraries pro-

vide sixmoduleswhich implement asmanyMAC techniques: uwaloha, uwsr, uw-csma-aloha,

uwdacap, uwpolling and uw-t-lohi, all explained in the following. Additionally, DESERT

provides uwmll, a module to map IP addresses to their corresponding MAC addresses.

Name: uwmll

Description: Since node-to-node communications at the link layer are performed using

MAC addresses whereas the communications at the upper layers employ IP addresses, a

method to associate the latter to the former is required. With uwmll, it is possible to set

the correspondence between IP and MAC addresses a priori, by filling an ARP table for

each network node. Alternatively, ARP tables can be automatically filled using the Address

Resolution Protocol (ARP). The uwmll module must be placed between one (or more) IP

module(s) and one MAC module.

Library name: libuwmll.so

Tcl name: Module/UW/MLL

Name: uwaloha

Description: ALOHA is a random access scheme, i.e., a protocol that allows nodes to send

data packets directly without any preliminary channel reservation process. In its original

version [8], neither channel sensing nor retransmission is implemented and each node can

transmit whenever it has data packets to send. As a consequence, packet losses can occur. In

later adaptations [9], ALOHA has been enhanced with acknowledgment packets (ALOHA-

ACK). The uwaloha module implements the functionality of the basic ALOHA protocol

as well as its enhanced version using ARQ for error control. It is possible to freely switch

between basic ALOHA and ALOHA-ACK.

Library name: libuwaloha.so

Tcl name: Module/UW/ALOHA

Name: uw-csma-aloha

Description: This module implements ALOHA-CS [9], an enhanced version of the ALOHA
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protocol introduced above. ALOHA-CS adds a carrier sensing mechanism to basic ALOHA,

in order to help reduce the occurrence of collisions.

Library name: libuwcsmaaloha.so

Tcl name: Module/UW/CSMA ALOHA

Name: uwdacap

Description: This module implements DACAP (Distance Aware Collision Avoidance Pro-

tocol) [10], which provides a collision avoidance mechanism via a handshake phase prior to

packet transmission. This phase involves the exchange of signaling packets such as Request-

To-Send (RTS) and Clear-To-Send (CTS). This protocol introduces also a very short warning

packet in the RTS-CTS mechanism to further prevent collisions among nodes. DACAP is

designed for underwater networks with long propagation delays and can be implemented

with and without acknowledgements; uwdacap implements both solutions.

Library name: libuwdacap.so

Tcl name: Module/UW/DACAP

Name: uwpolling

Description: This module implements a MAC protocol which is based on a centralized

polling scheme. To fix ideas, focus on an AUV patrolling an area covered by an underwater

sensor field; the AUV coordinates the data gathering from the sensors in a centralized fash-

ion using a polling mechanism. This mechanism is based on the exchange of three types of

messages: a broadcast TRIGGER message, that the AUV sends to notify the sensor nodes

of its presence; a PROBE message, that the sensors use to answer the initial TRIGGER mes-

sage; and a POLL message, sent again by the AUV and containing the order in which the

underwater nodes can access the channel to communicate their data. This order of polling is

determined by the AUV, given the information collected from the PROBE messages which

may include, among others, such metrics as the residual energy of the nodes, the timestamp

of the data to be transmitted or a measure of their priority. Because of its nature, the al-

gorithm implemented by uwpolling does not require any routing mechanism on top of

it.

Library name: libuwpolling.so
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Tcl name: Module/UW/POLLING AUV for the AUV; Module/UW/POLLING NODE for the

sensor nodes.

Name: uw-t-lohi

Description: Tone-Lohi (T-Lohi) [11] is a MAC protocol that uses tones during contention

rounds to reserve the channel. Other nodes competing for channel access are detected dur-

ing a contention round, by listening to the channel after sending the reservation tone. T-Lohi

takes advantage of the long propagation delays present in underwater networks to count the

number of contenders reliably, and act accordingly during the contention round. Tone-Lohi

can be: 1) synchronized (ST-Lohi); 2) conservative unsynchronized (cUT-Lohi), which en-

ables the counting of all contenders by extending the duration of the contention round to

twice the maximum expected propagation delay, and 3) aggressive unsynchronized (aUT-

Lohi), to reduce idle times (while increasing the probability of collisions). The uw-t-lohi

module implements all of three versions of T-Lohi above; the user can freely choose which

one to enable. However, since the possibility of transmitting actual tones depends on the

available hardware, this module has not been considered for emulation and test-bed; differ-

ently, it can be exploited for simulation purposes using WOSS.

Library name: libuwtlohi.so

Tcl name: Module/UW/TLOHI

Name: uwsr

Description: Automatic Repeat reQuest (ARQ) is the basic mechanism to ensure that no

erroneous packets are delivered to layers higher than the data-link. When a packet is re-

ceived with errors, the receiver may ask for retransmissions by sending a small packet called

NACK (Negative ACKnowledgment). Similarly, a successful transmission can be notified

to the transmitter via an ACK packet. Selective Repeat ARQ allows the transmitter to send

up to N consecutive packets before waiting for ACKs or NACKs. The packets sent and not

yet acknowledged must be buffered by the transmitter; the receiver can also buffer packets

and, in case of errors, only the erroneous packets are sent again. uwsr implements a Selec-

tive Repeat ARQ mechanism in combination with an Additive Increase and Multiplicative

Decrease (AIMD) congestion control technique, similar to TCP’s congestion window size

adaptation. This protocol has been shown to be effective because the underwater channel
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propagation delay is sufficiently large to accommodate more than one packet transmission

within one round-trip time (RTT) [12].

Library name: libuwsr.so

Tcl name: Module/UW/USR

A.3.5 Modules for the Physical Layer: interfaces for real acoustic modem hard-

ware

Currently, DESERT is supporting three different hardware platforms for emulation and

test-bed realization: the S2C hydroacoustic modem, a system developed by Evologics [13]

which exploits the Sweep-Spread Carrier (S2C) technology for underwater data teleme-

try and communications; the FSK and PSK WHOI micro-modems, two small-footprint,

low-power acoustic modems based on a Texas Instruments DSP and developed by the

Woods Hole Oceanographic Institution (WHOI) [14]. However, the uwmphy modem mod-

ule, which implements the general interface between the acoustic modem hardware and

NS-Miracle, can be easily extended to support other different hardware. In the following,

we describe uwmphy modem, along with the DESERT modules specialized for the above

hardware (mfsk whoi mm, mpsk whoi mm and ms2c evologics), as well as an additional

module called uwmphypatch that is intended for preparing the OTcl scripts needed to set

the parameters of the networking prototypes to test.

Name: uwmphypatch

Description: uwmphypatch is a dumb module to patch the absence of a physical layer

when a MAC module is used. It just receives and forwards a packet handling the cross-

layer messages required by all the MAC layers of DESERT. The main aim of this module is

to observe the behavior of a given network protocol over an ideal channel, before interfacing

the network simulator engine with real hardware. It should be used in conjunction with the

underwater channel or the dumb wireless channel provided by the NS-Miracle libraries,

and mainly to gather insight about the mechanisms of the investigated network protocol

(independently of the errors that can be introduced by the channel). Any usage related to

performance evaluation is not recommended.

Library name: libuwmphypatch.so
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Tcl name: Module/UW/MPhypatch

Name: uwmphy modem

Description: This module defines and implements the general interface between ns2/NS-

Miracle and real acoustic modems. uwmphy modem manages all the messages needed by

NS-Miracle (e.g., cross layer messages between MAC and PHY layers) and contains all the

simulation parameters that can be set by the user, along with the methods to change them.

This module is an abstract class that must be used as base class for any derived class that

interfaces NS-Miracle with a given hardware. Therefore, neither an actual object for this

module nor its corresponding shadowed Tcl object can be created, hence there is no “Tcl

name” associated to this module.

Library name: libuwmphy modem.so

Tcl name: —

Name: mfsk whoi mm

Description: Module derived from uwmphy modem to implement the interface between

ns2/NS-Miracle and the FSK WHOI micro-modem.

Library name: libmfsk whoi mm.so

Tcl name: Module/UW/MPhy modem/FSK WHOI MM

Name: mpsk whoi mm

Description: Module derived from uwmphy modem to implement the interface between

ns2/NS-Miracle and the PSK WHOI micro-modem.

Library name: libmpsk whoi mm.so

Tcl name: Module/UW/MPhy modem/PSK WHOI MM

Name: mgoby whoi mm

Description: Module derived from uwmphy modem to implement the interface between

ns2/NS-Miracle and the WHOI micro-modems (both the FSK and PSK version) using the

Goby software [15] to handle the connection with the modems.

Library name: libmgoby whoi mm.so

Tcl name: Module/UW/MPhy modem/GOBY WHOI MM

Name: MS2C EvoLogics
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Description: Module derived from uwmphy modem to implement the interface between

ns2/NS-Miracle and the S2C EvoLogics modem.

Library name: libmstwoc evologics.so

Tcl name: Module/UW/MPhy modem/S2C

A.3.6 Additional modules to simulate mobility

When underwater networks are simulated, the tested solution should be investigated

using accurate models that encompass, among other things, realistic mobility patterns. The

DESERT libraries also include four modules to simulate node mobility in 2D as well as 3D

scenarios (since in underwater environments nodes can move along any direction in space):

uwdriftposition and uwgmposition are stand-alone mobility modules, whereas both

wossgmmob3D and wossgroupmob3D require the installation of WOSS to work. All of

them are detailed in the follows.

Name: uwdriftposition

Description: This module implements a mobility model that mimics the drift of a node

caused by ocean currents. Given the mean speed and direction of the waves, the initial

node’s position and its velocity, uwdriftposition continuously update the node’s loca-

tion in order to follow the direction of the current. At each update, the new node position is

also affected by a random noise that aims at reproducing the waving movement typical of

objects floating in the water.

Library name: libuwdriftposition.so

Tcl name: Position/UW/DRIFT

Name: uwgmposition

Description: This module implements the Gauss-Markov Mobility Model [16] (both in 2D

and 3D), a solution designed to produce smooth and realistic traces by appropriately tuning

a correlation parameter α. When required, uwgmposition updates node speed and direc-

tion according to a finite state Markov process. Once the desired means speed vmean is fixed,

α controls the correlation between the speed vector and direction at state k and that at k− 1.

Library name: libuwgmposition.so

Tcl name: Position/UW/GM
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Name: wossgmmob3D

Description: This module also implements the Gauss Markov Mobility Model, but with

some changes that make it directly usable with WOSS. For example, WOSS employs the

geographic coordinate system (i.e., latitude, longitude and altitude/depth) for the positions

of the nodes; therefore, wossgmmob3D also adopts the geographical coordinate system to

describe the node movements.

Library name: libwossgmmobility.so

Tcl name: WOSS/GMMob3D

Name: wossgroupmob3D

Description: This module implements a leader-follower paradigm (also known as “group

mobility model”). According to this model, we have: i) a leader node, that moves either ran-

domly (i.e., according to a Gauss-MarkovMobilityModel) or by following a pre-determined

path, and ii) one or more followers that tune their movements so as to mimic the route of

the leader. The movement of the followers is generated as the sum of two components: a

movement that attracts the follower towards the leader and a random movement. The first

one is obtained according to the mathematical model that describes the attraction between

two electrical charges [17], whereas the second one is still based on a Gauss-Markov Mobil-

ity Model. Three parameters regulate the attractive component of the overall movement of

a follower: the “charge of the leader”, the “charge of the follower”, and a third parameter

α which is used to determine the intensity of the “attraction field”; in particular, a nega-

tive value of α attracts the follower towards the leader, whereas a positive value pushes

the follower away. Like wossgmmob3D, also wossgroupmob3D supports 3D mobility and,

currently, can be used only in conjunction with WOSS.

Library name: libwossgroupmobility.so

Tcl name: WOSS/GroupMob3D

A.4 Emulation and Testbed settings: A first feasibility test

As illustrated in the previous section, the DESERT Underwater libraries currently pro-

vide interfaces between the NS-Miracle network simulator and two commercial modems:

the WHOI Micro-Modem, developed by the Woods Hole Oceanographic Institution, and
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Figure A.3. Sketches of the performed feasibility tests: (a) bidirectional Link Test (from node 1 to node 2

and vice-versa); (b) Two-Hop Communication.

the S2C acoustic modem, manufactured by EvoLogics. To thoroughly test and improve the

designed interfaces, we are planning to realize extensive experimental campaigns in collab-

oration with both partners. However, some preliminary tests have already been performed

to show the feasibility of the adopted solution.

Part of these tests have been conducted at the Department of Information Engineering

of the University of Padova, using three FSK WHOI Micro-Modems. These modems work

in the 3-30 kHz frequency range, have a data rate of 80 bit/s and, when powered at 36 V, can

reach a working range of up to 2 km horizontally and up to 9 km vertically. They can be con-

trolled using the NMEA [18] communications standard to handle both host-to-modem and

modem-to-modem communications. The communication software also provides the use of

“minipackets”, that have been exploited during our experiments, as they do not require the

preliminary transmission of control packets (e.g., initialization messages compliant with the

NMEA standard).

A schematic representation of our first feasibility tests is reported in Fig. A.3: (a) first,

we have successfully realized a point to point communication, both in the EMULATION
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Figure A.4. Illustration of the protocol stacks used during the feasibility tests.

and TEST-BED setting; (b) then, in the TEST-BED setting, we have realized a two-hop com-

munication between nodes 1 and 3, using node 2 as a relay. In detail, using the engine of

NS-Miracle, each node has been created according to a simple but complete protocol stack

using the following modules: uwcbr, uwudp, uwstaticrouting, uwip, uwmll, uwaloha

and mfsk whoi mm (see Fig. A.4). At the transmitter, each data packet is generated by the

CBR application; the packet is then sent down through several layers of the chosen protocol

stack according to the engine of the network simulator; the information contained in each

packet and in its header is then compressed to fit in the Micro Modem minipacket payload

using the mfsk whoi mm module; finally, the minipacket is transmitted over the acoustic

channel. At the destination, each received packet follows the reverse path: it is re-generated

starting from the payload of the minipacket and mapped into the corresponding data struc-

ture of the network simulator; finally, it is sent through the whole protocol stack, up to the
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application layer of the destination node.

While there is indeed a functional difference between the EMULATION and the TEST-

BED setting, the only technical difference between the two approaches is the fitting of NS-

Miracle packets into modem payloads and the reverse operation. In the EMULATION set-

ting, in fact, multiple acoustic modems are connected with a single device and therefore

packets can be exchanged among the nodes using the same mechanism as in the network

simulator (in our implementation, this is accomplished by transmitting a pointer to the data

structure containing all the needed packet fields). In the TEST-BED setting, instead, we need

to send all the information necessary to rebuild, at the receiver side, the original NS-Miracle

packet as it had been created and modified by the network simulator running on the trans-

mitter host.

In Tables A.1–A.4, we report portions of a typical trace-files obtained for the feasibility

tests illustrated in Fig. A.3, when data packets have been sent from the source to the destina-

tion with a packet inter-arrival period of 7 s. These files trace the packet transition from one

layer of the protocol stack (identified by the corresponding NS-Miracle module) to the sub-

sequent one; they are organized in six columns, with the followingmeaning: 1) packet origin

(sent packet, “s” or received packet, “r”); 2) simulation time at which the packet transition

between layers has occurred; 3) node ID; 4) source DESERT module; 5) destination DESERT

module; 6) sequence number of the data packet. Table A.1 and Tables A.2–A.3 refer to the

feasibility test (a), for the EMULATION and the TEST-BED setting, respectively. In the case

of EMULATION, we collected all the traces in a single file (as commonly done when we

run simulations using NS-Miracle); in the case of TEST-BED, instead, the traces have been

created independently for each modem by the corresponding hosts (or ns2 process). In both

cases, we can observe that all the considered protocol stacks have been correctly traversed

by the exchanged packets, at the transmitter as well as at the receiver (the first packet is

rendered using a red boldface font, both at the transmitter and at the receiver). Note also

that the simulation time elapsed between the transmission of a given packet and its recep-

tion in the TEST-BED case increases with respect to the EMULATION case (from about 3 to

about 5 s); this is due to two issues related to the TEST-BED case: the asynchronous simula-

tion timers of the two nodes (during these TEST-BED tests, simulations have been launched

manually and always starting from the receiver), and the increased complexity for mapping
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Table A.1. Trace file logged during the feasibility test (a) in Figure A.3 (EMULATION setting). Node 1

is the transmitter and Node 2 is the receiver.

s 7.025577068 1 CBR UDP SN=1

s 7.025577068 1 UDP Static Routing SN=1

s 7.025577068 1 Static Routing IP SN=1

s 7.025577068 1 IP ARP Tables SN=1

s 7.025577068 1 ARP Tables ALOHA SN=1

s 7.025723219 1 ALOHA FSK WHOI MM SN=1

r 10.015380144 2 FSK WHOI MMALOHA SN=1

r 10.015380144 2 ALOHA ARP Tables SN=1

r 10.015380144 2 ARP Tables IP SN=1

r 10.015380144 2 IP Static Routing SN=1

r 10.015380144 2 Static Routing UDP SN=1

r 10.015380144 2 UDP CBR SN=1

s 14.025732994 1 CBR UDP SN=2

s 14.025732994 1 UDP Static Routing SN=2

s 14.025732994 1 Static Routing IP SN=2

s 14.025732994 1 IP ARP Tables SN=2

s 14.025732994 1 ARP Tables ALOHA SN=2

s 14.025867224 1 ALOHA FSK WHOI MM SN=2

r 17.018894196 2 FSK WHOI MM ALOHA SN=2

r 17.018894196 2 ALOHA ARP Tables SN=2

r 17.018894196 2 ARP Tables IP SN=2

r 17.018894196 2 IP Static Routing SN=2

r 17.018894196 2 Static Routing UDP SN=2

r 17.018894196 2 UDP CBR SN=2

· · ·
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Table A.2. Trace file for the feasibility test (a) in figure A.3 (TEST-BED setting) logged at node 1 (trans-

mitter).

s 7.012847900 1 CBR UDP SN=1

s 7.012847900 1 UDP Static Routing SN=1

s 7.012847900 1 Static Routing IP SN=1

s 7.012847900 1 IP ARP Tables SN=1

s 7.012847900 1 ARP Tables ALOHA SN=1

s 7.013003111 1 ALOHA FSK WHOI MM SN=1

s 14.013986111 1 CBR UDP SN=2

s 14.013986111 1 UDP Static Routing SN=2

s 14.013986111 1 Static Routing IP SN=2

s 14.013986111 1 IP ARP Tables SN=2

s 14.013986111 1 ARP Tables ALOHA SN=2

s 14.014182091 1 ALOHA FSK WHOI MM SN=2

· · ·

Table A.3. Trace file for the feasibility test (a) in figure A.3 (TEST-BED setting) logged at node 2 (receiver).

r 12.013406992 2 FSK WHOI MM ALOHA SN=1

r 12.013406992 2 ALOHA ARP Tables SN=1

r 12.013406992 2 ARP Tables IP SN=1

r 12.013406992 2 IP Static Routing SN=1

r 12.013406992 2 Static Routing UDP SN=1

r 12.013406992 2 UDP CBR SN=1

r 19.020930052 2 FSK WHOI MM ALOHA SN=2

r 19.020930052 2 ALOHA ARP Tables SN=2

r 19.020930052 2 ARP Tables IP SN=2

r 19.020930052 2 IP Static Routing SN=2

r 19.020930052 2 Static Routing UDP SN=2

r 19.020930052 2 UDP CBR SN=2

· · ·
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Table A.4. Trace file obtained for the feasibility test (b) in figure A.3 (TEST-BED setting) logged at node

2 (relay node).

r 11.011646986 2 FSK WHOI MM ALOHA SN=1

r 11.011646986 2 ALOHA ARP Tables SN=1

r 11.011646986 2 ARP Tables IP SN=1

r 11.011646986 2 IP Static Routing SN=1

s 11.011646986 2 Static Routing IP SN=1

s 11.011646986 2 IP ARP Tables SN=1

s 11.011646986 2 ARP Tables ALOHA SN=1

s 11.011960030 2 ALOHA FSK WHOI MM SN=1

· · ·

and de-mapping NS-Miracle packets into modem payloads (even though the delay intro-

duced by this second issue is negligible with respect to the first one). Table A.4, instead,

shows a portion of the trace file generated for the relay node 2 during the feasibility test (b).

In this case, we can observe the behavior that we imposed for the routing protocol at the

network layer: since node 2 must act as a relay, when it receives a packet for node 3 from

node 1, this packet has been propagated only up to the network layer and then immediately

sent down to be forwarded to its intended destination.

To move beyond just feasibility tests done in the laboratory, we also conducted a first

field experiment in the Piovego channel which flows near our department. We put the trans-

ducers at a distance of 2 m from the bank, where the channel is around 80 to 90 cm depth,

with a muddy bottom. We also decreased the supply voltage of the micro-modems to 12 V,

in order to decrease their transmission ranges. Using the same script prepared for test (a) in

Fig. A.3, we have performed several point-to-point transmissions (in the TEST-BED setting)

varying the distance between nodes: i.e., we kept node 1 fixed and moved node 2 away,

in steps of 3 m. For each tested link, we sent 50 packets, separated by a time interval of 4

seconds in both directions (i.e., from node 1 to node 2 and vice-versa).

Fig. A.5 shows the observed packet error rate (PER) as a function of the distance be-

tween the sender and the receiver, in both directions (note that, as expected, the observed
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Figure A.5. Packet Error Rate observed during the field experiment in the Piovego channel.

underwater channel is not symmetric). Over the acoustic channel we sent FSK packets with

an overall length of 32 bits, at a bit rate of 80 bit/s. Despite the adverse conditions (very

shallow water, wind-generated surface ripples and noise, proximity to the bank, water tur-

bidity), this test allowed us to verify the feasibility of the DESERT Underwater libraries,

when used to drive real modem hardware.

A.5 Conclusions

Focusing on underwater applications, in this chapter we discussed the chance to evolve

from the simulations to the realization of underwater network prototypes by interfacing

real hardware devices with software network simulators. After having recognized this ac-

tivity as a key effort to profitably develop and test real world applications, we presented

the DESERT Underwater framework. This is a set of public C/C++ libraries based on the

NS-Miracle [3] simulation software, developed at the University of Padova. The DESERT

Underwater libraries are meant as a flexible and reliable tool to support the design and im-

plementation of underwater network protocols.
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We have listed and briefly described all the developed libraries currently available. These

libraries are intended to be used jointly, possibly in many different combinations, thus re-

alizing several protocol stacks for underwater networks. We also introduced the general

interface designed to integrate the NS-Miracle network simulator with real hardware, as

well as its specialized versions for two existing commercial modems.

Finally, we performed some preliminary tests to assess the feasibility of the DESERT

Underwater libraries for network prototyping. These tests allow us to successfully per-

form single-hop as well as two-hop transmissions using the same code implemented in

NS-Miracle for simulation purposes. We believe that our work, the public release of the

DESERT Underwater libraries [2], and their future development, represent a fundamental

step for the study of effective underwater network protocols, moving from the simulations

to the real world.
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