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Abstract

This thesis is concerned with various problems arising in the study of nonlinear elliptic PDE.
It is divided into three parts.
In the first part we consider the short time behaviour of stochastic systems affected by a

stochastic volatility evolving at a faster time scale. Our mathematical framework is that of
multiple time scale systems and singular perturbations. We are concerned with the asymptotic
behaviour of a logarithmic functional of the process, which we study by methods of the
theory of homogenization and singular perturbations for fully nonlinear PDEs. We point out
three regimes depending on how fast the volatility oscillates relative to the horizon length.
We provide some financial applications, namely we prove a large deviation principle for each
regime and apply it to the asymptotics of option prices near maturity.
In the second part we are concerned with the well-posedness of Neumann boundary value

problems for nonlocal Hamilton-Jacobi equations related to jump processes in general
(enough smooth) domains. We consider a nonlocal diffusive term of censored type of
order less than 1 and Hamiltonian both in coercive form and in noncoercive Bellman form,
whose growth in the gradient make them the leading term in the equation. We prove a
comparison principle for bounded sub-and supersolutions in the context of viscosity solutions
with generalized boundary conditions, and consequently by Perron’s method we get the
existence and uniqueness of continuous solutions. We give some applications in the evolutive
setting, proving the large time behaviour of the associated evolutive problem under suitable
assumptions on the data.
In the last part we present some stability results for a class of integral inequalities, the Borell-

Brascamp-Lieb inequality and we strengthen, in two different ways, these inequalities in the
class of power concave functions. Then we present some applications to prove analogous
quantitative results for certain type of isoperimetric inequalities satisfied by a wide class
of variational functionals that can be written in terms of the solution of a suitable elliptic
boundary value problem. As a toy model, we consider the torsional rigidity and prove
quantitative results for its Brunn-Minkowski inequality and for its consequent (Urysohn type)
isoperimetric inequality.



Questa tesi si occupa di vari problemi che sorgono nello studio di equazioni alle derivate
parziali ellittiche e paraboliche. La tesi è divisa in tre parti.
Nella prima parte studiamo il comportamento per tempi brevi di sistemi dinamici a volatilità

stocastica che evolve in una scala temporale più veloce. Ci occupiamo di perturbazioni
singolari di sistemi a scala temporale multipla. Il nostro primo obiettivo è lo studio del
comportamento asintotico di un funzionale logaritmico del processo stocastico, attraverso i
metodi della teoria dell’ omogeneizzazione e delle perturbazioni singolari per equazioni alle
derivate parziali completamente non lineari. Individuiamo tre regimi a seconda della velocità
con cui la volatilità oscilla rispetto alla lunghezza dell’orizzonte temporale. Inoltre forniamo
alcune applicazioni finanziarie, in particolare proviamo un principio di grandi deviazioni in
ogni regime e lo applichiamo per derivare una stima asintotica dei prezzi di opzioni vicino
alla maturità e una formula asintotica per la volatilità di Black-Scholes implicita.
Nella seconda parte studiamo la buona definizione di problemi al contorno di tipo Neumann,

in domini generali (sufficientemente regolari), per equazioni tipo Hamilton-Jacobi con termini
non locali che derivano da processi discontinui a salti. Consideriamo un termine diffusivo
non locale di tipo “censored”, di ordine strettamente minore di 1, e un’ Hamiltoniana, sia in
forma coerciva sia di tipo Bellman non necessariamente coerciva, la cui crescita nel gradiente
la rende il termine principale nell’equazione. Dimostriamo un principio di confronto per sotto
e sopra soluzioni limitate (in senso di viscosità) con condizioni al contorno generalizzate,
e di conseguenza tramite il metodo di Perron otteniamo l’esistenza e l’unicità di soluzioni
continue. Diamo alcune applicazioni nel caso evolutivo, dimostrando la convergenza per
tempi grandi della soluzione del problema evolutivo alla soluzione del problema stazionario
associato, supponendo opportune ipotesi sui dati.
Nell’ultima parte presentiamo alcuni risultati di stabilità per una classe di diseguaglianze

integrali, le disuguaglianze Borrell-Brascamp-Lieb e rafforziamo, in due modi diversi, queste
disuguaglianze nella classe di funzioni a potenza concava. Come applicazione di questo
risultato, presentiamo analoghi risultati quantitativi per alcuni tipi di disuguaglianze isoperi-
metriche soddisfatte da un’ampia classe di funzionali variazionali che possono essere scritti
in termini della soluzione di un opportuno problema al contorno ellittico. Come modello
giocattolo, consideriamo la rigidità torsionale e dimostriamo risultati quantitativi per la sua
disuguaglianza Brunn-Minkowski e per la sua conseguente disuguaglianza isoperimetrica di
tipo Urysohn.
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Basic notation 5

Basic notation

R+ The set of positive real numbers.
Rd The d dimensional euclidean space, d ≥ 1.
x · y (also (x,y)) The scalar product ∑

d
i=1 xiyi of two vectors x = (x1, · · · ,xd) and

y = (y1, · · · ,yd).
Br(x),Br The open ball of radius r centered at x. If x is omitted, we assume

x = 0.
Sd−1 The unitary sphere in Rd .
Ω will be a domain of Rd .
C(Ω) The space of continuous functions on Ω.
BC(Ω) The space of bounded and continuous functions on Ω.
BUSC(Ω) The space of bounded upper semicontinuous functions on Ω.
BLSC(Ω) The space of bounded lower semicontinuous functions on Ω.

Ck(Ω) The space of continuous functions on Ω with continuous deriva-
tives of order j, j = 1, · · · ,k.

C2,γ(Ω) The space of functions in C2(Ω), with γ-holder continuous second
derivatives.

∂ f
∂xi

, D f Partial derivatives with respect to the i-th variable and gradient
vector of f .

∂ 2 f
∂x jxi

, D2 f Partial derivatives with respect to the j-th variable of ∂ f
∂xi

and
Hessian matrix of f .

n = n(x) The outer normal vector at a point x ∈ ∂Ω.
∂ f
∂n Normal derivative n ·D f .
|| f ||∞ The supremum norm supx∈Ω | f (x)| of a function f : Ω → R.
|| f ||L∞(Ω) inf{C ≥ 0 : | f (x)| ≤C almost everywhere inΩ}.
L∞(Ω) The space of functions f : Ω → R such that || f ||L∞(Ω) <+∞

W 2,∞(Ω) The space of functions in L∞(Ω) with first and second weak deriva-
tive in L∞(Ω).

Mr,d The space of matrices r×d.
||A||∞,A ∈ Mr,d maxi ∑ j |Ai j|
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Introduction

This thesis is divided into three part. The first part deals with small time behaviour of
stochastic systems affected by a stochastic volatility evolving at a faster time scale by
viscosity methods. In the second part we study existence and uniqueness of Neumann
boundary value problems for nonlocal equations related to discontinuous jump processes.
In the third part we present quantitative stability results for a certain class of isoperimetric
inequalities. In the first two parts we use methods taken mainly from the theory of viscosity
solutions. The third part is different for both contents and methods, which are taken mainly
from convex analysis and geometry.

Part I-Large deviations of some fast stochastic volatility models by vi-
scosity methods

In Part I we present the results of [17] and [18] carried out in collaboration with Martino
Bardi and Annalisa Cesaroni.
We are interested in stochastic differential equations with two small parameters ε > 0 and

δ > 0 of the form{
dXt = εφ(Xt ,Yt)dt +

√
2εσ(Xt ,Yt)dWt X0 = x ∈ Rn,

dYt =
ε

δ
b(Yt)dt +

√
2ε

δ
τ(Yt)dWt Y0 = y ∈ Rm,

(1)

where Wt is a standard r-dimensional Brownian motion, and the matrix τ is non-degenerate.
This is a model of systems where the variables Yt evolve at a much faster time scale s = t

δ

than the other variables Xt . The second parameter ε is added in order to study the small time
behavior of the system, in particular the time has been rescaled in (1) as t 7→ εt.
Passing to the limit as δ → 0, with ε fixed, is a classical singular perturbation problem. Its

solution leads to the elimination of the state variable Yt and the reduction of the dimension of
the system from n+m to n and to the definition of an averaged limit system defined in Rn

only. Of course the limit problem keeps some information on the fast part of the system.
There is a large mathematical literature on singular perturbation problems, both in the

deterministic (σ ≡ 0,τ ≡ 0) and in the stochastic case. In particular we mention some
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mathematical contributions most related to our work and methods, such as the monographs
[121], [115], the memoir [3] (see also the references therein).
Our aim is to study the asymptotic behavior of the system (1) as both the parameters go to 0

and we expect different limit behaviors depending on the rate ε/δ . Therefore we put

δ = ε
α , with α > 1.

We consider a functional of the trajectories of (1) of the form

vε(t,x,y) := ε logE
[
eh(Xt)/ε |(X .,Y.) satisfy (1)

]
, (2)

where h is a bounded continuous function. We observe that the logarithmic form of this
payoff is motivated by the applications to large deviations that we want to give.
It is known that vε solves the Cauchy problem with initial data vε(0,x,y) = h(x) for a fully

nonlinear parabolic equation in n+m variables. Letting ε → 0 in this PDE is a regular
perturbation of a singular perturbation problem for an HJB equation, where the fast variable
y lives in Rm.
Our first aim is to prove that, under suitable assumptions, the functions vε(t,x,y) converge

to a function v(t,x) characterised as the solution of the Cauchy problem for a first order
Hamilton-Jacobi equation in n space dimensions

vt − H̄(x,Dv) = 0 in ]0,T [×Rn, v(0,x) = h(x), (3)

for a suitable effective Hamiltonian H̄.
We observe that the existing techniques to treat this kind of problems have been developped

so far mainly under assumptions implying some kind of boundedness of the fast variable. We
refer mainly to the methods of [4], stemming from the pioneering paper of Lions-Papanicolau-
Varadhan [128] and Evans’ [76] on periodic homogenization and its extensions to singular
perturbations [1–3].
A classical hypothesis is the periodicity with respect to Yt of the coefficients of the stochastic

system, which in particular implies the periodicity in y of the solutions vε . In Chapter 1
we carry out our analysis under this main assumption, treating what we call the periodic
case. In the periodic case, the convergence is quite standard once the effective problem is
identified and a comparison principle is proved. The most significant part in Chapter 1 is
the identification of the effective Hamiltonian H̄, which is obtained by solving a suitable
cell problem. As usual in the theory of homogenization for fully nonlinear PDEs, this is
an additive eigenvalue problem. It turns out to have different forms in the following three
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regimes depending on α: 
α > 2 supercritical case,
α = 2 critical case,
α < 2 subcritical case.

More precisely, in the supercritical case the cell problem involves a linear elliptic operator
and H̄ has the explicit formula

H̄(x, p) =
∫
Tm

|σ(x,y)T p|2 dµ(y)

where µ is the invariant probability measure on the m-dimensional torus Tm of the stochastic
process

dYt = b(Yt)dt +
√

2τ(Yt)dWt .

In the critical case the cell problem is a fully nonlinear elliptic PDE and H̄ can be represented
in various ways based, e.g., on stochastic control. Finally, in the subcritical case the cell
problem is of first order and nonlinear, and a representation formula for H̄ can be given in
terms of deterministic control. In particular, under the condition τσT = 0 of non-correlation
among the components of the white noise acting on the slow and the fast variables in (1), we
have

H̄(x, p) = max
y∈Rm

|σT (x,y)p|2.

Let us mention that an important step of the method is the comparison principle for the limit
Cauchy problem (3), ensuring that the weak convergence of the relaxed semilimits is indeed
uniform, as well as the uniqueness of the limit.

In Chapter 2 we consider fast mean-reverting stochastic volatility systems as in (1) where
the fast variable is unbounded and actually lives in Rm, under suitable assumption on the
coefficients of the system. The non compactness is replaced by some condition implying
ergodicity, i.e that the process Yt has a unique invariant distribution (the long-run distribution)
and that in the long term it becomes independent of the initial distribution.
Following the line of Chapter 1, we consider a logarithmic functional of the trajectories

of (1), and we prove that its limit as ε → 0 can be characterised as the unique solution of a
suitable limit problem.
In this part the main difficulties are due to the unboundedness of the process Yt . Mainly

because of this difficulty, we have to assume further hypotheses on the coefficients of the
stochastic system; in particular we manage to treat processes mainly of Ornstein-Uhlenbeck
type, that is

Yt = (µ −Yt)dt + τ(Yt)dWt
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where µ ∈Rm is a vector, and τ is bounded and uniformly non degenerate. Note that the drift
is dependent on the current value of the process in the following way (take for simplicity
m = 1): if the current value of the process is less than the (long-term) mean, the drift will be
positive; if the current value of the process is greater than the (long-term) mean, the drift will
be negative. This gives the process the name “mean-reverting”.
The motivation behind the analysis of such kind of systems relies in the fact that the

assumption of periodicity of Chapter 1 seems a bit restrictive for the financial applications
we have in mind, in particular it does not appear natural in order to model volatility in
financial markets, according to the empirical data and the discussion presented in [86] and
the references therein.
We remark that in this part we manage to treat the critical case (α = 2) and the supercritical

case (α > 2), whereas we don’t deal with the subcritical case (α < 2). Indeed in the subcritical
case the cell problem is not solvable in general; this is essentially due to the fact that the
ergodicity of the fast process plays no role in the cell problem in this case.
The main issues are the resolution of the cell problem, the identification of the limit Hamilto-

nians and the convergence result. Our methods are based on the use of the approximate δ -cell
problem. A key result is the global Lipschitz bound for the solution of the δ -approximate cell
problem, uniform in δ , proved in Chapter 2, Proposition 2.5.5 (critical case) and Proposition
2.5.14 (supercritical case). The proof is inspired in some part by a method due to Ishii
and Lions [112] (see also [67],[28] and the references therein), which essentially allows
to take profit of the uniform ellipticity of the equation to control the Hamiltonian terms.
However, we remark that usually the Ishii-Lions method allows to achieve bounds which
depend on the L∞-norm of the solution (at least if we do not assume any periodicity), whereas
our aim is to establish a global estimate in all the space independent of such norm. The
fundamental hypothesis which enables us to achieve our result consists in assuming that
the fast processes we consider are mainly of Ornstein-Uhlenbeck type. Note also that we
deal with both linear Hamiltonians in the gradient (in the supercritical case) and superlinear
quadratic Hamiltonians (in the critical case).
In the critical case the proof is carried out in three steps. We prove first an uniform local

Lipschitz bound for the solution of the δ -cell problem (see Chapter 2, Section 2.5, Lemma
2.5.1). The proof of the local bound is carried out by the Bernstein method relying on the
coercivity in the gradient of the cell equation (which, in the critical case, is an uniformly
elliptic second order equation with quadratic Hamiltonian in the gradient). Note that, thanks
to this local gradient bound, we are able to consider fast processes which coincide with the
Ornstein-Uhlenbeck process only outside some ball. Moreover, it allows us quite general
assumptions on the stochastic volatility (see assumption (S), Chapter 2, Section 2.1.1) . As a
second step we prove a global Hölder bound not uniform in δ (see Proposition 2.5.2) by the
Ishii-Lions method, relying mainly on the uniform ellipticity and on the Ornstein-Uhlenbech
nature of the process Yt . Finally, we achieve the global uniform Lipschitz bound using the
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first two steps and again relying deeply on the fact that the process Yt coincides with the
Ornstein-Uhlenbeck process (outside a ball) and on assumption (S) on the volatility. We
remark that the proof is non standard mainly because we do not use any compactness or
periodicity on the coefficients and our result is independent of δ and holds in all the space.
On the contrary, in the supercritical case the cell problem is an uniformly elliptic equation

linear in the gradient. Since in this case we are not able to prove an analogous local bound as
in Lemma 2.5.1, we strengthen the assumption on the fast process Yt and we consider the
Ornstein-Uhlenbeck process in all the space. Note also that in the supercritical case there is
no need of the assumption (S) on the volatility. For further remarks we refer to Section 2.5,
subsection 2.5.2. Once we have that Yt is Ornstein-Uhlenbeck in all the space (and since we
do not need (S)), the proofs of the Hölder bound and of the global uniform Lipschitz bound
are analogous and even easier than in the critical case.
Let us recall some results in the literature related to gradient bounds for similar kind

of equations. Gradient bounds for superlinear-type Hamiltonians can be found in Lions
[126] and Barles [20], see also Lions and Souganidis [129] and Barles and Souganidis
[32]. Recently, Hölder bounds for nonlinear degenerate parabolic equations were proved
in Cardaliaguet and Sylvestre [55]. However, we remark that, in the previous works the
bound depends usually on the L∞-norm of the solution (that is, on δ , when dealing with the
δ -cell problem), whereas, on the contrary, our aim is to find a bound which is independent
of such parameter. In [32] some results independent of the L∞ norm of the solutions are
established but in periodic environment. We recall also the result of [53] by Capuzzo-
Dolcetta, Leoni, Porretta for coercive superlinear Hamiltonians, where a uniform gradient
bound is established, but in some Hölder norm and only in bounded domains. We refer also to
Barles [21], Cardaliaguet [54]. Recently, uniform Lipschitz bound on the torus for analogous
equations as ours (and more general) has been established by Ley and Duc Nguyen in [125].
As already hinted above, the first issue is the identification of the limit Hamiltonian through

the resolution of the cell problem which is now defined in all the space. The existence of a
limit Hamiltonian and of the corrector is proved by the use of the approximate δ -cell problem.
The main result which allows us to conclude the existence is the uniform gradient estimate for
the solution of the δ -cell problem. For the uniqueness of the limit Hamiltonian, we proceed
differently in the critical and supercritical case. In the critical case, we rely on the ergodicity
of the process Yt and on the results of Ichihara [107], where ergodic type Bellman equations
are studied in the case of a nonlinear quadratic term. On the contrary, in the supercritical
case, we rely on the results of Bardi, Cesaroni, Manca in [15], where the uniqueness of a
limit Hamiltonian is proved (but note that no existence of the true corrector is proved in [15]).
The main result is the convergence of the functions vε to the solution of the limit problem.

Our techniques are based on the perturbed test function method of [76], [4], with some
relevant adaptations to the unbounded setting. In order to deal with the non compactness of
the fast variable, we deeply rely on the ergodicity of the fast process, which is encoded in
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the existence of a Lyapounov function (see Chapter 2, Section 2.2). A key result used in the
convergence is, again, the global gradient bound of the corrector (see Chapter 2, Proposition
2.5.6 and Proposition 2.5.15), which we use in the proof of the convergence mainly to deal
with the difficulties coming from the nonlinearity in the gradient of our equation.

The main application of the convergence result is a large deviations analysis of (1). We
prove that the measures associated to the process Xt in (1) satisfy a Large Deviation Principle
(briefly, LDP) with good rate function

I(x;x0, t) := inf
[∫ t

0
L̄
(
ξ (s),ξ ′(s)

)
ds
∣∣∣ ξ ∈ AC(0, t), ξ (0) = x0,ξ (t) = x

]
,

where L̄ is the effective Lagrangian associated to H̄ via convex duality. In particular we get
that

P(Xε
t ∈ B) = e− infx∈B

I(x;x0,t)
ε

+o( 1
ε
), as ε → 0

for any open set B ⊆ Rn. We prove the large deviation principle in Chapter 1 for the three
different regimes of the periodic case. A similar result holds also for the systems considered
in Chapter 2 for α ≥ 2.
Following [79], we also apply this result to derive an estimate of option prices near maturity
and an asymptotic formula for the Black-Scholes implied volatility.

Our first motivation for the study of systems of the form (1) comes from financial models
with stochastic volatility. In such models the vector Xt represents the log-prices of n assets
(under a risk-neutral probability measure) whose volatility σ is affected by a process Yt

driven by another Brownian motion, which is often negatively correlated with the one driving
the stock prices (this is the empirically observed leverage effect, i.e., asset prices tend to go
down as volatility goes up).
An important extension of the stochastic volatility approach was introduced recently by

Fouque, Papanicolaou, and Sircar in the book [86] (see, in particular, Chapter 3). The idea
is trying to describe the bursty behavior of volatility: in empirical observations volatility
often tends to fluctuate to a high level for a while, then to a low level for another small time
period, then again at high level, and so on, for several times during the life of a derivative
contract. These phenomena are also related to another feature of stochastic volatility, which
is mean reversion. A mathematical framework which takes into account both bursting and
mean reverting behavior of the volatility is that of multiple time scale systems and singular
perturbations. In this setting volatility is modeled as a process which evolves on a faster time
scale than the asset prices and which is ergodic, in the sense that it has a unique invariant
distribution (the long-run distribution) and asymptotically decorellates (in the sense that it
becomes independent of the initial distribution). We refer the reader to the book [86] and
to the references therein for a detailed presentation of these models and for their empirical
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justification. Several extensions, applications to a variety of financial problems, and rigorous
justifications of the asymptotics can be found in [87, 88, 15, 16, 89].
According to the previous discussion, stochastic systems of the form (1), under some

suitable assumptions implying ergodicity of the Yt process, are appropriate for studying
financial problems in this setting. Indeed, here the slow variables represent prices of assets or
the wealth of the investor, whereas Yt is an ergodic process representing the volatility and
evolving on a faster time scale for δ small (and ε fixed).
On the other hand, Avellaneda et al. [7] used the theory of large deviations to give asymptotic

estimates for the Black-Scholes implied volatility of option prices near maturity in models
with constant volatility. In the recent paper [79], Feng, Fouque, and Kumar study the large
deviations for system of the form (1) in the one-dimensional case n = m = 1, assuming
that Yt is an Ornstein-Uhlenbeck process and the coefficients in the equation for Xt do not
depend on Xt . In their model ε represents a short maturity for the options, 1/δ is the rate of
mean reversion of Yt , and the asymptotic analysis is performed for δ = εα in the regimes
α = 2 and α = 4. Their methods are based on the approach to large deviations developed
in [80]. A related paper is [81] where the Heston model was studied in the regime δ = ε2

by methods different from [79]. Although sharing some motivations with [79] our results
are quite different: we treat vector-valued processes with φ and σ depending on Xt in a
rather general way and discuss all the three regimes (depending on the parameter α) in the
period case and the regimes α ≥ 2 in the non compact case; our methods are also different,
mostly from the theory of viscosity solutions for fully nonlinear PDEs and from the theory
of homogenization and singular perturbations for such equations.
Large deviation principles have a large literature for diffusions with vanishing noise; some

of them were extended to two-scale systems with small noise in the slow variables, see [131],
[154], and more recently [122], [74], and [148]. Our methods can be also applied to this
different scaling. The paper by Spiliopoulos [148] also states some results for the scaling
of (1) under the assumptions of periodicity, but its methods based on weak convergence are
completely different from ours. A related paper on homogenisation of a fully nonlinear PDE
with vanishing viscosity is [52].

Part II-Neumann type problems for nonlocal equations with Lévy type
terms

In the second part we present the results of [95] carried out during the period of research spent
at the Laboratoire de Mathématique et Physique Théorique of Tours, under the supervision
of Guy Barles.
We are interested in Neumann boundary value problems for partial integro-differential

equations (PIDEs in short) related to discontinuous jump processes. In particular, the



14 Introduction

nonlocal terms are singular integral terms which arise when dealing with the infinitesimal
generators of Lévy processes.
In the classical probabilistic approach to elliptic and parabolic partial differential equations,

Neumann type boundary value problems are associated to stochastic processes being reflected
on the boundary of the domain. The underlying idea is to force the stochastic process to
remain inside the domain where the equation holds. This is obtained essentially by a reflection
on the boundary, via the method developed by Lions and Sznitman [130].
In the classical (i.e. continuous) setting, a key result is, roughly speaking, the following: for

a PDE with Neumann or oblique boundary conditions, there is a unique underlying reflection
process and any consistent approximation will converge to it in the limit (see [130] and
Barles, Lions [30]). At least in the case of normal reflections, this result is strongly connected
to the study of the Skorohod problem and relies on the underlying stochastic processes being
continuous.
In the case of discontinuous jump processes, the idea is the same but the situation is more

complicated or, at least, the problem must be addressed in a different way. Indeed for jump
processes which may exit the domain without having first hit the boundary, there are many
ways to define a reflection. Also, because of the way the PIDE and the process are related,
defining a reflection on the boundary will change the equation inside the domain. This is a
new nonlocal phenomenon which is not encountered in the case of continuous processes and
PDEs.
The general way to formulate the problem is to incorporate the reflection inside the definition

of the nonlocal operator representing the infinitesimal generator, for example as follows

I [u](x) =
∫
Rn

u(x+ j(x,z))−u(x)dµ(z), (4)

where j is the so-called function of jumps satisfying a reflection condition preventing the
process from leaving the domain, µ is a singular nonnegative Radon measure representing
the intensity of the jumps from x to x+ z and satisfying some integrability condition and (4)
has to be interpreted as a principal value (P.V.) integral, that is

I [u](x) = P.V.
∫
Rn

u(x+ j(x,z))−u(x)dµ(z) = lim
δ→0+

∫
|z|≥δ

u(x+ j(x,z))−u(x)dµ(z).

The jump function j satisfies a reflection condition, with respect to the domain Ω, of the
following type

x+ j(x,z) ∈ Ω̄ ∀x ∈ Ω̄, j(x,z) = z if x+ z ∈ Ω̄, (5)

meaning that nothing happens and j(x,z) = z if x + z ∈ Ω̄, while if x + z /∈ Ω̄, then a
“reflection” is performed in order to move the particle back to a point x+ j(x,z) inside.
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Note that when j(x,z) = z, I [u] is the generator of a stochastic process which can jump
from x ∈ Ω̄ to x+ z with a certain intensity, see e.g. [6],[62],[92]. Then, the choice of the
jump function j influences the equation inside the domain.
In [24], Barles, Chasseigne, Georgeline, Jacobsen studied different models of reflection in

the framework of Neumann boundary value problems for simple linear PIDEs in domains
with flat boundary (namely the halfspace) of the following type{

u(x)−I [u](x)+ f (x) = 0 in H

− ∂u
∂xn

= 0 on ∂H .
(6)

where H is the halfspace, i.e. H = {x = (x1, · · · ,xn) ∈ Rn, xn > 0} and f is a bounded
continuous function. We refer to Chapter 3 for a review of their main results.
Among the different models they consider, two types of reflections are particularly relevant

for possible extensions to a more general setting. The first is the normal projection, close to
the approach of Lions-Sznitman in [130], where outside jumps are immediately projected to
the boundary by killing their normal component. This model has been thoroughly investigated
in the paper [26] for fully non-linear equations set in general domains.
The second, the censored model, is the one we consider. In this case, any outside jump of

the underlying process is cancelled (censored) and the process is restarted (resurrected) at
the origin of that jump. The fact that the process is not allowed to jump outside Ω̄ is encoded
in the definition of the nonlocal diffusion as follows

I [u](x) = lim
δ→0+

∫
|z|> δ ,

x+ z ∈ Ω̄

[u(x+ z)−u(x)]dµ(z), (7)

where we remark that the domain of integration is restricted to the z such that x+ z ∈ Ω̄,
avoiding thus any outside jump.
We observe that throughout this part we interpret the equations in the sense of viscosity

solution which provides a suitable definition of “generalized ” Neumann boundary condition,
in the sense that in certain cases the equation could hold up to the boundary and the Neumann
condition would not be attained, and this corresponds to the fact that the underlying process
could not reach the boundary. We refer to Chapter 4 for precise definitions of solutions.
In [24] it is shown, in the case of linear PIDEs as (6) that, the degree of singularity of

µ influences the nature of the boundary value problem (6), in the sense that the Neumann
condition is attained (in other words, the process hits the boundary) only if the measure is
singular enough. When the singularity is of order stricly less than 1, e.g. when µ has density
of the type

dµ(z)
dz

∼ 1
|z|n+σ

, σ ∈ (0,1), (8)

the process never reaches the boundary and equation holds up to the boundary.
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On the other hand, when the singularity of the measure is strong, i.e when µ is of the type
(4.3) with σ ∈ [1,2), the situation is far more complicated, mainly due to the bad dependence
in x of the operator in (7) and to the interplay between the singularity of the measure and
the geometry of the boundary. We refer to Chapter 3 for some details on the case of more
singular measures.
The aim of our work is the analysis of the well-posedness of censored type Neumann

problems in the case of measures of singularity strictly less than 1 (namely with σ ∈ (0,1)
in (8)) in the presence of a Hamiltonian term, which forces the process to hit the boundary
(and then Neumann condition be attained). Moreover, we consider general (enough smooth)
domain for this kind of boundary value problems. To be more specific, we consider the
following {

u(x)−I [u](x)+H(x,Du) = 0 in Ω

∂u
∂n = 0 on ∂Ω.

(9)

where H : Ω̄×Rn 7→R is a continuous function, Ω ⊂Rn is an open (smooth enough) domain
and I [u] is an integro-differential operator of censored type and of order stricly less than 1
defined as

I [u](x) = P.V.
∫

x+ j(x,z)∈Ω̄

[u(x+ j(x,z))−u(x)]dµx(z) (10)

where µx is a nonnegative Radon measure with density of the type

dµx

dz
= g(x,z)|z|−(n+σ)

σ ∈ (0,1), (11)

for a nonnegative bounded function g, Lipschitz in x uniformly with respect to z and j(x,z)
are more general jump functions j(x,z) than in [24] (see Chapter 4 Section 4.2, assumptions
(M0),(M1), (J0), (J1), (J2)). We remark that (10) is said to be of order strictly less than 1
with reference to the condition σ ∈ (0,1) in (11).

Note that, since censored type processes are not allowed to jump outside Ω̄, we don’t need
any condition on Ωc in the boundary value problem (9).
We remark that we follow the PIDE analytical approach developed in [24], in the sense

that we work directly with the infinitesimal generator and not with the reflected process. We
refer to the introduction of [24] for more details and probabilistic references on censored
processes.
We consider a class of Hamiltonians with a gradient growth stronger than the diffusive term

in the nonlocal operator. The first example is a Hamiltonian H with superfractional coercive
growth in the gradient variable, namely

H(x, p) = a(x)|p|m − f (x), (12)
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where m > σ , a, f : Ω̄ 7→ R are bounded and continuous functions and a(x) ≥ a0 > 0 for
some fixed constant a0. We remark that the positivity of a and the condition m > σ make
the first-order term the leading term in the equation. We also observe that we have no other
additional restriction on m (in particular, we can deal with Hamiltonians as in (12) with
m < 1), allowing the study of Hamiltonians which are concave in Du.
The second main example is a Hamiltonian H of Bellman type, which arises in the study of

Hamilton-Jacobi equations associated to optimal exit time problems, such as

H(x, p) = sup
α∈A

{−b(x,α) · p− l(x,α)}, (13)

where A is a compact metric space (the control space) and b, l are continuous and bounded
functions (we refer the reader to [14] and [85] for some connections between this type of
equations and control problems). Note that the diffusive term of I defined in (10) is of
lower order than the first-order term when we assume σ < 1. We also observe that, as in [34]
and [152], the well-posedness of (9) with Hamiltonian as in (13) is based on a careful study
of the effects of the drift b at each point of ∂Ω.
Our main result is a comparison principle between bounded viscosity sub and supersolutions

to (9), namely Theorem 4.2.6 proved in Chapter 4, Section 4.2. We remark that the proof
of this result is not standard even in the case σ < 1 in domains with flat boundary (namely,
the halfspace). The difficulties are mainly due to the fact that operators as in (10) behave
badly in x. The main idea which is behind the proof is to localize the argument on points
which have the same distance from the boundary and this is carried out through the use of
a non-standard non regular test function. After the localization procedure, the rest of the
proof in the case of the halfspace is simple, whereas in the case of general domains, a lot of
technical difficulties arise form the way the x-depending set of integration of I interferes
with the geometry of the boundary. To face these extra technical difficulties, we rectify the
boundary relying on the smoothness of Ω.
As the first main application of our results, we get existence and uniqueness for (9) by

standard Perron’s method. We refer to Chapter 4, Section 4.2.
Finally, in Chapter 5, we present some applications of our results to the evolutive setting,

such as existence, uniqueness, and the asymptotic behaviour as t →+∞ of the solution of
the associated Cauchy problem.

Part III-Quantitative Borell-Brascamp-Lieb inequalities (for power con-
cave functions), and applications to isoperimetric inequalities for some
variational functionals

This part contains the results of [97] carried out in collaboration with Paolo Salani (University
of Florence).
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Our main results are some refinements of a class of integral inequalities known as Borell-
Brascamp-Lieb inequalities (BBL in the following).

Before recalling the BBL inequality, we first introduce some notations. We denote by u0 and
u1 real non-negative bounded functions belonging to L1(Rn) (n ≥ 1) with compact support
Ω0 and Ω1 respectively. Moreover, let

Ii =
∫

Ωi

uidx.

For λ ∈ (0,1), let Ωλ be the Minkowski convex combination (with coefficient λ ) of Ω0 and
Ω1, that is

Ωλ = (1−λ )Ω0 +λΩ1 = {(1−λ )x0 +λx1 : x0 ∈ Ω0, x1 ∈ Ω1}

where + denotes the vector sum. For q ∈ [−∞,+∞] and µ ∈ (0,1) we denote by Mq(a,b,µ)
the (µ-weighted) q-mean of two non-negative numbers a and b, which is defined as follows:

Mq(a,b; µ) =



max{a,b} q =+∞

[(1−µ)aq +µbq]
1
q if 0 ̸= q ∈ R and ab > 0

a1−µbµ if q = 0
min{a,b} q =−∞

0 when q ∈ R and ab = 0 .

(14)

Note that the arithmetic mean and geometric mean corresponds to the q = 1 and q = 0,
respectively. We recall the BBL inequality:
Theorem (BBL inequality). Let 0 < λ < 1,−1

n ≤ p ≤ ∞, 0 ≤ h ∈ L1(Rn) and assume

h((1−λ )x+λy)≥ Mp(u0(x),u1(y),λ ),

for every x ∈ Ω0, y ∈ Ω1. Then∫
Ωλ

h(x)dx ≥ M p
np+1

(I0, I1,λ ) . (15)

Here the number p/(np+1) has to be interpreted in the obvious way in the extremal case,
i.e. it is equal to −∞ when p =−1/n and to 1/n when p = ∞.
The BBL inequality was first proved in a slightly different form for p > 0 by Henstock

and Macbeath (with n = 1) in [106] and by Dinghas in [72]. In its generality it is stated
and proved by Brascamp and Lieb in [47] and by Borell in [42] and the equality conditions
are discussed in [73]. Since the equality case is rather complicated to state, we refer for
the precise statement to [73]. Roughly speaking, equality holds in (15) if and only if the
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functions ui, i = 0,1,2 are almost everywhere equal to some suitable homotheties of the same
convex function.
The case p = 0 was previously proved by Prékopa [138] and Leindler [124] (and redisco-

vered by Brascamp and Lieb in [46]) and it is usually known as the Prékopa-Leindler
inequality (PL inequality in the following). It is worth to remark that the PL inequality (and
then the BBL inequality, for every p) can be considered as a functional form of the Brunn-
Minkowski inequality, which in its classical form states that if Ω1,Ω0 are two nonempty
compact convex sets of Rn and λ ∈ (0,1), then

|(1−λ )Ω0 +λΩ1| ≥ M1/n(|Ω0|, |Ω1|,λ )

and equality holds precisely when Ω0 and Ω1 are equal up to translation and dilatation. A
generalization to measurable subsets of Rn has been proved later in [133] and [102]. For
more details on the Brunn-Minkowski inequality we refer to Section 6.2 and to [93] as a
general and exhaustive reference.
In this part of the thesis we are interested in the investigation of stability problems for

the BBL inequality. The typical kind of questions we aim at answering is the following:
if
∫

Ωλ
h(x)dx “approximately ”coincides with M p

np+1
(I0, I1,λ ), can we infer some kind of

“closeness ” of the functions u0,u1 to the equality condition?
The first step when dealing with a stability problem is to give a precise meaning to the

previous question, i.e. choose a measure of the “closeness” of the functions to the equality
condition. Depending on the choice of the measure, different kind of results can be obtained.
Significant interest has recently arisen towards the stability of the Brunn-Minkowski ine-

quality and several kind of results have been obtained depending on different measures, see
[99, 83, 56, 57, 75, 82]. Concerning the PL inequality, the investigation of stability questions
has been recently started by Ball and Böröczky in [12, 13]. Note that all these results are
in [48] and all these results are written in terms of the L1 distance between the involved
functions.
Our main achievements are stability results for the BBL inequality in terms of some distance

between the support sets Ω0 and Ω1 of u0 and u1 and some consequent “quantitative”
versions of the BBL inequality. With the adjective “quantitative” , we mean that we strengthen
(15) in terms of some distance between the support sets Ω0 and Ω1 of u0 and u1.

The quantitative versions we give are mainly of two types. The first is written in terms of
the Hausdorff distance between (two suitable homothetic copies of) Ω0 and Ω1. We recall
that the Hausdorff distance H(K,L) between two sets K,L ⊆ Rn is defined as follows:

H(K,L) := inf{r ≥ 0 : K ⊆ L+ rBn, K ⊆ L+ rBn} ,
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where Bn = {x ∈ Rn : |x|< 1} is the (open) unit ball in Rn. Then we set

H0(K,L) = H(τ0K,τ1L),

where τ1,τ0 are two homotheties (i.e. translation plus dilation) such that |τ0K|= |τ1L|= 1
and such that the centroids of τ0K and τ1L coincide (by centroid we mean the geometric
center, i.e. the average of all the points of the set).
Under the assumptions of Theorem (BBL inequality) (and assuming some concavity pro-

perty of the functions u0,u1, namely p-concavity, for the definition see (6.5), Chapter 6,
Section 6.1) we prove that∫

Ωλ

h(x)dx ≥ M p
np+1

(I0, I1,λ )+β H0(Ω0,Ω1)
(n+1)(p+1)

p , (16)

where β is a constant depending only on n, λ , p, I0, I1, the diameters and the measures of
Ω0 and Ω1.
We provide another quantitative result analogous to (16), but in this case the quantitative

terms depends on the relative asymmetry (or Fraenkel asymmetry) of Ω0 and Ω1; we recall
that the relative asymmetry of two sets K and L is defined as follows

A(K,L) := inf
x∈Rn

{
|K ∆(x+λL)|

|K|
, λ =

(
|K|
|L|

) 1
n
}
,

where, for Ω ⊆ Rn, |Ω| denotes its Lebesgue measure, while ∆ denotes the operation of
symmetric difference, i.e. Ω∆B = (Ω\B)∪ (B\Ω).
For the precise statement of the above quantitative results and for some other relevant

remarks on the assumptions and proofs, and for explicit values of the constants, we refer to
Chapter 6, Section 6.1.
Note that our results (as (16)) are written as quantitative forms of the involved inequalities,

but they can be obviously interpreted also as stability results for the same inequalities.
The crucial part in the proofs of the above stated results relies on an estimate of the measures

of the supports sets of the involved functions; this estimate is contained in Theorem 7.0.1
(Chapter 7), which can be in fact considered our main result. There we prove that if we are
close to equality in (15), then the measure of (1−λ )Ω0+λΩ1 is close to M1/n(|Ω0|, |Ω1|,λ ).
Therefore, once Theorem 7.0.1 is proved, the proofs follow by applying different quantitative
versions of the classical Brunn-Minkowski inequality (namely [99] and [83], see Chapter
6, Section 6.2). We note also that further recent stability/quantitative results for the Brunn-
Minkowski inequality are contained in [56, 57, 75, 82]. A combination of these with Theorem
7.0.1 would lead to further stability/quantitative theorems for the BBL inequality, which
could be an interesting topic for further research.
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As applications of the above results, we can derive interesting quantitative versions of some
interpolation inequalities for functionals that can be written in terms of the solutions of
suitable elliptic boundary value problem. This is in fact the original reason for which we
tackled the stability of the BBL inequality. We present these results in Chapter 8.
For the sake of simplicity and clearness of exposition, as a toy model we will analyse in

details the torsion problem, that is{
∆u =−2 in Ω,

u = 0 on ∂Ω.
(17)

We recall that the torsional rigidity τ(Ω) of Ω is defined as follows

1
τ(Ω)

= inf
{∫

Ω
|Dw|2 dx

(
∫

Ω
|w|dx)2 : w ∈W 1,2

0 (Ω),
∫

Ω

|w|dx > 0
}

and that, in general, when a solution u to problem (17) exists, we have

τ(Ω) =
(
∫

Ω
|u|dx)2∫

Ω
|Du|2 dx

=
∫

Ω

udx .

It is well-known that τ satisfies the following Brunn-Minkowski type inequality on the class
of compact convex sets with non-empty interior:

τ((1−λ )Ω0 +λ Ω1)≥ M 1
n+2

(τ(Ω0),τ(Ω1),λ ) , (18)

where equality holds in (18) if and only if Ω0 and Ω1 coincide up to a homothety. Inequality
(18) was proved by Borell in [44] and the equality conditions are provided in [59]. However
(18) can also be seen as a consequence of the BBL inequality and therefore we can apply
the quantitative results for the BBL inequality to get corresponding refinements for (18). We
present these results in Theorem 8.1.4, Chapter 8.
Furthermore, the existing literature (see [40, Remark 6.1] and [49, Proposition 4.1]) shows

that it is possible to use (18) to prove the following Urysohn’s type inequality for the torsional
rigidity

τ(Ω)≤ τ(Ω♯) for every convex set Ω , (19)

where Ω♯ is the ball with the same mean-width of Ω. In other words, the previous inequality
can be rephrased as follows: among convex sets with given mean width, the torsional rigidity
is maximized by balls.
The main results of this part of the thesis are two refinements of (19) on the flavour of the

quantitative results stated above for the BBL, one in terms of the Hausdorff distance of Ω

from Ω♯ and another one in terms of the relative asymmetry of Ω. For the precise statements
see Theorem 8.1.6 stated in Chapter 8.
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We remark that similar results can be obtained in a suitable form for many other variational
functionals with similar properties as τ and satisfying suitable Brunn-Minkowski inequalities,
where nonlinear operators are involved as the q-Laplacian, the Finsler laplacian and nonlinear
operators not in divergence form as the Pucci Extremal operators. We will see in Chapter
8, Section 8.2 some general results regarding the stability of the so called mean width
rearrangements, a new kind of rearrangement recently introduced by Salani in [145], which
in fact include most of the examples we can manage with this method.



Part I

Large deviations of some stochastic
volatility models by viscosity methods
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Chapter 1

Periodic case

1.1 Introduction

In this chapter we study the asymptotic behaviour as ε → 0 of stochastic systems of the
following kind {

dXt = εφ(Xt ,Yt)dt +
√

2εσ(Xt ,Yt)dWt X0 = x ∈ Rn,

dYt = ε1−αb(Yt)dt +
√

2ε1−ατ(Yt)dWt Y0 = y ∈ Rm,
(1.1)

where ε > 0, Wt is a standard r-dimensional Brownian motion, the matrix τ is non-degenerate
and the coefficients of the system are periodic with respect to the variable y.
We consider a functional of the trajectories of (1.1) of the form

vε(t,x,y) := ε logE
[
eh(Xt)/ε |(X .,Y.) satisfy (1.1)

]
, (1.2)

where h is a bounded continuous function. We observe that the logarithmic form of this
payoff is motivated by the applications to large deviations that we want to give.
We note that vε can be characterized as the solution of the Cauchy problem with initial data

vε(0,x,y) = h(x) for a fully nonlinear parabolic equation in n+m variables (see Proposition
1.1.2 where we recall this result).

Our first aim is to prove that, under suitable assumptions, the functions vε(t,x,y) converge
to a function v(t,x) characterized as the solution of the Cauchy problem for a first order
Hamilton-Jacobi equation in n space dimensions

vt − H̄(x,Dv) = 0 in ]0,T [×Rn, v(0,x) = h(x), (1.3)

for a suitable effective Hamiltonian H̄.
We observe that the existing techniques to treat this kind of problems have been developped

so far mainly under assumptions implying some kind of boundedness of the fast variable. We
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refer mainly to the methods of [4], stemming from the pioneering paper of Lions-Papanicolau-
Varadhan [128] and Evans’ [76] on periodic homogenization and its extensions to singular
perturbations [1–3].
A classical hypothesis is the periodicity with respect to Yt of the coefficients of the stochastic

system, which in particular implies the periodicity in y of the solutions vε . Throughtout this
chapter we carry on our analysis under this assumption, treating what we call the periodic
case.
In the periodic case, the convergence is quite standard once the effective problem is identified

and a comparison principle is proved. The most significant part is the identification of the
effective Hamiltonian H̄, which is obtained by solving a suitable cell problem.
We indentify three different cases, depending on α , the supercritical case (α > 2), the

critical case (α = 2) and the subcritical case (α < 2). In all the three cases, we solve the cell
problem, we identify the limit Hamiltonian H̄ and we represent it through explicit formulas.
In particular, in the supercritical case the cell problem involves a linear elliptic operator and
H̄ can be written in terms of the invariant measure of the process

dYt = b(Yt)dt +
√

2τ(Yt)dWt .

In the critical case the cell problem is a fully nonlinear elliptic PDE and H̄ can be represented
in various ways based, e.g., on stochastic control. Finally, in the subcritical case the cell
problem is of first order and nonlinear, and a representation formula for H̄ can be given in
terms of deterministic control.
The main application of the convergence results is a large deviations analysis of (1.1). In

particular, we prove for the three different regimes that the measures associated to the process
Xt in (1.1) satisfy a Large Deviation Principle and we find representation formulas for the
rate function. Following [79] we also apply this result to derive an estimate of option prices
near maturity and an asymptotic formula for the implied volatility.
We recall that in the recent paper [79], Feng, Fouque, and Kumar study the large deviations

for system of the form (1.1) in the one-dimensional case n = m = 1, assuming that Yt is an
Ornstein-Uhlenbeck process and the coefficients in the equation for Xt do not depend on Xt

and they perform the asymptotic analysis in the regimes α = 2 and α = 4. We also remark
that their methods are based on the approach to large deviations developed in [80]. A related
paper is [81] where the Heston model was studied in the regime δ = ε2 by methods different
from [79]. Although sharing some motivations with [79] our results are quite different: we
treat vector-valued processes with φ and σ depending on Xt in a rather general way and
discuss all the three regimes depending on the parameter α; our methods are also different,
mostly from the theory of viscosity solutions for fully nonlinear PDEs and from the theory
of homogenization and singular perturbations for such equations.
Large deviation principles have a large literature for diffusions with vanishing noise; some

of them were extended to two-scale systems with small noise in the slow variables, see
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[131], [154], and more recently [122], [74], and [148]. We remark that our methods can
be also applied to this different scaling. We recall the paper by Spiliopoulos [148], where
some results for the scaling of (1.1) are stated under the assumptions of periodicity, but its
methods based on weak convergence are completely different from ours. A related paper on
homogenization of a fully nonlinear PDE with vanishing viscosity is [52].

1.1.1 The stochastic volatility model

We consider fast stochastic volatility systems that can be written in the form{
dXt = φ(Xt ,Yt)dt +

√
2σ(Xt ,Yt)dWt , X0 = x ∈ Rn

dYt = ε−αb(Yt)dt +
√

2ε−ατ(Yt)dWt , Y0 = y ∈ Rm.
(1.4)

where ε > 0, α > 1 and Wt is a r-dimensional standard Brownian motion. We recall that we
denote by Mn,r the set of n× r matrices.
We assume φ : Rn ×Rm → Rn,σ : Rn ×Rm → Mn,rare bounded continuous functions,

Lipschitz continuous in (x,y) and periodic in y. Moreover b : Rm → Rm,τ : Rm → Mm,r are
locally Lipschitz continuous functions, periodic in y. Note that in this part we will denote
by Tm the m-dimensional torus. These assumptions and notations will hold throughout the
chapter. We assume the uniform nondegeneracy of the diffusion driving the fast variable Yt ,
i.e., for some θ > 0

ξ
T

τ(y)τ(y)T
ξ = |τT (y)ξ |2 > θ |ξ |2 for every y ∈ R,ξ ∈ Rm. (1.5)

In order to study small time behavior of the system (1.4), we rescale time t → εt for 0< ε ≪ 1,
so that the typical maturity will be of order of ε . Denoting the rescaled processes by Xε

t and
Y ε

t we get

{
dXε

t = εφ(Xε
t ,Y

ε
t )dt +

√
2εσ(Xε

t ,Y
ε

t )dWt , Xε
0 = x ∈ Rn

dY ε
t = ε1−αb(Y ε

t )dt +
√

2ε1−ατ(Y ε
t )dWt , Y ε

0 = y ∈ Rm.
(1.6)

1.1.2 The logarithmic transformation and the HJB equation

We consider the functional

uε(t,x,y) := E [g(Xε
t ) |(Xε

s ,Y
ε
s ) satisfy (1.6) for s ∈ [0, t]] (1.7)

where g ∈ BC(Rn). We recall that BC(Rn) is the space of bounded continuous functions in
Rn.
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The partial differential equation associated to the functions uε is

ut − εtr(σσ
T D2

xxu)− εφ ·Dxu−2ε
1−α

2 tr(στ
T D2

xyu)

− ε
1−αb ·Dyu− ε

1−α tr(ττ
T D2

yyu) = 0 (1.8)

in (0,T )×Rn ×Rm, where b and τ are computed in y, φ and σ are computed in (x,y). The
equation is complemented with the initial condition:

u(0,x,y) = g(x).

Remark 1.1.1. Note that, since we assume the periodicity in y of the coefficients of the
equation b,σ ,τ,φ , we have that the solution uε of the equation (1.8) is periodic in y itself.

We introduce the logarithmic transformation method (see [85]). Assume that

g(x) = eh(x)/ε with h ∈ BC(Rn)

and define

vε(t,x,y) := ε loguε = ε logE
[
eh(Xε

t )/ε |(Xε
s ,Y

ε
s ) satisfy (1.6) for s ∈ [0, t]

]
, (1.9)

where uε is defined in (1.7), x ∈ Rn, y ∈ Rm, and t ≥ 0. By (1.8) and some computations,
one sees that the equation associated to vε is

vt = |σT Dxv|2 + εtr(σσ
T D2

xxv)+ εφ ·Dxv+2ε
−α

2 (τσ
T Dxv) ·Dyv+

2ε
1−α

2 tr(στ
T D2

xyv)+ ε
1−αb ·Dyv+ ε

−α |τT Dyv|2 + ε
1−α tr(ττ

T D2
yyv), (1.10)

where b and τ are computed in y, φ and σ are computed in (x,y). In general, the functions uε

are not smooth but one can check that vε is a viscosity solutions of (1.10) (see in particular
Chapter VI and VII of [85]).
In the following proposition we characterize the value function vε as the unique continuous

viscosity solution to a suitable parabolic problem with initial data for each of the three
regimes. A general reference for these issue is [85]. The equation (1.10) satisfied by vε

involves a quadratic nonlinearity in the gradient. This case was studied by Da Lio and Ley in
[69], where the reader can find a proof of the next result.

Proposition 1.1.2. i) Let α ≥ 2 and define
Hε(x,y, p,q,X ,Y,Z) := |σT p|2 +b ·q+ tr(ττ

TY )+ ε
(
tr(σσ

T X)+φ · p
)

+ 2ε
α

2 −1(τσ
T p) ·q+2ε

1
2 tr(στ

T Z)+ ε
α−2|τT q|2.
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Then vε is the unique bounded continuous viscosity solution of the Cauchy problem∂tvε −Hε

(
x,y,Dxvε ,

Dyvε

εα−1 ,D2
xxvε ,

D2
yyvε

εα−1 ,
D2

xyvε

ε
α−1

2

)
= 0 in [0,T ]×Rn ×Rm,

vε(0,x,y) = h(x) in Rn ×Rm.

(1.11)

ii) Let α < 2 and define
Hε(x,y, p,q,X ,Y,Z) := |σT p|2 + |τT q|2 +2(τσ

T p) ·q+ ε
(
tr(σσ

T X)+φ · p
)

+ ε
1−α

2 (b ·q+ tr(ττ
TY ))+2ε

1−α

4 tr(στ
T Z).

Then vε is the unique bounded continuous viscosity solution of the Cauchy problem∂tvε −Hε

(
x,y,Dxvε ,

Dyvε

ε
α
2
,D2

xxvε ,
D2

yyvε

ε
α
2
,

D2
xyvε

ε
α
4

)
= 0 in [0,T ]×Rn ×Rm,

vε(0,x,y) = h(x) in Rn ×Rm.

(1.12)

Our goal is to study the limit as ε → 0 of the functions vε described in Proposition 1.1.2.
Following the viscosity solution approach to singular perturbation problems (see [3],[2]),
we define a limit or effective Hamiltonian H̄ and we characterize the limit of vε as the
unique solution of an appropriate Cauchy problem with Hamiltonian H̄. The first step in the
procedure is the identification of the limit Hamiltonian. In order to define this operator, we
make the ansatz that the function vε admits the formal asymptotic expansion

vε(t,x,y) = v0(t,x)+ ε
α−1w(t,x,y) (1.13)

and plug it into the equation. In the following sections we show that the limit Hamiltonian is
different in the three different regimes: the critical case (α = 2), the supercritical case (when
α > 2), and the subcritical case (when α < 2).

Remark 1.1.3. Numerical experiments in [150] indicate that the first order approximation
in the expansion (1.13) is sufficiently accurate to find option prices in a fast mean-reversion
case of the volatility process.
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1.2 The critical case: α = 2

1.2.1 The ergodic problem and the effective Hamiltonian

Equation (1.10) with α = 2 becomes

vt = |σT Dxv|2 + εtr(σσ
T D2

xxv)+ εφ ·Dxv+
2
ε
(τσ

T Dxv) ·Dyv (1.14)

+2tr(στ
T D2

xyv)+
1
ε

b ·Dyv+
1
ε2 |τ

T Dyv|2 + 1
ε

tr(ττ
T D2

yyv).

We plug in the equation (1.14) the formal asymptotic expansion

vε(t,x,y) = v0(t,x)+ εw(t,x,y)

and we obtain

v0
t −|σT Dxv0|2 −2(τσ

T Dxv0) ·Dyw−b ·Dyw−|τT Dyw|2 − tr(ττ
T D2

yyw) = O(ε).

We want to eliminate the function w, usually called the corrector, and the dependence on y
in this equation and remain with a left hand side of the form v0

t − H̄(x,Dxv0). Therefore we
freeze x̄ and p̄ = Dxv0(x̄) and define the effective Hamiltonian H̄(x̄, p̄) as the unique constant
such that the following stationary PDE in Rm, called cell problem, has a viscosity solution w:

H̄(x̄, p̄)−|σT p̄|2 −2(τσ
T p̄) ·Dyw(y)−b ·Dyw(y)−|τT Dyw(y)|2 − tr(ττ

T D2
yyw(y)) = 0,

(1.15)
where σ is computed in (x̄,y) and τ,b in y. This is an additive eigenvalue problem that arises
the theory of ergodic control and has a wide literature. Under our standing assumptions we
have the following result.

Proposition 1.2.1. For any fixed (x̄, p̄), there exists a unique H̄(x̄, p̄) for which the equation
(1.15) has a periodic viscosity solution w. Moreover w ∈ C2,α for some 0 < α < 1 and
satisfies for some C > 0 independent of p̄ and ∀x̄, p̄ ∈ Rn

max
y∈Rm

|Dw(y; x̄, p̄)| ≤C(1+ |p̄|). (1.16)

To prove Proposition 1.2.1, we need the following lemma. We will use the small discount
approximation for δ > 0

δwδ +F(x̄,y, p̄,Dwδ ,D
2wδ )−|σ(x̄,y)p̄|2 = 0, (1.17)
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where

F(x̄,y, p̄,q,Y ) :=−tr(ττ
T (y)Y )−|τT (y)q|2 −b(y) ·q−2(τ(y)σT (x̄,y)p̄) ·q. (1.18)

Lemma 1.2.2. Let δ > 0 and wδ (·; x̄, p̄) ∈C2(Rm) be a periodic solution of (1.17). Then
there exists C > 0 independent of p̄ such that for all x̄, p̄ ∈ Rn it holds

max
y∈Rm

|Dywδ (y; x̄, p̄)| ≤C(1+ |p̄|). (1.19)

Proof of Lemma 1.2.2. We remark that analogous results for similar equations have been
proved by Lions and Souganidis in [129]. For the sake of completeness we give the following
proof, which uses the Bernstein method, following the derivation of similar estimates in [78].
We carry out the computations in the case τ,σ ,b are C1. When τ,σ ,b are Lipschitz the result
can be proved by smooth approximation.
Throughout the proof for simplicity of notations we denote by wi and w ji respectively the

derivative of w with respect to the i-th variable and the derivative of wi with respect to the
j-th variable.
Denote by wδ := wδ (y; x̄, p̄) the solution of (1.17). By comparison with constant sub- and

supersolutions we get the uniform bound

|δwδ | ≤ max
y∈Rm

|σT (x̄,y)p̄|2 ∀y ∈ Rm. (1.20)

Define the function z as follows
z := |Dwδ |2.

Should z attains its maximum at some point y0, then at y0

zi = 2wδ
k wδ

ki = 0 i = 1, . . . ,m, (1.21)

where we are adopting the summation convention, and

0 ≤−(ττ
T )i jzi j =−2(ττ

T )i jwδ
kiw

δ
k j −2wδ

k (ττ
T )i jwδ

i jk. (1.22)

Then at y0

θ |D2wδ |2 ≤ (ττ
T )i jwδ

kiw
δ
k j ≤−wδ

k (ττ
T )i jwδ

i jk =−wδ
k

(
(ττ

T )i jwδ
i j

)
k
+wδ

k (ττ
T )i j,kwδ

i j,

where we have used (1.22). Thus at y0

θ |D2wδ |2 ≤ wδ
k

(
−δwδ +(2τσ

T p̄+b) ·Dwδ + |τT Dwδ |2 + |σT p̄|2
)

k
+wδ

k (ττ
T )i j,kwδ

i j,
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where we have used (1.17). Thanks to (1.21)

wδ
k (|τ

T Dwδ |2)k = wδ
k ((ττ

T )i jwδ
i wδ

j )k =

wδ
k (ττ

T )i j,kwδ
i wδ

j +wδ
k (ττ

T )i jwδ
ikwδ

j +wδ
k (ττ

T )i jwδ
i wδ

jk = wδ
k (ττ

T )i j,kwδ
i wδ

j .

Moreover
wδ

k (ττ
T )i j,kwδ

i j ≤
θ

2
|D2wδ |2 + C

2θ
|Dwδ |2.

Then

θ |D2wδ |2 ≤C(1+ |p̄|)|Dwδ |2 +C|Dwδ |3 + θ

2
|D2wδ |2 +C|p̄|2|Dwδ | at y0

and C > 0 depends only on the L∞ norm of σ ,b,τ and on the derivatives of σ ,b and τ .
Therefore

|D2wδ |2 ≤C(1+ |Dwδ |2 + |p̄||Dwδ |2 + |p̄|2|Dwδ |2 + |Dwδ |3) at y0. (1.23)

Thanks to the uniform ellipticity of τ and using equation (1.17), we have

θ |Dwδ |2 ≤ |τT Dwδ |2 = δwδ − tr(ττ
T D2wδ )−2τσ

T p̄ ·Dwδ −b ·Dwδ at y0.

Using (1.20), we get at y0

z2 = |Dwδ |4 ≤C(|p̄|4 + |D2wδ |2 + |p̄|2|Dwδ |2 + |Dwδ |2 + |p̄||Dwδ |2 + |p̄|2|D2wδ |
+ |p̄|2|Dwδ |+ |p̄|3|Dwδ |+ |D2wδ ||p̄||Dwδ |+ |D2wδ ||Dwδ |).

(1.24)

Then (1.19) follows by dividing (1.24) by |Dwδ |3 and noticing that the right member in
(1.24) is polynomial of degree 4 in |p̄| and |Dwδ |.

Now we prove Proposition 1.2.1.

Proof of Proposition 1.2.1. We use the methods of [9] based on the small discount appro-
ximation (1.17), where F is defined in (1.18). Let wδ := wδ (y, x̄, p̄) be the unique periodic
continuous solution of (1.17). The regularity theory for viscosity solutions of convex uni-
formly elliptic equations (see [153] and [141]) gives that wδ ∈ C2,α for some 0 < α < 1.
Using the Lipschitz estimates proved in Lemma 1.2.2 and the equiboundedness of δwδ given
by (1.20), we obtain that δwδ (y) converges along a subsequence of δ → 0 to the constant
H̄(x̄, p̄) and vδ (y) := wδ (y)−wδ (0) converges to the corrector w.
Then, from (1.17) we get

δvδ +δwδ (0)+F(x̄,y, p̄,Dyvδ ,D
2
yyvδ )−|σT (x̄,y)p̄|2 = 0, in Rm.
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Since vδ is equibounded, δvδ → 0. Then, since δwδ → H̄ we get that w is a solution of
(1.15). Finally, by the comparison principle for (1.17), it is standard to see that H̄ is unique.

Again by the regularity theory (see [153] and [141]), w ∈C2,α for some 0 < α < 1.
Finally the corrector w inherits the Lipschitz estimate of vδ and satisfies for some C > 0

independent of p̄ and for all x̄, p̄ ∈ Rn

max
y∈Rm

|Dyw(y; x̄, p̄)| ≤C(1+ |p̄|).

1.2.2 Properties and formulas for the effective Hamiltonian and compa-
rison principle

The next result lists some elementary properties of the effective Hamiltonian H̄.

Proposition 1.2.3. (a) H̄ is continuous on Rn ×Rn;

(b) the function p → H̄(x, p) is convex;

(c)
min
y∈Rm

|σT (x̄,y)p̄|2 ≤ H̄(x̄, p̄)≤ max
y∈Rm

|σT (x̄,y)p̄|2; (1.25)

(d) For all 0 < µ < 1 and x,z,q, p ∈ Rn, it holds

µH̄
(

x,
p
µ

)
− H̄(z,q)≥ 1

µ −1
sup

y∈Rm
|σT (x,y)p−σ

T (z,y)q|2. (1.26)

Proof. The results are obtained by standard methods in the theory of homogenisation, by
means of comparison principles for the approximating equation (1.17), see, e.g., [76, 1]. We
give the details only on the proof of (1.26). We will use the following inequality:

1
µ
|p|2 −|q|2 ≥− 1

1−µ
|p−q|2 0 < µ < 1, p,q ∈ Rn. (1.27)

We take wδ solution of

δwδ +F(z,y,q,Dywδ ,D
2
yywδ )−|σT (z,y)q|2 = 0 (1.28)

where F is defined in (1.18), and wµ

δ
solution to

δwδ +F(x,y,
p
µ
,Dywδ ,D

2
yywδ )−|σT (x,y)

p
µ
|2 = 0. (1.29)

We write (1.28) as follows

δwδ −b(y) ·Dwδ − tr(ττ
T (y)D2wδ )−|τT (y)Dwδ +σ

T (z,y)q|2 = 0 (1.30)
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and similarly we write (1.29) as follows

δwµ

δ
−b(y) ·Dwµ

δ
− tr(ττ

T (y)D2wµ

δ
)−|τT (y)Dwµ

δ
+σ

T (x,y)
p
µ
|2 = 0.

Note that µwµ

δ
= w̄ satisfies

δ w̄−b(y) ·Dw̄− tr(ττ
T (y)D2w̄)− 1

µ
|τT (y)Dw̄+σ

T (x,y)p|2 = 0. (1.31)

By (1.27) we have

1
µ
|τT (y)Dwδ +σ

T (x,y)p|2 − |τT (y)Dwδ +σ
T (z,y)q|2

≥ − 1
1−µ

|σT (x,y)p−σ
T (z,y)q|2.

Coupling the previous inequality with (1.30) we have

δwδ −b(y) ·Dwδ − tr(ττ
T (y)D2wδ ) − 1

µ
|τT (y)Dwδ +σ

T (x,y)p|2

≤ 1
1−µ

|σT (x,y)p−σ
T (z,y)q|2.

Since w̄ satisfies (1.31), by the comparison principle, we have

wδ ≤ w̄+
1

1−µ
sup

y∈Rm
|σT (x,y)p−σ

T (z,y)q|2 ∀y ∈ Rm,

that is,

wδ ≤ µwµ

δ
+

1
1−µ

sup
y∈Rm

|σT (x,y)p−σ
T (z,y)q|2 ∀y ∈ Rm

from which we easily get (1.26).

Next we give some representation formulas for the effective Hamiltonian H̄.

Proposition 1.2.4. (i) H̄ satisfies

H̄(x̄, p̄) = lim
δ→0

sup
β (·)

δE
[∫

∞

0

(
|σ(x̄,Zt)

T p̄|2 −|β (t)|2
)

e−δ tdt |Z0 = z
]

(1.32)

and

H̄(x̄, p̄) = lim
t→+∞

sup
β (·)

1
t

E
[∫ t

0
(|σT (x̄,Zs)p̄|2 −|β (s)|2)ds |Z0 = z

]
, (1.33)

where β (·) is an admissible control process taking values in Rr for the stochastic control
system

dZt =
(
b(Zt)+2τ(Zt)σ

T (x̄,Zt)p̄−2τ(Zt)β (t)
)

dt +
√

2τ(Zt)dWt ; (1.34)
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(ii) moreover

H̄(x̄, p̄) =
∫
Tm

(
|σ(x̄,z)T p̄|2 −|τ(z)T Dw(z)|2

)
dµ(z), (1.35)

where w = w(·; x̄, p̄) is the corrector defined in Proposition 1.2.1, Tm si the m-dimensional
torus and µ = µ(·; x̄, p̄) is the invariant probability measure of the process (1.41) with the
feedback β (z) =−τT (z)Dw(z);
(iii) finally

H̄(x̄, p̄) = lim
t→+∞

1
t

logE
[
e
∫ t

0 |σT (x̄,Ys)p̄|2 ds |Y0 = y
]
, (1.36)

where Yt is the stochastic process defined by

dYt =
(
b(Yt)+2τ(Yt)σ

T (x̄,Yt)p̄
)

dt +
√

2τ(Yt)dWt . (1.37)

Proof. (i) The first formula comes from a control interpretation of the approximating δ -cell
problem (1.17). We write it as the Hamilton-Jacobi-Bellman equation

δwδ+

inf
β∈Rr

{
−tr(τ(y)τ(y)T D2wδ +

(
2τ(y)β −2τ(y)σ(x̄,y)T p̄−b(y)

)
·Dywδ + |β |2

}
−|σ(x̄,y)T p̄|2 = 0 (1.38)

and we represent wδ as the value function of the infinite horizon discounted stochastic control
problem (see, e.g., [85])

wδ (z) = sup
β (·)

E
[∫

∞

0
(|σT (x̄,Zt)p̄|2 −|β (t)|2)e−δ tdt |Z0 = z

]
,

where Zt is defined by (1.34). Then (1.32) follows from the proof of Proposition 1.2.1.
For the formula (1.33) we consider the t-cell problem{

∂v
∂ t − tr(ττT D2v)−|τT Dv|2 − (b+2τσT p̄) ·Dv−|σT p̄|2 = 0 in (0,+∞)×Rm,

v(0,z) = 0 on Rm.

(1.39)
This is also a HJB equation, whose solution is the value function

v(t,z; x̄, p̄) = sup
β (·)

E
[∫ t

0
(|σT (x̄,Zs)p̄|2 −|β (s)|2)ds |Z0 = z

]
,
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where Zt is defined by (1.34). Then a generalized Abelian-Tauberian theorem (see Appendix
B, Theorem 2.7.17) states that

H̄(x̄, p̄) = lim
t→+∞

v(t,z; x̄, p̄)
t

uniformly in z. (1.40)

(ii) The formula (1.35) is derived from a direct control interpretation of the cell problem
(1.15). In fact, it is the HJB equation of the ergodic control problem of maximizing

lim
T→∞

1
T

E
[∫ T

0
(|σT (x̄,Zs)p̄|2 −|β (s)|2)ds |Z0 = z

]
,

among admissible controls β (·) taking values in Rr for the system (1.34), as before. The
process Zt associated to each control is ergodic with a unique invariant measure µ on the
m-dimensional torus Tm because it is a nondegenerate diffusion on Tm, see, e.g., [3], so the
limit in the payoff functional exists and it is the space average in µ of the running payoff
(see Proposition 2.7.14 of the Appendix B). Since the HJB PDE (1.15) has a smooth solution
w, it is known from a classical verification theorem that the feedback control that achieves
the minimum in the Hamiltonian, i.e., β (z) =−τT (z)Dw(z), is optimal. Then (1.35) holds
with µ the invariant measure of the process

dZ̃t =
(
b(Z̃t)+2τ(Z̃t)σ

T (x̄, Z̃t)p̄+2τ(Z̃t)τ
T (Z̃t)Dw(Z̃t)

)
dt +

√
2τ(Z̃t)dWt . (1.41)

(iii) To prove (1.36), take v = v(t,x; x̄, p̄) a periodic solution of the t-cell problem and define
the function f (t,y) = ev(t,y). Then f solves the following equation{

∂ f
∂ t − f |σT p̄|2 − (2τσT p̄+b) ·D f − tr(ττT D2 f ) = 0 in (0,∞)×Rm

f (0,z) = 1 in Rm.

By the Feynman-Kac formula, we have

f (t,y) = E
[
e
∫ t

0 |σT (x̄,Ys)p̄|2 ds |Y0 = y
]
,

where Yt is defined by (1.37). Then

v(t,y) = logE
[
e
∫ t

0 |σT (x̄,Ys)p̄|2 ds |Y0 = y
]

and thanks to (1.40), we get (1.36).

Remark 1.2.5. For x, p ∈ Rn define the following perturbed generator Lx,p

Lx,pg(y) := Lg(y)+2(τσ(x,y)T p) ·Dyg(y),
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where
L = b ·Dy + tr(ττ

T D2
yy).

Then the equation (1.15) becomes

H̄ − e−wLx̄,p̄ew −|σT p̄|2 = 0, (1.42)

because e−wLew = Lw+ |τT Dyw|2 gives

e−wLx̄,p̄ew = e−wLew +2(τσ
T p̄) ·Dyw = Lw+ |τT Dyw|2 +2(τσ

T p̄) ·Dyw.

Multiplying (1.42) by ew we get, for g(y) = ew(y),

H̄g(y)− (Lx̄,p̄ +V x̄,p̄)g(y) = 0, (1.43)

where V x̄,p̄(y) = |σT (x̄,y)p̄|2 is a multiplicative potential operator.
We conclude that if w is a solution of (1.15), then H̄ is the first eigenvalue of the linear

operator Lx̄,p̄ +V x̄,p̄, with eigenfunction g = ew.

The comparison theorem among viscosity sub- and supersolutions of the limit PDE

vt − H̄(x,Dv) = 0 in (0,T )×Rn (1.44)

will be the crucial tool for proving that the convergence of vε is not only in the weak sense
of semilimits but in fact uniform, and the limit is unique. We observe that property (d) of
Proposition 1.2.3 is crucial in the proof since it allows us to relate the regularity in x of
H̄ with that of the pseudo-coercive Hamiltonian |σT (x,y)p|2. With this inequality one can
repeat the proof of the comparison principle for the pseudo-coercive Hamiltonian by Barles
and Perthame (see [31] for the stationary case and [11] for the evolutionary case).

Theorem 1.2.6. Let u ∈ BUSC([0,T ]×Rn) and v ∈ BLSC([0,T ]×Rn) be, respectively, a
bounded upper semicontinuous subsolution and a bounded lower semicontinuous supersolu-
tion to

vt = H̄(x,Dv) in (0,T )×Rn

such that u(0,x) ≤ h(x) ≤ v(0,x) for all x ∈ Rn. Then u(x, t) ≤ v(x, t) for all x ∈ Rn and
0 ≤ t ≤ T .

Proof. Let us give a sketch of the main points of the proof. We show that for µ < 1, µ

sufficiently near to 1, it holds

sup
Rn×[0,T ]

(u−µv)≤ sup
Rn

(u−µv)(·,0).
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If this is true, then the inequality holds also for µ = 1, proving the theorem. By contradiction,
we assume that for every µ < 1, there exists (x, t) such that

u(x, t)−µv(x, t)> sup
Rn

(u−µv)(·,0). (1.45)

Let

Φ(x,z, t,s) = u(x, t)−µv(z,s)− |x− z|2

ε2 − |t − s|2

η2 −δ log(1+ |x|2 + |z2|)+αµs.

For ε,η small enough, Φ has a maximum point, that we denote with (x′,z′, t ′,s′). By standard
arguments, we get |x′−z′|2

ε2 , |t
′−s′|2
η2 −→ 0 as ε,η → 0.

If either s′ = 0 or t ′ = 0, it is easy to see that we get a contradiction with (1.45). So we
consider the case (x′,z′, t ′,s′) ∈ Rn ×Rn × (0,T )× (0,T ). Let

p = 2
x′− z′

ε2 , qx =
2x′

1+ |x′|2 + |z′|2
, qz =

−2y′

1+ |x′|2 + |z′|2
, r = 2

t ′− s′

η2 .

Using the fact that u is a subsolution we get

r− H̄(x′, p+δqx)≤ 0. (1.46)

Since v is a supersolution, we get

r
µ
− H̄

(
z′,

p+δqz

µ

)
≥ α (1.47)

So, we multiply (1.47) by −µ and sum up to (1.46) to obtain

µH̄
(

z′,
p+δqz

µ

)
− H̄(x′, p+δqx)≤−αµ. (1.48)

Using Proposition 1.2.3, property (d), we get

µH̄
(

z′,
p+δqz

µ

)
− H̄(x′, p+δqx)

≥− 1
1−µ

sup
y∈Rm

|σT (z′,y)(p+δqz)−σ
T (x′,y)(p+δqx)|2. (1.49)

Now we prove that
|σT (z′,y)(p+δqz)−σ

T (x′,y)(p+δqx)|2 (1.50)
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goes to zero uniformly in y as ε,η ,δ go to zero, reaching a contradiction. In fact we write
(1.50) as

|σT (z′,y)(p+δqz)−σ
T (x′,y)(p+δqx)|2

= |((σ(x′,y)−σ(z′,y))T (p+δqz)+δσ
T (x′,y)(qx −qz)|2.

Let
∆(y) = ((σ(x′,y)−σ(z′,y))T (p+δqz), J(y) = δσ

T (x′,y)(qx −qz).

Then, since ∆(y) goes to zero for ε,η → 0 and for all δ fixed uniformly in y, and J(y) goes
to zero for ε,η ,δ → 0 uniformly in y, we conclude that the limit in the right-hand side of
(1.49) is zero, reaching a contradiction.

1.3 The supercritical case: α > 2

As in Section 1.2, we prove the existence of an effective Hamiltonian giving the limit PDE and
first we identify the cell problem that we wish to solve. Plugging the asymptotic expansion

vε(t,x,y) = v0(t,x)+ ε
α−1w(t,x,y)

in the equation (1.10) satisfied by vε we get

v0
t = |σT Dxv0|2 +b ·Dyw+ tr(ττ

T D2
yyw)+O(ε).

Then the true cell problem is to find the unique constant H̄(x̄, p̄) such that

H̄(x̄, p̄)−|σ(x̄,y)T p̄|2 −b(y) ·Dyw(y)− tr(τ(y)τ(y)T D2
yyw = 0 in Rm, (1.51)

has a periodic viscosity solution w. We consider the δ -cell problem for fixed (x̄, p̄, X̄)

δwδ (y)−|σ(x̄,y)T p̄|2 −b(y) ·Dywδ (y)− tr(τ(y)τ(y)T D2
yywδ (y)) = 0 in Rm, (1.52)

where wδ is the approximate corrector. The next result states that δwδ converges to H̄ and it
is smooth.

Proposition 1.3.1. For any fixed (x̄, p̄) there exists a constant H̄(x̄, p̄) such that H̄(x̄, p̄) =
limδ→0 δwδ (y) uniformly, where wδ ∈ C2(Rm) is the unique periodic solution of (1.52).
Moreover

H̄(x̄, p̄) :=
∫
Tm

|σ(x̄,y)T p̄|2 dµ(y), (1.53)
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where µ is the invariant probability measure on the m-dimensional torus Tm of the stochastic
process

dYt = b(Yt)dt +
√

2τ(Yt)dWt ,

that is, the periodic solution of

−∑
i, j

∂ 2

∂yi∂y j
((ττ

T )i j(y))µ +∑
i

∂

∂yi
(bi(y))µ = 0 in Rm, (1.54)

with
∫
Tn µ(y)dy = 1.

Proof. The proof essentially follows the arguments presented in [9, 3] of ergodic control
theory in periodic enviroments. We just notice that the process Yt is ergodic since it is a
uniformly elliptic diffusion on the torus (see [3]) and then it has a unique invariant probability
measure µ (see the Appendix B for definitions of ergodicity and invariant measure). We
finally observe that (1.53) is a necessary and sufficient condition for the true cell problem to
have a solution. This is a known result that follows formally from multiplying (1.51) by µ

and integrating by parts and using (1.54).

Remark 1.3.2. Note that in dimension n = 1 the effective Hamiltonian assumes the form

H(x̄, p̄) =
∫
Tm

σ(x̄,y)2dµ(y)p̄2 = (σ̄ p̄)2,

where σ̄ =
√∫

Tm σ(x̄,y)2dµ(y).

We observe that the effective Hamiltonian H̄ satisfies properties (a),(b),(c),(d) as in
Proposition 1.2.3, which can be proven with similar arguments. Then, the proof of Theorem
1.2.6 applies here and we have the following comparison result among viscosity sub- and
supersolutions of the limit PDE

vt −
∫
Tm

|σ(x,y)T Dv|2 dµ(y) = 0 in (0,T )×Rn. (1.55)

Theorem 1.3.3. Let u ∈ BUSC([0,T ]×Rn) and v ∈ BLSC([0,T ]×Rn) be, respectively, a
subsolution and a supersolution to (1.55) such that u(0,x) ≤ v(0,x) for all x ∈ Rn. Then
u(x, t)≤ v(x, t) for all x ∈ Rn and 0 ≤ t ≤ T .
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1.4 The subcritical case: α < 2

In this case, the asymptotic expansion we plug in the equation is

vε(t,x,y) = v0(t,x)+ ε
α

2 w(t,x,y). (1.56)

Plugging (1.56) into the equation (1.10) satisfied by vε , we get

v0
t = |σT Dxv0|2 +2(τσ

T Dxv0) ·Dyw+ |τT Dyw|2 +O(ε). (1.57)

Therefore the cell problem we want to solve is finding, for any fixed (x̄, p̄), a unique constant
H̄ such that there is a viscosity solution w of the following equation

H̄(x̄, p̄)−2(τ(y)σ(x̄,y)T p̄) ·Dyw(y)−|τ(y)T Dyw(y)|2 −|σ(x̄,y)T p̄|2 = 0. (1.58)

Since
2(τ(y)σT (x̄,y)p̄) ·Dyw = 2(σT (x̄,y)p̄) · (τT (y)Dyw),

we can restate the cell problem as

H̄(x̄, p̄)−|τT (y)Dyw(y)+σ
T (x̄,y)p̄|2 = 0. (1.59)

The following proposition deals with the existence and uniqueness of H̄.

Proposition 1.4.1. For any fixed (x̄, p̄), there exists a unique constant H̄(x̄, p̄) such that
the cell problem (1.58) admits a periodic viscosity solution w. Moreover w is Lipschitz
continuous and there exists C > 0 independent of x̄, p̄ such that

max
y

|Dw(y; x̄, p̄)| ≤C(1+ |p̄|).

Proof. As for the other cases we introduce the following approximant problem, with δ > 0,

δwδ (y)−|τT (y)Dywδ (y)+σ
T (x̄,y)p̄|2 = 0 in Rm. (1.60)

Let wδ the unique periodic viscosity solution to (1.60). By standard comparison principle
we get that

|δwδ | ≤ max
y∈Rm

|σT (x̄,y)p̄|2 ≤C(1+ |p̄|2) ∀y ∈ Rm.

Moreover, using the coercivity of the Hamiltonian (see [14, Prop II.4.1]), we get that wδ is
Lipschitz continuous and there exists a constant C independent of δ and p̄ such that

max
y∈Rm

|Dwδ | ≤C(1+ |p̄|).
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So, we conclude as in the proof of Proposition 1.2.1.

We give some representation formulas for the effective Hamiltonian H̄.

Proposition 1.4.2. (i) H̄ satisfies

H̄(x̄, p̄) = lim
δ→0

sup
β (·)

δ

∫ +∞

0

(
|σ(x̄,y(t))T p̄|2 −|β (t)|2

)
e−δ t dt, (1.61)

where β (·) varies over measurable functions taking values in Rr, y(·) is the trajectory of the
control system {

y′(t) = 2τ(y(t))σT (x̄,y(t))p̄−2τ(y(t))β , t > 0,
y(0) = y

and the limit is uniform with respect to the initial position y of the system;
(ii) if, in addition, τ(y)σT (x,y) = 0 for all x,y, then

H̄(x̄, p̄) = max
y∈Rm

|σT (x̄,y)p̄|2; (1.62)

(iii) if n = m = r = 1, and σ ≥ 0

H̄(x̄, p̄) =
(∫ 1

0

σ(x̄,y)
τ(y)

dy
)2(∫ 1

0

1
τ(y)

dy
)−2

p̄2. (1.63)

Proof. The formula (1.61) can be proved by writing (1.60) as a Bellman equation

δwδ (y)+ inf
β∈Rr

{(
2τ(y)β −2τ(y)σ(x̄,y)T p̄

)
·Dywδ + |β |2

}
−|σ(x̄,y)T p̄|2 = 0. (1.64)

Then wδ is the value function of the infinite horizon discounted deterministic control problem
appearing in (1.61) (see, e.g., [14, 22]). If τ(y)σT (x,y) = 0 for all x,y, then (1.59) reads

−|τT (y)Dyw(y)|2 = |σT (x̄,y)p̄|2 − H̄(x̄, p̄).

So, this gives immediately the inequality ≥ in (1.62). The other inequality is obtained by
standard comparison principle arguments applied to the approximating problem (1.60).
Finally, in the case n = m = r = 1, if p̄ ≥ 0 we write explicitly the corrector as

w(y) =
∫ y

0

H̄
1
2 −σ(x̄,s)p̄

τ(s)
ds.

Note that w ∈C1 is periodic and does the job. A similar construction works for p̄ < 0.
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We observe that H̄ satisfies properties (a), (b), (c), (d) as in Proposition 1.2.3, which can be
proven with similar arguments. Then, the proof of Theorem 1.2.6 applies here and we have
the following comparison result among viscosity sub- and supersolutions of the limit PDE

vt − H̄(x,Dv) = 0 in (0,T )×Rn. (1.65)

Theorem 1.4.3. Let u ∈ BUSC([0,T ]×Rn) and v ∈ BLSC([0,T ]×Rn) be, respectively, a
bounded upper semicontinuous subsolution and a bounded lower semicontinuous supersolu-
tion to (1.65) such that u(0,x)≤ h(x)≤ v(0,x) for all x ∈ Rn. Then u(x, t)≤ v(x, t) for all
x ∈ Rn and 0 ≤ t ≤ T .

1.5 The convergence result

In this section we state the convergence theorem for the singular perturbation problem. We
will make use of the relaxed semi-limits which we define as follows. For the functions vε

defined in (1.9) the relaxed upper semi-limit v̄ = limsup∗ε→0 supy vε is

v̄(t,x) := limsup
ε→0,(t ′,x′)→(t,x)

sup
y

vε(t ′,x′,y), x ∈ Rn, t ≥ 0.

We define analogously the lower semi-limit v = liminf∗ε→0 infy vε by replacing limsup with
liminf and sup with inf. Since h is bounded the family vε is equibounded and we have
v̄ ∈ BUSC([0,T ]×Rn) and v ∈ BLSC([0,T ]×Rn).
First we state the convergence result in the critical and supercritical case α ≥ 2.
Recall that by Proposition 1.1.2 i) vε defined by (1.9) is the solution of∂tvε −Hε

(
x,y,Dxvε ,

Dyvε

εα−1 ,Dxxvε ,
D2

yyvε

εα−1 ,
Dxyvε

ε
α−1

2

)
= 0 (0,T )×Rn ×Rm

vε(0,x,y) = h(x) Rn ×Rm.

with
Hε(x,y, p,q,X ,Y,Z) : = |σT p|2 +b ·q+ tr(ττ

TY )+ ε
(
tr(σσ

T X)+φ · p
)

+ 2ε
α

2 −1(τσ
T p) ·q+2ε

1
2 tr(στ

T Z)+ ε
α−2|τT q|2.

Theorem 1.5.1. Assume α ≥ 2. Then
i) The upper limit v̄ (resp., the lower limit v) of vε is a subsolution (resp., supersolution) of

the effective equation

vt − H̄(x,Dv) = 0 in (0,T )×Rn v(0,x) = h(x) on Rn (1.66)
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where H̄ is given by (1.53) for α > 2, and it is defined by Proposition 1.2.1 for α = 2 (with
the formulas (1.32), (1.33), (1.35), and (1.36));
ii) vε converges uniformly on the compact subsets of [0,T )×Rn×Rm to the unique viscosity

solution of (1.66).

Proof. i) The inequalities v(0,x)≤ h(x)≤ v̄(0,x) follow from the definitions. The problem
of taking the limit in the PDE is a regular perturbation of a singular perturbation problem, in
the terminology of [4]. The result can be proved by the methods developed in [4] for such
problems, with minor modifications.
ii) By the definition of the semilimits v ≤ v̄ in [0,T )×Rn. The comparison principle

(Theorem 1.2.6 and Theorem 1.3.3) for the effective equation (1.66) gives the inequality ≤
and therefore v̄ = v = v in [0,T ]×Rn. Thanks to the properties of semilimits, we finally get
that vε converges locally uniformly to the unique bounded solution of (1.66).

Now we state the convergence result in the subcritical case, α < 2.
Recall that by Proposition 1.1.2 ii) vε defined by (1.9) is the solution ofvε

t = Hε

(
x,y,Dxvε ,

Dyvε

ε
α
2
,Dxxvε ,

D2
yyvε

ε
α
2
,

Dxyvε

ε
α
4

)
(0,T )×Rn ×Rm

vε(0,x,y) = h(x) Rn ×Rm.

with
Hε(x,y, p,q,X ,Y,Z) : = |σT p|2 +2(τσ

T p) ·q+ |τT q|2 + ε
(
tr(σσ

T X)+φ · p
)

+ 2ε
1−α

4 tr(στ
T Z)+ ε

1−α

2 b ·q+ ε
1−α

2 tr(ττ
TY ).

Theorem 1.5.2. Assume α < 2. Then
i) the upper limit v̄ (resp., the lower limit v) of vε is a subsolution (resp., supersolution)

of the effective equation (1.66) where H̄ is defined by Proposition 1.4.1 (with the formula
(1.61));

ii) vε converges uniformly on the compact subsets of [0,T )×Rn×Rm to the unique viscosity
solution of (1.66).

Proof. The proof is the same as that of Theorem 1.5.1, by using the comparison principle
Theorem 1.4.3.

Ordering of the three cases

The convergence theorem stated above and the formulas for H̄ say that there are three possible
limits for vε , depending only on the position of α with respect to the critical value α = 2.
Let us call them vsup,vc and vsub, if, respectively, α > 2,α = 2, or α < 2. We can compare
them in the uncorrelated case.
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Corollary 1.5.3. If τ(y)σT (x,y) = 0 for all x,y, then

vsup(t,x)≤ vc(t,x)≤ vsub(t,x) ∀t ≥ 0,x ∈ Rn. (1.67)

Proof. If τσT = 0 we can easily compare the three effective Hamiltonians H̄sup, H̄c, and
H̄sub, respectively. In fact, (1.25) and (1.62) give

H̄c(x, p)≤ H̄sub(x, p) ∀x ∈ Rn, p ∈ Rn.

On the other hand, using the control β ≡ 0 in (1.34) and by the assumption τσT = 0, we get
the diffusion

dYt = b(Yt)dt +
√

2τ(Yt)dWt ,

whose invariant measure µ appears in the formula (1.53) for H̄sup. Then (1.33) gives

H̄c(x, p)≥ lim
t→+∞

1
t

E
[∫ t

0
|σT (x,Ys)p|2 ds

]
=
∫
Tm

|σT (x,y)p|2 dµ(y) = H̄sup(x, p)

for all initial condition Y0. Now the inequalities (1.67) are obtained by the comparison
principle Theorem 1.2.6.

1.6 Large deviation and applications to option pricing

The large deviation principle

In this chapter we derive a large deviation principle for the process Xε
t defined in (1.6).

Throughout the section we suppose that σ is uniformly non degenerate, that is, for some
ν > 0 and for all x, p ∈ Rn

|σT (x,y)p|2 > ν |p|2. (1.68)

By (1.25), under (1.68), the effective Hamiltonian is coercive. Let L̄ be the effective La-
grangian, i.e. for x ∈ Rn

L̄(x,q) = max
p∈Rn

{p ·q− H̄(x, p)}. (1.69)

Note that L̄(x, ·) is a convex nonnegative function such that L̄(x,0) = 0 for all x ∈ Rn, since
H̄(x, ·) is convex nonnegative and H̄(x,0) = 0 for all x ∈ R.
For each x0 ∈ Rn and t > 0, define

I(x;x0, t) := inf
[∫ t

0
L̄
(
ξ (s),ξ ′(s)

)
ds
∣∣∣ ξ ∈ AC(0, t), ξ (0) = x0,ξ (t) = x

]
. (1.70)
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Remark 1.6.1. (a) The function I defined in (1.70) is continuous in the variable x (see, e.g.,
[70]) and is a nonnegative function such that I(x0;x0, t) = 0.
(b) I satisfies the following growth condition for some C > 0 and all x,x0 ∈ Rn

1
4C

|x− x0|2

t
≤ I(x;x0, t)≤

1
4ν

|x− x0|2

t
, (1.71)

where ν is defined in (1.68). In fact, thanks to the property (1.25) stated in Proposition 1.2.3,
we get that

1
4C

|p|2 ≤ L̄(x, p)≤ 1
4ν

|p|2.

Then we have

1
4C

inf
ξ (0)=x0,ξ (t)=x

∫ t

0
|ξ ′(s)|2 ≤ I(x;x0, t)≤

1
4ν

inf
ξ (0)=x0,ξ (t)=x

∫ t

0
|ξ ′(s)|2,

from which we get (1.71).
(c) If σ does not depend on x, i.e. H̄ = H̄(p), the rate function in (1.70) is

I(x;x0, t) = tL̄
(

x− x0

t

)
.

(d) If σ does not depend of x and n = 1, I is a monotone nondecreasing function of x when
x > x0. Analogously, I is a monotone nonincreasing function of x when x < x0.

Theorem 1.6.2. Let (Xε ,Y ε) be the process defined in (1.6) with initial position Xε
0 = x0

and Y ε
0 = y0. Then for every t > 0, a large deviation principle holds for {Xε

t : ε > 0} with
speed 1

ε
and good rate function I(x;x0, t). In particular, for any open set B ⊆ Rn

lim
ε→0

ε logP(Xε
t ∈ B) =− inf

x∈B
I(x;x0, t). (1.72)

Remark 1.6.3. Thanks to Remark 1.6.1, if σ does not depend on x and n = 1, we have
infy>x I(y;x0, t) = I(x;x0, t) for x ≥ x0 and (1.72) can be written in the following way

lim
ε→0

ε logP(Xε
t > x) =−I(x;x0, t) when x > x0

and analogously when x < x0

lim
ε→0

ε logP(Xε
t < x) =−I(x;x0, t).

Remark 1.6.4. We note that the rate function I defined in (1.70) does not depend on the
drift φ of the log-price Xε

t and it depends only on the volatility σ and on the fast process Y ε
t .

In fact, this holds for the effective Hamiltonian H̄ by the representation formulas (1.32) for
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α = 2, (1.53) for α > 2 and (1.61) for α < 2, and hence it holds for the Legendre transform
L̄.

Proof. We divide the proof in two steps, the first is the proof of the large deviation principle,
while the second is the proof of the representation formula (1.70) for the good rate function.

Step. 1 (Large deviation principle) The proof of this step is similar to that of Theorem 2.1
of [79] with some minor changes. The idea is to apply Bryc’s inverse Varadhan lemma (see
Appendix A, Lemma 2.7.9) with µε given by the laws of {Xε

t } and Λε
h given by vε . Recall

that, for h ∈ BC(Rn), vε is defined as

vε(t,x,y) := ε logE
[

e
h(Xε

t )
ε |(Xε

. ,Y
ε
. ) satisfy (1.6)

]
.

We proved in Theorems 1.5.1, 1.5.2 that vε converge uniformly to a function vh.
In order to apply Lemma 2.7.9 (Appendix A), we have to prove the exponential tightness of
{Xε

t }. Define the following function

fε(x,y) =

{
f (x)+ εα−1ζ (y) if α ≥ 2,
f (x)+ ε

α

2 ζ (y) if α < 2,
(1.73)

where
f (x) = log(1+ |x|2)

and ζ (y) is a positive differentiable function with bounded first and second derivatives. Since
f (x) is an increasing function of |x| and since ζ (y) ≥ 0, we have that for any c > 0 there
exists a compact set Kc ⊂ Rn such that

fε(x,y)> c when x ̸∈ Kc. (1.74)

We observe that || ∂ f
∂x j

||∞ + || ∂ 2 f
∂x jxi

||∞ < ∞ for all i = 1 · · ·n, j = 1 · · ·n, and by our choice of ζ

we therefore have that

sup
x∈Rn,y∈Rm

Hε(x,y,Dx fε ,Dy fε ,D2
xx fε ,D2

yy fε ,D2
xy fε) =C < ∞, (1.75)

where Hε is defined as follows

Hε(x,y, p,q,X ,Y,Z) = |σT p|2 + εtr(σσ
T X)+ εφ · p+2ε

−α

2 tr(τσ
T p) ·q

+ 2ε
1−α

2 tr(στ
T Z)+ ε

1−αb ·q+ ε
−α |τT q|2 + ε

1−α tr(ττ
TY ).

We will write Hε fε(x,y) to denote Hε(x,y,Dx fε ,Dy fε ,D2
xx fε ,D2

yy fε ,D2
xy fε). The P and E

in the following proof denote probability and expectation conditioned on (X ,Y ) starting at
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(x,y). Define the process

Mε
t = exp

{
fε(Xε

t ,Y
ε

t )

ε
− fε(x,y)

ε
− 1

ε

∫ t

0
Hε fε(Xε

s ,Y
ε
s )ds

}
. (1.76)

Then Mε,t is a supermartingale and hence we can apply the optional sampling theorem (see
Appendix A, Theorem 2.7.10), that is

1 ≥ E [Mε
t ] . (1.77)

Then

1 ≥ E [Mε
t |Xε

t /∈ Kc] ≥ E
[
e
(c− fε (x,y)−tC)

ε |Xε
t /∈ Kc

]
(1.78)

= P(Xε
t ̸∈ Kc)e

(c− fε (x,y)−tC)
ε ,

where we have used (1.74) and (1.75) to estimate the first and third term in Mε
t . Then we get

ε logP(Xε
t ̸∈ Kc)≤ tC+ fε(x,y)− c ≤ const − c

and this finally gives us the exponential tightness of Xε
t .

So, by Bryc’s inverse Varadhan lemma (see Appendix A, Lemma 2.7.9), the measures
associated to the process Xε

t satisfy the LDP with the good rate function

I(x;x0, t) = sup
h∈BC(Rn)

{h(x)− vh(t,x0)} (1.79)

and
vh(t,x0) = sup

x∈Rn
{h(x)− I(x;x0, t)}.

Step. 2 (Representation formula for the good rate function) The solution vh to the effective
equation {

vt − H̄(x,Dv) = 0 in (0,T )×Rn

v(0,x) = h(x) in Rn (1.80)

can be represented through the following formula

vh(t,x) =

sup
{

h(y)−
∫ t

0
L̄
(
ξ (s),ξ ′(s)

)
ds | y ∈ Rn,ξ ∈ AC(0, t),ξ (0) = x,ξ (t) = y

}
, (1.81)
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where L̄ is the effective Lagrangian defined in (1.69). We refer to [70] where it is shown that
vh is continuous and is the solution of (1.80). We define

r(x;x0, t) = inf
ξ (0)=x0,ξ (t)=x

∫ t

0
L̄
(
ξ (s),ξ ′(s)

)
ds (1.82)

Thanks to (1.79) and (1.81), we can write

I(x;x0, t) =

r(x;x0, t) + sup
h∈BC(R)

inf
{

h(x)−h(y)+
∫ t

0
L̄
(
ξ (s),ξ ′(s)

)
ds− r(x;x0, t)

}
, (1.83)

where the infimum is over y ∈ Rn and absolutely continuous functions ξ such that ξ (0) =
x0,ξ (t) = y. Then

I(x;x0, t) = r(x;x0, t)+ J(x;x0, t),

where J(x;x0, t) := suph∈BC(R) Jh(x;x0, t) and

Jh(x;x0, t) = inf
{

h(x)−h(y)+
∫ t

0
L̄
(
ξ (s),ξ ′(s)

)
ds− r(x;x0, t)

}
.

Taking y= x, we obtain Jh(x;x0, t)≤ 0 and therefore J(x;x0, t)≤ 0. Now we define a function
h∗ ∈ BC(R) as follows:

h∗(y) = r(y;x0, t)∧ r(x;x0, t).

We claim that h∗ is continuous. Then Jh∗(x;x0, t) = 0 and therefore J(x;x0, t) = 0. In conclu-
sion

I(x;x0, t) = inf
ξ (0)=x0,ξ (t)=x

∫ t

0
L̄
(
ξ (s),ξ ′(s)

)
ds.

Finally, the claim follows from the continuity of the function r(y;x0, t) in the variable y, that
can be found, e.g., in [70], Section 4, Proposition 3.1 and Corollary 3.4.

Out-of-the-money option pricing and asymptotic implied volatility

In this section, we give some applications of Theorem 1.6.2 in dimension 1 to out-of-the-
money option pricing. In particular, in Corollary 1.6.5, we state an asymptotic estimate for
the behaviour of the price of out-of-the-money European call option with strike price K and
short maturity time T = εt.
Let Sε

t be the asset price, evolving according to the following stochastic differential system
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{
dSε

t = εξ (Sε
t ,Y

ε
t )S

ε
t dt +

√
2εζ (Sε

t ,Y
ε

t )S
ε
t dWt Sε

0 = S0 ∈ R+

dY ε
t = ε1−αb(Y ε

t )dt +
√

2ε1−ατ(Y ε
t )dWt Y ε

0 = y0 ∈ Rm,
(1.84)

where α > 1, τ,b are as in (1.6) and ξ : R+×Rm → R, ζ : R+×Rm → M1,r are Lipschitz
continuous bounded functions, periodic in y. Observe that Sε

t > 0 almost surely if S0 > 0.
We define Xε

t = logSε
t . Then (Xε

t ,Y
ε

t ) satisfies (1.6) with

φ(x,y) = ξ (ex,y)−ζ (ex,y)ζ T (ex,y) σ(x,y) = ζ (ex,y).

We consider out-of-the-money call option by taking

S0 < K or x0 < logK. (1.85)

Following the argument used in [79], we can derive an option price estimates stated in
Corollary 1.6.5. Similarly, by considering out-of-the-money put options, one can obtain the
same formula for S0 > K.

Corollary 1.6.5. Suppose that S0 < K. Then, for fixed t > 0

lim
ε→0+

ε logE
[
(Sε

t −K)
+
]
=− inf

y>logK
I (y;x0, t) . (1.86)

Now we give an asymptotic estimate of the Black-Scholes implied volatility for out-of-the-
money European call option, with strike price K, which we denote by σε(t, logK,x0).
We recall that given an observed European call option price for a contract with strike price

K and expiration date T , the implied volatility σ is defined to be the value of the volatility
parameter that must go into the Black-Scholes formula to match the observed price.
By arguments similar to those of the ones used in [79], we get the following asymptotic

formula.

Corollary 1.6.6.

lim
ε→0+

σ
2
ε (t, logK,x0) =

(logK − x0)
2

2infy>logK I(y;x0, t)t
. (1.87)

Note that the infimum in the right-hand side of (1.87), is always positive by assumption
(1.85) and by (1.71).

Remark 1.6.7. When ζ (s,y) = ζ (s), then thanks to Remark 1.6.3, (1.86) simplifies to

lim
ε→0+

ε logE
[
(Sε

t −K)
+
]
=−I (logK;x0, t)
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and (1.87) reads

lim
ε→0+

σ
2
ε (t, logK,x0) =

(logK − x0)
2

2I(logK;x0, t)t
.

Proof. By the definition of implied volatility

E
[
(Sε

t −K)+
]

= erεtS0Φ

(
x0 − logK + rεt +σ2

ε
εt
2

σε

√
εt

)
(1.88)

− KΦ

(
x0 − logK + rεt −σ2

ε
εt
2

σε

√
εt

)
,

where Φ is the Gaussian cumulative distribution function. Then the proof follows as in [79],
using (1.88) and Corollary 1.6.5.
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Chapter 2

Non compact case

2.1 Introduction
In this chapter we study the asymptotic behaviour as ε → 0 of fast stochastic volatility
systems in the form{

dXt = εφ(Xt ,Yt)dt +
√

2εσ(Xt ,Yt)dWt X0 = x ∈ Rn,

dYt = ε1−αb(Yt)dt +
√

2ε1−ατ(Yt)dWt Y0 = y ∈ Rm,
(2.1)

where ε > 0, Wt is a standard m-dimensional Brownian motion, the matrix τ is non-degenerate.
Note that we do not assume any compactness of the fast variable, which is replaced by some
condition implying ergodicity, i.e that the process Yt has a unique invariant distribution
(the long-run distribution) and that in the long term it becomes independent of the initial
distribution. In particular, we manage to treat processes mainly of Ornstein-Uhlenbeck type,
that is

Yt = (µ −Yt)dt + τ(Yt)dWt

where µ ∈ Rm is a vector, and τ is bounded and uniformly non-degenerate (see assumption
(U), Section 2.1.1). The motivation behind the analysis of such kind of systems relies in the
fact that the assumption of periodicity of Chapter 1 seems a bit restrictive for the financial
applications we have in mind, in particular it does not appear natural in order to model
volatility in financial markets, according to the empirical data and the discussion presented
in [86] and the references therein.
Following the line of Chapter 1, we consider a logarithmic functional of the trajectories of

(2.1)
vε(t,x,y) := ε logE

[
eh(Xt)/ε |(X .,Y.) satisfy (2.1)

]
,

where h is a bounded continuous function and we characterize vε as the solution of the
Cauchy problem with initial data vε(0,x,y) = h(x) for a fully nonlinear parabolic equation
in n+m variables (see Proposition 2.1.5 where we recall this result). Our first aim is to
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prove that, under suitable assumptions, the functions vε(t,x,y) converge to a function v(t,x)
characterized as the solution of the Cauchy problem for a first order Hamilton-Jacobi equation
in n space dimensions

vt − H̄(x,Dv) = 0 in ]0,T [×Rn, v(0,x) = h(x), (2.2)

for a suitable effective Hamiltonian H̄. We also derive some applications of this result to
large deviations, estimation of out-of-the-money option prices near maturity and asymptotic
formula for the Black-Scholes implied volatility. Since the proofs of these applications are
exactly the same of those shown in Chapter 1, Section 1.6, we omit them.
This is a singular perturbation problem for nonlinear HJB where the fast variable y lives in
Rm, which is the main difficulty to deal with. Some of the methods used in Chapter 1 are
strongly linked to the assumption of periodicity (that we assumed In Chapter 1) and must be
modified in this setting.
The main issues are the resolution of the cell problem, the identification of the limit Hamilto-

nians and the convergence result. Our methods are based on the use of the approximate δ -cell
problem. A key result is the global Lipschitz bound for the solution of the δ -approximate
cell problem, uniform in δ , proved in Proposition 2.5.5 (critical case) and Proposition 2.5.14
(supercritical case). The proof is in some part inspired by a method due to Ishii and Lions
[112] (see also [67],[28] and the references therein), which essentially allows to take profit of
the uniform ellipticity of the equation to control the Hamiltonian terms. However, we remark
that usually the Ishii-Lions method allows to achieve bounds which depend on the L∞-norm
of the solution (at least if we do not assume any periodicity), whereas our aim is to establish a
global estimate in all the space independent of such norm. The fundamental hypothesis which
enables us to achieve our result consists in assuming that the fast processes we consider are
mainly of Ornstein-Uhlenbeck type. Note also that we deal with both linear Hamiltonians in
the gradient (in the supercritical case) and superlinear quadratic Hamiltonians (in the critical
case).
In the critical case the proof is carried out in three steps. First we prove an uniform local

Lipschitz bound for the solution of the δ -cell problem (see Section 2.5, Lemma 2.5.1). The
proof of the local bound is carried out by the Bernstein method relying on the coercivity in the
gradient of the cell equation (which, in the critical case, is a uniformly elliptic second order
equation with quadratic Hamiltonian in the gradient). Note that, thanks to this local gradient
bound, we are able to consider fast processes which coincide with the Ornstein-Uhlenbeck
process only outside some ball (see assumption (U), Section 2.1.1). Moreover, it allows us
quite general assumptions on the stochastic volatility (see assumption (S), Section 2.1.1). A
second step we prove a global Hölder bound not uniform in δ (see Proposition 2.5.2) using
the Ishii-Lions method and relying mainly on the uniform ellipticity and assumption (U) .
Finally, we achieve the global uniform Lipschitz bound by using both the local bound and
Hölder bound already proven and relying deeply on assumptions (U) and (S). We remark



2.1 Introduction 55

that the proof is non standard mainly because we do not use any compactness or periodicity
on the coefficients and our result is independent of δ and holds in all the space.
On the contrary, in the supecritical case the cell problem is a uniformly elliptic equation

linear in the gradient. Since in this case we are not able to prove an analogous local bound
as in Lemma 2.5.1, we streghten assumption (U) and consider processes Yt which coincide
with the Ornstein-Uhlenbeck process in all the space. Note also that in the supercritical case
there is no need of assumption (S) on the volatility. For further remarks we refer to Section
2.5, subsection 2.5.2. Mainly beacause assumption (U) holds in all the space (and we do
not need (S)), the proofs of the Hölder bound and the global uniform Lipschitz bound in the
supercritical case are analogous and even easier than in the critical case.
Let us recall some results in the literature related to gradient bounds for similar kind

of equations. Gradient bounds for superlinear-type Hamiltonians can be found in Lions
[126] and Barles [20], see also Lions and Souganidis [129] and Barles and Souganidis
[32]. Recently, Hölder bounds for nonlinear degenerate parabolic equations were proved
in Cardaliaguet and Sylvestre [55]. However, we remark that, in the previous works the
bound depends usually on the L∞-norm of the solution, that is, on δ , when dealing with the
δ -cell problem), whereas, on the contrary, our aim is to find a bound which is independent
of such parameter. In [32] some results independent of the L∞ norm of the solutions are
established but in periodic environment. We recall also the result of [53] by Capuzzo-
Dolcetta, Leoni, Porretta for coercive superlinear Hamiltonians, where a uniform gradient
bound is established, but in some Hölder norm and only in bounded domains. We refer also to
Barles [21], Cardaliaguet [54]. Recently, uniform Lipschitz bound on the torus for analogous
equations as ours (and more general) has been established by Ley and Duc Nguyen in [125].
As already hinted above, the first issue is the identification of the limit Hamiltonian through

the resolution of the cell problem which is now defined in all the space. The existence of a
limit Hamiltonian and of the corrector is proved by the use of the approximate δ -cell problem.
The main result which allows us to conclude the existence is the uniform gradient estimate for
the solution of the δ -cell problem. For the uniqueness of the limit Hamiltonian, we proceed
differently in the critical and supercritical case. In the critical case, we rely on the ergodicity
of the process Yt and on the results of Ichihara [107], where ergodic type Bellman equations
are studied in the case of a nonlinear quadratic term. On the contrary, in the supercritical
case, we rely on the results of Bardi, Cesaroni, Manca in [15], where the uniqueness of a
limit Hamiltonian is proved (but note that no existence of the true corrector is proved in [15]).
The main result is the convergence of the functions vε to the solution of the limit problem.

Our techniques are based on the perturbed test function method of [76], [4], with some
relevant adaptations to the unbounded setting. In order to deal with the non compactness of
the fast variable, we deeply rely on the ergodicity of the fast process, which is encoded in the
existence of a Lyapounov function (see Section 2.2). A key result used in the convergence
is, again, the global gradient bound of the corrector (see Proposition 2.5.6 and Proposition
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2.5.15), which we use in the proof of the convergence mainly to deal with the difficulties
coming from the nonlinearity in the gradient of our equation.
We recall the paper [79], where Feng, Fouque, and Kumar study analogous problems

for system of the form we consider when α = 2 and α = 4, in the one-dimensional case
n = m = 1, assuming that Yt is an Ornstein-Uhlenbeck process and the coefficients in the
equation for Xt do not depend on Xt . Their methods are based on the approach to large
deviations developed in [80]. We consider α ≥ 2 and we treat vector-valued processes with
φ and σ depending on Xt in a rather general way and we study all the range α ≥ 2; our
methods are different, mostly from the theory of viscosity solutions for fully nonlinear PDEs
and from the theory of homogenization and singular perturbations for such equations.

2.1.1 The stochastic volatility model

We consider fast mean-reverting processes of the following type{
dXt = φ(Xt ,Yt)dt +

√
2σ(Xt ,Yt)dWt , X0 = x ∈ Rn

dYt = ε−αb(Yt)dt +
√

2ε−ατ(Yt)dWt , Y0 = y ∈ Rm,
(2.3)

where ε > 0,α ≥ 2,φ :Rn×Rm →Rn,σ :Rn×Rm →Mn,m are bounded functions, Lipschitz
continuous in (x,y), b : Rm → Rm is Lipschitz continuous, τ : Rm → Mm,m is bounded,
Lipschitz continuous and uniformly non degenerate, i.e. satisfies for some θ > 0

ξ
T

τ(y)τ(y)T
ξ = |τT (y)ξ |2 > θ |ξ |2 for every y ∈ R,ξ ∈ Rm. (2.4)

This assumptions will hold throughtout the Chapter.

Moreover b,τ satisfy the following condition

(U) There exist µ ∈ Rm,τ ∈ Mm,m such that
• If α = 2, there exists R1 > 0 such that

1)
b(y) = µ − y, if |y|> R1;

2)
τ(y) = τ if |y|> R1;

• if α > 2
b(y) = µ − y, τ(y) = τ for any y ∈ Rm.

We also assume that σ satisfies
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(S) for all x ∈ Rn, there exists g : Rm ×Rm → R+ such that

||σ(x,y)−σ(x,z)||∞ ≤ g(y,z)|y− z| for all y,z ∈ Rm.

and ∀ε > 0, there exists Rε > 0 such that g(y,z)≤ ε as |z|, |y| ≥ Rε .

Remark 2.1.1. As already observed, assumption (U) is satisfied in particular by Ornstein-
Uhlenbeck type processes. The Ornstein-Uhlenbeck process is a classical example of a
Gaussian process that admits a stationary probability distribution. It is a mean-reverting
process, namely there is a long-term value µ towards the process “tends to revert” . In
other words, in dimension m = 1, this means that if the current value of the process is less
than the (long-term) mean, the drift will be positive; if the current value of the process is
greater than the (long-term) mean, the drift will be negative. This gives the process the name
"mean-reverting."

Remark 2.1.2. Note that assumption (U) is stronger in the supercritical case α > 2. As
already note in the introduction, this is due to the fact that in the critical case we can prove a
local uniform gradient bound for the solution of the approximate cell problem, whereas in the
supercritical case, we are not able to prove such a result. We refer to Section 2.5, subsection
2.5.2 for further remarks.

Remark 2.1.3. Assumption (S) says, roughly speaking, that the Lipschitz constant of σ(x, ·),
considered as a function on Rm for x ∈Rn fixed, vanishes at infinity. We refer to the following
remark for some examples. Note also that (S) plays its role in the proof of the global gradient
estimate for the corrector in the critical case, see Proposition 2.5.6. On the contrary, in the
supercritical case there is no need of such assumption (see Proposition 2.5.15). We remark
that, at least to our point of view, (S) seems not restrictive in the context of financial models,
since it influences the behaviour of σ only at infinity, which in general is not "seen" in the
financial applications we are interested in.

Remark 2.1.4. Examples of sufficient conditions for (S) are

lim
|x|→+∞

g(x,y) = 0 uniformly in y,

lim
|y|→+∞

g(x,y) = 0 uniformly in x.

For example, the above conditions are satisfied by σ(x,y) = 1
(1+|y|2)α , for α > 0. Then in

this case we have (S) with g(y,z) = C
1+|y|+|z| . Without loss of generality we suppose n = 1
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and z ≥ y ≥ 0. Then

σ(y)−σ(z) =
1

(1+ y2)α

(
1−
(

1+
y2 − z2

1+ z2

)α
)
.

From the inequality 1− (1+ x)α ≤−x for −1 ≤ x ≤ 0, we get

σ(y)−σ(z)≤ 1
(1+ y2)α

(z− y)(z+ y)
1+ z2 ≤ 2z

1+ z2 (y− z).

Since we assumed z ≥ y ≥ 0, we can find a constant C independent of y,z such that 2z
1+z2 ≤

C
1+z+y , concluding the proof.

In order to study small time behaviour of the system (2.3), we rescale time t → εt, for
0 < ε ≪ 1, so that the typical maturity will be of order ε . Denoting the rescaled process by
Xε

t ,Y
ε

t we get {
dXt = εφ(Xt ,Yt)dt +

√
2εσ(Xt ,Yt)dWt , X0 = x ∈ Rn

dYt = ε1−αb(Yt)dt +
√

2ε1−ατ(Yt)dWt , Y0 = y ∈ Rm.
(2.5)

2.1.2 The logarithmic transformation method and the HJB equation

We follow the same approach of Chapter 1. We consider the following functional

vε(t,x,y) := ε logE
[
eh(Xt)/ε |(X .,Y.) satisfy (2.5)

]
, (2.6)

where h ∈ BC(Rn) and (Xs,Ys) satisfies (2.5). Note that the logarithmic form of this payoff
is motivated by the applications to large deviations that we want to give.
Analogously as in Chapter 1 (Proposition 1.1.2), we characterize vε as the unique continuous

viscosity solution of the following parabolic problem. We refer again to Da Lio and Ley in
[69] for a proof.

Proposition 2.1.5. Let α ≥ 2 and define
Hε(x,y, p,q,X ,Y,Z) := |σT p|2 +b ·q+ tr(ττ

TY )+ ε
(
tr(σσ

T X)+φ · p
)

+ 2ε
α

2 −1(τσ
T p) ·q+2ε

1
2 tr(στ

T Z)+ ε
α−2|τT q|2.

Then vε is the unique bounded continuous viscosity solution of the Cauchy problem∂tvε −Hε

(
x,y,Dxvε ,

Dyvε

εα−1 ,D2
xxvε ,

D2
yyvε

εα−1 ,
D2

xyvε

ε
α−1

2

)
= 0 in [0,T ]×Rn ×Rm,

vε(0,x,y) = h(x) in Rn ×Rm.

(2.7)
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Remark 2.1.6. We observe that we treat the supercritical (α > 2) and critical (α = 2) case
and we do not deal with the subcritical case (α < 2). Indeed, for α < 2, the cell problem is
finding, for each (x̄, p̄) fixed, a unique constant H̄(x̄, p̄) such that the following equation has
a viscosity solution w:

H̄(x̄, p̄)−2(τ(y)σ(x̄,y)T p̄) ·Dyw(y)−|τ(y)T Dyw(y)|2 −|σ(x̄,y)T p̄|2 = 0. (2.8)

Note that in this case the cell problem is not solvable in general. This is essentially due to
the fact that the ergodicity of the fast process plays no role in the cell problem (2.8), since
the cost (|σT p̄|2) and the drift 2τσT p̄ are both bounded and the drift b has disappeared. On
the contrary, in the case α ≥ 2, this role is played by the term −b ·Dw where b satisfies
assumption (U). We refer to the following subsection where we use explicitly the condition
on b of (U), in the case α ≥ 2, in order to prove the existence of a Liapounov function. We
refer also to [107], where analogous conditions to (U), (even more general, see for example
(2.9) and (2.14) in the following subsection) are assumed to ensure the ergodicity.

Remark 2.1.7. As a consequence of the convergence result, we prove a large deviation
principle for the process Xε

t whose statement and proof we omit in this chapter, since they
are analogous to those of Theorem 1.6.2 of Chapter 1, Section 1.6. The same remark holds
for the asymptotic estimate for out-of-the-money option prices near maturity and asymptotic
formula for the implied volatility proved in Corollary 1.6.5 and Corollary 1.6.6 of Chapter 1,
Section 1.6.

2.2 A Liapounov-like condition

We prove that, under the assumption (U), there exists for any (x̄, p̄) ∈ Rn ×Rn a Liapounov-
like function for the following operator

Gx̄,p̄(y,q,Y ) =−(b(y)+2τ(y)σT (x̄,y)p̄) ·q−|τT (y)q|2 − tr(ττ
T (y)Y ),

i.e. we prove that there exists a continuous function χx̄,p̄ := χ , such that χ(y)→+∞ as |y| →
+∞ and if G [χ] := Gx̄,p̄(y,Dχ(y),D2χ(y)) then

G [χ]→+∞ as |y| →+∞ in the viscosity sense. (2.9)

The existence of a Liapounov function is reminiscent of other similar conditions about
ergodicity of diffusion processes in the whole space; see, for example [105],[127], [36], [45],
[132].
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Remark 2.2.1. We observe that

Gx̄,p̄(y,q,Y ) =−Lx̄,p̄(y,q,Y )−|τT (y)q|2 (2.10)

where, for any (x̄, p̄) ∈ Rn ×Rn, Lx̄,p̄ is the linear operator

Lx̄,p̄(y,q,Y ) = (b(y)+2τ(y)σT (x̄,y)p̄) ·q+ tr(ττ
T (y)Y ),

which is the infinitesimal generator of the stochastic process

dYt = (b(Yt)+2τ(Yt)σ
T (x̄,Yt)p̄)dt + τ(Yt)dWt .

Note that we consider the additional term −|τT q|2 in (2.10) and this is due to the logarithmic
form of the value function vε defined in (2.6), which is in turn motivated by the applications
to large deviations we are interested in.

Now we prove the existence of a Lyapounov function for the operator G .

Proof. Note that a key role in the following proof is played by the behavior of the drift b at
infinity, which is encoded by the condition on b of assumption (U).
We take

χ = a|y|2, (2.11)

and by (U), and the boundedness of τ , we have for |y| ≥ R1

−b(y) ·Dχ(y)−|τT (y)Dχ(y)|2 ≥ 2a|y|2 −4a2T |y|2 −2a|µ||y|, (2.12)

where T > 0 depends on ||τ||∞. Then by taking

a <
1

2T
, (2.13)

the other terms in G being negligible because of the boundedness of τ and σ , we get (2.9).

Remark 2.2.2. We remark that the previous proof holds under a weaker condition on b,
which is implied by (U), namely

b(y) · y ≤−B|y|2 for |y| ≥ R2 for some R2 > 0,B > 0. (2.14)

We observe that condition (2.14) reminds classical conditions for ergodicity, see for exam-
ple [15]. In particular we recall the so-called recurrence condition used by Pardoux and
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Veretennikov [134], [135], [136] namely

b(y) · y →−∞ as |y| →+∞. (2.15)

Note that (2.14) is stronger than (2.15). The main reason is that in our context we need to
have some additional information on the rate of decay of b ·y, in particular we need it to be at
least quadratic in order to compete with the quadratic growth (in the gradient term) of G (see
also Remark 2.2.1). We note that we assume condition (U), which is stronger than (2.14), for
reasons linked to the convergence of the functional vε and to the proof of the global gradient
bound for the corrector of Proposition 2.5.6 and Proposition 2.5.15.

2.3 The critical case: α = 2

2.3.1 Key preliminary results

For any (x̄, p̄) ∈ Rn ×Rn, the cell problem is finding the unique constant λ ∈ R such that the
following equation

λ − tr(ττ
T (y)D2w(y))−|τT (y)Dw|2 − (b(y)+2(τ(y)σT (x̄,y)p̄) ·Dw(y)−|σT p̄|2 = 0.

(2.16)
has a viscosity solution w. This kind of ergodic problems have been studied by Ichihara
[107] and Ichihara and Sheu [108]. We refer in particular to Theorem 2.4 of [107], which we
recall in the following proposition.
Denote

Φ = {w ∈C2(Rm) : there exists C < 0 such that w(y)≤C(1+ |y|)}. (2.17)

Proposition 2.3.1. Let assumption 1) of (U) holds. There exists a constant λ ∗ ∈ R such that
(2.16) admits a classical solution w ∈C2(Rm) if and only if λ ≤ λ ∗. Moreover, if (λ ,w) is a
solution of (2.16) and w ∈ Φ, then λ = λ ∗.

Remark 2.3.2. We remark that Theorem 2.4 is proved for Hamiltonians which are convex
in the gradient variable, whereas in our case the Hamiltonian is concave. The two cases are
equivalent, since if we have a solution w of (2.16), then −w is a solution of

−λ − tr(ττ
T (y)D2w(y))+H(y,Dw(y)) = 0, (2.18)

where
H(y,q) =−b(y) ·q+ |τ(y)T q|2 −2τ(y)σ(x̄,y)T p̄ ·q+ |σ(x̄,y)p̄|2. (2.19)

which is now convex in the gradient and satisfies the assumptions of [107].
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2.3.2 The cell problem and the effective Hamiltonian

For δ > 0, we consider the approximate cell problem

δwδ +F(x̄,y, p̄,Dwδ ,D
2wδ )−|σ(x̄,y)p̄|2 = 0, (2.20)

where

F(x̄,y, p̄,q,Y ) :=−tr(ττ
T (y)Y )−|τT (y)q|2 −b(y) ·q−2(τ(y)σT (x̄,y)p̄) ·q. (2.21)

Under our standing assumptions we have the following results.

Proposition 2.3.3. Let assumption 1) of (U) holds. For any (x̄, p̄) fixed, there exists a unique
solution wδ ∈C2(Rm) of (2.20) satisfying

− 1
δ

inf
y∈Rm

|σ(x̄,y)T p̄|2 ≤ wδ (y)≤
1
δ

sup
y∈Rm

|σ(x̄,y)T p̄|2, (2.22)

such that
lim
δ→0

δwδ (y) = const := H̄(x̄, p̄) locally uniformly.

Moreover H̄(x̄, p̄) is the unique constant such that (2.16) has a solution w∈C2(Rm) satisfying

|w(y)| ≤ C̄(1+ log(
√

|y|2 +1)) for all y ∈ Rm. (2.23)

Finally w is the unique (up to and additive constant) solution to (2.16) for λ = H̄(x̄, p̄).

Remark 2.3.4. The growth estimate (2.23) implies that w solution of (2.16) belongs to the
class Φ defined in (2.17), allowing us to apply Proposition 2.3.1 and deriving the uniqueness
of H̄. Note that (2.23) is stronger than the growth required in Φ, in particular it would be
enough to prove (2.23) with a linear function of y in the right-hand side.

Remark 2.3.5. We remark that in the following proof we will use a local gradient bound
uniform in δ for the solution of the approximate cell problem. We state and prove the result
in Section 2.5, see Lemma 2.5.1.
Now we prove Proposition 2.3.3.

Proof of Proposition 2.3.3. We split the proof into two steps. In step 1 we prove the existence
of a couple (w,λ )∈C(Rm)×R solution to (2.16); in step 2 we prove that w∈C2(Rm), (2.23)
and the uniqueness of such λ . Note that the uniqueness up to an additive constant of w
follows from Theorem 2.2 of [107].
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Step. 1-Existence We use the methods of [9] based on the small discount approximation
(2.20). Note that the PDE (2.20) has bounded forcing term |σT (x̄,y)p̄|2 since σ is bounded.
The existence and uniqueness of a viscosity solution with the δ dependent bound (2.22)
follows from the Perron-Ishii method and the comparison principle in [69]. Moreover
wδ ∈ C2(Rm), thanks to the Lipschitz uniform estimate of Lemma 2.5.1 and by elliptic
regularity theory of convex uniformly elliptic equations, see [153] and [141].
Now we prove that δwδ (y) converges along a subsequence of δ → 0 to the constant H̄(x̄, p̄)

and wδ (y)−wδ (0) converges to the corrector w. The hard part is proving equicontinuity
estimates for δwδ . We proceed by a diagonal argument. By the local Lipschitz estimates of
Lemma 2.5.1, we have

|wδ (y)−wδ (z)| ≤C1(1+ |p̄|)|y− z| y,z ∈ B̄1, (2.24)

that is, δwδ is equicontinuous in B̄1. The equiboundedness follows from the compa-
rison principle with constant sub and super solutions, namely miny∈Rm |σ(y, x̄)T p̄|2 and
maxy∈Rm |σ(y, x̄)T p̄|2. Then by Ascoli-Arzela theorem, there exists a subsequence δ 1

n wδ 1
n

of
δwδ , converging uniformly in B̄1 to a constant λ 1, since by (2.24) we have

|δwδ (y)−δwδ (z)| ≤ δC1(1+ |p̄|)|y− z| y,z ∈ B̄1

and then
δwδ (y)−δwδ (z)→ 0 ∀y,z ∈ B̄1 as δ → 0.

By the same argument, δ 1
n wδ 1

n
is equibounded and equicontinous in B̄2. Then, there exists a

subsequence δ 2
n wδ 2

n
of δ 1

n wδ 1
n
, converging uniformly in B̄2 to a constant λ 2, such that

λ
1 = λ

2 =: λ .

Similarly, we construct for all k ∈ N, a sequence {δ k
n wδ k

n
}n converging as n → ∞ uniformly

in B̄k to a constant λ k = λ . Note that the subsequence {δ n
n wδ n

n
}n converges locally uniformly

to λ . In fact for any k ∈ N we have that {δ n
n wδ n

n
}n is a subsequence of {δ k

n wδ k
n
}n for all

n ≥ k, from which we deduce that {δ n
n wδ n

n
}n converges uniformly in B̄k for all k ∈ N.

Now define vδ := wδ (y)−wδ (0). Notice that, for all k, vδ is equibounded in B̄k, since, by
Lemma 2.5.1, we have

|vδ (y)|= |wδ (y)−wδ (0)| ≤Ck(1+ |p̄|)|y|, y ∈ B̄k

and, again by Lemma 2.5.1, vδ is equicontinuous in Bk since

|vδ (y)− vδ (z)|= |wδ (y)−wδ (z)| ≤Ck(1+ |p̄|)|y− z|, y,z ∈ B̄k.
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By an analogous diagonal argument, we find sequences {vδ k
n
}n such that v

δ
k+1
n

is a sub-
sequence of vδ k

n
, and converges uniformly in B̄k to a function vk. Moreover for all k ∈ N, we

have
vk+1(y) = vk(y) y ∈ B̄k.

Then, if we define w : Rm → R such that

w(y) = vk(y) y ∈ B̄k, (2.25)

we conclude that
{vδ n

n
}n → w locally uniformly. (2.26)

Now we prove that (λ ,w) satisfy (2.16). From (2.20) we get

δvδ +δwδ (0)+F(x̄,y, p̄,Dyvδ ,D
2
yyvδ )−|σT (x̄,y)p̄|2 = 0, in Rm. (2.27)

Since vδ is locally equibounded, δvδ → 0 locally uniformly and the claim follows recalling
that δwδ → λ and using the stability property of viscosity solutions.
Finally the corrector inherits the property (2.40) of Lemma 2.5.1 and satisfies for all k ∈ N

max
y∈B̄(0,k)

|Dyw(y; x̄, p̄)| ≤Ck(1+ |p̄|), (2.28)

for some Ck > 0 and for all x̄, p̄ ∈ Rn.

Step. 2-Uniqueness of λ The uniqueness is given by Proposition 2.3.1, once proved that
w ∈ Φ. The C2 regularity follows from the uniform Lipschitz estimate (2.28) and the
regularity theory of convex uniformly elliptic equations, see [153] and [141].
Note that, in order to prove that w ∈ Φ, we prove the (stronger) growth condition (2.23).
We prove the claim for the upper bound, since the proof of the lower bound is analogous.
We take the approximate problem (2.20) and we prove that the function g=C log(

√
|y|2 +1),

for some positive constant C large enough, is a supersolution of (2.20), that is, we prove

δg(y)− (b(y)+2τ(y)σT (x̄,y)p̄) ·Dg−|τT (y)Dg(y)|2 − tr(ττ
T (y)D2g)−|σ(x̄,y)p̄|2 ≥ 0.

(2.29)
Take |y| ≥ R1 where R1 is defined in (U). By (U) and the boundedness of σ , we have

δg(y)− (b(y)+2τ(y)σT (x̄,y)p̄) ·Dg−|τT (y)Dg(y)|2 − tr(ττ
T (y)D2g)−|σ(x̄,y)p̄|2 ≥

2C
|y|2

|y|2 +1
− KC(1+ |p̄|)|y|

|y|2 +1
−KC2 |y|2

(|y|2 +1)2 −|σ(x̄,y)p̄|2, (2.30)

where K > 0 depends on τ,µ defined in (U) and on ||σ(x̄, ·)||∞. Then, in order to prove that
g is a supersolution of (2.29), we prove that the second term in (2.30) is non negative. We
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factorise |y|2
|y|2+1 and we prove that

C− KC(1+ |p̄|)
|y|

− KC2

|y|2 +1
− sup

y
|σT p̄|2 |y|

2 +1
|y|2

≥ 0. (2.31)

Note that when y goes to infinity in (2.31) the leading order term is C− supy |σT p̄|2. Then
the claim follows by taking for example C = 2+ 3

2 supy |σT p̄|2 and y ∈ Rm \ B̄R̄ for some
R̄ > R1 such that

KC(1+ |p̄|)
|y|

+
KC2

|y|2 +1
≤ 2,

|y|2 +1
|y|2

≤ 3
2
.

Up to now we proved that the function C log(
√

|y|2 +1) is a supersolution of (2.20) in
Rm \BR̄. If maxB̄R̄

wδ ≤ 0 then

wδ (y)≤ max
B̄R̄

wδ ≤C log(
√

|y|2 +1) y ∈ ∂BR̄,

and then by the comparison principle we have

wδ (y)≤C log(
√
|y|2 +1) y ∈ Rm.

Now suppose that maxB̄R̄
wδ ≥ 0 and notice that in this case C log(

√
|y|2 +1)+maxB̄R̄

wδ is
still a supersolution of (2.20) in Rm \BR̄. Then, again by the comparison principle, we get

wδ (y)≤C log(
√

|y|2 +1)+max
B̄R̄

wδ y ∈ Rm. (2.32)

Since wδ satisfies (2.32)

vδ (y) = wδ (y)−wδ (0)≤C log(
√
|y|2 +1)+max

B̄R̄

wδ (y)−wδ (0) y ∈ Rm.

We estimate the term maxB̄R̄
wδ (y)−wδ (0) by Lemma 2.5.1 and we get

vδ (y)≤C log(
√

|y|2 +1)+CR̄

and thanks to (2.26) we conclude (2.23) by taking C̄ = max{C,CR̄}.

We recall some properties satisfied by H̄. Note that the following proposition can be proved
as Proposition 1.2.3 of Chapter 1.

Proposition 2.3.6. Let assumption 1) of (U) holds.
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(a) H̄ is continuous on Rn ×Rn;

(b) the function p → H̄(x, p) is convex;

(c)
inf

y∈Rm
|σT (x̄,y)p̄|2 ≤ H̄(x̄, p̄)≤ sup

y∈Rm
|σT (x̄,y)p̄|2; (2.33)

(d) For all 0 < µ < 1 and x,z,q, p ∈ Rn, it holds

µH̄
(

x,
p
µ

)
− H̄(z,q)≥ 1

µ −1
sup

y∈Rm
|σT (x,y)p−σ

T (z,y)q|2. (2.34)

Finally we observe that equations like (2.16) have been studied in a non compact setting
by Khaise and Sheu in [116]. They prove the existence of a constant H̄ such that there
is a unique smooth solution w of (2.20) with prescribed growth. Moreover they provide a
representation formula for H̄ as the convex conjugate of a suitable operator over a space of
measures.

2.4 The supercritical case: α > 2

The cell problem is finding, for any (x̄, p̄) ∈ Rn ×Rn fixed, a unique constant λ ∈ R such
that the following uniformly elliptic linear equation has a viscosity solution w

λ − tr(ττ
T (y)D2w(y))−b(y) ·Dw(y)−|σ(x̄,y)T p̄|2 = 0. (2.35)

This kind of cell problems has been studied in [15], see in particular Proposition 4.2 and
Theorem 4.3.

Proposition 2.4.1. Let assumption (U) holds. For any (x̄, p̄) ∈Rn×Rn, there exists a unique
invariant probability measure µ for the process

dYt = b(Yt)dt +
√

2τ(Yt)dWt . (2.36)

Remark 2.4.2. For the details we refer to [15], Proposition 4.2. We just observe that the
proof relies strongly on the existence of a Liapounov function as proved in the paragraph
2.2 for the infinitesimal generator of the process (2.36), that is, the operator L (y,q,Y ) =
tr(ττT (y)Y )−b(y) ·q.

Consider the δ -cell problem for fixed (x̄, p̄, X̄)

δwδ (y)−|σ(x̄,y)T p̄|2 −b(y) ·Dywδ (y)− tr(τ(y)τ(y)T D2
yywδ (y)) = 0 in Rm. (2.37)



2.5 Gradient bounds 67

We have the following proposition, which is analogous to Proposition 2.3.3. We omit the
proof since it is the same of Proposition 2.3.3 and even simpler. Note only that in the place
of Lemma 2.5.1 we use Proposition 2.5.14 which we prove in Section 2.5.

Proposition 2.4.3. Let assumption (U) holds. For any fixed (x̄, p̄) there exists a unique
solution wδ ∈C2(Rm) satisfying

− 1
δ

inf
y∈Rm

|σ(x̄,y)T p̄|2 ≤ wδ (y)≤
1
δ

sup
y∈Rm

|σ(x̄,y)T p̄|2 (2.38)

such that
H̄(x̄, p̄) = lim

δ→0
δwδ (y), locally uniformly .

Moreover H̄(x̄, p̄) is the unique constant such that (2.35) has a viscosity solution w ∈C2(Rm)

satisfying (2.23). Finally w is unique up to and additive constant.

We observe that H̄ satisfies the properties (a),(b),(c),(d) of Proposition 2.3.6, which can
be proved with similar arguments.

We have the following representation formula for H̄. For the proof we refer to [15], Theorem
4.3.

Proposition 2.4.4. Let assumption (U) holds. For any (x̄, p̄) fixed, let H̄(x̄, p̄) be defined as
in Proposition 2.4.3. Then

H̄(x̄, p̄) :=
∫
Tm

|σ(x̄,y)T p̄|2 dµ(y), (2.39)

where µ is the unique invariant probability measure of the process (2.36).

2.5 Gradient bounds

The aim of this section is to prove global uniform Lipschitz bounds for the solution of the
cell problem both in the critical case and in the supercritical case. This is a key property on
which we strongly rely in the proof of the convergence result in Section 2.7. First we analyse
the critical case, where we carry out all the computations. Since in the supercritical case the
proof is similar and even easier, we give some details in subsection 2.5.2 showing the main
differences, but without repeating all the computations.

2.5.1 Critical case

In the critical case, the strategy of the proof consists, roughly speaking, in three steps. The
first step consists in proving a Lipschitz bound on compact sets, uniform in δ , for the solution
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of the δ -cell problem (2.20), which we state in Lemma 2.5.1. The proof of Lemma 2.5.1 is
based on the Berstein method and mainly relies on the presence of the coercive term in the
gradient |τT Dwδ |2 in the equation.
The second step consists in proving an Hölder bound not uniform in δ (see Proposition

2.5.2). The method is essentially based on the Ishii-Lions method and relies mainly on the
uniform ellipticity of the equation.
Finally, as a third step, we prove the global uniform gradient bound in Proposition 2.5.5.

Note that Lemma 2.5.1 allows us in the critical case to weaken the hypothesis on the process
Yt and consider processes satisfying (U) and (S). The proof of Proposition 2.5.5 relies mainly
on the Hölder bound of Proposition 2.5.2 and on the use of assumptions (U) and (S).

Local uniform Lipschitz bound

The first result is the local uniform Lipschitz bound for the solution of the δ -cell problem in
the critical case. Note that in Chapter 1, Lemma 1.2.2, we proved the result by the Bernstein
method under the assumption of periodicity; the extension to a local bound follows by cut-off
functions arguments, following the derivation of similar estimate in [78]. We refer also to
[116], Lemma 2.4 for an analogous result. We only note that a key role in the proof of the
lemma is played by the quadratic term in the gradient |τT Dwδ |2 present in the cell problem
in the critical case.

Lemma 2.5.1. Let δ > 0 and wδ (·; x̄, p̄) ∈C2(Rm) be a solution (2.20). Then for all k ∈ N,
there exists Ck > 0 such that for all x̄, p̄ ∈ Rn it holds

max
y∈B̄(0,k)

|Dywδ (y; x̄, p̄)| ≤Ck(1+ |p̄|). (2.40)

Global Hölder bounds

We prove the following Hölder bound in Proposition 2.5.2.
The proof is based on the Ishii-Lions method which allows us to take profit of the uniform

ellipticity. As usual in the Ishii-Lions method, the estimate that we prove in (2.41) is not
uniform in δ . This is the main difference between Proposition 2.5.2 and Proposition 2.5.5
and, mainly for this reason, the proof of Proposition 2.5.2 is more standard.
We remark that in the following proof we do not need assumption (S), which, on the contrary,

is fundamental in the proof of Proposition 2.5.5.

Proposition 2.5.2. Let assumption (U) holds. Let wδ (·; x̄, p̄) ∈ C2(Rm) be the solution of
(2.20) (satisfying the bound (2.22)). Then there exists Cδ > 0 and α ∈ (0,1) such that

|wδ (x; x̄, p̄)−wδ (y; x̄, p̄)| ≤Cδ |x− y|α for all x,y ∈ Rm, (2.41)
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where Cδ depends on δ ,α, ||τ||∞, ||σ(x̄, ·)||∞, p̄, the Lipschitz constants of τ,b,σ and θ of
(2.4).

Proof. Note that throughout the following proof we denote either by (a,b) or a ·b the scalar
product for any a,b ∈ Rm.
For convenience of notation in the following we drop the dependence on x̄, p̄ by denoting

the solution of (2.20) by wδ .
Let δ > 0 and α ∈ (0,1) be fixed and consider the function

wδ (x)−wδ (y)−Cδ |x− y|α , (2.42)

for some constant Cδ > 0 large enough. Note that Cδ will be choosen suitably at the end of
the proof and will depend on δ ,α, ||τ||∞, ||σ(x̄, ·)||∞, p̄, the Lipschitz constants of τ,b,σ and
θ of (2.4). For clearness of exposition, we keep track only of the dependence on δ .
We suppose that

sup{wδ (x)−wδ (y)−Cδ |x− y|α}= M > 0.

Let R > 0 and consider the function

Φ(x,y) = wδ (x)−wδ (y)−Cδ |x− y|α −ψR(x)−ψR(y), (2.43)

where

ψR(z) = ψ

(√
|z|2 +1

R

)
(2.44)

and ψ ∈C2([0,+∞)) satisfies{
ψ(s) = 2||wδ ||∞ +1 if s ≥ 1
ψ(0) = 0, ψ ≥ 0, ψ ′ ≥ 0,

(2.45)

where we note that ||wδ ||∞ depends on δ as in (2.22). We claim that

MR = supΦ(x,y)→ M as R →+∞. (2.46)

In fact
MR ≤ M for any R > 0.

On the other hand

MR ≥ wδ (x)−wδ (y)−Cδ |x− y|α −ψR(x)−ψR(y) for all x,y ∈ Rm,R > 0,

then
lim

R→+∞
MR ≥ wδ (x)−wδ (y)−Cδ |x− y|α for all x,y ∈ Rm
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and we conclude

lim
R→+∞

MR ≥ sup{wδ (x)−wδ (y)−Cδ |x− y|α}= M.

Then we can suppose for R large enough

MR ≥ M
2

> 0. (2.47)

We observe that if
√

|x|2 +1 ≥ R

Φ(x,y)≤−1 < 0

and the same holds when
√

|y|2 +1 ≥ R. Then, there exists (xR,yR) point of maximum of Φ

such that
MR = wδ (xR)−wδ (yR)−Cδ |xR − yR|α −ψR(xR)−ψR(yR). (2.48)

Note that (xR,yR) depends also on δ and that we omit the dependence. Note also that

|xR − yR|> 0, (2.49)

otherwise by (2.48) we have

MR =−ψR(xR)−ψR(yR)

and we get a contradiction by (2.47) and the definition of ψR.
By (2.46), (2.47) and the definition of ψR, we also have

Cδ |xR − yR|α ≤ 2||wδ ||∞ := Aδ .

Then

|xR − yR| ≤
(

Aδ

Cδ

) 1
α

. (2.50)

From now on we omit the dependence on R and we write

(xR,yR) = (x,y).

The main result is the following lemma.
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Lemma 2.5.3. Under the above notations and assumption (U), there exist positive constants
K,K1,K2,K3,K4 such that

0 ≤ KCδ α(α −1)|x− y|α−2 +KCδ α|x− y|α+1 +K1Cδ α|x− y|α +K2αC2
δ
|x− y|2α−1

+K2oR(1)Cδ α|x− y|α−1 +K3αCδ |x− y|α−1 +K4|x− y|+oR(1).

where by oR(1) we mean that oR(1)→ 0 as R →+∞. Moreover K,K1,K2,K3,K4 depends
only on p̄, ||σ ||∞, ||τ||∞, the Lipschitz constants of τ,b,σ and θ of (2.4).

Proof. Let

rx = DxψR = 2R−1
ψ

′

(√
|x|2 +1

R

)
x
√

|x|2 +1
−1

(2.51)

and

ry = DyψR = 2R−1
ψ

′

(√
|y|2 +1

R

)
y
√
|y|2 +1

−1
, (2.52)

then for each δ fixed
|rx|, |ry| ≤ oR(1), ||D2

ψR||∞ ≤ oR(1), (2.53)

where oR(1) means that limR→+∞ oR(1) = 0.
We remark that in the rest of the proof we denote by oR(1) any function such that oR(1)→ 0

as R →+∞. We also denote

s =Cδ α|x− y|α−2(x− y). (2.54)

Note that the function in (2.43) is smooth near (x,y) by (2.49). Then, since wδ is a viscosity
solution of (2.20) and since (x,y) is a maximum point of the function in (2.43), we have

0 ≤ tr(τ(x)τ(x)T D2wδ (x))− tr(τ(y)τ(y)T D2wδ (y))+L(x,y)+G(x,y)+E(x,y)

+F(x,y)+D(x,y)+oR(1), (2.55)

where we used (2.53) to estimate the ψR-terms and we denoted

D(x,y) = δwδ (y)−δwδ (x);

L(x,y) = s · (b(x)−b(y))+b(y) · ry +b(x) · rx;

G(x,y) = |τ(x)T (s− rx)|2 −|τ(y)T (s+ ry)|2;

E(x,y) = 2τ(x)σ(x̄,x)T p̄ · (s− rx)−2τ(y)σ(x̄,y)T p̄ · (s+ ry);

F(x,y) = |σT (x̄,x)p̄|2 −|σT (x̄,y)p̄|2.

First we estimate the second order terms in (2.55), by proving the following lemma.
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Lemma 2.5.4. Under the above notations, we have

tr(τ(x)τ(x)T D2wδ (x))− tr(τ(y)τ(y)T D2wδ (y))≤ KCδ α(α −1)|x− y|α−2

+KCδ α|x− y|α+1 +oR(1), (2.56)

where K is a positive constant (depending on θ of (2.4) and on the Lipschitz constant of τ)
and by oR(1) we mean that limR→+∞ oR(1) = 0.

Proof. We observe that, for any orthonormal basis ei, i = 1, · · ·m of Rm, we can write

tr(τ(x)τ(x)T D2wδ (x)) =
m

∑
i=1

(τ(x)τ(x)T D2wδ (x)ei,ei) =
m

∑
i=1

(D2wδ (x)τ(x)ei,τ(x)ei).

(2.57)
Denote φ(t) = Cδ tα , f (z) = |z|. By the maximum point property and the second term of
(2.53), we get

(D2wδ (x)p, p)− (D2wδ (y)q,q)≤ φ
′( f (x− y))(D2 f (x− y)(p−q),(p−q))

+φ
′′
( f (x− y))(D f (x− y), p−q)2 +oR(1) (2.58)

for any p,q ∈ Rm.
Next we remark that |D f |2 = 1 and therefore, by differentiating this identity, we have
D2 f D f = 0. By (2.4), we can set

e1 =
τ(x)−1D f (x− y)
|τ(x)−1D f (x− y)|

, ẽ1 =− τ(y)−1D f (x− y)
|τ(y)−1D f (x− y)|

.

If e1, ẽ1 are collinear, the we complete the basis with orthogonal unit vectors ei = ẽi ∈ e⊤1 , 2 ≤
i ≤ m. Otherwise, in the plane span{e1, ẽ1}, we consider a rotation R of angle π

2 and we
define

e2 = Re1, ẽ2 =−Rẽ1.

Since span{e1,e2}⊤ = span{ẽ1, ẽ2}⊤, we can complete the orthonormal basis with unit
vectors ei = ẽi ∈ span{e1,e2}⊤, 3 ≤ i ≤ m.
By (2.4), we have

θ ≤ 1
|τ(x)−1D f (x− y)|2

≤ ||τ||2∞.

Define
r1 = τ(x)e1 t1 = τ(y)ẽ1.
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Since |D f |= 1 and D2 f D f = 0 and by choosing p = r1,q = r1 in (2.58), we get

(D2wδ (x)r1,r1)− (D2wδ (y)t1, t1)≤ φ
′′( f (x− y))(D f (x− y),r1 − t1)2 +oR(1)

=Cδ α(α −1)|x− y|α−2(D f (x− y),r1 − t1)2 +oR(1).

Notice that
α(α −1)< 0. (2.59)

By (2.4), we have

(D f (x− y),r1 − t1)2 =

(
1

|τ(x)−1D f (x− y)|2
+

1
|τ(y)−1D f (x− y)|

)2

≥ 4θ .

Then

(D2wδ (x)r1,r1)− (D2wδ (y)t1, t1)≤ 4θCδ α(α −1)|x− y|α−2 +oR(1). (2.60)

Therefore in the right hand side we have a very negative term by a double effect, first because
we will choose Cδ large but also because, by doing so, |x− y| becomes smaller and smaller
and |x− y|α−2 larger and larger.
Now we choose in (2.58) for all i ∈ {1, · · · ,m−1}

p = τ(x)ei q = τ(y)ẽi.

Since τ is Lipschitz, we get

(D2wδ (x)τ(x)ei,τ(x)ei)− (D2wδ (y)τ(y)ẽi,τ(y)ẽi)≤ KCδ α|x− y|α+1 +oR(1),

where K depends on the Lipschits constant of τ . Then, by summing the previous equation on
i and adding (2.60), we get

m

∑
i=1

(D2wδ (x)τ(x)ei,τ(x)ei)−
m

∑
i=1

(D2wδ (y)τ(y)ẽi,τ ẽi)≤ KCδ α(α −1)|x− y|α−2

+KCδ α|x− y|α+1 +oR(1),

when by K we denote a constant depending on the Lipschitz constant of τ and on θ . Then, by
(2.57) with ei defined as above (and ẽi for tr(τ(y)τ(y)T D2wδ (y))), we finally get (2.56).

Then (2.55) becomes

0 ≤ KCδ α(α −1)|x− y|α−2 +KCδ α|x− y|α+1 +L(x,y)+G(x,y)

+E(x,y)+F(x,y)+D(x,y)+oR(1), (2.61)
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Finally we estimate the left terms D,L,G,E,F in (2.61). First note that

D(x,y) = δwδ (y)−δwδ (x)≤ 0;

First note that, by (2.54) and since b is Lipschitz, we have

L(x,y)≤ K1Cδ α|x− y|α +b(y) · ry +b(x) · rx.

where K1 depends on the Lipschitz constant of b. Note that

b(y) · ry +b(x) · rx ≤ oR(1).

Indeed, the previous inequality holds from the second of (2.53) when x,y are uniformly
bounded in R. Now suppose |x| →+∞ as R →+∞ (the argument being similar if |y| →+∞).
By assumption (U) we have

b(x) · rx = (µ − x) · rx

and by (2.51), we have

x · rx = 2R−1|x|2ψ
′

(√
|x|2 +1

R

)
(
√

|x|2 +1)−1

and since ψ ′ ≥ 0 by definition of ψR we have

x · rx ≥ 0. (2.62)

Then by (2.62) and (2.53), we get

(µ − x) · rx ≤ oR(1).

Then
L(x,y)≤ K1Cδ α|x− y|α +oR(1).

Now we estimate the G-term. By the first of (2.53), (2.54) and since τ is bounded, we have

G(x,y)≤ |τT (x)s|2 −|τT (y)s|2 +K2oR(1)Cδ α|x− y|α−1 +oR(1),

where K2 depends on ||τ||∞. Note that from now on we denote by K2 a constant depending
on ||τ||∞ and the Lipschitz constant of τ and which may change from line to line. Since τ is
bounded by (2.54), we have

|τT (x)s|+ |τT (y)s| ≤ K2Cδ α|x− y|α−1
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and since τ is Lipschitz and by (2.54), we have

|τT (x)s|− |τT (y)s| ≤ K2Cδ α|x− y|α .

Then we get
|τT (x)s|2 −|τT (y)s|2 ≤ K2αC2

δ
α|x− y|2α−1,

and we conclude

G(x,y)≤ K2αC2
δ
|x− y|2α−1 +K2oR(1)Cδ α|x− y|α−1 +oR(1). (2.63)

Next we estimate E using the boundedness of σ and we get

E(x,y)≤ K3αCδ |x− y|α−1 +oR(1),

where K3 > 0 depends on p̄, ||τ||∞, ||σ ||∞.
Finally, by the Lipschitz continuity and boundedness of σ , we have

F(x,y)≤ K4|x− y|,

where K4 depends on ||σ ||∞ and the Lipschitz constant of σ and on p̄.
Then, by all the previous estimates, (2.61) becomes

0 ≤ KCδ α(α −1)|x− y|α−2 +KCδ α|x− y|α+1 +K1Cδ α|x− y|α +K2αC2
δ
|x− y|2α−1

+K2oR(1)Cδ α|x− y|α−1 +K3αCδ |x− y|α−1 +K4|x− y|+oR(1). (2.64)

This concludes the proof of Lemma 2.5.3.

We divide (2.64) by Cδ |x− y|α−2 and we get

0 ≤ Kα(α −1)+Kα|x− y|3 +K1α|x− y|2 +K2αCδ |x− y|α+1 +K2oR(1)α|x− y|
+K3α|x− y|+K4C−1

δ
|x− y|3−α +oR(1)C−1

δ
|x− y|2−α . (2.65)

Note that by (2.50), we have

|x− y| ≤ A
1
α

δ
C
− 1

α

δ
, (2.66)

then
C−1

δ
|x− y|3−α ≤ A

3−α

α

δ
C
− 3

α

δ
;

C−1
δ

|x− y|2−α ≤ A
2−α

α

δ
C
− 2

α

δ
;

Cδ |x− y|α+1 ≤ A
α+1

α

δ
C
− 1

α

δ
.
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By all the previous estimates and by taking R large enough such that oR(1) ≤ 1, (2.65)
becomes

0 ≤ Kα(α −1)+KαA
3
α

δ
C
− 3

α

δ
+K1αA

2
α

δ
C
− 2

α

δ
+K2αA

α+1
α

δ
C
− 1

α

δ
+K2oR(1)αA

1
α

δ
C
− 1

α

δ

+K3αA
1
α

δ
C
− 1

α

δ
+K4A

3−α

α

δ
C
− 3

α

δ
+oR(1)A

2−α

α

δ
C
− 2

α

δ
. (2.67)

Then, the claim of the proposition follows by taking Cδ in (2.42) large enough in order to
get a contradiction with (2.67). For example we take Cδ > C̄δ where C̄δ satisfies

Kα(α −1)+KαA
3
α

δ
C̄
− 3

α

δ
+K1αA

2
α

δ
C̄
− 2

α

δ
+K2αA

α+1
α

δ
C̄
− 1

α

δ
+K2oR(1)αA

1
α

δ
C̄
− 1

α

δ

+K3αA
1
α

δ
C̄
− 1

α

δ
+K4A

3−α

α

δ
C̄
− 3

α

δ
+oR(1)A

2−α

α

δ
C̄
− 2

α

δ
< 0.

Note that C̄δ depends on Ki, i = 1,2,3,4 and on δ ,α,K.

Global uniform Lipschitz bound

We prove the following global uniform gradient bound for the solution of the approximate
cell problem (2.20).

Proposition 2.5.5. Let assumptions (U) and (S) hold. Let wδ ∈C2(Rm) be the solution of
(2.20) (satisfying the bound (2.22)). Then for all x,y ∈ Rm we have

|wδ (y; x̄, p̄)−wδ (x; x̄, p̄)| ≤C|x− y|, (2.68)

where C is a positive constant, depending on x̄, p̄, ||τ||∞, ||σ ||∞,m, the Lipschitz constants of
τ,b,σ and is independent of δ .

As a straightforward corollary of Proposition 2.5.5, we get the following global gradient
bound for the solutions of the cell problem (2.16) in the critical case.

Proposition 2.5.6. Let assumptions (U) and (S) hold. Let w ∈C2(Rm) be a solution of (2.16)
for λ = H̄(x̄, p̄) where H̄(x̄, p̄) is defined in Proposition 2.3.3. Then

sup
y∈Rm

|Dyw(y; x̄, p̄)| ≤C, (2.69)

where C is a positive constant, depending on x̄, p̄, ||τ||∞, ||σ ||∞,m. and the Lipschitz constants
of τ,b,σ .

Proof of Proposition 2.5.5. Note that, under the assumption (U), (2.20) reads for |y|> R1

δwδ +F(x̄,y, p̄,Dwδ ,D
2wδ )−|σ(x̄,y)p̄|2 = 0, (2.70)
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where

F(x̄,y, p̄,q,Y ) :=−tr(ττ
TY )−|τT q|2 − (µ − y,q)− (2τσ

T (x̄,y)p̄,q).

Note also that throughout the following proof we denote either by (a,b) or a ·b the scalar
product for any a,b ∈ Rm.
Let R̄ > R1 be large enough (which will be chosen suitably at the end of the proof) and take

CR̄ the constant of Lemma 2.5.1 for k = R̄. Then we have for all x,y ∈ B̄R̄

|wδ (x; x̄, p̄)−wδ (y; x̄, p̄)| ≤CR̄|x− y|, (2.71)

where we included the dependence on p̄ into CR̄ for simplicity. For convenience of notation
in the following we drop the dependence on x̄, p̄ by denoting the solution of (2.70) by wδ .
In this first part of the proof we proceed analogously as in the proof of Proposition 2.5.2.

The new part of the proof starts from Lemma 2.5.7. We give a sketch and for all the details
we refer to the beginning of the proof of Proposition 2.5.2.

We proceed by contradiction and we suppose that

sup{wδ (x)−wδ (y)−C|x− y|}= M > 0, (2.72)

where C is a positive constant large enough, that is C > max{CR̄,CR̄+1}.
Let R > 0 and consider the function

Φ(x,y) = wδ (x)−wδ (y)−C|x− y|−ψR(x)−ψR(y), (2.73)

where

ψR(z) = ψ

(√
|z|2 +1

R

)
(2.74)

where ψ is defined in (5.43). By standard argument (see also the proof of Proposition 2.5.2),
we prove that

MR = supΦ(x,y)→ M as R →+∞,

then we can suppose for R large enough

MR ≥ M
2

> 0, (2.75)

and by definition of ψR we get that, for R large enough, there exist (xR,yR) such that

MR = wδ (xR)−wδ (yR)−C|xR − yR|−ψR(xR)−ψR(yR). (2.76)
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Note also that
|xR − yR|> 0. (2.77)

We prove the following lemma.

Lemma 2.5.7. Under the above notations, we have that, for R large enough, there exists
a point of maximum (xR,yR) of the function Φ such that (xR,yR) ∈ (Rm \ B̄R̄)× (Rm \ B̄R̄).
Moreover

liminf
R→+∞

|xR − yR|> 0. (2.78)

Remark 2.5.8. The result of Lemma 2.5.7 is essential in order to use assumption (U) in
the rest of the proof. Indeed, the radius R̄ is chosen such that R̄ > R1 (R1 being defined in
assumption (U)).

Remark 2.5.9. As we will show throughout the proof, we note that a key result in order to
prove (2.78) is the Hölder bound of Proposition 2.5.2.

Proof. Let (xR,yR) be a point of maximum of Φ defined in (2.73) (see the above arguments
for the existence). If (xR,yR) ∈ (Rm \ B̄R̄)× (Rm \ B̄R̄), the claim is proved. Otherwise, there
are three possible cases (up to subsequences):

(i) (xR,yR) ∈ B̄R̄ × B̄R̄;
(ii) (xR,yR) ∈ B̄R̄ × (Rm \ B̄R̄);

(iii) (xR,yR) ∈ (Rm \ B̄R̄)× B̄R̄.
Suppose we are in case (i). We apply the local estimate on B̄R̄ (2.71) and by the choice of C
in (2.72), we get a contradiction with (2.75).
Now we deal with case (ii) and we observe that case (iii) can be treated analogously. We

prove that there exists zR ∈Rm \ B̄R̄ such that (zR,yR) is still a maximum point of the function
Φ. Note that we can suppose that yR ∈ Rm \ B̄R̄+1. Indeed, if yR ∈ B̄R̄+1, we use the local
estimate on B̄R̄+1 and by the choice of C in (2.72), we get a contradiction with (2.75). Let
zR,z′R be respectively the points where the segment between xR and yR intersects the boundary
of BR̄+1 and of BR̄. Note that

|xR − yR|= |xR − zR|+ |zR − yR| (2.79)

and
|xR − zR|= |xR − z′R|+1. (2.80)

Then, by (2.79), we have

maxΦ = Φ(xR,yR)≤ Φ(zR,yR)+wδ (xR)−wδ (zR)−C|xR − zR|−ψR(xR)+ψR(zR),
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and by the local estimate (2.71) on B̄R̄+1 coupled with (2.80), we get

maxΦ ≤ Φ(zR,yR) + CR̄+1|xR − z′R| + CR̄+1 − C|xR − z′R| − C − ψR(xR) + ψR(zR).

By the choice of C in (2.72) we get

maxΦ ≤CR̄+1 −C+Φ(zR,yR)−ψR(xR)+ψR(zR)

and, by taking R large enough so that CR̄+1 −C−ψR(xR)+ψR(zR)≤ 0, we conclude

maxΦ ≤ Φ(zR,yR).

Then, for R large enough, (zR,yR) ∈ (Rm \ B̄R̄)× (Rm \ B̄R̄) is a point of maximum of the
function Φ. This conclude the proof of the first claim.
Now we prove (2.78). By contradiction, we suppose that

liminf
R→+∞

|xR − yR|= 0.

By (2.76) and the definition of ψR, we have

MR ≤ wδ (xR)−wδ (yR).

Now we use Proposition 2.5.2 and by (2.41), we get

MR ≤Cδ |xR − yR|α .

Then, since MR → M > 0, we get the following contradiction

0 < liminf
R→+∞

MR ≤ liminf
R→+∞

Cδ |xR − yR|α = 0,

concluding the proof.

From now on we omit the dependence on R and we write

(xR,yR) = (x,y).

We prove the following lemma.

Lemma 2.5.10. Under the above notations and assumptions, there exists two positive con-
stants K1,K2 such that

C|x− y| ≤CK1g(x,y)|x− y|+K2|x− y|+oR(1), (2.81)
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where g : Rm ×Rm → R+ is such that ∀ε > 0 there exists Rε such that g(x,y) ≤ ε for all
|x|, |y| ≥ Rε . Moreover K1,K2 depends only on p̄, ||σ ||∞, ||τ||∞ and by oR(1) we mean that
limR→+∞ oR(1) = 0.

Remark 2.5.11. Note that C|x− y|, on the left side in (2.81), remains striclty positive for
R →+∞ (by Lemma (2.5.7) proved in step 2). This term stems from the Ornstein-Uhlenbeck
term −(µ − y) ·Dwδ in the cell problem (2.70).

Proof. We denote

rx := DψR(x) = R−1
ψ

′

(√
|x|2 +1

R

)
x(
√

|x|2 +1)−1 (2.82)

ry := DψR(y) = R−1
ψ

′

(√
|y|2 +1

R

)
y(
√
|y|2 +1)−1. (2.83)

We remark that
|rx|, |ry| ≤ R−1||ψ ′||∞, (2.84)

where ||ψ ′||∞ depends on δ . Similarly we argue for the second derivatives of ψR and we get

||D2
ψR(z)||∞ ≤ oR(1), (2.85)

where oR(1) means that limR→+∞ oR(1) = 0.
Note that in the rest of the proof we denote by oR(1) any function respectively such that

oR(1)→ 0 as R →+∞. We also denote

s =C
x− y
|x− y|

. (2.86)

Notice that the function in (2.73) is smooth since for R big enough x ̸= y by Lemma 2.5.7.
Then, since wδ is a viscosity solution of (2.70) and since (x,y) is a maximum point of the
function in (2.73), we have

L(x,y)≤ tr(ττ
T D2wδ (x))− tr(ττ

T D2wδ (y))+oR(1)+G(x,y)

+E(x,y)+F(x,y)+D(x,y), (2.87)

where we used (2.84) and (2.85) to estimate the ψR-terms and where we denote

D(x,y) = δwδ (y)−δwδ (x);

L(x,y) = (s,(x− y))− (µ − y,ry)− (µ − x,rx);
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G(x,y) = |τT (s+ rx)|2 −|τT (s− ry)|2;

E(x,y) = (2τσ(x̄,x)T p̄,s+ rx)− (2τσ(x̄,y)T p̄,s− ry);

F(x,y) = |σT (x̄,x)p̄|2 −|σT (x̄,y)p̄|2.

We estimate each term in (2.87). The most important terms is L since it gives rise to the left
order term C|x− y| in (2.81). Indeed by (2.86), we have

L(x,y)≥C|x− y|− (µ − y) · ry − (µ − x) · rx

and notice that by (2.82) and (2.83) we have

x · rx = R−1|x|2ψ
′

(√
|x|2 +1

R

)
(
√

|x|2 +1)−1

and

y · ry = R−1|y|2ψ
′

(√
|y|2 +1

R

)
y(
√
|y|2 +1)−1

and since ψ ′ ≥ 0 by definition of ψR, we have

x · rx ≥ 0, y · ry ≥ 0. (2.88)

By (2.88) and (2.84), we get

−(µ − y) · ry − (µ − x) · rx ≥ oR(1),

and then
L(x,y)≥C|x− y|+oR(1).

Then by the previous estimates we get

C|x−y| ≤ tr(ττ
T D2wδ (x))− tr(ττ

T D2wδ (y))+oR(1)+G(x,y)+E(x,y)+F(x,y)+D(x,y),
(2.89)

Now we estimate the remaining terms in the right-hand side of (2.89). First note that

D(x,y) = δwδ (y)−δwδ (x)≤ 0.

By (2.84) and (2.86), we have
G(x,y)≤ oR(1). (2.90)
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Next, by (S) and the boundedness of σ , we have

E(x,y)≤CK1g(x,y)|x− y|+oR(1),

where K1 > 0 depends on p̄, ||τ||∞, ||σ ||∞.
By the Lipschitz continuity and boundedness of σ , we have

F(x,y)≤ K2|x− y|,

where K2 depends on ||σ ||∞ and the Lipschitz constant of σ and on p̄.
Finally we estimate the second order terms in (2.89) as follows

tr(ττ
T D2wδ (x))− tr(ττ

T D2wδ (y))≤ oR(1). (2.91)

where by oR(1) we mean that limR→+∞ oR(1) = 0. The proof of (2.91) is analogous to the
proof of Lemma 2.5.4, (2.56) proven in Proposition 2.5.2 and even simpler. Indeed, we
use again the following property: if ei, i = 1, · · ·m is an orthonormal basis of Rm and A is a
matrix m×m, we have

tr(A) =
m

∑
i=1

(Aei,ei),

then for any orthonormal basis ei, i = 1, · · ·m of Rm, we can write

tr(ττ
T D2wδ (x)) =

m

∑
i=1

(ττ
T D2wδ (x)ei,ei) =

m

∑
i=1

(D2wδ (x)τei,τei). (2.92)

Denote f (z) = |z|. We recall that the function in (2.73) is smooth at (x,y) = (xR,yR) for R
large enough by Lemma 2.5.7. Then, since x,y is a maximum point of the function in (2.73)
and by (2.85), we get

(D2wδ (x)p, p)− (D2wδ (y)q,q)≤C(D2 f (x− y)(p−q),(p−q))+oR(1) (2.93)

for any p,q ∈ Rm. Then, in order to prove the claim, it is enough to choose in (2.93) for all
i ∈ {1, · · ·m}

p = τei, q = τei.

Then we get

(D2wδ (x)τei,τei)− (D2wδ (y)τei,τei)≤ oR(1) for all i ∈ {1, · · ·m},
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and by summing the previous equation on i, we get

m

∑
i=1

(D2wδ (x)τei,τei)−
m

∑
i=1

(D2wδ (y)τei,τei)≤ oR(1)

from which we conclude (2.91). By coupling all the previous estimates, we get (2.81) and
we conclude the proof of Lemma 2.5.10.

Now we conclude the the argument as follows. We use assumption (S) and by taking R̄ > R1

large enough, we consider |x|, |y| large enough, such that

K1g(x,y)≤ 1
2
. (2.94)

Now we send R →+∞ in (2.81) and divide by |x− y| thanks to Lemma 2.5.7, and we get

C ≤ C
2
+K2, (2.95)

Then, to get a contradiction with (2.95), it is enough to take C large enough such that

C > 2K2. (2.96)

Note that C, R̄ depend respectively only on K2,R1 and in particular, they are independent on
δ .
Then the proof follows by taking C in (2.72), such that C > max{CR̄,CR̄+1,2K2}, where

R̄ > R1 is such that (2.94) holds (and we recall that CR̄ =C′
R̄(1+ |p̄|),CR̄+1 =C′

R̄+1(1+ |p̄|),
where C′

R̄,C
′
R̄+1 are the constants of Lemma 2.5.1 for k = R̄, R̄+1 respectively.)

2.5.2 Supercritical case

In the supercritical case, we proceed analogously as in the critical case. We prove first a
Hölder bound, not uniform in δ , for the solution of the δ -cell problem (2.37) (see Proposition
2.5.12). This result is analogous to Proposition 2.5.2. Then, we prove the global uniform
bound in Proposition 2.5.14.
In this case we do not prove a local gradient bound (as we do in the critical case, Lemma

2.5.1). Indeed, in the supercritical case the δ -cell problem is the following

δwδ (y)− tr(ττ
T (y)D2wδ (y))−b(y) ·Dwδ (y)−|σT (x̄,y)p̄|2 = 0, (2.97)

which is linear in the gradient. Since the equation is no more coercive in the gradient, we do
not expect to prove by the Bernstein method a local gradient bound analogous to Lemma
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2.5.1. We remark also that by the Ishii-Lions we are able to obtain local estimates, but
depending on the L∞-norm of the solution, therefore on δ .
For this reason in the supercritical case we strengthen assumption (U) on the process Yt and

we consider the Ornstein-Uhlenbeck process in all the space. Note also that, in this case,
there is no need of assumption (S), since (S) is used only to estimate the correlation term
τT σT p̄ ·Dwδ , which is not present in the cell problem for α > 2. Once (U) holds in all the
space, the proofs are exactly the same and even easier.

Global Hölder bound

As in the critical case, we prove first the following Hölder bound. We just sketch the proof
and for all the details we refer to the proof of Proposition 2.5.2.

Proposition 2.5.12. Let assumption (U) holds. Let wδ (·; x̄, p̄) ∈ C2(Rm) be a solution of
(2.37). Then there exists Cδ > 0 and α ∈ (0,1) such that

|wδ (x; x̄, p̄)−wδ (y; x̄, p̄)| ≤Cδ |x− y|α for all x,y ∈ Rm, (2.98)

where Cδ depends on δ ,α, ||τ||∞, ||σ(x̄, ·)||∞, p̄ and the Lipschitz constant of σ .

Proof. We omit the dependence on x̄, p̄ and we denote wδ (x; x̄, p̄) = wδ (x).
Let δ > 0 and α ∈ (0,1) let Cδ > 0 be large enough. Note that Cδ will be choosen suitably

at the end of the proof and will depend on δ ,α, ||τ||∞, ||σ(x̄, ·)||∞, p̄, the lipschitz constant of
σ . For clearness of exposition, we keep track only of the dependence on δ . We suppose that

sup{wδ (x)−wδ (y)−Cδ |x− y|α}= M > 0.

Let R > 0 and consider the function

Φ(x,y) = wδ (x)−wδ (y)−Cδ |x− y|α −ψR(x)−ψR(y),

where ψR(z) = ψ

(√
|z|2+1
R

)
and ψ ∈ C2([0,+∞)) is defined in (5.43). By standard argu-

ments (and as already shown in Proposition 2.5.2) there exists (xR,yR) point of maximum of
Φ such that |xR − yR|> 0, and

|xR − yR| ≤
(

Aδ

Cδ

) 1
α

. (2.99)

From now on we omit the dependence on R and we write

(xR,yR) = (x,y).
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The main result is the following lemma.

Lemma 2.5.13. Under the above notations, there exists positive constants K,K1,K2 such
that

0 ≤ KCδ α(α −1)|x− y|α−2 +Cδ α|x− y|α +K2|x− y|+oR(1) (2.100)

where oR(1) means that oR(1)→ 0 as R→+∞. Moreover K,K2 depends only on p̄, ||σ ||∞, ||τ||∞,
the determinant of τ and the Lipschitz constant of σ .

Proof. If rx = DxψR and ry = DyψR, then for each δ fixed

|rx|, |ry| ≤ oR(1), ||D2
ψR||∞ ≤ oR(1), (2.101)

where oR(1) means that limR→+∞ oR(1) = 0. We also denote

s =Cδ α|x− y|α−2(x− y). (2.102)

Since the function Φ is smooth near (x,y), since wδ is a viscosity solution of (2.37) and (x,y)
is a maximum point of Φ, we have

0 ≤ tr(ττ
T D2wδ (x))− tr(ττ

T D2wδ (y))+oR(1)+L(x,y)+F(x,y)+D(x,y), (2.103)

where τ is defined in (U) and we estimated the ψR-terms by (2.101) and

D(x,y) = δwδ (y)−δwδ (x)≤ 0;

F(x,y) = |σT (x̄,x)p̄|2 −|σT (x̄,y)p̄|2 ≤ K2|x− y|,

where K2 depends on ||σ ||∞ and the Lipschitz constant of σ and on p̄ and

L(x,y) = s · (b(y)−b(x))+b(y) · ry +b(x) · rx.

As showed in the proof of Proposition 2.5.5 we have

L(x,y)≤Cδ α|x− y|α +oR(1).

Moreover

tr(ττ
T D2wδ (x))− tr(ττ

T D2wδ (y))≤ KCδ α(α −1)|x− y|α−2 +oR(1),

where K is a positive constant (depending on the determinant of τ and on ||τ||∞).
Then, by all the previous estimates, we get (2.100), concluding the proof of Lemma

2.5.13.
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We divide (2.100) by Cδ |x− y|α−2 and we get

0 ≤ Kα(α −1)+α|x− y|2 +K2C−1
δ

|x− y|3−α +oR(1)C−1
δ

|x− y|2−α . (2.104)

Note that by (2.99), we have

|x− y| ≤ A
1
α

δ
C
− 1

α

δ
, C−1

δ
|x− y|3−α ≤ A

3−α

α

δ
C
− 3

α

δ
, C−1

δ
|x− y|2−α ≤ A

2−α

α

δ
C
− 2

α

δ
.

By all the previous estimates and by taking R large enough such that oR(1) ≤ 1, (2.104)
becomes

0 ≤ Kα(α −1)+αA
2
α

δ
C
− 2

α

δ
+K2A

3−α

α

δ
C
− 3

α

δ
+A

2−α

α

δ
C
− 2

α

δ
. (2.105)

Then, the claim of the proposition follows by taking Cδ large enough in order to get a
contradiction with (2.105). For example we take Cδ > C̄δ where C̄δ satisfies

Kα(α −1)+αA
2
α

δ
C̄
− 2

α

δ
+K2A

3−α

α

δ
C̄
− 3

α

δ
+A

2−α

α

δ
C̄
− 2

α

δ
< 0.

Note that C̄δ depends only on Ki, i = 1,2 and on δ ,α,K.

Global uniform Lipschitz bound

We prove the following uniform gradient bound for the solution of the approximate cell
problem (2.37), see Proposition 2.5.14. The proof is very similar (and even easier) to the
proof of Proposition 2.5.5. As already noted, in this case we proceed directly to the estimate
in all the space without proving first the local uniform bound of Lemma 2.5.1. The global
estimate is achieved mainly thanks to assumption (U), which in the supercritical case holds
in all the space. Note also that in this case in the cell problem (2.37) there is no more the
correlation term τ(y)σT (x̄,y)p̄ ·Dwδ , therefore in this case we do not need assumption (S)
to prove the result.

Proposition 2.5.14. Let assumptions (U) hold. Let wδ ∈C2(Rm) be the solution of (2.37)
(satisfying the bound (2.38)),. Then for all x,y ∈ Rm we have

|wδ (y; x̄, p̄)−wδ (x; x̄, p̄)| ≤C|x− y|, (2.106)

where C is a positive constant, depending on x̄, p̄, the Lipschitz constant of σ and independent
of δ .

As a straightforward consequence we get the following global gradient bound for any
solution of (2.35).
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Proposition 2.5.15. Let assumption (U) hold. Let w ∈C2(Rm) be a solution of (2.35) for
λ = H̄(x̄, p̄) where H̄(x̄, p̄) is defined in Proposition 2.4.3. Then

sup
y∈Rm

|Dyw(y; x̄, p̄)| ≤C, (2.107)

where C is a positive constant, depending on x̄, p̄ and the Lipschitz constant of σ .

Proof of Proposition 2.5.14. We just sketch the proof and for all the details we refer to the
proof of Proposition 2.5.5. We drop the dependence on x̄, p̄ by denoting the solution of (2.37)
by wδ . By contradiction, we suppose that

sup{wδ (x)−wδ (y)−C|x− y|}> 0,

where C > 0 is a constant large enough. Let R > 0 and consider the function

Φ(x,y) = wδ (x)−wδ (y)−C|x− y|−ψR(x)−ψR(y),

where C is a positive constant large enough and ψR(z) = ψ

(√
|z|2+1
R

)
where ψ is defined in

(5.43). By standard argument (see also the proof of Proposition 2.5.5), we prove that there
exist (xR,yR) such that point of maximum of Φ and |xR − yR|> 0.
We first prove the following lemma. We omit the proof since it is the same as the proof of

Lemma 2.5.7. Note only that in the place of Proposition 2.5.2 we use Proposition 2.5.12.

Lemma 2.5.16. Under the above notations, we have that

liminf
R→+∞

|xR − yR|> 0. (2.108)

From now on we omit the dependence on R and we write

(xR,yR) = (x,y).

The main result is the following lemma.

Lemma 2.5.17. Under the above notations and assumptions, there exists a positive constant
K2 such that

C|x− y| ≤ K2|x− y|+oR(1), (2.109)

where oR(1) means that oR(1)→ 0 as R →+∞ and K2 depends only on p̄ and the Lipschitz
constant of σ .



88 Non compact case

Proof. We denote rx := DψR(x),ry := DψR(y) and note that |rx|, |ry| ≤ R−1||ψ ′||∞, where
||ψ ′||∞ depends on δ . Similarly we argue for the second derivatives of ψR and we get
||D2ψR(z)||∞ ≤ oR(1), where oR(1) means that limR→+∞ oR(1) = 0.
We also denote

s =C
x− y
|x− y|

. (2.110)

Notice that the function Φ is smooth since for R big enough x ̸= y by Lemma 2.5.16. Then,
since wδ is a viscosity solution of (2.37) and since (x,y) is a maximum point of Φ, we have

L(x,y)≤ tr(ττ
T D2wδ (x))− tr(ττ

T D2wδ (y))+oR(1)+F(x,y)+D(x,y), (2.111)

where we estimated the ψR-terms by oR(1) and

D(x,y) = δwδ (y)−δwδ (x)≤ 0;

L(x,y) = (s,(x− y))− (µ − y,ry)− (µ − x,rx)≥C|x− y|+oR(1);

F(x,y) = |σT (x̄,x)p̄|2 −|σT (x̄,y)p̄|2 ≤ K2|x− y|

where K2 depends on ||σ ||∞ and the Lipschitz constant of σ and on p̄. For the second order
terms we have

tr(ττ
T D2wδ (x))− tr(ττ

T D2wδ (y))≤ oR(1). (2.112)

where oR(1) means that oR(1)→ 0 as R →+∞. The proof of (2.112) is carried out exactly
as in the critical case. Then , by coupling all the previous estimates, we get (2.109) and we
conclude the proof of the lemma.

Now we send R →+∞ in (2.109) and divide by |x−y| thanks to Lemma 2.5.16, and we get
C ≤ K2, and we trvially get a contradiction if we take C > K2. Note that C depends only on
K2 and in particular, is independent on δ .

2.6 The comparison principle

In this section we provide the comparison principle for the limit PDE

vt − H̄(x,Dv) = 0 in (0,T )×Rn, (2.113)

where H̄ is defined in Proposition 2.3.3 for α = 2 and in Proposition 2.4.3 for α > 2.
Note that the comparison principle for the limit problem is a crucial ingredient in the proof

of the convergence, which we address in the following section.
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Theorem 2.6.1. Let assumption (U) holds. Let u∈BUSC([0,T ]×Rn) and v∈BLSC([0,T ]×
Rn) be, respectively, a subsolution and a supersolution to (2.113) such that u(0,x)≤ v(0,x)
for all x ∈ Rn. Then u(x, t)≤ v(x, t) for all x ∈ Rn and 0 ≤ t ≤ T .

Proof. We observe that the effective Hamiltonian H̄ satisfies the properties (a),(b),(c),(d)
of Proposition 2.3.6. Then the proof is as the same of Theorem 1.2.6.

2.7 The convergence result

In this section we prove the convergence theorem of vε to the unique solution of the limit
problem (2.116). Throughout this section, let assumptions (U) and (S) hold. Let α ≥ 2. We
recall that vε denotes the unique bounded viscosity solution of∂tvε −Hε

(
x,y,Dxvε ,

Dyvε

εα−1 ,D2
xxvε ,

D2
yyvε

εα−1 ,
D2

xyvε

ε
α−1

2

)
= 0 in [0,T ]×Rn ×Rm,

vε(0,x,y) = h(x) in Rn ×Rm.

(2.114)

where
Hε(x,y, p,q,X ,Y,Z) := |σT p|2 +b ·q+ tr(ττ

TY )+ ε
(
tr(σσ

T X)+φ · p
)

+ 2ε
α

2 −1(τσ
T p) ·q+2ε

1
2 tr(στ

T Z)+ ε
α−2|τT q|2.

We state and prove the convergence result. We will make use of the relaxed semi-limits
which we define as follows. The lower semi-limit v is,

v(t,x) := liminf
ε → 0

{vε(tε ,xε ,yε) |xε → x, tε → t, yε bounded}

and the upper semi-limit v̄ is

v̄(t,x) := limsup
ε → 0

{vε(tε ,xε ,yε) |xε → x, tε → t, yε bounded}.

Since h is bounded, the family vε is equibounded and we have v̄ ∈ BUSC([0,T ]×Rn) and
v ∈ BLSC([0,T ]×Rn). Notice that by definition, we have

v̄(x, t)≥ v(x, t). (2.115)

Theorem 2.7.1. Let assumption (U) holds and for α = 2 let assumption (S) holds . Recall
the effective problem

vt − H̄(x,Dv) = 0 in (0,T )×Rn v(0,x) = h(x) on Rn (2.116)
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where H̄ is defined by Proposition 2.3.3 for α = 2 and Proposition 2.4.3 for α > 2. Then
a) the upper limit v̄ of vε is a subsolution of (2.116);
b) the lower limit v is a supersolution of (2.116);
c) vε converges uniformly on the compact subsets of [0,T )×Rn×Rm to the unique viscosity

solution of (2.116).

Proof. We split the proof into three steps. In Step 1 we prove a), in Step 2 we prove b) and
in Step 3 we prove c). Since the proofs of a) and b) are analogous, in step b) we give only
the main details.

Step. 1 (Proof of a)) Since the proofs for the critical and supercritical case are analogous
with some minor adaptations, we treat first the case α = 2 and at the end of the proof in
Remark 2.7.4 we describe the major changes for α > 2.
We take a smooth function ψ , and without loss of generality we assume that ψ is coercive

in the variable x and for all compact K ⊂ [0,T ]×Rn there exists a constant CK > 0 such that

|∂tψ(t,x)| ≤CK ∀(t,x) ∈ K. (2.117)

Let (t̄, x̄) be a point of strict maximum of v̄(t,x)−ψ(t,x). Let η > 0 and consider the
function

Φ(t,x,y) = vε(t,x,y)−ψ(t,x)− ε(w(y)+ηχ(y)), (2.118)

where χ is the Liapounov function defined in (2.11) and w is the corrector, solution to the
cell problem (2.16) for λ = H̄(x̄,Dxψ(t̄, x̄)).
By (2.23) and the definition (2.11) of χ , we have for η fixed

w(y)+ηχ(y)→+∞ as |y| →+∞.

Then, there exists (tε,η ,xε,η ,yε,η) ∈ [0,T ]×Rn ×Rm point of maximum of Φ defined in
(2.118). We denote

(tε,η ,xε,η ,yε,η) =: (t,x,y).

Since vε is a solution of equation (2.114), we test it as a subsolution with the function
ψ + ε(w+ηχ) and by writing

|τ(y)T (Dw(y)+ηDχ(y))|2 = |τ(y)T Dw(y)|2 +η
2|Dχ(y)|2 +2η(τ(y)T Dw(y),Dχ(y)),

we get

ψt(t,x)−εtr(σσ(x,y)T D2
xxψ(t,x))−εφ(x,y)·Dxψ(t,x)−|σ(x,y)T Dxψ(t,x)|2−b(y)·Dw(y)

−tr(τ(y)τ(y)T D2w(y))−2τ(y)T
σ(x,y)T Dxψ(t,x)·Dw(y)−|τ(y)T Dw(y)|2+ηGε,η(x,y)≤ 0,

(2.119)
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where, for convenience of notations, we denote

Gε,η(x,y) =−b(y) ·Dχ(y)− tr(τ(y)τ(y)T D2
χ(y))−η |τ(y)T Dχ(y)|2

−2τ(y)T Dw(y) ·Dχ(y)−2τ(y)σ(x,y)T Dxψ(t,x) ·Dχ(y). (2.120)

We recall that the corrector w is solution of the cell problem (2.16) for λ = H̄(x̄,Dxψ(t̄, x̄))
(see Proposition 2.3.3), that is, w satisfies

H̄(x̄,Dψ(t̄, x̄)) = b(y) ·Dw(y)+ tr(τ(y)τ(y)T D2w(y))+ |τ(y)T Dw(y)|2

+2(τ(y)σ(x̄,y)T Dxψ(t̄, x̄)) ·Dw(y)+ |σ(x̄,y)T Dxψ(t̄, x̄)|2. (2.121)

We use (2.121) in (2.119) and we get

ψt(t,x)− εtr(σσ(x,y)T D2
xxψ(t,x))− εφ(x,y) ·Dxψ(t,x)+ηGε,η(x,y)+Fε(x,y)

− H̄(x̄,Dψ(t̄, x̄))≤ 0, (2.122)

where we denote

Fε(x,y) = (−2τ(y)σ(x,y)T Dxψ(t,x)+2τ(y)σ(x̄,y)T Dxψ(t̄, x̄)) ·Dw(y)

−|σ(x,y)T Dxψ(t,x)|2 + |σ(x̄,y)T Dxψ(t̄, x̄)|2. (2.123)

In the following lemma we prove that (x, t,y) are uniformly bounded in ε and that x, t → x̄, t̄
as ε → 0. Note that we split the proof of the equiboundedness of (t,x,y) into (i) and (ii) in
the following lemma only for convenience of exposition.

Lemma 2.7.2. Let η > 0 be fixed. Under the above notations and under the assumptions of
Theorem 2.7.1, we have

(i) (x, t) are uniformly bounded in ε;
(ii) y is uniformly bounded in ε;

(iii) (x, t)→ (x̄, t̄) as ε → 0.

We split the proof into three steps; in Step 1 we prove (i), in Step 2 we prove (ii) and in Step
3 we prove (iii).

Proof of Lemma 2.7.2.

Step. 1 (Proof of (i)) For all x′ ∈ Rn,y′ ∈ Rm and t ′ ∈ (0,T ) we have

vε(t,x,y)−ψ(t,x)− ε(w(y)+ηχ(y))≥ vε(t ′,x′,y′)−ψ(t ′,x′)− ε(w(y′)+ηχ(y′)),
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that is

ψ(t,x)+ ε(w(y)+ηχ(y))≤ 2sup
ε

||vε ||∞ + sup
ε

[
ψ(t ′,x′)+ ε(w(y′)+ηχ(y′))

]
then

sup
ε

[ψ(t,x)+ ε(w(y)+ηχ(y)))]< ∞. (2.124)

Note that (2.124) implies
sup

ε

ψ(t,x)< ∞. (2.125)

Indeed, (2.125) follows immediately from (2.124) if |y| is bounded in ε; when |y| →+∞ it
follows since ε(w(y)+ηχ(y))) is positive thanks to the definition of χ and the logarithmic
growth of w proved in (2.23). Then the uniform boundedness of x and t follows from (2.125)
and the coercivity of ψ .

Step. 2 (Proof of (ii)) We proceed by contradiction, supposing |y| →+∞ as ε → 0 and we
get a contradiction with the equation (2.122) by applying Lemma 2.7.3, whose proof is
postponed at the end of the proof of a). We just observe that it essentially relies on (i) of
Lemma 2.7.2 proved in step 1, on the quadratic growth of the Lyapounov function χ and on
the uniform estimate of the gradient of the corrector w (Proposition 2.5.6).

Lemma 2.7.3. Let assumptions of Theorem 2.7.1 hold. Let Gε,η(x,y) and Fε(x,y) be defined
respectively in (2.120) and (2.123) and let η > 0 be fixed. Then, if

|y| →+∞ as ε → 0, (2.126)

then we have
(1) limε→0 Gε,η(x,y) = +∞.

(2) | limε→0 Fε(x,y)| ≤C′, for some constant C′ > 0.

Then the uniform boundedness of y follows by coupling (1) and (2) of Lemma 2.7.3 with
equation (2.122) and observing that φ and σ are bounded, t,x are uniformly bounded in ε

and the time derivative of ψ is bounded by (2.117).

Step. 3 (Proof of (iii)) Note that, by Step 1 and Step 2, we can suppose that there exists
(t̃, x̃, ỹ) such that, up to subsequences

(t,x,y)→ (t̃, x̃, ỹ) as ε → 0. (2.127)

Since, for all t ′,x′,y′,

vε(t,x,y)−ψ(t,x)− ε(w(y)+ηχ(y))≥ vε(t ′,x′,y′)−ψ(t ′,x′)− ε(w(y′)−ηχ(y′)),
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using the uniform boundedness of y and the definition of upper semi-limit we get

v̄(t̃, x̃)−ψ(t̃, x̃)≥ v̄(t ′,x′)−ψ(t ′,x′) ∀t ′,x′.

Then
x̃ = x̄, t̃ = t̄

and
t → t̄, x → x̄ as ε → 0, (2.128)

concluding the proof of the lemma.

Now we conclude the proof of Theorem 2.7.1 a).

Note that from now on when we do the limit as ε → 0, we mean the limit along the
subsequences such that (2.127) (and then also (2.128)) hold.
Note that, by (iii) of Lemma 2.7.2 and by definition of the corrector w, we have

lim
ε→0

Fε(x,y) = 0, (2.129)

where Fε is defined in (2.123). Then, we let ε → 0 in (2.122) and use again (2.128), (2.127)
and (2.129) to get

ψt(t̄, x̄)+ηGη(x̄, ỹ)− H̄(x̄,Dψ(t̄, x̄))≤ 0. (2.130)

where
Gη(x̄, ỹ) := lim

ε→0
Gε,η(x,y),

where and Gε,η is defined in (2.120).
Note that

Gη(x̄, ỹ) =−b(ỹ) ·Dχ(ỹ)− tr(τ(ỹ)τ(ỹ)T D2
χ(ỹ))−η |τ(ỹ)T Dχ(ỹ)|2

−2τ(ỹ)T Dw(ỹ) ·Dχ(ỹ)−2τ(ỹ)σ(x̄, ỹ)T Dxψ(t̄, x̄) ·Dχ(ỹ).

We observe that if ỹ is uniformly bounded in η , we send η → 0 and we conclude

ψt − H̄(x̄,Dψ(t̄, x̄))≤ 0. (2.131)

Otherwise, if
|ỹ| →+∞ as η → 0,
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we prove analogously as in Lemma 2.7.3 (1) that for any η small enough

lim
η→0

Gη(x̄, ỹ) = +∞.

Then we can suppose for η small
ηGη(x̄, ỹ)≥ 0 (2.132)

and by coupling (2.132) with (2.130), we conclude again (2.131).

Now we prove Lemma 2.7.3.
Proof of Lemma 2.7.3. First we prove (1). Take η ,ε < 1 and consider |y| ≥ R1, where R1 is
defined in (U). We analyse Gε,η term by term:

−b(y) ·Dyχ(y)≥ 2a|y|2 −2a|µ||y|,

by assumption 1) of (U);

−|τ(y)T Dyχ(y)|2 ≥−4a2T |y|2

where T > 0 is defined in (2.12);

−2τ(y)σ(x,y)T Dxψ(t,x) ·Dyχ(y)≥−2aK|Dxψ(t,x)||y|−2aK

where from now on we denote by K > 0 a constant depending only on ||τ||∞, ||σ ||∞ which
may change from line to line. Note that |Dxψ(t,x)| is bounded uniformly in ε by Lemma
2.7.2 (i) and the smoothness of ψ .
We control the growth of the gradient of w by the global estimate (2.69) proved in Proposi-

tion 2.5.6 and we get

−2τ(y)T Dyχ(y) · τ(y)T Dyw(y)≥−4aCK|y|

where C is defined in (2.69).
Then, by coupling all the previous estimate we get

Gε,η(x,y)≥ (2a−4a2T )|y|2 −2aµ|y|−4aCK|y|−2aK|Dxψ(t,x)||y|−2aK.

and by (2.13), we finally get (1).
In order to prove (2), we use again (2.69) of Proposition 2.5.6 to estimate the term

τ(y)σ(x̄,y)T Dxψ(t,x)) ·Dyw(y)≥−KC|Dxψ(t,x))|

where C > 0 is defined in (2.69). Then we conclude since (t,x) are bounded in ε by Lemma
2.7.2 (i) and τ,σ are bounded.



2.7 The convergence result 95

Remark 2.7.4. In the supercritical case α > 2, the proof is essentially the same as above by
replacing ε by εα−1 and considering

Φ = vε(t,x,y)−ψ(t,x)− ε
α−1(w(y)+ηχ(y)) (2.133)

where now w is the solution to the cell problem (2.35).
The rest of the proof follows analogously to the case α = 2. In particular when testing vε as

a subsolution with the function ψ + ε(w+ηχ), we get

ψt(t,x)− εtr(σσ(x,y)T D2
xxψ(t,x))− εφ(x,y) ·Dxψ(t,x)+ηGε,η(x,y)+Fε(x,y)

− H̄(x̄,Dψ(t̄, x̄))≤ 0,

where now we denote

Gε,η(x,y) =−b(y) ·Dyχ(y)− tr(τ(y)τ(y)T D2
χ(y))−ηε

α−2|τ(y)T Dyχ(y)|2

−2ε
α−2(τ(y)T Dyχ(y),τ(y)T Dyw)−2ε

α

2 −1(τ(y)σ(x,y)T Dψ(t,x))Dyχ(y)

and

Fε(x,y) =−ε
α−2|τ(y)T Dyw(y)|2 −2ε

α

2 −1
τ(y)σ(x,y)T Dψ(t,x) ·Dyw(y)

−|σ(x,y)T Dxψ(t,x)|2 + |σ(x̄,y)T Dxψ(t̄, x̄)|2

and we used that the corrector w satisfies the cell problem (2.35) for λ = H̄(x̄,Dψ(t̄, x̄) (see
Proposition 2.4.3), that is

H̄(x̄,Dψ(t̄, x̄)) = b(y) ·Dywy)+ tr(τ(y)τ(y)T D2
yyw(y))+ |σ(x̄,y)T Dxψ(t̄, x̄)|2.

Now we prove b) of Theorem 2.7.1.

Step. 2 (Proof of b)) For the supersolution the argument is analogous and we just skecth the
main steps for completeness. We treat at the same time the critical and supercritical case
and we take α ≥ 2. We take −ψ coercive in the variable x and satisfying (2.117) and (t̄, x̄) a
point of mimimum of v(t,x)−ψ(t,x).
Let η > 0 and take (tε,η ,xε,η ,yε,η) ∈ [0,T ]×Rn ×Rm points of mimima of

vε(t,x,y)−ψ(t,x)− ε
α−1(w(y)−ηχ(y))

which exists thanks to (2.23) and the definition of the Liapounov function and let

(tε,η ,xε,η ,yε,η) =: (t,x,y).
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Now we test vε (as a supersolution) with the function ψ + εα−1(w−ηχ) and we get

ψt(t,x)− εtr(σσ(x,y)T D2
xxψ(t,x))− εφ(x,y) ·Dxψ(t,x)+ηGε,η(x,y)+Fε(x,y)

− H̄(x̄,Dψ(t̄, x̄))≥ 0. (2.134)

where

Gε,η(x,y) = b(y) ·Dχ(y)+ tr(τ(y)τ(y)T D2
χ(y))−η |τ(y)T Dχ(y)|2

+2τ(y)T Dw(y) ·Dχ(y)+2τ(y)σ(x,y)T Dψ(t,x) ·Dχ(y), (2.135)

and Fε is the same as a) and for convenience we recall the definition

Fε(x,y) = (−2τ(y)σ(x,y)T Dψ(t,x)+2τ(y)σ(x̄,y)T Dψ(t̄, x̄)) ·Dw(y)

−|σ(x,y)T Dxψ(t,x)|2 + |σ(x̄,y)T Dxψ(t̄, x̄)|2. (2.136)

The proof of Lemma 2.7.2 is analogous. In particular (2.124) becomes

inf
ε

[
ψ(t,x)+ ε

α−1(w(y)−ηχ(y)))
]
>−∞

and we conclude since −ψ is coercive in x and by the fact that εα−1(w(y)−ηχ(y))) is
negative (at least for when |y| →+∞).
In order to prove that y is uniformly bounded in ε , we proceed as in a) by contradiction,

supposing |y| →+∞ and we get a contradiction with equation (2.134) by applying Lemma
2.7.5. We state Lemma 2.7.5 and we omit the proof, since it is analogous to that of Lemma
2.7.3.

Lemma 2.7.5. Let assumptions of Theorem 2.7.1 hold. Let Gε,η and Fε be defined respec-
tively in (2.135) and (2.136) and let η > 0 be fixed. If

|y| →+∞ as ε → 0,

then we have
(1) limsupε→0 Gε,η(x,y) =−∞.

(2) | limsupε→0 Fε(x,y)| ≤C′, for some constant C′ > 0.

Then, we send ε → 0,η → 0 in (2.134) and we conclude similarly as in a).

Now we prove c) of Theorem 2.7.1.
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Step. 3 (Proof of c)) By the definition of semilimits we have v ≤ v̄ in [0,T )×Rn. The
comparison principle (Theorem 2.6.1) for the effective equation (2.116) gives the inequality

v̄(t,x)≤ v(t,x),

then we get
v̄ = v = v in [0,T )×Rn.

Thanks to the properties of semilimits, we finally get that vε converges locally uniformly to
the unique bounded solution of (2.116).
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Appendix A Notions of large deviation
theory

We recall some standard notions of large deviation theory that we use in Chapter 1, Section
1.6.

Throughout the section, µε will denote a family of probability measures defined on Rn with
its Borel σ -field B. For the definitions and theorems in a more general setting and for further
details we refer to [71].
Given a family of probability measures {µε}, a large deviation principle characterizes the

limiting behavior, as ε → 0, of {µε} in terms of a rate function through asymptotic upper
and lower exponential bounds on the values that µε assigns to measurable subsets of Rn.

Definition 2.7.6. A rate function I is a lower semicontinuous map I : Rn → [0,∞], and it is
a good rate function if for all α ∈ [0,∞), the level set ΨI(α) := {x : I(x)≤ α} is compact.

For any set B ⊆ Rn, we denote by B◦ the interior of B.

Definition 2.7.7. A family of probability measures {µε} satisfies the large deviation principle
with a rate function I if, for all B ∈ B,

− inf
x∈B◦

I(x)≤ liminf
ε→0

ε log µε(B)≤ limsup
ε→0

ε log µε(B)≤− inf
x∈B̄

I(x). (2.137)

The right-and left-hand sides of (2.137) are referred to as the upper and lower bounds,
respectively.

Definition 2.7.8. A family of probability measures {µε} on Rn is exponentially tight if for
every α < ∞, there exists a compact set Kα ⊂ Rn such that

limsup
ε→0

ε log µε(Kc
α)<−α.

Moreover, for each Borel measurable function h : Rn → R, define

Λ
ε
h := ε log

∫
Rn

e
h(x)

ε µε(dx).
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and
lim
ε→0

ε log
∫
Rn

e
h(x)

ε µε(dx) = Λh (2.138)

provided the limit exists. Then, the so-called Bryc’s inverse Varadhan Lemma permits
to derive the large deviation principle as a consequence of exponential tightness of the
measures µε and the existence of the limits (2.138) for every h ∈ BC(Rn). The statement is
the following.

Lemma 2.7.9. Suppose that the family {µε} is exponentially tight and that the limit in
(2.138) exists for every h ∈ BC(Rn). Then {µε} satisfies the LDP with the good rate function

I(x) = sup
h∈BC(Rn)

{h(x)−Λh}.

Furthermore, for every h ∈ BC(Rn),

Λh = sup
x∈Rn

{h(x)− I(x)}.

Finally we recall the optional sampling theorem. For further details see [155].

Theorem 2.7.10. Let M = {Mt}t≥0 be a submartingale right-continuous and let τ be a
stopping time, such that one of the following conditions is satisfied

• τ is a.s. bounded, i.e. there exists T ∈ (0,∞) such that τ ≤ T a.s.;
• τ is a.s. finite and Mτ∧t ≤ Y for all t ≥ 0, where Y is an integrable variable (in

particular |Mτ∧n| ≤ K for a constant K ∈ [0,∞))
Then the variable Mτ is integrable and

E(Mτ)≥ E(M0). (2.139)

If, instead, M is a supermartingale, then

E(Mτ)≤ E(M0).
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Appendix B Notions of ergodic theory

We recall some basic notions of classical ergodic theory which we use in Chapter 1, Section
1.2.

Let Tm be the m-dimensional torus, obtained by identifying the opposite faces of (0,1)m.
Let (Y (t))t≥0 be a stochastic process solution of{

dYt = b(Yt)dt +
√

2τ(Yt)dWt

Y0 = y ∈ Tm,
(2.140)

where Wt is a standard m-dimensional Brownian motion, b : Rm → Rm and τ : Rm → Mm,m

are Lipschitz continuous, Zm periodic with respect to the variable y.

Definition 2.7.11. A Radon measure µ on the torus is an invariant measure for the process
Yt if ∫

Tm
f (Yt)dµ(y) =

∫
Tm

f (y)dµ(y), for every f ∈C(Tm), t > 0.

Definition 2.7.12. The process Yt is said to be ergodic if, given an invariant measure µ , we
have for every f ∈ L1(µ)

E
1
T

∫ T

0
f (Yt)dt →

∫
Tm

f (y)dµ(y) as T →+∞ for µ-almost every y.

The process Yt is said to be uniquely ergodic is there exists a unique invariant probability
measure.

Remark 2.7.13. Suppose τ uniformly non-degenerate in (2.140). Then, Yt is uniquely
ergodic (we refer to [3] for a proof).

The next proposition gives another characteriation of the ergodicity of the process Yt . For
the proof we refer to [2].

Proposition 2.7.14. There exists a unique invariant probability Radon measure for the
process Yt if and only if, for every f ∈C(Tm),

E
1
T

∫ T

0
f (Yt)dt → const as T →+∞, uniformly in y
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Moreover, the constant is
∫
Tm f (y)dµ(y).

We give the following characterization of the invariant measure of Yt in terms of the periodic
solution of a partial differential equation. For the proof we refer to Bensoussan, J.-L. Lions,
Papanicolaou [38], Jensen, Lions [114] and Evans [76].

Lemma 2.7.15. Let Yt have values on the torus Tm and let µ be the invariant measure
associated with Yt . Then µ is the periodic solution of

−∑
i, j

∂ 2

∂yi∂y j
((ττ

T )i j(y))µ +∑
i

∂

∂yi
(bi(y))µ = 0 in Rm, (2.141)

with mean
∫
Tm µ(y)dy = 1.

Remark 2.7.16. We observe that form classical results based on the Fredholm alternative
(see, for instance, [38] or [37]), for b and τ smooth in y, there is a unique solution µ of
(2.141) with average 1.

A general Abelian-Tauberian theorem

For (x̄, p̄, X̄) ∈ (Rn,Rn,Mn,n) fixed, let F(x̄, p̄, X̄) be a continuous Hamiltonian on Rm ×
Rm ×Mm,m. Consider a general cell problem of finding the unique constant H̄(x̄, p̄, X̄) such
that there exists a viscosity solution w of the following equation

H̄(x̄, p̄, X̄)+F(x̄,y, p̄,Dw, X̄ ,D2w) = 0 in Rm,w periodic. (2.142)

For δ > 0, consider wδ solution of the approximate stationary cell problem

δwδ +F(y, x̄, p̄,Dwδ , X̄ ,D2wδ ) = 0 in Rm, (2.143)

and the Cauchy problem

wt +F(y, x̄, p̄,Dw, X̄ ,D2w) = 0, in (0,+∞)×Rm,w(0, ·) = 0 in Rm. (2.144)

The following theorem states that the solvability of the cell problem (2.142) is equivalent to
convergence of δwδ and w(t,·)

t to a constant respectively as δ → 0 and t →+∞.
The equivalence (i)⇔ (ii) can be viewed as a generalized Abelian-Tauberian theorem (see

[140]). It was proved in [8] (see also [14]) for first-order HJB equations and extended in [9]
to second-order HJB equations; these papers exploited the optimal control interpretations
of the solutions and used the dynamic programming principle. We refer to [2] for a proof
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valid for an arbitrary Hamiltonian which only uses the comparison principle and the theory
of viscosity solutions.

Theorem 2.7.17. The following statements are equivalent:
(i) If wδ is the solution of the stationary problem (2.143), then

δwδ → const uniformly in y as δ → 0;

(ii) if w is the solution of the Cauchy problem (2.144), then

w(t, ·)
t

→ const uniformly in y as t →+∞;

(iii) there exists a unique constant H̄(x̄, p̄, X̄) such that the true cell problem (2.142) has a
periodic viscosity solution w.

If one of the above assertion is true, then the constants in (i) and (ii) are equal and they
coincide with H̄(x̄, p̄, X̄).





Part II

On Neumann problems for nonlocal
Hamilton-Jacobi equations
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Specific notation of Part II

(O) see pag 120.
(M0) see pag 121.
(M1) see pag 121.
(J0) see pag 121.
(J1) see pag 121.
(J2) see pag 121.
(C) see pag 122.
(L) see pag 122.
Γ,Γin,Γin see pag 122.
(B1) see pag 122.
(B2) see pag 123.
(H1) see pag 123.
(Ha) see pag 123.
(Hb) see pag 124.
(Hc) see pag 124.
(E) see pag 124.
(H’) see pag 157.
(E’) see pag 157.
(C’) see pag 158.
(L’) see pag 158.
(B1’) see pag 158.
(B2’) see pag 158.
(H0’) see pag 159.
(H1’) see pag 159.
(Ha’) see pag 159.
(Hb’) see pag 160.
(Hc’) see pag 160.
(H”) see pag 166.
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Chapter 3

Some preliminary results

3.1 Introduction

In this chapter we recall some of the main results of [24], where Neumann boundary value
problems are studied for linear partial-integro differential related to Lévy type processes.
Before entering into the details of the results of [24], we give a brief introduction of the
setting and the kind of results.
In the classical probabilistic approach to elliptic and parabolic partial differential equations,

Neumann type boundary value problems are associated to stochastic processes being reflected
on the boundary. Roughly speaking, a key result is that for a PDE with Neumann or oblique
boundary conditions, there is a unique underlying reflection process and any consistent
approximation will converge to it in the limit (see [130] and Barles, Lions [30]). At least in
the case of normal reflections, this result is strongly connected to the study of the Skorohod
problem and relies on the underlying stochastic processes being continuous.
In the setting of [24], the underlying processes are of Lévy type, that is, they are disconti-

nuous and can jump. Here the situation is different and must be addressed in a different way.
Indeed, for jump processes which may exit the domain without first having hit the boundary,
there are many ways to define a “reflection”or a “reflecting process”.
The paper [24] studies linear equations of the type{

u(x)−I [u](x)+ f (x) = 0 in H

− ∂u
∂xn

= 0 on ∂H .
(3.1)

where by H we denote the halfspace, that is,

H = {x = (x1, · · · ,xn) = (x′,xn) ∈ Rn, xn > 0},
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f is a bounded continuous function and

I [u](x) = lim
δ→0+

∫
|z|≥δ

u(x+ j(x,z))−u(x)dµ(z), (3.2)

where µ is a singular nonnegative Radon measure satisfying∫
Rn
(1∧|z|2)dµ(z)<+∞ (3.3)

and
x+ j(x,z) ∈ H̄ for all x ∈ H̄ , j(x,z) = z if x+ z ∈ H̄ . (3.4)

Note that I [u] is a principal value (P.V.) integral and, when j(x,z) ≡ z, then I [u] is the
generator of a stochastic process which can jump from x ∈ H̄ to x+z with a certain intensity,
see for example [6], [62], [92]. Condition (3.3) is the most general integrability assumption
satisfied by Lévy measures (see [6]). Assumption (3.4) is a type of reflection condition
preventing the underlying process from leaving the domain: nothing happens and j(x,z) = z
if x+ z ∈ H̄ , while if x+ z /∈ H̄ , then a “reflection” is performed in order to move the
particle back to a point x+ j(x,z) inside. Note that, because of the way the PIDE and
the process are related, defining a reflection on the boundary influences the nature of the
nonlocal term (3.2) and then changes the equation inside the domain. This is a new nonlocal
phenomenon which is not encountered in the case of continuous processes and PDEs.
In [24] different models of reflection are presented, we refer to the following section where

we describe them in details.
Finally we remark that equation (3.1) is interpreted in the sense of generalized viscosity

solution which provides a suitable definition of “generalized ” Neumann boundary condition.
This means that in certain cases the equation could hold up to the boundary and the Neumann
condition could not be attained, in other words the underlying process could not reach the
boundary. For the precise definition of solutions of the problem (3.1) we refer to Definition
2.3 of [24].

3.2 Four models of reflection

In [24] four principal models of reflection are considered, namely the mirror projection,
normal projection, fleas on the window and censored model.
Essentially, we proceed this way: if the process jumps from x to x+ z exiting the domain,

then x+z is replaced by a point x+ j(x,z) situated inside the domain or on the boundary. The
difference between the four models is the way the process is forced to rest inside, represented
by the function j. In figure (3.1) we represent the four models of reflection and we denote by
ji, i = 1, · · ·4 each of the reflections as explained in the following:
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(1) Mirror projection: a reflection on the boundary is performed, i.e. we go to x+ j1(x,z)
(2) Normal projection: the process is dragged on the boundary killing the normal compo-

nent, following the method of Lions-Sznitman, i.e. we go in x+ j2(x,z).
(3) Fleas on the window: the process is stopped on the boundary as if it was "glued" on

the wall (from this the name given to this model "fleas on the window"), i.e. we go to
x+ j3(x,z).

(4) Censored: in case of a jump outside the domain, the process is stopped (actually there
are not jumps), then it is resuscitated from the point where it was before the jump, i.e.
x+ j4(x,z) = x.

Fig. 3.1 Models of reflection
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Let us denote with x = (x′,xn) ∈ Rn−1 ×R+, ji(x,z) = ( ji(x,z)′, ji(x,z)n), i = 1 · · ·4. More
precisely, we have for all x ∈ H ,z ̸= 0

(1) j1(x,z) =

{
z ifxn + zn ≥ 0
(z′,−2xn − zn) if not

(2) j2(x,z) =

{
z ifxn + zn ≥ 0
(z′,−xn) if not

(3) j3(x,z) =

{
z ifxn + zn ≥ 0
(z′,−z xn

|zn|) if not

(4) j4(x,z) =

{
z ifxn + zn ≥ 0
0 if not,

We observe that the cases 1-3 share the following properties
(i) | j(x,z)| ≤C|z|;

(ii) j(x,σiz) =− j(x,z)i for i = 1, · · ·n−1 where σi(z) = (z1, · · · ,−zi, ·,zn);
(iii) j(y,z)→ j(x,z) when y → x for almost all z;
(iv) | j(x′,s,z)′− j(y′,s,z)′| ≤C|x′− y′||z| for all x′,y′,z and s > 0;
(v) | j(x,z)n − j(y,z)n| ≤ |xn − yn|.

The comparison principle for the problem (3.1) in the cases 1-3 is proved in Theorem 4.1 of
[24]. We remark that in the proof a key role is played by the property (v), i.e. the Lipschitz
continuity in the variable xn.
The case (4) is far more singular and needs to be treated with a different method, essentially

because j(x,z) = 0 if xn + zn < 0.
Notice that the models 1 and 3 are quite natural ways to define “ reflections” (in particular

mirror reflection), but they could be problematic to work with in general domains due to the
possibility of multiple reflections. We also recall that model 2 has been throughly investigated
in the paper [26] for fully non-linear equations set in general domains.
In the following sections we give some more details on the results of [24] for the censored

case.

3.3 The censored case

There are two main cases. The first case is when the singularity of the measure µ is not too
strong, typically µ has density

dµ(z)
dz

∼ dz
|z|n+σ

, σ < 1. (3.5)
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The second case is when the singularity is stronger, i.e. µ has density

dµ(z)
dz

∼ dz
|z|n+σ

, σ ∈ [1,2). (3.6)

The degree of singularity influences the nature of the boundary value problem (3.1), in
the sense that the Neumann boundary condition is attained only if the measure is singular
enough, say as in (3.6), corresponding to the fact that the underlying process does not reach
the boundary. In this case the Neumann boundary condition intervenes to treat the case of
maximum point situated on the boundary. On the contrary, if the singularity is weak, say as
in (3.5), the Neumann boundary condition is simply encoded in the operator and the equation
holds also at the boundary. In particular in this case it is proved in Theorem A.2 of [24] that
there is a “blow-up” solution, which implies that in the proof of the comparison principle
there is no need of caring about the points on the boundary.
For precise definitions of viscosity solutions in the generalized sense and for a comparison

between the case of linear equations as (3.1) and the case of nonlinear equations as considered
in Chapter 4, we refer respectively to Definition 2.3 of [24] and to Definition 4.2.5, Chapter
4.

Not too singular measures

In the case of a weak singularity, the comparison principle is proved in Theorem 5.2 of [24].
The proof of the theorem relies on the existence of a solution exploding on the boundary, as
described in the following assumption.

(U) There exists R0 > 0 such that, for any R > R0, there is a positive function UR ∈C2(Ω)

such that
−I [UR](x)≥−KR in {x : 0 ≤ xn ≤ R}

for some KR ≥ 0 and

UR(x)≥
1

ωR(xn)
in Ω

for some function ωR which is nonnegative, continuous, stricly increasing in a neigh-
bourhood of 0 and satisfies ωR(0) = 0.

Tthe proof of Theorem 5.2 of [24] relies deeply on the use of the function U of assumption
(U) in the penalization, that is, in the study of

sup
x,y

(
u(x)− v(y)− |x− y|2

ε2 − kU(x)− kU(y)+ localization terms
)
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Notice that these “blow-up ” terms, namely −kU(x)− kU(y), avoid that the points of
maximum to be on the boundary. Then the proof is quite standard since we can use the
equation inside the domain to obtain the comparison.
The existence of a function as in (U) is proved for a wide range of measures among which

the case of the fractional laplacian. We refer in particular to Lemma A.1 and Theorem A.2
of [24]. We remark that when dµ(z) = dz

|z|n+α for σ ∈ (0,1) (see Lemma A.1 of [24]), it is
enough to take

U (x) =− ln(xn)

and in this case
−I [U ](x)> 0 for x ∈ Ω.

For more general measures we refer to Theorem A.2 of [24]. An example is when

dµ

dz
=

g(z)
|z|n+σ

where


σ ∈ (0,1),
0 ≤ g ∈ L∞(Rn)

limz→0 g(z) = g(0)> 0.

Note that L∞ assumption makes dµ

dz integrable near infinity.

Remark 3.3.1. We remark that analogously to Theorem A.2 of [24], we can obtain the
existence of the blow-up function U also in the case of measures depending on x of the
following type

dµ

dz
=

g(x,z)
|z|n+σ

, σ ∈ (0,1), 0 ≤ g ∈ L∞(Rn ×Rn),

and there exists x0 ∈ Ω̄,C > 0,C′ > 0
g(x0,0)> 0,
|g(x0,z)−g(x0,0)| ≤C|z| ∀z ∈ Rn,

|g(x,z)+g(x0,z)| ≤C′|z||x− x0| ∀x ∈ Ω̄,z ∈ Rn.

More singular measures

In the case of a stronger singularity, i.e. the measure µ is assumed to be the sum of two
nonnegative Radon measures µ− and µ∗

µ = µ−+µ∗



3.3 The censored case 115

where

µ−(dz) =
dz

|z|n+σ
,
∫
(1∧|z|β̄ )µ∗(dz)< ∞,

∫
zn=a

dµ∗(z) = 0 for all a < 0,

where σ ∈ [1,2) and β̄ = σ −1. Note that in this case the comparison princple is less general
than those in the other cases, not only for the restriction on µ∗, but also for an hypothesis of
regularity a priori which they needed to conclude the comparison.
The result is proved in Theorem 6.1 of [24] and is the following: if u is a sub-solution and v

is a super-solution such that for a certain β > β̄ ,

u(x′,xn)≥ u(x′,0)−C|xn|β , v(x′,xn)≥ v(x′,0)−C|xn|β

then we have u ≤ v. In particular, their result states that there exists at most one solution of
class C0,β for all β . However, they proved in dimension n = 1 that each bounded solution
which is uniformly continuous is C0,β for a certain β > β̄ and they also build such solutions
(see Theorem 6.3 of [24]). In bigger dimensions, the same result holds with some additional
hypothesis of regularity on f with respect to the other variables in Rn−1 which are quite
strong and not completely satisfying (see Theorem 6.4 of [24]).
We observe that, though the result could not be optimal, it is consistent with the “natural

”Neumann boundary condition for the reflected σ -stable process (proved by Guann and Ma
[101] through the variational formulation and Green type formulas) which in the case of the
halfspace reads

lim
t→0

t2−σ ∂u
∂xn

(x+ teN) = 0. (3.7)

This allows the normal derivative to growth less than |xn|σ−2 and then suggests that it is
appropriate to look for solutions which are β -Hölder continuous, with β > σ −1, as assumed
in [24]. We remark that the previous argument suggests also that, on the contrary, in the case
σ < 1 there is no need to assume any further regularity.

Existence and consistency of the models

In Corollary 4.2 of [24] existence of a solution for each models is obtained through standard
Perron’s method for nonlocal equations.
Morever, the four models are consistent with the local Neumann problem: all the proposed

nonlocal models approach the “local” case σ = 2. More precisely, consider Lévy measures
µσ with densities

dµσ

dz
= (2−σ)

g(z)dz
|z|n+σ

,

where g is a nonnegative bounded function which is C1 in a neighbourhood of 0 and g(0)> 0.
In this case for each nonlocal Neumann model, the solutions uσ associated to the above
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sequence of measures converge as σ → 2 to the unique viscosity solution of the same limit
problem, namely {

−a△u−b ·Du+u = f , in H

− ∂u
∂xn

= 0 in ∂H

where a := g(0) |S
n−1|
n and b := Dg(0) |S

n−1|
n . This proves that each model is reasonable, in the

way that it is a consistent nonlocal approximation of the classical local model. This is proved
in Theorem 7.1 of [24] to which we refer for details and proof.
For problems without boundary conditions, such asymptotic results have been known for a

long time, we refer for example to [35], [51] and references therein for more details.
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Chapter 4

Existence and uniqueness for the elliptic
problem

4.1 Introduction

In the probabilistic approach to PDEs, Neumann boundary conditions are associated to
stochastic processes being reflected on the boundary. The underlying idea to force the
stochastic process to remain inside the domain of the equation. Classically, this is obtained
essentially by a reflection on the boundary (see the method developed by Lions and Sznitman
[130] in the continuous setting). A key result in the classical setting is that, for a PDE
with Neumann boundary conditions, there is a unique underlying reflection process and any
consistent approximation will converge to it (see [130] and Barles, Lions [30]).
When dealing with discontinuous jumping processes, the underlying idea is the same but the

situation is different. This is essentially due to the fact that the jump processes may exit the
domain without having first hit the boundary. The consequence is that Neumann boundary
conditions can be obtained in many ways, depending on the kind of reflection we impose on
the outside jumps. Moreover, the choice of a reflection on the boundary changes the equation
inside the domain.
In [24] different models of reflection are presented in the framework of Neumann boundary

value problems for simple linear PIDEs in domains with flat boundary (namely, a halfspace)
of the type {

u(x)−I [u](x)+ f (x) = 0 in H

− ∂u
∂xn

= 0 on ∂H .
(4.1)

where H is the halfspace, i.e. H = {x = (x1, · · · ,xn) ∈ Rn, xn > 0}, f is a bounded
continuous function and I represents the nonlocal diffusion and is related to the kind of
reflection imposed on the boundary. We refer to Chapter 3 for more details on the results
of [24]. Among the different models they consider, two types of reflections are particularly
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relevant for possible extensions in a more general setting. The first is the normal projection,
close to the approach of Lions-Sznitman in [130], where outside jumps are immediately
projected to the boundary by killing their normal component. This model has been thoroughly
investigated in the paper [26] for fully non-linear equations set in general domains.
The second, the censored model, is the one we consider. In this case, any outside jump of

the underlying process is cancelled (censored) and the process is restarted (resurrected) at
the origin of that jump. The fact that the process is not allowed to jump outside Ω̄ is encoded
in the definition of the nonlocal diffusion as follows

I [u](x) = lim
δ→0+

∫
|z|> δ ,

x+ z ∈ Ω̄

[u(x+ z)−u(x)]dµ(z), (4.2)

where µ is a singular nonnegative Radon measure representing the intensity of the jumps
from x to x+ z and satisfying some integrability condition and I has to be interpreted as a
principal value (P.V.) integral. Note that the domain of integration is restricted to the z such
that x+ z ∈ Ω̄, avoiding thus any outside jump.
Note that we follow the PIDE analytical approach developed in [24], in the sense that we

directly work with the infinitesimal generator and not yet with the processes themselves. For
more details and probabilistic references on censored processes, we refer to e.g. [41], [90],
[113], [101] and to the introduction of [24]. We just mention that the underlying processes
in this paper are related to the censored stable processes of Bogdan [41] and the reflected
σ -stable process of Guan and Ma [101].
We stress that the boundary value problem (4.1) is interpreted in the sense of viscosity solu-

tions, which provides a suitable definition of “generalized ” Neumann boundary condition,
in the sense that in certain cases the equation could hold up to the boundary and the Neumann
condition could not be attained, and this corresponds to the fact that the underlying process
could not reach the boundary. We refer to Section 4.2 for the precise definitions of solutions.
In [24] it is shown, in the case of linear PIDEs, that the kind of singularity of µ influences

the nature of the boundary value problem (4.1) in the sense that the Neumann boundary
condition is attained only if the measure is singular enough. In particular, when the singularity
is of order stricly less than 1, e.g. when

dµ(z)∼ dz
|z|N+σ

, σ ∈ (0,1), (4.3)

the equation holds up to the boundary and process never reach the boundary.
On the other hand, when the singularity of the measure is strong, i.e. when µ is of
the type (4.3) with σ ∈ [1,2), the situation is far more complicated, mainly due to the
“ugly”dependence in x of the operator in (4.2) and to the interplay between the singularity of
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the measure and the geometry of the boundary (see Chapter 3 for more details on the case of
strong singularity).
In the this Chapter we present the results of [100], where we study the well-posedness of

censored type Neumann problems in the case of measures of singularity strictly less than 1,
namely with σ ∈ (0,1) in (4.3), in the presence of an Hamiltonian term, which forces the
process to hit the boundary (and then Neumann boundary condition be attained). To be more
specific, we consider the following{

u(x)−I [u](x)+H(x,Du) = 0 in Ω

∂u
∂n = 0 on ∂Ω.

(4.4)

where H : Ω̄×RN 7→ R is a continuous function, Ω ⊂ RN is an open (smooth enough)
domain and I [u] is an integro-differential operator of censored type and of order stricly less
than 1 defined as

I [u](x) = P.V.
∫

x+ j(x,z)∈Ω̄

[u(x+ j(x,z))−u(x)]dµx(z) (4.5)

where dµx is mainly of the type g(x,z)|z|−(N+σ)dz for a bounded and Lipschitz function
g and j(x,z) is jump functions j(x,z), see assumptions (M0),(M1), (J0), (J1), (J2) in the
following section for details.
Note that, since censored type processes are not allowed to jump outiside Ω̄, we don’t need

any conditidions on Ωc in the boundary value problem (4.4). We remark also that in the
case of nonlinear equation as we consider (4.4), the situation is more complicated than in
[24] even in the case of less singular measures as in (4.3) (namely with density of the type
dµ

dz ∼ 1
|z|N+σ with σ ∈ (0,1)), since the Hamiltonian term could push the process to hit the

boundary and then the Neumann condition to be attained.
We consider a class of Hamiltonians with a gradient growth stronger than the diffusive term

in the nonlocal operator. The first example is Hamiltonian H with superfractional coercive
growth in the gradient variable, namely

H(x, p) = a(x)|p|m − f (x), (4.6)

where m > σ , a, f : Ω̄ 7→ R are bounded and continuous functions and a(x) ≥ a0 > 0 for
some fixed constant a0. We remark that the positivity of a and the condition m > σ make
the first-order term the leading term in the equation. We also observe that we have no other
additional restriction to m (in particular, we can deal with Hamiltonians as in (4.6) with
m < 1), allowing the study of Hamiltonians which are concave in Du.
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The second main example is Hamiltonian H of Bellman type, which arises in the study of
Hamilton-Jacobi equations associated to optimal exit time problems, such as

H(x, p) = sup
α∈A

{−b(x,α) · p− l(x,α)}, (4.7)

where A is a compact metric space (the control space) and b, l are continuous and bounded
functions (we refer the reader to [14] and [85] for some connections between this type of
equations and control problems). Note that the diffusive term of I defined in (4.5) is of
weaker order than the first-order term when we assume σ < 1. We also observe that, as
in [34] and [152], the well-posedness of (4.4) with Hamiltonians as in (4.7) is based on a
careful study of the effects of the drift b at each point of ∂Ω× (0,+∞).
The main result of this Chapter is the comparison princile between bounded sub and super-

viscosity solutions to (4.4), see Theorem 4.2.6. We remark that the proof of this result is
not standard even in the case σ < 1 in the halfspace. The difficulties are mainly due to the
fact that operators as in (4.5) behave badly in x. The main idea which is behind the proof
is to localize the argument on points which have the same distance from the boundary and
this is carried out through the use of a non-standard non regular test functions. After the
localization procedure, the rest of the proof in the case of the halfspace is simple, whereas in
the case of general domains, a lot of technical difficulties arise form the way the x-depending
set of integration of I interferes with the geometry of the boundary. To face these extra
technical difficulties, we rectify the boundary relying on the smoothness of Ω. This is done
in Lemma 4.3.2 which is a key result used in the proof of Theorem 4.2.6 and which we prove
before Theorem 4.2.6 in Section 4.3.
The first main application of our result is the proof of existence and uniqueness for (4.4), by

standard Perron’s method (Corollary 4.2.7).

4.2 Assumptions, definition of solutions and main results

Assumptions

We consider Ω ⊂ Rn such that
Ω is of class W 2,∞. (O)

This means that for any ŝ ∈ ∂Ω there exists r = r(ŝ) and a W 2,∞-diffeomorphism

ψ : B(ŝ,r) 7→ Rn, (4.8)

satisfying
ψn(s) = d(s) for any s ∈ Br(ŝ), (4.9)

where d is the signed distance from the boundary of Ω.
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Remark 4.2.1. By assumption (O), there exists a neighbourhood of the boundary of Ω

where the distance from the boundary d is smooth. Unless otherwise specified, in the rest
of the chapter we denote by d a function which coincides with the signed distance from the
boundary of ∂Ω in this neighbourhood and is bounded in all the domain. We denote by n(x)
the exterior unit normal vector to ∂Ω and we write n(x) =−Dd(x) in the neighbourhood of
the boundary where d is smooth.

We consider nonnegative Radon measures with density dµx
dz satisfying

(M0) there exists Cµ > 0,σ ∈ (0,1) such that

dµx

dz
≤Cµ |z|−(n+σ) for any x ∈ Ω̄,z ∈ Rn;

(M1) if σ is as in (M0), there exists Dµ > 0 such that for any x,y ∈ Ω̄,z ∈ Rn

|dµx

dz
−

dµy

dz
| ≤ Dµ |x− y||z|−(n+σ).

For example, (M0) and (M1) are satisfied for

dµx = g(x,z)|z|−(n+σ)dz x ∈ Ω̄,z ∈ Rn, (4.10)

where σ ∈ (0,1), g : Rn ×Rn 7→ R is a nonnegative bounded function such that g(·,z) is
Lipschitz uniformly with respect to z.

Concerning the jump function j we assume
(J0) For any x ∈ Ω̄

j(x, ·) ∈C1(Rn)

and j is invertible such that

j−1(x, ·) ∈C1(Rn), |D j−1(x, ·)| ≤ A j ∀x ∈ Ω̄,z ∈ Rn;

(J1) there exists C̃ j,C j > 0 such that for any x ∈ Ω̄,z ∈ Rn, it holds

C̃ j|z| ≤ | j(x,z)| ≤C j|z|;

(J2) there exists D j > 0 such that for any x,y ∈ Ω̄,z ∈ Rn

| j(x,z)− j(y,z)| ≤ D j|z||x− y|.
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For example (J0), (J1), (J2) are satisfied for

j(x,z) = f (x)z x ∈ Ω̄,z ∈ Rn,

where f : Rn 7→ R is Lipschitz, bounded and invertible with bounded inverse.

Bellman Hamiltonian

Let A be a compact metric space, b : Ω̄×A → Rn and f : Ω̄×A → R be continuous and
bounded functions. We say that H is of Bellman type if for x ∈ Ω̄, p ∈ Rn,H(x, p) can be
written as

H(x, p) = sup
α∈A

{−b(x,α) · p− l(x,α)}; (4.11)

and satisfies the assumptions below. We assume also:
(C) Uniform continuity of the cost l:

There exists a modulus of continuity ωl such that

|l(x,α)− l(y,α)| ≤ ωl(|x− y|) ∀α ∈ A ,∀x,y ∈ Ω̄;

(L) Uniform Lipschitz continuity of the drift b:

(∃C > 0)(∀α ∈ A )(∀x,y ∈ Ω̄) : |b(x,α)−b(y,α)| ≤C|x− y|.

We introduce the following notations

Γin := {x ∈ ∂Ω : b(x,α) ·n(x)< 0 ∀α ∈ A }, (4.12)

Γout := {x ∈ ∂Ω |b(x,α) ·n(x)> 0 ∀α ∈ A }, (4.13)

Γ := {x ∈ ∂Ω |∃α1,α2 ∈ A s. t. b(x,α1) ·n(x)< 0,b(x,α2) ·n(x)> 0}. (4.14)

Roughly speaking, Γin and Γout can be respectively understood as the set of points where the
drift term pushes inside and outside Ω the trajectories.
In order to avoid two completely different drift’s behavior for arbitrarily closed points,

we assume that each of these subsets is uniformly away from the others, as encoded in the
following assumptions (B1) and (B2). For example, if ∂Ω is connected, then it consists in
one piece belonging to one of Γin, Γout and Γ; otherwise, we are able to deal with boundary
with several components of different types, precisely each one belonging to one between Γin,
Γout and Γ.
The assumption we do on these subsets are the following

Γin ∪Γout ∪Γ = ∂Ω (B1)
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and
Γin,Γout,Γ are unions of connected components of ∂Ω. (B2)

Remark 4.2.2. Note that the strict sign in the definition of Γin,Γout and Γ is fundamental,
since it makes the Hamiltonian the leading order term in the equation, allowing us to control
the growth of the nonlocal term which is of order strictly less than 1.

Remark 4.2.3. In order to treat the points of Γin, we use the existence of a blow-up superso-
lution exploding on the boundary. We follow the same approach of [24], where the existence
of a blow-up supersolution is proved for censored type operators (of order stricly less than 1)
when the measure of integration satisfies specific assumptions (in particular does not depend
on x and there exists at least one point where it is strictly positive). In this particular case
it is shown in [24] that the integral term computed on the blow-up supersolution does not
explode on the boundary. This is not true anymore when considering more general measures
as we consider in (M0), (M1). In order to solve this difficulty, we assume the strict sign in
the behaviour of the drift term on Γin, which allows us to control the growth on the boundary
of the integral term computed on this blow-up supersolution. We refer to the proof of Lemma
4.4.1 and in particular to Lemma 4.4.7 for further details.

Coercive Hamiltonian and Examples

We consider superfractional coercive Hamiltonians:

(H1) There exists m > σ ,c0 > 0,D > 0 such that for all x ∈ Ω̄, p ∈ Rn

H(x, p)≥ c0|p|m −D.

We distinguish the case of sub or superlinear coercivity:

Sublinear coercivity: We say that H is sublinearly coercive if it satisfies (H1) for m ≤ 1 and
the following continuity condition holds:

(Ha) There exists a constant C > 0 and modulus of continuity ω1 such that, for all x,y,q, p ∈
Rn, we have

H(y, p)−H(x,q)≤ ω1(|x− y|)(1+ |p|)+C(|p−q|).

Superlinear coercivity: We say that H is superlinearly coercive if:
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(Hb) There exists m > 1,A,C̄ > 0 such that for all µ ∈ (0,1),x,y, p ∈ Rn, we have

H(x, p)−µH(x,µ−1 p)≤ (1−µ)
(
C̄(1−m)|p|m +A

)
;

(Hc) If m is as in assumption (Hb), there exist C > 0 and a modulus of continuity ω1 such
that, for all x,y,q, p ∈ Rn

H(y, p)−H(x,q)≤ ω1(|x− y|)(1+ |p|m ∨|q|m)+C|p−q|(|p|m−1 ∨|q|m−1).

Remark 4.2.4. Note that condition (Hb) implies (H1) for m > 1.

As it is classical in viscosity solution’s theory, the comparison principle allows the applica-
tion of Perron’s method to conclude the existence of solutions. To this end, we introduce the
following assumption, which will allows us to build sub and supersolutions:

(E) There exists HR > 0 such that for any p ∈ Rn, |p| ≤ R

||H(·, p)||∞ ≤ HR.

As a model example for sublinearly coercive Hamiltonian, we consider

H(x, p) = a1(x)|p|m +a2(x)|p|l − f (x),

with m ≤ 1,a1 ≥ a0 > 0 for all x ∈ Ω, l < m and a1,a2, f : Ω̄ 7→ R are continuous and
bounded functions and a1,a2 are also Lipschitz continuous.
As a model example for superlinearly coercive Hamiltonian, we consider

H(x, p) = a1(x)|p|m +a2(x)|p|l +b(x) · p− f (x),

with m > 1,b bounded and continuous and a1,a2, f as before.
These Hamiltonians are coercive in p and in the case m > 1 we can include transport terms
with a Lipschitz continuous vector field b : Ω̄ 7→ RN . The above assumptions are easily
checkable in both cases.

Notion of viscosity solutions

We recall now the definition of solution to problem (4.4). We use the following notations:
for any bounded function u

I ξ [u] =
∫

|z| ≥ ξ ,

x+ j(x,z) ∈ Ω̄

u(x+ j(x,z))−u(x)dµx(z), (4.15)
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and for any C1 function φ

Iξ [φ ] =
∫

|z| ≤ ξ ,

x+ j(x,z) ∈ Ω̄

φ(x+ j(x,z))−φ(x)dµx(z), (4.16)

Note that the I ξ -term and the Iξ -term are well-defined respectively for u bounded and
φ ∈C1 thanks to (M0).
We also denote

F(x,u,Du,I [u]) = u(x)−I [u](x)+H(x,Du).

Following the approach of [24], we give the definition of viscosity solution to (4.4). Let C j

be defined as in (J1).

Definition 4.2.5. (i) A bounded usc function u is a viscosity subsolution to (4.4) if, for
any test-function φ ∈C1(Rn) and maximum point x of u−φ in B̄C jξ (x)∩ Ω̄

F(x,u(x),Du(x),Iξ [φ ]+I ξ [u])≤ 0 x ∈ Ω

min{F(x,u(x),Du(x),Iξ [φ ]+I ξ [u]),
∂φ

∂n
} ≤ 0 x ∈ ∂Ω.

(ii) A bounded lsc function v is a viscosity supersolution to (4.4) if, for any test-function
φ ∈C1(Rn) and minimum point x of v−φ in B̄C jξ (x)∩ Ω̄,

F(x,v(x),Dv(x),Iξ [φ ]+I ξ [v])≥ 0 x ∈ Ω

max{F(x,v(x),Dv(x),Iξ [φ ]+I ξ [v]),
∂φ

∂n
} ≥ 0 x ∈ ∂Ω.

(iii) A viscosity solution is both a sub- and a supersolution.

Main results

The main result of this part is the following comparison principle for the problem (4.4).
We recall that we denote by Hamiltonian of Bellman type an Hamiltonian defined as in

(4.11) satisfying (C),(L), (B1), (B2) and by coercive Hamiltonian an Hamiltonian satisfying
(H1) which can be either of sublinear type satisfying (Ha) or superlinear type satisfying (Hb)
and (Hc).

Theorem 4.2.6. [Comparison] Let Ω be an open subset of Rn satisfying (O). Assume
(M0),(M1),(J0),(J1),(J2). Let H be an Hamiltonian of Bellman type or a coercive Hamil-
tonian. Let u be a bounded usc subsolution of (4.4) and v a bounded lsc supersolution of
(4.4). Then u ≤ v in Ω̄.

Once the comparison holds, we use the Perron’s method for integro-differential equations
(see [5], [27], [146] and [67],[110] for an introduction on the method) to get as a corollary
existence and uniqueness for the problem (4.4) either when H is of Bellman type either when
H is coercive.
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Corollary 4.2.7. [Existence and Uniqueness] Let Ω be an open subset of Rn satisfying (O).
Assume (M0),(M1),(J0),(J1),(J2) and let H be either an Hamiltonian of Bellman type
or in coercive form satisfying (E).Then, there exists a unique bounded viscosity solution to
problem (4.4).

Proof. We construct constant sub and supersolutions thanks to assumption (E) taking respec-
tively -||H(·,0)||∞ and ||H(·,0)||∞. Then the proof follows by Theorem 4.2.6 and Perron’s
method.

4.3 A preliminary key lemma

We prove the following Lemma 4.3.2, which is a key result used in the proof of Theorem
4.2.6. Roughly speaking, it deals with the difficulties arising from the way the geometry of
the boundary interferes with the singularity of the nonlocal terms. The scope is to estimate
the nonlocal terms defined in (4.18) on points near the boundary and equidistant from it. The
approach of the proof is essentially based on a rectification of the boundary, relying on its
regularity.

Remark 4.3.1. Note that in the case of domains with flat boundary, we do not need Lemma
4.3.2 in the proof of Theorem 4.2.6 since the estimation of the nonlocal terms can be carried
out more easily. We refer to Remark 4.4.4, step 4 of the proof of Theorem 4.2.6.

Note that, if ŝ ∈ ∂Ω, since Ω satisfies (O), there exists r = r(ŝ) and a W 2,∞-diffeomorphism
ψ : Br(ŝ) 7→ Rn, satisfying

ψn(s) = d(s) for any s ∈ Br(ŝ), (4.17)

where d is the signed distance from the boundary of Ω. For s1,s2 ∈ B r
2
(ŝ)∩ Ω̄, let

I [Js1/Js2 ] =
∫

Js1 \ Js2 ,

|z| ≤ δ0

dz
|z|n+σ−1 (4.18)

where Js = {z ∈ Rn |s+ j(s,z) ∈ Ω̄}, j satisfies assumptions (J0),(J1), (J2), σ ∈ (0,1) and
0 < δ0 < rC−1

j /2, where C j is the constant defined in (J1).

Lemma 4.3.2. Let I [J·/J·] as in (4.18) and assume j satisfies (J0),(J1),(J2). Let ŝ ∈ ∂Ω,
r given as above and s1,s2 ∈ Ω̄ satisfying

d(s1) = d(s2), s1,s2 ∈ B r
2
(ŝ)∩ Ω̄. (4.19)
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Then there exists a positive constant C such that

I [Js1/Js2]≤C|s1 − s2|. (4.20)

Proof.

Step. 1-Rectification of the boundary We observe that since s1,s2 ∈ B r
2
(ŝ)∩ Ω̄,δ0 < rC−1

j /2
and by (J2), we have for any |z| ≤ δ0

s1 + j(s1,z), s2 + j(s2,z) ∈ Br(ŝ). (4.21)

By assumption (O), we describe the domain of integration of I [Js1/Js2 ] through the diffeo-
morphism ψ as follows

s1 + j(s1,z) ∈ Ω̄ = ψn(s1 + j(s1,z))≥ 0,

s2 + j(s2,z) /∈ Ω̄ = ψn(s2 + j(s2,z))< 0.

We observe that by (4.17) and (4.19), we have

ψn(s1) = ψn(s2). (4.22)

We proceed performing a change of variable in order to write the set of integration in terms
of ψn(s1). In other words, we write

ψ(s1 + j(s1,z))−ψ(s1) = w, (4.23)

that is, j(s1,z) = ψ−1 (ψ(s1)+w)− s1. Then, the new set of integration can be written as
follows

D = {w ∈ Rn : wn +ψn(s1)≥ 0, ψn(s2 + j(s2,z))< 0, 0 < |w| ≤ C̄δ0}

In the following step, we rewrite D in a different way.

Step. 2-Rewriting the set D By (4.23) and if ψn(s2 + j(s2,z))≤ 0, we have

wn +ψn(s1) = ψn(s2 + j(s2,z))+(ψn(s1 + j(s1,z))−ψn(s2 + j(s2,z)))

≤ (ψn(s1 + j(s1,z))−ψn(s2 + j(s2,z))). (4.24)

For convenience of notation, let for the moment

s(t) = ts2 +(1− t)s1, j(t) = t j(s2,z)+(1− t) j(s1,z). (4.25)
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Note that s(0)+ j(0) = s1 + j(s1,z), s(1)+ j(1) = s2 + j(s2,z). Then, since ψ ∈W 2,∞ and
by (4.24), we write

wn +ψn(s1)≤
∫ 1

0
Dψn(s(t)+ j(t)) · (s1 + j(s1,z)− (s2 + j(s2,z))dt = A1 +A2,

where

A1 =
∫ 1

0
[Dψn(s(t)+ j(t))−Dψn(s(t))] · (s1 + j(s1,z)− (s2 + j(s2,z))dt,

A2 =
∫ 1

0
Dψn(s(t)) · (s1 − s2)+

∫ 1

0
Dψn(s(t)) · ( j(s1,z)− j(s2,z))dt.

From now on we denote by C any positive constant which may change from line to line. By
definition of j(t)

| j(t)|= |t j(s2,z)+(1− t) j(s1,z)| ≤ 2C j|z| for any t ∈ [0,1]. (4.26)

Then, since ψ ∈W 2,∞, by (4.26) and (J1), we get

A1 ≤C
∫ 1

0
| j(t)|(|s1 − s2|+ | j(s1,z)− j(s2,z)|)dt ≤C|w||s1 − s2|.

Now we analyse A2. Note that by (4.25) and (4.22)∫ 1

0
Dψn(s(t)) · (s1 − s2) =

∫ 1

0
Dψn((ts2 +(1− t)s1) · (s1 − s2) = ψn(s1)−ψn(s2) = 0.

Moreover, since ψ ∈W 2,∞ and by (J1)∫ 1

0
Dψn(s(t)) · ( j(s1,z)− j(s2,z)))dt ≤C|w||s1 − s2|.

Then we have
A2 ≤C|w||s1 − s2|.

We denote a = ψn(s1) and observe a ≥ 0. By all the previous arguments, we perform the
change of variable in I [Js1/Js2 ] by (J0), (J1) and since ψ ∈ W 2,∞ and we get for some
constant C̄ > 0

I [Js1/Js2 ]≤ C̄
∫

D̃

dw
|w|n+σ−1 , (4.27)

where
D ⊂ D̃ = {w ∈ Rn : −a ≤ wn ≤−a+C|s1 − s2||w|, 0 < |w| ≤ C̄δ0}.

By no loss of generality and for simplicity of exposition, from now on we put C = C̄ = 1.
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Step. 3-Estimation on D̃ We introduce the following notations:

d = (1−|s1 − s2|)−1
β = (1+ |s1 − s2|)−1. (4.28)

Note that by the second assumption in (4.19), |s1 − s2| ≤ r. Without loss of generality we
can suppose r ≤ 1

2 , so that we have |s1 − s2| ≤ 1/2. Then

2 ≥ d ≥ 1 1 ≥ β ≥ 1
2
. (4.29)

Note that, if w ∈ D̃, then

−a ≤ wn ≤−a+ |s1 − s2||w′|+ |s1 − s2||wn|. (4.30)

We identify two cases, depending on the sign of −a+ |s1 − s2||w′| and we denote

D1 =
{

w′ | −a+ |s1 − s2||w′| ≥ 0, |w′| ≤ δ0
}

and
D2 =

{
w′ | −a+ |s1 − s2||w′|< 0, |w′| ≤ δ0

}
.

Observe that, if w ∈ D̃∩D2, then −a+ |s1 − s2||w′| < 0 and (4.30) implies wn < 0 and in
particular

−a ≤ wn ≤−βa+β |s1 − s2||w′|< 0.

Otherwise, if w ∈ D̃∩D1, then −a+ |s1 − s2||w′| ≥ 0 and wn can assume both negative and
positive values. In particular (4.30) implies

−a ≤ wn ≤−da+d|s1 − s2|w′|.

Note also that −da+d|s1 − s2|w′| ≥ 0. By all the previous observations, we write∫
D̃

dw
|w|n+σ−1 =

∫
D̃

dwndw′

(|w′|2 + |wn|2)
n+σ−1

2
≤ F1 +F2, (4.31)

where

F1 =
∫

D1

∫ −da+d|s1−s2||w′|

−a

dwndw′

(|w′|2 + |wn|2)
n+σ−1

2
,

F2 =
∫

D2

∫ −βa+β |s1−s2||w′|

−a

dwndw′

(|w′|2 + |wn|2)
n+σ−1

2
.

For F1, we use that
1

|w′|2 + |wn|2
≤ 1

|w′|2
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and by Fubini’s Theorem, we integrate in the n-variable and we get

F1 ≤
∫

D1

∫ −da+d|s1−s2||w′|

−a

dwndw′

|w′|n+σ−1 ≤
∫

D1

−da+d|s1 − s2||w′|+a
|w′|n+σ−1 dw′. (4.32)

By the first of (4.28) and (4.29) and since da ≥ 0, we have

−da+d|s1 − s2||w′|+a =−da|s1 − s2|+d|s1 − s2||w′| ≤ 2|s1 − s2||w′|.

Therefore

F1 ≤ d|s1 − s2|
∫

D1

dw′

|w′|n+σ−2 . (4.33)

From now on we denote by C any positive constant which may change from line to line. Note
that, since w′ ∈ Rn−1 and σ < 1, we have∫

D1

dw′

|w′|n+σ−2 ≤C. (4.34)

Then by the previous observations, we get

F1 ≤C|s1 − s2|. (4.35)

Now we analyse F2. For simplicity of notations, we denote

ζ (w′) =
∫ −βa+β |s1−s2||w′|

−a

dwn

(|w′|2 +w2
n)

n+σ−1
2

and then, by Fubini’s Theorem, we have

F2 =
∫

D2

ζ (w′)dw′. (4.36)

We split the domain as follows∫
D2

ζ (w′)dw =
∫

D2∩{a≤|w′|}
ζ (w′)dw′+

∫
D2∩{a>|w′|}

ζ (w′)dw′. (4.37)

We estimate the first term by∫
D2∩{a≤|w′|}

ζ (w′)dw′ ≤
∫

D2∩{a≤|w′|}

−βa+β |s1 − s2||w′|+a
|w′|n+σ−1 dw′ ≤C|s1 − s2|, (4.38)

where in the first inequality we used that

−βa+β |s1 − s2||w′|+a ≤ 2|w′||s1 − s2|,
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since β ≤ 1 and a ≤ |w′|, and in the second inequality we used (4.34).
Take now the second term in (4.37). Note that, if a > |w′|, by (6.10) and (4.29), we have

−βa+β |s1 − s2||w′| ≤ −βad−1 ≤−a4−1 ≤ 0.

By all the previous observations, since the function wn 7→ 1

(|w′|+w2
n)

n+σ−1
2

is increasing on the

negative halfline, we have

ζ (w′)≤ |s1 − s2|(a+ |w′|)

(|w′|2 +4−2a2)
n+σ−1

2
≤ 2n+σ−1|s1 − s2|

a+ |w′|

(|w′|2 +a2)
n+σ−1

2
. (4.39)

Then∫
D2∩{|w′|≤a}

a+ |w′|

(|w′|2 +a2)
n+σ−1

2
≤ 2a

∫
D2

dw′

(|w′,a|)n+σ−2 ≤C
∫

D2

dw′

|w′|n+σ−2 ≤C (4.40)

and coupling (4.39) and (4.40), we get∫
D2∩{a≥|w′|}

ζ (w′)dw′ ≤C|s1 − s2|. (4.41)

Then coupling (4.41), (4.38), (4.37), (4.36), we obtain

F2 ≤C|s1 − s2| (4.42)

and we conclude the proof by coupling (4.27), (4.31), (4.35) and (4.42).

4.4 Proof of the comparison principle

We prove Theorem 4.2.6 and we split the proof into two parts, depending whether H is of
Bellman type or coercive.

4.4.1 Hamiltonians of Bellman type

We recall that we denote by Hamiltonian of Bellman type an Hamiltonian defined as in (4.11)
satisfying (C),(L), (B1), (B2). The proof of Theorem 4.2.6 follows mainly by the following
lemma, which we prove first. At the end of the proof of Lemma 4.2.6, we will prove Theorem
4.2.6.

Lemma 4.4.1. Let Ω be an open subset of Rn satisfying (O). Let I as in (4.5) and assume
µ satisfies (M0),(M1), j satisfies (J0),(J1),(J2). Let H be an Hamiltonian of Bellman type
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and let u,v be respectively bounded sub and supersolutions to (4.4). Then the function

ω(x) := u(x)− v(x)

satisfies, in the viscosity sense, the equation{
ω −I [ω](x)−B|Dω| ≤ 0 in Ω

∂ω

∂n = 0 on ∂Ω,
(4.43)

where B is a positive constant depending on the data.

Proof. Let x0 ∈ Ω̄ and φ ∈C1(Rn) such that ω −φ has a strict maximum point at x0 . We
observe that if x0 ∈ Ω the proof is rather standard, since in this case the maximum points
(x,y) of u− v− φ converge as ε → 0 to (x0,x0) and hence they are bounded away from
the boundary for ε small enough. This last property implies that we can directly use the
equations and then proceed as in the following case.
Let Γin,Γout,Γ be defined respectively in (4.12), (4.13) and (4.14) and recall they satisfy

(B1) and (B2). We suppose x0 ∈ ∂Ω and we split the proof depending if
(a) x0 ∈ Γin;
(b) x0 ∈ Γout;
(c) x0 ∈ Γ.

In case (a) we use the existence of the blow-up supersolution which explodes at the boundary
and allows us to keep the maximum points far from the boundary. Since the proof in this
case is easier and is inspired by a similar approach used in [24] in the case of the halfspace
(see Chapter 3 where we recall the approach of [24]), we give the details at the end of the
proof of (b) and (c) in Remark 4.4.6.
Now we treat case (b) and (c). Since the proofs are similar, we treat them at the same time.

Let ε > 0. We double the variable by introducing the function

Φ(x,y) = u(x)− v(y)− φ̃(x,y) (4.44)

where
φ̃(x,y) = φ((x+ y)/2)+ ε

−1
χε(|x− y|)+Kε

−1|d(x)−d(y)|, (4.45)

where d is teh signed distance (see Remark 4.2.1), χε : R→ R is defined as follows

χε(r) =
√

r2 + ε4 r ∈ R, (4.46)

K > 0 is a constant enough big such that

K > (2+C2)γ
−1, (4.47)
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where γ,C2 > 0 depend on x0 and are precisely defined in Lemma 5.3.9 in Appendix C (for
ŝ = x0). By upper-continuity, Φ attains its maximum over

A := B̄2C j(x0)∩ Ω̄× B̄2C j(x0)∩ Ω̄

at a point (x,y). Moreover, by classical arguments in viscosity solution theory, we get as
ε → 0

x,y → x0, ε
−1

χε(|x− y|)→ 0, ε
−1|d(x)−d(y)| → 0 (4.48)

and
u(x)− v(y)− φ̃(x,y)→ u(x0)− v(x0)−φ(x0). (4.49)

Then the function Φ(·,y) has a local maximum point at x and Φ(x, ·) has a local minimum
point at y. We suppose that

∂φ

∂n
(x0)> 0, (4.50)

then for ε small enough we have also

∂φ

∂n
((x+ y)/2)>

1
2

∂φ

∂n
(x0)> 0. (4.51)

We observe that, if d(x) = d(y), the test-function defined in (4.45) is not differentiable. In
the following step we prove that this is the case (Lemma 4.4.2) and then we regularize the
test function as showed in step 2.

Step. 1-Localising on equidistant points (i.e d(x) = d(y)) We prove the following lemma.
Note that the proof is slightly different in case (b) and case (c).

Lemma 4.4.2. Under the above notations, we have

d(x) = d(y).

Proof. We argue by contradiction and we suppose that d(x) ̸= d(y). First we prove that the
F-viscosity inequalities (see Definition (4.2.5)) hold for u and v. Suppose that x ∈ ∂Ω, then
d(x) = 0 and d(y) ̸= 0. We denote

p̂ =
x− y
|x− y|

(4.52)

and we write

∂ φ̃

∂n
(·,y)(x) = 1

2
∂φ

∂n
((x+ y)/2)+ ε

−1
χ
′
ε(|x− y|)p̂ ·n(x)+Kε

−1 (4.53)

Note that
0 ≤ χ

′
ε(|x− y|)≤ 1. (4.54)
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Note that by (4.48), we can suppose, by taking ε small enough, that x,y belong to a suitable
neighbourhood of the boundary where d is smooth (see Remark 4.2.1). Moreover, with some
abuse of notations, we denote by ||D2d||∞ the supremum of ||D2d||∞ over this neighbourhood
of the boundary. Then, by the Taylor’s formula for the distance function, we have for ε small
enough

n(x)(x− y)+
1
2
(x− y)T D2d(x)(x− y)+o(|x− y|2) = d(y)≥ 0

and then
n(x)(x− y)≥−||D2d||∞|x− y|2/2+o(|x− y|2). (4.55)

By (4.52), (4.54), (4.55) and (4.48), we have

ε
−1

χ
′
ε(|x− y|)p̂ ·n(x)≥ oε(1). (4.56)

By (4.53), (4.51), (4.56) and since K ≥ 0, we conclude for ε small enough

∂ φ̃

∂n
(·,y)(x)≥ 1

4
∂φ

∂n
(x0)+oε(1)+Kε

−1 > 0. (4.57)

Then, since u is a viscosity subsolution and the function u(·)− v(y)− φ̃(·,y) has a local
maximum at x, the F-viscosity inequality of Definition (4.2.5) (i) holds. A similar argument
can be carried out for v.
From now on, we treat separately Case (b) (x0 ∈ Γout) and Case (c) (x0 ∈ Γ).
Case (b) In this case x0 ∈ Γout, where Γout is defined in (4.13). Suppose d(x) > d(y).

Then, for 2 > ξ ′ > 0, by Definition (4.2.5) (i) and by (4.57), we have

u(x)−Iξ ′[φ̃(·,y)](x)−I ξ ′
[u](x)+H(x,D[φ̃(·,y)](x))≤ 0. (4.58)

Note that
D[φ̃(·,y)](x) = ε

−1(χ ′
ε(|x− y|)p̂−Kn(x))+q,

where p̂ is defined in (4.52) and

q = Dφ((x+ y)/2)/2. (4.59)

We apply Lemma 5.3.9, (5.32) with ŝ = x0, p = ε−1χ ′
ε(|x− y|)p̂+q and λ = ε−1K and by

the definition (4.47) of K, we get for ε small

H(x,D[φ̃(·,y)](x)) ≥ ε
−1

γK −C2
∣∣ε−1

χ
′
ε(|x− y|)p̂+q

∣∣−C2

≥ ε
−1(γK −C2)−C

≥ ε
−1 −C, (4.60)
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where by C, here and in the following, we denote any positive constant independent of ε

which may change from line to line. In order to estimate the nonlocal terms we use the
following lemma, which we prove in Appendix C.

Lemma 4.4.3. Let I ξ ,Iξ be as in (4.15), (4.16) and assume (M0), (J1). Under the same
notations of Lemma 4.4.2, for any ξ > 0, there exist a positive constants C1 independents of
ε such that

(i) −Iξ [φ̃(·,y)](x)−I ξ [u](x)≥−ε−1C1ξ 1−σ −C1ξ−σ ;
(ii) −Iξ [φ̃(x, ·)](y)−I ξ [v](y)≤ ε−1C1ξ 1−σ +C1ξ−σ .

By (4.60), by Lemma 4.4.3 (i) with ξ ′ = ε and by the boundedness of u, we write (4.58) as
follows

−ε
−σ + ε

−1 ≤C,

and we reach a contradiction for ε enough small since C is independent of ε and σ < 1.
Now suppose d(x)< d(y). In this case we use the following F-viscosity inequality for the
supersolution v for 2 > ξ ′ > 0

v(y)−Iξ ′[−φ̃(x, ·)](y)−I ξ ′
[v](y)+H(y,−D[φ̃(x, ·)](y))≥ 0 (4.61)

We have
D[−φ̃(·,y)](x) = ε

−1(χ ′
ε(|x− y|)p̂+Kn(y))−q,

where p̂ is defined in (4.52) and q is defined in (4.59). Then, for ε small enough, we
apply Lemma 5.3.9, (5.33) with ŝ = x0, p = ε−1χ ′

ε(|x− y|)p̂−q and λ = ε−1K and by the
definition of K (4.47) we get

H(y,−D[φ̃(x, ·)](y)) ≤ −ε
−1

γK +C2
∣∣ε−1

χ
′
ε(|x− y|)p̂−q

∣∣
≤ −ε

−1(γK +C2)+C

≤ −ε
−1 −C. (4.62)

We proceed as in the previous case, by applying Lemma 4.4.3 (ii) with ξ = ε and by (4.62)
and the boundedness of v , we get

ε
−σ − ε

−1 ≥C

and we reach a contradiction for ε small enough as above.
Case (c) In this case x0 ∈ Γ, where Γ is defined in (4.14). If d(x)> d(y) the proof is the

same. If d(x)< d(y) we write again equation (4.58) and since

D[φ̃(·,y)](x) = ε
−1(χ ′

ε(|x− y|)p̂+Kn(x))+q,



136 Existence and uniqueness for the elliptic problem

where p̂ is defined in (4.52), we apply Lemma 5.3.9, (5.35) with ŝ = x0, p = ε−1χ ′
ε(|x−

y|)p̂)+q and λ = ε−1K (for ε small enough small) and we conclude as above.

Step. 2-Regularizing the test-function Since the test function defined in (4.45) is not diffe-
rentiable on the points where d(x) = d(y), we regularize it as follows:

φ̃(x,y) = φ((x+ y)/2)+ ε
−1

χε(|x− y|)+Kε
−1

χδ (|d(x)−d(y)|) (4.63)

where d is the signed distance from the boundary (see Reamrk 4.2.1) and χε ,χδ are as in
(4.46). We use the same notation as before

Φ(x,y) = u(x)− v(y)− φ̃(x,y) (4.64)

and denote by (x̄, ȳ) the maximum point of Φ in
(
B̄2C j(x0)∩ Ω̄

)
×
(
B̄2C j(x0)∩ Ω̄

)
. We

observe that (x̄, ȳ) depends now also on δ and we omit the dependence. Using classical
arguments, we get that as δ → 0

x̄ → x, ȳ → y, u(x̄)→ u(x), v(ȳ)→ v(y), (4.65)

where (x,y) is a maximum point of the function defined in (4.44) in
(
B̄2C j(x0)∩ Ω̄

)
×(

B̄2C j(x0)∩ Ω̄
)
. Since we proved in Step 1 that d(x) = d(y), we have, as δ → 0,

d(x̄)−d(ȳ)→ 0. (4.66)

To fix the ideas, from now on we consider δ ,ε small enough so that

x̄, ȳ,x,y ∈ BC j(x0). (4.67)

Now we prove that the F-viscosity inequalities for u and v hold. We take x̄ ∈ ∂Ω and we
show that the boundary conditions do not hold, so the F-viscosity inequalities hold as in
Definition (4.2.5). We proceed exactly as in Step 1, Lemma 4.4.2, so we omit the details. We
recall that

0 ≤ χ
′
δ
(|x− y|)≤ 1, for all x,y ∈ Ω̄, (4.68)

and we note only that (4.57) now reads for ε,δ small enough

∂ φ̃

∂n
(·, ȳ)(x̄)≥ 1

4
∂φ

∂n
(x0)+oδ ,ε(1)+Kε

−1
χ
′
δ
(d(ȳ))> 0,

since d(x̄) = 0, χ ′
δ
(d(ȳ)) ≥ 0 and oδ ,ε(1) means that limδ→0 oδ ,ε(1) = oε(1). Then for

1 > ξ ′ > 0, we have

u(x̄)− v(ȳ) ≤ H(ȳ,−D[φ̃(x̄, ·)](ȳ))−H(x̄,D[φ̃(·, ȳ)](x̄)
+ I ξ ′

[u](x̄)−I ξ ′
[v](ȳ)+Iξ ′[φ̃(·,y)](x̄)−Iξ ′[−φ̃(x̄, ·)](ȳ). (4.69)
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Since φ̃ ∈C1, we have

Iξ ′[φ̃(·,y)](x)≤C j||Dφ̃ ||L∞(B̄(0,C jξ ′))

∫
Rn

1|z|≤ξ ′|z|dµx(z) = oξ ′(1). (4.70)

where we used (J1) and (M0), C j is as in (J1) and oξ ′(1) is independent of δ . The same holds
for −Iξ ′[−φ̃(x̄, ·)](ȳ).
Note that∣∣D[φ̃(·, ȳ)](x̄)−D[−φ̃(x̄, ·)](ȳ)

∣∣= ε
−1 ∣∣Kχ

′
δ
(|d(x̄)−d(ȳ)|)p̃(n(ȳ)−n(x̄))

∣∣+|Dφ((x̄+ ȳ)/2)|,
(4.71)

where

p̃ =
d(x̄)−d(ȳ)
|d(x̄)−d(ȳ)|

. (4.72)

We suppose ε,δ small enough so that x̄, ȳ belong to the neighbourhood of the boundary
where the distance is smooth (see Remark 4.2.1). By the smoothness of the distance function
we have∣∣D[φ̃(·, ȳ)](x̄)−D[−φ̃(x̄, ·)](ȳ)

∣∣ ≤ ε
−1K|n(ȳ)−n(x̄)|+ |Dφ((x̄+ ȳ)/2)|

≤ ε
−1K|x̄− ȳ|+ |Dφ((x̄+ ȳ)/2)|. (4.73)

By the definition of H and (4.73), we have

H(ȳ,−D[φ̃(x̄, ·)](ȳ))−H(ȳ,D[φ̃(·, ȳ)](x̄)≤ B
(
|Dφ((x̄+ ȳ)/2)|+Kε

−1|x̄− ȳ|
)
, (4.74)

where B = supx∈Ω̄,α∈A b(x,α). Moreover by (C),(L), we have

H(ȳ,D[φ̃(·, ȳ)](x̄)−H(x̄,D[φ̃(·, ȳ)](x̄))≤ B|x̄− ȳ||D[φ̃(·, ȳ)](x̄)|+ωl(|x̄− ȳ|)

and since
|D[φ̃(·, ȳ)](x̄)| ≤ Kε

−1 +2−1||Dφ ||L∞(B2Cj (x0)), (4.75)

we get

H(ȳ,D[φ̃(·, ȳ)](x̄)−H(x̄,D[φ̃(·, ȳ)](x̄))≤C
(
ε
−1|x̄− ȳ|+ |x̄− ȳ|

)
+ωl(|x̄− ȳ|), (4.76)

where C > 0 is a constant depending on B,K and ||Dφ ||L∞(B2Cj (x0)). By coupling (4.74) and
(4.76) and by (4.48) and (4.65), we get

H(ȳ,−D[φ̃(x̄, ·)](ȳ))−H(x̄,D[φ̃(·, ȳ)](x̄)≤ B|Dφ((x̄+ ȳ)/2)|+oδ ,ε(1), (4.77)

where oδ ,ε(1) means limδ→0 oδ ,ε(1) = oε(1). Plugging (4.77) and (4.70) into (4.69), we get

u(x̄)− v(ȳ)≤ B|Dφ((x̄+ ȳ)/2)|+I ξ ′
[u](x̄)−I ξ ′

[v](ȳ)+oδ ,ε(1)+oξ ′(1). (4.78)
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We want to send first δ → 0 in (4.78) and we observe that the nonlocal terms are uniformly
bounded in δ . Consider I ξ ′

[u](x̄), observing that the same argument works similarly for
I ξ ′

[v](ȳ). Note that by (4.67) and (J1), if |z|< 1, then x̄+ j(x̄,z) ∈ B2C j(x0). Since (x̄, ȳ) is
a maximum point on

(
B̄2C j(x0)∩ Ω̄

)
×
(
B̄2C j(x0)∩ Ω̄

)
of Φ defined in (4.64), we have for

δ ,ε small

u(x̄+ j(x̄,z))−u(x̄) = u(x̄+ j(x̄,z))− v(ȳ)− (u(x̄)− v(ȳ))≤ φ̃(x̄+ j(x̄,z), ȳ)− φ̃(x̄, ȳ).

Note that χδ is Lipschitz with Lipschitz constant independent of δ thanks to (4.68). Then,
by the definition of φ̃ , since χε ,χδ ,φ are Lipschitz and by (J1), we have

u(x̄+ j(x̄,z))−u(x̄)≤Cε
−1|z|+C|z| (4.79)

which by (M0) gives the uniform boundedness in δ of I ξ ′
[u](x̄) when |z|< 1. When |z| ≥ 1,

the claim simply follows by the boundedness of u and (M0).
Then, we send δ → 0 in (4.78) and we apply Fatou’s Lemma. By the semicontinuity and

boundedness of u and v , we get

u(x)− v(y)≤ B|Dφ((x+ y)/2)|+I ξ ′
[u](x)−I ξ ′

[v](y)+oε(1)+oξ ′(1). (4.80)

Now we analyse the term I ξ ′
[u](x)−I ξ ′

[v](y). We observe that, for simplicity of expo-
sition, we first conclude the proof in the case the measure µ in the nonlocal terms has
no dependence on x, i.e. µx ≡ µ . We refer to Remark 4.4.5 for details in the case of
x-dependence. We write

I ξ ′
[u](x)−I ξ ′

[v](y) = Iξ ′
[Jx/Jy]+ Iξ ′

[Jy/Jx]+T ξ ′
[Jx ∩ Jy], (4.81)

where
Jx = {z ∈ Rn |x+ j(x,z) ∈ Ω̄} (4.82)

and
Iξ ′

[Jx/Jy] =
∫

Jx/Jy,

|z| ≥ ξ ′

u(x+ j(x,z))−u(x)dµ(z); (4.83)

Iξ ′
[Jy/Jx] =

∫
Jy/Jx,

|z| ≥ ξ ′

v(y)− v(y+ j(y,z))dµ(z);

T ξ ′
[Jx ∩ Jy] =

∫
Jx ∩ Jy,

|z| ≥ ξ ′

[u(x+ j(x,z))−u(x)− (v(y+ j(y,z))− v(y))]dµ(z).
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Consider T ξ ′
[Jx∩Jy]. Recall that (x̄, ȳ) satisfy for any x′,y′ ∈

(
B̄2C j(x0)∩ Ω̄

)
×
(
B̄2C j(x0)∩ Ω̄

)
u(x̄)− v(ȳ)− φ̃(x̄, ȳ)≥ u(x′)− v(y′)− φ̃(x′,y′). (4.84)

Letting δ → 0 in (4.84), by (4.65), (4.66), the definition of φ̃ and the semicontinuity of u,v,
we get for any x′,y′ ∈

(
B̄2C j(x0)∩ Ω̄

)
×
(
B̄2C j(x0)∩ Ω̄

)
u(x′)−u(x)− (v(y′)− v(y))≤ ε

−1
χε(|x′− y′|)− ε

−1
χε(|x− y|)

+φ((x′+ y′/2)−φ((x+ y)/2). (4.85)

If |z| < 1, by (4.67) and (J1), x+ j(x,z),y+ j(y,z) ∈ B2C j(x0). Then we write (4.85) for
x′ = x+ j(x,z),y′ = y+ j(y,z) and we have

u(x+ j(x,z))−u(x) − (v(y+ j(y,z))− v(y))

≤ ε
−1

χε(|x+ j(x,z)− y− j(y,z)|)− ε
−1

χε(|x− y|)
+ φ((x+ j(x,z)+ y+ j(y,z))/2)−φ((x+ y)/2).

Note that by the Lipschitz continuity of χε , (J2) and (4.48), we have

ε
−1

χε(|x+ j(x,z)− y− j(y,z)|)− ε
−1

χε(|x− y|)≤ D j|z|ε−1|x− y|= |z|oε(1) (4.86)

where D j is defined in (J2) and then

u(x+ j(x,z))−u(x)− (v(y+ j(y,z))− v(y))

≤ φ((x+ j(x,z)+ y+ j(y,z))/2)−φ((x+ y)/2)+ |z|oε(1). (4.87)

Then for 0 < ξ ′ < ξ < 1, by (4.87) and (M0), we get

T ξ ′
[Jx ∩ Jy]≤ Pξ −Pξ ′ +Kξ +oε(1), (4.88)

where oε(1) is independent of ξ ′ and

Kξ =
∫

Jx ∩ Jy,

|z| ≥ ξ

u(x+ j(x,z))−u(x)− (v(y+ j(y,z))− v(y))dµ(z),

Pξ ′ =
∫

Jx ∩ Jy,

|z| ≤ ξ ′

φ((x+ j(x,z)+ y+ j(y,z))/2)−φ((x+ y)/2)dµ(z),

Pξ =
∫

Jx ∩ Jy,

|z| ≤ ξ

φ((x+ j(x,z)+ y+ j(y,z))/2)−φ((x+ y)/2)dµ(z).
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Since φ is Lipschitz, by (J1) and (M0), we have

Pξ ′ = oξ ′(1). (4.89)

Now we consider the term Iξ ′
[Jx/Jy] (defined in (4.83)), observing that the same argument

works similarly for Iξ ′
[Jy/Jx]. Take 0 < δ0 < 1 enough small (note that δ0 will be defined

more precisely in Step 4). We split the domain of integration into {z : |z| ≥ δ0} and
{z : ξ ′ ≤ |z|< δ0}. We write

Iξ ′
[Jx/Jy] = Iξ ′

[Bc
δ0
]+ Iξ ′

[Bδ0] (4.90)

where
Iξ ′

[Bc
δ0
] =

∫
Jx/Jy,

|z| ≥ δ0

u(x+ j(x,z))−u(x)dµ(z)

Iξ ′
[Bδ0 ] =

∫
Jx/Jy,

ξ ′ ≤ |z|< δ0

u(x+ j(x,z))−u(x)dµ(z).

By the boundedness of u, we have

Iξ ′
[Bc

δ0
]≤ 2C||u||∞

∫
|z|≥δ0

1Jx/Jy
dµ(z)

and since
|Jx/Jy| → 0 as ε → 0, (4.91)

by (M0), the Dominated Convergence theorem and (4.91), we get

Iξ ′
[Bc

δ0
]≤ oε(1), (4.92)

where oε(1) is independent of ξ ′.
For Iξ ′

[Bδ0] we use again the maximum point inequality (4.85) with x′ = x+ j(x,z),y′ = y
and since φ ∈C1 and by (J1), (M0), we get

Iξ ′
[Bδ0]≤Cε

−1
∫

Jx/Jy,

ξ ′ ≤ |z| ≤ δ0

dz
|z|N+σ−1 , (4.93)

where we remark that C > 0 is independent of all the parameters.
Observe that the integral in (4.93) is uniformly bounded in ξ ′ and then we can send ξ ′ → 0

by the Dominated Convergence Theorem. We couple (4.81), (4.88), (4.89), (4.90), (4.92)
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and (4.93) with (4.80) and we send ξ ′ → 0 getting

u(x)− v(y) − B|Dφ((x+ y)/2)|
≤ Cε

−1I[Jx/Jy]+Cε
−1I[Jy/Jx]+Pξ +Kξ +oε(1), (4.94)

where for all x,y ∈ Rn, we denote

I[Jx/Jy] :=
∫

Jx/Jy,

|z| ≤ δ0

dz
|z|N+σ−1 . (4.95)

Step. 4-Estimation of the term (4.95) by Lemma 4.3.2
Let r := r(x0), where r(x0) is defined in assumption (O) for ŝ = x0. Take rC−1

j /2 > δ0. Note
that, by (4.67), (x,y) satisfy (4.19) for ŝ = x0 and r = r(x0). Then we apply Lemma 4.3.2 by
taking {s1,s2}= {x,y}, ŝ = x0 in order to estimate I [Jx/Jy],I [Jy/Jx] defined in (4.95) and
we get

I [Jx/Jy]≤C|x− y|, I [Jy/Jx]≤C|x− y|. (4.96)

Note that Lemma 4.3.2 is not necessary when dealing with domains with flat boundary. In
the following remark we consider the case when Ω is the halfspace and we show how the
estimation of the nonlocal terms can be carried out more easily without Lemma 4.3.2.

Remark 4.4.4. We consider the case when Ω is the half-space, i.e.

Ω := {(x1, · · · ,xn = (x′,xn) ∈ Rn : xn > 0}. (4.97)

For simplicity, we suppose that j(x,z) = z if x+ z ∈ Ω̄. Note that (4.66) reads

x̄n − ȳn → 0 as δ → 0. (4.98)

We recall the equation (4.69)

u(x̄)− v(ȳ) ≤ H(ȳ,−D[φ̃(x̄, ·)](ȳ))−H(x̄,D[φ̃(·, ȳ)](x̄)
+ I ξ ′

[u](x̄)−I ξ ′
[v](ȳ)+Iξ ′[φ̃(·,y)](x̄)−Iξ ′[−φ̃(x̄, ·)](ȳ), (4.99)

where now
I ξ ′

[u](x̄) =
∫

x̄n + zn ≥ 0,
|z| ≥ ξ ′

u(x̄+ z)−u(x̄)dµ(z)

and
I ξ ′

[v](ȳ) =
∫

ȳn + zn ≥ 0,
|z| ≥ ξ ′

v(ȳ+ z)− v(ȳ)dµ(z).

The estimations of the Iξ -terms and the Hamiltonian terms are the same as in the non flat
case (see the previous step). Consider the nonlocal terms in (4.99) and restrict ourselves to a
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subsequence such that x̄n ≥ ȳn (if x̄n ≤ ȳn the argument is similar). Then we can write

I ξ ′
[u](x̄)−I ξ ′

[v](ȳ) =
∫
−x̄n ≤ zn <−ȳn,

|z| ≥ ξ ′

[u(x̄+ z)−u(x̄)]dµx̄(z)

+
∫
−ȳn ≤ zn,

|z| ≥ ξ ′

[u(x̄+ z)− v(ȳ+( j(ȳ,z))− (u(x̄)− v(ȳ))]dµx̄(z).

For coherence with the notations used in the non flat case, we denote

Js := {z ∈ Rn |sn + zn ≥ 0},

Iξ ′
[Jx̄/Jȳ] :=

∫
−x̄n ≤ zn <−ȳn,

|z| ≥ ξ ′

[u(x̄+ z)−u(x̄)]dµx̄(z)

T ξ ′
[Jx̄ ∩ Jȳ] :=

∫
−ȳn ≤ zn,

|z| ≥ ξ ′

[u(x̄+ z)− v(ȳ+( j(ȳ,z))− (u(x̄)− v(ȳ))]dµx̄(z).

Then
I ξ ′

[u](x̄)−I ξ ′
[v](ȳ)≤ Iξ ′

[Jx̄/Jȳ]+T ξ ′
[Jx̄ ∩ Jȳ].

The term T ξ ′
[Jx̄ ∩ Jȳ] is treated exactly as in the non flat case (see the previous step). On the

contrary, note that in this case the estimation of the term Iξ ′
[Jx̄/Jȳ] is easier, since by (4.98)

|Jx̄/Jȳ| → 0 as δ → 0

and then by the Dominated Convergence Theorem, we have

Iξ ′
[Jx̄/Jȳ]→ 0 as δ → 0.

Step. 5-Sending the parameters to their limits
We plug (4.96) into (4.94) and we get

u(x)− v(y)−B|Dφ((x+ y)/2)| ≤Cε
−1|x− y|+Pξ +Kξ +oε(1) (4.100)

where C is a constant independent of ξ . Moreover, since φ is C1, by (M0), the Dominated
Convergence Theorem and since x,y → x0 as ε → 0, we have

limsup
ε→0

Pξ ≤ Iξ [φ ](x0) (4.101)
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and by the boundedness and semicontinuity of u,v and applying Fatou’s lemma for each
ξ > 0 fixed, we have

limsup
ε→0

Kξ ≤ I ξ [ω(·, t0)](x0), (4.102)

and we conclude by sending ε → 0 in (4.100).

Remark 4.4.5. We give some details of the analysis of the nonlocal terms in step 2 when the
measure µ depends on x. In this case we write (4.81) with

Iξ ′
[Jx/Jy] =

∫
Jx/Jy,

|z| ≥ ξ ′

u(x+ j(x,z))−u(x)dµx(z);

Iξ ′
[Jy/Jx] =

∫
Jy/Jx,

|z| ≥ ξ ′

v(y)− v(y+ j(y,z))dµy(z);

T ξ ′
[Jx ∩ Jy] =

∫
Jx ∩ Jy,

|z| ≥ ξ ′

[u(x+ j(x,z))−u(x)]dµx(z)− [(v(y+ j(y,z))− v(y))]dµy(z).

For Iξ ′
[Jx/Jy] and Iξ ′

[Jy/Jx] we proceed exactly as showed above in step 2, observing that
the x-dependence does not play any role by (M0). For the T -term, we write

T ξ ′
[Jx ∩ Jy] = T ξ ′

1 [Jx ∩ Jy]+T ξ ′

2 [Jx ∩ Jy]

where

T ξ ′

1 [Jx ∩ Jy] =
∫

Jx ∩ Jy,

|z| ≥ ξ ′

u(x+ j(x,z))−u(x)− (v(y+ j(y,z))− v(y))dµy(z)

T ξ ′

2 [Jx ∩ Jy] =
∫

Jx ∩ Jy,

|z| ≥ ξ ′

[(u(x+ j(x,z))−u(x))](dµx(z)−dµy(z))

For T ξ ′

1 [Jx ∩ Jy], we proceed as showed above for T ξ ′
[Jx ∩ Jy] and we prove (4.88). Now

consider T ξ ′

2 [Jx ∪ Jy]. Take 0 < ξ ′ < ξ < 1 and denote

T ξ ′

2 [Jx ∩ Jy] = T ξ ′

2 [Bξ ]+T ξ ′

2 [Bc
ξ
]

where
T ξ ′

2 [Bξ ] =
∫

Jx ∩ Jy,

ξ ≥ |z| ≥ ξ ′

[(u(x+ j(x,z))−u(x))](dµx(z)−dµy(z))
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T ξ ′

2 [Bc
ξ
] =

∫
Jx ∩ Jy,

|z|> ξ

[(u(x+ j(x,z))−u(x))](dµx(z)−dµy(z)).

For T ξ ′

2 [Bξ ] we use again the maximum point inequality (4.85) and we write for |z| ≤ ξ

u(x+ j(x,z))−u(x)≤ ε
−1

χε(|x+ j(x,z)− y|)− ε
−1

χε(|x− y|)
+φ((x+ j(x,z)+ y)/2)−φ(x+ y)/2. (4.103)

Then by the Lipschitz continuity of χε and φ , (J1), (M0), (M1) and (4.48) we get

T ξ ′

2 [Bξ ]≤C
∫

Jx ∩ Jy,

ξ ≥ |z| ≥ ξ ′

(ε−1|z|+ |z|)(dµx(z)−dµy(z))≤ oε(1), (4.104)

where we observe oε(1) is independent of ξ ′ and may change from line to line in the
following. For T ξ ′

2 [Bc
ξ
], we use the boundedness of u and by (M0), (M1) and (4.48), we write

T ξ ′

2 [Bc
ξ
]≤ 2||u||∞

∫
Jx ∩ Jy,

|z|> ξ

(dµx(z)−dµy(z))≤ oε(1). (4.105)

Then, by (4.104) and (4.105), we get

T ξ ′

2 [Jx ∩ Jy]≤ oε(1), (4.106)

where we observe oε(1) is independent of ξ ′. From now on the proof is the same as above.

Remark 4.4.6. We give the details of the proof of Lemma 4.4.1 in case (a), when x0 ∈ Γin
is a strict maximum point of ω − φ = u− v− φ , where φ ∈ C1(Rn). The strategy of the
proof relies on the existence of a blow-up supersolution exploding on the boundary, which
allows us to keep the maximum points away from the boundary. The existence of such a
supersolution is stated in the following lemma, whose proof is given in Appendix C.

Lemma 4.4.7. For any x̄ ∈ Γin, there exists r = r(x̄) > 0 and a positive function Ur ∈
C2(Br(x̄)∩Ω) satisfying for any ξ small enough (with respect to r, that is ξ <C−1

j
r
2 )

(i)
−b(x,α) ·DUr −Iξ [Ur](x)≥ 0 in B r

2
(x̄)∩Ω, ∀α ∈ A ;

(ii)

Ur(x)≥
1

ωr(d(x))
in Br(x̄)∩Ω,

for some function ωr which is nonnegative, continuous, stricly increasing in a neigh-
bourhood of 0 and satisfies ωr(0) = 0.



4.4 Proof of the comparison principle 145

Proof of case (a). Let r = r(x0) be defined in Lemma 4.4.7 for x̄ = x0. We localize the
argument in a ball of radius r around x0 and we use the existence of the blow-up function Ur

defined in Lemma 4.4.7 for x̄ = x0. Let ε > 0. We double the variable and we consider (x,y)
maximum point on (B̄ r

2
(x0)∩ Ω̄)× (B̄ r

2
(x0)∩ Ω̄) of the function

Φ(x,y) = u(x)− v(y)− φ̃(x,y) (4.107)

where

φ̃(x,y) = φ

(
(x+ y)

2

)
+

|x− y|2

ε2 + k[Ur(x)+Ur(y)].

Note that, by (ii) of Lemma 4.4.7, we have that (x,y) ∈ B̄ r
2
(x0)∩Ω× B̄ r

2
(x0)∩Ω; moreover,

again by (ii) of Lemma 4.4.7, we have for k small enough

d(x),d(y)≥ ω
−1
r

(
k

2L

)
=: δ̄ , (4.108)

where
L = ||u||L∞(B̄ r

2
(x0)∩Ω̄)+ ||v||L∞(B̄ r

2
(x0)∩Ω̄)+ ||φ ||L∞(B̄ r

2
(x0)∩Ω̄)+1

Note that the existence of the blow-up function plays its mayor role here to get (4.108). This
estimate tells us, roughly speaking, that the maximum points are away from the boundary.
For fixed k, a standard argument shows that

|x− y|2

ε2 → 0 as ε → 0. (4.109)

By the previous estimate on x,y and extracting subsequences if necessary, we can assume
without loss of generality that when we send ε,k → 0

x,y → x0, u(x)− v(y)− φ̃(x,y)→ u(x0)− v(x0)−φ(x0). (4.110)

Let C j be as in (J1) and C−1
j

r
4 > ξ ′ > 0. We proceed as in Step 2 in the above proof and we

write the viscosity inequalities

u(x)− v(y) ≤ H(y,−D[φ̃(x, ·)](y))−H(x,D[φ̃(·,y)](x)
+ I ξ ′

[u](x)−I ξ ′
[v](y)+Iξ ′[φ̃(·,y)](x)−Iξ ′[−φ̃(x, ·)](y). (4.111)

Since φ̃ ∈C1 and by (J1), (M0), we have

Iξ ′[φ̃(·,y)](x)≤C j||Dφ̃ ||L∞(B̄(x0,
r
2 ))

∫
Rn

1|z|≤ξ ′|z|dµx(z) = oξ ′(1), (4.112)

where oξ ′(1) is independent of δ . The same holds for −Iξ ′[−φ̃(x̄, ·)](ȳ).
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First we analyse the term I ξ ′
[u](x)−I ξ ′

[v](y). For simplicity of exposition, we conclude
the proof in the case the measure µ in the nonlocal terms has no dependence on x, i.e. µx ≡ µ .
The result can be easily extended in the case of x-dependence analogously as already shown
in Remark 4.4.5 for case (b) and (c). As done for case (b) and (c), we write

I ξ ′
[u](x)−I ξ ′

[v](y) = Iξ ′
[Jx/Jy]+ Iξ ′

[Jy/Jx]+T ξ ′
[Jx ∩ Jy], (4.113)

where we recall the following notations

Jx = {z ∈ Rn |x+ j(x,z) ∈ Ω̄} (4.114)

and
Iξ ′

[Jx/Jy] =
∫

Jx/Jy,

|z| ≥ ξ ′

u(x+ j(x,z))−u(x)dµ(z); (4.115)

Iξ ′
[Jy/Jx] =

∫
Jy/Jx,

|z| ≥ ξ ′

v(y)− v(y+ j(y,z))dµ(z);

T ξ ′
[Jx ∩ Jy] =

∫
Jx ∩ Jy,

|z| ≥ ξ ′

[u(x+ j(x,z))−u(x)− (v(y+ j(y,z))− v(y))]dµ(z).

The estimation of the term T ξ ′
[Jx ∩ Jy] is carried out as in the proof of Lemma 4.4.1. We

give the details for completeness. Thanks to (4.110), we can take ε,k small enough so that
x,y ∈ B r

4
(x0)∩Ω. Since (x,y) is a maximum point of u−v− φ̃ on B̄ r

2
(x0)∩ Ω̄× B̄ r

2
(x0)∩ Ω̄,

we have for |z| ≤C−1
j

r
4

u(x)− v(y)− φ̃(x,y)≥ u(x+ j(x,z))− v(y+ j(y,z))− φ̃(x+ j(x,z),y+ j(x,z)). (4.116)

and then by the definition of φ̃ , we have

u(x+ j(x,z))−u(x) − (v(y+ j(y,z))− v(y))≤ |x+ j(x,z)− y− j(y,z)|2

ε2 − |x− y|2

ε2

+ k[Ur(x+ j(x,z))−Ur(x)]+ k[Ur(y+ j(y,z))−Ur(y)]

+ φ((x+ j(x,z)+ y+ j(y,z))/2)−φ((x+ y)/2).

Note that by (J2) and (4.109), we have

|x+ j(x,z)− y− j(y,z)|2

ε2 − |x− y|2

ε2 ≤ |z|oε(1)
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and then

u(x+ j(x,z))−u(x) − (v(y+ j(y,z))− v(y))

≤ |z|oε(1)+ k[Ur(x+ j(x,z))−Ur(x)]+ k[Ur(y+ j(y,z))−Ur(y)]

+ φ((x+ j(x,z)+ y+ j(y,z))/2)−φ((x+ y)/2). (4.117)

Then for 0 < ξ ′ < ξ <C−1
j

r
4 , by (4.117) and (M0), we get

T ξ ′
[Jx ∩ Jy] ≤ kIξ [Ur](x)+ kIξ [Ur](y)− kIξ ′[Ur](x)− kIξ ′[Ur](y)

+ Pξ −Pξ ′ +Kξ +oε(1), (4.118)

where oε(1) is independent of ξ ′ and

Kξ =
∫

Jx ∩ Jy,

|z| ≥ ξ

u(x+ j(x,z))−u(x)− (v(y+ j(y,z))− v(y))dµ(z),

Pξ =
∫

Jx ∩ Jy,

|z| ≤ ξ

φ((x+ j(x,z)+ y+ j(y,z))/2)−φ((x+ y)/2)dµ(z)

Pξ ′ =
∫

Jx ∩ Jy,

|z| ≤ ξ ′

φ((x+ j(x,z)+ y+ j(y,z))/2)−φ((x+ y)/2)dµ(z)

Note that, since φ and Ur are lipschitz and by (J1) and (M0), we have

Pξ ′ ≤ oξ ′(1), Iξ ′[Ur](x)≤ oξ ′(1), Iξ ′ [Ur](y)≤ oξ ′(1).

Then (4.118) becomes

T ξ ′
[Jx ∩ Jy]≤ kIξ [Ur](x)+ kIξ [Ur](y)+Pξ +Kξ +oξ ′(1)+oε(1), (4.119)

where oε(1) is independent of ξ ′.
Now we estimate the left terms Iξ ′

[Jx/Jy] and Iξ ′
[Jy/Jx] in (4.113). Thanks to the estimate

(4.108) on x,y, in this case the estimation is easier than in the previous cases (b) and (c).
Take for example Iξ ′

[Jx/Jy] (the argument being analogous for Iξ ′
[Jy/Jx]) and note that by

(4.108) the integral is independent of ξ ′ as soon as ξ ′ < δ̄ where δ̄ is defined in (4.108).
Then by the boundedness of u, we have

Iξ ′
[Jx/Jy]≤ 2C||u||∞

∫
|z|≥δ̄

1Jx/Jy
dµ(z)

and since |Jx/Jy| → 0 as ε → 0, by (M0) and the Dominated Convergence theoremm we get

Iξ ′
[Jx/Jy]≤ oε(1), (4.120)
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where oε(1) is independent of ξ ′. Then plugging (4.120) and (4.119) into (4.113) and then
coupling it with (4.111) and (4.112), we get for C−1

j
r
4 > ξ ′ > 0

u(x)− v(y) ≤ H(y,−D[φ̃(x, ·)](y))−H(x,D[φ̃(·,y)](x)
+ kIξ [Ur](x)+ kIξ [Ur](y)+Pξ +Kξ +oε(1)+oξ ′(1), (4.121)

where oε(1) is independent of ξ ′. Moreover, note that by (i) of Lemma 4.4.7 we have

H(y,−D[φ̃(x, ·)](y))−H(x,D[φ̃(·,y)](x)+ kIξ [Ur](x)+ kIξ [Ur](y)

≤ B|Dφ((x+ y)/2)|+oε(1). (4.122)

Indeed, by (i) of Lemma 4.4.7, we estimate the integrals terms of the left hand side of (4.122)
together with the first order terms involving Ur in H(y,−D[φ̃(x, ·)](y))−H(x,D[φ̃(·,y)](x).
The remaining terms in the Hamiltonians are treated analogously as already showed in the
proof of b) and c). Then, plugging (4.122) into (4.121), we get

u(x)− v(y)≤ B|Dφ((x+ y)/2)|+Pξ +Kξ +oε(1)+oξ ′(1), (4.123)

where oε(1) is independent of ξ ′. The rest of the proof is the same as in the previous cases, by
sending first ξ ′ → 0, then ε → 0. For the details we refer to the end of the proof above.

Now we prove Theorem 4.2.6 for H of Bellman type.

Proof of Theorem 4.2.6. By contradiction, we suppose that

M = sup
Ω

{u− v}> 0. (4.124)

Denote ω(x) = u(x)− v(x) and for 0 < ν , consider

Φ(x) = ω(x)−ψ(R−1|x|)+νd(x)

where ψ is a smooth function such that

ψ(s) =


0 for 0 ≤ s < 1

2 ,

increasing for 1
2 ≤ s < 1,

||u||∞ + ||v||∞ +1 for s ≥ 1.
(4.125)

and d is the signed distance from the boundary (in a suitable neighbourhood of the boundary
and bounded in all the domain, see Remark 4.2.1). Note that supΦ → M as R → ∞ and
ν → 0. Since Φ ≤ −1/2 for |x| large and ν small and M > 0, the function Φ achieves its
positive maximum supΦ > M

2 at a point x for R big and ν small enough. We give the details
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in the case where all maximum points x are located on the boundary. We have

ω(x) = M+oR,ν(1) (4.126)

where with oR,ν(1) we mean that the limit is zero if R → ∞,ν → 0. We use φ(·) := ψ(R−1| ·
|)−νd(·) as a test function at x. We suppose x ∈ ∂Ω and we observe that

∂φ

∂n
≥−R−1||ψ ′||L∞ +ν > 0, (4.127)

where ψ is defined in (4.125) and the last inequality holds for ν > R−1||ψ ′||L∞ .
By Lemma 4.4.1, ω is a viscosity subsolution of{

ω −I [ω](x)−B|Dω| ≤ 0 in Ω

∂ω

∂n = 0 on ∂Ω

and then by (4.127), we get

ω(x)−I [φ ](x)−B(|Dφ(x)|)≤ 0 in Ω.

By Lemma 5.3.10 (see Appendix C), we have

I [φ ](·)≤ oν ,R(1), |Dφ(·)| ≤ oν ,R(1)

and by (4.126), we get
M+oν ,R(1)≤ oν ,R(1)

and by letting R → ∞, ν → 0, we get a contradiction since M > 0 and we conclude the proof.
�

4.4.2 Coercive Hamiltonians

We recall that we denote by coercive Hamiltonian an Hamiltonian satisfying (H1) which
can be either of sublinear type satisfying (Ha) or superlinear type satisfying (Hb) and (Hc).
We proceed analogously as for Hamiltonian of Bellman type and we prove Lemma 4.4.8.
Once proved Lemma 4.4.8, the proof of Theorem 4.2.6 for H coercive follows by standard
arguments as already showed for Hamiltonian of Bellman type. We sketch first the proof of
Theorem 4.2.6 and then we prove Lemma 4.4.8.

Proof of Theorem 4.2.6. We just observe that we proceed again by contradiction, supposing
that

M = sup
Ω

{u− v}> 0. (4.128)
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We fix 0 < µ < 1 and define

ωµ(x) = µu(x)− v(x) x ∈ Ω.

We proceed as in the Bellman case and we use Lemma 4.4.8 to get

M+oν ,R,µ(1)−oν ,R(1)≤CA(1−µ).

Then, by letting R → ∞, ν → 0 and finally µ → 1, we get a contradiction since M > 0 and
we conclude the proof. �

Lemma 4.4.8. Let I as in (4.5) and assume µ satisfies (M0),(M1),(M2), j satisfies
(J0),(J1),(J2). Let H be a coercive Hamiltonian and let u,v be respectively bounded
sub and supersolutions to (4.4). Let µ ∈ (0,1) if H is superlinearly coercive, µ = 1 is H is
sublinearly coercive. Then the function

ω(x) := µu(x)− v(x)

satisfies, in the viscosity sense, the equation{
ω −I [ω](x)−Cm,µ |Dω|m ≤ A(1−µ) in Ω

∂ω

∂n = 0 on ∂Ω,
(4.129)

where A,Cm,µ are positive constants which depend on the data. Precisely, if µ = 1, Cm,µ = C̃
where C̃ is defined in (Hb) and, if µ ∈ (0,1), Cm,µ = C̄1−mCm2m−1m−m(1−µ)1−m

Proof. We give the details when H has superlinear form i.e. when m > 1 > σ , since the
proof in the sublinear case is similar with easier computations. Since the proof is similar to
that of Lemma 4.4.1, we focus only on the main differences.
We start by noting that if u is a subsolution of (4.4), then

ū = µu

is a viscosity subsolution to

ū−I [ū](x)+µH(x,µ−1Dū)≤ 0, in Ω. (4.130)

Let x0 ∈ Ω̄ and φ a smooth function such that ω −φ has a strict maximum point. We suppose
that x0 ∈ ∂Ω, the other case being similar and even simpler.

Step. 1-Localising on equidistant points (i.e. d(x) = d(y)) We double the variable and we
consider the function

Φ(x,y) := ū(x)− v(y)− φ̃(x,y) (4.131)
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where φ̃ is as in (4.45) with K = 2. Let C j be defined in (J1). We prove that the maximum
point (x,y) of Φ over the set A :=

(
B̄2C j(x0)∩ Ω̄

)
×
(
B̄2C j(x0)∩ Ω̄

)
satisfies as ε → 0

x,y → x0, ε
−1

χε(|x− y|)→ 0, ε
−1|d(x)−d(y)| → 0 (4.132)

and
ū(x)− v(y)− φ̃(x,y)→ ū(x0)− v(x0)−φ(x0). (4.133)

Moreover, we suppose that
∂φ

∂n
(x0)> 0, (4.134)

then for ε small enough
∂φ

∂n
((x+ y)/2)>

1
2

∂φ

∂n
(x0)> 0. (4.135)

By contradiction, we suppose that d(x) > d(y). By (4.135), we have for 0 < ξ ′ < 2 and
0 < µ < 1

µu(x)−µI ξ ′
[u](x)−Iξ ′[φ̃(·,y)](x)+µH

(
x,µ−1D[φ̃(·,y)](x)

)
≤ 0. (4.136)

Note that
|D[φ̃(·,y)](x)| ≥ ε

−1 −C, (4.137)

where C > 0 is a constant independent of ε . For the integral terms in (4.136) we proceed as
in Lemma 4.4.1 by using Lemma 4.4.3. For the Hamiltonian terms we use assumption (H1)
toghether with (4.137), and by the boundedness of u, we write (4.136) as follows

ε
−m (−ε

m−σ + c0µ
1−m)≤C,

and we get a contradiction for ε small, since σ < m.

Step. 2-Writing the viscosity inequalities and sending the parameters to their limits We
regularize the test function φ̃ as in (4.63) and we denote

Φ(x,y) = ū(x)− v(y)− φ̃(x,y),

and by (x̄, ȳ) the maximum point of Φ. We have

d(x̄)→ d(ȳ), u(x̄)→ u(x), v(ȳ)→ v(y) as δ → 0. (4.138)

where (x,y) is a maximum point of Φ defined in (4.131). We write the viscosity inequalities
for u and v for any 0 < ξ ′ < 1

u(x̄)− v(ȳ) ≤ µH(ȳ,µ−1Dxφ̃(·, ȳ)(x̄))−H(x̄,−Dyφ̃(x̄, ·)(ȳ))
+ I ξ ′

[u](x̄)−I ξ ′
[v](ȳ)+Iξ ′[−φ̃(·, ȳ)](x̄)−Iξ ′[−φ̃(x̄, ·)](ȳ),
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and since
Iξ ′[−φ̃(·, ȳ)](x̄)≤ oξ ′(1), −Iξ ′[−φ̃(x̄, ·)](ȳ)≤ oξ ′(1),

where oξ ′(1) is independent of δ , we have

u(x̄)− v(ȳ)≤ µH(ȳ,µ−1Dxφ̃(·, ȳ)(x̄)) − H(x̄,−Dyφ̃(x̄, ·)(ȳ))
+ I ξ ′

[u](x̄)−I ξ ′
[v](ȳ)+oξ ′(1). (4.139)

Denote
H = µH(ȳ,µ−1D[φ̃(·, ȳ)](x̄))−H(x̄,−D[φ̃(x̄, ·)](ȳ)). (4.140)

We recall that

D[φ̃(·, ȳ)](x̄) = ε
−1[χ ′

ε(|x̄− ȳ|)p̂−2χ
′
δ
(|d(x̄)−d(ȳ)|)p̃n(x̄)]+Dφ((x+ y)/2)/2, (4.141)

D[−φ̃(x̄, ·)](ȳ) = ε
−1[χ ′

ε(|x̄− ȳ|)p̂−2χ
′
δ
(|d(x̄)−d(ȳ)|)p̃n(ȳ)]−Dφ((x+y)/2)/2 (4.142)

where

p̂ =
x̄− ȳ
|x̄− ȳ|

, p̃ =
d(x̄)−d(ȳ)
|d(x̄)−d(ȳ)|

. (4.143)

Note that

|D[φ̃(·, ȳ)](x̄)−D[−φ̃(x̄, ·)](ȳ)| ≤ 4ε
−1|x̄− ȳ|+ |Dφ((x̄+ ȳ)/2)|

and
|D[φ̃(·, ȳ)](x̄)|, |−D[φ̃(x̄, ·)](ȳ)| ≤ q

where
q = 3ε

−1 +2−1||Dφ ||L∞(B2Cj (x0)).

Thanks to (Hb) and (Hc), we get for ε small enough

H ≥ (1−µ)(m−1)C̄qm −A(1−µ)−ω1(|x̄− ȳ|)(1+qm)

−C|Dφ((x̄+ ȳ)/2)|qm−1 −4Cε
−1|x̄− ȳ|qm

Note that, by (4.132) and (4.138), we can take ε = ε(µ),δ = δ (µ) small enough so that

(1−µ)(m−1)C̄−ω1(|x̄− ȳ|)−4Cε
−1|x̄− ȳ|> 0

and we can write

H ≥ (1−µ)(m−1)C̄qm/2−C|Dφ((x̄+ ȳ)/2)|qm−1 −A(1−µ)−oδ ,ε(1)

≥ inf
q≥0

{(1−µ)(m−1)C̄qm/2−C(|Dφ((x̄+ ȳ)/2)|)qm−1}−B(1−µ)−oδ ,ε(1),
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where oδ ,ε(1) means that limδ→0 oδ ,ε(1) = oε(1). Note that the infimum in the previous
expression is attained and therefore

H ≥−Cm,µ |Dφ((x̄+ ȳ)/2)|m −A(1−µ)−oδ ,ε(1), (4.144)

where Cm,µ = C̄1−mCm2m−1m−m(1−µ)1−m. Then we couple (4.144), (4.140), (4.139) and
as in Lemma 4.4.1 we let δ → 0, getting

u(x)− v(y) − Cm(1−µ)1−m|Dφ((x+ y)/2)|m −A(1−µ)−oε(1)

≤ I ξ ′
[u](x)−I ξ ′

[v](y)+oξ ′(1). (4.145)

We estimate the nonlocal terms in (4.145) as in Lemma 4.4.1 (steps 2,3) getting for ξ ′< ξ < 1

I ξ ′
[u](x)−I ξ ′

[v](y)≤ Pξ +Kξ +oε(1)+oξ ′(1). (4.146)

and note that oε(1) is independent of ξ ′. Then we plug (4.146) into (4.145) and we let
ξ ′ → 0, getting

µu(x)− v(y)−Cm(1−µ)1−m|Dφ(2−1(x+ y))|m ≤ Pξ +Kξ +A(1−µ)+oε(1) (4.147)

and we conclude sending ε → 0 and using (4.101) and (4.102) as in Lemma 4.4.1.
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Chapter 5

Applications to evolutive problems:
existence, uniqueness and asymptotic
behavior

In this chapter we present some applications of the results proved in Chapter 4 in the stationary
case to the evolutive setting and we consider the associated Cauchy problem

∂tu−I [u(·, t)](x)+H(x, t,u,Du) = 0 in Ω× (0,+∞)
∂u
∂n = 0 on ∂Ω× (0,∞),

u(x,0) = u0(x) in Ω̄,

(5.1)

where Ω ⊂ Rn is smooth enough satisfying assumption (O) (i.e. of class W 2,∞), u0 ∈C(Ω),
I [u] is an integro-partial differential operator of censored type and of order striclty less than
1, defined as

I [u(·, t)](x) = lim
δ→0+

∫
|z|> δ ,

x+ j(x,z) ∈ Ω̄

[u(x+ j(x,z), t)−u(x, t)]dµx(z), (5.2)

where µx is a singular nonnegative Radon measure (depending on x under some suitable
assumptions) satisfying (M0), (M1) (see Chapter 4, Section 4.2), and j(x,z) is a jump
function satisfying (J0), (J1), (J2) (see Chapter 4, Section 4.2). The main example are
measures µx with density dµx

dz = g(x,z)|z|−(n+σ) with σ < 1 and g a nonnegative bounded
function Lipschitz in x, uniformly with respect to z.
Note that the operator in (5.2) is the natural extension to the evolutive case of the nonlocal

operator considered in the stationary case and defined in (4.5), Chapter 4. Moreover H :
Ω̄× [0,+∞)×R×Rn 7→ R is a continuous function whose growth in the gradient makes it
the leading order term in the equation, and can be coercive or of Bellman type. We refer to
the following section for the precise assumptions on the Hamiltonian. The well-posedness of
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problems as (5.1) follows from analogous arguments used for the stationary problem with
some standard adaptations. We refer to Definition (5.1.1) for the definition of solutions and to
Theorem 5.2.1 and Theorem 5.2.4 for further details and proofs of uniqueness and existence.
We study two different kind of asymptotic behaviour of the solution of (5.1). First we

consider an Hamiltonian either in coercive form or of Bellman type under assumptions
ensuring uniqueness of the solution of the associated stationary problem. We prove, by
classical methods based on the weak-relaxed semilimits, the convergence as t →+∞ of the
solution of (5.1) to the unique solution of the associated stationary problem.
On the other hand, when the associated stationary problem has not unique solution, we

consider an Hamiltonian with superfractional coercive growth and we study the so-called
ergodic large time behaviour, proving that the solution of (5.1) approaches a solution of the
so-called ergodic problem as t →+∞. We follow the methods of [29]. In particular, we rely
on the Hölder regularity up to the boundary and a control of the oscillation of subsolutions,
which has been proved by Barles, Ley Koike, Topp in [29] (see also Barles and Topp [33]),
in the case of censored operators and coercive Hamiltonian with m > 1.

5.1 Assumptions and definitions of solutions

We are going to consider the finite time horizon problem associated to (5.1)
∂tu−I [u(·, t)](x)+H(x, t,u,Du) = 0 in Ω× (0,T ]
∂u
∂n = 0 on ∂Ω× (0,T ),
u(x,0) = u0(t) in Ω̄.

(5.3)

We remark that the definition of viscosity solutions to (5.3) (and then to (5.1)) is the natural
extension of Definition 4.2.5 to the corresponding Cauchy problem. For convenvience of the
reader, we give it in the following definition Definition 5.1.1.
We denote

F(x, t,u,φ) = ∂tφ(x, t)−Iξ [φ(·, t)](x)−I ξ [u(·, t)](x)+H(x, t,u(x, t),Dφ(x, t)).

Definition 5.1.1. (i) A function u ∈ BUSC(Ω̄× [0,T ]) is a viscosity subsolution to (5.3)
if, for any test-function φ ∈ C1(RN × [0,T ]) and maximum point (x, t) of u− φ in
B̄C jξ (x)× (t −ξ , t +ξ )∩ Ω̄× [0,T ], we have the inequality

F(x, t,u,φ)≤ 0 i f (x, t) ∈ Ω× (0,T ]

min{F(x, t,u,φ),
∂φ

∂n
(x, t)} ≤ 0 i f x ∈ ∂Ω

min{F(x, t,u,φ),u(x, t)−u0(t)} ≤ 0 i f t = 0.
(ii) A bounded lsc function u is a viscosity supersolution to (5.3) if, for any test-function φ ∈

C1(Rn× [0,T ]) and minimum point (x, t) of u−φ in B̄C jξ (x)×(t−ξ , t+ξ )∩Ω̄× [0,T ],
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we have the inequality
F(x, t,u,φ)≥ 0 i f (x, t) ∈ Ω× (0,T ]

max{F(x, t,u,φ),
∂φ

∂n
(x, t)} ≥ 0 i f x ∈ ∂Ω

max{F(x, t,u,φ),u(x, t)−u0(t)} ≥ 0 i f t = 0.
(iii) A viscosity solution is both a sub- and supersolution.

Remark 5.1.2. The Definition 5.1.1 interprets the point at Ω×{T} as interior points, which
is consistent with the classical definition of the Cauchy problem for parabolic equations (see
[77],[91]). We can obtain the same results by using a weaker definition of viscosity solution
(concerning functions defined only in Ω̄× [0,T )). Since this concern wouldn’t bring any
important contribution to the development of our results, we avoid this extra difficulty.

We also assume the following condition. We remark that, in order to prove the comparison
principle (Theorem 5.2.1), (H’) is assumed mainly for simplicity of exposition and can be
relaxed as observed in the Remark 5.1.3.
(H’) For all R > 0, there exists γR ≥ 0 such that for all x ∈ Ω̄,u,v ∈R, |u|, |v| ≤ R,0 ≤ t ≤ R

and p ∈ Rn, we have

H(x, t,u, p)−H(x, t,v, p)≥ γR(u− v).

Remark 5.1.3. In order to prove the comparison principle stated in Theorem 5.2.1, assum-
ption (H’) can be relaxed assuming only γR ∈ R (i.e. without requiring the non negativity).
Indeed, in the proof of the comparison principle (see Lemma 5.2.3 and Theorem 5.2.1) we
will take γR as in (H’) for R = ||u||∞ + ||v||∞. In this case note that, without loss of generality,
we can suppose γR ≥ 1. Indeed if γR < 1 we perform the change ũ = ue−(γR−1)t (analogously
for the supersolution) and prove Lemma 5.2.3 and Theorem 5.2.1 for ũ and ṽ.

As it is classical in viscosity solutions theory, the comparison principle allows the application
of Perron’s method to conclude the existence. To this end, we introduce the following
assumption, which will allows us to build sub and supersolutions:
(E’) For all T > 0,R > 0 there exists a constant HR > 0 such that

||H(x, t,r, p)||∞ ≤ HR ∀x ∈ Ω, t ∈ [0,T ],r, p ∈ R, |r|, |p| ≤ R.

Hamiltonian in Bellman form

We say that the Hamiltonian H has a Bellman form if for t ∈ [0,+∞),x∈ Ω̄, p∈Rn,H(x, t,r, p)
can be written as

H(x, t,r, p) = sup
α∈A

{λ (x, t,α)r−b(x, t,α) · p− l(x, t,α)}; (5.4)
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where b,λ : Ω̄× [0,+∞)×A → Rn and l : Ω̄× [0,+∞)×A → R, are continuous and
bounded functions and satisfy the following properties.
(C’) Uniform continuity of l and λ :

There exist modulus of continuity ωl,ωλ such that such that ∀α ∈ A ,∀x,y ∈ Ω̄, t,s ∈
[0,+∞)

|l(x, t,α)− l(y,s,α)| ≤ ωl(|x− y|+ |t − s|);

|λ (x, t,α)−λ (y,s,α)| ≤ ωλ (|x− y|+ |t − s|);

(L’) Uniform Lipschitz continuity of the drift b: There exists C > 0 such that ∀α ∈
A ∀(x,s),(y, t) ∈ Ω̄× [0+∞)

|b(x,s,α)−b(y, t,α)| ≤C(|x− y|+ |s− t|)

Remark 5.1.4. Note that assumption (L′) may seem quite unusual since it requires also the
uniform Lipschitz continuity of the drift b in the time variable. This is due to the fact that the
proof of Lemma 4.4.1 (and Lemma 4.4.8), in particular in step 1, relies on an asymmetric
use of the viscosity inequalities satisfied by the sub- and supersolution. For this reason the
standard approach by the Ishi’s Lemma for evolutive equation is not applicable and we need
to double also the time variable in the test function, which as a consequence will have the
same dependence on x and t. For a full explanation of the need of this assumption, we refer
to the proof of Lemma 5.2.3.

We also introduce the notations

Γin = {(x, t) ∈ ∂Ω× (0,+∞) : b(x, t,α) ·n(x)< 0 ∀α ∈ A };

Γout = {(x, t) ∈ ∂Ω× (0,+∞) : b(x, t,α) ·n(x)> 0 ∀α ∈ A };

Γ := {(x, t) ∈ ∂Ω× (0,+∞) |∃α1,α2 ∈ A s. t. b(x, t,α1) ·n(x)< 0,b(x, t,α2) ·n(x)> 0}.

In order to avoid two completely different drift’s behavior for abitrarily closed points, we
assume that each of these subsets is uniformly away from the others, as encoded in the
following assumptions (B1’) and (B2’). For example, if ∂Ω× (o,+∞) is connected, then it
consists in one piece belonging to one of Γin, Γout and Γ; otherwise, we are able to deal with
boundary with several components of different types, precisely each one belonging to one
between Γin, Γout and Γ.
The assumptions we do on these subsets are the following

Γin ∪Γout ∪Γ = ∂Ω× (0,+∞) (B1’)

and
Γin,Γout,Γ are unions of connected components of ∂Ω× (0,+∞). (B2’)



5.1 Assumptions and definitions of solutions 159

Remark 5.1.5. The same remark as in the stationary case holds. In particular, note that the
strict positivity of the drift in the previous assumptions is fundamental, since it allows us to
control the growth of the nonlocal terms (wich we recall are of order strictly less than 1) by
the gradient in the Hamiltonian.
We remark also that in order to treat the points of Γin, we use the existence of a blow-up

supersolution exploding on the boundary. Here the strict positivity of the drift term on the
points of Γin is essential to control the growth on the boundary of the integral term computed
on this blow-up supersolution. We refer to the proof of Lemma 4.4.1 and in particular to
Lemma 4.4.7 for further details.

Coercive Hamiltonian

In the case of coercive Hamiltonians, we restrict the time dependence of H by the assumption:

(H0’) There exist H0 : Ω̄×R×Rn → R continuous and f : Ω̄× [0,∞) → R uniformly
continuous and bounded such that for all x ∈ Ω̄,r ∈ R, p ∈ Rn

H(x, t,r, p) = H0(x,r, p)− f (x, t),

We consider superfractional coercive Hamiltonians, where the gradient growth is given by
H0 through the assumption:

(H1’) For all R > 0, there exist m > σ ,c0 > 0,AR > 0 such that for all x ∈ Ω̄, p ∈Rn, |r| ≤ R

H0(x,r, p)≥ c0|p|m −AR.

We split the analysis depending on the gradient growth of H0:

Sublinear coercivity: Assume (H0’) holds. We say that H is sublinear coercive if H0

satisfies (H1’) with m ≤ 1 and the following continuity condition holds :

(Ha’) For all R there exist a constant C̃R > 0 and a modulus of continuity ωR such that for all
x,y ∈ Ω̄, p,q ∈ Rn, |r| ≤ R

H0(y,r, p)−H0(x,r,q)≤ ωR(|x− y|+ |x− y||p|)+C̃R|p−q|.

Superlinear coercivity: Assume (H0’) holds. We say that H is superlinearly coercive if H0

satisfies:
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(Hb’) There exist m > 1,C̄ > 0, such that for all R > 0 there exists AR > 0 such that

H0(x,r, p)−µH0(x,µ−1r,µ−1 p)≤ (1−µ)
(
C̄(1−m)|p|m +AR

)
,

for all µ < 1,x ∈ Ω̄, p ∈ Rn, |r| ≤ R;
(Hc’) If m is given by assumption (Hb’), for all R > 0 there exist a constant CR > 0 and a

modulus of continuity ωR such that

H0(y,r, p)−H0(x,r,q)≤ ωR(|x− y|)(1+ |p|m ∨|q|m)+CR|p−q|(|p|m−1 ∨|q|m−1),

for all x,y ∈ Ω̄, |r| ≤ R,q, p ∈ Rn.

5.2 The comparison principle

We recall that we denote by Hamiltonian of Bellman type an Hamiltonian defined as in (5.4)
satisfying (C’),(L’), (B1’), (B2’) and by coercive Hamiltonian an Hamiltonian satisfying
(H0’), (H1’) which can be either of sublinear type satisfying (Ha’) or superlinear type
satisfying (Hb’) and (Hc’). We prove the following comparison principle for the problem
(5.1).

Theorem 5.2.1. Let Ω be an open subset of Rn satisfying (O), u0 ∈C(Ω̄). Assume (M0),(M1),
(J0), (J1), (J2) and let H be an Hamiltonian either of Bellman type or a coercive Hamilto-
nian satisfying (H’). Let u,v ∈ L∞(Ω̄× [0,T ]) for all T > 0 be respectively a usc sub and lsc
supersolution of (5.1). Then

u ≤ v in Ω̄× [0,+∞).

Before proving the theorem, we remark that, as considered as a part of the parabolic
boundary, we ask the initial condition to be satisfied in the generalized sense. However, the
initial condition is satisfied in the classical sense on Ω×{0}, as we prove in the following
lemma.

Lemma 5.2.2. Assume Ω is a open subset of Rn and H ∈ C(Ω̄× [0,+∞)×R×Rn),u0 ∈
C(Ω̄). If u,v are respectively a BUSC viscosity subsolution and a BLSC viscosity supersolu-
tion to (5.1), then u(x,0)≤ u0(x)≤ v(x,0) for all x ∈ Ω̄.

Proof. The proof is similar to that of analogous result for second-order case and Dirichlet
boundary conditions presented in [68], with some modifications due to the presence of the
nonlocal operator, to Neumann conditions and to the unboundedness of the domain. We give
the details for completeness. We assume by contradiction that

u(x0,0)> u0(x0) (5.5)
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for some x0 ∈ Ω̄. Suppose that x0 ∈ ∂Ω, the other case being simpler. For all ε > 0,α > 0
such that α ≪ ε , and ν > 0,R > 0, we consider

Φ(x, t) = u(x, t)−φ(x, t)−u0(x0),

where

φ(x, t) = e−Kd(x) |x0 − x|2

ε2 +
t
α
−νd(x)+ψ

(
|x− x0|

R

)
, (5.6)

where d is the signed distance from the boundary (in a suitable neighbourhood of the boundary
and bounded in all the domain, see Remark 4.2.1) and K in (5.6) is a positive constant such
that K > ||D2d||∞ +1 (in the neighbourhood of the boundary where d is smooth) and

ψ(s) =


0 for 0 ≤ s < 1

2 ,

increasing for 1
2 ≤ s < 1,

2||u||∞ +1 for s ≥ 1.
(5.7)

We observe that
Φ(x0,0) = u(x0,0)−u0(x0)> 0,

and by the definition of ψ , we have for |x− x0| large enough and ν small enough

Φ(x, t)< 0.

Then, we have that M := max
Ω̄×[0,T ]Φ = Φ(x̄, t̄) for some (x̄, t̄) ∈ Ω̄× [0,T ]. By standard

arguments, we prove that, up to subsequences, x̄ → x0, t̄ → 0, u(x̄, t̄) → u(x0,0) as ε →
0,α → 0. Then for ε , α small enough we can suppose that x̄ is enough close to the boundary
(i.e. is in the neighbourhood, say V , of the boundary where the distance is smooth (see
Remark 4.2.1). Moreover, with some abuse of notations, we denote by ||D2d||∞ the supremum
of ||D2d||∞ over this neighbourhood of the boundary. By Taylor’s formula for the distance
function, we have for ε,α small enough

n(x̄)(x̄− x0)+
1
2
(x̄− x0)

T D2d(x̄)(x̄− x0)+o(|x̄− x0|2) = d(x0)≥ 0

and then
n(x̄)(x̄− x0)≥−||D2d||∞|x̄− x0|2/2+o(|x̄− x0|2). (5.8)

Take ε small so that

1+
o(|x̄− x0|2)
|x̄− x0|2

≥ 0. (5.9)
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By (5.8) by the definition of K and (5.9), we have

∂φ

∂n
(x̄) ≥ e−Kd(x̄) |x̄− x0|2

ε2

[
K −||D2d||∞ +

o(|x̄− x0|2)
|x̄− x0|2

]
+ν − 1

R
||ψ ′||∞

≥ e−Kd(x̄) |x̄− x0|2

ε2

[
1+

o(|x̄− x0|2)
|x̄− x0|2

]
+ν − 1

R
||ψ ′||∞ > 0,

where the last inequality holds by taking ν − 1
R ||ψ

′||∞ ≥ 0. Note that, for ε > 0 fixed and
ν ,R small enough, we can choose α > 0 small enough so that the viscosity inequality

1
α
+I [φ(·, t)](x̄)+H(x̄, t̄,u(x̄,̄t),Dφ(x̄, t̄))≤ 0

cannot hold, since by (E’) and (M0) we have for some constant C

I [φ(·, t)](x̄)+H(x̄, t̄,u(x̄, t̄),Dφ(x̄, t̄))≥−C(1+
1
ε
)−HR,

where HR is defined in (E’) for R = max{|Dφ |, ||u||∞} (by |Dφ | we denote the supremum of
|Dφ | over the neighbourhood V of the boundary where x̄ belongs for ε small enough). Note
also that |Dφ | depends only on ε . Then, for all ε and α small enough, we have t = 0 and
u(x,0)≤ u0(x) and by letting ε → 0, we obtain the desired inequality u(x0,0)≤ u0(x0). The
proof of the other inequality is analogous.

The proof of Theorem 5.2.1 is a consequence of the following Lemma. We remark that the
proof is analogous to the proof of Lemma 4.4.1 and Lemma 4.4.8 for the stationary case,
with some adaptations to the evolutive setting.

Lemma 5.2.3. Let I as in (5.2) and assume µ satisfies (M0),(M1), j satisfies (J0),(J1),(J2).
Let H be an Hamiltonian either of Bellman type or a coercive Hamiltonian satisfying (H’).
Let u,v ∈ L∞(Ω̄× [0,T ]) for any T > 0 be respectively usc sub and lsc supersolutions to{

∂tw−I [w(·, t)](x)+H(x, t,w,Dw) = 0 in Ω× (0,+∞)
∂w
∂n = 0 on ∂Ω× (0,+∞),

Take µ = 1 if H is of Bellman type and if H is sublinearly coercive, µ ∈ (0,1) if H is
superlinearly coercive. Then, the function

ω(x, t) := µu(x, t)− v(x, t)

satisfies, in the viscosity sense, the equation{
∂tω + γRω −I [ω(·, t)](x)−Cm,µ,R|Dω|m ≤ AR(1−µ) in Ω× (0,+∞)
∂ω

∂n = 0 on ∂Ω× (0,+∞),
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where, for R = ||µu||∞ + ||v||∞, γR is the constant of (H’), AR > 0 is defined in (Hb′) and
Cm,µ,R > 0 is such that Cm,µ,R = C̄1−mCm

R 2m−1m−m(1−µ)1−m if µ ∈ (0,1) and Cm,µ,R = C̃R

if µ = 1 and H is sublinearly coercive, where CR,C̃R are defined respectively in (Hc′),(Ha′).

Proof. The proof follows closely the arguments presented in Lemma 4.4.1 and Lemma 4.4.8
for the stationary case with some standard adaptations to the evolution setting. The main
difference is that now the solution and then the test function depend also on t. We give
some details in the case of Hamiltonians in Bellman form and we note that the proof can be
extended to the case of coercive Hamiltonians analogously as done in Lemma 4.4.8. The
main point we want to highlight is that, in the case of Hamiltonian of Bellman type, we
need the uniform continuity also with respect to time as stated in assumption (L’) in order to
estimate the Hamiltonian terms in the viscosity inequalities satisfied by u and v.
We take (x0, t0) ∈ Ω̄ × (0,+∞) and φ a smooth function such that ω − φ has a strict

maximum point at (x0, t0). We suppose either (x0, t0) ∈ Γout or (x0, t0) ∈ Γ, since the case
(x0, t0) ∈ Γin can be treated analogously as done in Lemma 4.4.1. Let ε > 0. Consider the
function

Φ(x,y, t,s) = u(x, t)− v(y,s)− φ̃(x,y, t,s) (5.10)

where

φ̃(x,y, t,s) = φ((x+ y)/2,(t + s)/2)+ ε
−1

χε(|x− y|, |t − s|)+Kε
−1|d(x)−d(y)|, (5.11)

where d is the signed distance from the boundary (see Remark 4.2.1) and χε : R×R→ R is
defined as follows

χε(r, p) =
√

r2 + p2 + ε4 r, p ∈ R. (5.12)

By its upper semicontinuity, φ attains its maximum over

K := B̄2C j(x0)∩ Ω̄× B̄2C j(x0)∩ Ω̄× [0, t0 +1]× [0, t0 +1]

at a point (x̃, ỹ, t̃, s̃) and by classical arguments in viscosity theory, we have

x̄, ȳ → x0; s̄, t̄ → t0; ε
−1

χε(|x− y|, |t − s|)→ 0; Kε
−1|d(x)−d(y)| → 0

and
u(x̄, s̄)→ u(x0, t0), v(ȳ, t̄)→ v(x0, t0),

concluding that for all ε suitably small, s̄, t̄ ∈ (0, t0 +1) and x̄, ȳ ∈ B̄C j(x0).
The proof is carried out step by step analogously as in Lemma 4.4.1. We just remark that in

the proof of Lemma 4.4.2 (Step 1 of Lemma 4.4.1), the viscosity inequality satisfied by u
(the analogous of (4.58)) is the following

∂t φ̃(x̃, ỹ, t̃, s̃)−Iξ [φ̃(·, ỹ, t̃, s̃)](x̃)−I ξ [u(·, t̃)](x̃)+H(x̃, t̃,u(x̃, t̃),Dxφ̃(x̃, ỹ, t̃, s̃))≤ 0,
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where we use the notation Dxφ̃(x̃, ỹ, t̃, s̃) = Dx[φ̃(·, ỹ, t̃, s̃)](x̃) and analogously ∂t φ̃(x̃, ỹ, t̃, s̃) =
∂t [φ̃(x̃, ỹ, ·, s̃)](t̃). Note that the additional term ∂t φ̃ plays the same role of the Hamiltonian
term, since, by the smoothness of φ and

0 ≤ ∂pχε(|x̃− ỹ|, |t̃ − s̃|)≤ 1, (5.13)

we have

∂t φ̃(x̃, ỹ, t̃, s̃) = ∂tφ((x̃+ ỹ)/2,(t̃ + s̃)/2)/2+ ε
−1

∂pχε(|x̃− ỹ|, |t̃ − s̃|)r̂ ≥C− ε
−1,

where C > 0 is a constant independent of ε and

r̂ =
(t̃ − s̃)
|t̃ − s̃|

.

Then, we conclude the proof of Lemma 4.4.2 analogously, by applying Lemma 5.3.9 (see
Appendix C) and Lemma 4.4.3 to estimate respectively the Hamiltonian term and the nonlocal
terms. Analogously as in Lemma 4.4.1, Step 2, we regularize the test function and we consider

φ̃(x,y, t,s) = φ((x+ y)/2,(t + s)/2)+ ε
−1

χε(|x− y|, |t − s|)+Kε
−1

χδ (|d(x)−d(y)|),

where d is the signed distance from the boundary (see Temark 4.2.1) χε is defined as in
(5.12) and χδ is defined as follows

χδ (r) =
√

r2 +δ 4, r ∈ R.

We denote by (x̄, ȳ, t̄, s̄) a maximum point of u(x)− v(y)− φ̃(x,y, t,s) on K . We write the
viscosity inequalities for u and v and by (H’), we get

γR(u(x̄, t̄)− v(ȳ, s̄))≤ H(ȳ, s̄,v(ȳ, s̄),−Dy[φ̃(x̄, ȳ, t̄, s̄])−H(x̄, t̄,v(ȳ, s̄),Dx[φ̃(x̄, ȳ, t̄, s̄)])

+I ξ ′
[u(·, t̄)](x̄)−I ξ ′

[v(·, s̄)](ȳ)+Iξ ′[φ̃(·, s̄, ȳ, s̄)](x̄)−Iξ ′[−φ̃(x̄, ·, t̄, s̄)](ȳ).

where γR is defined in (H’) for R = ||u||∞+ ||v||∞. Note that the dependence on t does not play
any role in the estimation of the nonlocal terms. Note also that, in the case of Hamiltonian of
Bellman type, we use assumption (L’) to conclude

H(ȳ, s̄,v(ȳ, s̄),Dx[φ̃(x̄, ȳ, t̄, s̄)]−H(x̄, t̄,v(ȳ, s̄),Dx[φ̃(x̄, ȳ, t̄, s̄)])

≤C
(
ε
−1(|x̄− ȳ|+ |t̄ + s̄|)+ |x̄− ȳ|+ |t̄ + s̄|

)
+ωl(|x̄− ȳ|+ |t̄ − s̄|)+ωλ (|x̄− ȳ|+ |t̄ − s̄|).

(5.14)
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The remaining terms are treated as in Lemma 4.4.1, in particular we have

H(ȳ, s̄,v(ȳ, s̄),−Dy[φ̃(x̄, ȳ, t̄, s̄)])−H(ȳ, s̄,v(ȳ, s̄),Dx[φ̃(s̄, ȳ, t̄, s̄)]

≤ B
(
|Dφ((x̄+ ȳ)/2,(t̄ + s̄)/2)|+Kε

−1|x̄− ȳ|
)

(5.15)

where B = supx∈Ω̄,α∈A b(x,α). Then coupling (5.14) and (5.15) we get

H(ȳ, s̄,v(ȳ, s̄),−Dy[φ̃(x̄, ȳ, t̄, s̄)])−H(x̄, t̄,v(ȳ, s̄),Dx[φ̃(x̄, ȳ, t̄, s̄)])

≤ B|Dφ((x̄+ ȳ)/2,(t̄ + s̄)/2)|+oδ ,ε(1),

where oδ ,ε(1) means limδ→0 oδ ,ε(1) = oε(1). Then we conclude the proof as in Lemma
4.4.1.

Now we sketch the proof of Theorem 5.2.1. We give the details only in the case of
Hamiltonians of Bellman type, since for Hamiltonians in coercive form the proof is analogous.

Proof of Theorem 5.2.1. Let T > 0. We argue over the finit horizon problem (5.3), from
which the general result follows by the fact that T is arbitrary. We observe that the proof is
analogous to that of Theorem 4.2.6, except for the fact that, in principle, we have we deal
also with the part of the parabolic boundary {0}× Ω̄. We sketch the proof in order to show
that this extra difficulty can be easily treated essentially through Lemma 5.2.2. We assume
by contradiction that

M := sup
Ω̄×[0,T ]

{u− v}> 0,

we denote ω(x, t) = u(x, t)− v(x, t) (x, t) ∈ Ω̄× [0,T ] and consider the function

Φ(x, t) = ω(x, t)−ψ(R−1|x|)+νd(x)−ηt, (x, t) ∈ Ω̄× [0,T ]

where ψ is a smooth function as in (4.125) and d as in Remark 4.2.1, in particular coincides
with the distance from the boundary of Ω in a neighboorhood of the boundary and it is
extended bounded in all the domain. By similar arguments as in Theorem 4.2.6, we show
that the function Φ achieves its positive maximum at a point (x, t) for R large and ν ,η small
enough.
In particular, by Lemma 5.2.2 and taking R bigger and ν ,η smaller if it is necessary, we

have that t > 0 for all such parameters. Indeed if t = 0 we would get

maxΦ = Φ(x,0) = u(x,0)− v(x,0)−ψ(R−1|x|)+νd(x)≤ νd(x)

which tends to zero if ν → 0 getting in contradiction with the positivity of the maximum of
Φ for all R large enough and ν small enough. At this point, we fix η > 0 satisfying the above
facts and we continue the proof analogously as in Theorem 4.2.6.
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For both the coercive and Bellman case, the application of Perron’s method on a sequence
of finite-time horizon problems with the form (5.3) with T →+∞ and the strong comparison
principle allows us to get the existence of a solution which is defined for all time.
In order to apply Perron’s method, we ask the initial datum to be bounded, i.e. u0 ∈ BC(Ω).

We refer to the following proof for further details.
For reasons which will be clear in the next theorem, we assume the following assumption:

(H”) There exists γ0 > 0 such that γR ≥ γ0 for all R > 0 where γR is defined in (H’).

Theorem 5.2.4. Let Ω be an open subset of Rn satisfying (O),u0 ∈ BC(Rn). Assume
(M0),(M1),(J0),(J1),(J2) and let H be an Hamiltonian of Bellman type or a coercive Hamilto-
nian satisfying (H’) and (E’). Then, there exists a unique viscosity solution to problem (5.1)
in C(Ω̄× [0,+∞))∩L∞(Ω̄× [0,T ]). In addition, if (H”) holds, then the unique solutions
u ∈C(Ω̄× [0,+∞))∩L∞(Ω̄× [0,T ]) for all T > 0 is uniformly bounded in Ω̄× [0,+∞).

Proof. The uniqueness follows from Theorem 5.2.1. In order to prove the esistence, we
apply Perron’s method on a sequence of finite-time horizon problems with the form (5.3)
with T →+∞. The role of the global sub and supersolutions present in the Perron’s method
is played by functions with the form (x, t)→ c1t + c2, for suitable constants c1,c2 depending
on the data, whose construction is carried out through assumptions (H’) and (E’). We give
the details in the case of the the supersolution (for the subsolution is analogous). Let
g(t) := c1t + c2. We want to find c1,c2 such that g is a supersolution of the problem (5.1).
We take

c2 ≥ ||u0||∞.

Note that by (H’) and (E’) we have

∂tg+H(x, t,g(t),Dg(t)) = c1 +H(x, t,c1t + c2,0)≥ c1 + γR(c1t + c2)−H0,

where γR ≥ 0 is defined in (H’) for R = max{c1T + c2,T} and H0 is defined in E ′ for R = 0.
Then we conclude the proof by taking c1 ≥ H0. Note that H0 is independent of T since we
assumed the boundedness of l and f respectively for Hamiltonians in Bellman form and for
coercive Hamiltonians.
Moreover, under the assumption (H”), these global sub and supersolutions can be taken as

constant functions depending on the data, but not on T , concluding the uniform boundedness.
Indeed, we take g = c with c ≥ ||u0||∞ and we note that by (H”) we have

∂tg+H(x, t,g(t),Dg(t)) = H(x, t,c,0)≥ γ0c−H0,

and we conclude by taking c ≥ H0γ
−1
0 .
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5.3 Large time behavior

5.3.1 Large time behavior I: convergence in the classical sense

In the next subsections we address the question of the asymptotic behavior of the solution as
t → ∞ which naturally arises once the existence and uniqueness for problem (5.1) is obtained.
We remark that the same kind of results have been given in the case of the Dirichlet problem
for nonlocal equation (fractional laplacian) both with coercive Hamiltonians and of Bellman
type by E. Topp in [34]. Note that asumption (H”) allows us to get the strong comparison
principle and therefore existence and uniqueness for the associated stationary problem.

Theorem 5.3.1. Let Ω be an open subset of Rn satisfying (O),u0 ∈ BC(Ω) and H an
Hamiltonian either of Bellman type or a coercive Hamiltonian satisfying (H”). Assume
(E’), (M0), (M1), (J0), (J1), (J2). Assume also that there exists a continuous function
H̄ : Ω̄×R×Rn → R satisfying

H(·, t, ·, ·)→ H̄ locally uniformly in Ω̄×R×Rn,

as t → ∞. Then, there exists a unique bounded viscosity solution u for the following problem{
−I (u)+ H̄(x,u,Du) = 0 in Ω

∂u
∂n = 0 on ∂Ω.

(5.16)

Moreover, the unique viscosity solution u of (5.1) converges uniformly on compact sets in Ω̄

to u∞, the unique viscosity solution of the problem (5.16).

Proof. For the existence and uniqueness for the problem (5.16) we refer to Theorem 4.2.6
and Corollary 4.2.7 of Chapter 4. The proof of the convergence of the solution to (5.1) to the
unique solution of (5.16) is rather classical and uses the relaxed semi-limits technique. In
particular, for each (x, t) ∈ Ω̄× [0,+∞), define the functions

ū(x, t) = limsup
ε→0,z→x,z∈Ω

u(z,
t
ε
), u(x, t) = liminf

ε→0,z→x,z∈Ω
u(z,

t
ε
),

which are well defined by the uniform boundedness of u. The application of the half-relaxed
semilimits method proves that for all t > 0, the functions x → ū(x, t) and x → u(x, t) are
respectively viscosity sub and supersolution for problem (5.16). Then, by comparison
principle we have ū = u in Ω̄× [0,+∞) and consequently ū(x, t) = u(x, t) = u∞(x) for all
(x, t) ∈ Ω̄× [0,+∞) by the uniqueness of (5.16). This conclude the proof.
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5.3.2 Large time behavior II: convergence to the ergodic problem

In this subsection we prove large time behavior for the problem
∂tu(x)−I [u(·, t)](x)+H(x,Du) = 0 in Ω× (0,+∞)
∂u
∂n = 0 on ∂Ω× (0,∞),

u(x,0) = u0(x) in Ω̄.

(5.17)

where Ω is a bounded open subset of Rn satisfying (O), u0 ∈C(Ω) and H is an Hamiltonian
in superfractional coercive form, that is when m > 1 in (H1’).
Existence and uniqueness for the problem (5.17) follow from Theorem 5.2.4. Note that H

does not depend on u, so it does not satisfy (H’).
The main result of this section is Theorem 5.3.7, namely the convergence as t → +∞ of

the solution of (5.17) to a solution of the ergodic problem, which we solve in Proposition
5.3.6. We follow the methods of [29]. In particular, we rely on the Hölder regularity up to the
boundary and a control of the oscillation of subsolutions, which has been proved by Barles,
Ley Koike, Topp in [29] (see also Barles and Topp [33]), in the case of censored operators
and coercive Hamiltonian with m > 1.
We remark that, differently from [32], where Lipschitz regularity of the solutions is used

to linearize the equations in order to apply the Strong Maximum Principle, our proof relies
mainly on the use of a Strong Maximum Principle à la Coville [64], [65]) (see also Ciomaga
[58]). This means that it relies mainly on a topological property of the the support of the
measure defining the nonlocal operator. Note that in this final part we assume Ω bounded for
techincal reasons related to the proof of the Strong maximum principle, we refer to the proof
of Proposition 5.3.2.

A strong maximum principle

We need some notation for the statement of the Strong Maximum Principle. Let µ, j be as in
the definition of the nonlocal operator I , that is satisfying (M0), (M1), (J0), (J1), (J2) and
denote by suppµ the support of the measure µ .
For x ∈ Rn we define inductively

X0(x) = {x}; Xr+1(x) = ∪ξ∈Xr(x){ξ + j(ξ ,supp{µx})}∩ Ω̄, for r ∈ N,

and
X (x) = ∪r∈NXr.

The Strong Maximum Principle presented in this paragraph relies in the nonlocality of the
operator under the "iterative covering property"

X (x) = Ω, for all x ∈ Ω. (5.18)
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The most basic example is the case where j(x,z) = z and there exists r > 0 such that
Br ⊂ supp{µ}. For further details and examples we refer to [29].
The following proposition states the Strong Maximum Principle.

Proposition 5.3.2. Let Ω ⊂ Rn be a bounded domain satisfying (O). Let H be an Hamil-
tonian in coercive form with m > 1 in (H1’). Assume (M0), (M1), (J0), (J1), (J2), (E’)
and(5.18). Let u,v be respectively a sub and a supersolution of (5.17), such that there exists
(x0, t0) ∈ Ω̄× (0,+∞) satisfying

(u− v)(x0, t0) = sup
Ω̄×(0,+∞)

{u− v}.

Then, the function u− v is constant in Ω̄× [0, t0]. Moreover we have

(u− v)(x, t) = sup
x∈Ω̄

{u(x,0)− v(x,0)}, for all (x, t) ∈ Ω̄× [0, t0].

The proof of Proposition 5.3.2 uses the following lemma, which is is a consequence of the
comparison principle, see [32], Theorem 4.1.

Lemma 5.3.3. Let assumptions of Proposition 5.3.2 hold. Let u,v be locally bounded sub
and supersolution to equation (5.17) and for t ∈ [0,+∞) define

k(t) = max
Ω̄

{u(x, t)− v(x, t)}.

Then, for all 0 ≤ s ≤ t, we have k(t)≤ k(s).

We prove the strong maximum principle. We follow the argument given in [29], Proposition
4.1, with some changes due to the Neumann condition on the boundary.

Proof of Proposition 5.3.2. We divide the proof into several steps.

Step. 1-Preliminaries We want to prove that for each (x, t) ∈ Ω̄× [0, t0]

(u− v)(x, t) = k(0).

Since k(t0) is a global maximum value of k in [0,+∞), by Lemma 5.3.3 we have k(t) = k(0)
for all t ∈ [0, t0]. Then, we have just to prove that

u(x,τ)− v(x,τ) = k(τ), ∀x ∈ Ω̄,

for each τ ∈ (0, t0). Then, by upper-semicontinuity, we derive the result up to τ = 0 and
τ = t0.
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Fix τ ∈ (0, t0) and define the set

Bτ = {x ∈ Ω̄ : (u− v)(x,τ) = k(τ)}. (5.19)

We observe that by the upper-semicontinuity of u− v, Bτ is nonempty. Then, the claim of
the proposition follows once proved that Bτ = Ω̄.

Step. 2-Localization on time τ For η > 0, define the function

(x, t)→ Φ(x, t) := u(x, t)− v(x, t)−η(t − τ)2

and note that for each (x, t) ∈ Ω̄× (0,+∞) and for x̃ ∈ Bτ where Bτ is defined in (5.19), we
have

Φ(x, t)≤ k(t)−η(t − τ)2 ≤ k(τ) = (u− v)(x̃,τ) = W̄ (x̃,τ).

Then the supremum of Φ in Ω̄× (0,+∞) is achieved and

sup
(x,t)∈Ω×(0,+∞)

Φ(x, t) = k(τ).

Step. 3-Localization around a point in Bτ From now on we fix xτ ∈Bτ where Bτ is defined
in (5.19). We define for ε,α > 0

ψε,α(x) = e−Kd(x) |x− xτ |2

ε2 −αd(x),

where d is the signed distance from the boundary (see Remark 4.2.1) and K > 0 is a constant
satisfying

K > ||D2d||∞ +1, (5.20)

where, with some abuse of notations, we denote by ||D2d||∞ the supremum of ||D2d||∞ over
the neighbourhood of the boundary where d is smooth. We observe that

ψε,α(xτ) =−αd(xτ) (5.21)

and the first derivatives of ψε,α are bounded, depending on ε and α .
For 0 < µ < 1 we denote

ωµ = µu− v (5.22)

and we consider

(x, t)→ Φµ(x, t) := ωµ(x, t)−η |t − τ|2 − (1−µ)ψε,α(x).
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Then, by the upper-semicontinuity of Φµ , there exists (xµ , tµ) ∈ Ω̄× [0, t0 +1] such that

Φµ(tµ ,xµ) = max
Ω̄×[t0,t0+1]

Φµ .

Since Φµ → Φ locally uniformly on Ω̄× [0,+∞) as µ → 1, we have that, up to subsequences,

(xµ , tµ)→ (x̄,τ) as µ → 1.

Not also that for any α small enough small

x̄ = x̄ε → xτ as ε → 0.

Indeed, by using the maximum point inequality for Φµ , we have

Φµ(xµ , tµ) = (u− v)(xµ , tµ)+(µ −1)(u+ψε,α)(xµ , tµ)−η |tµ − τ|2

≥ k(τ)+(µ −1)u(xτ ,τ)−α(µ −1)d(xτ) (5.23)

where we used the definition of k(τ) and (5.21). Since tµ ∈ [t0, t0 +1] for all µ close to 1, we
have

(u− v)(xµ , tµ)≤ k(tµ)≤ k(τ)

and coupling the previous inequality with (5.23) we get

ψε,α(xµ)+αd(xτ)≤ u(xτ ,τ)−u(xµ , tµ)

and then, by the boundedness of u and of d and for α small, we deduce that

|xµ − xτ | ≤Cε (5.24)

for some C > 0 independent on µ . Then we deduce that for any α enough small

x̄ → xτ as ε → 0.

Step. 4-Writing the viscosity inequality for ωµ Denote

φ(x, t) := (1−µ)ψε,α(x)+η(t − τ)2

We test ωµ defined in (5.22) with the function φ in (xµ , tµ). We suppose xµ ∈ ∂Ω, since
the other case being analogous and even simpler. By the Taylor’s formula for the distance
function, we have

n(xµ)(xµ − xτ)+
1
2
(xµ − xτ)

T D2d(xµ)(xµ − xτ)+o(|xµ − xτ |2) = d(xτ)≥ 0
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and then
n(xµ)(xµ − xτ)≥−||D2d||∞|xµ − xτ |2/2+o(|xµ − xτ |2). (5.25)

Take µ,ε small enough so that

1+
o(|xµ − xτ |2)
|xµ − xτ |2

≥ 0 (5.26)

By (5.25), by the definition (5.20) of K and (5.26), we have

∂φε,α

∂n
(xµ , t) =

∂ψε,α

∂n
(xµ)

≥ e−Kd(xµ )
|xµ − xτ |2

ε2

[
K −||D2d||∞ +

o(|xµ − xτ |2)
|xµ − xτ |2

]
+α

≥ e−Kd(xµ )
|xµ − xτ |2

ε2

[
1+

o(|xµ − xτ |2)
|xµ − xτ |2

]
+α > 0.

Then, by Lemma 5.2.3, we get for ξ > 0

2η(tµ − τ)−I ξ [ωµ(·, tµ)](xµ)−Iξ [(1−µ)ψε,α(·)](xµ)

− (1−µ)Cµ,m|Dψε,α(xµ)|m)≤ AR(1−µ),

where Cµ,m is defined in Lemma 5.2.3 and AR (also ariseing in Lemma 5.2.3) is defined in
(Hb’). Since

Iξ [(1−µ)ψε,α(·)](xµ)≤ (1−µ)C′||Dψε,α ||∞

for some C′ > 0, we get

2η(tµ − τ)−I ξ [ωµ(·, tµ)](xµ)

− (1−µ)
(
C′||Dψε,α ||∞ +(1−µ)Cµ,m|Dψε,α(xµ)|m)+AR

)
≤ 0. (5.27)

We recall that tµ → τ as µ → 1 and we observe that by the smoothness of ψε,α the term in
parenthesis in (5.27) remain bounded as µ → 1. Moreover, by the Dominated Convergence
Theorem, we get

I ξ [ωµ(·, tµ)](xµ)→ I ξ [(u− v)(·,τ)](x̄) as µ → 1

where we recall that x̄ is the limit of xµ as µ → 1. Then∫
x̄+ j(x̄,z) ∈ Ω̄,

|z| ≥ ξ

(u− v)(x̄+ j(x̄,z),τ)− (u− v)(x̄,τ)dµx̄(z) = 0
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and letting ε → 0 and recalling that x̄ → xτ as ε → 0 and (u− v)(xτ ,τ) = k(τ) we finally
conclude ∫

xτ + j(xτ ,z,τ) ∈ Ω̄

|z| ≥ ξ

(u− v)(xτ + j(xτ ,z))− k(τ)dµxτ
(z) = 0.

Since ξ > 0 is arbitrary, we get that

(u− v)(x,τ)− k(τ) = 0 for all x ∈ X1(xτ).

Therefore we can proceed in the same way as above, and conclude by induction that

(u− v)(x,τ)− k(τ) = 0 for all x ∈ ∪r∈NXr(xτ).

Then we conclude the proof by the upper-semicontinuity of u− v and applying the iterative
convering property (5.18).

The ergodic problem

Roughly speaking, solving the ergodic problem means pass to the limit as δ → 0 in the
stationary problem {

δu(x)−I [u(·)](x)+H(x,Du) = 0 in Ω

∂u
∂n = 0 on ∂Ω,

(5.28)

whose existence and uniqueness for δ > 0 holds by Theorem 4.2.6. In particular, the
following proposition holds.

Proposition 5.3.4. Let δ > 0, Ω ⊂ Rn be a bounded domain satisfying (O). Let H be an
Hamiltonian in coercive form with m > 1 in (H1’). Assume (M0),(M1),(J0),(J1),(J2), (E’).
Then

(i) If u,v are bounded viscosity sub and supersolution to equation (5.28), then u ≤ v in Ω̄.
(ii) There exists a unique viscosity solution u ∈ BC(Ω) to (5.28) which satisfies

||u||∞ ≤ δ
−1||H(·,0)||∞.

In order to solve the ergodic problem we need the compactness of the familty of solutions
{uδ}, which relies mainly on the regularity result for subsolutions of equation (5.28) proved
in [29], Theorem 5.5 and which we recall in the following proposition.
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Proposition 5.3.5. Let the assumptions of Proposition 5.3.4 hold. Then any bounded viscosity
subsolution u : Rn →R to (5.28) is Hölder continuous in Ω̄ with Hölder exponent γ0 =

m−σ

m
and Hölder seminorm depending on Ω, the data and oscΩ(u) and not on δ .
Moreover, there exists K > 0 such that for any bounded viscosity subolsoution of (5.28) we

have
oscΩ(u)≤ K. (5.29)

Proposition 5.3.6. Under the assumptions of Proposition 5.3.4 and the additional assumption
(5.18), there exists a unique constant λ ∈ R for which the stationary ergodic problem{

λ −I [u(·)](x)−H(x,Du) = 0 in Ω

∂u
∂n = 0 in ∂Ω

(5.30)

has a solution w ∈C
m−σ

m (Ω̄). Moreover w is the unique solution of (5.30) up to an additive
constant.

Proof. We consider the stationary problem (5.28) for δ > 0 and its unique solution wδ ,
which exists and satisfies the estimate

||wδ ||∞ ≤ δ
−1||H(·,0)||∞,

by Proposition 5.3.4. Moreover, thanks to Proposition 5.3.5 we have that wδ ∈C
m−σ

m (Ω̄),

with Hölder seminorm independent of δ or ||wδ ||∞. Define vδ = wδ −wδ (0) and observe
that vδ satisfies{

δwδ (0)+δvδ (x)−I [vδ (·)](x)+H(x,Dvδ ) = 0 in Ω

∂uδ

∂n = 0 on ∂Ω.

By Proposition 5.3.5 we have that {vδ}δ∈(0,1) is uniformly bounded and equi-Hölder with
exponent m−σ

m . Then, by Ascoli-Arzelà Theorem, there exist w ∈C
m−σ

m (Ω̄) such that vδ → w
as δ → 0 uniformly on Ω̄ and a constant λ ∈ R such that δwδ (0) → λ as δ → 0. We
conclude that (w,λ ) is a solution of (5.30) by the stability result for viscosity solutions (see
for example [5], [67]).
Now we prove the uniqueness. Suppose that (wi,λi)i=1,2 are two solutions of (5.30), then

ui(x, t) = wi(x)+λit for i = 1,2 are two solutions to the Cauchy problem (5.17) with initial
data wi. Then, thanks to the comparison principle we get

u1(x, t)−||w1 −w2||∞ ≤ u2(x, t), for all (x, t) ∈ Ω̄× [0,+∞),

and then
(λ1 −λ2)t ≤ 2||w1 −w2||∞.
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We divide by t and we let t → ∞ and obtain

λ1 ≤ λ2.

Similarly, echanging the role of w1 and w2, we get

λ1 = λ2 = λ

and then we conclude the uniqueness of λ . The uniqueness up to and additive constant
follows from the application of the strong maximum principle for the problem (5.17) (see
Proposition 5.3.2). Indeed, for any t ∈ [0,+∞), we have

sup
Ω̄

{u1(x, t)−u2(x, t)}= sup
Ω̄

{w1 −w2}=: M

and then we finally conclude by Proposition 5.3.2 that

w1(x) = w2(x)+M for each x ∈ Ω̄.

Convergence as t →+∞

Theorem 5.3.7. Let assumptions of Proposition 5.3.4 and the additional assumption (5.18)
hold. Let u be the unique solution to problem (5.17). Then, there exists a pair (w,λ ) solution
to (5.30) such that

u(x, t)−λ t −w(x)→ 0 as t →+∞,

uniformly on Ω̄.

We follow closely the arguments given in [29] (see also [23], [34] for the local framework
and [151] for the nonlocal one). A crucial point is the Hölder regularity of the solutions of
(5.17) proved in [29], Theorem 5.5 and Theorem 5.6, which we recall in Lemma 5.3.8. Once
established the regularity, the proof of Theorem 5.3.7 is very similar to that of Theorem 5.6
of [29].

Lemma 5.3.8. Let u be the viscosity subsolution of (5.17) with u0 ∈ C2(Ω). Then u is in
C

m−σ

m ,1(Ω̄× (0,+∞)).

Now we prove Theorem 5.3.7.

Proof of Theorem 5.3.7. Let first u0 ∈C2(Ω̄). Then, by applying Lemma 5.3.8, we get that
the unique solution u to problem (5.17) is in C

m−σ

m ,1(Ω̄× (0,+∞)). Moreover, we observe
that u and the function (x, t)→ w(x)+λ t are solutions of (5.17). Then, by the comparison
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principle we have
||u(·, t)−w−λ t||∞ ≤ ||u0 −w||∞. (5.31)

We define the function (x, t)→ v(x, t) := u(x, t)−λ t. Thanks to (5.31), we get for each t ≥ 0,

||v(·, t)||∞ ≤ ||w||∞ + ||u0 −w||∞.

Since the family {v(·, t)}t is equi-Hölder with exponent m−σ

m , by Ascoli-Arzelà Theorem,
we extract a subsequence {v(·, tk)}k with tk →+∞ as k →+∞ and

v(·, tk)→ v as k →+∞ uniformly in Ω̄.

Let vk(x, t) = v(x, t + tk) and observe that vk is solution of
λ +∂tvk −I [vk(·, t)](x)+H(x,Dvk) = 0 in Ω× (0,+∞)
∂vk
∂n = 0 on ∂Ω.

vk(x,0) = v(x, tk) x ∈ Ω

then by means of the comparison principle we conclude, for all t ≥ 0 and k1,k2 ∈ N,

||vk1 − vk2||L∞(Ω̄×(0,+∞)) ≤ ||v(·, tk1)− v(·, tk2)||∞.

Then since {vk}k is an uniformly bounded Cauchy sequence in C(Ω̄× (0,+∞)) we obtain,
up to subsequence, that vk → ṽ in C(Ω̄× (0,+∞)) as k →+∞, where ṽ is a solution of

λ +∂t ṽ−I [ṽ(·, t)](x)+H(x,Dṽ) = 0 in Ω× (0,+∞)
∂ ṽ
∂n = 0 on ∂Ω

ṽ(x,0) = v x ∈ Ω.

Moreover, we observe that, by applying Lemma 5.3.3 to K(t) defined as follows

K(t) = max
Ω̄

{u(·, t)−w−λ t},

we get that K is nonincreasing and since it is also bounded, then there exists some K̄ ∈ R
such that K(t)→ K̄ as t →+∞. Also, using the definition of K we get

K(t + tk) = max
Ω̄

{vk(·, t)−w},

and since {vk}k is uniformly convergent, we let k →+∞ and we get for each t ∈ [0,+∞)

K̄ = max
Ω̄

{ṽ(·, t)−w}.
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We apply Proposition 5.3.2 and for each (x, t) ∈ Ω̄× (0,+∞) we get ṽ(x, t) = w(x)+ K̄, and
then

v = w+ K̄ in Ω̄.

We deduce
v(x, t)→ w+ K̄ uniformly as t →+∞

and by the definition of v

||u(·, t)− ct −w− K̄||∞ = ||v(·, t)−w− K̄||∞ → 0 as t →+∞

from which we conclude the result in the case of smooth initial data by replacing w with
w+ K̄. When dealing with u0 ∈ C(Ω̄) we use an approximation argument by means of a
sequence of smooth initial data uε

0 such that uε
0 → u0 uniformly in Ω̄ as ε → 0 (see [29] and

[151] for further details).
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Appendix C Some technical lemmas

In this Appendix we prove some technical lemmas which we use through Chapter 4.
First we prove some lemmas used in the proof of Theorem 4.2.6, that is, the following

Lemma 5.3.9, Lemma 4.4.3 and Lemma 5.3.10. In the last Section 5.4 we prove the existence
of the blow-up supersolution of Lemma 4.4.7 which we state in Chapter 4, Remark 4.4.6.
We recall that we denote by Hamiltonian of Bellman type an Hamiltonian defined as in

(4.11) (see Section 4.2, Chapter 4), satisfying (C),(L), (B1), (B2).

Lemma 5.3.9. Let H be an Hamiltonian of Bellman type. For all ŝ ∈ ∂Ω, there exists
r = r(ŝ)> 0 and γ,C2 > 0 constants such that for all s ∈ B̄r(ŝ),λ ∈ R, p ∈ Rn, it holds:

(i) if ŝ ∈ Γout
H(s, p−|λ |n(s))≥ γ|λ |−C2|p|−C2; (5.32)

H(s, p+ |λ |n(s))≤−γ|λ |+C2|p|+C2; (5.33)

(ii) if ŝ ∈ Γ, then
H(s, p−|λ |n(s))≥ γ|λ |−C2|p|−C2; (5.34)

H(s, p+ |λ |n(s))≥ γ|λ |−C2|p|−C2. (5.35)

Proof. First we prove (i). Since ŝ ∈ Γout, for α ∈ A , there exists r1,γ1 > 0 enough small so
that

b(s,α) ·n(s)≥ γ1 for any s ∈ Ω̄∩Br1(ŝ). (5.36)

By the boundedness of b and l and (5.36), we get for some C1 > 0

H(s, p−|λ |n(s))≥−b(s,α) · p+ |λ |b(s,α) ·n(s)− l(s,α)≥ |λ |γ1 −C1|p|−C1, (5.37)

for any s ∈ Ω̄∩Br1(ŝ). To prove (5.33), we approximate the supremum in the Hamiltonian
by a sequence α̃ ∈ A . In particular, we take α̃ such that

H(s, p+ |λ |n(s))≤−b(s, α̃) · p−|λ |b(s, α̃) ·n(s)− l(s, α̃)+1.

Since ŝ ∈ Γout and by using that A is compact, there exist r2,C > 0 enough small such that

b(s, α̃) ·n(s)≥ γ2 for any s ∈ Ω̄∩Br2(ŝ).
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Then by the boundedness of b and l we get

H(s, p+ |λ |n(s))≤−b(s, α̃) · p−|λ |b(s, α̃) ·n(s)− l(s, α̃)+1 ≤−γ2|λ |+C1|p|+C1 +1,
(5.38)

for any s ∈ Ω̄∩Br2(ŝ). We conclude the proof of (5.32) and (5.33) by using (5.37) and (5.38)
and by denoting r = min{r1,r2},γ = min{γ1,γ2} and C2 =C1 +1.
Now we prove (ii). Since ŝ ∈ Γ, there exist r,γ > 0 such that

b(s,α1) ·n(s)≥ γ for any s ∈ Ω̄∩Br(ŝ) (5.39)

b(s,α2) ·n(s)≤−γ for any s ∈ Ω̄∩Br(ŝ) (5.40)

. By (5.39), we get

H(s, p−|λ |n(s))≥−b(s,α1) · p+ |λ |b(s,α1) ·n(s)− l(s,α1)≥ |λ |γ −C1|p|−C1,

for any s ∈ Ω̄∩Br(ŝ), proving (5.34). Analogously, by (5.40), we get

H(s, p+ |λ |n(s))≥−b(s,α2) · p+ |λ |b(s,α2) ·n(s)− l(s,α2)≥ |λ |γ −C1|p|−C1,

for any s ∈ Ω̄∩Br(ŝ) and by denoting C2 =C1 +1 we conclude (5.35).

Now we prove Lemma 4.4.3, whose statement is given in the proof of Lemma 4.4.1, Chapter
4, Section 4.4.

Proof of Lemma 4.4.3. First we prove (i). Take −Iξ [φ(·,y)](x). By the definition of φ̃ ,
since χε ,φ are lipschitz and by (J1) we have

φ̃(x+ j(x,z),y)− φ̃(x,y)≤Cε
−1|z|+C|z|

and by (M0) we have∫
x+ j(x,z) ∈ Ω,

|z|< ξ

φ̃(x+ j(x,z),y)− φ̃(x,y)dµx(z)≤ ε
−1Cξ

1−σ . (5.41)

Take now −Iξ [u](x). Note that by the boundness of u we have∫
x+ j(x,z) ∈ Ω,

|z|> ξ

u(x+ j(x,z))−u(x)dµx(z)≤ 2||u||∞
∫

x+ j(x,z) ∈ Ω,

|z|> ξ

dµx(z)
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and then by (M0), we get for some C > 0∫
,x+ j(x,z) ∈ Ω

|z|> ξ

u(x+ j(x,z))−u(x)dµx(z)≤Cξ
−σ . (5.42)

Pluggin toghether (5.41) and (5.42), we conclude (i) for some C1 > 0. Similarly we prove (ii).

Now we prove the following Lemma, which is used in the proof of Theorem 4.2.6, Chapter
4, Section 4.4.

Lemma 5.3.10. Let Ω be an open domain of Rn satisfying (O). Let R,ν > 0 and denote
ψR(x) = ψ(R−1|x|) where ψ is a smooth function such that

ψ(s) =


0 for 0 ≤ s < 1

2 ,

increasing for 1
2 ≤ s < 1,

||u||∞ + ||v||∞ +1 for s ≥ 1.
(5.43)

Let V be a neighbourhood of the boundary of Ω where the distance from the boundary is
smooth and let d be a function which coincides with the signed distance from the boundary
in V and is bounded in all the domain. Let I as in (4.5) and assume µ satisfies (M0) and j
satisfies (J1). Then the function φ = ψR +νd satisfies

I [x](x)≤ oν ,R(1), |Dφ(x)| ≤ oν ,R(1) for any x ∈ ∂Ω, (5.44)

when by oν ,R(1) we mean that oν ,R(1)→ 0 as R →+∞,ν → 0.

Proof. Note that for any ξ > 0 fixed small enough, by the boundedness of ψ and d, we have

I ξ [φ ](·)≤ oν ,R(1). (5.45)

Now take x ∈ ∂Ω and ξ small enough so that x+ j(x,z)∈V for any |z| ≤ ξ . By the definition
of φ and ψ , since ψ and d are Lipschitz and by (J1), we get

φ(x+ j(x,z))−φ(x) = ψR(x+ j(x,z))−ψR(x)+νd(x+ j(x,z))−νd(x)

= ψ(R−1|x+ j(x,z)|)−ψ(R−1|x|)+νd(x+ j(x,z))−νd(x)

≤ C j|z|(C(R−1 +ν), (5.46)

where C j is defined on (J1) and by C we denote the Lipschitz constant of ψ . Then by (5.46)
and (M0), we get

Iξ [φ ](x)≤ C̃(R−1 +ν)
∫
Rn

|z|1−N−σ dz = oν ,R(1), (5.47)
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where C̃ depends on C j,C and Cµ defined in (M0). Then coupling (5.45) and (5.47) we get

I [φ ](x)≤ oν ,R(1).

Note that analogously as above, by writing (5.46) for a general incremenent and using the
Lipschitz character of ψ and d on V , we get also

|Dφ(x)| ≤ oν ,R(1).

5.4 Blow-up supersolution

In this section we prove Lemma 4.4.7 stated in Chapter 4, and used in the proof of Theorem
4.2.6 (see in particular Lemma 4.4.1, Remark 4.4.6).

We construct the function Ur as showed in the following and then we prove Lemma 5.4.1.
Note that Lemma 4.4.7 follows as a consequence of Lemma 5.4.1 and we prove it after the
statement of Lemma 5.4.1.
Let x̄ ∈ Γin and r = r(x̄) be given as in assumption (O). We recall that by (O), there exists a

W 2,∞-diffeomorphism
ψ : Br(x̄) 7→ Rn, (5.48)

satisfying
ψn(s) = d(s) for any s ∈ Br(x̄), (5.49)

where d is the signed distance from the boundary of Ω.
We define the blow-up supersolution on Br(x̄)∩Ω as follows

Ur(x) = Ūr(d(x)) for x ∈ Br(x̄)∩Ω, (5.50)

where
Ūr =− log(s)+

3
2

logr if 0 < s ≤ r.

Note that Ūr ∈C∞(0,r) is (nonnegative) monotone and decreasing.
We recall the notation

Iξ [Ur](x) := P.V.
∫

x+ j(x,z) ∈ Ω̄,

|z| ≤ ξ

[U(x+ j(x,z))−Ur(x)]dµx(z). (5.51)
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Lemma 5.4.1. For any x̄ ∈ Γin, let r = r(x̄) be defined as in assumption (O) and let Ur be
defined as in (5.50). Then we have for any ξ enough small (with respect to r)

−Iξ [Ur](x)≥−Ad(x)−σ in B r
2
(x̄)∩Ω. (5.52)

In particular there exists r̃(r,A,σ) = r̃ such that r̃ ≤ r and

−b(x,α) ·DUr(x)−Iξ [Ur](x)≥ 0 in B r̃
2
(x̄)∩Ω ∀α ∈ A . (5.53)

Remark 5.4.2. Note that the strict positivity of the drift term on the points of Γin is essential
here to prove (5.53), since the drift term controls the integral term which explodes on the
boundary as stated by (5.52).

As a consequence of Lemma 5.4.1, we prove Lemma 4.4.7.

Proof of Lemma 4.4.7. Take r̃ as defined in Lemma 5.4.1 and let Ur̃ be defined as in (5.50)
for r = r̃. Then Ur̃ is a nonnegative decreasing function which trivially satisfies (ii) of Lemma
4.4.7 with ωr̃(s) = 1

Ūr̃(s)
. Moreover, (i) Lemma 4.4.7 follows as a direct application of (5.53)

of Lemma 5.4.1.

Now we prove Lemma 5.4.1.

Proof of Lemma 5.4.1. First we prove (5.52).
Let ξ ≤C−1

j
r
2 , where C j is defined in (J1). Then, by (J1) and for |z| ≤ ξ and x ∈ B r

2
(x̄), we

have that x+ j(x,z) ∈ Br(x̄). We describe the domain of integration of Iξ [Ur] through the
diffeomorphism ψ defined in (5.48) as follows

x+ j(x,z) ∈ Ω̄ = ψn(x+ j(x,z))≥ 0.

By the definition of Ur and (5.49), we can write

Iξ [Ur](x) =−
∫

ψn(x+ j(x,z))≥ 0,
|z| ≤ ξ

[ln(ψn(x+ j(x,z)))− ln(ψn(x))]dµx(z). (5.54)

We write
Iξ [Ur](x) = I1 + I2

where
I1 =−

∫
ψn(x+ j(x,z))> ψn(x),

|z| ≤ ξ

[ln(ψn(x+ j(x,z)))− ln(ψn(x))]dµx(z).

and
I2 =−

∫
ψn(x)≥ ψn(x+ j(x,z))≥ 0,

|z| ≤ ξ

[ln(ψn(x+ j(x,z)))− ln(ψn(x))]dµx(z).
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and since
I1 ≤ 0

we get

Iξ [Ur](x)≤−
∫

ψn(x)≥ ψn(x+ j(x,z))≥ 0,
|z| ≤ ξ

[ln(ψn(x+ j(x,z)))− ln(ψn(x))]dµx(z). (5.55)

We proceed performing a change of variable in order to write the set of integration in terms
of ψn(x). In other words, we write

ψ(x+ j(x,z))−ψ(x) = w (5.56)

and then j(x,z) = ψ−1 (ψ(x)+w)− x. Then by (J0), (J1), (M0) and since ψ is W 2,∞, (5.55)
becomes

Iξ [Ur](x)≤ C̄
∫

0 ≥ wn ≥−ψn(x),
|w| ≤Cξ

∣∣∣∣ln(1+
wn

ψn(x)

)∣∣∣∣ dw
|w|n+σ

.

for some C̄,C > 0. By the change of variable y = w
ψn(x)

, we get

Iξ [Ur](x)≤ C̄ψn(x)−σ

∫
0≥yn≥−1

| ln(1+ yn) |
dy

|y|n+σ
. (5.57)

Note the integral in the right hand side is finite and does not depend on ξ . For convenience
of notations we denote

A := C̄
∫

0≥yn≥−1
| ln(1+ yn) |

dy
|y|n+σ

.

Then (5.57) becomes
Iξ [Ur](x)≤ Ad(x)−σ , (5.58)

which is exactly (5.52).
Now we prove (5.53). First note that, by the definition of Ur, we have

DUr(x) = d(x)−1n in Br(x̄)∩Ω; (5.59)

Then, by (5.52) and (5.59), we have for all α ∈ A

b(x,α) ·DUr(x)+Iξ [Ur](x)≤ d(x)−1(b(x,α) ·n+d(x)1−σ A).



5.4 Blow-up supersolution 185

Since we are in a neighbourhood of Γin, σ < 1 and A is compact, there exists 0 < r̃ < r
(depending only on A,σ and r), such that if x ∈ B r

2
(x̄)∩Ω

b(x,α) ·DUr(x)+Iξ [Ur](x)≤ 0 ∀α ∈ A . (5.60)

Then (5.53) follows and we conclude the proof of the Lemma.
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Specific notation of Part III

V (·)/| · | The n-dimensional Lebesgue measure.
SO(n) The group of n× n orthogonal matrices with values in R with

determinant 1.
ρ will be a rotation in SO(n).
S n The space of n×n real symmetric matrices.
Ω will be a bounded open domain of Rd .
Lp(Ω) The space of functions f : Ω → R such that | f |p is Lebesgue

integrable.
W 1,2(Ω) The Sobolev space of functions in L2(Ω) with weak derivative in

L2(Ω).
W 1,2

0 (Ω) The closure of continuously differentiable functions with compact
support on Ω, with respect to the topology of W 1,2(Ω).

Ii, i = 0,1 see pag 191.
Ωλ ,λ ∈ (0,1) see pag 191.
Mq(a,b,µ) see pag 191.
H(K,L),K,L ⊂ Rn see pag 193.
H0(K,L),K,L ⊂ Rn see pag 193.
A(K,L),K,L ⊂ Rn see pag 194.
K n

0 see pag 197.
hK,K ∈ K n

0 see pag 197.
d(K),K ∈ K n

0 see pag 198.
w(K),K ∈ K n

0 see pag 198.
p-concavity see pag 200.
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Chapter 6

Main results and preliminaries

6.1 Introduction and main results

Throughout this part u0 and u1 will be real non-negative bounded functions belonging to
L1(Rn) (n ≥ 1) with compact supports Ω0 and Ω1 respectively. To avoid triviality, we will
assume that

Ii =
∫
Rn

ui dx > 0 for i = 0,1 .

For λ ∈ (0,1), denote by Ωλ the Minkowski convex combination (with coefficient λ ) of Ω0

and Ω1, that is

Ωλ = (1−λ )Ω0 +λΩ1 = {(1−λ )x0 +λx1 : x0 ∈ Ω0, x1 ∈ Ω1}.

For q ∈ [−∞,+∞] and µ ∈ (0,1) we denote by Mq(a,b,µ) the (µ-weighted) q-mean of two
non-negative numbers a and b, which is defined as follows:

Mq(a,b; µ) =



max{a,b} q =+∞

[(1−µ)aq +µbq]
1
q if 0 ̸= q ∈ R and ab > 0

a1−µbµ if q = 0
min{a,b} q =−∞

0 when q ∈ R and ab = 0 .

(6.1)

Note that the arithmetic mean and geometric mean corresponds to the q = 1 and q = 0,
respectively.
Our main results are some refinements of the Borell-Brascamp-Lieb inequality, which we

recall in the following theorem.

Theorem 6.1.1 (BBL inequality). Let 0 < λ < 1,−1
n ≤ p ≤ ∞, 0 ≤ h ∈ L1(Rn) and assume

the following holds
h((1−λ )x+λy)≥ Mp(u0(x),u1(y),λ ) (6.2)



192 Main results and preliminaries

for every x ∈ Ω0, y ∈ Ω1. Then∫
Ωλ

h(x)dx ≥ M p
np+1

(I0, I1,λ ) . (6.3)

Here the number p/(np+1) has to be interpreted in the obvious way in the extremal case,
i.e. it is equal to −∞ when p =−1/n and to 1/n when p = ∞.
The BBL inequality was first proved in a slightly different form for p > 0 by Henstock

and Macbeath (with n = 1) in [106] and by Dinghas in [72]. In its generality it is stated
and proved by Brascamp and Lieb in [47] and by Borell in [42] and the equality conditions
are discussed in [73]. Since the equality case is rather complicated to state, we refer for
the precise statement to [73]. Roughly speaking, equality holds in (15) if and only if the
functions ui, i = 0,1,2 are almost everywhere equal to some suitable homotheties of the
same convex function. The case p = 0 was previously proved by Prékopa [138] and Leindler
[124] (and rediscovered by Brascamp and Lieb in [46]) and it is usually known as the
Prékopa-Leindler inequality (PL inequality in the following). It is worth to remark that the
PL inequality (and then the BBL inequality, for every p) can be considered as a functional
form of the Brunn-Minkowski inequality, which in its classical form states that if Ω1,Ω0 are
two nonempty compact convex sets of Rn and λ ∈ (0,1), then

|(1−λ )Ω0 +λΩ1| ≥ M1/n(|Ω0|, |Ω1|,λ )

and equality holds precisely when Ω0 and Ω1 are equal up to translation and dilatation. A
generalization to measurable subsets of Rn has been proved later in [133] and [102]. For
more details on the Brunn-Minkowski inequality we refer to Section 6.2 and to [93] as a
general and exhaustive reference.
In this part of the thesis we are interested in the investigation of stability problems for

the BBL inequality. The typical kind of questions we aim at answering is the following:
if
∫

Ωλ
h(x)dx “approximately ”coincides with M p

np+1
(I0, I1,λ ), can we infer some kind of

“closeness ” of the functions u0,u1 to the equality condition?
The first step when dealing with a stability problem is to give a precise meaning to the

previous question, i.e. choose a measure of the “closeness” of the functions to the equality
condition. Depending on the choice of the measure, different kind of results can be obtained.
Significant interest has recently arisen towards the stability of the Brunn-Minkowski ine-

quality and several kind of results have been obtained depending on different measures, see
[99, 83, 56, 57, 75, 82]. Concerning the PL inequality, the investigation of stability questions
has been recently started by Ball and Böröczky in [12, 13]. Note that all these results are
in [48] and all these results are written in terms of the L1 distance between the involved
functions.



6.1 Introduction and main results 193

Our main achievements are stability results for the BBL inequality in terms of some distance
between the support sets Ω0 and Ω1 of u0 and u1 and some consequent “quantitative”
versions of the BBL inequality. With the adjective “quantitative” , we mean that we strengthen
(6.3) in terms of some distance between the support sets Ω0 and Ω1 of u0 and u1.

The quantitative versions we give are mainly of two types. The first is written in terms of
the Hausdorff distance between (two suitable homothetic copies of) Ω0 and Ω1. We recall
that the Hausdorff distance H(K,L) between two sets K,L ⊆ Rn is defined as follows:

H(K,L) := inf{r ≥ 0 : K ⊆ L+ rBn, K ⊆ L+ rBn} ,

where Bn = {x ∈ Rn : |x|< 1} is the (open) unit ball in Rn. Then we set

H0(K,L) = H(τ0K,τ1L), (6.4)

where τ1,τ0 are two homotheties (i.e. translation plus dilation) such that |τ0K|= |τ1L|= 1
and such that the centroids of τ0K and τ1L coincide. By centroid we mean the geometric
center, that is the aritmetic mean position of all the points in the shape.
Note that our results apply when u0 and u1 are non-negative power concave functions and

p > 0. We recall that a function u ≥ 0 is said p-concave for some p ∈ [−∞,+∞] if

u((1−λ )x+λy)≥ Mp(u(x),u(y);λ ) (6.5)

for all x, y ∈ Rn and λ ∈ (0,1) (see Section 6.2 for more details).

Now we are ready to state our first stability result for the BBL inequality.

Theorem 6.1.2. In the same assumptions and notation of Theorem 6.1.1, assume furthermore
that p > 0 and

u0 and u1 are p-concave functions (6.6)

(with convex compact supports Ω0 and Ω1 respectively). Then, if H0(Ω0,Ω1) is small enough,
it holds ∫

Ωλ

h(x)dx ≥ M p
np+1

(I0, I1,λ )+β H0(Ω0,Ω1)
(n+1)(p+1)

p (6.7)

where β is a constant depending only on n, λ , p, I0, I1 and the diameters and the measures
of Ω0 and Ω1.

We provide another quantitative versions of the BBL inequality analogous to (6.7), but in
this case the quantitative term depends on te relative asymmetry (or Fraenkel asymmetry) of
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Ω0 and Ω1; we recall that the relative asymmetry of two sets K and L is defined as follows

A(K,L) := inf
x∈Rn

{
|K ∆(x+λL)|

|K|
, λ =

(
|K|
|L|

) 1
n
}
, (6.8)

where, for Ω ⊆ Rn, |Ω| denotes its Lebesgue measure, while ∆ denotes the operation of
symmetric difference, i.e. Ω∆B = (Ω\B)∪ (B\Ω).

Theorem 6.1.3. In the same assumptions and notation of Theorem 6.1.2, if A(Ω0,Ω1) is
small enough it holds∫

Ωλ

h(x)dx ≥ M p
np+1

(I0, I1,λ )+δ A(Ω0,Ω1)
2(p+1)

p , (6.9)

where δ is a constant depending only on n, λ , p, I0, I1 and on the measures of Ω0 and Ω1.

The crucial part in the proofs of the above stated results relies on an estimate of the
measures of the supports sets of the involved functions; this estimate is contained in Theo-
rem 7.0.1 (Chapter 7), which can be in fact considered our main result. There we prove
that if we are close to equality in (6.3), then the measure of (1−λ )Ω0 +λΩ1 is close to
M1/n(|Ω0|, |Ω1|,λ ). Therefore, once Theorem 7.0.1 is proved, the proofs follow by applying
different quantitative versions of the classical Brunn-Minkowski inequality (namely [99]
and [83], see Chapter 6, Section 6.2). We note also that further recent stability/quantitative
results for the Brunn-Minkowski inequality are contained in [56, 57, 75, 82]. A combination
of these with Theorem 7.0.1 would lead to further stability/quantitative theorems for the BBL
inequality, which could be an interesting topic for further research.

Remark 6.1.4. (Compact supports) We consider only compactly supported functions, while
BBL inequality holds also when the involved functions are not compactly supported. On the
other hand, we are considering only L1(Rn) non-negative p-concave functions with p > 0
(see the next remark for comments about this) and they need to have compact support.

Moreover, even without the restriction of power concavity, this is the only meaningful case
of BBL for p > 0. Indeed, when at least one among u0 and u1 has support of infinite measure,
the BBL inequality is trivial, since in such a case the left hand side (i.e.

∫
h) must diverge, as

it is easily seen: assume |Ω0|=+∞ and u1 does not identically vanish, say there exists x1

such that u1(x1) = ε > 0; then we have h(x)≥ λ
1
p ε for x ∈ (1−λ )Ω0 +λx1.

Remark 6.1.5. (p-concavity) Although all the existing stability results for PL inequality
(to our knowledge) are proved assuming some suitable concavity property of the involved
functions, see [12, 13, 48], the authors of that papers suggest the possibility that their results
may still be valid without such assumptions. And we agree with them. On the other hand,
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as it can be easily seen, in our results the p-concavity assumption is essential, since they
are written in terms of a distance between the support sets of u0 and u1. Without such
an assumption, one could wildly modify the support sets Ω0 and Ω1 (and their distance,
whatever you choose) without affecting the L1 distance between the involved functions.

Remark 6.1.6. (Explicit constants) We can provide explicit (but not optimal) estimates for
the constants β and δ in Theorem 6.1.2 and Theorem 6.1.3. To this aim and for further use,
it is convenient to introduce the following notation:

di = d(Ωi) = diameter of Ωi , νi = |Ωi|1/n for i = 0,1 ,

d̃ = max
{

d0

ν0
,
d1

ν1

}
, M = max{ν0,ν1} , m = min{ν0,ν1} ,

Li = max
Ωi

ui for i = 0,1, Lλ = Mp(L0,L1,λ ) .

Then (6.7) holds with

β =

[
γn

(
M
m

1√
λ (1−λ )

+2

)
d̃

]− (p+1)(n+1)
p [

2
(

n+M p
np+1

(I0, I1;λ )−1
)]− p+1

p
, (6.10)

where

γn =

(
1+

1
3 ·213

)
3

n−1
n 2

n+2
n+1 n < 6.00025n. (6.11)

Similarly, we can observe that (6.9) holds with

δ =

 m(1−2−1/n)3

1812 n13 ΛM
(

n+M p
np+1

(I0, I1;λ )−1
)


p+1
p

,

where Λ = max{λ/(1−λ ),(1−λ )/λ}.

Remark 6.1.7. Theorem 6.1.2 states that (6.7) holds if H0(Ω0,Ω1) is small enough; this
precisely means

H0(Ω0,Ω1)< (2n)−
1

n+1 β
− p

(n+1)(p+1) .

To avoid this request, we could write (6.7) as follows:∫
Ωλ

h(x)dx ≥ M p
np+1

(∫
Ω0

u0(x)dx,
∫

Ω1

u1(x)dx,λ
)
+min

{
B, βH0(Ω0,Ω1)

(n+1)(p+1)
p

}
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where

B =

(
1

2n

) p+1
p

. (6.12)

A similar remark can be made for Theorem 6.1.3. In particular (6.9) holds when

A(Ω0,Ω1)< (2n)−
1
2 δ

− p
2(p+1) ,

but we could remove any limitation on the size of A(Ω0,Ω1) and write∫
Ωλ

h(x)dx ≥ M p
np+1

(∫
Ω0

u0(x)dx,
∫

Ω1

u1(x)dx,λ
)
+min

{
B, δA(Ω0,Ω1)

2(p+1)
p

}
where B is defined in (6.12).

Remark 6.1.8. (Dimension sensitivity) As it is apparent from the previous remarks, the
estimates in Theorem 6.1.2 and Theorem 6.1.3 deteriorate quickly as the dimension increases;
the same feature is shared by most of the known stability estimates for the Brunn-Minkowski
inequality. We notice however that R. Eldan and B. Klartag [75] recently made a new step
towards a dimension-sensitive theory for the Brunn-Minkowski inequality, giving rise to the
possibility that the stability actually improves as the dimension increases.

Remark 6.1.9. Theorem 6.1.2, Theorem 6.1.3 are written as quantitative forms of the
involved inequalities, but they can be obviously interpreted also as stability results for the
same inequalities.

6.2 Some preliminaries

Means of non-negative numbers

We have already given the definition of p-mean of two non-negative numbers in (6.1).
Here we just recall few useful facts and refer to [103] and [50] for more details. Clearly
Mp(a,b;λ ) is not-decreasing with respect to a and b for every p and every λ . Moreover a
simple consequence of Jensen’s inequality is the monotonicity of p-means with respect to p,
i.e.

Mp(a,b; µ)≤ Mq(a,b; µ) if p ≤ q. (6.13)

We also notice that for every µ ∈ (0,1) it holds

lim
p→∞

Mp(a,b; µ) = max{a,b} and lim
p→−∞

Mp(a,b; µ) = min{a,b}.

Finally we recall the following technical lemma (for a proof, refer to [93]):
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Lemma 6.2.1. Let 0 < λ < 1 and a, b, c, d be nonnegative numbers. If p+q > 0, then

Mp(a,b,λ )Mq(c,d,λ )≥ Ms(ac,bd,λ )

where s = pq
p+q . The same is true with s = 0 if p = q = 0.

Convex bodies and convex functions.

Throughout this part Ω and K, possibly with subscripts, will be bounded convex sets, most
often the former open, while the latter a convex body, that is a compact convex set with
non-empty interior. We denote by K n

0 the class of convex bodies in Rn.
Next we recall some classical notions of convex geometry, for further details see [147]. Let

L ⊂ Rn be a convex set, p ∈ Rn \{0} and α ∈ R; we set

Hp,α = {x ∈ Rn : ⟨x, p⟩= α} and H−
p,α = {x ∈ Rn : ⟨x, p⟩ ≤ α} .

We say that p is an exterior normal vector of L at x0 if x0 ∈ L∩Hp,α and L ⊆ H−
p,α ; in such

a case, we also say that the hyperplane Hp,α is a support hyperplane and that H−
p,α is a

supporting halfspace (with exterior normal vector p) of L.
The support function of L is defined in the following way:

h(L,x) = sup{⟨x,y⟩ : y ∈ L}, x ∈ Rn.

If K ∈ K n
0 , the latter supremum is in fact a maximum and we can write:

h(K,x) = max{⟨x,y⟩ : y ∈ K}, x ∈ Rn.

For any unit vector ξ ∈ Sn−1, h(K,ξ ) represents the signed distance from the origin of the
support plane to K with exterior normal vector ξ . The support function satisfies the following
properties:

(i) h(K,λx) = λh(K,x) ∀λ ≥ 0.
(ii) h(K,x+ y)≤ h(K,x)+h(K,y).

In fact, the latter properties characterize support functions in the following sense: if f :
Rn → R is a function that satisfies (i) and (ii), then there is one (and only one) convex body
with support function equal to f .

Other useful properties of the support function are the following: let K,K1,K2 ∈ K n
0 , then

(iii) h(K + x0, ·) = h(K, ·)+ ⟨x0, ·⟩ ∀x0 ∈ Rn;
(iv) h(λK, ·) = λh(K, ·) ∀λ ≥ 0;
(v) h(K1 +K2, ·) = h(K1, ·)+h(K2, ·).

(vi) h(K1, ·)≤ h(K2, ·) if and only if K1 ⊆ K2.
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If K ∈ K n
0 the number

w(K,ξ ) = h(K,ξ )+h(K,−ξ ), ξ ∈ Sn−1

is the width of K in the direction ξ , that is the distance between the two support hyperplanes
of K orthogonal to ξ . The maximum of the width function

d(K) = max{w(K,ξ )|ξ ∈ Sn−1}

is the diameter of K.
The mean width of K is the average of the width of K over all ξ ∈ Sn−1, that is

w(K) =
1

nωn

∫
Sn−1

w(K,ξ )dξ =
2

nωn

∫
Sn−1

h(K,ξ )dξ . (6.14)

Urysohn’s inequality states

|K| ≤ ωn

(
w(K)

2

)n

, (6.15)

equality holding if and only if K is a ball.

The Brunn-Minkowski inequality

As already mentioned in the introduction, the original form of the Brunn–Minkowski ine-
quality involves volumes of convex bodies and states that V 1/n is a concave function with
respect to Minkowski addition, where V(·) denotes the n-dimensional Lebesgue measure and
the Minkowski addition of convex sets is defined as follows:

A+B = {x+ y | x ∈ A, y ∈ B}

In particular, let λ ∈ [0,1] and let Ω0 and Ω1 be convex subsets of Rn; we define their
Minkowski linear combination Ωλ as

Ωλ = (1−λ )Ω0 +λΩ1 = {(1−λ )x0 +λ x1 : xi ∈ Ωi , i = 0,1} . (6.16)

With this notation, the classical Brunn-Minkowski inequality reads

V(Kλ )
1
n ≥ (1−λ )V(K0)

1
n +λ V(K1)

1
n (6.17)

for K0,K1 ∈ K n
0 and λ ∈ [0,1] and it can be also written in the following equivalent multi-

plicative form
V (Kλ )≥V (K0)

1−λV (K1)
λ .
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As it is well known, the Brunn-Minkowski inequality and the PL inequality are equivalent
(notice that the way from the latter to the former is almost straightforward by taking u0 = χK0 ,
u1 = χK1 and h = χKλ

, where χA represents the characteristic function of the set A).
Inequality (6.17) is one of the fundamental results in the theory of convex bodies and several

other important inequalities, e.g. the isoperimetric inequality, can be deduced from it. It
can be extended to measurable sets and it holds also, with the right exponents, for the other
quermassintegrals. We refer the interested reader to [147] and to the survey paper [93] for
this topic; see also [119, 63]. It is also interesting to notice that analogues of (6.17) hold for
many variational functionals, see for instance [43, 44, 40, 47, 59–61, 104, 143, 144].

We recall two quantitative versions of (6.17) which will be used later.

The first proposition is due to Groemer [99].

Proposition 6.2.2. Let K0,K1 ∈ K n
0 , n ≥ 2, λ ∈ (0,1) and let

Kλ = (1−λ )K0 +λK1.

Set νi = |Ki|
1
n . Let d̃ = max{d(K0)

ν0
; d(K1)

ν1
} and M = max{ν0,ν1},m = min{ν0,ν1}. Then

|Kλ | ≥ M 1
n
(|K0|, |K1|,λ )

(
1+ωH0(K0,K1)

(n+1)
)

where

ω =

(
γn

(
M
m

1√
λ (1−λ )

+2

)
d̃

)−(n+1)

,

H0 is defined as in (6.4) and

γn = (1+
1
3

2−13)3
n−1

n 2
n+2
n+1 n < 6.00025n.

The second proposition is due to Figalli, Maggi, Pratelli [83, 84].
Proposition 6.2.3. Let K0,K1 ∈ K n

0 , λ ∈ (0,1) and let

Kλ = (1−λ )K0 +λK1.

Then

|Kλ | ≥ M 1
n
(|K0|, |K1|,λ )

(
1+

nm
ΛM

(
A(K0,K1)

θn

)2
)
,

where A(K0,K1) is defined in (6.8), m and M are defined as in the previous theorem, Λ =

max{λ/(1−λ ),(1−λ )/λ} and θn is a constant depending on n with polynomial growth.



200 Main results and preliminaries

In particular

θn ≤
362n7

(2−2
n−1

n )
3
2
.

We further recall that a very recent stability result for the Brunn-Minkowski inequality by
Figalli and Jerison is contained in [82] and previous results have been obtained by M. Christ
in [56, 57].

Power concave functions

Let Ω be a convex set in Rn and p ∈ [−∞,∞]. A nonnegative function u defined in Ω is said
p -concave if

u((1−λ )x+λy)≥ Mp(u(x),u(y);λ )

for all x, y ∈ Ω and λ ∈ (0,1). In the cases p = 0 and p = −∞, u is also said log-concave
and quasi-concave in Ω, respectively.

In other words, a non-negative function u, with convex support Ω, is p-concave if:
- it is a non-negative constant in Ω, for p =+∞;
- up is concave in Ω, for p > 0;
- logu is concave in Ω, for p = 0;
- up is convex in Ω, for p < 0;
- it is quasi-concave, i.e. all of its superlevel sets are convex, for p =−∞.
Notice that p = 1 corresponds to usual concavity. Notice also that from (6.13) it follows
that if u is p -concave, then u is q -concave for every q ≤ p (this in particular means that
quasi-concavity is the weakest concavity property one can imagine).
The solutions of elliptic Dirichlet problems in convex domains are often power concave.

Two famous results state for instance that the first positive eigenfunction of the Laplace
operator in a convex domain is log-concave [46] and that the square root of the solution to
the torsion problem in a convex domain is concave [117, 118, 123]. For recent results and
updated references (in the elliptic and parabolic cases), see for instance [39, 109].
The concavity properties of a function u can be expressed in terms of its level sets. Precisely

it is easily seen that a function u is concave if and only if

{u ≥ (1−λ )t0 +λ t1} ⊇ (1−λ ){u ≥ t0}+λ{u ≥ t1}

for every t0, t1 ∈ R and every λ ∈ (0,1).
More generally, we have the following characterization of power concave functions, which

easily follows from the above property.
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Proposition 6.2.4. A non-negative function u is p-concave in a convex domain Ω for some
p ∈ [−∞,+∞) if and only if

{x ∈ Ω : u(x)≥ Mp(t0, t1,λ )} ⊇ (1−λ ){x ∈ Ω : u(x)≥ t0}+λ{x ∈ Ω : u(x)≥ t1}

for every t0, t1 ≥ 0 and every λ ∈ (0,1).

Let µ be the distribution function of u, i.e.

µ(t) = |{u ≥ t}|. (6.18)

Then, as a direct consequence of the Brunn-Minkowski inequality and Proposition 6.2.4, we
have the following.

Proposition 6.2.5. If u is p-concave for some p ̸= 0, then

µ(t1/p)1/n is concave in t .

If u is log-concave (corresponding to p = 0), then

µ(et)1/n is concave in t .

The (p,λ )-convolution of non-negative functions

Let p ∈ R, µ ∈ (0,1), and u0, u1 non-negative functions with compact convex support Ω0

and Ω1, as usual in this paper.
The (p,λ )-convolution of u0 and u1 (also called p-Minkowski sum, see [119]) is the function

defined as follows:

up,λ (x) = sup
{

Mp
(
u0(x0),u1(x1);λ

)
:

x = (1−λ )x0 +λx1 , xi ∈ Ωi, i = 0,1
}
.

(6.19)

The above definition can be extended to the case p =±∞, but we do not need here. Notice
that (6.13) yields

uq,λ ≤ up,λ if q ≤ p . (6.20)

It is easily seen that the support of up,λ is Ωλ = (1−λ )Ω0 +λΩ1, and that the continuity
of u0 and u1 yields the continuity of up,λ , in particular if ui ∈ C(Ωi) for i = 0,1, then
up,λ ∈C(Ωλ ).
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Let p ̸= 0; then, roughly speaking, the graph of up
p,λ is obtained as the Minkowski convex

combination (with coefficient λ ) of the hypographs of up
0 and up

1 ; precisely we have

K(p)
λ

= (1−λ )K(p)
0 +λK(p)

1 ,

where
K(p)

λ
= {(x, t) ∈ Rn+1 : x ∈ Ωλ , 0 ≤ t ≤ up,λ (x)

p} , (6.21)

K(p)
i = {(x, t) ∈ Rn+1 : x ∈ Ωi, 0 ≤ t ≤ ui(x)p} , i = 0,1 . (6.22)

In other words, the (p,λ )-convolution of u0 and u1 corresponds to the (1/p)-power of the
supremal convolution (with coefficient λ ) of up

0 and up
1 . When p = 0, the above geometric

considerations continue to hold with logarithm in place of power p and exponential in place
of power 1/p. When p = 1, u1,λ is just the usual supremal convolution of u0 and u1 (see for
instance [143, §3]). For more details on infimal/supremal convolutions of convex/concave
functions, see [139, 149].
From the definition of up,λ and the monotonicity of p-means with respect to p, we get

up,λ ≤ uq,λ for −∞ ≤ p ≤ q ≤+∞ . (6.23)
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Chapter 7

Quantitative BBL inequalities

The main results of this Chapter are Theorem 6.1.2 and Theorem 6.1.3. They essentially
stem from the following stability result for the BBL inequality, which can be considered the
main result and we will prove in Section 7.2.

Theorem 7.0.1. In the same assumptions and notation of Theorem 6.1.2 and Theorem 6.1.3
and Remark 6.1.6 of Section 6.1, if for some (small enough) ε > 0 it holds∫

Ωλ

h(x)dx ≤ M p
np+1

(∫
Ω0

u0(x)dx,
∫

Ω1

u1(x)dx ; λ

)
+ ε, (7.1)

then
|Ωλ | ≤ M 1

n
(|Ω0|, |Ω1|,λ )

[
1+ηε

p
p+1

]
. (7.2)

where

η ≤ 2
(

n+M p
np+1

(∫
Ω0

u0(x)dx,
∫

Ω1

u1(x)dx;λ
)−1
)
. (7.3)

Remark 7.0.2. "Small enough" (referred to ε in the statement of Theorem 7.0.1) precisely
means

ε ≤
(

1
2n

) p+1
p

and we could make similar comments as in Remark 6.1.6 and Remark 6.1.7 of Section 6.1.
This number depends on n (and tends to 0 as n → ∞), then the result of Theorem 7.0.1 is
dimension sensitive (see Remark 6.1.8).

Remark 7.0.3. Looking at the proof of Theorem 7.0.1, one can understand that the same
argument can be applied to any level set of the involved functions. Then we could possibly
write stability results for the BBL inequality in terms of some Lq distance of u0 and u1. On
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the other hand, for applications as the ones we present in Chapter 8, it is natural to consider
some distance between the supports better than some distance between the functions.

Now we prove Theorem 6.1.2

Proof. We argue by contradiction. Suppose that∫
Ωλ

h(x)dx < M p
np+1

(∫
Ω0

u0(x)dx,
∫

Ω1

u1(x)dx,λ
)
+βH0(Ω0,Ω1)

(n+1)(p+1)
p

where β is defined in Remark 6.1.6 of Section 6.1, see (6.10). For convenience of the reder
we recall the definition

β =

[
γn

(
M
m

1√
λ (1−λ )

+2

)
d̃

]− (p+1)(n+1)
p [

2
(

n+M p
np+1

(I0, I1;λ )−1
)]− p+1

p
,

where
di = d(Ωi) = diameter of Ωi , νi = |Ωi|1/n for i = 0,1 ,

d̃ = max
{

d0

ν0
,
d1

ν1

}
, M = max{ν0,ν1} , m = min{ν0,ν1} ,

and

γn =

(
1+

1
3 ·213

)
3

n−1
n 2

n+2
n+1 n < 6.00025n (7.4)

Then we apply Theorem 7.0.1 and we get

|Ωλ |< M 1
n
(|Ω0|, |Ω1|,λ )

(
1+ηβ

p
p+1 H0(Ω0,Ω1)

n+1
)
,

where η is like in (7.3). Then we use Proposition 6.2.2 and, thanks to the definition of the
constant β , we easily get a contradiction.

Regarding Theorem 6.1.3, we notice that it can be proved precisely in the same way, using
the quantitative version of the Brunn-Minkowski inequality proved by Figalli, Maggi and
Pratelli, that is Proposition 6.2.3, in place of Proposition 6.2.2.

7.1 An alternative proof of the BBL inequality

Before giving the proof of Theorem 7.0.1, we recall here an alternative proof of Theorem
6.1.1 for power concave functions. The argument will be useful for the proof of Theorem
7.0.1.
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Proof. First of all, we define up,λ as in (6.19), i.e.

up,λ (x) = sup
{

Mp
(
u0(x0),u1(x1);λ

)
:

x = (1−λ )x0 +λx1 , xi ∈ Ωi, i = 0,1
}
.

Notice that assumption (6.2) of Theorem 6.1.1 implies

h ≥ up,λ in Rn .

Let
Ii =

∫
Ωi

ui dx i = 0,1 ,

and
Iλ =

∫
Ωλ

up,λ dx .

As declared at the beginning, we assume

Ii > 0 i = 0,1.

and
Li = max

Ωi
ui < ∞ i = 0,1.

Notice that the very definition of up,λ yields

Lλ = max
Ωλ

up,λ = Mp(L0,L1,λ ).

Let
µi(s) = |{ui ≥ s}| i = 0,1 , µλ (s) = |{up,λ ≥ s}|

(notice that the distribution functions µ0, µ1 and µλ are continuous thanks to the p-concavity
of the involved functions). Then

Ii =
∫ Li

0
µi(s)ds i = 0,1,λ .

The definition of uλ yields

{up,λ ≥ Mp(s0,s1;λ )} ⊇ (1−λ ){u0 ≥ s0}+λ{u1 ≥ s1}

for s0 ∈ [0,L0], s1 ∈ [0,L1]. Then, using the Brunn-Minkowski inequality (6.17) with K0 =

{u0 ≥ s0}, K1 = {u1 ≥ s1}, we get

|(1−λ ){u0 ≥ s0}+λ{u1 ≥ s1}| ≥ M 1
n
(µ0(s0),µ1(s1),λ )
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and then
µλ (Mp(s0,s1;λ ))≥ M 1

n
(µ0(s0),µ1(s1),λ ). (7.5)

Define the functions si : [0,1]→ [0,Li] for i = 0,1 such that

si(t) :
1
Ii

∫ si(t)

0
µi(s)ds = t for t ∈ [0,1]. (7.6)

Notice that si is strictly increasing, then it is differentiable almost everywhere and differentia-
ting (7.6) we obtain

s′i(t)µi(si(t))
Ii

= 1 a.e. t ∈ [0,1], i = 0,1. (7.7)

It is also easily seen that si is continuous and by (7.7) its derivative s′i coincides almost
everywhere with a continuous function in [0,1); hence, as a derivative, in fact it is continuous
in the whole [0,1) and finally si ∈ C1([0,1)). Moreover, since µi is decreasing and si is
increasing, by (7.7) we can also see that s′i is increasing, which yields si is convex in [0,1].

Now set
sλ (t) = Mp(s0(t),s1(t),λ ) t ∈ [0,1]

and calculate

s′
λ
(t) = ((1−λ )s′0(t)s0(t)p−1 +λ s′1(t)s1(t)p−1)sλ (t)

1−p a.e. t ∈ [0,1] . (7.8)

Notice that the map sλ : [0,1] 7→ [0,Lλ ] is strictly increasing, then invertible; let us denote by
tλ : [0,Lλ ] 7→ [0,1] its inverse map.
Then

Iλ =
∫ Lλ

0
µλ (s)ds =

∫ 1

0
µλ (sλ (t))s

′
λ
(t)dt (7.9)

=
∫ 1

0
µλ (sλ (t))M1(s′0(t)s0(t)p−1,s′1(t)s1(t)p−1)sλ (t)

1−p dt.

Thanks to (7.5), we get

µλ (sλ (t))≥ M 1
n
(µ0(s0(t)),µ1(s1(t)),λ ) t ∈ [0,1] (7.10)

and coupling (7.9) and (7.10) we arrive to

Iλ ≥
∫ 1

0
M 1

n
(µ0(s0(t)),µ1(s1(t)),λ )M1(s′0(t)s0(t)p−1,s′1(t)s1(t)p−1,λ )sλ (t)

1−p dt.

(7.11)
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Next we use Lemma 6.2.1 with p = 1
n and q = 1 to obtain

M 1
n
(µ0(s0),µ1(s1),λ )M1(s′0sp−1

0 ,s′1sp−1
1 ,λ )≥ M 1

n+1
(µ0(s0)s

p−1
0 s′0,µ1(s1)s

p−1
1 s′1,λ )

for s0 ∈ [0,L0], s1 ∈ [0,L1]. Then (7.11) yields

Iλ ≥
∫ 1

0
M 1

n+1
(µ0(s0(t))s0(t)p−1s′0(t),µ1(s1(t))s1(t)p−1s′1(t),λ )sλ (t)

1−p dt. (7.12)

Since
s1−p

λ
= Mp(s0,s1,λ )

1−p = M p
1−p

(s1−p
0 ,s1−p

1 ,λ ), (7.13)

using again Lemma 6.2.1 with p = 1
n+1 and q = p

1−p we get

M 1
n+1

(µ0(s0)s
p−1
0 s′0,µ1(s1)s

p−1
1 s′1,λ )M p

1−p
(s1−p

0 ,s1−p
1 ,λ )

≥ M p
np+1

(µ0(s0)s′0,µ1(s1)s′1,λ ). (7.14)

Then coupling (7.14) with (7.12) we obtain

Iλ ≥
∫ 1

0
M p

np+1
(µ0(s0(t))s′0(t),µ1(s1(t))s′1(t),λ )dt ,

whence, thanks to (7.7), we finally arrive to

Iλ ≥
∫ 1

0
M p

np+1
(I0, I1,λ )dt = M p

np+1
(I0, I1,λ )

This concludes the proof.

7.2 The main stability result

We prove Theorem 7.0.1.

Proof. First of all notice that Brunn-Minkowsi inequality states

|Ωλ | ≥ M 1
n
(|Ω0|, |Ω1|,λ ) ,

and if equality holds, there is nothing to prove. Then let us assume

|Ωλ |= M 1
n
(|Ω0|, |Ω1|,λ )+ τ, (7.15)

for some τ > 0. Our aim is to find and estimate on τ depending on ε , that is τ < f (ε) (with
limε→0 f (ε) = 0).
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We use the same notation as in the proof of Theorem 6.1.1 given in the previous section and
following the same argument we arrive again to (7.5) and then (7.10).
Now, given any δ > 0, set

Fδ = {t ∈ [0,1] : µλ (sλ (t))> M 1
n
(µ0(s0(t)),µ1(s1(t)),λ )+δ} (7.16)

and
Γδ = {sλ (t) : t ∈ Fδ} . (7.17)

Notice that Fδ and Γδ are measurable sets, thanks to Proposition 6.2.5 and to the monotonicity
and regularity of the si’s.
Then we have

Iλ =
∫ Lλ

0
µλ (s)ds =

∫ 1

0
µλ (sλ (t))s

′
λ
(t)dt

=
∫

Fδ

µλ (sλ (t))s
′
λ
(t)dt +

∫
[0,1]\Fδ

µλ (sλ (t))s
′
λ
(t)dt

≥
∫

Fδ

[
M 1

n
(µ0(s0(t)),µ1(s1(t)),λ )+δ

]
s′

λ
(t)dt +

∫
[0,1]\Fδ

µλ (sλ (t))s
′
λ
(t)dt

≥
∫ 1

0
M 1

n
(µ0(s0(t)),µ1(s1(t)),λ )s′λ (t)dt +δ

∫
Fδ

s′
λ
(t)dt

=
∫ 1

0
M 1

n
(µ0(s0(t)),µ1(s1(t)),λ )s′λ (t)dt +δ |Γδ |

where in the first inequality we have used the definition of Fδ , in the second we have used
(7.10) and in the last equality we have used the definition of Γδ (and the change of variable
s = sλ (t)).
Continuing to argue as in the proof of Theorem 6.1.1 given in the previous section, we find∫ 1

0
M 1

n
(µ0(s0(t)),µ1(s1(t)),λ )s′λ (t)dt ≥ M p

np+1
(I0, I1,λ ).

Moreover from (7.1) we know that

M p
np+1

(I0, I1,λ )+ ε ≥ Iλ

and so we can conclude

M p
np+1

(I0, I1,λ )+ ε ≥ Iλ ≥ M p
np+1

(I0, I1,λ )+δ |Γδ |

which implies that
|Γδ | ≤ ε/δ . (7.18)
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Take now
δ = ε

α/Lλ

for some 0 < α < 1. Then (7.18) reads

|Γεα/Lλ
|< ε

1−αLλ . (7.19)

Let uλ be defined in (6.19). Then, thanks to assumption (6.6), uλ is p-concave, that is the
following inclusion holds

{z : uλ (z)≥ Mp(ℓ0, ℓ1,ξ )} ⊇ (1−ξ ){x : uλ (x)≥ ℓ0}+ξ {y : uλ (y)≥ ℓ1}. (7.20)

for ξ ∈ [0,1], ℓ0 ∈ [0,L0] and ℓ1 ∈ [0,L1].
Let us choose

ℓ0 = 0, ℓ1 = Lλ . (7.21)

By (7.19), we can find t̄ > 0 such that

sλ (t̄)≤ ε
1−αLλ , (7.22)

and
µλ (sλ (t̄))≤ M 1

n
(µ0(s0(t̄)),µ1(s1(t̄)),λ )+ ε

αL−1
λ

. (7.23)

Let

ξ =

(
sλ (t̄)
Lλ

)p

. (7.24)

From (7.22) we have
ξ ≤ ε

(1−α)p . (7.25)

With these choices of ℓ0, ℓ1 and ξ , we have sλ (t̄) = Mp(ℓ0, ℓ1,ξ ) and (7.20) reads

{uλ ≥ sλ (t̄)} ⊇ (1−ξ )Ωλ +ξ {uλ ≥ Lλ}

From the Brunn-Minkowski inequality we get

|{uλ ≥ sλ (t̄)}| ≥
(
(1−ξ )|Ωλ |

1
n +ξ |{uλ ≥ Lλ}|

1
n

)n
.

Using (7.15) and neglecting |{uλ ≥ Lλ}| (notice that {uλ ≥ Lλ} = (1− λ ){u0 ≥ L0}+
λ{u1 ≥ L1} and, if the involved functions are strictly p-concave, as we can assume without
loss of generality, these three sets reduce to a single point, then they all have zero measure),
we get

|{uλ ≥ sλ (t̄)}| ≥ (1−ξ )nM 1
n
(|Ω0|, |Ω1|,λ )+(1−ξ )n

τ.
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Then, by (7.23) we have

ε
αL−1

λ
+M 1

n
(µ0(s0(t̄)),µ1(s1(t̄)),λ )≥ (1−ξ )nM 1

n
(|Ω0|, |Ω1|,λ )+(1−ξ )n

τ .

Since µ0(s0(t̄)) ≤ |Ω0| and µ1(s1(t̄)) ≤ |Ω1| and thanks to the monotonicity of the mean
M 1

n
, the previous formula implies

ε
αL−1

λ
+M 1

n
(|Ω0|, |Ω1|,λ )≥ (1−ξ )nM 1

n
(|Ω0|, |Ω1|,λ )+(1−ξ )n

τ ,

whence
τ ≤

(
ε

αL−1
λ

+M 1
n
(|Ω0|, |Ω1|,λ )[1− (1−ξ )n]

)
(1−ξ )−n.

Since (1−ξ )n ≥ 1−nξ ≥ 1/2 for 0 ≤ ξ ≤ 1
2n , we get

τ ≤ 2
(

ε
αL−1

λ
+nM 1

n
(|Ω0|, |Ω1|,λ )ξ

)
. (7.26)

Take α = p
p+1 and ε small enough (precisely ε ≤ ( 1

2n)
(p+1)

p ), then (7.26) reads

|Ωλ | ≤ M 1
n
(|Ω0|, |Ω1|,λ )+2

(
L−1

λ
+nM 1

n
(|Ω0|, |Ω1|,λ )

)
ε

p
p+1 . (7.27)

Since clearly Ii ≤ Li|Ωi|, for i = 0,1,λ , we get

Lλ ≥ Mp(I0/|Ω0|, I1/|Ω1|;λ )

and Lemma 6.2.1 implies

Lλ ≥
M p

np+1
(I0, I1;λ )

M 1
n
(|Ω0|, |Ω1|;λ )

.

Combining the latter with (7.27) we obtain

|Ωλ | ≤ M 1
n
(|Ω0|, |Ω1|,λ )

[
1+2

(
n+M p

np+1
(I0, I1;λ )−1

)
ε

p
p+1

]
and the proof is concluded.
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Chapter 8

Quantitative Urysohn’s type inequalities

In this Chapter we apply the results of the previous chapter (namely Theorem 6.1.3 and
Theorem 6.1.2) to derive quantitative versions of some Brunn-Minkowski and Urysohn type
inequalities for functionals that can be written in terms of the solutions of suitable elliptic
boundary value problems.
In Section 8.1 we consider the particular case of the torsional rigidity as a toy model

for which we carry out all the computations; in Section 8.2 we present the same kind of
quantitative results for a wide class of elliptic operators.
Throughtout the chapter, given an open bounded convex set of Rn, we denote by Ω♯ the ball

such that
w(Ω) = w(Ω♯)

where w(·) is the mean-with defined in (6.14) in Section 6.2.

8.1 A toy model: the torsional rigidity

Let us recall the definition of the torsional rigidity τ(Ω) of a bounded convex set (with non
empty interior) Ω:

1
τ(Ω)

= inf
{∫

Ω
|Du|2 dx

(
∫

Ω
|u|dx)2 : u ∈W 1,2

0 (int(Ω)),
∫

Ω

|u|dx < 0
}
. (8.1)

Take u the unique solution of {
∆u =−2 in int(Ω)

u = 0 on ∂Ω.
(8.2)

Then we have
τ(Ω) =

∫
Ω

udx. (8.3)
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We recall an useful geometric property satisfied by the solutions of problem (8.2) (see [123]
and [118] for details):

Proposition 8.1.1. If u is the solution to problem (8.2) then u is 1
2 -concave, i.e. the function

v(x) =
√

u(x)

is concave in Ω.

Finally we recall a comparison result for solutions of problem (8.2) in different domains
(see [59] and [145] for details):

Proposition 8.1.2. Let Ω0,Ω1 be open bounded convex sets (with nonempy interior) λ ∈ [0,1]
and Ωλ = (1−λ )Ω0 +λΩ1, Let ui be the solution of problem (8.2) in Ki, i = 0,1,λ . Then

uλ ((1−λ )x+λy)
1
2 ≥ (1−λ )u0(x)

1
2 +λu1(y)

1
2 ∀x ∈ Ω0, y ∈ Ω1.

The torsional rigidity satisfies the following Brunn-Minkowski inequality, whose essentially
stems from (8.3) and the above propositions.

Proposition 8.1.3. Under the assumptions and notations of Proposition 8.1.2, we have

τ(1−λ )Ω0 +λ Ω1)≥ M 1
n+2

(τ(Ω0),τ(Ω1),λ ) , (8.4)

Our first main result is the following refinement of (8.4).

Theorem 8.1.4. Under the assumptions and notations of Proposition 8.1.2, we have then the
following strengthened versions of (8.4):

τ(Ωλ )≥ M 1
n+2

(τ(Ω0),τ(Ω1),λ )+β H0(Ω0,Ω1)
3(n+1) , (8.5)

τ(Ωλ )≥ M 1
n+2

(τ(Ω0),τ(Ω1),λ )+δ A(Ω0,Ω1)
6 , (8.6)

where β and δ are as in Remark 6.1.6 of Section 6.1 with p = 1/2 (and Ii = τ(Ωi) for
i = 0,1).

Proof. Thanks to Proposition 8.1.1 and Proposition 8.1.2, it is possible to apply Theorem
6.1.2 and Theorem 6.1.3 with p = 1/2 and h = uλ . Then it is easily seen that (6.7) and (6.9)
precisely reads as (8.5) and (8.6) respectively, thanks to (8.3).
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In the following proposition we state an Urysohn type inequality for torsional rigidity, which
can be retrieved from more general results in [49, 145] and it was already sketched in [40].
For a better understanding of our results, we will an explicit proof in the following paragraph.

Proposition 8.1.5. Let Ω be an open bounded convex set in Rn and let Ω♯ be the ball with
the same mean-width of Ω. Then it holds

τ(Ω)≤ τ(Ω♯) (8.7)

and equality holds if and only if Ω = Ω♯.

The content of the next theorem, which we will prove in the following paragraphs, amounts
to two quantitative versions of (8.7), one in terms of the Hausdorff distance of Ω from Ω♯ and
another one in terms of the relative asymmetry of Ω, as applications respectively of Theorem
6.1.2 and Theorem 6.1.3.

Theorem 8.1.6. Let Ω be an open bounded convex subset of Rn,n ≥ 2 with centroid in the
origin. Let Ω♯ be the ball with the same mean-width of Ω with center in the origin. Then the
following hold

τ(Ω♯)≥ τ(Ω)
(

1+µH3(n+1)
)
, (8.8)

τ(Ω♯)≥ τ(Ω)
(

1+νA6
)
, (8.9)

where H = H(Ω,Ω♯) and A = max{A(Ω,Ωρ) : ρ any rotation in Rn} are small enough, µ

and ν are constants, the former depending on n, τ(Ω) and the diameter of Ω, the latter
depending only on n and τ(Ω).

For explicit expressions (but not the optimal values) of the constants µ and ν involved in
the previous theorem, see (8.14) and (8.16).

Remark 8.1.7. Theorem 8.1.4 and Theorem 8.1.6 are written as quantitative forms of the
involved inequalities, but they can be obviously interpreted also as stability results for the
same inequalities. For instance, (8.5) can be written so to show explicitly that H0(Ω0,Ω1) is
small when we are close to equality in (8.4).

Urysohn inequality for torsional rigidity

We prove Proposition 8.1.5.

Proof. Since τ is invariant under translations, we can translate Ω in a way that the point of
Steiner s of Ω coincides with the origin. We remind that the point of Steiner s(Ω) of a convex
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set Ω is defined as
s(Ω) =

1
ωn

∫
Sn−1

θh(Ω,θ)dH n−1(θ).

Using Hadwiger’s Theorem (see [147]) there exists a sequence of rotations {ρk} such that

Ωk =
1
k
(ρ1Ω+ · · ·+ρkΩ) (8.10)

converges, in the Hausdorff metric, to a ball.
We notice that Ωk converges to Ω♯: in fact, since the mean-width is invariant under rigid

motions and is additive under the Minkowski sum (see [147]), we get

w(Ωk) = w(Ω) = b

for all k and so
w(Ω♯) = w(Ω) = b.

Moreover s(Ωk) = 0 for all k for the same reason, and then Ω♯ is the ball with radius r = b
2

centered at 0.
Using (8.4) we get

τ(Ωk)≥ τ(Ω) for all k > 0, (8.11)

since τ(ρΩ) = τ(Ω) for any rotation ρ .
Since Ωk converges to Ω♯ in the Hausdorff metric when k goes to infinity, for every m > 0

there exists km such that

Ωk ⊆ B(0,r+
1
m
)

for all k ≥ km. Then

τ(Ωkm)≤ τ(B(0,r+
1
m
)). (8.12)

By letting m →+∞, we finally get (8.7).
Regarding the equality case, obviously if Ω is a ball we get the equality in (8.7); conversely,

the above proof gives

τ(Ω)≤ τ(Ωk)≤ τ(Ω♯) for all k > 0,

then if equality holds in (8.7), we have

τ(Ω) = τ(Ωk) = τ(Ω♯)

for all k > 0 and thanks to the equality case in (8.4), we can conclude that Ω is a ball.
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Quantitative Urysohn inequality

In this section we prove Theorem 8.1.6. Let us prove only (8.8); then (8.9) can be proved in
the same way, using (8.6) in place of (8.5).

Proof. Let Ωρ be a rotation of Ω with center in the centroid of Ω and set

Ω̃ =
1
2

Ω+
1
2

Ωρ .

First notice that, since
w(Ω̃) = w(Ω) ,

by (8.7) we get
τ(Ω̃)≤ τ(Ω♯).

Since τ(Ωρ) = τ(Ω), (8.5) gives

τ(Ω̃)≥ τ(Ω)+β
′H0(Ω,Ωρ)

3(n+1) (8.13)

where

β
′ =

|Ω|3(n+1)/n

8(n+ τ(Ω)−1)3 [4γnd(Ω)]−3(n+1)

and d(Ω) is the diameter of Ω.
Since

H0(Ω,Ωρ) =
H(Ω,Ωρ)

|Ω|1/n
,

(8.13) becomes
τ(Ω̃)≥ τ(Ω)

(
1+µH(Ω,Ωρ)

3(n+1)
)
,

where
µ = τ(Ω)2 [22n+3

γ
n+1
n d(Ω)n+1(nτ(Ω)+1)

]−3
. (8.14)

Then we have just to show that we can find a rotation Ωρ0 of Ω such that

H(Ω,Ωρ0)≥ H(Ω,Ω♯)

We denote by hΩ and hΩ♯ the support functions of Ω and Ω♯ respectively. By definition of
the support function (6.2) given in Section 6.2, we have

H(Ω,Ω♯) = max
θ∈Sn−1

|hΩ(θ)−hΩ♯(θ)|= max
θ∈Sn−1

|hΩ(θ)− r| (8.15)
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where r is the radius of Ω♯, that is

r =
w(Ω)

2
=

1
nωn

∫
Sn−1

hΩ(θ)dθ .

By the mean value Theorem and the continuity of hΩ, there exists θ0 such that

hΩ(θ0) = r.

Take θ̄ such that the maximum in (8.15) is attained at θ and let ρ0 be a rotation with center
in the centroid of Ω such that

hΩρ0
(θ̄) = hΩ(θ0).

Then thanks to (8.15) we get

H(Ω,Ωρ0)≥ |hΩ(θ̄)−hΩρ0
(θ̄)|= H(Ω,Ω♯),

and we conclude the proof.

Remark 8.1.8. During the proof we find an explicit value for the constant µ . The same can
be done for the constant ν ; here it is:

ν =
(1−2−1/n)9 τ(Ω)2

1812 n39 (nτ(Ω)+1)3 . (8.16)

Remark 8.1.9. Let us denote by Ω⋆ a ball with the same measure as Ω. Then we notice that
(8.7) is weaker than the well known St Venant’s inequality (see [137])

τ(Ω)≤ τ(Ω⋆), (8.17)

since τ is increasing with respect to inclusion and

Ω
⋆ ⊆ Ω

♯

by the classical Urysohn’s inequality between mean width and volume of convex sets. This is
due to the fact that the Laplacian or other kind of operator written in divergence form works
better under Schwarz symmetrization. Moreover, any quantitative version of (8.17) would
imply immediately the same quantitative result for (8.7). However, to our knowledge, no
quantitative version of (8.17) have been proved yet.
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8.2 Quantitative p-Minkowski convolutions and mean width
rearragements

Results like Theorem 8.1.4 and Theorem 8.1.6 can be obtained for other functionals related
to different elliptic operators. In particular, we could for instance derive similar results for
the p-Laplacian, for the 2-Hessian operator in R3 and for the extremal Pucci’s operator
P−

Λ1,Λ2
; the corresponding Brunn-Minkowski inequalities, as well as the needed concavity

and comparison results, similar to Proposition 8.1.1 and Proposition 8.1.2, can be explicitly
found in or retrieved from [60], [144] and [39, 145], respectively. Similar results has been
obtained in [96] for some Monge-Ampère functionals, whose Brunn-Minkowski inequalities
can be found in [104, 143].
An interesting and quite general formulation of some of the applications cited above can be

given through the so-called mean-width rearrangements, introduced by Paolo Salani in [145]
and which we recall hereafter.

Consider two convex sets Ω0,Ω1, fix λ ∈ (0,1) and as usual set Ωλ = (1−λ )Ω0 +λΩ1.
Let u0,u1 and uλ be the solutions of the corresponding Dirichlet problem

(Pi)


Fi(x,ui,Dui,D2ui) = 0 in Ωi ,

ui = 0 on ∂Ωi , i = 0,1,µ
ui > 0 in Ωi ,

where Fi : Rn ×R×Rn ×Sn → R is a continuous proper degenerate elliptic operators (here
and throughout Sn denotes the space of n×n real symmetric matrices).
For any p ≥ 0 and for every fixed θ ∈ Rn we define G(θ)

i,p : Ωi × (0,+∞)×Sn → R as
follows:

G(θ)
i,0 (x, t,A) = Fi(x,et ,etθ ,etA)

for i = 0,1,λ .

G(θ)
i,p (x, t,A) = Fi(x, t

1
p , t

1
p−1

θ , t
1
p−3A) if p > 0

(8.18)

We say that F0,F1,Fλ satisfy the assumption (Aλ ,p) if, for every fixed θ ∈Rn, the following
holds:

G(θ)
λ ,p

(
(1−λ )x0 +λx1, (1−λ )t0 +λ t1,(1−λ )A0 +λA1

)
≥

min{G(θ)
0,p(x0, t0,A0); G(θ)

1,p(x1, t1,A1)}

for every x0 ∈ Ω0, x1 ∈ Ω1, t0, t1 > 0 and A0,A1 ∈ Sn.
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Remark 8.2.1. If F0 = F1 = Fλ , we are simply requiring the operator Gθ
p to be quasi-concave,

i.e. with convex superlevel sets.

In [145] it is proved that, under suitable assumptions, the p-Minkowski convolution up,λ
of the solutions u0 and u1 of (P0) and (P1) is a subsolution of problem (Pλ ); we recall the
precise statement in the following proposition.

Proposition 8.2.2. Let λ ∈ (0,1), Ωi an open bounded convex set and ui a classical solution
of (Pi) for i = 0,1. Assume that F0,F1,Fλ satisfy the assumption (Aλ ,p) for some p ∈ [0,1).
If p > 0, assume furthermore that for i = 0,1 it holds

liminf
y→x

∂ui(y)
∂ν

> 0 (8.19)

for every x ∈ ∂Ωi, where ν is any inward direction of Ωi at x. Then up,λ is a viscosity
subsolution of (Pλ ).

Then, when a comparison principle holds, it is possible to estimate the solution uλ of (Pλ )

by means of up,λ and then by means of u0 and u1.

Corollary 8.2.3. In the same assumption of the previous proposition and if Fλ satisfies a
comparison principle, then

uλ ((1−λ )x0 +λ x1)≥ Mp(u0(x0),u1(x1);λ ) (8.20)

for every x0 ∈ Ω0, x1 ∈ Ω1.

By a combination of the previous result with the BBL inequality, we can finally compare
the Lr norms of the involved functions for any r ∈ (0,+∞); this is Corollary 4.2 of [145],
which we recall now.

Corollary 8.2.4. With the same assumptions and notation of Corollary 8.2.3, we have

||uλ ||Lr(Ωλ )
≥ M pr

np+r

(
||u0||Lr(Ω0), ||u1||Lr(Ω1),λ

)
for every r ∈ (0,+∞) . (8.21)

Then it is probably clear as, by applying Theorem 6.1.2 and Theorem 6.1.3, we can easily
get the refinements of (8.21) which are the content of the following theorem.
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Theorem 8.2.5. With the same assumptions and notations of Corollary 8.2.3, assume fur-
thermore that for p > 0

u0 and u1 are p-concave functions (8.22)

(with convex compact supports Ω0 and Ω1 respectively). Then, if H0(Ω0,Ω1) and A(Ω0,Ω1)

are small enough, it holds for every r ∈ (0,+∞)

||uλ ||rLr(Ωλ )
≥ M p

np+r

(
||u0||Lr(Ω0), ||u1||Lr(Ω1),λ

)
+β H0(Ω0,Ω1)

(n+1)(p+r)
p (8.23)

and

||uλ ||rLr(Ωλ )
≥ M p

np+r

(
||u0||Lr(Ω0), ||u1||Lr(Ω1),λ

)
+δ A(Ω0,Ω1)

2(p+r)
p , (8.24)

where δ ,β are constants depending only on n, λ , p, ||u0||rLr(Ω0)
, ||u1||rLr(Ω0)

and on the mea-
sures of Ω0 and Ω1.

Remark 8.2.6. When the operators F0,F1 satisfy suitable assumptions (see for example
[137]), the p-concavity of the solutions u0 and u1 is known to hold, then there is no need
of assuming (8.22). A particular case is when F0 = F1 = Fλ and Gθ

p (defined in (8.18)) is
quasi-concave (see Remark 8.2.1). In the following corollary we provide an example of
Theorem 8.2.5 when the Fi satisfies these conditions.

Corollary 8.2.7. Let f be a smooth nonnegative function defined in Rn. Let λ ∈ (0,1) and
Ω0 and Ω1 be convex subsets of Rn and denote by u0, u1 and uλ the solutions of

∆ui + f (x) = 0 in Ωi

ui = 0 on ∂Ωi

for i = 0,1,λ respectively, where Ωλ = (1−λ )Ω0 +λΩ1, as usual. Assume f is β -concave
for some β ≥ 1, that is f β is concave. Then (8.23) and (8.24) hold with

p =
β

1+2β
.

Remark 8.2.8. In case f is a positive constant (β =+∞), the same conclusions follow with
p = 1/2 and we find the results of Theorem 8.1.4.
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Let’s see now as the technique above can be applied to improve some Talenti-like results
(for operators not in divergence form) from [145]. We need first to set some notations. Let u
be the solution of the problem

F(x;u;Du;D2u) = 0 in Ω

u = 0 on ∂Ω

u > 0 in Ω

(8.25)

where F(x; t;ξ ;A) is a continuous proper elliptic operator acting on Rn ×R×Rn ×Sn and
Ω is an open bounded convex subset of Rn. Denote by Ω♯ the ball withthe same mean width
of Ω and v the solution of 

F(x;v;Dv;D2v) = 0 in Ω♯

v = 0 on ∂Ω♯

v > 0 in Ω♯

(8.26)

We consider F a rotationally invariant operator, i.e.

F(ρx;u;ρθ ;ρAρ
T ) = F(x;u;θ ;A)

for every (x;u;θ ;A) ∈ Rn ×R×Rn ×Sn and every rotation ρ ∈ SO(n).

Remark 8.2.9. Let ρ ∈ SO(n) and denote by Ωρ a rotation of Ω and by uρ(x) = u(ρ−1x)
for x ∈ Ωρ a rotation of u. We remark that we consider rotationally invariant operators since
the proof of Proposition 8.2.10 relies mainly on the fact that if u is a solution of (8.25) in Ω,
then uρ is a solution of (8.25) in Ωρ .
Notice that F is rotationally invariant when it depends on x; θ and A only in terms of |x|, |θ |

and the eigenvalues of A, respectively.

Given the operator F , a real number p > 0 and a vector θ ∈ Rn, we set

G(θ)
p (x, t,A) = F(x, t

1
p , t

1
p−1t

1
p−3A) (x, t,A) ∈ RN × [0,∞)×Sn.

Then we the following holds (see [145]).

Proposition 8.2.10. Let Ω be a bounded open convex set in Rn and u a solution of (8.25)
where F is a rotationally invariant proper elliptic operator and assume u satisfies (8.19). Let
p ∈ (0,1) and assume that

the set {(x, t,A) ∈ [0,∞)×Sn : G(θ)
p (x, t,A)≥ 0 is convex (8.27)
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for every fixed θ ∈ Rn. Then

||v||Lr(Ω♯) ≥ ||u||Lr(Ω) for every r ∈ (0,+∞] (8.28)

Remark 8.2.11. Notice that assumption (8.27) is satisfied if the function G(θ)
p is quasi-

concave for every θ ∈ Rn, hence if it is q-concave for some q ∈ R.

The proof of the above proposition is based on the definition of the so-called mean-width
rearrangement. Roughly speaking, we associate to u a symmetrand u♯p defined in the ball Ω♯

having the same mean width of Ω and, under suitable assumptions on the operator F (stated
in Proposition (8.2.10)), we have a pointwise comparison between u♯p and the solution v in
Ω♯, that is

u♯p ≤ v in Ω
♯ (8.29)

which leads to conclude (8.28).
The precise definition of u♯p is actually quite involved. Here we just say that u♯p is not

equidistributed with u, in contrast with Schwarz symmetrization; indeed the measure of the
super level sets of u♯p is greater than the measure of the corresponding super level sets of u.
By following the same argument used to prove Theorem 8.1.6 and in particular applying

Theorem 8.2.5, we derive the following quantitative version of Proposition (8.2.10).

Theorem 8.2.12. With the same assumptions and notations of Theorem 8.1.6 and Proposition
8.2.10, assume furthermore that

u is p-concave (8.30)

Then for all r ∈ (0,+∞), it holds

||v||rLr(Ω♯) ≥ ||u||Lr(Ω)+η H
(n+1)(p+r)

p

and
||v||rLr(Ω♯) ≥ ||u||Lr(Ω)+σA

2(p+r)
p ,

where H = H(Ω,Ω♯) and A = max{A(Ω,Ωρ) : ρ rotation in Rn} are small enough, η and
σ are constants, the former depending on n, ||u||rLr(Ω) and the diameter of Ω, the latter
depending only on n and ||u||rLr(Ω).

Remark 8.2.13. Notice that for p = 1
2 and r = 1, Theorem 8.2.12 coincides with the quanti-

tative result for the torsional rigidity stated in Theorem 8.1.6.
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We remark that Theorem 8.2.5 and Theorem 8.2.12 apply also to nonlinear operators not in
divergence form, for example the q-Laplacian, the Finsler laplacian and the Pucci Extremal
operators.
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