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Abstract

The problem of modelling both the unsteady hydrodynamics and the bed

morphological variations in natural channels is generally performed by solving

the De Saint Venant balance equations for the liquid phase together with the

Exner continuity equation for the sediments carried as bed-load. This thesis fo-

cuses on the development of an high-order accurate centred scheme of the finite

volume type for the numerical solution of the coupled De Saint Venant-Exner

system. A new scheme, called PRICE-C, is proposed. It solves the system of

equations in a non-conservative form, however it has the important character-

istic of reducing automatically to a conservative scheme if the underlying PDE

system is a conservation law. It is applied to the shallow water equations in the

presence of either a fix or a movable bed. The scheme is first introduced in a

one-dimensional framework, and it is then extended to the two-dimensional case.

The extension is not straightforward in the case of an unstructured mesh, since

averages over suitable edge-based control volumes have to be performed.

The scheme is extended to high order of accuracy in space and time via

the ADER-WENO and MUSCL technique respectively for the one- and two-

dimensional case. The well-balanced property of the scheme is proven, i.e. the

ability to reach steady states also in the presence of discontinuous water sur-

face or discontinuous bottom profile. The scheme can deal with subcritical and

supercritical flows, as well as transcritical situations. Moreover the proposed

approach leads to a correct estimate of the celerity of surface discontinuities as
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2 Abstract

well sediment bores and small bottom perturbations.

The main characteristic of the scheme is its simplicity: it is based on a sim-

ple centred approach, that means that the knowledge of the eigenvalues of the

matrix of the system is not required. This is important since the interaction

between sediment transport and water flow not always admits detailed knowl-

edge of the eigenstructure. Hence this scheme can be useful to engineers since

they need simple numerical tools that can be easily used without entering in

the mathematical detail of the differential hyperbolic system under considera-

tion. Moreover the centred strategy gives generality to the scheme: in fact, it

can be applied without modification to any kind of hyperbolic equations with

non-conservative terms.



Sommario

La modellazione dell’idrodinamica e delle variazioni morfologiche in canali

naturali è generalmente effettuata risolvendo numericamente le equazioni delle

onde lunghe in acque basse, che regolano il moto della fase fluida, assieme

all’equazione di Exner, che descrive l’evoluzione del fondo. L’argomento della

presente tesi consiste nello sviluppo di un schema ai volumi finiti di tipo ”cen-

trato” per la soluzione accoppiata di tale sistema di equazioni. Un nuovo schema,

denominato PRICE-C, è qui introdotto: esso risolve le equazioni in forma non-

conservativa, ma ha l’importante proprietà di degenerare in uno schema conser-

vativo se il sottostante sistema di equazioni ammette una forma conservativa. Lo

schema è applicato alle equazioni delle onde lunghe in acque basse sia nel caso

di fondo fisso che di fondo mobile, dapprima in un ambito unidimensionale e

successivamente in quello bidimensionale. L’estensione non è immediata nel caso

in cui il reticolo di calcolo sia non-strutturato, dal momento che le equazioni

differenziali devono essere mediate su opportuni volumi di controllo.

Lo schema è poi esteso ad alti ordini di accuratezza nello spazio e nel tempo

attraverso le procedure ADER-WENO e MUSCL rispettivamente per il caso

unidimensionale e bidimensionale.

Inoltre si dimostra come lo schema proposto verifichi la ”well-balanced prop-

erty”, che consiste nella capacità di raggiungere soluzioni stazionarie, anche in

presenza di discontinuità della superficie libera e del fondo. Condizioni di corrente

lenta e rapida, come pure condizioni di tipo transcritico vengono correttamente

3



4 Sommario

risolte. Inoltre lo schema in grado di riprodurre le celerità di propagazione di

discontinuità della superficie e fronti di sedimenti al fondo, cos̀ı come la celerità

di propagazione di piccoli disturbi del fondo.

Caratteristica principale dello schema è la sua semplicità: è basato su un sem-

plice approccio di tipo centrato, cioè non necessita la conoscenza degli autovalori

della matrice del sistema. Questa è un’importante caratteristica dal momento che

non sempre autovalori e autovettori sono calcolabili analiticamente, in particolare

nel caso di complesse formule di chiusura per il trasporto al fondo. Quindi questo

schema può rivelarsi utile per l’ingegnere che spesso necessita di un semplice stru-

mento numerico che possa essere applicato ad un sistema di equazioni differenziali

di tipo iperbolico senza dover entrare nel dettaglio delle proprietà matematiche

del sistema stesso. Data la sua generalità, infatti, lo schema può essere applicato

ad ogni tipo di sistema iperbolico contenente termini non-conservativi.



Chapter 1

Introduction

Sediment transport is a fundamental aspect of fluvial hydraulics. Indeed,

river beds always tend to an asymptotic equilibrium strongly affected by the two

transported phases: water and sediments. The river morphology may be altered

by natural (floods) or man-induced (river training works) perturbations. These

perturbations may lead to significant morphological changes in the bed profile.

Quantifying the interaction between sediment transport and water flow is crucial

for a wide range of phenomena such as river morphodynamic evolution, river

management, and river adjustment after the installation of hydraulic structures.

To progress on quantifying such interactions, it becomes necessary to develop

numerical models that accurately simulate the fluid flow over a movable bed.

This thesis focuses on the numerical modelling of river hydrodynamics and mor-

phodynamics with particular attention to physical phenomena in which water

surface discontinuities and sediment bores are present.

A typical example of an unsteady water surface discontinuity is the shock

wave forming after a sudden dam removal (dam-break problem), that causes

a rarefaction wave to propagate upstream, whereas a shock propagates down-

stream. The dam-break problem is usually used as test case for numerical mod-

els, since an exact solution exists for the frictionless case with horizontal bed.

5



6 Introduction

Another discontinuous wave phenomenon that can be found in river estuaries is

the tidal bore. A tidal bore is a tidal phenomenon in which the landward edge

of the incoming tide forms a steep wave of water that travel up a river against

the direction of the current. Bores occur usually in areas with a large tidal range

(typically more than 3-4 m between high and low water), and where incoming

tides are funnelled into a shallow, narrowing river via a broad bay. These are

examples of unsteady waves, whereas a stationary discontinuous wave that is

frequently observed in open channel flow such as rivers and spillways is the so

called ”hydraulic jump”. When flow at high enough velocity discharges into a

zone of lower velocity, a rather abrupt rise (a step or standing wave) occurs in the

water surface. The supercritical flowing water is abruptly slowed and increases

in height converting some of the flow’s initial kinetic energy into an increase in

potential energy, with some energy irreversibly lost through turbulence to heat.

In the case of a movable bed, also if the hydrodynamic boundary conditions are

steady, the hydraulic jump can slowly move and a corresponding sediment bore

can form at the bottom (Bellal et al., 2003).

The common tool to predict river hydrodynamics and morphodynamics are

the shallow water equations (or De Saint Venant equations) and the Exner sedi-

ment balance equations (see e.g. Cunge et al., 1980; Graf and Altinakar, 1998),

where friction head loss and solid transport are estimated by closure equations.

In the last two decades a lot of numerical models solving these equations were

developed. Two different approaches are present in literature. The first is the un-

coupled approach, where the hydrodynamic equations are solved separately from

the Exner equation: the computed hydrodynamic unknowns are then passed to

the morphodynamic module (and vice versa) at the end of each time steps (see,

among others, Cunge and Perdreau, 1973; Krishnappan, 1985; Defina, 2003; Wu

et al., 2004). The uncoupled strategy was justified because of the different time

scales of flow and sediment transport and the inherent inaccuracies introduced by

the use of empirical formulas for bed roughness and sediment transport capacity.

The second approach relies on a full coupling of the governing equations within

each time step (see, among others, Lyn, 1987; Holly and Rahuel, 1990; Lai, 1991;
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Correia et al., 1992; Saiedi, 1997; Kassem and Chaudry, 1998; Cao et al., 2002;

Crnjaric-Zic et al., 2003; Cao et al., 2004; Hudson and Sweby, 2005; Caleffi et al.,

2007). Saiedi (1997) and Cao et al. (2002) compared the numerical stability of

coupled and decoupled models, founding out that the coupled model is more sta-

ble, especially in the case of rapid variation of bottom elevation. Moreover, Cao

et al. (2002) and Correia et al. (1992) pointed out that coupled solutions should

be used for the study of long term evolutions of natural rivers. Sieben (1997;

1999) showed that in a range near to critical conditions, the coupling between the

shallow water equations and the Exner equation within the time step is crucial.

Close to critical condition in fact, each of the wave propagation celerities can no

longer be identified solely with a surface wave or solely with a bed wave, and

a full coupling of the equations is necessary to correctly solve the propagation

of bed disturbances. The range of Froude number for which coupling is funda-

mental is not fixed, but it depends on the sediment concentration: the larger

is the sediment transport, the larger is the range within which the uncoupled

model gives incorrect results. Moreover, as discussed by Lanzoni et al. (2006),

simulating the evolution of fairly short perturbation near critical conditions by

means of a decoupled approach does not account for morphodynamic influence

(i.e. propagation of information on bed variations) either upstream or down-

stream, whereas only a coupled approach is able to propagate bed information in

both directions. On the contrary, very long bottom waves, even if transcritical,

display a quasi-diffusional behaviour which can be satisfactorily modelled using

a decoupled approach.

An other important issue suggesting for the adoption of a coupled strategy

in morphodynamic models is related to the boundary conditions. Lyn (1987) in-

vestigated the coupling between flow and sediment dynamics in situations where

both the fluid and the sediment discharge are rapidly changing, showing that de-

coupled models are not capable of satisfying either a general boundary condition

or an arbitrary initial condition.

Therefore, adopting a coupled approach for solving the governing equations

is a stringent requirement in order to obtain reliable results when flow is close to
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critical conditions and the boundary conditions are rapidly changing, a situation

that characterizes most mountain rivers and, at least locally, is often encountered

in natural rivers due to the presence of bridge piers, flood control systems and

sudden variations in bed slope or river width.

Several numerical methods are available to solve the set of equations governing

morphodynamic. As far as finite difference scheme are concerned, a very popular

method is the implicit Preissmann finite difference scheme (Preissmann, 1961;

Cunge and Perdreau, 1973), used for example by Holly and Rahuel (1990) and

Correia et al. (1992). This implicit scheme allows large time steps, but has the

short coming that, in the case of fixed bed, is not able to model transcritical

flows (Meselhe and Holly, 1997). Indeed, it does not allow imposing conflicting

boundary conditions (e.g. the water depth both at the upstream and downstream

end of the computational domain at the same time). Another class of schemes,

of the finite-volume type, had a great increase of popularity in the last decades.

The finite-volume Schemes on the one hand use a smaller time step because they

have to satisfy the Courant-Friedrichs-Levy (CFL) condition. On the other hand

they have the advantage of the flexibility in imposing the boundary conditions

and they are usually ”shock-capturing”.

In most of the aforementioned studies, the coupled system is solved without

particular attention to the mathematical form of the system of equations to be

solved numerically, in particular in the presence of shock waves. Often, a non-

conservative formulation of the system is considered (Correia et al., 1992; Saiedi,

1997; Lai, 1991), that however gives good results as far as the solution is smooth.

In the presence of discontinuities, it is well known that a non-conservative (prim-

itive) formulation of the numerical solution leads to a wrong computation of the

height and speed of the jumps, thus rendering rapidly meaningless long term

morphodynamic simulations in the presence of shocks or sediment bores. Even

when equations are recast in conservative form, non-conservative terms are usu-

ally treated as source terms (Cao et al., 2002; Crnjaric-Zic et al., 2003; Cao

et al., 2004; Hudson and Sweby, 2005; Caleffi et al., 2007). In the present the-

sis we instead take advantage of the definition of weak solutions in presence of
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non-conservative products (Dal Maso et al., 1995). Clearly, the implementation

of a model that is able to deal with discontinuous solutions and different kind

of transport closure equations turns out to be more complicated in a coupled

framework. The celerities of propagation of both small and finite perturbations

(i.e., the eigenstructure of the system) are in fact different from the fixed bed

case and change with the adopted transport formula. This is one of the reasons

for which the decoupled models are still so popular.

The aim of this thesis it is to develop an original numerical tool that can

be applied to any kind of hyperbolic equations with non-conservative term. In

particular, the new scheme is applied to the De Saint Venant-Exner equations,

in order to deal with subcritical and supercritical flows, as well as transcriti-

cal situations. Moreover the proposed approach leads to a correct estimate of

the celerity of surface discontinuities as well sediment bores and small bottom

perturbations.

In this work only bed-load transport is considered. The reason is to be found

in the fact that once the suspended load equation is added to the coupled De

Saint Venant-Exner system, it does not change the eigenstructure of the system

itself, i.e. the speed of propagation of the perturbations. In fact, the matrix

of the system has a new eigenvalue (λ = u) and the other eigenvalues do not

change (Toro, 2001). Non-equilibrium transport is also neglected in the present

work. This assumption, implying instantaneous adaptation of the transport to

the current, is usually satisfied for bed-load conditions, whereas non-equilibrium

effects may play some role for dominant suspended-load.

The thesis is organized as follows. In chapter 2 a literature review of finite vol-

ume schemes is provided. The original finite volume scheme is introduced within

a one-dimensional framework. In chapter 3 the performance of the proposed high

order algorithm is checked for the system of time-dependent non-linear shallow

water equations without and with sediment transport. The scheme is tested

against both analytical solutions and real situations for which experimental data

are available. In particular the numerical model is compared with the exper-

imental case of an hydraulic jump forming over a movable bed (Bellal et al.,
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2003). This transcritical flow, resulting from conflicting boundary conditions

(water level imposed upstream and downstream), is challenging for numerical

modelling. Indeed, a sudden change in the downstream boundary conditions

forces a flow discontinuity in the channel, which can be managed if boundary

conditions are well posed and if the internal solver is shock-capturing. Chapter

4 describes the extension of the numerical scheme to a multi-dimensional frame-

work. The extension is not straightforward in the case of an unstructured mesh,

since an average over suitable edge-based control volumes has to be performed.

In chapter 5 the two-dimensional version of the scheme is applied to the shallow

water equations with either a fixed and a movable bed, and a comparison with

analytical solutions and with solutions that are present in literature is performed.

Conclusions and possible further developments are drawn in chapter 6.



Chapter 2

One-dimensional PRICE-C

scheme

In the recent years, high resolution methods for hyperbolic systems of con-

servation laws have been developed and extensively applied for solving shallow

water equations, frequently used in fluid mechanics and hydraulic engineering.

Much effort was devoted to design high-accuracy schemes to reduce the number

of computational cells and minimize the computational time. In particular, the

finite volume method (FVM) had undergone a great increase of popularity in the

last decades. One advantage of the finite volume method over the finite difference

method is that it does not require a structured mesh (although a structured mesh

can be used), and hence it can deal easily with irregular geometries. Further-

more, the finite volume method, unlikely the finite element method, can easily

conserve the variables on a coarse mesh, an important requirement especially for

fluid dynamic problems. Moreover, since it usually makes use of the conservative

form of the governing equations, the FVM allows to deal easily with discontinu-

ities of the solution. In the following, a review of finite volume schemes of the

centred and upwind type is presented. The new PRICE-C scheme of the centred

type is then introduced in a one-dimensional framework.

11



12 Chapter 1

2.1 Literature review of finite volume schemes

In the last three decades, there has been a tremendous progress in the devel-

opment and improvement of finite volume methods of both upwind and central

type. Upwind methods have their origin in the work of Courant, Isaacson, and

Rees (1952), and most of all, in the work of Godunov (1959). But the real ad-

vance of these methods came in the late 70’s and 80’s, starting with the works of

van Leer, Osher, Roe, Harten and many others (for a general overview, the reader

is referred to Toro, 1999; 2001; LeVeque, 2002). Upwind schemes are physically

based, have a characteristic-wise structure that allows to obtain a better reso-

lution of shocks, but require extensive and expensive use of the eigenstructure.

Usually the global solution is achieved via local solutions of Riemann problems,

approximate or exact. The Riemann problem consists in solving the system of

partial differential equations (PDE) starting from an initial condition character-

ized by constant states in each single cell (Fig. 2.1). For most known hyperbolic

systems, the exact or approximate solution of the Riemann problem is available,

although in some cases this may be computationally very expensive. However

there are complicated hyperbolic systems where the solution of the Riemann

problem is not available.

The alternative approach is the centred scheme family, whose origins are the

first-order Lax-Friedrichs staggered method (Lax, 1954) and the second-order

Nessyahu-Tadmor staggered method (Nessyahu and Tadmor, 1990). In a centred

framework, the initial condition is again a Riemann problem, but the update is

obtained integrating the PDE equations in particular space-time control volumes,

so that the Riemann problem is not explicitly computed. The centred schemes

are very simple due to their component-wise structure, and very flexible owing

to the minimum use of eigenvalues. They just need a superior limit of the spec-

tral radius for stability requirements, that can be always calculated numerically

also for complicated systems of equations. Third-order extension of Nessyahu-

Tadmor type schemes can be found in Liu and Tadmor (1998) and Jiang et al.

(1998), respectively in a staggered and non-staggered version. This method was
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Figure 2.1: In the upper part: the initial condition characterized by constant

states. In the lower part: the propagation waves starting at each interface are

shown. The global solution at time tn+1 is achieved via local solutions of Riemann

problems.

also extended to two-dimensional cartesian (Jiang and Tadmor, 1998) and un-

structured (Arminjon et al., 1997; Arminjon and Viallon, 1999; Kuther, 2001)

grids and to three dimensional problems (Arminjon and St-Cyr, 2003). Three

dimensional cartesian, adaptive grids were discussed by Noelle et al. (2006).

In Bianco et al. (1999) and Levy et al. (1999) a new family of high-order

schemes for one-dimensional problems was introduced. This family was based on

the reconstruction of the point-values of conservative variables and flux deriva-

tives by ENO and WENO (Shu, 1997) methods and on the combination of the

natural continuous extension procedure (Zennaro, 1986) with a Runge-Kutta

solver in time. The independence from the eigensystem of the scheme and the

consequent component-wise structure were described as the main advantages of

these new methods. Extension to two-dimensional cartesian grids was provided
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by Levy et al. (2002). Qiu and Shu (2002) performed a comparison between

central staggered WENO high-order methods with RungeKutta solver in time,

either using or not using the local characteristic decomposition. Such a decom-

position was shown to improve the results when the structure of the shocks is

quite complex and the order of accuracy of the method is very high. In the work

of Pareschi et al. (2005) on the central Runge-Kutta schemes the quadrature rule

in time for the fluxes is avoided, so further improving the efficiency.

Kurganov and Tadmor (2000), using a variable control volume, introduced

new central semi-discrete and fully discrete non-staggered schemes, based on

the use of local propagation celerities. Kurganov and Petrova (2005) extended

this schemes to unstructured grids in two-dimensional problems. Liu (2005) in-

troduced overlapping cell representation of the solution. Although the use of

overlapping cells generally doubles the computational cost, more efficient re-

construction methods using the combined information from the overlapping cell

averages could improve the resolution (see also Liu et al., 2007; Li, 2008, for

recent developments). In all the above Kurganov-type schemes the use of the

semi-discrete form allows to avoid grid staggering, introducing significant sim-

plifications when multi-dimensional problems are tackled. Nevertheless, these

schemes use a certain amount of upwind information through the estimation of

maximum wave speed at each computational cell.

A given numerical scheme, when applied to conservation laws with source

terms, (i.e. the shallow water equations) all numerical schemes should satisfy

the well-balanced property (or C-property). This property guarantees the bal-

ance between the flux gradient and the bed-slope term when the flow is sta-

tionary. The first important result in computing such solutions was given by

Bermudez and Vazquez (1994) that introduced the first order Q-scheme and the

idea of source term upwinding. An improvement of this scheme can be found in

Vazquez-Cendon (1999). Garcia-Navarro and Vazquez-Cendon (2000) analyzed

the source term due to cross section irregularities and Hubbard and Garcia-

Navarro (2000) analyzed the effects of source terms in a flux difference splitting

technique. LeVeque (1998) developed a wave propagation algorithm by solving
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the Riemann problem at the cell center and cancelling the source term exactly

with the flux difference. Zhou et al. (2001; 2002) introduced, for the shallow wa-

ter equations, the surface gradient method (SGM), that uses the water surface

level, instead of conservative variables, to reconstruct the Riemann states at the

cell interfaces. Bryson and Levy (2005) extended the Kurganov type schemes to

guarantee their application and the well-balanced property in the shallow water

equations with bed slope source term (see also Kurganov and Petrova (2007)). In

Vukovic and Sopta (2002), the C-property was exactly satisfied, but the method

is quite complex. Xing and Shu (2006) generalized Runge-Kutta finite volume

WENO schemes and Runge-Kutta discontinuous Galerkin (RKDG) finite ele-

ment methods to obtain high order well-balanced schemes. High accuracy and

well-balancing are also obtained by Crnjaric-Zic et al. (2004) using both finite

volume WENO and central WENO schemes. Levy et al. (1999) WENO scheme

was recently generalized to gain the well-balanced property by Caleffi et al. (2006;

2007).

The use of these method listed above, designed to solve the conservative form

of the equations, is fundamental when the computational domain is characterized

by internal discontinuities. Indeed, when solutions are smooth there is no good

reason why one should not use a non-conservative (or ”primitive”) method. In

practice these methods perform very well (Toro, 1998) and in fact there are

situations in which non-conservative methods outperform conservative methods

(Toro, 2002). However, shock waves are computed with the wrong strength and

the wrong propagation speed, in according withHou and LeFloch (1994) theorem

proving that non-conservative methods will converge to the wrong solution in the

presence of a shock wave. As a consequence, when a discontinuous solution is

sought, the equations should be recast in conservative form. In all the above

mentioned works, non-conservative terms (i.e. terms that can not be recast in

conservative form) were usually treated as source terms, and different procedures

were proposed to balance them with the fluxes in order to satisfy the C-property.

Only in the last few years, attempts have been done to solve the equations

written in a way that non-conservative terms are recast together with the fluxes
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in a non-conservative form (Parés and Castro, 2004; Castro et al., 2006; Gallardo

et al., 2007; Castro et al., 2008a;b). These schemes make use of the theory of

Dal Maso et al. (1995), that provides a definition of weak solutions in presence of

non-conservative products. Parés and Castro (2004), in particular, introduced a

well-balanced high order scheme of the upwind type, using the generalization of

the Roe method to non-conservative systems, that allows to preserve the shock

capturing property of the scheme. The scheme was applied to the shallow water

equations with fixed bed. The extension to the movable-bed case was recently

proposed by Castro et al. (2008b).

The new scheme introduced in this thesis use the theory of Dal Maso et al.

(1995) to solve the equations in non-conservative form and it is proven to degen-

erate to the FORCE conservative scheme (Toro, 1996) when non-conservative

terms are neglected. The main characteristic of the scheme is its simplicity: it is

based on a simple centred approach, because the interaction between sediment

transport and water flow not always admits detailed knowledge of the eigen-

structure. Moreover the well-balanced property of the scheme is proven for the

shallow water equations, with both mobile and fix bed and over continuous and

discontinuous bottom profiles. This is extremely important in the movable-bed

case, because the well-balancing of the scheme allows to reproduce small pertur-

bations of the free surface and of the bottom elevation, otherwise of the same

order of magnitude of the numerical errors induced by the non-balancing. This

work represents the first attempt to solve a non-conservative system using the

theory of Dal Maso et al. (1995) by a centred approach. The strength of the

present method consists of a large applicability in a broad range of engineering

problems, since no mention is done to the eigenstructure of the hyperbolic system

of equations. In this chapter only one-dimensional flow is considered, whereas

the two-dimensional version of the scheme is described in chapter 4.

2.2 Description of the numerical scheme

Let us consider a system of partial differential equations of the form:
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∂Q

∂t
+ A

∂Q

∂x
= 0 , x ∈ R, t > 0 (2.1)

in which Q = [q1, . . . qN ]T is the vector of unknowns and A = A(Q) is the

coefficient matrix (hereinafter all vectors and matrices will be denoted by bold

characters). It is assumed that the unknown function Q(x, t) takes its values

inside an open convex set Ω included in R and that Q ∈ Ω → A(Q) is a

smooth locally bounded map. System (2.1) is assumed to be hyperbolic with

real eigenvalues λ1, λ2, . . . λN and a set of corresponding linearly independent

right eigenvectors R(1), . . . , R(n). The numerical method developed here is of

the centred type and it only requires an estimate for the absolute value of the

maximum eigenvalue in order to satisfy the stability condition. Hereinafter the

vector of unknowns Q in (2.1) will be the vector of physically conserved variables.

Therefore, if A(Q) is the Jacobian matrix A(Q) = ∂F/∂Q, with F = F(Q), the

physical flux (2.1) can be expressed in the conservative form:

∂Q

∂t
+
∂F

∂x
= 0 (2.2)

Toro and Siviglia (2003) developed a series of primitive centred (PRICE)

numerical schemes for solving systems of hyperbolic partial differential equations

written in the non-conservative form (2.1). The most promising of these schemes,

namely the PRICE-T scheme, will be the basis of the high-order centred scheme

developed in the present thesis.

2.2.1 The FORCE scheme and the original two-steps

PRICE-T scheme

Since the PRICE-T scheme Toro and Siviglia (2003) is the non-conservative

analogous of the conservative FORCE scheme Toro (1996), that is in turn a de-

terministic re-interpretation of the staggered-grid version of the Random Choice

Method (RCM) of Glimm (1965), the definition of the FORCE scheme for con-

servation laws is briefly recalled here. The FORCE scheme for the conservative

system (2.2) can be written either in a two-step staggered grid version as
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• first step: computation of the intermediate state

Q
n+ 1

2

i+ 1

2

=
1

2
(Qn

i + Qn
i+1) −

1

2

∆t

∆x

[
F(Qn

i+1) − F(Qn
i )

]
, (2.3)

• second step: update formula

Qn+1
i =

1

2

(
Q
n+ 1

2

i− 1

2

+ Q
n+ 1

2

i+ 1

2

)
− 1

2

∆t

∆x

(
F(Q

n+ 1

2

i+ 1

2

) − F(Q
n+ 1

2

i− 1

2

)
)
, (2.4)

or in the more convenient conservative non-staggered one-step formulation with

two-point fluxes as

Qn+1
i = Qn

i −
∆t

∆x

[
FFORCE
i+ 1

2

− FFORCE
i− 1

2

]
. (2.5)

Here, the FORCE flux FFORCE
i+ 1

2

is the arithmetic average of the Lax-Friedrichs

and the Lax-Wendroff fluxes, i.e.

FFORCE
i+ 1

2

=
1

2

(
FLF
i+ 1

2

+ FLW
i+ 1

2

)
, (2.6)

with the Lax-Friedrichs flux

FLF
i+ 1

2

=
1

2

(
F(Qn

i+1) + F(Qn
i )

)
− 1

2

∆x

∆t

(
Qn
i+1 − Qn

i

)
, (2.7)

and the Lax-Wendroff flux

FLW
i+ 1

2

= F
(
Q
n+ 1

2

i+ 1

2

)
, (2.8)

where Q
n+ 1

2

i+ 1

2

is given by (2.3). It is easy to prove via simple algebraic manipu-

lations that the two schemes (2.3) & (2.4) and (2.5) are identical. However, for

the purpose of this thesis the Lax-Wendroff flux as given in (2.3) & (2.8), is not

convenient. The main problem consists of its two-step nature, leading to a non-

linear numerical flux function with respect to the arguments Qn
i , Qn

i+1, F(Qn
i )

and F(Qn
i+1), which makes it cumbersome for further analytic manipulations,

since any further assumptions on F, other than hyperbolicity, is not desirable.

In this thesis the following variant of the conservative FORCE flux is therefore

proposed:

FFORCE′

i+ 1

2

=
1

2

(
FLF
i+ 1

2

+ FLW ′

i+ 1

2

)
, (2.9)
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Figure 2.2: Comparison between the FORCE scheme and the modified FORCE

scheme (FORCE’) applied to the inviscid dam break problem generating a strong

shock wave (initial conditions hl = 100m, hr = 0.1m, ul = 0 and ur = −250m/s,

the subfixes ”l” and ”r” denoting left and right conditions, respectively). Results

correspond to t =5 s and 1000 cells have been used in the simulations. The

longitudinal distributions of the water profile with the two schemes are almost

indistinguishable. The continuous line denotes the exact analytical solution.

where the modified Lax-Wendroff-type flux is now given by

FLW ′

i+ 1

2

=
1

2

(
F(Qn

i+1) + F(Qn
i )

)
− 1

2

∆t

∆x
Âi+ 1

2

(
F(Qn

i+1) − F(Qn
i )

)
. (2.10)

The matrix Âi+ 1

2

= Âi+ 1

2

(Qn
i ,Q

n
i+1) is a function of the left and the right state

and still has to be chosen appropriately. For linear systems with constant coef-

ficient matrix A, the fluxes given by (2.8) & (2.3) and (2.10) are identical. For

non-linear systems the two schemes provide almost coincident results, sa shown

in Fig. (2.2) reporting the comparison between the results provided by the two

schemes for the inviscid shallow water equations. The modified Lax-Wendroff-

type flux (2.10) is introduced for technical reasons, in order to be able to prove

later on that the proposed non-conservative centred schemes reduce exactly to

the conservative centred scheme (2.5) with the modified FORCE flux (2.9), if the

matrix A(Q) is the Jacobian of some flux function F(Q).

The PRICE-T scheme developed by Toro and Siviglia (2003), instead, consists

of the following two steps:
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Figure 2.3: Sketch of the PRICE-T scheme of Toro and Siviglia (2003). The

staggered grid at time t = tn+1/2 is also shown.

• first step: computation of the intermediate state

Q
n+ 1

2

i+ 1

2

=
1

2
(Qn

i + Qn
i+1) −

1

2

∆t

∆x
Âi+1

2

[
Qn
i+1 − Qn

i

]
, (2.11)

• second step: update formula

Qn+1
i =

1

2

(
Q
n+ 1

2

i− 1

2

+ Q
n+ 1

2

i+ 1

2

)
− 1

2

∆t

∆x
Âi

(
Q
n+ 1

2

i+ 1

2

− Q
n+ 1

2

i− 1

2

)
. (2.12)

where the matrices are evaluated as:

Âi = A

(
1

2
[Q

n+ 1

2

i− 1

2

+ Q
n+ 1

2

i+ 1

2

]

)
, Âi+1

2

= A

(
1

2
[Qn

i + Qn
i+1]

)
. (2.13)

The scheme was obtained integrating the PDE equations on the volume depicted

in Fig.2.3. When applied to the linear model equation ∂q/∂t = λ∂q/∂x, the

PRICE-T scheme coincides with the FORCE scheme, that is first-order accurate,

monotone and has linearized stability condition (Toro and Siviglia, 2003):

c = λ(∆t/∆x) ≤ 1 (2.14)

where c is the Courant-Friedrichs-Levy (CFL) number. The equality between

the two schemes is not true for the case of nonlinear system of equations. It
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Figure 2.4: Dam break problem generating a strong shock wave (initial conditions

hl = 100m, hr = 0.1m, ul = 0 and ur = −250m/s). Results after t =5 s obtained

with the first-order PRICE-T scheme of Toro and Siviglia (2003) and compared

with the exact solution (line). 1000 cells have been used.

was shown by Toro and Siviglia (2003) that for the shallow water equations the

price-T scheme provides an acceptable error in the computation of the exact

solution in presence of weak shocks. However, in the presence of a strong shock

the scheme is unable to capture both the exact position of the front and the exact

values of the conservative variables behind the shock (Fig. 2.4). In fact, Hou

and LeFloch (1994) theorem proves that non-conservative methods will converge

to the wrong solution in the presence of a shock wave.

Therefore the aim of this thesis, is to develop a modified PRICE-T scheme

that degenerate to the FORCE scheme in case that A(Q) is the Jacobian matrix

A(Q) = ∂F/∂Q. The relevance of this result is noteworthy: it has been proved,

in fact, that FORCE is the optimal centred scheme in the sense that it is the

least dissipative of all three-point centred methods that are monotone and have

stability condition (2.14) (see Toro and Billett, 2000, for details.) Furthermore,

it will be shown that the proposed scheme preserves some particular equilibria

of the governing PDE (well-balanced property) and should be easily extendable

to high order of accuracy in space and time.
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2.2.2 The PRICE-R scheme

The system (2.1) contains a nonconservative product A∂Q/∂x which, in general,

cannot make sense within the framework of the theory of distributions. With the

theory developed by Dal Maso, LeFloch, and Murat (1995), a rigorous definition

of weak solutions can be performed using a family of paths Φ in Ω. Once a family

of paths is chosen it is possible to give a sense to the non-conservative product as a

Borel measure (see Dal Maso et al. (1995) for details), denoted by [A∂Q/∂x]Φ and

weak solutions are the functions satisfying the equality ∂Q/∂t+[A∂Q/∂x]Φ = 0.

Moreover, in Toumi (1992) a generalization of the Roe method to systems of the

form (2.1) was introduced. Given a family of paths Ψ, a matrix AΨ is called a

Roe linearization if it satisfies:

• for any QL,QR ∈ Ω , AΨ(QL,QR) has N real distinct eigenvalues;

• AΨ(Q,Q) = A(Q), for any Q ∈ Ω

• for any QL,QR ∈ Ω:

AΨ(QL,QR)(QR − QL) =

∫ 1

0

A(Ψ(s,QL,QR))
∂Ψ

∂x
ds (2.15)

If A(Q) is the Jacobian matrix of the flux F(Q), then (2.15) is independent of

the choice of the family of the path and the classical Roe property:

A(QL,QR)(QR − QL) = F(QR) − F(QL) (2.16)

is obtained. We can now derive a modified version of the PRICE-T scheme,

called PRICE-R, expressing the matrices Ai and Ai+ 1

2

in equations (2.11) and

(2.12) as

Âi = AΨ

(
Q
n+ 1

2

i− 1

2

,Q
n+ 1

2

i+ 1

2

)
, Âi+1

2

= AΨ

(
Qn
i ,Q

n
i+1

)
. (2.17)

Using algebraic manipulations and equation (2.16), it is easy to prove that the

scheme (2.11) & (2.12) with (2.17) reduces to the original conservative FORCE

scheme (2.5) with the original FORCE flux (2.6) with (2.7) and (2.8), if A(Q) is

the Jacobian matrix of a flux F(Q).
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It can be shown (Castro et al., 2006) that the best choice for Ψ would be

Ψ = Φ. In practice is difficult and computationally expensive to build numerical

schemes with this choice of Ψ, and so in the follow the simpler family of linear

path

Ψ(s,QL,QR) = QL + s(QR − QL) , (2.18)

is chosen, that coincides with the definition of nonconservative product proposed

by Volpert (1967), and it is shown to give good results with upwind methods of

the Roe-type (Castro et al., 2006).

The choice of the matrices (2.17) has the advantage that the resulting PRICE-

R method becomes exactly conservative if applied to conservation laws. However,

it has the obvious disadvantage that one needs to compute the Roe matrix, which

may become very cumbersome or even impossible for complicated hyperbolic

systems. Since a truly centred approach is sought, i.e. the scheme should not

need any wave propagation information contained in the underlying governing

PDE, thus avoiding the explicit computation of the Roe matrix. An alternative

to the analytical computation of the Roe-type matrix AΨ is to use definition

(2.15) and the segment path (2.18), which yields

AΨ(QL,QR)(QR − QL) =

(∫ 1

0

A(Ψ(s,QL,QR))ds

)
(QR − QL). (2.19)

Hence, the following definition of the Roe matrix AΨ in the case of a segment

path is obtained:

AΨ(QL,QR) =

∫ 1

0

A(Ψ(s,QL,QR))ds. (2.20)

The exact conservation properties of the PRICE-R schemes described above is

valid if the integral (2.20) is computed exactly. For complicated nonlinear hy-

perbolic systems, the exact computation of the integral may quickly become too

cumbersome, so that a classical high order accurate Gaussian quadrature rules

is here proposed to compute the right hand side of eqn. (2.20) numerically.

Given an M -point Gaussian quadrature rule with weights ωj and positions sj
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Figure 2.5: Inviscid dam break problem generating a strong shock wave (initial

conditions hl = 100m, hr = 0.1m, ul = 0 and ur = −250m/s). The longitudinal

distributions of the water surface elevation resulting from the first-order PRICE-

R scheme using 1 to 3 Gaussian points (symbols) is plotted versus exact solution

(line). The results refer to t =5 s and 1000 cells have been used. On the left it

is shown the entire computational domain, while the right plot reports a zoom

around the shock region.

distributed in the unit interval [0; 1], a very accurate numerical approximation

of the Roe matrix is:

AΨ(QL,QR) ≈
M∑

j=1

ωjA(Ψ(sj,QL,QR)). (2.21)

Recall that an M -point Gaussian quadrature rule integrates polynomials up to

degree 2M − 1 exactly, which means that one Gaussian point is enough if the

system matrix A(Q) is a linear function in Q. In order to study the sensitiv-

ity of the resulting PRICE-R scheme in association with the approximate Roe

matrix (2.21) the behaviour of the method for the shallow water equations in

presence of a strong shock wave is tested. The results are depicted in Fig. 2.5.

The computations are carried out with different numbers of Gaussian points. It

appears that with three or more Gaussian points the solution can not be distin-

guished any more from the solution obtained using the exact Roe matrix. So the

basic idea of the present new scheme is to avoid the use of the analytical Roe

matrix, which requires the knowledge of wave propagation information (upwind

philosophy), and to use a Roe-type matrix which is computed numerically with a
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number of Gaussian points that is adequate for the problem to be solved (centred

philosophy). Moreover the reader can easily verify that the original PRICE-T

scheme (2.11) and (2.12) with the matrices Âi and Âi+ 1

2

given by (2.13) can be

reinterpreted as the PRICE-R scheme, in which equation (2.21) is approximated

with just one single Gaussian point. This choice was shown by Toro and Siviglia

(2003) to give already reasonable shock-capturing properties in the case of weak

shocks.

2.2.3 Alternative Formulation of the PRICE-R scheme

It is useful to observe that, after some easy algebra, equations (2.11) and (2.12)

can be rewritten in the form:

Qn+1
i = Qn

i −
∆t

∆x

[
A−

i+ 1

2

(Qn
i+1 − Qn

i ) + A+
i− 1

2

(Qn
i − Qn

i−1)
]
, (2.22)

where

A−

i+1

2

=
1

4

[
Âi −

∆x

∆t
I + Âi+1

2

− ∆t

∆x
ÂiÂi+1

2

]
(2.23)

and

A+
i−1

2

=
1

4

[
Âi +

∆x

∆t
I + Âi−1

2

+
∆t

∆x
ÂiÂi−1

2

]
, (2.24)

with I being the identity matrix and all matrices Â computed as in (2.17). So

the proposed scheme is thus recast in the same form of the path-conservative

Roe scheme proposed in Parés (2006) and Castro et al. (2006; 2008b), the only

difference being in the matrices A−

i+1

2

and A+
i−1

2

. In the present formulation, these

Roe-type matrices are centred, that is they do not use explicit wave properties

information. Moreover, they are computed numerically, whereas in Castro et al.

(2006; 2008b) they are computed as

A±

i+1

2

= AΨ

(
Qn
i ,Q

n
i+1

)±
= RΨΛ±

ΨR−1
Ψ . (2.25)

Here, the usual definitions apply, i.e. RΨ is the matrix of right eigenvectors of

the Roe matrix AΨ and ΛΨ is the diagonal matrix with the eigenvalues of AΨ.

The matrices Λ±
Ψ are, as usual, either the positive or the negative part of the

diagonal matrix ΛΨ.
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2.2.4 The PRICE-C Scheme

The main drawback of the scheme (2.22),(2.23),(2.24) is that the matrices A+
i−1

2

and A−

i+1

2

are three-point functions, i.e. each of them depends on the three states

Qn
i−1, Qn

i and Qn
i+1. This prevents a direct extension of the PRICE-R method

to multiple space dimensions and high order of accuracy using a polynomial

reconstruction of Q.

To circumvent this problem, it is here proposed to modify the matrices A+
i−1

2

and A−

i+1

2

, substituting the matrix Âi in (2.23) with Âi+1

2

and the matrix Âi

in (2.24) with Âi−1

2

, in order to make them only two-point functions of the two

adjacent states. After these modification, the final non-conservative version of

the FORCE method, hereinafter called PRICE-C scheme , reads as follows:

Qn+1
i = Qn

i −
∆t

∆x

[
A−

i+ 1

2

(Qn
i+1 − Qn

i ) + A+
i− 1

2

(Qn
i − Qn

i−1)
]
, (2.26)

with

A−

i+1

2

=
1

4

[
2AΨ

(
Qn
i ,Q

n
i+1

)
− ∆x

∆t
I − ∆t

∆x

(
AΨ

(
Qn
i ,Q

n
i+1

))2
]

(2.27)

and

A+
i−1

2

=
1

4

[
2AΨ

(
Qn
i−1,Q

n
i

)
+

∆x

∆t
I +

∆t

∆x

(
AΨ

(
Qn
i−1,Q

n
i

))2
]
. (2.28)

Now the matrices A−

i+1

2

and A+
i−1

2

only depend on two adjacent states. With the

properties (2.20) and (2.16) it can be easily proven that if the PDE (2.1) is a

conservation law (2.2), then:

A−

i+1

2

(
Qn
i+1 − Qn

i

)
= FFORCE′

i+ 1

2

− F(Qn
i ), (2.29)

A+
i−1

2

(
Qn
i − Qn

i−1

)
= F(Qn

i ) − FFORCE′

i− 1

2

. (2.30)

Therefore, the PRICE-C scheme (2.26)-(2.28) reduces to the modified conserva-

tive FORCE method (2.5), (2.9), (2.10) if A is the Jacobian of a flux F.

It has to be emphasized that this new formulation has the important advan-

tage that an explicit computation of the Roe averages is not necessary, following
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the original philosophy of centred schemes that by definition do not need any

additional information on the PDE system. At the same time conservation can

be practically maintained up to any desired precision using Gaussian quadrature

rules of appropriate order of accuracy. For complicated nonlinear PDE, as they

typically arise in industrial, civil and environmental engineering, closed analyt-

ical expressions for the Roe averages may be impossible to obtain for a given

PDE system. This will be shown later on, by applying the proposed PRICE-C

scheme to the shallow water equations in the presence of movable bed using a

complex closure relation for bed-load transport.

2.3 High Order Extension

2.3.1 Nonlinear Reconstruction Technique

This section discusses the proposed nonlinear weighted essentially non-oscillatory

(WENO) procedure to reconstruct higher order polynomial data within each

spatial cell Ti = [xi− 1

2

;xi+ 1

2

] at time tn from the given cell averages Qn
i . It has to

be noted that the reconstruction procedure is nonlinear and depends strongly on

the input data Qn
i . Thus, the resulting numerical scheme, even when applied to a

completely linear PDE, will be non-linear and thus it will not be possible to give

a closed expression of the scheme. Indeed Godunov’s theorem states that linear

numerical schemes for solving partial differential equations, having the property

of not generating new extrema (monotone scheme), can be at most first-order

accurate. Therefore, if a non-oscillatory high-order scheme is sought, the scheme

has to be non-linear.

The reconstruction procedure described here for the one-dimensional case fol-

lows directly from the guidelines given by Dumbser and Käser (2007) for general

unstructured two- and three-dimensional meshes. It reconstructs entire polyno-

mials, as the original ENO approach proposed by Harten et al. (1987). However,

the method is here written as a WENO scheme (Jiang and Shu, 1996; Liu et al.,

1994) with a particularly simple choice for the linear weights. The most impor-
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tant difference of this approach compared to classical WENO schemes is that

standard WENO methods reconstruct point values at the Gaussian integration

points instead of an entire polynomial valid inside each element Ti.

Reconstruction is done for each element on a reconstruction stencil Ssi , given by

the following union of the element Ti and its neighbors Tj,

Ssi =
i+s+k⋃

j=i+s−k

Tj, (2.31)

where s is the stencil shift with respect to the central element Ti and k is the

spatial extension of the stencil to the left and the right. A central reconstruction

stencil is given by s = 0, an entirely left-sided stencil is given by s = −k and an

entirely right-sided stencil is given by s = k. In the present approach it is always

made use of the three fixed reconstruction stencils S0
i , S−k

i and Ski .
Given the cell average data Qn

i in all elements Ti, a spatial reconstruction poly-

nomial obtained from Ssi at time tn is seek in the form

ws
i (x, t

n) =
N∑

l=0

Ψl(x)ŵ
(i,s)
l (tn) := Ψl(x)ŵ

(i,s)
l (tn), (2.32)

where the rescaled Legendre polynomials are used for the spatial reconstruction

basis functions Ψl(x) such that the Ψl(x) form an orthogonal basis on the element

Ti. In the following, standard tensor index notation is used, implying summation

over indices appearing twice. The number of polynomial coefficients (degrees of

freedom) is L = N + 1, where N is the degree of the reconstruction polynomial.

To compute the reconstruction polynomial wi(x, t
n) valid for element Ti integral

conservation for all elements Tj inside the stencil Ssi is required, i.e.

1

∆x

∫

Tj

ws
i (x, t

n)dx =
1

∆x

∫

Tj

Ψl(x)dx · ŵ(i,s)
l (tn) = Qn

j , ∀Tj ∈ Ssi . (2.33)

Equation (2.33) yields a linear equation system of the form

Bjl · ŵ(i,s)
l (tn) = Qn

j (2.34)



2.3. HIGH ORDER EXTENSION 29

for the unknown coefficients ŵ
(i,s)
l (tn) of the reconstruction polynomial on stencil

Ssi . Since k = N/2 is chosen for even N and k = (N + 1)/2 is chosen for odd N ,

the number of elements in Ssi may become larger than the number of degrees of

freedom L. In this case, a constrained least-squares technique is used according

to Dumbser and Käser (2007) to solve (2.34).

To obtain the final non-oscillatory reconstruction polynomials for each ele-

ment Ti at time tn, a data-dependent nonlinear combination of the polynomi-

als w0
i (x, t

n), w−k
i (x, tn) and wk

i (x, t
n) obtained from the central, left-sided and

right-sided stencils is finally constructed as follows:

wi(x, t
n) = ŵi

l(t
n)Ψl(x), (2.35)

with

ŵi
l(t

n) = ω0 ŵ
(i,0)
l (tn) + ω−k ŵ

(i,−k)
l (tn) + ωk ŵ

(i,k)
l (tn). (2.36)

The nonlinear weights ωs are given by the relations

ωs =
ω̃s

ω̃0 + ω̃−k + ω̃k
, ω̃s =

λs
(σs + ǫ)r

. (2.37)

In this particular formulation, the oscillation indicators σs are computed from

σs = Σlm ŵs
l (t

n)ŵs
m(tn), (2.38)

with

Σlm =
N∑

α=1

1∫

0

∆x2α−1∂
αΨl (x)

∂xα
· ∂

αΨm (x)

∂xα
dx. (2.39)

Here, Σlm is the oscillation indicator matrix for element Ti. If all computations

are done in a reference element, then this matrix does neither depend on the

problem nor on the mesh, see Dumbser and Käser (2007). The parameters ǫ and

r are constants and they are typically chosen as ǫ = 10−14 and r = 8. Moreover

linear weights λ−k = λk = 1 are chosen for k 6= 0, and a very large linear weight

λ0 is chosen on the central stencil, typically λ0 = 105. It is worthwhile to observe

that the numerical results are quite insensitive to the WENO parameters ǫ and

r (Jiang and Shu, 1996; Liu et al., 1994) and also to the linear weight on the
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central stencil λ0, see Dumbser and Käser (2007).

The proposed reconstruction uses the accurate and linearly stable central stencil

reconstruction in those regions of Ω where the solution is smooth because of the

large linear weight λ0. However, due to the strongly nonlinear dependence of

the weights ωs on the oscillation indicators σs, in the presence of discontinuities

the smoother left- or right-sided stencils are preferred, as for standard ENO

and WENO methods. For the nonlinear scalar case, the reconstruction operator

described above can be directly applied to the cell averages Qn
i of the conserved

quantity Q. For nonlinear hyperbolic systems, the reconstruction should be done

in characteristic variables (Harten et al., 1987; Dumbser et al., 2007) in order

to avoid spurious oscillations that may appear when applying ENO or WENO

reconstruction operators component-wise to nonlinear hyperbolic systems.

2.3.2 High-Order Accurate One-Step Time Discretization

The result of the reconstruction procedure described in the previous section is a

non-oscillatory spatial polynomial wi(x, t
n) defined at time tn inside each spatial

element Ti. However, the temporal evolution of these polynomials inside each

space-time element [xi− 1

2

;xi+ 1

2

]× [tn; tn+1] has to be computed in order to obtain

the final high order accurate one-step finite volume scheme. To this purpose

ADER approach of Toro and Titarev (2002) is used. The key idea therein being

to solve, in a centred framework, high order Riemann problems at the element

boundaries, this is accomplished by a Taylor series expansion in time and the

use of the Cauchy-Kowalewski procedure. In this work the following strategy

is adopted: local solution Qi(x, t) of the PDE is expanded in each cell by a

space-time Taylor series with respect to the element barycenter xi

Qi(x, t) = Q(xi, t
n) + (x− xi)

∂Q

∂x
+ (t− tn)

∂Q

∂t
+

1

2
(x− xi)

2∂
2Q

∂x2
+

(x− xi)(t− tn)
∂2Q

∂t∂x
+

1

2
(t− tn)2∂

2Q

∂t2
+ ... (2.40)

where then the classical Cauchy-Kovalewski procedure is used in order to sub-

stitute time derivatives with space derivatives, using repeated differentiation of
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the governing PDE system (2.1) with respect to space and time. In the follow-

ing, the Cauchy-Kovalewski procedure is illustrated symbolically for third order

of accuracy. For an efficient implementation up to any order of accuracy in

space and time the reader is referred to Dumbser and Munz (2006) and Dumb-

ser et al. (2007). For two more general and fully numerical alternatives to the

semi-analytical Cauchy-Kovalewski procedure see Dumbser et al. (2008b) and

Dumbser et al. (2008a), where local space-time finite element methods are used

in order to compute the polynomial Qi(x, t).

The first time derivative can be directly obtained from (2.1) as

∂Q

∂t
= −A(Q)

∂Q

∂x
. (2.41)

The mixed space time derivative is then obtained after a differentiation with

respect to space

∂2Q

∂t∂x
= − ∂

∂x
A(Q)

∂Q

∂x
− A(Q)

∂2Q

∂x2
, (2.42)

and the second time derivative of Q is

∂2Q

∂t2
= − ∂

∂t
A(Q)

∂Q

∂x
− A(Q)

∂2Q

∂t∂x
. (2.43)

The value of Qi(xi, t
n) and all purely spatial derivatives are obtained from the

WENO reconstruction polynomial wi(x, t
n).

2.3.3 The Fully Discrete High Order Accurate One-Step

Scheme

Once the WENO reconstruction and the Cauchy-Kovalewski procedure have been

performed for each cell, PDE (2.1) can be integrated over a space-time control

volume [xi− 1

2

;xi+ 1

2

]× [tn; tn+1] and the final high-order accurate one-step scheme

can be written as:

Qn+1
i = Qn

i −
1

∆x
AQx −

∆t

∆x

[
D−

i+ 1

2

+ D+
i− 1

2

]
, (2.44)
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where

AQx =

tn+1∫

tn

x−
i+1

2∫

x+

i− 1
2

A(Qi(x, t))
∂

∂x
Qi(x, t)dxdt (2.45)

and

D±

i+ 1

2

=
1

∆t

tn+1∫

tn

A±

i+ 1

2

(
Q+
i+ 1

2

− Q−

i+ 1

2

)
dt, (2.46)

with

Q−

i+ 1

2

= Qi(xi+ 1

2

, t) and Q+
i+ 1

2

= Qi+1(xi+ 1

2

, t). (2.47)

All the integrals are approximated using Gaussian quadrature formulae of suit-

able order of accuracy. Note that the term AQx, which integrates the smooth

part of the non-conservative product within each cell (excluding the jumps at the

boundaries), vanishes for a first order scheme where ∂
∂x

Qi(x, t) = 0. The entire

high-order one-step algorithm can be briefly summarized as follows:

1. Perform the WENO reconstruction described in section 2.3.1 in order to

obtain the reconstruction polynomials wi(x, t
n) for each cell.

2. Compute the spatial derivatives of wi(x, t
n) and insert them into the Cauchy-

Kovalewski procedure in order to get all missing space-time derivatives

in the Taylor series (2.40). This step generates a space-time polynomial

Qi(x, t) for each cell Ti.

3. Use the space-time polynomials Qi(x, t) together with Gaussian quadrature

to compute the integrals appearing in the fully discrete scheme (2.44) and

perform the update of the cell averages.

In the next chapter this high order algorithm is applied to the system of

time-dependent non-linear shallow water equations with both fix and movable

bed. The scheme is tested against both analytical solutions and real situations

where experimental data are available.



Chapter 3

Application of the PRICE-C

scheme to the one-dimensional

shallow water equations

The PRICE-C scheme developed in the previous chapter is very general and it

is applicable to any system of hyperbolic equations containing non-conservative

products. In this chapter the performance of the developed high order algorithm

is checked using as model system the time-dependent non-linear shallow water

equations in the presence of either a fix or a movable bed.

The computations are carried out using second-order WENO polynomials,

so that the resulting PRICE-C scheme is third order accurate in both time and

space. The Courant number is set to CFL=0.9. The matrix (2.20) has been

evaluated using a three-point Gaussian quadrature rule with the following points

sj and weights ωj:

s1 =
1

2
, s2,3 =

1

2
±

√
15

10
, ω1 =

8

18
, ω2,3 =

5

18
. (3.1)

33
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3.1 The fix bed case

The shallow water equations are the main tool for solving problems in hydraulic

engineering, such as flood prediction in rivers and tide propagation in tidal chan-

nels. Here the system of equations with a geometrical source term due to the

bed topography and in the absence of bottom friction is considered. The shallow

water equations are analytically manipulated in order to use the water surface

elevation, H, instead of the water depth, h, as a conservative variable. In one

space dimension, the equations take the form:






∂H
∂t

+ ∂q
∂x

= 0

∂q
∂t

+ ∂
∂x

(
q2

H−b
+ 1

2
gH2

)
+ gH ∂b

∂x
= 0 ,

(3.2)

where H(x, t) denotes the water surface elevation, q(x, t) is the discharge for

unit width, b(x) represents the given bottom topography and g is the gravity.

System (3.2), together with the trivial equation db
dt

= 0, can be written in the

nonconservative form (2.1) with the vector Q and matrix A being respectively:

Q =





H

q

b



 , A =





0 1 0

g(H − b) − q2

(H−b)2
2q
H−b

q2

(H−b)2

0 0 0



 .

(3.3)

We note here that the scheme (2.44) with matrices (2.27) and (2.28) when applied

to the shallow water equations produces an artificial motion of the bottom. In

fact when the bottom is variable, the component (3,3) of the identity matrix I

gives an undesirable diffusion that tends to flatten the bottom also if the water

is quiescent. So in the follow we use a modified identity matrix Im that reads:

Im =





1 0 0

0 1 0

0 0 0



 , (3.4)
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where the undesirable difussion of the bottom is eliminated. A number of differ-

ent case studies are reported in the following. Each test case has been selected

in order to verify a specific property of the scheme. Therefore, quiescent flow

test cases are used to check the C-property achievement. Other tests are used

to check the behaviour of the scheme in the case of a small perturbation of a

quiescent state, a dam-break over a variable bottom profile and a steady flow

over a smooth hump. An exact solution of the De Saint Venant-Exner equations

is proposed to check the effective order of accuracy of the whole scheme. Finally

the numerical model is compared with the experimental data obtained by Bellal

et al. (2003) for an hydraulic jump over movable bed.

3.1.1 Verification of the C-property: still water

Algebraic Proof. It is well-known that numerical methods for the shallow

water system with variable bottom must satisfy the so-called C-property as in-

troduced by Bermudez and Vazquez (1994). It is evident that the governing

equations contain non-vanishing terms also in the case of quiescent flow. Both

the source term due to the bottom elevation gH∂b/∂x and the flux term due to

hydrostatic pressure 1
2
gH2 are different from zero and the former balances the

divergence of the latter. A scheme that satisfies the C-property has to be able

to correctly solve this balance over any bottom profile, including discontinuous

bottom.

For quiescent flow, we have H = const., u = 0 and therefore

∆Q =





∆H

∆q

∆b



 =





0

0

∆b



 , AΨ =





0 1 0

gh 0 0

0 0 0




, A2

Ψ =





gh 0 0

0 gh 0

0 0 0




,

(3.5)

with h =
1∫
0

h(s)ds =
1∫
0

(hL + s(hR − hL))ds. Using the well-balanced identity

matrix Im it follows trivially from eqns. (2.26)-(2.28) and (3.4) that

A±

i− 1

2

∆Q = 0 (3.6)
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and therefore the first order scheme verifies the exact C-property. Moreover also

the term AQx in eqn. (2.44) vanishes, so also the higher order extensions satisfy

the property.

Numerical verification. The aim of these simulations is now to verify whether

also our actual implementation of the proposed PRICE-C scheme in computer

code satisfies the exact C-property to machine precision. In order to verify this

property we perform two different numerical experiments as as proposed in Xing

and Shu (2006). In the first test case the bed elevation is smooth and is described

by the Gaussian equation:

b(x) = 5e(−
2

5
(x−5)2) . (3.7)

In the second test case the bed elevation is discontinuous and it is described by:

b(x) =





4 m if 4 ≤ x ≤ 8 m

0 otherwise .
(3.8)

The initial data for both the tests are the quiescent water solution:

H = h+ b = 10 m , q = 0 , (3.9)

with h the water depth. Fig. 3.1 shows the initial conditions. To test the ability

of the scheme to maintain the initial quiescent conditions, a simulation is carried

out until t = 5 s, using a mesh of 200 cells, in a 10 m long domain. Table (3.1)

shows that the property is exactly satisfied, the differences between the numerical

solution and the reference solution being clearly due only to round-off errors.

3.1.2 A small perturbation of initially quiescent water

This test was first proposed by LeVeque (1998). It consists in the simulation of

the convection of a small pulse in initially quiescent water. The bed topography

consists in the following hump:

b(x) =





0.25(cos(10π(x− 1.5)) + 1) if 1.4 ≤ x ≤ 1.6 m

0 otherwise
(3.10)
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Table 3.1: Verification of the C-property: water depth and specific discharge

norms

Testcase H (m) q (m2/s)

L1 L∞ L1 L∞

Test 1 (smooth) 3.25e-15 1.12e-14 2.42e-15 4.56e-14

Test 2 (non-smooth) 4.34e-15 1.45e-14 7.54e-15 3.23e-14

and the initial conditions are:

q(x, 0) = 0 and H(x, 0) =





1 + ǫ if 1.1 ≤ x ≤ 1.2 m

1 otherwise ,
(3.11)

with ǫ a non-zero perturbation constant, chosen to be ǫ = 0.2 m in the first

test and ǫ = 0.001 m in the second test. LeVeque (1998) showed that some

numerical methods can give wrong solutions with the calculations involving such

small perturbations of the water surface. The initial conditions are depicted in

fig. 3.2, whereas the results for the water surface and the velocity are shown in fig.

3.3 and fig. 3.4. The solution obtained using the third order PRICE-C scheme

with 400 cells is compared with a numerical reference solution obtained on a very

Figure 3.1: Verification of the C-property: initial conditions. On the left: smooth

bottom. On the right: discontinuous bottom.



38 Chapter 2

fine mesh with 3000 cells. No spurious oscillations are present in the solution.

Moreover, the results are in good agreement with the results provided by Xing

and Shu (2006, Figs. 3 and 5), with a fifth order TVD Runge-Kutta scheme. It

has to be noted that in the second test, being ǫ/h << 1, this disturbance should

theoretically split into two waves, propagating left and right at the characteristic

speed
√
gh, equal to 3.13 m/s. Therefore a wave should cover a distance of 0.626

m in 0.2 s. The position of the left front is in good agreement with the theoretical

value x = 1.1− 0.626 = 0.474 m. The right wave is a little bit slowed down with

respect to the left wave, since it propagates over the hump, where h < 1.

Here the proposed scheme was shown to be able to compute correctly both

a rapidly varying flow over a smooth bed and the perturbation of a stationary

state.

3.1.3 Dam breaking over a rectangular hump

This test case was first introduced in Vukovic and Sopta (2002) and investigates

the ability of the model to deal with a dam break over a discontinuous bottom.

Figure 3.2: Small perturbation of initially quiescent water: initial conditions.

On the left: ǫ = 0.2 m. On the right: ǫ = 0.001 m.
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Figure 3.3: Small perturbation of initially quiescent water: ǫ = 0.2 m. Results

at time t =0.2 s for the third-order PRICE-C scheme with 400 cells (symbols)

and with 3000 cells (line).

The bed surface is described by:

b(x) =





8 if |x− 750| ≤ 1500/800 m

0 otherwise .
(3.12)

The initial condition are:

q(x, 0) = 0 and H(x, 0) =





20 m if x ≤ 750 m

15 m otherwise .
(3.13)

Fig. 3.5 shows the initial conditions used in the test as well as the results after

15 and 60 sec. The solution obtained using 400 cells is compared to the solution
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Figure 3.4: Small perturbation of a steady state water: ǫ = 0.001 m. Results at

time t =0.2 s for the third-order PRICE-C scheme with 400 cells (symbols) and

with 3000 cells (line).
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obtained using 4000 cells. No oscillations are generated neither at the bottom

discontinuity nor at the surface shock. There is also a good agreement between

the results provided by the coarse and the refined grid. Moreover the results

agree with those provided by Xing and Shu (2006, Figs. 6 and 7) by using an

high order TVD Runge-Kutta scheme.
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Figure 3.5: Dam breaking over a rectangular hump. On the top: initial condi-

tions. On the bottom: spatial distribution of the water surface elevation com-

puted through the third-order PRICE-C scheme with 400 cells (symbols) and

with 4000 cells (line) is shown. On the left after t = 15 s. On the right after t =

60 s.

3.1.4 Steady flow over a smooth hump

The aim of these tests is to analyze the convergence in time towards a steady

flow over a smooth bump. To this porpuse, three different tests (a, b, c) having

exact solution are used. They have been proposed by the Working group on dam
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break modeling (Goutal and Maurel, 1997). In the case of a steady flow, both

the source term due to the bottom elevation, gH∂b/∂x, and the variation of the

flux term, ∂/∂x
[
q2/(H − b) + 1

2
gH2

]
, in (3.2) are different from zero, and the

former has to balance the divergence of the latter. The bottom topography is

described by:

b(x) =





0.2 − 0.05(x− 10)2 if 8 ≤ x ≤ 12 m

0 otherwise .
(3.14)

The domain has a length of 25 m, and it is divided in 200 cells. Steady solutions

have been obtained by marching in time, starting from an initial horizontal profile

that is far away from the steady solution. The initial conditions are then taken

as:

q(x, 0) = 0 and H(x, 0) = 0.5 m .

several different configurations can be considered, characterized by smooth or

discontinuous solutions, depending on the values of the water discharge Q, the

maximum elevation of the bed profile and the boundary conditions for the free

surface elevation. Three different cases are here considered. The bottom is the

same for all of them and the different boundary conditions are summarized in

Table 3.2. In test case (a) the steady solution is characterized by a transcritical

Table 3.2: Boundary conditions for the steady flow over a smooth hump

Test case q(x = 0, t) [m2/s] H(x = L, t) [m]

(a) 1.53 0.66

(b) 0.18 0.33

(c) 4.42 2.0

flow without a shock, in test (b) the solution is characterized by a transcritical

flow with a shock, while in test (c) the solution is given by a completely sub-

critical flow. Analytical solutions for the various cases are computed following

Goutal and Maurel (1997). The numerical and exact solutions for all test cases
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are depicted in Fig. 4 at time t = 200 s. The agreement between the free surface

elevation H computed numerically and analytically is excellent. Note the correct

shock position and the good shock resolution for case (b). Moreover spurious

oscillations are not produced at the discontinuity. The small errors that charac-

terize the discharge are also present in other high order schemes documented in

the literature, see e.g. Castro et al. (2006),since these errors are located where

the cells include a discontinuity of the unknown variables or their derivatives.

3.2 Movable bed tests.

The system of equations that governs the transport of sediments in bed-load

dominated rivers is obtained by coupling the shallow water equations (3.2) with

an equation that describes the river bed evolution, namely the Exner equation.

The latter reads:
∂b

∂t
+
∂qs
∂x

= 0, (3.15)

where b = b(x, t) is the movable bed elevation and qs is the bedload sediment

transport rate for unit width. Note that the porosity term is incorporated in

qs.For the quantification of qs different relationships are available in literature.

A simple power law formula (Grass, 1981), is used here for testing the method

against exact analytical solutions, namely:

qs =
A(u− uc)

m

(1 − λp)
, (3.16)

where u = q/(H − b) is the velocity of the water, uc is the critical velocity below

which the sediment transport vanishes, m is a positive exponent, and λp is the

bed porosity. Other two empirical formulae available in literature have been also

implemented. They are of the type:

qs =

√
(s− 1)gd3

s

(1 − λp)
Φ (θ) , (3.17)

with s the relative density, and θ the local Shields stress given by

θ =
Sfh

(s− 1)ds
, (3.18)
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Figure 3.6: Steady flow over a smooth hump. Top row: test case (a). Middle

row: test case (b). Bottom row: test case (c). The spatial distribution of the

water surface elevation and the discharge per unit width are shown at time t

=200 s. The third-order PRICE-C scheme is denoted by symbols while the exact

solution is denoted by a line. 200 cells have been used.

.

ds is the mean sediment diameter and Sf the friction term, calculated using

the usual formula of Gauckler-Stricker. The sediment discharge function Φ(θ) is

evaluated on the basis of the formula proposed by either Parker (1990)

Φ = 0.00218 θ3/2G(ξ), ξ =
θ

θr
, θr = 0.0386, (3.19)
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with

G =






5474(1 − 0.853/ξ)4.5 ξ ≥ 1.59,

exp [14.2(ξ − 1) − 9.28(ξ − 1)2] 1 ≤ ξ ≤ 1.59,

ξ14.2 ξ < 1.

(3.20)

or Meyer-Peter and Müller (1948)

Φ = 8(θ − θc)
3/2, θc = 0.047. (3.21)

It is worth noticing that the empirical nature of the relationships used to quan-

tify the solid discharge qs leads to the availability of a great number of different

formulae, whose choice gives rise to a different system matrix A and, there-

fore, to a different formulation for the Roe matrix AΨ. This would imply a

huge effort when, as it usually occurs in practical applications, the various em-

pirical formulations available in literature are tested in order to reproduce field

measurements or laboratory experiments. The main advantage of the proposed

PRICE-C method is that the fully numerical computation of the Roe matrix

AΨ via Gaussian quadrature along the path completely avoids the need for an

explicit computation of the Roe averages. Vukovic and Sopta (2002), for exam-

ple, applied a WENO scheme to shallow water equations over movable bed by

an upwind approach, but in this case only a very simple model for the sediment

transport can be considered. On the other end the use of a central scheme per-

mits the straightforward application of the methods to more complex, physically

based, formulations.

The system of governing equations describing the coupled evolution of the

fluid and the bed can be written in the form (2.1) with the vector Q and matrix

A given by:

Q =





H

q

b



 , A =





∂qs
∂H

1 + ∂qs
∂q

∂qs
∂b

g(H − b) − q2

(H−b)2
2q
H−b

q2

(H−b)2

∂qs
∂H

∂qs
∂q

∂qs
∂b



 .

(3.22)

where ∂qs/∂H, ∂qs/∂q and ∂qs/∂b are the derivatives of the solid discharge with

respect to the unknown variables. Note that the continuity equation of the fluid
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has been changed to take into account the variability of the bed elevation. In the

following the results provided by the proposed PRICE-C scheme are presented

for three different test cases.

3.2.1 Numerical Convergence Study

An original exact solution is here derived for equations (2.1) with (3.22). If the

following power law

qs = aqm with a = −(1 − p) , m = 1 , (3.23)

is chosen for the solid discharge, it can be easily verified that the functions

H(x, t), Q(x, t) and b(x, t) which satisfy exactly equations (3.2) and (3.15) are:

H(x, t) = 0 , q(x, t) =
ω

λ
h0 + a0

ω

λ
sin(λx− ωt) (3.24)

b(x, t) = −h(x, t) = −(h0 + a0sin(λx− ωt)) , (3.25)

with λ = 2π/L, ω = 2π/T , λ and T being respectively the wave length and

the period of the sinusoidal oscillation. Note the that the relationship (3.23) is

not-physically based, but it allows one to find an exact solution by which the

convergence rate of the numerical scheme can be tested. Periodical boundary

conditions are prescribed in x = 0 and in x = L. Fig. 3.7 shows the results of

the computations after 100 s. Table 3.3 shows the errors quantified through the

standard norms L1, L∞ and relative convergence rates for variables h and q at

the time t = 10 s with c0=0.2 m , Tp = 1 s, Lw=10 m and using 100 cells. The

expected orders of accuracy are achieved with each norm.

3.2.2 Propagation of a Small Sediment Hump Near Crit-

ical Conditions

The numerical scheme is now tested for a subcritical flow over a bump close to

critical conditions. It has been shown by Sieben (1997; 1999) that for Fr =

u/
√
gh in the range 0.8 ÷ 1.2, where Fr = u/

√
gh is the Froude number, the
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Figure 3.7: Convergence test with movable bed. Results are shown at time t =

10 s using the third-order PRICE-C scheme with 100 cells (symbols) as well as

the exact solution (line).

Table 3.3: Convergence rates study for the sediment transport problem with

source terms for the third order PRICE-C method, (c0=0.2 m , Tp = 1 s, Lw=10

m.)

variable h variable q

N L1 O(L1) L∞ O(L∞) L1 O(L1) L∞ O(L∞)

20 5.54E-03 8.57E-03 1.39E-02 2.14E-02

40 1.71E-03 1.70 2.70E-03 1.67 4.27E-03 1.70 6.75E-03 1.67

80 2.45E-04 2.80 3.86E-04 2.81 6.13E-04 2.80 9.64E-04 2.81

160 3.05E-05 3.01 4.79E-05 3.01 7.62E-05 3.01 1.20E-04 3.01

320 3.62E-06 3.08 5.68E-06 3.08 9.04E-06 3.08 1.42E-05 3.08

640 4.01E-07 3.17 6.30E-07 3.17 1.00E-06 3.17 1.57E-06 3.17

coupling between the shallow water equations and the Exner equation at each

time step is crucial. In this range, in fact, each of the wave propagation celerities

can no longer be identified solely with a surface wave or solely with a bed wave,

and a full coupling of the equations is necessary to correctly solve the propagation

of bed disturbances. Lyn and Altinakar (2002) found an exact solution of the

linearized system:

∂W

∂t
+ A

∂W

∂x
= 0 (3.26)
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where:

W =





h

q

b



 , A =





uU hU 0

g uU g

0 hUψU 0



 , (3.27)

the subfix U referring to the uniform unperturbed state, while ψU is a transport

parameter defined by:

ψU =
1

(1 − p)hU

∂qs
∂x

. (3.28)

This latter parameter is usually small for a wide range of physical problems, thus

implying that the eigenstructure can be determined by a perturbation analysis

near-critical conditions (i.e. (1−Fr2) = O(ψ
1/2
U )). The approximate expressions

of the eigenvalues resulting from this analysis read (Lyn, 1987; Lyn and Altinakar,

2002):

λ1 =
[

3
2

+ 1
2Fr2

U

]
uU

λ2,3 =

[
1
4

(
1 − 1

Fr2
U

)
± 1

4

√(
1 − 1

Fr2
U

)2

+ 8ψU

Fr2
U

]
uU ,

(3.29)

the corresponding left eigenvectors being li = [1, (λi−uU)/g, 1−uU/λi]. Denoting

by L the matrix that has as rows the left eigenvectors and by C = LW the

vector of the characteristic variables, the analytical solution W(x, t) is provided

by (Toro, 1999):

W(x, t) = L−1C0(x− λit) , (3.30)

where C0(x) = LW0(x) is the initial value of textbfC and W0(x) the initial

value of W. In the present test computations are carried out with the following

initial bed topography:

b(x, 0) = bmaxe
−x2

with − 15 m ≤ x ≤ 15 m , (3.31)

where bmax = 10−5 m is the amplitude of the initial bed perturbation. Following

Lyn and Altinakar (2002) we have set Fr2
U = 0.96 and ψU = 2.5 × 10−3. A

water surface elevation corresponding to the water depth hU = 1 m is prescribed

downstream. A fixed-bed boundary condition is prescribed at the upstream and

downstream ends of the computational domain, since the test is stopped before
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the bed and water perturbations reach the domain boundaries. The upstream

prescribed discharge is computed by using the values of hU and FrU . The initial

water surface for both the analytical and numerical solution is given respectively

by the exact and the numerical solution obtained for a fixed bed (see the test

described 3.1.4). The adopted grid spacing is ∆x = 0.02m, leading to 500 cells.

The following power-law sediment transport relationship (proposed by Phillips

and Sutherland, 1989, for gravel flows) is chosen:

qs = β(u− uc)
r , (3.32)

where β = 3.4 × 10−4 and r = 2.65. uc is the critical velocity under which

the sediment transport vanishes and it is calculated by (3.28) since the value of

ψU is prescribed. Fig. 3.8 reports the comparison between the numerical and

analytical results computed for t = 20 s. Water depth, flow discharge and bed

elevation are plotted in non-dimensional form, the scaling parameters being:

href =
bmax

(1 − Fr2
U)

; qref = uUbmax ; bref = bmax . (3.33)

The results show in a scour propagating upstream and a hump propagating down-

stream. In correspondence of the bottom disturbances the discharge presents an

upstream travelling positive wave and a downstream travelling negative wave,

while the water surface shows two negative waves. There is a good agreement

between numerical and analytical solutions, and also with the results provided

by other authors (see e.g. Lyn and Altinakar, 2002; Caleffi et al., 2007). These

results then support the robustness of the scheme and his ability to deal with

small disturbances of the bed elevation and the water level travelling in opposite

directions.

3.2.3 Friction term discretization and comparison with

laboratory results

In this section the friction term is introduced, so the scheme can be applied to

real cases. The approach proposed by Gosse (2000) is used. Using the Gosse
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Figure 3.8: Propagation of a small sediment hump near critical conditions. Re-

sults at time t =20 s of the third-order PRICE-C scheme with 500 cells (symbols)

and the exact solution (line). The initial conditions are also shown (dotted line).

approach allows to apply straightforwardly the presented PRICE-C scheme to

the new system without any modifications. In fact, the approach consists in

adding the trivial equation ∂x/∂t = 0 to the original system. The following

expressions for Q and A are thus obtained:

Q =





H

q

b

x




,A =





1
(1−p)

∂qs
∂H

1 + 1
(1−p)

∂qs
∂q

1
(1−p)

∂qs
∂b

0

g(H − b) − q2

(H−b)2
2q
H−b

q2

(H−b)2
g(H − b)Sf

1
(1−p)

∂qs
∂H

1
(1−p)

∂qs
∂q

1
(1−p)

∂qs
∂b

0

0 0 0 0




.

(3.34)

where Sf is the friction slope that is calculated, as usual, by an uniform flow

formula. In this contribution the Gauckler-Stricker formula is used, giving Sf =

q2/(R
10/3
h K2

s ), where Rh is the hydraulic radius, equal to Bh/(2h+B) for a rect-

angular section having width B. In order to test the performance of the PRICE-C

scheme we consider the flume experiment of Bellal et al. (2003). This experiment

has been carried out in a steep-sloped, rectangular channel of finite length. The
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bed profile was initially in quasi-equilibrium and a constant sediment supply was

feed upstream. At the reference time t = 0, this equilibrium situation was per-

turbed by rapid raise of a submerged weir located at the downstream end of the

flume, imposing a subcritical condition. The water and sediment discharges at

the upstream section were kept constant. This new hydraulic configuration deter-

mined the formation of an hydraulic jump. In the first stage of the experiment,

the hydraulic jump propagated rapidly upwards, with a negligible deposition

of sediment, the transition time being very short. When the downstream water

level was stabilised, the surge stopped its propagation. As the surge now remains

steady, the sediments accumulated at this location creating a sediment bore. In

the supercritical part of the flow, in fact, the sediments remained in motion, but

not in the subcritical part, implying the sediments to depose at the transition.

The continuous sediment supply from upstream progressively intensifies the bore

amplitude forcing it to migrate downwards. In turn, the hydraulic jump slowly

propagates downwards and decreases in amplitude.

The sudden increase of the downstream water level imposed in the experiment

can occur in rivers due to an obstruction of the section or due to the presence

of a check dam. The aggradational shock front caused by the presence of a

transcritical flow represents a demanding test case for non-conservative scheme

or conservative scheme with a wrong treatment of the slope and friction terms.

These schemes, in fact, can fail in predicting both intensity and the propagation

velocity of the front itself.

Run 2 of Bellal et al. (2003) is here considered for comparison purposes. The

flume was 6.9 m long, 0.50 m wide and the slope was equal to 3.02% . The

sediment and water discharge were respectively Qs = 0.136 l/s and Q = 12 l/s.

The induced water level at the downstream end was H0 = 20.93 cm; uniform

coarse sand with a mean diameter of 1.65mm, and porosity of 0.42 were used.

Finally, Strickler bed roughness was Ks = 60.60 m1/3s−1.

Numerical simulations are conducted using the sediment transport formulae

(3.19), (3.21) and a formula of the type (3.16) calibrated setting the parameters

A = 0.00024, m=3 and uc = 0.3 m/s. In fig. 3.9a the bottom and water surface
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profiles obtained after 143 s using equation (3.21) are shown and compared with

the experimental data. The position of the sediment bore obtained with the three

different formulae is plotted in fig. 3.9b as a function of time and is compared

with the experimental data of Bellal et al. (2003). The celerity of the front is

given by the inverse of the slope of the above curves. The agreement between

the experimental and numerical results is reasonably good. The model is able to

capture the correct bed slope upstream of the bore, the height of the hydraulic

jump and the height of the sediment bore. The celerity of propagation of the

bore obviously depends on the transport formula which is used. Nevertheless,

a good shock capturing method is here necessary to avoid a wrong estimate of

front speed and strength thus yielding to an error which adds to the uncertainty

of the sediment transport formula, providing totally meaningless results. Finally,

it has to be noted that the physics of the hydraulic jump and the sediment bore

is characterized by vertical velocities and turbulence that can not be modelled

within a depth-averaged framework. Nevertheless, the main characteristics of

the phenomenon are well-captured by the proposed one-dimensional model.

Concluding, it has to be highlighted the capability of the model to easily deal

with not power-law bedload formulae. In the upwind approach of Castro et al.

(2008b) the evaluation of the Roe matrix is needed. In the particular case of the

power-law formula (or Grass model, see Grass (1981)) it is possible to determine

analytically the Roe matrix when the family of paths is defined by segments.

Nevertheless the calculus of the Roe matrices for the formulae here presented is

not always possible in explicit form and its implementation is very costly. So

the central approach here presented is very useful since it does not need the

analytical expression of the Roe matrix.
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Chapter 4

Two-dimensional version of the

PRICE-C scheme

This chapter concerns the extension of the one-dimensional PRICE-C scheme

(2.26),(2.27),(2.28) described in chapter 2, to the two-dimensional case. Since

the final aim is to build a numerical model that is able to deal with complex

geometries, the scheme will be based on an unstructured mesh.

The extension to the two-dimensional case is not straightforward for centred

schemes. As far the upwind schemes are concerned, once a one-dimensional flux

is provided, the rotational invariance property of the two-dimensional equations

is exploited to find a solution in a rotate system that is oriented normally to the

element interfaces (see Toro, 1999; 2001). For the centred schemes usually this

is not the case. In particular, using the one-dimensional FORCE flux (2.6) in

a two-dimensional framework leads to an unstable scheme. Recently, a multi-

dimensional extension of the FORCE scheme has been proposed in Toro et al.

(2009). In this chapter a two-dimensional extension of the PRICE-C scheme

(2.26),(2.27),(2.28) is found. It preserves the property of degenerating to the

two-dimensional FORCE scheme if the underlying PDE system is a conservation

law. Although the mathematical treatment provided in the following is in gen-

53
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eral valid for the generic dimension α (=2,3), only two-dimensional applications

will be exploited. In fact morphodynamic problems are seldom treated three-

dimensionally, owing to the huge computational effort required by the analysis

of real alluvial environmental.

4.1 Multi-dimensional non-conservative hyper-

bolic systems

Let us consider a system of hyperbolic partial differential equations in α space

dimensions, written in the following form:

∂Q

∂t
+ A(Q) · ∇Q = 0, (x, t) ∈ R

α × R
+
0 , Q ∈ Ω ⊆ R

N , (4.1)

where Q = [q1, . . . qN ]T is the vector of unknowns and A(Q) = (A1, . . . ,Aα)

is the vector of the coefficient matrices Ai = Ai(Q), i = 1, . . . , α, and a dou-

ble underline denotes multi-dimensional vectors and matrices. As for the one-

dimensional case, it is assumed that the unknown function Q = Q(x, t) takes

its values inside an open convex set Ω included in R
N and that Q → A(Q) are

smooth locally bounded map. The system (4.1) is assumed to be hyperbolic.

Therefore, given an unit vector n = (n1, . . . , nα) ∈ R
α, the matrix

A(Q,n) = A(Q) · n (4.2)

is required to haveN real eigenvalues λ1, λ2, . . . λN and a full set of corresponding

linearly independent right eigenvectors r1, r2, . . . , rN , ∀Q ∈ Ω and ∀n ∈ R
α. The

vector of unknowns Q in (4.1) will be always chosen to be the vector of physically

conserved variables. In the case that A(Q) is the Jacobian matrix A(Q) =

∂F/∂Q of some flux function F = (F1(Q), . . . ,Fα(Q)), the non-conservative

system (4.1) can then be expressed in conservative form

∂Q

∂t
+
∂F

∂x
= 0. (4.3)
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4.1.1 The FORCE Scheme for Multi-Dimensional Con-

servative Systems

Let us preliminarly recall the FORCE scheme for multi-dimensional conservation

laws developed by Toro et al. (2009). Consider a conforming tesselation TΩ of

the computational domain TΩ ⊆ Rα by elements Ti:

TΩ =
⋃

i

Ti . (4.4)

Each element Ti has nf plane faces ∂T ji of area Sj with associated outward

pointing face normal vectors nj. The total volume |Ti| of element Ti is subdivided

into sub-volumes generated by connecting the barycentre of element Ti with the

vertex of face j. The corresponding adjacent sub-volume in the neighbouring

element that shares the face ∂T ji with element Ti, is denoted as V +
j . Fig 4.1

shows the configuration for the two-dimensional case. Integrating equations (4.3)

in the volume V −
j ∪ V +

j between t = 0 and t = ∆t/2, and then integrating in Ti

between t = ∆t/2 and t = ∆t the following scheme is obtained

Q
n+ 1

2

j+ 1

2

=
Qn
i V

−
j + Qn

j V
+
j

V +
j + V −

j

− 1

2

∆tSj
V +
j + V −

j

(
F(Qn

j ) − F(Qn
i )

)
· nj, (4.5)

Qn+1
i =

1

|Ti|

nf∑

j=1

(
Q
n+ 1

2

j+ 1

2

− 1

2
∆tSjF(Q

n+ 1

2

j+ 1

2

) · nj
)
, (4.6)

or, using the more convenient conservative non-staggered one-step formulation:

Qn+1
i = Qn

i −
∆t

|Ti|

nf∑

j=1

SjF
FORCEα

j+ 1

2

· nj , (4.7)

where the FORCEα flux FFORCEα

j+ 1

2

reads:

FFORCEα

j+ 1

2

=
1

2

(
FLFα

j+ 1

2

+ FLWα

j+ 1

2

)
. (4.8)
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Figure 4.1: Notation of the general configuration on an unstructured two-

dimensional triangolar mesh.

It then turns out that on general meshes in multiple space dimensions the

FORCEα flux is the arithmetic average of the multi-dimensional generalization

of the Lax-Friedrichs and Lax-Wendroff fluxes, reading, respectively:

FLFα

j+ 1

2

=
V −
j F(Qn

j ) + V +
j F(Qn

i )

V −
j + V −

j

−
V +
j V

−
j

V +
j + V −

j

2

∆tSj

(
Qn
j − Qn

i

)
· nTj , (4.9)

FLWα

j+ 1

2

= F
(
Q
n+ 1

2

j+ 1

2

)
, (4.10)

with Q
n+ 1

2

j+ 1

2

given by (4.5). It is easy to prove via simple algebraic manipula-

tions that the two schemes (4.5) & (4.6) and (4.7) are identical. As for the

one-dimensional case, the Lax-Wendroff as given in (4.5) and (4.10), is not con-

venient, due to the non-linearity of the numerical flux function with respect to the

arguments Qn
i , Qn

j , F(Qn
i ) and F(Qn

j ). The following variant of the conservative

FORCEα flux is then introduced here:

FFORCEα′

j+ 1

2

=
1

2

(
FLF

j+ 1

2

+ FLW ′

j+ 1

2

)
, (4.11)

where the modified Lax-Wendroff-type flux is now given by

FLW ′

j+ 1

2

=
V +
j F(Qn

j ) + V −
j F(Qn

i )

V −
j + V −

j

− 1

2

∆t

∆x
Âj+ 1

2

(
F(Qn

j ) − F(Qn
i )

)
. (4.12)
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The matrix Âj+ 1

2

= Âj+ 1

2

(Qn
i ,Q

n
j ) is a function of the two adjacent states and

still has to be chosen appropriately. Note that for linear systems with constant

coefficient matrix A, the fluxes given by (4.5) & (4.10) and (4.12) are identical.

It will be demonstrated later on that introducing the modified Lax-Wendroff-

type flux (4.12) the proposed non-conservative centred schemes reduce exactly

to the conservative centred scheme (4.7) with the modified FORCE flux given

by (4.11), if the matrix A(Q) is the Jacobian of some flux function F(Q).

4.1.2 The Multidimensional PRICE-T Scheme

In this section the multi-dimensional version of the PRICE-T scheme, hereafter

denoted by PRICEα-T, is derived. Integrating the non-conservative system (4.1)

over the volume V −
j ∪ V +

j from t = 0 to t = ∆t/2, and then integrating in Ti

from t = ∆t/2 to t = ∆t the following two-step scheme is obtained:

Q
n+ 1

2

j+ 1

2

=
Qn
i V

−
j + Qn

j V
+
j

V +
j + V −

j

− 1

2

∆tSj
V +
j + V −

j

Âj+ 1

2

(Qn
j ,Q

n
i )(Q

n
j − Qn

i ), (4.13)

Qn+1
i =

1

|Ti|

nf∑

j=1

Q
n+ 1

2

j+ 1

2

− ∆t

2 |Ti|

nf∑

j=1

SjAiQ
n+1

2

j+1

2

, (4.14)

with Âj+ 1

2

(Qn
i ,Q

n
j ,n) = A

j+ 1

2

· nj and Âi(Q
n
i ,Q

n
j , . . . ,Q

n
nf
,n) = A

i
· nj two

particular linearization of the matrix A(Q,n) appearing in equation (4.2). This

implies that also for the multi-dimensional case a modified PRICE-T scheme is

sought that automatically reduces to the modified conservative FORCE scheme

(4.11) when A(Q) is the multi-dimesional Jacobian matrix of some flux function

F(Q) (i.e. A(Q) = ∂F/∂Q).
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4.1.3 Alternative Formulation of the PRICEα-T Scheme:

the PRICEα-C scheme

After some algebraic manipulations, the two-step PRICEα-T scheme given by

(4.13) and (4.14) can be rewritten as the one-step scheme

Qn+1
i = Qn

i −
∆t

|Ti|

nf∑

j=1

SjA
−
ij(Q

n
j − Qn

i ), (4.15)

where

A−
ij =

1

2

V −
j

V +
j + V −

j

Âj+ 1

2

+
1

2

V +
j

V +
j + V −

j

Âi −
V +
j V

−
j

V +
j + V −

j

1

∆tSj
I +

−1

4

∆tSj
V +
j + V −

j

Âj+ 1

2

Âi (4.16)

with I the identity matrix. The main drawback of the formulation given by

(4.15) and (4.16) is that the matrix Âi is a function of more then two states,

thus preventing a direct extension of the PRICEα-T method to high order of

accuracy through a polynomial reconstruction of Q. In order to eliminate this

shortcoming matrix Âi is here computed considering a different value Âj+ 1

2

for

each edge j, so that the matrix A−
ij becomes a two-point function of the two

adjacent states. After these modification, the final non-conservative version of

the multi-dimensional FORCEα method, denoted as PRICEα-C reads:

A−
ij =

1

2
Âj+ 1

2

−
V +
j V

−
j

V +
j + V −

j

1

∆tSj
I − 1

4

∆tSj
V +
j + V −

j

Â2
j+ 1

2

(4.17)

where the matrix A−
ij only depends on two adjacent states. In the next paragraph

the matrices Âj+ 1

2

will be chosen requiring that the scheme (4.16) degenerates

to the modified FORCEα scheme (4.11).

4.1.4 Generalized Roe matrix in the multidimensional

case

Following the theory developed by Dal Maso et al. (1995), a rigorous definition of

weak solutions in presence of non-conservative products can be given also in the
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multi-dimensional case using a family of paths Ψ = Ψ(QL,QR, s,n) connecting

two states QL and QR across a discontinuity with (s ∈ [0, 1]). Given a family

of paths Ψ, a matrix AΨ(QL,QR,n) is a Roe matrix if it satisfies the following

properties:

• for any QL,QR ∈ Ω , n ∈ S1 (where S1 ⊆ Rα denotes the unit sphere),

AΨ(QL,QR,n) has N real distinct eigenvalues;

• AΨ(Q,Q,n) = A(Q,n), for any Q ∈ Ω, n ∈ S1;

• for any QL,QR ∈ Ω, n ∈ S1:

AΨ(QL,QR,n)(QR − QL) =

∫ 1

0

A(Ψ(s,QL,QR,n),n)
∂Ψ

∂s
ds. (4.18)

thus implying that the multi-dimensional Roe matrix dipends on n. Note also

that when Ai(Q), i = 1, . . . , α are the Jacobian matrices of smooth flux functions

Fi(Q), i = 1, . . . , α, the relation (4.18) is independent of the family of paths and

it reduces to the usual Roe property:

AΨ(QL,QR,n)(QR − QL) = Fn(QR) − Fn(QL). (4.19)

for any n = (n1, . . . , nα) ∈ S1, Fn(Q) = F1n1 . . . + Fαnα being the flux along

the direction n. If the system (4.1) is supposed to be rotationally invariant, the

dependency of the family of paths on n disappears (Dal Maso et al., 1995).

The matrices Âj+ 1

2

in equations (4.16) are now taken as:

Âj+ 1

2

= AΨ

(
Qn
i ,Q

n
j ,n

)
. (4.20)

Using algebraic manipulations and equation (4.19), it is easy to prove that the

scheme (4.15), (4.17) with (4.20) reduces to the modified conservative FORCEα

scheme (4.9), (4.11) and (4.12), if A(Q) is the Jacobian matrix of a flux F(Q).

The choice of the matrices (4.20) has the advantage that the resulting PRICEα-

C method becomes exactly conservative if applied to conservation laws. Following

the one-dimensional framework, a truly centred approach is now sought. Using
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the definition (4.18), the segment path (2.18), and a M -point Gaussian quadra-

ture rule with weights ωj and positions sj distributed in the unit interval [0; 1],

the Roe matrix is approximated numerically as:

AΨ(QL,QR,n) ≈
M∑

j=1

ωjA(Ψ(sj,QL,QR),n). (4.21)

The PRICEα-C scheme, once written in the form (4.15), can be directly com-

pared to the multi-dimensional path-conservative Roe scheme recently proposed

by Castro et al. (2008a). It clearly appears that here the matrix A−
ij does not use

explicit wave properties information and it is computed numerically, whereas in

Castro et al. (2008a) it is determined as

A−
ij = A−

Ψ

(
Qn
i ,Q

n
j ,n

)
= RΨΛ−

ΨR−1
Ψ , (4.22)

where RΨ is the matrix of right eigenvectors of the Roe matrix AΨ and ΛΨ is

the diagonal matrix with the eigenvalues of AΨ. The matrix Λ−
Ψ is, as usual, the

negative part of the diagonal matrix ΛΨ.

In conclusion, also in the multi-dimensional case the proposed formulation

avoids the explicit computation of the Roe averages, following the philosophy of

centred schemes that, by definition, do not need any wave information on the

particular PDE system under consideration.

4.2 High Order Extension

4.2.1 Nonlinear reconstruction technique

In this section the nonlinear reconstruction is described in detail for the two-

dimensional case. The procedure, based on the the determination of higher

order polynomial reconstructs higher order polynomial data within each spatial

cell Ti at time tn, given the cell averages Qn
i , allows one to achieve higher spatial

and temporal order of accuracy. In particular, the MUSCL procedure has been

implemented, that ensures a second order of accuracy in both time and space.
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Second order of accuracy, for a two-dimensional framework, is a good compromise

between accuracy and complexity of the scheme. The reconstruction procedure

relies on the idea of modifying the initial piecewise constant data into piecewise

linear functions, where the values at the cell interfaces are thus extrapolated

values. For the nonlinear scalar case, the reconstruction operator can be directly

applied to the cell averages Qn
i of the conserved quantity Q. For nonlinear hy-

perbolic systems, the reconstruction should be done in characteristic variables

(Harten et al., 1987; Dumbser et al., 2007) in order to avoid spurious oscilla-

tions that may appear when applying reconstruction operators component-wise

to nonlinear hyperbolic systems.

4.2.2 MUSCL-type reconstruction: the two dimensional

case.

The extension of second-order accurate schemes to two dimensions involves the

construction of an appropriate linear representation of the solution within a com-

putational cell, with a subsequent limiting in order to avoid spurious oscillations

in the solution due to the presence of local extrema resulting from the recon-

struction process. A number of techniques for reconstructing and limiting the

local solution gradients are summarized by Hubbard (1999), who presents a gen-

eral framework for the construction of slope limiting operators suitable to two-

dimensional finite volume schemes on triangular grids. The reconstructed profile

considered here is a linear profile, i.e. a plane, leading to a second-order spatial

accuracy of the results. The reconstructed profile over the cell i at the time level

n, denoted by wi(x, t
n), must in particular satisfy the following constraints:

1. The average value of wi(x, t
n) over the cell i must be equal to the cell

average Qn
i :

1

|Ti|

∫

Ti

wi(x, t
n)dx = Qn

i , (4.23)

2. The value of wi(x, t
n) at the centre xG = (xG, yG) of the cells j adjacent
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to cell i should be as close as possible to the adjacent cell average

wi(xG, t
n) ∼= Qn

j , ∀j ∈ Ni (4.24)

where Ni denotes the set of cells adjacent to cell i.

Equations (4.23) and (4.24) yield Ei + 1 constraints on the function wi(x, t
n),

where Ei is the number of neighbours of the cell i . This leads to four conditions

for a triangular cell. In most cases, all these conditions cannot be satisfied

simultaneously and residual minimisation procedures, such as least-square fitting,

must be used to adjust the parameters of the reconstruction. In the following

the principles of the two-dimensional linear reconstruction procedure is applied

to a scalar variable Q. A similar procedure is applied to a vector variable by

considering each component of the vector.

The two-dimensional linear reconstruction wi(x, t
n) of Q in the cell i at the

time level n takes the form:

wi(x, t
n) = (x− xi)ai + (y − yi)bi + ci (4.25)

where xG and yi are the coordinates of the gravity centre of the ith cell . The

reconstructed profile wi(x, t
n) is determined given the average value Qn

i of Q on

the cell i at the time level n and the average values Qn
j in each of the neighbouring

cells.

The reconstructed profile wi(x, t
n) has to satisfy the constraints (4.23) and

(4.24). Substituting Equation (4.25) into Equation (4.23) leads to the following

condition on ci:

ci = Qn
i . (4.26)

In order to determine the slopes of the linear profile over the cell, the plane

closest to the values Qn
j is determined by minimizing the square of the distance

between the known and reconstructed values, and so minimizing the total residual

function

Ri(ai, bi) =
∑

j∈Ni

[
wi(xG, t

n) −Qn
j

]2
. (4.27)
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The optimal values of ai and bi are those for which the derivatives ∂Ri/ai and

∂Ri/bi are equal to zero. Substituting Equations (4.25) and (4.26) into Equa-

tion (4.27) and differentiating Ri with respect to ai and bi yields the following

conditions:

∑

j∈Ni

(xj − xi)
2ai + (xj − xi)(yj − yi)bi + (xj − xi)(Q

n
i −Qn

j ) = 0 (4.28)

∑

j∈Ni

(xj − xi)(yj − yi)ai + (yj − yi)
2bi + (yj − yi)(Q

n
i −Qn

j ) = 0 (4.29)

that, solved for ai and bi, provide:

ai = −
bi

∑
j∈Ni

(xj − xi)(yj − yi) +
∑

j∈Ni
(xj − xi)(Q

n
i −Qn

j )∑
j∈Ni

(xj − xi)2
= 0 (4.30)

bi =

∑
j∈Ni

(xj−xi)(Q
n
i −Q

n
j )·

∑
j∈Ni

(xj−xi)(yj−yi)∑
j∈Ni

(xj−xi)2
− ∑

j∈Ni
(yj − yi)(Q

n
i −Qn

j )

∑
j∈Ni

(yj − yi)2 − [
∑

j∈Ni
(xj−xi)(yj−yi)]

2

∑
j∈Ni

(xj−xi)2

= 0.

(4.31)

A slope limiting procedure is now needed in order to ensure that the reconstructed

profiles do not induce any undershoots or overshoots of the solution. As suggested

by Hubbard (1999), in order to obtain a less restrictive limiter it is chosen to

avoid local extrema at the cell-edge midpoint rather than avoiding local extrema

at the cell nodes. To this purpose the slopes of the reconstructed profile in the

ith cell, they are multiplied by a factor γ, such that

0 ≤ γ ≤ 1. (4.32)

Note the slopes in the x and y directions are reduced by the same factor so that

the direction of the slope vector remains unchanged. When applying the limiting

procedure to the reconstructed profile Un
i in the ith cell , at the interface with

cell j, the limiter factor γ is calculated as:

γ = min
j

(γi,j) with j ∈ Ni, (4.33)

where

γi,j = max[min(β · rij, 1),min(rij, β)] (4.34)
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and

rij =






Φ
(

Qmin
ij −Qn

i

wi(xij ,tn)−Qn
i

)
if wi(xij, t

n) < Qn
i

Φ
(

Qmax
ij −Qn

i

wi(xij ,tn)−Qn
i

)
if wi(xij, t

n) > Qn
i

1 if wi(xij, t
n) = Qn

i

(4.35)

where Qmin
ij = min(Qi, Qj), Q

max
ij = max(Qi, Qj), while wi(xij, t

n) is the value

extrapolated at the interface xij = (xij, yij) from the reconstructed profile wi.

The quantity β in equation (4.34) can take any values between one and two. In

particular, β = 1 and β = 2 provide, respectively, a two-dimensional version of

the one-dimensional Minmod limiter and the Roe’s Superbee limiter (see Toro,

1999). Once the reconstruction procedure is carried out for each variable, N

non-oscillatory spatial planes wi(x, t
n) are defined at time tn inside each spatial

element Ti and the second order of accuracy is achieved in space.

4.2.3 The fully discrete one-step scheme for the two -

dimensional case

The system (4.1) is integrated over a space-time control volume [Ti] × [tn; tn+1].

The final second-order accurate one-step scheme can be written as follows:

Qn+1
i = Qn

i −
1

|Ti|
A · ∇Q − ∆t

|Ti|

nf∑

j=1

D−

j+ 1

2

, (4.36)

where

A · ∇Q =

tn+1∫

tn

∫

Ti

A(Qi(x, t)) · ∇Qi(x, t)dxdt (4.37)

and

D−

j+ 1

2

=
1

∆t

tn+1∫

tn

∫

Sj

A−

j+ 1

2

(QjS − QiS) dt, (4.38)

with

QjS = Qj(xSj
, t) , QiS = Qi(xSj

, t), (4.39)
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and xSj
the vector that define the edge Sj. All the integrals are approximated

using Gaussian quadrature formulae of suitable order of accuracy. Note that

the term A(Qi(x, t)) · ∇Qi(x, t), which integrates the smooth part of the non-

conservative product within each cell (excluding the jumps at the boundaries),

vanishes for a first order scheme where ∇Qi(x, t) = 0. For a second order scheme

in space ∇Qi(x, t) = (ai, bi), i.e it is constant in (4.37). For a second-order

accuracy in time a Gaussian point is necessary for the surface integral (4.38),

whereas six Gaussian points are necessary for the volume integral (4.37). The

argument of the surface integral in (4.38) is evaluated at the Gaussian point

evolving over half a time step the interface-extrapolated vectors by:

Q
n+1/2
ij = wi(xij, t

n) − ∆t

2

(
A1(Q

n
i )
∂Q

∂x
+ A2(Q

n
i )
∂Q

∂y

)
(4.40)

where the first time derivatives can be directly obtained by ai and bi. It is then

necessary to evaluate the variable Qi in the Gaussian points to calculate the

matrices A(Qi(x, t)) appearing into (4.37). Therefore, the local solution Qi(x, t)

of the PDE in each cell is expanded by a space-time Taylor series with respect

to the element barycenter xG

Qi(x, t) = Q(xi, t
n) + (x− xG)

∂Q

∂x
+ (y − yG)

∂Q

∂y
+ (t− tn)

∂Q

∂t
...

= Q(xi, t
n) + (x− xG)

∂Q

∂x
+ (y − yG)

∂Q

∂y
+

−(t− tn)

(
A1(Q

n
i )
∂Q

∂x
+ A2(Q

n
i )
∂Q

∂y

)
... (4.41)
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Chapter 5

Numerical results for the

two-dimensional shallow water

equations

In this section the numerical scheme (4.36) is applied to the time-dependent

non-linear two-dimensional shallow water equations in the presence of either a

fix or a movable bed. Various test cases are considered. In any case the Courant

number is set to CFL=0.7 and, as in the one-dimensional case, the matrix (4.21)

is evaluated using a three-point Gaussian quadrature rule with the following

points sj and weights ωj given by (3.1).

5.1 Numerical tests: fix bed

Let us consider the system of shallow water equations with a geometrical source

term due to the bottom topography and in absence of bottom friction. The equa-

tions are manipulated analytically in order to use the water surface elevation, H,

instead of the water depth, h, as conservative variable. In two space dimensions,

67
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H(x,y,t)

h(x,y,t)

b(x,y)

Figure 5.1: Sketch of water surface and channel bottom. Notations are also

indicated.

the equations take the form:






∂H
∂t

+ ∂qx
∂x

+ ∂qy
∂y

= 0

∂qx
∂t

+ ∂
∂x

(
q2x
H−b

+ 1
2
gH2

)
+ ∂

∂y

( qxqy
H−b

)
+ gH ∂b

∂x
= 0

∂qy
∂t

+ ∂
∂x

( qyqx
H−b

)
+ ∂

∂y

(
q2y
H−b

+ 1
2
gH2

)
+ gH ∂b

∂y
= 0 ,

(5.1)

where H(x, y, t) denotes the water surface elevation, q(x, y, t) is the discharge

for unit width, b(x, y) represents the given bed topography (Fig. 5.1). ∂b/∂x

and ∂b/∂y are the bed slopes in the x and y direction respectively. System (5.1),

together with the trivial equation db
dt

= 0, can be written in the nonconservative

form (4.1), with the vector Q and matrix A1 and A2 given by:
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Q =





H

qx

qy

b




, A1 =





0 1 0 0

g(H − b) − q2x
(H−b)2

2qx
H−b

0 q2x
(H−b)2

− qxqy
(H−b)2

qy
H−b

0 qxqy
(H−b)2

0 0 0 0




,

A2 =





0 0 1 0

− qxqy
(H−b)2

qy
H−b

0 qxqy
(H−b)2

g(H − b) − q2y
(H−b)2

0 2qy
H−b

q2y
(H−b)2

0 0 0 0




. (5.2)

In the following, we consider different case test, selected in order to verify

a specific property of the numerical scheme. In particular, a cicular dam-break

problem is considered to check the ability of the method to preserve symmetry.

Another test is used to check the behaviour of the scheme in the case of a small

perturbation of a quiescent state. Finally, a movable bed test is considered in

which the propagation of a two-dimensional bump is analyzed.

5.1.1 Circular dam-break problem

This example consists of the instantaneous breaking of a cylindrical tank (diam-

eter 20 m) initially filled with 2 m of water at rest. The wave generated by the

breaking of the tank propagates into still water with an initial depth of 0.5 m.

Figure 5.2 illustrates this wave propagation on a computational mesh of 9724 el-

ements using the proposed PRICE2-C scheme (4.36). When the column of water

is released, the shock wave results in a dramatic increase of water depth in the

lower depth region propagating in the radial direction. The test can be useful

to check the ability of the method to preserve cylindrical symmetry. Indeed, the

problem becomes 1D in the radial direction and a theoretical solution can be ob-

tained. This solution, expressed in a radial coordinate system, reads (LeVeque,

2002):
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Figure 5.2: Numerical results of the PRICE2-C scheme (4.36) for the circular

dam-break test at t=1 s (left column), and at t=2.5 s (right column). Figure a,b

show the tridimensional view of the water surface elevation. Figure c,d show the

plan view of the same surface. and Figure e,f show the comparison between the

two-dimensional numerical solution along a radial direction (symbols) and the

pseudo-analytical solution (line).
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




∂H
∂t

+ ∂qr
∂x

= − qr
r

∂qr
∂t

+ ∂
∂x

(
q2r
H

+ 1
2
gH2

)
= − q2r

rH
,

(5.3)

where r is the radius and qr = Hvr, vr being the radial velocity. Equations

(5.3), solved by the monodimensional PRICE-C scheme introduced in chapter 2,

provide a pseudo-analytical solution to be compared with the numerical solution.

Figures 5.2a,b show a three dimensional view of the dam break after 1 s and

2.5 s, while figures 5.2c,d show the corresponding planar view. It clearly appears

the outward-propagating circular shock and wave and the inward-propagating

circular rarefaction wave. The figures confirm that the method is able to preserve

the cylindrical symmetry, and demonstrate the effectiveness of an unstructured

triangular mesh to represent this problem. Finally figure 5.2e,f show the sectional

view (a cut along a given radial direction) of the 2D dam break. There is a good

agreement between the numerical solution and the pseudo-analytical solution,

and spurious oscillations are absent

5.1.2 Small perturbation of a two dimensional steady sta-

te water

This test case is the two-dimensional analogous of the test case dicussed in chap-

ter 3.1.2, and it was first proposed by LeVeque (1998). The equations are solved

in a rectangular domain [0, 2] × [0, 1]. The two-dimensional bottom topography

consists in an elliptical bump:

b(x, y) = 0.8e(−5(x−0.9)2−50(y−0.5)2) . (5.4)

Moreover, the initial water surface and discharge are given by :

H(x, y, 0) =





1 + ǫ if 0.05 ≤ x ≤ 0.15 m

1 otherwise

qx(x, y, 0) = 0 (5.5)

qy(x, y, 0) = 0
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The surface is flat everywhere except for 0.05 ≤ x ≤ 0.15 m, where a perturba-

b(m)

x (m)

y 
(m

) 

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Figure 5.3: Elliptical initial condition for the bed elevation as given by eq. (5.4).

tion (ǫ = 0.01 m) is provided. Transmissive boundary conditions are prescribed

on the right side and on the left side of the rectangular domain, whereas reflective

conditions are prescribed on the upper and lower sides. The initial conditions

and the elliptical bump are depicted in Fig. 5.3. Fig. 5.4 shows the results

obtained with a computational mesh of 52692 cells. Due to the transmissive

boundary conditions, the left propagating pulse has already left the domain at

the first time shown, hence Fig. 5.4 shows only the right-going portion of the

disturbance as it propagates over the hump. Note that the wave speed is slower

above the hump than elsewhere, thus implying a distortion of the initially planar

perturbation. No spurious oscillations are present and there is a good agreement

with the numerical results given by LeVeque (1998).
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Figure 5.4: Numerical results of the PRICE2-C scheme (4.36) for a small pertur-

bation of a two dimensional steady state water travelling over a bump. Planar

views of the water surface at t = 0.12, t = 0.24, t = 0.36 and t = 0.48 s are

shown. and the exact solution (line).

5.2 Movable bed test

We now consider shallow water equations (5.1) coupled with the two-dimensional

Exner equation:

∂b

∂t
+
∂qsx
∂x

+
∂qsy
∂y

= 0, (5.6)

where b = b(x, y, t) is now the time-varying bottom elevation and (qsx, qsy) are the

intensities of bed-load rate per unit width in the x and y directions respectively.

These latter quantities read:

(qsx, qsy) = qs · (cosα, sinα) (5.7)

where α is the angle denoting the direction of sediment transport with rispect

of the x axis computed according to an anticlockwise direction) while qs is the

absolute volue of bed-load rate per unit width. It then results that sinα and
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cosα are:

sinα =
qy√

(q2
x + q2

y)

cosα =
qx√

(q2
x + q2

y)
(5.8)

Setting q =
√

(q2
x + q2

y), we can compute qs by any of the one-dimensional re-

lations (3.19), (3.21), (3.16). Similarly to the one-dimensional case the porosity

term is incorporated in qs.

The system of governing equations describing the coupled evolution of the

fluid and the bed can be written in the form (4.1) with vector Q and matrix A1

and A2 being respectively:

Q =





H

qx

qy

b




, A1 =





∂qsx

∂H
1 + ∂qsx

∂qx

∂qsx

∂qy

∂qsx

∂b

g(H − b) − q2x
(H−b)2

2qx
H−b

0 q2x
(H−b)2

− qxqy
(H−b)2

qy
H−b

0 qxqy
(H−b)2

∂qsx

∂H
∂qsx

∂qx

∂qsx

∂qy

∂qsx

∂b




,

A2 =





∂qsy

∂H

∂qsy

∂qx
1 + ∂qsy

∂qy

∂qsy

∂b

− qxqy
(H−b)2

qy
H−b

0 qxqy
(H−b)2

g(H − b) − q2y
(H−b)2

0 2qy
H−b

q2y
(H−b)2

∂qsy

∂H

∂qsy

∂qx

∂qsy

∂qy

∂qsy

∂b




. (5.9)

where the derivatives of qsx and qsy with respect to the unknown variables are

shown. Note that the continuity equation of the fluid has been suitably changed

to take into account the variability of bed elevation. In the following the results

provided by the PRICE2-C scheme are presented.

5.2.1 Evolution of a bottom hump

For purposes of verifying our finite volume scheme, a simplified test example is

here used. It consists in the evolution of an initial hump in a squared channel.
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Figure 5.5: Numerical results of the PRICE2-C scheme (4.36) for a steady flow

over a bump. Equilibrium condition for the water surface H and the velocities

u and v (respectively along x and along y) for the fixed bed case is shown. The

bed elevation is also shown. These results will be the initial conditions for the

movable bed simulation.

This test case was first introduced by Hudson and Sweby (2005). The initial

hydrodynamic condition are given by:

H(x, y, 0) = 10 m , qx = (x, y, 0) = 10 m2/s , qy = (x, y, 0) = 0. (5.10)

The initial hump is given by:

b(x) =





sin2

(
π(x−300)

200

)
sin2

(
π(y−400)

200

)
if 300 ≤ x ≤ 500m , 400 ≤ y ≤ 600m

0 otherwise .

(5.11)

A constant discharge qx = 10m2/s is prescribed in time at the upstream bound-

ary and at all the other boundaries transmissive conditions are assumed. The

model is first run toward the equilibrium state, keeping the river bed fixed. In
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Figure 5.6: Numerical results of the PRICE2-C scheme (4.36) for the evolution

of a bottom hump with A=0.001. Planar view (left) and three dimensional view

(right) of the bottom elevation after 100 h.

order to obtain this equilibrium solution, the time integration process is stopped

when the inequality

‖Qn+1 −Qn‖
‖Qn‖ < τ (5.12)

is satisfied. Here ‖·‖ denotes the L1-norm and τ is a given tolerance fixed to 10−7

in the computation. The equilibrium state is shown in Fig. (5.5) and follows

very closely the results presented by Hudson and Sweby (2005) by means of

an upwind method. The capability of the present centred method to reach an

equilibrium state confirms that the bed-slope term is correctly balanced with the

fluxes (well-balanced scheme).

Now a movable bed is considered and bed-load is computed by the Grass

power-law formula (3.16). The parameter A is fixed equal to 0.001, so modelling

a weak interaction between water and sediments (Hudson and Sweby, 2005). The

value m = 3 and λp = 0.4 are also chosen. For this kind of problem the initial

topography of the river bed gradually changes into a star-shaped pattern, which

spreads out over in time. De Vriend (1987) derived an approximate solution for

the angle of spread of this pattern when A <0.2. The analytical approximation
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Figure 5.7: The angle of spread of the star shaped bottom pattern. The theo-

retical angle of spreading given by 5.14 is also shown

of this angle of spread θ is given by (see De Vriend, 1987):

tan θ = 3
√

3
(m− 1)

9m− 1
(5.13)

and with m = 3 it reads:

θ = tan−1 3
√

3

13
= 21.787◦. (5.14)

Results after t = 100h are presented in Fig. 5.6. The scheme produces smooth

results that do not suffer from spurious oscillations. The star-shaped pattern

is also reproduced. Fig.(5.7) shows the comparison between different bed level

curves (b=0.05 cm), at three different times, and the theoretical approximation

of the angle of spread, θ, as given by (5.14). There is a good agreement between

the numerical and analytical solutions. The comparison with similar numerical
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results available in literature (see Hudson and Sweby, 2005; Delis and Papoglou,

2008) and provided by upwind-type schemes is also satisfactory. This demon-

strate the ability of the present high order scheme to predict long term movement

of bed perturbations, in spite of the scheme does not include any information

about the directions of propagation of the disturbances.



Chapter 6

Conclusions

This thesis is centred on the development of a simple numerical tool to solve

the coupled De Saint Venant-Exner system. From a mathematical point a view

this system of equations is hyperbolic. It means that the solution admits both

discontinuous and smooth solutions. Even for the case in which the initial con-

ditions are smooth, the non-linear character combined with the hyperbolic type

of the equations can lead to discontinuous solutions in a finite time. Aware of

this aspect, the attention was directed toward the numerical modelling of river

hydrodynamics and morphodynamics with particular attention to physical phe-

nomena in which water surface discontinuities and sediment fronts are present.

To correctly capture discontinuous solutions, different numerical techniques have

been developed in the last decades. In particular, the finite volume method had

undergone a great increase of popularity since it easily deals with discontinuities

of the solution and it conserves the variables on a coarse mesh, an important

requirement especially for fluid dynamic problems. Shallow water type models

contain the bed slope term, usually treated as a source term, since it is a non-

conservative term that can not be recast in conservative form. It is well known

since the work of Bermudez and Vazquez (1994) that the presence of the bed slope

term in a finite volume framework can affect the quality of the results especially

79
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when steady or nearly steady state solutions are approached. In this case only

sophisticated schemes can perform adequately. When solving real problems one

is likely to encounter all sorts of situations, with a high probability that naive

schemes will compromise the quality and reliability of the solution. To handle

such problems, the concept of well-balanced schemes, that is, schemes that pre-

serves all equilibria of the system or a family of them, has been considered by

several authors. The present scheme is shown to correctly solve balances be-

tween sources and fluxes when applied to a great variety of steady and unsteady

test cases. This is extremely important in the movable-bed case, because the

well-balancing of the scheme allows to reproduce small perturbations of the free

surface and of the bottom elevation, otherwise of the same order of magnitude

of the numerical errors induced by the non-balancing.

The scheme is also shown to be shock-capturing, since it correctly estimates

both the front strength and speed of propagation. Moreover in the presence of dis-

continuous solutions the numerical method produces essentially non-oscillatory

numerical results.

The scheme is extended to high order of accuracy in space and time via

the ADER-WENO and MUSCL technique respectively for the one- and two-

dimensional case. The achievement of higher-order accuracy allows us to use

coarse grids thereby increasing the computational efficiency of the scheme. This

goal is desirable when natural morphodynamics phenomena, characterized by

long time scales, must be studied.

Moreover note that this work represents the first attempt to solve a non-

conservative system using the theory of Dal Maso et al. (1995) by a centred

approach. The theoretical derivation of the scheme is kept general throughout the

thesis, hence a framework for constructing high-order numerical centred schemes

is proposed and it can be applied to any hyperbolic system containing non-

conservative terms. Hence the strength of the present method consists of a

large applicability in a broad range of engineering problems, since no mention is

done to the eigenstructure of the hyperbolic system of equations. For example,

the scheme can be applied to the two-layer shallow water equations for solving
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stratified flows and Savage−Huter type models (Savage and Hutter, 1991) for

solving avalanches of granular materials. Testing the behaviour of the proposed

scheme for these systems of equations will be the subject of future research.
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