
Facoltà di Ingegneria

Dipartimento di Ingegneria dell'Informazione

Scuola di Dottorato di Ricerca in Ingegneria dell' Informazione � XXII Ciclo

Indirizzo: Scienza e Tecnologia dell'Informazione e della Comunicazione

PariPari: Design and

Implementation of a Resilient

Multi-Purpose Peer-to-Peer

Network

Direttore della Scuola

Ch.mo Prof. Matteo Bertocco

Supervisore

Ch.mo Prof. Enoch Peserico

Dottorando

Paolo Bertasi

Abstract

Recent years have seen a considerable and constant growth in peer-to-peer (P2P) traf-

�c over Internet. Internet Service Providers (ISPs) and software houses have begun

to change their attitude towards P2P applications, no longer seen as bandwidth-eager

enemies, but rather as interesting pro�t opportunities.

PariPari is a P2P platform under development at Department of Information

Engineering Engineering of the University of Padova. It di�ers from traditional P2P

applications like eMule, Skype or Azureus in that it provides a multifunctional, exten-

sible platform on which multiple services - from �lesharing to VoIP to mail/web/IRC

services � can run simultaneously and cooperatively. PariPari o�ers a collection of

APIs allowing third party developers to write their own applications; but unlike sim-

ilar P2P development frameworks such as JXTA, PariPari already works �out of the

box� for the end user o�ering a large number of applications.

The number and the heterogeneity of services o�ered by PariPari together with

the possibility of extending this platform with future, not currently de�ned, appli-

cations o�er a number of challenges: e�ective use of Java, coordination of multiple

services, design of a powerful but easy to use GUI, e�cient and robust algorithms

for clock synchronization and search etc.

E�ective group management was the key to successful development of PariPari.

Over the past three years more than one hundred students have cooperated develop-

ing PariPari. To coordinate such a large number of people we have adopted software

engineering techniques such as eXtreme Programming and Test Driven Develop-

ment. However, these paradigms had to be adapted to a group of non-professional,

although motivated, developers. This coordination process was di�cult, but ex-

tremely rewarding, and taught us a number of lessons about software engineering

that might be useful in other software projects involving large numbers of relatively

inexperienced, part-time developers with high turnover.

Sommario

Negli ultimi anni il tra�co dovuto al peer-to-peer (P2P) è aumentato costantemente.

Gli Internet Service Providers (ISPs) e le software house hanno iniziato a conside-

rare le applicazioni P2P non come programmi avidi di banda ma come interessanti

opportunità.

PariPari è una piattaforma P2P in sviluppo al Dipartimento di Ingegneria del-

l'Informazione. È molto diversa da altre ben note applicazioni P2P come eMule,

Skype o Azureus. dato che fornisce una piattaforma multifunzionale e estensibile

sulla quale diversi servizi � dal �lesharing al VoIP all'email � possono funzionare

simultaneamente. Inoltre, PariPari fornisce un insieme di API utili agli sviluppatori

terzi per scrivere le loro applicazioni, ma diversamente dagli altri framework P2P

come JXTA, PariPari o�re già da subito un gran numero di applicazioni fruibili

dall'utente �nale.

PariPari o�re, quindi, un gran numero di servizi eterogenei e la possibilità di

estendere la piattaforma, in futuro, con applicazioni non ancora de�nite. Per pro-

durre questi due risultati, la progettazione di PariPari ha dovuto a�rontare diverse

interessanti s�de tra cui un uso e�ciente di Java, la possibilità di coordinare diversi

servizi e la studio di nuovi algoritmi per la sincronizzazione e la ricerca.

La chiave del successo dello sviluppo di PariPari è sicuramente la gestione del

gruppo. Negli ultimi tre anni, più di un centinaio di studenti hanno lavorato al-

lo sviluppo di PariPari. Per coordinare tanti contributi abbiamo adottato tecniche

tipiche dell'ingegneria del software come l'eXtreme Programming e il Test Driven

Development. Questi paradigmi, tuttavia, hanno subito pesanti modi�che per essere

adattati al nostro gruppo di sviluppatori dalle peculiari caratteristiche: gli studenti,

sebbene motivati, non hanno nè il rendimento nè la preparazione di un professio-

nista. La gestione è stata complessa ma estremamente appagante ed ha prodotto

molti interessanti spunti che possono essere studiati ed applicati ad altri progetti che

coinvolgono molti sviluppatori non professionisti con alto turn-over.

Ringraziamenti

Scrivere la pagina dei ringraziamenti suscita sempre emozioni contrastanti. La felicità

per la possibilità di ringraziare le persone cui devo molto si scontra con la paura di

dimenticarne qualcuna o di non riuscire ad esprimere bene i miei pensieri.

In primis, �devo�, ringraziare Daniela, mia moglie, per avermi sempre aiutato a

risolvere i problemi che ho incontrato aiutandomi a squadrarli da una prospettiva

diversa e, soprattutto, per aver sopportato tutti i week-end che ho passato a lavorare

e le notti che ho trascorso in laboratorio con Marco ed Enoch. Grazie, anche, perché

continua a pungolarmi proponendomi continui stimoli per la mia crescita.

Ora che sono padre della piccola Lucia mi rendo ancor più conto di quanto i miei

genitori mi abbiano dato nei miei primi 30 anni di vita e di quanto i loro sforzi e i

loro insegnamenti continuino a sorreggere la mia coscienza e il sistema di valori che

mi hanno trasmesso. Ringrazio loro certo di non poter riuscire ad esprimere a parole

quello che penso e tutta la mia riconoscenza.

Non avrei nemmeno iniziato questo dottorato se non mi fossi imbattuto nel gruppo

di calcolo ad alte prestazioni. Il periodo che ho passato come lavoratore a progetto

mi ha dato la possibilità di percepire con quali persone avrei potuto collaborare e mi

ha spinto ad intraprendere il dottorato (anche senza la tranquillità di una borsa di

studio). In particolar modo ringrazio:

• Andrea e Geppino per tutto quello che mi hanno insegnato durante i lavori su

Aeolus;

• Mauro per avermi seguito nel mio ingresso in ACG e per avermi risposto:

�Welcome to the scienti�c world!' quando gli ho fatto notare che eravamo

sempre in ritardo sulle deadline.

• i dottorandi della vecchia guardia (Alberto B., Francesco V., Fabio) per aver

condiviso ore e ore di duro lavoro e l'organizzazione delle nostre pantagrueliche

grigliate (Advanced Cooking Group). In particolare voglio ringraziare coloro i

quali mi hanno aiutato nella stesura della tesi: Francesco S. e Marco;

• i nuovi dottorandi (Michele e Alberto P.) per aver riportato ad alti livelli la

serietà del gruppo tuttavia lasciandosi in�uenzare dal buon umore respirato in

laboratorio.

• ed in�ne Enoch Peserico Stecchini Negri De Salvi per aver creduto in me anche

e soprattutto nei momenti in cui sarebbe stato più facile lasciar perdere.

Un ringraziamento va anche a Francesca Musiani dell' Ecole des Mines per i suoi

preziosi consigli sulla stesura della parte �sociologica� di questa tesi.

Desidero inoltre ringraziare tutti i PariParisti presenti e passati, e in particolar

modo i team/plug-in leader, per aver creduto in questo progetto e avermi aiutato

in queste fasi �nali convulse della scrittura della tesi. Sono loro l'anima di questo

progetto e la forza di questo progetto. In particolare, ringrazio Michele B. per avere

corretto la bozza di questa tesi.

In�ne, voglio ringraziare Sandra Calore e Marco Filippi per avermi aiutato sem-

pre, tempestivamente ed in modo ineccepibile quando ne ho avuto bisogno.

Indice

1: Introduction 1

I PariPari: Network Project and Development 3

2: Structure 5

3: Operating System Layer Plug-ins 9

3.1 PariCore . 9

3.1.1 T.A.L.P.A. PariCore . 10

3.2 PariDHT . 13

3.2.1 Protocol: Kademlia . 14

3.2.2 Implementation Hacks . 16

3.2.3 Future work: Multi attribute range query 18

3.2.4 Future work: Load balancing 18

3.3 PariStorage . 20

3.3.1 Local Storage . 20

3.3.2 Distributed Storage . 21

3.4 PariConnectivity . 29

3.4.1 Point-to-Point . 29

3.4.2 Anonymity . 29

3.4.3 NAT traversal . 30

3.4.4 Multicast . 32

3.4.5 Tunneling . 33

4: Application Layer Plug-ins 35

4.1 PariSync . 35

4.1.1 Algorithm . 37

4.1.2 Network Latency . 39

4.1.3 PariSync for Real . 41

4.1.4 Simulations . 41

i

ii INDICE

4.2 DiESeL . 47

4.2.1 Outage detection . 47

4.2.2 Server Management . 48

4.2.3 Connection Redirection . 48

4.3 PariMessaging . 50

4.3.1 Messenger . 50

4.3.2 IRC . 50

4.3.3 VoiP . 51

4.4 File Sharing . 52

4.4.1 Mulo . 52

4.4.2 Torrent . 54

4.4.3 Future work . 57

4.5 PariWeb . 59

4.5.1 Implementation . 60

4.5.2 Future work . 60

5: Plug-ins in Early Development Stages 61

5.1 PariLogin and PariDNS . 61

5.1.1 PariDNS . 61

5.1.2 PariLogin . 62

5.1.3 Identity Theft Protection . 62

5.2 PariDBMS . 63

5.3 PariGUI . 64

5.3.1 PariPari's eventual GUI . 64

5.3.2 Simple GUI . 64

5.4 PariCredits . 67

5.4.1 Intra-peer Credits . 67

5.4.2 Inter-peer Credits . 67

II PariPari: Management 69

6: Human Resources 71

6.1 Student vs Professional employees . 71

6.1.1 High Turnover . 72

6.1.2 Scarcity . 72

6.1.3 Low Cost and Low Quality . 72

6.1.4 Unreliability . 73

6.2 Personnel Quality . 73

INDICE iii

6.2.1 De�nition . 74

6.2.2 Evaluation . 75

6.2.3 Cultivating Quality . 76

6.2.4 Quality of Team . 78

6.3 Organizational Structure . 79

6.3.1 Hierarchical Structure . 79

6.3.2 Organization of Time . 81

6.3.3 Organization of Resources . 83

6.4 Motivational Issues . 83

6.4.1 Motivation from Joining . 83

6.4.2 Encouragement . 84

6.4.3 Responsability . 84

6.4.4 Special Events . 84

6.4.5 The right student for the right plug-in 85

6.5 Beyond PariPari . 85

6.5.1 Computer Engineers and Computer Engineering skills 85

6.5.2 Grades and the market of lemons 86

6.5.3 The PariPari alumni network 87

6.5.4 �Amateur� software projects 87

7: Programming 89

7.1 Tools . 90

7.2 Extreme programming . 91

7.2.1 XP rules . 91

7.3 Test Driven Development . 96

7.3.1 PariPari's TDD . 97

8: Conclusions 101

iv INDICE

Chapter 1

Introduction

PariPari is a serverless P2P multi-functional application designed to o�er all tradi-

tional P2P services (�le-sharing, distributed storage, VoIP,. . .) along with a number

of traditionally server-based ones (email hosting, IRC chat, web hosting, NTP,...).

It is currently developed by more than 50 students from the University of Padova,

but aims at reaching a larger community of developers as soon as it is o�cially re-

leased. In fact, all the services o�ered by each plug-in are described by simple APIs.

Using these APIs a third party developer can interact with existing plug-ins and

develop new applications, taking advantage of an already established P2P network,

potentially with a large user base. PariPari is written in Java, so that it runs on all

Operating Systems that have a Java Virtual Machine without the need to recompile

the code. Moreover, students at University of Padova are very familiar with Java

which is essentially the only language they are taught at some depth - any other

language choice would have forced us to spend considerable energies re-training our

developer base, with uncertain results. Unfortunately, Java precludes access to a

number of low level functionalities of the machine and of the operating system; this

has forced us in a number of cases to adopt rather roundabout solutions.

The remainder of this thesis is split into two parts. The �rst part deals with

the design and implementation of PariPari. In particular, after a description of the

application structure we examine every plug-in. For each we analyze the state of the

art, the challenges o�ered by �P2Pization�, and how we faced them.

The second part of the thesis discusses human resource management and pro-

gramming methodologies. We review the characteristics of our developer base (inex-

perienced, part time, unpaid, with high turnover), and the challenges it poses; and

how we dealt with those challenges with careful personnel management and with a

modi�ed version of Extreme Programming.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: PariPari logo.

Part I

PariPari: Network Project and

Development

3

Chapter 2

Structure

PariPari is designed as a multifunctional, extensible platform for P2P applications.

By allowing all such applications to run with a �common base� on the user's ma-

chine, PariPari can avoid con�icts, exploit synergies, and allocate resources to those

applications that need them most.

To simplify the development of PariPari applications - both by future third party

developers and by the large student body currently working on PariPari - it was

paramount to structure PariPari in a highly modular fashion. Each service (IRC,

distributed storage etc.) is provided by a module - we call these �plug-ins� - that can

be loaded on demand by PariCore (in some sense PariPari's kernel). PariCore also

assigns resources to plug-ins, and manages communication between them through a

simple, extensible set of APIs.

All plug-ins can be divided roughly into two classes. The �rst comprises those

plug-ins o�ering basic services � often invisible to the end user � supporting the

PariPari infrastructure e.g., connectivity, local and remote storage etc. These form

in some sense the �operating system� of PariPari, and are accorded a number of

privileges by PariCore. The second class of plug-ins comprises those plug-ins o�ering

end user services e.g. �lesharing, IRC etc. These are often useful only to a limited

fraction of users, and so can be loaded on demand by PariCore, which accords them

only limited privileges. We expect the vast majority of third party plug-ins to fall

into this second category.

PariPari is designed to be launched as a Java Web Start application. In this way,

anybody can use it, without installation, just clicking on a web page. Another strong

point is that JWS keeps PariPari software constantly updated to the latest version

avoiding the user all the maintenace operations.

The following chapters will each describe one of the plug-ins currently in PariPari

or under development, beginning with the �Operating System layer� plug-ins and

5

6 CHAPTER 2. STRUCTURE

continuing with the �application layer� ones.

• Section 3.1 describes PariCore.

• Section 3.2 describes PariDHT. This plug-in manages the PariPari Distributed

HashTable. Plug-ins, using PariDHT can join and search the network and o�er

their resource and services to the plug-ins operating on other peers.

• Section 3.3 describes PariStorage. This plug-in manages the accesses to the

storage systems. PariStorage can use all the PariPari network as a large dis-

tributed storage system.

• Section 3.4 describes PariConnectivity. This plug-in manages all the network

related tra�c providing some advanced features such as multicast, anonymity

and NAT traversal.

• Section 4.1 describes PariSync. This plug-in, mainly developed to satisfy PariS-

torage needs, provides the peers with clock synchronization.

• Section 4.3 describes PariMessaging. This plug-in provides PariPari with an

infrastructure to deal with all the most popular chat and instant messaging

systems. Actually it implements Microsoft Messenger and IRC chat systems.

• Subsection 4.4.1 describes Mulo. This plug-in provides the peer with a eMule

compatible client.

• Subsection 4.4.2 describes Torrent. This plug-in provides the peer with a Bit-

torrent compatible client.

• Section 4.5 describes PariWeb. This plug-in o�ers a (distributed) web hosting

service.

• Section 5.4 describes PariCredits. This plug-in is embedded in PariCore; it

provides the functionalities needed to allow PariCore to arbitrate plug-ins re-

quests.

• Subsection 5.1.1 describes PariDNS. This plug-in o�ers a distributed DNS ser-

vice.

• Subsection 5.1.2 describes PariLogin. This plug-in manages a decentralized

login system to allow users to be recognized by the network.

• Section 5.2 describes PariDBMS. This plug-in o�ers a distributed DBMS ser-

vice.

7

PariCore

PariStoragePariConnectivity PariDHT

Mulo Torrent PariLogin PariDNS PariSyncPariMessaging

PariDistributedStorage

PariWeb PariDBMS

Figure 2.1: Transitive reduction of the plug-in dependencies graph of PariPari.

8 CHAPTER 2. STRUCTURE

Chapter 3

Operating System Layer Plug-ins

3.1 PariCore

PariCore is the kernel of the system. The goal of PariCore is to load, start and stop

at runtime the other plug-ins and to make them work correctly. To accomplish these

tasks PariCore uses a dependency solving algorithm. Hence, whenever a plug-in is

required to start, PariCore loads and starts all requested plug-ins. In order to keep

the PariPari framework safe and to let developers write easily their own plug-ins, we

do not let plug-ins communicate with each other. PariCore routes messages among

the running plug-ins. This way, each plug-in cannot be accessed directly by any

other plug-in: only the PariCore can, preventing malicious or badly written code

from being executed by good plug-ins. Moreover, PariCore grants PariPari with

security by checking all messages, and by exploiting PariCredits information.

To summarize, PariCore provides the following services:

• It loads the requested plug-ins solving any dependencies.

• It inhibits plug-ins from performing unwanted operations.

• It delivers messages and resources among plug-ins.

• It executes operations requested by PariCredits.

• It performs basic network tasks (i.e., checking for updates and verifying jar

signatures).

To provide these functions we developed a new plug-in architecture calledT.A.L.P.A.

and described below.

9

10 CHAPTER 3. OPERATING SYSTEM LAYER PLUG-INS

3.1.1 T.A.L.P.A. PariCore

T.A.L.P.A. - The Acronym for Lightweight Plug-in Architecture was designed to

be the kernel of PariPari. It manages plug-ins, routes their messages and protects

users and good plug-ins from malicious ones.

To handle plug-ins o�ering the same service running at the same timeT.A.L.P.A.

instantiates a separate classloader for each plug-in. Having separate namespaces eas-

ily permits a peaceful coexistence of plug-ins sharing some package names, as class

names are of the form class_name@classloader_name. However, in this way plug-

ins must know how to use the objects they request to others, and if two di�erent

implementations of the same service have di�erent �elds or methods there's no pos-

sibility that the same code could run unchanged with both.

To deal with this problem we decided to separate the de�nition of a service from

its speci�c implementations.

All services available in PariPari are de�ned by a set of abstract classes named

API. A super interface that all APIs must implement (paripari.API.API) contains

some methods needed to let the Credit System manage exchanges. Two plug-ins

o�ering the same service must provide an object extending the same reference API.

There are several advantages in doing so:

• All the documentation about classes, methods, constructors and variables can

be written only once.

• Developers are not required to know anything about a speci�c implementation,

reading the javadoc is all it takes to know how to use a speci�c service.

• Code can be used independently of the particular implementation of the service

is running.

• Having a single standard for each service helps in writing better and more

complete plug-ins, as the development of a feature in an implementation of the

service strongly encourages other implementations to develop it as well.

• Having di�erent implementations for the same service improves e�ciency. When

plug-ins ask for some service (identi�ed by its reference API) the actual im-

plementation chosen by PariCore varies on a single-case basis, depending on

which plug-in o�ers the best performance (the cheapest in terms of Credits of

those meeting the buyer requirements).

Moreover, having one classloader for each plug-in also helps improve security.

Plug-ins cannot access any of the classes contained in other plug-ins jars, as they're

class_name@classloader_name

3.1. PARICORE 11

loaded in di�erent classloaders. Separate namespaces mean that re�ection does not

work at all if not performed on the same jar in which the running code is in. This

is a strong security improvement, because every plug-in could before access any

variable, class or method (whether public, protected or even private!) in any jar.

Also, our Security Manager can easily understand where method calls come from by

just looking at the classloader that loaded the running class.

PariPariSecurityManager

To increase user safety we wrote our own Security Manager that replaces Web Start's.

It is more restrictive, since the only plug-ins that we trust by default are PariDHT,

PariStorage and PariConnectivity. These are modules written by the PariPari Team

and should not be replaced even in the future. It is of crucial importance that these

four modules (including the Core) are closely inspected by PariPari developers and

not by external teams, as being able to manipulate some code in one of them could

allow the transformation of PariPari into a malaware platform.

The Java Security Architecture is usually based on some policy �les contain-

ing lists of permissions to be granted to various code sources. These �les must be

manually placed in some directories that in Unix systems are often accessible only

by super-users. This is not a viable solution for a web application.

An alternative to using policy �les is that of replacing in the security chain the

default Java Security Manager with a custom one. The default Security Manager

reads policy �les to know whether to permit certain security-related method calls.

Our Security Manager uses the keystore couple ID-public key to know whether the

calls come from one of the above-quoted plug-ins or not. We decided not to let users

change this behavior, anything they want, since understanding the complex and

subtle interplay of permissions and security levels is probably beyond the average

third party application developer, and we felt that the limited reduction in �exibility

was well worth the substantial increase in safety.

Moreover PariCore, for security reasons and to allow the strict control of the

resources, inhibits the use of standard java.io threads. Nevertheless, it provides

PariPariThread. These objects work like standard threads but are under direct

control of PariCore and Credits.

Future Work: Memory Management

One of the initial objectives of the PariCore was memory management. Studying the

problem in depth, though, revealed that Java does not o�er enough to accomplish

this task. Assigning a determined amount of memory to a speci�c thread, for in-

12 CHAPTER 3. OPERATING SYSTEM LAYER PLUG-INS

stance, is something that simply cannot be done directly, using Java. Using indirect

memory analysis seems to be a feasible approach to the problem. A substantial help

could come from the next version of Java (Java 7) that could include the Resource

Consumption Management API required and speci�ed by JSR 264 [jsr]. A set of API

to manage resource (memory, CPU, disk) consumption would ease the development

of that section of PariCore.

3.2. PARIDHT 13

3.2 PariDHT

PariDHT implements the fundamental data structure to search for resources (�les,

services etc.) in the PariPari network. As the name suggests, this data structure is

a Distributed Hash Table.

After a surge of interest in the academic community (e.g., Chord [SMK+01],

CAN [RFS+01], Pastry [RD01], Kademlia [MM02]) recent years have seen DHTs

adopted in several applications with a vast public (e.g., the popular eMule [emu] and

Azureus [azu] �lesharing clients and the JXTA system [jxt]). While DHTs can be

implemented in many di�erent ways, almost all the mainstream ones (including all

the ones we cited above) function according to a basic scheme that we summarize

below.

Roughly speaking, each node in a DHT is assigned a random address in a b-bit ID

space (b is chosen su�ciently large, typically 160 or more, to avoid collisions). Some

form of distance (pseudo-)metric is de�ned on this address space (e.g., the XOR

metric used in Kademlia [MM02]), so that one can partition the space, for any given

node, in the 2b−1 addresses in the �other half� of the network, the 2b−2 addresses in

the same half but in the other quarter, the 2b−3 addresses in the same quarter and

the other eighth, and so on . Each node then keeps contacts with a small number k

of nodes in the other half of the network, k nodes in the other quarter, k in the other

eighth and so on (see Figure 3.1). Theoretically k = 1 would su�ce, but in practice

some redundancy is introduced to provide robustness and typically 5 ≤ k ≤ 20 is

used. Of course less than k nodes might be present in some of the smallest regions,

in which case all the nodes in any such region are kept as contacts.

u’

u

u’’

r
v(r)

Figure 3.1: The search structure in a typical DHT.

14 CHAPTER 3. OPERATING SYSTEM LAYER PLUG-INS

Each resource r (e.g., a �le) is also mapped into the same address space using

a pseudorandom hash of the keyword(s) that will be used to locate it; information

about how to reach it (e.g., the IP of the machine from which it can be accessed) is

stored in the node v(r) closest to it in the address space. To locate v(r) � whether

to retrieve the information on how to access r, or to store it in the �rst place � a

node u will forward the query to the node u′, among its contacts, closest to r in the

address space. In the worst case, u′ will be in the other half of the network � but it

will certainly be in the same half as r. It can then forward the query to another node

u′′ that will certainly be in the same quarter as r � and so on, until v(r) is reached

in a number of steps logarithmic in the size of the network with high probability.

3.2.1 Protocol: Kademlia

PariDHT currently implements the Kademlia data structure [MM02] Kademlia adopts

as a distance function between nodes and/or resources the XOR between their IDs.

It is not di�cult to prove that XOR is a metric (i.e. satis�es the properties of non-

negativity, symmetry, identity of indescernibles and triangle inequality). In addition,

XOR is extremely easy to compute and exhibits several other �nice� properties (see

[MM02] for a more comprehensive treatment). Note that, in general, IDs are com-

pletely unrelated to geographical position. Thus it could happen that a node in

Germany could be the closest to a resource in Australia. We are currently investi-

gating the possibility of �locality preserving� IDs (see [IMRV97]).

Every node in a Kademlia network stores information to route messages. Routing

tables, called k-buckets, consist of a list for each bit of the node id. (e.g., if a node

ID consists of 128 bits, a node will keep 128 k-buckets.) A bucket has many entries.

Every entry in a bucket holds the necessary data to locate another node. The data

in each bucket entry is typically the IP address, port, and node id of another node.

Every bucket corresponds to a speci�c distance from the node. Nodes that can go

in the nth bucket must have a di�ering nth bit from the node's id; the �rst n-1 bits

of the candidate id must match those of the node's id. This means that it is very

easy to �ll the �rst bucket as 1
2
of the nodes in the network are far away candidates.

The next bucket can use only 1
4
of the nodes in the network (one bit closer than the

�rst), etc.

As nodes are encountered on the network, they are added to the lists. This

includes store and retrieval operations and even when helping other nodes in �nding

a key. Every encountered node will be considered for inclusion in the lists. Therefore

the knowledge that a node has of the network is very dynamic. This keeps the

network constantly updated and adds resilience to failures or attacks. Moreover k-

3.2. PARIDHT 15

buckets stores information not only on just a sole node but on k nodes at the right

distance. Typically k = 20.

It is known that nodes that have been connected for a long time in a network

will probably remain connected for a long time in the future [SGG02]. Because of

this statistical distribution, Kademlia selects long connected nodes to remain stored

in the k-buckets. This increases the number of known valid nodes at some time in

the future and provides for a more stable network.

When a k-bucket is full and a new node is discovered for that k-bucket, the least

recently seen node in the k-bucket is PINGed. If the node is found to be still alive,

the new node is place in a secondary list; a replacement cache. The replacement

cache is used only if a node in the k-bucket stops responding. In other words: new

nodes are used only when older nodes disappear.

Kademlia uses four kind of messages.

Ping: like ICMP ping: used to verify that a node is still alive.

Store: to store a (key, value) pair in a node.

Find Node: The recipient of the request will return the k nodes in his own buckets

that are the closest ones to the requested key.

Find Value: as Find Node, but if the recipient of the request has the requested

key in its store, it will return the corresponding value.

Each message includes a random value from the initiator. This ensures that when

the response is received it corresponds to the request previously sent.

Using these messages, it is simple to understand the lookup procedure. Node

lookups can proceed asynchronously. The quantity of simultaneous lookups is de-

noted by α = 3. A node initiates a Find Node request by querying the k nodes in

its own k-buckets that are the closest ones to the desired key. When these recipient

nodes receive the request, they will look in their k-buckets and return the k closest

nodes to the desired key that they know. The requester will update a results list

with the results (node ID's) it receives, keeping the k best ones (the k nodes that are

closest to the searched key) that respond to queries. Then the requester will select

these k best results and issue the request to them, and iterate this process again and

again. Because every node has a better knowledge of his own surroundings than any

other node has, the received results will be other nodes that are every time closer

and closer to the searched key. The iterations continue until no nodes are returned

that are closer than the best previous results. When the iterations stop, the best k

16 CHAPTER 3. OPERATING SYSTEM LAYER PLUG-INS

nodes in the results list are the ones in the whole network that are the closest to the

desired key.

Information is located by mapping it to a key. A hash is typically used for the

map. The storer nodes will have information due to a previous Store message.

Locating a value follows the same procedure as locating the closest nodes to a key,

except the search terminates when a node has the requested value in its store and

returns this value.

A node that would like to join the net must �rst go through a bootstrap process.

In this phase, the node needs to know the IP address and port of another node

(obtained from the user, or from a stored list) that is already participating in the

Kademlia network. If the bootstrapping node has not yet participated in the network,

it computes a random ID number that is supposed not to be already assigned to any

other node. It uses this ID until leaving the network.

The joining node inserts the bootstrap node into one of its k-buckets. The new

node then does a Find Node of its own ID against the only other node it knows.

The �self-lookup� will populate other nodes' k-buckets with the new node id, and

will populate the new node's k-buckets with the nodes in the path between it and

the bootstrap node. After this, the new node refreshes all k-buckets further away

than the k-bucket where the bootstrap node falls in. This refresh is just a lookup of

a random key that is within that k-bucket range.

3.2.2 Implementation Hacks

We have added a number of small hacks in the implementation of the Kademlia

data structure. In this section we detail two. The �rst allows for richer metadata

to characterize queries and/or resources. The second cuts almost in half the latency

required to locate a resource in the (not infrequent) case of highly reliable nodes in

the �main search path� leading to the resource.

Options �eld. Each node on the Kademlia network is identi�ed by a unique ID

and by the piece of information needed to reach the node itself (its IP and port).

Hence we can de�ne a structure called triplet containing these three �elds that is

52-byte long. However we chose to keep the length of triplets as a multiple of 16

bytes. This choice leaves us 12 bytes of spare space that can be used as an �options�

�eld to provide additional functionalities. For example, this �eld can be successfully

used to store a small public key.

Sometimes plug-ins need more information to be carried by the datagram. How-

ever a more consistent increase in the datagram size could lead to a network per-

3.2. PARIDHT 17

IPv4 address (32 bit)

IPv6 extension (96 bit)
(unused)

port number (8 bit) (8 unused bit)

(96 unused bit)

ID (256 bit)

Figure 3.2: The PariDHT datagram (64 bytes).

formance worsening. So we established a new protocol to associate a note with a

node stored in the DHT. The note is not actually stored by the node that holds the

triplet. The note lies in the originating node (i.e., the node linked by the node that

holds the triplet). This way the requesting node can reach the originating to read

the content of the node.

Favorite Child. To cut down the latency during lookup methods we are developing

a simple hack to the original algorithm. We called this method the �favorite child

lookup�. Roughly speaking, the vanilla Kademlia algorithm make the requesting

node to iterate its request on each step during the look-up procedure waiting every

time for the answer of the inquired node. Di�erently, the �favorite child lookup�

eliminate these waiting charging the inquired node to continue the look-up procedure.

Every time a node starts a lookup operation it chooses a �favorite child� among its

neighbors. This node, instead of answering to the requester following the standard

procedure, directly forwards the request to one of its neighbors, which in turn will

forward the request to another chosen neighbor and so on. The directly contacted

18 CHAPTER 3. OPERATING SYSTEM LAYER PLUG-INS

nodes are labeled as �favorite children�. It is clear that, in case of successful requests,

the latency is almost halved.

3.2.3 Future work: Multi attribute range query

One of the main directions of future work for PariDHT is an e�cient implementation

of (multi attribute) range queries. A range query is an operation that retrieves all

keys whose value is between an upper and lower boundary. Searching for peers

providing services like storage or computation power can be done e�ciently only

allowing range queries. As far as we know the best solution for our purpose is

described in [PLGS04]. This solutions exploits P-trees (a distributed version of B+-

trees [Com79]) to e�ciently evaluate range and equality queries.

Multi attribute queries combine results from two or more search queries in a

way that is similar to an SQL join in a database. To e�ciently provide this fea-

ture it is necessary to perform the join while doing the search. Our proposed so-

lution is based on [WS06]. This system introduces DHR-Trees (based on Hilbert

R-trees [GG97]) and exploits P-tree range queries to perform Multi attribute range

query in O(logd(N))b (with N number of Nodes on d-dimension space).

3.2.4 Future work: Load balancing

An implementation of a DHT usually solves the load balancing problem by fairly

spreading the load among all participants, that is, uniformly mapping nodes and keys

into the same (shared) identi�er space using a consistent hash function. However,

it has been shown [GDB05, SGG02] that real queries are not uniformly distributed

among all addresses, but they tend to follow a Zipf-like distribution. Hence, an uni-

form mapping leads to unfair load assignment: some nodes, often called hot spots,

receive more than the fair load, while other nodes are idle most of the time. To cope

with this phenomenon, a DHT should be enhanced with load balancing algorithms

that taking into account query distribution. In particular, we can distinguish two

kind of problem. The tra�c problem and the popularity problem. Roughly speak-

ing, the tra�c problem occurs because some nodes are �ooded of queries originated

by other node look-up operations. The popularity problem is instead due to the

overpopulation of resources sharing the same ID. Nodes that are close to that ID

should keep a large number of links.

Tra�c problem Several strategies for reducing tra�c problems in a structured

network have been proposed. For example, Kaashoek and Stoica [KS03] introduced

3.2. PARIDHT 19

the concept of Virtual Server (VS): when a node joins the network, it assigns to itself

several addresses, each corresponding to a virtual position in the identi�er space; only

one address is used at a time, the selection of such address depending on the load

observed. Recently several enhancements have been proposed: a �ner estimation of

the number of virtual positions is proposed by Ledlie and Seltzer [CHXY08], while

heterogeneity is treated by Chen et al. [GSBK04]. Even if tra�c is balanced using

VS, the problem of item popularity is not solved.

Popularity problem To deal with item popularity, several caching algorithm have

been proposed. The idea is to replicate items on nodes other than the original owners

and spread the load on all copies (original and replicated) as fairly as possible. The

problem is to �nd the optimal number of copies and the best place for them so that

the entire replication scheme is e�ective. Gopalakrishnan et al [GSBK04] proposed

to create a replica on each node of the path from requester to original owner, while

Bianchi et al. [BSFK06] observed that, as replicas move far from original position,

their e�ectiveness decreases and therefore they proposed to place replica only at the

last hop. Rao et al. [RCFB07] replicate on nodes of a k-ary tree rooted at the original

resource owner, where the children are the k neighbors of a node, the replication

scheme is similar to a breadth-�rst �lling and the popular items are supposed to be

replicated in more tree levels than non-popular ones. This solution seems the best

�t for our system, but it needs some minor changes.

20 CHAPTER 3. OPERATING SYSTEM LAYER PLUG-INS

3.3 PariStorage

One of the fundamental components of PariPari is a system for reliable, distributed

storage of data across the network. In a nutshell, this requires a) a system for safe,

e�cient local storage on each node of the network and b) a scheme to add redundant

data so as to cope with failing nodes.

3.3.1 Local Storage

LocalStorage the resource manager in charge of accessing (and limiting access to)

local permanent storage devices (hard drives, USB pens etc.)

This means that every plug-in wanting to create a �le or access an existing �le

needs to forward a request to Local Storage, through PariCore, which veri�es the

request and check if it is satis�able or not. If the request is satis�able, the asking plug-

in will receive in reply a FileAPI object that o�ers all needed methods to execute

operations of creating, reading, writing, deleting for a �le, keeping consequently

updated the plug-in quota. Local Storage can prevent from plug-in unauthorized

disk accesses.

At boot time, Local Storage looks for installed plug-ins and for each of them it

retrieves name, available disk space, used disk space, maximum number of ownable

�les and number of owned �les. It does so by scanning plug-in directories and saving

a list of those �les it �nds.

Plugins informations are saved:

• in a �le located in Local Storage directory. The �le is not directly readable

by other plug-ins and is read at Local Storage boot time to load informations

about active plug-ins quota. It is updated after every operation that modi�es

plug-in quota.

• in proper �les located in local directories of any plug-in, readable and writable

both by plug-in and user (and therefore are not a reliable source for Local

Storage goals). They are updated when any open stream on a �le is closed

(and not at every operation, to increase plug-in performance), so we always

get a perfect data consistency.

Local Storage, furthermore, allows access to any �le on the host disks but only

after explicit user authorization (to prevent unwanted access).

3.3. PARISTORAGE 21

3.3.2 Distributed Storage

A common method used to achieve high reliability and availability of data over a

network is replication. This method consists in distributing replicated copies of a �le

over several nodes on the network. This way it is su�cient that at least one node is

alive to recover the �le. Another way is to use an erasure code. Erasure codes divide

an object into m fragments and recode it into n fragments, where n > m. We call

r = m
n
< 1 the rate of encoding. This means that a rate r code increases the storage

cost by a factor of 1
r
. The key property of erasure codes is that the original object

can be reconstructed from any m fragments. For example, using r = 1
8
we divide

the �le into m = 8 fragments and encode the original m fragments into n = m
r

= 64

fragments. In this example the storage cost is increased by a factor of 1
r

= 8. We

can observe that the set of erasure codes is a superset of replication-based systems.

For example a system that creates eight replicas for each �le can be described by an

m = 1 n = 8 erasure code.

Under some circumstances, with �xed storage overhead erasure codes provide

higher availability.

Availability: replication vs erasure codes

We now compare erasure codes and replication for what concerns the availability of

a �le. The �le availability is the probability that, in a �xed moment, it is possible to

recover the �le. We characterize the availability of a peer by a parameter µ, known

as peer availability. Peer availability is the probability that a peer is online and it is

able to give a previously stored block in a �xed moment. We are assuming that all

peers have the same peer availabilities. We call S = 1
r
the storage overhead where r

is the rate of encoding. We notice that for a replication-based system S represents

the number of copies.

Replication

In a replication-based system the �le is replicated S times and stored by S peers. In

order to retrieve the �le it is su�cient that at least one peer is available. So the �le

availability is

Ar(S) =
S∑
i=1

(
S

i

)
µi(1− µ)(S−i) (3.1)

22 CHAPTER 3. OPERATING SYSTEM LAYER PLUG-INS

Figure 3.3: E�ect of changing µ on the �le availability.

Erasure codes

In an erasure code system we store on the network n = S · m blocks. We assume

that the number of peers is large compared to n. With this assumption each block

is allocated to one peer and therefore each block is independent of each other. In

order to retrieve the �le we need to retrieve at least m blocks so the availability of

the �le is

Ae(S ·m) =
Sm∑
i=m

(
Sm

i

)
µi(1− µ)(Sm−i) (3.2)

We notice that if m = 1 then Ar = Ae because replication is a particular case of

erasure codes, so we analyze Ae and obtain information about Ar setting m = 1

Comparison

File availability depends on 3 parameters: µ, S and m. Since we want to compare

replication (m = 1) and erasure coding (m > 1) we �x µ and S and we plot the

availability against m.

Figure 3.3 is a plot of �le availability against the number of blocks m in the

system, with di�erent peer availabilities and �xed S = 2 using equation 3.2. From

the result we see that when the peer availability is low, replication is better than

erasure code.

3.3. PARISTORAGE 23

Figure 3.4: E�ect of changing S on the �le availability.

Figure 3.4 is a plot of �le availability for �xed µ = 0.3 and di�erent storage

overheads S. We notice that for high storage overhead (4-5) we have erasure code

beating replication while for low overheads (2-3) it is better to use replication.

A brief overview on erasure codes

There are two main classes of erasure codes: optimal erasure codes and near optimal

erasure codes. The �rst class of codes has the property that for each m subsets of

n blocks it is possible to reconstruct the whole �le. If the code is systematic we call

the m blocks of the original message source blocks and the m−n = βm blocks check

blocks. An optimal erasure code can recover the original message from a random loss

of at most a β fraction of blocks.

Near optimal erasure codes need, instead, m + ε blocks in order to reconstruct

the whole �le, so they can recover from a random lost of at most (1 − ε)β fraction

of blocks. This suboptimality is usually rewarded by faster decoding and encoding

algorithms. In term of distributed storage we have a trade o� between storage

overhead, that is minimized by optimal codes, and encoding and decoding speed.

We will now describe some optimal and near optimal erasure codes, then we will

focus on Tornado code, a very fast near optimal erasure code.

24 CHAPTER 3. OPERATING SYSTEM LAYER PLUG-INS

Code Encoding complexity Decoding complexity
Reed-Solomon O(n log n) O(n2)

Tornado O(n log 1
ε
) O(n log 1

ε
)

Figure 3.5: Complexity comparison

Reed-Solomon code Reed-Solomon is an optimal erasure code. The key idea

behind a Reed-Solomon code is that data encoded is �rst visualized as a polynomial.

The code relies on a theorem from algebra that states that any m distinct points

uniquely determine a polynomial of degree, at most, m − 1. The sender builds a

degree m − 1 polynomial, over a �nite �eld, that represents the k data points. For

example if we want to send the m-ple

A = (a0, a1, · · · , am−1) with ai ∈ F

we can build the m− 1 degree polynomial

Pm−1(z) = am−1z
m−1 + am−2z

m−2 + · · ·+ a1z + a0

The polynomial is then encoded by its evaluation at n points (with n > m), and

these n values are actually sent. During transmission, some of these values may

become corrupted. However, as long as almost m blocks are received correctly, the

receiver can deduce what the original polynomial was, and hence decode the original

data. Two advantages of Reed-Solomon are storage e�ciency and deterministic be-

havior while, the con is that encoding and decoding algorithms are slow (Table 3.5)

compared to other near-optimal erasure codes we will show below.

LDPC codes LDPC codes are a large class of near optimal erasure codes provided

for the �rst time by R. Gallager in 1960 that introduced the idea of using a bipartite

graph to approach the erasure code problem. This type of graph contains two disjoint

sets of nodes with edges between nodes of di�erent sets, but no edges between nodes

within the same set. The key idea is to divide a �le in some blocks (called source

blocks), to create a graph with a set of nodes corresponding to the source blocks and

a set of nodes corresponding to the check blocks and to connect some of the source

blocks to the check blocks. The encoding process consists of setting a check block

equal to the exclusive or (XOR) of the source blocks to which it is connected. The

classical approach is based on a regular graph in which all nodes of each type have

the same number of edges. In this code, the number of edges is proportional to the

number of nodes. Since the resulting edge count is small compared to the number of

3.3. PARISTORAGE 25

edges in a fully connected bipartite graph, these are called low density parity check

(LDPC) codes.

In 1997, Luby et. al [LMS+97] proved that LDPC codes have improved properties

if the number of edges connected to each node varies from node to node (so using

not regular graphs). For such irregular codes, the challenge is to characterize the

degree of irregularity that yields the best coding performance. This is accomplished

in two stages. First, a probability distribution is speci�ed for the degree of a check

block. A distribution may also be speci�ed for the degree of a source block. Then a

procedure is developed for implementing an e�ective code based on the distribution.

In contrast to Reed-Solomon codes, these codes provide probabilistic erasure correc-

tion through an iterative decoding algorithm and suboptimal performance on storage

overhead; the advantage is that this class of codes provides a signi�cant reduction in

computational cost for encoding and decoding (see Table 3.5).

Tornado code Tornado is a LDPC code based on irregular bipartite graphs. This

means that the degrees of source and check blocks are not �xed but are arranged

following a �xed distribution.

Tornado codes work via XOR. The XOR of a number of binary variables is called

their �parity� and this is often used in error detection and correction. Tornado codes

use it for error correction. They use another checksum (like CRC-32 or MD5) for

error detection.

The Tornado code algorithm starts with the sender breaking an input �le or

message into equal sized blocks of bytes. Let's call these blocks A[1] through A[N].

The sender records the index of each block and computes a checksums for the block

and its index. (These will be used to determine if a block has been damaged during

transmission and therefore needs to be recovered.) The sender also calculates some

parity blocks, B[1] through B[K]. Each of these parity blocks holds the parity for

a subset of the input blocks A[1] through A[N]. The size and composition of these

subsets is key to the speed and success of this algorithm. For each parity block, the

sender records the indices of the input blocks and a checksum for the parity block

and its input indices.

The sender now sends the input and parity blocks (with their indices and check-

sums) to the receiver. During this transmission, some of the blocks may be corrupted.

The receiver uses the checksums to identify bad blocks and discards them. The

receiver is now left with a subset of the input blocks and some parity blocks. As long

as the receiver has received N + C blocks (where C is some constant), it is highly

probable that the receiver can recover the �le. Now, each parity block is associated

26 CHAPTER 3. OPERATING SYSTEM LAYER PLUG-INS

with a subset of input blocks and for most parity blocks there may be multiple input

blocks missing from its subset. However, given the size of the random subsets, it is

highly likely that there exists one parity block that is missing only one of its input

blocks. Using the XOR operation described above, that missing input block can be

recovered. Once it is recovered, a parity block that was previously missing two input

blocks may now be missing just one and that one can now be recovered. This process

continues - input blocks being recovered and more parity blocks being available to

recover missing blocks � until the entire input �le or message is recovered.

The true power of the algorithm stems from the uneven size of the subsets. On

average, the sizes are low � making it very fast to create them and fast to recover

the �le. However, occasionally they are large - covering most of the input blocks -

so that any missing block can be recovered.

Raptor code Raptor codes (RAPid TORnado) are one of the �rst known classes

of fountain codes with linear time encoding and decoding. They were invented by

Amin Shokrollahi in 2000/2001 and were �rst published in 2004 as an extended

abstract [Sho06].

Raptor codes encode a given message consisting of a number of symbols, k, into

a potentially limitless sequence of encoding symbols such that knowledge of any k

or more encoding symbols allows the message to be recovered with some non-zero

probability. The probability that the message can be recovered increases with the

number of symbols received above k becoming very close to 1, once the number of

received symbols is only very slightly larger than k. A symbol can be any size, from

a single bit to hundreds or thousands of bytes.

Raptor codes may be systematic or non-systematic. In the systematic case, the

symbols of the original message are included within the set of encoding symbols.

An example of a systematic raptor code is the code de�ned by the 3rd Generation

Partnership Project for use in mobile cellular wireless broadcast and multicast and

also used by DVB-H standards for IP datacast to handheld devices (see external

links). Online codes are an example of a non-systematic raptor code.

Raptor codes are formed by the concatenation of two codes.

A �xed rate erasure code, usually with a fairly high rate, is applied as a �pre-code�

or �outer code�. This pre-code may itself be a concatenation of multiple codes, for

example in the code standardized by 3GPP a high density parity check code derived

from the binary Gray sequence is concatenated with a simple regular low density

parity check code. Another possibility would be a concatenation of a Hamming code

with a low density parity check code.

3.3. PARISTORAGE 27

The inner code takes the result of the pre-coding operation and generates a se-

quence of encoding symbols. The inner code is a form of LT code. Each encoding

symbol is the XOR of a randomly chosen set of symbols from the pre-code output.

The number of symbols which are XOR'ed together to form an output symbol is

chosen randomly for each output symbol according to a speci�c probability distribu-

tion.

This distribution, as well as the mechanism for generating random numbers for

sampling this distribution and for choosing the symbols to be XOR'ed, must be

known to both sender and receiver. In one approach, each symbol is accompanied

with an identi�er which can be used as a seed to a pseudo-random number generator

to generate this information, with the same process being followed by both sender

and receiver.

In the case of non-systematic raptor codes, the source data to be encoded is used

as the input to the pre-coding stage.

In the case of systematic raptor codes, the input to the pre-coding stage is ob-

tained by �rst applying the inverse of the encoding operation that generates the �rst

k output symbols to the source data. Thus, applying the normal encoding opera-

tion to the resulting symbols causes the original source symbols to be regenerated

as the �rst k output symbols of the code. It is necessary to ensure that the random

processes which generate the �rst k output symbols generate an operation which is

invertible.

Erasure Code in PariPari

In PariPari we chose to adopt the LDPC approach because of its ease of implemen-

tation1. We chose the 1-level Systematic LDPC code.

We are designing and developing an Erasure Code that also allows the incremental

modi�cation of a split and distributed �le. With �standard� erasure codes the �le is

split in blocks and spread among peers until a user wants to retrieve the �le itself.

In this case the blocks are gathered to reassemble the �le. Rather than a simple

�save and retrieve� feature we are designing a distributed �lesystem with very basic

functionalities. More speci�cally, we want our storage system to support:

store: split a �le in blocks and spread it among the peers

retrieve: retrieve the �le blocks and reconstruct the original �le

delete: delete the blocks of a �le (once distributed)

1Changing the algorithm once the framework is ready should be quite fast.

28 CHAPTER 3. OPERATING SYSTEM LAYER PLUG-INS

regeneration: check the availability of the blocks in the network and regenerate

some blocks to avoid �le destruction

incremental modi�cation: add a log of modi�cations to the �le blocks to em-

body changes (once the �le is retrieved of regenerate)

restricted access: allow all operations only to the �le owner. The owner can

choose to let everybody read/write the �le.

3.4. PARICONNECTIVITY 29

3.4 PariConnectivity

PariConnectivity provides connectivity to every other plug-in in PariPari. Pari-

Connectivity can provide UDP, TCP (and HTTPS) sockets, limiting the resource

consumption of individual plug-ins so as to avoid con�icts, and providing band-

width and latency QoS guarantees. PariConnectivity also provides a number of

(currently experimental) advanced features, including Anonimization (Section 3.4.2),

NAT (Section 3.4.3), Multicast transmissions (Section 3.4.4) and Transmission Tun-

neling (Section 3.4.5).

3.4.1 Point-to-Point

PariConnectivity provides APIs to allow plug-ins to communicate with other peers

and other host on Internet. These communications are regulated by a de�ned ruleset

that a�ects the number of opened socket per plug-in and the available bandwith

(per socket and per plug-in). Bandwidth limitation is implemented using the Token

Bucket algorithm [Tan96, 402�404] and allows dynamic band variation (i.e., changes

bandwidth limit also after socket creation).

To be more precise, PariConnectivity o�ers:

TCP Socket. This allows plug-ins to send and receive data using a TCP connection

according to a de�ned ruleset.

UDP Socket. This allows plug-ins to send and receive data using a UDP datagram

according to a de�ned ruleset.

HTTPS Socket. This allows plug-ins to send and receive data using HTTPS pro-

tocol. It is very useful to establish in a simple way an authentication session

with well known server (e.g., Messenger 4.3.1).

3.4.2 Anonymity

The purpose of this package is to ensure the untraceability of any PariPari user. In

particular we want to guarantee that any communication cannot be associated with

the IP of the originating user nor with the IP of the receiver. Also, all communica-

tions are encrypted using AES2, which gives strong security guarantees paired with

excellent performance (a simple PC can easily support 50-100Mbit/s).

2Advanced Encryption Standard is an encryption standard adopted by the U.S. government.
The standard comprises three block ciphers, AES-128, AES-192 and AES-256, adopted from a
larger collection originally published as Rijndael [DDD+98].

30 CHAPTER 3. OPERATING SYSTEM LAYER PLUG-INS

Anonimizer chains

Intuitively to let the user A to hide its IP address while sending data, we can mix it

up in a set of other peers. PariPari adopts a widely used technique known as Onion

Routing [GRS99].

Onion routing is a technique for anonymous communication over a computer

network. Messages are repeatedly encrypted and then sent through several network

peers. Each peer removes a layer of encryption to uncover routing instructions, and

sends the message to the next node where this is repeated. This prevents these in-

termediary nodes from knowing the origin, destination, and contents of the message.

To be more precise the message is recursively encrypted, once for each peer that

re-routes it (with the key of that peer).

In such way each peer can decrypt only its layer (in the right order) to know who

is the next hop. Any peer, then, only knows about its predecessor and its successor

but does not know anything about the sender nor the receiver.

We worked to adapt this well known paradigm to PariPari to preserve the anonymity

guarantees.

The same scheme is symmetrically adaptable to the receiver of a communication.

In fact, any user willing to keep herself anonymous, can prepare a chain of peers to

forward any message for her. Any peer of the chain, except the �rst, has to be not

contacted directly. But no peers knows if it is contacted by the original receiver or

by a peer already in the chain. After this set up round any peer is ready to receive

and forward the message along the chain, not knowing anything about the sender

(or its chain) nor the receiver.

Then, if at least a peer in the chain downstream is honest and follows the protocol,

it is impossible to learn the identity of the receiver. Similarly, a single honest peer

in the chain upstream hides the identity of the sender.

3.4.3 NAT traversal

This package allows peers behind NAT o �rewall to be reachable from the PariPari

network.

Network Address Translation (NAT) is the process of modifying network address

information in datagram packet headers while in transit across a tra�c routing de-

vice for the purpose of remapping a given address space into another. Most often

today, NAT is used in conjunction with network masquerading (or IP masquerad-

ing) which is a technique that hides an entire address space, usually consisting of

private network addresses [RMK+96], behind a single IP address in another, often

3.4. PARICONNECTIVITY 31

public address space. This mechanism is implemented in a routing device that uses

stateful translation tables to map the �hidden� addresses into a single address and

then rewrites the outgoing Internet Protocol (IP) packets on exit so that they ap-

pear to originate from the router. In the reverse communications path, responses

are mapped back to the originating IP address using the rules (�state�) stored in

the translation tables. The translation table rules established in this fashion are

�ushed after a short period without new tra�c refreshing their state. As described,

the method enables communication through the router only when the conversation

originates in the masqueraded network, since this establishes the translation tables.

To allow a peer hidden by a NAT to be reached we implement a NAT traversal

mechanism. NAT traversal is a general term for techniques that establish and main-

tain TCP/IP network and/or UDP connections traversing NAT gateways. Next we

describe some ways to implement a NAT traversal mechanism - and the minimum

requirements to do so.

IP Discover Each node willing to publish its resource(s) must know its own IP

address. If the peer is behind a NAT it cannot directly know the public IP address

that appears to have. In order to discover it we have implemented a simple protocol

to allow peers to ask their neighbors its public IP. For performance reasons we use

UDP to implement this service.

STUN The STUN (Session Traversal Utilities for NAT) protocol allows applica-

tions operating through a NAT to discover the presence of a network address trans-

lator and to obtain the mapped (public) IP address (NAT address) and port number

that the NAT has allocated for the application's User Datagram Protocol (UDP)

connections to remote hosts. The protocol requires assistance from a third-party

network server (STUN server) located on the opposing (public) side of the NAT,

usually the public Internet.

A peer can learn its reachability by pinging a STUN server. The server, running

on a PariPari node, answers with two UDP datagrams: one originating from the same

destination port of the ping and one from a di�erent port. The peer, depending on

the number of received answers, understands its reachability state.

No answer: the ping does not arrive or the incoming port is closed. Hence, the

peer is completely frozen out (at least for the port tested).

One answer originating form the ping destination port: the peer is behind

a simple NAT that correctly maps the incoming request matching the outgoing

tra�c.

32 CHAPTER 3. OPERATING SYSTEM LAYER PLUG-INS

Two answers: the peer is behind a NAT performing a virtual Server policy3.

In the second case to allow further incoming tra�c the STUN server has to

continuously send datagrams to the target port. So, the peer, can safely its public

IP and the target port.

UDP Hole Punching UDP hole punching is a method for establishing bidirec-

tional UDP connections between Internet hosts in private networks using NAT. It is

a simple algorithm that uses information gathered with STUN.

Let A and B be the two peers, each behind a NAT; N1 and N2 are the two NAT

devices; S is a public STUN server with a well-known globally reachable IP address.

1. A and B each begin a UDP conversation with S; the NAT devices N1 and N2

create UDP translation states and assign temporary external port numbers.

2. S relays these port numbers back to A and B.

3. A and B contact each others' NAT devices directly on the translated ports; the

NAT devices use the previously created translation states and send the packets

to A and B.

TURN Traversal Using Relay NAT (TURN) is a protocol that allows for an ele-

ment behind a NAT or �rewall to receive incoming data over TCP or UDP connec-

tions. It uses a simple relay to route tra�c from and to two peers behind NATs.

Every peer logs in to a well-known globally reachable TURN server and then they

exchange data sending to and receiving from the server. Although simple and e�ec-

tive, this method exhibits poor performance: all the tra�c has to pass through the

TURN server � possibly leading to congestion.

3.4.4 Multicast

Multicast is not yet implemented. The main challenge in the development of this

module is to make its interface to other plug-ins as application-independent as pos-

sible.

Depending on the type of communication we de�ned:

Simple Conference. The classic audio/video conference with few participants (e.g.,

[sky])

3In a virtual server, every tra�c incoming on the tested port is forwarded to the peer.

3.4. PARICONNECTIVITY 33

Broadcast. A communication characterized by a sender and many receivers (e.g.,

a streaming application)

Multicast. A communication characterized by many participants who want to send

information to � and receive it from � other participants.

Unfortunately, although the IPv4 protocol supports multicast, it is often impossible

to use it in the real world due to the limitations introduced by the use of proxies,

NATs, �rewalls.

Simple Conference We are planning to implement this feature using a Skype like

approach. The initiator of the conference acts as a server and routes the tra�c from

and to the other participants. This server should mix the audio/video streams in a

smart way to avoid the echo problem.

Broadcast After a literature survey we decided to adopt the scheme shown in [WXL07].

This approach provides a tree-like structure to deploy the streams to each requesting

peer. The tree inner nodes, that are PariPari peers, route the streams towards the

leaves which are the �nal receivers. It is very important to note that using a simple

tree structure can lead to large failures when an inner node fails. To avoid this kind

of troubles the tree is forti�ed with a mesh. The tree depth should be adapted to

the number of requesting nodes, to the number of inner nodes

and to the latency of the peers in the network.

Multicast We need a scalable application-layer multicast protocol designed keep-

ing in mind low-bandwidth peers. The scheme in [BBK02] is based upon a hierar-

chical clustering of the peers and can support a number of di�erent data delivery

trees with desirable properties. To be more precise, peers are arranged in clusters,

each one with a leader. Every leader is connected to other leaders and most traf-

�c is routed in this backbone. When streams arrive to the cluster leader they are

forwarded to every peer through cluster.

It is particularly important to manage the streams mix at each level to avoid

unnecessary bandwidth consumption, the echo problem and, of course, to let the

participants speak and listen freely.

3.4.5 Tunneling

Due to the PariPari structure it is easy to imagine that many �parallel� sockets can

exist between two peers. Any pair of peers can instantiate communications for every

34 CHAPTER 3. OPERATING SYSTEM LAYER PLUG-INS

plug-in. This would not be a problem if, in the real world, each host was linked

directly to the Internet. However many peers are behind proxies, NATs, �rewalls.

Hence they are reachable only if the system administrators can guarantee open ports

to PariPari.

We are implementing a mechanism to mux (and demux) all the communications

between two PariPari peers in a single socket. So only a single port will su�ce and

it will be very simple to exploit our NAT traversal facility.

Chapter 4

Application Layer Plug-ins

4.1 PariSync

PariSync is the plug-in needed to keep every peer in the network synchronized.

This synchronization is absolutely necessary to allow transactions and to provide the

credit module with a way to keep track of elapsed time. This work was published

in [BBMP09].

Clock Synchronization is a problem that has been extensively studied over many

years, both in the distributed systems community, and (for its great practical impor-

tance) by the networking community. In a nutshell, it consists in having all the nodes

in a distributed system agree on a common virtual clock, ideally �su�ciently close�

to real time (perhaps with a few �hints� from accurate, external sources) despite

variable communication delays and misbehaving nodes.

The distributed systems community typically casts the problem of clock synchro-

nization as follows. Assume a network of n nodes v1, . . . , vn, all with communication

delays, all with clocks, initially perfectly synchronized but with potentially di�erent

speeds. Each node vi witnesses a sequence of events e1i , e
2
i , The goal is to de-

velop a communication protocol that allows nodes to reach a consensus on a virtual

time t(eji) to be assigned to each event eji so that no event witnessed by a node is

timestamped �out of order�. Ideally t(eji) should also lie within a multiplicative factor

(bounded away from both 0 and ∞) of the real time at which eji occurs, and the

protocol should tolerate the largest possible number of �Byzantine� nodes - nodes

that maliciously conspire, with perfect coordination and information, to make the

protocol fail (a conservative model both of nodes controlled by actively malicious

actors and of accidentally miscon�gured nodes). Roughly speaking, protocols exist

[LS86, DHS84] that tolerate a very large fraction of Byzantine nodes (from ≈ 1
3
, to

≈ 1
2
if a shared digital signature system is available to all nodes). On the other hand,

35

36 CHAPTER 4. APPLICATION LAYER PLUG-INS

these protocols tend to require from each node considerable space and considerable

bandwidth (both linear or polynomial in the size of the network), and so they are

not really capable of scaling to networks with millions of nodes. The guarantees they

provide on the timestamp assigned to each event are also relatively lax: many P2P

applications require virtual time to remain within at most a few seconds from real

time, and often less than a second.

The networking community has instead focused on less pessimistic models in

terms of malfunctioning nodes and communication errors/delays ([MKKB89, SHLnLZ07,

BOW05, LLW08]), and assumed the presence of a few trusted �correct� clocks (e.g.,

the tightly synchronized atomic clock servers of NTP) to provide lower communi-

cation overheads and tighter clock synchronization � indeed, some work aims at

sub-millisecond and even, for LANs, sub-microsecond synchronization [Mac08]. Un-

fortunately, these algorithms tend to rely on tree-like structures that are less robust,

since a single failure close to the root of the tree (particularly a �malicious� one) can

cause disastrous e�ects on a large fraction of the network.

PariSync is a system for DHT based P2P networks that achieves the aforemen-

tioned goals. In a nutshell, PariSync is formed by two modules: a topology module

that chooses, for each node, a small subset of neighbors with which to exchange

timing information, and a estimation module, that chooses how to process that in-

formation to estimate the current time and speed of the global virtual clock and/or

upper and lower bounds on them.

Two points are worth noting, in particular in terms of comparison with the very

successful NTP (and similar protocols such as SNTP). First, although NTP access is

often less restricted by network administrator policies than P2P tra�c, by de�nition

the only P2P systems on which one needs clock synchronization are those that do

allow P2P tra�c (it is pointless synching with a P2P network if one cannot commu-

nicate with it). Thus, a system that piggybacks on existing P2P protocols will always

be available to synchronize those protocols, whereas NTP may not be - in fact, every

large P2P network is virtually guaranteed to have a sizable fraction of all its nodes

unable to employ NTP, whether because of miscon�guration, tra�c restrictions, or

lack of administrator privileges to run or con�gure the NTP daemon. Second, NTP

and other similar protocols relying on a tree-like structure do allow peering between

nodes at the same level of the tree to achieve greater robustness. However, none of

these protocols de�nes the peer link structure, and showing how to set-up such a

link structure in a way that allows scalable, e�ective synchronization is, indeed, one

of the main contributions of this paper.

4.1. PARISYNC 37

4.1.1 Algorithm

This subsection provides a description of the PariSync, motivating its design choices.

The basic goal of PariSync is to allow PariPari to agree on a common virtual clock

that should run as closely aligned to real time as possible. Each node maintains, at

all times, its own clock, but also attempts to maintain (with good approximation)

its o�set and drift w.r.t. the global virtual clock, and/or upper bounds on this o�set

and drift.

The two fundamental di�culties in estimating o�set and drift lie in �noisy� com-

munication delays between nodes (as in classic clock synchronization) and in the

fact that, since we want the algorithm to scale to networks of millions of nodes,

each node should be allowed to communicate directly with only a small subset of the

whole network, ideally piggybacking on the pre-existing DHT link structure. Thus,

the main problem can be decomposed into two, almost orthogonal subproblems, that

are, in fact, addressed by two independent software modules in PariSync:

1. A topology subproblem: have each node choose the appropriate neighbors with

which to communicate.

2. An estimation subproblem: have each node estimate the current state of the

global, virtual clock based on its own clock and the information received from

its neighbors.

The latter aspect has received considerable attention in the literature; on the

contrary, almost nothing is known about the former, and all solutions in the literature

essentially either consider (non-scalable) fully connected graphs, or (fragile) trees or

tree-like graphs. This paper focuses on the topology subproblem, adopting only a

very basic solution to the estimation one � though more sophisticated strategies

may be easily �swapped in� into the appropriate estimation module.

Two important estimation issues should be considered even when focusing on

topology, however. First, ideally a sizable fraction of all nodes should have access to

NTP or other means of accurately estimating their own time. It would be desirable

for the global clock to be �anchored� to these accurate nodes. Second, a small but

non-trivial fraction of all nodes should be expected to provide completely inaccurate

results (e.g., due to miscon�guration or to an active attempt to disrupt the global

clock). In the absence of some means to certify which nodes have access to accurate,

external sources (and note that even if there is access to an accurate source, the

intervening communication process may introduce large, undetectable errors) the

two goals of anchoring the global clock to accurate external sources and of making

38 CHAPTER 4. APPLICATION LAYER PLUG-INS

it resilient to coordinated faults are con�icting: a minority of nodes whose clocks

are perfectly consistent with each other, but widely divergent from those of the rest

of the network, could either be the group of peers with access to accurate, external

information, or simply a group of malicious peers trying to disrupt the network.

Since robustness to (coordinated) faults is probably a higher design priority than

external clock anchoring for P2P networks � at least as long as the global virtual

clock behaves �reasonably� � any robust system will have each node give little

or no weight to the information provided by a small but non-vanishing fraction of

�outliers�. It is not di�cult to see that this makes the natural scheme of having each

node estimate the global clock on the basis of its DHT neighbors alone ine�ective.

Assume that the address space of a network of n nodes is partitioned into k segments,

each holding approximately n/k nodes. The (sets of nodes in the) di�erent segments

will then never synchronize if they start with di�erent o�sets and drifts and if the

estimation rejects a fraction at least log(k)
log(n)

of all outliers, since only a fraction log(k)
log(n)

of all links of a node falls outside its segment.

PariSync instead has each node increase its pool of long distance links by simply

asking each neighbor (according to the DHT structure) to reply not only with its own

time information, but also with the time information about a long distance neighbor of

that node (i.e., a neighbor residing in the other half of the network). While this does

introduce some extra noise due to the extra hop, it provides (as we shall see in the

next subsection) a particularly well-behaved topology that o�ers rapid convergence of

the consensus on the global clock; and it does so essentially for free, since each node

in a DHT based peer to peer network will periodically contact its DHT neighbors

anyway (to check liveness, to forward queries etc.), and adding time information

about two nodes in such a communication exchange has a negligible impact on the

performance of the system.

Once a node has retrieved from each of its neighbors the local time (and the local

time of their long distance contact), the estimation module of PariSync evaluates

its o�set and drift from the virtual clock. Note that there exist some sophisticated

schemes to do this, and to bound the resulting error (e.g. [Ber00, LLW08]). The

focus of this paper, however, is on the topology module, and the estimation scheme

provided below, while extremely basic, seems to work reasonably well � though

certainly more sophisticated schemes could be introduced without having to modify

the topology module.

Each node v at time t maintains a vector of T assessments of the global clock

speed stv(t), s
t−1
v (t), . . . , s

t−(T−1)
v (t) where T is ideally at least logarithmic in the size

of the network. Informally, sτv(t) measures the estimate, at time t, of the global clock

4.1. PARISYNC 39

speed at time τ . stv(t) is always set equal to v's own speed. sτv(t+ 1), with τ ≤ t, is

set equal to the average of all sτu(t) such that u is a node providing time information

to v that v had not rejected at time τ (note that v can easily estimate the speed

of a neighbor relative to its own by comparing that neighbor's local elapsed time

over an interval, and its own elapsed time during that interval, making the estimate

slightly more accurate by taking into account communication delays estimated as

half of the roundtrip time). Thus, the larger the gap between t and τ , the less up-to-

date the information, but also the larger the set of nodes that contribute to it (note

that, according to our experiments, clock speeds remain fairly stable over periods of

at least a few hundred minutes). Instead of estimating the global clock speed, one

could also � with the same mechanism � compute a lower and upper bound on it

by simply taking the minimum and maximum instead of the average at each step.

Exactly in the same fashion, a node can obtain an assessment of the global clock

time at (its own) timepoints t, t − 1, . . . , t − T + 1, gtv(t), g
t−1
v (t), . . . , g

t−(T−1)
v (t) by

averaging the times assessed by its neighbors. Again, an estimate relative to a recent

timepoint may be not very accurate, because only few nodes have contributed to it.

However, if (as it appears to be the case, see the next Section) the clock speeds of

individual machines appear to be relatively stable over a period equal to the time

between consecutive measurements (a few minutes) times the base 2 logarithm T of

the size of the network (at most 20 to 30), a better evaluation of the current time of

the global clock can be achieved by taking the estimate of that time at (local) time

t− T , and correcting it by the elapsed local time adjusted by the (estimated) speed

ratio over the intervening interval.

This section provides some preliminary experimental evaluation of PariSync. Sub-

section 4.1.2 shows how the standard procedure of estimating communication delay

as half of the roundtrip time between nodes still holds even over multihop paths with

large delays, such as those typically between peers in large P2P networks. Subsection

4.1.3 evaluates PariSync on a smallish (100− 200 node) network of nodes dispersed

throughout Europe (part of the AEOLUS testbed [aeo]). The resulting latencies,

combined with clock drift data from several PCs, allow us to run with realistic pa-

rameters an extensive simulation of PariSync over a network of a million (simulated)

nodes, detailed in Subsection 4.1.4.

4.1.2 Network Latency

NTP clock adjustments are based on the assumption that UDP packets travel from

host A to host B in exactly one half of the Round Trip Time between A and B.

De�ning tAB the time it takes for a UDP packet to travel from host A to host B,

40 CHAPTER 4. APPLICATION LAYER PLUG-INS

this means tAB = tBA. In a large P2P network the geographic distance between

communicating hosts can be very changeable. Neighborhood in a DHT like Kadem-

lia's is de�ned on an ID-oriented metric, and has nothing to do with geographic

proximity. For this reason our system must take into consideration a large variety

of links, ranging from LAN to intercontinental. IP's connectionless design makes it

seem very likely to have packets following one route when going from A to B and a

di�erent one when going back to A. The longer the link, the higher the probability

of having di�erent hops in the two paths. We developed a plug-in for PariPari that

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60
2 hops
16 hops
22 hops

difference % w.r.t. max delay

co
u

n
t %

Figure 4.1: Di�erences in clockwise and counter-clockwise pings. Peak values for the
3 groups are: 7% count at 5% di�erence, 46% at 1%, 52% at 1%.

performs several UDP pings between hosts at regular intervals and logs results to

perform statistical analysis. A UDP ping is performed by sending a small (a 64-bit

signature) packet to a host using UDP and registering how much time passes before

receiving a reply UDP packet from that host. In order to collect a signi�cant amount

of information, we ran these tests using AEOLUS [aeo] testbed. This testbed [tes] is

a network connecting 16 European Universities, each providing a number of hetero-

geneous hosts, all of which run 1 to 10 (virtual) instances of JXTA. We split hosts

into 3 groups of 3 hosts each, so that each host could compute |tABCA − tACBA|.
Group 1 simulates A and B being in the same LAN, Group 2 simulates A and B

being 14 to 16 hops apart (a continental link), Group 3 simulates A and B being 20

to 24 hops apart (an intercontinental link). The number of hops between hosts has

been computed by running ICMP traceroute several times for each link. Hosts are

placed in an overlay network in a token-ring fashion. A map of the ring instruct-

ing hosts about their neighbors is shared among hosts of the same group. A UDP

ping begins with the �rst node appearing in the map starting a timer and sending

a packet containing its signature to one of its neighbors. Every host that receives a

4.1. PARISYNC 41

packet from one of its neighbors forwards the message to the other neighbor, unless

the packet has its own signature in it. If it does, the �rst ping is complete and the

result is logged. A second ping is then performed by the �rst node, this time sending

the packet to its other neighbor. The operation is repeated ten times before passing

a token to the node's clockwise-next neighbor. A round is then complete. When

a node receives the token, it waits for 10 minutes before starting its UDP pings in

order to statistically separate rounds. After 500 rounds we analyzed the values of

|tABCA − tACBA| logged by every host. Figure 4.1 shows the distribution of these

values for each group. In a pathological case, when hosts are in the same LAN,

a certain amount of noise appears. This, though, seems more addressable to Java

operations on packets than on changes on delivery time on the underlying network.

Delays are in the order of half a millisecond, so a di�erence of 50% in the two pings

means a di�erence of a quarter of millisecond, very close to our timer precision limit.

We'll further investigate on this aspect relying on more precise Java timers, but from

the �gure it is evident that, for common links, the assumption made by NTP is valid

and can be used also in very large networks.

4.1.3 PariSync for Real

Initially we ran tests on physical hosts using the AEOLUS testbed. We started

each of the 103 hosts with di�erent o�sets and drifts choosing them according to a

Gaussian distribution. We let our algorithm run with: 10 minutes as the interval

between distributed synchronizations, 8 minutes as minimum interval between NTP

synchronizations, α taken as 6 for distributed and as 40 for NTP synchronization.

Each node polled 7 (log(103)) hosts per distributed synchronization. As we can see

from �gure 4.2 and 4.3 the consensus is achieved after just 11 synchronizations (110

minutes). After 450 minutes we turned o� the NTP server and the stability of the

system remained good, with an average o�set of nearly 35 ms after 24 hours.

4.1.4 Simulations

Since PariSync is primarily designed to provide large P2P networks with synchroniza-

tion we tested it on a simulated environment. We wrote a multi-threaded simulator

and modeled it using data from real drifts.

We retrieved data from 6 hosts. ntpd was disabled on these hosts and hosts were

rebooted to drop any ntpd drift correction. The drifts appeared di�erent between

hosts but reasonably constant (Fig. 4.4). We then modeled drift in the simulator

assuming a gaussian distribution with the measured average and variance.

42 CHAPTER 4. APPLICATION LAYER PLUG-INS

10
1

10
2

10
3−300

−200

−100

0

100

200

300

400

500

600

time elapsed in minutes

of
fs

et
 in

 s

Figure 4.2: O�set converging on AEOLUS testbed.

10
2

10
30.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

time elapsed in minutes

dr
ift

 in
 m

s
/ m

s

Figure 4.3: Drift converging on AEOLUS testbed.

As already stated, communication delay can be safely estimated from the mea-

sured Round Trip Time (possibly �ltering and averaging to get more precise mea-

sures). As said above PariSync performs such measurements and corrects data re-

ceived by other nodes with these estimated delays.

4.1. PARISYNC 43

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−15

−10

−5

0

5

10

15

20

25

30

elapsed time (in mins)

dr
ift

 (
in

 s
)

147.162.96.9
147.162.96.69
147.162.96.103
147.162.96.158
147.162.96.25
147.162.96.115

Figure 4.4: Drifts on 6 hosts: they range from -14µs/s to 52µs/s.

First of all we tried to discover, using a relatively small amount of nodes, the

best parameters to let the network converge steadily and quickly. We run several

trials changing the percentage of nodes to be accepted after the �ltering process (i.e.,

accepted nodes) and the weight to be given to their average (i.e., ppsweight). In

order to compare simulation performances, we consider the network to be stable as

the distribution of the time values on all of its nodes reaches a standard deviation

equal to or minor than 10−5. Let tconv be the time (in seconds) it takes to the network

to become stable. Every simulation has been run for a total of 10000 seconds. The

height of each bar in Fig. 4.5 represents 10000− tconv, that is the amount of seconds

left before the end of the simulation at the time the network became stable (hence

higher is better). The �gure clearly shows that the choice of parameters strongly

a�ects network behavior. Filtering nodes with �strange� values proves to be very

e�ective and increasing the average weight speeds up the convergence.

Moreover, PariSync exhibits a good behavior even in the presence of nodes with

very di�erent drifts. We ran several simulations setting the same incorrect clock

value to some groups of nodes in order to stress the system. The higher the number

of �bad� nodes the slower the system achieved the consensus.

We then tested PariSync's resilience to situations where nodes in the same seg-

ment of the ID space sport the same clock behavior, but this behavior varies between

segments. We tested the simplest case, with all nodes with ID pre�x 0 in one segment

44 CHAPTER 4. APPLICATION LAYER PLUG-INS

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

5%
10%

15%
20%

25%
30%

35%

0

5000

10000

Accepted nodes

Ppsweight

T
im

e
re

m
ai

ni
ng

 (
in

 s
)

Figure 4.5: Seconds remaining to the end of the simulation at the time the network
became stable for di�erent values of accepted nodes - ppsweight.

0 500 1000 1500 2000 2500
0

10

20

30

40

50

60

70

80

90

100

ou
te

r
no

de
s

(in
 %

)

elapsed time (in s)

100
200
400
800
1600
3200
6400
12800
25600

Figure 4.6: Outer nodes of 100K nodes in function of nodes with 0 ms/ms drift
(accepted nodes: 5%, ppsweight: 0.95).

and all nodes with ID pre�x 1 in another. Recall that, in this situation, simply av-

eraging the information from DHT neighbors without including that from their long

4.1. PARISYNC 45

range contacts would result in slow or no convergence (see previous Section4.1.1).

Fig. 4.7 shows the di�erence between standard PariSync, and PariSync without long

range contact polling.

10
2

10
3

10
40

0.5

1

1.5

2

2.5

elapsed time (in s)

near only: min
near only: max
near only: mean
near only: std dev
normal: min
normal: max
normal: mean
normal: std dev

Figure 4.7: 1M nodes in a �split� network (accepted nodes: 5%, ppsweight:

0.95) with standard polling (�normal�) vs. polling without long range contacts
(�near�).

Finally, we ran two simulations to test PariSync with and without NTP connec-

tion enabled. PariSync is slightly slower with NTP enabled but stabilizes on �real�

NTP time. Fig. 4.9 shows mean and standard deviation evolution.

46 CHAPTER 4. APPLICATION LAYER PLUG-INS

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.995

1

1.005

1.01

1.015

1.02

1.025

elapsed time (in s)

ntp off
ntp on

Figure 4.8: 1M nodes with and without NTP: mean.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

elapsed time (in s)

ntp off
ntp on

Figure 4.9: 1M nodes with and without NTP: standard deviation.

4.2. DIESEL 47

4.2 DiESeL

Distributed Extensive Server Layer (DiESeL) is a package to distribute a server onto

the PariPari network. To be more precise, a normal server can easily become a

distributed server using DiESeL. The basic idea is to create a generic interface that

allows any plug-in to use the functionalities of the package without struggling to

manage distribution and node communications. In particular, a server implementing

the DiESeL interfaces, will be automatically distributed on a certain amount of

capable peers and every content managed by the server will be accessible on each

peer forming the distributed server. Hence, any client can connect to any peer

forming the server while DiESeL keeps the contents consistency.

To achieve this objective, DiESeL provides three features:

• Outage detection

• Server Management

• Connection Redirection

4.2.1 Outage detection

In a server hosted on di�erent nodes it is crucial to know at any moment whether a

node fails (disconnects or crashes). To deal with this problem it is common practice

to steadily �ood the network with a large number of ping packets in order to quickly

detect peers that are failing. The simplest method is to have each node ping period-

ically its neighbors. This method generates a lot of (useless) tra�c, even though it

yields an early outage detection.

In fact, in the usual keep-alive mechanism each connection is managed indepen-

dently of all other connections in the network. For example, two nodes X and Y,

both connected to a third node Z, do not share any information regarding their con-

nection status. Since the same management task is performed twice, one can the

keep-alive load between X and Y to achieve the common goal: outage detection of Z.

Using the solution called Cooperative Keep Alive (CKA) presented in [DHS07] we

have X and Y cooperate to decrease their keep-alive rate. Cooperation means that

when X detects the outage of Z it informs Y and vice versa. Note node X and node

Y do not need to maintain a permanent connection between them. If X detects an

outage it does its best to inform Y. Even if Y does not receive the message from X

it still has the chance to detect the outage of Z, although not so quickly. The role of

node Z in this scheme is to inform X and Y that they are both connected to Z, and

48 CHAPTER 4. APPLICATION LAYER PLUG-INS

SKA CKA
Storage O(d) O(d2)
Tra�c O(dN) O(N)
Delay O(k) O(k) w.h.p.

Figure 4.10: CKA vs SKA comparison.

to determine the new keep-alive intervals for X and Y so that Z continues to receive

keep-alive messages at a certain rate.

The e�ect of the cooperative approach described above is that it reduces the

network tra�c overhead by introducing additional overhead at the end nodes in

terms of computing power and memory usage. In table 4.10 we can see a comparison

between CKA and SKA. CKA guarantees a (maximum) desired delay (k seconds)

generating an amount of tra�c that depends on the numbers of peers (N) at the

price of more storage used; CKA keeps information on d2 peers where d is the peer

degree.

4.2.2 Server Management

After solving the peer monitoring problem, the next challenge was dealing with

the construction (and repair) of the distributed server, and with intra-server peer

communication. To keep a random graph of n nodes connected with high probability

we need at least log(n) edges for each node. We build the network of peers hosting

the server keeping in mind these constrains. We can choose n as a function of the

load of the distributed server and we can keep this n constant thanks to the CKA.

In fact, whenever a disconnection is detected, DiESeL searches for new capable peers

to join the managed network.

Moreover DiESeL keeps all peers updated with all the information received by

each other peer. So, each peer of the server maintains the same status. This goal is

achieved by broadcasting all data among peers and by replicating the contents (e.g.,

data �les). In future releases we will use a smarter system based on Distributed

Storage (see 3.3.2) and Multicast (see 3.4.4): multicast will warn the peers hosting

the distributed server while all the contents will be read and written directly on the

network using Distributed Storage.

4.2.3 Connection Redirection

In such a distributed environment we have to deal with churn. Also, peers hosting

a distributed server can fail or disconnect even if clients are using their resources.

4.2. DIESEL 49

[Szy02] suggests three methods to solve this problem:

• Switching

• TCP Hando�

• DNS-based

The �rst two options do not �t in our environment. To be successful they need

a gateway to route client requests to one of the peers of the distributed server.

Nevertheless a P2P network as PariPari does not have static peers: every peer can

join or leave the network at any moment. So we adopted the DNS-Based scheme.

DiESeL sends to the DNS server the IP addresses of the best peers forming the

distributed server. Each client needing to connect to the server can reach a working

peer by asking the DNS server. The IP addresses list is continuously refreshed to

keep the load of the peers balanced providing better performance for the clients.

The major drawback of this solution becomes apparent when the client keeps a

stateful connection with a peer of the distributed server. In that case, whenever

the peer disappears, the connection is reset and the client has to start again a new

connection with another peer (readily served by the DNS). In the lucky case in

which the client is a PariPari node and the peer disappearing is leaving �cleanly�

the situation is manageable. DiESeL warns the connected peer (client) about the

imminent disconnection also providing a new peer address to contact. This way the

user should not notice the handover.

50 CHAPTER 4. APPLICATION LAYER PLUG-INS

4.3 PariMessaging

One of the most popular kind of application among Internet users is the Instant

Messaging (IM). IM is a form of real-time communication between two or more

people based on typed text. In certain cases IM involves additional features such

as the possibility to see the other parties (by webcam) or to chat directly for free.

We decided to endow PariPari with IM and VoIP capabilities. Currently we are

developing a framework to embed all possible Messaging Protocols in order to let

third party users to add support for additional protocols to PariPari. To test our

framework, and of course, to grant the users with the possibility to use one of the

most popular protocols, we started implementing MSN.

At the same time we are developing an IRC client and server to test and stress

the possibility of running a distributed server using DiESeL (see 4.2).

4.3.1 Messenger

The Messenger protocol and client are developed by MicrosoftTMso there is no pub-

lic domain documentation. Our work is based on reverse engineering. We used

many useful, but often incomplete, informations found on the World Wide Web to

complement our results. Currently we support Version 15 of the Protocol.

4.3.2 IRC

Internet Relay Chat (IRC) is a form of real-time Internet text messaging (chat)

or synchronous conferencing. It is mainly designed for group communication in

discussion forums, called channels, but it also allows one-to-one communication via

private message as well as chat and data transfers via Direct Client-to-Client. IRC

is a popular protocol. Indeed, as of May 2009, the top 100 IRC networks served

more than half a million users at a time, with hundreds of thousands of channels,

operating on a total of roughly 1,500 servers worldwide. IRC operates in a standard

client-server fashion.

IRC client Our IRC client currently supports all the basic features of the most

popular clients. In particular it provides DCC and CTCP.

CTCP: Client-To-Client Protocol is a special type of communication between (IRC)

clients. It extends the original IRC protocol by allowing users to query other

clients for speci�c information.

4.3. PARIMESSAGING 51

DCC: Direct Client-to-Client is an IRC-related sub-protocol enabling peers to in-

terconnect using an IRC server for handshaking in order to exchange �les or

perform non-relayed chats. Once established, a typical DCC session runs inde-

pendently from the IRC server. Usually a DCC session is started using CTCP.

IRC server As stated above, our server is DiESeL-compliant. Hence, each user

can run it locally, allowing other clients to connect to their server instance, or can

enable DiESeL to join an existent IRC DiESeL distributed server or to create a

new one. Actually one of the most serious problems experienced by the standard

IRC server is the �netsplit�. Servers, in fact, are linked with each other, in a tree-

like fashion avoiding any loop (to eliminate the possibility of duplicated messages).

Clearly whenever a server fails the network breaks into two or more parts and users

from one part can not chat with users connected to other parts. In such a scenario

many other problems can arise since servers will try to reconnect the split parts in a

few minutes. For example the network has to manage carefully users with the same

nick on two di�erent parts when the parts will be joined again.

Our DiESeL-based IRC server implementation completely prevents netsplit, and

all ensuing problems.

4.3.3 VoiP

Voice over Internet Protocol (VoIP) is a general term for a family of transmission

technologies for delivering voice communications over IP networks such as the In-

ternet. In PariPari we are working to implement a plug-in to allow users to speak

with each other. Currently the plug-in uses JSpeex [jsp](a Java implementation of

Speex [spe]) to encode and decode speech, and RTP to transmit data.

The plug-in handles small conferences using its own code that will be replaced

by Multicast (see 3.4.4) when ready. Moreover we are working to enable video

conferencing as well.

52 CHAPTER 4. APPLICATION LAYER PLUG-INS

4.4 File Sharing

File sharing was the �rst purpose of P2P networks. Many networks have been cre-

ated to share �les among users. We can cite Napster, Gnutella, eMule, Bittorrent.

PariPari already supports �lesharing over two popular types of protocols We have

written one eMule-compliant plug-in and one Bittorrent-compliant plug-in. In the

next two sections we o�er a description of the two plug-ins giving a necessary brief

overview of the original protocols. The last section describes future work.

4.4.1 Mulo

mulo is the PariPari plug-in that operates on the eDonkey network.

Protocol

Unfortunately the protocol is not well de�ned. The basis is the protocol developed

for the eDonkey network but in recent years clients using this network started to

develop their own, not documented, dialects. eMule is the most widespread client

and it adds many new features to the original protocol.

The eDonkey network is a decentralized, mostly server-based, peer-to-peer �le

sharing network best suited to share large �les among users, and to provide long

term availability of said �les. Like most �le sharing networks, it is decentralized, as

there is no central hub for the network; also, �les are not stored on a central server

but are exchanged directly between users. The stability of the network depends on

the availability of a number of servers that could be easily attacked. To overcome

this problem the eMule Project also developed a Kademlia network called Kad.

In addition, eMule includes a pure P2P client source-exchange capability, allowing a

client to continue downloading (and uploading) �les with a high number of sources for

days, even after complete disconnection from the Kad or eD2k servers that handled

the original requests. This source-exchange capability is designed to reduce load on

servers.

Files on the eDonkey network are uniquely identi�ed using an MD4 root hash

of an MD4 hash list of the �le. This treats �les with identical content but di�erent

names as the same �le, and �les with di�erent contents but the same name as di�erent

�les. Files are divided in full chunks of 9500 KiB plus a remainder chunk, and a

separate 128-bit MD4 checksum is computed for each of them. This way, transmission

errors can be detected and corrupt only one chunk at the time instead of the whole

�le. Furthermore, valid downloaded chunks are available for sharing before the rest

of the �le is downloaded, speeding up the distribution of large �les throughout the

4.4. FILE SHARING 53

network. A �le's identi�cation checksum is computed by concatenating the chunks'

MD4 checksums in order and hashing the result. In cryptographic terms, the list of

MD4 checksums is a hash list, and the �le identi�cation checksum is the root hash,

also called top hash or master hash. Files are searched directly on the network. To

be more precise there are three possible types of search.

Local search the client asks for a �le name to the server to which it is connected.

Global search the client asks for a �le name to all known servers.

Kad search the client performs the search exploiting the Kad infrastructure.

Often, clients are hidden behind �rewalls or NAT so they cannot accept incoming

connections and thus share �les. Such clients are denoted by a low ID, while clients

accepting incoming connections are denoted by a high ID. The callback mechanism is

designed to overcome this problem. The mechanism is simple: in case two clients A

and B are connected to the same eMule Server and A requests a �le that is located on

B but B has a low ID, A can send the server a callback request requesting the server

to ask B to call it back. The server, which already has an open TCP connection to

B, sends B a callback request message, providing it with the IP and port of A. B

can then connect to A and send it the �le without further overhead on the server.

Obviously, only a high ID client can request low ID clients to call back (a low ID

client is not capable of accepting incoming connections). There was also a feature

allowing two low ID clients to exchange �les through their server connection, using

the server as a relay. Most of the servers no longer support this option because of

the overhead it incurs on the server.

eMule extended the protocol with some additional features:

AICH - Advanced Intelligent Corruption Handling is meant to make eMule

increase the granularity of the corruption handling. SHA-1 hashes are com-

puted for each 180 KB sub-chunk and a whole SHA-1 hash tree is formed.

AICH is processed purely with peer-to-peer source exchanges. eMule requires

10 agreeing peers regarding the SHA-1 hash, so rare �les generally do not

bene�t from AICH.

Credits are not global, they are exchanged between two speci�c clients. The credit

system is used to reward users contributing to the network, i.e., uploading to

other clients. The strict queue system in eMule is based on the waiting time a

user has spent in the queue. The credit system provides a major modi�er to

this waiting time by taking the upload and download between the two clients

54 CHAPTER 4. APPLICATION LAYER PLUG-INS

into consideration. The more a user uploads to a client the faster he advances in

that client's queue. The modi�ers are calculated from the amount of transferred

data between the two clients.

Protocol Obfuscation is a feature that causes eMule to obfuscate its protocol

when communicating with other clients or servers. Without obfuscation, each

eMule communication has a given structure which can be easily recognized

and identi�ed as an eMule packet by any observer. If this feature is turned

on, the whole eMule communication appears like random data on the �rst look

and an automatic identi�cation is no longer easily possible. This helps against

situations in which the eMule Protocol is unjustly discriminated against or

even completely blocked from a network by identifying its packets. Note that

this does not, however, provide anonymity to peers.

Secure User Identi�cation Clients in the network are identi�ed by a unique value

called user hash. This user hash is stored locally and it enables a peer to favor

other peers that have favored it in the past (by uploading �les to it). eMule

can use an asymmetric encryption to avoid manipulation of other users hash

values. The method uses a private and a public key to secure the user hash

and to ensure a proper identi�cation of other clients.

Implementation

Given the almost complete lack of documentation, we spent considerable e�ort re-

verse engineering the eDonkey protocol and the eMule extensions. In fact, we believe

ours to be the most complete and up-to-date documentation of the protocol currently

available (at least publicly). Currently, the plug-in supports the main eD2k protocol

features such as local and global search, callback and, of course, �le download and

upload. AICH and source exchange are also fully working. Our current goals are a

reduction in resource consumption, an increase in download speed, and an improved

server search.

4.4.2 Torrent

Protocol(s)

BitTorrent is a peer-to-peer �le sharing protocol used for distributing large amounts

of data.

BitTorrent protocol allows users to distribute large amounts of data without

putting the level of strain on their computers that would be needed for standard

4.4. FILE SHARING 55

Internet hosting. A standard host's servers can easily be brought to a halt if extreme

levels of simultaneous data �ow are reached. The protocol works as an alternative

data distribution method that makes even small computers (e.g., mobile phones)

with low bandwidth capable of participating in large data transfers.

First, a user playing the role of �le-provider makes a �le available to the network.

This �rst user's �le is called seed and its availability on the network allows other

users, called peers, to connect and begin to download the seed �le. As new peers

connect to the network and request the same �le, their computer receives a di�erent

piece of data from the seed. Once multiple peers have multiple pieces of the seed,

BitTorrent allows each to become a source for that portion of the �le. The e�ect of

this is to take on a small part of the task and relieve the initial user, distributing

the �le download task among the seed and many peers. With BitTorrent, not a

single computer needs to supply data in quantities that could jeopardize the task by

overwhelming all resources, yet the same �nal result (each peer eventually receiving

the entire �le) is still reached.

After the �le is successfully and completely downloaded by a given peer, the peer

is able to shift roles and become an additional seed, helping the remaining peers to

receive the entire �le. The community of BitTorrent users frowns upon the practice

of disconnecting from the network immediately upon success of a �le download, and

encourages remaining as another seed for as long as practical, which may be days.

This distributed nature of BitTorrent leads to a viral spreading of a �le through-

out peers. As more peers join the swarm, the likelihood of a successful download

increases. Relative to standard Internet hosting, this provides a signi�cant reduction

in the original distributor's hardware and bandwidth resource costs. It also provides

redundancy against system problems, reduces dependence on the original distributor

and provides a source for the �le which is generally temporary and therefore harder

to trace than when provided by the enduring availability of a host in standard �le

distribution techniques.

To share a �le or group of �les, a peer �rst creates a small �le called a �torrent�.

This �le contains metadata about the �les to be shared and about the tracker, the

computer that coordinates the �le distribution. Peers that want to download the �le

must �rst obtain a torrent �le for it, and connect to the speci�ed tracker, which tells

them from which other peers to download the pieces of the �le.

The peer distributing a data �le treats the �le as a number of identically sized

pieces, typically between 64 KB and 4 MB each. The peer creates a checksum for

each piece, using the SHA1 hashing algorithm, and records it in the torrent �le.

When another peer later receives a particular piece, the checksum of the piece is

56 CHAPTER 4. APPLICATION LAYER PLUG-INS

compared to the recorded checksum to test that the piece is error-free. Peers that

provide a complete �le are called seeders, and the peer providing the initial copy is

called the initial seeder.

Torrent �les are typically published on websites or elsewhere, and registered with

a tracker. The tracker maintains lists of the clients currently participating in the

torrent. Alternatively, in a trackerless system (decentralized tracking) every peer

acts as a tracker. Azureus was the �rst BitTorrent client to implement such a system

through the distributed hash table (DHT) method. An alternative and incompatible

DHT system, known as Mainline DHT, was later developed and adopted by the

BitTorrent.

Later many other features have been introduced, we cite only those we have

implemented (or we are implementing).

Multi tracker is an extension to the BitTorrent metadata format proposed by

John Ho�man and implemented by several indexing websites. It allows the

use of multiple trackers per �le, so if one tracker fails, others can continue

supporting �le transfer. Torrents with multiple trackers can decrease the time

it takes to download a �le, but also lead to a larger network tra�c.

Protocol encryption (MSE) is a protocol designed to provide a completely random-

looking header and (optionally) payload to avoid passive protocol identi�cation

and tra�c shaping. When it is used with the stronger encryption mode (RC4)

it also provides reasonable security for the encapsulated content against passive

eavesdroppers. It is a 3-way handshake where the initiating client can directly

append its payload after his 2nd step (which globally is the 3rd). The respond-

ing client has to send one step (globally the 2nd) of the handshake and then

wait until the initiating client has completed its 2nd step to send payload. To

achieve complete randomness from the �rst byte on the protocol uses a D-H key

exchange which uses large random Integers by design. The 2nd phase � the

payload encryption negotiation � is itself encrypted and thus approximately

random too. To avoid simple length-pattern detections various paddings have

been added to each phase. This encapsulation protocol is independent of the

encapsulated content.

Peer exchange (PEX) is a feature of the BitTorrent peer-to-peer protocol which

can be utilized to gather peers. Using peer exchange, an existing peer is used to

trade the information required to �nd and connect to additional peers. While

it may improve (local) performance and robustness (e.g., if a tracker is slow

or even down) heavy reliance on PEX can lead to the formation of groups of

4.4. FILE SHARING 57

peers who tend to only share information with each other, which may yield slow

propagation of data through the network, due to few peers sending information

to those outside the group they are in.

Extension negotiation protocol is a meta protocol used to manage communi-

cation between peers. It allows any peer to choose to uses Azureus messaging

protocol or Libtorrent extension depending on the other peer(s). We are almost

the sole client to implement this protocol.

Implementation

In the beginning we started implementing the plug-in using a GPL library([Dub])

to quickly develop a working module. After succeeding in obtaining a stable code we

completely rewrote the library to exploit PariPari features and uno�cial Bittorrent

extensions. Now we have a quite stable module with some important (uno�cial)

implemented features. In the next months we should easily add some more features

to speed up the downloads.

4.4.3 Future work

We are working to speed up �le transfer exploiting the features o�ered by PariPari.

Our work progresses mainly along three lines.

Cooperative download PariPari can be seen as a set of di�erent peers. Each

peer can act individually downloading �les from the eD2k or torrent network. Each

peer can thus accumulate credit on these di�erent systems with other users. However

these peers can act as a unique smart meta client.

Each peer can contact any of its neighbors asking to download �les (or chunk of

�les) from the network exploiting its credits, bandwidth or, at least, increasing the

amount of peers downloading the �le. Later the requesting peer can retrieve chunks

and �les from its cooperative neighbors. This download paradigm can be particularly

e�ective in conjunction with the next two enhancements.

Multi-network download Each PariPari node can download �les using di�erent

P2P clients such as Mulo and Torrent. Any user can choose the fastest network

providing the same �le. The innovative feature we are working on is the possibility

to download the same �le using chunks from any network.

58 CHAPTER 4. APPLICATION LAYER PLUG-INS

File Merging It is often the case that essentially the same content exists on the

network in di�erent formats � for example, the same music �le with di�erent en-

codings, or the same video with di�erent metadata. Our goal is to identify the most

common cases when this occurs, and develop code that allows one to reconstruct the

content from the di�erent �les. A similar, but more restricted, approach has been

proposed in [PAK07]

4.5. PARIWEB 59

4.5 PariWeb

A webserver is a computer program that is responsible for accepting HTTP requests

from clients (user agents such as web browsers), and serving them HTTP responses

along with optional data contents, usually web pages such as HTML documents and

linked objects (images, etc.). Hypertext Transfer Protocol (HTTP) is an application-

level protocol for distributed, collaborative, hypermedia information systems. There

are two major versions, HTTP/1.0 that uses a separate connection for every docu-

ment and HTTP/1.1 that can reuse the same connection to download, for instance,

images for the page just served. HTTP is a stateless protocol.

HTTP de�nes eight methods indicating the desired action to be performed on

the identi�ed resource.

get Requests a representation of the speci�ed resource. Note that GET should not

be used for operations that cause side-e�ects, such as using it for taking actions

in web applications. One reason for this is that GET may be used arbitrarily

by robots or crawlers, which should not need to consider the side e�ects that

a request should cause.

head Asks for the response identical to the one that would correspond to a GET

request, but without the response body. This is useful for retrieving meta-

information written in response headers, without having to transport the entire

content.

post Submits data to be processed (e.g., from an HTML form) to the identi�ed

resource. The data is included in the body of the request. This may result in

the creation of a new resource or the updates of existing resources or both.

put Uploads a representation of the speci�ed resource.

delete Deletes the speci�ed resource.

trace Echoes back the received request, so that a client can see what intermediate

servers are adding or changing in the request.

options Returns the HTTP methods that the server supports for speci�ed URL.

This can be used to check the functionality of a web server by requesting �*�

instead of a speci�c resource.

connect Converts the request connection to a transparent TCP/IP tunnel, usually

to facilitate SSL-encrypted communication (HTTPS) through an unencrypted

HTTP proxy.

60 CHAPTER 4. APPLICATION LAYER PLUG-INS

4.5.1 Implementation

All the above methods are implemented except for post � which is of very limited

usefulness. Perhaps more importantly, currently, the web server does not support any

scripting language nor dynamic functions. For what concerns the other potentially

unsafe methods (put, delete) we provide the users with a simple authentication

method known as Basic Access Authentication1. We chose it for the sake of compat-

ibility and simplicity.

Local The plug-in can be run as a standalone local server. Each peer can run

its own server regardless of other PariPari peers. Moreover each running instance

can support a virtual host mode. Each PariWeb can handle simultaneously several

websites with di�erent data.

Distributed The plug-in can be run in a distributed fashion thanks to DiESeL.

PariWeb retains all its functionalities even when running in a distributed fashion.

4.5.2 Future work

We are planning to embed in PariWeb a PHP engine and a more secure authentication

method. PariWeb will use it to become �self hosting�.

1The basic access authentication is a method designed to allow a web browser to provide creden-
tials � in the form of a user name and password � when making a request. Before transmission,
the user name is appended with a colon and concatenated with the password. The resulting string
is encoded with the Base64 algorithm.

Chapter 5

Plug-ins in Early Development Stages

This chapter provides a brief description of the PariCredits, PariLogin, PariDNS,

PariDBMS and PariGUI plugins. These plug-ins are still in early stages of develop-

ment, and their structure is in �ux.

5.1 PariLogin and PariDNS

This Section gives a brief description of the preliminary versions of PariLogin and

PariDNS. Both implement essentially the same function � a secure translation table

piggybacking on (the insecure) PariDHT.

5.1.1 PariDNS

The Domain Name System (DNS) is a hierarchical naming system for computers,

services, or any resource connected to the Internet. It associates various informa-

tion with domain names assigned to each of the participants. Most importantly, it

translates domain names meaningful to humans into the numerical (binary) identi-

�ers associated with networking equipment. DNS works like a �phone book� for the

Internet by translating human-friendly computer hostnames into IP addresses.

PariDNS could admit a trivial implementation over PariDHT, if not for two chal-

lenges. First, we need to implement a compatibility layer with the DNS protocol

itself [Moc87], appearing indistinguishable from a �standard� DNS server to the end

user (who may not be a PariPari user, but simply someone wanting to access the web

page a PariPari user is hosting through PariWeb). Second, we must strengthen se-

curity and provide guarantees against DNS hijacking, which the current �best e�ort�

implementation of DHT does not provide.

The second task is essentially the same that must be accomplished by PariLogin.

61

62 CHAPTER 5. PLUG-INS IN EARLY DEVELOPMENT STAGES

After a brief introduction to PariLogin in Subsection 5.1.2, a partial, temporary hack

for both � with a number of drawbacks � is described in Subsection 5.1.3. It may

well be that a future, more sophisticated version of DHT will make this redundant.

5.1.2 PariLogin

PariLogin associates a username/password pair to the state of a particular user

(including storage permissions, encryption/signature keys, and current IP+port).

Again, this requires simply the de�nition of an extensible representation of the user's

state, and a level of protection from �identity theft� which is substantially the same

that must be provided by PariDNS.

5.1.3 Identity Theft Protection

In a nutshell, for each web (sub)domain or username, we must maintain a record

�owned� by that user on a DHT, with the following guarantees:

Ownership. The owner, and only the owner may modify or delete the record and

read the private portions of the record.

Permanence. The record should remain constantly available.

Authenticity. Any user attempting to read the record (or the public portions of

the record for users di�erent from the owner)

The mechanism we are considering is simply to distribute the record over a su�-

ciently large number of peers, chosen by some pseudorandom hash function, taking

the majority vote. This has some drawbacks we must still address. First, if an

position in the DHT virtual address space is chosen, rather than a speci�c peer, a

su�ciently determined adversary may adaptively try to conquer a position close to

that of the record. Second, replication can have a substantial overhead. Third, in

the case of PariDNS, one still faces the problem that a user outside PariPari looking

for a DNS record will contact a single IP to retrieve the record (if that IP responds),

so a majority vote technique will be ine�ective if that one node is faulty.

5.2. PARIDBMS 63

5.2 PariDBMS

PariDBMS aims at being a distributed database management system that makes the

distribution of the database transparent to the user. The plug-in is being designed to

keep a collection of multiple, logically interrelated databases distributed over Pari-

Pari. We are using hsqldb [hsq] both to manage the single database instances and

to keep the whole structure connecting the distributed databases. Currently we are

adapting the plug-in for the use of DiESeL and DistributedStorage. In the near fu-

ture we plan to implement some smart features to speed up information retrieval and

to arrange the database structure so that it can stand massive instantaneous loads

(i.e., a high number of query or update requests) using distributed table caching.

64 CHAPTER 5. PLUG-INS IN EARLY DEVELOPMENT STAGES

5.3 PariGUI

The Graphical User Interface is one of the most important parts of many applications

� particularly those aimed at the �average user�. A good GUI is not simply an issue

of eye-candy: it is also intuitive, easy to learn, and yet powerful enough even for

the experienced user. This is particularly true for complex applications with many

sophisticated functionalities � such as PariPari. This section brie�y presents our

plans for the future GUI of PariPari, and the transitional, extremely simple GUI

currently embedded in PariCore.

5.3.1 PariPari's eventual GUI

Our approach is based on the Model-View-Controller (MVC) [GHJV95, 14-16] ar-

chitectural pattern. The GUI plug-in provides all other plugins with a number of

abstract visualization methods (buttons, advancement bars etc.) through which they

can query the user for information and constantly send him all information avail-

able. The GUI then also de�nes an actual visual representation corresponding to

each method, as well as the organization of those individual representations on the

screen (or, in our case, the browser's window). The visual representation can easily

be changed (to adapt to di�erent user tastes or constraints � e.g., the small screen

of a mobile device) without having to modify the code of the plug-ins themselves.

This also allows the GUI to easily produce multiple visualizations or simply a remote

visualization (e.g., controlling PariPari, running on a server, from a mobile phone

that is not su�ciently powerful to run it).

The GUI is only in its initial stages of development. We have already coded a

small fraction of the abstract visualization methods, and have produced a number

of possible actual visualization sketches. Over the next few months we intend to

increase the collaboration between the GUI team and the teams of other plugins, to

extend the visualization method base, and to re�ne the actual visualizations.

5.3.2 Simple GUI

A simple, transitional temporarily embedded in PariCore allows users and developers

to test PariPari and its plug-ins without having to hard-code commands inside some

con�guration �les. Currently this GUI is just an eye candy for the command line

interface. However we added some tabs to launch some (already implemented) plug-

ins.

To allow remote access to PariPari (e.g., via ssh) we are also maintaining a

TCP-CLI. When activated using its remote interface, PariPari opens a TCP socket

5.3. PARIGUI 65

Figure 5.1: PariPari simple GUI (Cuba Release).

to listen to commands dispatched in a client - server fashion. The client can be

a simple networking utility that reads and writes data across network connections

using the TCP/IP protocol, such as NetCat [nc]

66 CHAPTER 5. PLUG-INS IN EARLY DEVELOPMENT STAGES

Figure 5.2: Command Line Interface.

5.4. PARICREDITS 67

5.4 PariCredits

One of the most innovative features of PariPari is a sophisticated pseudoeconomy

to regulate access to resources. This functions at two layers: within each peer,

to regulate access by di�erent plug-ins to machine resources, and between peers,

to encourage cooperation and discourage freeriding. While the two layers are fun-

damentally di�erent, they are both managed by the PariCredits module which is

tightly integrated with PariCore (the main reason for making PariCredits a separate

plug-in is to isolate PariCore, which is already fairly mature and whose stability is

paramount, from code changes in the PariCredits module).

5.4.1 Intra-peer Credits

The intra-peer layer has been almost entirely implemented. PariCore issues to each

plug-in a steady stream of Credits with which it can purchase machine resources

such as bandwidth, storage space and CPU cycles, competing in an auction system

with other plug-ins for them. This can allow plug-ins to choose di�erent strategies

depending on the current cost of resources. For example, aggressive compression of

transmitted data may or may not be worthwhile depending on whether CPU cycles

are cheap or not compared to bandwidth � i.e., depending on whether the CPU's

load is light or heavy compared to network's tra�c.

The credit income that allows each plug-in to purchase resources varies both in

time and between di�erent plug-ins. It is essentially proportional to the priority of

that plug-in at that moment. It can be modi�ed by an experienced user directly;

but we expect it far more often to be modi�ed indirectly by a user signalling through

PariGUI to PariCore his priorities (e.g., if being in haste to upload or download

a particular �le). Developing an expressive but intuitive way to signal di�erent

priorities is one of the most interesting directions of future research at the frontier

between PariCredits and PariGUI.

5.4.2 Inter-peer Credits

The inter-peer layer is not yet past its design phase. We expect it to be much more

di�cult to design and implement than the intra-peer layer, for two fundamental

reasons.

First, all plug-ins running in each peer are subject to a single authority (that of

the user) and a common goal (the user's satisfaction). Thus, if we assume that the

code base is safe, di�erent plug-ins can trust each other and one need not consider

faulty or malicious plug-ins. This is not the case in the inter-peer scenario: di�erent

68 CHAPTER 5. PLUG-INS IN EARLY DEVELOPMENT STAGES

peers will have di�erent, often con�icting goals (e.g., when downloading data from a

common source), and one can certainly expect a small but non-vanishing fraction of

them to be faulty or actively malicious.

Second - as a consequence of plug-ins within the same peer all having the same

goal and authority - the intra-peer pseudo-economy can run on a pseudo-currency

generated by �at by PariCore. This is impossible in the case of inter-peer exchanges.

On the other hand [Pes] shows how it is possible to create an e�cient barter based

system, piggybacking on a DHT, that obviates the need of a shared currency and is

robust against a small fraction of faulty or even actively malicious nodes. We plan

to use it as the basis for the inter-peer layer.

Part II

PariPari: Management

69

Chapter 6

Human Resources

We invested considerable resources on the human factor. This was absolutely crucial

because PariPari is a labour intensive project with a large but �amateur� pool of

developers. Furthermore, these developers are virtually all unpaid student volunteers

with many other commitments in life. It was, then, of the utmost importance to

identify, cultivate and exploit the tiniest morsel of quality in our workforce - and at

the same time to make every possible e�ort to maintain and reinforce its enthusiasm.

Section 6.1 discusses in greater detail the di�erences between our workforce and

that of a �standard� software project. Section 6.2 deals into the crucial but slippery

notion of the �quality� of the workforce. Armed with this knowledge, it is easier

to understand our choices for the organizational structure of PariPari described in

Section 6.3. Section 6.4 discusses our motivational strategies. Finally, Section 6.5

summarizes some �lessons� from the PariPari project and the implications on a) the

current student curriculum in Computer Engineering at the University of Padova

and b) the organization and management of large �amateur� software project.

6.1 Student vs Professional employees

The most evident di�erence between PariPari and any other software project is

that the workforce of PariPari is entirely comprised of students (of the school of

Computer Engineering of the University of Padova). We currently employ just one

Ph.D student, several undergraduate students and and a few master students. This

peculiarity strongly a�ects all the other aspects of the project. For example we have

to deal with unavailability periods due to exam sessions. In the remainder of this

section we review the main di�erences between students and professional employees.

71

72 CHAPTER 6. HUMAN RESOURCES

6.1.1 High Turnover

Since the workforce of PariPari consists entirely of students, it is subject to a very

high turnover. Typically, students spend about nine months working on the project.

Some of them, after their �rst level degree, continue working in PariPari. These

students are very useful since they are already formed and can e�ectively help new-

comers. Also, these experienced students often exhibit enough maturity, coding

and design abilities, and commitment to the project that they can take on greater

responsibilities.

Dealing with turnover is crucial. Since PariPari is a complex project, we found

that the best way to pass on accumulated knowledge is through actual collaboration.

Indeed, one of the worst fates that can befall a plug-in is losing its workforce before it

can train a new generation. Although we spend a lot of time writing documentation

about the project and code, we noticed that resuming work on a �dead� plug-in is very

ine�cient because a lot of information is passed only through a direct relationship.

6.1.2 Scarcity

PariPari is always hungry for new students. We can only reach students of the

Department of Information Engineering at the University of Padova using �yers, word

of mouth, etc. Although the number of reachable students could seem su�cient, we

have to consider other factors that drastically reduce our potential workforce. First,

only a subset of students are interested in PariPari. Second, only a smaller subset

can work to PariPari due to their curricula studiorum. In fact, students work on

PariPari only for their thesis. This time constraint considerably reduces the size of

our potential workforce.

6.1.3 Low Cost and Low Quality

PariPari is a low cost project or, better, it is a no-cost project. Not having any money

to spend to hire professional programmers, we are forced to use only students. This

choice has two serious drawbacks: we have to teach students and we can have only

a small leverage on them.

Most students that enter the PariPari project have insu�cient experience with

designing and writing good software. They only have a small coding experience.

Their previous coding activities involve only very small one-man projects so they do

not know how to behave in a programming team. More than half our students have

received no formal training in software engineering, and none of the (two) courses in

software engineering taught by our school involve actual, hands-on, coding.

6.2. PERSONNEL QUALITY 73

To �ll these gaps we have to spend some energy and time. On one hand this

period further reduces the students productive time in PariPari, and on the other

hand this teaching e�ort subtracts energies from the more experienced students, who

must spend a fraction of their time training new recruits. It is crucial for the success

of the project to evaluate on an individual basis whether a student will provide

PariPari a net bene�t, or instead drain more resources than he can give back to the

project.

6.1.4 Unreliability

Students are unreliable. They also have numerous commitments that they often per-

ceive as more important than PariPari: they have to attend courses, prepare exams

and sometimes they even have a job. Often, they are not skilled enough to plan their

time according to all their undertakings so they stop working for PariPari without

or with little advance notice. This behavior obviously a�ects the productivity of

all other team members slowing down their progress. Indeed, often students - not

having been part of a large team e�ort before - often even fail to realize the extent

to which they can cause damage to others by being unreliable.

It is very di�cult to face and solve this kind of situations. We have only a small

leverage on students. As part of the academic system we have to encourage them

to attend courses and to study hard for examinations. We can only try to enhance

their team relationships to lead them to change their priorities.

6.2 Personnel Quality

In section 6.1.3 we stated that students are a generally low-quality workforce. But

what do we mean, exactly, with quality? Personnel quality strictly depends on

context. For example, in a videogame design environment a high quality worker

is one exhibiting creativity, coding speed, and the ability to deal with multimedia

contents. On the other hand, for a security consultant precision, accuracy, and the

ability to perform penetration tests are more important. So the same person can

be of high quality in one environment and of low quality in another one. However,

PariPari is so complex that many di�erent qualities are required. Di�erent plug-

ins require students with several di�erent qualities. Also, in general, we can de�ne

di�erent roles in a single plug-in, each of which requires very di�erent skills. Roughly

speaking, we can state that a PariPari student must have at least one quality among

relationship, design, and coding ability.

74 CHAPTER 6. HUMAN RESOURCES

Since quality is so scarce it is crucial to identify it, cultivate it and exploit it,

especially in newcomers.

6.2.1 De�nition

We begin this section listing the main abilities required of our students.

Adaptability: the ability to get acclimatized in PariPari is very important. In

particular, learning to use the adopted production tools and understanding the

rules of the group in a few days represent a double advantage. First, students

have more time to work on their tasks, and second, less e�ort is required of

senior students, allowing them to continue working on their tasks.

Research: the will to understand a problem thoroughly is often the key factor to

solve it in our environment. Most of the times, this skill is tightly linked with

attitude to reverse engineering. This kind of approach is sometimes the only

way to deal with problems in PariPari.

Design: the ability to keep in mind all the speci�cations of the project, all the

problems, all the criticalities and to develop a good design is maybe the most

important ability to look for in a student, particularly one who is to be en-

trusted with a leadership position.

Coding: designing and implementing good code is not a trivial task. Code has to

be simple, fast, upgradable and quickly changeable (and, of course, correct!).

Often, students tend to write code that seems good only to themselves. To

address this issue we enforced object-oriented programming paradigms and

adopted test driven development.

Relationship: the above are technicals skills, very useful to obtain good results and

to work productively. However, we can not overemphasize the importance of

relationship abilities. These kind of relationships are the mortar of the group

and the bricks of the organization of work. It is not possible to work in an

unfriendly environment. Besides, one particular skill is very important to our

scope: leadership.

Leadership: [Bas02] de�nes leadership as a �process of social in�uence in which

one person can enlist the aid and support of others in the accomplishment

of a common task� - and organization is one of the most reliable indicators

of success of a PariPari team. A good leader understands the capabilities and

interests of his fellow workers, and can motivate them and adapt their workload

6.2. PERSONNEL QUALITY 75

so as to maximize ful�llment and hence productivity. We have noticed that

good leadership is very often highly correlated with initiative; students showing

initiative can often become excellent leaders.

Reliability: is the ability of a person to perform and maintain their undertaking.

An unreliable worker slows down the work of the whole team, besides achieving

their objective slowly. Hence, it is quite clear that a reliable student is a double

advantage.

All the qualities above are important in PariPari students, and are crucial in many

plug-ins � even though some plug-ins have more stringent requirements than others.

However, the most important aspect dictating which qualities are important in a

student is not the plug-in, but the role within the plug-in. Team leaders obviously

cannot lack leadership. Design skill is also of greater importance for a team leader

than for other members of the team. Indeed, a team leader with good design skills

can usually obviate to a total lack thereof in the other team members.

6.2.2 Evaluation

Identifying quality in (potential) new members of the project is by no means an

easy task. While a lengthy interview with the candidate can often provide su�cient

information, this is neither always reliable, nor always possible. For example, most

of the members of the project are recruited during large, sporadic recruitment events

involving dozens of people.

To address these problems we adopt di�erent strategies to evaluate newcomers.

This evaluation is crucial because by identifying the quality of students we can assign

them to the right role in the right team. Matching the students' attitude with our

vacancies maximizes their satisfaction guaranteeing the best productivity for us.

Initially, we used coursework grades as a benchmark for a rough assessment of

student quality. However, we soon discovered that this was an extremely unreli-

able benchmark. First of all, coursework obviously does not discriminate students

based on one of the qualities we prize most � namely leadership. Second, even for

�engineering� qualities like strong coding or design skills, coursework performance is

often a poor indicator. We have seen many students with grades in the top 20% of

their class that have terrible coding skills and, perhaps worse, no initiative at all.

On the other hand, we have discovered excellent coding skills and (perhaps more

surprisingly) excellent design skills in students with only average or below average

grades.

76 CHAPTER 6. HUMAN RESOURCES

Figures 6.1,6.2 and 6.3 provide a scatterplot of the relationship between a stu-

dent's average grades and (respectively) coding and design skills, initiative and reli-

ability for all students currently part of the PariPari project. All evaluations were

performed by their respective team leaders, except for leaders who where evaluated

by the head of the project. It is quite obvious that there is almost no correlation

between a student's grades and his design and coding skills, and only an extremely

mild correlation between grades and initiative and reliability.

20 21 22 23 24 25 26 27 28 29 30

0

1

2

3

4

5

6

7

8

9

10

Coding Skill

Average Courses Grades

P
ar

iP
ar

i G
ra

de

Figure 6.1: Course grade Vs PariPari quality: coding skill.

A more e�ective alternative that a number of teams have started to adopt is to

quiz their new or prospective members with coding and theory tests developed by

the current (student) team members. It is interesting that this methodology ap-

peared �spontaneously� � i.e. it was not even suggested by the highest echelons

of the PariPari hierarchy � and appears to have good results in predicting initia-

tive, adaptability and research attitude of newcomers. While we still lack a reliable

method to test for leadership potential, a student possessed of only these qualities is

still an excellent addition to PariPari.

6.2.3 Cultivating Quality

It is obvious that cultivating the quality of our students is of paramount importance

to the success of the project. Not only does this lead to a better workforce, but an

6.2. PERSONNEL QUALITY 77

20 21 22 23 24 25 26 27 28 29 30

0

1

2

3

4

5

6

7

8

9

10

Initiative

Average Courses Grades

P
ar

iP
ar

i G
ra

de

Figure 6.2: Course grade Vs PariPari quality: initiative.

20 21 22 23 24 25 26 27 28 29 30

0

1

2

3

4

5

6

7

8

9

10

Reliability

Average Courses Grades

P
ar

iP
ar

i G
ra

de

Figure 6.3: Course grade Vs PariPari quality: reliability.

increasing number of students are attracted to the project for its educational poten-

tial. Our strategy is twofold, entailing a direct approach aimed at strengthening the

technical skillset of our students, and an indirect � but not less important � one

78 CHAPTER 6. HUMAN RESOURCES

aimed at cultivating the motivation, morale, con�dence and other �social� aspects of

the PariPari workforce. To improve the coding and design capabilities of our stu-

dents we adopted some simple, but strict programming paradigms (see Section 7)

These paradigms help students have a clear view on the coding process, from design

to implementation. So, the source code written is relatively free of errors and, per-

haps more importantly, readable, testable and simple. The fundamentals of these

software engineering paradigms are taught in a small number of lectures; perhaps

more importantly, more experienced students often provide one-on-one training to

newcomers. Interestingly, many of the senior students enjoy providing this training

and do not see it as a burdensome chore.

Cultivating the �social� aspects of our workforce is more complex. We created a

feedback system that provides constant updates on the status of every plug-in team

and of every member. Every two weeks we organize a meeting with all PariPari

team leaders to check the personnel situation, to discover any criticalities as soon

as possible, and to �nd together solutions to any problems that might arise. We

also arranged a report system to force leaders to check the situation of their teams

frequently. Every week such reports are �lled with details on scheduling setback

and personnel issues. Beyond these formal communications we allow and encourage

direct contact with the project manager to report any trouble.

This approach not only provides us with a wealth of information that allows more

prompt, e�ective solutions to problems. It also makes students feel �empowered� and

part of the decision process (see Section 6.4 below). A crucial ingredient to maximize

both advantages is to reward deserving students with increasing responsibilities.

6.2.4 Quality of Team

The quality of a team is not equal to the sum of the qualities of its members. A

team formed by only very good coders will quickly produce simple code but it will

not be able to ful�ll any other objective.

A team needs to be formed by students with di�erent abilities. A group composed

of students whose abilities cover the set of all required abilities forms a team that

can perform very well. An ideal team will involve just one leader with initiative

and design skills and some students skilled in coding and testing. Another really

important team characteristic, often neglected, is generational overlap. We try to

form teams in such a way that the projected �tenure� of di�erent members will

partially overlap. In this way senior members can train junior ones, preserving a

precious legacy of experience and training carefully built up over the months.

6.3. ORGANIZATIONAL STRUCTURE 79

6.3 Organizational Structure

PariPari is a very large and complex project but its workforce is extremely �frag-

ile� (see Section 6.2). This is the main constraint conditioning the organization of

PariPari (and our �twist� on eXtreme Programming - see Chapter 7.2). This section

presents the hierarchical structure of PariPari (Subsection 6.3.1) and its organization

in terms of time (Subsection 6.3.2) and resources (Subsection 6.3.3).

6.3.1 Hierarchical Structure

PariPari is a software organized in plug-ins. To exploit all the bene�ts derived from

this choice we organize students in teams. Each team develops a single plug-in,

working semi-isolated from the rest of the PariPari group. Interfaces are written

to ful�ll the Test Driven Development requirements (see 7.3). They are the unique

common point among plug-ins. Thus teams are quite independent of each other

and almost always communication between teams can be narrowed down to simply

reading each other's code documentation. However there exist plug-ins very tightly

linked with each other. We chose to aggregate such plug-in teams in federations to

simplify the work of the teams. In this way, according to the eXtreme Programming

rules (see 7.2), we encourage communication between developers. This behavior

should lead to a faster and, possibly, better solution to the problems we encounter.

These groups are almost entirely self organized. However, a leader � called plug-in

leader � is set for each plug-in team and a team leader is also nominated for each

confederation.

Figure 6.4: Hierarchical organization in PariPari: lines are the preferred communi-
cations

The project leader (actually myself) tries to draw together the threads of the

whole PariPari project exploiting the information gathered from leaders and the

80 CHAPTER 6. HUMAN RESOURCES

scienti�c advice of other PhD students and faculty members.

Duties

In such a hierarchical structure it is very important to de�ne the role of each person.

We give a brief description of the main tasks for each role.

The Project Leader de�nes the main lines of the project. In particular, he decides

the high level objectives and monitors progress of PariPari as a whole. He takes

any decision about the roles of students (rewarding or punishing them) and

proposes deadlines for pre-releases. Moreover, he tries to solve every personnel

problem as soon as possible. All the above duties are performed exploiting

all the information gathered from reports, meetings and chats in coordination

with team and plug-in leaders.

Team Leaders coordinate the work of their plug-in teams. In particular, they

help the plug-in leader in the design process. The team leader, in fact, takes

advantage of their position to have a clear view of all plug-ins interactions.

Occasionally they organize confederation meetings to promote communication

and to coordinate e�orts. They also schedule work, sharing these decisions

with their workforce.

Plug-in Leaders have to organize the job assignment in the plug-in. If the plug-in

is not part of any confederation, the plug-in leader performs the team leader

role.

Evolution

We reached this organization after about two years of experiments and tuning. At

the beginning there were only a few plug-ins with two or three students in each. It

was quite simple to control and help everybody. In each team the plug-in leader

acted almost as a router for communication. The project leader used to plan every

task and controlled progress. Plug-in leaders forwarded guidelines coming from the

project manager to all other students.

Whenever the group began to grow in numbers, plug-in leaders started helping

the project leader collecting students requests and satisfying some of them (the most

frequently asked ones - that they soon learnt how to handle). Then, along with the

growth of the number of students and the birth of new plug-in teams, the role of

plug-in leaders changed again. They began to organize work within their plug-in,

assigning tasks to their students and solving minor issues.

6.3. ORGANIZATIONAL STRUCTURE 81

Finally, we noticed that tightly linked plug-in teams sometimes require a lot of

communication in order to avoid problems such as code duplication and incompati-

bility issues. To deal with this problem we grouped such plug-ins into �federations�,

delegating the task of coordinating them to team leaders.

6.3.2 Organization of Time

Organization in terms of time is crucial in any large project. Very often, plug-ins

develop mutual dependencies. If some piece of code is not ready at the right moment

another plug-in using that code will be unable to progress. To address this problem

we act on two levels: personal scheduling and team scheduling.

Individual Scheduling

Careful planning of the workload assigned to students is the �rst step to achieve

good results. Leaders must also �share� deadlines with other members. While they

may have a more accurate picture of the time constraints involved, they should avoid

at all costs enforcing them by �at, without consensus. Imposed deadlines will very

likely be missed. Instead, a shared deadline (although more relaxed) will (probably)

be hit.

Team Scheduling

On the basis of individual scheduling the project leader can quite safely build the

scheduling for the team. Each leader makes a roadmap trying to satisfy constraints

dictated by individual schedulings and by the project leader. These roadmaps aim

at pre-releases that work as milestones. Pre-releases are prepared to provide syn-

chronization points among plug-ins and to motivate students, giving them the op-

portunity to form a clear view of the global progress of PariPari. Clearly, pre-release

preparations require a lot of additional work. Thus, we schedule release dates outside

exam sessions, when students are busiest. This way students can concentrate their

e�orts on PariPari and on their studies without dangerous overlaps. In fact, we have

been studying the interplay between exam sessions and productivity since the �rst

years of PariPari. In Figure 6.5 we can see that before October 2008 during exam

sessions the number of code commits decreased drastically. Thus, exam sessions are

best avoided when setting deadlines that are likely to require an increased level of

e�ort.

82 CHAPTER 6. HUMAN RESOURCES

0

225

450

675

900

20
07

/5

20
07

/7

20
07

/9

20
07

/1
1

20
08

/1

20
08

/3

20
08

/5

20
08

/7

20
08

/9

20
08

/1
1

20
09

/1

20
09

/3

20
09

/5

20
09

/7

20
09

/9

20
09

/1
1

20
10

/1
0

12,5

25

37,5

50

Commits Active users

Figure 6.5: Commit on the SVN server: commit decrease during exam sessions.

Event Scheduling

Other important events to be carefully scheduled are recruitment sessions, report

delivery dates, and meetings. Reports and meetings should be frequent enough to

let the project leader know the current situation and to respond quickly to budding

problems. At the same time they should not be too frequent, as they can represent

a serious time drain for team and plug-in leaders. Currently meetings are scheduled

every two weeks, and progress reports are due every week.

Recruitment session timing faces similar constraints. Organizing recruitment ses-

sions requires considerable energy. Furthermore, they can involve bursts of �advertis-

ing activity� that, if too frequent, may annoy faculty and even prospective students.

However, recruitment should take place with enough regularity to guarantee gener-

ational overlap (see above). Periods immediately following exam sessions are ideally

suited to recruitment since these are the times when students typically begin looking

for new projects to become involved in.

6.4. MOTIVATIONAL ISSUES 83

6.3.3 Organization of Resources

As stated in 6.1.3 PariPari is a very low cost project. We do have no dedicated spaces

nor labs. Most communication takes place over instant messages and email. Our stu-

dents work on their own, mostly using their own laptops. Frequently students work

even from home. To support our workforce and organize code and communication

we set up a Subversion Server and a mailing list (more details in 7.1).

Somewhat surprisingly, this loose, decentralized working environment actually

increases student productivity. By decoupling the idea of work from that of a physical

workplace, we encourage students to make full use of time between classes, on trains

etc. and to work �on a whim� even when the our Department is closed.

6.4 Motivational Issues

Motivation in PariPari is crucial. Motivation is the main source of student produc-

tivity. We often noticed that motivated and ignorant students perform better than

capable but unmotivated ones. In fact, motivated students can easily learn by them-

selves, unmotivated students tend to underestimate � and perform poorly at � any

task. We try to cultivate student motivation in a number of ways.

6.4.1 Motivation from Joining

Clearly, the �rst necessary step for any student to become a productive member of

PariPari is to join the project. We spend considerable e�ort to encourage student

participation. We advertise that joining such a large software project is a unique

opportunity to learn the tools and techniques used in the industry. This is particu-

larly important because software engineering courses at the University of Padova �

for lack of resources � often o�er little or no practical training, and local companies

o�ering internships are rarely large enough to tackle large scale, ambitious software

projects. Also, the possibility of being part of a software project that may one

day rival eMule, BitTorrent, MIRC or Wua.la holds an incredible appeal on young

students.

We advertise PariPari using �yers, brief presentations in the intervals between

classes, and word of mouth. Our main goal when advertising is to raise su�cient

interest for students to attend one of our recruitment sessions. At these sessions

we provide a more detailed presentation of the PariPari project and of the role

prospective member would play in it. We have observed that well more than half

the students who attend these sessions actually end up joining the project.

84 CHAPTER 6. HUMAN RESOURCES

6.4.2 Encouragement

As mentioned before, we place a strong emphasis on inter-student encouragement.

Roughly speaking, relationships between students in the project are of two types:

peer to peer, and mentor/leader/senior student to junior member. Peer relationships

often are synergistic with friendship. Friends often join the project together, usually

in the same team. At the same time, members of the same team often become friends.

We encourage the formation of strong peer-to-peer bonds between members, as it

translates into a team mentality fostering collaboration and friendly intra-team and

inter-team one-upmanship.

Senior-to-junior (and leader-to-team member) relationships are somewhat dif-

ferent, but equally important. Leaders help newcomers understand the structure,

dynamics and conventions of PariPari, quickly infecting them with the project's

�geist�. While PariPari is a large project and it would be easy to feel just another

cog in the machine, attention from their leaders makes students feel important �

and pride in one's work can often boost productivity considerably. Finally, a leader

provides an obvious role models for a junior members � and can subtly steer him to

better performance with �carrot and stick� tactics carefully tailored to that member's

personality.

6.4.3 Responsability

We borrow from the Scout method (see [BPoG51]) the crucial role given to responsi-

bility and con�dence. Students feeling con�dence in their leaders are happier and are

encouraged to test themselves discovering new possibilities and solutions to problems.

To strengthen these feelings, leaders entrust new (small) responsibilities to deserving

students. This behavior leads to a virtuous loop that often transforms a student into

a new leader.

6.4.4 Special Events

Special events such as recruitment sessions and pre-releases are also important in

terms of motivation. Both these events require quite a considerable e�ort from

every student. Also, during recruitment sessions senior students present to potential

newcomers the state of the art of their plug-ins. Being indirectly rewarded in this

way and seeing their own code work after a release makes the student feel rewarded

to be part of such a large project. These occasions reinforce the �esprit de corps�

between members of the project, boosting morale and performance. Again, this

6.5. BEYOND PARIPARI 85

often generates a virtuous loop of greater achievements leading to greater pride and

viceversa.

6.4.5 The right student for the right plug-in

Perhaps the most obvious way to motivate students is to have them work on a sub-

project they like. PariPari is a large project, and its plug-ins have many di�erent

��avors�. For example, students with a strong interest in graphics and ergonomy are

naturally drawn to the GUI plug-in; students who want to learn the intricacies of the

JVM tend to gravitate around the Operating System layer plug-ins and particularly

PariCore. Additionally, plug-ins sport di�erent degrees of maturity, leading to dif-

ferent challenges and rewards. Early in its stages of development, a plug-in is still in

�ux and a student can receive a considerable sense of empowerment from being able

to shape its overall structure. Later, the plug-in's code base becomes more settled.

At this stage, most of the work is refactoring and optimization. Some students dislike

this phase of marginal returns; many relish the opportunity of developing a plug-in

that is already functional, so that every small contribution leads to an immediate

visible improvement.

6.5 Beyond PariPari

The lessons we learnt from Human Resource Management in PariPari have implica-

tions beyond it, both in terms of academic curriculum and employment opportunities

for students, and in terms of large �amateur� software projects.

6.5.1 Computer Engineers and Computer Engineering skills

Our experience with PariPari suggests that the current program of Computer En-

gineering at the University of Padova is dangerously skewed towards a purely theo-

retical curriculum. Most graduates have only a super�cial understanding of a single

programming language � Java � and thus are not able to use it to full e�ective-

ness, since they neither grasp its subtler points nor its strengths (and weaknesses)

compared to other languages. Many students do not � in fact, can not � take

any software engineering classes, and those who do face the subject from a purely

theoretical standpoint, without writing any code, without becoming familiar with de-

velopment tools, and without witnessing the practical advantages of adopting modern

programming paradigms. Those few students with more extensive experience have

almost invariably acquired it outside the formal curriculum.

86 CHAPTER 6. HUMAN RESOURCES

This is even more serious at the Master and PhD level of the curriculum, where

enrollment mechanisms strongly favor students with talent/interest in pure theory,

and a student receives constant subtle (and not so subtle) messages about the intel-

lectual superiority of pure theory. There is almost no perception that this e�ectively

cripples what should be the elite of our alumni. In fact, even the laudable initiative

of pushing students towards internships in companies is seriously hampered by the

fact our interns � because of their perceived lack of �engineering maturity� � are

often relegated to marginal roles of little educational value.

The fact that our Computer Engineering curriculum produces alumni with few

Computer Engineering skills may well be one of the reasons why the average Com-

puter Engineer graduate earns such a low starting salary � de�nitely less than the

average plumber or baker. An additional, possible reason for this salary gap is de-

scribed in the next subsection.

6.5.2 Grades and the market of lemons

The fact that the Computer Engineering curriculum at the University of Padova is

so skewed towards pure theory has another deleterious e�ect. Since theoretical and

engineering talent are often relatively uncorrelated (see Section 6.2.2) grade averages

rarely re�ect the skill of Computer Engineering graduate at Computer Engineering.

Yet many companies in Italy still consider grade average a good indicator of a po-

tential employee's quality; and indeed tend to restrict hiring to the higher grade

cohorts.

This leads to a situation �rst described by George Akerlof in his celebrated paper

�The market for lemons� [Ake70]. Akerlof observes that a market with strong infor-

mation asymmetry � and in particular where the seller can assess more accurately

than the buyer the quality of traded goods � is subject to a progressive deterioration

of quality. The intuitive rationale is that buyers, who do not know the quality of

a speci�c good, are willing to pay only average prices. This drives away from the

market sellers of goods whose quality is above average, lowering the average quality

� in a vicious cycle that ends with the market being populated almost exclusively

by low quality goods traded at low prices.

From our experience with PariPari �alumni�, the local Computer Engineering

market seems indeed to be su�ering from a �market of lemons� e�ect. Capable stu-

dents with poor grades have di�culties �nding adequate jobs in the local job market,

and thus abandon it. This lowers the quality of the average Computer Engineering

graduate witnessed by companies � whose response is to lower salaries, tighten grade

requirements and generally o�er progressively harsher hiring conditions, obviously

6.5. BEYOND PARIPARI 87

increasing the �brain drain� even further.

6.5.3 The PariPari alumni network

Preliminary observations suggest that PariPari alumni, when attempting to recruit

new software engineers for their companies, tend to come back to PariPari and inquire

among recent graduates or soon-to-be-graduates. This is probably caused in part by

the esprit de corps we have fostered. Yet the main cause (according to recruiters as

well) is that the average PariPari member has stronger software engineering skills

than the average Computer Engineering graduate, and that a positive recommen-

dation from the senior members of the project is a much more reliable predictor of

future performance than grade average. Of course, this often means that knowledge-

able recruiters o�er slightly better hiring conditions to PariPari members, creating a

virtuous loop that partially counters the �market of lemons� e�ect described above.

PariPari is still a relatively young project, and only a small fraction of its alumni

have been in the job market for more than one year. Thus, we still have insu�cient

data to obtain a signi�cative quantitative assessment of the �network of alumni�

e�ect we just described. We do, however, believe it to be an extremely promising

direction for future research.

6.5.4 �Amateur� software projects

PariPari is the living proof that large, complex �amateur� software projects are fea-

sible. Adequate management can squeeze productivity out of a workforce that is

largely unpaid, working part time, and/or relatively unskilled. A correct organiza-

tional structure allows the training of a small seed of experienced workers to �infect�

the rest of the project. Access to this training provides strong motivation to join the

project even in the absence of direct, immediate monetary gain (see [LW05]). En-

thusiasm for something perceived as �cool� or potentially famous is another strong

incentive.

Ultimately the key to success is adopting the correct software engineering method-

ologies (see Chapter 7). This includes, importantly, avoiding rigid schemes and

adapting to each individual situation and person, trying to identify (often hidden)

potential and to make full use of it.

88 CHAPTER 6. HUMAN RESOURCES

Chapter 7

Programming

To manage the code writtend by dozens of developers we chose to adopt the object

oriented programming (OOP) paradigm. This paradigm yields:

• faster code development;

• easier maintenance;

• enhanced modi�ability;

• simpler testing process;

• naturalness to deal with the classes.

All these features are clearly of crucial importance for the PariPari project, given

its complexity and the nature of its workforce. In particular, in an environment

prone to refactoring, OOP yield faster code writing and easier task management.

89

90 CHAPTER 7. PROGRAMMING

7.1 Tools

Supporting such a huge number of developers led to the adoption of some very

popular tools. Below we simply cite these tools providing a brief description of their

goals and functionalities.

Eclipse ([ecl]) is a multi-language software development environment comprising

an IDE and a plug-in system to extend it. It is written primarily in Java

and can be used to develop applications in Java and, by means of the various

plug-ins, in other languages.

Subversion ([svn]) Subversion (SVN) is a version control system initiated in 1999.

It is used to maintain current and historical versions of �les such as source code,

web pages, and documentation.

Googlegroup ([goo]) Google Groups is a service from Google that supports discus-

sion groups, including many Usenet newsgroups, based on common interests.

Google Groups o�ers, beyond the possibility to receive threads by email, a web

based interface to the group. Using this interface it is possible to browse all

the committed posts.

Bugzilla ([bug]) Bugzilla is a Web-based general-purpose bugtracker and testing

tool.

Messengers To keep developers cohesive we make extensive use of instant messag-

ing clients.

7.2. EXTREME PROGRAMMING 91

7.2 Extreme programming

Figure 7.1: eXtreme Programming Logo.

Extreme Programming is a software development methodology (born in 1996) to

improve software quality and responsiveness to changing customer requirements. It

advocates frequent �releases� in short development cycles, to improve productivity

and introduce checkpoints where new customer requirements can be adopted.

We chose Extreme Programming as a software development standard for PariPari

because of its interesting features (see below).

Responsiveness: XP empowers developers to con�dently respond to changing re-

quirements, even late in the life cycle.

Teamwork: managers, customers, and developers are all equal partners in a col-

laborative team. XP implements a simple, yet e�ective environment enabling

teams to become highly productive. The team self-organizes around the prob-

lem to solve it as e�ciently as possible.

Simplicity: XP keeps design simple and entrusts development of clean and clear

code.

The most surprising aspect of Extreme Programming is its simple rules. Extreme

Programming is a lot like a jig saw puzzle. There are many small pieces. Individually

the pieces make no sense, but when combined together a complete picture can be

seen. The rules may seem awkward and perhaps even naive at �rst, but are based

on sound values and principles.

7.2.1 XP rules

We list all the XP rules focusing only on those that can be a little unclear and

stressing those adopted by PariPari.

92 CHAPTER 7. PROGRAMMING

Figure 7.2: eXtreme Programming Project.

Planning

User stories are written. User stories serve the same purpose as use cases but are

not the same. They are used to create time estimates for the release planning

meeting. They are also used instead of a large requirements document.

Release planning creates the release schedule. A release planning meeting is

used to create a release plan, which lays out the overall project. The release

plan is then used to create iteration plans for each individual iteration. It is

important for technical people to make the technical decisions and business

people to make the business decisions. Everyone can commit to the release

schedule.

Make frequent small releases. The development team needs to release iterative

versions of the system to the customers often.

The project is divided into iterations. Iterative Development adds agility to

the development process.

Iteration planning starts each iteration. An iteration planning meeting is called

at the beginning of each iteration to produce that iteration's plan of program-

ming tasks.

In PariPari, everybody participates in the scheduling task. This objective is

achieved exploiting the hierarchical structure of the development group. Team lead-

ers, Plug-in Leaders and the Project leader join the planning meeting considering

the developers' opinions. The development proceeds by small frequent releases, and

each plug-in leader assigns only small tasks to developers.

7.2. EXTREME PROGRAMMING 93

This is the most important behavior adopted in PariPari. Students rarely succeed

in long term scheduling. This may have only limited functionalities, but it does work,

and can be incrementally extended in small, simple steps.

Management

Give the team a dedicated open work space. Communication is very impor-

tant: open space allows more communication paths to the team.

Set a sustainable pace. A sustainable pace helps planning releases and iterations

and avoiding from getting into a death march (Adding more people is a bad

idea when a project is already late) .

A stand up meeting starts each day. Communication among the entire team is

the purpose of the stand up meeting.

The Project Velocity is measured. The project velocity is a measure of how

much work is getting done on the project. To measure the project velocity it is

enough add up the estimates of the user stories that were �nished during the

iteration.

Move people around. People have to move around to avoid serious knowledge loss

and coding bottle necks. If only one person can work in a given area and that

person leaves the project's progress reduced to a crawl.

Fix XP when it breaks. XP Rules are a good start, but it is possible to change

what does not work

PariPari project does not have its own lab. But we try to set up something like a

virtual open space for every developer. A PariPari-wide GoogleGroup allows students

to talk to each other. This device provides a very good communication method: often

senior developers working on di�erent plug-ins mentor younger students. Moreover,

each team shares knowledge using its own GoogleGroup. A meeting involving all

leaders is kept every two weeks to check the progresses. To deal with the high turn

over rate each team has a vertical structure, as explained above. Teams are formed

by senior and junior students to ease the passage of notions and avoid a dramatic

team death. In fact, to start working on a project it is often more e�ective to have

a few words with its developers than to read directly its code and documentation.

Great importance has been attributed to working pace. Milestones and deadlines

are always decided by consensus. This is particularly important because all the

developers of PariPari have many other commitments in life.

94 CHAPTER 7. PROGRAMMING

Design

Simplicity. A simple design always takes less time to �nish than a complex one.

Choose a system metaphor.

Use CRC cards for design sessions. Use Class, Responsibilities, and Collabora-

tion (CRC) Cards to design the system as a team. The greatest value of CRC

cards is to allow people to break away from the procedural mode of thought

and more fully appreciate object technology.

Create spike solutions to reduce risk. A spike solution is a very simple pro-

gram to explore potential solutions.

No functionality is added early. Keep the system uncluttered with extra stu�.

Refactor whenever and wherever possible. Refactor mercilessly keeps the de-

sign simple and avoids needless clutter and complexity. Keeping code clean and

concise to easily understand, modify, and extend it.

The most important principle in PariPari is the K.I.S.S.1 principle (as stated

by Clarence Leonard �Kelly� Johnson). Every design or code has to be written in

the simplest way. Once the simplest step is reached, incrementally, features are

added. However, to axxomodate future extendibility, very simple projects are rarely

possible. We moved most of the design complexity into the high level speci�cation of

PariPari, keeping the project extremely modular and tasks for individual developers

extremely simple and clean. Frequent refactoring (particularly after spike solutions)

also contributes to a clean code base.

Coding

The customer is always available. One of the few requirements of XP is to have

the customer available.

Code must be written to agreed standards. Code must be formatted to agreed

coding standards. Coding standards keep the code consistent and easy for the

entire team to read and refactor.

1K.I.S.S. is an acronym for the design principle �keep it simple and stupid�, most commonly read
as the backronym �keep it simple, stupid!�, or sometimes �keep it short and simple�.The K.I.S.S.
principle states that simplicity should be a key goal in design, and that unnecessary complexity
should be avoided.

7.2. EXTREME PROGRAMMING 95

Code the unit test �rst. Creating tests �rst, before the code, yields easier and

faster code creation.

All production code is pair programmed. All code to be sent into production

is created by two people working together at a single computer.

Only one pair integrates code at a time. Without controlling integration de-

velopers test their code and integrate it believing all is well. But because of

parallel integration there is a combination of source code which has not been

tested together before. Integration problems happen without detection.

Integrate often. Developers should be integrating and committing code into the

code repository every few hours, when ever possible.

Set up a dedicated integration computer. A single computer dedicated to se-

quential releases works really well when the development team is co-located.

This computer acts as a physical token to control the release process.

Use collective ownership. Collective Ownership encourages everyone to contribute

new ideas to all segments of the project. Any developer can change any line

of code to add functionality, �x bugs, improve designs or refactor. No single

person becomes a bottle neck for changes.

In PariPari we use a modi�ed pair programming paradigm. To successfully exploit

the testing procedure and the power of pair programming we organized developers

so that they test each other's code. To be more precise, one developer writes unit

tests on code developed by the other and viceversa. Every time a single piece of code

or test is complete (and hence can be successfully compiled) it is submitted to our

SVN server.

Testing

All code must have unit tests.

All code must pass all unit tests before it can be released.

When a bug is found tests are created.

Acceptance tests are run often and the score is published.

A lot of e�ort is spent in testing. The next Section discusses this in greater detail.

96 CHAPTER 7. PROGRAMMING

7.3 Test Driven Development

Test-driven development (TDD) is a software development technique that relies on

the repetition of a very short development cycle: �rst the developer writes a failing

automated test case that de�nes a desired improvement or new function, then he

produces code to pass that test and �nally refactors the new code to acceptable

standards.

1. Add a test. In test-driven development, each new feature begins with writing

a test. This test must inevitably fail because it is written before the feature has

been implemented. To write a test, the developer must clearly understand the

feature's speci�cation and requirements. The developer can accomplish this

through use cases and user stories that cover the requirements and exception

conditions. This could also imply a variant, or modi�cation of an existing test.

This is a di�erentiating feature of test-driven development versus writing unit

tests after the code is written: it makes the developer focus on the requirements

before writing the code, a subtle but important di�erence.

2. Run all tests and see if the new one fails. This validates that the test

harness is working correctly and that the new test does not mistakenly pass

without requiring any new code. This step also tests the test itself, in the

negative: it rules out the possibility that the new test will always pass, and

therefore be worthless. The new test should also fail for the expected reason.

This increases con�dence (although it does not entirely guarantee) that it is

testing the right thing, and will pass only in intended cases.

3. Write some code. The next step is to write some code that will cause the

test to pass. The new code written at this stage will not be perfect and may,

for example, pass the test in an inelegant way. That is acceptable because

later steps will improve and hone it. It is important that the code written is

only designed to pass the test; no further (and therefore untested) functionality

should be predicted and 'allowed for' at any stage.

4. Run the automated tests and see them succeed. If all test cases now

pass, the programmer can be con�dent that the code meets all the tested

requirements. This is a good point from which to begin the �nal step of the

cycle.

5. Refactor code. Now the code can be cleaned up as necessary. By re-running

the test cases, the developer can be con�dent that refactoring is not damaging

7.3. TEST DRIVEN DEVELOPMENT 97

any existing functionality. The concept of removing duplication is an important

aspect of any software design. In this case, however, it also applies to removing

any duplication between the test code and the production code � for example

�magic� numbers or strings that were repeated in both, in order to make the

test pass in step 3.

Starting with another new test, the cycle is then repeated to push forward the func-

tionality. The size of the steps should always be small, with as few as 1 to 10 edits

between each test run. If new code does not rapidly satisfy a new test, or other tests

fail unexpectedly, the programmer should undo or revert in preference to excessive

debugging. Continuous Integration helps by providing reversible checkpoints. When

using external libraries it is important not to make increments that are so small as to

be e�ectively merely testing the library itself, unless there is some reason to believe

that the library is buggy or is not su�ciently feature-complete to serve all the needs

of the main program being written.

7.3.1 PariPari's TDD

Very soon � when the number of students involved in the project increased over the

initial �ve units� we understood that a strict code writing policy was needed. We

adopted TDD because of the aforementioned features and for other two important

PariPari-related reasons.

Test writing is relatively independent from code writing New developers re-

quire considerably more time and familiarity with PariPari to learn how to write

good production code than to learn how to write good test code (assuming they

are given high level speci�cations). Thus, an excellent way to �learn the ropes�

of PariPari is to immediately start writing test code under the guidance of

senior students.

TDD enforces a very good object oriented programming style Since every-

body writes tests, everybody knows that object oriented code is mandatory for

good quality tests. This enforces the adoption of an OOP style with all its

attendant bene�ts.

98 CHAPTER 7. PROGRAMMING

99

Chapter 8

Conclusions

This work presents PariPari, a multifunction, extensible peer to peer network and

development framework. In particular we detailed the design and implementation

process (including the management of the human resources involved in the project).

Network Project and Development In the �rst part we detailed the current

situation of the plug-ins. The operating system layer is ready. The main plug-ins,

PariCore, PariConnectivity, PariStorage provide all the functionalities needed for

running PariPari stand-alone and most of the functionalities needed for the network-

ing. Hence, everybody can develop simple, working, plug-ins for our platform. We

started building up our platform from these plug-ins following a bottom-up strategy.

These plug-ins are invisible for the �nal users and maybe not very appealing for the

developers. Nevertheless, in this way, we can e�ectively test our design and provide

a good base for the other plug-ins.

The plug-ins needed to compete with state of the art �le-sharing software. Mulo

and Torrent implement all the functionalities o�ered by all our competitors. Torrent,

besides, is the only torrent client featuring all those functionalities. These plug-ins,

totally compatible with the existing eMule and BitTorrent networks, should let us

gain popularity among the users. We expect �lesharing will generate a large initial

user base, allowing us to gain a su�cient critical mass to bootstrap other services

(e.g., distributed backup). During the development of these plug-ins we experienced

a strange information asymmetry. Both plug-ins deal with large established �le-

sharing networks but the documentation status of such networks is very di�erent:

while the BitTorrent protocol is very well described, the eMule protocol (derived

by the eD2K protocol) has only outdated and fragmentary documentation. In this

situation we made a large use of reverse engineering techniques.

Our net oriented plug-ins are ready and are under heavy testing. PariDHT and

101

102 CHAPTER 8. CONCLUSIONS

Pari(Distributed)Storage are completed. We are testing them to remove any bugs

or oddities. Since they will be used frequently, we are optimizing them to o�er to

the user a low latency experience using PariPari. Besides, we are also working to

increase performance of these plug-ins and to incorporate advanced functionalities

such as load balancing and (multi attribute) range queries. For these plug-ins it was

crucial to follow the K.I.S.S. principle: only in this way, we could begin early on

to implement other plug-ins using PariDHT and Pari(Distributed)Storage features.

PariWeb and PariCredits are almost ready: they o�er very simple capabilities

but we are working to enhance them with new interesting features (such as a PHP

engine). Nevertheless, they are fully usable by other plug-ins and users.

Along with all the aforementioned plug-ins we have developed some �service-

code�: PariSync and DiESeL. These two plugins are not technically in the Operating

System layer, but they are transparent to the end-user and provide their services

to a number of other plug-ins. The �rst reserved us many surprises. Initially, it

was meant to provide PariStorage with a method to keep a consistent time over the

network but during the design phase we understood the complexity of this task. An

interesting result is that we can piggyback the tra�c needed to keep the network

synchronized on the DHT. DiESeL, is a library providing basic services to manage

a distributed server. We are still working on DiESeL to make it simpler to use by

developers and to provide more useful features. We are spending considerable e�ort

on this library because it will be the core of many, if not most, future (third-party)

plug-ins.

Finally, plug-ins in their initial stages are under heavy development after an

intense design phase. Hence, their interfaces are ready and other plug-ins can use

them as stubs.

The main lesson learnt from this project is the importance of a careful, well-

planned design phase. In such a large upgradable project it is hard but crucial to

contemplate any possibility and to evaluate the e�ects of any possible dependency.

Insu�cient planning will invariably lead to con�icts within the code base and to a

large amount of �wasted� code. A modular approach provides a partial solution.

Code and Workforce Management The second part of the thesis describes how

we manage the students who form the workforce of PariPari, and which strategies

and tools we adopted to help them in their work. We analyzed many di�erent aspects

of the human resources problem in PariPari. Our experience can be summarized in

four main lessons.

The �rst is that the best way to know a code developer is through a personal

103

relationship. Unfortunately this is often impossible. Delegating responsibility to

experienced, motivated leaders is usually su�cient to ensure the project's continued

success. Most other methods, like requesting frequent project reports, o�er few

marginal advantages.

The second lesson is that the only strategy to run a large project with low leverage

on workers is to share decisions and schedules. This imposes a trade-o� between time

elapsed and hit rate of the deadlines. Seeking consensus on deadlines yields a marked

increase in their hit rate (and thus in the good coordination of the whole project),

at the expense of a somewhat increased time necessary to complete individual tasks.

A third, crucial lesson we re-discovered is that the best way to motivate a person is

to give con�dence - and that an excellent con�dence building strategy is to gradually

increase responsibilities as a reward for continued success and e�ort. Con�dent,

competent leaders also instill greater con�dence in the rest of the workforce, and

provide a role model pushing everyone towards constant self-improvement.

The �nal, and perhaps most important, lesson is that it is possible to run a large

software project relying only on a poorly trained workforce, even when one has only

low leverage on it. The most important key to success is to avoid rigid schemes and

to adapt to each individual situation and person, trying to identify (often hidden)

potential and make full use of it.

104 CHAPTER 8. CONCLUSIONS

Bibliography

[aeo] AEOLUS PROJECT. http://aeolus.ceid.upatras.gr/.

[Ake70] George A. Akerlof. The market for "lemons": Quality uncertainty

and the market mechanism. The Quarterly Journal of Economics,

84(3):488�500, 1970.

[azu] Azureus. http://azureus.sourceforge.net/.

[Bas02] B. M. Bass. Cognitive, social, and emotional intelligence of transfor-

mational leaders. Mahwah, NJ, Lawrence Erlbaum Associates, 2002.

[BBK02] Suman Banerjee, Bobby Bhattacharjee, and Christopher Kommareddy.

Scalable application layer multicast. In SIGCOMM '02: Proceedings

of the 2002 conference on Applications, technologies, architectures, and

protocols for computer communications, pages 205�217, New York, NY,

USA, 2002. ACM.

[BBMP09] P. Bertasi, M. Bonazza, N. Moretti, and E. Peserico. Parisync: Clock

synchronization in p2p networks. In Precision Clock Synchronization

for Measurement, Control and Communication, 2009. ISPCS 2009. In-

ternational Symposium on, pages 1�6, Oct. 2009.

[Ber00] Jean-Marc Berthaud. Time synchronization over networks using convex

closures. IEEE/ACM Trans. Netw., 8(2):265�277, 2000.

[BOW05] J. Fadel B. Ogden and B. White. Ibm system z9 109 technical intro-

duction, 2005.

[BPoG51] Robert Stephenson Smyth Baden-Powell Baden-Powell of Gilwell.

Baden-Powell's scouting for boys. C. A. Pearson, London :, 26th ed. /

with an introd by lord rowallen, chief scout of the british commonwealth

and empire. edition, 1951.

105

http://aeolus.ceid.upatras.gr/
http://azureus.sourceforge.net/

106 BIBLIOGRAPHY

[BSFK06] S. Bianchi, S. Serbu, P. Felber, and P. Kropf. Adaptive load balancing

for dht lookups. In Computer Communications and Networks, 2006.

ICCCN 2006. Proceedings.15th International Conference on, pages 411�

418, Oct. 2006.

[bug] Bugzilla. http://www.bugzilla.org/.

[CHXY08] Zhi Chen, Guowei Huang, Jing Dong Xu, and Yang Yang. Adaptive load

balancing for lookups in heterogeneous dht. In Embedded and Ubiqui-

tous Computing, 2008. EUC '08. IEEE/IFIP International Conference

on, volume 2, pages 513�518, Dec. 2008.

[Com79] Douglas Comer. The ubiquitous b-tree. ACM Computing Surveys,

11:121�137, 1979.

[DDD+98] Joan Daemen, Joan Daemen, Joan Daemen, Vincent Rijmen, and Vin-

cent Rijmen. Aes proposal: Rijndael, 1998.

[DHS84] Danny Dolev, Joe Halpern, and H. Raymond Strong. On the possi-

bility and impossibility of achieving clock synchronization. In STOC

'84: Proceedings of the sixteenth annual ACM symposium on Theory of

computing, pages 504�511, New York, NY, USA, 1984. ACM.

[DHS07] Ivan Dedinski, Alexander Hofmann, and Bernhard Sick. Cooperative

keep-alives: An e�cient outage detection algorithm for p2p overlay

networks. In P2P '07: Proceedings of the Seventh IEEE International

Conference on Peer-to-Peer Computing, pages 140�150, Washington,

DC, USA, 2007. IEEE Computer Society.

[Dub] Baptiste Dubuis. bitext. http://sourceforge.net/projects/

bitext/.

[ecl] Eclipse. http://www.eclipse.org/.

[emu] eMule. http://www.emule-project.net.

[GDB05] Ashish Gupta, Peter Dinda, and Fabian Bustamante. Distributed pop-

ularity indices. In in Proceedings of ACM SIGCOMM, 2005.

[GG97] Volker Gaede and Oliver Gï¿½nther. Multidimensional access methods.

ACM Computing Surveys, 30:170�231, 1997.

http://www.bugzilla.org/
http://sourceforge.net/projects/bitext/
http://sourceforge.net/projects/bitext/
http://www.eclipse.org/
http://www.emule-project.net

BIBLIOGRAPHY 107

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-

sign patterns: elements of reusable object-oriented software. Addison-

Wesley Professional, 1995.

[goo] Google Groups. http://groups.google.com.

[GRS99] David Goldschlag, Michael Reed, and Paul Syverson. Onion routing.

Communications of the ACM, 42:39�41, 1999.

[GSBK04] V. Gopalakrishnan, B. Silaghi, B. Bhattacharjee, and P. Keleher. Adap-

tive replication in peer-to-peer systems. In Distributed Computing Sys-

tems, 2004. Proceedings. 24th International Conference on, pages 360�

369, 2004.

[hsq] HSQLDB. http://hsqldb.org/.

[IMRV97] Piotr Indyk, Rajeev Motwani, Prabhakar Raghavan, and Santosh Vem-

pala. Locality-preserving hashing in multidimensional spaces. In STOC

'97: Proceedings of the twenty-ninth annual ACM symposium on The-

ory of computing, pages 618�625, New York, NY, USA, 1997. ACM.

[jsp] JSpeex. http://jspeex.sourceforge.net/.

[jsr] JSR 284. http://jcp.org/en/jsr/detail?id=284.

[jxt] Jxta. https://jxta.dev.java.net/.

[KS03] M. Frans Kaashoek and Ion Stoica, editors. Peer-to-Peer Systems

II, Second International Workshop, IPTPS 2003, Berkeley, CA, USA,

February 21-22,2003, Revised Papers, volume 2735 of Lecture Notes in

Computer Science. Springer, 2003.

[LLW08] Christoph Lenzen, Thomas Locher, and Roger Wattenhofer. Clock syn-

chronization with bounded global and local skew. In FOCS '08: Pro-

ceedings of the 2008 49th Annual IEEE Symposium on Foundations of

Computer Science, pages 509�518, Washington, DC, USA, 2008. IEEE

Computer Society.

[LMS+97] Michael Luby, Michael Mitzenmacher, Amin Shokrollahi, Daniel Spiel-

man, and Volker Stemann. Practical loss-resilient codes. In In Pro-

ceedings of the 29th annual ACM Symposium on Theory of Computing,

pages 150�159, 1997.

http://groups.google.com
http://hsqldb.org/
http://jspeex.sourceforge.net/
http://jcp.org/en/jsr/detail?id=284
https://jxta.dev.java.net/

108 BIBLIOGRAPHY

[LS86] Leslie Lamport and P M Melliar Smith. Byzantine clock synchroniza-

tion. SIGOPS Oper. Syst. Rev., 20(3):10�16, 1986.

[LW05] Karim R. Lakhani and Robert G. Wolf. Why Hackers Do What They

Do: Understanding Motivation and E�ort in Free/Open Source Soft-

ware Projects. 2005.

[Mac08] T. Toriyama Machizawa, A. Iwawma. Software-only implementations of

slave clocks with sub-microsecond accuracy. In Precision Clock Synchro-

nization for Measurement, Control and Communication, 2008. ISPCS

2008, pages 17�22, 2008.

[MKKB89] Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrishnan.

Probabilistic clock synchronization. In Distributed Computing, pages

146�158, September 1989.

[MM02] Petar Maymounkov and David Mazières. Kademlia: A peer-to-peer

information system based on the xor metric. In IPTPS '01: Revised

Papers from the First International Workshop on Peer-to-Peer Systems,

pages 53�65, London, UK, 2002. Springer-Verlag.

[Moc87] P.V. Mockapetris. Domain names - implementation and speci�cation.

RFC 1035 (Standard), November 1987. Updated by RFCs 1101, 1183,

1348, 1876, 1982, 1995, 1996, 2065, 2136, 2181, 2137, 2308, 2535, 2845,

3425, 3658, 4033, 4034, 4035, 4343.

[nc] The GNU Netcat project. http://netcat.sourceforge.net/.

[PAK07] Himabindu Pucha, David G. Andersen, and Michael Kaminsky. Ex-

ploiting similarity for multi-source downloads using �le handprints. In

in Proc. 4th USENIX NSDI, page 2007, 2007.

[Pes] E. Peserico. P2P Economies, SIGCOMM: Special Interest Group on

Data Communications, 2006.

[PLGS04] Adina Crainiceanu Prakash, Prakash Linga, Johannes Gehrke, and

Jayavel Shanmugasundaram. Querying peer-to-peer networks using p-

trees. In In WebDB, pages 25�30, 2004.

[RCFB07] Weixiong Rao, Lei Chen, Ada Wai-Chee Fu, and YingYi Bu. Optimal

proactive caching in peer-to-peer network: analysis and application. In

CIKM '07: Proceedings of the sixteenth ACM conference on Conference

http://netcat.sourceforge.net/

BIBLIOGRAPHY 109

on information and knowledge management, pages 663�672, New York,

NY, USA, 2007. ACM.

[RD01] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentral-

ized object location, and routing for large-scale peer-to-peer systems.

In Middleware '01: Proceedings of the IFIP/ACM International Con-

ference on Distributed Systems Platforms Heidelberg, pages 329�350,

London, UK, 2001. Springer-Verlag.

[RFS+01] Sylvia Ratnasamy, Paul Francis, Scott Shenker, Richard Karp, and

Mark Handley. A scalable content-addressable network. In In Proceed-

ings of ACM SIGCOMM, pages 161�172, 2001.

[RMK+96] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear.

Address Allocation for Private Internets. RFC 1918 (Best Current Prac-

tice), February 1996.

[SGG02] Stefan Saroiu, Krishna P. Gummadi, and Steven D. Gribble. A mea-

surement study of peer-to-peer �le sharing systems. January 2002.

[SHLnLZ07] Ahmed Sobeih, Michel Hack, Zhen Liu, and null Li Zhang. Almost

peer-to-peer clock synchronization. Parallel and Distributed Processing

Symposium, International, 0:21, 2007.

[Sho06] Amin Shokrollahi. Raptor codes. In IEEE Transactions on Information

Theory, pages 2551�2567, 2006.

[sky] Skype. http://www.skype.com.

[SMK+01] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari

Balakrishnan. Chord: A scalable peer-to-peer lookup service for inter-

net applications. In SIGCOMM '01: Proceedings of the 2001 conference

on Applications, technologies, architectures, and protocols for computer

communications, pages 149�160, New York, NY, USA, 2001. ACM.

[spe] Speex. http://speex.org/.

[svn] SubVersion. http://subversion.tigris.org/.

[Szy02] Michal Szymaniak. A dns-based client redirector for the apache http

server. Master's thesis, Vrije Universiteit, Amsterdam, The Nether-

lands, July 2002.

http://www.skype.com
http://speex.org/
http://subversion.tigris.org/

110 BIBLIOGRAPHY

[Tan96] Andrew S. Tanenbaum. Computer networks (3rd ed.). Prentice-Hall,

Inc., Upper Saddle River, NJ, USA, 1996.

[tes] AEOLUS PROJECT testbed. http://aeolus.cs.upb.de/.

[WS06] Xinfa Wei and Kaoru Sezaki. Dhr-trees: A distributed multidimensional

indexing structure for p2p systems. In ISPDC '06: Proceedings of the

Proceedings of The Fifth International Symposium on Parallel and Dis-

tributed Computing, pages 281�290, Washington, DC, USA, 2006. IEEE

Computer Society.

[WXL07] Feng Wang, Yongqiang Xiong, and Jiangchuan Liu. mtreebone: A hy-

brid tree/mesh overlay for application-layer live video multicast. In

ICDCS '07: Proceedings of the 27th International Conference on Dis-

tributed Computing Systems, page 49, Washington, DC, USA, 2007.

IEEE Computer Society.

http://aeolus.cs.upb.de/

	Introduction
	I PariPari: Network Project and Development
	Structure
	Operating System Layer Plug-ins
	PariCore
	T.A.L.P.A. PariCore

	PariDHT
	Protocol: Kademlia
	Implementation Hacks
	Future work: Multi attribute range query
	Future work: Load balancing

	PariStorage
	Local Storage
	Distributed Storage

	PariConnectivity
	Point-to-Point
	Anonymity
	NAT traversal
	Multicast
	Tunneling

	Application Layer Plug-ins
	PariSync
	Algorithm
	Network Latency
	PariSync for Real
	Simulations

	DiESeL
	Outage detection
	Server Management
	Connection Redirection

	PariMessaging
	Messenger
	IRC
	VoiP

	File Sharing
	Mulo
	Torrent
	Future work

	PariWeb
	Implementation
	Future work

	Plug-ins in Early Development Stages
	PariLogin and PariDNS
	PariDNS
	PariLogin
	Identity Theft Protection

	PariDBMS
	PariGUI
	PariPari's eventual GUI
	Simple GUI

	PariCredits
	Intra-peer Credits
	Inter-peer Credits

	II PariPari: Management
	Human Resources
	Student vs Professional employees
	High Turnover
	Scarcity
	Low Cost and Low Quality
	Unreliability

	Personnel Quality
	Definition
	Evaluation
	Cultivating Quality
	Quality of Team

	Organizational Structure
	Hierarchical Structure
	Organization of Time
	Organization of Resources

	Motivational Issues
	Motivation from Joining
	Encouragement
	Responsability
	Special Events
	The right student for the right plug-in

	Beyond PariPari
	Computer Engineers and Computer Engineering skills
	Grades and the market of lemons
	The PariPari alumni network
	``Amateur'' software projects

	Programming
	Tools
	Extreme programming
	XP rules

	Test Driven Development
	PariPari's TDD

	Conclusions

