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Riassunto

In questa Tesi si studiano sistemi stocastici con un grande numero di individui microscopici
interagenti, sotto determinate ipotesi di simmetria delle interazioni. Gli esempi considerati
appartengono a due contesti differenti, a seconda del fatto che il singolo individuo possa
controllare la propria dinamica o meno. Nel primo caso, di cui tratta la Parte 1, si è nel
contesto dei giochi ad N giocatori e giochi a campo medio, mentre nel secondo, analizzato
nella Parte 2 della Tesi, i modelli risultanti vengono detti sistemi di particelle interagenti.

Più precisamente, nella prima parte (Capitoli 1-2) studiamo il problema della conver-
genza per i giochi a campo medio, il cui fine è di giustificare rigorosamente l’introduzione
degli stessi come limite di giochi simmetrici non cooperativi non a somma zero ad N
giocatori, quando il numero dei giocatori tende ad infinito. In particolare, l’analisi è
incentrata sui cosiddetti giochi a campo medio a stati finiti, in cui lo stato del singolo
giocatore appartiene a un insieme discreto finito: trattiamo separatamente il caso in
cui si ha unicità di soluzione del gioco a campo medio (Capitolo 1), da quello in cui la
formulazione limite ammette più soluzioni (Capitolo 2).

Nella seconda parte invece (Capitoli 3-4), introduciamo alcuni esempi di sistemi di spin
in cui la dinamica particellare non interagente è non Markoviana, ottenuti da opportune
modifiche di classici modelli ferromagnetici di spin a campo medio. In particolare, rilassiamo
l’ipotesi di Markovianità o tramite una procedura di aumento delle variabili che identificano
lo stato individuale, o imponendo la presenza di memoria nella dinamica. Sebbene uno
degli scopi sia ancora quello di giustificare rigorosamente la formulazione macroscopica
dei suddetti modelli, essi presentano alcune caratteristiche di independente interesse,
tra cui la presenza di transizioni di fase (Capitoli 3-4), la comparsa di comportamenti
periodici auto-sostenuti (Capitolo 3) e la presenza di diversi fenomeni a diverse scale
spazio-temporali (Capitolo 4).
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Abstract

This Dissertation is devoted to the study of large stochastic systems of small interacting
individuals and their macroscopic limit formulations, under symmetric properties of the
interactions. The examples we consider belong to two separate contexts, depending on
whether the individuals can control their dynamics or not. In the first case, treated in
Part 1, we fall into the framework of N -player and mean field games, while in the latter,
analyzed in Part 2, the resulting models are examples of interacting particle systems.

More specifically, in the first part (Chapters 1-2) we focus on the convergence problem
in mean field games, i.e. on the rigorous justification of mean field games as limits, when
the number of players tends to infinity, of Nash equilibria of symmetric non-zero sum
non-cooperative N -player games. In particular, we study finite state mean field games,
where the state of each player belongs to a discrete finite space, analyzing separately the
uniqueness case (Chapter 1) and a scenario with non-uniqueness of solutions to the mean
field game (Chapter 2).

In the second part of the Dissertation (Chapters 3-4) we study some examples of
interacting spin systems, with non-Markovian individual dynamics, arising as proper
modifications of classical ferromagnetic mean field spin systems dynamics. In particular,
we focus on two mechanisms for relaxing the Markovianity: a state augmentation procedure,
and the insertion of memory effects in the evolution. While one of the goals is still to
rigorously justify the passage to a macroscopic description, the models of Part 2 present
some features of independent interest, including phase transitions (Chapters 3-4), the
emergence of self-sustained oscillations (Chapter 3), and the presence of multiple spatio-
temporal scales phenomena (Chapter 4).
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Introduction

Mean field systems of interacting particles were first introduced for applications to
physics, and in particular to the kinetic theory of gases for the derivation of the spatially-
homogeneous Boltzmann equation ([73]). For the modelization of related physical phenom-
ena the mean field assumption can often seem overly simplicistic. Nevertheless, the interest
in mean field models has lasted over the years, due to their analytical tractability and
flexibility of application also to other disciplines (such as biology, sociology and economics),
in contexts where the mean field assumption appears more natural.

More recently, the integration of mean field interacting particles with control theory has
led to the introduction of mean field games ([71, 79]), where the objects of the modelization
are large systems of competitively interacting rational agents (rather than particles), which
are allowed to control their individual dynamics through some optimization criterion,
depending on the other players in a mean field way.

This Dissertation consists of two parts, which we now introduce, where the mean field
structure of interactions is a common theme.

Part 1: Finite state mean field games

This part of the Dissertation focuses on the convergence problem for a class of N -player
finite state stochastic differential games to the corresponding mean field game limit
formulation.

Mean field games were introduced independently by Lasry and Lions [79] and by
Huang et al.[71] as limit models for symmetric non-zero-sum non-cooperative N -player
dynamic games when the number N of players tends to infinity; see for instance [8, 14, 18],
and the recent two-volume comprehensive work [19, 20]. While a wide range of different
classes of mean field games has been considered up to now, here we focus on finite time
horizon problems with continuous time dynamics under fully symmetric cost structure
and complete information, where the position of each agent belongs to a finite state space.
In this setting, mean field games were first analyzed in [62] in discrete time, and then in
[61] in continuous time.

In the literature, the notion of optimality adopted for the many player games is usually
that of a Nash equilibrium. The relation with the limit formulation can then be made
rigorous in two opposite directions: either by showing that a solution of the limit model
(the mean field game) induces a sequence of approximate Nash equilibria for the N -player
games with approximation error tending to zero as N tends to infinity, or by identifying
the possible limit points of sequences of N -player Nash equilibria, as solutions, in some
sense, of the limit model. While the first problem served as a motivation for the initial
development of mean field game theory, and is still relevant for the applications, the latter
direction constitutes what we refer to as the convergence problem in mean field games.

vii
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In the approximation direction results are more common and typically easier to obtain:
for the diffusive case without jumps see for instance [9, 18, 21, 71]; the diffusive case with
controlled jumps is treated in the recent work [7]. In the finite state space setting, an
approximation result is achieved in [4] studying the infinitesimal generator, while in [24]
an analogous property is found through a fully probabilistic approach, which allows for
less restrictive assumptions on the dynamics and the optimization costs.

On the other hand, results on convergence are fewer and more recent. Important for
the convergence problem is the choice of admissible strategies and the resulting definition
of Nash equilibrium in the many player games. For Nash equilibria defined in stochastic
open-loop strategies, the convergence problem is rather well understood, see [58] and,
especially, [77], both in the context of finite horizon games with general diffusive dynamics.
In [77], limit points of sequences of N -player Nash equilibria are shown to be concentrated
on weak solutions of the corresponding mean field game.

In Part 1 of the Dissertation, we are interested in the convergence problem for Nash
equilibria in Markov feedback strategies with full state information. A first result in this
direction is given by [61] in our same setting of finite state dynamics. There, convergence
of Markovian Nash equilibria to the mean field game limit is proved, but only if the time
horizon is small enough. A breakthrough was achieved by Cardaliaguet et. al in [15]. In the
setting of games with non-degenerate diffusive dynamics, possibly including common noise,
the authors establish convergence to the mean field game limit, in the sense of convergence
of value functions as well as propagation of chaos for the optimal state trajectories, for any
finite time horizon, provided the so-called master equation associated with the mean field
game possesses a unique sufficiently regular solution. The master equation arises as the
formal limit of the Hamilton-Jacobi-Bellman systems determining the Markov feedback
Nash equilibria. Moreover, the mean field game system can be seen as the characteristics
curves for the master equation. If well-posed, the latter yields the optimal value in the
mean field game as a function of initial time, state and distribution. It thus also provides
the optimal control action, again as a function of time, state, and the measure variable.
This allows, in particular, to compare the prelimit Nash equilibria to the solution of the
limit model through coupling arguments. Such coupling ultimately allows one to get the
desired convergence of the value functions of the N -player game to the solution to the
master equation, as well as a propagation of chaos result for the corresponding optimal
trajectories, in a similar fashion to the propagation of chaos property for uncontrolled
systems (see e.g. [96]).

If the master equation possesses a unique regular solution, which is guaranteed under
the Lasry-Lions monotonicity conditions, then the convergence analysis can be considerably
refined. In this case, for games with finite state dynamics, in the two independent works
[26, 5] the authors obtain a Central Limit Theorem and Large Deviations Principle for the
empirical measures associated with Markovian Nash equilibria. In [43, 44], the authors
carry out the analysis, enriched by a concentration of measure result, for diffusive dynamics
without or with common noise.

We now give a detailed overview of the two chapters of the first part of the Dissertation.

Overview of Chapter 1

In this chapter we analyze the work [26], by A. Cecchin and the author.
Here we focus on the convergence of feedback Nash equilibria for finite state symmetric

N -player differential games, where players control their transition rates from state to state.
In details, denote the state space as Σ := {1, . . . , d}. Let Xi(t) be the state of the i-th
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player at time t, and XN,i
t the state at time t of the other N − 1 players. The N -player

dynamics is given by a system of interacting controlled continuous-time Markov chains,
such that, for h > 0,

P
[
Xi(t+ h) = y

∣∣Xi(t) = x, XN,i
t = xN,i

]
= αiy(t, x,xN,i)h+ o(h),

for x 6= y and any xN,i ∈ ΣN−1. The control αiy(t, x,x
N,i
t ), in Markov feedback form,

represents the rate at which player i decides to go from state x to state y, when xN,it is
the state of the other N − 1 players at time t.

In our framework, we show that there exists a unique feedback Nash equilibrium for
the N -player game (Proposition 1.3). It is provided by the solution to the Hamilton-
Jacobi-Bellman (HJB) system of NdN coupled ODE’s−∂v

∂t

N,i(t,x)−
∑N
j=1, j 6=i α

∗(xj ,∆jvN,j) ·∆jvN,i +H(xi,∆ivN,i) = FN,i(x),
vN,i(T,x) = GN,i(x).

(HJB)

In the above equation, FN,i and GN,i are respectively the running and terminal interaction
costs of the i-th player, H is the Hamiltonian and α∗ its unique maximizer, and

∆jg(x) := (g(x1, . . . , y, . . . , xN )− g(x1, . . . , xj , . . . , xN ))y=1,...,d ∈ Rd

denotes the finite difference of a function g(x) = g(x1, . . . , xN ) with respect to its j-th
entry.

The study of convergence consists in finding a limit for System (HJB) as N → +∞,
under symmetric properties of the game (Proposition 1.5), realized by assuming that the
costs FN,i and GN,i satisfy the mean field assumptions, i.e. there exist two functions F
and G such that

FN,i(x) = F (xi,mN,i
x ),

GN,i(x) = G(xi,mN,i
x ),

where mN,i
x := 1

N−1
∑N
j=1,j 6=i δxj denotes the empirical measure of all the players except for

the i-th, which belongs to P (Σ), the space of probability measures on Σ. The main result
of this chapter is Theorem 1.7, in which we prove the convergence of the value functions
vN,i’s, as N → +∞, to the solution to the master equation{

−∂U
∂t +H(x,∆xU)−

∫
ΣD

mU(t, x,m, y) · α∗(y,∆yU(t, y,m))dm(y) = F (x,m),
U(T, x,m) = G(x,m), (x,m) ∈ Σ× P (Σ), t ∈ [0, T ],

(M)
provided (M) has a unique regular solution. It is a first order PDE in P (Σ), the simplex
of probability measures in Rd. The corresponding mean field game system, which can be
proved to be the system of characteristic curves for (M), is given by the following system
of two forward-backward ODEs,

− d
dtu(t, x) +H(x,∆xu(t, x)) = F (x,m(t)),

d
dtmx(t) =

∑
ymy(t)α∗x(y,∆yu(t, y)),

u(T, x) = G(x,m(T )),
mx(t0) = mx,0 ∈ P (Σ),

(MFG)

where u is the value function of a representative player, and m is the optimal (in the
Nash sense) evolution of the distribution of the other infinite players (which coincides with
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the one of the reference player itself). The convergence result of Theorem 1.7 allows for
obtaining the convergence of the optimal trajectories to a collection of i.i.d. limit processes,
in terms of a propagation of chaos property, which we state and prove in Theorem 1.8.
Moreover, in Section 1.4 we study the fluctuations and large deviations of the optimal
empirical measures processes, proving a Central Limit Theorem (Theorem 1.13) and a
Large Deviation Principle (Theorem 1.14). Section 1.5 is finally devoted to the study
of the well-posedness of the master equation (M) under monotonicity assumptions (in
the Lasry-Lions sense) on the costs F and G. We stress, however, that the convergence
argument requires only the regularity of a solution to the master equation.

Overview of Chapter 2

In this chapter we discuss the results in [25], by A. Cecchin, P. Dai Pra, M. Fischer and
the author.

We consider N -player and mean field games in continuous time over a finite horizon,
where the position of each agent belongs to a spin-valued state space Σ := {−1, 1}. If there
is uniqueness of mean field game solutions, e.g. under monotonicity assumptions, then
the convergence results of Chapter 1 apply. In Chapter 2 we instead study an example
with anti-monotonic costs, where one expects to find multiple solutions to the mean field
game. We identify an element m ∈ P (Σ) with its mean m1 −m−1, which we still denote
by m ∈ [−1, 1]. Moreover, denote z(t) := u(t,−1)− u(t, 1), where u is the value function
of the reference player in the mean field game limit. In this context each player controls,
in feedback Markov form, the switching rates from one state to the other. With respect to
the setting of the previous chapter, here we set the interaction running cost F ≡ 0, we
consider an anti-monotonic terminal cost G(x,m) := −mx, which favors alignment with
the majority, and a simple quadratic Lagrangian L(x, a) := a2

2 , penalizing large values of
the switching rates.

In this framework, the mean field game system takes the simple form
ż = z|z|

2 ,

ṁ = −m|z|+ z,

z(T ) = 2m(T ),
m(0) = m0,

(1)

which we are able to solve explicitly. In particular, in Proposition 2.1 we prove that System
(1) possesses exactly three solutions when the final time horizon of the game T > 0 is
sufficiently large. Under the same notation, we can associate the corresponding master
equation of the limit problem

−∂U
∂t (t, x,m) +1

2

[
(∆xU(t, x,m))−

]2
−DmU(t, x,m, 1) (∆xU(t, 1,m))−

(
1+m

2

)
−DmU(t, x,m,−1) (∆xU(t,−1,m))−

(
1−m

2

)
= F (x,m),

U(T, x,m) = G(x,m), (x,m) ∈ {−1, 1} × [−1, 1].

(2)

Equation (2) admits an equivalent formulation as a scalar conservation law (see Equation
(2.13)). Because of the multiple solutions to the mean field game (1), Equation (2) does not
admit a regular solution. While multiple weak solutions exist, the associated conservation
law has a unique entropy solution (Theorem 2.3), with a discontinuity point, which
turns out to be of particular importance for the N -player game. At the prelimit level,
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the unique N -player Nash equilibrium can again be described in terms of a system of
Hamilton-Jacobi-Bellman equations,

− d
dtV

N (t, µ) +H(V N (t, 1− µ)− V N (t, µ))
= Nµ

[
V N (t, 1− µ)− V N (t, µ)

]− [
V N

(
t, µ− 1

N

)
− V N (t, µ)

]
+N(1− µ)

[
V N

(
t, µ+ 1

N

)
−V N

(
t, 1− µ− 1

N

)]−[
V N

(
t, µ+ 1

N

)
−V N (t, µ)

]
,

V N (T, µ) = −(2µ− 1),
(3)

written in the alternative variable µ, i.e. the portion of players in state 1, for exploiting
the symmetries of the game. System (3) can be shown to reflect the degeneracy of the
limit master equation: indeed, for N � 0, a singularity develops in the symmetric point
µ = 1

2 (where half of the players is in state 1); see Figure 2.1 for a simulation.
The main result of the chapter (Theorem 2.7) consists in proving that the Nash

equilibrium of the N -player game selects, when N → +∞, the unique entropy solution of
the conservation law associated to the master equation (2). For the proof of this fact, we
exploit a characterization of the Nash equilibrium (Theorem 2.6), which allows to deduce
that the dynamics does not cross the discontinuity point µ = 1

2 . As for the previous
chapter, the convergence theorem allows for obtaining the propagation of chaos property
for the N -player optimal trajectories and empirical measures, when they play the Nash
equilibrium, but only when we start the dynamics outside the discontinuity point µ = 1

2
(Theorem 2.10). When starting the dynamics precisely in the degeneracy point, we expect
the limit of the N -player empirical measures to be random, given by a symmetrically
weighted sum of two Dirac’s deltas over the two non-zero solutions to mean field game
(Conjecture 2.1). Our expectations are supported by numerical simulations (see Figure
2.2), and by an analogous result obtained in [42] for the diffusive case.

Finally, in Section 2.2.7 we give another characterization of the multiple solutions
to the mean field game system. Indeed, we show that the latter can be viewed as the
necessary conditions for optimality, given by the Pontryagin maximum principle, of a
deterministic optimal control problem in R2 (Lemma 2.14). We show that the N -player
game, in the limit N → +∞, selects exactly the global minimizer of this problem when
it is unique, i.e. when the initial mean of the players m0 is different from zero (Theorem
2.16).

Part 2: Non-Markovian interacting spin systems

The theory of interacting particle systems, originally motivated by statistical mechanics
and dated back to 1960’s (see e.g. [82] for a classical textbook), offers popular and powerful
tools for the modeling of several complex phenomena in life sciences such as ecology ([99])
and neuroscience ([55]), but also in social sciences and economics ([27, 84, 95, 100]). In
particular, interacting particle systems with mean field interactions have been proved to be
extremely appealing and successful, due to their mathematical tractability, since the initial
pioneering works by McKean ([85, 86]) on Vlasov equations, exploring the connections
with nonlinear PDEs.

Typically, the stochastic modelization consists of three main steps: identify variables of
interest for each individual, superimpose some form of interaction, and define a Markovian
evolution for the state of the whole population. Under the above framework, in the absence
of interaction, the individual dynamics is Markovian with respect to the chosen variables
of interest.
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A question which can arise naturally is about the formulation of interacting particle
systems where the non-interacting individual dynamics is itself not Markovian (see e.g.
[50, 51]). Assuming a Markovian individual evolution might indeed be restrictive in some
contexts: for example, with the initial choice on the quantities of interest, many additional
variables get inevitably neglected in the modelization of the individual dynamics, with
potential macroscopic effects unaccounted for in the interactive model; moreover, one
might be interested in introducing memory effects, which are not captured under the
Markovianity assumption (according to which the future depends only on the immediate
past, and not on the previous history of the evolution).

In Part 2 of the Dissertation we propose some toy examples of non-Markovian interacting
spin systems (i.e. systems with individual states taking values in the binary set {−1, 1}),
which can make the above-mentioned restrictions less dramatic, in some cases revealing a
large-scale behavior different from that of the original Markovian version of the model.
Although they all arise as proper modifications of classical ferromagnetic mean field spin
systems dynamics, the way we relax the Markovianity assumption can differ among the
models. In particular, as we motivated above, we realize the non-Markovianity either by
an augmentation of state procedure, or by the insertion of memory effects in the individual
dynamics.

While having as a purpose to obtain macroscopic descriptions, and study the corre-
sponding limit models of the examples considered, two topics, of independent interest, turn
out to be of particular importance in the tractation: the emergence of self-sustained peri-
odic behavior, and the presence of multiscale spatio-temporal phenomena in hierarchical
mean field models, respectively analyzed in Chapters 3 and 4.

Specifically, with the term self-sustained periodic behavior we refer to systems where
each individual particle has no natural tendency to behave periodically, but the oscillations
are rather an effect of self-organization, visible in the macroscopic limit when the number
of particles tends to infinity. Among the mechanisms that can lead to or enhance the
emergence of this behavior, we cite noise ([36], [92], [98]), dissipation in the interaction
potential ([1], [29], [30], [35]), delay in the transmission of information and/or frustration
in the interaction network ([31], [50], [97]). In Chapter 3, we shall see that the non-
Markovianity of the individual dynamics can as well foster macroscopic oscillations.

Concerning the second topic, hierarchical models were often employed in the literature
for applications in population dynamics and genetics, where individuals naturally dispose
in groups with a hierarchical structure (families, clans, villages, colonies, populations and so
on). A series of papers from the ’90s - ’00s (initiated with [39] and [40] among others), nicely
reviewed in [70], deals with different types of hierarchical mean field linearly interacting
diffusions (the prototype being linear Wright-Fisher diffusions), where in most cases the
macroscopic limits are retrieved at every spatio-temporal scale, and a renormalization
map can be defined, allowing one to pass from one hierarchical level to the other. The
motivation for focusing on diffusive dynamics as building blocks for the hierarchical models
stems from the fact that, with their choices, each individual non-interacting dynamics
can itself be obtained as a continuum limit of a corresponding finite state space model of
interacting particles: for example, the discrete prelimit counterpart of the Wright-Fisher
diffusion is the voter model (see e.g. [33]). In Chapter 4, we define hierarchical dynamics
of spin-flip type with a ferromagnetic mean field interaction, coupled with a system of
linearly interacting diffusions of Ornstein-Uhlenbeck type.

While for a more detailed introduction on the above matters we refer to the beginning
of each corresponding chapter, we now proceed with an overview of the results obtained
in Part 2 of the Dissertation.
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Overview of Chapter 3

The results of this chapter belong to an ongoing work of the author with P. Dai Pra and
M. Formentin.

After some preliminaries on spin systems and dynamics, given in Section 3.1, in this
chapter we analyze two examples of non-Markovian mean field interacting spin systems.
In both cases we consider spin-flip dynamics obtained as modifications of the Curie–Weiss
model. In the first example, analyzed in Section 3.2, the individual evolution is obtained
by replacing the underlying Poisson process, modeling the jump times in the Markovian
case, with a more general renewal process with memory. Let (σ(t))t≥0 denote the resulting
spin-valued process, that is an example of two-state semi-Markov process. We can associate
a Markovian description to the latter: define y(t) as the time elapsed since the last spin-flip
occurred up to time t. Suppose that the waiting times τ of the underlying renewal process
satisfy

P(τ > t) = ϕ(t), (4)
for some smooth function ϕ : [0,+∞)→ R. Then, the pair (σ(t), y(t))t≥0 is Markovian
with infinitesimal generator

Lf(σ, y) = ∂f

∂y
(σ, y) + F (y)[f(−σ, 0)− f(σ, y)], (5)

for f : {−1, 1} × R+ → R, with

F (y) := −ϕ
′(y)
ϕ(y) . (6)

We study a corresponding non-Markovian interacting N -particle system for the spins
(σi(t))i=1,...,N . A mean field type interaction is introduced as a time scaling on the waiting
times between two successive particle’s jumps, depending on the overall magnetization of
the system

mN (t) := 1
N

N∑
i=1

σi(t).

As above, we associate to each spin σi(t) the process yi(t) ∈ R+ of the elapsed time since
the last jump. Denoting σ := (σ1, . . . , σN ) ∈ {−1, 1}N , y := (y1, . . . , yN ) ∈ (R+)N , the
corresponding Markovian N -particle dynamics is defined via the following infinitesimal
generator

LNf(σ,y) =
N∑
i=1

∂f

∂yi
(σ,y) +

N∑
i=1

F
(
yie
−βσimN

)
e−βσim

N
[
f(σi,yi)− f(σ,y)

]
, (7)

where σi is obtained from σ by flipping the i-th spin, while yi by setting to zero the
i-th coordinate. Note that, for F ≡ 1, we retrieve the classical Curie–Weiss dynamics for
the spins. The macroscopic limit and the propagation of chaos property for this model,
as N → +∞, are studied in Appendix B, when F (y) := yγ , γ ∈ N. Under the latter
choice, we can associate to the McKean-Vlasov limit process (σ(t), y(t))t≥0 the following
Fokker-Planck equation, satisfied by the corresponding density function f(t, σ, y):

∂
∂tf(t, σ, y) + ∂

∂yf(t, σ, y) + yγe−(γ+1)βσm(t)f(t, σ, y) = 0,
f(t, σ, 0) =

∫+∞
0 yγe(γ+1)βσm(t)f(t,−σ, y)dy,

m(t) =
∫∞
0 [f(t, 1, y)− f(t,−1, y)]dy,

1 =
∫∞

0 [f(t, 1, y) + f(t,−1, y)]dy,
f(0, σ, y) = f0(σ, y), for σ ∈ {−1, 1} , y ∈ R+.

(8)
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We then find both theoretical and numerical evidence of emerging periodic behavior for
the above equation in the cases γ = 1 and γ = 2, in terms of a phase transition with
respect to the inverse temperature parameter β, via the following approach: in Section
3.2.2, we find a neutral stationary solution of interest to (8) (Proposition 3.2), we linearize
formally the dynamics around that equilibrium and we compute the discrete spectrum of
the associated linearized operator, which we show to be given by the zeros of an explicit
holomorphic function Hβ,γ(λ) (Propositions 3.5 and 3.6). In Subsection 3.2.2.4 we then
study numerically the character of the eigenvalues when the interaction parameter β varies:
for both γ = 1, 2, we find that for all β < βc(γ) all eigenvalues have negative real part; at
βc(γ) two eigenvalues are conjugate and purely imaginary, suggesting the possible presence
of a Hopf bifurcation in the limit dynamics. These critical values of β are then compared
to the ones obtained by simulating the finite particle system in Section 3.2.3, finding a
very good accordance.

In the second model, studied in Section 3.3, the non-Markovianity follows by an
augmentation of state procedure, where we double the state space assigning to each
microscopic spin another spin-valued variable which produces frustration in the system.
Specifically, the state of the i-th particle in the system is identified by a pair of spin-valued
variables (xi, yi) ∈ {−1, 1}2. The dynamics is given in terms of a continuous time spin-flip
type Markov chain on the augmented state space {−1, 1}2N , where each particle flips one
component of its state independently conditioned on the current state of the population,
with rates {

xi → −xi with rate (1− εxiyi)e−βxim
N
x ,

yi → −yi with rate eγyim
N
x ,

(9)

where γ, β ≥ 0, 0 ≤ ε ≤ 1, and mN
x := 1

N

∑N
i=1 xi is the magnetization of the spins xi’s.

Note that, when ε = 0, the restriction of the dynamics to the xi’s is of Curie–Weiss
spin-flip type. In addition to the empirical magnetization mN

x of the xi’s, we also define
the analogous quantity mN

y for the yi’s and

mN
xy := 1

N

N∑
i=1

xiyi.

It turns out that
(
(mN

x (t),mN
y (t),mN

xy(t))
)
t≥0

is an order parameter for the above model,
in the sense that its dynamics, induced by (9), is Markovian. In the limit(

(mN
x (t),mN

y (t),mN
xy(t))

)
t≥0
→
(
(x(t), y(t), w(t))

)
t≥0

for N → +∞, the macroscopic variables
(
(x(t), y(t), w(t))

)
t≥0

satisfy



ẋ(t) = −2x(t) cosh (βx(t))+2 sinh (βx(t))+2εy(t) cosh (βx(t))−2εw(t) sinh(βx(t)),
ẏ(t) = −2y(t) cosh (γx(t))−2 sinh (γx(t)),
ẇ(t) = −2w(t)cosh (γx(t))−2x(t) sinh (γx(t))−2w(t) cosh (βx(t))+2y(t) sinh(βx(t))

+2ε cosh (βx(t))− 2εx(t) sinh (βx(t)),
x(0) = x0, y(0) = y0, w(0) = w0.

(10)
The limit evolution is thus finite-dimensional, allowing for a deeper analysis of the phase-
space diagram with respect to the previous model. After proving the well-posedeness of
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System (10) in Section 3.3.1 (Proposition 3.7), in Section 3.3.2 we perform a linear analysis
around the disordered equilibrium (0, 0, ε/2), studying the local phase-diagram when the
interaction parameters vary, proving the existence of a supercritical Hopf bifurcation for
certain critical values of the parameters (Propositions 3.9 and 3.10); in Section 3.3.3 we
find numerically all the equilibria of the dynamics; in Section 3.3.4 we study numerically
the local character of the previously found equilibria; finally, in Section 3.3.5 we give
detailed illustrations of the dynamics and of the global phase-diagram, via numerical
simulations of the macroscopic equations and resorting to the previous analyses.

The results of Chapter 3 strongly suggest that the above models belong to the same
universality class: they both feature the presence of a unique stable neutral phase for
values of the parameters corresponding to high temperatures, the emergence of periodic
orbits in an intermediate range of the parameter values, and a subsequent ferromagnetic
ordered phase for increasingly lower temperatures. In particular, both dynamics can
generate self-sustained oscillations.

One of the goals of the related literature is to understand which types of microscopic
interactions and mechanisms can lead to or enhance the emergence of self-sustained
rhythms, in systems where each individual particle has no natural tendency to behave
periodically. Although not proved in general, a strong belief in the literature is that, at
least for Markovian dynamics, self-sustained oscillations cannot take place if one does
not introduce some time-irreversible phenomenon in the dynamics ([10, 60]). While the
finite-dimensional model treated in Section 3.3 falls within the above literature (due to the
presence of frustration, which is an irreversible phenomenon), the model of Section 3.2, in
which we observe that the limit dynamics is still reversible with respect to the stationary
distribution around which cycles emerge (see Remark 3.3), suggests that this paradigm
could be false for the non-Markovian case.

Overview of Chapter 4

The results analyzed in this chapter are collected from an ongoing work of the author with
P. Dai Pra and M. Formentin.

Chapter 4 is devoted to the study of a model of interacting spins with a hierarchical
mean field structure, thus serving as an attempt to relax the mean field assumption as
well as the Markovianity of the spins through a state augmentation procedure. We refer
to the beginning of the chapter for an introduction on hierarchical mean field models and
the related literature.

Let V be a set, indexing individuals in a population. Each individual r ∈ V is
identified with a pair of variables (σr, xr): a spin variable σr ∈ {−1, 1}, and a continuous
one xr ∈ R, representing some aggregated statistics of the remaining characteristics of
the individual (and thus being naturally normally distributed for e.g. by a central limit
theorem), which would otherwise not be accounted for in the modelization by a spin
system. The interaction between each pair of spin variables σr, σs ∈ V is encoded in a
variable Jrs ∈ R. Analogously, xr and xs interact with a strength proportional to some
variables J ′rs ∈ R. The particles (σr, xr)r∈V follow stochastic dynamics given by{

σr 7→ −σr, with rate 1 + tanh [−σr
∑
s∈V Jrs(σs + xs)] ,

dxr = −
∑
s∈V J

′
rs(xr − xs)dt+ σdWr(t),

(11)

where Wr(t)’s are |V | independent Brownian motions, and σ > 0 is the diffusion coefficient.
As we describe below, the peculiarity of the model consists in the fact that the

interaction among different particles scales with what in the related literature (see e.g.
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[70]) is referred to as hierarchical distance. The main goal of our study is to obtain a limit
description of dynamics (11), as N → +∞, at different spatio-temporal scales, analyzing
the possible presence of phase transitions in the system. In this framework, we mainly
focus on two choices for V and (deterministic) interaction parameters Jrs and J ′rs:

• Ferromagnetic mean field case:

V := {1, . . . , N} ,

Jrs = β

N
,

J ′rs = α

N
,

(12)

with α, β ≥ 0.

• Ferromagnetic two-level hierarchical case:

V := {1, . . . , N} × {1, . . . , N} ,{
Jrs = β1

N , J ′rs = α1
N , if |r − s| ≤ 1,

Jrs = β2
N2 , J ′rs = α2

N3 , if |r − s| = 2,
(13)

with α1, α2, β1, β2 ≥ 0, where the distance | · | between r := (r1, r2) and s := (s1, s2)
is defined by

|r − s| :=


0, if r1 = s1, r2 = s2

1, if r1 6= s1, r2 = s2

2, otherwise.

In particular, with the term two-level mean field hierarchy we mean a system of N
interacting mean field systems of particles, where each mean field is comprised of N
particles itself, and the strength of the interaction among different particles scales with
their hierarchical distance | · |, which can either be 1, if the particles belong to the same
mean field, or 2, when they belong to different mean fields.

The hierarchical construction can be reiterated a finite number of times to define a
k-level hierarchical model, where V := {1, . . . , N}k, Jrs ∝ 1

N l , J ′rs ∝ 1
N2l−1 for |r − s| = l,

with l = 1, . . . , k. See Section 4.3.5 for details on the notion of hierarchical distance and
for the generalization of our results to each hierarchical level in the subcritical regime,
stated in Conjecture 4.1.

The mean field case

The model (11) under the mean field assumptions (12) is analyzed in Section 4.2.
In this case, denote by

(
σ,x

)
=
(
σj , xj

)
j=1,...,N ∈ RN × {−1, 1}N a configuration of

the entire population. Let mN (t) := 1
N

∑N
i=1 σi(t), and xN (t) := 1

N

∑N
i=1 xi(t) be the

empirical averages of the spins and diffusions respectively, which evolve asm
N 7→ mN ± 2

N , with rate N 1∓mN (t)
2

[
1± tanh(β(xN (t) +mN (t)))

]
,

dxN (t) = σ√
N
dW (t),

(14)

where W is a Brownian motion. From the above dynamics, we see that the diffusion
(xN (t))t≥0 evolves at a timescale of order N , while at times of order 1 it converges to
its initial datum for N → +∞. Assuming xN (0) → x ∈ R for N → +∞, it is easy to
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prove that (xN (t),mN (t)) → (x,m(t)) for N → +∞, where the limit satisfies the ODE
(compare with (4.9) - which is stated in alternative variables), parametrized by x,{

ṁ(t)(x) = 2 tanh(β(x+m(t)(x)))− 2m(t)(x),
m(0)(x) = m0(x).

(15)

Equation (15) features the existence of a phase transition in β = 1: it possesses a
unique stable equilibrium configuration for β < 1 (subcritical regime), whereas for β > 1
(supercritical regime) a region with multiple equilibria, with different stability properties,
appears. When we speed up time at order N , the fluctuations of the diffusion xN (Nt)
are not negligible anymore. The main contribution of this section is on the study of the
sequence of the accelerated processes (xN (Nt),mN (Nt))t≥0 when N → +∞. First, we
prove that in the subcritical regime (Propositions 4.4 and 4.5), the limit of (mN (Nt))t≥0
is a regular diffusion on the unique long-time equilibrium configuration of (15), driven by
the limit sped-up diffusion (xN (Nt))t≥0. We then address the main result of the section
(Theorem 4.7), where we prove that in the supercritical regime such limiting motion
turns into a regular diffusion taking place on the two stable branches of equilibria, with
jumps from one branch to the other when the process reaches the borders of the stable
configurations (see Figure 4.3 for a comparison between the two regimes).

The two-level hierarchical case

The two-level hierarchical case, i.e. dynamics (11) with the choices (13), is studied in
Section 4.3.

For any i, j = 1, . . . , N , we identify the i-th individual of the j-th population with the
pair of state variables (σij , xij). Define the first-level empirical magnetization of the j-th
population

mN
j (t) := 1

N

N∑
i=1

σij(t),

and the analogous quantity for xNj (t). Moreover, denote the two-level empirical magneti-
zation as

MN (t) := 1
N2

N∑
i,j=1

σij(t) = 1
N

N∑
j=1

mN
j (t),

and the same for XN (t) := 1
N2
∑
ij xij(t) = 1

N

∑N
j=1 x

N
j (t). With this notation, the

first-level averages (xNj (t),mN
j (t))j=1,...,N form a system of N interacting particles, with

dynamicsm
N
j 7→ mN

j ± 2
N , rate N

1∓mNj (t)
2

[
1± tanh(β1(xNj (t)+mN

j (t))+ β2(XN (t)+MN (t)))
]

dxNj (t) = −α2
N

[
xNj (t)−XN (t)

]
dt+ σ√

N
dWj(t),

(16)
with Wj ’s N independent Brownian motions. In particular, we see that the diffusions
xNj ’s move at times of order N , while, by summing over j the second equation in (16), we
deduce that XN moves at times of order N2. Assuming that xNj (0) = xj

iid∼ µ0(dx) (with
E[xj ] = 0 for simplicity), at times of order 1 we prove (Theorem 4.13) a propagation of
chaos for the system of magnetizations (the corresponding property for the diffusions is
trivial): namely, mN

j (t)→ m̃j(t) := m(t)(xj) for N → +∞, where m(t)(x) solves{
ṁ(t)(x) = 2 tanh(β1(x+m(t)(x)) + β2M(t))− 2m(t)(x),
M(t) =

∫
Rm(t)(x)µ0(dx).

(17)
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We observe that the limit i.i.d. processes m̃j(t) are of McKean-Vlasov type, because
of the integral condition on M(t) in Equation (17). Due to the presence of the latter,
the long-time behavior of (17) is harder to study than for its corresponding mean field
version (15). For a rigorous analysis on the further timescales, we thus restrict to the
subcritical regime β1 + β2 < 1, where Equation (17) possesses a unique stable equilibrium
configuration (Proposition 4.16) given by the solution to{

m(x) = tanh(β1(x+m(x)) + β2M),
M =

∫
Rm(x)µ0(dx) = 0,

(18)

where we assumed as above, for simplicity, E[xj ] = 0. In Theorem 4.18 we control the
uniform ergodicity of the N -particle system behavior when we rescale time up to a certain
C(N), which is allowed to grow with N .

When we accelerate time further, at a timescale of order N (Section 4.3.3), we prove
that the N -particle system (xNj (Nt),mN

j (Nt))j=1,...,N still propagates chaos, where the
magnetizations are converging to i.i.d. copies of a McKean-Vlasov process living onto
the equilibrium configuration curve, driven by the i.i.d. limit non-trivial dynamics of the
accelerated diffusions (xNj (Nt))t≥0’s (Theorem 4.20). In this case, the integral McKean-
Vlasov condition on M(t) is with respect to the law at time t of the Ornstein-Uhlenbeck
diffusion (x(t))t≥0, the limit of xNj (Nt)→ x(t) as N → +∞, which solves

dx(t) = −α2x(t)dt+ σdW (t).

Finally, at a timescale of order N2 (Section 4.3.4), the diffusions (xNj (N2t))t≥0 fastly reach
their stationary distribution; we thus characterize the limit of the sequence of second-level
empirical magnetizations (MN (N2t))t≥0, proving that it converges, with respect to all
its finite time dimensional distributions, to a limit stochastic process (M(t))t≥0 (note
that at the previous timescales the convergence was to a deterministic object instead),
which is the average of the equilibrium curve with respect to a mixture of the stationary
distributions of the first-level diffusions xNj ’s (Theorem 4.29), where the motion is driven
by the non-trivial limit second-level diffusion (X(t))t≥0, which solves

dX(t) = σdW (t),

with W a Brownian motion. After generalizing the above results to the k-level hierarchical
case in the subcritical regime (Section 4.3.5), we develop heuristic arguments, reinforced
by numerical simulations, for studying the two-level supercritical regime in the limit case
of null temperature β1 = β2 = +∞ (Section 4.3.6).



Notation and preliminaries

The notation we adopt in the first part of the Dissertation differs in general from that
of the second part. As they are based on works belonging to two different - but related
- mathematical literatures (mean field games and mean field interacting spin systems
respectively), we try to adhere to the classical notation employed by each corresponding
scientific community. While we postpone the specific notation to the beginning of each
part, in this section we recall some preliminary classical facts on the common mathematical
tools employed throughout the Dissertation.

Let R+ denote the positive real numbers, including 0. Let E be a Polish space. Every
model we consider features E-valued processes with sample paths taking values in (or
being embedded in) the Skorohod space of càdlàg functions, which we denote by D(R+;E).
When not specified otherwise, we refer to the weak convergence of stochastic processes in
the above Skorohod space: namely, we say that a sequence (Xn)n≥1 of stochastic processes
converges to a limiting process X if, for any T > 0, Xn converges in distribution on
the path space D([0, T ];E) to X, as n → +∞. In what follows, we consider different
choices for E depending on the context: E := Rd, E := R+ × {−1, 1}, E := [−1, 1] and
E := R× [−1, 1] should cover all the possible options.

A general theme is about obtaining macroscopic descriptions for stochastic systems
with a large numbers of individuals (either controlled, in which case we restrict to Nash
equilibria configurations, or uncontrolled). In this regard, an important role is played by
the so-called propagation of chaos property. We recall its definition (see e.g. [67])

Definition (Propagation of chaos). Let Q be a probability measure on E and QN a
probability measure on EN . The sequence (QN )N≥1 is Q-chaotic if for any fixed integer k
and any continuous bounded functions f1, . . . , fk on E,

lim
N→∞

〈QN , f1 ⊗ . . .⊗ fk ⊗ 1N−k〉 =
k∏
i=1
〈Q, fi〉.

The above definition means that, asymptotically in N , any k coordinates become
independent, all with the same distribution Q. In the context of N interacting stochastic
processes, we apply the above definition by considering QN to be the joint law of the N
processes on the product path space, and Q the law of some limiting process. All the
processes which we consider in the Dissertation enjoy additional symmetries, due to the
mean field type interactions involved: in particular, the joint law is always invariant by
permutation of the individual components (this property is referred to as exchangeability).
For such systems, proving the above propagation of chaos is equivalent to proving a Law
of Large Numbers for the associated empirical measure processes (see e.g. [67, Prop. 4.2]),
which we interchangeably refer to as the propagation of chaos property.

xix
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When needed, we endow the space of probability measures on (E, | · |) with finite first
moment, P1(E), with the 1-Wasserstein distance, which we denote by d1,

d1(µ, ν) := inf
γ∈Γ(µ,ν)

∫
E×E

|x− y|dγ(x, y),

with Γ the set of measures on E × E having first and second marginals equal to µ and
ν respectively. We recall an inequality which we use repeatedly. It follows easily by
the Kantorovich-Rubinstein duality theorem (see e.g. [91, Ch. 5]): fix (x1, . . . , xN ) and
(y1, . . . , yN ) ∈ EN , and let µN := 1

N

∑N
i=1 δxi , νN := 1

N

∑N
i=1 δyi be two empirical measures.

Then,

d1(µN , νN ) ≤ 1
N

N∑
i=1
|xi − yi|. (19)
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Finite state mean field games
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CHAPTER 1

The uniqueness case: convergence, fluctuations
and large deviations via the master equation

In this chapter we discuss the convergence problem, analyzed in [26], for finite state
symmetric N -player games under uniqueness assumptions on the limit. The limit dynamics
is given by a finite state mean field game system made of two coupled forward-backward
ODEs. We exploit the master equation approach (introduced in [15] for the diffusive case),
which in this finite-dimensional framework is a first order PDE in the simplex of probability
measures, obtaining the convergence of the feedback Nash equilibria, the value functions
and the optimal trajectories. The convergence argument requires only the regularity of a
solution to the master equation. Moreover, we show that the convergence results imply the
propagation of chaos as well as refined asymptotics for the N -player empirical measures,
in terms of a Central Limit Theorem and a Large Deviation Principle. The key point for
proving such results is to compare the prelimit optimal trajectories with the ones in which
each player chooses the control induced by the master equation. The fluctuations are
then found by analyzing the associated infinitesimal generator, while the Large Deviation
properties are derived using a result in [54]. Finally, we study the well-posedness and
regularity of solution to the master equation under monotonicity assumptions.

Finite state mean field games have been studied by several authors in the last years,
starting from [62] in discrete time, and then in the continuous time setting by [61] and
[68], in the latter with applications to graphs. For a probabilistic approach to finite state
mean field games we refer to [24]. On the convergence problem, a first result was given
in [62], but only for a small enough time horizon. An equation similar to the master
equation of this chapter, but holding in the whole space Rd, was analyzed in [83], proving
the well-posedness and regularity under stronger assumptions. The works [57] and [61]
deal also with the problem of convergence, as T tends to infinity, to the stationary mean
field game. The master equation was formally discussed in [64], [65] as well as in [61], in
the first two with a particular focus on the two state problem, a context which is related
to the model we study in Chapter 2. On numerical methods, we acknowledge the work
[63] in the finite state case under monotonicity. A class of mean field games with major
and minor agents was analyzed in [22], showing the relation with the N -player game in
the approximation direction. Finally, we mention [5], which appeared online together with
[26], in which the authors independently obtain the same convergence results we prove
here, by using again the master equation approach of [15], but considering a probabilistic
representation of the dynamics different from ours. Moreover, they also obtain a Central

3
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Limit Theorem for the fluctuations of the empirical measure processes. However, they
prove it in a different way, that is, via a martingale Central Limit Theorem.

Let us mention that a Central Limit Theorem and a Large Deviation Principle for
mean field games, enriched by a concentration of measure result, were then established
also in the diffusive case, via the master equation approach, in the two separate works
[43, 44].

1.1 Introducing the model

In this section we introduce the equations in play at a formal level. Let Xi(t) be the state
of the i-th player at time t. The dynamics of the N players is given by the system of
controlled SDEs:

Xi(t) = Zi +
∫ t

0

∫
Ξ
f(Xi(s−), ξ, αi(s,Xs−))Ni(ds, dξ), (1.1)

for i = 1, . . . , N , where each Xi(t) is a process taking values in the finite space Σ =
{1, . . . , d} and we denote by Xt := (X1(t), . . . , XN (t)) the vector of the N processes; Ni
are N i.i.d. Poisson measures on [0, T ]×Ξ, with Ξ ⊂ Rd, and the controls αi ∈ A ⊂ Rd are
only in feedback form. The function f is crucial for the definition of the dynamics (1.1):
it models the possible jumps of the Markov chain, while the Poisson measures prescribe
their random occurrences. Following an idea of [66] which we repeatedly use throughout
the Dissertation, we define the function f so that the control αiy(t, x,x

N,i
t ) represents the

rate at which player i decides to go from state x to state y, when x 6= y, xN,it being the
states of the other N − 1 players at time t; c.f. (1.2) and (1.18) below. Let us remark
that, while Cardaliaguet et al. ([15]) study the convergence problem also in the presence
of a noise (Brownian motion) common to all the players, which makes things even more
difficult, we do not consider here any common noise. In the discrete setting, this would
result in considering dynamics with simultaneous jumps, which can be realized by adding
another Poisson measure in (1.1), common to all the players.

In our framework, we show that there exists a unique feedback Nash equilibrium for
the N -player game. It is provided by the Hamilton-Jacobi-Bellman (HJB) system of NdN
coupled ODE’s−∂v

∂t

N,i(t,x)−
∑N
j=1, j 6=i α

∗(xj ,∆jvN,j) ·∆jvN,i +H(xi,∆ivN,i) = FN,i(x),
vN,i(T,x) = GN,i(x).

(HJB)

In the above equation, FN,i and GN,i are respectively the running and terminal costs, H
is the Hamiltonian and α∗ its unique maximizer, and

∆jg(x) := (g(x1, . . . , y, . . . , xN )− g(x1, . . . , xj , . . . , xN ))y=1,...,d ∈ Rd

denotes the finite difference of a function g(x) = g(x1, . . . , xN ) with respect to its j-th
entry.

The study of convergence consists in finding a limit for System (HJB) as N tends to
infinity. To this end, we assume symmetric properties of the game. Namely, the costs
FN,i and GN,i satisfy the mean field assumptions, i.e. there exist two functions F and
G such that FN,i(x) = F (xi,mN,i

x ) and GN,i(x) = G(xi,mN,i
x ), where mN,i

x denotes the
empirical measure of all the players except for the i-th, which belongs to P (Σ), the space of
probability measures on Σ. Thanks to these mean field assumptions, we shall say that the
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solution vN,i of System (HJB) can be found in the form vN,i(t,x) = V N (t, xi,mN,i
x ), for a

suitable function V N of time, space and measure; this makes the convergence problem more
tractable. At a formal level, we can introduce the limit equation assuming the existence of
a function U such that V N (t, xi,mN,i

x ) ∼ U(t, xi,mN,i
x ) for large N . Then, let us analyze

the different components of System (HJB) and which should be their corresponding limits
in terms of U . First, the i-th difference of vN,i should converge to

∆ivN,i(t,x) =
(
vN,i

(
t, y,mN,i

x

)
− vN,i

(
t, xi,m

N,i
x

))
y=1,...,d

→ (U(t, y,m)− U(t, xi,m))y=1,...,d = ∆xU(t, xi,m).

For j 6= i we should instead get

∆jvN,i(t,x) =vN,i
t, xi, 1

N − 1
∑
k 6=j,i

δxk + 1
N − 1δy

− vN,i
t, xi, 1

N − 1
∑
k 6=i

δxk


y=1,...,d

∼ 1
N − 1D

mU(t, xi,mN,i
x , xj),

modulo terms of order O(1/N2), where a precise definition of DmU , the derivative with
respect to a probability measure, will be given in the next section. Then, H(xi,∆ivN,i)→
H(xi,∆xU), and we should obtain

N∑
j=1,j 6=i

α∗(xj ,∆jvN,j) ·∆jvN,i

∼ 1
N − 1

N∑
j=1,j 6=i

α∗(xj ,∆xU(t, xj ,mN,i
x )) ·DmU(t, xi,mN,i

x , xj)

∼
∫

Σ
α∗(y,∆yU(t, y,mN,i

x )) ·DmU(t, xi,mN,i
x , y)dmN,i

x (y)

→
∫

Σ
DmU(t, x,m, y) · α∗(y,∆yU(t, y,m))dm(y).

Thus, we are able to introduce the master equation, that is the equation to which we
would like to prove convergence{

−∂U
∂t +H(x,∆xU)−

∫
ΣD

mU(t, x,m, y) · α∗(y,∆yU(t, y,m))dm(y) = F (x,m),
U(T, x,m) = G(x,m), (x,m) ∈ Σ× P (Σ), t ∈ [0, T ].

(M)
It is a first order PDE in P (Σ), the simplex of probability measures in Rd. We solve it
using the strategy developed in [15], which relies on the method of characteristics. Indeed,
as remarked above, the classical mean field game system can be seen as the characteristic
curves of (M). In our finite state setting, the mean field game system consists of two
coupled ODEs: a Hamilton-Jacobi-Bellman equation giving the value function of the limit
control problem and a Kolmogorov-Fokker-Planck describing the evolution of the limit
deterministic flow of probability measures. We solve the mean field game system for any
initial time and initial distribution: this defines a candidate solution to (M) and, in order
to prove that it is differentiable with respect to the initial condition, we introduce and
analyze a linearized mean field game system. To prove the well posedness of (M) for
any time horizon, the sufficient hypotheses we make are the monotonicity assumptions
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of Lasry and Lions. However, we stress again that these assumptions play no role in the
convergence argument, as it requires only the existence of a regular solution to (M).

The rest of the chapter is organized as follows. In Section 1.2, we start with the
notation and the definition of derivatives in the simplex. So we present the two sets
of assumptions we make use of: one for the convergence, the fluctuations and the large
deviation results, while the other, stronger, for the well posedness of the master equation;
we also show an example in which the assumptions are satisfied. Then we give a detailed
description of both the N -player game and the limit model. Section 1.3 contains the
convergence results and their proofs, while in Section 1.4 we employ the convergence
argument to derive refined asymptotics for the empirical measure process, that is, a Central
Limit Theorem and a Large Deviation Principle. Section 1.5 analyzes the well-posedness
and regularity of the solution to the master equation. We conclude with Section 1.6 by
summarizing all the main results.

1.2 Model and assumptions

1.2.1 Notation

Here we briefly clarify the notation used throughout the chapter. Part of the notation is
employed also in Chapter 2. First of all, we are considering Σ = {1, . . . , d} to be the finite
state space of any player. Let T be the finite time horizon and A := [κ,M ]d, for κ,M > 0,
be the compact space of control values. Denote by

P (Σ) :=
{
m ∈ Rd : mj ≥ 0, m1 + · · ·+md = 1

}
the space of probability measures on Σ. Besides the euclidean distance in Rd, denoted
with | · |, we may interchangeably use the Wasserstein metric d1 on P (Σ) since all metrics
are equivalent. We observe that the simplex P (Σ) is a compact and convex subset of Rd.

Let Ξ := [0,M ]d. In the dynamics given by (1.1), the function f : Σ × Ξ × A →
{−d, . . . , d} modeling the jumps has to be a measurable function such that f(x, ξ, a) ∈
{1− x, . . . , d− x}. Specifically, throughout the chapter we set, for x ∈ Σ, ξ = (ξy)y∈Σ
and a = (ay)y∈Σ,

f(x, ξ, a) :=
∑
y∈Σ

(y − x)1]0,ay [(ξy). (1.2)

The measures Ni appearing in (1.1) are N i.i.d. stationary Poisson random measures on
[0, T ]× Ξ, with intensity measure ν on Ξ given by

ν(E) :=
d∑
j=1

`(E ∩ Ξj), (1.3)

for any E in the Borel σ-algebra B(Ξ) of Ξ, where Ξj := {u ∈ Ξ : ui = 0 ∀ i 6= j} is
viewed as a subset of R, and ` is the Lebesgue measure on R. We fix a probability space
(Ω,F ,P) and denote by F = (Ft)t∈[0,T ] the filtration generated by the Poisson measures.
These definitions of f and ν ensure that the control is exactly the transition rate of the
Markov chain; see (1.18) below.

The initial datum of the N -player game is represented by N i.i.d. random variables
Z1, . . . , ZN with values in Σ and distributed as m0 ∈ P (Σ). The vector Z = (Z1, . . . , ZN )
is in particular exchangeable, in the sense that the joint distribution is invariant under
permutations, and is assumed to be F0-measurable, i.e. independent of the noise.
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The state of player i at time t is denoted by Xi(t), with Xt := (X1(t), . . . , XN (t)).
The trajectories of each Xi are in D([0, T ]; Σ), the space of càdlàg functions from [0, T ] to
Σ endowed with the Skorokhod metric. For x = (x1, . . . , xN ) ∈ ΣN , denote the empirical
measures

mN
x := 1

N

N∑
j=1

δxj mN,i
x := 1

N − 1

N∑
j=1,j 6=i

δxj .

Thus, mN
X(t) := mN

Xt
is the empirical measure of the N players and mN,i

X (t) := mN,i
Xt

is
the empirical measure of all the players except the i-th. Clearly, they are P (Σ)-valued
stochastic processes. In the limit dynamics, the empirical measure is replaced by a
deterministic flow of probability measures m : [0, T ]→ P (Σ).

In choosing his/her strategy, each player minimizes the sum of three costs: a Lagrangian
L : Σ×A −→ R, a running cost F : Σ× P (Σ) −→ R and a final cost G : Σ× P (Σ) −→ R
(see next section for the precise definition of the N -player game). The Hamiltonian H is
defined as the Legendre transform of L:

H(x, p) := sup
α∈A
{−α · p− L(x, α)} , (1.4)

for x ∈ Σ and p ∈ Rd.
Given a function g : Σ→ R we denote its first finite difference ∆g(x) ∈ Rd by

∆g(x) :=


g(1)− g(x)

·
·
·

g(d)− g(x)

 .

When we have a function g : ΣN → R, we denote with ∆jg(x) ∈ Rd the first finite
difference with respect to the j-th coordinate, namely

∆jg(x) :=


g(x1, . . . , xj−1, 1, xj+1, . . . , xN )− g(x)

·
·
·

g(x1, . . . , xj−1, d, xj+1, . . . , xN )− g(x)

 .

For future use, let us observe that, for g : Σ→ R,

|∆g(x)| ≤ max
y

[∆g(x)]y ≤ 2 max
x
|g(x)| ≤ C|g|. (1.5)

For a function u : [t0, T ]× Σ −→ R, we denote

||u|| := sup
t∈[t0,T ]

max
x∈Σ
|u(t, x)|. (1.6)

We also use the notation u(t) := (u1(t), . . . , ud(t)) = (u(t, 1), . . . , u(t, d)). When consider-
ing a function u with values in Rd, its norm is defined as in (1.6), but where | · | denotes
the euclidean norm in Rd.

We now introduce the concept of variation with respect to a probability measure m
of a function U : P (Σ)→ R. Let us remark that the usual notion of gradient cannot be
defined for such a function: since the domain is P (Σ) we are not allowed to define e.g.
the directional derivative ∂

∂m1
, as we would have to extend the definition of U outside the

simplex.



8
The uniqueness case: convergence, fluctuations and large deviations via the master

equation

Definition 1.1. We say that a function U : P (Σ)→ R is differentiable if there exists a
function DmU : P (Σ)× Σ→ Rd given by

[DmU(m, y)]z := lim
s→0+

U(m+ s(δz − δy))− U(m)
s

. (1.7)

for z = 1, . . . , d. Moreover, we say that U is C1 if the function DmU is continuous in m.

Morally, we can think of [DmU(m, y)]z as the (right) directional derivative of U with
respect to m along the direction δz − δy. We also observe that m+ s(δz − δy) might be
outside the probability simplex (e.g. when we are at the boundary), in which case we
consider the limit only across admissible directions. However, note that, for our purposes,
this is not really a problem: since in the limit m(t) will be the distribution of the reference
player, the bound from below for the control ensures that the boundary of the simplex
will never be touched.

Together with the definition, we state an identity which will come useful in the following
sections:

[DmU(m, y)]z = [DmU(m,x)]z + [DmU(m, y)]x, (1.8)

for any x, y, z ∈ Σ. Its derivation is an immediate consequence of the linearity of the
directional derivative.

We can easily extend the above definition to the case of derivative with respect to a
direction µ ∈ P0(Σ), with

P0(Σ) :=
{
µ ∈ Rd : µ1 + · · ·+ µd = 0

}
.

Indeed, an element µ = (µ1, . . . , µd) =
∑
z∈Σ µz ∈ P0(Σ) can be rewritten as a linear

combination of δz − δy as follows

µ =
∑
z 6=y

µz(δz − δy),

for each y ∈ Σ, since
∑
z 6=y µz(δz − δy) =

∑
z 6=y µzδz −

(∑
z 6=y µz

)
δy, and

∑
z 6=y µz = −µy.

This remark allows us to define the derivative of U(m) along the direction µ ∈ P0(Σ)
as a map ∂

∂µU : P (Σ)× Σ→ R, defined for each y ∈ Σ by

∂

∂µ
U(m, y) :=

d∑
z 6=y

µz [DmU(m, y)]z = µ ·DmU(m, y), (1.9)

where the last equality comes from the fact that [DmU(m, y)]y = 0.
We also note that the definition of ∂

∂µU(m, y) does not actually depend on y, i.e.

∂

∂µ
U(m, y) = ∂

∂µ
U(m, 1) (1.10)

for every y ∈ Σ and for this reason we will fix y = 1 when needed in the equations. Indeed,
by means of identity (1.8) and the fact that µ ∈ P0(Σ), for each y ∈ Σ

∂

∂µ
U(m, 1) =

d∑
z=1

µz [DmU(m, 1)]z = [identity (1.8)]

=
d∑
z=1

([DmU(m, y)]z + [DmU(m, 1)]y)µz
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=
d∑
z=1

[DmU(m, y)]zµz + [DmU(m, 1)]y
d∑
z=1

µz

=
d∑
z=1

[DmU(m, y)]zµz = ∂

∂µ
U(m, y).

For a function U : Σ × P (Σ) → R we denote the variation with respect to the first
coordinate in a point (x,m) ∈ Σ× P (Σ) by ∆xU(x,m). Also, denote by Γ† the transpose
of a matrix Γ.

1.2.2 Assumptions

We now summarize the assumptions we make, which can vary according to the different
results.

Because of the compactness of A, the continuity of L with respect to its second
argument is sufficient for guaranteeing the existence and finiteness of the supremum in
(1.4) for each (x, p). Moreover, we assume that there exists a unique maximizer α∗(x, p)
in the definition of H for every (x, p):

α∗(x, p) := arg min
α∈A
{L(x, α) + α · p} = arg max

α∈A
{−L(x, α)− α · p} . (1.11)

With our choices for f in (1.2) and the intensity measure ν in (1.3), a sufficient condition
for the above assertion is given by the strict convexity of L in α (see Lemma 3 in [24]).
If L is uniformly convex, such optimum α∗ is globally Lipschitz in p, and whenever H is
differentiable it can be explicitly expressed as α∗(x, p) = −DpH(x, p); see Proposition 1 in
[61] for the proof.

We will work with two sets of assumptions on H. We first observe that it is enough
to give hypotheses for H(x, ·) on a sufficiently big compact subset of Rd, i.e. for |p| ≤ K,
because of the uniform boundedness of ∆ivN,i: see next section for details (Remark 1.4).
In what follows, the constant K is fixed:

(H1) If |p| ≤ K then H and α∗ are Lipschitz continuous in p.

We stress the fact that the above assumptions, together with the existence of a regular
solution to (M), are alone sufficient for proving the convergence of the N -player game to
the limit mean-field game dynamics.

In order to establish the well-posedness and the needed regularity for the master
equation we make use of the following additional assumptions:

(RegH) If |p| ≤ K, H is C2 with respect to p; H, DpH and D2
ppH are Lipschitz in p and the

second derivative is bounded away from 0, i.e. there exists a constant C such that

D2
ppH(x, p) ≥ C−1; (1.12)

(Mon) The cost functions F and G are monotone in m in the Lasry-Lions sense, i.e., for
every m,m′ ∈ P (Σ),∑

x∈Σ
(F (x,m)− F (x,m′))(m(x)−m′(x)) ≥ 0, (1.13)

and the same holds for G;
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(RegFG) The cost functions F and G are C1 with respect to m, with DmF and DmG bounded
and Lipschitz continuous. In this case (1.13) is equivalent to say that∑

x

µx[DmF (x,m, 1) · µ] ≥ 0 (1.14)

for any m ∈ P (Σ) and µ ∈ P0(Σ).

Observe that the assumptions on H allow for quadratic Hamiltonian. As we will see, the
above assumptions imply both the boundedness and Lipschitz continuity of ∆xU and
DmU with respect to m. We conclude the section with an example for which all the
assumptions are satisfied.

Example 1.1. The easiest example for the costs F and G is F (x,m) = G(x,m) = m(x).
Slightly more in general, one can consider F (x,m) = ∇φ(m)(x), φ being a real convex
function on Rd.

For the choice of the Lagrangian L, a bit of work is needed in order to recover the
regularity for H, since the maximization in the definition (1.4) of H is performed only on
the compact subset A = [κ,M ]d of Rd.

Consider the Lagrangian, not depending on x, defined by

L(α) := b|α− a|2, (1.15)

with a :=
(
κ+M

2

)
(1, . . . , 1)† and b a large enough constant to be chosen later. The

computation of H := supα∈[κ,M ] {−p · α− L(α)} for such choice of L gives

H(p) = p2

4b − a · p, (1.16)

for |p| ≤ b(M − κ), while H is linear outside this interval. It is trivial to verify that
H is in C1(Rd), and thus (H1) is satisfied, while H is not in C2(Rd) because of the
linear components. Nevertheless, (1.12) is satisfied whenever |p| ≤ K, with the choice
b := K

M−κ . Moreover, the Lipschitz continuity of DpH and D2
ppH is trivially holding

because of expression (1.16) for |p| ≤ K and the linearity outside, and (RegH) follows.
Note that p represents the gradient of the value functions and thus it belongs to a compact
[−K,K], where K is independent of b; c.f. Remark 1 below.

1.2.3 N-player game

In this section we describe the N -player game in a general setting. Namely, we suppose
that each individual has complete information on the states of all the other players and we
do not require the players to be symmetric. Then, we show the relation between System
(HJB) and the concept of Nash equilibria for the game through a classical Verification
Theorem. We conclude the section by introducing the mean field assumptions and stating
a consequence on the symmetry of the solution to (HJB). We remark that most of the
results of this section were found also in [61], but in a slightly different framework. Namely,
there the authors assumed a priori that the value functions depend on the empirical
measure, assuming hence symmetry. Moreover, they studied the infinitesimal generator of
the processes, while here we employ our probabilistic representation.

In the prelimit the dynamics is given by the system of N controlled SDEs

Xi(t) = Zi +
∫ t

0

∫
Ξ
f(Xi(s−), ξ, αi(s,Xs−))Ni(ds, dξ), (1.17)
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for i = 1, . . . , N , where f is given by (1.2) and Xt = (X1(t), . . . , XN (t)). Each player is
allowed to choose his/her control αi having complete information on the state of the other
players. We consider only controls αN := (α1, . . . , αN ) in feedback form, i.e. the controls
are deterministic functions of time and space αi : [0, T ] × ΣN −→ A, αi = αi(t,x). We
say that αi ∈ A, for each i, if it is a measurable function of time. We denote by AN the
set of feedback strategy vectors αN = (α1, . . . , αN ), each αi belonging to A.

We remark that the dynamics (1.17) is always well-posed, for any admissible choice of
the control, since the state space is finite and the coefficients are then trivially Lipschitz
continuous. Namely, for any αN ∈ AN there exists a unique strong solution to (1.17), in
the sense that (Xt)t∈[0,T ] is adapted to the filtration F generated by the Poisson random
measures.

With the definition of f in (1.2) and the intensity measure ν in (1.3), the dynamics of
any player remains in Σ for any time and the feedback controls are exactly the transition
rates of the jump processes (Xi(t))i=1,...,N . Indeed, one can prove - see [24] - that, for
x 6= y and xN,i ∈ ΣN−1,

P
[
Xi(t+ h) = y

∣∣Xi(t) = x, XN,i
t = xN,i

]
= αiy(t, x,xN,i)h+ o(h). (1.18)

In more rigorous terms, with the above choices, for any αN ∈ AN the state evolution of
the N players Xt := (Xi(t))Ni=1 is a Markov process, whose law is uniquely determined as
the solution to the martingale problem for the time-dependent generator

Ltf(x) =
N∑
i=1

∑
y∈Σ

αiy(t,x)
[
f([xi, y])− f(x)

]
,

where
[xi, y]j =

{
xj for j 6= i
y for j = i.

Since α is the vector of the transition rates of the Markov chain, we set αix(x) =
−
∑
y 6=x α

i
y(x). We remark that the boundedness from below of the controls (αi ∈ [κ,M ]d,

κ > 0) guarantees that P (Xi(t) = x) > 0 for every x in Σ and t > 0, for any player i.
Next, we define the object of the minimization. Let αN = (α1, . . . , αN ) ∈ AN be

a strategy vector and X = (X1, . . . , XN ) the corresponding solution to (1.17). For
i = 1, . . . , N and given functions FN,i, GN,i : ΣN −→ R, we associate to the i-th player
the cost functional

JNi (αN ) := E
[∫ T

0

[
L(Xi(t), αi(t,Xt)) + FN,i(Xt)

]
dt+GN,i(XT )

]
. (1.19)

The optimality condition for the N -player game is given by the usual concept of Nash
equilibria. For a strategy vector αN = (α1, . . . , αN ) ∈ AN and β ∈ A, denote by [αN,−i;β]
the perturbed strategy vector given by

[αN,−i;β]j :=
{
αj , j 6= i

β, j = i.

Then, we can introduce the following

Definition 1.2. A strategy vector αN is said to be a Nash equilibrium for the N -player
game if for each i = 1, . . . , N

JNi (αN ) = inf
β∈A

JNi ([αN,−i;β]).
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Let us now introduce the functional

JNi (t,x,αN ) := E
[∫ T

t
[L(Xt,x

i (s), αi(s,Xt,x
s )) + FN,i(Xt,x

s )]ds+GN,i(Xt,x
T )

]
, (1.20)

where

Xt,x
i (s) = xi +

∫ s

t

∫
Ξ
f(Xt,x

i (r−), ξ, αi(r,Xt,x
r− ))Ni(dr, dξ) s ∈ [t, T ].

We work under hypotheses that guarantee the existence of a unique maximizer α∗(x, p)
defined in (1.11). With this notation, the Hamilton-Jacobi-Bellman system associated to
the above differential game is given by System (HJB) of Section 1.1:−∂v

∂t

N,i(t,x)−
∑N
j=1, j 6=i α

∗(xj ,∆jvN,j) ·∆jvN,i +H(xi,∆ivN,i) = FN,i(x),
vN,i(T,x) = GN,i(x).

This is a system of NdN coupled ODE’s, whose well-posedness for all T > 0 can be proved
through standard ODEs techniques, because of the Lipschitz continuity of the vector fields
involved in the equations.

We are now able to relate System (HJB) to the Nash equilibria for the N -player game
through the following

Proposition 1.3 (Verification Theorem). Let vN,i, i = 1, . . . , N be a classical solution to
System (HJB). Then the feedback strategy vector αN∗ = (α1,∗, . . . , αN,∗) defined by

αi,∗(t,x) := α∗(xi,∆ivN,i(t,x)) i = 1, . . . , N, (1.21)

is the unique Nash equilibrium for the N -player game and the vN,i’s are the value functions
of the game, i.e.

vN,i(t,x) = JNi (t,x,αN∗) = inf
β∈A

JNi (t,x, [αN∗,−i;β]). (1.22)

Proof. Let β ∈ A be any feedback and Xt,x the corresponding solution to (1.17), given
the strategy vector [αN∗−i;β]; denote for simplicity X = Xt,x. Fixing i ∈ {1, . . . , N},
because of the uniqueness of the maximizer in (1.11), we have

∂v

∂t

N,i

+
∑
j 6=i

d∑
y=1

α∗y(t, xj ,∆jvN,j)[∆jvN,i(t,x)]y

+ β(t,x) ·∆ivN,i(t,x) + L(xi, β(t,x)) + FN,i(x) ≥ 0,

for any t,x. Applying first Itô formula (Theorem II.5.1 in [72], p. 66) and then Lemma 3
in [24] and the above inequality, we obtain

vN,i(t,x) = E
[
vN,i(T,XT )−

∫ T

t

∂v

∂t

N,i

(s,Xs)ds
]

−
N∑
j=1

E
[ ∫ T

t

∫
Ξ

[
vN,i

(
X1(s), . . . , Xj(s) + f(Xj(s), ξ, [αN∗,−i;β](s,Xs)), . . . , XN (s)

)
−vN,i(Xs)

]
ν(dξ)ds

]
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= E
[
vN,i(T,XT )−

∫ T

t

(
∂v

∂t

N,i

(s,Xs)

+
∑
j 6=i

αj,∗(s,Xs) ·∆jvN,i(s,Xs) + β(t,Xs) ·∆ivN,i(t,Xs)
)
ds

]

≤ E
[
GN,i(T,XT ) +

∫ T

t

(
L(Xi(s), β(s,Xs)) + FN,i(Xs)

)
ds

]
=: JNi (t,x, [αN∗,−i;β]).

Replacing β by αi,∗ the inequalities become equalities.

Remark 1.4. It is important to observe that the solution vN,i to (HJB) is uniformly
bounded with respect to N . Namely, there exists a constant K > 0 such that

sup
x∈ΣN

|vN,i(t,x)| ≤ K,

where the constant K is independent of N , i and t. This and (1.5) immediately imply
an analogous bound for |∆ivN,i(t,x)|: it is for this reason that the only local regularity
(assumptions (H1) and (RegH)) for H(x, p) with respect to p is enough for getting the
convergence and the well-posedness results.

We are interested in studying the limit of System (HJB) as N → +∞ under symmetric
properties for the N -player game. Namely, we assume that the players are all identical and
indistinguishable. In practice, this symmetry is expressed through the following mean-field
assumptions on the costs:

FN,i(x) = F (xi,mN,i
x ),

(M-F)
GN,i(x) = G(xi,mN,i

x ),

for some F and G : Σ×P (Σ)→ R. An easy but crucial consequence of assumptions (M-F)
and the uniqueness of solution to System (HJB) is that the solution vN,i of such system
enjoys symmetric properties:

Proposition 1.5. Under the mean-field assumptions (M-F), there exists vN : [0, T ] ×
ΣN → Rd such that the solutions vN,i to System (HJB) satisfy, for i = 1, . . . , N ,

vN,i(t,x) = vN (t, xi, (x1, . . . , xi−1, xi+1, . . . , xN )), (1.23)

for any (t, x) ∈ [0, T ]× Σ, and the function

ΣN−1 3 (y1, . . . , yN−1)→ vN (t, x, (y1, . . . , yN−1))

is invariant under permutations of (y1, . . . , yN−1).

Proof. Let x̃ be defined from x after exchanging xk with xj , for j 6= k 6= i. Because
of (M-F), we have that FN,i(x) = FN,i(x̃) and GN,i(x) = GN,i(x̃) and thus, by the
uniqueness of solution to (HJB) we conclude vN,i(t,x) = vN,i(t, x̃).

The above proposition motivates the study of a possible convergence of System (HJB)
to a limiting system, by analyzing directly the limit of the functions vN .
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1.2.4 Mean field game and master equation

The mean field game describes the limit for N → +∞ of the N -players dynamics when
they play the Nash equilibrium strategy. Here we illustrate it heuristically, assuming
the empirical measure of the process corresponding to the Nash equilibrium obeys a
Law of Large Numbers, i.e. it converges to a deterministic flow of probability measures
m : [0, T ]→ P (Σ).

The resulting dynamics for N → +∞ is characterized by a continuum of i.i.d. players
in which the representative agent (also referred to as reference player) evolves according to

X(t) = Z +
∫ t

0

∫
Ξ
f(X(s−), ξ, α(s,X(s−)))N (ds, dξ), t ∈ [0, T ], (1.24)

where the law of the initial condition Z is m0 and N is a Poisson random measure with
intensity measure ν defined in (1.3). The controls are in feedback form, i.e. they belong to
the space of measurable functions α : [0, T ]× Σ −→ A. The associated cost is

J(α,m) := E
[∫ T

0
[L(X(t), α(t,X(t))) + F (X(t),m(t))] dt+G(X(T ),m(T ))

]
. (1.25)

The reference player thus faces the following problem:

(i) the player controls its jump intensities αy : [0, T ]×Σ→ [0,+∞), y ∈ Σ, via feedback
controls depending on time and on his/her own state;

(ii) for a given deterministic flow of probability measures m : [0, T ]→ P (Σ), the player
aims at minimizing the cost (1.25);

(iii) denote by α∗,m the optimal control for the above problem, and let (X∗,m(t))t∈[0,T ]
be the corresponding optimal process. The above-mentioned Law of Large Number
predicts that the flow (m(t))t∈[0,T ] should be chosen so that the following consistency
relation, known as mean field equilibrium condition, holds:

m(t) = Law(X∗,m(t)) (1.26)

for every t ∈ [0, T ].

In literature, such limit dynamics is described by the celebrated mean field game system,
whose unknowns are two functions (u,m). The equation in u describes the dynamics of the
value function of the reference player, which optimizes his/her payoff under the influence
of the collective behaviour of the others, while the equation in m describes the evolution
of the distribution of the players. In our discrete setting the mean field game system takes
the following form of a strongly coupled system of ODEs:

− d
dtu(t, x) +H(x,∆xu(t, x)) = F (x,m(t)),

d
dtmx(t) =

∑
ymy(t)α∗x(y,∆yu(t, y)),

u(T, x) = G(x,m(T )),
mx(t0) = mx,0,

(MFG)

with α∗(x, p) defined in (1.11) and u,m : [0, T ] × Σ −→ R. A solution (u,m) to (MFG)
can be seen as a fixed point of the following procedure, which indeed mimics the problem
faced by the representative agent described above: starting with a flow m, solve the first
equation - the backward Hamilton-Jacobi-Bellman equation for u - which yields a unique
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optimal feedback control α∗,m for the given m; then, impose that the distribution of the
player’s corresponding dynamics (1.24) is exactly m, giving the second equation - the
forward Kolmogorov-Fokker-Planck (KFP). As a consequence, for a solution (u,m) to
(MFG), we have

J(α,m) ≤ J(β,m)
for any admissible feedback β, where α(t, x) = α∗(x,∆xu(t, x)), and the mean field
equilibrium condition (1.26) holds.

As already mentioned, recently in [15] a new technique involving the so-called master
equation was introduced to rigorously justify the passage from symmetric N -player
differential games to mean field games. Generally speaking, the master equation summarizes
all the information needed to find solutions to the mean field game: System (MFG) provides
the characteristic curves for (M) (see Section 1.5 below). Indeed, U(t0, x,m0) := u(t0, x)
solves (M), (u,m) being the solution to the mean field game system (MFG) starting
at time t0 up to time T , with m(t0) = m0. Moreover, in the Introduction we already
motivated heuristically the convergence result of System (HJB) to the master equation
(M). As it will be clear from the convergence argument, all that is needed is the existence
of a regular solution to (M).

To be specific on the needed regularity, we conclude this section with the definition of
regular solution to (M).

Definition 1.6. A function U : [0, T ]× Σ× P (Σ)→ R is said to be a classical solution
to (M) if it is continuous in all its arguments, C1 in t and C1 in m and, for any
(t, x,m) ∈ [0, T ]× Σ× P (Σ), we have{

−∂U
∂t +H(x,∆xU)−

∫
ΣD

mU(t, x,m, y) · α∗(y,∆yU(t, y,m))dm(y) = F (x,m),
U(T, x,m) = G(x,m), (x,m) ∈ Σ× P (Σ).

In particular,
∆xU(t, x, ·) : P (Σ)→ Rd

is bounded and Lipschitz continuous, and

DmU(t, x, ·) : P (Σ)→ Rd×d

is bounded.
Moreover, we say that U is a regular solution to (M) if it is a classical solution and

DmU(t, x, ·) is also Lipschitz continuous in m, uniformly in (t, x).

Let us observe that in the master equation we could replace DmU(t, x,m, y) by
DmU(t, x,m, 1), thanks to property (1.8) of the derivative. Under sufficient conditions,
we will prove in Section 1.5 the existence and uniqueness of a regular solution to (M).

1.3 The convergence argument

In this section we take for granted the well-posedness of the master equation (M) and
focus on the study of the convergence. We give the precise statement of the convergence
in terms of two theorems: the first one describes the convergence in average of the value
functions, while the second one is a propagation of chaos for the optimal trajectories.

For any i ∈ {1, . . . , N} and x ∈ Σ, set

wN,i(t0, x,m0) :=
d∑

x1=1
· · ·

d∑
xi−1=1

d∑
xi+1=1

· · ·
d∑

xN=1
vN,i(t0,x)

∏
j 6=i

m0(xj),
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where x = (x1, . . . , xN ), and

||wN,i(t0, ·,m0)− U(t0, ·,m0)||L1(m0) :=
d∑

x=1
|wN,i(t0, x,m0)− U(t0, x,m0)|m0(x).

The main result is given by the following

Theorem 1.7. Assume (H1) and that (M) admits a unique regular solution U in the
sense of Definition 1.6. Fix N ≥ 1, (t0,m0) ∈ [0, T ]×P (Σ), x ∈ ΣN and let (vN,i)i=1,...,N
be the solution to (HJB). Then

1
N

N∑
i=1
|vN,i(t0,x)− U(t0, xi,mN

x )| ≤ C

N
(1.27)

||wN,i(t0, ·,m0)− U(t0, ·,m0)||L1(m0) ≤
C√
N
. (1.28)

In (1.27) and (1.28), the constant C does not depend on i, t0, m0, x nor N .

As stated above, the convergence can be studied also in terms of the optimal trajectories.
Consider the optimal process Yt = (Y1(t), . . . , YN (t))t∈[0,T ] for the N -player game:

Yi(t) = Zi +
∫ t

0

∫
Ξ

∑
y∈Σ

(y − Yi(s−))1]0,αiy(s,Ys− )[(ξy)Ni(ds, dξ), t ∈ [0, T ] (1.29)

where αiy(t,Yt) is the optimal feedback, i.e. αiy(t,y) := [α∗(yi,∆ivN,i(t,y))]y. Moreover,
let X̃t = (X̃1(t), . . . , X̃N (t))t∈[0,T ] be the i.i.d. process solution to

X̃i,t = Zi +
∫ t

0

∫
Ξ

∑
y∈Σ

(y − X̃i(s−))1]0,α̃iy(s,X̃s− )[(ξy)Ni(ds, dξ), t ∈ [0, T ] (1.30)

with α̃iy(t, X̃t) := [α∗
(
X̃i(t),∆xU(t, X̃i(t), Law(X̃i(t)))

)
]y. We remark that

Law(X̃i(t)) = m(t),

with m the solution to the mean field game.

Theorem 1.8. Under the same assumptions of Theorem 1.7, for any N ≥ 1 and any
i ∈ {1, . . . , N}, we have

E
[

sup
t∈[0,T ]

∣∣∣Yi(t)− X̃i(t)
∣∣∣] ≤ CN− 1

9 (1.31)

for some constant C > 0 independent of m0 and N . In particular, we obtain the Law of
Large Numbers

E
[

sup
t∈[0,T ]

∣∣∣mN
Y (t)−m(t)

∣∣∣] ≤ CN− 1
9 . (1.32)

Note that the supremum is taken inside the mean, giving the convergence in the space
of trajectories. For this reason, we have a slow convergence of order N−1/9, coming from a
result in [90] about the convergence of the empirical measures of a decoupled system (c.f.
Lemma 1 below). Instead, if the supremum is taken outside the mean, the convergence
would be of order N−1/2, thanks to a result in [59].
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1.3.1 Approximating the optimal trajectories

The first step in the proof of these results is to show that the projection of U onto empirical
measures

uN,i(t,x) := U(t, xi,mN,i
x ) (1.33)

satisfies the system (HJB) up to a term of order O( 1
N ). The following proposition makes

rigorous the intuition we already used in the heuristic derivation of the master equation
(M). In what follows, C will denote any constant independent of i,N,m0,x which is
allowed to change from line to line.

Proposition 1.9. Let U be a regular solution to (M) and uN,i(t,x) be defined as in (1.33).
Then, for j 6= i,

∆juN,i(t,x) = 1
N − 1D

mU(t, xi,mN,i
x , xj) + τN,i,j(t,x), (1.34)

where τN,i,j ∈ C0([0, T ]× ΣN ;Rd), ||τN,i,j || ≤ C
(N−1)2 .

Proof. Observe first that [∆juN,i(t,x)]xj = 0 = [DmU(t, xi,mN,i
x , xj)]xj by definition, so

we set [τN,i,j(t,x)]xj = 0. Consider then h 6= xj : [∆juN,i(t,x)]h = U(t, xi, 1
N−1

∑
k 6=i,j δxk+

1
N−1δh)− U(t, xi,mN,i

x ) by definition. By standard computations we get

U

t, xi, 1
N − 1

∑
k 6=i,j

δxk + 1
N − 1δh

− U(t, xi,mN,i
x )

= U

(
t, xi,m

N,i
x + 1

N − 1(δh − δxj )
)
− U(t, xi,mN,i

x )

=
∫ 1

N−1

0

[
DmU(mN,i

x + s(δh − δxj ), xj)
]
h
ds

=
∫ 1

N−1

0

([
DmU(mN,i

x + s(δh − δxj ), xj)
]
h

+
[
DmU(mN,i

x , xj)
]
h

−
[
DmU(mN,i

x , xj)
]
h

)
ds

= 1
N − 1

[
DmU(mN,i

x , xj)
]
h

+
∫ 1

N−1

0

([
DmU(mN,i

x + s(δh − δxj ), xj)
]
h
−
[
DmU(mN,i

x , xj)
]
h

)
ds

= 1
N − 1

[
DmU(t, xi,mN,i

x , xj)
]
h

+O

( 1
(N − 1)2

)
,

where the last equality is derived by exploiting the Lipschitz continuity in m of DmU∣∣∣∣∣
∫ 1

N−1

0

([
DmU(mN,i

x + s(δh − δxj ), xj)
]
h
−
[
DmU(mN,i

x , xj)
]
h

)
ds

∣∣∣∣∣
≤ C

∫ 1
N−1

0

∣∣∣s(δh − δxj )∣∣∣ ds = O

( 1
(N − 1)2

)
.

For every component h of DmU we proved the assertion of the proposition, and thus the
same holds for the whole vector.
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In the next proposition we show that the uN,i’s almost solve the system (HJB):

Proposition 1.10. Under the assumptions of Theorem 1.7, the functions (uN,i)i=1,...,N
solve{
−∂uN,i

∂t (t,x)−
∑N
j=1, j 6=iα

∗(xj ,∆juN,j) ·∆juN,i+H(xi,∆iuN,i) = FN,i(x)+rN,i(t,x)
uN,i(T,x) = G(xi,mN,i

x ),
(1.35)

with rN,i ∈ C0([0, T ]× ΣN ), ||rN,i|| ≤ C
N .

Proof. We know that U solves

−∂tU +H(x,∆xU)−
∫

Σ
DmU(t, x,m, y) · α∗(y,∆yU(t, y,m))dm(y) = F (x,m),

and U(T, x,m) = G(x,m). Computing the equation in (t, xi,mN,i
x ) we get (we omit the ∗

in α∗ for simplicity)

−∂tU(t, xi,mN,i
x ) +H(xi,∆xU(t, xi,mN,i

x ))

−
∫

Σ
DmU(t, xi,mN,i

x , y) · α(y,∆xU(t, y,mN,i
x ))dmN,i

x (y) = F (xi,mN,i
x ),

with the correct final condition uN,i(t,x) = U(T, xi,mN,i
x ) = G(xi,mN,i

x ). By definition of
empirical measure we can rewrite

−∂tU(t, xi,mN,i
x ) +H(xi,∆xU(t, xi,mN,i

x ))

− 1
N − 1

N∑
j=1,j 6=i

DmU(t, xi,mN,i
x , xj) · α(xj ,∆xU(t, xj ,mN,i

x )) = FN,i(x).

Thanks to Proposition 1.9, we have

1
N − 1

N∑
j=1,j 6=i

DmU(t, xi,mN,i
x , xj) · α(xj ,∆xU(t, xj ,mN,i

x ))

=
N∑

j=1,j 6=i
∆juN,i(t,x) · α(xj ,∆xU(t, xj ,mN,i

x ))

−
N∑

j=1,j 6=i
τN,i,j(t,x) · α(xj ,∆xU(t, xj ,mN,i

x ))

=: 1) + 2).

For the first term we add and subtract the quantity α(xj ,∆xU(t, xj ,mN,j
x )):

1) =
∑
j 6=i

∆juN,i(t,x) · α(xj ,∆xU(t, xj ,mN,i
x ))− α(xj ,∆xU(t, xj ,mN,j

x ))

+
∑
j 6=i

∆juN,i(t,x) · α(xj ,∆xU(t, xj ,mN,j
x ))

= (A) + (B).

For (A) we have, using first the Lipschitz continuity of α with respect to the second
variable and then the Lipschitz continuity of ∆xU with respect to m:

(A) ≤
∑
j 6=i

∆juN,i(t,x) · (∆xU(t, xj ,mN,i
x )−∆xU(t, xj ,mN,j

x ))
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≤ C
∑
j 6=i
||∆juN,i|| · |mN,i

x −mN,j
x |

≤ C

N − 1
∑
j 6=i
||∆juN,i|| ≤ C

N
,

where the last inequality is a consequence of (1.34) and the uniform bound on ||DmU ||
for the solution to (M). Part (B) of 1) is instead what we want to obtain in the equation
for uN,i, so we leave it as it is.

For the term 2), we simply note that α is bounded from above by definition, and thus
the whole term 2) is also of order O

(
1
N

)
.

The central part of the proof of convergence is based on comparing the optimal
trajectories associated to vN,i with the ones associated to uN,i. Hence, consider the
processes

Xi(t) = Zi +
∫ t

0

∫
Ξ

∑
y∈Σ

(y −Xi(s−))1]0,α̃iy(s,Xs− )[(ξy)Ni(ds, dξ), t ∈ [0, T ] (1.36)

where α̃iy(t,Xt) := [α∗(Xi(t),∆iuN,i(t,Xt))]y. Observe that the processes X and Y are
exchangeable. For future use, let us also recall the inequalities

∣∣∣mN
x −mN

y

∣∣∣ ≤ Cd1(mN
x ,m

N
y ) ≤ C

N

N∑
i=1
|xi − yi| (1.37)

for every x,y ∈ ΣN , where the first inequality comes from the equivalence of all the
metrics in P (Σ) and the second is well-known for the Wasserstein distance d1 (we stated
in (19) in general) The result needed to prove the main theorems is the following

Theorem 1.11. With the notation introduced above, under the assumptions of Theorem
1.7, we have

E
[

sup
t∈[0,T ]

|Yi(t)−Xi(t)|
]
≤ C

N
, (1.38)

E
[

sup
t∈[0,T ]

|mN
Y (t)−mN

X(t)|
]
≤ C

N
, (1.39)

E
[

sup
t∈[0,T ]

|uN,i(t,Yt)− vN,i(t,Yt)|2 +
∫ T

0

∣∣∣∆iuN,i(t,Yt)−∆ivN,i(t,Yt)
∣∣∣2 dt] ≤ C

N2 ,

(1.40)

1
N

N∑
i=1
|vN,i(0,Z)− uN,i(0,Z)| ≤ C

N
P-a.s. (1.41)

Proof. In order to prove (1.40), we apply Itô’s Formula to the function

Ψ(t,Yt) = (uN,i(t,Yt)− vN,i(t,Yt))2,

dΨ(t,Yt) = ∂Ψ(t,Yt)
∂t

+
N∑
j=1

∫
Ξ

[Ψ(t, Ỹ j
t−)−Ψ(t,Yt−)]Nj(dt, dξ),
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where

Ỹ j
t =

Y1,t, . . . , Yj−1,t, Yj,t +
∑
y∈Σ

(y − Yj,t)1]0,αjy [(ξy), Yj+1,t, . . . , YN,t

 ,
and, as above,

αjy(t,Yt) =
[
α∗(Yj,t,∆jvN,j(t,Yt))

]
y
.

It follows that

dΨ(t,Yt)
= 2(uN,i(t,Yt)− vN,i(t,Yt))(∂tuN,i − ∂tvN,i)

+
N∑
j=1

∫
Ξ

[(uN,i(t, Ỹ j
t−)− vN,i(t, Ỹ j

t−))2 − (uN,i(t,Yt−)− vN,i(t,Yt−))2]Nj(dt, dξ).

Integrating on the time interval [t, T ], we get:

[uN,i(T,YT )− vN,i(T,YT )]2

= [uN,i(t,Yt)− vN,i(t,Yt)]2

+ 2
∫ T

t
(uN,i(s,Ys)− vN,i(s,Ys))(∂tuN,i(s,Ys)− ∂tvN,i(s,Ys))ds

+
N∑
j=1

∫ T

t

∫
Ξ

[(uN,i(s, Ỹ j
s−)−vN,i(s, Ỹ j

s−))2 − (uN,i(s,Ys−)−vN,i(s,Ys−))2]Nj(ds, dξ).

For brevity, in the remaining part of the proof we set uit := uN,i(t,Yt) and vit := vN,i(t,Yt).
Next, we take the conditional expectation on the initial data Z, denoting

EZ = E[ · |Yt = Z].

Note that we are allowed to condition on such event since it has positive probability,
thanks to the bound from below on the jump rates. Applying again Lemma 3 of [24], we
obtain

EZ [(uiT − viT )2] = EZ [(uit − vit)2] + 2EZ
[∫ T

t
(uis − vis)(∂tuis − ∂tvis)ds

]

+
N∑
j=1

EZ
[∫ T

t
αj(s,Ys) ·∆j [(uis − vis)2]ds

]
.

Let us first study the term EZ
[∫ T
t (uis − vis)(∂tuis − ∂tvis)ds

]
. Applying Equations (1.35)

and (HJB), we get

EZ
[∫ T

t
(uis − vis)(∂tuis − ∂tvis)ds

]

= EZ
[ ∫ T

t
(uis − vis)

{
N∑

j=1,j 6=i

(
−αj(Yj,s,∆jujs) ·∆juis + αj(Yj,s,∆jvjs) ·∆jvis

+αj ·∆juis − αj ·∆juis

)
−H(Yi,s,∆ivis) +H(Yi,s,∆iuis)− rN,i(s,Ys)

}
ds

]
.
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Recall that αj(∆jujs) =: α̃j . Note that we also added and subtracted αj ·∆juis in the last
line so that we can use the Lipschitz properties of H, α∗ and the bound on rN,i to get the
correct estimates. Specifically, we can rewrite

EZ
[∫ T

t
(uis − vis)(∂tuis − ∂tvis)ds

]

= EZ
[ ∫ T

t
(uis − vis)

{
N∑

j=1,j 6=i

(
(αj − α̃j) ·∆juis − αj · (∆juis −∆jvis)

)

−H(Yi,s,∆ivis) +H(Yi,s,∆iuis)− rN,i(s,Ys)
}
ds

]
.

Recollecting the above, we find

EZ [(uiT − viT )2]

= EZ [(uit − vit)2]+ 2EZ
[∫ T

t
(uis − vis)(∂tuis − ∂tvis)ds

]

+
N∑
j=1

EZ
[∫ T

t
αj(s,Ys)·∆j [(uis − vis)2]ds

]

= EZ [(uit − vit)2] + 2EZ
[ ∫ T

t
(uis − vis)

{
N∑
j 6=i

(
(αj − α̃j) ·∆juis − αj · (∆juis −∆jvis)

)

−H(Yi,s,∆ivis) +H(Yi,s,∆iuis)− rN,i(s,Ys)
}
ds

]

+ EZ
[∫ T

t
αi(s,Ys) ·∆i[(uis − vis)2]ds

]
+

N∑
j 6=i

EZ
[∫ T

t
αj(s,Ys) ·∆j [(uis − vis)2]ds

]

= EZ [(uit − vit)2] + EZ
[∫ T

t
αi(s,Ys) ·∆i[(uis − vis)2]ds

]

+ 2EZ
∫ T

t
(uis − vis)


N∑
j 6=i

(
(αj − α̃j) ·∆juis − αj · (∆juis −∆jvis)

) ds
+
∫ T

t

N∑
j 6=i

1
2α

j ·∆j [(uis − vis)2]ds

+
∫ T

t
(uis − vis)(−H(Yi,s,∆ivis) +H(Yi,s,∆iuis)− rN,i(s,Ys))ds

]
.

On the other hand, observing that ∆j [(ui−vi)2] = ∆j(ui−vi)×(∆j(ui−vi)+2(1(ui−vi))),
× being the element by element product between vectors and 1 = (1, . . . , 1)†, the expression

EZ
[ ∫ T

t
(uis − vis)


N∑

j=1,j 6=i

(
−2αj · (∆juis −∆jvis)

) ds
+
∫ T

t

N∑
j=1,j 6=i

(
αj ·∆j [(uis − vis)2]

)
ds

]
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can be simplified as follows

EZ
[ ∫ T

t
(uis − vis)


N∑

j=1,j 6=i

(
−2αj · (∆juis −∆jvis)

)
)

 ds
+
∫ T

t

N∑
j=1,j 6=i

(
αj ·∆j [(uis − vis)2]

)
ds

]

=
N∑

j=1,j 6=i
EZ
[ ∫ T

t

{
−2αj · (uis − vis)(∆juis −∆jvis)

+αj · (∆j(uis − vis)× (∆j(uis − vis) + 2(1(uis − vis)))
}
ds

]

=
N∑

j=1,j 6=i
EZ

[∫ T

t
αj · (∆j(uis − vis))2ds

]
.

Thus, we have found

0 =EZ [(uiT − viT )2]

= EZ [(uit − vit)2] + 2EZ
[ ∫ T

t
(uis − vis)

{
N∑

j=1,j 6=i

(
(αj − α̃j) ·∆juis

)

−H(Yi,s,∆ivis) +H(Yi,s,∆iuis)− rN,i(s,Ys)
}
ds

]

+ EZ
[∫ T

t
αi(s,Ys) ·∆i[(uis − vis)2]ds

]
+

N∑
j=1,j 6=i

EZ
[∫ T

t
αj · (∆j(uis − vis))2ds

]
.

Now, using again the expression for ∆i((uis − vis)2),

EZ
[∫ T

t
αi(s,Ys) ·∆i[(uis − vis)2]ds

]

= EZ
[∫ T

t
αi(s,Ys) · (∆i(uis − vis))2ds

]

+ EZ
[∫ T

t
αi(s,Ys) · (∆i(uis − vis)× 2(1(uis − vis)ds

]
,

so that we can rewrite the previous as

EZ [(uit − uit)2] +
N∑
j=1

EZ
[∫ T

t
αj · (∆j(uis − vis))2ds

]

= −2EZ
[ ∫ T

t
(uis − vis)

{
N∑

j=1,j 6=i

(
(αj − α̃j) ·∆juis

)
−H(Yi,s,∆ivis)

+H(Yi,s,∆iuis)− rN,i(s,Ys)
}
ds

]

− EZ
[∫ T

t
αi(s,Ys) · (∆i(uis − vis)× 2(1(uis − vis)))ds

]
.
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Recalling that αj ≥ 0 (since it is a vector of transition rates), we can estimate

EZ [(uit − vit)2] +
N∑
j=1

EZ
[∫ T

t
αj · (∆j(uis − vis))2ds

]

≤ 2EZ
[ ∫ T

t

∣∣∣uis − vis∣∣∣
{

N∑
j 6=i

∣∣∣(αj − α̃j) ·∆juis

∣∣∣
+
∣∣∣H(Yi,s,∆ivis)−H(Yi,s,∆iuis)

∣∣∣+ ∣∣∣rN,i(s,Ys)∣∣∣
}
ds

]

+ 2EZ
[∫ T

t

∣∣∣uis − vis∣∣∣ · ∣∣∣αi(s,Ys) ·∆i(uis − vis)
∣∣∣ ds] .

This also implies, erasing the terms with j 6= i in the left hand side,

EZ [(uit − vit)2] + EZ
[∫ T

t
αi · (∆i(uit − vit))2ds

]

≤ 2EZ
[ ∫ T

t

∣∣∣uis−vis∣∣∣
{

N∑
j 6=i

∣∣∣(αj − α̃j) ·∆juis

∣∣∣
+
∣∣∣H(Yi,s,∆ivis)−H(Yi,s,∆iuis)

∣∣∣+ ∣∣∣rN,i(s,Ys)∣∣∣
}
ds

]

+ 2EZ
[∫ T

t

∣∣∣uis − vis∣∣∣ ∣∣∣αi(s,Ys) ·∆i(uis − vis)
∣∣∣ ds] .

For the boundedness of αi from below and above (recall that the admissible controls α are
such that α ∈ A = [κ,M ]d), we get

EZ [(uit − vit)2] + κEZ
[∫ T

t

∣∣∣∆i(uis − vis)
∣∣∣2 ds]

≤ 2EZ
[ ∫ T

t

∣∣∣uis−vis∣∣∣
{

N∑
j 6=i

∣∣∣(αj − α̃j) ·∆juis

∣∣∣
+
∣∣∣H(Yi,s,∆ivis)−H(Yi,s,∆iuis)

∣∣∣+ ∣∣∣rN,i(s,Ys)∣∣∣
}
ds

]

+ 2CEZ
[∫ T

t

∣∣∣uis − vis∣∣∣ ∣∣∣∆i(uis − vis)
∣∣∣ ds] .

We now use the Lipschitz continuity of H and α∗ (assumption (H1)) and the bounds on
||rN,i|| ≤ C

N and ||∆jui|| ≤ 1
N ||D

mU || ≤ C
N proved in Propositions 1.9 and 1.10 to obtain

EZ [(uit − vit)2] + κEZ
[∫ T

t

∣∣∣∆i(uis − vis)
∣∣∣2 ds]

≤ 2EZ
∫ T

t

∣∣∣uis − vis∣∣∣
CN

N∑
j=1,j 6=i

∣∣∣∆jujs −∆jvjs

∣∣∣+ C
∣∣∣∆i(vis − uis)

∣∣∣+ C

N

 ds


+ 2CEZ
[∫ T

t

∣∣∣uis − vis∣∣∣ ∣∣∣∆i(uis − vis)
∣∣∣ ds]
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≤ C

N
EZ

[∫ T

t
|uis − vis|ds

]
+ C

N

∑
j 6=i

EZ
[∫ T

t
|uis − vis|

∣∣∣∆j(ujs − vjs)
∣∣∣ ds]

+ CEZ
[∫ T

t
|uis−vis|

∣∣∣∆i(uis − vis)
∣∣∣ ds].

By the convexity inequality AB ≤ εA2 + B2

4ε we can further estimate the right hand side
to get

EZ [(uit − vit)2] + κEZ
[∫ T

t

∣∣∣∆i(uis − vis)
∣∣∣2 ds]

≤ C

N2 + CEZ
[∫ T

t
|uis − vis|2ds

]
+ κ

1
2N

N∑
j=1

EZ
[∫ T

t

∣∣∣∆j(ujs − vjs)
∣∣∣2 ds] .

By Gronwall’s Lemma, we obtain

sup
t∈[0,T ]

EZ [(uit − vit)2] + κEZ
[∫ T

0

∣∣∣∆i(uis − vis)
∣∣∣2 ds]

≤ C

N2 + κ

2N

N∑
j=1

EZ
[∫ T

0

∣∣∣∆j(ujs − vjs)
∣∣∣2 ds] . (1.42)

Taking the expectation and using the exchangeability of the processes (Yj,t)j=1,...N we
obtain (1.40).

In order to derive (1.41), we consider (1.42) in t = 0 and average over i = 1, . . . , N , so
that we get

1
N

N∑
i=1

EZ |uN,i(0,Z)− vN,i(0,Z)|2 ≤ C

N2 ,

which immediately implies (1.41) almost surely.
We now estimate the difference Xi − Yi. Thanks to Equations (1.36) and (1.29) and

the Lipschitz continuity in x and α of the dynamics given by f (see Lemma 2 in [24]), we
obtain

E
[

sup
s∈[0,t]

|Xi,s − Yi,s|
]

≤ CE
[∫ t

0

∣∣∣α∗(Xi,s,∆iuN,i(Xs))− α∗(Yi,s,∆ivN,i(Ys))
∣∣∣ ds]

+ CE
[∫ t

0
|Xi,s − Yi,s| ds

]
≤ CE

[∫ t

0
|Xi,s − Yi,s|ds

]
+ CE

[∫ T

0

∣∣∣∆iuN,i(Ys)−∆ivN,i(Ys)
∣∣∣ ds]

+ CE
[∫ t

0

∣∣∣∆xU
(
s,Xi,s,m

N,i
Xs

)
−∆xU

(
s, Yi,s,m

N,i
Ys

)∣∣∣ ds]
≤ C

N
+ CE

[∫ t

0
sup
r∈[0,s]

|Xi,r − Yi,r|ds
]

+ CE
[∫ t

0
sup
r∈[0,s]

∣∣∣mN
Xr −m

N
Yr

∣∣∣ ds] , (1.43)

where we applied (1.40) and the Lipschitz continuity in m of ∆xU in the last inequality.
Applying inequality (1.37) and the exchangeability of (X,Y ) to (1.43), yields

E
[

sup
s∈[0,t]

|Xi,s − Yi,s|ds
]
≤ C

N
+ CE

[∫ t

0
sup
r∈[0,s]

|Xi,r − Yi,r|ds
]
,
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so that by Gronwall’s inequality we get (1.38). Finally (1.38), applying again (1.37), gives
(1.39).

1.3.2 Proofs of the main results

We are now in the position to prove the main results.

Proof of Theorem 1.7. For proving (1.27), we just compute (1.41) - which can be derived
for any t0 ∈ [0, T ] when considering processes starting from t0 - for Z uniformly distributed
on Σ: this yields

1
N

N∑
i=1
|U(t0, xi,mN,i

x )− vN,i(t0,x)| ≤ C

N
.

Then, we can replace U(t0, xi,mN,i
x ) with U(t0, xi,mN

x ) using the Lipschitz continuity of
U with respect to m, the additional error term being of order 1/N .

For (1.28), we compute

||wN,i(t0, ·,m0)− U(t0, ·,m0)||L1(m0) =

=
d∑

xi=1
|wN,i(t0, xi,m0)− U(t0, xi,m0)|m0(xi)

=
d∑

xi=1

∣∣∣∣∣∣
d∑

x1,...,xi−1,xi+1,...,xN=1
vN,i(t,x)

∏
j 6=i

m0(xj)− U(t, xi,m0)

∣∣∣∣∣∣m0(xi)

=
d∑

xi=1

∣∣∣∣∣∣
d∑

x1,...,xi−1,xi+1,...,xN=1

vN,i(t,x)
∏
j 6=i

m0(xj)− uN,i(t,x)
∏
j 6=i

m0(xj)

+uN,i(t,x)
∏
j 6=i

m0(xj)

− U(t, xi,m0)

∣∣∣∣∣∣m0(xi)

≤ E[|vN,i(t,Z)− uN,i(t,Z)|] +
d∑

x1,...,xN=1
|uN,i(t,x)− U(t, xi,m0)|

N∏
j=1

m0(xj),

(1.44)

where in the last inequality the initial data Z = (Z1, . . . , ZN ) are distributed as m0.
By (1.40), the first term in (1.44) is of order 1/N . For the second term we further

estimate, using again the Lipschitz continuity of U with respect to m,

d∑
x1,...,xN=1

|uN,i(t,x)− U(t, xi,m0)|
N∏
j=1

m0(xj)

=
d∑

x1,...,xN=1
|U(t, xi,mN,i

x )− U(t, xi,m0)|
N∏
j=1

m0(xj)

≤ CE
[
d1(mN,i

Z ,m0)
]
≤ C√

N
,

where in the last inequality we used that E
[
d1(mN

Z ,m0)
]
≤ C√

N
, thanks to Theorem 1

of [59], where Z := (Z1 . . . , ZN ), the Zi’s are i.i.d. initial data, m0-distributed, d1 is the
1-Wasserstein distance and mN

Z is the corresponding empirical measure. Overall, we have
bounded (1.44) by a term of order 1/

√
N , and thus (1.28) is also proved.
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Finally, we get to the proof of the propagation of chaos (Theorem 1.8). Recall that
the Yi,t’s are the optimal processes, i.e. the solutions to system (1.29), the Xi,t’s are the
processes associated to the functions uN,i, i.e. they solve System (1.36), while the X̃i,t’s
- to which we would like to prove convergence - are the decoupled limit processes (they
solve system (1.30)). First, we need the following lemma, whose proof can be found for
example in [90]:

Lemma 1.12. Let X̃t = (X̃i,t)i∈1,...,N be N i.i.d. processes with values in R, with
Law(X̃i,t) = m(t). Then

E
[

sup
t∈[0,T ]

∣∣∣mN,i

X̃t
−mt

∣∣∣] ≤ CE [ sup
t∈[t0,T ]

d1(mN,i

X̃t
,mt)

]
≤ CN−1/9. (1.45)

Proof of Theorem 1.8. The assertion of the theorem is proved if we show that

E
[

sup
t∈[0,T ]

|Xi,t − X̃i,t|
]
≤ CN−1/9. (1.46)

Indeed, by the triangle inequality and (1.38) in Theorem 1.11 we can estimate

E
[

sup
t∈[0,T ]

|Yi,t − X̃i,t|
]
≤ E

[
sup
t∈[0,T ]

|Yi,t −Xi,t|
]

+ E
[

sup
t∈[0,T ]

|Xi,t − X̃i,t|
]

≤ C(N−1 +N−1/9).

We are then left to prove (1.46). As in the proof of (1.38), we have

ρ(t) := E
[

sup
s∈[0,t]

|Xi,s − X̃i,s|
]

≤ E
[ ∫ t

0

∣∣∣α∗(Xi,s,∆iuN,i(Xs))− α∗(X̃i,s,∆xU(s, X̃i,s,m(s)))
∣∣∣ ds

+
∫ t

0

∣∣∣Xi,s − X̃i,s

∣∣∣ ds]

≤ E
[∫ t

0

∣∣∣α∗(Xi,s,∆xU(r,Xi,s,m
N,i
Xs

))− α∗(Xi,s,∆xU(s, X̃i,s,m
N,i

X̃s
))
∣∣∣ ds

+
∫ t

0

∣∣∣Xi,s − X̃i,s

∣∣∣ ds
+
∫ t

0

∣∣∣α∗(Xi,s,∆xU(s, X̃i,s,m
N,i

X̃s
))− α∗(X̃i,s,∆xU(s, X̃i,s,m(s)))

∣∣∣ ds] .
By the Lipschitz continuity of the optimal controls, and of ∆xU , we can write

ρ(t) ≤ C
∫ t

0
E
[
|Xi,s − X̃i,s|+

∣∣∣mN,i

X̃s
−mN,i

Xs

∣∣∣+ ∣∣∣mN,i

X̃s
−m(s)

∣∣∣] ds
≤ C

∫ t

0
E

|Xi,s − X̃i,s|+
1

N − 1
∑
j 6=i
|Xj,s − X̃j,s|+

∣∣∣mN,i

X̃s
−m(s)

∣∣∣
 ds.

Using (1.45) of Lemma 1.12 and the exchangeability of the processes, we obtain

ρ(t) ≤ C
∫ t

0

E [ sup
r∈[0,s]

|Xi,r − X̃i,r|
]

+ 1
N − 1

∑
j 6=i

E
[

sup
r∈[0,s]

|Xj,r − X̃j,r|
] ds
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+ CE
[

sup
r∈[0,T ]

∣∣∣mN,i

X̃r
−mr

∣∣∣]

≤ C
∫ t

0
ρ(s)ds+ CN−1/9,

which, by Gronwall’s Lemma, concludes the proof of (1.31). Finally (1.32) follows from
(1.31) and (1.45), using also (1.37).

1.4 Fluctuations and large deviations
The convergence results, Theorem 1.7 and 1.8, allow one to derive a Central Limit Theorem
and a Large Deviation Principle for the asymptotic behaviour of the empirical measure
process of the N -player game optimal trajectories. First of all, we recall from Proposition
1.5 that, for any i, the value function vN,i of player i in the N -player game is invariant
under permutations of (x1, . . . , xi−1, xi+1, . . . , xN ). This is equivalent to say that the value
functions can be viewed as functions of the empirical measure of the system, i.e. there
exists a map V N : [0, T ]× Σ× P (Σ) such that

vN,i(t,x) = V N (t, xi,mN,i
x ) (1.47)

for any i = 1, . . . , N , t ∈ [0, T ] and x ∈ ΣN .

1.4.1 The empirical measure process

We consider the empirical measure process of the optimal evolution Y - defined in (1.29) -
of the N -player game. If the system is in x at time t, then the rate at which player i goes
from xi to y is given, via the optimal control, by

α∗y(xi,∆iV N (t, xi,mN,i
x )) =: ΓNxi,y(t,m

N
x ), (1.48)

i.e. by a function ΓN which depends only on the empirical measure mN
x and on the number

of players N .
Thus the empirical measure of the system (mN

t )t∈[0,T ], mN
t := mN

Y (t) = 1
N

∑N
i=1 δYi,t ,

evolves as a (time-inhomogeneous) Markov process on [0, T ], with values in SN := P (Σ) ∩
1
NZd. The number of players in state x, when the empirical measure is m, is Nmx. Hence
the jump rate of mN in the direction 1

N (δy − δx) at time t is NmxΓNx,y(t,m). Therefore
the generator of the time-inhomogeneous Markov process mN is given, at time t, by

LNt g(m) := N
∑
x,y∈Σ

mxΓNx,y(t,m)
[
g

(
m+ 1

N
(δy − δx)

)
− g(m)

]
, (1.49)

for any g : SN −→ R. Theorem 1.8 implies that the empirical measures converge in L1

- on the space of trajectories D([0, T ];P (Σ)) - to the deterministic flow of measures m
which is the unique solution to the mean field game system, whose dynamics is given by
the KFP ODE {

d
dtm(t) = Γ(t,m(t))†m(t)
m(0) = m0,

(1.50)

where Γ is the matrix defined by

Γx,y(t,m) := α∗y(x,∆xU(t, x,m)) (1.51)
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and U is the solution to the master equation. Viewing m(t) as a Markov process - and so
we will write mt in this section -, its infinitesimal generator is given, at time t, by

Ltg(m) :=
∑
x,y∈Σ

mxΓx,y(t,m)[Dmg(m,x)]y (1.52)

for any g : P (Σ) −→ R. Thanks to (1.8), the generator can be equivalently written as

Ltg(m) :=
∑
x,y∈Σ

mxΓx,y(t,m)[Dmg(m, 1)]y = m†Γ(t,m)Dmg(m, 1). (1.53)

In order to prove the asymptotic results, we will also consider the empirical measure
of the process X defined in (1.36), in which each player chooses the same control Γx,y
independent of N . We denote by ηNt := 1

N

∑N
i=1 δXi(t) the empirical measure process of

X, whose generator is given, for any g : P (Σ) −→ R, by

MN
t g(m) := N

∑
x,y∈Σ

mxΓx,y(t,m)
[
g

(
m+ 1

N
(δy − δx)

)
− g(m)

]
. (1.54)

1.4.2 Central Limit Theorem

A natural refinement of the Law of Large Numbers (1.32) consists in studying the fluctua-
tions around the limit, that is the asymptotic distribution of mN

t −mt.
This can be done through a functional Central Limit Theorem: we define the fluctuation

flow
ρNt :=

√
N(mN

t −mt), t ∈ [0, T ], (1.55)
and study its asymptotic behaviour as N tends to infinity. We follow a classical weak
convergence approach based on uniform convergence of the generator of the fluctuation
flow (1.55) to a limiting generator of a diffusion process to be determined; see e.g. [37]
for reference. Before stating the theorem we observe that the process (1.55) has values in
P0(Σ), which in the following we treat as a subset of Rd.

Theorem 1.13 (Central Limit Theorem). Let U be a regular solution to the master
equation and assume (H1). Then the fluctuation flow ρNt in (1.55) converges, as N → +∞,
in the sense of weak convergence of stochastic processes, to a limit Gaussian process ρt
which is the solution of the linear SDEdρt =

(
Γ(t,mt)†ρt + b(t,mt, ρt)

)
dt+ σ(t,mt)dBt,

ρ0 = ρ̄,
(1.56)

where ρ̄ is the limit of ρN0 in distribution, B is a standard d-dimensional Brownian motion,
Γ is the transition rate matrix in (1.51), b ∈ Rd is linear in µ and defined, for any y ∈ Σ
and µ ∈ P0(Σ), by

b(t,m, µ)y :=
∑
x∈Σ

mx [DmΓx,y(t,m, 1) · µ] , (1.57)

and σ ∈ Rd×d is given by the relations

(σ2)x,y(t,m) = −(mxΓx,y(t,m) +myΓy,x(t,m)), for x 6= y, (1.58)
(σ2)x,x(t,m) =

∑
y 6=x

(myΓy,x(t,m) +mxΓx,y(t,m)). (1.59)

In particular the matrix σ2 is the opposite of the generator of a Markov chain, is symmetric
and positive semidefinite with one null eigenvalue, and the same properties hold for σ,
meaning that ρt ∈ P0(Σ) for any t.
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Proof. The key observation is that we can reduce ourselves to study the asymptotics of
the fluctuation flow

µNt :=
√
N(ηNt −mt), (1.60)

which is more standard since ηNt , whose generatorM is defined in (1.54), is the empirical
measure of an uncontrolled system of N mean-field interacting particles. Indeed, by (1.39)
we have that

√
N(mN − ηN ) tends to 0 almost surely as N goes to infinity.

Thus, it remains to prove the convergence in law of (1.60) to the solution to (1.56).
The convergence of µN0 (and ρN0 ) to the initial condition ρ̄ follows from the Central Limit
Theorem for the i.i.d. sequence of initial conditions Zi in systems (22) and (28). Then, we
compute the generator of (1.60) for t ≥ 0. We note that µNt is obtained from ηNt through
a time dependent, linear invertible transformation Φt : SN → P0(Σ) ⊂ Rd, defined by

Φt(ϑ) :=
√
N(ϑ−mt),

with inverse Φ−1
t (µ) := mt + µ√

N
. Thus, the generator HNt of (1.60) can be written as

HNt g(µ) =MN
t [g ◦ Φt](Φ−1

t (µ)) + ∂

∂t
[g ◦ Φt](Φ−1

t (µ)), (1.61)

for any g : P0(Σ)→ R regular and with compact support (we can extend the definition of
g to be a smooth function in the whole space Rd, so that the usual derivatives are well
defined). We have

∂

∂t
[g ◦ Φt](Φ−1

t (µ)) = −
√
N∇µg(µ) · d

dt
mt = −

√
N∇µg(µ) ·

(
Γ (t,mt)†mt

)
= −
√
N

∑
x,y∈Σ

∂

∂µy
g(µ)Γx,y(t,mt)(mt)x.

where the second equality follows from the KFP equation for mt. For the remaining part
in (1.61), we have

MN
t [g ◦ Φt](Φ−1

t (µ)) = N
∑
x,y∈Σ

(
mt + µ√

N

)
x

Γx,y
(
t,mt + µ√

N

)
×

×
{

[g ◦ Φt]
(
mt + µ√

N
+ 1
N

(δy − δx)
)
− [g ◦ Φt]

(
mt + µ√

N

)}
= N

∑
x,y∈Σ

(
mt+

µ√
N

)
x

Γx,y
(
t,mt+

µ√
N

){
g

(
µ+ 1√

N
(δy − δx)

)
− g(µ)

}
.

Thus, we have found

HNt g(µ) = N
∑
x,y∈Σ

(
mt + µ√

N

)
x

Γx,y
(
t,mt + µ√

N

){
g

(
µ+ 1√

N
(δy − δx)

)
− g(µ)

}

−
√
N

∑
x,y∈Σ

∂

∂µy
g(µ)Γx,y(t,mt)(mt)x.

In order to perform a Taylor expansion of the generator, we first develop the term

g

(
µ+ 1√

N
(δy − δx)

)
− g(µ)

= 1√
N
∇µg(µ) · (δy − δx) + 1

2N (δy − δx)†D2
µµg(µ)(δy − δx)
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+O

( 1
N3/2

)
.

Substituting, we get

HNt g(µ) =
√
N

∑
x,y∈Σ

(
mt + µ√

N

)
x

Γx,y
(
t,mt + µ√

N

)
∇µg(µ) · (δy − δx)

+ 1
2
∑
x,y∈Σ

(
mt + µ√

N

)
x

Γx,y
(
t,mt + µ√

N

)
(δy − δx)†D2

µµg(µ)(δy − δx)

−
√
N

∑
x,y∈Σ

∂

∂µy
g(µ)Γx,y(t,mt)(mt)x +O

( 1√
N

)
.

Now, we note that∑
x,y∈Σ

(
mt + µ√

N

)
x

Γx,y
(
t,mt + µ√

N

)
∇µg(µ) · (δy − δx)

=
∑
x,y∈Σ

(
mt + µ√

N

)
x

Γx,y
(
t,mt + µ√

N

)
∂

∂µy
g(µ),

since
∑
y Γx,y = 0. This property allows us to rewrite

HNt g(µ) =
∑
x,y∈Σ

µxΓx,y
(
t,mt + µ√

N

)
∂

∂µy
g(µ)

+
√
N

∑
x,y∈Σ

(mt)x
∂

∂µy
g(µ)

[
Γx,y

(
t,mt + µ√

N

)
− Γx,y(t,mt)

]

+ 1
2
∑
x,y∈Σ

(
mt + µ√

N

)
x

Γx,y
(
t,mt + µ√

N

)
(δy − δx)†D2

µµg(µ)(δy − δx)

+O

( 1√
N

)
.

Then, using the Lipschitz continuity of Γ as we did in Proposition 3, we linearize the term

Γx,y
(
t,mt + µ√

N

)
− Γx,y(t,mt) = 1√

N
DmΓx,y(t,mt, 1) · µ+O

( 1
N

)
.

We thus deduce that

lim
N→+∞

sup
t∈[0,T ]

sup
µ∈P0(Σ)

|HNt g(µ)−Htg(µ)| = 0

for any g, the convergence being of order 1√
N
, where

Htg(µ) :=
∑
x,y∈Σ

µxΓx,y (t,mt)
∂

∂µy
g(µ) +

∑
x,y∈Σ

(mt)x [DmΓx,y(t,mt, 1) · µ] ∂

∂µy
g(µ)

(1.62)

+ 1
2
∑
x,y∈Σ

(mt)x Γx,y (t,mt) (δy − δx)†D2
µµg(µ)(δy − δx).

The proof is then completed if we show that the generator (1.62) is associated to the SDE
(1.56).



1.4 Fluctuations and large deviations 31

The drift component can be immediately identified, since∑
x,y∈Σ

µxΓx,y (t,mt)
∂

∂µy
g(µ) =

(
Γ(t,mt)†µ

)
· ∇µg(µ),

and ∑
x,y∈Σ

(mt)x [DmΓx,y(t,mt, 1) · µ] ∂

∂µy
g(µ) = b(t, µ) · ∇µg(µ).

For the diffusion component, we first note that, for each x, y ∈ Σ,

(δy − δx)†D2
µµg(µ)(δy − δx) = ∂2

∂µyµy
g(µ) + ∂2

∂µxµx
g(µ)− ∂2

∂µxµy
g(µ)− ∂2

∂µyµx
g(µ),

so that
1
2
∑
x,y∈Σ

(δy − δx)†D2
µµg(µ)(δy − δx)(mt)xΓx,y(t,mt)

= 1
2
∑
x,y∈Σ

[
∂2

∂µyµy
g(µ) + ∂2

∂µxµx
g(µ)− ∂2

∂µxµy
g(µ)− ∂2

∂µyµx
g(µ)

]
(mt)xΓx,y(t,mt),

which is equal to

1
2Tr(σ

2(t,mt)D2
µµg(µ)) = 1

2
∑
x,y∈Σ

(σ2(t,mt))x,y
∂2

∂µxµy
g(µ),

if we define (σ2)x,y∈Σ by the relations (1.58) and (1.59).
Finally, we observe that the limit process ρt defined in (1.56) takes values in P0(Σ), as

required. Indeed, by diagonalizing σ2 - which is symmetric and such that its rows sum to
0 - we get that all the eigenvectors, besides the constant one relative to the null eigenvalue,
have components which sum to 0 (by orthogonality). The same properties hold for the
square root matrix σ, so that Equation (1.56) preserves the space P0(Σ).

1.4.3 Large Deviation Principle

We state the large deviation result, which is a sample path Large Deviation Principle
on D([0, T ];P (Σ)). To define the rate function, we first introduce the local rate function
λ : R −→ [0,+∞],

λ(r) :=


r log r − r + 1 r > 0,
1 r = 0,
+∞ r < 0.

(1.63)

For t ∈ [0, T ], m ∈ P (Σ) and µ ∈ P0(Σ), define

Λ(t,m, µ) := inf
{ ∑
x,y∈Σ

mxΓx,y(t,m)λ
(

qx,y
Γx,y(t,m)

)
: qx,y ≥ 0,

∑
x,y∈Σ

qx,y(δy − δx) = µ ∀x, y
}
,

(1.64)

and set, for γ : [0, T ] −→ P (Σ),

I(γ) :=
{∫ T

0 Λ(t, γ(t), γ̇(t))dt if γ is absolutely continuous and γ(0) = m0

+∞ otherwise.
(1.65)
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We are now able to state the Large Deviation Principle. We equip D([0, T ];P (Σ))
with the Skorokhod J1-topology and denote by B(D([0, T ];P (Σ))) the associated Borel
σ-algebra.

Theorem 1.14 (Large Deviation Principle). Let U be a regular solution to the master
equation and assume (H1). Also, assume that the initial conditions (mN

0 )N∈N are deter-
ministic and limN m

N
0 = m0. Then the sequence of empirical measure processes (mN )N∈N

satisfies the sample path Large Deviation Principle on D([0, T ];P (Σ)) with the (good) rate
function I. Specifically,

(i) If E ∈ B(D([0, T ];P (Σ))) is closed then

lim sup
N

1
N

logP(mN ∈ E) ≤ − inf
γ∈E
{I(γ)} . (1.66)

(ii) If E ∈ B(D([0, T ];P (Σ))) is open then

lim inf
N

1
N

logP(mN ∈ E) ≥ − inf
γ∈E
{I(γ)} . (1.67)

(iii) For any M < +∞ the set

{γ ∈ D([0, T ];P (Σ)) : I(γ) ≤M} (1.68)

is compact.

We remark that the initial conditions are assumed to be deterministic only for simplicity,
otherwise there would be another term in the rate function I. Before proving Theorem
1.14, let us give another characterization of I. For m ∈ P (Σ) and θ ∈ Rd, define

Ψ(t,m, θ) :=
∑
x,y

mxΓx,y(t,m)
[
eθ·(δy−δx) − 1

]
(1.69)

and let Λ0 be the Legendre transform of Ψ:

Λ0(t,m, µ) = sup
θ∈Rd

[θ · µ−Ψ(t,m, θ)] . (1.70)

Define I0 as in (1.65) but with Λ replaced by Λ0. Via a standard result in convex analysis,
Proposition 6.2 in [54] shows that Λ = Λ0 and then I = I0.

Several authors studied large deviation properties of mean field interacting processes
similar to ours. However, most of them deal with the case in which the prelimit jump
rates, mN

x ΓN , are constant and equal to the limit rates mxΓ; see e.g. [80], [94] and [93].
We mention that in this latter paper, as in many others, it is also assumed that the jump
rates of the prelimit process are bounded from below and away from 0; this does not apply
to our case, since the number of agents in a state x could be 0, implying that mN

x ΓNx,y
might also be 0.

To prove the claim, we apply the results in [54]: to our knowledge, it is the first
paper which proves a Large Deviation Principle considering the jump rates of any player
depending on N (and deals also with systems with simultaneous jumps). Theorem 3.4.1 in
[101] shows, however, the exponential equivalence of the processes mN and the processes
ηN given by (1.54) in which the jump rates of the prelimit system mN

x ΓN are replaced by
mxΓ, which does not depend on N ; the proof uses a coupling of the two Markov chains.
The results in [54] and [101] are derived assuming the following properties:



1.5 The master equation: well-posedness and regularity 33

1. the dynamics of any agent is ergodic and the jump rates are uniformly bounded;

2. for each x, y ∈ Σ, the limit jump rates Γx,y are Lipschitz continuous in m;

3. for each x, y ∈ Σ, given any sequence mN ∈ SN such that limN m
N = m,

lim
N

sup
0≤t≤T

|mN
x ΓNx,y(t,mN )−mxΓx,y(t,m)| = 0. (1.71)

Property (1) holds in our model since the jump rates of any player belong to [κ,M ], while
(2) is true because of the regularity of the solution U to the master equation.

Proof of Theorem 1.14. The fact that I is a good rate function, i.e condition (iii), is proved
for instance in Theorem 1.1 of [53]. Due to Theorem 3.9 in [54], in order to prove the
claims (i) and (ii), it is enough to show (1.71). Actually [54] studies time homogeneous
Markov processes, but their results still apply in the non-homogeneous case if one proves
the uniform in time convergence given by (1.71).

Let x, y ∈ Σ, mN = mN
x ∈ SN , x = (x1, . . . , xN ) ∈ ΣN and mN

x → m. Then∣∣[mN
x ]xΓNx,y(t,mN

x )−mxΓx,y(t,m)
∣∣ ≤ ∣∣[mN

x ]xΓNx,y(t,mN
x )− [mN

x ]xΓx,y(t,mN
x )
∣∣

+
∣∣[mN

x ]xΓx,y(t,mN
x )−mxΓx,y(t,m)

∣∣ =: A+B.

The first term goes to zero, uniformly over time, thanks to (1.27):

A =
∣∣∣∣∣ 1
N

N∑
i=1

1{xi=x}α
∗
y(xi,∆iV N (t, xi,mN,i

x ))− 1
N

N∑
i=1

1{xi=x}α
∗
y(xi,∆xU(t, xi,mN

x ))
∣∣∣∣∣

≤ C 1
N

N∑
i=1

∣∣∣∆iV N (t, xi,mN,i
x )−∆xU(t, xi,mN

x )
∣∣∣

≤ C sup
x∈ΣN

1
N

N∑
i=1

∣∣∣vN,i(t,x)− U(t, xi,mN
x )
∣∣∣ ≤ C

N
.

While B converges to 0, uniformly over t, for the regularity of U :

B =
∣∣∣[mN

x ]xα∗y(x,∆xU(t, x,mN
x ))−mxα

∗
y(x,∆xU(t, x,m))

∣∣∣
≤ |α∗y(x,∆xU(t, x,mN

x ))||[mN
x ]x −mx|+ C|mx||∆xU(t, x,mN

x )−∆xU(t, x,m)|
≤ C|mN

x −m|,

which tends to 0 by assumption.

1.5 The master equation: well-posedness and regularity

In this section we study the well-posedness of Equation (M) under the assumptions
of monotonicity and regularity for F,G,H we already introduced (Mon), (RegFG),
(RegH). A preliminary remark is that, thanks to Proposition 1 in [61], if H is differentiable
(and this is indeed the case of our assumptions) then

α∗x(y, p) = − ∂

∂px
H(y, p). (1.72)

For this reason, we will in the following use α∗ interchangeably with −DpH.
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Theorem 1.15. Assume (Mon), (RegFG) and (RegH). Then there exists a unique
classical solution to (M) in the sense of Definition 1.6. Moreover, it is regular.

The proof exploits the renowned method of characteristics, which consists in proving
that

U(t0, x,m0) := u(t0, x) (1.73)
solves (M), u being the solution of the mean field game system (MFG) with initial time t0
and initial distribution m0. In order to perform the computations, we have to prove the
regularity in m of the function U(t0, x,m) defined above. In particular, we have to show
that DmU exists and is bounded. For this, we follow the strategy shown in [15] - which is
developed in infinite dimension - adapting it to our discrete setting. The idea consists in
studying the well-posedness and regularity properties of the linearized version of System
(MFG), whose solution will end up coinciding with DmU · µ0, for all possible directions
µ0 ∈ P0(Σ). In the remaining part of this section, C will denote any constant which does
not depend on t0, m0, and is allowed to change from line to line.

1.5.1 Estimates on the mean field game system

We start by proving the well-posedness of System (MFG)
− d
dtu(t, x) +H(x,∆xu(t, x)) = F (x,m(t)),

d
dtmx(t) =

∑
ymy(t)α∗x(y,∆yu(t, y)),

u(T, x) = G(x,m(T )),
mx(t0) = mx,0,

and a useful a priori estimate on its solution (u,m). The existence of solutions follows
from a standard fixed point argument: see Proposition 4 of [61]. Let us remark that any
flow of measures m lies in the space{

m ∈ C0 ([t0, T ], P (Σ)) : |m(t)−m(s)| ≤ 2ν(Ξ)
√
d|t− s|

}
,

which is a compact and convex subset of the space of continuous functions, endowed with
the uniform norm (Lemma 4 of [24]). On the other hand the uniqueness of solution, under
our assumptions, is a consequence of the following a priori estimates. Before stating the
proposition, we recall the notation ||u|| := supt∈[t0,T ] maxx∈Σ |u(t, x)|.

Proposition 1.16. Assume (Mon), (RegFG) and (RegH). Let (u1,m1) and (u2,m2)
be two solutions to (MFG) with initial conditions m1(t0) = m1

0 and m2(t0) = m2
0. Then

||u1 − u2|| ≤ C|m1
0 −m2

0|, (1.74)
||m1 −m2|| ≤ C|m1

0 −m2
0|. (1.75)

Proof. Without loss of generality, let us set t0 = 0. Let u := u1 − u2 and m := m1 −m2.
The proof is carried out in three steps.

Step 1. Use of Monotonicity. The couple (u,m) solves
− d
dtu(t, x) +H(x,∆xu1(t, x))−H(x,∆xu2(t, x)) = F (x,m1(t))− F (x,m2(t))

d
dtm(t, x) =

∑
y [m1(t, y)α∗x(y,∆yu1(t, y))−m2(t, y)α∗x(y,∆yu2(t, y))]

u(T, x) = G(x,m1(T ))−G(x,m2(T ))
m(0, x) = m1

0 −m2
0.

(1.76)
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Since d
dt

∑
xm(x)u(x) =

∑
xm(x)dudt (x) +

∑
x
dm
dt (x)u(x), integrating over [0, T ] we have∑

x

[m(T, x)u(T, x)−m(0, x)u(0, x)]

=
∫ T

0

∑
x

[H(x,∆xu1)−H(x,∆xu2)− F (x,m1) + F (x,m2)] (m1(x)−m2(x))dt

+
∫ T

0

∑
x

∑
y

[m1(y)α∗x(y,∆yu1)−m2(y)α∗x(y,∆yu2)] (u1(x)− u2(x))dt.

Using the fact that
∑
x α
∗
x(y) = 0 and the initial-final data, we can rewrite∑

x

[G(x,m1)−G(x,m2)](m1(x)−m2(x))

+
∫ T

0

∑
x

[F (x,m1)− F (x,m2)] (m1(x)−m2(x))dt

=
∑
x

(m1
0(x)−m2

0(x))(u1(0, x)− u2(0, x))

+
∫ T

0

∑
x

{[H(x,∆xu1)−H(x,∆xu2)](m1(x)−m2(x))

+∆xu · [m1(x)α∗(x,∆xu1)−m2(x)α∗(x,∆xu2)]} dt.

We now apply the monotonicity of F and G in the first line and the uniform convexity
of H in the last two lines. In fact, recalling that α∗y(x, p) = − ∂

∂py
H(x, p), by (RegH) we

have that, for each x,

H(x,∆xu1)−H(x,∆xu2)−∆xu · ∂
∂p
H(x,∆xu1) ≤ −C−1|∆xu|2

H(x,∆xu2)−H(x,∆xu1) + ∆xu · ∂
∂p
H(x,∆xu2) ≤ −C−1|∆xu|2.

Hence we obtain∫ T

0

∑
x

|∆xu(x)|2(m1(x) +m2(x))dt ≤ C(m1
0 −m2

0) · (u1(0)− u2(0)). (1.77)

Step 2. Estimate on Kolmogorov-Fokker-Planck equation. Integrating the second
equation in (1.76) over [0, t], we get

m(t, x) = m(0, x) +
∫ t

0

∑
y

[m1(s, y)α∗x(y,∆yu1(s, y))−m2(s, y)α∗x(y,∆yu2(s, y))] ds.

The boundedness and Lipschitz continuity of the rates give

max
x
|m(t, x)| ≤ C|m1

0 −m2
0|+ C

∫ t

0
max
x
|m(s, x)|ds+ C

∫ t

0

∑
x

|∆xu(s, x)|m1(s, x)ds

and hence, by Gronwall’s Lemma,

||m|| ≤ C|m1
0 −m2

0|+ C

∫ T

0

√∑
x

|∆xu(t, x)|2m1(x)dt. (1.78)

This, together with inequality (1.77), yields

||m|| ≤ C(|m1
0 −m2

0|+ |m1
0 −m2

0|1/2||u||1/2). (1.79)
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Step 3. Estimate on Hamilton-Jacobi-Bellman equation. Integrating the first equation
in (1.76) over [t, T ], we get

u(t, x) =G(x,m1(T ))−G(x,m2(T ))

+
∫ T

t
[F (x,m1)− F (x,m2) +H(x,∆xu2)−H(x,∆xu1)] ds.

Using the Lipschitz continuity of F,G,H and the bound

max
x
|∆xu(x)| ≤ C max

x
|u(x)|,

we obtain

max
x
|u(t, x)| ≤ C|m1(T )−m2(T )|+ C

∫ T

t
|m1(s)−m2(s)|ds+ C

∫ T

t
max
x
|u(s, x)|ds.

Then, Gronwall’s Lemma gives
||u|| ≤ C||m||. (1.80)

This bound (1.80) and estimate (1.79) yield claim (1.75), using the convexity inequality
AB ≤ εA2 + 1

4εB
2 for A,B > 0. Again (1.80) finally proves claim (1.74).

1.5.2 Linearized MFG system

For proving Theorem 1.15, we introduce the linearized version of System (MFG) around
its solutions and then prove that it provides the derivative of u(t0, x) with respect to the
initial condition m0.

As a preliminary step, we study a related linear system of ODE’s, which will come
useful several times.

− d
dtz(t, x)− α∗(x,∆xu) ·∆xz(t, x) = DmF (x,m(t), 1) · ρ(t) + b(t, x)

d
dtρ(t, x) =

∑
y ρyα

∗
x(y,∆yu) +

∑
ymy(t)Dpα

∗
x(y,∆xu) ·∆yz + c(t, x)

z(T, x) = DmG(x,m(T ), 1) · ρ(T ) + zT (x)
ρ(t0, ·) = ρ0,

(1.81)

The unknowns are z and ρ, while b, c, zT , ρ0 are given measurable functions, with c(t) ∈
P0(Σ), and (u,m) is the solution to (MFG). We state an immediate but useful estimate
regarding the first of the two equations in (1.81).

Lemma 1.17. If (RegFG) holds then the equation{
− d
dtz(t, x)− α∗(x,∆xu) ·∆xz(t, x) = DmF (x,m(t), 1) · ρ(t) + b(t, x)

z(T, x) = DmG(x,m(T ), 1) · ρ(T ) + zT (x)
(1.82)

has a unique solution for each final condition zT (x) and satisfies

||z|| ≤ C
[
max
x
|zT (x)|+ ||ρ||+ ||b||

]
. (1.83)

Proof. The well-posedness of the equation is immediate from classical ODE’s theory.
Integrating over the time interval [t, T ] and using that

α∗(x,∆xu) ·∆xz(t, x) =
∑
y

α∗y(x,∆xu)zy(t),
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we find

z(t, x)− z(T, x)−
∫ T

t

∑
y

α∗y(x,∆xu)zy(s)ds =
∫ T

t
DmF · ρ(s)ds+

∫ T

t
b(s, x)ds.

Substituting the expression for z(T, x), and using the bound on the control and on the
derivatives of F and G we can estimate

max
x
|z(t, x)| ≤ max

x
|zT (x)|+ C max

x
|ρ(T, x)|

+ C

∫ T

t
max
x
|z(s, x)|ds+ C

∫ T

t
max
x
|ρ(s, x)|ds+

∫ T

t
max
x
|b(s, x)|ds

and thus, applying Gronwall’s Lemma and taking the supremum on t, we get (1.83).

In the next result we prove the well-posedness of System (1.81) together with useful a
priori estimates on its solution.

Proposition 1.18. Assume (RegH), (Mon) and (RegFG). Then, for any (measurable)
b, c, zT , the linear system (1.81) has a unique solution (z, ρ) ∈ C1([0, T ];Rd × P0(Σ)).
Moreover it satisfies

||z|| ≤ C(|zT |+ ||b||+ ||c||+ |ρ0|) (1.84)
||ρ|| ≤ C(|zT |+ ||b||+ ||c||+ |ρ0|). (1.85)

Proof. Without loss of generality we assume t0 = 0. We use a fixed-point argument to
prove the existence of a solution to (1.81). Uniqueness will be then implied by estimates
(1.84) and (1.85), thanks to the linearity of the system.

We define the map Φ : C0 ([0, T ];P0(Σ)) → C0 ([0, T ];P0(Σ)) as follows: for a fixed
ρ ∈ C0 ([0, T ];P0(Σ)) we consider the solution z = z(ρ) to Equation (1.82), and define
Φ(ρ) to be the solution of the second equation in (1.81) with z = z(ρ). In order to
prove the existence of a fixed point of Φ, which is clearly a solution to (1.81), we apply
Leray-Schauder Fixed Point Theorem. We remark the fact that more standard fixed point
theorems are not applicable to this situation since we cannot assume that ρ belongs to a
compact subspace of C0 ([0, T ];P0(Σ)), since P0(Σ) is not compact. First of all, we note
that C0 ([0, T ];P0(Σ)) is convex and that the map Φ is trivially continuous, because of the
linearity of the system. Moreover, using the equation for ρ in System (1.81), it is easy to
see that Φ is a compact map, i.e. it sends bounded sets of C0 ([0, T ];P0(Σ)) into bounded
sets of C1 ([0, T ];P0(Σ)). Thus, to apply Leray-Schauder Theorem it remains to prove
that the set {ρ : ρ = λΦ(ρ) for some λ ∈ [0, 1]} is bounded in C0 ([0, T ];P0(Σ)).

Let us fix a ρ such that ρ = λΦ(ρ). Then the couple (z, ρ) solves
− d
dtz(t, x)− α∗(x,∆xu) ·∆xz(t, x) = λ (DmF (x,m(t), 1) · ρ(t) + b(t, x))

d
dtρ(t, x) =

∑
y ρyα

∗
x(y,∆yu) + λ

(∑
ymy(t)Dpα

∗
x(y,∆xu) ·∆yz + c(t, x)

)
z(T, x) = λ (DmG(x,m(T ), 1) · ρ(T ) + zT (x))
ρ(t0, ·) = λρ0.

First, we note that we can restrict to λ > 0, since otherwise ρ = 0. Therefore, we can use
the equations (for brevity we omit the dependence of α∗ on the second variable) to get

d

dt

∑
x

z(t, x)ρx(t) =− λ
∑
x

ρ(t, x)[DmF (x,m(t), 1) · ρ(t) + b(t, x)]
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−
∑
x,y

ρx(t)α∗y(x)[z(t, y)− z(t, x)] +
∑
x,y

ρy(t)α∗x(y)z(t, x)

+ λ
∑
x,y

myz(t, x)Dpα
∗
x(y) ·∆yz + λ

∑
x

c(t, x)z(t, x).

The second line is 0, using the fact that
∑
x ρx(t) = 0 and changing x and y in the second

double sum. Integrating over [0, T ] and using the expression for z(T, x) we obtain

λ
∑
x

ρx(T ) [DmG(x,m(T ), 1) · ρ(T ) + zT (x)]− λz(0) · ρ0

=− λ
∫ T

0

∑
x

ρx(t)[DmF (x,m(t), 1) · ρ(t) + b(t, x)]dt

+ λ

∫ T

0

∑
x,y

myDpα
∗
x(y) ·∆yz(z(t, x)− z(t, y))dt

+ λ

∫ T

0

∑
x

c(t, x)z(t, x)dt− λ
∫ T

0
ρ(t, x)DmG(x,m(T ), 1) · ρ(T )dt,

where in the second term of the sum we have also used that
∑
x,y[myDpα

∗
x(y) ·∆yz]z(t, y) =

0.
Dividing by λ > 0 and bringing the terms with F and G on the left hand side, together

with the term in m and Dpα
∗, we can rewrite

−
∫ T

0

∑
x,y

my∆yzDpα
∗
x(y) ·∆yzdt+

∫ T

0

∑
x

ρ(t, x)[DmF (x,m(t), 1) · ρ(t)]dt

+
∑
x

ρ(T, x)DmG(x,m(T ), 1) · ρ(T )

= −
∑
x

zT (x)ρ(T, x) +
∑
x

z(0, x)ρ0(x)−
∫ T

0

∑
x

ρ(t, x)b(t, x)dt

+
∫ T

0

∑
x

c(t, x)z(t, x)dt.

We observe that, by (Mon) and (RegFG), we have∑
x

ρ(t, x)[DmF (x,m(t), 1) · ρ(t)] ≥ 0, (1.86)∑
x

ρ(T, x)[DmG(x,m(T ), 1) · ρ(T )] ≥ 0. (1.87)

Furthermore assumption (1.12) yields

−
∫ T

0

∑
x,y

my∆yzDpα
∗
x(y) ·∆yzdt ≥ C−1

∫ T

0

∑
x

mx|∆xz|2dt,

so that we can estimate the previous equality by

C−1
∫ T

0

∑
x

mx|∆xz|2dt ≤ |zT · ρ(T )|+ |z(0) · ρ0|+
∫ T

0
|c(t) · z(t)| dt

+
∫ T

0
|ρ(t) · b(t)| dt

≤ |zT ||ρ(T )|+ |z(0)||ρ0|+
∫ T

0
|c(t)||z(t)|dt+

∫ T

0
|ρ(t)||b(t)|dt.

(1.88)



1.5 The master equation: well-posedness and regularity 39

On the other hand, by the equation for ρ we have

ρ(t, x) = ρ0(x) +
∫ t

0

∑
y

ρ(s, y)α∗x(y)ds+
∫ t

0

[∑
y

myDpα
∗
x(y) ·∆yz + c(x)

]
ds,

and thus

|ρ(t, x)| ≤ |ρ0(x)|+M

∫ t

0

∑
y

|ρy|ds+ C

∫ t

0

[∑
y

my|∆yz|+ |c(x)|
]
ds,

so that, by Gronwall’s Lemma and taking the sum for x ∈ Σ and the sup over t ∈ [0, T ],

||ρ|| ≤ C|ρ0|+ C

∫ T

0

∑
x

√
mx
√
mx|∆xz|dt+ C||c||

≤ C|ρ0|+ C

∫ T

0

√∑
x

(
√
mx)2

√∑
x

mx|∆xz|2dt+ C||c||

= C|ρ0|+ C

∫ T

0

√∑
x

mx|∆xz|2dt+ C||c||

≤ C|ρ0|+ C

√√√√∫ T

0

∑
x

mx|∆xz|2dt+ C||c||.

Now, we use estimate (1.88) on
∫ T

0
∑
xmx|∆xz|2 that we found above to get

||ρ|| ≤ C||c||+ C|ρ0|+ C

(
|ρ0||z(0)|+ |zT ||ρ(T )|+

∫ T

0
|c(t)||z(t)|+

∫ T

0
|ρ(t)||b(t)|

) 1
2

≤ C||c||+ C|ρ0|

+ C
(
|z(0)|1/2|ρ0|1/2 + |zT |1/2|ρ(T )|1/2|+ ||c||1/2||z||1/2 + ||ρ||1/2||b||1/2

)
.

We further estimate the right hand side using bound (1.83):

||ρ|| ≤ C(||c||+ |ρ0|)

+ C
[
|zT |1/2|ρ(T )|1/2

+ (||c||1/2 + |ρ0|1/2)(|zT |1/2 + ||ρ||1/2 + ||b||1/2) + ||ρ||1/2||b||1/2
]
.

Using the inequality AB ≤ εA2 + 1
4εB

2 for A,B > 0, we obtain

||ρ|| ≤ C(||c||+ |zT |+ ||b||+ |ρ0|) + 1
2 ||ρ||,

which implies (1.85). Then (1.84) follows from (1.83).

Given the solution (u,m) to System (MFG), with initial condition m0 for m and final
condition G for u, we introduce the linearized system:

− d
dtv(t, x)− α∗(x,∆xu(t, x)) ·∆xv(t, x) = DmF (x,m(t), 1) · µ(t)

d
dtµx(t) =

∑
y µy(t)α∗x(y,∆yu(t, y)) +

∑
ymyDpα

∗
x(y,∆yu) ·∆yv(t, x)

v(T, x) = DmG(x,m(T ), 1) · µ(T )
µ(t0) = µ0 ∈ P0(Σ).

(LIN)
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Note that in the right hand side of the first equation

DmF (x,m(t), 1) · µ(t) = DmF (x,m(t), y) · µ(t)

for every y ∈ Σ, using identity (1.8) and the fact that µ(t) ∈ P0(Σ) for every t (i.e. identity
(1.10)). For this reason we just fixed the choice to DmF (x,m(t), 1) and DmG(x,m(T ), 1)
in System (LIN).

The existence and uniqueness of a solution (v, µ) ∈ C1([0, T ];Rd × P0(Σ)) is ensured
by Proposition 1.18. The aim is to show that the solution (v, µ) to System (LIN) satisfies

v(t0, x) = DmU(t0, x,m0, 1) · µ0. (1.89)

This proves that the solution U defined via (1.73) is differentiable with respect to m0 in
any direction µ0, with derivative given by (1.89), and also that DmU is continuous in m.
Equality (1.89) is implied by the following

Theorem 1.19. Assume (RegH), (Mon) and (RegFG). Let (u,m) and (û, m̂) be the
solutions to (MFG) respectively starting from (t0,m0) and (t0, m̂0). Let (v, µ) be the
solution to (LIN) starting from (t0, µ0), with µ0 := m̂0 −m0. Then

||û− u− v||+ ||m̂−m− µ|| ≤ C|m0 − m̂0|2. (1.90)

Proof. Set z := û− u− v and ρ := m̂−m− µ, they solve (1.81)
− d
dtz(t, x)− α∗(x,∆xu) ·∆xz(t, x) = DmF (x,m(t), 1) · ρ(t) + b(t, x)

d
dtρ(t, x) =

∑
y ρyα

∗
x(y,∆yu) +

∑
ymy(t)Dpα

∗
x(y,∆xu) ·∆yz + c(t, x)

z(T, x) = DmG(x,m(T ), 1) · ρ(T ) + zT (x)
ρ(t0, ·) = 0,

with

b(t, x) := A(t, x) +B(t, x)

A(t, x) := −
∫ 1

0
[DpH(x,∆xu+ s(∆xû−∆xu))−DpH(x,∆xu)] · (∆xû−∆xu)ds

B(t, x) :=
∫ 1

0
[DmF (x,m+ s(m̂−m), 1)−DmF (x,m, 1)] · (m̂−m)ds

c(t, x) :=
∑
y

(m̂y −my)Dpα
∗
x(y,∆yu) · (∆yû−∆yu)

+
∑
y

m̂y

∫ 1

0
[Dpα

∗
x(y,∆xu+ s(∆xû−∆xu))−Dpα

∗
x(y,∆yu)] · (∆yû−∆yu)ds

zT (x) :=
∫ 1

0
[DmG(x,m(T ) + s(m̂(T )−m(T )), 1)−DmG(x,m(t), 1)]×

× (m̂(T )−m(T ))ds.

Using the assumptions, namely the Lipschitz continuity of DpH, D
2
ppH, D

mF and DmG,
and the bound maxx |∆xu| ≤ C|u|, we estimate

||b|| ≤ ||A||+ ||B||
||A|| ≤ C||û− u||2

||B|| ≤ C||m̂−m||2
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|zT | ≤ C|m̂(T )−m(T )|2

||c|| ≤ C||m̂−m|| · ||û− u||+ C||û− u||2.

Applying (1.84) and (1.85) to the above system and then (1.74) and (1.75), we obtain

||z||+ ||ρ|| ≤ C(|zT |+ ||b||+ ||c||)

≤ C
(
||û− u||2 + ||m̂−m||2 + ||m̂−m|| · ||û− u||

)
≤ C|m0 − m̂0|2.

1.5.3 Proof of Theorem 1.15

We are finally in the position to prove the main theorem of this section.

1.5.3.1 Existence

Let U be the function defined by (1.73), i.e. U(t0, x,m0) := u(t0,m0). We have shown in
the above Theorem 1.19 that U is C1 in m, while the fact that it is C1 in t is clear. We
compute the limit, as h tends to 0, of

U(t0 + h, x,m0)− U(t0, x,m0)
h

= U(t0 + h, x,m0)− U(t0 + h, x,m(t0 + h))
h

+ U(t0 + h, x,m(t0 + h))− U(t0, x,m0)
h

.

(1.91)

For the first term, we have, for any y ∈ Σ,

U(t0 + h, x,m(t0 + h))− U(t0 + h, x,m(t0))
= [ms := m(t0) + s(m(t0 + h)−m(t0))]

=
∫ 1

0

∂

∂(m(t0 + h)−m(t0))U(t0 + h, x,ms, y)ds

=
∫ 1

0
DmU(t0 + h, x,ms, y) · (m(t0 + h)−m(t0))ds

=
∫ 1

0
ds

∫ t0+h

t0
DmU(t0 + h, x,ms, y) ·

(
d∑

k=1
mk(t)α∗(k,∆ku(t))

)
dt

=
∫ 1

0
ds

∫ t0+h

t0

d∑
z=1

d∑
k=1

mk(t) [DmU(t0 + h, x,ms, y)]z α
∗
z(k,∆ku(t))dt.

Using identity (1.8), we obtain

U(t0 + h, x,m(t0 + h))− U(t0 + h, x,m(t0))

=
∫ 1

0
ds

∫ t0+h

t0

d∑
z=1

d∑
k=1

mk(t) [DmU(t0 + h, x,ms, k)]z α
∗
z(k,∆ku(t))dt

+
∫ 1

0
ds

∫ t0+h

t0

d∑
z=1

d∑
k=1

mk(t) [DmU(t0 + h, x,ms, y)]k α
∗
z(k,∆ku(t))dt
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=
∫ 1

0
ds

∫ t0+h

t0

d∑
z=1

d∑
k=1

mk(t) [DmU(t0 + h, x,ms, k)]z α
∗
z(k,∆ku(t))dt,

where the last equality follows from

d∑
z=1

d∑
k=1

mk(t) [DmU(t0 + h, x,ms, y)]k α
∗
z(k,∆ku(t))

=
d∑

k=1
mk(t) [DmU(t0 + h, x,ms, y)]k

d∑
z=1

α∗z(k,∆ku(t)) = 0,

since
∑d
z=1 α

∗
z = 0, as α∗k(k) = −

∑
z 6=k α

∗
z(k).

Summarizing, we have found that,

U(t0 + h, x,m(t0 + h))− U(t0 + h, x,m(t0))

=
∫ 1

0
ds

∫ t0+h

t0
dt

∫
Σ
DmU(t0 + h, x,ms, y) · α∗(y,∆yu(t))m(t)(dy).

Dividing by h and letting h→ 0, we get

lim
h→0

U(t0 + h, x,m(t0 + h))− U(t0 + h, x,m(t0))
h

=
∫

Σ
DmU(t0, x,m0, y) · α∗(y,∆yu(t0))dm0(y)

=
∫

Σ
DmU(t0, x,m0, y) · α∗(y,∆xU(t0, y,m0))dm0(y),

using the continuity of DmU in time and dominate convergence to take the limit inside
the integral in ds.

The second term in (1.91), for h > 0, is instead

U(t0 + h, x,m(t0 + h))− U(t0, x,m0) = ux(t0 + h)− ux(t0) = h
d

dt
ux(t0) + o(h),

and thus
lim
h→0+

U(t0 + h, x,m(t0 + h))− U(t0, x,m0)
h

= d

dt
ux(t0).

Finally, we can rewrite (1.91), after taking the limit h→ 0, to obtain

∂tU(t0, x,m0) = −
∫

Σ
DmU(t0, x,m0, y) · α∗(y,∆xU(t0, y,m0))dm0(y)

+ d

dt
ux(t0) = [using the equation for u]

= −
∫

Σ
DmU(t0, x,m0, y) · α∗(y,∆xU(t0, y,m0))dm0(y)

+H(x,∆xU(t0, x,m0))− F (x,m0),

and thus

−∂tU(t0, x,m0) +H(x,∆xU(t0, x,m0))

−
∫

Σ
DmU(t0, x,m0, y) · α∗(y,∆yU)dm0(y) = F (x,m0),

which is exactly (M) computed in (t0,m0).
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1.5.3.2 Uniqueness

Let us consider another solution V of (M). Since ||DmV || ≤ C, we know that V is
Lipschitz with respect to m, and so is ∆xV . From this remark and the Lipschitz continuity
of α∗ with respect to p , it follows that the equation{

d
dtm̃(t) =

∑
y m̃y(t)α∗(y,∆yV (t, y, m̃(t)))

m̃(t0) = m0

admits a unique solution in [t0, T ].
If we now set ũ(t, x) := V (t, x, m̃(t)), we can compute (using for e.g. DmV (·, ·, ·, 1))

d

dt
ũ(t, x) = ∂tV (t, x, m̃(t)) +DmV (t, x, m̃(t), 1) · d

dt
m̃(t)

= [using the equation for m̃]

= ∂tV (t, x, m̃(t)) +DmV (t, x, m̃(t), 1) ·
(∑

y

m̃y(t)α∗(y,∆yV (t, y, m̃(t)))
)

= [using identity (1.8) on DmV (·, ·, ·, 1)]

= ∂tV (t, x, m̃(t)) +
∫

Σ
DmV (t, x, m̃(t), y) · α∗(y,∆yV (t, y, m̃(t)))m̃(t)(dy)

= [using the equation for V ]
= H(x,∆xV (t, x, m̃(t)))− F (x, m̃) = H(x,∆xũ(t, x))− F (x, m̃(t)),

and thus the pair (ũ(t), m̃(t)) satisfies
− d
dt ũ(t, x) +H(x,∆xũ(t, x)) = F (x, m̃(t)),

d
dtm̃x(t) =

∑
j m̃y(t)α∗x(y,∆yũ(t, y)),

ũ(T, x) = V (T, x, m̃(T )) = G(x, m̃(T )),
m̃(t0) = m0.

Namely, (ũ, m̃) solves System (MFG), whose solution is unique thanks to Proposition
1.16, so that we can conclude V (t0, x,m0) = U(t0, x,m0) for each (t0, x,m0), and thus the
uniqueness of solutions to (M) follows.

1.5.3.3 Regularity

It remains to prove that the unique classical solution defined via (1.73) is regular, in the
sense of Definition 1.6, i.e. that DmU is Lipschitz continuous with respect to m, uniformly
in t, x.

So let (u1,m1) and (u2,m2) be two solution to (MFG) with initial conditions m1(t0) =
m1

0 and m2(t0) = m2
0, respectively. Let also (v1, µ1) and (v2, µ2) be the associated

solutions to (LIN) with µ1(t0) = µ2(t0) = µ0. Recall from Equation (1.89) that v1(t0, x) =
DmU(t0, x,m1

0, 1) · µ0 and v2(t0, x) = DmU(t0, x,m2
0, 1) · µ0, thus we have to estimate the

norm ||v1 − v2||.
Set z := v1− v2 and ρ := µ1−µ2. They solve the linear system (1.81) with ρ0 = 0 and

b(t, x) := [DmF (x,m1, 1)−DmF (x,m2, 1)] · µ2 + [α∗(x,∆xu1)− α∗(x,∆xu2)] ·∆xv2

c(t, x) :=
∑
y

µ2,y [α∗x(y,∆yu1)− α∗x(y,∆yu2)]
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+
∑
y

[m1,yDpα
∗
x(y,∆yu1)−m2,yDpα

∗
x(y,∆yu2)] ·∆xv2

zT (x) := [DmG(x,m1(T ), 1)−DmG(x,m2(t), 1)] · µ2.

Using the Lipschitz continuity of DpH, D2
ppH, DmF and DmG, applying the bounds

(1.84) to v2 and (1.85) to µ2 and also (1.74) and (1.75), we estimate

||b|| ≤ C||m1 −m2|| · ||µ2||+ C||u1 − u2|| · ||v2|| ≤ C|m1
0 −m2

0| · |µ0|
||c|| ≤ C||u1 − u2|| · ||µ2||+ C||m1 −m2|| · ||v2||+ C||u1 − u2|| · ||v2|| ≤ C|m1

0 −m2
0| · |µ0|

|zT | ≤ C||m1 −m2|| · ||µ2|| ≤ C|m1
0 −m2

0| · |µ0|.

Then (1.84) gives

||z|| ≤ C(||b||+ ||c||+ |zT |) ≤ C|m1
0 −m2

0| · |µ0|,

which, since z(t0, x) =
(
DmU(t0, x,m1

0, 1)−DmU(t0, x,m2
0, 1)

)
· µ0, yields

max
x
|DmU(t0,x,m1

0, 1)−DmU(t0, x,m2
0, 1)|

≤ C max
x

sup
µ0∈P0(Σ)

∣∣(DmU(t0, x,m1
0, 1)−DmU(t0, x,m2

0, 1)
)
· µ0

∣∣
|µ0|

≤ C|m1
0 −m2

0|.

1.6 Conclusions
Let us summarize the results we have obtained. The two sets of assumptions are given in
Section 2.2 and verified in Example 2.1.

1. If (H1) holds and there exists a regular solution U to the master equation (M), in
the sense of Definition 1.6, then the value functions of the N -player game converge to
U (Theorem 1.7) and the optimal trajectories (1.29) satisfy a propagation of chaos
property, i.e they converge to the limit i.i.d. solution to (1.30) (Theorem 1.8);

2. Under the assumptions required for convergence, the empirical measures processes
(1.49) associated with the optimal trajectories satisfy a Central limit Theorem
(Theorem 1.13) and a Large Deviation Principle with rate function I in (1.65)
(Theorem 1.14);

3. Assuming (RegH), (Mon) and (RegFG), there exists a unique classical solution
to (M) and it is also regular in the sense of Definition 1.6.



CHAPTER 2

The convergence problem in a two state model
without uniqueness

In this chapter we consider finite state N -player and mean field games, restricting the
framework of Chapter 1 to the case where the position of each agent belongs to a binary
state space {−1, 1}. If there is uniqueness of mean field game solutions, e.g. under
monotonicity assumptions, then the results of Chapter 1 apply: the master equation
possesses a smooth solution which can be used to prove convergence of the value functions
and of the feedback Nash equilibria of the N -player game, as well as a propagation of
chaos property for the associated optimal trajectories.

Here instead, we study an example with anti-monotonic costs, and show that the
mean field game has exactly three solutions, which are found explicitly. We prove that
the value functions converge to the entropy solution of the master equation, which in
this case can be written as a scalar conservation law in one space dimension, and that
the optimal trajectories admit a limit: they select one mean field game soution, so there
is propagation of chaos (except for a critical case, as we shall see, in which the limit is
random). Moreover, viewing the mean field game system as the necessary conditions for
optimality of a deterministic control problem, we show that the N -player game selects
the optimizer of this problem. A two-state non-uniqueness example was first considered
in [64, 65], where the master equation was studied formally and numerical evidence on
the convergence behavior was presented; our example should also be compared to the
“illuminating example” in [77, Sect. 3.3]) and to the example in [3, Sect. 3.3], both in
the diffusion setting. In the infinite time horizon and finite state case, an example of
non-uniqueness is studied in [38], via numerical simulations, where periodic orbits emerge
as solutions to the mean field game.

Different recent results are related to our example: among others, we cite [87], where
the authors address the convergence problem for a class of mean field games of optimal
stopping. The limit model there possesses multiple solutions, which are grouped into
three classes according to a qualitative criterion characterizing the proportion of players
that have stopped at any given time. Solutions in one of the three classes will always
arise as limit points of N -player Nash equilibria, solutions in the second class may be
selected in the limit, while solutions in the third class cannot be reached through N -player
Nash equilibria. In [78], the author attacks the convergence problem in Markov feedback
strategies by probabilistic methods. For a class of games with non-degenerate Brownian
dynamics that may exhibit non-uniqueness, the author shows that all limit points of the

45
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N -player feedback Nash equilibria are concentrated, as in the open-loop case, on weak
solutions of the mean field game. These solutions are more general than randomizations of
ordinary (“strong”) solutions of the mean field game; their flows of measures, in particular,
are allowed to be stochastic containing additional randomness. Still, uniqueness in ordinary
solutions implies uniqueness in weak solutions, which permits to partially recover the
results in [15]. In this direction we acknowledge the recent result [17], which deals with
the ergodic setting, where the authors show that the limit of Nash equilibria in generalized
Markov strategies is not necessarily a mean field game equilibrium. The result is thus in
sharp contrast with the finite horizon case of [78].

The question of which weak mean field game solutions can appear as limits of feedback
Nash equilibria in a situation of non-uniqueness seems to be mainly open. In [42], a class
of linear-quadratic mean field games with multiple solutions is studied in the diffusion
setting. They prove that by adding a common noise to the limit dynamics uniqueness
of solutions is re-established. As a converse to this regularization by noise result, they
identify the mean field game solutions that are selected when the common noise tends to
zero as those induced by the (unique weak) entropy solution of the master equation of
the original problem. The interpretation of the master equation as a scalar conservation
law works in their case thanks to a one-dimensional parametrization of an a priori infinite
dimensional problem. Limit points of N -player Nash equlibria are also considered in [42],
but in stochastic open-loop strategies. Again, the mean field game solutions that are
selected are those induced by the entropy solution of the master equation. Interestingly,
these solutions are not minimal cost solutions; indeed, the solution which minimizes the
cost of the representative player in the mean field game is shown to be different from
the ones selected by the limit of the Nash equilibria. In [42], the N -player limit and the
vanishing common noise limit both select two solutions of the original mean field game
with equal probability. This is due to the fact that in [42] the initial distribution for the
state trajectories is chosen to sit at the discontinuity of the unique entropy solution of
the master equation. In our case, we expect to see the same behavior if we started at
the discontinuity, see Section 2.3 below. We also mention [6], where the authors consider
a two-state example without uniqueness with an anti-monotonic cost, where a running
cost term is also added in the interaction. As in our example, they show that the entropy
solution of the master equation is of particular importance as it is the one which gets
selected in the limit. Some of the above models, including ours, can be framed into the
class of submodular mean field games. In this regard, we mention the recent result [48],
where the authors prove that the set of solutions in these types of models enjoys an ordered
lattice structure.

It is worth mentioning that the opposite framework to the one treated here is considered
in the examples presented in [49] and in [19, Sect. 7.2.5]. In these examples, uniqueness
of mean field game solutions holds, but there are multiple feedback Nash equilibria for
the N -player game. This is due to the fact that in both cases the authors consider a
finite action set (while for us it is continuous), so that in particular the Nash system is
not well-posed. They prove that there is a sequence of (feedback) Nash equilibria which
converges to the mean field game limit, but also a sequence that does not converge.

The rest of this chapter is organized as follows. In Section 2.1, we briefly recall
the notation of Chapter 1 for mean field and N -player games with finite state space.
Section 2.2 presents the two-state example, starting from the limit model, analyzed first
in terms of the mean field game system (Subsection 2.2.1), then in terms of its master
equation (Subsection 2.2.2). In Subsections 2.2.4 and 2.2.5 we show that the N -player Nash
equilibria converge to the unique entropy solution of the master equation; cf. Theorems 2.7
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and 2.10 below for convergence of value functions and propagation of chaos, respectively.
The qualitative property of the Nash equilibria used in the proofs of convergence is in
Subsection 2.2.3. Subsection 2.2.7 gives the variational characterization of the solution
that is selected by the Nash equilibria. Concluding remarks are in Section 2.3.

2.1 Mean field games with finite state space
In this section we briefly recall the notation and the equations in play for finite state mean
field games, introduced in Sections 1.1 and 1.2.1 of Chapter 1, to which the reader can
refer for more details.

2.1.1 The N-player game

As in Chapter 1, we consider the continuous time evolution of the states (Xi(t))i=1,...,N of
N players; the state of each player belongs to a given finite set Σ. Players are allowed
to control, via an arbitrary feedback, their jump rates. For i = 1, 2, . . . , N and y ∈ Σ,
we denote by αiy : [0, T ] × ΣN → [0,+∞) the rate at which player i jumps to the state
y ∈ Σ. Let αN ∈ AN denote the controls of all players, to which we refer also as strategy
vector. Recall P (Σ) to be the simplex of probability measures on Σ. To every x ∈ ΣN we
associate the element of P (Σ)

mN,i
x := 1

N − 1

N∑
j=1,j 6=i

δxj . (2.1)

Thus, mN,i
X (t) := mN,i

Xt
is the empirical measure of all the players except the i-th. Recall

the cost associated to the i-th player

JNi (αN ) := E
[∫ T

0

[
L(Xi(t), αi(t,Xt)) + F

(
Xi(t),mN,i

X (t)
)]
dt+G

(
Xi(T ),mN,i

X (T )
)]
.

At the N -player level, the concept of solution is that of a Nash equilibrium, given by
Definition 1.2. We work under the same assumptions of Chapter 1 (see Section 1.2.2, and
in particular (1.11)) that guarantee the existence and uniquess of the Nash equilibrium
for the N -player game. Within this framework, the search for the Nash equilibrium
is equivalent to solving System (HJB), a system of N |Σ|N coupled ODE’s, indexed by
i ∈ {1, . . . , N} and x ∈ ΣN , whose well-posedness for all T > 0 can be proved through
standard ODEs techniques under regularity assumptions which guarantee that a∗ and H
are uniformly Lipschitz in their second variable (i.e. Assumption (H1) of Section 1.2.2 -
which we assume valid throughout the chapter). Under these conditions, the N -player
game has a unique Nash equilibrium given by the feedback strategy vector αN ∈ AN
defined by

αi,N (t,x) := a∗(xi,∆ivN,i(t,x)) i = 1, . . . , N.

2.1.2 The macroscopic limit: the mean field game and the master equa-
tion

We recall that the limit as N → +∞ of the N -player game admits two alternative
descriptions, illustrated in Section 1.2.4. On the one hand we have the mean field game
system (MFG), implemented by coupling the HJB equation of the control problem with
cost (1.25) for a fixed deterministic flow of probabilities m, with the forward Kolmogorov
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equation for the distribution of the optimal evolution of the representative agent, which
must coincide with m, yielding the mean field equilibrium condition (1.26). It is known,
and largely exemplified in this chapter, that well-posedness of (HJB) does not imply
uniqueness of solution to (MFG).

An alternative description of the macroscopic limit stems from the ansatz, justified by
Proposition 1.5, that the solution to the N -player Hamilton-Jacobi-Bellman system (HJB)
is of the form

vN,i(t,x) = vN (t, xi,mN,i
x ),

for some vN : [0, T ] × Σ × P (Σ) → R. Assuming vN admits a limit U as N → +∞, we
formally obtain that U solves the master equation (M), where we recall the definition of
derivative DmU : [0, T ]× Σ× P (Σ)× Σ→ RΣ with respect to m ∈ P (Σ)

[DmU(t, x,m, y)]z := lim
s↓0

U(t, x,m+ s(δz − δy))− U(t, x,m)
s

. (2.2)

We conclude this section by recalling that uniqueness in both (MFG) and (M) is guaranteed
if the cost functions F and G are monotone in the Lasry-Lions sense, i.e. for every
m,m′ ∈ P (Σ), ∑

x∈Σ
(F (x,m)− F (x,m′))(mx −m′x) ≥ 0, (2.3)

and the same for the final cost G. We are interested here in examples that violate this
monotonicity condition.

2.2 An example of non uniqueness

We consider now a special example within the class of finite state models described above.
We let Σ := {−1, 1} be the state space. An element m ∈ P (Σ) can be identified with
its mean m1 −m−1; so from now we write m ∈ [−1, 1] to denote the mean, while the
element of P (Σ) will be denoted only in vector form (m1,m−1). We also write αi(t,x) for
αi−xi(t,x), i.e. the rate at which player i flips its state from xi to −xi. Moreover we choose

L(x, a) := a2

2 , F (x,m) ≡ 0, G(x,m) := −mx.

Observe that the final cost G favors alignment with the majority, while the running
cost is a simple quadratic cost. Compared to condition (2.3), note that the final cost is
anti-monotonic, as∑

x∈Σ
(G(x,m)−G(x,m′))(mx −m′x) = −(m−m′)2 ≤ 0.

The associated Hamiltonian is given by

H(x, p) = sup
a≥0

{
ap−x −

a2

2

}
=

(p−−x)2

2 , (2.4)

with a∗(x, p) = p−−x, where p− denotes the negative part of p. From now on, we identify p
with p−x ∈ R and ∆xu with its non-zero component u(−x)− u(x).
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2.2.1 The mean field game system

The first equation in (MFG), i.e the HJB equation for the value function u(t, x), reads,
using (2.4), {

− d
dtu(t, x) + 1

2 [(∆xu(t, x))−]2 = 0
u(T, x) = −m(T )x

(2.5)

Now define z(t) := u(t,−1) − u(t, 1). Subtracting the equations (2.5) for x = ±1 and
observing that [

(∆xu(t,−1))−
]2 − [(∆xu(t, 1))−

]2 = z|z|,

we have that z(t) solves {
ż = z|z|

2
z(T ) = 2m(T ).

(2.6)

This equation must be coupled with the forward Kolmogorov equation, i.e. the second
equation in (MFG), that reads ṁ = −m|z|+z. The mean field game system takes therefore
the form: 

ż = z|z|
2

ṁ = −m|z|+ z

z(T ) = 2m(T )
m(0) = m0.

(2.7)

Proposition 2.1. Let T (m0) be the unique solution in T ∈
[

1
2 , 2
]
to the equation

|m0| =
(2T − 1)2(T + 4)

27T . (2.8)

Then, for every m0 ∈ [−1, 1] \ {0}, System (2.7) admits

(i) a unique solution for T < T (m0);

(ii) two distinct solutions for T = T (m0);

(iii) three distinct solutions for T > T (m0).

If m0 = 0, then T (0) = 1/2 and (2.7) admits

(i) a unique solution for T ≤ 1/2;

(ii) three distinct solutions for T > 1/2: the constant zero solution, (z+,m+), and
(z−,m−), where m+(t) = −m−(t) > 0 for every t ∈ (0, T ].

Proof. Note that (2.6) can be solved as a final value problem, giving

z(t) = 2m(T )
|m(T )|(T − t) + 1 . (2.9)

This can then be inserted in the forward Kolmogorov equation ṁ = −m|z|+ z, giving as
unique solution

m(t) = (m0 − sgn(m(T )))
( |m(T )|(T − t) + 1
|m(T )|T + 1

)2
+ sgn(m(T )). (2.10)
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These are actually solutions of (2.7) if and only if the consistency relation obtained by
setting t = T in (2.10) holds, i.e. if and only if m(T ) = M solves

T 2M3 + T (2− T )M |M |+ (1− 2T )M −m0 = 0. (2.11)

Moreover, distinct solutions of (2.11) correspond to distinct solutions of (2.7). We first
look for nonnegative solutions of (2.11). Set

f(M) := T 2M3 + T (2− T )M2 + (1− 2T )M −m0.

Note that
f ′(M) < 0 ⇐⇒ M ∈

(
− 1
T
,
2T − 1

3T

)
.

If T ≤ 1
2 then f is strictly increasing in (0,+∞), so the equation f(M) = 0 admits a

unique nonnegative solution if m0 ≥ 0, otherwise there is no nonnegative solution. If
T > 1

2 , then f restricted to (0,+∞) has a global minimum at M∗ = 2T−1
3T . If m0 > 0 then

there is still a unique nonnegative solution, while for m0 = 0 there are two nonnegative
solution, one of which is zero. If, instead, m0 < 0, so that f(0) > 0, the equation f(M) = 0
has zero, one or two nonnegative solutions, depending on whether f(M∗) > 0, f(M∗) = 0
or f(M∗) < 0 respectively. Observing that

f(M∗) = −m0 −
(2T − 1)2(T + 4)

27T ,

we see that those three alternatives occur if T < T (m0), T = T (m0) and T > T (m0)
respectively. The case M ≤ 0 is treated similarly.

2.2.2 The master equation

Identifying again a probability on Σ with its mean m, using the expression for H and its
minimizer given in (2.4), Equation (M) takes the form

−∂U
∂t (t, x,m) +1

2

[
(∆xU(t, x,m))−

]2
−DmU(t, x,m, 1) (∆xU(t, 1,m))− 1+m

2

−DmU(t, x,m,−1) (∆xU(t,−1,m))− 1−m
2 = F (x,m),

U(T, x,m) = G(x,m), (x,m) ∈ {−1, 1} × [−1, 1].
(2.12)

In (2.12), the derivative DmU is still intended in the sense introduced in (2.2), but
identifying the resulting vector with its non-zero component (e.g. DmU(t, x,m, 1) =
[DmU(t, x,m, 1)]−1 = ∂

∂(m−1−m1)U(t, x,m)). Similarly, we identify the vector ∆xU with
its non-zero component. Setting

Z(t,m) := U(T − t,−1,m)− U(T − t, 1,m),

we easily derive a closed equation for Z:
∂Z
∂t + ∂

∂m

(
mZ|Z|

2 − Z2

2

)
= 0,

Z(0,m) = 2m,
(2.13)

where ∂
∂m is denoting the differentiation in the usual sense with respect to m ∈ [−1, 1]. In

particular, observe that ∂
∂m = 1

2
∂

∂(m−1−m1) .
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Note that this equation has the form of a scalar conservation law{
∂Z
∂t (t,m) + ∂

∂mg(m,Z(t,m)) = 0
Z(0,m) = f(m).

(2.14)

Scalar conservation laws typically possess unique smooth solutions for small time, but
develop singularities in finite time: weak solutions exist but uniqueness may fail. To
recover uniqueness the notion of entropy solution is introduced (see Appendix A for a very
brief, non-exhaustive overview). A simple sufficient condition can be given for piecewise
smooth functions (see [34]):

Proposition 2.2. Let Z(t,m) be a piecewise C1 function, which is C1 outside a C1 curve
m = γ(t), and assume the following conditions hold:

(i) Z solves (2.14) in the classical sense outside the curve m = γ(t).

(ii) The initial condition Z(0,m) = f(m) holds for every m.

(iii) Denoting
Z+(t) := lim

m↓γ(t)
Z(t,m), Z−(t) := lim

m↑γ(t)
Z(t,m),

we have that, for every t ≥ 0 and every c strictly between Z−(t) and Z+(t),

γ̇(t) = g(γ(t), Z−(t))− g(γ(t), Z+(t))
Z−(t)− Z+(t) , (2.15)

g(γ(t), c)− g(γ(t), Z+(t))
c− Z+(t) < γ̇(t) < g(γ(t), c)− g(γ(t), Z−(t))

c− Z−(t) . (2.16)

Then, Z is the unique entropy solution to (2.14).

Condition (2.15) is called the Rankine-Hugoniot condition, while (2.16) is called the
Lax condition. When specialized to the case g(m, z) := m z|z|

2 −
z2

2 and γ(t) ≡ 0 we simply
obtain

Z+(t) = −Z−(t) ≥ 0. (2.17)

For Equation (2.13), the entropy solution can be explicitly found. Let

g(M, t,m) := t2M3 + t(2− t)M |M |+ (1− 2t)M −m (2.18)

and M(t,m) denote the unique solution to g(M, t,m) = 0 with the same sign of m, if
m 6= 0; M is defined for any time and let M(t, 0) ≡ 0. Define

Z(t,m) := 2M(t,m)
t|M(t,m)|+ 1 . (2.19)

Such function has a unique discontinuity in m = 0, for t > 1/2, and is C1 outside. However,
observe that Equation (2.13) must be solved in the finite interval t ∈ [0, T ], where T is
the final time appearing in (2.12). Thus, for T < 1/2 the solution is regular.

Theorem 2.3. The function Z defined in (2.19) is the unique entropy admissible weak
solution to (2.13).
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Proof. From the properties of g(M, t,m), it follows that

lim
m↓0

M(t,m) = − lim
m↑0

M(t,m) ≥ 0,

for any time. These limits correspond to the solutions m+ and m− of Proposition 2.1,
evaluated at the terminal time. Therefore (2.17) is satisfied. We remark that the conser-
vation law is set in the domain [−1, 1] without any boundary condition, but this is not a
problem as we have invariance of the domain under the action of the characteristics.

Remark 2.4. We observe that to the entropy solution (2.19) of (2.13) there corresponds
a unique solution of (2.12). It can be constructed via the method of characteristic curves,
in terms of a specific solution to the mean field game system for the couple (u,m), the one
that corresponds to the solution to (2.7) employed in the definition of (2.19).

It is known that, if there were a regular solution to the master equation (2.13), thus
Lipschitz in m, then this solution would provide a unique solution to the mean field game
system (2.7), since the KFP equation would be well posed for any initial condition, when
using z(t) = Z(T − t,m(t)) induced by the solution to the master equation:{

ṁ = −m|Z(T − t,m)|+ Z(T − t,m)
m(0) = m0.

(2.20)

In our example there are no regular solutions to the master equation; however the entropy
solution still induces a unique mean field game solution, if m0 6= 0.

Proposition 2.5. Let Z be the entropy solution defined in (2.19). Then (2.20) admits a
unique solution m∗, for any T , if m0 6= 0: it is the unique solution which does not change
sign, for any time.

Proof. Let m0 > 0. If t and |m −m0| are small then Z(T − t,m) is regular (Lipschitz-
continuous) and remains positive. So we have a unique solution to (2.20), for small time
t ∈ [0, t0]; moreover it is such that ṁ > 0 and hence in particular m(t0) > m0. Thus we
can iterate this procedure starting from m(t0) > 0: we end up with the required solution,
which is positive and such that m(t) > m0 for any time. This solution is unique (for any
T ) since Z(t,m) is Lipschitz for m ∈ [m0, 1]. In fact the other two solutions described in
Proposition 2.1 would require the vector field Z in (2.20) to be negative for any time, and
this is not possible when considering the entropy solution Z. The same argument gives
the claim when m0 < 0.

2.2.3 Properties of the N + 1-player game

We consider now the game played by N + 1 players, labeled by the integers {0, 1, . . . , N}.
By symmetry, we can interpret the player with label 0 as the representative player. Let

µNx := 1
N

N∑
i=1

δxi=1 ∈
{

0, 1
N
,

2
N
, . . . ,

N − 1
N

, 1
}

be the fraction of the “other” players having state 1. Comparing with the notations in
(2.1), note that µNx = 1+mN+1,0

x
2 . In what follows, we use N rather than N + 1 as apex

in all objects related to the N + 1-player game. By symmetry again, the value function
vN,0(t,x) introduced in (HJB) is of the form

vN,0(t,x) = V N (t, x0, µ
N
x ),
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where V N : [0, T ] × {−1, 1} ×
{

0, 1
N ,

2
N , . . . ,

N−1
N , 1

}
→ R. Since the model we are

considering, besides permutation invariance, is invariant by the sign change of the state
vector, it follows that

V N (t, 1, µNx ) = V N (t,−1, 1− µNx ). (2.21)
We can therefore redefine V N (t, µ) := V N (t, 1, µ); from System (HJB) we derive the
following closed equation for V N :

− d
dtV

N (t, µ) +H(V N (t, 1− µ)− V N (t, µ))
= Nµ

[
V N (t, 1− µ)− V N (t, µ)

]− [
V N

(
t, µ− 1

N

)
− V N (t, µ)

]
+N(1− µ)

[
V N

(
t, µ+ 1

N

)
−V N

(
t, 1− µ− 1

N

)]−[
V N

(
t, µ+ 1

N

)
−V N (t, µ)

]
,

V N (T, µ) = −(2µ− 1),
(2.22)

withH(p) = (p−)2

2 . It is easy to check that, when imposing a final datum V N (T, µ) ∈ [−1, 1],
any solution to System (2.22) is such that V N (t, µ) ∈ [−1, 1] for any t < T . The locally
Lipschitz property of the vector field is thus enough to conclude the existence and
uniqueness of solution for any T > 0 for the above system with |V N (t, µ)| ≤ 1. Such
solution allows to obtain the unique Nash equilibrium, given by the feedback strategy

α0,N (t,x) =


[
V N (t, 1− µNx )− V N (t, µNx )

]−
for x0 = 1,[

V N (t, 1− µNx )− V N (t, µNx )
]+

for x0 = −1.
(2.23)

We now set
ZN (t, µ) := V N (t, 1− µ)− V N (t, µ).

The following result, that will be useful later, shows that if the representative player agrees
with the majority, i.e. x0 = 1 and µNx ≥ 1

2 , or x0 = −1 and µNx ≤ 1
2 , then she/he keeps

her/his state by applying the control zero.

Theorem 2.6. For any µ ∈ SN =
{

0, 1
N , . . . , 1

}
, we have

ZN (t, µ) ≥ 0 (αN (t, 1, µ) = 0) if µ ≥ 1
2 , (2.24)

ZN (t, µ) ≤ 0 (αN (t,−1, µ) = 0) if µ ≤ 1
2 . (2.25)

Proof. We prove (2.24), the proof of (2.25) is similar. For any N even, observe that
ZN (1

2) = 0, so that it is enough to prove the claim for µ ≥ 1
2 + 1

N . Define

WN (t, µ) := V N (t, µ)− V N (t, µ+ 1
N

).

By (2.22),
d

dt
ZN (t,µ)=H(−ZN (t, µ))−H(ZN (t, µ))

+Nµ

{(
ZN (t, µ)

)−
WN

(
t, µ− 1

N

)(
ZN

(
t, µ− 1

N

))−
WN (t, 1− µ)

}

−N(1− µ)
{(

ZN
(
t, µ+ 1

N

))+
WN (t, µ)

+
(
ZN (t, µ)

)+
WN

(
t, 1− µ− 1

N

)}
(2.26)
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and
d

dt
WN (t, µ) = H(ZN (t, µ))−H

(
ZN

(
t, µ+ 1

N

))
−Nµ

(
ZN (t, µ)

)−
WN

(
t, µ− 1

N

)
+N

(
µ+ 1

N

)(
ZN

(
t, µ+ 1

N

))−
WN (t, µ)

+N(1− µ)
(
ZN

(
t, µ+ 1

N

))+
WN (t, µ)

−N
(

1− µ− 1
N

)(
ZN

(
t, µ+ 2

N

))+
WN

(
t, µ+ 1

N

)
.

(2.27)

Note that, for µ > 1
2 , Z

N (T, µ) = 4µ− 2 > 0 and WN (T, µ) = 2
N > 0. So, set

s := sup
{
t ≤ T : ZN (t, ν) ≤ 0 or WN (t, ν) ≤ 0 for some ν > 1

2

}
.

We complete the proof by showing that s = −∞. Assume s > −∞. For t ∈ [s, T ] we have
ZN (t, µ) ≥ 0 and WN (t, µ) ≥ 0 for all µ > 1

2 , so, from (2.26), observing that the terms in(
ZN

)−
disappear,

d

dt
ZN (t, µ) ≤ H(−ZN (t, µ)) +N(1− µ)ZN (t, µ)WN

(
t, 1− µ− 1

N

)
= ZN (t, µ)

[1
2Z

N (t, µ) +N(1− µ)WN
(
t, 1− µ− 1

N

)]
.

Since the control zero is suboptimal, it follows that |V N (t, µ)| ≤ 1 for all t, µ, so that
|ZN (t, µ)| ≤ 2 and |WN (t, µ)| ≤ 2. Therefore, for t ∈ [s, T ], ZN (t, µ) is bounded from
below by the solution to {

d
dtz(t) = z(t) [1 + 2N(1− µ)]
z(T ) = 4µ− 2,

(2.28)

which is strictly positive for all times. In particular ZN (s, µ) > 0. Similarly, for t ∈ [s, T ],
from (2.27)

d

dt
WN (t, µ) ≤ N(1− µ)ZN

(
t, µ+ 1

N

)
WN (t, µ) ≤ 2N(1− µ)WN (t, µ),

which implies that also WN (s, µ) > 0; by continuity in time, this contradicts the definition
of s. Finally, observe that in the proof we fixed N even. The proof for N odd can be
easily adapted with a bit of care, noting that µ = 1

2 cannot hold.

2.2.4 Convergence of the value functions

We now consider the value function V N , the unique solution to Equation (2.22), and study
its limit as N → +∞. We show that its limit corresponds to the entropy solution of the
Master Equation (2.12). More precisely, let U be the solution to (2.12) corresponding to
the entropy solution Z of (2.13). Define, for µ ∈ [0, 1]

U∗(t, µ) := U (t, 1, 2µ− 1) .
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Figure 2.1: Simulation of the N -player dynamics (2.22). We plot the value function
V N (t, ρ) for N = 1000, T = 2, ρ ∈

{
0, 1

N , . . . , 1
}
, the fraction of players in state 1.

Note that, for T > 1
2 , U

∗(t, ·) is discontinuous at µ = 1
2 , but it is smooth elsewhere. In

Figure 2.1 we indeed see the formation of a shock at the N -player level in the discontinuity
point µ = 1

2 , while there is smoothness elsewhere. The main result of this chapter
establishes that V N converges to U∗ uniformly outside any neighborhood of µ = 1

2 . In
what follows, SN :=

{
0, 1

N ,
2
N , . . . , 1

}
.

Theorem 2.7 (Convergence of value functions). For any ε > 0, t ∈ [0, T ] and µ ∈
SN \

(
1
2 − ε,

1
2 + ε

)
we have

|V N (t, µ)− U∗(t, µ)| ≤ Cε
N
, (2.29)

where Cε does not depend on N nor on t, µ, but limε→0Cε = +∞.

The proof of Theorem 2.7 is based on the arguments developed in Chapter 1. We first
slightly extend the above notation, letting, for x ∈ {−1, 1}

U∗(t, x, µ) := U(t, x, 2µ− 1).

Moreover, let

vN,i(t,x) = V N (t, xi, µN,ix ), uN,i(t,x) = U∗(t, xi, µN,ix )

for i = 0, . . . , N , where µN,ix = 1
N

∑N
j=0,j 6=i δ{xi=1} is the fraction of the other players in 1.

Let also SεN := SN \(1
2−ε,

1
2 +ε). The following results are the adaptations of Propositions

1.9 and 1.10 of Chapter 1. The first provides a bound for ∆juN,i(t,x), while the second
shows that U∗ restricted to SεN is "almost" a solution of (2.22).

Proposition 2.8. For any t ∈ [0, T ], ε > 0 and any x such that µN,ix ∈ SεN , if N ≥ 2
ε , we

have
∆juN,i(t,x) = − 1

N

∂

∂µ
U(t, xi, µN,ix ) + τN,i,j(t,x), (2.30)

for any j 6= i, with
∣∣∣τN,i,j(t,x)

∣∣∣ ≤ Cε
N2 . The constant Cε is proportional to the Lipschitz

constant of the master equation outside the discontinuity, which behaves like ε−
2
3 .
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Proposition 2.9. For any t ∈ [0, T ], any ε > 0 and any µ such that either µ ∈ [1
2 + ε, 1]

or µ ∈ [0, 1
2 − ε], the function U∗(t, µ) satisfies

− d

dt
U∗(t, µ) +H(U∗(t, 1− µ)− U∗(t, µ)) (2.31)

= Nµ [U∗(t, 1− µ)− U∗(t, µ)]−
[
U∗
(
t, µ− 1

N

)
− U∗(t, µ)

]
+N(1− µ)

[
U∗
(
t, µ+ 1

N

)
− U∗

(
t, 1− µ− 1

N

)]− [
U∗
(
t, µ+ 1

N

)
− U∗(t, µ)

]
+ rN (t, µ), (2.32)

with
∣∣∣rN (t, µ)

∣∣∣ ≤ Cε
N , where Cε is as in Proposition 2.8.

We now use the information provided by Theorem 2.6. Set

Σε
N :=

{
x ∈ {−1, 1}N+1 :

N∑
i=0

δxi=1 6∈
(
N

2 −Nε,
N

2 +Nε+ 1
)}

. (2.33)

If x ∈ Σε
N , then µN,ix ∈ SεN for all i. Denote by Ys the state at time s of the N + 1 players

corresponding to the Nash equilibrium. By Theorem 2.6 it follows that, if Yt ∈ Σε
N for

some t < T , then Ys ∈ Σε
N for all s ∈ [t, T ]. Computing V N (or U∗) in the optimal

trajectories Ys when starting the dynamics at time t in Σε
N , we get

vN,i(s,Ys) = V N (s, Yi(s), µN,i(s)) =
{
V N (s, 1, µN,i(s)), Yi(s) = 1,
V N (s, 1, 1− µN,i(s)), Yi(s) = −1,

(2.34)

in light of the invariance property (2.21). Thus, the dynamics is such that it keeps being
either on the right or on the left of the strip centered in the discontinuity. In particular
we obtain

vN,i(s,Ys) ≤ max
µN∈SεN

V N (s, µN ), (2.35)

|vN,i(s,Ys)− uN,i(s,Ys)| ≤ max
µN∈SεN

|V N (s, µN )− U∗(s, µN )|, (2.36)

for every s ∈ [t, T ], almost surely, and

max
x∈ΣεN

|vN,i(s,x)− uN,i(s,x)| = max
µN∈SεN

|V N (s, µN )− U∗(s, µN )|. (2.37)

Moreover, we note that

|∆ivN,i(s,Ys)−∆ivN,i(s,Ys)|

= |V N (s,−Yi(s), µN,iY (s))− U(s,−Yi(s), µN,iY (s))

− V N (s, Yi(s), µN,iY (s)) + U(s, Yi(s), µN,iY (s))|
≤ 2 max

µN∈SεN
|V N (s, µN )− U(s, µN )|.

(2.38)

Proof of Theorem 2.7. We choose a deterministic initial condition Yt ∈ Σε
N , at time

t ∈ [0, T ). As in the proof of Theorem 1.7 of Chapter 1, we exploit the characterization
of the N -player dynamics in terms of SDEs driven by Poisson random measures, and we
apply Itô’s formula to the squared difference between the functions uN,it and vN,it , both
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computed in the optimal trajectories (Ys)s∈[t,T ]. 1 Using equations (2.31) and (2.22), we
then find

E[(uN,it − vN,it )2] +
N∑
j=0

E
[ ∫ T

t
αj(s,Ys)

(
∆j [uN,is − vN,is ]

)2
ds

]
(2.39)

= −2E
[ ∫ T

t
(uN,is − vN,is )

{
− rN(s, µN,iY (s)) +H(∆iuN,is )−H(∆ivN,is )

+
N∑

j=0,j 6=i
(αj − αj)∆juN,i + αi(∆iuN,is −∆ivN,is )

}
ds

]
,

where αi is the Nash equilibrium played by player i, αi is the control induced by U and all
the functions are evaluated on the optimal trajectories, e.g. vN,is := vN,i(s,Ys). We erase
all the positive sum on the lhs and estimate the rhs using the Lipschitz properties of H,
the bounds on rN and ∆jui given by Proposition 2.8, and the bound on αj given by the
fact that ZN (t, µ) ≤ 2, to get, for N ≥ 2

ε ,

E[(uN,it − vN,it )2]

≤ C

N
E
[ ∫ T

t
|uN,is − vN,is |ds

]
+ CE

[ ∫ T

t
|uN,is − vN,is ||∆iuN,is −∆ivN,is |ds

]

+ C

N

N∑
j=0,j 6=i

E
[ ∫ T

t
|uN,is − vN,is ||∆juN,js −∆jvN,js |ds

]
,

which can be further estimated via the convexity inequality ab ≤ 1
2a

2 + 1
2b

2 yielding

E[(uN,it − vN,it )2] ≤ C

N2 + CE
[ ∫ T

t

∣∣∣uN,is − vN,is

∣∣∣2ds]+ CE
[ ∫ T

t

∣∣∣∆iuN,is −∆ivN,is

∣∣∣2ds]

+ C

N

N∑
j=0

E
[ ∫ T

t
|∆juN,js −∆jvN,js |2ds

]
.

Here C denotes any constant which may depend on ε, and is allowed to change from line
to line. Since all the functions are evaluated on the optimal trajectories, we apply (2.36)
and (2.38) to obtain

|uN,i(t,Yt)− vN,i(t,Yt)|2 ≤
C

N2 + C

∫ T

t
max
µ∈SεN

|U(s, µ)− V N (s, µ)|2ds

for any deterministic initial condition Yt ∈ Σε
N . Therefore (2.37) gives

max
µ∈SεN

|U(t, µ)− V N (t, µ)|2 ≤ C

N2 + C

∫ T

t
max
µ∈SεN

|U(s, µ)− V N (s, µ)|2ds (2.40)

and thus Gronwall’s lemma applied to the quantity maxµ∈SεN |U(s, µ)− V N (s, µ)|2 allows
to conclude that

max
µ∈SεN

|U(t, µ)− V N (t, µ)|2 ≤ C

N2 , (2.41)

1We remark that in Chapter 1 the controls are assumed to be bounded below away from zero. Never-
theless, this fact is not used to derive the analogous identity to (2.39). A proof of the convergence results
with no lower bound on the controls can be found in Section 3.1 of [23], if the master equation possesses a
classical solution. Moreover, see Section 2.2.6 for a proof of Theorem 2.7 in the case of bounded below
transition rates.
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which immediately implies (2.29), but only if N ≥ 2
ε . Changing the value of C = Cε, the

thesis follows for any N .

2.2.5 Propagation of chaos

The next result gives the propagation of chaos property for the optimal trajectories.
Consider the initial datum (in t = 0) ξ i.i.d. with P (ξi = 1) = µ0 and E[ξi] = m0 = 2µ0−1,
and denote by Yt = (Y0(t), Y1(t), . . . , YN (t)) the optimal trajectories of the N+1-player
game, i.e. when agents play the Nash equilibrium given by (2.23). Also, denote by X̃t the
i.i.d. process in which players choose the local control α̃(t,±1) := [Z(t,m∗(t))]∓, where Z
is the entropy solution to (2.13) and m∗ is the unique mean field game solution induced
by Z, if m0 6= 0 (µ0 6= 1

2), that is the one which does not change sign (see Proposition 2.5).
The propagation of chaos consists in proving the convergence of Yt to the i.i.d. process X̃t.

Theorem 2.10 (Propagation of chaos). If µ0 6= 1
2 then, for any N and i = 0, . . . , N ,

E
[

sup
t∈[0,T ]

|Yi(t)− X̃i(t)|
]
≤ Cµ0√

N
, (2.42)

where Cµ0 does not depend on N , and limµ0→ 1
2
Cµ0 =∞.

Denote by Xi(t) the dynamics of the i-th player when choosing the control

ᾱi(t,x) = [∆iU(t, xi, µN,ix )]− (2.43)

induced by the master equation. We use Xt as an intermediate process for obtaining the
propagation of chaos result. In fact, Xt can be treated as a mean field interacting system
of particles (since the rate in (2.43) depends on N only through the empirical measure),
for which propagation of chaos results are more standard. Next result shows the proximity
of the optimal dynamics to the intermediate process just introduced.

Theorem 2.11. If µ0 6= 1
2 then, for any N and i = 0, . . . , N ,

E
[

sup
t∈[0,T ]

|Yi(t)−Xi(t)|
]
≤ Cµ0

N
, (2.44)

where Cµ0 does not depend on N , and limµ0→ 1
2
Cµ0 = +∞.

Proof. Let µ0 = 1
2 + 2ε and consider the event A where both Xt and Yt belong to Σε

N , for
any time. Exploting the probabilistic representation of the dynamics in terms of Poisson
random measures, we have

E
[

sup
s∈[0,t]

|Xi(s)− Yi(s)|
]

≤ CE
[∫ t

0

[∣∣∣α∗(Xi,s,∆iuN,i(s,Xs))−α∗(Yi,s,∆ivN,i(s,Ys))
∣∣∣+ |Xi,s−Yi,s|

]
ds

]
≤ CE

[∫ t

0

[
|Xi(s)− Yi(s)|+ |∆iuN,i(s,Xs)−∆ivN,i(s,Ys)|

]
ds

]
≤ CE

[∫ t

0
|Xi(s)− Yi(s)|ds

]
+ CE

[
1A

∫ t

0
|∆iuN,i(s,Ys)−∆ivN,i(s,Ys)|ds

]
+ CE

[
1A

∫ t

0
|∆iuN,i(s,Xs)−∆iuN,i(s,Ys)|ds

]
+ CP (Ac).
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and now we apply (2.29) together with (2.38), the Lipschitz continuity of U in Σε
N and

the exchangeability of the processes to get, if N ≥ 2
ε ,

E
[

sup
s∈[0,t]

|Xi(s)− Yi(s)|
]
≤ C

N
+ C

∫ t

0
E|Xi(s)− Yi(s)|ds+ P (Ac)

+ CE
[
1A

∫ t

0

[
|U(s,Xi(s), µN,iX (s))− U(s,Xi(s), µN,iY (s))|

+|U(s,−Xi(s), µN,iX (s))− U(s,−Xi(s), µN,iY (s))|
]
ds

]

≤ C

N
+ C

∫ t

0
E|Xi(s)− Yi(s)|ds+ P (Ac) + CE

1A ∫ t

0

1
N

∑
j 6=i
|Xj(s)− Yj(s)|ds


≤ C

N
+ C

∫ t

0
E|Xi(s)− Yi(s)|ds+ P (Ac). (2.45)

We can bound the probability of Ac by considering the process in which the transition
rates are equal to 0, for any time, i.e. the constant process equal to the initial condition ξ.
Thanks to the shape of the Nash equilibrium, which prevents the dynamics from crossing
the discontinuity, and of the control induced by the solution to the master equation, we
have

P (Ac) = P (∃t : either Xt or Yt /∈ Σε
N ) ≤ 2P (ξ /∈ Σε

N ). (2.46)

For the latter, we have

P (ξ /∈ Σε
N ) = P

(
N∑
i=0

ξi ∈
(
N

2 −Nε,
N

2 +Nε+ 1
))

≤ P
(

N∑
i=0

ξi ≤
N

2 +Nε+ 1
)
≤ P

(
µNξ ≤

1
2 + εN

)
,

denoting

εN :=
N
2 +Nε+ 1
N + 1 − 1

2 . (2.47)

Observing that (N + 1)µNξ ∼ Bin(N + 1, 1
2 + 2ε) (recall µ0 = 1

2 + 2ε), we can further
estimate, by standard Markov inequality,

P (ξ /∈ Σε
N ) ≤ P

(∣∣∣∣µNξ − 1
2 − 2ε

∣∣∣∣ ≥ 2ε− εN
)
≤

Var
[
µNξ

]
(2ε− εN )2

= 1
N + 1

(
1
2 + 2ε

) (
1
2 − 2ε

)
(
2ε− N

N+1

(
1
2 + ε

)
− 1

N+1 + 1
2

)2 ≤
C

Nε
(2.48)

if N ≥ 2
ε , so that 2ε− εN ≥ ε

4 .
Putting estimate (2.48) into (2.45), and denoting ϕ(t) := E

[
sups∈[0,t] |Xi(s)− Yi(s)|

]
,

we obtain
ϕ(t) ≤ C

Nε
+ C

∫ t

0
ϕ(s)ds (2.49)

which, by Gronwall’s lemma, gives (2.44), but only if N ≥ 2
ε . By changing the value of

C = Cε, the claim follows for any N .
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We are now in the position to prove Theorem 2.10. Thanks to (2.44), it is enough to
show that

E
[

sup
t∈[0,T ]

|Xi(t)− X̃i(t)|
]
≤ Cµ0√

N
, (2.50)

Recall that the X̃i’s are i.i.d. and Law(X̃i(t)) = m∗(t); also, set m = m∗ and µ = m+1
2 .

Moreover, we know that (N + 1)µN
X̃

(t) ∼ Bin(N + 1, µ(t)). The rate of convergence follows
from the estimate

E
∣∣∣µN
X̃

(t)− µ(t)
∣∣∣ ≤ C√

N
, (2.51)

for any time, by Cauchy-Schwarz inequality.

Proof of Theorem 2.10. Let µ0 = 1
2 + 2ε and consider the event A where both Xt and X̃t

belong to Σε
N , for any time. Arguing as in the proof of Theorem 2.11, we obtain

E
[

sup
s∈[0,t]

|Xi(s)− X̃i(s)|
]
≤ C

∫ t

0
E|Xi(s)− X̃i(s)|ds+ P (Ac)

+ CE
[
1A

∫ t

0
|U(s,Xi(s), µN,iX (s))− U(s,Xi(s), µN,i

X̃
(s))|

+ |U(s,−Xi(s), µN,i
X̃

(s))− U(s,−Xi(s), µ(s))|ds
]

≤ C
∫ t

0
E|Xi(s)− X̃i(s)|ds+ P (Ac)

+ CE

1A ∫ t

0

1
N

∑
j 6=i
|Xj(s)− X̃j(s)|ds

+ C sup
t∈[0,T ]

E
∣∣∣µN
X̃

(t)− µ(t)
∣∣∣

≤ C√
N

+ C

∫ t

0
E|Xi(s)− X̃i(s)|ds+ P (Ac).

We can bound the probability of Ac as before and thus Gronwall’s Lemma allows to
conclude.

2.2.6 A modified example

This section was developed in a previous, unpublished version of the author’s work [25],
and can also be found in the PhD Dissertation [23]. We consider a modified framework
allowing only for controls bounded from below (i.e. α(t, x) ≥ κ > 0). Most of the results
are analogous to the previous setting, so we just sketch them, but the convergence proof is
different: it involves a large deviation principle, and so it could be of interest itself. It still
relies on a characterization of the Nash equilibrium as in Theorem 2.6, but unfortunately
we have not managed to prove it. Moreover, it is interesting to note that the insertion of
a lower bound on the transition rates can restore uniqueness of solutions to the mean field
game (see Proposition 2.12 below).

In the modified setting, we leave the final cost unchanged and consider the Lagrangian

Lκ(a) = |a− κ|
2

2 ,
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so that the running cost is still zero if a player chooses the control equal to the minimum.
The Hamiltonian of the problem is

Hκ(p) := sup
a≥κ

{
−ap− (a− κ)2

2

}
= −κp+ (p−)2

2 , (2.52)

whose argmax is given by a∗κ(p) := κ+ p−. The mean field game system becomes


ż = z

(
|z|
2 + 2κ

)
ṁ = −m(|z|+ 2κ) + z

z(T ) = 2m(T )
m(0) = m0.

(2.53)

In order to solve System (2.53), we again suppose m(T ) = M is given so that we can find
z(t). As one can check via computation,

z(t) := 4κM
(2κ+ |M |)e(T−t)2κ − |M |

. (2.54)

Substituting this expression in the KFP equation, we find

m(t) =

e2κt(|M | − e2κ(T−t)(2κ+ |M |))2
(
m0+ (−1+e2κt)M(2e2κT (1+e2κt)κ+(−2e2κt+e2κT+e2κ(t+T ))|M |

(e2κt|M |−e2κT (2κ+|M |))2

)
(|M | − e2κT (2κ+ |M |))2 .

(2.55)
By imposing the mean field condition m(T ) = M we can characterize the MFG solutions
via the solutions in M to

−M +
4e2κTκ2

[
m0 + (−1+e2κT )M(2e2κT (1+e2κT )κ+(−e2κT+e4κT )|M |)

(e2κT |M |−e2κT (2κ+|M |))2

]
(|M | − e2κT (2κ+ |M |))2 = 0. (2.56)

Note that this is a generalization of the case κ = 0: indeed, for κ → 0 we recover the
previous mean field condition, given by (2.11). The above equation can be rewritten as

M3(e2κT − 1)2 −M |M |(e2κT − 1)[(1− 4κ)e2κT − 1]
+ 2κM [e4κT (2κ− 1) + 1]− 4e2κTκ2m0 = 0.

(2.57)

We can now state the analogous of Proposition 2.1.

Proposition 2.12. If κ ≥ 1
2 the MFG system (2.53) has a unique solution for any T and

m0; if κ < 1
2 and T ≤ Tκ := − log(1−2κ)

4κ the MFG system (2.53) has a unique solution for
any m0.
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Moreover, let Tκ(m0) be the unique solution in T ∈ [Tκ,+∞[ to

|m0| =
1

4e2κTκ2

{ 1
3(−1 + e2κT )2 2κ

(
1 +e4κT (−1 + 2κ)

)[
−1 +e2κT (2− 4κ) + e4κT (−1 +4κ)

−
√

(−1 + e2κT )2(1− 6κ+ e2κT (−2 + 8κ) + e4κT (1− 2κ+ 4κ2)
]

+ 1
9(−1 + e2κT )3 (1 + e2κT (−1 + 4κ))

[
1 + e4κT (1− 4κ) + e2κT (−2 + 4κ)

+
√

(−1 + e2κT )2(1− 6κ+ e2κT (−2 + 8κ) + e4κT (1− 2κ+ 4κ2)
]2

+ 1
27(−1 + e2κT )4

[
1 + e4κT (1− 4κ) + e2κT (−2 + 4κ)

+
√

(−1 + e2κT )2(1− 6κ+ e2κT (−2 + 8κ) + e4κT (1− 2κ+ 4κ2))
]3
}
.

(2.58)
Then, for any m0 ∈ [−1, 1], the MFG system (2.53) possesses

(i) a unique solution for T < Tκ(m0);

(ii) two solutions if T = Tκ(m0);

(iii) three distinct solutions for T > Tκ(m0).

Note that limκ↓0 Tκ = 1
2 , as in Proposition 2.1, and limκ↑ 1

2
Tκ = +∞. In fact, the

insertion of a lower bound κ increases the time for which there is uniqueness of solutions.
Moreover the three distinct solutions, when they exist, possess the same properties as for
κ = 0. Namely, if m0 6= 0 there is a unique solution, denoted by (z∗κ,m∗κ), which does not
change sign, and is the one that exists for any T . If m0 = 0 instead, the three solutions
are: the constant 0, the one always positive and the one always negative, if T > Tκ.

The master equation and the Nash system have the same shape as in (2.12) and (2.22),
where the Hamiltonian is replaced by Hκ and p− by a∗κ. The master equation can still be
written as a scalar conservation law, whose entropy solution, denoted by Z∗κ(t,m), has the
same properties as before: it has a shock at m = 0, for t > Tk, and is smooth elsewhere.
If we show that the solution to the Nash system enjoys the same properties, then we are
able to prove the convergence of the value functions as well as a propagation of chaos for
m0 6= 0.

From now on, we thus fix 0 < κ < 1/2 and T > Tκ. Denote V N
κ (t, µ) = V N

κ (t, 1,m)
and ZNκ (t, µ) = V N

κ (t, 1− µ)− V N
κ (t, µ), so that the Nash equilibrium is given by

αNκ (t,±1, µ) = κ+ ZNκ (t, µ)∓.

Let Uκ(t, x,m) be the solution to the master equation corresponding to the the entropy
solution Z∗κ(t,m) and define U∗κ(t, µ) = Uκ(t, 1, 2µ− 1). Let also Y κ, Xκ and X̃κ be the
analogue of the processes defined in Section 2.2.5.

Theorem 2.13. Fix N ≥ 1 and 0 < κ < 1
2 . Assume that for any µ ∈ SN =

{
0, 1

N , . . . , 1
}

ZNκ (t, µ) ≥ 0 if µ ≥ 1
2 , (2.59)

ZNκ (t, µ) ≤ 0 if µ ≤ 1
2 . (2.60)
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Then, for any t ∈ [0, T ], ε > 0 and µ ∈ SN \
]

1
2 − ε,

1
2 + ε

[
, we have

|V N
κ (t, µ)− U∗κ(t, µ)| ≤ Cε,κ

N
, (2.61)

where Cε,κ does not depend on N nor on t, µ. Moreover, if µ0 6= 1
2

E
[

sup
t∈[0,T ]

|Y κ
i (t)− X̃κ

i (t)|
]
≤ Cµ0,κ√

N
, (2.62)

E
[

sup
t∈[0,T ]

|Y κ
i (t)−Xκ

i (t)|
]
≤ Cµ0,κ

N
. (2.63)

Proof. We start by proving (2.61), omitting for simplicity the κ from the notation. Let
ε > 0 be fixed and consider a deterministic initial condition ξ = Yt at time t such that
µNξ ∈ Σε

N , where Σε
N is defined by (2.33). Let ε̄ = ε̄(T, κ, ε) := ε

2e
−2κT , fix N ≥ 2

ε and
consider the set

Aε :=
{
Ys ∈ Σε̄

N ∀s ∈ [t, T ]
}
.

We first bound the probability of ACε . For the purpose, consider the process Ỹ in which
the transition rates of each Ỹi are all constant and equal to the minimum κ, with the same
initial condition Yt. Thanks to the properties of the Nash equilibrium (2.59) and (2.60),
we have P (ACε ) ≤ P (ÃCε ), where Ãε is the set where Ỹs ∈ Σε̄

N for any s ∈ [t, T ]. The
fraction of particles in state 1 of this process, denoted by

(
µ̃N (s)

)
s∈[t,T ]

, has a non-zero
probability of crossing the discontinuity, due to κ > 0, thus we cannot argue as for κ = 0.

We are allowed to consider a sequence of deterministic initial conditions such that

lim
N→∞

µNξ =: µ∗t ∈
[
0, 1
]
\
]
1/2− ε, 1/2 + ε

[
=: Sε; (2.64)

in particular the limit exists. We have that the Ỹi’s are independent processes (even if not
identically distributed), and the sequence of processes

(
µ̃N (s)

)
s∈[t,T ]

satisfies a sample
path large deviation principle on D([0, T ]; [0, 1]), thanks to a version of Sanov’s Theorem;
see e.g. [45] and [52]. We actually need only the upper bound:

lim sup
N→∞

1
N

logP (ÃCε ) ≤ −IT,κ,ε, (2.65)

where I is a good rate functional, IT,κ,ε := infλ∈ BT,κ,ε
I(λ), with

BT,κ,ε :=
{
λ ∈ D([0, T ]; [0, 1]) : λ(s) /∈

]1
2 − ε̄,

1
2 − ε̄

[
∀s ∈ [t, T ]

}
.

Thanks to (2.64), the sequence of processes
(
µ̃N (s)

)
s∈[t,T ]

satisfies a propagation of chaos

property with the limit given by µ∗(s) = 1
2 +

(
µ∗t − 1

2

)
e−2κ(s−t) for t ≤ s ≤ T : it is

provided by the solution to the KFP equation when z = 0. It is well known that the rate
functional is always positive and, if the propagation of chaos holds, I(λ) = 0 if and only
if λ = µ∗. Therefore we can conclude that IT,κ,ε > 0, because of the choice of ε̄: indeed,
|µ∗(s)− 1/2| ≥ 2ε̄ for all s ∈ [t, T ] and for any choice of t and µ∗t ∈ Sε. Thus, µ∗ does not
belong to the closure of BT,κ,ε. This implies that

P (ACε ) ∼ e−NIT,κ,ε . (2.66)
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Moreover, the solution U∗ to the master equation is smooth outside [1/2− ε, 1/2 + ε]
and so the conclusions of Proposition 2.8 follow in the same way for N ≥ 2/ε̄. With the
same steps as in the proof of Theorem 2.7, we obtain Equation (2.39):

E[(uN,it − vN,it )2] +
N∑
j=0

E
[ ∫ T

t
αj(s,Ys)

(
∆j [uN,is − vN,is ]

)2
ds

]

= −2E
[ ∫ T

t
(uN,is − vN,is )

{
− rN(s,Ys) +H(∆iuN,is )−H(∆ivN,is )

+
N∑

j=0,j 6=i
(αjs − αjs)∆juN,is + αis(∆iuN,is −∆ivN,is )

}
ds

]

with the same notation. This time, we split the expectation in E[1Aε . . . ] + E[1ACε . . . ].
The second term is bounded by

E[1ACε . . . ] ≤ CNP (ACε ) ∼ CNe−CN ≤ C

N2

for N ≥ Nε large enough. For the first term instead, we note that under the event Aε we
can use Lipschitz properties of Hκ and a∗κ and the bounds on rN,i and ∆juN,i. On the
left hand side we also erase the positive sum

∑
j 6=i and estimate αi ≥ κ. After the above

procedures we end up with

E[(uN,it − vN,it )2] + κE
[
1Aε

∫ T

t

∣∣∣∆iuN,is −∆ivN,is

∣∣∣2ds] ≤
≤ C

N
E
[
1Aε

∫ T

t
|uN,is − vN,is |ds

]
+ CE

[
1Aε

∫ T

t
|uN,is − vN,is ||∆iuN,is −∆ivN,is |ds

]

+ C

N + 1

N∑
j=0,j 6=i

E
[
1Aε

∫ T

t
|uN,is − vN,is ||∆juN,js −∆jvN,js |ds

]
+ CNP

(
ACε
)
.

The right hand side can be further bounded using the inequality ab ≤ δa2 + b2

4δ , so that we
can write

E[(uN,it − vN,it )2] + κE
[
1Aε

∫ T

t

∣∣∣∆iuN,is −∆ivN,is

∣∣∣2ds]

≤ C

N2 + CE
[
1Aε

∫ T

t

∣∣∣uN,is − vN,is

∣∣∣2ds]

+ κ

2(N + 1)

N∑
j=0

E
[
1Aε

∫ T

t
|∆juN,js −∆jvN,js |2ds

]

≤ C

N2 + CE
[ ∫ T

t

∣∣∣uN,is − vN,is

∣∣∣2ds]+ κ

2(N + 1)

N∑
j=0

E
[
1Aε

∫ T

t
|∆juN,js −∆jvN,js |2ds

]
.

(2.67)
Taking the averages 1

N+1
∑N
i=0 of the above, we obtain

1
N + 1

N∑
i=0

E[(uN,it − vN,it )2] + κ

2(N + 1)

N∑
j=0

E
[
1Aε

∫ T

t
|∆juN,js −∆jvN,js |2ds

]
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≤ C

N2 + C

∫ T

t

1
N + 1

N∑
i=0

E
[
|uN,is − vN,is |2

]
ds

and thus Gronwall’s Lemma, applied to the quantity 1
N+1

∑N
i=0 E

[
|uN,is − vN,is |2

]
yields,

erasing the second (positive) term of the lhs,

sup
t≤s≤T

{
1

N + 1

N∑
i=0

E
[∣∣∣uN,i(s,Ys)− vN,i(s,Ys)∣∣∣2]

}
≤ C

N2 ,

which also implies

κ

2(N + 1)

N∑
j=0

E
[
1Aε

∫ T

t
|∆juN,js −∆jvN,js |2ds

]
≤ C

N2 . (2.68)

Applying (2.68) to the rhs of (2.67) and using Gronwall’s Lemma again, we get

|uN,i(t, ξ)− vN,i(t, ξ)|2 ≤ C

N2 (2.69)

for any deterministic ξ ∈ Σε
N , which immediately gives (2.61), in light of (2.37).

To prove (2.62), we first observe that (2.68) can be derived in the same way for more
general non-deterministic initial conditions. Indeed, assuming now that the initial time
is 0 and the initial condition ξ is i.i.d. with P (ξi = 1) = 1

2 + 2ε, the same argument we
used above yields P (ACε ) ≤ CN−2 and thus, by summing on both sides of (2.68) the
same quantity appearing on the lhs, but with Aε replaced by ACε , and then using the
exchangeability of the process Y , we deduce

E
[ ∫ T

0

∣∣∣∆ivN,i(s,Ys)−∆iuN,i(s,Ys)
∣∣∣ds] ≤ C

N
. (2.70)

Consider now the set Eε where both Xt and Yt belong to Σε̄
N , for any time. We can bound

P (ECε ) = P
(
∃t : either µNX(t) or µNY (t) /∈ Σε̄

N

)
≤ 2P

(
∃t : µN

Ỹ
(t) /∈ Σε̄

N

)
≤ 2P (ÃCε ) ≤ C

N
.

Proceeding as in the proof of (2.44), applying (2.70), the Lipschitz continuity of U∗ in Eε
and the exchangeability of the processes, we find

E
[

sup
s∈[0,t]

|Xi(s)− Yi(s)|
]
≤ CE

[∫ t

0
|Xi(s)− Yi(s)|+ |∆iuN,i(s,Xs)−∆ivN,i(s,Ys)|ds

]

≤ CE
[∫ t

0
|Xi(s)− Yi(s)|ds

]
+ CE

[
1Eε

∫ t

0
|∆iuN,i(s,Ys)−∆ivN,i(s,Ys)|ds

]
+ CE

[
1Eε

∫ t

0
|∆iuN,i(s,Xs)−∆iuN,i(s,Ys)|ds

]
+ CP (ECε )

≤ C
∫ t

0
E|Xi(s)− Yi(s)|ds+ C

N
+ CE

1Eε ∫ t

0

1
N

∑
j 6=i
|Xj(s)− Yj(s)|ds

+ C

N

≤ C

N
+ C

∫ t

0
E
[

sup
0≤r≤s

|Xi(r)− Yi(r)|
]
ds

and thus Gronwall’s inequality gives (2.62).
Finally, (2.63) derives from (2.62) as in Theorem 2.10. Actually, we obtained the

claims only for N large enough, but by changing the value of C = Cε the thesis follows for
any N .
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2.2.7 Potential mean field game

We give here another characterization of the solutions to the MFG system (2.7). For a
more detailed introduction on potential mean field games in the finite state space see [23,
Sect. 1.4.1]. We show that System (2.7) can be viewed as the necessary conditions for
optimality, given by the Pontryagin maximum principle, of a deterministic optimal control
problem in R2. We show that the N -player game, in the limit as N → +∞ selects exactly
the global minimizer of this problem when it is unique, i.e. when m0 6= 0.

The notation is slightly different in this section. Consider the controlled dynamics,
representing the KFP equation,

ṁ1 = m−1α−1 −m1α1

ṁ−1 = m1α1 −m−1α−1

m(0) = m0.

(2.71)

The state variable is m(t) = (m1(t),m−1(t)). Note that, in the previous notation, we had
m1 = µ and m = m1 −m−1. Here the control is α(t) = (α1(t), α−1(t)), deterministic and
open-loop, taking values in

A = {(a1, a−1) : a1, a−1 ≥ 0} .

Clearly, if m0 = (m0,1,m0,−1) belongs to the simplex

P ({1,−1}) := {(m1,m−1) : m1 +m−1 = 1,m1,m−1 ≥ 0} ,

then, for any choice of the control α, the dynamics remains in P ({1,−1}) for any time.
The cost to be minimized is

J (α) =
∫ T

0

(
m1(t)α1(t)2

2 +m−1(t)α−1(t)2

2

)
dt+ G(m(T )), (2.72)

where G(m1,m−1) := − (m1−m−1)2

2 is such that

∂

∂m1
G(m) = −(m1 −m−1) =: G(1,m)

∂

∂m−1
G(m) = m1 −m−1 =: G(−1,m),

whereas G(x,m) = −x(m1 −m−1), for x = ±1, is the terminal cost. This structure is
called potential mean field game, since we have ∇G(m) = G(·,m).

The Hamiltonian of this problem is

H(m,u) = sup
a∈A

{
−b(m, a) · u−m1

a2
1

2 −m−1
a2
−1
2

}

= m1
[(u−1 − u1)−]2

2 +m−1
[(u1 − u−1)−]2

2 ,

where bx(m, a) = m−xa−x−mxax, for x = ±1, is the vector field in (2.71), and the argmax
of the Hamiltonian is

a∗1(u) = (u−1 − u1)−,
a∗−1(u) = (u1 − u−1)−.
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Thus, the HJB equation of the control problem reads{
−∂U

∂t +H(m,∇mU) = 0 t ∈ [0, T ),m ∈ P({1,−1})
U(T,m) = G(m),

(2.73)

and its characteristics curves are given by the MFG system

−u̇1 + [(u−1−u1)−]2
2 = 0

−u̇−1 + [(u1−u−1)−]2
2 = 0

ṁ1 = m−1a
∗
−1(u)−m1a

∗
1(u)

ṁ−1 = m1a
∗
1(u)−m−1a

∗
−1(u)

u±1(T ) = G(±1,m(T )), m(0) = m0.

(2.74)

Lemma 2.14. The following claims hold:

1. There exists an optimum of the control problem (2.71)-(2.72).

2. The MFG system (2.74) represents the necessary conditions for optimality, given by
the Pontryagin maximum principle.

Proof. The first claim follows from Theorem 5.2.1 p. 94 in [13], which can be applied
since the dynamics is linear in α and the running cost is convex in α. Conclusion 2 is
standard.

We know that, if T is large enough, there are three solutions to the MFG system. The
control problem (2.71)-(2.72) has a minimum, so we wonder which of these solutions is
indeed a minimizer.

First, we need to investigate some property of the roots of (2.11). Let T > T (m0)
be fixed. Let M1(m0) < M2(m0) < M3(m0) be the three solutions to (2.11). If m0 = 0
denote M− = M1(0) < 0, M+ = M3(0) > 0; we have M2(0) = 0 and M+ = M−. If
m0 > 0 then, by Proposition 2.1, M3(m0) > 0 and M1(m0),M2(m0) < 0; if m0 < 0 then
M3(m0) < 0 and M1(m0),M2(m0) > 0.

Lemma 2.15. Let m0 > 0 and T > T (m0) be fixed. Then

1. The function [0,m0] 3 m 7→M3(m) ∈ [0, 1] is increasing, M2(m) is decreasing and
M1(m) is increasing. In particular for any m ∈ [0,m0]

M3(m) > M+ = |M−| > |M1(m)| > |M2(m)| > M2(0) = 0 (2.75)

2. We have M1(m) < −2T−1
3T < M2(m) < 0 and for any m ∈ [0,m0]∣∣∣∣M2(m) + 2T − 1

3T

∣∣∣∣ > ∣∣∣∣M1(m) + 2T − 1
3T

∣∣∣∣ . (2.76)

The case m0 < 0 is symmetric.

Proof. Claim (1) derives from the proof of Proposition 2.1. For claim (2), M1(m) and
M2(m) are the two negative roots of f(M) = T 2M3− T (2− T )M2 + (1− 2T )M −m = 0.
The roots of f ′(M) are q := −2T−1

3T and 1
T . Hence M1 < q < M2 < 0, f(q) > 0 and we

have, by Taylor’s formula (which here is actually a change of variable),

f(q + ε) = f(q) + f ′(q)ε+ f ′′(q)
2 ε2 + f ′′′(q)

6 ε3 = f(q) + f ′′(q)
2 ε2 + T 2ε3
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f(q − ε) = f(q)− f ′(q)ε+ f ′′(q)
2 ε2 − f ′′′(q)

6 ε3 = f(q) + f ′′(q)
2 ε2 − T 2ε3

for any ε > 0. Thus f(q + ε) − f(q − ε) = 2T 2ε3 > 0 for any ε > 0, which implies
(2.76).

For i = 1, 2, 3, denote bymi, zi, αi,mi, ui the solution to the MFG system corresponding
to Mi.

Theorem 2.16. Let m0 > 0 and T > T (m0) be fixed. Then for any m ∈ [0,m0] and
i = 1, 2, 3 we have J (αi) = ϕ(Mi(m)), where ϕ : [−1, 1]→ [−1, 1],

ϕ(M) := M2
(
T − 1

2 − T |M |
)
. (2.77)

Moreover, for any m ∈ (0,m0],

ϕ(M+) = ϕ(M−) < ϕ(0) = 0, (2.78)
ϕ(M3(m)) < ϕ(M+) < ϕ(M1(m)), (2.79)
ϕ(M1(m)) < ϕ(M2(m)) > 0, (2.80)

meaning that α+ and α− are both optimal if m = 0 and α ≡ 0 is not, while α3 is the
unique minimizer if m > 0, with

J (α3) < J (α1) < J (α2). (2.81)

Proof. The first claim and (2.77) follow directly from (2.72) and (2.10).
We continue by proving (2.79). The roots of ϕ′ are 0 and ±q, with q := −2T−1

3T . The
function ϕ is then increasing if either M < q or 0 < M < −q. Thus (2.79) follows from
(2.75) and the fact that ϕ(M+) = ϕ(M−), as ϕ(M) only depends on |M |.

Next, we show that ϕ(M+) < 0 = ϕ(0). SinceM+ solves T 2M2 +T (2−T )M+1−2T =
0, we obtain, for M = M+,

ϕ(M) = M2

2 (2T − 1− 2TM) = M2

2 (T 2M2 − T 2M) = T 2M3

2 (M − 1) < 0

because M+ < 1.
To prove (2.80), we first note that we have just showed that it holds in m = 0:

ϕ(M1(0)) = ϕ(M−) = ϕ(M+) < 0 = ϕ(0) = ϕ(M2(0)). We also know that ϕ(M1(m)) >
ϕ(M1(0)) and ϕ(M2(m)) > ϕ(M2(0)), thanks to the monotonicity behavior of ϕ and
Lemma 2.15. Hence suppose by contradiction that there exists m ∈]0,m0] such that
ϕ(M1(m)) = ϕ(M2(m)) = c, for some c > 0. This implies that both M1(m) and M2(m)
are negative roots of ϕ(M)− c. Thus they are also negative roots of

ψ(M) := Tϕ(M)− Tc− f(M) = 3
2TM

2 − (1− 2T )M +m− Tc = 0

and ψ′(q) = 0, where q = −2T−1
3T as above. Since ψ has degree 2, it follows that

|M2(m)− q| = |M1(m)− q|, but this contradicts (2.76). Therefore there is no m for which
ϕ(M1(m)) = ϕ(M2(m)), and then if (2.80) holds for m = 0 (which is (2.78)) then it is
true for any m ∈ [0,m0].
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Figure 2.2: Simulation of the N -player dynamics. We plot the empirical distribution
of ρN (t) at the final time t = T = 2, N = 500, ρ ∈ {0, 1/N, . . . , 1} for an initial datum
concentrated in 1

2 .

Note that the results in this section imply that the N -player game selects, in the
limit as N → +∞, the global minimizer of the control problem (2.72), when it is unique.
Moreover, the sequence of the N -player value functions V N converges to the derivative of
the value function of such control problem, as the latter is constructed by using the same
characteristic curves used for constructing the solution (2.19) to the master equation. We
remark that the value function of the control problem (2.72) can also be characterized as
the unique viscosity solution to (2.73).

2.3 Conclusions

Let us summarize the main results we have obtained for this two state model with
anti-monotonic terminal cost:

1. the mean field game possesses exactly 3 solutions, if T > 2 (Proposition 2.1);

2. the N -player value functions converge to the entropy solution to the master equation
(Theorem 2.7);

3. the N -player optimal trajectories converge to one mean field game solution, if m0 6= 0
(Theorem 2.10);

4. viewing the mean field game system as the necessary conditions for optimality of a
deterministic control problem, the N -player game selects the global minimizer of
this problem, when it is unique, i.e. m0 6= 0 (Theorem 2.16).

We remark that in the convergence proof we did not make use of the characterization
of the right solution to the master equation as the entropy admissible one; the key point
was to show that the N -player optimal trajectories do not cross the discontinuity. Neither
did we use the potential structure of the problem: these are properties which might allow
to extend the convergence results to more general models.



70 The convergence problem in a two state model without uniqueness

Observe that solutions of the MFG system, whether selected by the limit of N -player
Nash equilibria or not, always yield approximate Nash equilibria in decentralized symmetric
feedback strategies; see, for instance, [4] and [24] in the finite state setting. In this sense
the other two solutions still have a physical meaning.

What is left to prove for this model is a propagation of chaos result when m0 = 0. Let
m+, resp. m−, be the mean field game solution always positive, resp. always negative.
What is evident from the simulations (see Figure 2.2) is the following

Conjecture 2.1. Let m0 = 0 and mN be the empirical mean related to the optimal
trajectories of the N -player game, viewed as a random variable in D([0, T ], [−1, 1]). Then

lim
N

Law(mN ) = 1
2δm+ + 1

2δm− . (2.82)

The limit of the empirical measures is not deterministic: in this sense there is no
propagation of chaos when m0 = 0, i.e. the initial point is exactly in the discontinuity.
Unfortunately we did not manage to prove this result for our model, since it is difficult
to track the Nash system in a neighborhood of the discontinuity. We remark that a
similar result, in the regime of open-loop controls, was recently obtained in [42] for a
linear-quadratic mean field game in dimension 1. We finally remark that the claim of
Conjecture 2.1 should remain true also for the modified example of Section 2.2.6, due to
the numerical simulations which show the same behaviour as in Figure 2.2 .
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CHAPTER 3

The mean field case

In this chapter we analyze two examples of non-Markovian mean field interacting spin
systems. In both cases we consider dynamics of spin-flip type, related to the Curie–Weiss
model. In the first example we relax the Markovianity assumption by replacing the
memoryless distribution of the waiting times of a classical spin-flip dynamics with a
distribution with memory. The resulting stochastic evolution for a single particle is a
spin-valued renewal process, an example of two states semi-Markov process. As we shall
see, we can associate to the individual dynamics an equivalent Markovian description,
which is the subject of our analysis. We study a corresponding interacting particle system,
where a mean field interaction is introduced as a time scaling, depending on the overall
magnetization of the system, on the waiting times between two successive particle’s jumps.

In the second model instead, the non-Markovianity follows by an augmentation of
state procedure, where we double the state space assigning to each microscopic spin
another spin-valued variable which produces frustration in the system. The resulting
model is finite-dimensional, allowing for a deeper analysis of the phase-space diagram of
the macroscopic limit equations.

Interestingly, we show that the above models belong to the same universality class:
they both feature the presence of a unique stable neutral phase for values of the parameters
corresponding to high temperatures, the emergence of periodic orbits in an intermedi-
ate range of the parameter values, and a subsequent ferromagnetic ordered phase for
increasingly lower temperatures. In particular both dynamics can generate self-sustained
oscillations: in the first case this seems to be a global phenomenon (even though we were
not able to prove it), while in the finite-dimensional model we show that the cycles appear
only starting the dynamics in a specific area of the phase-space.

Emerging periodic behavior in complex systems with a large number of interacting
units is a commonly observed phenomenon in a variety of life science applications such
as neuroscience ([55]) and ecology ([99]), but also in socioeconomics ([27, 100]), whose
mathematical modelization has raised an interest in the community of probabilists and
physicists working on interacting particle systems, and in particular on mean field models,
due to their analytical tractability. With the term self-sustained periodic behavior we refer
to systems where each individual particle has no natural tendency to behave periodically,
but the oscillations are rather an effect of self-organization, visible in the macroscopic limit
when the number of particles tends to infinity. One of the goals of the mathematical theory
in this field is to understand which types of microscopic interactions and mechanisms can
lead to or enhance the above self-organization. Among others, we cite noise ([36], [92],

73
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[98]), dissipation in the interaction potential ([1], [29], [30], [35]), delay in the transmission
of information and/or frustration in the interaction network ([31], [50], [97]). Specifically,
in [50] the authors consider non-Markovian dynamics, studying systems of interacting
nonlinear Hawkes processes for modeling neurons.

Although not proved in general, a strong belief in the literature is that, at least for
Markovian dynamics, self-sustained periodic behavior cannot emerge if one does not
introduce some time-irreversible phenomenon in the dynamics, as it is the case in all
the above cited works (see e.g. [10], [60]). While the finite-dimensional model treated
in Section 3.3 falls within the above examples (due to the presence of frustration), the
model of Section 3.2, in which the limit dynamics is still reversible with respect to the
stationary distribution around which cycles emerge (see Remark 3.3 below), suggests that
this paradigm could be false for the non-Markovian case.

Before proceeding with the analysis of the two models, we briefly review some prelimi-
nary concepts in Section 3.1. Finally, we point out that in this chapter we proceed less
rigorously than in the rest of the Dissertation, often relying on numerical evidence.

3.1 Preliminaries
As we already mentioned, the models considered in this chapter can be seen as proper
modifications of the Curie–Weiss dynamics. When we refer to the latter, we mean a
spin-flip type Markovian dynamics for a system of N interacting spins σi ∈ {−1, 1},
i = 1, . . . , N , which is reversible with respect to the equilibrium Gibbs probability measure
on the space of configurations {−1, 1}N ,

PN,β(σ) := 1
ZN (β) exp [−βH(σ)] , (3.1)

with σ := (σ1, . . . , σN ) ∈ {−1, 1}N , β > 0 (ferromagnetic case), and ZN (β) is a normalizing
constant. In statistical mechanics, the function H is called Hamiltonian: it specifies the
energy of each spin configuration σ ∈ {−1, 1}N , and in the Curie–Weiss case it is given by

HN (σ) := − 1
2N

(
N∑
i=1

σi

)2

. (3.2)

Define also the empirical magnetization as

mN := 1
N

N∑
i=1

σi.

Note that the distribution (3.1) gives higher probability to the configurations with minimal
energy, which by (3.2) are the ones where the individual spins are aligned in the same state.
The equilibrium model undergoes a phase transition tuned by the interaction parameter
β > 0 (referred to as inverse temperature in the literature), which can be recognized by
proving a Law of Large Numbers for the equilibrium empirical magnetization

Law(mN ) N→+∞−−−−−→
{
δ0, if β ≤ 1,
1
2δ+mβ + 1

2δ−mβ , if β > 1,
(3.3)

where mβ > 0 is the so-called spontaneous magnetization.
When we turn to the dynamics, different choices can be made in order to satisfy the

above-mentioned reversibility with respect to (3.1). The prototype is a continuous-time
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spin-flip dynamics defined in terms of the infinitesimal generator L, applied to a function
f : {−1, 1}N → R,

Lf(σ) =
N∑
i=1

e−βσim
N
[
f(σi)− f(σ)

]
, (3.4)

where σi ∈ {−1, 1}N is obtained from σ by flipping the i-th spin, i.e.

σik :=
{
−σk, if k = i,

σk if k 6= i.

Note that in Chapter 4 we consider the different spin-flip rates

1− tanh(βσimN ),

for which the reversibility with respect to (3.1) still holds. Dynamics (3.4) induces a
continuous-time Markovian evolution for the empirical magnetization processmN (t), which
is given in terms of a generator L applied to a function g : [−1, 1]→ R:

LNg(m) = N
1 +m

2 e−βm
[
g

(
m− 2

N

)
− g(m)

]
+N

1−m
2 eβm

[
g

(
m+ 2

N

)
− g(m)

]
.

(3.5)
The above generator can be obtained by observing that, when a spin σi flips from σi to
−σi at time t, the empirical magnetization changes by a quantity −2σi

N . The factors N 1+m
2

and N 1−m
2 represent the number of spins in state 1 and −1 respectively. It is easy to

obtain the weak limit of the sequence of processes
(
mN (t)

)
t∈[0,T ]

, by studying the uniform
convergence of the generator (3.5) as N → +∞. The limit process m(t) is deterministic
and solves the Curie–Weiss ODE{

ṁ(t) = 2 sinh(βm(t))− 2m(t) cosh(βm(t)),
m(0) = m0 ∈ [−1, 1].

(3.6)

The presence of the phase transition highlighted in (3.3) can be recognized as well in the
out-of-equilibrium dynamical model (3.6). Indeed, studying the long-term behavior of
(3.6), one finds that:

• for β ≤ 1, (3.6) possesses a unique stationary solution, globally attractive, constantly
equal to 0;

• for β > 1, 0 is still stationary but it is unstable; two other symmetric stationary
locally attractive solutions, ±mβ, appear: the two non-zero solutions to

m = tanh(βm).

The dynamics m(t) gets attracted for t → +∞ to the polarized stationary state
which has the same sign as the initial magnetization m0.

Another concept which we refer to in Section 3.2 is that of a renewal process, a
generalization of the Poisson process. As the latter, it is a stochastic process for events
that occur randomly in time. For our purposes, we identify a renewal process with the
sequence of its interarrival times (also commonly referred to as sojourn times or waiting
times in the literature) {Tn}∞n=1, i.e. the holding times between the occurrences of two
consecutive events. The Poisson process (see [12, Ch. 8] for a thorough introduction) is
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characterized by having independent and identically distributed interarrival times, where
each Ti is exponentially distributed. In particular, the following memoryless property is
satisfied for any i = 1, 2, . . .

P(Ti > s+ t|Ti > t) = P(Ti > s),

for any s, t ≥ 0. The interarrival times of a renewal process are still independent and
identically distributed, but their distribution is not required to be exponential. We recall
that a continuous-time homogeneous Markov chain can be identified by a Poisson process,
modeling the jump times, and a stochastic transition matrix, identifying the possible
arrival states at each jump time. Due to the lack of the memoryless property, when one
replaces the Poisson process in the definition of the spin-flip dynamics with a more general
renewal process, the resulting evolution is thus non-Markovian. In the literature, the
associated dynamics is referred to as semi-Markov process, first introduced by Levy in
[81].

3.2 Oscillatory behavior in a model of mean field interact-
ing renewal processes

In this section we consider a non-Markovian, infinite-dimensional modification of the
Curie–Weiss model and exhibit some partial evidence of its oscillatory behavior.

In order to introduce the model, we start by observing that the Curie–Weiss dynamics
(3.4), as any spin-flip Glauber dynamics, can be obtained by adding interaction to a system
of independent spin-flips: at the times of a Poisson process of intensity 1, the spin in
a given site flips; different sites have independent Poisson processes. Our aim here is
to replace Poisson processes by more general renewal processes, otherwise keeping the
structure of the interaction. For the moment we focus on a single spin σ(t) ∈ {−1, 1}. If
driven by a Poisson process of intensity 1, its dynamics has infinitesimal generator

Lf(σ) = f(−σ)− f(σ), (3.7)

f : {−1, 1} → R. If the Poisson process is replaced by a renewal process, the spin dynamics
is not Markovian. In what follows, we refer to the resulting dynamics as a spin-valued
renewal process, that is an example of two-states semi-Markov process. We can associate a
Markovian description to the latter: define y(t) as the time elapsed since the last spin-flip
occured up to time t. Suppose that the waiting times τ (interchangeably referred to as
interarrival times) of the renewal satisfy

P(τ > t) = ϕ(t), (3.8)

for some smooth function ϕ : [0,+∞)→ R. Then, the pair (σ(t), y(t))t≥0 is Markovian
with generator

Lf(σ, y) = ∂f

∂y
(σ, y) + F (y)[f(−σ, 0)− f(σ, y)], (3.9)

for f : {−1, 1} × R+ → R, with

F (y) := −ϕ
′(y)
ϕ(y) . (3.10)

This is equivalent to say that the couple (σ(t), y(t))t≥0 evolves according to{
(σ(t), y(t)) 7→ (−σ(t), 0), with rate F (y(t)),
dy(t) = dt, otherwise.

(3.11)
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Expression (3.10) for the jump rate follows by observing that, for an interarrival time τ of
the jump process σ(t), we have

P(σ(t+ h) = −σ|σ(t) = σ) = 1− P(τ > t+ h|τ > t) = 1− ϕ(t+ h)
ϕ(t) ,

for any h > 0. Observe that when the τ ’s are exponentially distributed F (y) ≡ 1, so we
get back to dynamics (3.7).

Dynamics (3.9) can be perturbed by allowing the distribution of the waiting time
for a spin-flip to depend on the current spin value σ; the simplest way is to model this
dependence as a time scaling:

P(τ > t|σ) = ϕ(a(σ)t). (3.12)

Under this distribution for the waiting times the generator of (σ(t), y(t))t≥0 becomes:

Lf(σ, y) = ∂f

∂y
(σ, y) + a(σ)F (a(σ)y)[f(−σ, 0)− f(σ, y)].

The rest of this section is organized as follows: in Section 3.2.1 we introduce the mean field
model; in Section 3.2.2 we study the linearized Fokker-Planck equation around a neutral
equilibrium, for two different choices of renewal dynamics. We determine the discrete
spectrum of the linearized operator in terms of the zeros of two holomorphic functions,
which we then study numerically as functions of the interaction parameters. The results
are then compared in Section 3.2.3 with the ones obtained by simulating the finite particle
system, finding a precise accordance between the two approaches.

3.2.1 The mean field model

On the basis of what seen above, it is rather simple to define a system of mean-
field interacting spins with non-exponential waiting times. For a collection of N pairs
(σi(t), yi(t))i=1,...,N , we set mN (t) := 1

N

∑N
i=1 σi(t) to be the magnetization of the system

at time t, and a parameter β > 0 tuning the interaction between the particles. The
interacting dynamics is(σi(t), yi(t)) 7→ (−σi(t), 0), with rate F

(
yi(t)e−βσi(t)m

N (t)
)
e−βσi(t)m

N (t),

dyi(t) = dt, otherwise.
(3.13)

Denoting σ := (σ1, . . . , σN ) ∈ {−1, 1}N , y := (y1, . . . , yN ) ∈ (R+)N , mN := 1
N

∑N
i=1 σi,

the associated infinitesimal generator is

LNf(σ,y) =
N∑
i=1

∂f

∂yi
(σ,y) +

N∑
i=1

F
(
yie
−βσimN

)
e−βσim

N
[
f(σi,yi)− f(σ,y)

]
, (3.14)

where σi is obtained from σ by flipping the i-th spin, while yi by setting to zero the i-th
coordinate. The additional factor e−βσi(t)mN (t) in the jump rate in (3.13) follows from the
observation we made in (3.12) and the definition of F (y) = −ϕ′(y)

ϕ(y) . Note that, for F ≡ 1,
we retrieve the Curie–Weiss dynamics (3.4) for the spins.

The macroscopic limit and propagation of chaos for this class of models should be
standard, although some difficulties may arise for general choices of F not globally Lipschitz.
For computational reasons which will be made clear in the next section, we focus on the
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case F (y) = yγ , for γ ∈ N, which corresponds to considering, in the single spin model,

the tails of the distribution of the interarrival times to be ϕ(t) ∝ e
− t

γ+1
γ+1 . In Appendix

B, we study rigorously the well-posedeness of the pre-limit and limit dynamics and the
propagation of chaos under this choice of rate function.

When F (y) = yγ , (3.13) becomes{
(σi(t), yi(t)) 7→ (−σi(t), 0), with rate yγi (t)e−(γ+1)βσi(t)mN (t),

dyi(t) = dt, otherwise.
(3.15)

As for the Curie–Weiss model, dynamics (3.15) is subject to a cooperative-type interaction:
the spin-flip rate is larger for particles which are not aligned with the majority. Assuming
propagation of chaos, at the macroscopic limit N → +∞ the representative particle
(σ(t), y(t)) has a mean-field dynamics{

(σ(t), y(t)) 7→ (−σ(t), 0), with rate yγ(t)e−(γ+1)βσ(t)m(t),

dy(t) = dt, otherwise,
(3.16)

with m(t) = E[σ(t)]. To this dynamics we can associate (see [76]) the non-linear infinitesi-
mal generator

L(m(t))f(σ, y) = ∂f

∂y
(σ, y) + yγe−(γ+1)βσm(t) [f(−σ, 0)− f(σ, y)] , (3.17)

where the non-linearity is due to the dependence of the generator on m(t), a function of
the joint law at time t of the processes (σ(t), y(t)).

3.2.2 Local analysis of the Fokker-Planck

In this section we perform a local analysis on the Fokker-Planck equation for the mean-field
limit dynamics (3.16) with γ = 1 and γ = 2. Our approach is the following: we find a
neutral stationary solution of interest, we linearize formally the dynamics around that
equilibrium and we compute the discrete spectrum of the associated linearized operator,
which we show to be given by the zeros of an explicit holomorphic function Hβ,γ(λ). We
then study numerically the character of the eigenvalues when β varies: for both γ = 1, 2, we
find that for all β < βc(γ) all eigenvalues have negative real part; at βc(γ) two eigenvalues
are conjugate and purely imaginary, suggesting the possible presence of a Hopf bifurcation
in the limit dynamics. These critical values of β are then compared to the ones obtained
by simulating the finite particle system in Section 3.2.3.

The Fokker-Planck equation associated to (3.16) is a PDE describing the time evolution
of the density function f(t, σ, y) of the limit process (σ(t), y(t)). It is given by

∂
∂tf(t, σ, y) + ∂

∂yf(t, σ, y) + yγe−(γ+1)βσm(t)f(t, σ, y) = 0,
f(t, σ, 0) =

∫+∞
0 yγe(γ+1)βσm(t)f(t,−σ, y)dy,

m(t) =
∫∞
0 [f(t, 1, y)− f(t,−1, y)]dy,

1 =
∫∞

0 [f(t, 1, y) + f(t,−1, y)]dy,
f(0, σ, y) = f0(σ, y), for σ ∈ {−1, 1} , y ∈ R+.

(3.18)

A general study of (3.18) is beyond the scope of this work. Here we just observe that
(3.18) can be seen as a system of two quasilinear PDEs (one for σ = 1 and another for
σ = −1), where the non-linearity enters in an integral form through m(t) in the exponent
of the rate function. Moreover, the boundary integral condition in the second line poses
additional challenges.
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Remark 3.1. While the other equations in (3.18) are derived in a standard way from
the expression of the generator (3.17), the boundary integral condition might need to be
motivated. In words, it is a mass-balance between the spins that have just jumped (thus
having y = 0). We reason heuristically by discretizing the state space [0,+∞) in small
intervals of amplitude ε. The discretized version of y(t) takes values in {nε : n ∈ N}.
The associated generator is, for n ∈ N and σ ∈ {−1, 1},

Lεf(σ, nε) = 1
ε

[
f(σ, (n+ 1)ε)− f(σ, nε)

]
+ (nε)γe−(γ+1)βσm(t)[f(−σ, 0)− f(σ, nε)

]
.

Denoting f(t, σ, 0) the density of the discretized process in (σ, 0) at time t, it follows from
the expression of Lε,

d

dt
f(t, σ, 0) =

∑
n∈N

(nε)γe−(γ+1)βσm(t)f(t,−σ, nε)− 1
ε
f(t, σ, 0),

that is the discretized version of the integral condition in (3.17).

It is easy to exhibit a particular stationary solution to (3.18):

Proposition 3.2. The function

f∗(σ, y) = 1
2Λe

− y
γ+1
γ+1 , (3.19)

with Λ :=
∫+∞

0 e
− y

γ+1
γ+1 , is a stationary solution to System (3.18) with m = 0.

Proof. Setting m = 0 in the above system, the stationary version of the first equation
becomes

∂

∂y
f(σ, y) + yγf(σ, y) = 0, (3.20)

whose solution is of the form f∗(σ, y) = c(σ)f(σ, 0)e−
yγ+1
γ+1 . Denoting Λ :=

∫+∞
0 e

− y
γ+1
γ+1 ,

it is easy to see that the integral conditions imply c(σ) = c(−σ) = 1
Λ and f(σ, 0) =

f(−σ, 0) = 1
2 .

Remark 3.3. Let g∗(σ) be the marginal of f∗(σ, y) with respect to the first coordinate.
Then, g∗(σ) is a stationary reversible distribution for the limit renewal process (σ(t))t≥0.
Indeed, by choosing σ(0) ∼ g∗, g∗(1) = g∗(−1) = 1

2 , we have that m(t) ≡ 0 and (σ(t))t≥0

is a renewal process with interarrival times τ such that P(τ > t) ∝ e−
tγ+1
γ+1 independently

of the value of σ, so its law is invariant by time reversal.

3.2.2.1 Linearized stationary system

We now compute formally the linearization of the operator associated to System (3.18)
around the solution (3.19) with m = 0. Namely, if we write the first equation in (3.18) in
operator form

∂

∂t
f(t, σ, y)− Lnlγ f(t, σ, y) = 0,

with Lnlγ f(t, σ, y) := − ∂
∂yf(t, σ, y)−yγe−(γ+1)βσm(t)f(t, σ, y), we want to find the linearized

version of the operator Lnlγ .
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For the purpose, we express a generic stationary solution to (3.18) as

f(σ, y) = f∗(σ, y) + εg(σ, y),

imposing ∫ ∞
0

[g(1, y) + g(−1, y)]dy = 0, (3.21)

so that
∫∞
0 [f(1, y) + f(−1, y)]dy = 1 is satisfied. We also denote mf :=

∫∞
0 [f(1, y) −

f(−1, y)]dy, which by the above consideration satisfies

mf = 2ε
∫ ∞

0
g(1, y)dy =: εk. (3.22)

The stationary version of the first equation in (3.18) becomes

∂

∂y
f∗(σ, y) + ε

∂

∂y
g(σ, y) + yγe−βσεk(γ+1)[f∗(σ, y) + εg(σ, y)] = 0.

By expanding at the first order in ε the term e−βσεk(γ+1) ≈ 1 − (γ + 1)βσεk, and by
considering only the resulting linear terms in ε, we get

∂

∂y
f∗(σ, y) + ε

∂

∂y
g(σ, y) + yγf∗(σ, y) + yγεg(σ, y)− yγ(γ + 1)βσεkf∗(σ, y) = 0.

Finally, using that f∗ solves (3.20) and substituting its expression (3.19), we get

∂

∂y
g(σ, y) + yγg(σ, y)− βσk(γ + 1)

2Λ yγe
− y

γ+1
γ+1 = 0.

We can define the linearized operator as

Llin
γ g(σ, y) := − ∂

∂y
g(σ, y)− yγg(σ, y) + βσk(γ + 1)

2Λ yγe
− y

γ+1
γ+1 . (3.23)

We proceed with the linearization of the integral condition in the second line of System
(3.18):

f∗(σ, 0)+εg(σ, 0) =
∫ ∞

0
[f∗(−σ, y) + εg(−σ, y)]yγeβσεk(γ+1)

≈
∫ ∞

0
f∗(−σ, y)yγ(1 + βσεk(γ + 1)) + ε

∫ ∞
0

g(−σ, y)yγ(1 + βσεk(γ + 1))

≈
∫ ∞

0
f∗(−σ, y)yγ + βσεk(γ + 1)

∫ ∞
0

f∗(−σ, y)yγ + ε

∫ ∞
0

g(−σ, y)yγ .

Using again that f∗ solves (3.20) and its expression in (3.19), we get

g(σ, 0) = βσk(γ + 1)
2Λ +

∫ ∞
0

g(−σ, y)yγdy. (3.24)

In order to gain indications on the stability properties of the stationary solution to
(3.18) with m = 0, we study the discrete spectrum of Llin

γ defined in (3.23), i.e., we search
for the eigenfunctions g and the eigenvalues λ ∈ C, satisfying the linearized integral
conditions (3.21) and (3.24) found above, and such that

Llin
γ g(σ, y) = λg(σ, y), (3.25)
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which is equivalent to

∂

∂y
g(σ, y) + yγg(σ, y)− βσk(γ + 1)

2Λ yγe
− y

γ+1
γ+1 = −λg(σ, y). (3.26)

The eigen-system around m = 0 is thus given by
∂
∂yg(σ, y) + yγg(σ, y)− βσk(γ+1)

2Λ yγe
− y

γ+1
γ+1 = −λg(σ, y),

g(σ, 0) = βσk(γ+1)
2Λ +

∫∞
0 g(−σ, y)yγdy,∫∞

0 [g(σ, y) + g(−σ, y)]dy = 0, (σ, y) ∈ {−1, 1} × R+,

(3.27)

where, recall by (3.22), k = 2
∫∞
0 g(1, y)dy, and Λ =

∫∞
0 e

− y
γ+1
γ+1 dy. We work out the

computations for the two cases γ = 1, γ = 2.

Remark 3.4. The derivation of the linearized operator (3.25) was formal. One could
think to define it more rigorously, by indicating an Hilbert space where Llin

γ acts on. The

natural choice appears to be (a subspace of)
(
L2
µγ

(
R+))2

satisfying conditions (3.21) and
(3.24), where the outer square comes from the explicitation of the spin variable σ = ±1,
and the measure µγ is defined as

µγ(dy) := f∗(σ, y)dy = 1
2Λe

− y
γ+1
γ+1 dy. (3.28)

As in what follows we do not use the particular choice of domain of the operator or its
properties, we do not investigate further on this.

3.2.2.2 Case γ = 1

In this case, Λ =
√

π
2 , and the eigen-system (3.27) becomes


∂
∂yg(σ, y) + yg(σ, y) + λg(σ, y) = βσk

(√
π
2

)−1
ye−

y2
2

g(σ, 0) = βσk
(√

π
2

)−1
+
∫∞

0 yg(−σ, y)dy,∫∞
0 [g(σ, y) + g(−σ, y)]dy = 0,

(3.29)

where k = 2
∫∞

0 g(1, y)dy.

Proposition 3.5. The solutions in λ ∈ C to (3.29) are the zeros of the holomorphic
function

Hβ,1(λ) := H1(λ)
[
−4β − λ3

√
π

2

]
+
√

2πλ2 − 4βλ+ 2β
√

2π, (3.30)

with
H1(λ) :=

∫ ∞
0

e−
y2
2 e−λy. (3.31)

Moreover, it holds

H1(λ) =
√
π

2

∞∑
m=0

λ2m

(2m)!! − λ
∞∑
m=0

(2λ)2mm!
(2m+ 1)!

1
2m . (3.32)
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Proof. In order to solve the first equation in (3.29), we set

h(σ, y) := g(σ, y)e
y2
2 .

It holds
∂

∂y
h(σ, y) = −λh(σ, y) + yβσk√

π
2

,

whose solution is

h(σ, y) = e−λy

h(σ, 0) + βσk√
π
2

∫ y

0
ueλudu

 .
Noting that

∫ y
0 ue

λudu = 1
λ2 − eλy

λ2 + eλy

λ y, we obtain

g(σ, y) = e−
y2
2 e−λy

g(σ, 0) + βσk√
π
2

(
1
λ2 −

eλy

λ2 + eλy

λ
y

) . (3.33)

We now impose the integral conditions. First, we note that
∫∞

0 [g(σ, y) + g(−σ, y)]dy = 0
is equivalent to g(σ, y) + g(−σ, y) = 0 for every y ∈ R+ because of expression (3.33). For
the computation of k, recalling notation (3.31), we find

k = 2
∫ ∞

0
g(1, y)dy

= 2g(1, 0)H1(λ) + 2 βk√
π
2

1
λ2H1(λ)− 2βk

λ2
1√
π
2

√
π

2 + 2 βk√
π
2

1
λ
,

so that
k = 2g(1, 0)H1(λ)

1− 2 β

λ
√

π
2
− 2βH1(λ)

λ2
√

π
2

+ 2 β
λ2

. (3.34)

The integral condition in the second line of (3.29) gives

g(σ, 0) = βσk√
π
2

+
∫ ∞

0
y

e− y2
2 e−λy

g(−σ, 0)− βσk√
π
2

(
1
λ2 −

eλy

λ2 + eλy

λ
y

)
= βσk√

π
2

− g(σ, 0)(1− λH1(λ))− βσk√
π
2

(1− λH1(λ))
λ2

+ 1
λ2
βσk√

π
2

− 1
λ

βσk√
π
2

∫ ∞
0

y2e−
y2
2 dy

= βσk√
π
2

− g(σ, 0)(1− λH1(λ))− (1− λH1(λ))
λ2

βσk√
π
2

+ 1
λ2
βσk√

π
2

− 1
λ
βσk.

In the second equality we have used that
∫∞

0 ye−
y2
2 e−λy = 1 − λH1(λ) which can be

obtained by an integration by parts. Solving for g(1, 0) in the above

g(1, 0)[2− λH1(λ)] = βk

 1√
π
2

− (1− λH1(λ))
λ2

1√
π
2

+ 1
λ2

1√
π
2

− 1
λ

 .
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Substituting the value of k we found in (3.34), we get

g(1, 0)[2− λH1(λ)]

= 2βg(1, 0)H1(λ)
1− 2 β

λ
√

π
2
− 2βH1(λ)

λ2
√

π
2

+ 2 β
λ2

 1√
π
2

− (1− λH1(λ))
λ2

1√
π
2

+ 1
λ2

1√
π
2

− 1
λ

 ,
which is equivalent to

2− λH1(λ) =
2βH1(λ)

[
λ2 + λH1(λ)− λ

√
π
2

]
λ2
√

π
2 − 2βλ− 2βH1(λ) + 2β

√
π
2

. (3.35)

As a polynomial in λ, (3.35) can be written as

−λ3H1(λ)
√
π

2 + λ2√2π − 4βλ− 4βH1(λ) + 2
√

2πβ = 0,

or, grouping for H1(λ),

H1(λ)
[
−4β − λ3

√
π

2

]
+
√

2πλ2 − 4βλ+ 2β
√

2π = 0,

i.e. the zeros of Hβ,1(λ), provided we prove expression (3.32) for H1(λ). In fact, as defined
in (3.31), H1(λ) is a holomorphic function on C, whose expression in series is

H1(λ) =
∫ ∞

0
e−

y2
2 e−λydy =

∞∑
n=0

(−1)nλ
n

n!

∫ ∞
0

yne−
y2
2 dy.

The latter integral is known∫ ∞
0

yne−
y2
2 dy = 2

1
2 (n−1)Γ

(
n+ 1

2

)
, (3.36)

where Γ(·) is the Gamma function. When n = 2m+ 1, for the properties of the Gamma
function on N, (3.36) reduces to∫ ∞

0
yne−

y2
2 dy = 2

1
2 (n−1)Γ

(
n+ 1

2

)
= 2mm!.

For n = 2m instead we have, by the property Γ
(
l + 1

2

)
= (2l−1)!!

2l
√
π for any l ∈ N,

∫ ∞
0

yne−
y2
2 dy = 2

1
2 (n−1)Γ

(
n+ 1

2

)
=
√
π

2 (2m− 1)!!.

We use these equalities, and reorder the terms of the absolutely convergent series of H1(λ)
to finally get

H1(λ) =
√
π

2

∞∑
m=0

λ2m

(2m)!! − λ
∞∑
m=0

(2λ)2mm!
(2m+ 1)!

1
2m ,

i.e. expression (3.32).
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3.2.2.3 Case γ = 2

In this case the eigen-system is given by
∂
∂yg(σ, y) + y2g(σ, y) + λg(σ, y) = 3

2Λβσky
2e−

y3
3 ,

g(σ, 0) = 3
2Λβσk +

∫∞
0 y2g(−σ, y)dy,∫∞

0 [g(σ, y) + g(−σ, y)]dy = 0,
(3.37)

where Λ =
∫∞

0 e−
y3
3 = Γ( 1

3 )
32/3 and k = 2

∫∞
0 g(1, y)dy.

Proposition 3.6. The solutions in λ ∈ C to (3.37) are the zeros of the holomorphic
function

Hβ,2(λ) := H2(λ)
[
12β − λ4Λ + 6βλΛ− 6βλ31/3Γ(4/3)

+ 3βλ232/3Γ(5/3)− 6βλ2 Γ(2/3)
31/3

]
+

[
2Λλ3 − 12βΛ + 12βΓ(2/3)

31/3 λ− 6βλ2
]
,

(3.38)

with
H2(λ) :=

∫ ∞
0

e−λye−
y3
3 dy. (3.39)

Moreover, it holds

H2(λ) =
∞∑
n=0

(−1)nλ
n

n! 3
1
3 (n−2)Γ

(
n+ 1

3

)
. (3.40)

Proof. We proceed as in the previous case, by setting

h(σ, y) = g(σ, y)e
y3
3 ,

so that
∂

∂y
h(σ, y) = −λh(σ, y) + 3

2Λβσky
2.

Thus,
h(σ, y) = e−λy

[
h(σ, 0) + 3βσk

2Λ

∫ y

0
u2eλudu

]
.

Since
∫ y

0 u
2eλudu = 1

λ3 [−2 + eλy(2 + λy(−2 + λy))], we can write

g(σ, y) = e−
y3
3 e−λy

[
g(σ, 0) + 3βσk

2Λ
1
λ3

(
−2 + 2eλy − 2λyeλy + λ2y2eλy

)]
. (3.41)

Recalling notation (3.39), we compute

k = 2
∫ ∞

0
g(1, y)dy = 2H2(λ)g(1, 0)− 2H2(λ)3βk

Λλ3 + 23βk
Λλ3

∫ ∞
0

e−
y3
3 dy

− 23βk
Λλ2

∫ ∞
0

ye−
y3
3 dy + 3βk

Λλ

∫ ∞
0

y2e−
y3
3

= 2H2(λ)g(1, 0)− 2H2(λ)3βk
Λλ3 + 23βk

λ3 − 23βk
Λλ2

Γ(2/3)
31/3 + 3βk

Λλ ,
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which gives
k = 2g(1, 0)H2(λ)

1 + 2H2(λ) 3β
Λλ3 − 23β

λ3 + 2 3β
Λλ2

Γ(2/3)
31/3 − 3β

Λλ
. (3.42)

As before, the condition
∫∞

0 [g(σ, y) + g(−σ, y)]dy = 0 in (3.37) is equivalent to g(σ, y) +
g(−σ, y) = 0 for every y ∈ R+ because of (3.41). Using this observation for y = 0 in the
other integral condition, we compute

g(σ, 0) = 3βσk
2Λ +

∫ ∞
0

y2
[
e−

y3
3 e−λy

(
− g(σ, 0)

− 3βσk
2Λ

1
λ3 (−2 + 2eλy − 2λyeλy + λ2y2eλy)

)]
dy.

Observing that, by integration by parts,∫ ∞
0

y2e−
y3
3 e−λydy = 1− λH2(λ),

we find

g(σ, 0) = 3βσk
2Λ − (1− λH2(λ))g(σ, 0) + 3βσk

Λλ3 (1− λH2(λ))− 3βσk
Λλ3

+ 3βσk
Λλ2 31/3Γ(4/3)− 3βσk

2Λλ 32/3Γ(5/3).

Computing in σ = 1 and grouping for g(1, 0),

g(1, 0)[2− λH2(λ)] = k

[3β
2Λ + 3β

Λλ3 (1− λH2(λ))− 3β
Λλ3

+ 3β
Λλ2 31/3Γ(4/3)− 3β

2Λλ32/3Γ(5/3)
]

= k

[3β
2Λ −

3β
Λλ2H2(λ) + 3β

Λλ2 31/3Γ(4/3)− 3β
2Λλ32/3Γ(5/3)

]
.

Plugging expression (3.42) for k,

2− λH2(λ) = 2H2(λ)
1 + 2H2(λ) 3β

Λλ3 − 23β
λ3 + 2 3β

Λλ2
Γ(2/3)
31/3 − 3β

Λλ

[ 3
2Λβ −

3β
Λλ2H2(λ)

+ 3β
Λλ2 31/3Γ(4/3)− 3β

2Λλ32/3Γ(5/3)
]
.

This gives

2− λH2(λ) =
2λH2(λ)

[
3
2βλ

2 − 3βH2(λ) + 3β31/3Γ(4/3)− 3
2βλ32/3Γ(5/3)

]
Λλ3 + 6βH2(λ)− 6βΛ + 6βλΓ(2/3)

31/3 − 3βλ2
,

which is equivalent to

2Λλ3 + 12βH2(λ)− 12βΛ + 12βλΓ(2/3)
31/3 − 6βλ2 − λ4ΛH2(λ)

+ 6βλH2(λ)Λ− 6βλ2 Γ(2/3)
31/3 H2(λ) = 6βλH2(λ)31/3Γ(4/3)− 3βλ2H2(λ)32/3Γ(5/3).
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As a polynomial in λ, this is

−ΛH2(λ)λ4 + 2Λλ3 + λ2
[
−6β − 6βΓ(2/3)

31/3 H2(λ) + 3βH2(λ)32/3Γ(5/3)
]

+ λ

[
6βΛH2(λ)− 6βH2(λ)31/3Γ(4/3) + 12βΓ(2/3)

31/3

]
+ 12βH2(λ)− 12βΛ = 0.

Equivalently, in terms of H2(λ) we have

H2(λ)[12β − λ4Λ + 6βλΛ− 6βλ31/3Γ(4/3) + 3βλ232/3Γ(5/3)− 6βλ2 Γ(2/3)
31/3 ]

+
[
2Λλ3 − 12βΛ + 12βΓ(2/3)

31/3 λ− 6βλ2
]

= 0,

i.e. the zeros of Hβ,2(λ) in (3.38), provided we show the validity of expression (3.40) for
H2(λ). As defined in (3.39), H2(λ) is a holomorphic function on C, which can be expressed
in series as

H2(λ) =
∫ ∞

0
e−λye−

y3
3 dy =

∞∑
n=0

(−1)nλ
n

n!

∫ ∞
0

yne−
y3
3 dy

=
∞∑
n=0

(−1)nλ
n

n! 3
1
3 (n−2)Γ

(
n+ 1

3

)
,

which is expression (3.40), where we have used the known formula for∫ ∞
0

yne−
y3
3 dy = 3

1
3 (n−2)Γ

(
n+ 1

3

)
.

3.2.2.4 Numerical evidence on the eigenvalues

We studied numerically the two eigenvalues’ equations

Hβ,1(λ) = 0, (3.43)

and
Hβ,2(λ) = 0. (3.44)

We used a numerical root finding built-in function of the software Mathematica, specifically
FindRoot, starting the search from different initial points of the complex plane and from
different values of β. Here we report the results:

• Case γ = 1:

(1.1) we find two conjugate purely imaginary solutions to (3.43), for

λ = ±λc(1) := ±i(1.17055)

and
β = βc(1) := 0.768834; (3.45)

(1.2) iterating the search around (βc(1), λc(1)), the resulting complex eigenvalue
goes from having a negative real part for β < βc(1) to a positive real part for
β > βc(1);
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(1.3) no other purely immaginary solution λ = ±ix is found for 0 ≤ x ≤ 500 and
0 ≤ β ≤ 20;

(1.4) for β < βc(1) all the eigenvalues λ = ix + y are such that y < 0. This was
verified for −100 ≤ x ≤ 100, −100 ≤ y ≤ 100.

• Case γ = 2:

(2.1) we find two conjugate purely imaginary solutions to (3.44), for

λ = ±λc(2) := ±i(1.97765)

and
β = βc(2) := 0.362275; (3.46)

(2.2) analogous to (1.2);
(2.3) analogous to (1.3), verified for 0 ≤ x ≤ 10 and 0 ≤ β ≤ 5;
(2.4) analogous to (1.4), verified for −25 ≤ x ≤ 25, −25 ≤ y ≤ 25;
(2.5) apart from being sensibly slower, the numerical root finding for γ = 2 suffers

from numerical instability issues. This is why we were able to check the results
for much smaller intervals in this case.

3.2.3 Finite particle system simulations

We made several simulations of the particle system (N large but finite, N = 1500) for
γ = 1, 2, which seem in accordance with the above numerical results on the eigenvalues
(compare with (3.45) and (3.46)). This is a description of the evidences:

• For β small the system is stable, in particular the magnetization goes to zero
regardless of the initial datum (Figure 3.1).

• There is a critical β (around 0.75 for γ = 1, 0.35 for γ = 2) above which the
magnetization starts oscillating. Close to the critical points oscillations (Figure 3.2)
do not look very regular (corrupted by noise?), but they soon become very regular if
β is not too close to the critical value. We also made joint plots of the magnetization
with the empirical mean of the yi’s (Figure 3.3). A limit cycle seems to emerge.

• As β increases, the amplitude of the oscillation of the magnetization increases
(Figure 3.4), while the period looks nearly constant. As β crosses another critical
value (around 1.3 for γ = 1, 1.65 for γ = 2) oscillations disappear, and the sistem
magnetizes, i.e. the magnetization stabilizes to a non-zero value, actually close to ±1
(Figure 3.5).

• The oscillations are lasting for a wider interval of β’s for γ = 2 (from β ≈ 0.35 until
β ≈ 1.65) than γ = 1 (from β ≈ 0.75 until β ≈ 1.3). The period is instead smaller
for γ = 2 than for γ = 1.

• For both γ = 1, 2, the appearance of the oscillations does not seem to depend on
the initial data for the dynamics, suggesting the possible presence of a global Hopf
bifurcation.



88 The mean field case

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

t

m
^
N
(t
)

(a) β = 0.25, γ = 1

-0.5

0.0

0.5

1.0

t

m
^
N
(t
)

(b) β = 0.1, γ = 2

Figure 3.1: Simulation of the finite particle system’s dynamics for γ = 1 (left) and γ = 2
(right), with number of spins N = 1500. We plot the empirical magnetization, with initial
data σi(0) = 1 for every i = 1, . . . , N .
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Figure 3.2: Simulation of the finite particle system’s dynamics for γ = 1 (left) and γ = 2
(right), with number of spins N = 1500. We plot the empirical magnetization.
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Figure 3.3: Simulation of the finite particle system’s dynamics for γ = 1 (left) and γ = 2
(right), with number of spins N = 1500. We plot the empirical magnetization of the spins
against the empirical mean of the yi’s.
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Figure 3.4: Simulation of the finite particle system’s dynamics for γ = 1 (left) and γ = 2
(right), with number of spins N = 1500. We plot the empirical magnetization.
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Figure 3.5: Simulation of the finite particle system’s dynamics for γ = 1 (left) and γ = 2
(right), with number of spins N = 1500. We plot the empirical magnetization.
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3.3 Oscillatory behavior in a model of mean field interact-
ing spins with frustration

This section is devoted to the study of a finite-dimensional non-Markovian modification
of the Curie–Weiss spin-flip dynamics which belongs to the same universality class of
the model considered in Section 3.2, as we already remarked in the beginning of the
chapter. However, it must be noted that the properties of reversibility of the previous
model (Remark 3.3) are not holding here. Indeed, the periodic behavior is here fostered
by the presence of frustration in the dynamics, which brings time-irreversibility into play.
Nevertheless, the finite dimensionality of the model allows one to characterize the phase
diagram to a much larger extent than in the previous case. In particular, even though we
do not prove any global result, we give strong numerical evidence on the way in which
cycles disappear above a certain threshold of the parameters’ values. We mention the
work [97], which looks related to our model. Besides performing a much more general
analysis (temporal delay in the transmission of information and quenched disorder are also
considered), in that case the population consists of two types of individuals: mainstreams,
following the majority, and hipsters. In the author’s terminology, our toy model could
then be referred to that of a single population where each individual has both a conformist
and an anti-conformist side in his/her personality.

In the formulation of the model, the state of the i-th particle in the system is identified
by a pair of spin-valued variables (xi, yi) ∈ {−1, 1}2. The dynamics is given in terms of
a continuous time spin-flip type Markov chain on the augmented state space {−1, 1}2N ,
where each particle flips one component of its state independently conditioned on the
current state of the population, with rates{

xi → −xi with rate (1− εxiyi)e−βxim
N
x ,

yi → −yi with rate eγyim
N
x ,

(3.47)

where γ, β ≥ 0, 0 ≤ ε ≤ 1, and mN
x := 1

N

∑N
i=1 xi is the magnetization of the spins xi’s.

Note that, if ε = 0, and if we restrict the model to the spins xi’s we recover the Curie–Weiss
model (3.4). Dynamics (3.47) can be thought of as a perturbation of the Curie–Weiss (the
strength of the perturbation being governed by the parameter ε), under the additional
presence of frustration, which we here introduced through the variables yi’s, whose tendency
is to disalign with the state of the majority of the xi’s. The strength of the alignment
and disalignment tendencies is governed by the two parameters β and γ respectively.
Moreover, when the private states of an individual are aligned, the interaction with the
rest of the population is mitigated (the intensity of this phenomenon being tuned by
ε). Denoting (x,y) := (x1, . . . , xN , y1, . . . , yN ), xi := (x1, . . . , xi−1,−xi, xi+1, . . . , xN ) and
yi := (y1, . . . , yi−1,−yi, yi+1, . . . , yN ), the infinitesimal generator associated to dynamics
(3.47) is, for f : {−1, 1}2N → R,

LNf(x,y) =
N∑
i=1

(1− εxiyi)e−βxim
N
x

[
f(xi,y)− f(x,y)

]

+
N∑
i=1

eγyim
N
x

[
f(x,yi)− f(x,y)

]
. (3.48)

The rest of the chapter is organized as follows: in Section 3.3.1 we introduce the macroscopic
limit system, proving its well-posedness; in Section 3.3.2 we perform a linear analysis
around the disordered equilibrium, studying the local phase-diagram when the interaction
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parameters vary; in Section 3.3.3 we find numerically all the other equilibria of the system;
in Section 3.3.4 we study numerically the local character of the previously found equilibria;
finally, in Section 3.3.5 we give detailed illustrations of the dynamics and of the global
phase-diagram, via numerical simulations of the macroscopic equations and resorting to
the previous analyses.

3.3.1 Macroscopic limit

In addition to the empirical magnetization mN
x of the xi’s, we also define the analogous

quantity mN
y for the yi’s and

mN
xy := 1

N

N∑
i=1

xiyi.

We denote
(
(mN

x (t),mN
y (t),mN

xy(t))
)
t≥0

the process obtained by evaluating the empirical

magnetization’s functions on the particles dynamics. Let EN ⊆ [−1, 1]3 be the image of
{−1, 1}2N under the map ΦN : (x,y) 7→ (mN

x ,m
N
y ,m

N
xy). It is easy to check that dynamics

(3.47) induces a Markovian evolution on EN for the process
(
(mN

x (t),mN
y (t),mN

xy(t))
)
t≥0

.
Indeed, generator (3.48) is closed in the three empirical magnetizations variables, as we
verify by applying it separately to the three functions (mN

x ,m
N
y ,m

N
xy):

LNmN
x =

N∑
i=1

(1− εxiyi)e−βxim
N
x

[
− 2
N
xi

]

= − 2
N

N∑
i=1

xie
−βximNx + 2ε

N

N∑
i=1

yie
−βximNx

= − 2
N

N∑
i=1

1 + xi
2 e−βm

N
x + 2

N

N∑
i=1

1− xi
2 eβm

N
x

+ 2ε
N

N∑
i=1

1 + xi
2 yie

−βmNx + 2ε
N

N∑
i=1

yi
1− xi

2 eβm
N
x

= −e−βmNx −mN
x e
−βmNx + eβm

N
x −mN

x e
βmNx + εmN

y e
−βmNx

+ εmN
xye
−βmNx + εmN

y e
βmNx + εmN

xye
βmNx

= −2mN
x cosh (βmN

x ) + 2 sinh (βmN
x ) + 2εmN

y cosh (βmN
x )− 2εmN

xy sinh (βmN
x ).

For mN
y we get

LNmN
y =

N∑
i=1

eγyim
N
x

[
− 2
N
yi

]
= −2 sinh (γmN

x )− 2mN
y cosh (γmN

x ),

while for mN
xy,

LNmN
xy =

N∑
i=1

(1− εxiyi)e−βm
N
x xi

[
− 2
N
xiyi

]
+

N∑
i=1

eγyim
N
x

[
− 2
N
xiyi

]

= − 2
N

N∑
i=1

1 + xi
2 yie

−βmNx + 2
N

N∑
i=1

1− xi
2 yie

βmNx
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+ 2ε
N

N∑
i=1

1 + xi
2 e−βm

N
x + 2ε

N

N∑
i=1

1− xi
2 eβm

N
x

− 2
N

N∑
i=1

xi
1 + yi

2 eγm
N
x + 2

N

N∑
i=1

xi
1− yi

2 e−γm
N
x

= 2mN
y sinh (βmN

x )− 2mN
xy cosh (βmN

x ) + 2ε cosh (βmN
x )

− 2εmN
x sinh (βmN

x )− 2mN
x sinh (γmN

x )− 2mN
xy cosh (γmN

x ).

The process
(
(mN

x (t),mN
y (t),mN

xy(t))
)
t≥0

is an order parameter, in the sense that its
evolution is Markovian. The associated infinitesimal generator can be derived by applying
the change of variables prescribed by the map ΦN . In this setting, the proof of a propagation
of chaos property for the sequence of the order parameters should be standard, by studying
the uniform convergence of the generators and by applying the results in [56] to obtain
(weak) convergence to a limiting deterministic process. We do not treat this problem here,
but we rather focus on studying the limit deterministic process

(
(x(t), y(t), w(t))

)
t≥0

to

which
(
(mN

x (t),mN
y (t),mN

xy(t))
)
t≥0

should converge. By the above computations on LN ,
it necessarily satisfies

ẋ(t) = −2x(t) cosh (βx(t))+2 sinh (βx(t))+2εy(t) cosh (βx(t))−2εw(t) sinh(βx(t)),
ẏ(t) = −2y(t) cosh (γx(t))−2 sinh (γx(t)),
ẇ(t) = −2w(t)cosh (γx(t))−2x(t) sinh (γx(t))−2w(t) cosh (βx(t))+2y(t) sinh(βx(t))

+2ε cosh (βx(t))− 2εx(t) sinh (βx(t)),
x(0) = x0, y(0) = y0, w(0) = w0.

(3.49)

Proposition 3.7 (Well-posedeness). For any γ, β ≥ 0, 0 ≤ ε ≤ 1, System (3.49) has
a unique global solution such that (x(t), y(t), w(t)) ∈ [−1, 1]3 for any t ≥ 0, provided
(x0, y0, w0) ∈ [−1, 1]3 is such that, if (x0, y0) = (±1,∓1), then w0 = −1 and if (x0, y0) =
(±1,±1), then w0 = 1.

Proof. We study the sign of the vector field at the borders of (−1, 1)3 for each variable
separately. First of all, we note that, by the vector field of the second equation, if y(t) = 1
(resp. y(t) = −1), then d

dty(t) ≤ 0 (resp. d
dty(t) ≥ 0), for any choice of the parameters. By

looking at the first equation, we have that, for x(t) = 1,

d

dt
x(t)

∣∣∣
x(t)=1

= −2 cosh β + 2 sinh β + 2εy(t) cosh β − 2εw(t) sinh β.

When y(t) = 1, we must have w(t) = 1, due to the assumption on the initial datum, the
definition of mN

xy(t) (for which the property is satisfied) and the supposed convergence
(mN

x (t),mN
y (t),mN

xy(t))→ (x(t), y(t), w(t)). Thus, when y(t) = 1

d

dt
x(t)

∣∣∣
x(t)=1

= −2 cosh β + 2 sinh β + 2ε cosh β − 2ε sinh β

= −2(1− ε) cosh β + 2(1− ε) sinh β ≤ 0,

for any 0 ≤ ε ≤ 1. Similarly, when y(t) = −1 we have w(t) = −1, and thus

d

dt
x(t)

∣∣∣
x(t)=1

= −2(1 + ε) cosh β + 2(1 + ε) sinh β ≤ 0,
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for any ε ≥ 0.
For x(t) = −1,

d

dt
x(t)

∣∣∣
x(t)=−1

= 2 cosh β − 2 sinh β + 2εy(t) cosh β + 2εw(t) sinh β.

When y(t) = −1 (thus w(t) = 1), we have

d

dt
x(t)

∣∣∣
x(t)=−1

= 2 cosh β − 2 sinh β − 2ε cosh β + 2ε sinh β

= 2(1− ε) cosh β − 2(1− ε) sinh β ≥ 0,

for any 0 ≤ ε ≤ 1, while for y(t) = 1 (and w(t) = −1),

d

dt
x(t)

∣∣∣
x(t)=−1

= 2 cosh β − 2 sinh β + 2ε cosh β − 2ε sinh β

= 2(1 + ε) cosh β − 2(1 + ε) sinh β ≥ 0,

for any ε ≥ 0. With analogous considerations on the third equation we get the assertion
for w(t). Indeed, note that the terms of the vector field of w(t) which depend on γ have
always the right signs at the borders.

For the well-posedeness, by the Lipschitz properties of the vector field in [−1, 1]3, we
can conclude by the classic theorems of global existence and uniqueness for ODEs.

Remark 3.8. We refer to System (3.49) as the macroscopic limit of the particle system
(3.47). Observe that the disordered state

(
0, 0, ε2

)
is an equilibrium for every choice of the

parameters β and γ. In the following we always assume ε ≤ 1, which is not restrictive for
the resulting phase diagram.

3.3.2 Local analysis

In this section we perform a local analysis by linearizing the dynamics around the disordered
equilibrium. Denoting with

−→
f (x, y, w) the vector field of System (3.49), the linearized

system around
(
0, 0, ε2

)
is given by

d

dt

x̃(t)
ỹ(t)
w̃(t)

 = A

x̃(t)
ỹ(t)
w̃(t)

 , (3.50)

with A = D
−→
f (x, y, w)|(x,y,w)=(0,0, ε2 ),

A =

−2 + 2β − ε2β 2ε 0
−2γ −2 0

0 0 −4

 .
With this notation, we are able to prove the following:

Proposition 3.9. In a neighborhood of
(
0, 0, ε2

)
, System (3.49) possesses:

• a single pitchfork bifurcation in β∗c := 2(εγ+1)
2−ε2 for εγ ≤ 1;

• when εγ > 1, the model features:
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1. a Hopf bifurcation in β∗∗c := 4
2−ε2 ;

2. a pitchfork bifurcation in β∗c = 2(εγ+1)
2−ε2 .

Proof. Denoting with A′ the upper left submatrix of A,

A′ =
(
−2 + 2β − ε2β 2ε

−2γ −2

)
,

we have that the characteristic polynomial of A is

P (λ) := (−4− λ)
[
λ2 − Tr(A′)λ+ ∆A′

]
, (3.51)

with Tr(A′) = −4 + 2β−ε2β and ∆A′ = 4−4β+ 2ε2β+ 4εγ. We know that the disordered
state is linearly stable if Tr(A′) < 0 and ∆A′ > 0, which is equivalent to β < 4

2−ε2 and
β < 2(εγ+1)

2−ε2 . When εγ ≤ 1, this is equivalent to β < 2(εγ+1)
2−ε2 , since 2(εγ+1)

2−ε2 ≤ 4
2−ε2 , while

for εγ > 1 we have a linearly stable disordered state for β < 4
2−ε2 .

A pitchfork bifurcation arises, associated with a change of stability of the fixed point
(0, 0, ε/2), when ∆A′ = 0 and Tr(A′) ≤ 0. The first condition is true for β = β∗c = 2(εγ+1)

2−ε2 ,
while the second holds for β ≤ 4

2−ε2 . In order for them to be true at the same time we
need to have 2(εγ+1)

2−ε2 ≤ 4
2−ε2 , which is equivalent to εγ ≤ 1.

Another pitchfork bifurcation is present, this time not associated with a change of
stability of the fixed point, when ∆A′ = 0 and Tr(A′) > 0, which is equivalent to β > 4

2−ε2

and β = β∗c = 2(εγ+1)
2−ε2 , which is possible if and only if εγ > 1.

Finally, the condition for having a Hopf bifurcation is Tr(A′) = 0 and ∆A′ > 0, which
is true for β = β∗∗c = 4

2−ε2 and εγ > 1.

In the Hopf bifurcation case we can go a step further by computing the Lyapunov
coefficient around the fixed point to deduce that

Proposition 3.10. When εγ > 1, a unique stable cycle emerges after β∗∗c = 4
2−ε2 , i.e. the

Hopf bifurcation is supercritical.

Proof (non-rigorous). First, we note that locally around the fixed point (0, 0, ε/2) the
dynamics is two-dimensional, since the linear dynamics is such that d

dt w̃(t) = −4w̃(t).
Thus, in order to compute the normal form, we restrict System (3.49) to the first two
equations, and we substitute w(t) ≡ ε

2 (this linear approximation step can be made rigorous
by applying the methodology of the center manifold detailed in Theorem 1 of [89, Sect.
2.12]). We then obtain{

ẋ(t) = −2x(t) cosh (βx(t)) + 2 sinh (βx(t)) + 2εy(t) cosh (βx(t))− ε2 sinh (βx(t))
ẏ(t) = −2y(t) cosh (γx(t))− 2 sinh (γx(t)).

(3.52)
Expanding up to the third order around (0, 0), we get the topologically equivalent system{
ẋ(t) = (−2 + 2β − ε2β)x(t) + 2εy(t)− β2x3(t) + β3

3 x
3(t) + εβ2y(t)x2(t)− ε2 β3

6 x
3(t)

ẏ(t) = −2γx(t)− 2y(t)− γ2x2(t)y(t)− γ3

3 x
3(t).

(3.53)
Applying Remark 1 in [89, Sect. 4.4], the computation of the Lyapunov coefficient σ in
our case gives:

σ = 3π
2∆3/2

A′

(4− 4εγ)(β2(1 + β + 2βε2) + γ2),
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which is negative for εγ > 1, so that we can conclude by Theorem 1 in [89, Sect. 4.4] for
planar systems.

3.3.3 Numerical evidence on the global phase diagram

Performing a global analysis, and specifically proving global results on the existence of
periodic solutions to (3.49), does not seem easy. The main reason for this is that System
(3.49) is three-dimensional and it does not appear to have a lower dimensional or more
tractable representation. In fact, while for planar ODEs some global results on periodic
orbits are available (see for e.g. [89, Ch. 3]) , a general global theory for higher dimensions
is not developed. For this reason, at the global level we resort to a numerical analysis which
allows one to describe the phase portrait to a large extent. First of all, we characterize all
the fixed points of System (3.49), which are the solutions to

−2x cosh (βx) + 2 sinh (βx) + 2εy cosh (βx)− 2εw sinh (βx) = 0,
−2y cosh (γx)− 2 sinh (γx) = 0,
−2w cosh (γx)− 2x sinh (γx)− 2w cosh (βx) + 2y sinh (βx) + 2ε cosh (βx)

−2εx sinh (βx) = 0,

(3.54)

which can be rewritten as
x = (1− εw) tanh (βx) + εy,

y = − tanh (γx),
w = −x sinh (γx)

cosh (γx)+cosh (βx) + y sinh (βx)
cosh (γx)+cosh (βx)

+ε cosh (βx)
cosh (γx)+cosh (βx) − εx

sinh (βx)
cosh (γx)+cosh (βx) .

(3.55)

Substituting the values of y and w at the equilibrium in the equation for x we find

f(x) := tanh (βx)− ε tanh (γx) (3.56)

+ ε tanh (γx) sinh (βx) tanh (βx)
cosh (γx) + cosh (βx) − ε2 sinh (βx)

cosh (γx) + cosh (βx)

− x
[
1− ε sinh (γx) tanh (βx)

cosh (γx) + cosh (βx) −
ε2 sinh (βx) tanh (βx)
cosh (γx) + cosh (βx)

]
= 0.

The scalar function f(x) just defined has the same sign of the first component of the vector
field in (3.49), and identifies the equilibria of the dynamics. Let us consider first the case
εγ < 1. A plot is shown in Figure 3.6, for ε = 0.5 and γ = 1. The critical value of the
parameter β is in this case β∗c ≈ 1.714. As we see from the plot, for subcritical values
of the parameters we have only one equilibrium, corresponding to the disordered state.
Then, we see the appearance of two other equilibria of ferromagnetic type above β∗c . From
the linear analysis performed above, we know that - at least locally - the disordered state
is stable until β∗c , where it inverts its stability, with the two emerging polarized equilibria
being stable.

The case εγ > 1 is substantially different and richer. We report the plots separately in
the two Figures 3.7 and 3.8, fixing in both ε = 0.5 and γ = 7. In Figure 3.7, it is shown
that for β < 2 only the equilibrium corresponding to the disordered state is present. In
β = ac ≈ 2 two other equilibria emerge, each of which then splits into two other equilibria,
resulting in a total of five fixed points for the dynamics. We remark that the critical value
ac where the other two equilibria emerge was not found through the linear analysis on
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Figure 3.6: Plot of the function f(x) for ε = 0.5, γ = 1. The parameter β takes three
different values, β = 1, prior to the pitchfork bifurcation, β = 1.71 which is approximately
the value β∗c for which the pitchfork bifurcation arises, and β = 2.5.

Figure 3.7: Plot of the function f(x) for ε = 0.5, γ = 7. The parameter β takes three
different values, β = 1, β = 2 for which we see the appearance of other two equilibria, and
β = 2.5 where the equilibria have become five in total.

the bifurcations we performed above: it is presumably the result of a global phenomenon.
Figure 3.8 shows the plot of f(x) for other three values of the parameter β. In β = 3 (blue
curve) the five equilibria are still present, even though we see that the two intermediate
ones are decreasing towards 0. Indeed, in β = β∗c ≈ 5.14 the two intermediate equilibria
disappear by collapsing at 0. This value of β is the one corresponding to the pitchfork
bifurcation we found above. Finally, in β = 7 we have three equilibria remaining: the
disordered state and two polarized equilibria.

Figure 3.8: Plot of the function f(x) for ε = 0.5, γ = 7. The parameter β takes three
different values, β = 3, where the five equilibria are still present, β = 5.14 which is
approximately the value β∗c for which the pitchfork bifurcation arises, and β = 7, where
only three equilibria survive.
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3.3.4 Numerical linear analysis on the other equilibria

Even though the zeros of the function f(x) cannot be found analytically, we can approxi-
mate them numerically with arbitrary precision for any choice of the parameters ε, γ and β.
The corresponding values of y and w can be then retrieved from the expressions in (3.55).
We observe that f(x) is an odd function of x; the same holds for the expression of y in
terms of x in (3.55), while w is even in x. Moreover, we remark that x and y at the equi-
libria have always opposite signs (except trivially at the disordered one). Thus, denoting
with (x−ε,γ,β, y

−
ε,γ,β, w

−
ε,γ,β) the ferromagnetic polarized equilibrium with x−ε,γ,β < 0, we have

that the corresponding positive one is (x+
ε,γ,β, y

+
ε,γ,β, w

+
ε,γ,β) = (−x−ε,γ,β,−y

−
ε,γ,β, w

−
ε,γ,β).

The other two intermediate equilibria appearing for εγ > 1 for some values of β are
denoted with (x∗,−ε,γ,β, y

∗,−
ε,γ,β, w

∗,−
ε,γ,β) and (x∗,+ε,γ,β, y

∗,+
ε,γ,β, w

∗,+
ε,γ,β), for which again we have

(x∗,+ε,γ,β, y
∗,+
ε,γ,β, w

∗,+
ε,γ,β) = (−x∗,−ε,γ,β,−y

∗,−
ε,γ,β, w

∗,−
ε,γ,β).

In order to (locally) characterize the nature of these equilibria, we compute the Jacobian
(and its eigenvalues) of the vector field in (3.49) at the roots of f(x) = 0 found numerically
and the corresponding values of y and w. We report the results obtained via Mathematica:

• for εγ < 1, the two polarized equilibria (x±ε,γ,β, y
±
ε,γ,β, w

±
ε,γ,β) which emerge after the

pitchfork bifurcation at β∗c are linearly stable;

• for εγ > 1:

1. for the range of β’s where the intermediate equilibria (x∗,±ε,γ,β, y
∗,±
ε,γ,β, w

∗,±
ε,γ,β) exist

(ac < β < β∗c ), they are linearly unstable, with the Jacobian having two negative
eigenvalues and a positive one;

2. the two polarized equilibria (x±ε,γ,β, y
±
ε,γ,β, w

±
ε,γ,β) emerging for β > ac are always

linearly stable.

3.3.5 Simulations and vector field projections

To investigate further on the global phase portrait, and particularly on the emergence
of the cycles, we performed several simulations of System (3.49). Here, we restrict the
parameters’ values to the more interesting case εγ > 1. In particular, in what follows
we fix ε = 0.5 and γ = 7. Figures 3.9 and 3.10 show what happens when we let the
dynamics start close to the disordered state. For small values of β (Figure 3.9A) the
disordered state attracts the trajectories; for β ≈ β∗∗c (Figure 3.9B), the value of the
Hopf bifurcation, we see the emergence of periodic orbits, whose amplitude expands up to
β = 2.8 (Figure 3.10A), which is approximately the maximal amplitude’s point, since for
β = 2.9 (Figure 3.10B) the periodic orbits disappear and everything gets attracted to the
polarized equilibria.

The picture is different when we start the dynamics far from the disordered state, as
shown in Figures 3.11 and 3.12. As before, for small values of β the disordered state is a
global attractor for the dynamics (Figure 3.11A); for intermediate values of β, right before
the Hopf bifurcation (Figure 3.11B, where we considered β = 2.1, while β∗∗c ≈ 2.285),
the system starts to oscillate, expecially in the y variable, but does not manage to reach
periodic configurations before getting attracted to the polarized equilibria for values right
above β∗∗c : see Figure 3.12 for the case β = 2.3.

Summing up, these pictures highlight the global attractiveness for small values of β of
the disordered state, the global attractiveness of the polarized states for big enough values
of β, and the local nature of the presence of the stable cycle, which is visible only by
starting the dynamics close to the disordered state, and for an intermediate range of values
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Figure 3.9: Plots of the solution (x(t), y(t), w(t)) of System (3.49) for t ∈ [0, 50], starting
close to the disordered state, (x(0), y(0), w(0)) = (0.1,−0.1, 0.2), for ε = 0.5, γ = 7, β = 1
(left), β = 2.3 ≈ β∗∗c (right). The red curve is x(t), the blue one is y(t) and the green is
w(t).
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Figure 3.10: Plots of the solution (x(t), y(t), w(t)) of System (3.49) for t ∈ [0, 50], starting
close to the disordered state, (x(0), y(0), w(0)) = (0.1,−0.1, 0.2), for ε = 0.5, γ = 7,
β = 2.8 (left), β = 2.9 (right). The red curve is x(t), the blue one is y(t) and the green is
w(t).
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Figure 3.11: Plots of the solution (x(t), y(t), w(t)) of System (3.49) for t ∈ [0, 50], starting
far from the disordered state, (x(0), y(0), w(0)) = (0.5,−0.7, 0.5), for ε = 0.5, γ = 7, β = 1
(left), β = 2.1 (right). The red curve is x(t), the blue one is y(t) and the green is w(t).
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Figure 3.12: Plot of the solution (x(t), y(t), w(t)) of System (3.49) for t ∈ [0, 50], starting
far from the disordered state, (x(0), y(0), w(0)) = (0.5,−0.7, 0.5) for ε = 0.5, γ = 7 and
β = 2.3. The red curve is x(t), the blue one is y(t) and the green is w(t).

Figure 3.13: Parametric three-dimensional plot of trajectories starting at different inital
points, for β = 1.9, right below the point where the other four equilibria appear.

of β: the picture is thus different from that of the model studied in Section 3.2, where the
cycle seemed to have a global character. Moreover, we have found another critical point,
which we call zc, where the cycle disappears. For the chosen numerical values ε = 0.5 and
γ = 7, we find zc ≈ 2.817. An interesting problem is to determine the way in which the
cycle disappears: the fact that the cycle’s amplitude increases with β and simultaneously
the intermediate equilibria get closer and closer to the disordered state, strongly suggests
that the point zc could be identified as the value of β in which the cycle falls onto the
stable manifold of one of the hyperbolic intermediate equilibria. This is indeed what is
happening.

In Figures 3.13, 3.14, 3.15, 3.16, 3.17 and 3.18 we show some parametric three-
dimensional plots of five trajectories of System (3.49), produced by starting the dynamics
in different initial points, focusing on values of β around ac, β∗∗c , zc and β∗c . The trajectory
in green was obtained by starting close to the disordered state, the blue and the orange
ones in two intermediate states, while the red and the black trajectories are starting close
to the polarized states. We see that, for values of β < ac (Figure 3.13), the disordered
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Figure 3.14: Parametric three-dimensional plot of trajectories starting at different inital
points, for β = 2.1, i.e. right after the appearance of the other four equilibria.

Figure 3.15: Parametric three-dimensional plot of trajectories starting at different inital
points, for β = 2.3, right after the value of β of the Hopf bifurcation.
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Figure 3.16: Parametric three-dimensional plot of trajectories starting at different inital
points, for β = 2.8, i.e. right below the critical point zc where the periodic cycle disappears.

Figure 3.17: Parametric three-dimensional plot of trajectories starting at different inital
points, for β = 2.9, i.e. right above the critical point zc where the periodic cycle disappears.



102 The mean field case

Figure 3.18: Parametric three-dimensional plot of trajectories starting at different inital
points, for β = 5.3, where the unstable intermediate equilibria have disappeared, and the
polarized equilibria remain the only attractive equilibria in the dynamics.

state attracts all the five trajectories, and it is a focus. When we increase β right above the
value ac where the other four equilibria appear, we see that (Figure 3.14) the red and black
trajectories are now well distinguished and each tends towards the closer polarized state,
while the solutions in blue and orange, which started close to the unstable intermediate
equilibria, get attracted to the disordered state, which is still locally stable. Of course,
if we started these two solutions closer to the polarized states we would have seen an
attraction towards the other equilibria. In Figure 3.15 we have chosen a β right above the
critical value β∗∗c of the Hopf bifurcation: we here indeed see the appearance of a cycle
(the one in green), and that the two intermediate solutions get attracted to the cycle. The
cycle increases its amplitude until β ≈ 2.8, which is shown in Figure 3.16. Here, even
though the cycle is still stable, the two intermediate solutions in orange and blue are now
attracted to the polarized states: indeed, the actual value of the unstable intermediate
equilibria is decreasing towards the disordered state as β increases, but we are keeping
fixed the initial "intermediate" data so that after a while it falls within the domain of
attraction of the extreme equibria.

Figure 3.17 was realized by choosing a β right above the critical value zc where the
cycle disappears: as expected, the trajectory in green touches one of the two intermediate
solutions (in this case the blue one), and consequently gets attracted towards the polarized
state. As we saw from the numerical linear analysis of Section 3.3.4, locally around the
intermediate equilibria we have a two dimensional stable manifold and a one dimensional
unstable one. Necessarily then, the cycle eventually hits the two dimensional stable
manifold, the resulting trajectory escapes through the one dimensional unstable curve, and
finally it gets attracted to the polarized state. A confirmation of this is shown in Figure
3.19, where we plotted the vector field projected onto the three coordinates x, y and w,
for a value of β right below zc. As we see from the pictures, the plane x = x̄ ≈ x∗,+ε,γ,β
is (approximately) the stable two dimensional manifold associated to the intermediate
equilibrium.

Finally, Figure 3.18 shows the three-dimensional simulation for a big value of β, after
the pitchfork bifurcation in β∗c where the two intermediate unstable equilibria vanish. Here,
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Figure 3.19: The vector field projected onto the planes x = x̄ ≈ x∗,+ε,γ,β (Figure A),
y = ȳ ≈ y∗,−ε,γ,β (Figure B), w = w̄ ≈ w∗,−ε,γ,β (Figure C), for β = 2.8.



104 The mean field case

the green trajectory oscillates less and less and gets attracted to the polarized state, which
is the only stable equilibrium in the dynamics and thus attracts all the trajectories.



CHAPTER 4

Beyond the mean field case: a hierarchical mean
field model of interacting spins

This chapter is devoted to the study of a model of interacting spins with a hierarchical
mean field structure. As the models of Chapter 3, it can be viewed as an example of non-
Markovian spin system, where the non-Markovianity is realized via a state-augmentation
procedure, as it was for the model studied in Section 3.3. At the individual level, the full
Markovian state is indeed given by a pair of variables: the spin and a continuous variable
which evolves in a diffusive way. The main goal of our study is to obtain macroscopic limits
at various spatio-temporal scales for both the mean field and the two-level hierarchical
formulation of the model, analyzing the presence of phase transitions in the system.

In the literature, hierarchical models were often employed for applications in population
dynamics and genetics, where individuals naturally dispose in groups with a hierarchical
structure (families, clans, villages, colonies, populations and so on). A series of papers
from the ’90s - ’00s (initiated with [39] and [40] among others), nicely reviewed in [70],
deals with different types of hierarchical mean field linearly interacting diffusions (the
prototype being linear Wright-Fisher diffusions), where in most cases the macroscopic
limits are retrieved at every spatio-temporal scale, and a renormalization map can be
defined, allowing one to pass from one hierarchical level to the other. Moreover, the
study of the fixed points of the renormalization map is in some cases fully worked out.
Two crucial ingredients which allow for an iterative renormalization procedure are the
linearity of the interactions, which in the above works is realized by considering linear
drifts, of imitative type, which scale with the hierarchical distance, and some ergodicity
properties of the individual dynamics. The motivation for focusing on diffusive dynamics
as building blocks for the hierarchical models stems from the fact that, with their choices,
each individual non-interacting dynamics can itself be obtained as a continuum limit of a
corresponding finite state space model of interacting particles: for example, the discrete
prelimit counterpart of the Wright-Fisher diffusion is the voter model (see e.g. [33]).

When working directly on finite state models fewer results are known, due to the
non-linearity of the microscopic interactions. Hierarchical Ising-type models for spin
systems were introduced in [41]. Since then, a literature on the hierarchical group and
renormalization theory for spin systems was developed (e.g. [11], [46], [47], [69], [74]), but
always studying equilibrium models. On the finite state space dynamics, we acknowledge
the work [2], which studies contact processes on the hierarchical group, with a focus on
deriving sufficient conditions on the speed of decay of the infection rates for obtaining a

105
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phase transition between extinction and survival.
In our case, we define hierarchical dynamics of spin-flip type with a ferromagnetic

mean field interaction, coupled with a system of linearly interacting diffusions of Ornstein-
Uhlenbeck type. In particular, the diffusive variables enter in the spin-flip rates, effectively
acting as dynamical magnetic fields. In absence of the diffusions, the spin-flip dynamics
can be thought of as a hierarchical version of the Curie–Weiss model (3.4) (except for
considering alternative, but equivalent, transition rates). Note that in our model the
interaction between the spins is highly non-linear. However, as we shall see, the linear
diffusions drive the system of spins, eventually allowing for a separation of spatio-temporal
scales for the spin dynamics as well.

It should also be noted that the model treated in this chapter is somehow related to the
model of interacting renewal processes of Section 3.2. Indeed, in the zero-temperature limit
and for some range of the diffusion parameters, the block averages of the spins behave as
macro-spins themselves, with random jump times which are non-exponentially distributed
(see Remark 4.9 for the single particle case). However, the structure of the interactions
in this model is definitely different from that of Section 3.2, where in the latter it was
introduced as a time scaling on the waiting times of each particle’s jumps depending on
the magnetization of the spins. Nevertheless, we cannot rule out the possible emergence of
oscillating behavior for some particular parameters values also for this model, even though
we were not able to experience it with simulations.

The chapter is organized as follows: in Section 4.1 we formulate the dynamics for a
general interaction graph, which we then specify to the two contexts of our interest: the
mean field case - analyzed in Section 4.2, and the two-level hierarchical case - analyzed in
Section 4.3. In particular, in Section 4.2 we derive rigorously the macroscopic limit at the
two characteristic timescales of the model for any value of the parameters, highlighting the
presence of a phase transition, and studying the resulting effects on the dynamics at each
timescale. In Section 4.3, we study rigorously the macroscopic limits at the three different
timescales of the two-level hierarchical model, restricting ourselves to a range of interaction
parameters which we refer to as subcritical. We also formulate a generalization of these
results to the k-level hierarchical version of the model, for any k ∈ N finite (Section 4.3.5).
In the supercritical region we focus on the zero-temperature limit (Section 4.3.6), where we
give a description of the limit dynamics supported by numerics and heuristic arguments,
allowing for a comparison with the mean field scenario.

4.1 Introducing the model

Consider a set V (possibly countably infinite), indexing individuals in a population.
Each individual r ∈ V is identified with a pair of variables (σr, xr): a spin variable
σr ∈ {−1, 1}, and a continuous one xr ∈ R, modeling some summary statistics of the
remaining characteristics of the individual, and thus being naturally normally distributed
by a central limit theorem. The interaction between each pair of spin variables σr, σs ∈ V
is encoded in a (possibly random) variable Jrs ∈ R. Analogously, xr and xs interact
with a strength proportional to some variables J ′rs ∈ R. The particles (σr, xr)r∈V follow
stochastic dynamics given by{

σr 7→ −σr, with rate 1 + tanh [−σr
∑
s∈V Jrs(σs + xs)] ,

dxr = −
∑
s∈V J

′
rs(xr − xs)dt+ σdWr(t),

(4.1)

where Wr(t)’s are |V | independent Brownian motions, and σ > 0 is the diffusion coefficient.
The choice of the rate function 1 + tanh(·) in (4.1) might seem unusual. Note that it is
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alternative to the more common choice e−σr
∑

s∈V Jrs(σs+xs), which we discussed briefly in
Section 3.1 in the ferromagnetic mean field case without diffusions. As the latter, in the
case without diffusions, it defines a Glauber-type spin-flip dynamics with respect to which
the Gibbs measure

π(σ) ∝ 1 + tanh

 ∑
r,s∈V

Jrsσrσs


is reversible. The main reason for the alternative choice 1 + tanh(·) is technical, as the
boundedness of the transition rates is convenient for the proofs, even though we believe it
is not an essential ingredient.

We focus on two different choices for V and (deterministic) interaction parameters Jrs
and J ′rs:

• Ferromagnetic mean field case:

V := {1, . . . , N} ,

Jrs = β

N
,

J ′rs = α

N
,

(4.2)

with α, β ≥ 0.

• Ferromagnetic two-level hierarchical case:

V := {1, . . . , N} × {1, . . . , N} ,{
Jrs = β1

N , J ′rs = α1
N , if |r − s| ≤ 1,

Jrs = β2
N2 , J ′rs = α2

N3 , if |r − s| = 2,
(4.3)

with α1, α2, β1, β2 ≥ 0, where the distance | · | between r := (i, j) and s := (k, l) is
defined by

|r − s| :=


0, if i = k, j = l

1, if i 6= k, j = l

2, otherwise.
(4.4)

The two-level hierarchical case can be thought of as a model for a collection of N interacting
populations, each of which is itself a mean field interacting particle system with N particles.
In the definition (4.4) of the hierarchical distance |r − s|, the first index i refers to the
individual, while the index j identifies the j-th population. Two individuals r = (i, j)
and s = (k, l) are thus said to be at distance 1 if j = l (i.e. they belong to the same
population); otherwise, they are at distance 2. The choices in (4.3) are such that the
strength of the interaction is inversely proportional to the hierarchical distance. This
construction can be reiterated a finite number of times to define a k-level hierarchical
model, where V := {1, . . . , N}k, Jrs ∝ 1

N l , J ′rs ∝ 1
N2l−1 for |r − s| = l, with l = 1, . . . , k.

See Section 4.3.5 for details. The main goal of this chapter is to obtain a limit description
of both the mean field and the two-level hierarchical formulation of dynamics (4.1) at
different spatio-temporal scales, analyzing the possible presence of phase transitions in the
system.
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4.2 A starter: the mean field model

In this section we study the mean field version of the model, i.e. the case of a single
population of N individuals with a mean field type interaction. We denote by (σ,x) :=
(σj , xj)j=1,...,N ∈ ({−1, 1}×R)N a configuration of the entire population. In the following,
we interchangeably use the coordinates (σi, λi) and (σi, xi), where λi := σi+xi. We denote
by

mN (t) := 1
N

N∑
i=1

σi(t)

the magnetization of the spin variables at time t, and by λN (t) (resp. xN (t)) the analogous
quantity for the λi(t)’s (resp. xi(t)’s). The dynamics is such that, at time t, the i-th spin
flips with rate

σi 7→ −σi, with rate 1 + tanh(−βσi(t)λN (t)),

where λN (t) and xN (t) satisfydλN (t) = dmN (t) + dxN (t),
dxN (t) = σ√

N
dWN (t),

(4.5)

whereWN is a Brownian motion and σ > 0 the diffusion coefficient. Indeed, by substituting
the mean field coupling constants (4.2) in the general dynamics (4.1) we retrieve

1 + tanh

−σi(t) N∑
j=1

Jij(σj(t) + xj(t))

 = 1 + tanh
(
−βσi(t)(mN (t) + xN (t))

)
= 1 + tanh

(
−βσi(t)λN (t)

)
,

dxi(t) = −
N∑
j=1

α

N
(xi(t)− xj(t))dt+ σdWi(t) = −α(xi(t)− xN (t))dt+ σdWi(t),

and thus, by averaging the second line over i = 1, . . . , N ,

dxN (t) = σ√
N
dWN (t),

where WN := 1√
N

∑N
i=1Wi is a Brownian motion. We stress that the law of WN does

not depend on N , but we keep the notation WN to refer to the specific Brownian motion
obtained by the aggregation of the single Wi’s.

From the definition of the spin-flip rates, we obtain the transition rates at time t for
the order parameter mN

mN 7→ mN + 2
N
, with rate N

1−mN (t)
2

[
1 + tanh(βλN (t))

]
mN 7→ mN − 2

N
, with rate N

1 +mN (t)
2

[
1− tanh(βλN (t))

]
.

(4.6)

We assume i.i.d. initial data for the single variables xi(0) ∼ N
(
x0, σ

2), and σi(0) ∼ Ber(p),
for some p ∈ [0, 1].
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The infinitesimal generator associated to the dynamics (4.5) and (4.6), applied to a
function f : R× [−1, 1]→ R, is thus given by

LNf(λ,m) = N
1−m

2 [1 + tanh(βλ)]
[
f

(
λ+ 2

N
,m+ 2

N

)
− f(λ,m)

]
+N

1 +m

2 [1− tanh(βλ)]
[
f

(
λ− 2

N
,m− 2

N

)
− f(λ,m)

]
+ σ2

2N
∂2

∂λ2 f(λ,m).
(4.7)

In the alternative variables (x,m), with x = λ−m, the generator takes the form

LNf(x,m) = N
1−m

2 [1 + tanh(β(x+m))]
[
f

(
x,m+ 2

N

)
− f(x,m)

]
+N

1 +m

2 [1− tanh(β(x+m))]
[
f

(
x,m− 2

N

)
− f(x,m)

]
+ σ2

2N
∂2

∂x2 f(x,m).
(4.8)

The rest of this section on the mean field case is organized as follows. In the next
two subsections we motivate the expected limit behavior at the two different timescales
characterizing the model: in Section 4.2.1 we deduce the order 1 timescale deterministic
limit dynamics for N → +∞, while in Section 4.2.2 we introduce the problem of studying
the fluctuations around the deterministic limit at an accelerated timescale of order N .
An easy but important property of the accelerated dynamics is then given in Proposition
4.2, which will turn out to be very useful for generalizing some results to the two-level
hierarchical case. We finally address rigorously the convergence problem in the so-called
subcritical regime in Section 4.2.3, and in the supercritical regime in Section 4.2.4.

4.2.1 Deterministic mean field limit

At times of order 1, where the fluctuations terms (i.e. the terms which tend to 0 for
N → +∞ in the generator (4.7)) become negligible for N � 0, the dynamics of the system
is well approximated by the following system of two ODEs

λ̇(t) = 2 tanh(βλ(t))− 2m(t)
ṁ(t) = 2 tanh(βλ(t))− 2m(t)
λ(0) = λ0 ∈ R,
m(0) = m0 ∈ [−1, 1],

(4.9)

which can be thought of as the mean field limit of the dynamics introduced at the beginning.
Note that if we choose initial conditions such that λ0 = m0, the above system restricts to
the Curie–Weiss model (3.6), except for a missing multiplicative term in the vector field
which does not modify the qualitative behavior of the dynamics. System (4.9) is such that
its equilibria form a one-dimensional curve of fixed points, given by

m = tanh βλ,

corresponding to the points (λ,m) for which (λ̇, ṁ) = (0, 0). By studying the sign of the
two-dimensional vector field in (4.9), which has a constant slope of 1 since its components
are equal, one can get convinced that the equilibrium curve is a global attractor for
the dynamics. However, we can distinguish two regimes, depending on the value of the
parameter β.

Figures 4.1 and 4.2 should highlight the qualitative behavior of the dynamics: for
β < 1, when the slope of the invariant curve is always smaller than the one of the vector
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Figure 4.1: Invariant manifold for different values of β
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Figure 4.2: Qualitative behavior for β > 1

field, the whole curve is a stable manifold; for β > 1 instead, the curve is stable in the
two disjoint external intervals where the slope is less than 1, while it shows an unstable
behavior in the internal interval where the slope of the curve is greater than 1. For β > 1,
we denote the critical points where the curve has a slope equal to 1 as (±λa(β),±ma(β)),
where

λa(β) = 1
β
arctanh

(√
1− 1

β

)
,

ma(β) =
√

1− 1
β
.

(4.10)

Thus, for some initial conditions close enough to the critical points, the dynamics will
be soon attracted to the other branch of the curve, as shown in Figure 4.2, where the
vector field lines are also drawn in red. Consequently one can expect that, at the larger
timescales where the fluctuations are not negligible, the corresponding N -particle system
might show an oscillating behavior between the two stable intervals, where the fluctuations
play a role in driving the order parameters close enough to the endpoints of the stable
intervals, thus determining a sudden change in the macroscopic variables.

The limit system (4.9) is easily derived by observing that the generator (4.7) uniformly
converges to

Lf(λ,m) = (1−m) [1 + tanh βλ]
[
∂

∂λ
f(λ,m) + ∂

∂m
f(λ,m)

]
− (1 +m) [1− tanh(βλ)]

[
∂

∂λ
f(λ,m) + ∂

∂m
f(λ,m)

]
,
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which can be rewritten as

Lf(λ,m) = (2 tanh(βλ)− 2m)
[
∂

∂λ
f(λ,m) + ∂

∂m
f(λ,m)

]
. (4.11)

From the uniform convergence of the generators we obtain the weak convergence of the
stochastic processes (λN (t),mN (t))t∈[0,T ] satisfying dynamics (4.5) and (4.6) to the limit
deterministic process (λ(t),m(t))t∈[0,T ], for which system (4.9) holds (see [56] for a classic
reference).

4.2.2 Fluctuations around the deterministic limit

In order to rigorously understand the oscillating behavior with jumps which we qualitatively
described in the previous section, we are led to study the fluctuations of the N -particle
dynamics around its deterministic limit (4.9).This boils down to accelerating the dynamics
and studying what happens at the timescale where the fluctuations are not negligible
anymore, where one expects to see some limiting diffusive motion across the equilibria. In
the following, for ease of notation, we still denote as

(λN (t),mN (t))

the accelerated dynamics at a timescale of order N , i.e.

(λN (t),mN (t)) := (λN (Nt),mN (Nt)),

with the latter being the original process at a timescale of order 1 (and the same notation
(xN (t),mN (t)) for the alternative variables).

To motivate the presence of a limiting diffusive behavior at the accelerated timescale,
it is instructive to make a preliminary computation. We develop the jump terms in the
generator (4.7) at the second order, as follows:

f
(
λ+ 2

N
,m+ 2

N

)
− f(λ,m)

= f

(
λ+ 2

N
,m+ 2

N

)
− f

(
λ,m+ 2

N

)
+ f

(
λ,m+ 2

N

)
− f(λ,m)

≈ 2
N

∂

∂λ
f
(
λ,m+ 2

N

)
+ 2
N2

∂2

∂λ2 f
(
λ,m+ 2

N

)
+ 2
N

∂

∂m
f(λ,m) + 2

N2
∂2

∂m2 f(λ,m) +O
( 1
N3

)
≈ 4
N2

∂2

∂m∂λ
f(λ,m) + 2

N

∂

∂λ
f(λ,m) + 2

N2
∂2

∂λ2 f(λ,m)

+ 2
N

∂

∂m
f(λ,m) + 2

N2
∂2

∂m2 f(λ,m) +O
( 1
N3

)
,

and, with analogous computations,

f
(
λ− 2

N
,m− 2

N

)
− f(λ,m) ≈ 4

N2
∂2

∂m∂λ
f(λ,m)− 2

N

∂

∂λ
f(λ,m) + 2

N2
∂2

∂λ2 f(λ,m)

− 2
N

∂

∂m
f(λ,m) + 2

N2
∂2

∂m2 f(λ,m) +O
( 1
N3

)
.
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Thus, without considering the remainder terms of higher orders, we have

LNf(λ,m) ≈ (2 tanh(βλ)− 2m)
[
∂

∂λ
f(λ,m) + ∂

∂m
f(λ,m)

]
+N

1−m
2 [1 + tanh(βλ)]

[
4
N2

∂2

∂m∂λ
f(λ,m) + 2

N2
∂2

∂λ2 f(λ,m) + 2
N2

∂2

∂m2 f(λ,m)
]

+N
1 +m

2 [1− tanh(βλ)]
[

4
N2

∂2

∂m∂λ
f(λ,m) + 2

N2
∂2

∂λ2 f(λ,m) + 2
N2

∂2

∂m2 f(λ,m)
]

+ σ2

2N
∂2

∂λ2 f(λ,m)

= (2 tanh(βλ)− 2m)
[
∂

∂λ
f(λ,m) + ∂

∂m
f(λ,m)

]
+ 1
N

(2− 2m tanh(βλ))
[
2 ∂2

∂m∂λ
f(λ,m) + ∂2

∂λ2 f(λ,m) + ∂2

∂m2 f(λ,m)
]

+ σ2

2N
∂2

∂λ2 f(λ,m).
(4.12)

In this approximation, the bidimensional diffusion process, which we denote as

(λ̃N (t), m̃N (t)),

associated to the approximation of the generator NLN (i.e. in the accelerated timescale of
order N) is

dλ̃N (t) = N(2 tanh(βλ̃N (t))− 2m̃N (t))dt+ σ11(λ̃N (t), m̃N (t))dB1(t)
+σ12(λ̃N (t), m̃N (t))dB2(t),

dm̃N (t) = N(2 tanh(βλ̃N (t))− 2m̃N (t))dt+ σ21(λ̃N (t), m̃N (t))dB1(t)
+σ22(λ̃N (t), m̃N (t))dB2(t),

(4.13)

where

1
2(σ2)11(λ̃N (t), m̃N (t)) = σ2

2 + (2− 2m̃N (t) tanh(βλ̃N (t))), (4.14)
1
2(σ2)12(λ̃N (t), m̃N (t)) = (2− 2m̃N (t) tanh(βλ̃N (t))),
1
2(σ2)22(λ̃N (t), m̃N (t)) = (2− 2m̃N (t) tanh(βλ̃N (t))).

Note that the above diffusive approximation (4.12) of the initial generator (4.7) is correct
for N → +∞, even for the accelerated dynamics. Indeed, the remainder third-order terms
account for an error of order O

(
1
N2

)
at times of order 1, becoming of order O

(
1
N

)
at

times of order N . In other words, we have that

Remark 4.1. The accelerated N-particle dynamics (λN (t),mN (t))t≥0 and its diffusive
approximation (λ̃N (t), m̃N (t))t≥0 have the same (weak) limit (λ(t),m(t))t≥0 (provided it
exists).

The system of two diffusive SDEs (4.13) features a strong drift which grows with N
in both variables, and a bidimensional diffusion term which is of order 1. Intuitively, the
limit process (λ(t),m(t))t≥0 should thus satisfy the equation m(t) = tanh(βλ(t)), so that
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the strong drift component vanishes. Equivalently stated, the strong drift in (4.13) fastly
attracts the dynamics towards the curve m(t) = tanh(βλ(t)), on which the diffusive part
then acts on a larger timescale. In the limit N → +∞, one is then expecting to see an
effective one-dimensional diffusive motion onto the curve m(t) = tanh(βλ(t)), which can
be parametrized by using any of the two variables. Because of the difference in the stability
properties of the curve for different values of the parameters, additional care must be put
in the case when β > 1, where one should expect to retrieve a diffusive motion on the two
stable intervals of the curve, (−∞,−λa(β)) and (λa(β),+∞) (with λa(β) as in (4.10)),
with jumps from one to the other component when the dynamics hits the critical points,
as we shortly described in the previous section. Moreover, as we prove below, the arrival
points of the jumps are also deterministic, and they are given by the intersection of the
invariant curve with the tangent line passing through the critical points (see Figure 4.2).

An easy computation shows that our intuition, motivated by the form of the approx-
imate dynamics (4.13), is indeed correct. The accelerated N -particles exact dynamics
(λN (t),mN (t)) contracts the distance between m and the invariant curve tanh(βλ), but
only in the stable intervals (−∞,−λa(β)) and (λa(β),+∞) when β > 1. Specifically, if
we denote

yN (t) := mN (t)− tanh(βλN (t)), (4.15)

we have the following

Proposition 4.2. Let yN (t) be as in (4.15). Then, for any T > 0, k > 0, β < 1,

E
[

sup
t∈[0,T ]

|yN (t)|k
]
→ 0, (4.16)

for N → +∞.

Proof. If we apply the generator (4.7) in the accelerated timescale to any power k of the
distance |yN (t)|, we obtain

NLN |yN (t)|k = NLN |mN (t)− tanh(βλN (t))|k

≤ −2kN(mN (t)− tanh(βλN (t)))|mN (t)− tanh(βλN (t))|k−1×

× sign(mN (t)− tanh(βλN (t)))
[
− d

dλ
(tanh(βλN (t))) + 1

]
+O(1)

= −2kN |mN (t)− tanh(βλN (t))|k
[
−β(1− tanh2(βλN (t))) + 1

]
+O(1),

where in the equality we have used x · sign(x) = |x|. The O(1) terms are estimated by
exploiting the diffusive approximation (4.12). Observing that, for β < 1, the function
1− β(1− tanh2(βλ)) has a global minimum in 0 given by 1− β, we have found

NLN |yN (t)|k ≤ −C(β, k)N |yN (t)|k +O(1), (4.17)

with C(β, k) := 2k(1− β) > 0. By definition of LN , (4.17) implies

d

dt
E
[
|yN (t)|k

]
≤ −C(β, k)NE

[
|yN (t)|k

]
+O(1),

which, integrating both sides gives

E
[
|yN (t)|k

]
≤ e−C1NtE

[
|yN (0)|k

]
− C2
N
e−C1Nt + C2

N
.
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Thus, supt≥0 E
[
|yN (t)|k

]
≤ E

[
|yN (0)|k

]
+ C

N . Note that by the assumptions on the initial

data we have by a LLN that E
[
|yN (0)|k

]
→ 0 for N → +∞. For getting the stronger

convergence (4.16) we refer to Section 4 of [28] for the diffusive case and to the Appendix
of [32] for a general proof for jump processes, where their results imply here that, for any
δ > 0,

P
[

sup
t∈[0,T ]

|yN (t)|k > δ

]
→ 0,

for N → +∞. Since |yN (t)|k is uniformly bounded (4.16) follows.

Remark 4.3. For β > 1, when d
dλ(tanh(βλ)) < 1 we can repeat the previous arguments to

obtain an estimate as (4.17). To be more precise, for any δ > 0 we can find an ε > 0 such
that d

dλ [tanh(β(λa(β) + δ))] = d
dλ [tanh(−β(λa(β) + δ))] = 1−ε, and d

dλ [tanh(βλ)] < 1−ε
for any λ ∈ (−∞,−λa(β) − δ) ∪ (λa(β) + δ,+∞). Then, for any (λ,m) satisfying the
above conditions we have, denoting y := m− tanh(βλ),

NLN |y|k ≤ −C(δ, β, k, ε)N |y|k +O(1), (4.18)

with C(δ, β, k, ε) > 0 if and only if λ ∈ (−∞,−λa(β)− δ) ∪ (λa(β) + δ,+∞).

4.2.3 The subcritical case: β < 1
In this section we employ the result of Proposition 4.2 to obtain the convergence of the
sequence of the accelerated processes (λN (t),mN (t))t≥0 to some limit random process
(λ(t),m(t))t≥0 in the subcritical case β < 1. For convenience and coherence with the
further analyses, we state the main result of the section (Proposition 4.4) for the variables
(xN (t),mN (t))t≥0, whose infinitesimal accelerated generator is given by NLN , with LN as
in (4.8). To be precise, (xN (t))t≥0 satisfiesdx

N (t) = σdWN (t),
xN (0) ∼ N

(
x0,

1
N σ

2
)
,

(4.19)

with WN the Brownian motion WN (t) := 1√
N

∑N
i=1Wi(t), while (mN (t))t≥0 is given as in

(4.6) but with rates multiplied by N , i.e.mN (t) 7→mN (t)± 2
N rate N2 1∓mN (t)

2

(
1± tanh

(
β(xN (t) +mN (t))

))
,

mN (0) = 1
NBin(Np).

(4.20)

We show below that the limit process for the sequence (xN (t),mN (t))t≥0 is given by
m(t) = tanh(β(x(t) +m(t))),
dx(t) = σdW (t),
m(0) = m0 ∈ [−1, 1],
x(0) = x0 ∈ R,

(4.21)

with m0 = 2p − 1 and W a Brownian motion. In the subcritical case, Equation (4.21)
is well-posed. Indeed, for β < 1, the relation m(t) = tanh(β(x(t) +m(t))) can be made
explicit so that m(t) = ϕ(x(t)) for some function ϕ : R→ [−1, 1] (see also Proposition 4.5
below).
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Proposition 4.4 (Subcritical order N mean field limit dynamics). Let T > 0 and β < 1.
Then, (xN (t),mN (t))t∈[0,T ] converges for N → +∞, in the sense of weak convergence of
stochastic processes, to (x(t),m(t))t∈[0,T ], the solution to (4.21).

Proof. We plug in the definition (4.19) of xN (t) the same Brownian motionW (t) appearing
in the definition (4.21) of x(t). We then prove, for the resulting processes

E
[

sup
t∈[0,T ]

|mN (t)−m(t)|
]
→ 0, (4.22)

E
[

sup
t∈[0,T ]

|xN (t)− x(t)|
]
→ 0, (4.23)

for N → +∞. Since WN D= W for every N , as they are both Brownian motions, (4.22)
and (4.23) imply the desired convergence in distribution between the processes. Limit
(4.23) is trivial, since the dynamics of xN (t) in the accelerated scale is

xN (t) = xN (0) + σ

∫ t

0
dW (t),

and xN (0)→ x(0) by a LLN. For (4.22), we estimate

E
[

sup
t∈[0,T ]

∣∣∣mN (t)−m(t)
∣∣∣] ≤ E

[
sup
t∈[0,T ]

∣∣∣mN (t)− tanh(β(xN (t) +mN (t)))
∣∣∣]

+ E
[

sup
t∈[0,T ]

∣∣∣ tanh(β(xN (t) +mN (t)))−m(t)
∣∣∣] .

The first term in the right hand side tends to 0 thanks to (4.16) for k = 1. For the second
term, using Equation (4.21) for m(t), we have

E
[

sup
t∈[0,T ]

∣∣∣ tanh(β(xN (t) +mN (t)))−m(t)
∣∣∣]

= E
[

sup
t∈[0,T ]

∣∣∣ tanh(β(xN (t) +mN (t)))− tanh(β(x(t) +m(t)))
∣∣∣]

≤ βE
[

sup
t∈[0,T ]

|xN (t)− x(t)|
]

+ βE
[

sup
t∈[0,T ]

|mN (t)−m(t)|
]
,

where in the inequality we have used the global Lipschitz continuity of tanh(·). Thus,
recollecting the above estimates

(1− β)E
[

sup
t∈[0,T ]

|mN (t)−m(t)|
]
≤ βE

[
sup
t∈[0,T ]

|xN (t)− x(t)|
]
→ 0,

for N → +∞.

We conclude this section by noting that, in the subcritical regime β < 1, we can
furthermore obtain an explicit one-dimensional description of the limit process m(t).
Indeed, in the dynamics (4.21), the only randomness is due to the diffusion x(t), while
m(t) is slaved to be onto the invariant curve. A standard application of Itô’s formula
shows that
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Proposition 4.5 (Limit diffusion). The process (m(t))t≥0 defined in (4.21) is a strong
solution to dm(t) = −β2σ2m(t)(1−m2(t))

(1−β(1−m2(t)))3 dt+ σβ(1−m2(t))
1−β(1−m2(t))dW (t),

m(0) = m0 ∈ [−1, 1].
(4.24)

Proof. By Equation (4.21), m(t) can be written as an explicit function of x(t), and thus
its dynamics must be of the form

dm(t) = a(t,m(t))dt+ b(t,m(t))dW (t)

for some functions a, b : [0,∞) × [−1, 1] → R to be determined, and W (t) is the same
Brownian motion appearing in the dynamics of x(t). By applying Itô’s formula to the
function tanh(β(x(t) +m(t)), we find

dm(t) = d {tanh β(x(t) +m(t))}
= β[1− tanh2 β(x(t) +m(t))](dx(t) + dm(t))
− β2 tanh β(x(t) +m(t))[1− tanh2 β(x(t) +m(t))](b(t,m(t)) + σ)2dt

= β(1−m2(t))(dx(t) + dm(t))− β2m(t)(1−m2(t))(b(t,m(t)) + σ)2dt

= β(1−m2(t))(σdW (t) + a(t,m(t))dt+ b(t,m(t))dW (t))
− β2m(t)(1−m2(t))(b(t,m(t)) + σ)2dt

=
[
β(1−m2(t))a(t,m(t))− β2m(t)(1−m2(t))(b(t,m(t)) + σ)2]dt

+ β(1−m2(t))
[
σ + b(t,m(t))

]
dW (t).

By reading the diffusion coefficient from the last line, we must have

b(t,m(t)) = β(1−m2(t))[σ + b(t,m(t))],

and thus
b(t,m(t)) = b(m(t)) = σβ(1−m2(t))

1− β(1−m2(t)) .

For the drift term instead

a(t,m(t)) = β(1−m2(t))a(t,m(t))− β2m(t)(1−m2(t))[(b(t,m(t)) + σ)2]. (4.25)

Using the expression found for b(t,m(t)), we have that

(b(t,m(t)) + σ)2 = b2(t,m(t)) + σ2 + 2σb(t,m(t))

= σ2β2(1−m2(t))2

(1− β(1−m2(t)))2 + σ2 + 2σ2β(1−m2(t))
1− β(1−m2(t))

= σ2β2(1−m2(t))2 + σ2(1− β(1−m2(t)))2 + 2σ2β(1−m2(t))(1− β(1−m2(t))
(1− β(1−m2(t)))2

= σ2

(1− β(1−m2(t)))2 ,

and thus, reading from (4.25),

a(t,m(t))(1− β(1−m2(t))) = −β2m(t)(1−m2(t)) σ2

(1− β(1−m2(t)))2 ,

so that we can conclude.
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Remark 4.6. For β < 1, the SDE (4.24) is well-posed. Existence follows by Proposition
4.5. Uniqueness follows by the Lipschitz properties of the drift and diffusion functions in
[−1, 1]. Indeed, note that Equation (4.24) defines a dynamics in [−1, 1], due to the sign of
the drift at the borders of (−1, 1) and to the fact that the diffusion is zero at the borders of
(−1, 1).

4.2.4 The supercritical case: β > 1
In this section we deal with the analysis of the supercritical case β > 1. The main result
is the following convergence theorem:

Theorem 4.7 (Supercritical order N mean field limit dynamics). Fix T > 0, β > 1,
and let (xN (t),mN (t))t∈[0,T ] be the accelerated processes defined in (4.19) and (4.20), with
xN (0) D→ x0 > λa(β)−ma(β) and mN (0) D→ m0 > ma(β), or xN (0) D→ x0 < ma(β)−λa(β)
and mN (0) D→ m0 < −ma(β), with (λa(β),ma(β)) as in (4.10). Then, the accelerated
sequence of processes (mN (t))t∈[0,T ] converges weakly in the sense of stochastic processes,
for N → +∞, to the process which solves the following SDE

dm(t) = 1|m(t)|>ma

(
−β

2σ2m(t)
(
1−m2(t)

)
(1− β(1−m2(t)))3 dt+ σβ(1−m2(t))

1− β(1−m2(t))dW (t)
)

(4.26)

+ (mb +ma)1m(t)=−ma − (mb +ma)1m(t)=ma ,

with m(0) = m0, and mb := mb(β) is the solution in y to

g(y) := 2βy − 2β(ma(β)− λa(β))− log(1 + y) + log(1− y) = 0. (4.27)

In particular, in Section 4.2.4.1 we derive heuristically the limit dynamics, while in
Section 4.2.4.2 we address the rigorous proof of convergence.

4.2.4.1 Heuristic limit

In this section we describe on a heuristic level the effective motion taking place on the
invariant curve for the supercritical regime β > 1. As highlighted in Remark 4.3, in this
case the N -particle dynamics is contractive only in the union of the two intervals where
1−β(1− tanh2(βλ)) > 0, i.e. for λ > λa(β) or λ < −λa(β), which we refer to as the stable
components of the invariant curve. For the heuristic argument, we consider again the
approximate diffusive system (4.13) for (λ̃N , m̃N ) at times of order 1, which is of the formdx1(t) = −2(x2(t)− f(x1(t)))dt+ 1√

N
(σ11dB1(t) + σ12dB2(t))

dx2(t) = −2(x2(t)− f(x1(t)))dt+ 1√
N

(σ21dB1(t) + σ22dB2(t)) ,
(4.28)

denoting (x1, x2) := (λ̃N , m̃N ). Recall that, in our case, f(x1) = tanh(βx1), and the
diffusion coefficients can be read off from (4.14). We want to derive a limit one-dimensional
diffusion for each variable, which also contains the jump components illustrated in Figure
4.2 for β > 1. In fact, when the dynamics hits the critical points, we expect to see an
instantaneous jump to the point given by the intersection between the vector field line
passing through the critical point, and the invariant curve.

In order to derive an expression for the drift and diffusion coefficients, we follow the
approach highlighted in [88], where they analyze the case of a globally attractive invariant
manifold for the dynamics, under diffusive fluctuations of smaller order. Their approach
should thus work in our case only for the stable components of the invariant curve in the
supercritical case, and rigorously in the whole space in the subcritical case.
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Remark 4.8. Because of Remark 4.1, one can apply the same arguments below to the
subcritical case β < 1 to obtain an alternative proof of Proposition 4.4 and Proposition 4.5
for the shape of the limiting subcritical dynamics.

As in [88], if we take the point x = (x1, x2) to be the current location of the process
governed by equation (4.28), the limit SDE on the invariant manifold is obtained by
applying Itô’s formula to:

π(x) := lim
t→∞

ξx(t),

where ξx(t) is the deterministic trajectory solving System (4.9), with initial datum
(λ0,m0) = x. The point π(x) is in our case given by the intersection between the
vector field line passing through x and the invariant curve.

Itô’s formula applied to each component πi(x), i = 1, 2, yields

dπi(x) = 1
2N

2∑
j,k,l=1

σjl(x)σkl(x)∂
2πi(x)
∂xj∂xk

dt+ 1√
N

2∑
j,l=1

σjl(x)∂πi(x)
∂xj

dBl(t).

Note that, in order this to be fully rigorous, one should find an equation closed in a
variable x̃ which lives on the invariant curve. For the details we again refer to [88].

In the case of a one-dimensional invariant manifold, one can explicitly compute the
coefficients of the limit diffusion written above by performing a second-order approximation
of the πi(x)’s (see [88, pp. 6-9]). Denote by γ(x1) = (x1, tanh(βx1)) the points on the
invariant curve parametrised in the first coordinate. Then, one can compute

∂

∂x1
π1(x)

∣∣∣∣∣
x=γ(x1)

= 1
1− β(1− tanh2(βx1))

,

∂

∂x2
π1(x)

∣∣∣∣∣
x=γ(x1)

= − 1
1− β(1− tanh2(βx1))

,

∂2

∂x1∂x1
π1(x)

∣∣∣∣∣
x=γ(x1)

= 1
1− β(1− tanh2(βx1))

(
−2β2 tanh(βx1)(1− tanh2(βx1))

(1− β(1− tanh2(βx1)))2

)

∂2

∂x1∂x2
π1(x)

∣∣∣∣∣
x=γ(x1)

= − ∂2

∂x1∂x1
π1(x)

∣∣∣∣∣
x=γ(x1)

∂2

∂x2∂x2
π1(x)

∣∣∣∣∣
x=γ(x1)

= ∂2

∂x1∂x1
π1(x)

∣∣∣∣∣
x=γ(x1)

.

Finally, observing that, for a point x = γ(x1) on the invariant curve, the covariance matrix
(σ2)ij written in (4.14) reduces to

σ2(γ(x1)) =
(
σ2 0
0 0

)
,

we get that the limit diffusion in the accelerated first variable x1(t) ∈ R, corresponding to
λ(t), is given by

dx1(t) = −σ
2β2 tanh(βx1(t))(1− tanh2(βx1(t)))

(1− β(1− tanh2(βx1(t))))3 dt+ σ

1− β(1− tanh2(βx1(t)))
dB(t).

(4.29)
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Similarly, parametrising the points on the invariant curve with respect to the second
coordinate, i.e. x = γ(x2) = ( 1

βarctanh(x2), x2), one gets the limit diffusion for x2(t) ∈
[−1, 1], corresponding to the magnetization m(t),

dx2(t) = −σ
2β2x2(t)(1− x2

2(t))
(1− β(1− x2

2(t)))3 dt+ σβ(1− x2
2(t))

1− β(1− x2
2(t))

dB(t), (4.30)

which is indeed the same SDE as (4.24). Note that both the drift and diffusion coefficients
explode in the critical points of the invariant curve.

Denoting with c(·) the drift function and with
√
g(·) the diffusion coefficient, we get

that the global limiting accelerated one-dimensional dynamics, written in either of the
two variables x1 or x2, should be of the form

dX(t) = 1|X(t)|>a

(√
g(X(t))dW (t) + c(X(t))dt

)
+ (b+ a)1X(t)=−a − (b+ a)1X(t)=a,

(4.31)
where the point a = a(β) is the critical (positive) point on the invariant curve, and the
point b = b(β) (resp. −b) is the intersection between the curve and the vector field line
passing through −a (resp. a).

Remark 4.9 (Limit case β →∞). When β →∞, the limit dynamics for the accelerated
magnetization m(t) is expected to be a spin-valued jump process m(t) ∈ {−1, 1} with
non-exponentially distributed random interarrival jump times, with their distribution being
the one of the hitting times of a Brownian motion with diffusion coefficient σ > 0. Indeed,
the critical points (see Eq. (4.10)) tend to ±1 in the m-variable, and to 0 in the λ-variable,
while the diagonal line x(t) = λ(t)−m(t), determining when the process jumps, still evolves
according to a Brownian motion with diffusion coefficient σ > 0. This observation served
as a further motivation for studying the model of interacting spin-valued renewal processes
of Chapter 3, Section 3.2, which was originally thought of as a two-level hierarchical model
for the zero-temperature regime β =∞.

4.2.4.2 The convergence argument

We now address the full proof of convergence to the limit dynamics for β > 1, given
in Theorem 4.7. As we did above for the subcritical case, we consider the dynamics in
the alternative variables (xN ,mN ), whose generator, we recall, is given by (4.8). Recall
that the variable xN , the intersection between the diagonal line (at 45 degrees) passing
through the point (λN ,mN ) and the λ-axis, follows a Brownian motion, while mN is a
jump process depending on xN : if we think of the latter as being deterministic and fixed,
such motion is a unidimensional continuous-time Markov chain taking place along the
diagonal line parametrized by the fixed value xN = x, which is attractive towards the
invariant curve. The limit dynamics is thus the projection of the combination of these two
motions on the invariant curve. We divide the proof of Theorem 4.7 in three lemmas. In
the following proofs we assume that x0 > λa −ma and m0 > ma. For the symmetry of
the problem the case x0 < ma − λa and m0 < −ma is analogous.

Lemma 4.10. Let

T εma := inf
{
t ≥ 0 : xN (t) = λa −ma − ε

}
, (4.32)

for ε ∈ R. Then,
P(T εma <∞) = 1. (4.33)
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Proof. Recall that xN evolves as in (4.19). For the proof, we assume for simplicity that
xN (0) = x0 (otherwise, we just add an additional term in the variance at time t, accounting
for the initial variance - which is small in N).We thus have that xN (t) ∼ N

(
0, σ2t

)
, and

we can get explicitly the distribution of T εma in a classic way, using the reflection principle
for the Brownian motion. Indeed, we have that for any t ≥ 0,

P(T εma ≤ t) = P( inf
0≤s≤t

xN (s) ≤ λa −ma − ε) = 2P(xN (t) ≤ λa −ma − ε)

= 2√
2πσ2t

∫ λa−ma−ε

−∞
e−

(x−x0)2

2σ2t dx =
[
z = x− x0√

t

]

= 2√
2πσ2

∫ λa−ma−ε−x0√
t

−∞
e−

z2
2σ2 dz.

By taking the derivative with respect to t of the previous expression we get that T εma has
density

fT εma (t) = (λa −ma − ε− x0)√
2πσ2

1
t3/2

e−
(λa−ma−ε−x0)2

2σ2t ,

and, as one can check
P(T εma <∞) =

∫ ∞
0

fT εma (t)dt = 1,

so that (4.33) is verified.

Lemma 4.10 tells us that, almost surely, the process xN (t) reaches in a finite time the
point λa −ma − ε, which corresponds - up to an ε error - to the critical point on the
invariant curve we discussed in the previous section. The following two lemmas respectively
describe the limit equation for the times preceding and following the hitting time T εma .
For t < T−δma , for some δ > 0, we can proceed similarly as in Propositions 4.4 and 4.5 since
the contraction estimates of Remark 4.3 are holding, while for t > T εma for some ε > 0 we
capture the jumps via a direct estimate. We then conclude by the continuity with respect
to ε and δ of the hitting times distributions T εma , T

−δ
ma .

Lemma 4.11. Fix T, δ > 0. Let T−δma := inf
{
t ≥ 0 : xN (t) = λa −ma + δ

}
. Let(

mN (t ∧ T−δma)
)
t∈[0,T ]

denote the accelerated stopped process, with initial conditions as in Theorem 4.7. Then,(
mN (t ∧ T−δma)

)
t∈[0,T ]

converges weakly in the sense of stochastic processes, for N → +∞,

to
(
m(t∧T−δma)

)
t∈[0,T ]

, with (m(t))t≥0 the solution to (4.24) with the same initial conditions

as in Theorem 4.7, and
(
m(t ∧ T−δma)

)
t∈[0,T ]

its stopped version.

Proof. As in the proof of Proposition 4.4, we plug in the definition (4.19) of xN (t) the
same Brownian motion W (t) appearing in the definition (4.21) of x(t). Let T−δma be the
resulting stopping time: we prove, for the resulting processes

E
[

sup
t∈[0,T ]

∣∣∣mN (t ∧ T−δma)−m(t ∧ T−δma)
∣∣∣]→ 0, (4.34)

for N → +∞, which implies the result in distribution by reasoning as in Proposition 4.4.
When t < T−δma we have that xN (t) > λa −ma + δ. Thus, we are in the stable component
of the invariant curve.
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From (4.23), it follows that

E
[

sup
t∈[0,T ]

∣∣∣xN (t ∧ T−δma)− x(t ∧ T−δma)
∣∣∣]→ 0, (4.35)

for N → +∞. For (4.34), denoting the event

A :=
{

min
t∈[0,T ]

λN (t ∧ T−δma) > λa + δ

}
,

we estimate,

E
[

sup
t∈[0,T ]

∣∣∣mN (t ∧ T−δma)−m(t ∧ T−δma)
∣∣∣] (4.36)

= E
[

sup
t∈[0,T ]

∣∣∣mN (t ∧ T−δma)−m(t ∧ T−δma)
∣∣∣1A

]

+ E
[

sup
t∈[0,T ]

∣∣∣mN (t ∧ T−δma)−m(t ∧ T−δma)
∣∣∣1∃t∈[0,T ]:λN (t∧T−δma )<λa+δ

]

≤ E
[

sup
t∈[0,T ]

∣∣∣mN (t ∧ T−δma)− tanh(β(xN (t ∧ T−δma) +mN (t ∧ T−δma)))
∣∣∣1A

]

+ E
[

sup
t∈[0,T ]

∣∣∣ tanh(β(xN (t ∧ T−δma) +mN (t ∧ T−δma)))−m(t ∧ T−δma)
∣∣∣1A

]
.

+ 2P
(
∃t ∈ [0, T ] : λN (t ∧ T−δma) < λa + δ

)
,

where in the last line we have used the boundedness of the integrands. The first term in
the right hand side of the above inequality tends to 0 thanks to estimate (4.18) of Remark
4.3 for k = 1, which can be applied for any λ > λa + δ, and to the same argument used
for the proof of Proposition 4.2. For the second term in the right hand side of inequality
(4.36), using Equation (4.21) for m(t ∧ T−δma), we have

E
[

sup
t∈[0,T ]

∣∣∣ tanh(β(xN (t ∧ T−δma) +mN (t ∧ T−δma)))−m(t ∧ T−δma)
∣∣∣1A

]

= E
[

sup
t∈[0,T ]

∣∣∣ tanh(β(xN (t ∧ T−δma) +mN (t ∧ T−δma)))−

− tanh(β(x(t ∧ T−δma) +m(t ∧ T−δma)))
∣∣∣1A

]

≤ (1− ε)E
[

sup
t∈[0,T ]

∣∣∣xN (t ∧ T−δma)− x(t ∧ T−δma)
∣∣∣1A

]

+ (1− ε)E
[

sup
t∈[0,T ]

∣∣∣mN (t ∧ T−δma)−m(t ∧ T−δma)
∣∣∣1A

]

≤ (1− ε)E
[

sup
t∈[0,T ]

∣∣∣xN (t ∧ T−δma)− x(t ∧ T−δma)
∣∣∣]

+ (1− ε)E
[

sup
t∈[0,T ]

∣∣∣mN (t ∧ T−δma)−m(t ∧ T−δma)
∣∣∣] ,
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where in the first inequality we have used that, by the properties of tanh(·) and by
definition of λa, there exists an ε > 0 such that d

dλ tanh(βλ) < 1− ε for every λ > λa + δ.
Finally, the third term in the right hand side of (4.36) can be estimated as follows

2P
(
∃t ∈ [0, T ] : λN (t ∧ T−δma) < λa + δ

)
(4.37)

= 2P
(
∃t ∈ [0, T ] : xN (t ∧ T−δma) +mN (t ∧ T−δma) < λa + δ

)
= 2P

(
∃t ∈ [0, T ] : xN (t ∧ T−δma) < λa −mN (t ∧ T−δma) + δ

)
≤ 2P

(
∃t ∈ [0, T ] : mN (t ∧ T−δma) < ma

)
,

where the inequality follows by the definition of T−δma . To bound the latter, we introduce
an auxiliary process (m̃N (t))t∈[0,T ], coupled with (xN (t),mN (t))t∈[0,T ], with dynamicsm̃N (t) 7→m̃N (t)± 2

N rate N2 1∓m̃N (t)
2

(
1± tanh

(
β(λa −ma + δ + m̃N (t))

))
,

m̃N (0) = mN (0),

and consider its stopped version
(
m̃N (t∧T−δma)

)
t∈[0,T ]

. Since, by definition of T−δma , it holds

xN (t∧T−δma) ≥ λa−ma+ δ, we have that the rate of increase of mN (t∧T−δma) is bigger than
the rate of increase of m̃N (t ∧ T−δma); symmetrically, the rate of decrease of mN (t ∧ T−δma) is
smaller than the rate of decrease of m̃N (t∧ T−δma). We thus have, for any t ∈ [0, T ], N ∈ N,
m ∈ [−1, 1],

P
(
mN (t ∧ T−δma) < m

)
≤ P

(
m̃N (t ∧ T−δma) < m

)
. (4.38)

Moreover, note that m̃N (t∧T−δma) is a jump process with rates independent of xN , starting
above ma with probability tending to 1 for N → +∞, and that it gets fastly attracted,
for N → +∞, to the point m∗ on the invariant curve identified by{

x = λa −ma + δ,

m = tanh(β(x+m)),

for which it holds by construction ma < m∗. Thus

P
(
∃t ∈ [0, T ] : m̃N (t ∧ T−δma) < ma

)
≤ C(N),

for C(N)→ 0, when N → +∞. By the above observation (4.38), this implies the same
bound for mN in the last line of the right hand side of (4.37).

Thus, recollecting the above estimates from (4.36),

E
[

sup
t∈[0,T ]

∣∣∣mN (t ∧ T−δma)−m(t ∧ T−δma)
∣∣∣] ≤ (1− ε)

ε
E
[

sup
t∈[0,T ]

∣∣∣xN (t ∧ T−δma)− x(t ∧ T−δma)
∣∣∣]

+ C(N) ≤ C(N)
ε
→ 0,

for N → +∞, where C(N) is allowed to change from line to line.

The next lemma deals with the times which follow the hitting time T εma . Using the
strong Markov’s property, we can restart the dynamics from the point reached at the
hitting time, assuming that we are above the invariant curve.
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Lemma 4.12. Fix ε > 0 such that λa − ε > 0. Let (xN (t),mN (t))t≥0 be the accelerated
processes, with initial data (xN (0),mN (0)) = (x0,m0), such that x0 = λa −ma − ε and
m0 > tanh β(x0 +ma). Let

Tε/2 := inf
{
t > 0 : xN (t) = λa −ma −

ε

2

}
,

and Tmb := inf
{
t > 0 : mN (t) = mb

}
, with mb as in (4.27). Then,

lim
N→∞

P(Tmb < Tε/2) = 1. (4.39)

Proof. The proof makes extensive use of (νN (t))t≥0, an auxiliary CTMC - coupled with
(mN (t))t≥0 - with the same initial datum m0, whose transition rates are given by

νN 7→ νN + 2
N

with rate N2 1− νN (t)
2

[
1 + tanh(β(νN (t) + λa −ma − ε/2))

]
(4.40)

νN 7→ νN − 2
N

with rate N2 1 + νN (t)
2

[
1− tanh(β(νN (t) + λa −ma − ε/2))

]
.

Note that (νN (t))t≥0 is independent of (xN (t))t≥0. Moreover, setting

T̃mb := inf
{
t > 0 : νN (t) = mb

}
,

we have
P(Tmb < Tε/2) ≥ P(T̃mb < Tε/2). (4.41)

Indeed, it is easy to check that for t ≤ Tε/2, for which xN (t) ≤ λa −ma − ε/2, the rate of
increase in the dynamics of νN (t) is greater than that of mN (t), while the opposite is true
for the rate of decrease. Since mb < m0, (4.41) follows.

Consider now the slowed version of the process νN (t), i.e. ν̃N (t) := νN (tN−1), whose
generator is

LNf(ν̃) := N
1 + ν̃

2 [1− tanh(β(ν̃ + λa −ma − ε/2))]
[
f

(
ν̃ − 2

N

)
− f(ν̃)

]
+N

1− ν̃
2 [1 + tanh(β(ν̃ + λa −ma − ε/2))]

[
f

(
ν̃ + 2

N

)
− f(ν̃)

]
.

Expanding it to the first order, we find, up to terms of order O
(

1
N

)
,

LNf(ν̃) ≈ [−2ν̃ + 2 tanh(β(ν̃ + λa −ma − ε/2))] f ′(ν̃).

This implies that, in the limit N → +∞, the process (ν̃N (t))t≥0 weakly converges to the
solution of the following ODE{

d
dtm(t) = v(m) = −2m(t) + 2 tanh(β(m(t) + λa −ma − ε/2))
m(0) = m0.

(4.42)

The vector field v(m) in (4.42) is positive if and only if

f(m) := 2βm− 2β(ma − λa)− log(1 +m) + log(1−m)− βε > 0. (4.43)
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Indeed, v(m) is positive if and only if

m < tanh(β(m+ λa −ma − ε/2)),

which is equivalent to

1
β

arctanh(m) < m+ λa −ma − ε/2.

By using the identity arctanh(m) = 1
2 log

(
1+m
1−m

)
we get the desired inequality (4.43).

With analogous steps we get the definition of g given by (4.27), for ε = 0. Recall that by
our choice m0 > 0. First of all, it is easy to see that f(m) < 0 whenever m ≥ 0. Indeed,
f(0) < 0, f has a local maximum in m = ma =

√
1− 1

β for which f
(√

1− 1
β

)
= −βε < 0,

and f(m) → −∞ for m → +1. Moreover, recalling the expression for g(·) in (4.27), we
see that

f(m) = g(m)− βε,

so that f(m) < g(m) for all m ∈ [−1, 1]. Since f ′(m) = g′(m) = 2β − 1
1+m −

1
1−m we have

that g has a local maximum at m = ma, for which we have g(ma) = 0, while g(m) < 0 for
all m > 0, m 6= ma. We also observe that:

• ∃! m∗f,b such that f(m∗f,b) = 0;

• g(mb) = 0 and g(m) 6= 0 ∀m 6= ma,mb;

• g(m) > 0 if m < mb, g(m) < 0 if m > mb;

• f(m) > 0 if m < m∗f,b, f(m) < 0 if m > m∗f,b;

• m∗f,b < mb;

• mb → −1 when β →∞.

In order to check the remarks, we note that, when m ≤ 0,

f ′(m) = g′(m) > 0 iff m < −ma = −
√

1− 1
β
,

and −ma is a local minimum, for which f(−ma), g(−ma) < 0. Moreover, f(m), g(m)→
+∞ for m→ −1. Combining these with the above considerations for m ≥ 0, we deduce
the first four bullet points. For the fact that f(m) < g(m) we get the fifth remark, while
for the last it is sufficient to observe that mb < −

√
1− 1

β → −1 for β →∞.
The above remarks and the convergence of (ν̃N (t))t≥0 to the deterministic pro-

cess (m(t))t≥0 imply that, if we define T̄mb := inf
{
t > 0 : ν̃N (t) = mb

}
and T̄m∗

f,b
:=

inf
{
t > 0 : ν̃N (t) = m∗f,b

}
, we have that there exists a C > 0, independent of N , such that

P(T̄mb ≤ C) ≥ P(T̄m∗
f,b
≤ C)→ 1, (4.44)

for N → +∞. Indeed, for the deterministic process m(t) the arrival time in m∗f,b (which
is greater than the one for arriving in mb) is for sure limited by a constant, because of the
sign of the vector field of (4.42).
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(a) (xN (t),mN (t)) subcritical case. (b) (xN (t),mN (t)) supercritical case.

Figure 4.3: Simulation of the finite N dynamics, for N = 2000, σ = 2, β = 0.5 (left), and
β = 2 (right).

If we now consider the original auxiliary process (νN (t))t≥0, i.e. the sped up version of
ν̃N (t), we get that, defining T̃m∗

f,b
:= inf

{
t > 0 : νN (t) = m∗f,b

}
,

P(T̃mb ≤ C(N)) ≥ P(T̃m∗
f,b
≤ C(N))→ 1, (4.45)

for N → +∞, with C(N)→ 0, by means of (4.44).
We can finally conclude the proof of (4.39), by estimating

P(Tmb < Tε/2) ≥ P(T̃mb < Tε/2) ≥ P(T̃m∗
f,b
< Tε/2)→ 1,

as N → +∞. The last limit is deduced by (4.45) and by the fact that Tε/2 has an explicit
distribution - independent of N - which can be found through the reflection principle for
the Brownian motion, in the same way we did in Lemma 4.10, for which we have

P(Tε/2 ≤ δ)→ 0,

as δ → 0.

Proof of Theorem 4.7. Apply Lemmas 4.10, 4.11 and 4.12 for fixed ε, δ > 0. Observe that
the density of Tε/2 is smooth with respect to ε, and of course Tε/2 → 0 for ε→ 0. Indeed,
repeating analogous computations as in Lemma 4.10, we find, for t ≥ 0,

P(Tε/2 ≤ t) = ε

2
√

2πσ2
1
t3/2

e−
ε2

8σ2t .

The same is true for both T εma , T
−δ
ma → T 0

ma , when ε, δ → 0. Sending first N → +∞ and
then ε, δ → 0, we get the convergence in distribution for all the times t ≤ Tmb . Once we
are in mb, we can restart the dynamics by the strong Markov property and repeat the
arguments above for the symmetric negative component of the invariant curve. Inductively,
we can find a sequence of almost surely finite stopping times (Tk)k∈N (the alternate arrival
times in the two symmetric critical points), such that [0, T ] = ∪k {[Tk, Tk+1] ∩ [0, T ]}.
This is enough to deduce the weak convergence of (mN (t))t∈[0,T ] to the process with
instantaneous deterministic jumps described by SDE (4.26).

In Figure 4.3 we show a comparison between two prelimit trajectories in the subcritical
and supercritical case for the same initial conditions, where we used the coordinates (x,m)
instead of (λ,m), which were instead employed in Figures 4.1 and 4.2. These plots will
come useful for a qualitative comparison with the two-level hierarchical case.
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4.3 The hierarchical model
In this section we study the two-level hierarchical version of the previous model. We
consider N interacting populations, each of which consists of N mean field interacting
particles. We denote with a subscript (i, j) the i-th individual in the j-th population, with
i, j = 1, . . . , N . We thus have a collection of N2 pairs of variables (xij , σij) (equivalently
(λij , σij)), where the σij ’s are the spins, and the xij ’s represent the aggregated remaining
characteristics of the individual. As above, we define

mN
j (t) := 1

N

N∑
i=1

σij(t),

the magnetization of the j-th population, and the analogous definition for xNj (t) and λNj (t).
Moreover, we define the two-level magnetization as

MN (t) := 1
N2

N∑
i,j=1

σij(t) = 1
N

N∑
j=1

mN
j (t),

and the analogous quantities XN (t) := 1
N2
∑
ij xij(t) = 1

N

∑N
j=1 x

N
j (t) (resp. ΛN (t)) for the

x (resp. λ) variables. Ideally, we want to describe the dynamics at the different hierarchical
levels as a projection of a diffusion process onto an invariant curve, as we did for the one
population scenario.

With the choices specified in (4.3), the stochastic dynamics (4.1) becomes
σij 7→ −σij rate 1+ tanh

[
−β1σij(t)(xNj (t) +mN

j (t))− β2σij(t)(XN (t) +MN (t))
]
,

dxij(t) = σdWij(t)− α1
[
xij(t)− xNj (t)

]
dt− α2

N

[
xij(t)−XN (t)

]
dt,

σij(0) ∼ Ber(p),
xij(0) ∼ N (0, 1),

(4.46)
for β1, β2, σ, α1, α2 > 0, with theWij(t)’s being N2 independent one-dimensional Brownian
motions. In terms of the alternative variables (σij , λij) and their corresponding macroscopic
quantities, the above can be rewritten as

σij 7→ −σij with rate 1 + tanh
[
−β1σij(t)λNj (t)− β2σij(t)ΛN (t)

]
,

dλij(t) = dσij(t) + σdWij(t)− α1
[
(λij(t)− σij(t))−

(
λNj (t)−mN

j (t)
)]
dt

−α2
N

[
(λij(t)− σij(t))−

(
ΛN (t)−MN (t)

)]
dt,

σij(0) ∼ Ber(p),
λij(0) ∼ Ber(p) ∗ N (0, 1),

where the ∗ in the initial conditions for λij denotes the convolution between the two
distributions. Thanks to the linearity of the dynamics for the xij ’s, it follows directly from
(4.46) thatdx

N
j (t) = −α2

N

[
xNj (t)−XN (t)

]
dt+ σ√

N
dWN

j (t),
xNj (0) ∼ N

(
0, 1

N

)
.

dX
N (t) = σ

N dW
N (t),

XN (0) ∼ N
(
0, 1

N2

)
,

(4.47)

where

WN
j := 1√

N

N∑
i=1

Wij
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are N independent Brownian motions, and

WN := 1√
N

N∑
j=1

WN
j

is another Brownian motion. Note that the laws of (WN
j (t))t≥0 and (WN (t))t≥0 are

independent of N , but we keep the dependency on N in the notation to refer to the
specific Brownian motions. As we did for the mean field case, we describe each population
through the order parameters (mN

j (t), xNj (t))t≥0. The collective behavior of the system
can be studied in terms of the infinitesimal generator of the dynamics applied to a function
f = f ((m1, x1), (m2, x2), . . . , (mN , xN )) =: f(m,x), f : [−1, 1]N × RN → R, which is
given by

LNf(m,x)=
N∑
j=1

{
N

1 +mj

2
(
1− tanh

[
β1(xj +mj) + β2(XN +MN )

])
×

×
[
f

(
xj ,mj −

2
N

)
−f(xj ,mj)

]
+N 1−mj

2
(
1 + tanh

[
β1(xj +mj) + β2(XN +MN )

])
×

×
[
f

(
xj ,mj + 2

N

)
− f(xj ,mj)

]
+ 1

2N σ2 ∂
2

∂x2
j

f (xj ,mj)−
α2
N

(
xj −XN

) ∂

∂xj
f (xj ,mj)

}
.

(4.48)

The rest of the chapter is organized as follows: in Section 4.3.1 we develop some heuristics
to present the expected limit behaviors; in Section 4.3.2 we study the convergence at
times of order 1; we then restrict to the subcritical regime for studying rigorously the
convergence to the limit dynamics at times of order N and N2 (respectively addressed in
Sections 4.3.3 and 4.3.4); in Section 4.3.5 we generalize the results giving a conjecture on
the k-level hierarchical case, for any k finite; finally, in Section 4.3.6 we study heuristically,
with the help of numerics, the zero-temperature limit case β1 = β2 = +∞, highlighting
the presence of a phase transition tuned by the diffusion parameters.

4.3.1 Heuristics

At the first hierarchical level we are interested in describing the limit behavior of the order
parameters of each population, i.e. the convergence of the sequences (mN

j (t), xNj (t))t≥0,
both at a timescale of order 1 and N . At times of order 1, by (4.47) it follows that
dxNj (t)→ 0 and thus xNj (t)→ 0 for N → +∞, that is the mean of the initial condition.
The same holds for the sequence XN (t)→ 0. Expanding the generator (4.48) at the first
order in the variables mj ’s, similarly to what we did for the one population case, we find
that mN

j (0)→ m(0) = 2p− 1, mN
j (t)→ m(t), and MN (t)→ m(t) for N → +∞, where

(m(t), x(t))t≥0 solves the ODE
ṁ(t) = 2 tanh((β1 + β2)m(t))− 2m(t),
ẋ(t) = 0,
m(0) = 2p− 1,
x(0) = 0.

(4.49)
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Equation (4.49) is (except for a missing multiplicative term in the vector field which does
not modify the qualitative behavior of the dynamics) the mean field equation for the
Curie–Weiss model (3.6) with inverse temperature parameter β1 +β2. The equilibria of the
above ODE are either just one (m = 0), when β1 +β2 ≤ 1, or three when β1 +β2 > 1: two
stable (the polarized ones) and one unstable (the disordered one), where the asymptotic
one is one of the two polarized states, determined by the sign of the initial magnetization.

At times of orderN , the diffusions xNj ’s are now subject to non-trivial dynamics. Indeed,
denoting again - with an abuse of notation - the sped up processes as xNj (t) := xNj (Nt),
XN (t) := XN (Nt), equations (4.47) becomedx

N
j (t) = −α2

[
xNj (t)−XN (t)

]
dt+ σdWN

j (t),
xNj (0) ∼ N

(
0, σ2

2α2
1
N

)
.

dX
N (t) = σ√

N
dWN (t),

XN (0) ∼ N
(
0, σ2

2α2
1
N2

)
,

(4.50)

where the initial data are given by the long-time limit of the diffusions at the timescale of
order 1. In this timescale we thus find xNj (t)→ x(t), XN (t)→ 0, where x(t) follows the
Ornstein-Uhlenbeck dynamics{

dx(t) = −α2x(t)dt+ σdW (t),
x(0) = 0,

with W a Brownian motion. As in the mean field case, the accelerated approximate
diffusive generator can give us intuition on the limit dynamics for the magnetization
processes at a timescale of order N . Indeed, expanding up to the second order the jump
terms of the dynamics in mj in (4.48), we get

NLNf (mj , xj) ≈

≈ N
[
2 tanh(β1(xj +mj) + β2(XN +MN ))− 2mj

] ∂

∂mj
f(mj , xj)

+
[
2− 2mj tanh(β1(xj +mj) + β2(XN +MN ))

] ∂2

∂m2
j

f(xj ,mj)

+ σ2

2
∂2

∂x2
j

f (xj ,mj)− α2
(
xj −XN

) ∂

∂xj
f (xj ,mj) .

(4.51)

Assuming that a propagation of chaos property holds, the presence of the strong drift
in the above generator should be such that the limit of the magnetizations processes
mN
j (t)’s is a (mean field) process laying on the curve m = tanh(β1(x+m)) +β2M), where

the dynamics is driven by the evolution of the Ornstein-Uhlenbeck limit process x(t).
Moreover, the limit mean field M(t) should be proved to be the mean of m(t) with respect
to the distribution of x(t). Specifically, denoting with µt(dx) the distribution of the O-U
process at time t, we should find that each pair of accelerated processes (xNj (t),mN

j (t))t≥0,
for j = 1, . . . , N , at times of order N , converges to

m(t)(x) = tanh[β1(x+m(t)(x)) + β2M(t)],
dx(t) = σdW (t)− α2x(t)dt,
m(0) = 2p− 1,
x(0) = 0,
M(t) =

∫
Rm(t)(x)µt(dx).

(4.52)

The study of (4.52) is hard to perform for general choices of the parameters. Indeed, the
behavior of the limiting dynamics can drastically change, depending on β1, β2, α2, σ and
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the initial conditions. By analogy with the mean field case, one can expect to recognize a
radical difference between the case where one has uniqueness of the equilibrium for the
dynamics at order 1 (4.49), and the case where multiple equilibria appear.

At the second hierarchical level, we write the infinitesimal generator for a function
f(M,X) by averaging over the different populations,

LN f(M,X) =

N
N∑
j=1

1 +mj

2 (1− tanh [β1(xj +mj) + β2(X +M)])×

×
[
f

(
M − 2

N2 , X

)
− f(M,X)

]

+N
N∑
j=1

1−mj

2 (1 + tanh [β1(xj +mj) + β2(X +M)])×

×
[
f

(
M + 2

N2 , X

)
− f(M,X)

]
+ 1

2
σ2

N2
∂2

∂X2 f(M,X).

With analogous expansions as above for the jump components, we find

LN f(M,X) ≈

≈ 1
N

N∑
j=1

[
2 tanh [β1(xj +mj) + β2(X +M)]− 2mj

] ∂

∂M
f(M,X)

+ 1
N3

N∑
j=1

[
2− 2mj tanh [β1(xj +mj) + β2(X +M)]

] ∂2

∂M2 f(M,X)

+ 1
2N2σ

2 ∂2

∂X2 f(M,X).

In the drift component we can recognize the empirical average of the drifts of the single
magnetizations. It is reasonable to ask for a description of the limit dynamics of MN (t)
at any timescale. As we already motivated heuristically, at a timescale of order 1 the limit
M(t) of the macroscopic magnetization is the same as the magnetization of each population,
which follows a Curie–Weiss ODE. For long times (but still of order 1), the value of MN (t)
should converge to the stable equilibrium of the C–W ODE, which, depending on the
value of β1 + β2 may be the disordered or a polarized state. Once we consider a scale
of order N , we expect the single magnetizations to be close to their invariant curves.
However, the evolution of MN (t) can change drastically depending on the interaction
and diffusion parameters. We expect to find a regime of the parameters for which MN (t)
does not move much from the equilibrium reached at times of order 1, eventually starting
to move only at a scale of order N2, when the macroscopic diffusion XN (t) starts to
evolve non-trivially. At least in this regime, we expect the N2 accelerated second-level
process MN (t), conditionally on XN (t) ≈ X, to converge, for every fixed t ≥ 0, to the
deterministic value{

M(t) =
∫
R tanh(β1(x+m(t)(x)) + β2(X +M(t)))µ∞(dx;X),

M(0) = 2p− 1,
(4.53)

where µ∞(dx;X) is the stationary distribution of the process

dx(ξ) = −α2(x(ξ)−X)dξ + σdW (ξ),
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where X enters as a parameter (it must be intended as the current fixed value of X(t)),
and m(t)(x) is the solution to

m(t)(x) = tanh(β1(x+m(t)(x)) + β2(X +M(t))).

In turns, the limit process X(t), XN (t)→ X(t), evolves as{
dX(t) = σdB(t),
X(0) = 0,

(4.54)

where B is a Brownian motion. In order to obtain a full description of the law of the limit
process M(t), one then needs to consider a combination of the conditional dynamics (4.53)
and (4.54), which takes into account the diffusive motion of X(t) (see Section 4.3.4 for
details).

For a rigorous treatment (Sections 4.3.2-4.3.4) we restrict to the subcritical case
β1 + β2 < 1 (except for the order 1 timescale, analyzed in Section 4.3.2, where the
argument works for any choice of the parameters), while we give solid heuristics and
numerics for the supercritical zero-temperature limit regime β1 = β2 → +∞, analyzing the
relevance of the diffusion parameters α2 and σ for obtaining a phase transition already at
a timescale of order N (see Section 4.3.6 below). Moreover, in Section 4.3.5 we conjecture
a generalization of the results on the subcritical regime to the k-level hierarchical version
of the model.

4.3.2 Propagation of chaos at times of order 1

In this section we prove the convergence of the empirical processes (mN
j (t), xNj (t))j=1,...,N

to the deterministic limit dynamics given by (4.49), for any choice of the parameters. Our
proof works as well for random i.i.d. initial data xNj (0) ∼ µ(dx), when µ(dx) is a normal
distribution N (0, (σ∗)2) (in our particular case we have σ∗ = 1√

N
, so that randomness is

deleted in the limit), with the resulting modification of the limit dynamics,
ṁ(t)(x) = 2 tanh(β1(x+m(t)(x)) +β2M(t))− 2m(t)(x),
m(0)(x) ≡ 2p− 1,
M(t) =

∫
Rm(t)(x)µ(dx).

(4.55)

Considering random initial data also for the limit dynamics will be useful for the analyses
of the longer timescales. For clarity we recall the dynamics of the empirical processes
(xNj (t),mN

j (t))j=1,...,N ,

mN
j 7→mN

j ± 2
N rate N 1∓mNj (t)

2

(
1± tanh

[
β1(xNj (t)+mN

j (t))+ β2(XN (t)+MN (t))
])
,

mN
j (0) = mj ∼ 1

NBin(Np),
dxNj (t) = −α2

N

[
xNj (t)−XN (t)

]
dt+ σ√

N
dWN

j (t),
xNj (0) = xj ∼ N

(
0, (σ∗)2) .

(4.56)
Since the magnetizations are not appearing in the diffusion dynamics, the propagation of
chaos property for the xNj (t)’s is trivially true for any finite time interval. Indeed, every
diffusion is converging to its initial datum due to the decaying factors in front of the drift
and diffusion coefficients. The i.i.d. processes (m̃j(t))j=1,...,N to which the mN

j (t)’s will be
proved to converge are defined by

m̃j(t) := m(t)(xj),
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where the xj ’s coincide with the initial data for the diffusions, and m(t)(x) is the solution
to (4.55).

Theorem 4.13 (Propagation of chaos at order 1). Fix T > 0. For any β1, β2, α1, α2, σ > 0,
and any j = 1, . . . , N , we have

lim
N→∞

E
[

sup
t∈[0,T ]

∣∣mN
j (t)− m̃j(t)

∣∣] = 0. (4.57)

Before proving Theorem 4.13 we need to assess the well-posedness of Equation (4.55).
We rewrite the dynamics with a generic initial datum

ṁ(t)(x) = 2 tanh(β1(x+m(t)(x)) +β2M(t))− 2m(t)(x),
m(0)(x) = m0(x),
M(t) =

∫
Rm(t)(x)µ(dx),

(4.58)

with m0 : R→ [−1, 1], m0 ∈ C(R).

Proposition 4.14 (Well-posedness at order 1). For any T > 0, Equation (4.58) has a
unique solution m : [0, T ]× R→ [−1, 1] such that m(t)(·) ∈ C(R) for any t ∈ [0, T ].

Proof. The vector field f : R× C(R)→ C(R),

f(x,m) := 2 tanh(β1(x+m) + β2M)− 2m (4.59)

is globally Lipschitz continuous for any β1, β2 > 0, thus existence and uniqueness of
a solution to (4.58), with m(t)(·) ∈ C(R) for any t ∈ [0, T ], is standard. Moreover,
studying the sign of the vector field (4.59), we see that (4.58) defines a dynamics such that
m(t) : R → [−1, 1], provided the initial datum m0 : R → [−1, 1] has the same property.
Indeed, at a point x ∈ R for which m(t)(x) = 1, we have that d

dtm(t)(x)
∣∣∣
x=x
≤ 0, and

symmetrically if m(t)(x) = −1 it holds d
dtm(t)(x)

∣∣∣
x=x
≥ 0.

For the proof of Theorem 4.13, we make use of a representation of the jump processes
mN
j (t)’s in terms of SDEs, by employing Poisson random measures (see [66]), as we did

repeatedly in the previous chapters of this Dissertation. We fix a time horizon T > 0
independent of N and study the processes up to T . We then write the magnetization
processes as

mN
j (t) = mN

j (0) +
∫ t

0

∫
Ξ
f(mN

j (s−), ξ,MN (s−), xNj (s), XN (s))Nj(ds, dξ), (4.60)

for j = 1, . . . , N , where each mN
j (t) takes values in Σ =

{
−1,−1 + 2

N , . . . , 1−
2
N , 1

}
; the

Nj ’s are N i.i.d. stationary Poisson random measures on [0, T ]× Ξ with intensity measure
ν on Ξ := [0,∞)|Σ| ⊂ R|Σ| given by

ν(E) :=
|Σ|∑
i=1

`(E ∩ Ξi), (4.61)

for any E in the Borel σ-algebra B(Ξ) of Ξ, where Ξj := {u ∈ Ξ : ui = 0 ∀ i 6= j} is
viewed as a subset of R, and ` is the Lebesgue measure on R. We fix a probability space
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(Ω,F ,P) and denote by F = (Ft)t∈[0,T ] the filtration generated by the Poisson measures.
The function f , modeling the possible jumps of the process, is given by

f(m, ξ,M, x,X) :=
∑
y∈Σ

(y −m)1]0,λmy [(ξy),

where λmy denotes the rate of jumping from state m to state y. Denoting by

λ±(m,M, x,X) := N
1∓m

2 (1± tanh [β1(x+m) + β2(X +M)])

the rate of going from m to m± 2
N , in our case the function f further simplifies to

f(m, ξ,M, x,X) = 2
N
1]0,λ+[(ξm+ 2

N
)− 2

N
1]0,λ−[(ξm− 2

N
), (4.62)

since the only possible jumps are the ones from m to m± 2
N with rates λ±. The above

definitions of f and ν ensure that λ± are exactly the transition rates of the continuous
time Markov chains mN

j (t)’s, and that ± 2
N are the only possible jumps allowed at every

time. Indeed, it is easy to prove that with our choices (4.60) is equivalent to

P
[
mN
j (t+ h) = m± 2

N

∣∣∣∣∣mN
j (t) = m,MN (t) = M,xNj (t) = x,XN (t) = X

]
= λ±(m,M, x,X)h+ o(h).

(4.63)

By the smoothing formula of Poisson calculus (see [12, Ch. 9]), we have

E
[
mN
j (t)

]
= E

[
mN
j (0)

]
+ E

[∫ t

0

∫
Ξ
f(mN

j (s−), ξ,MN (s−), xNj (s), XN (s))dsν(dξ)
]

= E
[
mN
j (0)

]
+ E

[∫ t

0

∫
Ξ

[ 2
N
1]0,λ+[(ξm+ 2

N
)− 2

N
1]0,λ−[(ξm− 2

N
)
]
dsν(dξ)

]

= E
[
mN
j (0)

]
+ E

[ ∫ t

0

[
2 tanh

(
β1(xNj (s) +mN

j (s)) + β2(XN (s) +MN (s))
)

− 2mN
j (s)

]
ds

]
.

(4.64)

Proof of Theorem 4.13. First, we observe that, by the dynamics (4.60) with the choice
(4.62) for f , we can write

sup
s∈[0,t]

|mN
j (s)− m̃j(s)|

= sup
s∈[0,t]

∣∣∣∣∫ s

0

∫
Ξ
f(mN

j (r−), ξ,MN (r−), xNj (r), XN (r))Nj(dr, dξ)− m̃j(s)
∣∣∣∣ .

Taking the expectation and using formula (4.64) and the limit dynamics (4.55), we can
estimate

E
[

sup
s∈[0,t]

∣∣mN
j (s)− m̃j(s)

∣∣] ≤
≤ E

[∣∣mN
j (0)− (2p− 1)

∣∣]+ E
[ ∫ t

0

∣∣∣2 tanh
(
β1(xNj (s) +mN

j (s)) + β2(XN (s) +MN (s))
)
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− 2 tanh (β1(xj + m̃j(s)) + β2M(s))
∣∣∣ds]+ E

[ ∫ t

0

∣∣∣2mN
j (s)− 2m̃j(s)

∣∣∣ds]

≤ E
[∣∣mN

j (0)− (2p− 1)
∣∣]+ E

[ ∫ t

0

∣∣∣2 tanh
(
β1(xNj (s) +mN

j (s)) + β2(XN (s) +MN (s))
)

− 2 tanh (β1(xj + m̃j(s)) + β2M(s))
∣∣∣ds]+ CE

[ ∫ t

0
sup
r∈[0,s]

∣∣∣mN
j (r)− m̃j(r)

∣∣∣ds].
By LLN on the initial data we have

E
[∣∣mN

j (0)− (2p− 1)
∣∣] ≤ C(N),

with C(N)→ 0 for N → +∞. We now focus on estimating the first of the two integrals.
Using the globally Lipschitz continuity of tanh(·), we have

E
[ ∫ t

0

∣∣∣2 tanh
(
β1(xNj (s) +mN

j (s)) + β2(XN (s) +MN (s))
)

− 2 tanh (β1(xj + m̃j(s)) + β2M(s))
∣∣∣ds]

≤ CE
[ ∫ t

0

∣∣∣xNj (s)− xj
∣∣∣ds]+ CE

[ ∫ t

0

∣∣∣XN (s)
∣∣∣ds]

+ CE
[ ∫ t

0

∣∣∣mN
j (s)− m̃j(s)

∣∣∣ds]+ CE
[ ∫ t

0

∣∣∣MN (s)−M(s)
∣∣∣ds]

≤ CE
[ ∫ T

0

∣∣∣xNj (s)− xj
∣∣∣ds]+ CE

[ ∫ T

0

∣∣∣XN (s)
∣∣∣ds]

+ CE
[ ∫ t

0
sup
r∈[0,s]

∣∣∣mN
j (r)− m̃j(r)

∣∣∣ds]+ CE
[ ∫ t

0
sup
r∈[0,s]

∣∣∣MN (r)−M(r)
∣∣∣ds],

where the constants are allowed to change from line to line. By the propagation of chaos
for the diffusions, we have

E
[ ∫ T

0

∣∣∣xNj (s)− xj
∣∣∣ds]+ E

[ ∫ T

0

∣∣∣XN (s)
∣∣∣ds] ≤ C(N),

for some C(N) → 0 when N → +∞. For the last integral, denoting M̃N (t) :=
1
N

∑N
i=1 m̃i(t), we estimate

E
[ ∫ t

0
sup
r∈[0,s]

∣∣∣MN (r)−M(r)
∣∣∣ds]

≤ E
[ ∫ t

0
sup
r∈[0,s]

∣∣∣MN (r)− M̃N (r)
∣∣∣ds]+ E

[ ∫ t

0
sup
r∈[0,s]

∣∣∣M̃N (r)−M(r)
∣∣∣ds]

≤ C 1
N

N∑
i=1

E
[ ∫ t

0
sup
r∈[0,s]

∣∣∣mN
i (r)− m̃i(r)

∣∣∣ds]+ C(N)
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= CE
[ ∫ t

0
sup
r∈[0,s]

∣∣∣mN
j (r)− m̃j(r)

∣∣∣ds]+ C(N),

where the C(N) → 0 when N → +∞ by LLN, and the last equality is a consequence
of the exchangeability of the processes (mN

i (t), m̃i(t))i=1,...,N . Recollecting all the above
observations and estimates, we have found

E
[

sup
s∈[0,t]

∣∣mN
j (s)− m̃j(s)

∣∣] ≤ C(N) + CE
[ ∫ t

0
sup
r∈[0,s]

∣∣∣mN
j (r)− m̃j(r)

∣∣∣ds],
with C(N) going to 0 for N → +∞. Denoting ϕ(t) := E

[
sups∈[0,t]

∣∣mN
j (s)− m̃j(s)

∣∣], the
last estimate implies

ϕ(t) ≤ C(N) +
∫ t

0
ϕ(s)ds.

Thus, the propagation of chaos follows by the Gronwall’s lemma.

Remark 4.15. Note that the strong convergence (4.57) implies the convergence (in e.g.
1-Wasserstein distance) of the associated empirical measures µN (t) := 1

N

∑N
j=1 δmNj (t) and

µ̃N (t) := 1
N

∑N
j=1 δm̃j(t) to the deterministic measure µ(t), the distribution of the i.i.d.

processes m̃j(t). Indeed, by inequality (19) and the convergence (4.57), ||µN − µ̃N ||d1 → 0
as N → +∞, while ||µ̃N − µ||d1 → 0 as N → +∞ is standard (by LLN). This in turns
implies the propagation of chaos in the classic sense.

The following proposition assesses the long-time behavior of the deterministic limit
dynamics. Specifically, we show the convergence to a unique symmetric stationary profile
m(x), regardless of the initial datum m0(x).

Proposition 4.16 (Long-time subcritical limit behavior). For β1 + β2 < 1, the solution
m(t)(·) to (4.58) is such that

E
[
|m(t)(ξ)−m(ξ)|2

]
→ 0, (4.65)

for t→∞, with ξ ∼ N (0, σ∗) and m(·) is the unique solution to

m(x) = tanh(β1(x+m(x))). (4.66)

Proof. The uniqueness of solution to Equation (4.66) follows by considering any two
solutions m(x), n(x) and observing that

|m(x)− n(x)| ≤ β1|m(x)− n(x)| ≤ · · · ≤ βk1 |m(x)− n(x)|,

for any x ∈ R, so that we can conclude by a contraction argument. For the proof of (4.65),
consider any two solutions m(t) and n(t) with different initial data. It holds

1
2
d

dt

∫
R

(
m(t)(x)− n(t)(x)

)2
µ(dx) ≤ −2(1− (β1 + β2))

∫
R

(
m(t)(x)− n(t)(x)

)2
µ(dx),

(4.67)

which is negative for β1 + β2 < 1, thus implying (4.65) because of the well-posedness of
(4.58). Indeed m(x), the unique solution to Equation (4.66), is always a solution to (4.58)
with initial datum m0(x) = −m0(−x) and M(t) = 0 for every t.



4.3 The hierarchical model 135

In order to verify (4.67), we use Equation (4.58) to compute

1
2
d

dt

∫
R

(m(t)(x)− n(t)(x))2µ(dx) =
∫
R

(ṁ(t)(x)− ṅ(t)(x))(m(t)(x)− n(t)(x))µ(dx)

= −2
∫
R

(m(t)(x)− n(t)(x))2µ(dx)

+2
∫
R

[
tanh(β1(m(t)(x) + x) + β2M(t))− tanh(β1(n(t)(x) + x) + β2N(t))

]
×

× (m(t)(x)− n(t)(x))µ(dx)

≤ −2
∫
R

(m(t)(x)− n(t)(x))2µ(dx) + 2(β1 + β2)
∫
R

(m(t)(x)− n(t)(x))2µ(dx),

where in the last step we have used the Lipschitz properties of tanh(·) and the definitions
of M(t) and N(t).

Remark 4.17. Theorem 4.13 and Propositions 4.14, 4.16 can be generalized to the case
of Gaussian initial data not centered around zero. The limit equation becomes

ṁ(t)(x) = 2 tanh(β1(x+m(t)(x)) + β2(X +M(t)))− 2m(t)(x),
m(0)(x) = m0(x),
M(t) =

∫
Rm(t)(x)µ(dx;X),

(4.68)

with µ(dx;X) = N
(
X, ρ2

)
. The equilibrium solution to (4.68) is given by

mX(x) = tanh
(
β1(x+mX(x)) + β2(X +M)

)
,

M =
∫
RmX(x)µ(dx;X),

(4.69)

whose well-posedness can be obtained by a contraction argument as in Proposition 4.16.

We conclude the section noting that the processes xNj ’s and mN
j ’s are close to their

i.i.d. limits for any fixed time ranging in an interval which is allowed to grow with N with
a certain speed.

Theorem 4.18 (Long-time subcritical particles behavior). For any T > 0, β1 + β2 < 1,
ε > 0 and j = 1, . . . , N , we have

(i) For any A ∈ B(R),

sup
t∈[0,TN2−ε]

∣∣∣P(xNj (t) ∈ A
)
− P

(
xj(t) ∈ A

)∣∣∣→ 0

for N → +∞.

(ii) For any A ∈ B([−1, 1]),

sup
t∈[0,TN2/3−ε]

∣∣∣P(mN
j (t) ∈ A

)
− P

(
m̃j(t) ∈ A

)∣∣∣→ 0

for N → +∞,
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where m̃j(t) := m(t)(xj(t)), withdx
N
j (t) = −α2

N (xNj (t)−XN (t))dt+ σ√
N
dWN

j (t),
xNj (0) = xj ∼ N

(
0, 1

N

)
,

(4.70)

and dxj(t) = −α2
N (xj(t)− E[xj(t)])dt+ σ√

N
dWj(t),

xj(0) = xj ∼ N
(
0, 1

N

)
,

(4.71)

with XN (t) := 1
N

∑N
k=1 x

N
k (t) and Wj(t) is a Brownian motion.

Proof. We realize the process xNj (t) by plugging in (4.70) the same Brownian motion
Wj(t) of the definition of xj(t) in (4.71). Then, for the resulting processes we prove

sup
0≤t≤TN2−ε

E
[(
xNj (t)− xj(t)

)2
]
→ 0, (4.72)

sup
0≤t≤TN2/3−ε

E
[∣∣∣mN

j (t)− m̃j(t)
∣∣∣]→ 0, (4.73)

for N → +∞, which imply the limits in distribution (i) and (ii). First of all we observe
that, for any t ≥ 0, we have

E[xj(t)] = 0,

XN (t) = σ

N
W (t),

with W (t) := 1√
N

∑N
k=1Wk(t). For (4.72), by Itô’s formula, we compute

E
[
(xNj (t)− xj(t))2

]
= E

[
(xNj (0)− xj(0))2

]
− 2α2

N

∫ t

0
E
[
(xNj (s)− xj(s))2

]
ds

− 2α2
N

∫ t

0
E
[
(xNj (s)− xj(s))XN (s)

]
ds

≤ E
[
(xNj (0)− xj(0))2

]
− 2α2

N

∫ t

0
E
[
(xNj (s)− xj(s))2

]
ds

+ 2α2
N

∫ t

0
E
[
|xNj (s)− xj(s)||XN (s)|

]
ds

≤ E
[
(xNj (0)− xj(0))2

]
− 2α2

N

∫ t

0
E
[
(xNj (s)− xj(s))2

]
ds

+ α2
N

∫ t

0
E
[
(xNj (s)− xj(s))2

]
ds+ α2

N

∫ t

0
E
[
(XN (s))2

]
ds,

where in the last estimate we have used ab ≤ a2

2 + b2

2 . By definition, we have

∫ t

0
E[(XN (s))2]ds = σ2

N2

∫ t

0
E[(W (s))2]ds = 1

N2σ
2 t

2

2 .

Recollecting the above expressions, we have found

E[(xNj (t)− xj(t))2] ≤ E[(xNj (0)− xj(0))2]− α2
N

∫ t

0
E[(xNj (s)− xj(s))2]ds+ α2

N3σ
2 t

2

2 ,
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which, denoting with c(t) := E[(xNj (t)− xj(t))2], in differential form reads

ċ(t) ≤ −α2
N
c(t) + α2

N3σ
2t.

By solving the differential equation on the right hand side of the inequality, we deduce

c(t) ≤ e−
α2
N
tc(0) + σ2

Nα2
(e−

α2
N
t − 1) + σ2

N2 t. (4.74)

Note that c(0) = 0 because of our choices of initial data. When we take the supremum
over t in the above expression the dominant term is σ2

N2 t, which still tends to 0 with N
going to infinity, if the supremum is taken over 0 ≤ t ≤ TN2−ε, so that (4.72) is proved.

Moreover, we have ∫ t

0
E
[
|xNj (s)− xj(s)|

]
ds ≤ C

N
t

3
2 . (4.75)

Indeed, by Jensen’s and Hölder’s inequalities and by (4.74), we estimate(∫ t

0
E
[∣∣∣xNj (s)− xj(s)

∣∣∣]ds)2

=
(
t

t

∫ t

0
E
[∣∣∣xNj (s)− xj(s)

∣∣∣]ds)2

≤ t
∫ t

0
E
[∣∣∣xNj (s)− xj(s)

∣∣∣2]ds ≤ t2 sup
s∈[0,t]

[
σ2

Nα2
(e−

α2
N
s − 1) + σ2

N2 s

]

≤ σ2

N2 t
3

so that (4.75) follows by taking the square root. Note also that

∫ t

0
E
[
|XN (s)|

]
ds = σ

N

∫ t

0
E
[
|W (s)|

]
ds ≤ C

N
t

3
2 ,

since |XN (s)| = 1
N |W (s)|, and E[|W (s)|] ≤ C

√
s.

Finally, for proving (4.73) we compute (using sign(x) · x = |x|),

E
[∣∣∣mN

j (t)− m̃j(t)
∣∣∣] = E

[∣∣∣mN
j (0)− m̃j(0)

∣∣∣]− 2
∫ t

0
E
[∣∣∣mN

j (s)− m̃j(s)
∣∣∣]ds

+ 2
∫ t

0
E
[
sign(mN

j (s)− m̃j(s))
(

tanh(β1(xNj (s) +mN
j (s)) + β2(MN (s) +XN (s))−

− tanh(β1(xj(s) + m̃j(s)) + β2M(s))
)]
ds.

Using the Lipschitz properties of tanh(·) and the boundedness of the magnetizations
processes we can estimate

E
[∣∣∣mN

j (t)− m̃j(t)
∣∣∣]

≤ E
[∣∣∣mN

j (0)− m̃j(0)
∣∣∣]− 2(1− β1)

∫ t

0
E
[∣∣∣mN

j (s)− m̃j(s)
∣∣∣]ds
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+ 2β1

∫ t

0
E
[∣∣∣xNj (s)− xj(s)

∣∣∣]ds+ 2β2

∫ t

0
E
[∣∣∣MN (s)−M(s)

∣∣∣]ds
+ 2β2

∫ t

0
E
[
|XN (s)|

]
ds.

Denoting M̃N (t) := 1
N

∑N
j=1 m̃j(t), and µN (x1, . . . , xN ) := 1

N

∑N
j=1 δxj , we have

E
[∣∣∣M̃N (t)−M(t)

∣∣∣] = E
[∣∣∣∣∣
∫
R
m(t)(x)(µN − µ)(dx)

∣∣∣∣∣
]

≤ ||µN − µ||d1 ≤
C√
N
,

where d1 is the 1-Wasserstein metric, and the estimate follows by LLN. Furthermore, we
have

E
[∣∣∣MN (s)−M(s)

∣∣∣] ≤ E
[∣∣∣MN (s)− M̃N (s)

∣∣∣]+ E
[∣∣∣M̃N (s)−M(s)

∣∣∣]

≤ E
[∣∣∣mN

j (s)− m̃j(s)
∣∣∣]+ E

[∣∣∣M̃N (s)−M(s)
∣∣∣],

where in the last estimate we have used the exchangeability of the magnetizations processes.
Finally, we can collect all the previous estimates to get

E
[∣∣∣mN

j (t)− m̃j(t)
∣∣∣]

≤ E
[∣∣∣mN

j (0)− m̃j(0)
∣∣∣]− 2(1− β1 − β2)

∫ t

0
E
[∣∣∣mN

j (s)− m̃j(s)
∣∣∣]ds

+ C1
N
t3/2 + C2

t√
N
.

In differential form, with c(t) := E
[∣∣∣mN

j (t)− m̃j(t)
∣∣∣], k := 2(1−β1−β2) > 0, the previous

estimate reads
ċ(t) ≤ −kc(t) + C1

N
t1/2 + C2√

N
,

implying
c(t) ≤ e−ktc(0) + C

N
t3/2 + C√

N
.

Recalling that c(0)→ 0 for N → +∞ by a LLN, we obtain claim (4.73) when we take the
supremum for 0 ≤ t ≤ TN2/3−ε.

Remark 4.19. We observe that the results proved in this section are slightly more general
than what was needed. Indeed, the initial data for the limit diffusion processes xj’s should
have been set to xj(0) = 0 for any j = 1, . . . , N . Clearly, every result obtained above holds
true under this framework as well. As far as the other timescales are considered, at a
timescale of order N we still consider trivial initial data for the limit diffusions (thanks
to the previous theorem), while at a scale of order N2 the initial data for the diffusions
are provided by the long-time limit of the diffusion processes at a timescale of order N ,
i.e. they are i.i.d. normally distributed random variables, where the parameters of the
distribution are given by the ergodic limit of the Ornstein-Uhlenbeck process.
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4.3.3 Propagation of chaos at times of order N : the subcritical case

In this section we adapt the proof of the propagation of chaos to times of order N for the
case β1 + β2 < 1. Thanks to Theorem 4.18, in this scale we can assume that the initial
data for the processes are given by the long-time limit at the previous timescale of order
1. For the diffusions it holds xNj (0) = xj ∼ N

(
0, 1

N
σ2

2α2

)
for any j = 1, . . . , N , while the

magnetizations are starting the dynamics in the long-time limit symmetric equilibrium
m(x). For ease of notation we still denote the sped up processes by

xNj (t) := xNj (Nt), mN
j (t) := mN

j (Nt).

They evolve according to:

mN
j 7→mN

j ± 2
N rate N2 1∓mNj (t)

2

(
1± tanh

[
β1(xNj (t)+mN

j (t))+β2(XN (t)+MN (t))
])
,

mN
j (0) = m(xj),

dxNj (t) = −α2
[
xNj (t)−XN (t)

]
dt+ σdWN

j (t),
xNj (0) = xj ∼ N

(
0, 1

N
σ2

2α2

)
.

(4.76)
The limit i.i.d. processes to which the sped up processes at order N will be proved to
converge are denoted as

(x̃j(t), m̃j(t))j=1,...,N ,

where m̃j(t) := m(t)(x̃j(t)), with{
dx̃j(t) = −α2x̃j(t)dt+ σdWj(t),
x̃j(0) = 0,

(4.77)

with Wj ’s N independent Brownian motions, and m(t)(x) solves
m(t)(x) = tanh (β1(x+m(t)(x)) + β2M(t)) ,
m(0)(x) ≡ m(x),
M(t) =

∫
Rm(t)(x)µt(dx),

(4.78)

where µt(dx) is the distribution at time t of the Ornstein-Uhlenbeck i.i.d. processes x̃j(t)’s,
and m(x) is the solution to Equation (4.66). Once again, the propagation of chaos for the
diffusion processes is standard at this scale (for any fixed interval of time). What we need
to prove is the same property for the magnetizations processes,

Theorem 4.20 (Propagation of chaos at order N). Fix T > 0. For any β1 + β2 < 1,
α1, α2, σ > 0, and any j = 1, . . . , N ,

(
mN
j (t)

)
t∈[0,T ]

converges weakly in the sense of

stochastic processes, for N → +∞, to
(
m̃j(t)

)
t∈[0,T ]

.

Before addressing the proof, we must check that Equation (4.78) is well-posed. In fact,
the limit dynamics (4.78) is trivial at this scale.

Proposition 4.21 (Well-posedness at order N). For any β1 + β2 < 1, Equation (4.78)
has a unique classical solution m : [0, T ]× R→ [−1, 1] such that m(t)(·) ∈ C(R) for any
t ∈ [0, T ]. Moreover, we have m(t)(x) = m(x) and M(t) = 0 for any t ∈ [0, T ].
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Proof. The non-explosiveness of Equation (4.78) is obvious by construction. Indeed,
m(t)(x) ∈ [−1, 1] for any t ∈ [0, T ], x ∈ R. For the uniqueness, define

F (m)(t)(x) := tanh (β1(x+m(t)(x)) + β2M(t)) ,

and consider two solutions m(t)(·),m′(t)(·) ∈ C(R). Then, we have

|F (m)− F (m′)|(t)(x) ≤ max
ξ∈R
|1− tanh2(ξ)|

[
β1|m(t)(x)−m′(t)(x)|+ β2|M(t)−M ′(t)|

]
≤ β1|m(t)(x)−m′(t)(x)|+ β2|M(t)−M ′(t)|.

By taking the sup over x ∈ R,

||F (m)(t)− F (m′)(t)||∞ ≤ (β1 + β2)||m(t)−m′(t)||∞,

since |M(t)−M ′(t)| ≤
∫
R |m(t)(x)−m′(t)(x)|µt(dx) ≤ ||m(t)−m′(t)||∞. Thus, we can

conclude the uniqueness of solution by a contraction argument when β1 +β2 < 1. Moreover,
the triviality of the dynamics is due to the symmetry around zero of the distribution
µt(dx) ∼ N

(
0, σ2

2α2
(1− e−2α2t)

)
, for which we have that M(t) ≡ 0 for any t, and thus

that m(t)(x) ≡ m(x) is the unique solution to the dynamics in this regime.

Even though the limit deterministic dynamics is trivial, we still have to prove the
convergence of the sped up dynamics to the limit chaotic processes. Moreover, the
techniques employed in the proof will come useful for the further timescales analyses.
While the requirement β1 +β2 < 1 ensures the uniqueness of solution to the limit dynamics
of order N , the crucial observation - working for β1 < 1 independently of β2 - which allows
to adapt the previous proof is the following

Proposition 4.22 (Contraction estimates). Let (xNj (t),mN
j (t))j=1,...,N the empirical sped

up processes at a timescale of order N . Let

yj(t) := mN
j (t)− tanh

(
β1(xNj (t) +mN

j (t)) + β2(XN (t) +MN (t))
)
.

Then, for any β1 < 1, k > 0, j = 1, . . . , N ,

NLN |yj(t)|k ≤ −CN |yj(t)|k +O(1), (4.79)

for some C := C(β1, k) > 0, where O(1) is uniform in time and space and LN is given by
(4.48).

Proof. The proof uses analogous arguments to the ones used in the mean field case for
obtaining (4.17). For simplicity, we use the coordinates (λj ,mj) instead of (xj ,mj).
Applying the accelerated generator in the other coordinates to the function ykj (t), and
expanding to the second order in (mj , λj), we get

NLN |yj(t)|k ≤ −2N
[
mN
j (t)− tanh

(
β1λ

N
j (t) + β2ΛN (t)

)] [ ∂

∂mj
|yj(t)|k + ∂

∂λj
|yj(t)|k

]
+O(1)

= −2Nyj(t)
[
∂

∂mj
|yj(t)|k + ∂

∂λj
|yj(t)|k

]
+O(1).

The O(1) follows from the fact that both yj and the coefficients appearing in the higher
order terms of the generator are uniformly bounded by some constant C not depending on
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time nor space. Indeed, the dominating remainder terms of the development are the second
order terms, which in the accelerated timescale of order N are of order 1. Computing

∂

∂mj
|yj(t)|k + ∂

∂λj
|yj(t)|k

= k |yj(t)|k−1 sign(yj(t))
[
1−

(
β1 + β2

N

)(
1− tanh2

(
β1λ

N
j (t) + β2ΛN (t)

))]
,

we see that the factor β2
N can be included in the terms of order O(1). Thus, using that

x · sign(x) = |x|, we have

NLN |yj(t)|k ≤ −2kN |yj(t)|k
[
1− β1

(
1− tanh2

(
β1λ

N
j (t) + β2ΛN (t)

))]
+O(1).

Finally, observing that the function f(λj) :=
[
1− β1

(
1− tanh2

(
β1λ

N
j + β2ΛN

))]
is

always positive for β1 < 1 and has a unique minimum for λ∗j = − k

β1+β2
N

, with k =

β2
1
N

∑
k 6=j λk such that f(λ∗j ) = 1 − β1, we can conclude by choosing C(β1, k) := k(1 −

β1).

Remark 4.23. Proposition 4.22 can be trivially generalized to any timescale of order
Nmt, yielding

NmLN |ymj (t)|k ≤ −CNm|ymj (t)|k +O(Nm−1),

with ymj (t) := mN
j (Nmt)− tanh

(
β1(xNj (Nmt)+mN

j (Nmt))+β2(XN (Nmt)+MN (Nmt))
)
.

Corollary 4.24. Let ymj (t) be defined as in Remark 4.23. Then, for any T > 0, k > 0,
m = 1, 2

E
[

sup
t∈[0,T ]

|ymj (t)|k
]
≤ C(N,m, k), (4.80)

with C(N,m, k)→ 0 for N → +∞.

Proof. Observing that the infinitesimal generator of the processes (xNj ,mN
j ) at a timescale

of order Nm is NmLN , from the contraction estimates (4.79) generalized as in Remark
4.23 it follows

d

dt
E
[
|yj(t)|k

]
≤ −CNmE

[
|yj(t)|k

]
+O(Nm−1).

Integrating both sides with respect to time we then get claim for any time t ∈ [0, T ],
provided that the assertion is true for the initial datum. More precisely, the previous
estimate implies

E
[
|yj(t)|k

]
≤ e−C1NmtE

[
|yj(0)|k

]
− C2

Nm−1

Nm
e−C1Nmt + C2

Nm−1

Nm

= e−C1NmtE
[
|yj(0)|k

]
− C2
N
e−C1Nmt + C2

N
.

Thus, supt≥0 E
[
|yj(t)|k

]
≤ E

[
|yj(0)|k

]
+ C

N . Note that by the assumptions on the initial

data we have by a LLN that E
[
|yj(0)|k

]
→ 0 for N → +∞. This works both at a timescale

of order N and N2. For getting the stronger convergence (4.80) we again refer to Section
4 of [28] for the diffusive case and to the Appendix of [32] for a general proof for jump
processes. We can then conclude as we did in the proof of Proposition 4.2 for the mean
field case.
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Proof of Theorem 4.20. As we repeatedly did above, we plug in the definition of the sped
up diffusions xNj (t) the same Brownian motion Wj(t) appearing in the definition of the
limit process x̃j(t) in (4.77). The weak convergence in distribution is then implied by

lim
N→∞

E
[

sup
t∈[0,T ]

∣∣mN
j (t)− m̃j(t)

∣∣] = 0, (4.81)

for the resulting processes, since WN
j
D= Wj for j = 1, . . . , N . First, we estimate

E
[

sup
s∈[0,t]

∣∣mN
j (s)− m̃j(s)

∣∣]

≤ E
[

sup
s∈[0,t]

∣∣∣mN
j (s)− tanh

(
β1(xNj (s) +mN

j (s)) + β2(XN (s) +MN (s))
) ∣∣∣]

+ E
[

sup
s∈[0,t]

∣∣∣ tanh
(
β1(xNj (s) +mN

j (s)) + β2(XN (s) +MN (s))
)

− tanh (β1(x̃j(s) + m̃j(s)) + β2M(s))
∣∣∣].

The first term in the right hand side of the above inequality is dealt with the contraction
estimates of Corollary 4.24 for m = k = 1. For the other term we use the global Lipschitz
continuity of tanh(·) in the following way:

E
[

sup
s∈[0,t]

∣∣∣ tanh
(
β1(xNj (s) +mN

j (s)) + β2(XN (s) +MN (s))
)

− tanh (β1(x̃j(s) + m̃j(s)) + β2M(s))
∣∣∣]

≤ β1E
[

sup
s∈[0,t]

∣∣∣xNj (s)− x̃j(s)
∣∣∣]+ β1E

[
sup
s∈[0,t]

∣∣∣mN
j (s)− m̃j(s)

∣∣∣]

+ β2E
[

sup
s∈[0,t]

∣∣∣XN (s)
∣∣∣]+ β2E

[
sup
s∈[0,t]

∣∣∣MN (s)−M(s)
∣∣∣].

For standard arguments of propagation of chaos for the interacting diffusions we have

E
[

sup
s∈[0,t]

∣∣∣xNj (s)− x̃j(s)
∣∣∣] ≤ C(N),

and

E
[

sup
s∈[0,t]

∣∣∣XN (s)
∣∣∣] ≤ C(N),

with C(N)→ 0 for N → +∞. For the term E
[

sups∈[0,t]

∣∣∣MN (s)−M(s)
∣∣∣] we proceed by

a coupling as in the proofs of Theorem 4.13, to get

E
[

sup
s∈[0,t]

∣∣∣MN (s)−M(s)
∣∣∣] ≤ C(N) + E

[
sup
s∈[0,t]

∣∣mN
j (s)− m̃j(s)

∣∣].
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Recollecting all the estimates, we have found

(1− β1 − β2)E
[

sup
s∈[0,t]

∣∣mN
j (s)− m̃j(s)

∣∣]
≤ C(N),

with C(N)→ 0 for N → +∞. Thanks to the hypothesis β1 + β2 < 1 we get (4.81).

Remark 4.25. As we did in Remark 4.15, we note that the strong convergence (4.81)
implies the convergence (e.g. in 1-Wasserstein distance) of the associated empirical measures
µN (t) := 1

N

∑N
j=1 δmNj (t) and µ̃N (t) := 1

N

∑N
j=1 δm̃j(t) to the theoretical distribution of the

m̃j’s, again by (19). This in turns implies the propagation of chaos in the classic sense.

In words, we have found that in the subcritical regime β1 + β2 < 1 the equilibrium
that the dynamics reaches for long times of order 1 is the same as the equilibrium of the
dynamics at long times of order N . The limit dynamics is thus a process moving across
the equilibria, due to the movement of the limit diffusion x(t). In particular, define the
limit order N dynamics as the pair of processes (x(t),m(t))t≥0 satisfying

m(t) = tanh(β1(x(t) +m(t)) + β2M(t)),
dx(t) = −α2x(t) + σdW (t),
M(t) = E[m(t)],
m(0) = 0,
x(0) = 0,

(4.82)

for which it holds
(
m̃j(t)

)
t∈[0,T ]

D=
(
m(t)

)
t∈[0,T ]

for any j = 1, . . . , N . Then, we have the
analogous of Proposition 4.5:

Proposition 4.26. The process
(
m(t)

)
t≥0

defined in (4.82) is a strong solution to


dm(t) =

−α2β1(1−m2(t))
(

1
β1

arctanh(m(t))−m(t)
)

1−β1(1−m2(t)) − β2
1σ

2m(t)(1−m2(t))
(1−β1(1−m2(t)))3

 dt
+ σβ1(1−m2(t))

1−β1(1−m2(t))dW (t),
m(0) = 0.

(4.83)

Proof. By Proposition 4.21 it follows that M(t) ≡ 0. Thus, by Equation (4.82) we have
that m(t) can be written as an explicit function of x(t). We can then perform analogous
computations as in the proof of Proposition 4.5, by noting that m(t) must be of the form

dm(t) = a(t,m(t))dt+ b(t,m(t))dW (t)

for some functions a, b : [0,∞) × [−1, 1] → R to be determined, and W (t) is the same
Brownian motion appearing in the dynamics of x(t) as in (4.83). By applying Itô’s formula
to the function tanh(β1(x(t) +m(t)), we find

dm(t) = d {tanh β1(x(t) +m(t))}
= β1[1− tanh2 β1(x(t) +m(t))](dx(t) + dm(t))
− β2

1 tanh β1(x(t) +m(t))[1− tanh2 β1(x(t) +m(t))](b(t,m(t)) + σ)2dt
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= β1(1−m2(t))(dx(t) + dm(t))− β2
1m(t)(1−m2(t))(b(t,m(t)) + σ)2dt

= β1(1−m2(t))(−α2x(t)dt+ σdW (t) + a(t,m(t))dt+ b(t,m(t))dW (t))
− β2

1m(t)(1−m2(t))(b(t,m(t)) + σ)2dt

=
[
β1(1−m2(t))(a(t,m(t))− α2x(t))− β2

1m(t)(1−m2(t))(b(t,m(t)) + σ)2]dt
+ β1(1−m2(t))

[
σ + b(t,m(t))

]
dW (t).

Observe that x(t) = 1
β1

arctanh(m(t)) −m(t). By reading the diffusion coefficient from
the last line, we must have

b(t,m(t)) = β1(1−m2(t))[σ + b(t,m(t))],

and thus
b(t,m(t)) = b(m(t)) = σβ1(1−m2(t))

1− β1(1−m2(t)) .

For the drift term instead

a(t,m(t)) = β1(1−m2(t))
(
a(t,m(t))− α2

( 1
β1

arctanh(m(t))−m(t)
))

(4.84)

− β2
1m(t)(1−m2(t))[(b(t,m(t)) + σ)2].

As in the proof of Proposition 4.5, we have that

(b(t,m(t)) + σ)2 = σ2

(1− β1(1−m2(t)))2 ,

and thus, reading from (4.84),

a(t,m(t))(1− β1(1−m2(t))) = −α2β(1−m2(t))
( 1
β1

arctanh(m(t))−m(t)
)

− β2
1m(t)(1−m2(t)) σ2

(1− β1(1−m2(t)))2 ,

so that we can conclude.

Remark 4.27. The analogous statement to Remark 4.6 holds: for β1 < 1, the SDE (4.83)
is well-posed. Existence follows by Proposition 4.26. Uniqueness follows by the Lipschitz
properties of the drift and diffusion functions in [−1, 1]. Indeed, note that Equation (4.83)
differs from (4.24) only by an additional drift which is regular and tends to 0 at the borders
of (−1, 1) (observe that (1− x2) arctanh(x)→ 0 when x→ ±1).

Remark 4.28. Analogously to what we did for the order 1 dynamics in Remark 4.17, we
can generalize Proposition 4.21 and Theorem 4.20 to the case where the initial data for
the diffusions are centered around a point X 6= 0, provided we start the magnetizations’
dynamics around the corresponding stable point on the invariant curve (otherwise there
would be an initial transient fast dynamics for reaching the corresponding equilibrium).
The limit order N equation becomes

m(t)(x) = tanh
(
β1(x+m(t)(x)) + β2(X +M(t))

)
,

m(0)(x) ≡ mX(x),
M(t) =

∫
Rm(t)(x)µt(dx;X),

(4.85)
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for some X ∈ R, where mX(x) is the solution to (4.69), and µt(dx;X) is a normal
distribution with mean X and variance depending on time (the distribution of the Ornstein-
Uhlenbeck diffusions).

Note that in this case dynamics (4.85) is not trivial: M(t) fluctuates around an
equilibrium point due to the time-dependent variance of the Ornstein-Uhlenbeck diffusions,
where the equilibrium point depends both on the given X and on the parameters of the
diffusions σ and α2. For example, for σ � 1, studying the equation for M(t) one finds that
the equilibrium point is close to 0 independently of X. In the long run, M(t)→M(∞) :=∫
Rm(t)(x)µ∞(dx;X), with µ∞ = N

(
X, σ

2

2α2

)
.

An analogous equation to (4.83) can also be written, by adding an additional drift
term following by the fact that x(t) = 1

β1
arctanh(m(t))−m(t)− β2

β1
(M(t) +X), and with

initial datum m(0) = mX(X). Due to the term M(t) = E[m(t)] the resulting equation is a
diffusion of McKean-Vlasov type:


dm(t) =

−α2β1(1−m2(t))
(

1
β1

arctanh(m(t))−m(t)−β2
β1

(M(t)+X)
)

1−β1(1−m2(t)) − β2
1σ

2m(t)(1−m2(t))
(1−β1(1−m2(t)))3

 dt
+ σβ1(1−m2(t))

1−β1(1−m2(t))dW (t),
m(0) = mX(X),

(4.86)
whose well-posedeness should also be standard.

4.3.4 Dynamics at times of order N2: the subcritical case

At this timescale a refined study of the interacting diffusions is needed to describe the
limit dynamics. Denoting with t the macroscopic time of order N2, the single xNj ’s
evolve at a much faster timescale with respect to the current value of their empirical
mean XN (t), which is not anymore zero but evolves randomly as a Brownian motion
with constant diffusion coefficient σ. Thus, one can expect that in an infinitesimal time
dt of order N2 the single diffusions become asymptotically independent and reach their
equilibrium distribution given the current value of XN (t) = X. In turns, in the same dt
the magnetization’s processes are also asymptotically i.i.d. and reach an equilibrium given
by a macroscopic magnetization M , whose value can be read off from (4.85) in Remark
4.28, substituting µt with µ∞, the ergodic measure of the Ornstein-Uhlenbeck processes.
The reiteration of this procedure for any dt describes the dynamics at the order N2. In
particular, the dynamics at order N2 does not propagate chaos, unless we condition it
with respect to XN (t).

As before, we still denote the sped up processes under the same notation,

xNj (t) := xNj (N2t), mN
j (t) := mN

j (N2t),

using as initial data the long-time limit at the previous timescale of order N . For clarity
we write them again:

dx
N
j (t) = −Nα2(xNj (t)−XN (t))dt+

√
NσdWN

j (t),
xNj (0) = xj ∼ N

(
0, σ2

2α2

)
,

(4.87)
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with XN (t) := 1
N

∑N
k=1 x

N
k (t). The dynamics of the magnetizations is now given bymN

j 7→mN
j ± 2

N rate N3 1∓mNj (t)
2

(
1± tanh

[
β1(xNj (t)+mN

j (t))+β2(XN (t)+MN (t))
])
,

mN
j (0) = m(xj).

(4.88)
At this level, we aim to prove that the conditional distribution of the empirical macroscopic
magnetization MN (t) with respect to XN (t) converges to the conditional distribution of
M(t) given X(t) (which is actually a delta), with

m(t)(x) = tanh (β1(x+m(t)(x)) + β2(X(t) +M(t))) ,
m(0)(x) ≡ mX(0)(x),
M(t) =

∫
Rm(t)(x)µ∞(dx;X(t)),

(4.89)

where µ∞(dx;X(t)) = N
(
X(t), σ2

2α2

)
must be intended as a conditional distribution given

the current realization of X(t), whose random evolution is{
dX(t) = σdW (t),
X(0) = 0,

(4.90)

with W a Brownian motion. Moreover, denoting with

Qt(0, dX) = 1√
2πσ2t

e−
X2

2σ2tdX (4.91)

the transition kernel’s density at time t associated to the limit diffusion (4.90), we also
prove the convergence of the full law of MN (t) to the law of the process M(t) defined by

m(t)(x) = tanh (β1(x+m(t)(x)) + β2(X(t) +M(t))) ,
m(0)(x) ≡ mX(0)(x),
M(t) =

∫
Rm(t)(x)µ̃t(dx),

(4.92)

with
µ̃t(·) :=

∫
R
Qt(0, dX)µ∞(·;X). (4.93)

In details, we have

Theorem 4.29 (Limit dynamics at order N2). For any T > 0, β1, β2 > 0 such that
β1 + β2 < 1 and α1, α2, σ > 0

(i) For all the finite time dimensional distributions of the form (t1, . . . , tk) ∈ [0, T ]k, it
holds

Law
(
MN (t1), . . . ,MN (tk)

)
→ Law

(
M(t1), . . . ,M(tk)

)
, (4.94)

for N → +∞, with M(t) the process defined by (4.92) and (4.93).

(ii) For every t ∈ [0, T ],

Law
(
MN (t)

∣∣∣|XN (t)−X| ≤ εN
)
→ δM(t), (4.95)

for N → +∞, withM(t) the (deterministic) variable defined by (4.89) with X(t) = X,
and εN → 0 for N → +∞.
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(iii) (Conditional propagation of chaos) For every t ∈ [0, T ] and every k-tuple of distinct
indexes j1, . . . , jk ∈ {1, . . . , N}k, we have

Law
(
mN
j1(t), . . . ,mN

jk
(t)
∣∣∣|XN (t)−X| ≤ εN

)
→Law

(
m̃j1(t), . . . , m̃jk(t)

)
= Law

(
m̃j1(t)

)k
,

(4.96)

for N → +∞, where m̃ji(t) := m(t)(xji), with m(t)(x) given by (4.89) with X(t) =
X, the xji ’s are i.i.d. random variables distributed as x ∼ µ∞(dx;X) = N

(
X, σ

2

2α2

)
,

and εN → 0 for N → +∞.

Note that the well-posedness of the limit dynamics (4.89) and (4.92) can be proved in
the same way as we did for the order N case in Proposition 4.21, since any two solutions
m(t) and n(t) share the same X(t). Moreover, we point out that we expect property (i)
to hold in the stronger sense of weak convergence of stochastic processes, though we did
not work out a proof yet. The main ingredients for proving the convergence to the limit
at this timescale are provided by Lemmas 4.30 and 4.31. The first establishes a handy
distributional representation of the interacting diffusions in terms of a combination of
(fast) stationary independent Ornstein-Uhlenbeck processes plus a (slow) independent
Brownian motion and a small interaction term. Lemma 4.31 involves a sort of Law of
Large Numbers/averaging property for non-linear implicit functions of the magnetizations
and of the diffusions. In what follows we strongly rely on the Gaussianity of the interacting
processes (4.87). Before stating the next result, we need to introduce the following
processes. Let

(
ξNj (t)

)
j=1,...,N

be defined as,

dξ
N
j (t) = −α2Nξ

N
j (t)dt+ σ

√
NdWj(t),

ξNj (0) ∼ N
(
0, σ2

2α2

)
,

(4.97)

with Wj(t) independent Brownian motions, and set ξN (t) := 1
N

∑N
j=1 ξj(t). Moreover, let(

UN (t)
)
t≥0

be defined as dUN (t) = σ2dW (t),
UN (0) ∼ N

(
0, σ2

2α2N

)
,

(4.98)

with W a Brownian motion independent of all the Wj ’s. Note that the dependence on N
in UN (t) is only through the initial datum. We are now ready to introduce the following

Lemma 4.30. Let (xNj (t))j=1,...,N be as in (4.87). Then, for any T > 0, we have that

(i) For every j = 1, . . . , N and every N ∈ N,

Law
(
(xNj (t))t∈[0,T ]

)
= Law

((
ξNj (t)− ξN (t) + UN (t)

)
t∈[0,T ]

)
. (4.99)

(ii) For every k-tuple of distinct indexes (j1, . . . , jk) ∈ {1, . . . , N}k and every fixed
t ∈ [0, T ],

Law
(
xNj1(t), . . . , xNjk(t)

)
(dx) =

∫
R
Qt(0, dX)µk∞(dx;X) =: µ̃t,k(dx), (4.100)

for every N ∈ N, with µk∞(dx;X) = µ∞(dx1;X)× · · · × µ∞(dxk;X).
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(iii) (Conditional propagation of chaos) For every k-tuple of distinct indexes (j1, . . . , jk) ∈
{1, . . . , N}k and every fixed t ∈ [0, T ],

Law
(
xNj1(t), . . . , xNjk(t)

∣∣∣|XN (t)−X| ≤ εN
)
(dx)→ µk∞(dx;X), (4.101)

for N → +∞, with εN → 0 for N → +∞.

Proof. Because of the Gaussianity of the mean-zero processes (xNj (t))t≥0, (ξNj (t))t≥0 and
(UN (t))t≥0 we can check assertion (i) only looking at the covariance functions. For a
fixed t ≥ 0, denote A(t) := E[(xNj (t))2] and B(t) := E[xNj (t)xNi (t)]. Because of the
exchangeability of the processes (xNj (·))j=1,...,N we have that A and B do not depend on j
nor i. Applying Itô’s formula to f(xNj (t)) = (xNj (t))2 and to f(xNj (t), xNi (t)) = xNj (t)xNi (t),
and then taking the expectation, we obtain that A(t) and B(t) must solve

Ȧ(t) = −2α2(N − 1)A(t) + 2α2(N − 1)B(t) + σ2N,

Ḃ(t) = −2α2B(t) + 2α2A(t),
A(0) = σ2

2α2
,

B(0) = 0,

(4.102)

which gives

A(t) = σ2(1 + 2α2t)
2α2

,

B(t) = σ2t.

(4.103)

Now, fix any s, t ≥ 0 with t > s. Denote AN (s, t) := E[xNj (s)xNj (t)] and BN (s, t) :=
E[xNj (s)xNi (t)]. Clearly, we have AN (s, s) = A(s) and BN (s, s) = B(s). The evolution in
t of the above quantities can be obtained by applying Itô’s formula to xNj (s)xNj (t) and
xNj (s)xNi (t) on the time interval [s, t], keeping s fixed as an initial datum. We obtain the
following system of ODEs in t ∈ [s,+∞):

d
dtAN (s, t) = −(N − 1)α2AN (s, t) + (N − 1)α2BN (s, t),
d
dtBN (s, t) = −α2BN (s, t) + α2AN (s, t),
AN (s, s) = A(s) = σ2(1+2α2s)

2α2
,

BN (s, s) = B(s) = σ2s,

(4.104)

whose solution gives

AN (s, t) = σ2

2α2N

[
1− e−α2N(t−s)

]
+ σ2

2α2
e−α2N(t−s) + σ2s,

BN (s, t) = AN (s, t)− σ2

2α2
e−α2N(t−s).

(4.105)

Now, denote
Yj(t) := ξNj (t)− ξN (t) + UN (t).

For any t ≥ 0 we have

E[Y 2
j (t)] =

(
1 + 1

N

)
E[(ξNj (t))2] + E[U2

N (t)]− 2
N

E[(ξj(t))2],

and
E[Yi(t)Yj(t)] = E[Y 2

j (t)]− E[(ξNj (t))2].
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For any t > s we get

E[Yj(s)Yj(t)] =
(

1− 2
N

)
E[ξNj (s)ξNj (t)] + 1

N
E[ξNj (s)ξNj (t)] + E[UN (t)UN (s)],

and
E[Yj(s)Yi(t)] = E[Yj(s)Yj(t)]− E[ξNj (s)ξNj (t)].

Note that for the stationary Ornstein-Uhlenbeck processes ξNj (t) we have, for any t ≥ 0,

E[(ξNj (t))2] = σ2

2α2
,

and for t > s,

E[(ξNj (t)ξNj (s)] = σ2

2α2
e−α2N(t−s).

Moreover, by the independence between the ξNj (t)’s,

E[(ξN (t))2] = 1
N

E[(ξNj (t))2] = 1
N

σ2

2α2
,

and
E[ξN (t)ξN (s)] = 1

N

σ2

2α2
e−α2N(t−s).

For UN (t) we get

E[U2
N (t)] = σ2t+ σ2

2α2N
,

and, for t > s,

E[UN (t)UN (s)] = σ2t+ σ2

2α2N
.

One can extend the above computations to any t, s ≥ 0: it suffices to take the minimum
between s and t in the above formulae, and multiply by sign(t− s) in the exponentials. De-
noting with cN (s, t) and dN (s, t) the covariance functions of (xNj (t))t∈[0,T ] and (Yj(t))t∈[0,T ]
(i.e. the process on the right hand side of (4.99)), the above computations on Yj and the
expressions (4.103) and (4.105) show that, for any T > 0,

cN (s, t) = dN (s, t),

so that (i) is proved. For the proof of (ii), recall that

Law
(
xNj (t)

)
= N

(
0, σ

2

2α2
(1 + 2α2t)

)
.

On the other hand, note that, integrating in dX, recalling (4.91), (4.93) and µ∞(dx;X) =
N
(
X, σ

2

2α2

)
,

µ̃t(dx) =
∫
R
Qt(0, dX)µ∞(dx;X)

=

∫
R

1√
2πσ2t

e−
X2

2σ2t
1√
πσ2

α2

e
− (x−X)2

σ2/α2 dX

 dx
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= 1√
πσ2

α2

√
1 + 2α2t

e
− α2x

2

σ2(1+2α2t)dx = N
(

0, σ
2

2α2
(1 + 2α2t)

)
(dx),

i.e.
Law

(
xNj (t)

)
= µ̃t, (4.106)

for every N ∈ N, with µ̃t as in (4.93).
We now check the validity of (ii) for bidimensional vectors (xNi (t), xNj (t)), as the

assertion then follows by the Gaussianity of the processes in play. By the computations
developed for the proof of (i), we know that (xNi (t), xNj (t)) is normally distributed, with
E[xNi (t)] = E[xNj (t)] = 0, Var(xNi (t)) = A(t) = σ2(1+2α2t)

2α2
, and Cov(xNi (t), xNj (t)) =

B(t) = σ2t. Then, we just need to check that µ̃t,2(dx), as defined in (ii), has the same
moments. Let (X1, X2) ∼ µ̃t,2. As one can check (e.g. via Mathematica):

E[X1X2] =

=
∫
R3
x1x2

1√
2πσ2t

e−
X2

2σ2t

 1√
πσ2

α2

2

e
− (x1−X)2

σ2/α2 e
− (x2−X)2

σ2/α2 dXdx1dx2

= σ2t,

while the other moments were already verified.
For the proof of (iii), we note that for fixed j ∈ {1, . . . , N} and any T > 0 with

t ∈ [0, T ],

Law
(
xNj (t)

∣∣|XN (t)−X| ≤ εN
)

= Law
(
ξNj (t)− ξN (t) + UN (t)

∣∣∣∣∣∣∣∣UN (t)−X
∣∣∣ ≤ εN

)
,

since XN (t) D= UN (t). By noting that

E
[
ξNj (t)− ξN (t) + UN (t)

∣∣UN (t)
]

= UN (t),

and

Var
(
ξNj (t)− ξN (t) + UN (t)

∣∣UN (t)
)

=
(

1− 1
N

)
σ2

2α2
,

we find that

lim
N→∞

Law
(
xNj (t)

∣∣|XN (t)−X| ≤ εN
)

= lim
N→∞

N
(
X,

(
1− 1

N

)
σ2

2α2

)
= µ∞(·;X).

Furthermore, computing

Cov
(
ξNi (t)− ξN (t) + UN (t), ξNj (t)− ξNj (t) + UN (t)

∣∣∣ξN)
= − 2

N
E[(ξNi (t))2] + E[ξ2

N (t)] = − 1
N

σ2

2α2
→ 0,

we can deduce the conditional law of bidimensional vectors (xNi (t), xNj (t)), so that (iii) is
verified.
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Lemma 4.31 (Averaging property). Under the notation above, let f : R3×[−1, 1]→ [−1, 1]
be globally Lipschitz continuous in each variable. Let L be the Lipschitz constant with
respect to its fourth argument, i.e., for any M,M ′ ∈ [−1, 1],

|f(x1, x2, x3,M)− f(x1, x2, x3,M
′)| ≤ L|M −M ′|,

for every (x1, x2, x3) ∈ R3, and suppose L < 1. Let µ(du) = N
(
0, σ2

2α2

)
(du). Then, for

any T > 0 we have that

(i) For every N ∈ N and t ∈ [0, T ], the equation

MN (t) = 1
N

N∑
j=1

f(ξNj (t), ξN (t), UN (t),MN (t)) (4.107)

has a unique solution almost surely.

(ii) Let
(
B(t)

)
t≥0

a Brownian motion. For every finite k-tuple of times (t1, . . . , tk) ∈

[0, T ]k,
Law

(
MN (t1), . . . ,MN (tk)

)
→ Law

(
M(t1), . . . ,M(tk)

)
, (4.108)

for N → +∞, where the process
(
M(t)

)
t≥0

is defined by

M(t) :=
∫
R
f(u, 0, σ2B(t),M(t))µ(du). (4.109)

(iii) For every fixed t ∈ [0, T ],

Law
(
MN (t)

∣∣∣|UN (t)− z| ≤ εN
)
→ δM(t), (4.110)

for N → +∞ and εN → 0 for N → +∞, with

M(t) :=
∫
R
f(u, 0, z,M(t))µ(du). (4.111)

Proof. The map

m 7→ 1
N

N∑
j=1

f(ξNj (t), ξN (t), UN (t),m)

is L-Lipschitz continuous with L < 1. Thus, (i) follows by a contraction argument (e.g.
Banach-Caccioppoli Theorem).

For the proof of (ii) we make some preliminary remarks. First, note that by definition
of ξN (t), we have dξN (t) = −α2NξN (t)dt+ σdWN (t),

ξN (0) ∼ N
(
0, σ2

2α2N

)
,

with WN (t) := 1√
N

∑N
j=1Wj(t), with the Wj ’s appearing in dynamics (4.97). The solution

of the above equation is

ξN (t) = ξN (0)e−α2Nt + σ

∫ t

0
e−α2N(t−s)dWN (s),
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which implies, for any T > 0,

E
[

sup
t∈[0,T ]

|ξN (t)|
]
→ 0, (4.112)

for N → +∞. Moreover, recalling Equation (4.98) for
(
UN (t)

)
t≥0

and the definition of(
MN (t)

)
t≥0

(4.107), we have the almost sure equality between the processes
(
MN (t)

)
t≥0

and
(
M∗N (t)

)
t≥0

, the latter being defined by

M∗N (t) = 1
N

N∑
j=1

f
(
ξNj (t), ξN (t), σ2W (t) + UN (0),M∗N (t)

)
.

Let
(
M̂N (t)

)
t≥0

be the process defined by

M̂N (t) = 1
N

N∑
j=1

f
(
ξNj (t), 0, σ2W (t), M̂N (t)

)
. (4.113)

In light of (4.112), the trivial convergence E
[
supt∈[0,T ] |UN (t)− σ2W (t)|

]
→ 0 for N →

+∞ and the Lipschitz assumptions on f , we obtain

E
[

sup
t∈[0,T ]

|MN (t)− M̂N (t)|
]
→ 0, (4.114)

for N → +∞. In particular
(
MN (t)

)
t∈[0,T ]

and
(
M̂N (t)

)
t∈[0,T ]

share the same limit in
distribution, provided it exists.

Now we fix a t ∈ [0, T ] and prove (ii) for all the one-dimensional distributions. Let
M̂N (t)(z) be the unique solution to

M̂N (t)(z) = 1
N

N∑
j=1

f(ξNj (t), 0, z, M̂N (t)(z)),

and M(t)(z)
M(t)(z) =

∫
R
f(u, 0, z,M(t)(z))µ(du).

If we show that, for every z ∈ R,

M̂N (t)(z)→M(t)(z), (4.115)

almost surely for N → +∞, then we have M̂N (t) = M̂N (t)(σ2W (t))→M(t)(σ2W (t)) =
M(t) almost surely for N → +∞, and thus the one-dimensional version of (ii) follows by
(4.114). For the proof of (4.115), we omit for the moment the arguments 0 and z, and
rewrite

M̂N (t) = 1
N

N∑
j=1

f(ξNj (t), M̂N (t)) =
∫
R
f(u, M̂N (t))µN (t)(du),

where µN (t) := 1
N

∑N
j=1 δξNj (t) is the empirical measure of the ξNj (t)’s. We now set

F : [−1, 1]×M1(R)→ R to be given by

F (m,µ) :=
∫
R
f(u,m)µ(du),
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endowingM1(R) with the BL (bounded-Lipschitz) metric

||µ− ν||BL = sup
{∣∣∣∣∣
∫
R
gdµ−

∫
R
gdν

∣∣∣∣∣ : ||g||∞ ≤ 1, g 1− Lip.
}
.

Note that m 7→ F (m,µ) is L-Lipschitz, so that there exists a unique m(µ) such that

m(µ) = F (m(µ), µ).

Moreover, we have

|m(µ)−m(ν)| =
∣∣∣∣∣
∫
R
f(u,m(µ))µ(du)−

∫
R
f(u,m(ν))ν(du)

∣∣∣∣∣
≤
∫
R

∣∣∣f(u,m(µ))− f(u,m(ν))
∣∣∣µ(du)

+
∣∣∣∣∣
∫
R
f(u,m(ν))µ(du)−

∫
R
f(u,m(ν))ν(du)

∣∣∣∣∣
≤ L|m(µ)−m(ν)|+ ||µ− ν||BL,

so that
|m(µ)−m(ν)| ≤ ||µ− ν||BL

1− L .

In particular, m(µ) is continuous in µ. Finally, since M̂N (t) = m(µN (t)) and by a LLN
µN (t) → µ = N

(
0, σ2

2α2

)
almost surely, we have that, restoring the dependence on z in

the previous expression,

M̂N (t)(z)→ m(t)(µ) =
∫
R
f(u, 0, z,m(t)(µ))µ(du) = M(t)(z),

so that (4.115) is proved. Recall that, for any t, the above implies

M̂N (t)(σ2W (t))→M(t)(σ2W (t)) (4.116)

almost surely for N → +∞. The finite time dimensional version follows directly by (4.116)
and by the continuity of the processes with respect to time, which yield

P
(
M̂N (t)(σ2W (t)) N→+∞−−−−−→M(t)(σ2W (t)), ∀t ∈ [0, T ]

)
= 1.

Assertion (iii) follows directly by (ii). It is indeed the corresponding conditional statement
of the one-dimensional version of (ii) noting, as we did above, that UN (t) D= σ2W (t)+UN (0)
for every N , with UN (0)→ 0 for N → +∞, and

E[ξNj (t)|UN (t)] = E[ξNj (t)] = 0,

Var(ξNj (t)|UN (t)) = Var(ξNj (t)) = σ2

2α2
.

The limit distribution is a delta in M(t) since M(t) =
∫
R f(u, 0, z,M(t))µ(du) is determin-

istic.
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Proof of Theorem 4.29. Consider the set of N processes (m̃N
j (t), M̃N (t))j=1,...,N , coupled

with (mN
j (t),MN (t))j=1,...,N , defined by
m̃N
j (t) = tanh

(
β1(xNj (t) + m̃N

j (t)) + β2(XN (t) + M̃N (t))
)
,

m̃N
j (0) = mN

j (0),
M̃N (t) = 1

N

∑N
j=1 tanh

(
β1(xNj (t) + m̃N

j (t)) + β2(XN (t) + M̃N (t))
)
.

(4.117)

By the contraction estimates (4.80) for k = 1,m = 2, we know that both mN
j (t)− m̃N

j (t)
and MN (t)− M̃N (t)→ 0 in strong norm, for N → +∞. Indeed, (4.80) can be trivially
adapted to show that MN (t) collapses onto the empirical mean of the processes laying
on the invariant curve. It is then sufficient to study the convergence in distribution of(
M̃N (t)

)
t∈[0,T ]

. We first observe that, by (i) of Lemma 4.30, for every N ∈ N it holds

(m̃N
j (t), M̃N (t))t∈[0,T ]

D= (m̂N
j (t), M̂N (t))t∈[0,T ],

with (m̂N
j (t), M̂N (t))j=1,...,N given by

m̂N
j (t) = tanh

(
β1
(
ξNj (t)− ξN (t) + UN (t) + m̂N

j (t)
)

+ β2
(
UN (t) + M̂N (t)

))
,

m̂N
j (0) = mN

j (0),
M̂N (t) = 1

N

∑N
j=1 tanh

(
β1
(
ξNj (t)− ξN (t)+ UN (t) + m̂N

j (t)
)

+ β2
(
UN (t)+M̂N (t)

))
,

(4.118)
with ξNj (t) and UN (t) given by (4.97) and (4.98) respectively. Now, we note that the
function

ϕ(ξ, ξ, U,M) := tanh
(
β1
(
ξ − ξ + U + ϕ(ξ, ξ, U,M)

)
+ β2

(
U +M

))
satisfies the Lipschitz properties of Lemma 4.31 for any choice of β1, β2 > 0 such that
β1 + β2 < 1. Indeed, the Lipschitz continuity in the first three variables follows from the
regularity of tanh(·). For the last argument of ϕ, for any M,M ′ ∈ [−1, 1], we estimate∣∣∣ϕ(ξ, ξ, U,M)− ϕ(ξ, ξ, U,M ′)

∣∣∣ ≤ β1
∣∣∣ϕ(ξ, ξ, U,M)− ϕ(ξ, ξ, U,M ′)

∣∣∣+ β2|M −M ′|,

so that ∣∣∣ϕ(ξ, ξ, U,M)− ϕ(ξ, ξ, U,M ′)
∣∣∣ ≤ β2

1− β1
|M −M ′|.

Thus, ϕ is L-Lipschitz continuous in M with L := β2
1−β1

< 1 if and only if β1 + β2 < 1. We
can then apply (ii) of Lemma 4.31 to M̂N (t), to get, for all the finite time dimensional
distributions (t1, . . . , tk) ∈ [0, T ]k,

Law
(
M̂N (t1), . . . , M̂N (tk)

)
→ Law

(
M∗(t1), . . . ,M∗(tk)

)
,

for N → +∞, where

M∗(t) :=
∫
R
ϕ(u, 0, σ2W (t),M∗(t))µ(du),

with µ = N
(
0, σ2

2α2

)
. Assertion (i) is then implied by

Law
((
M∗(t)

)
t∈[0,T ]

)
= Law

((
M(t)

)
t∈[0,T ]

)
, (4.119)
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with M(t) as in (4.92). We start by proving (4.119) for all the one-dimensional time
distributions. For the purpose, we note that for t ∈ [0, T ]

σ2W (t) D= X(t) ∼ N (0, σ2t),

with X(t) the limit in distribution of XN (t). Substituting in M∗(t), we have the equality
in distribution

M∗(t) =
∫
R

tanh
(
β1(u+X(t) + ϕ(u, 0, X(t),M∗(t))) + β2(X(t) +M∗(t))

)
µ(du).

Finally, with the change of variable x := u+X(t), noting that, by the computations in
Lemma 4.30, we have that the random variable x(t) := ξ + σ2W (t) D= ξ + X(t), with
ξ ∼ N

(
0, σ2

2α2

)
is distributed according to

Law(x(t))(dx) = µ̃t(dx),

the relation (4.119) is proved for the one-dimensional time marginal distributions. The
analogous conclusion is immediately obtained for all the finite time dimensional distribu-
tions, by using properties (i) and (ii) of Lemma 4.30, which hold for any N and thus also
for the limit. The equality in law for the whole process follows, since both

(
M∗(t)

)
t∈[0,T ]

and
(
M(t)

)
t∈[0,T ]

are functions of the same Gaussian process
(
X(t)

)
t∈[0,T ].

The proof of (ii) follows easily by property (iii) of Lemma 4.31 and by an analogous
change of coordinates as above. In details, we know that, with the above notation

Law
(
M̃N (t)

∣∣∣|XN (t)−X| ≤ εN
)

= Law
(
M̂N (t)

∣∣∣|UN (t)−X| ≤ εN
)
,

for some εN → 0 when N → +∞. By property (iii) of Lemma 4.31 and for the above
couplings, this implies

Law
(
MN (t)

∣∣∣|XN (t)−X| ≤ εN
)
→ δM(t),

where

M(t) =
∫
R
ϕ(u,X,M(t))µ(du).

With the change of coordinates x = u+X we get (4.95).
For the proof of (iii), consider a single process m̂N

j (t), as given in (4.118), for a fixed
t ∈ [0, T ]. Combining assertion (iii) of Lemma 4.30 with (ii) of this theorem, it follows
directly

Law
(
m̃N
j (t)

∣∣∣|XN (t)−X(t)| ≤ εN
)
→ Law

(
m̃j(t)

)
.

The asymptotic independence among the magnetizations, i.e. (iii), follows by noting that
the mN

j ’s (resp. m̃N
j ) are functions of xNj , XN , and MN (resp. M̃N ). When we condition

with respect to XN (t), we have that the xNj (t)’s are asymptotically independent by (iii)
of Lemma 4.30, and MN (t) tends to a deterministic value by (ii). Thus the dependence
among the magnetizations is deleted in the limit.
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(a) (t,MN (t)) (b) (t,XN (t))

Figure 4.4: Simulation of the finite particle system’s dynamics at a timescale of order N2,
for N = 200, β1 = β2 = 0.3, α1 = α2 = σ = 1, T = 107.

Remark 4.32 (One-dimensional description). Theorem 4.29 can potentially be adapted to
get rid of the dependence of the diffusions in the definition of the magnetizations dynamics.
The corresponding ergodic measure (the analogous of µ∞(dx;X)) with respect to which
the order N2 results should hold, is the conditional (with respect to M) ergodic measure
associated to the McKean-Vlasov SDE (4.86), which of course is much harder to find than
µ∞(dx;X).

Remark 4.33 (Long-time behavior). Despite the well-posedness of the limit dynamics
for any finite time interval, observe that in this timescale the long-time behavior of the
limit equation cannot be determined, as the process (X(t))t≥0 does not admit an invariant
measure on the whole space. However, it is clear that for big positive values of X(t) the
second-level magnetization M(t) will be close to +1, while for big negative values it will be
close to −1, as it is shown in Figure 4.4.

Remark 4.34 (Mean field case: the conditional propagation of chaos). We note that an
analogous result to the conditional propagation of chaos (iii) of Theorem 4.29 should hold
for the mean field model of Section 4.2, where the single spins (resp. diffusions) σj (resp.
xj) replace the magnetizations mN

j (resp. xNj ) , mN (resp. xN ) replaces MN (resp. XN)
and the timescale is of order N instead of order N2.

4.3.5 Renormalization theory: the subcritical case

The results of the previous section are expected to be generalizable to the k-th hierarchical
level for any k > 0 finite. In this section we state what we think should be the corresponding
statement, in form of a conjecture, as we did not work out a proof yet. The goal is to define
inductively a renormalization map ϕd, with d = 1, . . . , k, which allows one to describe the
limit dynamics for the aggregated magnetizations at each timescale Ndt in terms of the
corresponding aggregated diffusions.

In this case the model is defined on the set V := {1, . . . , N}k. Any of the Nk individuals
in the population is identified by a k-tuple i = (i1, i2, . . . , ik). For any two individuals
i, j ∈ V , define the hierarchical distance as

d(i, j) := min
{
d
∣∣ 0 ≤ d ≤ k − 1, (id+1, . . . , ik) = (jd+1, . . . , jk)

}
. (4.120)
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If in (4.120) (id+1, . . . , ik) 6= (jd+1, . . . , jk) for any 0 ≤ d ≤ k − 1, then we set d(i, j) := k.
The interaction among individuals (i, j) at distance d(i, j) = d now scales as

Jij = βd
Nd

,

J ′ij = αd
N2d−1 .

(4.121)

For d = 1, 2, . . . , k − 1 and i ∈ V , set

id := (id+1, . . . , ik) ∈ {1, 2, . . . , N}k−d ,

and
ik := ∅.

Denote for any d < k the Nk−d d-th level magnetizations,

mN
id (t) := 1

Nd

∑
j∈V :jd=id

σj(t),

and the k-th level magnetization

mN
ik(t) := 1

Nk

∑
j∈V

σj(t).

Moreover, denote for any d < k the limit d-th level diffusion,{
dX(d)(t) = −αd+1X

(d)(t)dt+ σdW (d)(t),
X(d)(0) = 0,

(4.122)

and the limit k-th level diffusion{
dX(k)(t) = σdW (t),
X(k)(0) = 0.

(4.123)

Let Q(d)
t (0, dX) and Q

(k)
t (0, dX) be the transition kernels of the diffusions (4.122) and

(4.123) respectively, and ν(d)
y the stationary distribution of{
dz(t) = −αd+1(z(t)− y)dt+ σdB(t),
z(0) = 0,

(4.124)

where B(t) is a Brownian motion. Note that, in the notation of the previous section
ν

(1)
y (·) = µ∞(·; y). Then, we have

Conjecture 4.1. Assume β1 + · · ·+ βk < 1 and that xj(0) ∼ N (0, 1) i.i.d. for any j ∈ V .
Then, for any id, d ∈ {1, 2, . . . , k} and T > 0,

(mN
id (Ndt))t∈[0,T ] → (m(d)(t))t∈[0,T ] (4.125)

in the sense of weak convergence of stochastic processes, where

m(d)(t) = ϕd(X(d)(t), 0), (4.126)
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with X(d) the solution to (4.122) (resp. (4.123)) for d < k (resp. d = k). The function
ϕd = ϕd(x, y), for d = 2, . . . , k, is the unique solution to

ϕd =
∫
R
ϕd−1(z, βd(ϕd + x) + y)µ̃t,d(dz), (4.127)

with, for d = 2, . . . , k,

µ̃t,d :=
∫
R
. . .

∫
R︸ ︷︷ ︸

d− 1 times

Q
(d)
t (0, dxd−1)ν(d−1)

xd−1 (dxd−2) · . . . · ν(2)
x2 (dx1)ν(1)

x1 , (4.128)

and ϕ1(x, y) is the unique solution to

ϕ1 = tanh(β1(ϕ1 + x) + y).

We conclude the section justifying the k-th level subcritical regime condition

β1 + · · ·+ βk < 1 (4.129)

in the above conjecture, which is in accordance with the first two hierarchical levels of the
previous sections. Let Ld−1 be the Lipschitz constant of ϕd−1 in its second variable, with
Ld−1 < 1. At the d-th hierarchical level, Equation (4.127) has a unique solution, provided
that the right hand side is a contraction in terms of ϕd. This is true if

Ld−1βd < 1. (4.130)

On the other hand, computing the d-th level Lipschitz constant Ld we find, for y, y′ ∈ R,

|ϕd(x, y)− ϕd(x, y′)| ≤ Ld−1(1 + βdLd)|y − y′|,

and thus
Ld = Ld−1

1− Ld−1βd
. (4.131)

Using (4.131), the subcriticality condition (4.129) implies inductively the validity of (4.130)
for d = 1, . . . , k, starting from L0 = 1.

4.3.6 The limit case: [β1 = β2 →∞]

In this section we develop solid heuristics for dealing with the limit case of null temperatures.
We also show some simulations which confirm our ideas. For convenience, here we use the
notation

µ0(dx) := N (0, ρ2),
µt0(dx) := N (0, ρ2(t)),
µX(dx) := N (X, ρ2),

µ∞X (dx) := µ∞(dx;X) = N
(
X,

σ2

2α2

)
,

(4.132)

for the normal distributions we consider, where ρ2 and ρ2(t) depend on the diffusion
parameters σ and α2. We analyze the limit dynamics at any timescale, formally replacing
β1 = β2 =∞ in the deterministic limit equations, where the second level diffusion enters
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as a parameter. Substituting tanh(β1z + β2w) with sign(z + w), the main focus of the
section is on the study of

ṁ(t)(x) = 2sign(x+m(t)(x) +X +M(t))− 2m(t)(x),
m(0)(x) = m0(x),
M(t) =

∫
Rm(t)(x)ν(dx),

(4.133)

and of its equilibria, where X has to be intended as a fixed value of the second level
diffusion, and the measure ν(dx) is a normal distribution chosen among the ones in (4.132),
depending on the timescale considered. We think of (4.133) as an infinitesimal time step
in the dynamics at a timescale of order Nα for α > 0, with X being the value of the
second level diffusion at the current macroscopic time. The spirit of our approach is the
following:

• we identify all the equilibria reached at an order 1 timescale, showing that they are
provided by staircase functions

mx0(x) :=
{

+1, ∀x > x0,

−1, ∀x < x0,

where the discontinuity point x0 ∈ R belongs to a certain interval which we refer to
as fixed points region. In particular, we show that the fixed points region depends
on the current value of the macroscopic quantity X and on the diffusion parameters
σ and α2 (Propositions 4.36, 4.40);

• we deduce the local stability of the above configurations (Proposition 4.38);

• we update the macroscopic time (either with an infinitesimal change at order N or
N2), and evolve X to a new value X;

• we quantify the corresponding adaptation of the staircase profiles to the change in
the environment, distinguishing between the order N dynamics (Section 4.3.6.2),
where the first level diffusions xj ’s already evolve non-trivially, and the order N2

dynamics (Section 4.3.6.3), where the first level diffusions have reached a stationary
equilibrium with the environment;

• in case the previous step brings the magnetization profile to a non-equilibrium
configuration, we quantify the way it approaches again the fixed points region
(Propositions 4.39, 4.42);

• the reiteration of the above steps allows for a heuristic description of the order N2

dynamics;

• we show simulations of the finite particle system at any timescale, confirming the
above facts and highlighting the remaining open problems.

In particular, we observe the following phenomenon: the N2 dynamics undergoes a phase
transition, depending on the diffusion parameters σ and α2. Specifically, for big values
of σ2

2α2
, MN (t) approximately evolves as a two-dimensional diffusion inside the fixed

points region, where the additional dimension (with respect to the subcritical case) is a
consequence of the new degree of freedom given by the position of the discontinuity point
x0. When σ2

2α2
is small instead, MN (t) behaves as a two-dimensional diffusion with jumps



160 Beyond the mean field case: a hierarchical mean field model of interacting spins

(see Figure 4.10). The motivation for this is a loss of stability, not yet fully understood, of
certain areas of the fixed points region which happens already at an order N timescale:
indeed, our approach of infinitesimal time step variations does not allow for a proper
justification of this phenomenon.

4.3.6.1 Order 1 dynamics

When β1 = β2 →∞, we have that the dynamics at order 1 is given by{
ṁ = 2sign(2m)− 2m,
m(0) = 2p− 1,

(4.134)

which, when t→∞ reaches the equilibrium point

m = sign(2m) = sign(m).

Clearly, Equation (4.134) has the same behavior as the low temperature limit of the
Curie–Weiss model. It is easy to see that the solution m = 0 is unstable and the two
polarized solutions m = ±1 are stable, where the one getting picked asymptotically is
determined by the initial sign of m(0). We denote the three equilibria of (4.134) by
m0,m±. We now let the dynamics evolve until a time of order N , when the dynamics of
the diffusions is not trivial anymore. Let this time be our new initial time, and let the
system evolve again at times of order 1. The mean field equations are now

ṁ(t)(x) = 2sign(x+m(t)(x) +M(t))− 2m(t)(x),
m(0)(x) = m0(x),
M(t) =

∫
Rm(t)(x)µ0(dx),

(4.135)

with µ0 as in the first line of (4.132), for some ρ > 0 which depends on the previous
evolution of the diffusions and m0(x) is close (but not necessarily equal) to the function
constantly equal to one of the three equilibria m0,m±. The study of the asymptotic profile
of Equation (4.135) helps us in understanding what the dynamics at longer timescales will
be. Indeed, as we already stressed, the further timescales dynamics are expected to be
described by motions across the different equilibria profiles of order 1, triggered by the
dynamics of the diffusions.

For studying the asymptotic profiles of the magnetization m(t)(x) we make an ansatz
on their shape, motivated by the following preliminary remark

Remark 4.35. Any asymptotic equilibrium m∗(x) of Equation (4.135) is such that

m∗(x) :=
{

+1, ∀x > 2,
−1, ∀x < −2.

Indeed, for any t > 0, we have −2 ≤ m(t)(x) +M(t) ≤ 2, and thus for x > 2, ṁ(t)(x) > 0
and, symmetrically, for x < −2, ṁ(t)(x) < 0.

Even though a full proof of the validity of the below ansatz is not established, as we
expect it to hold we state it as a

Proposition 4.36 (Shape of the equilibria). Every equilibrium of Equation (4.135) is a
staircase function mx0(x) of the form

mx0(x) :=
{

+1, ∀x > x0,

−1, ∀x < x0,
(4.136)
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for some x0 ∈ R satisfying

− 2µ0(x0,+∞) ≤ x0 ≤ 2µ0(−∞, x0). (4.137)

Proof. We restrict ourselves to prove one direction of the ansatz, which is easy. Indeed, a
profile mx0(x) is an equilibrium for the dynamics (4.135) if

mx0(x) = sign(x+mx0(x) +M), (4.138)

with

M =
∫
R
mx0(x)µ0(dx) = −µ0(−∞, x0) + µ0(x0,∞) = 1− 2µ0(−∞, x0). (4.139)

For (4.138) to be satisfied it must be, when x < x0,

x− 1 +M < 0,

while, for x > x0
x+ 1 +M > 0.

Using (4.139), the above inequalities become

x− 1 + 1− 2µ0(−∞, x0) = x− 2µ0(−∞, x0) < 0,

for x < x0, and

x+ 1 + 1− 2µ0(−∞, x0) = x+ 2µ0(x0,+∞) > 0,

where in the second equality we have used 1− 2µ0(−∞, x0) = −1 + 2µ0(x0,+∞). Because
of the monotonicity of the above conditions with respect to x, they can be equivalently
stated as

x0 − 2µ0(−∞, x0) ≤ 0,

and
x0 + 2µ0(x0,+∞) ≥ 0.

Finally, observe that when x0 ≥ 0 the second inequality is trivially true and thus the right
inequality of (4.137) is the equilibrium condition for this case, while for x0 ≤ 0 the first is
the trivial one, so that we obtain the left inequality of (4.137) as a necessary condition for
the equilibrium.

Remark 4.37. Note that in (4.137), both at a timescale of order 1 and N , µ0 is a normal
distribution centered in 0 with variance ρ2 (possibly depending on the (macroscopic) time
and on the diffusion parameters σ and α2). Condition (4.137) restricts to

−2 ≤ x0 ≤ 2,

when ρ→ 0, and to
−1 ≤ x0 ≤ 1,

when ρ→∞. Moreover, the fixed points interval is monotonically decreasing with ρ, since
µ0(−∞, x0) is so.
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As an example of convergence to the equilibrium, let us fix a constant initial datum
m(0)(x) ≡ m (with 0 < m < 1

2) for (4.135) and reason heuristically by small variations of
time. Since at the initial timeM(0) = m, for every x > −2m one has that d

dtm(t)(x)
∣∣∣
t=0

>

0, and symmetrically, for every x < −2m, we have d
dtm(t)(x)

∣∣∣
t=0

< 0. One can expect
that these considerations should keep being true for any t > 0 as the quantities inside the
sign function increase/decrease monotonically with time (this is not precise because of
the term M(t) inside the sign). The same argument works for −1

2 < m < 0, and for the
symmetric case m = 0. The limit configuration, denoted by m∗(x), is thus given by

m∗(x) :=


−1, for x < −2m,
0, for x = −2m,
+1, for x > −2m.

(4.140)

By integrating (4.140) over the diffusion’s distribution we obtain the asymptotic value of
M ,

M =
∫ 2m

−2m
µ0(dx). (4.141)

Depending on the variance parameter of the distribution µ0, the resulting asymptotic value
of M can either be greater or smaller than the initial one (or equal to in the symmetric
case m = 0). The bigger the variance of µ0, the more M would tend to be depolarized in
this limit.

Proposition 4.36 asserts that there exists a whole region of fixed points for Equation
(4.135). Concerning the stability properties of these equilibria, we have that

Proposition 4.38 (Stability of the equilibria). The equilibrium mx0(x) is locally stable
for the dynamics (4.135) if inequality (4.137) holds.

Proof. The proof is non-rigorous. Fix e.g. x0 > 0. Choose as initial condition for (4.135)
m0(x) = m̃(x), the perturbation of mx0(x) in a point x̃ > x0, given by

m̃(x) :=
{
m̃(x) = mx0(x), ∀x 6= x̃

m̃(x̃) = mx0(x̃)− ε.

Then we have that, heuristically, d
dtm(t)(x̃)

∣∣∣
t=0

= ε > 0. Analogously, if x̃ < x0 we
consider m̃(x), defined as

m̃(x) :=
{
m̃(x) = mx0(x), ∀x 6= x̃

m̃(x̃) = mx0(x̃) + ε,

so that d
dtm(t)(x̃)

∣∣∣
t=0

= −ε < 0.

To sum up, as we saw above, when we start the dynamics with a constant initial datum
m0(x) ≡ m we soon get attracted (at times of order 1) to a staircase equilibrium mx0(x)
for some x0 ∈ R. The next proposition, for which we do not have a proof (but is motivated
by Proposition 4.38 and supported by numerics), describes what happens at a timescale of
order 1 when we start the dynamics (4.135) with a staircase initial datum m0(x) = mx0(x)
with x0 not belonging to the fixed points region given by (4.137).
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(a) Initial configuration at order 1 (b) Final configuration at order 1

Figure 4.5: Simulation of the finite particle system’s dynamics at a timescale of order 1,
for N = 1000, β1 = β2 =∞, α1 = α2 = 1, σ = 3. We start the dynamics with a staircase
function (the red line) outside the fixed points region’s band (purple and green lines). We
take xj(0) ∼ N

(
0, σ2

2α2

)
.

Proposition 4.39 (Stable attractors of the dynamics). Let m(t)(x) be the solution to
Equation (4.135) with initial datum m0(x) = mx0(x), with x0 > 0 (resp. x0 < 0) such that
x0 > 2µ0(−∞, x0) (resp. x0 < −2µ0(x0,+∞)). Then, we have

lim
t→∞

m(t)(x) = mx0(x),

with x0 = 2µ0(−∞, x0) (resp. x0 = −2µ0(x0,+∞)).

Proposition 4.39 turns out to be very useful in describing the dynamics at order N and
N2 by infinitesimal (of order 1) variations of time. Indeed, as we shall see, the presence
of a non-zero X(t) can move the magnetization’s profile to be outside the fixed points
region. The above proposition thus quantifies how the dynamics gets attracted again
towards the fixed points region, at least for times of order 1. Unfortunately we were
not able to prove rigorously this result, but it is motivated heuristically by saying that
the out-of-equilibrium dynamics approaches the nearest possible stable equilibrium. An
illustration of this phenomenon is given in Figure 4.5.

4.3.6.2 Order N dynamics

In the timescale of order N the only additional dynamics which takes place is due to the
fact that µt0(dx) now depends on time (it is a normal distribution centered around 0, with
variance depending on the macroscopic timescale t and proportional to σ2

2α2
), because of

the dynamics of the Ornstein-Uhlenbeck diffusions. In this scale we thus expect to see the
same staircase equilibrium previously reached, with some movement of the points close to
x0 (caused by the motion of the diffusions at order N) in between the region of fixed points
described in Proposition 4.36. At the finite particle system’s level indeed, the motion of
the diffusions at order N should produce a coexistence of phases around x0, with some
magnetizations being +1 and others −1. An illustration of this is shown in Figure 4.6,
the analogous of Figure 4.5 at order N . The bigger the diffusive coefficient σ (for a fixed
α2), the wider the range of the diffusions and the area with coexistence of phases are: in
Figure 4.6 the coexistence area fills all the fixed points region. The deterministic limit



164 Beyond the mean field case: a hierarchical mean field model of interacting spins

(a) Initial configuration at order N (b) Final configuration at order N

Figure 4.6: Simulation of the finite particle system’s dynamics at a timescale of order N , for
N = 1000, β1 = β2 =∞, α1 = α2 = 1, and σ = 5. As above, we take xj(0) ∼ N

(
0, σ2

2α2

)
.

dynamics becomes 
m(t)(x) = sign(x+m(t)(x) +M(t)),
m(0)(x) = mx0(x),
M(t) =

∫
Rm(t)(x)µt0(dx).

(4.142)

At this timescale the diffusion parameters play an important role. For σ2

2α2
big, simulations

suggest the presence of a very mild interaction among the magnetizations: see Figure 4.7,
where we plot the path of the second level empirical magnetization relative to the same
simulation of Figure 4.6. We see that, after starting from a rather polarized value, after a
short time MN (t) becomes very small and from that time on it just wanders around 0,
so that the single magnetization’s processes are subject to a very low interaction among
themselves, which could eventually tend to zero for N → +∞; in fact, the interaction
among the diffusions is also tending to 0 as they propagate chaos independently of the
magnetizations. In other words, the presence of a big σ > 0 (for a fixed α2 > 0) might
render the particles asymptotically independent with M ≡ 0. Assuming this is the case,
the limit process for each magnetization should be given by independent copies of a non-
Markovian spin with jump times distributed as the hitting times of the Ornstein-Uhlenbeck.
Moreover, from Figure 4.6 we see that the supposed jumps should occur precisely at the
borders of the fixed points region (the purple and green lines). This regime appears then
to be related to the mean field scenario of Section 4.2 for β →∞, highlighted in Remark
4.9, and to the single particle dynamics of the model of Section 3.2. We remark that the
simulations of Figures 4.6 and 4.7 were realized by keeping fixed XN (t) ≡ 0, thus ruling
out the (small) fluctuations of XN (t) around 0 at a timescale of order N . Clearly, this
should not change much the above picture.

When the parameter σ2

2α2
is small, we instead witness the loss of stability of certain

areas of the fixed points region. For a description of this we refer to the next section,
where we describe the full dynamics at order N2.

4.3.6.3 Order N2 dynamics

In order to describe the order N2 dynamics, we proceed as above by infinitesimal time
steps, by looking at the conditional dynamics with respect to the values of the macroscopic
limit diffusion X(t). We fix an initial condition with X(0) 6= 0 and evolve the dynamics
at times of order 1. The latter converges soon to some staircase equilibrium in the fixed
points region and stays put for all times of order 1. At times of order N we then see some
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(a) (t,MN (t))

Figure 4.7: The path of the empirical 2-level magnetization for the same simulation of
Figure 4.6.

diffusive behavior of the equilibrium around the fixed X, until the process X(t) changes
again. The reiteration of this procedure for the updated value of X is an infinitesimal
time step in the order N2 timescale. Starting with order 1 infinitesimal time steps, we are
interested in the conditional dynamics

ṁ(t)(x) = 2sign(x+m(t)(x) +M(t) +X)− 2m(t)(x),
m(0)(x) = mx0(x),
M(t) =

∫
Rm(t)(x)µ∞X (dx),

(4.143)

for some fixed X ∈ R and some staircase initial condition mx0 for m, which was reached
at the previous timescale long-time limit. In (4.143), µ∞X = N

(
X, σ

2

2α2

)
is the asymp-

totic distribution of the (sped up) Ornstein-Uhlenbeck processes for a fixed value of X.
Proposition 4.36 generalizes to

Proposition 4.40 (Shape of the equilibria). Every equilibrium of Equation (4.143) is a
staircase function mx0(x) of the form

mx0(x) :=
{

+1, ∀x > x0,

−1, ∀x < x0,
(4.144)

for some x0 ∈ R satisfying

− 2µ∞0 (x0 −X,+∞) ≤ x0 +X ≤ 2µ∞0 (−∞, x0 −X), (4.145)

Proof. The proof follows the same steps as in the proof of Proposition 4.36, observing that

µ∞X (−∞, x0) = µ∞0 (−∞, x0 −X),

with µ∞0 = N
(
0, σ2

2α2

)
.

Remark 4.41. Analogously to Remark 4.37, the fixed points region reduces to

−2 ≤ x0 +X ≤ 2,

when ρ2 := σ2

2α2
→ 0, and to

−1 ≤ x0 +X ≤ 1,

when ρ2 → ∞, and the fixed points interval is monotonically decreasing with ρ, since
µ0(−∞, x0 −X) is so.
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(a) Fixed points region for large σ2

2α2
(b) Fixed points region for small σ2

2α2

Figure 4.8: Fixed points region for α2 = 1, σ = 3 (left), and for α2 = 3, σ = 1 (right).

Proposition 4.39 generalizes to

Proposition 4.42 (Stable attractors of the dynamics). Let m(t)(x) be the solution to
Equation (4.143) with initial datum m0(x) = mx0(x), with x0 +X > 0 (resp. x0 +X < 0)
such that x0 +X > 2µ∞X (−∞, x0) (resp. x0 +X < −2µ∞X (x0,+∞)). Then, we have

lim
t→∞

m(t)(x) = mx0(x),

with x0 = 2µ∞X (−∞, x0) (resp. x0 = −2µ∞X (x0,+∞)).

Remark 4.43. It is useful to observe that the fixed points region’s borders of Proposition
4.42 can be expressed in terms of (X,M), M being the asymptotically stable value of M(t)
in Equation (4.143):

x0(X,M) = 1−X −M, (4.146)

for the right border, i.e. for x0 +X > 0, and

x0(X,M) = −1−X −M, (4.147)

for the left border, i.e. for x0 +X < 0. Equations (4.146) and (4.147) can be derived by
using that

M = 1− 2µ∞X (−∞, x0). (4.148)

In Figure 4.8 we plot the fixed points region as a parametric function of X and M ,
with the two borders given by

M = 1− 2µ∞X (−∞, 1−X −M), (4.149)

and
M = 1− 2µ∞X (−∞,−1−X −M). (4.150)

We can distinguish two regimes depending on the diffusion parameters: for large values of
σ2

2α2
, Equations (4.149) and (4.150) define the graph of a function M = ψ(X), while this is

not the case when σ2

2α2
is small. Unfortunately, we were not able to determine the precise

value of σ and α2 where this transition takes place, due to the implicit character of the
equations in play.

Simulations suggest that the dynamics for the MN (t) is substantially different in the
two cases: for big values of σ2

2α2
, we observe a diffusive motion onto the fixed points region,
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(a) XN (t) ≡ X0 = 0.4, M0 = 0.802 (b) XN (t) ≡ X0 = −0.4, M0 = −0.802

Figure 4.9: Two simulations of the order N dynamics, with symmetric initial conditions
in the two unstable regions, with α2 = 3, σ = 1, β1 = β2 =∞. The blue (red) dot is the
initial (final) point of each trajectory.

while for small σ2

2α2
the dynamics resembles a diffusion with jumps. In both cases, as we

noted for the simpler case XN (t) ≡ 0, the single 1-level magnetizations mN
i (t)’s should be

evolving as non-Markovian spins, this time interacting since XN (t) 6= 0.
At the second hierarchical level, the situation seems comparable to its mean field

counterpart shown in Figure 4.3, with the diffusions’ parameters playing the role of (the
inverse of) β. As in the mean field case, the jumps seem to be occuring because of a loss
of stability of the fixed points in certain areas of the phase-space. This loss of stability
seems to originate at an order N timescale (this is also in parallel with the mean field
case, where it was originating at an order 1 timescale). Indeed, for σ2

2α2
small, starting the

dynamics (4.143) from a staircase equilibrium which belongs to a certain area of the fixed
points region, and letting it evolve for times of order N when the xi’s start their motion,
we see a fast trajectory which very soon gets attracted to an area close to the opposite
border from which it started. An example of this is shown in Figure 4.9, where we have
kept fixed X(t) ≡ X(0) to simulate the dynamics at a timescale of order N : we indeed
see two fast transient trajectories starting from two initial points (the blue dots) which
seem to belong to the unstable regions of fixed points. The same simulation at an order
1 timescale would have instead shown a trivial dynamics constantly equal to the initial
datum, for any choice of the latter inside the two-dimensional manifold of fixed points.
Finally, in Figure 4.10 we show a complete simulation of the trajectories (XN (t),MN (t))
at a timescale of order N2, showing the different behavior depending on the value of σ2

2α2
.

In the right plot, the white areas at the borders of the fixed points region which are not
hit by any trajectory should approximate the unstable regions of fixed points.
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(a) σ2

2α2
large (b) σ2

2α2
small

Figure 4.10: Two simulated trajectories of (XN (t),MN (t)) at the order N2 timescale for
N = 500 and T = 5× 108 , with β1 = β2 =∞. On the left α2 = 1, σ = 5, while on the
right α2 = 3, σ = 1.
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APPENDIX A

Entropy solutions to scalar conservation laws

As we used some of their properties in Chapter 2, here we recall some general facts about
entropy solutions to scalar conservation laws. A standard reference for what follows is [34].
Consider the Cauchy problem, for x ∈ R, t ∈ [0, T ]{

∂tu+ ∂x[f(x, u)] = 0,
u(0, x) = u0(x).

(A.1)

The function f , called the flow, is not standard as it is space-dependent. We always assume
that f ∈ C1(R2).

Definition A.1. A function u ∈ L1
loc([0, T ]× R) ∩ C([0, T [, L1

loc(R)) is called an entropy
solution to (A.1) if

lim
t→0+

u(t) = u0 (A.2)

in L1
loc(R) and one of the following two equivalent conditions holds:

1. for any entropy-entropy flux pair (η, q), that is, for any η ∈ C2(R) convex and
q = q(x, u) such that ∂uq(x, u) = ∂uf(x, u)η′(u),

∂tη(u) + ∂x[q(x, u)] + η′(u)fx(x, u)− qx(x, u) ≤ 0, (A.3)

in distribution, i.e for any ϕ ∈ C∞C (]0, T [×R), ϕ ≥ 0,∫ T

0

∫
R

{
η(u)ϕt + q(x, u)ϕx + [qx(x, u)− η′(u)fx(x, u)]ϕ

}
dxdt ≥ 0; (A.4)

2. for any c ∈ R

∂t|u− c|+ ∂x[sign(u− c)(f(x, u)− f(x, c))] + sign(u− c)fx(x, c) ≤ 0, (A.5)

in distribution, that is, for any ϕ ∈ C∞C (]0, T [×R), ϕ ≥ 0,∫ T

0

∫
R
{|u− c|ϕt + sign(u− c)(f(x, u)−f(x, c))ϕx− sign(u− c)fx(x, c)ϕ}dxdt ≥ 0.

(A.6)
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Lemma A.2. The two conditions in the above definition are equivalent and imply that u
is a weak solution to (A.1) in the sense of distributions.

The entropy condition can be specialized when u is a function piecewise smooth, as we
already stated in Proposition 2.2:

Proposition A.3. Let u be a function piecewice C1 whose discontinuity points belong to
the smooth curve x = γ(t). Then u is an entropy solution to (A.1) if and only if

1. u solves (A.1) in the classical sense where it is smooth;

2. the initial condition u(0, x) = u0(x) holds in the classical sense;

3. denoting
ur(t) := lim

x→γ(t)+
u(t, x)

and
ul(t) := lim

x→γ(t)−
u(t, x),

the right and left limits respectively, the Rankine-Hugoniot condition holds: for all t

γ̇(t) = f(γ(t), ur(t))− f(γ(t), ul(t))
ur(t)− ul(t)

; (RH)

4. the Lax stability condition holds:

f(γ(t), c)− f(γ(t), ur(t))
c− ur(t)

< γ̇(t) < f(γ(t), c)− f(γ(t), ul(t))
c− ul(t)

(L)

for any t and c strictly between ul and ur.

The Rankine-Hugoniot condition is equivalent to state that u is a weak solution to the
scalar conservation law. The Lax condition can be reformulated saying that the graph of
f(γ(t), ·) stays above the chord joining ur and ul, if ur < ul, while the graph stays below
the chord when ul < ur.

The main result about the theory of conservation laws is the following

Theorem A.4. If u0 ∈ L1(R) ∩ L∞(R) then there exists a unique entropy solution
u ∈ C([0, T ];L1(R) ∩ L∞(R)) to (A.1).



APPENDIX B

Propagation of chaos for the model of Section 3.2

Here we prove rigorously a propagation of chaos property for the N -particle interacting
spin-valued renewal dynamics of Chapter 3, Section 3.2, to its mean-field limit, for any
γ ∈ N. Actually, we establish the proofs for γ = 1, where the rates enjoy globally Lipschitz
properties, and then we generalize them to any γ ∈ N in Remark B.3. The generalization
to non-Lipschitz rates is possible because of the a-priori bound on the variables yi’s which,
by definition, are such that 0 ≤ yi ≤ T , where T < ∞ is the final time horizon of the
dynamics. For the convenience of the reader, we write again the dynamics{

(σi(t), yi(t)) 7→ (−σi(t), 0), with rate yγi (t)e−(γ+1)βσi(t)mN (t),

dyi(t) = dt, otherwise,
(B.1)

and the mean-field version{
(σ(t), y(t)) 7→ (−σ(t), 0), with rate yγ(t)e−(γ+1)βσ(t)m(t),

dy(t) = dt, otherwise,
(B.2)

with m(t) = E[σ(t)]. The approach is analogous to the one used recurrently in the
Dissertation: represent both the microscopic and the macroscopic model as solutions of
certain stochastic differential equations driven by Poisson random measures, in order to
apply the results in [66]. As anticipated, in the proof we restrict to a finite interval of time
[0, T ].

To begin with, let us fix a filtered probability space
(
(Ω,F ,P), (Ft)t∈[0,T ]

)
satisfying

the usual hypotheses, rich enough to carry an inependent and identically distributed family
(Ni)i∈N of stationary Poisson random measures Ni on [0, T ]× Ξ, with intensity measure ν
on Ξ := [0,+∞) equal to the restriction of the Lebesgue measure onto [0,+∞). For any
N , consider the system of Itô-Skorohod equations{

σi(t) = σi(0) +
∫ t

0
∫

Ξ f1(σi(s−), ξ,mN (s−), yi(s−))Ni(ds, dξ),
yi(t) = yi(0) + t+

∫ t
0
∫
Ξ f2(σi(s−), ξ,mN (s−), yi(s−))Ni(ds, dξ),

(B.3)

and the corresponding limit non-linear reference particle’s dynamics{
σ(t) = σ(0) +

∫ t
0
∫

Ξ f1(σ(s−), ξ,m(s−), y(s−))N (ds, dξ),
y(t) = y(0) + t+

∫ t
0
∫

Ξ f2(σ(s−), ξ,m(s−), y(s−))N (ds, dξ).
(B.4)

173



174 Propagation of chaos for the model of Section 3.2

The functions f1, f2 : {−1, 1}×R+× [−1, 1]×R+ → R, modeling the jumps of the process,
are given by

f1(σ, ξ,m, y) := −2σ1]0,λ[(ξ), (B.5)

and
f2(σ, ξ,m, y) := −y1]0,λ[(ξ), (B.6)

with λ := λ(σ,m, y) being the rate function

λ(σ,m, y) = yγe−(γ+1)βσm.

Proposition B.1. For γ = 1, Equations (B.3) and (B.4) possess a unique strong solution
for t ∈ [0, T ].

Proof. With the choices (B.5) and (B.6), the well-posedeness of Equations (B.3) and (B.4)
follows by Theorems 1.2 and 2.1 in [66]. Indeed, even though the function f2 is not globally
Lipschitz continuous in y, the L1 Lipschitz assumption of the theorem still holds, by noting
that ∫

Ξ

∣∣∣f2(σ, ξ,m, y)− f2(σ̃, ξ, m̃, ỹ)
∣∣∣dξ

=
∫

Ξ

∣∣∣y1]0,λ(σ,m,y)[(ξ)− ỹ1]0,λ(σ̃,m̃,ỹ)[(ξ)
∣∣∣dξ

≤ |y|
∣∣λ(σ,m, y)− λ(σ̃, m̃, ỹ)

∣∣+ ∣∣λ(σ̃, m̃, ỹ)
∣∣∣∣y − ỹ∣∣

≤ |y|
[∣∣λ(σ,m, y)− λ(σ̃, m̃, ỹ)

∣∣+ ∣∣λ(σ̃, m̃, ỹ)
∣∣|y − ỹ|]

≤ CT
[
|m− m̃|+ |y − ỹ|+ |σ − σ̃|

]
,

where in the last step we have used that, by construction, the processes yi(t) ≤ T for every
t ∈ [0, T ], so that the rates are a priori bounded and the Lipschitz properties of ye−2βσm

for (y, σ,m) ∈ R+ × {−1, 1} × [−1, 1].

Now, define the empirical measures

µN := 1
N

N∑
i=1

δ(σi,yi),

and their evaluation along the paths of (B.3),

µNt := 1
N

N∑
i=1

δ(σi(t),yi(t)). (B.7)

The measures (µNt )t∈[0,T ] can be viewed as random variables with values in P(D), the
space of probability measures on D, where D := D

(
[0, T ]; {−1, 1} × R+) is the space of

{−1, 1} × R+-valued càdlàg functions equipped with the Skorohod topology.

Theorem B.2. Fix γ = 1 and a final time T > 0 in (B.3) and (B.4). Assume that
the initial conditions (σi(0), yi(0)) = (σ(0), y(0)) for dynamics (B.3) and (B.4) are µ0-
chaotic for some probability distribution µ0 on {−1, 1} × R+. Then, the sequence of
empirical measures (µNt )t∈[0,T ] converges in distribution (in the sense of weak convergence
of probability measures) to the deterministic law (µt)t∈[0,T ] on the path space of the unique
solution to Equation (B.4) with initial distribution µ0.
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Proof. Consider the following system of i.i.d. processes (σ̃i(t), ỹi(t))i=1,...,N , coupled with
(σi(t), yi(t))i=1,...,N ,{

σ̃i(t) = σ̃i(0) +
∫ t

0
∫

Ξ f1(σ̃i(s−), ξ,m(s−), ỹi(s−))Ni(ds, dξ),
ỹi(t) = ỹi(0) + t+

∫ t
0
∫

Ξ f2(σ̃i(s−), ξ,m(s−), ỹi(s−))Ni(ds, dξ),
(B.8)

with m(t) = E[σ̃i(t)]. Let (µ̃Nt )t∈[0,T ] be the empirical measure associated to (B.8). Clearly,
(µ̃Nt )t∈[0,T ] → (µt)t∈[0,T ] in the weak convergence sense (by a functional LLN, see [66] for
e.g.). We are thus left to show

d1
(
Law

(
(µNt )t∈[0,T ]

)
,Law

(
(µ̃Nt )t∈[0,T ]

))
→ 0,

for N → +∞, with d1 being the 1-Wasserstein distance (which metrizes the weak
convergence of probability measures) on P(P(D)). Since (recall (19))

d1
(
Law

(
(µNt )t∈[0,T ]

)
,Law

(
(µ̃Nt )t∈[0,T ]

))
≤ 1
N

N∑
i=1

E
[
dSko

(
(σi, yi), (σ̃i, ỹi)

)]
,

with dSko the Skorohod metric on D, it is enough to show that

1
N

N∑
i=1

E
[

sup
t∈[0,T ]

(
|σi(t)− σ̃i(t)|+ |yi(t)− ỹi(t)|

)]
→ 0, (B.9)

for N → +∞. For the proof of (B.9), we estimate, using the estimates of Proposition B.1
for f2,

E
[

sup
s∈[0,t]

|yi(s)− ỹi(s)|
]
≤ E

[
|yi(0)− ỹi(0)|

]

+ C

∫ t

0
E
[
|mN (s)−m(s)|+ |yi(s)− ỹi(s)|+ |σi(s)− σ̃i(s)|

]
ds

≤ C
∫ t

0
E
[

sup
r∈[0,s]

|mN (r)−m(r)|+ sup
r∈[0,s]

|yi(r)− ỹi(r)|+ sup
r∈[0,s]

|σi(r)− σ̃i(r)|
]
ds

+ C(N),

with C(N)→ 0 for N → +∞ because of the chaoticity assumption on the initial datum.
Similarly for the σi’s, using the the Lipschitz continuity of f1, we obtain

E
[

sup
s∈[0,t]

|σi(s)− σ̃i(s)|
]
≤ E

[
|σi(0)− σ̃i(0)|

]

+ C

∫ t

0
E
[
|mN (s)−m(s)|+ |yi(s)− ỹi(s)|+ |σi(s)− σ̃i(s)|

]
ds

≤ C
∫ t

0
E
[

sup
r∈[0,s]

|mN (r)−m(r)|+ sup
r∈[0,s]

|yi(r)− ỹi(r)|+ sup
r∈[0,s]

|σi(r)− σ̃i(r)|
]
ds.

+ C(N).

Denoting m̃N (t) := 1
N

∑N
i=1 σ̃i(t), we find

E
[

sup
s∈[0,t]

|mN (s)−m(s)|
]
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≤ E
[

sup
s∈[0,t]

|mN (s)− m̃N (s)|
]

+ E
[

sup
s∈[0,t]

|m̃N (s)−m(s)|
]

= 1
N

N∑
j=1

E
[

sup
s∈[0,t]

|σj(s)− σ̃j(s)|
]

+ E
[

sup
s∈[0,t]

|m̃N (s)−m(s)|
]

= E
[

sup
s∈[0,t]

|σi(s)− σ̃i(s)|
]

+ C(N),

with C(N)→ 0 for N → +∞ because of the chaoticity of the i.i.d. processes

(σ̃i(t), ỹi(t))i=1,...,N ,

and where in the equalities we have used the exchangeability properties of the processes
(σi, σ̃i)i=1,...,N . Recollecting the estimates, we have shown, for any t ∈ [0, T ],

1
N

N∑
i=1

{
E
[

sup
s∈[0,t]

|σi(s)− σ̃i(s)|
]

+ E
[

sup
s∈[0,t]

|yi(s)− ỹi(s)|
]}

≤ C(N) +
∫ t

0

1
N

N∑
i=1

E
[

sup
r∈[0,s]

|σi(r)− σ̃i(r)|+ sup
r∈[0,s]

|yi(r)− ỹi(r)|
]
ds,

which by the Gronwall’s lemma applied to

ϕ(t) := 1
N

N∑
i=1

{
E
[

sup
s∈[0,t]

|σi(s)− σ̃i(s)|
]

+ E
[

sup
s∈[0,t]

|yi(s)− ỹi(s)|
]}

,

implies (B.9), because ϕ(T ) is an upper bound for the left hand side of (B.9).

Remark B.3. Proposition B.1 and Theorem B.2 can be generalized to any γ ∈ N. Indeed,
the same Lipschitz L1 estimates on the rates of Proposition B.1 (used also in Theorem
B.2) hold by estimating∣∣λ(σ,m, y)− λ(σ̃, m̃, ỹ)

∣∣ =
∣∣yγe−(γ+1)βmσ − ỹγe−(γ+1)βm̃σ̃∣∣

≤
∣∣yγe−(γ+1)βmσ − ỹγe−(γ+1)βmσ∣∣+ ∣∣ỹγe−(γ+1)βmσ − ỹγe−(γ+1)βm̃σ̃∣∣

≤
∣∣e−(γ+1)βmσ∣∣∣∣yγ − ỹγ∣∣+ ỹγ

∣∣e−(γ+1)βmσ − e−(γ+1)βm̃σ̃∣∣
≤ C

∣∣y − ỹ∣∣∣∣p(y, ỹ)
∣∣+ ỹγ

[
C|m− m̃|+ C|σ − σ̃|

]
≤ C

[
|y − ỹ|+ |m− m̃|+ |σ − σ̃|

]
,

with p(y, ỹ) a polynomial of degree γ − 1. In the last step we have used the a priori
bounds on y ≤ T to get |p(y, ỹ)| ≤ C(T ) and the Lipschitz properties of e−(γ+1)βmσ for
(σ,m) ∈ {−1, 1} × [−1, 1].
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