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SUMMARY

Breast cancer is a heterogeneous disease where markers for therapy 
response remain poorly defined. Since the effectiveness of treatment differs 
between individual patients, during the last years much effort has being 
invested in the identification of new markers, to estimate patients's outcome 
(prognostic markers) and to indicate which treatment is most effective for an 
individual patient (predictive markers).  
The implementation of predictive factors in clinical setting is a big challenge 
of the cancer research and it will provide the opportunity to guide treatment 
decisions. Only patients that are likely to benefit from a specific treatment 
will receive this specific treatment. An individualized therapy will avoid the 
administration of ineffective chemotherapy that increases mortality and 
decreases quality of life in cancer patients. 
For many years research has focused on the identification of single markers 
predicting tumour response to chemotherapy. However it is unlikely that the 
chemotherapy resistance/responsiveness in breast cancer is the result of one 
or limited number of genes, because of the complexity of pathways involved 
in tumour response to chemotherapy and the heterogeneity of the individual 
tumours. The microarray technology made possible to study gene expression 
profiling of breast cancer on a global scale. It was successfully applied on the 
identification of breast cancer subgroups and in the determination of profiles 
predicting patient's prognosis. More recently microarray analysis of gene 
expression has been used as a possible approach for predicting response to 
chemotherapy. With the introduction of preoperative chemotherapy 
(neoadjuvant chemotherapy) it has become possible to directly evaluate the 
sensitivity of breast cancer to chemotherapy by the clinical/pathological 
response of the patient to the treatment. The main goal of this thesis was to 
identify predictive genes of response to a specific neoadjuvant chemotherapy 
regimen based on paclitaxel and anthracyclines (doxorubicin and epirubicin) 
drugs in breast cancer patients. 
From 41 pre-treatment breast tumours biopsies good quality RNA was 
obtained and gene expression profiling was performed. Gene expression 
patterns of 37 patients were analyzed using Operon v2.0 70mer oligos 
collection at CRIBI Biotech centre and 4 patients were profiled with Operon 
v3.0 70mer oligos collection at Netherlands Cancer Institute. Clinical 
responses of 34 (out of 41) patients were recorded after administration of 
the neoadjuvant chemotherapy. Complete Responses (CR) to the treatment 
were observed in 3 patients, Partial Responses in 18 (PR) patients, No 
Change of the tumour mass (NC) in 11 patients and Progressive Disease 
(PD) in 2 patients.  
First of all, a correlation analysis between the ImmunoHistoChemical data of 
six prognostic markers (ER, PR, Erb-B2, Bcl-2, Ki-67, p53) and the gene 
expression data was carried out. The results showed a significant correlation 
for ER, PR and Bcl-2 markers. Moreover Bcl-2 status measured by 
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ImmunoHistoChemistry (IHC) was significantly associated with the clinical 
response to neoadjuvant chemotherapy. 
The molecular subtypes of 37 breast tumours analyzed with Operon v2.0 
were identified using the "intrinsic gene signature" of Perou and colleagues. 
Most part of the patients were luminal-like subtype (28 of 37), 7 patients 
showed an erb-B2+ molecular subtype and 2 patients belonged to the basal-
like group. Since it was reported that breast cancer molecular subtypes 
respond differently to neoadjuvant chemotherapy, I also checked how the 
clinical response to the treatment were associated to the molecular subtypes. 
From the analysis emerged that the luminal-like and erb-B2+ molecular 
subtypes were enriched of PR patients. 
A hierarchical cluster analysis on the pre-treatment tumours (analyzed with 
Operon v2.0 and with clinical response available) was performed in order to 
evaluate how the patients would have been separated on the basis of their 
gene expression profile, using an unsupervised approach. As expected, no 
clear separation between Responders (PR + CR) and Non Responders (NC + 
PD) was found. The results did not change if we included in the responder 
group only the PR patients. We hypothesized that the predictive genes of 
resistance/sensitivity to the chemotherapy are a subtle set. The high number 
of differentially expressed genes would have masked the "real" predictive 
gene set, leading to a clustering of the patients based on biological 
parameters different from the clinical response. In addition the small size of 
the dataset was a limiting factor in the analysis. 
In light of this result we opted for a supervised approach that consisted in 
dividing the tumours into Responders and Non Responders and searching for 
the genes (the drug-resistance predictive genes) that could correctly 
distinguish the two classes of response. I considered two datasets of 
patients, the dataset I including PR patients against not responders patients 
(NC + PD) and the dataset II with responders patients (PR and CR) against 
not responders patients (NC + PD). 
The first approach, based on the software PAM (Prediction Analysis of 
Microarray), did not give a good prediction performance on both dataset of 
patients, misclassifying approximately 36% of patients. Therefore, a more 
effective analysis in terms of classification accuracy was requested. A gene 
selection process based on the Support Vector Machines (SVMs) was 
considered a good choice in light of the characteristics of the study: low 
number of patients (examples) and high number of genes (or features). 
SVMs are a supervised learning algorithm that work well at high 
dimensionality, overcoming the risk of overfitting due to a number of 
features much larger than the numbers of examples. A specific recursively 
feature selection procedure based on SVMs (R-SVM) was used to select the 
set of genes with the lowest error of classification on the dataset of patients. 
Because of the small sample size, it was not possible to have a training set 
and a test set completely separated, so a Leave-One-Out Cross Validation 
(LOO-CV) procedure was used to assess the performance of the feature 
selection process. The analysis identified a set of 54 genes able to classify 
the 28 patients of the dataset I with an accuracy of 85% (4 patients 
misclassified over 28) and a set of 14 genes able to classify the 30 patients 
of the dataset II with an accuracy of 76% (7 patients misclassified over 30). 
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The lower accuracy obtained on the dataset II was attributed to the 
introduction of the cCR patients in the group of Responders. The cCR 
patients were probably too much dissimilar in terms of clinical response in 
respect to the PR patients, thus reducing the homogeneity of the group of 
Responders. For this reason I focused the following analysis only on the 
dataset I. 
The accuracy of 85% obtained for the dataset I was an encouraging result 
although the small size of the dataset.  
The biological function and cellular localization of the 54 genes was 
examined by using GoMiner, a web tool to find associations of Gene 
Ontology categories within a specific group of genes. As emerged from the 
analysis, there were several functional categories related to the 
tumourigenesis processes ("cell adhesion", "insulin receptor signaling 
pathway", "cell proliferation", "regulation of cell proliferation"). Some 
categories were more closely related to cellular processes and compartments 
target of the chemotherapy agents used in this study ("cell cycle", "cell cycle 
arrest", "nucleus") and to responsiveness to the treatment ("response to 
hypoxia"). 
A literature research focused on each gene of the predictive signature 
showed that some of these genes (MYC, NUF2, SPC25; KFL5, CDKN1b, 
ITGA6, POSTN) are 'biologically plausible', since they have some connections 
with the drug resitance phenomenon investigated in this study. Others of the 
54 genes are related to breast cancer progression and metastasis (CXCL9, 
CEBPD, IRS2, TCF8, ADAMTS5, PPARGC1A), but their direct involvement in 
drug resistance to paclitaxel/anthracycline neoadjuvant chemotherapy did 
not emerged. 
At this point of my analysis, I tried to find out how to use the 54 genes 
signature as a predictive tool of responsiveness to paclitaxel/anthracyclines 
chemotherapy treatment. To achieve this objective, a SVM model was 
trained on the basis of the 54 genes to classify a new patients as putative 
partial responder or not responder. However, the SVM output is a value not 
so easily usable in statistics prediction problems. Therefore using a sigmoid 
function, we translated the SVM outputs into probability values that offered a 
more direct evaluation of the response class of the patient. In practice we 
transformed the SVM scores in a value, ranging from 0 to 1, that expresses 
the probability to belong to the positive class of response (PR patients). 
Using the trained SVM model on a new, not-yet classified patient, it is 
possible to map his SVM score on the sigmoid function and to obtain a 
corresponding probability value to belong to the positive class of response.  
The results reported in this thesis look promising but have to be considered 
as preliminary, since they were obtained from a study investigating only a 
small number of patients and need to be validated in a completely 
independent test set of patients. Thus a validated gene expression signature 
may improve our understanding of neoadjuvant chemotherapy response 
mechanisms and in the future may lead to more individual, patient-tailored 
therapy decisions. 
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RIASSUNTO 

Il tumore al seno è una patologia clinicamente eterogenea e marker biologici 
in grado di predirne in modo affidabile evoluzione e soprattutto sensibilità ai 
trattamenti farmacologici rimangono poco definiti. Negli ultimi anni la ricerca 
ha cercato così di identificare nuovi marker predittivi di risposta, per 
consentire trattamenti più efficace per ogni singola paziente. Riuscire ad 
implementare i nuovi fattori predittivi nella pratica clinica rappresenta un 
importante obiettivo nella ricerca sul tumore al seno. Si potranno così evitare 
a priori trattamenti inefficaci, che inciderebbero solo negativamente sulla 
qualità di vita delle pazienti. 
Per molti anni si è parlato di marker singoli di risposta, ma, alla luce della 
complessità dei pathway cellulari coinvolti nella risposta del tumore alla 
chemioterapia ed all'eterogeneità tra i singoli tumori, è improbabile che la 
risposta o la resistenza ad un trattamento sia determinata dall'azione di un 
numero limitato di geni. 
La tecnologia dei microarray ha reso così possibile un'analisi su larga scala 
dei profili di espressione genica dei tumori al seno ed è stata uno strumento 
efficace per identificarne sottogruppi molecolari e profili di espressione con 
valore prognostico. Più recentemente i microarray sono stati anche applicati 
alla ricerca di geni predittivi di risposta alla chemioterapia. 
Con l'introduzione della chemioterapia neoadiuvante, ossia somministrata 
prima dell'intervento chirurgico, è divenuto possibile valutare direttamente la 
sensibilità del tumore al trattamento chemioterapico attraverso la risposta 
clinica e patologica della paziente. 
L'obiettivo principale di questa tesi è stato infatti quello di identificare un set 
di geni predittivo della risposta ad un particolare trattamento chemioterapico 
neoadiuvante basato su taxani (paclitaxel) e antracicline (adriamicina o 
epirubicina). 
Sono stati analizzati mediante microarray di oligonucleotidi 41 biopsie di 
tumore al seno prima della somministrazione della chemioterapia 
neoadiuvante. Delle 41 biopsie raccolte, 37 sono state analizzate con la 
piattaforma di oligonucleotidi Operon v2.0 presso il CRIBI e 4 sono state 
analizzate presso il Netherlands Cancer Institute con la piattaforma Operon 
v3.0. Al termine del trattamento è stato rese noto per 37 pazienti (su 41) 
l'esito della chemioterapia: 3 pazienti hanno mostrato una risposta clinica 
completa (cCR), 18 una risposta parziale al trattamento (PR), 13 pazienti non 
hanno risposto al trattamento, in 11 casi non si è avuto nessun cambiamento 
nella grandezza della massa tumorale (NC) ed in 2 casi un aumento di 
quest'ultima (PD).  
La prima analisi condotta è stata quella volta a verificare la correlazione tra i 
dati di immunoistochimica (IHC) ottenuti per i 6 marker prognostici ER, PR, 
Erb-B2, Bcl-2, Ki-67 e p53 ed i livelli di espressione dei rispettivi geni misurati 
con i microarray. Una significativa correlazione è stata trovata per ER, PR e 
Bcl-2. Il livello di Bcl-2 ottenuto dall'analisi IHC si è rivelato inoltre 
significativamente associato con la risposta alla chemioterapia neoadiuvante. 
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Successivamente sono stati identificati i sottotipi molecolari dei 37 tumori 
analizzati con la piattaforma Operon v2.0 utilizzando l'intrinsic gene set 
individuato da Perou e colleghi. La maggior parte dei pazienti apparteneva al 
sottotipo luminale (28 su 37), 7 a quello erb-B2+ e 2 a quello basale. Poiché 
è stato riportato in letteratura che i sottotipi molecolari di tumore al seno 
rispondono in modo differente alla chemioterapia neoadiuvante, ho valutato 
come fossero distribuiti quelli da me identificati rispetto alla risposta clinica al 
trattamento, se disponibile. Dall'analisi è emerso che i sottogruppi luminale e 
erb-B2+ erano arricchiti di pazienti PR. 
E' stata quindi eseguita una cluster analysis gerarchica dei 30 profili di 
espressione genica (ottenuti con Operon v2.0) delle pazienti di cui era 
disponibile la risposta alla chemioterapia, per valutare come si sarebbero 
separate sulla base dell'intero profilo di espressione con un approccio 
unsupervised (senza cioè dare a priori l'informazione sul tipo di risposta 
clinica). Le pazienti non si sono separati in sensibili (cCR + PR) e resistenti 
(NC + PD) al trattamento. Questo risultato ha confermato l'ipotesi che il set 
di geni predittivi fosse ristretto e che probabilmente venisse mascherato dal 
grande numero di geni differenzialmente espressi dal tumore. Inoltre il 
numero limitato di paziente è stato un fattore limitante all'analisi. 
Sono passata quindi ad un approccio di tipo supervised cercando quei geni in 
grado di distinguere tumori sensibili e tumori resistenti al trattamento, cioè i 
geni predittivi della farmacoresistenza. Ho considerato due dataset di 
pazienti, il dataset I che includeva pazienti PR vs pazienti resistenti (NC e PD) 
e il dataset II che considerava anche i pazienti cCR nel gruppo di tumori 
sensibili al trattamento. 
Il programma PAM (Prediction Analysis of Microarray) ha individuato set di 
geni predittivi con una bassa performance di classificazione dei pazienti in 
entrambi i dataset (il 36% dei pazienti veniva classificato in modo sbagliato). 
Si è reso quindi necessario un nuovo metodo di analisi, più efficace in termini 
di accuracy di classificazione. Una selezione dei geni significativi basata sulle 
Support Vector Machines (SVM) è stata considerata una scelta appropriata 
alla luce delle caratteristiche dello studio: basso numero di pazienti (o 
esempi) e alto numero di geni (o features). Le SVM infatti sono degli 
algoritmi di apprendimento supervisionati che lavorano bene in questi casi 
abbassando il rischio di overfitting, dovuto al numero troppo elevato di 
features rispetto agli esempi da classificare. In particolare è stato utilizzato 
l'algoritmo di feature selection R-SVM (Recursive Support Vector Machine)
per selezionare quel set di geni con il più basso errore di classificazione sul 
dataset di pazienti (I e II). Per validare la performance di classificazione dei 
set di geni selezionati è stata usata una Leave One Out Cross Validation non 
essendo possibile, a causa del numero ridotto di pazienti, suddividere i 
dataset in un training and in un test set indipendenti. L'analisi R-SVM ha 
identificato un set di 54 geni in grado di classificare i 28 pazienti del dataset 
con un'accuratezza pari all'85% (4 pazienti sbagliati su 28) e un set di 14 
geni in grado di classificare le 30 pazienti del dataset II con un'accuratezza 
del 76% (7 pazienti sbagliati su 30). L'abbassamento del grado di accuracy 
nel dataset II è stato attribuito al fatto di aver incluso nel gruppo dei pazienti 
sensibili al trattamento anche i pazienti cCR; in realtà essi avrebbero 
costituito una classe troppo diversa dai pazienti PR tale da non poter essere 
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inclusa nello stesso gruppo di questi ultimi. Alla luce di quanto detto ho 
considerato solo il dataset I nelle analisi successive. 
L'analisi di Gene Ontology sui 54 geni identificati nel dataset I ha rivelato che 
alcuni di questi geni sono annotati a livello di processi biologici caratteristici 
della tumorigenesi in generale ("adesione cellulare", "vie di segnalazione 
dell'insulina", "proliferazione cellulare", "regolazione della proliferazione 
cellulare"). Alcune categorie funzionali sono invece più legate a processi e 
compartimenti cellulari target dei farmaci utilizzati in questo studio ("ciclo 
cellulare", "arresto del ciclo cellulare", "nucleo") ed alla risposta al 
trattamento ("risposta all'ipossia"). Da una ricerca in letteratura mirata a 
ciascuno dei 54 geni della lista è emerso che alcuni di essi (MYC, NUF2, 
SPC25; KFL5, CDKN1b, ITGA6, POSTN) sono implicati nel fenomeno di 
resistenza a paclitaxel ed antracicline. Altri (CXCL9, CEBPD, IRS2, TCF8, 
ADAMTS5, PPARGC1A) dimostrano di avere un ruolo in processi collegati a 
progressione tumorale ed a metastasi ma non hanno un coinvolgimento 
diretto con la farmacoresistenza oggetto dello studio. 
A questo punto del lavoro è stato naturale chiedersi come utilizzare il modello 
SVM allenato usando i 54 geni per predire la risposta alla chemioterapia (con 
paclitaxel ed antracicline) di un nuovo paziente, non ancora classificato come 
sensibile o resistente al trattamento. Dal momento che l'output di una SVM è 
una misura di distanza dall'iperpiano che separa i pazienti positivi (sensibili al 
trattamento) da quelli negativi (resistenti al trattamento) a cui non è 
associato un significato statistico, si è pensato di trasformare questo valore in 
una misura di probabilità di appartenenza alla classe positiva di risposta. Per 
fare questo è stato utilizzato un modello parametrico definito da una 
sigmoide che ha consentito di trasformare gli output SVM dei 28 pazienti in 
corrispondenti valori di probabilità. 
I risultati ottenuti in questa tesi si sono rivelati interessanti anche se vanno 
considerati preliminari alla luce del numero limitato di pazienti. Si renderà 
necessaria pertanto una validazione su un gruppo indipendente di pazienti e, 
in caso di conferma dei risultati, questo lavoro potrà contribuire alla scelta di 
trattamenti più efficaci per il tumore al seno. 
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1 INTRODUCTION 

1.1 STRUCTURAL ORGANIZATION OF THE MAMMARY 
GLAND 

The mammary gland is an exocrine gland comprised of parenchymal 
structures that invade the mammary fat pad [1]. In simple terms the breast 
comprises a branching system of ducts leading down from the nipple ending 
in glands (acini aggregated into lobules) which have the potential to secrete 
milk. Approximately 12 large ducts emerge from the breast at the nipple as 
lactiferous ducts (fig. 1.1). 
 

Figure 1.1: Cross section of the breast of a human female: lobules are organized in acini 
(~20-30) (http://training.seer.cancer.gov/ss_module01_breast/unit02_sec01_anatomy.html)

It is organized into a tree-like structure composed of hollow branches. These 
have an inner layer of luminal epithelial cells that face the lumen and are 
surrounded by an outer layer of myoepithelial cells that secretes the basal 
lamina, separating the mammary parenchyma from the stroma [1]. Within 
the mammary arbour, the ductal cells are those that line the ducts of the 
mammary gland. Lobular cells form secretory acinar structures (acini) at the 
end of each branch and, upon pregnancy and lactation, become alveolar cells 
that produce milk proteins [2] (fig. 1.2). Each lobule (fig. 1.3) consists of 20 
– 30 acini which drain into a terminal duct called Terminal Duct Lobular Unit 
(TDLU). Like ducts, each acinus is double layered with the epithelial layer 
lining the lumen and ensuring the synthesis and secretion of milk, and the 
myoepithelial layer lining the basal membrane. This cell type appears to be 
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useful for diagnostic purposes: invasive carcinoma is devoid of such cells [3]. 
The specialized connective tissue surrounding the acini is called palleal 
tissue. 
 

Figure 1.2: On the left section, stained with hematoxylin and eosin, of a midpregnant 
mammary gland from C57BL/6 mice indicating the locations of the ductal and alveolar cells. 
On the right schematic view of the ductal and alveolar cells during midpregnancy. The ducts 
are surrounded by a basal layer of overlapping myoepithelial cells, whereas the alveoli cells 
are surrounded by a basket-like layer of myoepithelial cells. [2]. 
 
Ducts and lobules are surrounded from connective tissue containing blood 
and lymphatic vessels, fat and fibrous tissue in varying proportion called 
stroma.  
 

Figure 1.3: Normal lobule: high molecular weight myosin staining x200. Each acinus 
associates an external layer around the basal membrane of myoepithelial cells stained in 
red, and an internal epithelial layer in blue [3]. 
 
1.2 MAMMARY STEM CELLS AND THEIR ROLE IN BREAST 
TUMOURIGENESIS 
 
The ability to replenish the mammary gland through cycles of pregnancy, 
lactation and involution throughout a woman’s lifetime is attributed to stem 
cells that are proposed to reside in the mammary gland [2]. These cells are 
proposed to serve three functions: 
o to give rise to the tissues of the adult mammary gland during 

development; 
o to allow the enormous tissue expansion and remodelling that occurs in 

the mammary gland during multiple cycles of pregnancy, lactation and 
involution; 

o to serve as a reserve for repair in the event of tissue damage (rarely). 
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At the onset of puberty, the immature mammary gland undergoes rapid 
growth and differentiation at the tip of the Terminal End Buds (TEBs) (fig. 
1.4). The cap cell layer surrounding the TEB can take on a myoepithelial 
lineage, and therefore cap cells are thought to be multipotent stem cells. 
However, the TEBs are considered to be only a temporary niche, since TEBs 
are transient structures that disappear once the duct reaches the end of the 
fat pad [2]. 

Figure 1.4: The terminal End Bud (TEB). The TEB appears at the onset of puberty, 
undergoing rapid growth and differentiation [2]. 
 
Recent research in breast biology has provided support for the cancer stem-
cell hypothesis. Two important components of this hypothesis are that 
tumours originate in mammary stem or progenitor cells as a result of 
dysregulation of the normally tightly regulated process of self-renewal. As a 
result, tumours contain and are driven by a cellular subcomponent that 
retains key stem-cell properties including self-renewal, which drives 
tumourigenesis and differentiation that contributes to cellular heterogeneity 
[4]. In fact stem cells make an attractive candidate for the cellular origin of 
cancer since they possess many features of the tumour phenotype, including 
self-renewal and essentially unlimited replicative potential [5]. 
Data identifying cancer stem cells in breast cancer highlight the need for a 
dramatic shift in the way we design cancer therapies. Since a small 
population of cancer stem cells can recapitulate the entire tumour, the 
current cancer therapy has to be able to eradicate efficiently this small 
population, which probably drives cancer recurrence [2]. Conventionally 
cancer therapy that targets proliferating, terminally differentiated cells with 
limited replicative potential may initially lead to a favourable clinical response 
but fail to eliminate the cancer stem cells that underpin recurrence [2] (fig. 
1.5). Ideally, tumour stem cell therapies would specifically target tumour 
stem cells. Used alone, they might lead to tumour regression, but not 
dissolve tumour bulk. Combining conventional therapy with treatment 
targeting tumour stem cells may effectively eliminate both tumour bulk and 
tumour stem cells (fig. 1.5). Thus, investigation of the mechanisms and 
signalling pathways that support stem cell renewal in normal and malignant 
tissue, may provide new targets for therapies designed to complement 
existing approaches and reduce tumour recurrence [2].  
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1.3 BREAST CANCER EPIDEMIOLOGY AND RISK 
FACTORS 

Breast cancer is the most common cancer in women worldwide, comprising 
23% of all cancers, with more than one million new cases per year [6] and it 
is the second cause of cancer death among women globally (411'000 annual 
world deaths in 2002 [7]) after lung cancer. According to the American 
Cancer Society, about 1.3 million women will be diagnosed with breast 
cancer annually worldwide and about 465'000 will die from this disease. 
 

Figure 1.5: Cancer therapy approaches [2]. 
 
More than half of all cases occur in industrialized countries, about 361.000 in 
Europe and 230'000 in North America [7]. The high incidence in the more 
affluent world areas is likely due to the presence of screening programs that 
detect early invasive cancers, some of which would otherwise have been 
diagnosed later or not at all [8]. The prognosis of the breast cancer is 
generally rather good, so that this cancer ranks as the fifth cause of death 
from cancer overall (although it is still the leading cause of cancer mortality 
in women). The very favourable survival of breast cancer cases in western 
countries is also in part a consequence of the presence of screening 
programs and of improvements of the treatment. 
Cancer results from a combination of many factors including inherited 
mutations or polymorphisms of cancer susceptibility genes, environmental 
agents that influence the acquisition of somatic genetic changes and several 
other systemic and local factors (fig. 1.6) [9]. A risk factor is anything that 
affects the chance of getting a disease and for breast cancer they are: 
 
o gender: breast cancer is about 100 times more common among women 

than men; 
o aging: risk of developing breast cancer increases as you get older; 
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o genetic risk factors: ~10% of breast cancer cases are attributable to 
inherited mutations in highly penetrant breast cancer susceptibility 
genes, two of which, BRCA1 and BRCA2 have been identified based 
on genetic linkage studies of affected families; in addition germline 
mutations of PTEN, LKB1, ATM, p53, MSH2/MLH1, CHEK2 and BACH-1 
are associated with breast cancer but to a much more limited extent 
then the BRCA genes [9]. Polymorphism in several metabolic and 
detoxifying enzymes (GSTM1, CYP1A1, CYP17, NAT2, SULT1A1, 
COMT, SOD), components of hormonal signalling pathways (oestrogen 
and androgen receptor), proto-oncogenes (H-ras-VNTR), DNA repair 
genes (XRCC1, XRCC3) and HLA alleles have been shown to influence 
breast cancer susceptibility [9]; 

o family history of breast cancer: breast cancer risk is higher among 
women whose close blood relatives have this disease; 

o race and ethnicity: caucasian women are slightly more likely to 
develop breast cancer than are African-American women; 

o personal history of breast cancer: a woman with cancer in one breast 
has a 3- to 4-fold increased risk of developing a new cancer in the 
other breast or in another part of the same breast; 

o dense breast tissue: women with denser breast tissue (as seen on a 
mammogram) have more glandular tissue and less fatty tissue, and 
have a higher risk of breast cancer; 

o certain benign breast conditions: women diagnosed with certain 
benign breast conditions may have an increased risk of breast cancer; 

o menstrual periods: women who have had more menstrual cycles 
because they started menstruating at an early age (before age 12) 
and/or went through menopause at a later age (after age 55) have a 
slightly higher risk of breast cancer; 

o previous chest radiation: women who, as child or young adult, had 
radiation therapy to the chest area as treatment for another cancer 
(such as Hodgkin disease or non-Hodgkin lymphoma) are at 
significantly increased risk for breast cancer; 

o not having children, or having them later in life: women who have had 
no children or who had their first child after age 30 have a slightly 
higher breast cancer risk; 

o using post-menopausal hormone therapy: Long-term use (several 
years or more) of combined post-menopausal hormone therapy 
increases the risk of breast cancer and may also increase the chances 
of dying of breast cancer; 

o alcohol: use of alcohol is clearly linked to an increased risk of 
developing breast cancer; 

o being overweight or obese: this condition has been found to increase 
breast cancer risk, especially for women after menopause. 
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Figure 1.6: Summary of factors influencing breast carcinogenesis [9]. 
 
1.4 BREAST CANCER CLASSIFICATION 
 
Breast cancer classification divides all forms of breast cancer according to 
four different schemes, each based on different criteria. The four approaches 
consider the histology (1.4.1), the grade (1.4.2), the stage (1.4.3) and 
the gene expression profile of the tumour (1.4.4).  
The morphological attributes of a breast cancer, as assessed by histological 
examination, supply the breast cancer care team with invaluable prognostic 
and predictive information. Together with the great advances in molecular 
techniques availability, morphology remains indispensable [10]. Studies of 
most large cohorts of unselected breast cancers continue to show that grade 
(see 1.4.2), nodal status and tumour size (see 1.4.3) remain powerful 
prognostic factors in a multivariable analysis [10]. These are the parameters 
combined in the Nottingham Prognostic Index (NPI), the most used 
prognostic tool in use in the UK [11]. Tumour size and nodal status are very 
much temporal factors, whereas grade is a morphological attribute and is 
qualitative. It is a reflection of the intrinsic qualities of a tumour and it will 
give an indication of features such as the rapidity of growth and probability 
of metastasis [10]. 

1.4.1 BREAST CANCER HISTOLOGICAL CLASSIFICATION 
 
The most significant effort in the classification of tumours of the breast was 
that produced by the World Health Organization (WHO) in 2003. All 
carcinomas of the breast, both invasive and non-invasive (in situ), are 
classified on the basis of the histological and/or cytological appearance [12, 
13]. 
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Carcinoma in situ 
Ductal carcinoma in situ 
Lobular carcinoma in situ 

Invasive Carcinoma 
Invasive ductal carcinoma, Not Otherwise Specified (NOS) 

Mixed type carcinoma 
Pleomorphic carcinoma 
Carcinoma with osteoclastic giant cells 

Invasive lobular carcinoma 
Tubular carcinoma 
Invasive cribriform carcinoma 
Medullary carcinoma 
Mucinous carcinoma and other tumours with abundant mucin 

Mucinous carcinoma 
Cystadenocarcinoma and columnar cell mucinous carcinoma 
Signet ring cell carcinoma 

Invasive papillary carcinoma 
Invasive micropapillary carcinoma 
Apocrine carcinoma 
Metaplastic carcinomas 
Pure epithelial metaplastic carcinomas 
Mixed epithelial/mesenchymal metaplastic carcinomas 
Lipid-rich carcinoma 
Adenoid cystic carcinoma 
Acinic cell carcinoma  
Glycogen-rich clear cell carcinoma 
Inflammatory carcinoma 
Microinvasive carcinoma 

Table 1.1: Histological classification of breast carcinoma (adapted from [12]) 
 
As reported in the table 1.1, there are two major groups of breast tumours: 
carcinoma in situ and invasive carcinoma.  
 
1.4.1.1 Carcinoma in situ 

Carcinoma in situ is a proliferation of malignant epithelial cells within the 
ductulo-lobular system of the breast that on light microscopy shows no 
evidence of breaching the basement membrane to invade the adjacent 
stroma. There are two forms: ductal and lobular. Lobular Intraepithelial 
Neoplasia (LIN) (fig. 1.7) is located within the terminal duct-lobular unit, 
often accompanied by pagetoid involvement of the adjacent terminal ducts 
(fig. 1.7). These are markedly distended by a proliferation of monomorphous 
cells that have effaced the lumen. LIN is associated with an increase in the 
risk of developing invasive breast cancer [13]. Ductal Carcinoma In Situ
(DCIS) (fig. 1.7) is a heterogeneous group of pre-malignant lesions that may 
be identifiable on mammography as foci of microcalcification [14]. For DCIS 
are defined three categories on the basis of cytonuclear differentiation: 
poorly differentiated, intermediately differentiated and well-differentiated. 
Lesions in the poorly differentiated group are usually Erb-B2 positive and are 
less frequently oestrogen and progesterone receptor positive, conversely to 
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those in the well-differentiated group. The treatment of DCIS depends on the 
size and distribution of the lesion. The status of excision margins around the 
tumour remains the most important factor in terms of risk of local 
recurrence. Microinvasive carcinoma (size limit of 1 mm) is rare and occurs 
mostly in association with in situ carcinoma, usually of the poorly 
differentiated type [13]. 
 

Figure 1.7: Left: lobular intraepithelial neoplasia. Right: poorly differentiated ductal 
carcinoma in situ, adapted from [13] 
 
1.4.1.2 Invasive carcinoma 
 
Invasive breast cancer is a group of malignant epithelial tumours 
characterized by invasion of adjacent tissue and a marked tendency to 
metastasize to distant sites. Breast cancer arises from the mammary 
epithelium, most frequently from the cells of the terminal duct lobular unit 
[13]. Numerous histological types of breast carcinoma have been identified 
(see tab. 1.1) but one in particular, invasive ductal carcinoma (Not Otherwise 
Specified, NOS) (fig. 1.8) largely predominates and represents more than 
75% of all cases [3]. 
Generally, three different components are associated, the stroma, the 
invasive component and the in situ component. Stroma is essential for 
tumour growth. It is composed of vessels which ensure the nutrional supply, 
inflammatory cells and a hyaline and elastosic tissue. Ductal NOS tumours 
are less common below the age of 40. These tumours do not have specific 
macroscopic features. Invasive carcinoma is often associated with high grade 
ductal carcinoma in situ. If a ductal carcinoma NOS is accompanied by a 
second distinct morphologic pattern (lobular), the cancer is defined as mixed. 
Approximately 70-80% of ductal NOS breast cancers are Estrogen Receptor 
(ER) positive, and between 15-30% of cases are Erb-B2 positive. 
Many other types of lesions have been identified according to the cytological 
and the architectural presentation. Examples are medullary, mucinous and 
papillary carcinomas. They all contain a particular stroma which is either 
inflammatory (medullary carcinoma), colloid (mucinous carcinoma) or 
vascular (papillary carcinoma) with little or no fibrous tissue. These tumours 
do not attract the surrounding tissue but push it as they grow, giving rise to 
a nodular shape [3]. Medullary, mucinous and papillary carcinomas have 
relatively good prognosis and represent between 1 and 7% of all breast 
cancers [13]. 
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The second most frequent type is lobular carcinoma (fig. 1.8), accounting for 
almost 10% of invasive carcinomas. It is characterized by indistinct tumours 
margins. About 70-95% of lobular carcinomas are ER positive and 60%-70% 
are Progesteron Receptor (PR) positive. Overexpression of Erb-B2 is lower 
than in invasive ductal carcinoma [13].  
Tubular carcinoma shows a favourable prognosis and accounts for under 2% 
of invasive breast cancer in most series. Ductal carcinoma in situ is found in 
association; occasionally the in situ component is of lobular type. Oestrogen 
and Progesteron receptors are always positive and Erb-B2 is negative [13]. 
 

Figure 1.8: Left: invasive ductal carcinoma (NOS). Right: invasive lobular carcinoma, 
adapted from [13]. 
 
1.4.2 BREAST CANCER GRADING 
 
In situ ductal carcinoma and all invasive tumours are routinely graded. 
Among the various grading systems that have been proposed, the combined 
grading method of Elston and colleagues from Nottingham is currently the 
most widely used in Europe [15]. In this system three parameters are 
evaluated: tubule formation, nuclear polymorphism and mitotic rate. A 
numerical scoring system of 1-3 is used to ensure that each factor is 
assessed individually [13]. 
The three values are combined together and produce scores of 3 to 9, to 
which the grade is assigned: 
o total score 5: grade 1, well differentiated; 
o total score 6-7: grade 2, moderately differentiated; 
o total score 8-9: grade 3, poorly differentiated. 
 
1.4.3 CLINICAL CLASSIFICATION OR TNM STAGING SYSTEM 
FOR THE BREAST CANCER 
 
In 2002 the American Joint Committee on Cancer (AJCC) published the sixth 
edition of the Cancer Staging Manual, that reports additions made to the 
staging system, designed to facilitate the uniform collection of clinically 
relevant information about new techniques for the detection of metastatic 
cells [16, 17]. These additions include quantitative criteria to distinguish 
micrometastases from isolated tumour cells, and specific identifiers to record 
the use of sentinel lymph node biopsy, immunohistochemical (IHC) staining, 
and molecular biology techniques. Revisions of the previous staging system 



10

are related to the number of affected axillary lymph nodes and to their 
classification [17]. 
 
Primary tumour (T) 
 
TX   Primary tumour cannot be assessed 
T0   No evidence of primary tumour 
Tis   Carcinoma in situ 

Tis (DCIS) Ductal Carcinoma In Situ 
Tis (LCIS)  Lobular carcinoma In Situ 
Tis (Paget) Paget’s disease of the nipple with no tumour 

Note: Paget’s disease associated with a tumour is classified according to the size of 
the tumour. 

T1   Tumour ≤ 2 cm in greatest dimension 
T1mic  Microinvasion ≤ 0.1 cm in greatest dimension 
T1a  Tumour > 0.1 cm but not > 0.5 cm in greatest dimension 
T1b  Tumour > 0.5 cm but not > 1 cm in greatest dimension 
T1c  Tumour > 1 cm but not > 2 cm in greatest dimension 

T2   Tumour > 2 cm but not > 5 cm in greatest dimension 
T3   Tumour > 5 cm in greatest dimension 
T4   Tumour of any size with direct extension to 

(a) chest wall or 
(b) skin, only as described below 

T4a  Extension to chest wall, not including pectoralis muscle 
T4b Edema (including peau d’orange) or ulceration of the skin of the breast, or satellite 

skin nodules confined to the same breast. 
T4c  Both T4a and T4b 
T4d  Inflammatory carcinoma 

 
Regional lymph nodes (N) 
 
NX   Regional lymph nodes cannot be assessed (eg, previously removed) 
N0   No regional lymph node metastasis 
N1   Metastasis in movable ipsilateral axillary lymph node(s) 
N2 Metastases in ipsilateral axillary lymph nodes fixed or matted, or in clinically 

apparent* ipsilateral internal mammary nodes in the absence of clinically evident 
axillary lymph node metastasis. 

N2a Metastasis in ipsilateral axillary lymph nodes fixed to one another (matted) or to other 
structures. 

N2b Metastasis only in clinically apparent* ipsilateral internal mammary nodes and in the 
absence of clinically evident axillary lymph node metastasis. 

N3 Metastasis in ipsilateral infraclavicular lymph node(s), or in clinically apparent* 
ipsilateral internal mammary lymph node(s) and in the presence of clinically evident 
axillary lymph node metastasis; or metastasis in ipsilateral supraclavicular lymph 
node(s) with or without axillary or internal mammary lymph nod involvement. 

N3a Metastasis in ipsilateral infraclavicular lymph node(s) and axillary lymph node(s). 
N3b Metastasis in ipsilateral internal mammary lymph node(s) and axillary lymph node(s). 
N3c  Metastasis in ipsilateral supraclavicular lymph node(s) 

 
Regional lymph nodes (pN)† 
 
pNX Regional lymph nodes cannot be assessed (eg, previously removed or not removed 

for pathologic study). 
pN0 No regional lymph node metastasis histologically, no additional examination for 

isolated tumour cells‡. 
pN0(i_)  No regional lymph node metastasis histologically, negative IHC. 
pN0(i+) No regional lymph node metastasis histologically, positive IHC, no IHC cluster > 0.2 

mm. 
pN0(mol_) No regional lymph node metastasis histologically, negative molecular findings (RT-

PCR) 
pN0(mol+) No regional lymph node metastasis histologically, positive molecular findings (RT-

PCR) 
pN1mi  Micrometastasis (_ 0.2 mm, none _ 2.0 mm) 
pN1 Metastasis in one to three axillary lymph nodes and/or in internal mammary nodes 

with microscopic disease detected by sentinel lymph node dissection but not clinically 
apparent§ 

pN1a  Metastasis in one to three axillary lymph nodes 
pN1b Metastasis in internal mammary nodes with microscopic disease detected by sentinel 

lymph node dissection but not clinically apparent§. 
pN1c Metastasis in one to three axillary lymph nodes and in internal mammary lymph 

nodes with microscopic disease detected by sentinel lymph node dissection but not 
clinically apparent§. 
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pN2 Metastasis in four to nine axillary lymph nodes, or in clinically apparent* internal 
mammary lymph nodes in the absence of axillary lymph node metastasis. 

pN2a Metastasis in four to nine axillary lymph nodes (at least one tumour deposit _ 2.0 
mm). 

pN2b Metastasis in clinically apparent* internal mammary lymph nodes in the absence of 
axillary lymph node metastasis. 

 
pN3 Metastasis in 10 or more axillary lymph nodes, or in infraclavicular lymph nodes, or in 

clinically apparent* ipsilateral internal mammary lymph nodes in the presence of one 
or more positive axillary lymph nodes; or in more than three axillary lymph nodes 
with clinically negative microscopic metastasis in internal mammary lymph nodes; or 
in ipsilateral supraclavicular lymph nodes 

pN3a Metastasis in 10 or more axillary lymph nodes (at least one tumour deposit > 2.0 
mm), or metastasis to the infraclavicular lymph nodes 

pN3b Metastasis in clinically apparent* ipsilateral internal mammary lymph nodes in the 
presence of one or more positive axillary lymph nodes; or in more than three axillary 
lymph nodes and in internal mammary lymph nodes with microscopic disease 
detected by sentinel lymph node dissection but not clinically apparent§. 

pN3c Metastasis in ipsilateral supraclavicular lymph nodes 
 
Distant metastasis (M) 
 
MX   Distant metastasis cannot be assessed 
M0 No distant metastasis 
M1 Distant metastasis 

Table 1.2 TNM Staging System for Breast Cancer. Adapted from [17]. 
IHC, ImmunoHistoChemistry; RT-PCR, Reverse Transcriptase Polymerase Chain Reaction. 
*“Clinically apparent” is defined as detected by imaging studies (excluding 
lymphoscintigraphy) or by clinical examination. †Classification is based on axillary lymph 
node dissection with or without sentinel lymph node dissection. Classification based solely on 
sentinel lymph node dissection without subsequent axillary lymph node dissection is 
designated (sn) for “sentinel node” (eg, pN0(i+)(sn)). ‡Isolated tumour cells are defined as 
single tumour cells or small cell clusters not greater than 0.2 mm, usually detected only by 
immunohistochemical or molecular methods but which may be verified on hematoxylin and 
eosin stains. Isolated tumour cells do not usually show evidence of metastatic activity (eg, 
proliferation or stromal reaction). §“Not clinically apparent” is defined as not detected by 
imaging studies (excluding lymphoscintigraphy) or by clinical examination. 
 
The staging system is called TNM: T describes the size of the tumour and 
whether it has invaded nearby tissue, N describes regional lymph nodes that 
are involved, and M describes distant metastasis (spread of cancer from one 
body part to another) (tab. 1.2). In the table 1.3 I reported a summary of 
the TNM staging system. The stage of the tumour is defined as a 
combination of T, N and M parameters. The adoption and routine utilization 
of the staging system is critically important in laying the groundwork for 
future decisions regarding breast cancer prognosis and treatment [17]. 

 
Stage Tumour size Lymph nodes Metastasis 

0
I

IIA 

IIB 

IIIA 

Tis 
T1 
T0 
T1 
T2 
T2 
T3 
T0 
T1 
T2 
T3 
T3 

N0 
N0 
N1 
N1 
N0 
N1 
N0 
N2 
N2 
N2 
N1 
N2 

M0 
M0 
M0 
M0 
M0 
M0 
M0 
M0 
M0 
M0 
M0 
M0 
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IIIB 

IIIC 
IV 

T4 
T4 
T4 

Any T 
Any T 

N0 
N1 
N2 
N3 

Any N 

M0 
M0 
M0 
M0 
M1 

Table 1.3: TNM Stage Grouping for breast cancer (adapted from [18]). 
 
The survival rate (see table 1.4) depends on the stage of the tumour and 
also on others factors, like the medical situation of the patient, etc. A survival 
rate of five years is the average number of patients still alive after five years 
from the first diagnosis. After seven years the survival rate decreases in all 
classes (stage I 92%, stage II 71%, stage III 39%, stage IV 11%). 
 

Stage 5-years survival rate 
0
I

IIA 
IIB 
IIIA 
IIIB 
IV 

100% 
98% 
88% 
76% 
56% 
49% 
16% 

Table 1.4: Breast cancer survival rate after five years from the first diagnosis (adapted from 
[18]). 
 
1.4.4 MOLECULAR CLASSIFICATION OF BREAST CANCER BASED 
ON GENE EXPRESSION PROFILE 
 
Breast cancer is a clinically heterogeneous disease. Histologically similar 
tumours may have different prognoses and may respond to therapy 
differently [19]. It is believed that these differences in clinical behaviour are 
due to molecular differences between histologically similar tumours. DNA 
microarray technology is ideally suited to reveal such molecular differences 
because it is a powerful tool to look at genome-wide gene expression [20].  
It is important to remind that the transcriptional profile of the tumour reflects 
the contribution of a large number of cellular components including normal 
breast epithelium, cancer cells, fibroblasts, adipocytes, infiltrating leukocytes 
and vascular components [21]. This tissue heterogeneity could be a 
confounding factor and makes data analysis difficult because of the high 
background. Also the profiles are distorted by transcriptional response to 
surgical stress, tissue handling, and general anesthetics or other drugs 
administered before and during surgery [21]. The expression of genes 
involved in signal transduction and response to stress or hypoxia may be 
particularly sensitive to rapid changes in the tissue microenvironment that 
occur during surgery. For these reasons, it is essential using suitable 
sampling procedure. Pustztai and colleagues reported [21] that the Fine-
Needle Aspiration (FNA) is a reliable technique to collect the tumour sample. 
FNA is minimally invasive and the cells removed with this method frequently 
represent relatively pure tumour cells. In recent years has been also 
developed another technique, the Laser Capture microdissection (LCM) for 
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isolating individual cells or subcellular structures from a heterogeneous cell 
population. Ma and colleagues [22] applied successfully LCM and DNA 
microarray technology to identify different pathological stages of breast 
tumours. 
Perou and colleagues have proposed for the fist time, that the phenotypic 
diversity of breast tumours might be accompanied by a corresponding 
diversity in gene expression pattern [23]. They used microarrays to 
investigate gene expression pattern in 42 breast cancer patients by 
unsupervised hierarchical cluster analysis. A set of 496 genes (“intrinsic gene 
set”) was selected based on large variation in expression between 2 biopsies 
from one patient (pre and post-neoadjuvant chemotherapy treatment). By 
clustering tumours using this “intrinsic gene list” (supervised approach) were 
identified 4 subgroups of cancers with separate gene expression profiles: the 
luminal/epithelial ER+, the basal type, the normal-like and the Erb-B2+ 
groups (fig. 1.9). In a subsequent study, by Sorlie and colleagues [24], the 
luminal group was subdivided into the luminal A and luminal B subgroups. 
These studies highlighted that the molecular subgroups were strongly 
associated with ER status: luminal types are ER positive, basal-like and Erb-
B2+ mostly ER negative. 
Subsequently Sotiriou and colleagues [25] correlated gene expression 
patterns generated from cDNA microarrays with clinico-pathological 
characteristics and clinical outcome in an unselected group of 99 node-
negative and node-positive breast cancer patients. Gene expression pattern 
were found highly related with ER status, as reported from [23, 24] and 
moderately associated with grade, but not associated with menopausal 
status, nodal status or tumour size. They showed that ER status of the 
tumour was, indeed, the most important discriminator of expression 
subtypes and that tumour grade was a distant second. This finding confirms 
that ER biology plays a central role in breast carcinogenesis defining the 
configuration of the final tumour. Moreover, a hierarchical cluster analysis 
segregated their population into two distinct subgroups with different 
relapse-free survival: the basal-like and Erb-B2+ subgroups had the shortest 
relapse-free and overall survival, whereas the luminal-type tumours had a 
more favourable clinical outcome [19]. 
 
1.4.4.1 Luminal type breast tumours 
 
The luminal-type tumours, also called ER+ cluster, are characterized by the 
relatively high expression of many genes typical of breast luminal cells [23]. 
They show a high expression of luminal cell keratins 8/18, ESR1 (Oestrogen 
Receptor 1) and other genes involved in the ESR1 activation, like SLC39A6 
(Solute Carrier Family 39 zinc transporter, member 6) and CCND1 (cyclin D1) 
[23, 25]. Less than 20% of luminal-type tumours contain TP53 mutations 
[24, 25]. Sørlie and colleagues [23], increasing the sample size of their 
previous study [23], identified within the luminal group three distinct 
subgroups: luminal A, luminal B and luminal C. The subtype luminal A shows 
the highest expression of ESR1, GATA binding protein 3, X-box binding 
protein 1, trefoil factor 3, hepatocyte nuclear facto 3 alpha and oestrogen-
regulated LIV-1. The others two subtypes, B and C, show low to moderate 
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expression of the luminal – specific genes including the ER cluster. Luminal 
subtype C was further distinguished from luminal A and B by the high 
expression of a novel set of genes which are a feature they share with the 
basal-like and Erb-B2+ subtypes [24]. The luminal subtypes show differences 
in clinical outcome [25]. The luminal A has a better outcome than luminal 
subtypes B and C, in fact they both might represent a clinically distinct group 
with a different and worse disease course, in particular with respect to 
relapse [24]. Luminal subtype C expresses some of the genes characteristic 
of the ER-negative tumours in the basal-like and Erb-B2+ subtypes, 
suggesting the poor disease outcome. The different prognosis of three 
luminal subgroups could be related to chemotherapy response. The luminal 
tumours are treated with hormonal therapy, because several studies showed 
that the traditional chemotherapy fails in ER+ tumours [26]. 

Figure 1.9: Cluster analysis using the “intrinsic”gene subset. Two large branches were 
apparent in the dendogram, and within these large branches were smaller branches for 
which common biological themes could be inferred. Branches are coloured accordingly: 
basal-like, yellow; Erb-B2+, pink; normal-breast like, light green; and luminal epithelial/ER+, 
dark blue. There are 4 clusters of interesting genes: luminal epithelial/ER+ (a), Erb-B2+ (b), 
basal epithelial cell associated cluster containing keratin 5 and 17 (c), a second basal 
epithelial-cell-enriched gene cluster. Adapted from [23]. 
 
Recently it was reported [27] a better survival in metastatic luminal breast 
cancer treated with Bevacizumab (Avastin, Genentech), a humanized 
monoclonal antibody directed against all isoforms of VEGF-A. The luminal-
type breast tumours are the most common tumours type, ~60-70% in the 
caucasian woman population, as the Caroline Breast Cancer Study has 
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reported [28]. Recently Rouzier and colleagues [19] showed that breast 
cancer molecular subtypes respond differently to preoperative 
chemotherapy. The luminal tumours, together with the normal-like tumours, 
have lower pathologic Complete Response (pCR) rates than the basal-like 
and Erb-B2 tumours. Instead the basal-like (par. 1.4.4.2) and Erb-B2 
tumours (par. 1.4.4.4) are predominantly high nuclear grade and the basal-
like tumours are often ER negative: both of these characteristics are known 
to be associated with higher likelihood of pathologic CR to preoperative 
chemotherapy [29]. 
 
1.4.4.2 Basal-like breast tumours 
 
Basal-like tumours typically show low expression of Erb-B2 and ER and 
exhibit high expression of genes characteristic of the basal epithelial cell 
layer, including expression of cytokeratins 5, 6 and 17 [27]. Basal-like breast 
carcinomas account for up to 15% of all breast cancers and often affect 
younger patients [23, 24, 30]. These tumours show either p53 
immunohistochemical expression or TP53 mutations in up to 85% of cases, 
display exceedingly high levels of proliferation-related genes and express 
Epidermal Growth Factor Receptor (EGFR) in >60% of cases [22, 23, 30, 
31]. Morphologically, basal-like breast carcinomas are characterized by high 
histological grade, high mitotic index and the presence of metaplastic 
elements [32]. In fact, recent studies have demonstrated that >90% of 
metaplastic breast carcinomas show a basal-like phenotype [33]. Basal-like 
cancers have a more aggressive clinical behaviour, some studies have 
demonstrated that the expression of basal keratins is a prognostic factor 
independent of tumour size, grade and lymph node status [34]. Given that 
by microarray-based expression analysis, basal-like cancers are preferentially 
negative for ER and PR and lack Erb-B2 expression, they are often used as 
synonym for the triple-negative breast cancers, although not all basal-like 
tumours are negative for ER, PR and Erb-B2; in fact 15%-54% of them 
express at least one of these markers [20, 25, 26].  
Although the basal-like breast cancers show high rates of objective response 
to neoadjuvant chemotherapy, patients with this tumour-type that have not 
evolved to pathological complete response still show a significantly poorer 
prognosis than those with tumours pertaining to other molecular subgroups 
[35] This could be explained by the limited therapeutical options for the 
basal-like subtype due to the triple negativity for the reported markers and 
not by a drug-resistance of the primary tumour. 
There is increasingly more coherent evidence to suggest a link between the 
BRCA1 (BReast CAncer 1) pathway and basal-like breast cancers. In fact, the 
vast majority of tumours arising in BRCA1 germ-line mutation carriers, in 
particular those diagnosed before 50 years of age, have morphological 
features similar to those described in basal-like cancers and they display a 
basal-like phenotype [36]. It has recently demonstrated that the BRCA1 
pathway may be dysfunctional in sporadic basal-like tumours [37]. BRCA1 
protein expression levels have been shown to be significantly lower in 
tumours of high histological grade, lacking ER and PR expression and of 
basal-like phenotype [38]. Since BRCA1 is involved in the DNA repair system, 
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mutations in this gene could cause alterations in DNA-damage-repair 
pathway and increase the tumour sensitivity to chemotherapic agents that 
damage DNA. 
Taken together, there is a evidence that BRCA1 pathway dysfunction is 
integral to the biology of basal-like breast carcinomas. They show, in fact, a 
sensitivity to cross-linking agents (e.g. platinum salts) and to inhibitors of the 
poly ADP-ribose polymerase (PARP) enzyme [39, 40]. These findings suggest 
new therapeutic strategies for the management of patients with basal-like 
breast cancers for testing in clinical trials.  
 
1.4.4.3 Normal-like breast tumours 

The normal breast-like group shows the highest expression of many genes 
known to be expressed by adipose tissue and other nonepitelial cell types 
[24]. These tumours also are characterized from strong expression of basal 
epithelial genes and low expression of luminal epithelial genes [24]. The 
normal-like tumours cluster close to Erb-B2 tumours and share with them the 
short relapse-free and overall survival respect the luminal-type tumours. 
Rouzier and colleagues [19] showed that the normal-like tumours, together 
the luminal-type ones, are less sensitive to paclitaxel- and doxorubicin-
containing preoperative chemotherapy than the basal-like and Erb-B2 
tumours.  
 
1.4.4.4 Erb-B2 type breast tumours 
 
The Erb-B2 subtype is characterized by high expression of several genes in 
the Erb-B2 amplicon at 17q22.24 including Erb-B2 and GRB7 (Growth factor 
Receptor-Bound protein 7) [24], index of a possible genic amplification. 
These tumours also show low levels of expression of ER and of almost all of 
the others genes associated with ER expression, a trait they share with the 
basal-like tumours [23]. 
The Erb-B2 tumours have often TP53 mutations (71% of cases). Risk factors 
associated to this type of tumours are not yet characterized, but some 
studies showed that often they are high grade (III) tumours, poorly 
differentiated, with a double probability to be sentinel lymph node positive 
than the luminal type ones [27]. 
Sørlie and colleagues [24] reported that overexpression of Erb-B2 gene is a 
well-known prognostic factor associated with poor survival in breast cancer, 
which also was found for the Erb-B2 molecular subtype. 
Although the poor prognosis, the Erb-B2 subtype is, similarly to basal-like 
subtype, more sensitive to paclitaxel- and doxorubicin-containing 
preoperative chemotherapy than the luminal and normal like-cancers. 
The Erb-B2 tumours are the only molecular subtype target of Trastuzumab 
commercial name Herceptin®), a humanized receptor antibody directed 
against Erb-B2. Patients who received concurrent preoperative chemotherapy 
and trastuzumab had a significantly higher pCR than those who received 
chemotherapy alone [41]. Resistance to trastuzumab is an active research 
field. Several known mechanisms of resistance have been identified , like 
increased production of insulin-like growth factor, dysregulation of p27, 
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overexpression of epidermal growth factor receptor with activation of the Akt 
pathway, and decreased PTEN (Phosphatase and TENsin homolog) [42]. 
 
1.5 MOLECULAR FORECASTING IN BREAST CANCER: 
PREDICTION OF THE TUMOUR COURSE BASED ON THE 
GENE EXPRESSION PROFILING 
 
Like all malignancies, breast cancer arises as a result of the accumulation of 
genetic alterations, most importantly deregulation of the expression of 
oncogenes and tumour suppressor genes. As a consequence this will lead to 
highly proliferating cells that lose their differentiation and have the ability to 
become invasive and metastatic. There are various genetic pathways that 
have been identified and it has become clear that breast cancer represents a 
heterogeneous disease [43]. This heterogeneity of breast cancer is also 
reflected in the variable clinical courses of the disease. Some patients will 
develop metastases at an early stage, other tumours will never metastasize. 
Treatment that is effective in one patient may not show the same efficacy in 
other patients with a similar tumour type. Since the effectiveness of 
treatment differs between individual patients, much effort is being invested 
in the identification of new prognostic and predictive markers. Prognostic 
factors are important to estimate patient's outcome and can be used to 
decide which patients will need additional adjuvant systemic treatment 
(systemic therapy to eliminate any remaining tumour cells after surgical 
removal of the primary tumour). Instead predictive factors indicate which 
treatment is most effective for an individual patient. More specifically, 
prognostic biomarkers predict the clinical outcome for a patient if no 
anticancer drugs are administered, whereas predictive biomarkers predict the 
outcome of a specific therapy for a patient [44]. The implementation of 
predictive factors in clinical decision making will help to ensure that only 
patients that are likely to benefit from a specific treatment will receive this 
specific therapy [43]. So far, clinical and pathological factors guide important 
decision in the treatment of breast sample patients. However the clinical and 
pathological factors now available, are not accurately reflecting the 
heterogeneity in the prognosis and responsiveness to various therapies. 
About 10 years ago, microarray technology has enabled scientist to analyze 
the expression of thousands of mRNAs simultaneously. The mayor 
improvement came in the 1990s, when the first papers were published [45, 
46] using a two-colors microarray, that allowed the analysis of the relative 
abundance of thousands of mRNAs in one experiment. The possibility to 
analyze the expression of thousands of genes in one experiment, instead of 
performing single markers studies, has provided a powerful tool to gain new 
insights in tumour biology that will help to develop diagnostic tool for clinical 
routine [43].  
After large-scale gene-expression data sets have been collected, there are 
two different ways to analyze them [43]. The first approach, called 
unsupervised classification (or hierarchical clustering), is to ask whether 
in a group of samples, there are subgroups or clusters of samples with 
similar gene-expression patterns. These similarities in gene expression can 
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be used to classify a cancer into subtypes that could have similarities in 
biological behaviour. This type of data analysis has the advantage that 
additional clinical data are not required [44]. For example unsupervised 
analysis identified five molecular subtypes of breast cancer that differ 
markedly in their aggressiveness and prognosis (see 1.4.4). 
The second approach to data analysis is known as supervised 
classification. Samples are divided into groups that are known to have 
different clinical end points (for example, recurrence versus no recurrence, 
drug response versus no drug response), and genes that can correctly 
identify the distinct groups are searched for. One set of tumours (called 
training set) is used to identify the genes that discriminate between the 
groups - the gene expression signature- and then a second, independent, set 
of tumours (called the validation set) is used to test how well these genes 
can classify samples that have not been grouped [44]. 
Although unsupervised approaches seem to be less biased, the possibility to 
identify informative molecular details of clinical subgroups is enhanced when 
all additional available clinical information is included in the analysis [43]. 
We could describe three approaches how to find connections between the 
patterns of gene expression by tumour cells and the behaviour of these cells: 
the data-driven approach, the knowledge-driven approach and the model-
driven approach [44]. The most straightforward is the data-driven 
approach, in which a genome-wide analysis of gene expression is carried 
out, and then correlates between patterns of gene expression and certain 
tumour traits are searched for. The strength of this approach is that it is 
unbiased: there are no assumptions about which genes are likely to be 
involved in the process of interest. A drawback of this approach is that the 
outcome relies solely on the quality of the data (and the samples). 
By contrast, using the knowledge-driven approach, genes that are 
thought to be relevant to a particular cancer trait, are selected on the basis 
of the scientific literature. This approach is often used when only formalin-
fixed paraffin-embedded tumour tissue is available. The RNA isolated from 
such tissue is fragmented, and such poor-quality RNA is far from ideal for 
genome-wide quantitative analysis using DNA microarrays. It can, however, 
be analysed by PCR with reverse transcription, although this approach 
precludes genome-scale analysis of gene expression. Thus, in studies 
involving formalin-fixed paraffin-embedded material, sets of ‘likely suspect’ 
genes are tested. A drawback of this approach is that the genes that are not 
known to be involved in a process cannot be considered. 
In the model-driven approach, the transcriptional responses of cells after 
exposure to specific stimuli are used to predict tumour traits. For example, a 
gene-expression signature for wound healing has been used to predict the 
survival of individuals with breast cancer (see 1.5.1). Similarly, gene 
expression signatures that reflect the activation of specific oncogenic 
pathways have been used both to determine prognosis and to predict 
responses to anticancer drugs [44]. This approach has the drawback that the 
experimental model used might not accurately reflect the processes that 
occur in tumours. 
If the presence of a certain transcription factor is known to affect the 
prognosis of individuals with a particular cancer, then in the knowledge-
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driven approach, the gene encoding this transcription factor would be 
incorporated into a prognostic signature. In some cancers, however, this 
gene might be expressed, but its product might be not-functional (for 
example, as a result of a missense mutation). For this reason, in a data-
driven approach, targets downstream of a transcription factor of interest are 
often found to be distinguishing features, rather than the gene encoding the 
transcription factor itself, because the expression of these targets provides 
more relevant information on the activity of the transcription factor [44]. For 
example the Paik's gene signature (see 1.5.1) for the prognosis of breast 
cancer that was derived from 250 ‘candidate’ genes selected on the basis of 
published studies, includes ESR1 which encodes oestrogen receptor-α (ER-α;
a transcription factor that is expressed by most breast cancers). By contrast, 
the van 't Veer's signature (see 1.5.1) for assessing breast-cancer prognosis 
that was identified by a data-driven approach, does not include ESR1 itself 
but includes several genes that are targets of ER-α4 [44]. 

1.5.1 PROGNOSTIC PROFILES 
 
Prognostic indicators based on currently available clinical and histopathologic 
variables already exist and are used in clinical practice. Examples of such 
indicators include the Nottingham Prognostic Indicator (NPI), the St Gallen 
criteria, the NIH consensus guidelines and Adjuvant!Online (Adjuvant! Inc, 
San Antonio) which use criteria like tumour size, tumour grade, lymph node 
status and hormone receptor status to predict a patient's outcome [47, 48, 
49, 50]. However, these indicators are still inadequate in that within a given 
patient population with a specific predicted risk of recurrence, there are 
always patients whose actual clinical outcome does not match that predicted 
by the indicator [51]. Even well-validated tools like Adjuvant Online, which 
are used to predict recurrence, mortality risks and the benefit of adjuvant 
systemic therapy, can still lead to patients being unnecessarily treated with 
toxic therapies or not treated when they have a poor outcome [51]. More 
than 80% of patients with breast cancer receive adjuvant chemotherapy, 
although only approximately 40% of them will relapse and ultimately die of 
metastatic breast cancer [52]. Therefore new prognostic are needed to 
identify patients who are at the highest risk for developing metastases, which 
might enable oncologist to begin tailoring treatment strategies to individual 
patients [52]. For example, it is already known that prognosis for breast 
cancer patients with lymph node positive disease is poorer and that adjuvant 
systemic therapy decreases their risk of recurrence, but for patients with 
lymph node negative disease (LNN), the benefit of adjuvant systemic therapy 
is not so clear. Thus the ability to risk stratify LNN patients according to 
prognosis could provide important information for the patient and the 
treating oncologist [51]. 
Although many different prognostic indicators are in development, there are 
seven that are relatively well characterized, four of which have been 
specifically developed to address this question of prognosis in LNN patients 
(1, 3, 4, 5) [51]: 
1. Amsterdam 70-gene profile 
2. Genomic Grade index (GGI) 
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3. Recurrence Score (RS) 
4. Rotterdam 76-gene signature 
5. Wound response signature 
6. Invasiveness gene set (IGS) 
7. Intrinsic gene subtypes 
 

The Amsterdam 70-gene profile (1) was first developed from 
supervised gene expression profiling analysis of frozen tumour samples from 
two distinct patient populations using the Agilent microarray platform (see 
fig. 1.10). All patients were <55 years of age and had lymph node negative 
disease but 34 of the 78 (44%) patients had distant metastasis within 5 
years of completing treatment and 44 of the 78 (56%) patients did not 
develop distant metastasis within 5 year [53]. By comparing the gene 
expression profile of these two groups, a signature 70-gene set was 
identified that correlated with clinical outcome [51]. The hypothesis of van 't 
Veer and colleagues was that a tumour would have an intrinsic capacity to 
metastasize, regardless of size, and that this features could be captured by 
gene expression profiling [20]. The expression profile of these 70 genes 
classified the primary breast tumours as having either a poor-prognosis 
signature, which means they were likely to metastasize, or a good-
prognosis, meaning that the development of metastases was unlikely [52].  
Internal validation of the set indicated that it could accurately predict disease 
outcome for 65 of the 78 (83%) patients using the 70-gene signature [51]. 
The poor-prognosis signature included genes involved in the cell cycle, 
invasion and metastasis, angiogenesis and signal transduction. Interestingly, 
it also comprised genes that are almost exclusively expressed by the stromal 
cells that surround the epithelial cells in a tumour. For example, these 
include MMP1 and MMP9, which are required for ECM (ExtraCellular Matrix) 
degradation and tumour invasion [52]. The upregulation of genes that are 
highly expressed by stromal cells in a prognosis signature for breast cancer 
metastasis, and their defined role in invasion, again underlines the influence 
of the tumour microenvironment on tumour progression. Focusing on 
epithelial cells using microdissection to understand breast cancer progression 
and detection of prognostic markers could be not sufficient to provide a 
successfully prognostic gene signature [52]. External validation of the 
Amsterdam 70-gene prognostic indicator came from a retrospective analysis 
of 295 young patients ( age <53 years) with both lymph node negative and 
lymph node positive disease, some of whom were included in the earlier trial 
[54]. The mean 5 year overall survival for the poor prognosis group of 
patients was 74% as compared to 97% for the good prognosis patients. In a 
second validation series by the TRANSBIG (TRANslating molecular knowledge 
into early breast cancer management building on the Breast International 
Group) consortium of 307 early-stage LNN breast cancer patients who did 
not receive adjuvant systemic treatment from 5 different European centers, 
the 70-gene signature holds up as an independent predictor outcome [20]. 
In these patients, the 70-gene prognostic indicator was better at predicting 
time to distant metastasis and overall survival compared to the clinical 
variables used by Adjuvant! Online. The TRANSBIG validation showed that 
70-genes diagnostic test called Mammaprint® (Agendia, Amsterdam, The 
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Netherlands), exhibits a significant prognostic value (Hazard Ratio [HR] for 
distant metastasis: 2.32, 95% Confidence Interval [CI]: 1.35-4). The 
sensitivity to predict 10-years breast cancer death was 0.84 (0.73-0.92) and 
the specificity was 0.42 (0.36-0.48). While Adjuvant! Online exhibited a 
similar sensitivity 0.82 (0.71-0.90), its specificity was lower 0.29 (0.23-0.35) 
[55].  
 
A. 
 

B. 
 

Figure 1.10: Predicting disease outcome by using gene expression test. A. Generating a 
prognostic gene-expression signature by using supervised classification. The gene 
expression of cells in a set of tumours of known clinical outcome is analysed by using whole-
genome microarrays. The results for each tumour sample are then classified into two 
categories: tumours with a good outcome (no distant metastases developed) and tumours 
with a poor outcome (distant metastases developed). Using bioinformatic analysis, genes 
whose expression is significantly correlated with disease outcome are identified, and these 
are known as prognosis reporter genes. An optimal set of genes is then selected from the 
prognosis reporter genes by using bioinformatic algorithms and the pattern of expression of 
this multigene set is known as a gene-expression signature (or classifier). B. The gene-
expression signature generated in a is shown as a ‘heat map’. The expression of the 70 
prognosis reporter genes selected as the optimal set (vertical columns) is shown for 78 
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tumours (horizontal lines). The outcome of the disease is shown on the right: white indicates 
metastasis; black indicates no metastasis; and yellow indicates the threshold for metastasis. 
(adapted from [44]). 
 
These findings suggested that Mammaprint® could potentially increase the 
detection rate of patients with good prognosis, and thereby allow a decrease 
in the use of adjuvant chemotherapy. The clinical merit of Mammaprint® is 
the main research question of a large phase III randomized trial called 
MINDACT (Microarray In Node negative Disease may Avoid ChemoTherapy) 
[20]. Risk assessment for LNN breast cancer patients will be determined by 
the both 70-gene and clinical criteria (assessed by using Adjuvant! Online) 
(see fig. 1.11). 
For patients with hormone receptor-positive breast cancer, who are 
designated as having a good prognosis both by Adjuvant!Online and genomic 
test, only adjuvant hormonal treatment is advised. In the case of a 
concordant high-risk assessment, patients will be advised to undergo 
chemotherapy and hormonal therapy for endocrine-responsive disease. The 
merit of the genetic predictive assay is tested in the third group, in which the 
clinical and genomic criteria are discordant. These patients will be 
randomized to either undergo adjuvant chemotherapy treatment based on 
genomic or based on clinical criteria [20]. If the main hypothesis of this trial 
(MINDACT) is validated, this study will be the first one to provide a level I 
evidence for a decrease in the indications of adjuvant chemotherapy [55]. 

Figure 1.11: Conventional and molecular diagnostic testing for cancer. Conventional 
diagnostic tests rely heavily on morphological criteria to judge the aggressiveness of cancer, 
a process known as grading. More recently, multigene-expression tests (e.g. Mammaprint®)
have been shown to be powerful tools for predicting disease outcome. One current 
challenge is how to integrate the knowledge obtained from these conventional tests and 
molecular diagnostic tests into a single recommendation for the oncologist treating the 
patient (adapted from [44]). 
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Two key biological processes captured by the 70-gene signature, 
proliferation and cell cycle, are also the main biological determinants of the 
Genomic Grade Index (GGI) (2). Sotiriou and colleagues [56] used 
microarray analysis as a tool to further subclassify the intermediate-risk 
group of histological grade II tumours [20]. These tumours, which represent 
30 - 60% of cases, are the major source of inter-observer discrepancy and 
may display intermediate phenotype and survival, making treatment 
decisions for these patients a great challenge, with subsequent under- or 
over-treatment [55]. They developed a GGI score based on 97 genes, that 
were consistently differentially expressed between low and high grade breast 
carcinomas. The GGI, which essentially quantifies the degree of similarity 
between the tumour expression pattern of these 97 genes and tumour 
grade, was able to reclassify patients with histological grade II tumours into 
two groups with distinct clinical outcomes similar to those with histological 
grades I and III, respectively [55]. 
 The 21 gene Recurrence Score prognostic indicator (Oncotype Dx™) 
(3) was developed using slightly different methods than those described 
above [57]. In this series of experiments, 250 candidate genes were selected 
from the published literature, genomic databases, and gene expression 
profiling experiments (using RT-PCR technique) and correlated with breast 
cancer recurrence in 447 patients [51]. From these 250 genes, 16 cancer-
related genes and five reference genes were selected and their expression 
levels used to develop the Recurrence Score assay, which is unique in that it 
can be performed on Formalin-Fixed, Paraffin-Embedded (FFPE) tumour 
samples and does not require frozen sample [51]. This signature is a 
combined score of these 16 genes of interest, including ER, PR, Erb-B2 and 
Ki67 [55]. This predictor has allowed to identify a population (recurrence 
score < 18) that presents a very good prognosis (6.8% of 10-year distant 
metastasis), and could be spared from adjuvant chemotherapy. External 
validation of the 21 gene Recurrence Score came from the application of this 
prognostic indicator to patient samples collected in the large  multicenter 
NSABP (National Surgical Adjuvant Breast and Bowel Project) B-14 trial, that 
examined the benefit of adjuvant tamoxifen in patients with hormone 
receptor-positive, LNN breast cancer [51]. As for the 70-gene signature, the 
process of clinical validation to achieve level I evidence is ongoing for this 
signature in a clinical trial named TAILORx (Trial Assigning IndividuaLized 
Options for Treatment (Rx)) [55]. 
Also another study [58] reported novel markers to predict distant metastasis 
risk and clinical outcome in patients with oestrogen-receptor-positive breast 
tumours treated with adjuvant tamoxifen [52]. Ma and colleagues identified 
three genes, HOXB13, IL17BR and CHDH, and the HOXB13:IL17BR ratio 
index in particular, that strongly predicted clinical outcome in breast cancer 
patients receiving tamoxifen monotherapy. In a subsequent larger 
independent patient cohort they showed that HOXB13:IL17BR index is a 
strong independent prognostic factor for ER+ node-negative patients 
irrespective of tamoxifen therapy [59]. 
 The Rotterdam 76-signature (4) was specifically developed to address 
the clinical question of how to identify those patients with LNN breast cancer 
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that would benefit from adjuvant systemic therapy, regardless of hormone 
receptor status, since these patients are cured with locoregional treatment 
(e.g. application of radiotherapy after mastectomy) [60]. 286 with LNN 
breast cancer that had not received adjuvant therapy were divided into ER−
and ER+ groups and subjected to gene expression profiling. 115 patients 
served as the source of the training set data, from which a prognostic model 
was created by combining the 76 genes selected from the profiling 
experiments with ER status data. The remaining 171 mixed ER+ (75%) and 
ER− (25%) tumours served as the validation set. The sensitivity of the 76-
gene test in predicting distant metastasis was 93%, and the specificity was 
48%. In multivariate analysis of distant metastasis-free survival, the 76-gene 
prognostic indicator outperformed clinical variables and was the only 
significant variable to contribute to prognosis prediction. In a subsequent 
study, the Rotterdam 76-gene signature was also externally validated using a 
retrospective analysis of an independent data set of 180 LNN patients who 
did not receive adjuvant systemic therapy. The 76-gene signature was able 
to accurately identify poor prognosis patients (increased risk of distant 
metastasis within 5 years) versus good prognosis patients with a hazard ratio 
of 7.41 (95% CI 2.63–20.9). Only 16 patients had ER-negative disease, 
making generalizations to this subset difficult. In multivariate analysis of 
distant metastasis free survival, the Rotterdam 76-gene signature was the 
only factor significantly affecting prognosis [51]. Biological processes 
underlying this 76-gene signature are cell cycle, proliferation, cell death, DNA 
replication, and repair [20].  
Huang and colleagues [61], with a different approach, identified aggregate 
pattern of gene expression, called metagenes, that were associated with 
lymph-node status and a 3-years-recurrence risk in breast cancer patient of 
all ages. Because of the small sample numbers, cross-validation is used to 
determine the accuracy of the 3-year-recurrence predictor instead of a 
second independent set of tumour samples, as previous studies. These 
metagenes, associated with lymph node status and recurrence, were capable 
of predicting outcomes in individual patients with about 90% accuracy. The 
metagenes defined distinct groups of genes, suggesting different biological 
processes underlying these two characteristics of breast cancer. 

There are several prognostic signatures that are less clinically 
developed but are of interest. The Wound response signature (5) arose from 
the identification of core serum response (CSR) genes that changed 
expression levels when cultured fibroblasts were activated with serum [51, 
62]. Evaluation of the CSR genes suggested that they represent important 
processes in wound healing like matrix remodeling, cell motility and 
angiogenesis, all of which are predicted to play a role in cancer invasion and 
metastasis [51]. Subsequent evaluation of the expression of these CSR genes 
in an external gene expression profiling data set generated from 295 patient 
samples used to validate the Amsterdam 70-gene profile, indicated that 
patients with tumours that expressed an activated wound response signature 
had a significantly decreased survival and increased probability of distant 
metastasis as compared to patients whose tumours expressed a quiescent 
wound response signature [62]. In addition, multivariate analysis of 
metastasis and death in this patient population indicated that the wound 
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response signature was an independent predictor of prognosis. Genes 
associated with proliferation alone may also provide prognostic information 
within a subset of patients. The proliferation gene profile was derived from 
the Amsterdam 70-gene dataset [53, 54], in which investigators noted that 
outcome heterogeneity still existed within patient populations classified as 
having good and poor outcome signatures. They found that after 
stratification by ER expression and age, the expression level of a group of 50 
cell cycle-related genes predicted outcome among those patients identified 
as having higher than expected ER expression levels for their age [63]. The 
proliferation signature is an example of a prognostic indicator that may play 
a role in a specific patient population. Expression levels of hypoxia-induced 
genes are also prognostic in early stage breast cancer [64]. While the 
independent contribution of this signature is not yet clear, it may be 
therapeutically relevant since we currently have no strategies for selecting 
appropriate patients for antiangiogenic strategies [51]. 

Recent reports have focused upon the genes associated with the 
putative cancer stem cell, which comprise less than 10% of the cells in 
breast cancer and are highly tumourigenic [51]. These cells are characterized 
by high expression of the cell surface marker CD44, which is implicated in 
cell adhesion, migration, and proliferation, and low expression of the less 
well-characterized CD24. Comparison of CD44+/CD24− cells with normal 
epithelial cells identified 186 genes associated with the tumourigenic cells, 
called the Invasiveness Gene Set (IGS) (6), which showed a prognostic value 
in both breast and other tumour types. Examination of the 295-patient 
Amsterdam dataset revealed that the IGS is prognostic independent of 
clinical characteristics, and appears to be particularly so among ER-positive 
or intermediate grade tumours. The IGS gene set overlapped little with other 
prognostic gene sets, and its impact was independent of the wound response 
signature [65]. 
 Although the Intrinsic gene subtypes (7) described by Perou and 
colleagues (see 1.4.4) were not originally intended to function as prognostic 
indicators, they correlated with prognosis in the original population of 49 
patients with relatively locally advanced tumours who had been treated with 
neoadjuvant doxorubicin on a clinical trial [24, 51]. Patients with the Luminal 
A subtype had the best prognosis as evaluated by overall survival (OS) and 
relapse-free survival (RFS) followed by Luminal B. Both the basal-like and 
Erb-B2+/ER− subtypes had the worst OS and RFS rates. Correlation of 
outcome with subtype in the independent Amsterdam dataset revealed a 
significantly longer time to development of distant metastasis among 
patients with Luminal A tumours compared to patients with basal-like or Erb-
B2+/ER− tumours [30, 51]. 
In the table 1.5 are summarized the principals characteristics of the 
prognostic profiles described above. 
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Profile Developed 
from Technology Validation Rationale Clinical 

use 

Amsterdam 70 gene 
profile(Mammaprint®)

[53, 54] 

78 LNN pts, 
age<55 years, 
followed for >5 
years 

oligonucleotide 
microarray 

independent 
training set 

good signature is 
related to low 
metastasis risk; poor 
signature is 
associated with a 
high metastasis risk 

predictor of 
distant 
metastasis 
in stage I-II; 
requires 
frozen tissue

Genomic Grade index 
97-gene signature 

[56] 

intermediate-risk 
group of 
histological grade 
II tumours 

oligonucleotide 
microarray 

independent 
training set 

GGI reclassifies 
patients with 
histological grade II 
tumours into two 
groups  

none at this 
time 

Recurrence Score 
(Oncotype Dx™) [57]

candidate list of 
250 genes 
applied to 447 
pts with LNN and 
LNP disease, ER+ 
and ER- 

RT-PCR independent 
training set 

likelihood of distant 
recurrence in 
tamoxifen-treated 
pts 

predictor of 
distant 
relapse in 
pts ER+, 
LNN 
disease. Can 
be 
performed 
in fixed 
archival 
tissue 

Rotterdam 76-gene 
signature [60] 

115 pts LNN 
disease,  
no systemic 
neoadjuvant or 
adjuvant Rx, 
followed for > 5 
years 

oligonucleotide 
microarray 

independent 
training set 

good 76-gene 
signature versus 
poor 76-gene-
signature for distant 
metastasis-free 
survival 

predictor of 
distant 
metastasis-
free survival 
in pts with 
LNN disease 
not treated 
with 
systemic 
therapy. 
Validated 
primarily in 
ER+. 
Requires 
frozen 
tissue. 

Wound response 
signature [62] 

identification of 
core serum 
response genes 
(446)  expressed 
in serum-
stimulated 
fibroblast 

cDNA microarray independent 
training set 

expression of serum 
activated signature 
versus no expression 
to predict survival 
and distant 
metastasis 

none at this 
time 

Invasiveness gene set 
(IGS) [65] 

identification of 
186 genes that 
differentiate 
tumourigenic 
CD44+/CD24- 
cells from normal 
breast epithelium 

oligonucleotide 
microarray 

independent 
training set 

expression of 
Invasiveness gene 
set related to 
metastasis-free 
survival and overall 
survival 

none at this 
time 

Intrinsic gene 
subtypes [23, 24] 

gene list from 
unsupervised 
analysis, 49 pts 
with locally 
advanced 
disease, Rx 
neoadjuvant 
doxorubicin 

cDNA cross-validation luminal A tumours 
have a better 
outcome than 
luminal B tumours. 
Worst outcome is for 
basal-like and Erb-B2 
tumours 

none at this 
time 

Table 1.5: Prognostic profiles (for more details see text). pts:patients, LNN: lymph node 
negative, LNP: lymph node positive, Rx: treatment. Adapted from [51, 52]. 
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1.5.2 COMPARISON OF PROGNOSTIC PROFILES 
 
In order for a new prognostic or predictive assay to be clinically accepted it 
must be accurate, reproducible, feasible using clinical samples and it has to 
provide better information for clinical decision-making [51]. As described in 
the previous paragraph, there are currently several tools, each incorporating 
slightly different clinical and histopathologic variables into a prognostic 
model, available to the practicing oncologist to guide breast cancer treatment 
decisions. These conventional clinicalpathologic tools are useful but 
sufficiently inaccurate in predicting either good or bad outcomes, such that 
many patients are either undertreated or overtreated with adjuvant therapy.  
Comparison of the Amsterdam 70-gene signature with the St. Gallen or NIH 
criteria reveals that the 70-gene signature assigns more LNN patients to the 
low risk prognosis group than either of the other two clinical indicators: 40% 
versus 15% versus 7% respectively [54]. Those patients identified as low 
risk by the 70-gene profile had a higher likelihood of metastasis-free survival 
than those identified as low risk by the other two methods, thereby 
indicating that use of the Amsterdam signature could still identify those 
patients with high risk disease while resulting in fewer patients being 
inappropriately treated. Comparison of the Amsterdam 70-gene signature to 
the Adjuvant! Online risk assessment also confirmed the added benefit of the 
70-gene profile to clinical risk assessment. The additional benefit of this and 
similar genomic tools over conventional clinical-pathologic criteria is still 
controversial [66]. The Rotterdam 76-gene signature also appears to be 
superior to both the St. Gallen and NIH consensus criteria, with respect to 
being able to identify those patients with high risk disease, while reducing 
the numbers of patients with LNN disease unnecessarily exposed to the 
toxicity of adjuvant systemic therapy [60]. More specifically, 40% of patients 
classified as average or high risk patients by St. Gallen and 41% of patients 
classified as average or high risk by NIH would have been reclassified 
accurately as low risk using the 76-gene signature [67]. As this analysis 
suggests, these molecular profiling prognosticators will likely provide the 
most impact when applied in conjunction with clinical prognostic variables 
rather than instead of clinical variables. 
Fan and colleagues [66] obtained a single dataset of 295 samples and 
applied five gene-expression-based models (intrinsic subtypes, 70 gene 
profile, wound response, recurrence score and the two-gene ratio) to 
compare the predictions derived from these gene sets for individual samples. 
They found that most models had high rates of concordance in their outcome 
predictions for the individual samples. In particular, almost all tumours 
identified as having an intrinsic subtype of basal-like, Erb-B2-positive and ER, 
or luminal B (associated with a poor prognosis), were also classified as 
having a poor 70-gene profile, activated wound response, and high 
recurrence score. The 70-gene and recurrence-score models, which are 
beginning to be used in the clinical setting, showed 77% to 81% agreement 
in outcome classification [66]. 
The most interesting observation to be made from the concordance of the 
different gene expression profile prognostic indicators with respect to 
predicting clinical outcome, is that there is little gene overlap between 
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different prognostic signatures, i.e. they have few genes in common among 
all of them [66, 51]. For example the 70-gene and 76-gene signatures have 
only three genes in common, similarly the 70-gene and recurrence-score 
profiles overlapped by only 1 gene. This finding was interpreted by some to 
indicate that such gene-expression signatures are highly unstable [68, 44] 
but, because these gene-expression signatures could be independently 
validated in large groups of patients, it is more likely that different signatures 
use different genes to monitor the same biological processes. Although 
different gene sets are being used as predictors, they each track a common 
set of biologic characteristics that are present in different groups of patients 
with breast cancer, resulting in similar predictions outcome [66]. The ability 
to predict clinical outcome is not related to the expression of a specific and 
unique set of breast cancer-promoting genes, but there are a multiple gene 
sets within important pathways that can serve as correlates for the biological 
processes driving these tumours [68]. The overlap in gene identity among 
gene-expression profiles is not a good measure of reproducibility and the 
classification of individual samples is the relevant measure of concordance 
[66]. Some criticisms have been raised regarding the prognostic gene 
signatures reported so far. First, some argue that most of the signatures only 
add little information compared to a clinico-pathological score that would 
include ER, Erb-B2 and Ki67 in addition to the conventional clinical 
parameters. It must also be remarked that most of the genes included in the 
various published prognostic gene signatures are related to cell proliferation, 
and the question then arises as whether a simpler biomarker for such 
parameter like Ki67, which has been measured routinely for many years, 
could have provided similar results [55, 69]. However, gene expression 
profiling studies suggest that measuring proliferation with a more objective, 
automated and quantitative assay may be more robust than less quantitative 
assays such as immunohistochemistry [51]. 
Another criticism relates to the fact that most of the predictors were 
generated using a mix of molecularly heterogeneous tumours. Since breast 
cancer population is a mix of at least four different molecular classes [see 
1.4.4] and oncogenic events are different across these subtypes, some have 
suggested that optimal predictors should be set up in each molecular class 
[70]. This was applied, for example, by Wang and colleagues who developed 
a 76-gene signature to identify patients at a high [60] risk of distant 
recurrence based on the prognostic genes separately identified in ER– and 
ER+ tumours. Desmedt and colleagues, in a recent meta-analysis of publicly 
available gene expression breast cancer data, showed also that proliferation 
is the strongest parameter predicting clinical outcome in the ER+/Erb-B2– 
subgroup of patients only, whereas immune response and tumour invasion 
appear to be the main biological processes associated with prognosis in the 
ER–/Erb-B2– and ERB-B2+ subgroups, respectively [55, 71]. This implies 
that the molecular background of the tumour should be taken into 
consideration to make prediction regarding prognosis [55]. 
While sensitivity of gene signatures for prognostic purpose looks good, there 
is still around 5–10% of patients who will present a metastatic relapse in the 
group predicted as low risk of relapse. Since the newer generation 
chemotherapy decreases by 30% the risk of breast cancer death in the 
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whole population of breast cancer, it can be that an optimal chemotherapy 
could provide benefit even in this good prognostic population [55]. 
Nevertheless, it must be emphasised that most of the tumours classified as 
good prognosis are actually predicted to be resistant to chemotherapy [72]. 
Recently, it has been reported that some gene signatures present a strong 
time-dependency [73, 74]. This finding makes sense, since these signatures 
were built to predict the occurrence of metastases within the first 5 years, 
and are enriched in genes involved in cell proliferation. Thus predictors for 
metastatic relapse should be designed to predict both early and late relapses 
[55]. Several gene signatures for prognostic purpose have been generated at 
this time. At least two of them are being validated in prospective trials [53, 
54, 57]. Although they allow an increase in the rate of patients who could be 
spared adjuvant chemotherapy while still correctly identifying the high-risk 
patients, they present some limitations that will have to be taken into 
account to generate more accurate ‘second generation’ gene signatures [55]. 
 
1.5.3 PREDICTIVE MARKERS OF RESPONSE TO NEOADJUVANT 
CHEMOTHERAPY IN BREAST CANCER 
 
1.5.3.1 Neoadjuvant chemotherapy 
 
NeoAdjuvant ChemoTherapy (NACT), also known as primary or induction 
chemotherapy, refers to administration of chemotherapy before locoregional 
treatment, with surgery and/or irradiation [75]. Since its initial use in the 
early 1970s [76], NACT has become the standard of care in the management 
of Locally Advanced Breast Cancer (LABC) primarily due to its ability to 
downsize large tumours. Lately NACT is increasingly being used for 
treatment of early-stage breast cancer. 
However despite high response rates to NACT, a small proportion of patients 
fail to respond or even progress during therapy. The early identification of 
these non-responders assumes importance to plan alternative treatment 
options for such patients. Thus, biological markers that can reliably predict 
clinical or pathological response early during the course of treatment, have 
considerable clinical potential [75]. Clinically, neoadjuvant chemotherapy has 
several advantages:  

º it can downsize large tumours, thus allowing breast-conserving surgery;  
º it provides information on tumour response to a specific 

chemotherapeutic agent, allowing to investigate molecular determinants 
of chemotherapy response; 

º it helps in achieving longer disease-free survival (DFS) and overall 
survival (OS), presumably through early treatment of systemic 
micrometastatic disease [77]. 

From biological point of view, justification for the evaluation of NACT derives 
from several hypothetical bases [75]: 
º Almost all patients with LABC harbor micrometastases that can 

eventually lead to their death. Even about 10% patients with early 
breast cancer have circulating cancer cells in the peripheral blood [78]. 
It is now known that primary tumours contain cell variants destined to 
form metastases [75]. If these cells are forced into the circulation by 
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local perturbation of the primary tumour, as would occur during 
surgery, they may then establish micrometastases elsewhere in the 
body. Surgery performed after effective chemotherapy would greatly 
reduce the chances of these clonogenic cells being disseminated in 
significant quantities and also take care of those already present in the 
circulation [75]. 

º There is evidence from animal models that surgical removal of the 
primary tumour can lead to enhanced metabolic activity in metastatic 
deposits with a risk of further dissemination [75]. Retsky et colleagues 
discussed the role of anti-angiogenic factors secreted by cancers; 
removal of the tumour may remove these inhibitory factors, inducing 
angiogenesis in the micrometastatic tumour bed leading to rapid growth 
and further dissemination of tumour cells [79]. It is suspected that such 
stimulated angiogenesis may occur in up to 20% of premenopausal 
node-positive breast cancer patients. Chemotherapy given 
preoperatively may help to counteract the stimulation of the growth of 
metastases by these tumour substances released into the circulation as 
a result of surgery [75]. 

º Successful early treatment with systemic therapy is consistent with the 
Goldie-Cold man hypothesis, whereby metastases are treated prior to 
the emergence of chemo-resistant clones [80]. They hypothesized that 
when a tumour cell population increases, the absolute number and also 
the percentage of drug resistant cells in the tumour increases, possibly 
because of spontaneous somatic mutations. With the enhanced 
proliferation of cells following primary tumour removal, it is likely that 
the number of resistant phenotypes in the metastatic population will 
increase. Hence, NACT should not only destroy cells made more 
sensitive by their kinetic alteration but also prevent cell proliferation and 
a consequent increase in the resistant cells [75]. 

º Also earlier systemic treatment of the primary tumour when it is still 
small, allows chemotherapy to make maximal use of tumour kinetics by 
attacking tumour cells when their proliferative activity is at the highest 
level [81]. 

º Finally NACT ensures better delivery of anticancer agents to the tumour 
because of an intact tumour vasculature [75]. 

 
The complete response to NACT is the ultimate goal of successful 
chemotherapy treatment. The response can be assessed clinically and/or 
pathologically. Clinical response is mainly evaluated by the conventional 
techniques of clinical measurement or imaging [75]. Reduction in the tumour 
size is a good indicator of response to NACT. Several guidelines to define 
tumour response have been proposed [82, 83]. According to these 
guidelines, responses can be classified as a complete response, partial 
response (the reduction of the tumour mass by at least 50%), stable disease 
(minor response or the increase of tumour volume of not more than 25%) 
and progressive disease (increase of more than 25% tumour volume or the 
appearance of new lesions). In general 60-90% of patients achieve clinical 
response to NACT. Complete pathologic remissions are, however, noted in 
only 3-30% of patients in most breast cancer trials [75]. Although few 
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patients show mixed responses (response in the primary tumour and no 
response in the lymph nodes and vice versa) for most patients, the 
responses are similar in all sites of the tumour involvement [75]. Pathological 
complete response (pCR) is considered to be the most powerful predictor of 
outcome in terms of survival [84]. There are different systems for assessing 
pathological responses and this represents a limitation in comparing results 
across studies. Some studies defined pathologic complete response as no 
residual invasive cancer in the breast after neoadjuvant therapy and at the 
time of surgery [85], whereas other groups also take node status and 
noninvasive cancer into account [86]. Thus, the inconsistency in pCR 
definition should be considered when evaluating results from published 
neoadjuvant clinical trials. 
The most important drugs used in the treatment of breast cancer are 
anthracyclines (e.g doxorubicin), methotrexate, cyclophosphamide and 
taxanes (docetaxel, paclitaxel) [87]. In advanced disease single agent 
therapy with these drugs leads to response rates between 20% and 60% 
with a relatively short duration of response of three to nine months. 
Combination chemotherapy, when compared to monotherapy, significantly 
increases both the response rates and duration of response rates for 
advanced stage breast cancer [87]. Anthracycline-based combination 
therapies have been shown to be more effective than methotrexate and 
taxanes add to the efficacy of anthracyclines [87, 88]. 
 
Several single biomarkers have been identified that predict response to NACT 
to a variable extent and some of them can be considered also with a 
prognostic power.  
 Tumour size: complete response was 50% for patients with tumours < 
2 cm, 38% in T 2 - 4 cm and only 18% if T > 5 cm in size. It is also known 
that patients with large tumours and N2 nodes (higher stage breast cancer) 
are less likely to have a complete pathological response compared to 
tumours in lesser stage [75]. 
 Hormone receptor status: oestrogen and progesterone receptors (ER, 
PR respectively) are hormone activated nuclear transcription factors that 
influence directly the mammary epithelial growth, differentiation, and survival 
[75, 87]. Hormone receptor status of a tumour is identified as an 
independent variable that is significantly associated with the likelihood of 
achieving pathologic complete response. pCR rates were significantly higher 
in patients with hormone receptor negative tumours. In particular there are 
several evidences that ER-negative tumours tend to respond better to 
chemotherapy than ER-positive tumours [75]. 
 Tumour type and differentiation: a retrospective analysis of patients 
who received anthracycline-based NACT revealed that patients with invasive 
lobular carcinoma were less likely to achieve a pCR compared with patients 
with invasive ductal carcinoma [75, 89]. A possible explanation could be that 
histological and biological factors predicting a poor response to NACT 
(histological grade, ER, Ki-67 and p53 status) were more frequent in ILC 
than in IDC patients. Few other pathologic characteristics, such as poor 
differentiation and high nuclear grade also make a tumour more sensitive to 
NACT compared with tumours that are well differentiated [75]. 
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Human epidermal growth factor receptor 2 (Erb-B2 o HER2) status: Erb-
B2 (also referred as neu) belongs to the epidermal growth factor receptor 
(EGFR) family of tyrosine kinase receptors. Erb-B2 does not have its own 
ligand and forms heterodimers with other members of EGFR family [87, 
90].Erb-B2 overexpression (15-25% patients with breast cancer) has been 
associated with poor outcome, especially in LNP patients. The association 
between Erb-B2 expression and the response to NACT is not so clear and 
published data are conflicting. An improved response to anthracycline-based 
NACT in Erb-B2 positive patients has only been demonstrated in some of the 
studies [87]. 
 Topoisomerase IIα expression: there is a growing evidence that 
topoisomerase IIa (Top II) is a marker for anthracycline, and microtubule-
associated protein tau (MAPT) for taxane sensitivity. The most commonly 
used drug in breast cancer, the anthracyclines, interact with the nuclear 
enzyme Top II. Top II reduces DNA twisting and super-coiling, allowing 
selected regions of DNA to untangle and thus engage in transcription, 
replication, or repair processes [75]. Due to the close location of Top II and 
Erb-B2 genes on chromosome 17, Top II gene aberrations (either 
amplification or deletion) are mainly associated with Erb-B2 gene 
amplification [75]. These observations have led to the hypothesis that Erb-B2 
amplification is only a surrogate marker and the Top II 
amplification/overexpression could be the real predictive marker of response 
to anthracycline-based chemotherapy. Top II amplification is present in 5% 
of the total population, one third of Erb-B2 amplified tumours. It has been 
noted that, contrary to Erb-B2, where gene amplification is almost always 
correlated with protein expression, there was no correlation between Top II 
gene amplification and protein overexpression, as protein expression of Top 
II is highly cell-cycle dependent and associated with high proliferation [87, 
91]. In literature there are controversial results respect to the link between 
Top II and the clinical response to neoadjuvant anthracycline-based 
chemotherapy, thus Top II deserves further testing in a prospective setting 
as a predictive marker [87]. 
 Tumour proliferation Ki-67: uncontrolled proliferation is the key element 
of malignant transformation [75]. The MIB-1 (Ki-67) nuclear antigen is 
expressed in the G1 (gap 1), S (synthesis) G2 (gap 2), and M (mitosis) 
phases of continuously cycling cells, but is absent in G0 (quiescent phase) 
cells. Therefore, immunostaining with monoclonal antibody MIB-1 serves as a 
measure of cell proliferation. This index is the most practical method of 
monitoring cell proliferation [75]. Tumours with high cell proliferation should 
respond well to chemotherapy. Breast carcinomas with a high Ki-67 positive 
count, show improved response to chemotherapy in several studies and the 
Ki-67 expression is found to be decreased after NACT [87]. However, 
because other studies reported different findings, there is still not a 
consensus view on this marker [75]. 
 Apoptosis related genes (p53, BAX and Bcl-2): it has been shown that 
many chemotherapeutic agents kill cancer cells by inducing apoptosis. 
Therefore, the proteins (p53 and Bcl-2 homologous family proteins) involved 
in the apoptotic pathway have been studied with a view to predicting 
chemoresponsiveness [75]. 
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The p53 gene, the ‘‘guardian of the genome’’, is a tumour suppressor gene. 
In contrast to the normal p53 gene product (protein), the mutated p53 gene 
product (protein) tends to accumulate in cell nuclei which can be detected by 
immunohistochemistry. It is mutated in at least 50% of human cancers ("the 
most mutated gene" in human cancer). The p53 encoded protein is involved 
in the apoptotic pathway, by inducing cell cycle arrest and initiating 
apoptosis. The use of p53 as a biological marker to predict response to 
chemotherapy, however, is still a controversial field of research [75]. 
The Bcl-2 gene encodes a 26-kDa protein involved in mainly inhibiting 
apoptosis. BAX, another protein of the same family of Bcl-2, shows functions 
closely with Bcl-2, but in the opposite manner, as it is a pro-apoptotic agent. 
It is reported that, either elevation of Bcl-2 or a reduction of BAX, may 
predispose to enhanced resistance to chemotherapeutic drugs. However also 
for these two markers, in the clinical context, the relationship between them 
and the chemoresponsiveness is still unclear [75, 92]. 
 
1.5.3.2 Gene expression profiling to identify predictive 
signatures 
 
For many years, the research has focused on the identification of single 
markers predicting tumour response to chemotherapy. It is unlikely that the 
action of one or only a limited number of genes will confer chemotherapy 
resistance/responsiveness in breast cancer, since the pathways involved in 
tumour response to chemotherapy are complex and different between 
individual tumours [87]. Therefore, microarray technology, giving the 
possibility to analyze gene expression on a global scale, looks promising in 
the study of chemotherapy responsiveness of breast cancer. Since response 
to chemotherapy can be monitored in the neoadjuvant setting, these studies 
have been performed by giving chemotherapy preoperatively (fig. 1.12) [87]. 
The first indication that molecular profiling could predict chemosensitivity 
came from gene expression profiling experiments in cell culture lines where 
cell lines were classified as sensitive or resistant to a specific compound. 
Evaluation of 60 cell lines and 232 compounds revealed that 88 of 232 
(38%) of profiles could accurately predict sensitivity or resistance to a given 
compound while only 12 of 232 (5%) of such profiles would be predicted to 
do so if the profiles were created by chance [61]. These data suggested that 
gene expression profiles differed between cells that were sensitive or 
resistant to a given drug, and that evaluation of these differences might be 
used in a predictive way [51, 93]. On the basis of this study, a number of 
efforts in identifying gene predictive of chemotherapy response in breast 
cancer tumours, have been published so far. 
 Ayers and colleagues [94] determined a 74 gene profile predicting 
response to neoadjuvant paclitaxel/fluorouracil plus doxorubicin plus 
cyclophosphamide in 24 patients. This profile could be validated in 18 
additional patients with a predictive accuracy of 78% and a sensitivity of 
43% [87]. They used frozen material and analyzed the gene expression 
profile with Affymetrix platform. 
 Chang and colleagues [95] correlated the expression of 92 genes and 
response to neoadjuvant docetaxel monotherapy in 24 patients and the 
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prediction accuracy was 88%. In a subsequent study by the same group, 
comparison of the gene expression profiles of all tumours after docetaxel 
treatment (regardless of whether they were classified as sensitive or 
resistant), revealed that the profiles of tumours subjected to the selection 
pressure of docetaxel were relatively homogeneous. This observation 
suggested that those tumours originally sensitive to docetaxel may have 
developed resistance to the drug or led to selection of a resistant clone as 
evidenced by convergence of the gene expression profiles of sensitive and 
resistant tumours [51, 96]. Chang and group used frozen material to perform 
the microarray experiment with a cDNA based-platform. 
 Other studies did not see statistical significant differences in gene 
expression between patients with pCR compared with patients without pCR. 
Hannemann and colleagues [97] compared the gene expression profiles of 
48 patients either treated with six courses of doxorubicin/cyclophosphamide 
(AC) or six courses of doxorubicin/docetaxel (AD). They reported that 
tumours that did not respond to chemotherapy showed minimal changes in 
overall gene expression profile before and after therapy, whereas tumours 
showing a partial remission show major changes in gene expression after 
treatment [87, 97]. Hannemann and colleagues used frozen material to 
perform the microarray experiment with a cDNA based-platform. 
 Another study by Gianni and colleagues correlated the expression of 
384 genes with pCR following paclitaxel and doxorubicin based NACT in 
patients with LABC [98]. Differently from previous studies, RNA was 
extracted from the pretreatment formalin-fixed paraffin-embedded core 
biopsies and the experiments were performed using both RT-PCR and 
microarray. They found 86 genes correlated with pCR, that was more likely 
with higher expression of proliferation-related genes and immune-related 
genes, and with lower expression of ER-related genes [75]. 
Recently, several other signatures have been published. 
 Thuerigen and colleagues identified a signature of 512 genes predicting 
response to neoadjuvant gemcitabine/epirubicin/docetaxel with a overall 
accuracy of 88% in a validation set of 48 patients [99]. They started from 
frozen material and analyzed the gene expression profiling with 21K oligo 
microarray platform. 
 Dressman and colleagues described a set of 38 genes that predicted 
response to chemotherapy containing doxorubicin/paclitaxel in 36 patients 
[100]. Some of the genes identified have been previously linked to breast 
cancer outcome and metastasis. They also started from frozen material and 
analyzed the gene expression profiling with Affymetrix microarray platform. 
 The largest study so far comes from Hess and colleagues which 
included 133 patients with stages I-III breast cancer who all received 
preoperative weekly paclitaxel and 5-fluorouracil, doxorubicin, and 
cyclophosphamide (T/FAC) chemotherapy [101]. They used 82 patients to 
develop a 30-gene molecular predictor of pathologic complete response and 
the remaining 52 patients were used to assess the accuracy of the predictor. 
The test misclassified one of the patients who achieved pCR (12 of 13) and 
one of those who had residual cancer (27 of 28) in the validation set. It 
showed significantly higher sensitivity than a clinical variable-based predictor 
including age, grade, and ER status (92% vs. 61%). The high sensitivity 
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indicates that the test correctly identified almost all of the patients (92%) 
who actually achieved pathologic complete response. However, to what 
extent this genomic predictor of sensitivity is specific to T/FAC therapy, 
rather than being a generic marker of chemotherapy sensitivity, is yet to be 
determined. In this study, the combination of genomic and clinical 
information was not significantly better than using the 30-gene predictor 
alone. Hess and colleagues used FNA (Fine Needle Aspiration) specimens for 
the microarray analysis with Affymetrix platform.  
 Another approach is to identify gene expression patterns of response or 
resistance in vitro and then transfer these results to the clinical settings [87]. 
One recent study describes two gene sets correlating with in vitro resistance 
to doxorubicin or mitoxantrone, respectively [87, 102]. The EORTC [103] 
(European Organization for Research and Treatment of Cancer) clinical phase 
III trial published a substudy recently involving 212 patients with ER-
negative breast cancer treated with either a non-taxane regimen 
(fluorouracil, epirubicin, and cyclophosphamide [FEC]) or a taxane regimen 
(docetaxel followed from epirubicin plus docetaxel [TET]). The RNA, 
extracted from sections of frozen biopsies was hybridized to Affymetrix 
microarrays. In vitro single agent drug sensitivity signatures were combined 
to obtain FEC and TET regimen-specific signatures. The regimen-specific 
signatures significantly predicted pathological complete response in patients 
treated with the appropriate regimen. The FEC predictor had a sensitivity of 
96% and specificity of 66%, the TET predictor had a sensitivity of 93% and 
specificity 69%.  
Gene expression profiling is promising not only for predicting sensitivity to 
chemotherapy, it has also been used to predict sensitivity to endocrine 
therapies like tamoxifen. Although current histopathologic evaluation of 
breast cancer tumours involves determination of ER status which, in general, 
correlates with response to endocrine therapy, a large percentage of patients 
with ER+ disease will display de novo resistance to endocrine therapy or will 
develop resistance over time. As reported above (see 1.5.1) the Recurrence 
Score identifies those most likely to develop distant metastases despite 
adjuvant tamoxifen [51, 57]. 
Jansen and colleagues, performing an unsupervised gene expression profiling 
analysis of microarrays created from ER-positive tumours, also revealed a 44-
gene signature that correlated with tamoxifen resistance in 77% of patients 
[105]. Clinical ER status correctly predicts response to tamoxifen in only 50–
60% of patients. This tamoxifen resistance profile is undergoing independent 
validation. As expected, functional analysis of the gene signature revealed a 
large number of genes known to be regulated by oestrogen, although genes 
involved in apoptosis and extracellular matrix remodeling were also detected 
[51]. Between all these predictive signatures there is hardly any overlap, 
indicating that there may be not only one profile, but that several 
combinations of probes may predict response to chemotherapy with the 
same accuracy [87]. All studies described above have aimed to predict 
sensitivity to taxanes, anthracycline based regimens or a combination of 
both. The predictive profiles identified so far seem very promising , although 
they are based on studies with a relatively small sample size and none of 
them have been implicated into clinical routine. 
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Figure 1.12: Study of identifying genetic markers for NeoAdjuvant ChemoTherapy (NACT). 
Some studies can combine the Laser Captured Microdissection (LCM) (see for details 1.4.4) 
method with the microarray technologies. Tumour cells were selectively collected by LCM to 
exclude most of the stromal tissues to analyze cancer cells and assessed gene expression 
analyses. Clinical and pathological responses are evaluated at completion of treatment. 
Differentially expressed genes were selected for discriminating between not-responder and 
responder (adapted from [104]). 
 
It is emerging that responses to anticancer drugs are more difficult to predict 
by using molecular tests than prognosis is [44]. One of the main reasons for 
this difficulty is that resistance to anticancer agents can result from a variety 
of mechanisms and it might result from subtle mutations that do not cause 
evident changes in gene expression [44]. Therefore, although these 
molecular profiles provide interesting information about sensitivity to 
commonly used breast cancer drugs, all of these assays require further 
validation. It is also important to consider the differences in term of tumour 
sizes, patient populations and methodologies, when a comparison between 
each others is done. 
 
1.5.4 LONG TERM PERSPECTIVE: WILL MICROARRAYS BE STILL 
USEFUL IN THE FUTURE? 
 
Although most of the predictors previously discussed will be determined 
either in a central laboratory (Oncotype DX) and/or using dedicated array 
(MammaPrint®), it must be emphasised that DNA arrays offer the major 
advantage of being able to provide genome-wide gene expression 
measurements [55]. 
It has also to be remarked that DNA arrays can be used for many other 
purposes than to predict prognosis and treatment efficacy. Indeed, this 
technology has been used to generate molecular predictors for the diagnosis 
of malignancy, organ-specific metastases, lymph node involvement, as well 
as the identification of activated pathways and the expression of therapeutic 
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targets [55]. Moreover recent technological advances have made it possible 
to measure gene expression in single cells [106, 107] allowing to evaluate 
gene expression profile of circulating tumour cells, cancer stem cells or some 
other cells of interest, including mesenchymal stem cells and endothelial 
progenitor cells [55]. 
 

Figure 1.13: Potential of molecular predictors for breast cancer in the next decades. This 
figure reports how gene signature will be integrated in the clinical practice in the future 
(adapted from [55]). 
 
This suggests that besides prognostic and predictive information related to 
chemotherapy and endocrine therapy, DNA arrays could allow in the future 
to determine all the information needed for optimal patient’s care. Since the 
current trend is to increase the number of independent bioassays or analyses 
to be done in a single sample (conventional pathology, 
immunohistochemistry, FISH, RT-PCR), the use of DNA arrays could change 
this tendency by doing all analyses in a single experiment in certified 
laboratories. In addition to facilitate logistics, decrease time before treatment 
decision, this approach would probably save costs by decreasing the rate of 
bioassays to be done [55]. Several new arrays [108], including Splice Arrays, 
are detecting both gene expression and splicing events, thereby providing a 
more functional picture of genomic program in every single patient.  
The figure 1.13 shows how genome-wide DNA arrays could affect patient’s 
management in the next decades. 
 
1.6 ROADMAP FOR DEVELOPING AND VALIDATING 
THERAPEUTICALLY RELEVANT GENOMIC CLASSIFIERS 
 
As reported so far, microarray expression profiling provides an exciting new 
technology for relating tumour gene expression to patient outcome, but it 
also provides increased challenges for translating initial research findings into 
robust diagnostics that benefit patients and physicians in therapeutic decision 
making. Development of biomarker classifiers useful for improving treatment 
decisions and sufficiently validated for broad clinical application is difficult, 
and more difficult for expression signature classifiers. In a recent paper of 
Simon et al. they tried to define some of the key steps in obtaining a 
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classifier reliable and potentially useful in clinical setting. These 
characteristics are summarized in the table 1.6 [109]. 
 

Key Steps in Development and Validation of Therapeutically Relevant Genomic 
Classifiers 

Develop classifier for addressing a specific important therapeutic decision Patients are 
sufficiently homogeneous and receiving uniform treatment so that results are therapeutically 
relevant Treatment options and costs of mis-classification are such that a classifier is likely 
to be used 
 
Perform internal validation of classifier to assess whether it appears sufficiently accurate 
relative to standard prognostic factors that it is worth further development 
 
Translate classifier to platform that would be used for broad clinical application 
 
Demonstrate that the classifier is reproducible 
 
Independent validation of the completely specified classifier on a prospectively planned 
study 

Table 1.6: Key Steps in Development and Validation of Therapeutically Relevant Genomic 
Classifiers (from [109]). 
 
A multigene expression signature classifier is a function that provides a 
classification of a tumour based on the expression levels of the component 
genes. The gene sets identified as associated with outcome tend to be 
unstable because gene groups are correlated by co-regulation and the 
stringent criteria used for identifying differentially expressed genes results in 
reduced statistical power for gene selection. It is often much easier to 
develop a classifier that performs accurately than it is to identify exactly the 
optimal gene set [109]. Although it would be desiderable to understand the 
mechanistic relationship of the components of an expression signatures (the 
genes), the classifier can be validated without such understanding, also 
because a clear biologic interpretation may be more difficult to achieve than 
an accurate classification. As Simon reports, the concept of validation of 
these "new" gene classifiers is different compared to the concept of 
validation of "traditional" disease biomarkers. For example, an expression 
signature should be developed to predict outcome for a well-defined set of 
patients (training set) who receive a well-defined therapy. The signature 
classifier would be developed using data from such patients and would be 
validated for an independent set of such patients. The "developmental study" 
would identify the genes into a completely specified classifier that can be 
used and potentially validated in a subsequent study. The validation does not 
consist of seeing whether the same genes are prognostic in the subsequent 
study. The validation should be focused on addressing whether the 
application of the previously defined classifier to a new set of patients results 
in clinical benefit [109]. 
Many algorithms have been used effectively with DNA microarray data for 
class prediction. A linear discriminant is a function 

l(x) = Σ i∈F wi xi
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where xi is the expression measurement for the gene, wi is the weight given 
to that gene, and the summation is over the set F of features (genes) 
selected for inclusion in the classifier. For a two-class problem, there is a 
threshold value c that must be defined; a sample with expression profile 
defined by a vector x of values is predicted to be in class 1 or class 2 
depending on whether l(x) as computed from the equation is less than or 
greater than c [109]. Many types of classifiers used in the literature have the 
form shown in the preceding equation. They differ with regard to how the 
weights are determined. These classifiers include for example Fisher’s linear 
discriminant analysis and diagonal discriminant analysis or support vector 
machines. When the number of genes (p) is greater than the number of 
cases (n), perfect separation of a training set is always possible with a linear 
classifier. In fact, there are an infinite number of linear classifiers that 
achieve perfect separation. That suggests that there may not be sufficient 
information in most datasets to effectively utilize nonlinear classifiers. 
Although complex nonlinear classifiers are popular, there is little evidence 
that they perform any better than simpler methods [109]. 
Since most classifiers do not use all of the genes whose expression is 
measured, one step is determining which genes to include in the classifier; 
this process is called feature selection. The number of "informative genes" is 
usually small compared to the number of "noise genes". Including too many 
noise genes can mask the informative genes and reduce the accuracy of 
prediction. It is sometimes possible to distinguish different cell types based 
on expression levels of a small number of genes, very differentially expressed 
in the two cell types. However, this is often not the case for more difficult 
classification problems. In these situations, there may be a dozen or more 
differentially expressed genes, but the fold differences in expression may not 
be large and it is difficult to identify these genes from among the thousands 
of noise genes. It also important to remark that omitting informative genes 
from a classifier has a greater deleterious effect on classification accuracy 
than does inclusion of noise genes, if the number of noise genes included is 
not too great [109]. We can divide genomic classifier studies into 
developmental studies and validation studies.

Developmental studies are the ones that first develop the 
classifiers. It is delicate to evaluate whether a genomic classifier is promising 
based on a developmental study. The difficulty derives from the fact that the 
number of candidate genes available for use in the classifier is much larger 
than the number of cases available for analysis. In such situations, it would 
be always possible to find classifiers that accurately classify the data on 
which they were developed. Consequently, even in developmental studies, 
the validation on data not used for developing the model is necessary. This 
internal validation is usually accomplished either by splitting the data into 
two portions, one used for training the model and the other for testing the 
model, or some form of Cross Validation (CV) based on repeated model 
development and testing on random data partitions [109]. The most 
straightforward method of estimating the accuracy of future prediction is the 
split-sample validation, nevertheless the cross-validation approach is a valid 
alternative when the number of cases is small (and would be difficult to split 
the dataset in training and test sets). A type of cross-validation procedure is 



40

the Leave One Out CV (LOO-CV). LOO-CV starts like split-sample cross 
validation in forming a training set of samples and a test set. The test set 
consists of only a single sample; the rest of the samples are placed in the 
training set. The sample in the test set is placed aside and not utilized at all 
in the development of the class prediction model. Using only the training set, 
the informative genes are selected and the parameters of the model are fit 
to the data. The process is repeated leaving each of the n biologically 
independent samples out of the training set, one at a time. During the steps, 
n different models are created and each one is used to predict the class of 
the omitted sample. The number of prediction errors is totalled and reported 
as the leave-one-out crossvalidated estimate of the prediction error [109]. 
 Often the initial developmental study is not large enough to estimate 
the positive and negative predictive values of the test with sufficient 
precision to determine whether the test has real clinical utility. It is important 
that the clinical use of the classifier be carefully considered in planning the 
external validation study so that these performance characteristics can be 
adequately estimated. The objective of external validation is to determine 
whether use of a completely specified diagnostic classifier for therapeutic 
decision making in a defined clinical context results in patient benefit. An 
independent validation study could be a prospective clinical trial in which 
patients are randomly assigned to treatment assignment without use of the 
classifier versus treatment assignment with the aid of the classifier [109].  
From this overview it is emerging that the steps needed to translate research 
findings of correlations between gene expression and prognosis into clinical 
diagnostic tests, are neither easy nor immediate. Nevertheless they are 
necessary to move genomic signatures into clinical application as 
therapeutically relevant and robust diagnostics. 
 
1.7 DRUG RESISTANCE MECHANISMS 
 
In general, systemic drugs are active at the beginning of therapy in 90% of 
primary breast cancers and 50% of metastases. This is demonstrated by 
reduced tumour volume, improved symptoms and decreased serological 
tumour markers [110]. However, after a variable period, the tumours can 
become resistant to the chemotherapic drugs, with a consequent failure of 
the treatment. Chemotherapy resistance is a major problem in the 
management of breast cancer, therefore detecting drug resistance before 
first line chemotherapy may increase the patient's survival. 
Resistance to therapy is caused by a genetic amplification or by point 
mutations in specific genes. In the genic amplification the treatment regimen 
with a single systemic agent selects a group of cancer cells that is 
increasingly resistant to therapy, decreasing the rate of response to further 
therapy [110]. The genic amplification could also due to the action 
mechanism of the drug itself. Some of them showed mutagen properties that 
accelerate the resistance development. Also drugs that reduce the 
progression of cellular cycle during the DNA synthesis (e.g. Topoisomerase 
inhibitor) can increase the level of genic amplification. The resistance due to 
point mutations is not established gradually but in a single phase and it is 
stable.  
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There are two general classes of resistance to anticancer drugs: those that 
impair delivery of anticancer drugs to tumour cells (intrinsic resistance), and 
those that arise in the cancer cell itself due to genetic and epigenetic 
alterations that affect drug sensitivity (acquired resistance). In the intrinsic 
resistance, impaired drug delivery can result from poor absorption of orally 
administered drugs, increased drug metabolism or increased excretion, 
resulting in lower levels of drug in the blood and reduced diffusion of drugs 
from the blood into the tumour mass. Recent studies have remarked the 
importance of the tumour vasculature and an appropriate pressure gradient 
for adequate drug delivery to the tumour [111]. Since some cancer cells, that 
are sensitive to chemotherapy as monolayer cells in culture, become 
resistant when transplanted into animal models, it was supposed that 
environmental factors, such as the extracellular matrix or tumour geometry, 
might be involved in drug resistance. Much remains to be learned about this 
type of drug resistance and its role in clinical oncology.  
In the acquired resistance, cancer cells in culture become resistant to a 
single drug, or a class of drugs with a similar mechanism of action, by 
altering the drug cellular target or by increasing repair of drug-induced 
damage, frequently to DNA.  
After selection for resistance to a single drug, cells might also show cross-
resistance to other structurally and mechanistically unrelated drugs — a 
phenomenon that is known as MultiDrugResistance (MDR).This might explain 
why treatment regimens that combine multiple agents with different targets 
are not always more effective [110]. 
Interestingly, a study showed that cells at early stages of tumourigenesis 
process were able to develop doxorubicin-resistant derivates [112]. This 
demonstrates that, at least in this cell model system, the ability to acquire 
drug resistance is not a consequence of the accumulation of mutations that 
occur during the proliferation of a transformed cell, but it is an intrinsic 
characteristic that appears before the complete set of genetic transforming 
alterations [113]. 
However MDR is highly relevant to protection against mutation and cancer, 
since these same mechanisms will not only exclude anticancer drugs (many 
of which are mutagenic and carcinogenic), but also a wider range of 
endogenous mutagens and carcinogens froma range of cells [114]. 
As illustrated in fig. 1.14, different types of cellular multidrug resistance have 
been described. 
 Resistance to natural-product hydrophobic drugs — sometimes 
known as classical multidrug resistance — generally results from altered 
expression and/or activity of ATP-dependent efflux pumps with broad drug 
specificity. These pumps belong to a 48 family of ATP-binding cassette (ABC) 
transporters that share sequence and structural homology. So far, 48 human 
ABC genes have been identified and divided into seven distinct subfamilies 
(ABCA–ABCG) on the basis of their sequence homology and domain 
organization [111]. The increased drug efflux lowers intracellular drug 
concentrations with consequent resistance. Drugs that are affected by 
classical multidrug resistance include the vinca alkaloid (vinblastine and 
vincristine), the anthracyclines (doxorubicin and daunorubicin), the RNA 
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transcription inhibitor actinomycin-D and the microtubule-stabilizing drug 
paclitaxel [111]. 

Figure 1.14: Cellular factors that cause drug resistance. Cancer cells become resistant to 
anticancer drugs by several mechanisms. One way is to pump drugs out of cells by 
increasing the activity of efflux pumps, such as ATP-dependent transporters. Alternatively, 
resistance can occur as a result of reduced drug influx — a mechanism reported for agents 
that ‘piggyback’ on intracellular carriers or enter the cell by means of endocytosis. In cases 
in which drug accumulation is unchanged, activation of detoxifying proteins, such as 
cytochrome P450 mixed-function oxidases, can promote drug resistance. Cells can also 
activate mechanisms that repair drug-induced DNA damage. Finally, disruptions in apoptotic 
signaling pathways (e.g. p53 or ceramide) allow cells to become resistant to drug-induced 
cell death [110]. 
 
It is known that cancer cells can survive in a toxic environment by pumping 
drugs out of their cytoplasm. In vitro assays show increased expression of 
ATP transporter proteins as P-gp (encoded by the MDR1 gene), 
MultiDrug Resistance associated Proteins (MRPs) and Breast Cancer 
Resistance Protein (BCRP) in the membranes of cells grown under 
cytotoxic conditions [87].  
MDR1 gene transfection into drug sensitive cells results in P-gp 
overexpression, decreased drug accumulation and in the MDR phenotype 
[87]. P-gp expression has been detected in many human cancers and several 
of the clinically applied drugs in cancer treatment are substrates for P-gp 
mediated transport, e.g. docetaxel, doxorubicin and epirubicin [87]. 
Two inhibitors that are used in the laboratory and in clinical trials that 
attempted to reverse drug resistance are the calcium channel blocker 
verapamil and the immunosuppressant cyclosporin A [111]. It is still unclear 
whether P-gp expression plays a role in drug resistance in breast cancer in 
clinical setting. Studies that compared mRNA levels in untreated and treated 
samples indicated a subtle though significant increase of P-gp expression 
after anthracycline-based chemotherapy. It could be supposed that higher 
levels of P-gp expression should result in an increased cellular tolerance for 
anthracyclines and a decreased tumour response. P-gp could best be used as 
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a predictor of response in case of an association between P-gp levels in 
samples taken before anthracycline treatment [87]. However, at present 
there are not enough evidences to suggest a role for MDR1/P-gp in the 
responsiveness on breast cancer to chemotherapy. 

Figure 1.15: Structures of ABC transporters known to confer drug resistance. The 
structures of three categories of ABC transporter. a. ABC transporters such as multidrug 
resistance MDR1 and multidrug-resistance-associated protein 4 MRP4 have 12 
transmembrane domains and two ATPbinding sites. b. The structures of MRP1, 2, 3 and 6 
are similar in that they possess two ATPbinding regions. They also contain an additional 
domain that is composed of five transmembrane segments at the amino-terminal end, giving 
them a total of 17 transmembrane domains. c. ABCG2 contains six transmembrane domains 
and one ATP-binding region ("half-transporter") — in this case, on the amino-terminal side 
(N) of the transmembrane domain. In other half-transporters, such as the transporter 
associated with antigen processing (TAP), the ATP-binding cassette is found on the carboxy-
terminal (C ) side of the transmembrane domain. Half-transporters are thought to 
homodimerize or heterodimerize to function (from [111]). 
 
Since not all multidrug-resistant cells express P-gp, the research led to the 
discovery of the Multidrug-Resistance-associated Protein 1 (MRP1, or ABCC1) 
[111]. MRP1 is similar to P-gp in structure, with the exception of an 
aminoterminal extension that contains five-membranespanning domains 
attached to a P-gp-like core (fig. 1.16). As for P-gp, the literature is not 
conclusive about the role of MRP1 in drug resistance in the clinical setting for 
breast cancer. The discovery of MRP1 stimulated a genomic search for 
homologues, leading to the identification of eight additional members of the 
ABCC subfamily of transporters (1.15 b).  
The Breast Cancer Resistance Protein (BCRP) -also known as MXR 
(mitoxantrone-resistance gene) or ABC-P (ABC transporter in placenta)- was 
identified using breast cancer cell lines without overexpression of P-gp and 
MDR1. This transporter is a homodimer of two half-transporters, each 
containing an ATP-binding domain at the amino-terminal end of the molecule 
and six transmembrane segments (fig. 1.16). The protein is located in the 
cytoplasmic membrane of cells and in in vitro experiments it confers 
resistance to a variety of drugs used in cancer treatment, including 
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anthracyclines [87]. So far, a role for BRCP as a predictor of response to 
chemotherapy in the clinical has not been demonstrated. 
The Lung Resistance Protein (LRP), not belonging to the ABC 
transporters family, it is expressed at high levels in drug-resistant cell lines 
and some tumours [115]. LRP is a major vault protein (vaults proteins are 
large ribonucleoprotein particles present in all eukaryotic cells) found in the 
cytoplasm and on the nuclear membrane. Although their role in normal 
physiology is not yet established, vaults might confer drug resistance by 
redistributing drugs away from intracellular targets [111]. 
 Resistance can also be mediated by reduced drug uptake. Water-
soluble drugs that are carried on transporters and carriers that are used to 
bring nutrients into the cell, or agents that enter by means of endocytosis, 
might fail to accumulate without evidence of increased efflux. Examples 
include the antifolate methotrexate, nucleotide analogues, such as 5-
fluorouracil and 8-azaguanine, and cisplatin [111]. 
 Multidrug resistance can also result from activation of coordinately 
regulated detoxifying systems, such as DNA repair and the cytochrome P450 
mixed function oxidases. Indeed, it has been showed a coordinate induction 
of the multidrug transporter P-glycoprotein (P-gp) and cytochrome P450 3A 
[116]. This type of multidrug resistance can be induced after exposure to 
any drug.  
 Resistance can also result from defective apoptotic pathways. This 
might occur as a result of malignant transformation; for example, in cancers 
with mutant or 
non-functional p53 . Alternatively, cells might acquire changes in apoptotic 
pathways during exposure to chemotherapy, such as alteration of ceramide 
levels or changes in cell-cycle machinery, which activate checkpoints and 
prevent initiation of apoptosis [111]. 
 
From a molecular point of view, there are several cellular pathways that 
influence the drug resistance. In certain cancer types, expression of the 
Raf/MEK/ERK pathway can modulate the expression of drug pumps and anti-
apoptotic molecules such as Bcl-2 [117]. Studies reported that ectopic 
expression of Raf will increases the levels of both the MDR-1 drug pump and 
the anti-apoptotic Bcl-2 protein in breast cancer cells. The increased 
expression of MDR-1 and Bcl-2 most likely occurs by a transcriptional 
mechanism by downstream target kinases of the Raf/MEK/ERK pathway 
inducing the phosphorylation of transcription factors, which bind the 
promoter regions of MDR-1 and Bcl-2 and stimulate transcription [117]. Also 
the PI3K/PTEN/Akt pathway shows effects on the drug resistance of breast 
cancer cells. Expression of Akt conferred resistance of the MCF-7 breast 
cancer cell line to 4HT, a drug commonly used to treat ER+ breast cancer 
patients. PTEN activity or lack thereof can also regulate drug resistance in 
breast cancer [117]. 
An important principle in multidrug resistance is that cancer cells are 
genetically heterogeneous. Although the process that results in uncontrolled 
cell growth in cancer favours clonal expansion, tumour cells that are exposed 
to chemotherapeutic agents will be selected for their ability to survive and 
grow in the presence of cytotoxic drugs. These cancer cells are likely to be 
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genetically heterogeneous because of the mutator phenotype. So, in any 
population of cancer cells that is exposed to chemotherapy, more than one 
mechanism of multidrug resistance can be present. This phenomenon has 
been called Multifactorial Multidrug Resistance. 
Detailed knowledge about the causes and mechanisms of drug resistance 
might make it possible, in the future, to predict effectively the response of a 
human cancer to chemotherapy. Once all the main causes of drug resistance 
have been catalogued and molecular probes have been defined, it should be 
possible to determine their expression in individual cancer cells, even specific 
mechanisms of resistance expressed in a subpopulation of cells [111]. In the 
last years genomic-wide analysis methodologies (Comparative Genomic 
Hybridization, SNP-arrays, expression microarrays) are improving our ability 
to determine which drug-resistance and drug-metabolizing genes are 
upregulated in different tumours, and these results can then be correlated 
with clinical responses to specific types of chemotherapy (see 1.5.3.2). 
As emerged from the general overview above reported, drug resistance is a 
complex and dynamic phenotype. Unraveling the basic mechanisms giving 
rise to this multifactorial phenomenon and translating these finding in the 
design of novel therapeutic strategies in the clinic, is the next challenge that 
both scientists and clinicians have for the near future [113]. 
 
1.8 CHEMOTHERAPIC DRUGS USED IN THIS STUDY 
 
1.8.1 PACLITAXEL 
 
Paclitaxel (commercial name Taxol®) is an antimicrotubule agent belonging 
to the taxanes class of antineoplastic compounds, with established 
antitumour activity in a variety of cancers including breast cancer, ovarian 
cancer, lung cancer and Kaposi sarcoma [118]. Interest in the taxanes began 
in 1963 when a crude extract of bark from the Pacific yew, Taxus brevifolia,
was shown to have broad antitumour activity in preclinical tumour models. In 
1971 was identified paclitaxel as the active constituent of the bark extract. 
The search for taxanes led to the development of docetaxel, that is a 
synthetic derivate of an inactive taxane precursor [119]. 
Microtubules are composed of polymers of tubulin in dynamic equilibrium 
with tubulin heterodimers composed of alpha and beta protein subunits. 
Although their principal function is the formation of the mitotic spindle during 
cell division, microtubules are also involved in many vital interphase 
functions, including the maintenance of shape, motility, signal transmission, 
and intracellular transport. Unlike other antimicrotubule drugs, such as vinca 
alkaloids, which induce the disassembly of microtubules, paclitaxel promotes 
the polymerization of tubulin. At subnanomolar concentrations, paclitaxel 
inhibits the disassembly of microtubules, whereas it increases their mass and 
numbers at higher, albeit clinically achievable, concentrations. The 
microtubules formed in the presence of paclitaxel are extraordinarily stable 
and dysfunctional, thereby causing the death of the cell by disrupting the 
normal microtubule dynamics required for cell division and vital interphase 
processes. Paclitaxel binds to the N-terminal 31 amino acids of the beta-
tubulin subunit in the microtubule, rather than to tubulin dimers. In intact 
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cells, paclitaxel induces the bundling of microtubules, which may be an 
useful clinical correlate of a lethal drug effect, and the formation of large 
numbers of asters of mitotic spindles. It also enhances the cytotoxic effects 
of ionizing radiation in vitro, possibly by inducing arrest in the premitotic G2 
and mitotic phases of the cell cycle, which are the most radiosensitive phases 
[120]. The efficacy of intravenous paclitaxel as adjuvant therapy for early 
breast cancer has been investigate in two large randomized trials; it was 
administered sequentially to standard doxorubicin-cyclophosphamide (AC) 
combination therapy and compared with cycles of AC alone [118]. In both 
trials, the addition of sequentially administered paclitaxel to the AC regimen, 
significantly improved disease-free survival at 5 years compared with AC 
alone. In one of the trials, women who received paclitaxel also had a 
significant improvement in overall 5-year survival time. In randomized trials 
of neoadjuvant therapy for women with early breast cancer, paclitaxel or 
paclitaxel-containing regimens showed efficacy in terms of 
response/remission rates, local breast tumour recurrence and proportion of 
patients eligible for breast-conserving surgery [118]. 
Two principal mechanisms of acquired resistance to the taxane have been 
characterized. First, some tumours contain alpha- and beta-tubulin with an 
impaired ability to polymerize into microtubules and have an inherently slow 
rate of microtubule assembly that is normalized by the taxanes [120]. 
Therefore a possible mechanism for paclitaxel resistance involved alterations 
in microtubule dynamicity [121]. Such alterations include mutations in alpha- 
or beta-tubulin that affect lateral/longitudinal interactions in the microtubule 
lattice and/or the binding of regulatory proteins that could result in more 
dynamic microtubules (stathmin and MAP4). In paclitaxel-resistant cells, 
stathmin, a microtubule-destabilizing protein, can not bind microtubules 
because of a mutated alpha-tubulin. It has been noted that stathmin is up-
regulated in breast carcinoma cell from patients with more aggressive 
disease, similar to the increase observed in paclitaxel-resistant cells. One 
hypothesis is that the alpha-tubulin mutation may alter the binding of 
stathmin to alpha-tubulin, and combined with the increased protein 
expression of stathmin, lead to hypostable microtubules (stathmin sequesters 
tubulin dimers). The paclitaxel-resistant cells would be less affected by the 
hyperstabilizing of paclitaxel because of the combined effects of the alpha-
tubulin mutation and the stathmin changes [122]. The decrease of 
expression of MAP4, a microtubule-stabilizer protein, in addition with the 
increased levels of stathmin, could also cause an additional destabilization of 
the microtubule network in paclitaxel-resistant cell lines [122]. 
A second mechanism involves the amplification of membrane 
phosphoglycoproteins that function as drug-efflux pumps (ABC transporters, 
see 1.6) [120]. The MDR phenotype of tumour cells confers cross-resistance 
to various structurally bulky natural products, including anthracyclines, 
etoposide, vinca alkaloids, colchicine and taxanes. 
The upregulation of caveolin-1, a membrane component involved in small 
molecule transport and intracellular signaling, has also been found to be 
related to taxane resistance [110]. 
Recently, Rouzier and colleagues, using microarrays to identify genes 
associated with pCR to preoperative paclitaxel-containing therapy in breast 
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cancer patients, found that the microtubule-associated protein Tau was the 
most significantly differentially expressed gene [123]. Tau mRNA expression 
was low in cases with pCR. Tau protein promotes tubulin polymerization and 
stabilizes microtubules. They reported that down-regulation of tau increased 
sensitivity of breast cancer cells to paclitaxel. Their data suggested that low 
tau expression increases the "vulnerability" of microtubules to paclitaxel and 
makes breast cancer cells hypersensitive to this drug. Low tau expression 
may be used as a marker to select patients for paclitaxel therapy. Inhibition 
of tau function might be exploited as a therapeutic strategy to increase 
sensitivity to paclitaxel [123]. 
 
1.8.2 DOXORUBICIN AND EPIRUBICIN 
 
Doxorubicin (commercial name Adriamycin®) is an anticancer agent 
belonging to the anthracyclines antibiotic class, one of the most commonly 
used classes of anticancer drugs, used in clinical practice since the 1960s. 
Doxorubicin, together with daunorubicin, was the first anthracyclin in clinical 
use, poduced by the Streptomyces species [124]. Although the development 
of the second-generation synthetic anthracyclines (e.g. idarubicin or 
epirubicin), doxorubicin still remains the most widely used in lymphoma, 
leukemia, sarcoma and breast cancer treatment. 
The molecular target of doxorubicin is type II DNA topoisomerase enzymes 
(Top II) that control and modify the topological states of DNA. The 
mechanisms of these enzymes involve DNA cleavage and strand passage 
through the break, followed by religation of the cleaved DNA; the precise 
manner by which these events occur in a single cell is the source of intense 
research [124]. In mammalian cells, these enzymes have been differentiated, 
based on their mechanistic and physical properties, into two types, type I 
and type II. In contrast to that of Top I, the function of Top II is ATP 
dependent. Once Top II binds to duplex DNA, nucleophilic reactions 
sequentially cleave the two complementary strands of DNA four base pairs 
apart, and the resulting 5'-phosphoryl groups become covalently linked to a 
pair of tyrosine groups, one in each half of the dimeric Top II enzyme [124]. 
Once the double-strand break has been made, the cleaved ends must be 
moved apart and a second double-strand segment of DNA passed through 
the break. Once strand passage is complete, the cleaved DNA is religated. 
Two Top II isoforms have been identified in humans: the alpha-form (α) and 
the beta-form (β). The α form is encoded by a single-copy gene located on 
chromosome 17 and the β form has been mapped to chromosome 3. The 
drugs that have Top II as molecular target inhibit religation of DNA cleaved 
by Top II and induce protein-linked breaks in the DNA. When drug is 
removed, these breaks are reversible. All mammalian Top II inhibitors are 
DNA intercalators that insert a planar moiety between two adjacent base 
pairs in duplex DNA. The anthracyclines induce formation of covalent 
topoisomerase-DNA complexes, and prevent the enzyme from completing 
the religation portion of the ligation-religation reaction [124]. The 
anthracyclines interact with DNA TopII complex in a sequence-specific 
manner, since they can stimulate the DNA cut only on specific sites and not 
on all sites recognized from Top II enzyme [125]. The anthracyclines are also 
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DNA intercalators that insert part of their planar structures between two 
adjacent base pairs in DNA, causing single-stranded and double-stranded 
breaks. These agent can undergo chemical reduction through enzymatically 
catalyzed or iron-catalyzed pathways to yield reactive free-radical 
intermediates, that can cause oxidative damage to cellular proteins [125]. 
Although the anthracyclines are associated with all these reactions, it is their 
interaction with Top II the most important mechanism of cytotoxicity. The 
DNA damage induced from anthracyclines leads to transcriptional activation 
of protooncogenes (c-fos, c-jun) and oncosuppressors (p53) with consequent 
apoptosis (if the damage is too heavy). 
The mechanisms of resistance in anthracyclines are two: 
o over-expression of the MDR1 gene (see 1.6); 
o under-expression or mutation of the gene that encodes TopII α enzyme, 

that shows a reduction of its activity and sensitivity. For example, is 
known that the overexpression of heat shock protein 27 (HSP27) in a 
variety of cancer (e.g. breast, ovarian) is related to doxorubicin 
resistance. The HSP27 overexpression inhibits doxorubicin-induced 
apoptosis by decreasing the expression of Top II. Since paclitaxel it was 
reported to suppress HSP27 expression, a combination with doxorubicin 
can sensitize breast cancer cells with HSP27 overexpression to 
doxorubicin [126].  

Kubo and colleagues reported that the point mutations of the topoisomerase 
II alpha gene do not have an essential role in drug resistance, instead the 
alteration of the ABC efflux-pumps activity play a key role in this 
phenomenon [127]. 
Most of the published data support the preferential use of an anthracycline-
containing adjuvant regimen for individuals with Erb-B2 positive tumours 
[128]. As previously reported (1.5.3.1) due to the close location of Top II 
and Erb-B2 genes on chromosome 17, Top II gene aberrations are mainly 
associated with Erb-B2 gene amplification [75]. Therefore it was suggested 
that Erb-B2 amplification could be only a surrogate marker and that the Top 
II amplification/overexpression the real predictive marker of response to 
anthracycline-based chemotherapy. It was also noted that there is a positive 
response to preoperative doxorubicin treatment in patients Erb-B2 positive, 
without Top II amplification, then Top II amplification can not be the only 
explanation of this chemosensitivity [129]. 
The anthracyclines are associated with both acute and chronic cardiac 
toxicity and strategies to minimize this toxicity have been proposed, including 
patient selection on the basis of preexisting cardiac risk, monitoring of 
cardiac function during treatment and early management of cardiac 
dysfunction [131]. The mechanisms of this cardiotoxicity include enzymatic-
mediated formation of oxygen free radicals that initiate lipid peroxidation and 
a nonenzymatic pathway for free radicals formation [127]. The use of less 
cardiotoxic anthracyclines may be a strategy to reduce the risk of 
cardiotoxicity. Liposomal doxorubicin products offer similar efficacy compared 
with conventional doxorubicin and have been successfully used in 
combination with trastuzumab in the metastatic and neoadjuvant setting in 
Erb-B2-positive breast cancers [128].  
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Epirubicin (commercial name Ellence™ or Pharmorubicin™), a 
semisynthetic derivative of doxorubicin, is less cardiotoxic than doxorubicin 
and it has been combined with paclitaxel in the treatment of metastatic 
breast cancer with effective results [130]. Similarly to doxorubicin, epirubicin 
acts by intercalating DNA strands. Intercalation results in complex formation 
which inhibits DNA and RNA synthesis. It triggers DNA cleavage by 
topoisomerase II, resulting in mechanisms that lead to cell death. Epirubicin 
is favoured over doxorubicin, the most popular anthracycline, in some 
chemotherapy regimens as it appears to cause fewer side-effects. Epirubicin 
has a different spatial orientation of the hydroxyl group at the 4' carbon of 
the sugar, which may account for its faster elimination and reduced toxicity.





2 AIM 

Microarray profiling technology provided biological evidence for the 
heterogeneity of breast cancer, since different expression patterns can be 
identified within distinct tumour groups. Expression array studies of breast 
cancer described genes associated with histology, grade and hormonal 
receptor status but now, the most exciting challenge of microarrays to breast 
cancer research is the development of prognostic profiles and predictive 
signatures of responsiveness to chemotherapic treatment.  
All eligible women are often treated in the same manner even though de 
novo drug resistance results in treatment failures in many breast cancer 
patients. The administration of ineffective chemotherapy increases mortality 
and decreases quality of life in cancer patients. This emphasizes the need to 
evaluate every patient's probability of responding to the chemotherapic 
treatment, limiting the drugs used to those most likely to be effective. 
Expression profiling to identify new predictive signatures and markers of 
response has been applied to tumours treated with a number of different 
standard neoadjuvant systemic therapy regimens (treatment given before 
surgery) and the response to NeoAdjuvant ChemoTherapy (NACT) was used 
to test the efficacy of the treatment. 
The study reported here was conducted to evaluate the use of gene 
expression profiling to predict the response to a specific neoadjuvant 
chemotherapy regimen based on paclitaxel and anthracyclines (doxorubicin 
and epirubicin) drugs. Gene expression profiles of pre-treatment breast 
tumour biopsies were correlated with the clinical response to the treatment 
in order to develop a gene predictive signature of response to chemotherapy. 
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3 METHODS 

Abbreviations 

AF = autoclaved and filtered 
BSA = bovine serum albumin 
Cy3 = 5-NN’-diethyl-tethrametylindocarbocyanine 
Cy5 = 5-NN’-diethyl-tethrametylindo di carbocyanine 
CH1, CH2 = two microarray channels 
cDNA = complementary DNA 
ds DNA = double strand DNA 
ss DNA = single strand DNA 
DEPC = diethylpyrocarbonate 
DMSO = dimethylsulfoxide 
EDTA = ethylenediaminetetraacetic acid 
mQ H2O= purified water with the Milli RO 15 (Millipore) system 
DEPC H2O= mQ water treated with DEPC 
min. = minutes 
nt = nucleotides 
dNTPs = 3’- deoxynucleotide triphosphates (dATP, dGTP, dCTP, dTTP) 
o.n. = over night 
pb = base pair 
PBS = phosphate buffered saline 
PVP = polyvinylpyrrolidone 
mRNA = messenger RNA 
SDS = sodium dodecyl sulfate 
SSC = sodium chloride-sodium citrate 
sec. = seconds 
Tris = tris(hydroxymethyl)aminomethane 
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3.1 BUFFERS AND SOLUTIONS 
 
SSC 20 X 
175,3 gr  NaCl 
88,2  gr sodium citrate 
800 ml H2O
Bring to pH 7 with NaOH 10 N. 
Add water to 1 litre 
 
Pre-hybridization buffer 
500 µl SSC 20 X 
20 µl SDS 10% 
200 µl ss DNA 2 µg/µl
200 µl Denhardt’s solution 50 X 
1180 µl H2O mQ AF 
 
Hybridization buffer 
500 µl SSC 20 X  
20 µl SDS 10%  
50 µl ss DNA 2 µg/µl
500 µl formamide 
930 µl H2O mQ AF 
 
aRNA fragmentation 
10 X Fragmentation Reagents: 200 ml Zn salt buffered solution 
Stop Solution: 200 mM EDTA pH 8.0 
 
Post-hybridization wash 
1st wash: 2 ml SSC 20X, 800 µl SDS 10% in 40 ml H2O mQ AF 
2th wash: 200 µl SSC 20X, 800 µl SDS 10% in 40 ml H2O mQ AF
3th wash: 400 µl SSC 20X in 40 ml H2O mQ AF 
4th wash: 200 µl SSC 20X in 40 ml H2O mQ AF 
 
Denhardt’s solution 50X 
1 gr BSA;  
1 gr Ficoll;  
1 gr PVP;  
100 ml H2O mQ A. 
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3.2 DESIGN OF THE STUDY 
 
The project of this thesis was performed at CRIBI (Centro di Ricerca 
Interdipartimentale per le Biotecnologie Innovative), in the Biology 
Department of the University of Padova in collaboration with AB ANALITICA 
srl, Oncology and Surgery sections of Dolo, Mirano and Noale Hospitals.  
The project was approved and granted from MIUR (Ministry of University and 
Scientific and Technological Research). Written informed consent was 
obtained from all patients. The patients are free to leave the study at any 
time, without any consequences for theirself. 
 
3.2.1 SELECTION OF PATIENTS 
 
Patients were eligible for the study with the following criterions: 
 
• histological diagnosis of mammary carcinoma, 
• stage II breast cancer ≥ 2cm in diameter, clinically defined and 

confirmed with mammography and ecography, 
• no previous chemotherapic or radiotherapic treatment, 
• ≤ 70 years-old (but there are some patients ≥ 70 years-old), 
• standard medullary (neutophils > 2000; platelets >150.000), epatic 

and renal activity,  
• standard PAO (patients with hypertension could be included but with 

PAO under control), 
• negative pathological medical history for heart disease, 
• no other diseases under way (except the breast neoplasy), 
• no abnormality detected in chest X-ray, liver X-ray and 
electrocardiogram 
 
3.2.2 SAMPLING AND NEOADJUVANT CHEMOTHERAPY  
 
The patients underwent a diagnostic biopsy or a fine needle aspiration biopsy 
to obtain a histological diagnosis of breast cancer. Estrogen receptor (ER), 
Progesteron receptor (PR), c-erbB-2 (HER2), p53, Ki67 and Bcl-2 were 
assessed using ImmunoHistoChemistry (IHC). Another biopsy was taken, 
fresh-frozen in liquid nitrogen (- 196 °C) and used for RNA isolation and 
microarray expression analysis (see 3.5). 
After the biopsy, the patients received four courses of Doxorubicin 60 mg/mq 
and Taxol 175 mg/mq (AT) or Epirubicin 60 mg/mq and Taxol 175 mg/mq 
(ET), every three weeks. At each course the response to chemotherapy was 
evaluated, if there was not a reduction of the tumour diameter after two 
courses, the patient went to the surgery, as well if the diameter of the 
tumour increased after the first course. After the first course was done a 
clinical exam and, if it is necessary, an instrumental check. After the second 
and the fourth course were done mammography and ecography.  
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3.2.3 HISTOLOGICAL CLASSIFICATION AND 
IMMUNOHISTOCHEMICAL ASSESSMENT 
 
Microscopic slides containing 3-4 µm sections were stained with commercially 
available antibodies: ER (cone 1D5), PR (clone PgR 636), c-erbB-2 (clone 
CB11), Ki67 (clone MIB1), Bcl-2 (clone 124), p53 (clone BP53-12). 
All tissue sections were reviewed by one pathologist for histological 
classification and immunohistochemical assessment. Samples were scored as 
ER, PR, c-erbB-2, Ki67, p53 positive by IHC when at least 10% of the tumour 
cells showed staining of the receptors or proteins. Specimens with ≥ 25% of 
the cells stained for Bcl-2 were considered positive. A sample was scored as 
being HER2 positive (Erb-B2 positive) when a membrane staining (indicated 
as 3+ or 2+) could be observed by IHC, using HercepTestTM (DAKO); the 
sample was scored as being HER2 negative when a membrane staining could 
be not detected (indicated as 1+). 
 
3.2.4 RESPONSE EVALUATION AFTER COMPLETION OF 
NEOADJUVANT CHEMOTHERAPY 
 
The response of the primary tumour to chemotherapy was evaluated after 
the first and the fourth course of chemotherapy with mammography and 
ecography, as reported above and by pathological examination following 
surgery after the completion of chemotherapy. 
The clinical responses to chemotherapy could be: 
cCR clinical Complete Response (residual tumour mass < 25%, used instead 
of pCR when the pathological examination is not available);  
PR Partial Response (residual tumour mass < 50% and ≥ 25%); 
NC No Change (residual tumour mass > 50%); 
PD Progressive Disease (increase of tumour mass). 
After the pathological examination there were two possible responses: 
pPR pathological Partial Response (residual tumour mass < 50%) 
pCR pathological Complete Remission (absence of residual vital tumour cells 
at microscopy). 
 
3.3 MICROARRAY SYNTHESIS 
 
Microarray expression was analyzed using the Operon 70 mer oligos 
collection (Human Version 2.0) containing 21.521 oligonucleotides spotted in 
duplicate on MICROMAX glass slides- SuperChip I provided by PerkinElmer 
Life Sciences Inc. (Boston, USA). This set consists of oligonucleotides 
designed on Human Unigene clusters, mainly in the 3'-terminal region. 
 
3.3.1 PREPARATION OF THE OLIGONUCLEOTIDES 
 
The synthetic oligonucleotides were delivered lyophilized in 384-well formats 
in polypropylene Microarray plates (Genetix) and were re-suspended in 15 µl 
Micro Spotting Solution (Teleken); this buffer ensures a good quality of the 
spots and helps the binding of the oligos to the microarray slide. Before the 
resuspension, the plates are centrifuged at 3500 rpm for 1 minute in order to 
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to gather the oligos on the bottom of the tube, avoiding possible 
contaminations during the aluminium cover removal. The microarray plates 
are agitated for 12 h at 4°C at 900-1000 rpm, until a complete re-suspension 
of the oligos. 
 
3.3.2 PRINTING OF THE OLIGONUCLEOTIDES 
Oligos (probes) were printed on the microarray slide using Biorobotics 
Microgrid II spotter (fig. 3.1), it is designed for high throughput sample 
handling and it could work with 96, 384 or 1536 well microplates. Up to 24 
microplates at a time can be accommodated in the BioBank loading cartridge 
and a maximum of 10 BioBanks (240 microplates) may be programmed into 
a single run. The spotter can keep up to 120 slides at a time. 
 

Figure 3.1: Microgrid II biorobotics 
 

Figure 3.2: MicroSpot pin tip (http://www.arrayit.com/)

The metal pins (fig. 3.2) of the printhead load the oligos from the plate (fig. 
3.3), then transfer them on the slide making the spots, with a diameter 
between 40 µm and 80 µm and spaced each other of 100 µm. The Operon 
collection was spotted using a printhead loaded with 48 pins.  
The slides used are the MICROMAX Glass Slides, SuperChip I (Cat No 
MPS696) (Perkin Elmere), 25mm x 75mm x 1mm, uniformly coated with 
aminopropylsilane. During array spotting, positively charged primary amine 
groups bonded to the glass surface react with the negatively charged sugar 
phosphate backbone of acid nucleic molecules (fig. 3.4); coupling takes place 
at or near neutral pH. 
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Figure 3.3: Pins refilling by capillarity (http://www.arrayit.com/)

Figure 3.4: Aminopropylsilane surface of the microarray slide (adapted from Amersham, 
2002) 
 
A relative humidity near 50% has to be kept inside the spotter, in order to 
avoid that the solution evaporates from the pins and the plates, before the 
completion of the oligos transfer on the glass slide. If the humidity goes over 
70% there could be the spot swelling. 
The air coming into the spotter is forced through the HEPA (High Efficiency 
Particulate Air) filters that are able to retain the dust; indeed it could block 
the pins and, because it is fluorescent, alters the microarray image 
resolution. It is very important to keep the slides in airtight boxes. After use, 
the microplates are stored at -20°C and re-used for others transfer cycles; it 
allows to have already the re-suspended oligos solutions for next times. 
After every transfer the pins are washed with H2O mQ and dried with a 
vacuum pump. 
After the completion of probe transfer, the slides were left into the spotter to 
dry out in a controlled humidity, for 30 min.; then the slides were rehydrated 
at room temperature for 5 min. This treatment causes the swelling of the 
spots, that become translucent and show a more homogeneous distribution 
of the probe. 
After the drying of the spots, they show salt crystals left from the Micro 
Spotting Solution, used to check, by scanning with a confocal laser scanner, 
if the microarrays are correctly printed. 
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Then the oligos were linked to the slide surface by UV irradiation (300 mJ) 
with the Stratalinker 1.800 (Stratagene) (fig. 3.5). 
 

Figure 3.5: UV binding of the probe to the microarray slide (http://www.arrayit.com/) 
 
Subsequently the slides are washed following this procedure: 
 
• wash with SDS 1% and SSC 3X in mQ H2O: shake vigorously to remove 

the probe weakly bound that could interfere with the target hybridization; 
• wash twice with mQ H2O for 5 minutes at room temperature. 
 
Finally the slides were dried by centrifugation for 1 min. at 500 x g in ALC 
4237R centrifuge. Printed slides are stored in the dark, at room temperature 
and are stable for 6-12 months. 
 
3.4 RNA EXTRACTION 
 
Total RNA was extracted using TRIzolTM (Gibco BRL), a mono-phasic solution 
of phenol and guanidine isothiocyanate; the reagent is an improvement to 
the single-step RNA isolation method developed by Chomczynski and Sacchi 
[131]. During sample homogenization, TRIzolTM reagent maintains the 
integrity of the RNA, while disrupting cells and dissolving cell components. 
Before to start with the RNA extraction the frozen samples were weighed and 
cut with a pestle in a mortar. It is very important to keep the tissue frozen 
using liquid nitrogen to avoid RNA degradation. 
The RNA extraction consists of five steps: 
1. Homogenization: homogenize tissue samples in 1 ml of TRIzolTM per 50-
100 mg of tissue using homogenizer ultra-turrax-t8 (IKA® - WERKE).  
The homogenizer tips were washed prior to use it: 
o 10 min. NaOH 0.5 M 
o min. H2O DEPC 
o 3 min. H2O DEPC 
o 2 min. H2O DEPC 
and between the homogenization of different samples inserted in the 
homogenize and immersed in the solutions: 
o 10 sec. NaOH 0.5 M 
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o 10 sec. Tris-HCl 0.1 M pH 7.5 
o 10 sec. H2O DEPC 
o 20 sec. H2O DEPC 
o 30 sec. H2O DEPC 
2. Phase separation: incubate the homogenized samples for 5 minutes at 15 
to 30°C to permit the complete dissociation of nucleoprotein complexes. Add 
0.2 ml of chloroform per 1 ml of TRIzolTM. Shake tubes vigorously for 15 
seconds and incubate them at 15 to 30°C for 2 to 3 minutes. Centrifuge the 
samples at no more than 12.000 × g for 15 minutes at 2 to 8°C. Following 
centrifugation, the mixture separates into a lower red, phenol-chloroform 
phase, an interphase, and a colorless upper aqueous phase. RNA remains 
exclusively in the aqueous phase. The volume of the aqueous phase is about 
60% of the volume of TRIzolTM used for homogenization. 
3. RNA precipitation: transfer the aqueous phase to a fresh tube, and save 
the organic phase if isolation of DNA or proteins is desired. Precipitate the 
RNA from the aqueous phase by mixing with isopropyl alcohol. Use 0.5 ml of 
isopropyl alcohol per 1 ml of TRIzolTM used for the initial homogenization. 
Incubate samples at 15 to 30°C for 10 minutes and centrifuge at no more 
than 12.000 × g for 10 minutes at 2 to 8°C. The RNA precipitate, often 
invisible before centrifugation, forms a gel-like pellet on the side and bottom 
of the tube. 
4. RNA wash: remove the supernatant. Wash the RNA pellet once with 75% 
ethanol, adding at least 1 ml of 75% ethanol per 1 ml of TRIzolTM used for 
the initial homogenization. Mix the sample by vortexing and centrifuge at no 
more than 7,500 × g for 5 minutes at 2 to 8°C. 
5. Redissolving the RNA: at the end of the procedure, briefly dry the RNA 
pellet (air-dry or vacuum-dry for 5-10 minutes). It is important not to let the 
RNA pellet dry completely as this will greatly decrease its solubility. Partially 
dissolved RNA samples have an A260/280 ratio < 1.6. Dissolve RNA in 
RNase-free water by passing the solution a few times through a pipette tip, 
and incubating for 10 minutes at 55 to 60°C. and stored at -70°C. It is 
possible to store the RNA pellet at -80°C, if it is not immediately used. 
The RNA control (reference) used in my experiments is “Adult Total Breast 
RNA” (StratageneTM) of pooled breast normal tissues of females, 56 years 
old, Caucasian race. 
 
3.5 ASSESSMENT RNA YIELD AND QUALITY 
 
3.5.1 RNA QUANTITATION 
 
The concentration of the RNA solution was determined by measuring its 
absorbance at 260 nm: 
 
µg RNA/ml = A260 x dilution factor x 40  
 
where 40 is the extinction coefficient: 1 A260 = 40 µg RNA/ml 
 
To quantitate the extracted RNA I used NanoDrop 1000A Spectrophotometer 
(http://www.nanodrop.com/) (fig. 3.6). 
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The Thermo Scientific NanoDrop™ 1000 Spectrophotometer measures 1 ul 
samples with high accuracy and reproducibility. The full spectrum (220nm-
750nm) spectrophotometer utilizes a patented sample retention technology 
that employs surface tension alone to hold the sample in place. This 
eliminates the need for cumbersome cuvettes and other sample containment 
devices and allows for clean up in seconds. In addition, the NanoDrop 1000 
Spectrophotometer has the capability to measure highly concentrated 
samples without dilution (50X higher concentration than the samples 
measured by a standard cuvette spectrophotometer). 

Figure 3.6: NanoDrop® ND-1000 (http://www.nanodrop.com/). 
 
A 1.4 µl RNA sample is pipetted onto the end of a fiber optic cable (the 
receiving fiber). A second fiber optic cable (the source fiber) is then brought 
into contact with the liquid sample causing the liquid to bridge the gap 
between the fiber optic ends. The gap is controlled to both 1mm and 0.2 mm 
paths. A pulsed xenon flash lamp provides the light source and a 
spectrometer utilizing a linear CCD array is used to analyze the light after 
passing through the sample. The instrument is controlled by PC based 
software, and the data is logged in an archive file on the PC. 
 

Figure 3.7: Fiber optic cables of NanoDrop® ND-1000 (http://www.nanodrop.com/). 
 
To measure nucleic acid samples select the ‘Nucleic Acid’ application module 
and the program show the following parameters: 

sample type: used to select the type of nucleic acid being measured. 
The user can select ‘DNA-50’ for dsDNA, ‘RNA-40’ for RNA, ‘ssDNA-33’ for 
single-stranded DNA, or ‘Other’ for other nucleic acids.  

λ and abs: the user selected wavelength and corresponding 
absorbance. The wavelength can be selected by moving the cursor or using 
the up/down arrows to the right of the wavelength box. 

A260 10 mm path: absorbance of the sample at 260 nm represented 
as if measured with a conventional 10 mm path. Note: This is 10X the 
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absorbance actually measured using the 1 mm path length and 50X the 
absorbance actually measured using the 0.2 mm path length. 

A280 10 mm path: sample absorbance at 280 nm represented as if 
measured with a conventional 10 mm path. Note: This is 10X the absorbance 
actually measured using the 1 mm path length and 50X the absorbance 
actually measured using the 0.2 mm path length. 

260/280: ratio of sample absorbance at 260 and 280 nm. The ratio of 
absorbance at 260 and 280 nm is used to assess the purity of DNA and RNA. 
A ratio of ~1.8 is generally accepted as “pure” for DNA; a ratio of ~2.0 is 
generally accepted as “pure” for RNA. If the ratio is appreciably lower in 
either case, it may indicate the presence of protein, phenol or other 
contaminants that absorb strongly at or near 280 nm. See “260/280 Ratio” in 
the Troubleshooting section for more details on factors that can affect this 
ratio. 

260/230: ratio of sample absorbance at 260 and 230 nm. This is a 
secondary measure of nucleic acid purity. The 260/230 values for “pure” 
nucleic acid are often higher than the respective 260/280 values. They are 
commonly in the range of 1.8-2.2. If the ratio is appreciably lower, this may 
indicate the presence of co-purified contaminants. 

ng/µl: sample concentration in ng/ul based on absorbance at 260 nm 
and the selected analysis constant. 
 
3.5.2 RNA QUALITY ANALYSIS 
 
Due to the presence of RNases, integrity check is an essential steps before 
any RNA dependent application. I used the 2100 Agilent Bioanalyzer 
(http://www.chem.agilent.com/) to analyze the quality of the extracted total 
RNA. The instrument gives also a RNA Integrity Number (RIN), an estimate 
of the quantity, and calculates ribosomal ratios (rRNA 18S and rRNA 28S) of 
the total RNA sample.  
 

Figure 3.8: 2100 Agilent Bioanalyzer (http://www.chem.agilent.com/)

The 2100 Bioanalyzer is a microfluidics-based platform based on the “Lab-
on-a-Chip technology”. This technology utilizes a network of channels and 
wells that are etched onto glass or polymer chips to build mini-labs. Pressure 
or electrokinetic forces move picoliter volumes in finely controlled manner 
through the channels. Lab-on-a-Chip enables sample handling, mixing, 
dilution, electrophoresis and detection on single integrated systems. The 
main advantages of Lab-on-a-Chip are ease-of-use, speed of analysis, low 
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sample (detects until 200 pg/µl of total RNA) and reagent consumption and 
high reproducibility due to standardization and automation.  
In my analysis I used the RNA 6000 Nano LabChip, which is able to detect 5 
ng/µl of total RNA and 25 ng/µl of mRNA.  

Figure 3.9: RNA 6000 Nano LabChip (http://www.chem.agilent.com/)

This chip contains a network of interconnected channels where the samples 
are loaded. A gel matrix with a specific RNA dye fills the chip. Each sample 
migrates into the matrix as in a capillary electrophoresis (fig. 3.10).  
 

Figure 3.10: The sample migrates from the wells through the microchannel of the chip (1), 
until the microchannel of separation (2). The different components of the sample are 
separated by electrophoresis (3), the fluorescence was detected and it was converted in the 
classical electropherogram image (4). (http://www.home.agilent.com). 

 
A degradated RNA molecule is easily detected from the graph (fig. 3.11) 
because of: 
• lower ratio rRNA18S/rRNA28S, 
• other peaks between rRNA18S peak and rRNA28S peak, 
• decrease of the global signal detected from the instrument, 
• shift of the peaks to lower molecular weight. 
The software calculates on the basis of the whole electrophoresis migration 
and the presence/absence of degradation products, the RIN value (RNA 
Integrity Number) with a range of numbers from 1 (completely degraded 
RNA) to 10 (totally intact RNA).  
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Figure 3.11: Electropherograms of two total RNA samples: above a high quality sample, 
below a partially degraded sample(http://www.home.agilent.com). RIN= RNA Integrity 
Number 
 
3.6 RNA AMPLIFICATION 
 
3.6.1 Amino Allyl MessageAmpTM aRNA 
 
RNA amplification was originally developed as a method to amplify RNA 
samples to produce enough material for array hybridization [132]. 
The Amino Allyl MessageAmpTM aRNA Amplification Kit is based on the RNA 
amplification protocol developed in the Eberwine laboratory [133]. The 
procedure consists of reverse transcription with an oligo(dT) primer bearing 
a T7 promoter and using ArrayScriptTM, a reverse transcriptase (RT) 
engineered to produce higher yields of first strand cDNA than wild type 
enzymes. ArrayScript catalyzes the synthesis of full-length cDNA that then 
undergoes a second strand synthesis and clean-up to become a template for 
in vitro transcription (IVT) with T7 RNA polymerase. This enzyme generates 
from hundreds to thousands of antisense RNA copies (aRNA) of each mRNA 
in a sample. The quantity of RNA for the amplification is 100-1000 ng total 
RNA or 10-100 ng mRNA. 
Several groups have tried to determine whether amplification of RNA 
introduces bias and they reported that any bias is minimal [134, 135]. 
In summary the Amino Allyl MessageAmp aRNA amplification procedure 
consists in five steps: 
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• reverse transcription to synthesize first strand cDNA (3.6.2), 
• second strand cDNA synthesis (3.6.3), 
• cDNA purification (3.6.4), 
• in vitro transcription to synthesize amino allyl-modified aRNA (3.6.5), 
• aRNA purification (3.6.6). 
 

Figure 3.12: Amino Allyl MessageAmp II aRNA amplification procedure 
(http://www.ambion.com)

3.6.2 REVERSE TRASCRIPTION TO SYNTHESIZE FIRST STRAND 
cDNA 
 
This reaction is primed with the T7 Oligo(dT) primer that binds to the 3’ poli 
A tail of mRNA to synthesie cDNA containing a T7 promoter. 
The protocol consists of eight steps: 
 
• place 1 µg of total RNA into a sterile RNase-free tube; 
• add 1 µl of T7 Oligo(dT) primer; 
• add nuclease-free water to a final volume of 12 µl, vortex briefly to mix, 

then centrifuge to collect the mixture at the bottom of the tube; 
• incubate 10 min. at 70°C in a thermal cycler to denaturate the RNA 

secondary structures; 
• centrifuge samples briefly to collect them at the bottom of the tube, place 

the mixture on ice; 
• at room temperature prepare reverse transcription master mix in a 

nuclease-free tube assembling the reagents in the order shown below: 
 

COMPONENT QUANTITY 

10X First Strand Buffer 2 µl

dNTP Mix 4 µl

RNAse Inhibitor 1 µl

ArrayScript 1 µl

• transfer 8 µl of mix to each RNA sample mixing well and incubate 2 hours 
at 42°C; 
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• after the incubation place the tubes on ice and proceed to the second 
strand cDNA synthesis. 

 
3.6.3 SECOND STRAND cDNA SYNTHESIS 
 
On ice, prepare a Second strand master mix in a nuclease-free tube in the 
order listed below: 
 

COMPONENT QUANTITY

H2O Nuclease-free 63 µl

10X Second Strand Buffer 10 µl

dNTP Mix 4 µl

DNA Polymerase 2 µl

RNase H 1 µl

• mix well by gently vortexing; 
• transfer 80 µl of mix to each sample mixing well; 
• incubate 2 hours in a 16°C thermal cycler; 
• after the incubation place the reaction on ice and proceed to the cDNA 

purification step. 
 
3.6.4 cDNA PURIFICATION 
 
cDNA purification removes RNA, primers, enzymes and salts that would 
inhibit in vitro transcription. This protocol uses specific cDNA filter cartridges 
containing silicon membranes to bind the cDNA. Before the purification 
procedure the cDNA filter is equilibrated with 50 µl of cDNA Binding Buffer 
and is incubated 5 min at room temperature. 
The protocol consists of: 
 
• add 250 µl of cDNA Binding Buffer and mix thoroughly; 
• pipet the solution onto the center of the cDNA filter cartridge (cDNA 

mixture binds the silica filter at pH < 7.5); 
• centrifuge for ~ 1 min. at 10.000 x g or until the mixture goes through 

the filter; (only the cDNA > 100 bp binds the filter); 
• discard the flow-through and replace the cDNA filter cartridge in the wash 

tube; 
• apply 500 µl of Wash Buffer and centrifuge for ~ 1 min. at 10.000 x g; 

discard the flow-through and spin the cDNA cartridge for an additional 
minute; 

• transfer cDNA filter cartridge to a new cDNA elution tube; 
• apply 9 µl of nuclease-free water, preheated to 50°C-55°C, to the center 

of the filter in the cDNA filter cartridge; 
• leave at room temperature for 2 min. and then centrifuge for 1.5 min. at 

10.000 x g, or until all the nuclease-free water is through the filter; 
• eluate with a second 9 µl of preheated nuclease-free water.  
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3.6.5 AMINO ALLYL-MODIFIED aRNA IN VITRO TRANSCRIPTION 
(IVT) 
 
IVT generates multiple copies of amino allyl-modified aRNA from the double-
stranded cDNA templates. This protocol uses a modified nucleotide, 5-(3-
aminoallyl)-UTP (aaUTP) that contains a primary aminic group on C5 of 
uracil. This group reacts with the carbossilic group of the fluorophore 
molecule during the dye coupling reaction (see par 3.8.1) (fig. 3.13). 
 

Figure 3.13: Amino Allyl Labeling Reaction (adapted from MessageAmpTM II aRNA kit) 
 
The IVT master mix was prepared at room temperature by adding the 
following reagents: 
 

COMPONENT QUANTITY

aaUTP Solution (50mM) 3 µl

ATP, CTP, GTP Mix (25mM) 12 µl

UTP Solution (50mM) 3 µl

T7 10X Reaction Buffer 4 µl

T7 Enzyme Mix 4 µl

• mix well the mix by gently vortexing and transfer 26 µl to each sample; 
• incubate for 4-14 hours at 37°C; 
• after the incubation add 2 µl of DNase I to completely remove the cDNA, 

incubate 30 min. at 37°C. 
 
3.6.6 aRNA PURIFICATION 
 
The purification removes unincorporated aaUTP and Tris from IVT reactions 
that would otherwise compete with the aRNA for dye coupling; it also 
removes enzymes, salts and other unincorporated nucleotides. Similarly to 
cDNA purification, aRNA purification uses specific aRNA filter cartridges in 
silicon material. 
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The protocol is described below: 
 
• add 58 µl nuclease-free H2O, 350 µl aRNA Binding Buffer, 250 µl 100% 

ethanol and mix by pipetting the mixture; 
• pipet the mixture onto the center of the filter in the aRNA filter cartridge 

and centrifuge for ~ 1 min. at 10.000 x g, continue until the mixture has 
passed through the filter, now the aRNA is bound to the filter; 

• wash the filter with 650 µl of Wash buffer and centrifuge for ~ 1 min. at 
10.000 x g, repeat the centrifugation to remove trace amounts of ethanol 
contained in Wash Buffer; 

• transfer filter cartridge to a fresh aRNA collection tube and add 100 µl of 
nuclease-free H2O preheated to 50 – 60°C; 

• leave at room temperature for 2 min. and then centrifuge for ~1.5 min. 
at 10.000 x g or until the nuclease-free water is through the filter; the 
aRNA will now be in the aRNA collection tube 

• store purified aRNA at -20°C overnight or at -80°C for longer times if 
desired. 

 
The concentration of the aRNA solution was determined using the NanoDrop 
1000A as previously described (see par. 3.6.1). Usually a good yield of aRNA 
is 20-30 µg starting from 1 µg of total RNA. 
 
3.7 DYE COUPLING AND LABELED aRNA CLEANUP 
 
3.7.1 aRNA DYE COUPLING REACTION 
 
To prepare the labelled target to hybridize with the probes on the array I 
used the indirect labelling method. This procedure is more convenient than 
the direct labelling. The aaUTP incorporated during the IVT has only a minor 
effect on the reaction efficiency and yield [136] because the T7 RNA 
polymerase incorporates with high efficiency both aaUTP and UTP. Moreover 
dye coupling reaction using Cy3 and Cy5 has similar efficiency and labelled 
samples will not have the biases that can result from direct incorporation of 
modified nucleotides by in vitro transcription. 
To label the target aRNA I used the mono-reactive NHS esters of Cy3 and 
Cy5 (Amersham Biosciences) (fig. 3.14). 
Cy3 and Cy5 fluorescent dyes are used very often in the microarray 
technology because they are photostable and they have a high signal of 
fluorescence emission. Since the absorption spectrums of Cy3 and Cy5 have 
a small overlap, they can be excited separately to detect the single 
fluorescence (3.15). 
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Figure 3.14: Chemical structures of Cy3 (5-NN’-diethyl-tethrametylindocarbocyanine) and 
Cy5 (5-NN’-diethyl-tethrametylindo di carbocyanine) molecules (MicroArray Handbook 
Amersham, 2002) 
 

Figure 3.15: Absorption and emission spectrum of Cy3 and Cy5. f=fluorescence, 
λ wavelength (MicroArray Handbook Amersham, 2002) 
 
The labelling protocol is described below: 
 
• prepare dye before starting the dye coupling procedure adding 11 µl of 

DMSO to Cy3 and Cy5 reactive dye and mixing thoroughly, keep the 
resuspended dye in the dark at room temperature for up to 1 hour. It is 
important that the dye compounds remain dry before and after dissolving 
in DMSO because any water that is introduced will cause hydrolysis of 
NHS esters, lowering the efficiency of coupling; 

• add to 20-25 µg of aRNA previously lyophilized 9 µl of Coupling Buffer 
and resuspend thoroughly by gentle vortexing; 

• add the DMSO dyes to the aRNA coupling buffer mixture and mix well by 
vortexing gently; 

• incubate the solution 30 min. at room temperature in the dark: this 
incubation allows the dye coupling reaction to occur; 

• add 4.5 µl of 4M Hydroxylamine and incubate the reaction in the dark for 
15 min.; the large molar excess of hydroxylamine quenches the amine-
reactive groups on the unreacted dye molecules. 
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3.7.2 DYE LABELED aRNA PURIFICATION 
 
This purification removes excess dye from labeled aRNA. The procedure 
follows the same protocol described above (par. 3.7.6) for the aRNA 
purification. The labeled aRNA purified can be stored at -20°C for some 
months without damage for incorporated fluorophores. 
 
3.7.3 SPECTROPHOTOMETRIC ANALYSIS OF DYE INCORPORATION 
 
To calculate how many picomoles (pmol) of fluorophores were incorporated 
after aRNA labeling, I used the NanoDrop 1000A Spectrophotometer 
(http://www.nanodrop.com/), as described in paragraph 3.6.1. In this case I 
selected the application module “Microarray” that measures the dye 
incorporation concentration. The instrument has a very low detection limit, 
0.20 pmol/µl for Cy3 and 0.12 pmol/µl for Cy5 and accurately measures 
concentrations up to 100 pmol/µl for Cy3 and 60 pmol/µl for Cy5.  
The output of the program reports: 

Cy3, Cy5 abs.norm: normalized absorbance of selected Dye at the 1 
mm pathlength 

pmol/ul: concentration based upon selected Dye’s extinction 
coefficient (0,15 µM/cm Cy3 and 0,25 µM/cm Cy5) 

ng/ul: concentration of nucleic acids in the sample calculated using 
the absorbance at 260 nm minus the absorbance at 340 nm (i.e. normalized 
at 340 nm) and the nucleic acid analysis constant 

260/280: ratio of sample absorbance at 260 and 280 nm. The ratio of 
absorbance at 260 and 280 nm is used to assess the purity of RNA, a ratio of 
~2.0 is generally accepted as “pure” for RNA. If the ratio is appreciably 
lower, it may indicate the presence of protein, phenol or other contaminants 
that absorb strongly at or near 280 nm.  
To calculate the number of picomol the software uses the following 

calculation: 
pmolCy3 = [(A550 – A700) * vol* dilution factor]/ 0.15 
pmolCy3 = [(A650 – A700) * vol* dilution factor]/ 0.25 
where: 
A550 = Cy3 absorbance measured at the wavelength of the maximum 
absorption of Cy3 (550 nm) 
A650 = Cy5 absorbance measured at the wavelength of the maximum 
absorption of Cy5 (650 nm) 
A700 = absorbance at wavelength = 700 nm to determine background 
0.15 = Cy3 extinction coefficient (ε)
0.25 = Cy5 extinction coefficient (ε)

It is important to estimate also the number of dye molecules incorporated 
per 1000 nucleotides (nt): 
 
nr dye molecules/1000 nt = Adye/A260 * 9010 cm-1M-1/dye extinction coefficient * 1000 
 



Methods 

 71

The expected incorporation rate is 30-60 dye molecules per 1000 
nucleotides. 
 
3.8 PRE-HYBRIDIZATION AND HYBRIDIZATION 
REACTIONS 
 
3.8.1 LABELED aRNA PRECIPITATION 
 
The Cy3 labeled aRNA and the Cy5 labeled aRNA are pooled together in the 
same solution. It is necessary that the two samples have a similar number of 
picomoles of fluorophore and also that the quantity of aRNA is comparable in 
two labeled aRNA (Cy3 and Cy5). I struck a balance between these two 
parameters and also I had to consider the different quantum yield of Cy3 and 
Cy5. Indeed Cy3 binds the aRNA more efficiently than Cy5 but has a lower 
quantum yield when it is detected from the scanner. After the optimization of 
these parameters, the probes are precipitated as reported below: 
 
• add 4/5 of total volume of CH3COONH4 and 2,5 volumes of EtOH absolute 

mixing well; 
• leave the solution 30 min. at 4°C (or at -20°C for longer time) and 

centrifuge at room temperature for 15 min. at 14.000 x g: it is now visible 
on the bottom of the tube a pellet; 

• remove the supernatant and wash the pellet with EtOH 75%; 
• centrifuge for 5 min. at 14.000 x g: the pellet is firmly attached to the 

bottom of the tube: 
• repeat the wash with EtOH 75% and dry the pellet under a laminar flux 

hood, in order to remove any traces of ethanol. 
 
3.8.2 LABELED aRNA FRAGMENTATION 
 
Many protocols for using amplified RNA in microarray analysis recommend 
the aRNA fragmentation prior to hybridization to an oligonucleotide 
microarray. This fragmentation step improves hybridization kinetics with the 
arrayed oligonucleotides and can lead to enhanced signal.  
The protocol for 2–20 µg of RNA, that uses the Ambion’s RNA Fragmentation 
ReagentsTM, is reported below: 
• bring the RNA sample volume to 9 µl with Nuclease-free Water. Add 1 µl 

of the 10X Fragmentation Buffer to the RNA sample; 
• mix, spin briefly, and incubate at 70°C for 15 min in a heating block, 

thermocycler, or water bath; 
• add 1 µl of Stop Solution, place it on ice until use, or store it at –80°C. 
 
The average size of the resulting fragments will be 60-200 nucleotides. 
 
3.8.3 PREHYBRIDIZATION REACTION 
 
The pre-hybridization reaction saturates not-specific sites on the surface of 
the microarray slide to avoid an high background signal due to the not-
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specific binding between the probes and the target. 
The protocol for the pre-hybridization is reported below: 
 
• add 70 µl of pre-hybridization buffer (see par. 3.1) preheated at 48°C on 

the surface of microarray slide where the oligos are spotted, cover with a 
coverslip; 

• put the microarray slide in a hybridization chamber (HybChamberTM Gene 
Machines, #HYB-03) (fig. 3.16) that contains in the reservoir groove ~ 
100 µl of H2O mQ to maintain enough humidity during the incubation; 

• leave at least 1 hour the chamber in a water bath at 48°C; if the 
incubation is prolonged until 18-24 hours, the slide show a lower 
background; 

• remove the coverslip gently (wash the slide with H2O mQ and dry with 
compressed air. 

Figure 3.16: Hybridization chamber (HybChamberTM Gene Machines, #HYB-03) used for 
the pre-hybridization reaction. 
 
3.8.4 HYBRIDIZATION REACTION 
 
The hybridization between the labeled aRNA and the probe (oligonucleotide) 
on the microarray slide requires a proper stringency. There are many factors 
that influence the reaction: 
• temperature, 
• salt concentration, 
• formamide concentration in the hybridization buffer. 
High temperature and high salt concentration increase the stringency, 
instead low temperature and low salt concentration decrease it. It is 
necessary to find a balance between these extreme conditions, in fact too 
high stringency could cause too low signal but also there is a risk of low 
specificity if the stringency is low. 
For the hybridization I used a particular microarray hybridization station that 
performs a incubation by micro agitation, the ArrayBoosterTM (Advalitix 
Instruments) (fig. 3.17). 
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Figure 3.17: ArrayBoosterTM (Advalitix Instruments) (http://www.advalytix.de/)

The hybridization of oligos microarrays is diffusion limited, i.e. the signal 
intensity, especially for low expression genes, is determined by the number 
of target molecules reaching the probe. However, it is known that diffusion is 
a slow process for large molecules so that, even during overnight 
hybridization, the system does not reach equilibrium. Agitation is the obvious 
solution to overcome the diffusion limitation of acid nucleic hybridization. 
The ArrayBooster™ uses Surface Acoustic Waves (SAW) to effectively agitate 
the sample solution during the incubation. The ArrayBooster™ has four 
independently controlled chambers that accept all standard slide formats. As 
the incubation chambers have no valves or tubes the system works without 
any dead volume. Sample volumes as low as 10 microliters can be incubated 
and agitated. 
 

3.18: AdvaCard™ with three chips (http://www.advalytix.de/)

The core of the ArrayBooster™ is the AdvaCard™ (see fig. 3.18). The sample 
solution is sandwiched between the AdvaCard™ and the microarray. Special 
fluidics prevent bubble formation in the sample loading steps. The 
AdvaCard™ is a micro-agitation chip card available in three different sizes 
adapted to different spotting areas. To ensure optimal agitation efficiency 
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Advacards™ contain one, two or three agitation chips. In my case I used 
Advacards™ with three chips. A radio frequency voltage feeding the nano 
pumps on the chips induces nearly-chaotic streaming patterns in the sample 
solution. The software that controls the instrument, allows the user to 
program different parameters, temperature, time and grade of agitation, for 
each chamber independently (see fig. 3.19). 
 

Figure 3.19: ArrayBooster™ control software (http://www.advalytix.de/)

The AdvaCardTM is placed in the incubation chamber over the microarray 
slide. Before the incubation, I put on both sides of the hybridization chamber 
the diluted hybridization buffer (250 µl of buffer and 250 µl of mQ H2O) to 
ensure a constant humidity during the reaction. The target solution (labeled 
aRNA) was loaded between the advacard and the microarray slide (see fig. 
3.20). Hybridization was carried out at 48°C for 12-16 hours. 
 

Figure 3.20: Placement of the AdvaCardTM, target solution (hyb.solution) and microarray 
slide in the ArrayBooster chamber (http://www.advalytix.de/). 
 
For each experiment three replicates (three hybridizations) were performed 
including a dye-swap procedure (see 3.12.3). 
 
3.8.5 POST-HYBRIDIZATION WASH 
 
After the hybridization process, the microarray slide was washed to remove 
the target not-hybridizated. The slide was placed in a falcon with 40 ml of 
wash solution and washed as reported below: 
 
• 1X SSC and 0,2 % SDS for 4 min. at room temperature; 
• 0,1 X SSC and 0,2 % SDS for 4 min at room temperature; 
• 0,2 X SSC for 4 min. at room temperature (twice); 
• 0,1 X SSC for 3 min. at room temperature (twice). 
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It is important to change the 50 ml tube between the second and the third 
wash since the SDS is fluorescent could increase the background signal of 
the microarray. Then the slide was dried with compressed air and stored in 
the dark until the use. 
 
3.9 MICROARRAY SCANNING USING SCANARRAY LITETM 

Microarrays were scanned using ScanArray Lite (PerkinElmerTM), a confocal 
laser scanner that it is able to excite the fluorophores Cy3 and Cy5 and 
detect their fluorescence emission (fig. 3.21). The working principle of this 
scanner is similar to a confocal microscopy: a confocal microscope uses point 
illumination and a pinhole in an optically conjugate plane in front of the 
detector to eliminate out-of-focus information. Only the light within the focal 
plane can be detected, so the image quality is much better than that of wide-
field images (http://micro.magnet.fsu.edu/) [137]. ScanArray Lite utilizes 
confocal technology to collect more signal of interest and to automatically 
reduce background noise in order to achieve higher signal-to-noise ratios. 

Figure 3.21: ScanArray Lite (Packard) 
 
In brief ScanArray Lite works as described below: 
 
• it has two fixed internal lasers: the green laser He-Ne excites Cy3 with a 

excitation wavelength of 543 nm and the red laser He-Ne excites Cy5 
with a excitation wavelength of 633 nm. Since there is only one 
photomultiplier tube (PMT) that detects the fluorescence signal, the lasers 
do not work at the same time but excite one dye at a time; 

• the lens collects the light generated from the excited fluorophores; 
• the light passes through two emission filters (for 570 nm and 670 nm 

wavelengths) that adsorb the light reflected from the microarray slide; 
• the detector focuses the light into a pinhole in front of the PMT tube, in 

order to detect the light within the focal plane of the slide; 
• the PMT converts the light signal into electric signal and then into digital 

image. 
• the software that controls the instrument assigns ”false” colours to each 

pixel of the image: the spots with a low fluorescence signal look blue, the 
spots with a higher signal in one of two channels (Cy3 or Cy5) green or 
red, the saturated spots white. 

 
The software ScanArray ExpressTM controls the acquisition and analysis of 
the image. If the laser power and the PMT gain are increased, the 
fluorescence signal is intensified and, also, the background signal. 
The “tiff” image format is 16 bit and it means that pixels could have 216-1 
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different values: each pixel could have a value between 0 and 65535.  
For each slide are acquired two separate images, one for the Cy3 labeled 
sample and the other one for the Cy5 labeled sample: the result is a “false” 
colours image with Cy3 = green and Cy5 = red. Then the two images are 
combined to obtain a composite image: green spots are the over-expressed 
genes in the Cy3 labeled aRNA, instead the red spots are the over-expressed 
genes in the Cy5 labeled, the yellow spots represent the genes not 
differentially expressed between Cy3 and Cy5  
labeled aRNA. 
Signal intensity is balanced between two fluorophores in an array by 
automatically adjusting the laser power or PMT gain to a user defined target 
of pixel intensity for each fluorophore. 
ScanArray Lite is able to detect until 0.05 molecules of fluorophore/µm2 and 
produces highly reproducible results: repeatability of results with multiple 
scans and uniformity of results across the slide are both less than 5% CV. 
 
3.10 IMAGE ANALYSIS WITH SCANARRAY EXPRESS 
 
After image acquisition by scanning, I selected a quantitation protocol in 
ScanArray Express TM to analyze the images. The software requires a “.gal” 
file created during the spotting of the probes on the slide. This file contains 
all specifications that define the geometry of the array: gene names and 
positions on the slide, subarray number, spot diameter, spacing between 
array columns and rows. 
The user can select specific parameters for the image quantitation, in my 
protocol I set the options reported below: 
• Spots quality measurement method: Footprint. For each subarray, the 

software calculated the difference between the center of the nominal 
spots and the center of the found spot. Let the shifted nominal position 
be (X,Y), the found position to be (x,y), the footprint is: 

 (X - x)2 + (Y - y)2

Spots with a calculated footprint lower than the maximum specified in the 
application settings (100 µm in my experiment) are considered for the 
subsequent analysis. 

• Signal quantitation method: Fixed circle. ScanArray Express determines 
the center for each spot and the corresponding patch. The patch is a 
rectangle that is constructed around the center of the spot with the 
dimensions indicated in the template. Both the spot and the background 
must be defined with the patch. The quantitation method selected then 
constructs masks for the spot and the background. A mask (fig. 3.22) is a 
pixel by pixel map that indicates the property of each pixel. The Fixed 
circle method fits all spots in the image with circles of fixed diameter. 
Using this option the spot mask and the background mask are 
constructed using the parameters of the spot diameter, and the 
background inner and outer dimensions. This method works well if all 
spots have the same size and shape. 
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Fig. 3.22: Example of mask constructed around a spot from ScanArray Express 
(ScanArrayExpress User Manual). 

The software, identified the pixels belonging to spots and background, 
calculates the difference and the mean of the fluorescence intensity for 
both channels (Cy3 and Cy5) and produces a single value. I used the 
median value instead of the mean value, because this measure is less 
influenced from groups of pixels with values too different from the mean 
value. 

• Normalization method: LOWESS (Locally Weighted Scatter Plot 
Smoothing). The LOWESS method carries out robust locally-weighted 
scatter plot smoothing for both equally spaced and non-equally spaced 
data [138]. 

The quantitation results were displayed in the main window as a 
Spreadsheet, a Scatter Plot (fig. 3.23), and a Distribution Plot (fig. 3.24). 
• Spreadsheet: each row in the spreadsheet is the data from one spot, 

including the gene names and ID numbers that were imported from the 
.GAL file. You can scroll vertically to see the data for each spot and 
horizontally to view the 55 columns of data for any spot. It is useful to 
evaluate if the spot fluorescence level is high enough to perform a 
reliable statistical analysis.  

• Scatter Plot: this plot allows you to see any column of data plotted 
against any other column. When you select a data point on the scatter 
plot, the corresponding data point are displayed in the spot viewer and is 
highlighted in both the Spreadsheet and Image viewer when you switch 
back to those tabs. 

Figure 3.23: Scatter Plot (ScanArrayExpress User Manual) 
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• Distribution Plot: this plot allows you to see trends that are area-
sensitive on the slide; for example, if one side of the slide is over- or 
under-washed, or if a pin is partially clogged. A good (high quality) 
microarray should not have any spatial correlations for any 
parameters. 

 

Figure 3.24: Distribution Plot (ScanArrayExpress User Manual) 
 
3.11 STATISTICAL ANALYSIS 
 
3.11.1 FILTERING ANALYSIS OF FLUORESCENCE VALUES 
 
The values within a slide were filtered considering their fluorescence intensity 
and the standard deviation (SD) value; this step was performed before the 
normalization step (see 3.12.2). The procedure is reported below: 
• spots with a median fluorescence pixel intensity below 300 (calculated 

considering negative control intensity) on both Cy3 and Cy5 channels 
were filtered out. The value 300 represents the threshold under that the 
software ScanArray Express can not detect consistently the fluorescence 
intensity; 

• spots with a median fluorescence pixel intensity of zero or less in only 
one channel were set to 100 to prevent their elimination during 
normalization (see 3.12.2); 

• based on the method suggested by Yang et al. [139] R1 = (CH1 
intensity/ CH2 intensity) and R2 = (CH1 intensity/ CH2 intensity) values 
for two replicates of the same gene on the microarray and log2(R1/R2) 
were calculated. We indicated the two replicates of the spot as R1 and 
R2. Then we calculated the mean and SD for the log2(R1/R2) values of all 
microarray spots. Those with a log2 ratio higher than 3 SDwere 
rejected due to replicate inconsistency. The microarrays used have two 
replicates for each gene, so it is important to look at the consistency of 
the two values for the Cy3- and Cy5-channel. The majority of the 
replicates have similar values and the log2(R1/R2) should be around zero. 
If the values are too different, and so the log2(R1/R2) is not around zero, 
it is not possible to establish which is the “real” value. I used this method 
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based on the SD calculation for each log2(R1/R2) to remove the replicates 
with a log2(R1/R2) that highly differ from zero 

• geometric mean for the two intra-array replicates of the remaining genes 
was calculated based on the method suggested by Quackenbush [140]. 

Output files were saved in “tav” format to make them suitable for the MIDAS 
software (see 3.12.2). 
 
3.11.2 DATA NORMALIZATION WITH TIGR MICROARRAY DATA 
ANALYSIS SYSTEM (MIDAS) (http://www.tm4.org/midas.html)

The “tav” file for each microarray experiment was normalized with MIDAS 
software using the LOWESS (Localised weighted smother estimator) method.  
There are many sources of systematic variation in microarray experiments 
which can affect the gene expression levels: differences in labelling efficiency 
between the two fluorescent dyes, experimental variability in hybridization 
and processing procedures or scanner settings at the data collection step. 
For example, since the red (Cy5) and green (Cy3) dyes differ in physical 
properties such as heat and light sensitivity, usually the mean fluorescence 
intensity of Cy3 is lower than the mean fluorescence intensity of Cy5. The 
purpose of the normalization is to minimize systematic variations in the 
measured expression levels of two co-hybridized mRNA samples, so that 
biological differences can be more easily distinguished, as well as to allow 
the comparison of expression levels across slides [141].  
The relationship between dye-bias and intensity could be better evaluated in 
an MA-plot (fig. 3.25) which is a scatterplot of the log-ratios called M-values 
(minus) against the log-intensities called A-values (add) for an array. MA-
plots may also be called RI-plots (ratio-intensity). In detail: 
 

log-ratios for each spot: M = log2Ai-log2Bi = log2(Ai / Bi) 
log-intensity of each spot: A = (log2Ai + log2Bi)/2 = log2√(Ai x Bi) 
 

This plot can reveal intensity specific artefacts in the log2(R/G) 
measurements. In a perfect situation, the log-ratios M in an MA-plot should 
be evenly distributed around zero across all intensity-values A. However, this 
is rarely the case. Imbalance of the hybridization intensities of the different 
dyes can be seen as a curve in the plot (graph A in the figure). This 
systematic error can be removed with normalisation, which is normally 
applied to the log-ratios (M-values). In my case, normalisation is performed 
by applying a statistical regression method to the MA plot called locally 
weighted linear regression analysis (Lowess). Lowess removes the intensity 
dependent curvature of the data in the MA-plot. The Lowess curve is 
constructed performing a series of local regressions, one for each point in 
the scatterplot. The local regressions are based on a (user defined) 
percentage of spots (f parameter) that are closest in terms of intensity-
values (A-values) to the spot, for which the local regression is being 
predicted. From these neighbouring spots a weighted average of the log-
ratio, log2(Ai / Bi) is calculated. 
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Figure 3.25: MA-plots generated from MIDAS before (blue graph) and after (red graph) 
Lowess normalisation (TIGR MIDAS User Manual). The figure highlights that for low signal 
there is a systematic increase in one of two channels (left part blue graph) that it is 
corrected by the Lowess normalization (red graph) (TIGR MIDAS User Manual).  
 
This means that the neighbouring spots are weighted differently depending 
on how far they are from the target A-value. In summary, observations 
further from the target A-value are down-weighted compared with values 
close to the target A-value. The weighted average value (the Lowess value) 
is then subtracted from the experimentally observed log-ratio of the spot (M-
value): M' = M - Lowess. Thus, each gene is normalised with a different 
normalization value dependent on its hybridisation intensity value (A-value) 
(http://www.systemsbiology.nl/).  
The degree of curve-smoothing is determined by the window width 
parameter. A larger window width results in a smoother curve, a smaller 
window results in more local variation. The Lowess scatter plot smoother is 
not affected by a small percentage of differentially expressed genes, which 
appear as outliers in the MA-plot [141]. The larger the f value (the fraction of 
the data used for smoothing at each point) is, the smoother the fit [141]. 
TIGR Microarray Data Analysis System (MIDAS) is one member of a suite of 
microarray data management and analysis applications developed at The 
Institute for Genomic Research (TIGR). This program is open-source and is 
freely available through the TIGR website, www.tigr.org/software/tm4.
MIDAS provides two methods to normalize the data: total intensity 
normalization and Locfit (LOWESS) normalization. I used the LOWESS 
normalization since the global normalization approach would be not adequate 
in situation where dye biases can depend on spot overall intensity and/or 
spatial location within the array [141]. 
The MIDAS user can select some parameters to perform the normalization: 
• Mode: MIDAS provides two “modes” to apply LOWESS algorithm on an 

input data file: either computing the LOWESS factor for each spot by 
assuming that all spots within a slide contribute to the bias of this spots 
intensity (Global mode), or computing the LOWESS factor for each spot 
by assuming that only those spots within the same block as this spot 
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contribute to the bias of this spot intensity (Block mode). I chose the Blok 
mode option. 

• Smooth parameter: percentage number used by MIDAS to compute 
LOWESS factor for each spot. The higher the smooth parameter is set, 
the more severe the channel A or channel B intensity of raw input data 
will be adjusted. I selected the default value that is set to 33%. 

• Reference: either Cy3, I(A) or Cy5 I(B) can be selected as a reference. If 
Cy3 is selected as the reference, then I(A) of each spot will not be 
changed in the output file; however, I(B) of each spot will be adjusted by 
the calculated LOWESS factor for the spot. I set this parameter to Cy3 as 
by default. 

This approach assumes that the majority of the genes on the array are non-
differentially expressed between the two channels and the number of over-
expressed genes is similar to the number of under-expressed genes. There is 
not a correlation between differential gene expression and localization of the 
spots (spatial bias). 
 
3.11.3 LOGARITMIC TRANSFORMATION OF THE EXPRESSION 
RATIOS VALUES AND ANALYSIS OF THE MICROARRAY REPLICATES  
 
In the microarray technology the simplest approach to identify the 
differentially expressed genes calculates the ratio between CH1 expression 
values and CH2 expression values for each spot, where CH1 and CH2 are the 
two channels in a microarray experiment. In my case CH1 is the query 
sample (patient) and CH2 the reference sample (control). Although ratios 
provide an intuitive measure of expression changes, they have the 
disadvantage of treating up- and down-regulated genes differently. Genes 
upregulated by a factor of 2 have an expression ratio of 2, whereas those 
downregulated by the same factor have an expression ratio lower than 0.5. 
The most widely used alternative transformation of the ratio is the logarithm 
base 2, which has the advantage of producing a continuous spectrum of 
values and considering up- and downregulated genes in a similar fashion. 
The logarithms of the expression ratios are treated symmetrically, so that a 
gene upregulated by a factor of 2 has a log2ratio of 1, a gene down-
regulated by a factor of 2 has a log2ratio of -1, and a gene expressed at a 
constant level (with a ratio of 1) has a log2ratio equal to zero [140].  
Before the logarithmic transformation of the expression ratios I obtained a 
single expression value for each gene from the replicates performed for that 
gene. Replication is essential for identifying and reducing the variation in 
microarray experiments [140]. Technical replicates provide information on 
the natural and systemic variability that occurs in the assay. Technical 
replicates include multiple independent elements for a particular gene within 
an array (such as independent oligos for a particular gene) and replicates 
hybridizations for a particular sample [140]. 
In my experiment there were two replicates within the microarray (see 
3.12.1) and each experiment was replicated three times including a dye-
swap procedure to avoid a bias due to the labeling. In a dye swap 
experiment the reference RNA and the query RNA are labeled with Cy3 and 
Cy5 respectively, on the first array. These dyes are then reversed for the 
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second array. I calculated the geometric mean of two expression values of 
CH1 and CH2 for each spot within the array (see 3.12.1) and then the 
arithmetic mean between the three values of CH1 and CH2 for the replicates. 
Finally I performed the log2ratio transformation on the averaged value of 
CH1 and for CH2. 
 
3.11.4 K-NEAREST NEIGHBOR (KNN) ALGORITHM 
 
After the statistical filtering procedure (3.12.1), some genes did not have an 
expression value for each patient (sample). So the genes that had less than 
half plus one missing values were eliminated while, for the other genes, a 
KNN procedure [141] was used to determine the missing values. This 
algorithm works as follows.  
For each gene i having at least one missing value: 
1. let Si be the samples for which gene i has no missing values; 
2. find the K nearest neighbours to gene i using only samples Si to compute 

the Euclidean distance. When computing E distances, other genes could 
be have missing values for some of the samples Si; the distance is 
averaged over the non-missing entries in each comparison; 

3. impute the missing sample values in gene i, using the averages of the 
non-missing entries for the corresponding sample for that gene.  

If a gene still has missing values after the above steps, impute the missing 
values using the average (non-missing) expression for that gene.  
I tried three different values of K (3, 4, 5) and I chose K=5 because it 
corresponded to the best performance in the classification procedure. 
The data from microarray experiments is usually in the form of large 
matrices of expression levels of genes (rows) under different experimental 
conditions (columns) and frequently with some missing values. Missing 
values occur for diverse reasons and are usually manually flagged and 
excluded from subsequent analysis. Many analysis methods, such as Support 
Vector Machines (see par. 3.15), require complete matrices; one solution is 
to repeat the experiment or eliminate the genes with missing values. The 
first strategy can be expensive and the second one will occur into loss of 
data. Missing data are often replaced by zeros or, less often, by the average 
expression over the row, or “row average”. These approaches are not 
optimal, since they do not take into consideration the correlation structure of 
the data. Instead KNN impute seems to provide a more robust and sensitive 
method for missing value estimation since it takes advantage from the 
correlation structure of the data [141].  
I used the KNN algorithm implemented in PAM (Prediction Analysis of 
Microarray) [143] to determine the missing values. 
 
3.12 HIERARCHICHAL CLUSTERING WITH TMEV (TIGR 
MultiExperimentViewer) SOFTWARE 
 
TIGR MultiExperiment Viewer (TMEV), one member of the suite of microarray 
data analysis programs is an application that allows the visualization of 
processed microarray slide representations and the identification of genes 
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and expression patterns of interest.  
TMEV is composed by several modules (fig. 3.26), to perform different types 
of analysis in the same work session. Each program implemented in TMEV 
has a dialog window where the user can insert the parameters of interest. 
MEV can interpret different file formats, including the MultiExperiment Viewer 
format (.mev), the TIGR ArrayViewer format (.tav), the TDMS file format 
(Tab Delimited, Multiple Sample format), the Affymetrix file format, and 
GenePix fileformat (.gpr).  
In my analysis the input file, a TDMS file, contains a matrix of log2ratio 
expression values for each gene (rows) in each patient (columns). 
To perform an unsupervised cluster analysis I used the HCL (Hierarchical 
Clustering) module of TMEV, an agglomerative algorithm that arranges genes 
and patients according to similarity in the gene expression pattern. 
The object of a hierarchical clustering is to compute a dendrogram that 
assembles all elements into a single tree [144]. For any set of n genes, an 
upper-diagonal similarity matrix is computed, which contains similarity scores 
for all pairs of genes. The matrix is scanned to identify the highest value 
(representing the most similar pair of genes). A node is created joining these 
two genes, and a gene expression profile is computed for the node by 
averaging observation for the joined elements. The similarity matrix is 
updated with this new node replacing the two joined elements, and the 
process is repeated n-1 times until only a single element remains [144]. 
Agglomerative algorithms begin with each element as a separate cluster and 
merge them into larger clusters. An important step in any clustering process 
is to select a distance measure, which will determine how the similarity of 
two elements is calculated. This will influence the shape of the clusters, as 
some elements may be close to one another according to one distance and 
further away according to another. TMEV allows to calculate the distance 
with different approaches, in this study I chose the Euclidean distance 
method. Another parameter to set is the “Linkage Method” that indicates the 
approach used for determining cluster-to-cluster distances, when 
constructing the hierarchical tree. I used the "Average Linkage" method that 
uses the average distance of each member of one cluster to each member of 
the other cluster as a measure of cluster-to-cluster distance. This option in 
MeV is determined by a weighted average of distances of cluster members. 
The cluster analysis visualization of TMEV consists of colored rectangles, 
representing genes (fig. 3.27). Each column represents all the genes from a 
single experiment, and each row represents the expression of a gene across 
all experiments. The default color scheme used to represent expression level 
is red/green (red for overexpression, green for underexpression); black 
rectangles are not-differentially expressed genes. In the upper and left part 
of the graph is reported the dendogram structure that represents the 
correlation between genes (or patients): more nodes separate the genes. 
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Figure 3.26: Main view in TMEV: 1= TMEV modules 2= windows containing the Analysis 
Results 3= graphical output of the analysis (TMEV User Manual) 

Figure 3.27: Hierarchical tree with clusters selected (TMEV User Manual) 
 

3.13 PAM (PREDICTION ANALYSIS OF MICROARRAY) 
 
PAM (Prediction Analysis of Microarray) (http://www-
stat.stanford.edu/~tibs/PAM/) is a statistical software for class prediction 
from gene expression data using nearest shrunken centroids; it is described 
in Tibshirani and colleagues [145]. The method of nearest shrunken 
centroids identifies subsets of genes that best characterize each class. It 
computes a standardized centroid for each class. This is the average gene 
expression for each gene in each class divided by the within-class standard 
deviation for that gene. Nearest centroid classification takes the gene 
expression profile of a new sample, and compares it to each of these class 
centroids. The class whose centroid that it is closest to, in squared distance, 
is the predicted class for that new sample. Nearest shrunken centroid 
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classification "shrinks" each of the class centroids toward the overall centroid 
for all classes by an amount they call the threshold. This shrinkage consists 
of moving the centroid towards zero by threshold, setting it equal to zero if it 
hits zero. For example if threshold was 2.0, a centroid of 3.2 would be 
shrunk to 1.2, a centroid of -3.4 would be shrunk to -1.4, and a centroid of 
1.2 would be shrunk to zero. After shrinking the centroids, the new sample is 
classified by the usual nearest centroid rule, but using the shrunken class 
centroids. 
This shrinkage has two advantages: 1) it can make the classifier more 
accurate by reducing the effect of noisy genes, 2) it does automatic gene 
selection. In particular, if a gene is shrunk to zero for all classes, then it is 
eliminated from the prediction rule. Alternatively, it may be set to zero for all 
classes except one, and it shows that high or low expression for that gene 
characterizes that class. The user selects the threshold value on the basis of 
the K-fold cross-validation procedure that PAM performs for a range of 
threshold values. The samples are divided up at random into K roughly 
equally sized parts (K is set to 10). For each part in turn, the classifier is built 
on the other K-1 parts then tested on the remaining part. This is done for a 
range of threshold values, and the cross-validated misclassification error rate 
is reported for each threshold value. Typically, the user would choose the 
threshold value giving the minimum cross-validated misclassification error 
rate. 
PAM handles three different problems: a standard classification problem (my 
choice), survival analysis and regression. The input file is an excel 
spreadsheet, .xls format. In a standard classification problem PAM requires 
the training data set containing the "Class Labels".  
After setting the threshold, the program supplies three more worksheets to 
the workbook: 1- “PAM plots” contains plots that can be produced 2- “PAM 
Output” contains the list of significant genes (when it is asked for) 3- “PAM 
Worksheet” used for writing intermediate calculations and data used for 
plotting. 
 
3.14 SUPPORT VECTOR MACHINES (SVMS) AND FEATURE 
SELECTION 
 
3.14.1 SUPPORT VECTOR MACHINES (SVMs) 
 
Molecular classification approaches based on SVMs applied to microarray 
data have shown to have statistical and clinical relevance [146]. Support 
Vector Machines (SVMs) [147] are a particular machine learning algorithm 
used for classification and regression problems. In this study we considered a 
binary classification problem with linearly separable patterns (or vectors). 
Assuming that input data are two sets of vectors, positive and negative, in an 
n-dimensional space, a SVM will construct a separating hyperplane in that 
space, that maximizes the margin of separation between the two data sets. 
To calculate the margin, two parallel hyperplanes are constructed, one on 
each side of the separating hyperplane, which are "pushed up against" the 
two data sets. Intuitively, a good separation is achieved by the hyperplane 
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that has the largest distance from the neighbouring data points of both 
classes, since in general the larger the margin the better the generalization 
error of the classifier. The generalization error is a function that indicates the 
capacity of the SVM to classify also the examples not included in the set of 
examples (training set) used to generate the classification function.
In my study a vector, that represented a patient, was constituted by a 
number of components or “features” (n), which were gene expression 
coefficients. As I previously reported, the SVM analysis was applied to a two-
class classification problems, positive examples (responders patients) and 
negative examples (not responders patients), that constituted the training 
set. When the training set was linearly separable, a linear SVM was a 
maximum margin classifier [148]. The decision boundary was positioned in 
order to have the largest possible margin on either side.  
A particularity of SVMs is that the weights wi of the decision function are a 
function only of a small subset of the training examples, called “support 
vectors”. Those are the examples that are closest to the decision boundary 
and lie on the margin [148]. A geometric interpretation of the SVM illustrates 
how this idea of smoothness or stability gives rise to a geometric quantity 
called margin which is a measure of how well separated the two classes can 
be [146]. We start by assuming that the classification function is linear: 
 

f(x) = w ⋅ x = ∑i=l wixi

where xi and wi are the ith elements of the vector x and w, respectively. The 
operation w ⋅ x is called a “dot product”. The label of a new point xnew is the 
sign of the above function, ynew = sign [f(xnew)]. The classification boundary, 
all values of x for which f(x) = 0, is a hyperplane defined by its normal 
vector w (fig. 3.28). 

Figure 3.28: The hyperplane separating two classes. The circles and the triangles designate 
the members of the two classes. The normal vector of the hyperplane is the vector w [146]. 
 
The linearly separable SVM problem (i.e. the hyperplane that separates the 
two classes of vectors) is written as: 
 
min (w,b) 1/2 ||w||2 subject to yi(w ⋅ xi + b) ≥ 1 [*] 

where w is the normal vector of the hyperplane and b is a free threshold 
parameter that translates the optimal hyperplane relative to the origin. The 
distance from the hyperplane to the closest points of the two classes is the 
margin that is defined by 1/||w||2. SVMs find the hyperplane that maximize 
the margin. The figure 3.29 illustrates the advantage of a large margin. 
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Figure 3.29: (a) The maximum margin hyperplane separating two classes. The solid black 
line is the hyperplane (w * x + b = 0). The two dashed lines are those for the points in the 
two classes closest to the hyperplane (w * x + b = ±1). A new point, the black retangle, is 
classified correctly in (a). Note, the larger the margin the greater the deviation allowed or 
margin for error. (b) A non-maximum margin hyperplane separating the two classes. Note 
that the same new point is now classified incorrectly. There is less margin for error [146]. 
 
Data sets are often not linearly separable. To deal with this situation, slack 
variables (ξi) are added that allow to violate the original distance constraints. 
The equation [*] becomes now: 
 
min (w, b, ξ) 1/2 ||w||2 + C Σ ξi subject to yi(w xi + b) ≥ 1 - ξi [**] 

where ξi ≥ 0 for all i. The new formulation [**] trades off the two goals of 
finding a hyperplane with large margin (minimizing ||w||) and finding a 
hyperplane that separates the data well (minimizing the ξi). The parameter C 
controls this trade-off determining the “soft margin SVM” [146]. The figure 
3.30 illustrates the new approach. 
SVMs can also be used to construct nonlinear separating surface. The basic 
idea here is to nonlinearly map the data to a feature space of high or 
possible infinite dimensions, x � Φ (x). Then the linear SVM is applied in this 
feature space. A linear separating hyperplane in the feature space 
corresponds to a nonlinear surface in the original space. In this situation, the 
dot product can be computed without explicitly mapping the points into 
feature space by a “kernel function”, which is defined as the dot product for 
two points in the feature space: 
 

K (xi, xj) ≡ Φ (xi) * Φ (xj)
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Figure 3.30: a) The data points are not linearly separable. The solid black line is the SVM 
solution. The white triangle and the white rectangle are misclassified. The slack variables 
designate the distance of these points from the dashed lines for the corresponding classes. 
b) The classes are separable. The dotted line is the solution when the trade-off parameter C 
is very large (e.g., infinite), and this gives us the maximum margin classifier for the 
separable case. If the trade-off parameter is small, then one allows errors (given by the two 
slack variables), but one gets a much larger margin [146]. 
 
3.14.2 FEATURE SELECTION USING SUPPORT VECTOR MACHINES 
 
Since my goal was to select a subset of features with the maximum 
discriminatory power between the two classes of patients (see chapter 2), it 
was important to know which genes were most relevant to the binary 
classification task. The gene selection problem is an example of what is 
called “feature selection” in machine learning.  
A known problem in classification is to find ways to reduce the dimensionality 
n of the feature space F to overcome the risk of “overfitting” [148]. Data 
overfitting arises when the number n of features is large (in this case 
thousand of genes) and the number l of training patterns is comparatively 
small (in this case a few dozen patients). In such a situation, one can easily 
find a decision function that separates the training data but will perform 
poorly on test data. This makes many standard pattern classification 
algorithm fail [149]. For machine learning methods such as SVMs that can 
work at high-dimensionality, dimension reduction can improve the 
performance. However, when validating the performance of a classification 
algorithm with feature-selection steps, the feature selection procedure 
should also be validated simultaneously to avoid bias in the assessment 
[150]. Also, due to the small sample size, the cross-validation prediction of 
the algorithm’s performance tends to have a high variance. Thus it is 
necessary to pay more attention to properties related to generalization ability 
rather than prediction performance per se.
Methods for automated feature selection can be divided into two categories 
(fig. 3.31): filtering approaches, meaning that feature selection is carried out 
in a pre-processing step of classification, independent from the choice of the 
classification method, and wrapper approaches, meaning that a classifier is 
used to generate scores for features in the selection process and feature 
selection depends on the choice of the classifier. Filtering methods are not 
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the best choices because they score the importance of features 
independently, ignoring the correlations among them [151].  
The SVM feature selection is a wrapped method. 
 

Figure 3.31: Two approaches of feature selection: (a) Filter procedure and (b) Wrapper 
procedure [152]. 

In my analysis I evaluated two different approaches to perform the feature 
selection: Recursive Feature Elimination SVM (RFE-SVM) [148] and Recursive 
SVM feature selection (R-SVM) [150]. Finally I chose the R-SVM approach 
because was the most correct in terms of cross-validation scheme (see par. 
3.14.2.3 for more details). 
 
3.14.2.1 Recursive Feature Elimination SVM (RFE-SVM) 
The method recursively removes features based upon the absolute 
magnitude of the hyperplane elements. Given microarray data with n genes 
per sample, the SVM outputs the normal to the hyperplane, w, which is a 
vector with n components, each corresponding to the expression of a 
particular gene (see 3.15.1) [146]. Assuming that the expression values of 
each gene have similar ranges, the absolute magnitude of each element in w 
determines its importance in classifying a sample, since the following 
equation holds: 
 

f(x) = w * x + b = ∑i=l wixi + b

The idea behind RFE is to eliminate elements of w that have small 
magnitude, since they do not contribute much in the classification function. 
The SVM is trained with all genes; then is compute the following statistic for 
each gene: 
 

S(j) = wj
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where wj is the value of the jth element of w. Then are sorted S from 
largest to smallest value and are removed the genes corresponding to 
the indices that fall at the bottom of the sorted list S. The SVM is 
retrained on this smaller gene expression set, and the procedure is 
repeated until a desired number of genes, m, is obtained. The 
percentage of features with smallest ranking criterion that have to be 
removed at each iteration, is selected from the user (10%, 50%, 75% 
etc.). For my analysis I used the RFE-SVM method implemented in the 
software package Gist 2.3 (http://bioinformatics.ubc.ca/gist/). In 
particular Gist 2.3 uses a ranking criterion based on the square of 
weight wj

2 (instead of wj) and removes the features that fall in the 
bottom 50% of the sorted list S.  

 
3.14.2.2 Recursive SVM feature selection (R-SVM) 
This method uses a similar recursively procedure of RFE-SVM but ranks 
the features according to a different ranking criterion, sj called 
“contribution factor of feature j”, computed as: 
 

sj = wj (mj
+ - mj

-)

where mj
+ and mj

- are the means of feature j in the two classes. Thus 
the factor sj is not only decided by the weight wj in the classifier 
function, but also by the data (class-means) [153]. To perform the R-
SVM feature selection I used the algorithm freely available in the 
software package of Zhang and colleagues [150] 
(http://www.hsph.harvard.edu/bioinfocore/RSVMhome/R-SVM.html). 
Also in R-SVM method was removed the 50% of features low-ranked 
each time of the iterative procedure. The feature selection procedure 
proceeds until the number of features selected is bigger than the 
threshold set from the user (in this case we used the default value 
equal to 5). 
 
3.14.2.3 Assessing the performance of feature selection 
Since an independent test set is not available in many investigations, 
cross-validation (e.g. leave one out cross-validation or LOO-CV) is often 
used to assess the accuracy of classifiers. LOO-CV uses a single 
observation from the original sample as the validation data, and the 
remaining observations as the training data. This is repeated such that 
each observation in the sample is used once as the validation data. This 
is the same as a K-fold cross-validation with K being equal to the 
number of observations in the original sample. It should be noted that 
feature selection results may vary with even a single-case difference in 
the training set when the sample size is small (as the case of my study) 
[150]. There are two approaches of assessing the performance of 
feature selection: 

1) CV1: feature selection steps are external to the cross-validation 
procedure, i.e. the feature selection is done with all the samples and 
the cross-validation is only done for the classification procedure. CV1 
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may severely bias the evaluation in favour of the studied method due to 
“information leak” in the feature selection step [150]. 
2) CV2: feature selection steps are included in the cross validation 
procedure, i.e., to leave the test sample(s) out from the training set 
before undergoing any feature selection. In this way, not only the 
classification algorithm, but also the feature selection method is 
validated [150]. 
 
The RFE-SVM approach uses the CV1 scheme. In fact ranks the genes 
only once using all samples, and uses the top ranked genes in the 
succeeding cross-validation for the classifier. This scheme generates a 
biased estimation of errors  
The R-SVM approach follows the CV2 scheme to estimate the error rate 
at each level (see fig. 3.32). In cross-validation experiments, different 
training subsets generate different lists of features. In the R-SVM 
method after the recursive feature selection steps on each subset, are 
counted at each of the di levels the frequency of the features being 
selected among all rounds of cross-validation experiments. The top di

most frequently selected features are reported as the final di features, 
called “the top features” [150]. 
 
3.14.3 PROBABILISTIC OUTPUTS FOR SUPPORT VECTOR 
MACHINES 
 
Since SVMs produce an uncalibrated value that is not a probability; 
constructing a classifier to produce a posterior probability (P) is very 
useful in practical recognition situations [153]. We used the Platt’s 
algorithm [153] to map the SVM outputs into probabilities.  
Platt uses a parametric model to fit the posterior probability P directly. 
The parameters of the model are adapted to give the best probability 
outputs. The form of the parametric model is a sigmoid (fig. 3.33): 
 

P(y=1f) = 1/ (1 + exp (A f + B) 
 
This sigmoid model is equivalent to assuming that the output of the 
SVM is proportional to the log odds of a positive example. The sigmoid 
function has two parameters, A and B, trained discriminatively.  
Simply speaking the procedure consisted of training the SVM using the 
features selected during the feature selection procedure (3.15.2), then 
training the parameters of the sigmoid function to map the SVM outputs 
into probabilities. In practice the SVM outputs were a measure of 
distance of the patients (vectors) from the optimal hyperplane (see 
3.15.1) and the sigmoid function translated this distance in measure of 
probability, more useful in statistics. It is reported that the sigmoid fit 
works well even beyond the margins and seems to be close to the true 
model [153]. In order to avoid a biased training set, the sigmoid 
function was trained using a LOO-CV for a number of times depending 
from the number of the examples (vectors). It means that the sigmoid 
was trained on N-1 examples (where N= total number of examples or 



92

patients) for N times (i.e. obtaining N sigmoids) and tested on the left 
example. The final parameters of the sigmoid function were derived 
from the N pairs of A and B parameters obtained with the sigmoid 
training. 
 

Figure 3.32: Workflow of the R-SVM algorithm [150] 
 

Figure 3.33: The fit of the sigmoid to the data for a linear SVM on a dataset taken as 
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example. Each plus mark is the posterior probability computed for all examples falling into a 
bin of width 0.1. The solid line is the best-fit sigmoid to the posterior, using the Platt’s 
algorithm [153]. 
 
3.15 STATISTICAL TESTS USED IN THE STUDY 
 
3.15.1 SPEARMAN’S RANK CORRELATION COEFFICIENT 
 
In statistics, Spearman's rank correlation coefficient or Spearman's rho, ρ, is 
a non-parametric measure of correlation: it assesses how well an arbitrary 
monotonic function could describe the relationship between two variables, 
without making any assumptions about the frequency distribution of the 
variables [154]. Spearman’s correlation does not require the assumption that 
the relationship between the variables is linear, nor does it require the 
variables to be measured on interval scales; it can be used for variables 
measured at the ordinal level. In principle, ρ is simply a special case of the 
Pearson product-moment coefficient in which the data are converted to 
rankings before calculating the coefficient. The raw scores are converted to 
ranks, and the differences d between the ranks of each observation on the 
two variables are calculated. ρ is given by: 
 

where: 
di = the difference between each rank of corresponding variables 
n = the number of pairs of values 
 
The size of this correlation is evaluated as follows: 
• rs <0,33: small correlation between two variables 
• 0,33<rs<0,67: medium correlation between two variables 
• rs>0,67: large correlation between two variables 
I used this test to asses the correlation between immunohistochemical 
prognostic markers (see 3.2.3) and microarray expression data. I correlated 
log2 ratio of microarray fluorescence intensity and positive (“1”) or negative 
(“0”) immunostaining of the markers.  
The calculation of Spearman’s correlation coefficient was done using a 
function implemented in the Winstat package (http://www.winstat.com). 
 
3.15.2 FISHER'S EXACT TEST 
 
Fisher's exact test is a non-parametric statistical significance test used in the 
analysis of categorical data where sample sizes are small [155]. 
The test is usually used to examine the significance of the association 
between two variables in a 2 x 2 contingency table. The null hypothesis is 
that the relative proportions of one variable are independent of the second 
variable. With large samples, a chi-square test can be used in this situation. 
However, this test is not suitable when the expected values in any of the 
cells of the table are below 10: the sampling distribution of the test statistic 
that is calculated is only approximately equal to the theoretical chi-squared 
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distribution, and the approximation is inadequate when sample sizes are 
small. The Fisher's exact test is, as its name states, exact, and it can 
therefore be used regardless of the sample characteristics. The test does not 
make any assumptions about the frequency distribution of the variables. 
I used this test to assess the correlation between immunohistochemical 
prognostic markers (see 3.2.3) and clinical response to 
neoadjuvantchemotherapy. I performed the Fisher's exact test using a 
function implemented in the Winstat package (http://www.winstat.com). 
 
3.16 BIOINFORMATIC TOOLS AND DATABASES 
 
3.16.1 GENE ONTOLOGY (http://www.geneontology.org)

The Gene Ontology (GO) project is a collaborative effort to address the need 
for consistent descriptions of gene products in different databases. The 
project began as collaboration between three model organism databases, 
FlyBase external link (Drosophila), the Saccharomyces Genome Database 
external link (SGD) and the Mouse Genome Database external link (MGD), in 
1998. The GO project has developed three structured controlled vocabularies 
(ontologies) that describe gene products in terms of their associated 
biological processes, cellular components and molecular functions in a 
species-independent manner. In particular: 
 
• Biological process: is series of events accomplished by one or more 

ordered assemblies of molecular functions. It can be difficult to 
distinguish between a biological process and a molecular function, but the 
general rule is that a process must have more than one distinct steps. 

• Cellular component: is a component of a cell, but with the proviso that it 
is part of some larger object; this may be an anatomical structure (e.g. 
rough endoplasmic reticulum or nucleus) or a gene product group (e.g. 
ribosome, proteasome or a protein dimer). 

• Molecular function: describes activities, such as catalytic or binding 
activities, that occur at the molecular level. GO molecular function terms 
represent activities rather than the entities (molecules or complexes) that 
perform the actions, and do not specify where or when, or in what 
context, the action takes place. Molecular functions generally correspond 
to activities that can be performed by individual gene products, but some 
activities are performed by assembled complexes of gene products. It is 
easy to confuse a gene product name with its molecular function, and for 
that reason many GO molecular functions are appended with the word 
"activity". 

 
A gene product might be associated with or located in one or more cellular 
components; it is active in one or more biological processes, during which it 
performs one or more molecular functions.  
The building blocks of the Gene Ontology are the terms identified a a entry 
in GO database with a unique numerical identifier of the form GO:nnnnnnn, 
and a term name, e.g. cell, fibroblast growth factor receptor binding or signal 
transduction. Each term is also assigned to one of the three ontologies, 
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molecular function, cellular component or biological process. The ontologies 
are structured as directed acyclic graphs (DAGs), which are similar to 
hierarchies but differ in that a more specialized term (child) can be related to 
more than one less specialized term (parent) 
The GO consortium takes care of three aspects: 
o development and maintenance of the ontologies themselves;  
o annotation of gene products, which entails making associations between 

the ontologies and the genes and gene products in the collaborating 
databases;  

o development of tools that facilitate the creation, maintenance and use of 
ontologies 

Collaborating databases annotate their genes or gene products with GO 
terms, providing references and indicating what kind of evidence is available 
to support the annotations. 
 
3.16.2 GOMINER (http://discover.nci.nih.gov/gominer/index.jsp)

GoMiner is a program package that organizes lists of “interesting” genes (for 
example, under- and overexpressed genes from a microarray experiment) for 
biological interpretation in the context of the Gene Ontology (see 3.17.1) 
[157]. GoMiner is a freely available computer resource that fully incorporates 
the hierarchical structure of the Gene Ontology to automate the functional 
categorization of gene lists of any length [157]. GoMiner was developed 
particularly for biological interpretation of microarray data; one can input a 
list of under- and overexpressed genes and a list of all genes on the array, 
and then calculate enrichment or depletion of categories with genes that 
have changed expression [157]. The user flag the genes overexpressed with 
“1”and the genes underexpressed with “-1” and are accepted all types of 
identifiers (EntrezGene ID, Genbank ID, Unigene ID, etc.) used from the GO 
consortium. GoMiner displays the genes within the framework of the Gene 
Ontology hierarchy, both as a directed acyclic graph (DAG) and as the 
equivalent tree structure. Each category is annotated to reflect the number 
of genes from the user’s experiment assigned to that category plus the 
number assigned to its progeny categories. 
The most important parameter for purposes of interpretation is the 
enrichment (or depletion) of a category with respect to flagged genes. The 
two-sided Fisher’s exact test p-value for a category reflects a test of the null 
hypothesis that the category is neither enriched in, nor depleted of, flagged 
genes with respect to what relative to what would have been expected by 
chance alone. It reflects the null hypothesis (1) that, for each category, there 
is no difference between the proportion of flagged genes that fall into the 
category (p1) and the proportion of flagged genes that do not fall into the 
category (p2): 
 

Ho: p1 – p2 = 0 (1) 
 
where  p1 = nf/n and  
 p2 = (Nf – nf)/(N – n) 
 nf number of flagged genes in category 
 n total number of genes in the category 
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Nf number of flagged genes on the microarray 
 N total number of genes on the microarray 
 
Another useful measure that the program calculates is the relative 
enrichment factor Re defined as: 
 

Re = (nf/n)/(Nf/N) (2) 
 



4. RESULTS AND DISCUSSION 

4.1 PATIENT CHARACTERISTICS 
 
At the time of analysis 54 patients has been collected in this study. From 41 
pre-treatment biopsies of these patients, good quality RNA was obtained and 
gene expression profiling was performed (see the fig. 4.1 to have a complete 
overview). Since 9 of these 41 patients left the study before completing the 
chemotherapy treatment, I could not include them in the subsequent 
statistical analysis. Therefore I considered 34 patients (out of 41), of which 
were available informations of the NeoAdjuvant ChemoTherapy (NACT) 
treatment: 28 have received Adriamycin and Taxol (AT), 5 have received 
Epirubicin and Taxol (ET) and 1 has received Adriamycin alone (A). Four 
courses of NACT were administered every three weeks to the patients.  
From these 34 patients we collected the clinical responses after the 
treatment: 3 patients achieved a clinical Complete Response (cCR), 18 
patients had a Partial Response (PR), 11 patients showed No Change (NC) in 
the tumour mass size and 2 patients showed Progressive Disease (PD). 
Unfortunately it was not possible to obtain the pathological responses for all 
the patients (only 13/34 pathological responses available), so I decided to 
consider for the study the clinical responses. 
For 34 patients out of 41 were available both the immunohystochemical data 
for ER, PR, c-erbB-2, Ki67, p53 and Bcl-2 markers (see par. 3.2.3) and the 
array data. 
The patient characteristics are summarized in the table 4.1. 

 
Patient characteristics  

No. of Patients (41 patients considered) 
Age  

Median (years) 56      
Range (years) 36-82      

Histology  

IDC  24     
ILC  3     
DCIS  1     
not assessable  13     

Tumour diameter ≥ 2 cm  

Immunostaining  

ER +/-  26/8    
PR +/-  23/11    
c-erbB-2 +/-  19/14 (1 na**)    
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Herceptest +/-  3/3 (28 na**)    
p53 +/-  15/19    
Bcl-2 +/-  22/12    
Ki67 +/-  25/9    
na *  7    

Neoadjuvant Chemotherapy  

4 X AT  28    
4 X ET  5    
4 X A 1
not assessable*  7    

Clinical responses 
cCR PR NC PD 

4 X AT  3 15 8 2 
4 X ET  0 3 2 0 
4 X A 0 0 1 0
not assessable* 7     

Table 4.1: Patient characteristics. Samples were considered to be positive (+) for ER/PR/c-
erbB-2/p53/Ki67 when at least 10% of the tumour cells were stained positive, negative if < 
10% (-) of the tumour cells were stained positive. Samples were scored as Bcl-2 positive (+) 
with at least 25% of the tumour cells positive, Bcl-2 negative (-) with < 25% of the tumour 
cells positive. IDC Invasive Ductal Carcinoma, ILC Invasive Lobular Carcinoma, DCIS Ductal 
Carcinoma In Situ; ER Estrogen Receptor, PR Progesteron Receptor, +/- positive/negative; 
AT Adriamycin/Taxol, A Adriamycin, ET Epirubicin/Taxol; cCR clinical Complete Response, PR 
Partial Response, NC No Change, PD Progressive Disease.*na (not assessable) on the total 
number of patients (41), **na on the total number of patients with available IHC data (34). 

Because of the low number of the cCR and PD patients, 3 and 2 cases 
respectively, I chose to divide the patients in two main groups in term of 
NACT clinical response, the Responders (R) and the Non Responders (NR). 
The Responders included the patients with cCR and PR clinical responses, the 
Non Responders the patients with NC and PD clinical responses. 
The common trait of the R (cCR + PR) patients was that they showed a 
positive response to the NACT treatment, although on different levels. In fact 
it is important to remark that a cCR patient shows a complete response, 
meaning that the treatment, at the clinical exam, is successful. Instead a PR 
patient shows a partial remission of the tumour, but not a complete 
remission, meaning that the treatment is not fully effective at the check 
point. Nevertheless, when I performed an unsupervised clustering analysis 
considering all responder patients (cCR + PR), the 2 cCR patients considered 
(only the cCR analyzed with Operon v2.0) did not cluster separately from the 
PR patients (fig. 4.2). This result could indicate that in terms of whole gene 
expression profile the cCR patients did not show so evident differences in 
respect to the PR patients. Thus I decided to include in the same group of 
Responders, cCR and PR patients. 



12 patients Non Responders (NR):

11 analyzed with Operon v2.0

1 analyzed with Operon v3.0

22 patients Responders (R):

19 analyzed with Operon v2.0

3 analyzed with Operon v3.0

13 patients with degradated
RNA

7 patients left the study
before completing the
chemotherapy treatment
(patients analyzed with Operon
v2.0)

* 34 can be included in the study, but so far were considered only
the 19 + 11 patients analyzed with Operon v2.0.

** 20 patients can not be included in the study because was not
possible to perform the microarray experiments (poor quality RNA) or
recover the clinical responses (the patients left the study). But: 7 of these
patients are used for some statistical analyses (see par. 4.2 and par. 4.4
because were available the microarray data.

20 patients not useful **34 patients useful *

54 patients

Figure 4.1: Overview of the patients collected in the study. The patients were called as useful if the clinical responses to the NACT treatment were available, as not useful on the contrary. The 34 patients
useful were divided in Responders (Partial Response and Complete Response patients) and Non Responders (No Change and Progressive disease patients). Of the 34 patients useful, 4 patients were analyzed at
the Netherlands Cancer Institute (NKI) with the Operon platform v3.0 (see par. 4.5). The 7 patients which left the study before completing the chemotherapy treatment were anyway analyzed with Operon v2.0
platform and included for some statistical analysis (see par 4.2 and 4.4).
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Moreover, it has to be reminded that the patients defined PR can show a 
reduction of tumour mass from 50% until 75%; thus, it could be possible 
that a patient with a reduction equal to 75% is closer to a cCR patient than a 
patient with a reduction of 50%. Unfortunately, I could not stratify the PR 
samples on the basis of the percentage of tumour mass reduction because 
the data were not available. Hannemann and colleagues in a similar study 
[97], did not include the PR patients in the responder group, considering 
them a group not enough homogenous in terms of clinical response. 
However, since in this study the PR group was the most numerous group, 
including it in the analysis was the only possible choice in terms of a 
statistical evaluation. The Non Responders are a more homogenous group 
than the Responders because in both cases (NC and PD patients) the 
treatment is ineffective. 
 

Figure 4.2: Unsupervised clustering analysis of all responder patients analyzed with Operon 
v2.0 platform. The cCR patients did not cluster separately from the PR patients. PR (Partial 
Response) and cCR (complete Clinical Response). TMEV (see par. 3.13) was used to perform 
the hierarchical clustering with the average linkage method. 
 
4.2 CORRELATION ANALYSIS BETWEEN 
IMMUNOHISTOCHEMICAL DATA AND MICROARRAY DATA 
 
Although the main goal of this study was to identify a predictive signature of 
responsiveness to NACT, I decided to evaluate, first of all, if there was a 
correlation between the ImmunoHistoChemical (IHC) data and the array 
data. For this analysis I considered only the patients analyzed with the 
Operon v2.0 platform (see fig. 4.1) with IHC and array data available (see 
tab. 4.2 for details), 34 patients in all. The markers that I considered, ER 
(Estrogen Receptor), PR (Progesteron Receptor), Erb-B2 (v-Erb-b2 
erythroblastic leukemia viral oncogene homolog 2, neuro/glioblastoma 
derived oncogene homolog [avian]), Bcl-2 (B-cell CLL/lymphoma 2), Ki67 
(antigen identified by monoclonal antibody Ki-67) and p53 (tumour protein 
53), are prognostic markers routinely used in breast cancer clinical diagnosis. 
However, so far, their association with the response to NACT is not yet fully 
demonstrated and published data are controversial (see par. 4.3). 
In order to perform the comparison between the percentage of positive 
tumour cells for a specific marker, analyzed by immunohistochemistry, and 
its mRNA abundance, measured with microarrays, I decided to consider the 
averaged logarithmic-transformed ratio (patient/control) of the gene 
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expression value of the three performed replicates (see Methods). Indeed it 
is more correct to take a ratio, instead the fluorescence absolute intensity 
value, to reduce the experimental bias. I substituted the real IHC values 
(percentage of positive cells in the immunostaining) with "1" if the marker 
was positive and with "0" if it was negative. As I previously reported (see 
par. 3.2.3), samples were scored as ER, PR, c-erbB-2, Ki67, p53 positive by 
IHC when at least 10% of the tumour cells showed staining of these markers 
and Bcl-2 positive with  ≥ 25% of the cells stained for Bcl-2. This 
transformation makes easier the statistical tests without altering the 
reliability of the results. It is a method commonly used to compare two series 
of data with a different range of values, as the case of microarray data and 
immunohistochemical data. For the microarray values I could hypothesize a 
normal distribution, but not for the IHC values ("1" or "0"); so it was not 
possible to apply a classical t-test to perform the correlation analysis. For this 
reason I used the Spearman's rank correlation coefficient (rs) (see par. 
3.15.1), a statistical test that measures the correlation between two 
variables, without making any assumptions about their frequency 
distribution. 
In the table 4.3 are shown the results of the Spearman's rank correlation 
test. There was a good correlation between the IHC data and microarray 
data for ER (rs=0.678, p-value=5.169E-06) and PR (rs=0.678, p-
value=9.047E-05), two of the most used prognostic markers in the breast 
cancer research. This result is in agreement with the study of Pusztai and 
colleagues but they also reported a significant correlation with Erb-B2 that I 
did not find in my analysis [21]. 
 

Erb-B2  Patient 
code ER % PR % 

% Herceptest 
Bcl-2 % Ki67 % p53 % 

4 70 (1) 60 (1) 80 (1) na 40 (1) 55 (1) 0 (0) 

5 80 (1) 80 (1) 40 (1) na 80 (1) 10 (1) 5 (0) 

6 95 (1) 95 (1) 0 (0) na 0 (0) 15 (1) 2 (0) 

7 100 (1) 30 (1) 0 (0) na 90 (1) 20 (1) 5 (0) 

8 90 (1) 90 (1) 0 (0) na 10 (0) 7 (0) 70 (1) 

10 75 (1) 75 (1) 5 (0) na 15 (0) 45 (1) 70 (1) 

12 100 (1) 100 (1) 0 (0) na 100 (1) 20 (1) 5 (0) 

13 20 (1) 0 (0) 100 (1) na 20 (0) 10 (1) 50 (1) 

14 100 (1) 100 (1) 10 (1) na 100 (1) 20 (1) 10 (1) 

17 100 (1) 60 (1) 30 (1) na 0 (0) 5 (0) 0 (0) 

18 0 (0) 0 (0) 40 (1) na 20 (0) 40 (1) 0 (0) 

19 100 (1) 70 (1) 0 (0) na 100 (1) 10 (1) 0 (0) 

20 100 (1) 90 (1) 20 (1) na 100 (1) 20 (1) 2 (0) 

21 90 (1) 90 (1) 10 (1) na 100 (1) 3 (0) 0 (0) 

22 90 (1) 20 (1) 30 (1) na 100 (1) 15 (1) 1 (0) 

23 0 (0) 0 (0) 80 (1) na 0 (0) 30 (1) 0 (0) 

26 5 (0) 3 (0) 2 (0) na 10 (0) 15 (1) 80 (1) 

27 80 (1) 0 (0) 0 (0) na 90 (1) 20 (1) 2 (0) 

31 90 (1) 20 (1) 0 (0) na 90 (1) 2 (0) 0 (0) 

32 3(0) 3 (0) 90 (1) na 40 (1) 5 (0) 50 (1) 

33 95 (1) 10 (1) 10 (1) na 95 (1) 10 (1) 0 (0) 

35 1 (0) 0 (0) 100 (1) na 0 (0) 60 (1) 90 (1) 

38 100 (1) 100 (1) 0 (0) na 100 (1) 5 (0) 20 (1) 
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41 100 (1) 100 (1) 60 (1) 3+ 100 (1) 10 (0) 0 (0) 

44 53 (1) 0 (0) na 3+ 0 (0) 3 (0) 40 (1) 

45 90 (1) 90 (1) 40 (1) 3+ 100 (1) 10 (0) 20 (1) 

46 70 (1) 90 (1) 5 (0) 1+ 100 (1) 20 (1) 20 (1) 

47 100 (1) 40 (1) 40 (1) 1+ 100 (1) 20 (1) 60 (1) 

49 95 (1) 90 (1) 40 (1) na 80 (1) 30 (1) 5 (0) 

51 0 (0) 0 (0) 80 (1) na 0 (0) 10 (1) 20 (1) 

52 5 (0) 0 (0) 0 (0) na 0 (0) 2 (0) 0 (0) 

53 100 (1) 1 (0) 0 (0) na 90 (1) 1 (0) 0 (0) 

55 90 (1) 40 (1) 9 (0) 1+ 100 (1) 25 (1) 15 (1) 

Table 4.2: For each patient (patient code) is reported the percentage of positive stained 
tumour cells for the 6 immunohistochemical markers: ER (Estrogen Receptor), PR 
(Progesteron Receptor), Erb-B2 (v-Erb-b2 erythroblastic leukemia viral oncogene homolog 2, 
neuro/glioblastoma derived oncogene homolog [avian]), Bcl-2 (B-cell CLL/lymphoma 2), Ki67 
(antigen identified by monoclonal antibody Ki-67) and p53 (tumour protein 53). Samples 
were scored as ER, PR, c-erbB-2, Ki67, p53 positive with value ≥ 10%, as Bcl-2 positive with 
value ≥ 25%. For Erb-B2 marker is also reported the result of the Herceptest (if available): 
1+, 2+, 3+ (see par. 3.2.3 for details) that measures the overexpression of the protein. 
Enclosed in parenthesis the transformed values are reported: 1 as a positive case, 0 as a 
negative case. na not available 
 
The discordant result for Erb-B2, could be explained because the antibody 
against Erb-B2 (CB11 clone) is able to detect only the over-expression of 
Erb-B2 often due to a genic amplification, whereas it is not effective for 
detecting genic-overexpression without genic amplification. 
In my dataset there are 11 patients Erb-B2 negative by IHC analysis and if 
we observe the ratio of the fluorescence intensity patient/control, we notice 
that in 5 cases the ratio is above 2. This value could indicate that there was 
a genic over-expression without genic amplification. 

 

Table 4.3: For each of 6 markers the Spearman's correlation value and the p-value 
associated are reported. On the grey background are indicated the significant correlations 
(ER, PR, Bcl-2). 
 
From the correlation analysis emerged that Bcl-2 showed a significant 
correlation IHC/microarray (rs=0.464, p-value=0.002). This result agrees 
with other studies, that reported a good correlation between cDNA array and 
IHC for Bcl-2 [158, 159]. 
The table 4.3 shows that there was not correlation for Ki-67 and p53, a not 
encouraging result at a first analysis. 
The discrepancy for p53 could be expected because p53 protein detection is 
not dependent on mRNA overexpression, but on the increased half-life of a 
mutated protein. In normal cells, p53 protein half-life is short and expression 
levels are low and undetectable by IHC. In cancer cells, most p53 mutations 
lead to products that are not ubiquitinated and accumulate in the nuclei 

 ER PR Erb-B2 Bcl-2 Ki67 p53 
Correlation 

coefficient (rs)
0.678 0.59 0.019 0.464 0.125 0.078 

valid cases 34 34 33 34 34 34 
p-value 5.169E-06 9.047E-05 0.457 0.002 0.239 0.329 
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where they can be detected [160]. The technical problem in assessing p53 
status for IHC is that this technique measures a stabilized p53 protein, due 
to point mutations which lead to a stabilization of the protein structure. 
Approximately 20% of the p53 mutations causes the truncation of the 
protein and these mutations are not picked up if IHC is used [87]. 
The nuclear antigen Ki-67 is a marker of cell proliferation and is expressed in 
S, G2 and M phase of the cell cycle but not in G0 phase (resting cells). A 
recent work of Urruticoechea and colleagues [161], which reviewed in detail 
all studies performed so far on Ki-67, reported that the correlation between 
Ki-67 mRNA levels and the presence of the protein identified by 
immunohistochemistry, has not been yet fully proved. 
In light of what stated above, the informations obtained from IHC and 
microarray tecnologies could be both used in the analysis of 
prognostic/predictive markers of responsiveness to chemotherapy. However, 
since IHC and microarrays have a different sensitivity in terms of signal 
detection (protein level/mRNA level respectively), the informations provided 
from these techniques should be evaluated separately if in the presence of 
discordant results. 
 
4.3 CORRELATION ANALYSIS BETWEEN IHC 
PROGNOSTIC MARKERS AND CLINICAL RESPONSE TO 
NEOADJUVANT CHEMOTHERAPY 
 
After the correlation analysis IHC/array, I thought it was also interesting to 
see if there was an association between the positivity/negativity of the 6 
prognostic markers by IHC (ER, PR, Erb-B2, Bcl-2, Ki-67, p53) and the 
clinical response to the treatment. I included all the patients with available 
IHC and clinical response data, in all 31 (30 for Erb-B2).  
This analysis showed two main limitations: the small number of patients and 
the absence of two clearly distinct classes of clinical response, as would have 
been the case of complete response and progressive disease. In fact I 
considered the groups of Responders (cCR + PR) and Non Responders (PD + 
NC), because I could not consider only cCR and PD patients that were 5 
cases in all (3 cCR and 2 PD). Moreover, when I did not include cCR and PD 
patients, the results did not change significantly from taking the whole 
dataset of patients. 
To measure the association between the two variables, IHC staining and 
clinical response, I used the Fisher's exact test (see par. 3.15.2), that is 
suitable for a small number of samples. 
The results are reported in the table 4.4 with the statistical significance 
values (one-tail p-value and two-tail p-value, left and right). In my analysis I 
referred to a two-tail p-value because I did not assume a priori the direction 
of the association (negative or positive). If a significant association is 
assessed with a two-tail test, then it is possible to perform a directional test 
(one-tail p-value) and establish the type of association. 
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MARKER FISHER'S EXACT TEST p-value 
R NR tot 

ER+ 14 7 21 
ER- 9 1 9

ER 
tot 23 8 31 

one-tail left: 0.173 
one-tail right: 0.974 

two-tail 0.221 

R NR tot 
PR+ 13 8 21 
PR- 8 2 10 

PR 
tot 21 10 31 

one-tail left: 0.280 
one-tail right: 0.925 

p two-tail 0.428 

R NR tot 
Erb-B2+ 14 7 21 
Erb-B2- 4 5 9

Erb-B2 
tot 18 12 30 

one-tail left: 0.938 
one-tail right: 0.231 

two-tail 0.418 

R NR tot 
Bcl-2+ 10 12 22 
Bcl-2- 8 1 9

Bcl-2 
tot 18 13 31 

one-tail left: 0.036 
one-tail right: 0.997 

two-tail 0.044 

R NR tot 
Ki-67+ 15 6 21 
Ki-67- 6 4 10 

Ki-67 
tot 21 10 31 

one-tail left: 0.852 
one-tail right: 0.404 

two-tail 0.685 

R NR tot 
p53+ 11 11 22 
p53- 5 4 9

p53 
tot 16 15 31 

one-tail left: 0.546 
one-tail right: 0.749 

two-tail 1 

Table 4.4: The table shows the results of the Fisher's exact test for the prognostic markers: 
ER, PR, Erb-B2, Bcl-2, Ki-67 and p53. The response classes (Responders, R and Non 
Responders, NR) are reported in the columns and the positivity or negativity for the marker 
by IHC in the rows. The last column contains the p-values, one-tail left/right and two-tail. In 
this analysis we have considered the p value two-tail (in yellow). For Bcl-2 I considered also 
the one-tail left p-value (in light yellow) (see text for more details). 

The results showed that there was not a preferential association between the 
positive/negative IHC staining of the markers and the clinical response to the 
treatment, except one case (Bcl-2).  
From several studies it is known that ER expression and to a smaller extent 
PR expression, are established prognostic factors with a favourable clinical 
outcome for hormone receptor positive patients [87]. However, we did not 
consider the clinical outcome but the response to neoadjuvant 
chemotherapy. In this case, the literature showed conflicting results and not 
yet definitive. For example, some clinical series suggested that ER negative 
tumours are more sensitive to chemotherapy than receptor positive ones. It 
has been demonstrated that ER negative cancers have an increased 
proliferation rate compared to ER positive tumours [87]. High proliferation 
rate of tumour cells is a characteristic associated to positive chemotherapy 
response. Therefore, hormone receptor associated sensitivity to 
chemotherapy could be an effect of the proliferative activity of ER negative 
breast cancer and not dependent on the ER status in se.
Also the association between Erb-B2 status and the response to NACT is not 
yet fully investigated and the published data are conflicting. For p53 there is 
some evidence that it can act as a predictor of chemosensitivity (e.g. 



Results and Discussion 

 105

tumours with p53 mutations seem to respond better to paclitaxel), but these 
results have still to be validated for a clinical use.  
Breast carcinomas with a high Ki-67 positive count show improved response 
to chemotherapy in several studies [87] and the Ki-67 expression is found to 
be decreased after NACT. This could indicate that Ki-67 negative cells are not 
proliferating and thus not sensitive to the chemotherapic treatment. Different 
results are showed from an other group [162], which have reported that a 
reduction of the Ki-67 fraction is not a useful predictor for chemotherapy 
response. 
The only prognostic marker that showed a significant association with the 
clinical response was Bcl-2; in particular I found a p-value one tail left 
significant. This result means that there was a negative association between 
the two variables: the negativity of Bcl-2 by IHC was correlated with a 
positive clinical response. Pusztai and colleagues found that tumours lacking 
Bcl-2 show more often a pathological complete response than tumours 
expressing Bcl-2 after doxorubicin-based chemotherapy [163]. Therefore the 
significant negative correlation that I found for Bcl-2, seems consistent with 
the observation of Pusztai. However, is also important to remark that Bcl-2 is 
part of the apoptotic network and is negatively regulated by p53, so Bcl-2 
should be studied not as a single predictive factor but only in the context of 
its signalling pathway. 
In summary this analysis showed that for 5 of 6 prognostic markers there 
was not significant association between the IHC data and clinical response to 
NACT. Although this result is probably affected from the small number of 
patients (especially the NR class), it is important to keep in mind that also 
other studies with larger cohorts of patients did not still clearly answer to the 
question if the prognostic markers have to be consider also as predictive 
markers. 
 
4.4 ANALYSIS OF THE MOLECULAR BREAST TUMOURS 
SUBTYPES BASED ON THE INTRINSIC GENE SIGNATURE 
OF PEROU ET AL 

4.4.1 IDENTIFICATION OF THE MOLECULAR SUBTYPES 
 
In order to identify the molecular subtypes of the breast tumours included in 
this study, I used the intrinsic gene signature of Perou and colleagues [23, 
30]. As I previously reported (par. 1.4.4), by clustering breast tumours using 
this “intrinsic gene list”, were identified 4 subgroups of cancers with separate 
gene expression profiles: the luminal A, the luminal B, the basal type, the 
normal-like and the Erb-B2+ groups. It has been demonstrated that these 
breast cancer molecular subtypes have different prognoses and they also 
respond differently to preoperative chemotherapy [19].  
Consequently, using this approach in my study could be useful for 
investigating the correlation between clinical response to NACT and gene 
expression profile. 
I considered 37 patients analyzed with the Operon v2.0 platform, 30 with 
clinical response available and 7 without. Before starting with the analysis, I 
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found how many genes of the intrinsic signature were present in our 
microarray platform, the Operon v2.0. The most recently updated version of 
the intrinsic signature [30] contains 306 genes that correspond to 431 
probes of the Operon v3.0 platform1 (Human genome oligo set version 3.0 
arrays, see par. 4.5.1 for details). Out of 431 probes, 289 probes (67%) 
were present in the Operon v2.0 platform, 113 (26%) were multiple copies 
and 29 (7%) were not present. I recovered the log2ratio expression values 
of these 289 probes in 37 patients included in the analysis. Out of 289 
probes, only those probes that had a value at least in 23/37 patients were 
taken, in all 236 probes (fig. 4.3). 
To identify the molecular subtypes (Luminal A; Luminal B, Erb-B2, Normal-
like and Basal-like), I considered five subtype mean expression profiles 
(centroids) based upon the expression of the 236 "intrinsic genes", similarly 
to the procedure of Hu and colleagues [30]. The sample was then assigned 
to the nearest subtype/centroid as determined by Pearson correlation. 
The table 4.5 shows the distribution of the 37 patients in respect with the 
molecular subtype. No patients with the normal-like molecular subtype were 
found, so I reported only the luminal A, luminal B, Erb-B2+ and basal-like 
groups. 
 

431 probes in 
Operon v3.0

platform  

289 probes in 
Operon v2.0

platform  

306 intrinsic genes
by Perou et al.  

239 probes with a value 
in at least 23/37 patients

Identification of the 
molecular subtype

Figure 4.3: Summary of the procedure to find the "intrinsic gene list" in the microarray 
platform (Operon v2.0) used in this study. 
 
As can be seen, 28 of 37 (76%) patients belonged to the luminal-type 
molecular subtype, and almost all of them (26/28) were luminal B type. This 
result is in agreement with the data reported in literature that the luminal-
type breast tumours are the most common tumours type, ~60-70% in the 
white woman population, as the Caroline Breast Cancer Study has reported 
[27]. At this point I used the 239 probes of the intrinsic genes to perform an 
unsupervised hierarchical cluster analysis to evaluate if the patients were 
grouped on the basis of these 239 probes. The results are shown in the 
figure 4.4. As can be seen, the samples did not cluster on the basis of the 
molecular subtype, except the two basal-like tumours, that grouped 
together. The samples could not be clustered on the basis of their molecular 
subtypes because I did not use all intrinsic gene list of the "original" 
signature of Perou et al., but only those genes contained in the Operon v2.0 

 
1 The list of the 431 probes Operon v3.0, corresponding to the 306 intrinsic genes, was supplied from Juliane 
Hannemann at The Netherlands Cancer Institute. 
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platform. In this "reduced signature" some informative genes could lack and 
these would be useful to separate correctly the patient. Also the small 
sample size might influence the result. 
 

Figure 4.4: Hierarchical clustering of 37 patients (with and without clinical response) based 
on the 236 probes of the intrinsic gene set [30]. Where available, the clinical response of the 
patient has been reported (cCR complete Clinical Response, PR Partial Response, NC No 
Change, PD Progressive disease). LumB: Luminal B, LumA: Luminal A, BAS: BASAL-like. The 
basal-like patients are highlighted in the graph. TMEV (see par. 3.13) was used to perform 
the hierarchical clustering with the average linkage method. 
 
Since Rouzier and colleagues showed that breast cancer molecular subtypes 
respond differently to preoperative chemotherapy [19], it was interesting to 
see the molecular subtypes of the patients with respect to the clinical 
response (tab. 4.5). Rouzier reported in his study that the luminal tumours 
tend to show lower pathologic Complete Response (pCR) rates to paclitaxel- 
and doxorubicin-containing preoperative chemotherapy than the basal-like 
and erb-B2 tumours, which have on the contrary, a higher likelihood of pCR. 
In my study I did not consider as response a pathologic response but a 
clinical response (see 4.1), so the comparison with the results obtained from 
Rouzier et al. could present some limitations. However, I considered clinical 
Complete Response (cCR) the closest, in term of success of the NACT 
treatment, to the pCR response. Two patients, out of 30, were cCR, one 
belonged to erb-B2+ subtype and the other one to lumB group. I would have 
expected that both were erb-B2+ or basal-like, but it is also important to 
remark that I was considering clinical responses and, most importantly, I had 
only two cases of cCR. The Partial Response (PR) patients belonged mainly 
(70%) to the luminal B type. If we consider a clinical partial response closer 
to the pCR, this result would disagree with what reported from Rouzier that 
the luminal subtype shows lower pCR rates to NACT. 
 

Table 4.5: On the left: distribution of the 37 patients included in the analysis with respect 
to the molecular subtypes: luminal A (lum A), luminal B (lum B), erb-B2+ and basal-like 

MOLECULAR 
SUBTYPE 

N° OF 
PATIENTS lum A lum B erb-B2+ basal

luminal A 2 cCR 0 1 1 0
luminal B 26 PR 0 12 4 1 
erb-B2+ 7 NC 1 7 0 1

basal-like 2 PD 0 1 1 0
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(basal). On the right: distribution of the 4 molecular subtypes with respect to the clinical 
response; only the patients with available clinical response are included. cCR clinical 
Complete Response, PR Partial Response, NC No Change, PD Progressive Disease. 
 
To explain this result, it is important to underline that Rouzier and colleagues 
have considered in their study patients that showed a pCR compared to 
those with residual disease. Patients with residual disease included, in fact, 
both Partial Response and No Change/Progressive disease response. It 
means that I should consider, in this case, a PR patient not in the same 
group of cCR patients, as Responders, but a distinct group with NC and PD 
patients. In light of this observation, is relevant the high percentage of PR 
patients with a luminal B subtype. 
Almost all the not responder patients (PD and NC patients) belonged to the 
luminal subtype (9/11, 82%). The result has to be corrected in light of the 
low numerosity of the not responder group and the observation that the 
luminal-type tumours are the most common in the population; nevertheless 
the result is in agreement with that reported from Rouzier and coworkers. 
 
4.4.2 COMPARISON BETWEEN THE MOLECULAR SUBTYPES AND 
THE ER, ERB-B2 STATUS BASED ON IHC AND MICROARRAY 
 
The molecular subtypes are characterized by the expression of a specific 
cluster of genes (see par. 1.4.4) belonging to the intrinsic gene list of Perou 
and colleagues [23]. In particular the luminal-type, the basal-like and the 
erb-B2+ breast tumours differ from each other on the basis of the expression 
of Estrogen Receptor 1 (ESR1), and Erb-B2. In fact, the luminal-type 
tumours are also called ER+ tumours, because generally show a high 
expression of ESR1 and other genes involved in the ESR1 activation (see par. 
1.4.4.1 for details); instead the erb-B2+ subtype show low levels of 
expression of ESR1, as the basal-like tumours. The characteristic trait of erb-
B2+ tumours is the high expression of several genes in the Erb-B2 amplicon 
including Erb-B2 itself. The basal-like tumours present low expression of Erb-
B2 and ESR1.  
In light of what stated above, I checked the microarray expression values 
and the positivity/negativity in ImmunoHistoChemistry (IHC) of ER and Erb-
B2 in the 37 patients included in the analysis. The results are reported in the 
figure 4.5. 
As can be seen there was a fairly good correspondence between erb-B2+ 
molecular subtype, the Erb-B2 gene expression values measured by 
microarray and the Erb-B2 IHC status. Out of 7 erb-B2+ tumours, 5 showed 
an Erb-B2 overexpression by microarray and a positivity staining by IHC for 
the protein. In the basal-like subtype we observe that the microarray results 
are in agreement with the characteristic of this group, that is an 
underexpression of both ESR1 and Erb-B2; instead the IHC data do not show 
a good correspondence. In particular, in the patient 47 both markers (ER and 
Erb-B2) were identified as positive using the IHC assessment. This conflicting 
result could be due to the differences in the detection of the protein level in 
these two techniques (IHC and microarrays), whereas the molecular 
subtypes were identified based on the gene expression level. It is also 
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important to remark that for the patient 47 we found a negative score in the 
Herceptest (1+, see the table 4.2) for Erb-B2 although the IHC 
immunostaining gave a high percentage of positivity. Therefore, if we 
consider the Herceptest score, the result agrees with the microarray data. 
The luminal-type tumours in 22 of 28 cases showed an over-expression of 
ESR1, in agreement with the result reported by Perou and colleagues. A 
similar result was obtained with IHC assessment, where 24 of 26 luminal-
type tumours with IHC data available, were positive for ER marker. 

 
Figure 4.5: The log2ratio gene expression values (a) and the IHC status (b) of ER 
(Estrogen Receptor) and Erb-B2 are shown. The grey cells represent missing data in the IHC 
assessment. The samples were grouped on the basis of a hierarchical clustering using ER 
and Erb-B2. The yellow horizontal bars indicate the Erb-B2 tumours, the red horizontal bars 
the basal-like tumours. The labels of the patients report the molecular subtype and the 
clinical response, if available. Color coding: (a) red scale (over-expression): 0<log2ratio<+3, 
green scale (under-expression) -3<log2ratio<0 (b) red: IHC status positive (% stained cells 
≥ 10), green: IHC status positive (% stained cells < 10). TMEV (see par. 3.13) was used to 
perform the hierarchical clustering (average linkage method). Note: for the patient 44 I 
reported the Erb-B2 status (3+) measured by the Herceptest (DAKO, see par. 3.2.3) 
because the result of immunohistochemical assessment was not available. 
 
If we look at the clustering of the patients, it can be noticed that all patients 
with ESR1 gene downregulated are grouped in a cluster enriched of erb-B2+ 
tumours (4 out of 7 erb-B2+ tumours) and also containing the two basal-like 
tumours. 
Taken together, the results show that the breast tumours had, in most of the 
cases, a gene expression of the two genes under study (ER and Erb-B2) in 
agreement with the key characteristics of the luminal and erb-B2+ molecular 
subtypes: the former overexpression of ESR1, the latter overexpression of 
Erb-B2. A limitation of this type of analysis is the small size of the dataset 
under exam and especially the limited number of tumours belonging to the 
basal-like (2) and erb-B2+ subtypes (7). Since they were only 9 cases in all 
(out of 37 tumours in toto), these groups were too small to draw any 
significant conclusion from these results. 
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4.5 OPERON v3.0 PLATFORM VS OPERON v2.0 
PLATFORM 
 
As I reported in the previous paragraphs, a limitation of my study was the 
small size of the dataset of patients with clinical response available (see fig. 
4.1), therefore increasing the number of patients would have been useful 
from a statistical point of view. The figure 4.1 gives an overview of the 
patients collected, and, as can be seen, there were 4 patients that were 
analyzed with the platform Operon v3.0 instead of with the Operon v2.0. 
Operon v3.0 platform represents the updated version of Operon v2.0.  
My goal was to evaluate if I could introduce these 4 patients in the dataset 
of patients analyzed with the Operon v 2.0, without introducing too much 
variability due to the different microarray platform. In order to do this, I 
chose to re-analyze four patients, already characterized with Operon v2.0 
microarrays, with the Operon v3.0 platform and to check the level of 
correlation between the gene expression profiles obtained with the two 
systems. The correlation analysis was difficult for two reasons: 
• Operon v3.0 platform differed from the Operon v2.0 in term of number 

of probes, so I should firstly find an overlap between the two platforms 
and then perform the comparison (see par. 4.5.1 for details); 

• the microarray system implemented in the hybridization step and 
fluorescence signal detection is different from that one used to analyze 
the 30 patients (see par. 4.5.1 for details). 

 
4.5.1 CHARACTERISTICS OF THE OPERON v3.0 PLATFORM 
 
The Human Genome Oligo Set Version 3.0 array contains 34.580 probes 
representing 24.650 genes and 37.123 gene transcripts. All oligos are 
70mers. The arrays consist in all of 37.632 features (oligos and controls) and 
were printed in a 28x28 subarray layout using 48 Biorobotic 10K-micro spot 
pins. These arrays were obtained from the Central Microarray Facility (CMF) 
at the Netherlands Cancer Institute (NKI). CMF performed the microarray 
hybridization and the scanning; detailed information about the protocol can 
be found at http://microarrays.nki.nl/research/methods.html. All 
hybridizations were performed in the hybridization station Tecan HS4800 
(http://www.tecan.com/). The sample solution was mixed during the 
incubation. The Agilent DNA Microarray scanner was used to scan the slides. 
RNA isolation, amplification and labeling were carried out following the same 
procedure used for the Operon v2.0 platform (see Methods). Each 
experiment was replicated using a dye swap procedure. The control RNA was 
the same used for the Operon v2.0 platform. 
 
4.5.2 CORRELATION ANALYSIS BETWEEN PATIENTS ANALYZED 
WITH OPERON v2.0 AND OPERON v3.0 PLATFORMS 
 
A common dataset of probes between the two platforms was identified to be 
used to perform the correlation analysis. Based on EntrezGene ID and 
EnsemblGene ID of the oligonucleotides I found that 15.554 (~72%) Operon 
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v2.0 probes represented the same genes of the Operon v3.0 probes. 
Although this fairly good overlap, I chose to keep only those overlapped 
probes with the same oligonucleotide sequence in both platforms. Thus the 
number of overlapping probes was reduced to 12083. The choice was done 
to be sure to evaluate expression values for the genes recognized by the 
same oligonucleotide, avoiding the risk to consider oligos that mapped on the 
same gene but specific for different transcripts (isoforms of the gene with 
different level of expression). This procedure had the drawback that a specif 
isoform of a gene recognized from different oligos would have been lost. 
However my goal was to evaluate the level of correlation between two gene 
expression profiles of the same patient obtained with two different platforms, 
thus a dataset of 12083 common probes would have been large enough to 
perform a statistically reliable correlation analysis. 
The further step was to compare, using the Pearson correlation, the 
normalized gene expression value of the single channels data for the same 
patient analyzed with Operon v2.0 and Operon v3.0 platforms. Since were 
performed three replicates for each experiment with the Operon v2.0 
platform and two replicates with the Operon v3.0, I considered the replicates 
separately in the calculation of the Pearson correlation; finally I averaged the 
correlation coefficient (r) for each channel (channel 1 = patient, channel 2 = 
control). The patients re-analyzed with Operon 3.0 platform were 7, 13, 53 
and 55. The results are shown in the table 4.6. 
 

patient code r (CH1_Op2.0 vs CH1_Op3.0) ± SD r (CH2_Op2.0 vs CH2_Op3.0) ± SD 

7 0.79 ± 0.02 0.78 ± 0.03 
13 0.80 ± 0.09 0.77 ± 0.04 
53 0.34 ± 0.02 0.48 ± 0.02 
55 0.21 ± 0.02 0.29 ± 0.06 

Table 4.6: The Pearson correlation coefficients (r) calculated for each comparison is 
reported. CH1_Op2.0 (CH2_Op2.0): channel 1(2) of the Operon v2.0 platform; CH1_Op3.0 
(CH2_Op3.0): channel 1(2) of the Operon v3.0 platform. SD Standard Deviation 
 
The correlation could be considered good for the patients 7 and 13, medium 
for the patient 53 and low for the patient 55. The low correlation could be 
due to: 
• different platform; 
• different range of sensitivity of the detection of the fluorescence signal 
from the two scanners, Agilent and Packard (see par. 3.9). 
In light of these results I did not consider the four new patients in the 
dataset of patients analyzed with Operon v2.0 platform ("old dataset"), 
because I did not find a good correlation for all the four patients analyzed 
with both platforms (Operon v2.0 and v3.0). The risk would have been to 
introduce some variability in the old dataset, due to a different system of 
microarray analysis, that could influence the results. 
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4.6 IDENTIFICATION OF PREDICTIVE GENES OF 
RESPONSIVENESS TO ANTHRACYCLINE-TAXANE BASED 
NEOADJUVANT CHEMOTHERAPY 
 
As mentioned before (see chap. 2), the primary goal of this study was to 
identify a gene expression signature predicting the response to a 
NeoAdjuvant ChemoTherapy (NACT) based on Paclitaxel/Doxorubicin or 
Paclitaxel/Epirubicin combination of drugs. Next steps of my study were 
focused on the identification of this predictive set of genes for the pre-
treatment tumours (patients) with available clinical responses, in all 30 
patients as reported above (par. 4.1). The gene expression values were 
filtered on the basis of the statistical procedure previously described (see 
Methods, par. 3.11) to create the dataset for the subsequent analysis. 
 
4.6.1 UNSUPERVISED HIERARCHICAL CLUSTERING ANALYSIS 
 
First of all, I performed a hierarchical clustering on the pre-treatment 
tumours with clinical responses available, in order to evaluate how the 
patients would have been separated on the basis of their gene expression 
profile without giving any information about the class of response to the 
treatment (unsupervised approach). 
I considered two datasets with a different number of patients, the first 
composed by the Partial Response (PR) patients in the Responder group, the 
second including also the clinical Complete Response (cCR) patients: 
• dataset I: 17 PR + 11 NR (9 NC + 2 PD); it contains 13973 gene 
expression values (fig. 4.6A); 
• dataset II: 19 R (17 PR + 2 cCR) + 11 NR (9 NC + 2 PD); it contains 
13870 gene expression values (fig. 4.6B). 
I took into account two types of dataset to evaluate if the results would have 
been different considering only PR patients against non responder patients or 
responders patients (PR and cCR). In the first case the class of response was 
more homogeneous (only partial response patients) in terms of response to 
the treatment. 
The figure 4.6 displays the dendograms of the 28 samples (dataset I) and 30 
samples (dataset II) based on 13973 genes and 13870 genes, respectively. 
As can be seen from both dendograms (fig. 4.6A and fig. 4.6B) there was not 
a clear separation between the Responders (PR and cCR) and Non 
Responders (NC and PD). This result suggest that other set of genes 
separate the samples on the basis of other biological parameters not 
dependent on the response to the drugs. The high number of differentially 
expressed genes could mask the "real" predictive genes and bring to a 
clustering of samples independent from the class of response. Probably the 
patients could be better clustered in responders (sensitive) and non 
responders (resistant) if their number was higher: the biological differences 
would have been more randomly distributed between the classes of 
response, and the predictive genes could be the principal discriminant factor. 
However, the result obtained agrees with the hypothesis, already proposed 
from van 't Veer et al [44], that the predictive genes of resistance/sensitivity 
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to the drugs are a subtle set and it could not cause great changes in gene 
expression, hardly detectable with an unsupervised approach. 
 

Figure 4.6: Unsupervised hierarchical clustering (average linkage) performed on 28 patients 
and using 13973 genes (A) and on 30 patients using 13870 genes (B). cCR clinical Complete 
Response, PR Partial Response, NC No Change, PD Progressive Disease. The clustering 
analysis was performed using TMev software (par. 3.12). 
 
In light of what stated above, I preferred a supervised approach, which 
consists of dividing the tumours into groups that have different clinical 
responses and searching for the genes that can correctly identify the distinct 
groups of response, in other words the predictive genes of 
resistance/sensitivity to the neoadjuvant chemotherapy. This approach has 
been previously used in various studies similar to my study (see par. 1.5); 
although unsupervised approaches seems to be less biased, it emerged that 
the possibility to identify informative genes of clinical subgroups is enhanced 
when additional available clinical information (e.g. clinical response) were 
included in the analysis. 
 
4.6.2 IDENTIFICATION OF DRUG-RESISTANCE PREDICTIVE 
GENES USING PAM (PREDICTIVE ANALYSIS OF MICROARRAY) 
 
The first supervised approach that I used to find the predictive genes was 
based on the algorithm implemented in PAM (Prediction Analysis of 
Microarray), that I described in detail in Methods, par. 3.13. Also for PAM 
analysis I considered the dataset I (28 patients, 13973 genes) and the 
dataset II (30 patients, 13870 genes).  
The results are reported in the table 4.7. As can be seen from the table 4.7, 
in both cases the misclassification error is high and it increased if we 
included in the Responder class also the cCR patients. 
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nr predictive 
genes true/predicted 1 2 Class error 

rate 
1 11 6 0.353 

dataset I 110 
2 4 8 0.363 
1 12 7 0.368 

dataset II 86 
2 4 7 0.363 

Table 4.7: For the dataset I (28 patients) and the dataset II (30 patients) are reported the 
number of predictive genes identified from PAM, the true number of patients belonging to 
the class 1/class 2 and the predicted number of patients belonging to the class 1 and 2 
(based on the predictive genes identified), the class error rate associated to each class of 
response. For the dataset I the class 1 corresponds to the PR patients and the class 2 to the 
NR patients (NC + PD); for the dataset II the class 1 corresponds to the R patients (PR + 
cCR) and the class 2 to the NR patients (NC + PD). The number of patients correctly 
assigned to the class of response is on grey background. 
 
This result could be due to the fact that the cCR patients are too different 
respect to the PR patients in terms of biological mechanisms of response to 
the treatment. The tumours with a partial regression in the mass size are 
partially sensitive to the drug and could show a certain grade of resistance. It 
would make not advisable consider cCR patients in the same group of PR 
patients for searching of predictive genes of response to chemotherapy. 
The general low accuracy in the prediction performance obtained with PAM 
did not exclude the existence of a better predictive profile in terms of 
prediction accuracy, rather than PAM could not be the proper method to find 
it. Therefore a new type of method was required to: 
• find a predictive gene set more powerful in distinguishing the class of 

response to the neoadjuvant chemotherapy; 
• thoroughly evaluate the performance of the gene predictive signature.  
 
4.6.3 IDENTIFICATION OF DRUG-RESISTANCE PREDICTIVE 
GENES USING FEATURE SELECTION BASED ON SUPPORT VECTOR 
MACHINES 
 
A key difficulty in microarray studies arises from the high dimensionality of 
the data: typically a microarray analysis involves tens of samples while 
measured genes (features) are thousands. Since the data dimensionality is 
much larger than the sample size, this makes many standard pattern 
classification algorithms fail and also increase the risk of overfitting (see par. 
3.14.2). Machine learning methods such as Support Vector Machines (SVMs), 
can work at high-dimensionality, as observed in other studies [148], thus I 
chose this approach to identify the gene predictive signature. I used R-SVM, 
a recursively method of genes (called features) selection based on SVMs (see 
par. 3.14.2.2 for more details). At each iteration of feature selection process 
(in all 12 iterations) was selected a subset of features that had the higher 
contribution in the classification of the patients, ranking all the genes 
according to their SVM score and were eliminated the 50% of the low ranked 
features. I chose a Leave-One-Out Cross Validation (LOO-CV) procedure to 
assess the performance of the feature selection process, because of the 
small size of the dataset of patients (28 or 30 patients). The LOO-CV is the 
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statistically suggested cross validation method if the number of the samples 
is low, as in my study. A key point is that the feature selection steps were 
included in the cross validation procedure in order to validate both the 
classification algorithm and the feature selection process. Others feature 
selection procedures did not use a correct validation scheme, as the case of 
RFE-SVM (see par. 3.14.2.2 for more details), and for this reason I used the 
R-SVM method.  
At each iteration of the feature selection process, the subset of genes with 
the higher contribution in the classification was associated to an error of 
classification, or, in other words, to a number of patients that, based on 
those genes, were not classified in the true class of response. Therefore I 
chose the subset of genes with the lowest error of misclassification. The 
genes selected represented a gene-expression signature able to distinguish 
the responder and the non responder patients. 
For the feature-selection analysis with R-SVM I considered the dataset I and 
the dataset II, similarly to the analysis with PAM. In the table 4.8 I reported 
for each dataset the number of selected genes with the highest accuracy in 
the classification (respect to the patients considered) determined with the 
LOO-CV procedure and the number of misclassified patients.  
 

nr of selected 
genes 

nr of misclassified 
patients 

misclassified 
patients 

PR 17 dataset I 
28 patients 

(17 PR, 11 NR) 
13973 genes 

54 4 
NR 14, 21, 32 

R 13, 17 dataset II 
30 patients 
(19 R, 11 NR) 
13870 genes 

14 7 
NR 14, 21, 32, 

47, 55 

Table 4.8: For the dataset I and the dataset II the number of selected genes from R-SVM 
method (nr of selected genes), the number of misclassified patients using the selected 
genes by LOO-CV procedure (nr of misclassified patients) and the misclassified patients are 
reported. PR Partial Response, NR Non Responders, R Responders 
 
The table 4.9 shows the performance of the 54-genes signature (dataset I) 
and the 14-genes signature (dataset II) in terms of sensitivity, specificity, 
Positive Predictive Value (PPV), Negative Predictive Value (NPV) and 
accuracy. 
As emerged from the tables 4.8 and 4.9, the best performance in the 
classification considering the statistical parameters evaluated, was obtained 
using the dataset I using the 54-genes signature. The accuracy of the 54 
genes set is equal to 85%, instead with the 14 genes set of the dataset II 
the accuracy decreased to 76%. If we look at the specificity, that is the 
proportion of NR patient (also called negative examples) which was correctly 
identified, we obtained lower values than for the sensitivity, the proportion of 
R patient (also called positive examples) which was correctly identified, in 
both datasets. This result could be expected because the NR patients were in 
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lower number respect to the R patients, 11 Non Responders vs 17 (or 19 if 
included the cCR patients) Responders. 
 

54 genes (dataset I) 14 genes (dataset II) 
cases percentage cases percentage 

sensitivity 16/17 94% 17/19 89% 
specificity 8/11 72% 6/11 52% 

PPV 16/19 84% 17/22 77% 
NPV 8/9 88% 6/8 75% 

accuracy 24/28 85% 23/30 76% 

Table 4.9: For the dataset I and the dataset II are shown sensitivity, specificity, PPV 
(Positive Predictive Value), NPV (Negative Predictive Value) and Accuracy of the set of 54 
genes and 14 genes. 54 genes: TP (True Positive)=16, TN (True Negative)=8, FP (False 
Positive)=3, FN (False Negative)=1; 14 genes: TP=17, TN=6, FP=5, FN=2. 
Sensitivity=TP/P, specificity=TN/(FP+TN), PPV=TP/(TP+FP), NPV=TN/(TN+FN), 
accuracy=(TP+TN)/P+N 
 
It can be observed that both signatures, 54-genes and 14-genes, 
misclassified the same patients (17, 14, 21, 32) and the 14-genes signature 
misclassified also the patients 13, 47, 55. This result could indicate that the 
"system" is unstable and every time that new patients are added the error 
changes. However, each new patient can introduce some variability in terms 
of biological heterogeneity and, because of the limited number of patients, 
this factor plays an important effect. The difference in the performance of 
the classification between the 54-genes signature and the 14-genes 
signature is consistent with what already observed (par. 4.6.2), that the cCR 
patients would represent a too different class respect to the PR patients in 
terms of biological mechanisms of response to the treatment. The cCR 
patients should be treated as a different class of response, in order to have 
groups of response as homogeneous as possible. Therefore I chose to focus 
the subsequent analysis on the dataset I that included only the patients PR 
(partially responsive to the treatment) and the patients NR (not responsive to 
the treatment). 
Although the number of patients in toto (and especially the NR class) is too 
small for general conclusions, the result of this exploratory supervised 
classification for the dataset I seems encouraging. It is also important to 
remark that another limitation of this study is the absence of two clearly 
distinct classes of clinical response, as would have been the case of only NC 
and cCR patients. The PR class, as reported in literature [97], may be very 
heterogeneous group, making it difficult to predict the treatment response 
for these patients correctly. 
From a biological point of view, it is known that there are several 
mechanisms that lead to the drug-resistance phenotype (see 1.7) of a 
tumour cell, but they are not all active at the same time. Therefore the drug-
resistance markers could be present in some patients and absent in others. 
As a consequence, the 54-genes signature identified could be effectively 
predictive of response to the neoadjuvant chemotherapy (anthracyclines plus 
paclitaxel) only for those patients with common markers of drug-resistance. 
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4.6.4 ANALYSIS OF THE 54-GENES PREDICTIVE SIGNATURE 
 
At this point of the study I decided to analyze more in detail the 54 
predictive genes listed in the table 4.10. 
 

OligoID Entrez Gene ID GeneBank ID GeneSymbol 
H200002171 84159 NM_020403 ARID5B 
H200002810 51232 NM_016441 CRIM1 
H200002898 3434 NM_001548 IFIT1 
H200003547 1365 NM_001306 CLDN3 
H200003548 2353 NM_005252 FOS 
H200004431 79682 NM_024629 MLF1IP 
H200004583 57678 AB046780 GPAM 
H200005130 84627 AB058761 ZNF469 
H200005447 26872 NM_012449 STEAP1 
H200006203 427 NM_004315 ASAH1 
H200006389 4283 NM_002416 CXCL9 
H200006397 5577 NM_002736 PRKAR2B 
H200006318 1052 NM_005195 CEBPD 
H200006446 9088 NM_004203 PKMYT1 
H200006618 4609 NM_002467 MYC 
H200007119 688 NM_001730 KLF5 
H200008477 4023 NM_000237 LPL 
H200009886 5166 NM_002612 PDK4 
H200010330 185 NM_031850 AGTR1 
H200011610 10580 NM_015385 SORBS1 
H200013414 8660 AF073310 IRS2 
H200013620 1654 NM_001356 DDX3X 
H200013568 1289 NM_000093 COL5A1 
H200013741 57496 AB033069 MKL2 
H200014307 9415 NM_004265 FADS2 
H200015305 10850 NM_006664 CCL27 
H200015445 6935 NM_030751 TCF8 
H200015384 10930 NM_006789 APOBEC2 
H200017585 114783 AB067470 LMTK3 
H200017794 57092 NM_020357 PCNP 
H200020738 26074 AK056971 C20orf26 
H200007115 9499 NM_006790 MYOT 
H200015637 1027 BC001971 CDKN1B 
H200015854 171024 AF177291 SYNPO2 
H200018157 5507 BC012625 PPP1R3C 
H200000922 9985 NM_005132 REC8L1 
H200005314 11096 NM_007038 ADAMTS5 
H200010022 57223 AB037808 SMEK2 
H200019109 6711 AK023762 SPTBN1 
H200006219 4089 NM_005359 SMAD4 
H200007199 23676 NM_014332 SMPX 
H200015396 3655 NM_000210 ITGA6 
H200002977 57405 NM_020675 SPC25 
H200011805 84419 NM_032413 C15orf48 
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H200000153 667 NM_001723 DST 
H200014817 10891 NM_013261 PPARGC1A 
H200008461 # AK027252 ATP8A1 
H200006689 4753 NM_006159 NELL2 
H200013115 643008 AK055768 LOC643008 
H200001902 7364 NM_001074 UGT2B7 
H200015506 83540 NM_031423 CDCA1 
H200008367 55008 NM_017912 HERC6 
H200014220 4477 NM_002443 MSMB 
H200007560 10631 AK023481 POSTN 

Table 4.10: 54-genes signature identified with R-SVM for the dataset I (17 PR + 11 NR). 
For each gene I reported: Oligo ID of the Operon v2.0 platform, Entrez Gene ID, GenBank 
ID and Gene Symbol. 
 
When we looked at the microarray expression value of each gene singularly, 
it emerged that they did not show a gene expression value markedly 
different between the two class of response (e.g. always underexpressed in 
the PR patients and overexpressed in the NR patients), so one could ask why 
they should be predictive, that is able to separate the two class of response. 
It should be pointed out that a single gene is not discriminating per se, but 
the genes of the predictor are optimal for the classification only if taken 
together. In fact, the feature-selection based on SVMs is a wrapped method 
because the feature selection process scored the importance of the genes in 
the classification considering the correlation between them. 
The neoadjuvant chemotherapy treatment of this study is based on a 
combination of paclitaxel and anthracyclines (doxorubicin and epirubicin), 
two compounds whose mechanism of action involve the microtubule cellular 
dynamics and the DNA binding and replication, respectively (see 1.8 for more 
details).Therefore it could be speculated that the 54 gene classifier predicting 
response to paclitaxel/anthracyclines regimen, would contain a number of 
genes involved in these process. 
In order to have a general overview about the functional categories more 
represented from the 54-genes signature I used GoMiner software (see par. 
3.16.2). This program uses the Gene Ontology (GO) annotation to identify 
enriched GO categories in the subset of selected genes with respect to the 
whole dataset of genes. I considered the whole dataset of 13973 genes 
(dataset I) and, as a subset of genes, the 54 genes identified with R-SVM. 
With respect to the total number of genes (13973), 7579 had a GO Biological 
Process (GO BP) annotation, 8057 out of 13973 a GO Cellular Component 
(GO CC) annotation and 8056 a GO Molecular Function (GO MF) annotation. 
Out of the 54 predictive genes, 47 had a GO BP, 46 a GO CC and 48 a GO 
MF annotation. 
The table 4.11 shows the selected GO categories, with a p-value < 0.05, 
considering the three ontologies, Biological Process, Cellular Component and 
Molecular Function, separately. Only the categories comprising at least 2 
genes are reported. 
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nr total 
genes 

nr predictive 
genes p-value

GO Biological Process 
transcription_from_RNA_polymerase_II_promoter 
(KLF5, PPARGC1, CEBPD, TCF8, FOS, SMAD4, MKL2, MYC) 428 8 0.002 

fatty_acid_metabolic_process (PPARGC1, FADS2, LPL, ASAH1) 113 4 0.004 

cell_cycle_arrest (CDKN1B, MYC, DST) 58 3 0.004 
cell_adhesion (COL5A1, CLDN3, NELL2, SORBS1, ITGA6, DST, 
POSTN) 419 7 0.008 

insulin_receptor_signaling_pathway (IRS2, SORBS1) 25 2 0.009 

cell_cycle (CDCA1, CDKN1B, PCNP, PKMYT1, REC8L1, MYC, DST) 470 7 0.015 

response_to_hypoxia (CLDN3, SMAD4) 35 2 0.016 
cellular_carbohydrate_metabolic_process (PPARGC1, PDK4, 
IRS2, PPP1RC3) 180 4 0.018 

regulation_of_cell_proliferation (KLF5, CDKN1B, IRS2, 
SMAD4, MYC) 295 5 0.024 

cell_growth (CRIM1, CDKN1B, SMAD4) 121 3 0.030 
actin_cytoskeleton_organization_and_biogenesis (SPTBN1, 
SORBS1, DST) 127 3 0.034 

cell-matrix_adhesion (SORBS1, ITGA6) 56 2 0.039 
lipid_metabolic_process (PPARGC1, FADS2, UGT2B7, LPL, 
GPAM, ASAH1) 456 6 0.041 

cell_proliferation (KLF5, CDKN1B, IRS2, TCF8, SMAD4, MYC) 480 6 0.051 

GO Cellular Component 
extracellular_region (COL5A1, CRIM1, NELL2, CXCL9, MSMB, 
LPL, CCL27, ADAMTS5, POSTN, DST) 861 10 0.019 

extracellular_matrix (COL5A1, ADAMTS5, POSTN, DST) 187 4 0.020 

apical_junction_complex (CLDN3, SORBS1) 49 2 0.031 

apicolateral_plasma_membrane (CLDN3, SORBS1) 51 2 0.033 

cell_junction (CLDN3, SORBS1, STEAP1, DST) 219 4 0.034 
nucleus (CDKN1B, MLF1IP, SYNPO2, ARID5B, PCNP, ZNF469, 
TCF8, SORBS1, MSMB, SMAD4, REC8L1, CDCA1, PPARGC1, KLF5,
DDX3X, CEBPD, FOS, SPTBN1, MKL2, SMPX, MYC) 

2646 21 0.043 

GO Molecular Function 
insulin_receptor_binding (IRS2, SORBS19) 11 2 0.002 

heparin_binding (COL5A1, LPL, POSTN) 47 3 0.002 
receptor_binding (PPARGC1, IRS2, CXCL9, SORBS1, CCL27, 
ADAMTS5, DST) 407 7 0.007 

integrin_binding (ADAMTS5, DST) 27 2 0.010 
cytoskeletal_protein_binding (SYNPO2, SORBS1, SPTBN1, 
MYOT, DST) 286 5 0.021 

transcription_regulator_activity (PPARGC1, KFL5, CEBPD, 
ARID5B, TCF8, FOS, SMAD4, MKL2, MYC) 816 9 0.036 

transcription_coactivator_activity (PPARGC1A, TCF8, MKL2) 133 3 0.038 

Table 4.11: The table reports the Biological Process, the Cellular Component and the 
Molecular Function GO categories analyzing with GoMiner software the 54-predictive genes. 
In parenthesis are reported the predictive genes associated to each term. For each GO term 
are shown the total number of genes of the dataset (nr total genes), and the number of 
predictive genes (nr predictive genes) annotated with the term. Only the GO categories with 
p-value (last column) < 0.05 are considered. On grey background are evidenced the gene 
discussed more in detail in the text. 
 
As emerged from the analysis with GoMiner, there were several functional 
categories related to the tumourigenesis processes in general ("cell 
adhesion", "insulin receptor signaling pathway", "cell proliferation", 
"regulation of cell proliferation") and this result could be expected. However 
it is also interesting to observe that some of these categories are more 
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closely related to the cellular processes target of the chemotherapy agents 
used in this study, as the case of cell cycle or cell cycle arrest. In fact both 
paclitaxel and anthracyclines interfer with the normal cellular cycle, leading 
to cell apoptosis (see par. 1.8). Several studies reported that cell proliferation 
is related to the response to chemotherapy. Gianni and colleagues found that 
a high expression of genes related to cell-proliferation was correlated to 
higher sensitivity to paclitaxel/doxorubicin neoadjuvant chemotherapy [98]. 
It can be seen from the table 4.11 that two enriched categories are "cell 
proliferation" and "regulation of cell proliferation". Another interesting 
category that emerged from this analysis is the "response to hypoxia". It is 
known that hypoxia results in cellular responses that plays roles not only in 
tumour development and progression, but also in therapy responsiveness 
[100]. Hypoxia in solid tumours is associated with the development of 
chemoresistance. Recently it was reported that hypoxia leads to resistance to 
various classes of chemotherapeutic agents, including anthracyclines 
(daunorubicin and doxorubicin) [164].  
In the GO Cellular Component an enriched category is the "nucleus". 
Doxorubicin and Epirubicin interact with DNA TopII complex at a nuclear 
level, therefore the presence of this GO term would make a biological sense. 
It is clear that GoMiner software allowed us to have a general overview 
about the biological process and cellular localization significantly represented 
from the genes of the predictive signature. However, deducing from the 54 
predictive genes which cellular pathway could be involved in the resistance 
or sensitivity of tumour cells to anthracyclines/paclitaxel based 
chemotherapy, can not be that easy. The GO categories identified as 
significantly represented in this gene set, would confirm, as reported from 
other studies, that the drug resistance phenotype is dependent not only on 
apoptotic pathways and cell cycle process, but also on other biological 
processes, which would have a role in establishing this condition.  
In light of what stated above, I searched more in detail in the literature if the 
54 genes identified were already known as involved in the drug resistance or 
reported in other predictive signature of response to the neoadjuvant 
regimen used in this study, that is paclitaxel plus antharcyclines.  
Two genes were already reported from other groups in their predictive 
signature, MYC (v-Myc MYeloCytomatosis viral oncogene homolog (avian)) 
and NUF2 (NDC80 kinetochore complex component, homolog (S. cerevisiae)) 
and they look quite interesting. 
C-Myc is an oncogene that functions in the stimulation of cell proliferation 
and apoptosis, in particular c-Myc is a down effector of the erb-B2 signaling 
pathway. As I previously reported (see par. 1.5.3.1), an improved response 
to anthracyclines-based NACT in erb-B2 positive patients was demonstrated 
in some studies, although its role in the sensitivity of cancer cells to 
chemotherapy is still unclear [165]. Recently Salter and colleagues showed in 
their study [166] that co-activation of MYC and E2F (E2F transcription factor 
2) in tumours treated with TFAC (paclitaxel, 5-fluorouracil, adryamicin and 
cyclophosphamide) had the lowest percentage of responders. Taken together 
the presence in the predictive list of this gene would seem in agreement with 
what already reported from other groups. As a confirmation I found that this 
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gene was more under-expressed in the partial responder patients than in the 
non responders. 
NUF2 encodes a protein that is a component of a conserved protein complex 
associated with the centromere. Recent studies [167] demonstrated that 
nuf2 protein, together with hec1, are part of the stable core region of the 
kinetochore complex (Ndc80), an important attachment site for the 
microtubules during the mitotic spindle formation. Target of paclitaxel are 
the microtubule, therefore proteins involved in the microtubule dynamics, like 
Nuf2, could influence the action of this compound. Rouzier and colleagues 
reported NUF2 as a gene associated with pathologic complete response in 
basal-like breast tumours [19]. In my experiments, NUF2 was over-
expressed in the PR patients, so this seems to agree with the results 
obtained from Rouzier et al. though they consider pCR as response and a 
specific subgroup of breast cancer (basal-like molecular subtype). 
Interestingly in the 54-genes signature there was another gene, SPC25 
(SPC25, NDC80 kinetochore complex component, homolog (S. cerevisiae)) 
that encodes a protein that is part of the Ndc80 complex. SPC25 is an 
essential kinetochore component that plays a significant role in proper 
execution of mitotic events and is involved in kinetochore-microtubule 
interaction and spindle checkpoint activity [168]. 
As can be seen, only two genes are present in other predictive signatures but 
this result is in agreement with what is emerging from this type of studies. 
Between all the predictive signatures there is hardly any overlap, indicating 
that there may be not only one profile, but that several combinations of 
probes may predict response to chemotherapy. 
After a detailed bibliographic research, also other genes of the signature 
showed to have some connection with the drug resistance phenomenon 
investigated in our study. 
KFL5 (Kruppel-like Factor 5) is a transcription factor that regulates cellular 
signaling involved in cell proliferation and oncogenesis. Zhu and colleagues 
reported that KLF5 interacts with tumour suppressor p53 in regulating the 
expression of the inhibitor-of-apoptosis protein survivin, which plays a role in 
pathological process of cancer [169]. In particular KLF5 binds to the core 
survivin promoter and strongly induces its activity. Very recently it has been 
demonstrated that activation of survivin expression can induce the drug-
resistance to paclitaxel in ovarian cancer [170]. Another study reported that 
breast cancers patients with higher KLF5 expression had shorter disease-free 
survival and overall survival than patients with lower KLF5 expression [171]. 
In my experiments, KFL5 was more markedly under-expressed in the PR 
patients, accordingly with the data reported above. 
CDKN1b (Cyclin-dependent kinase inhibitor 1B) encodes the cycle regulatory 
protein p27, an inhibitor of cyclin-dependent kinase (CDK). It has been 
reported that this protein has a role in resistance to cancer chemotherapy, 
although the predictive value of p27 for chemosensitivity is not yet fully 
proved. However it was demonstrated in vitro that the sensitivity to 
doxorubicin was significantly higher in breast cancer cells with high CDKN1b 
expression [172]. Interestingly a very recent study [173] reported that c-myc 
(one of the genes identified with SVM) mediates the inhibitory effect of PDGF 
(Platelet-Derived Growth Factor) on the p27 promoter. Taken together, we 
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could hypothesize that inhibition of the p27 expression via c-myc would have 
a role in establishing a drug resistance phenotype.  
The ITGA6 gene product is the integrin alpha chain alpha 6. Integrins are 
integral cell-surface proteins composed of an alpha chain and a beta chain 
known to participate in cell adhesion as well as cell-surface mediated 
signaling. Liang and colleagues reported that the over-expression of ITGA6, 
together with others integrins subunits (ITGA2, ITGA5, ITGB4) increased the 
invasiveness of the tumours cells in vitro. It has also been demonstrated that 
the invasiveness phenotype is closely related to MDR (Multi Drug Resistance) 
phenotype [174]. A previous study reported that ITGA6 is more expressed in 
doxorubicin-resistant cells [175]. Gianni and colleagues [98] included ITGB2, 
another gene of the integrins family, in their predictive signature of response 
to paclitaxel/doxorubicin neoadjuvant chemotherapy. Taken together, it 
could be speculated that ITGA6 and the integrins in general are also involved 
in establishing a drug-resistance condition. In my experiment this gene 
showed an under-expression in the PR patients and it could be consistent 
with what explained above. 
Also POSTN (PeriOSTiN) gene deserves more attention, although its 
connection with the drug resistance phenotype is less direct. This gene 
encodes the periostin, an osteoblast specific factor and, what is more 
interesting in light of our discussion, a potential marker for breast carcinoma 
BRCA1 mutations carriers. In fact it has been reported that in vitro cells with 
mutated BRCA1 show an up-regulation of POSTN [176]. Byrski and 
colleagues observed that women with a BRCA1 mutation who received 
docetaxel (a taxane as paclitaxel) in combination with doxorubicin (the 
chemotherapic used in this study) as neoadjuvant chemotherapy were less 
likely to respond to the treatment than women with no mutation. In contrast, 
BRCA1 carriers who were treated only with DNA-damaging chemotherapies, 
as anthracyclines, responded as frequently as non-carriers [177]. It is also 
reported from Rouzier et al. [19] that basal-like tumours are more responsive 
to paclitaxel/doxorubicin based chemotherapy. Basal-like tumours are 
typically found in BRCA1 mutations carriers, thus it would seem in contrast 
with the previous study. In light of what described we can not speculate too 
much about the connection between POSTN and drug sensitivity via BRCA1, 
only hypothesize that POSTN could play a role in drug resistance phenotype. 
Other of the 54 genes are related to breast cancer progression and 
metastasis (CXCL9, CEBPD, IRS2, TCF8, ADAMTS5, PPARGC1A), but their 
direct involvement in drug resistance to paclitaxel/anthracyclines 
neoadjuvant chemotherapy is not reported in literature. Therefore other 
genes determined in this classifier, probably have additional, as yet 
unknown, functions in regulating drug response, which contribute to 
sensitivity or resistance of tumours to neoadjuvant chemotherapy. 
 
4.7 USING THE SVM MODEL AS PREDICTIVE TOOL OF 
RESPONSIVENESS TO NEOADJUVANT CHEMOTHERAPY 
 
At this point of my analysis, it was obvious to wonder how to use the SVM 
model as a predictive tool for the evaluation of the responsiveness to the 
treatment reported in this study (paclitaxel/anthracyclines based neoadjuvant 
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chemotherapy). Predictive genes identification was the first step of the 
project, then it was important to understand how to use this gene signature 
for predicting the response to chemotherapy of a new patient, not yet 
classified as putative partial responder or not responder. Considering the 
dataset of 28 patients (17 PR and 11 NR) we identified with R-SVM feature 
selection process 54-genes, able to classify the patients in the two classes of 
response (PR and NR) with a LOO-CV accuracy of 85%. When we will have a 
gene expression profile of a new patient, we could use the SVM model, built 
with the 28 patients using the 54 genes, for classifying the new patient as 
partial responder or not responder based on the gene expression values of 
these 54 genes. The SVM output is a measure of distance of the patient, 
represented from a vector of 54 components (the gene expression values) 
from the optimal hyperplane that separates the patients in the two distinct 
classes of response. If we consider the new patient as a vector of 54 
components (the 54 predictive genes) her class of response (positive or 
negative) will be established on the basis of the position of this vector 
respect to the separating hyperplane. For example, if the sign of the function 
that defines the hyperplane (see 3.14.1 for details) will be positive, then the 
new patient will be classified as partial responder (PR). 
However, the SVM output is a value difficult to manage in statistics prediction 
problems. Therefore we used the sigmoid function, obtained applying the 
Platt’s algorithm (see par. 3.14.3) to translate the SVM outputs into 
probability values that offered a more direct evaluation of the response class 
of the patient. In practice we transformed the SVM scores in a value ranging 
from 0 to 1, that expresses the probability to belong to the positive class of 
response (PR patients). A linear SVM was trained on the 28 patients using 
the 54 features and then was trained the sigmoid function (see par 3.14.3 
for details) to map the SVM outputs into probabilities. In the figure 4.7 is 
shown the sigmoid function that fit the linear SVM output on the dataset of 
28 patients (dataset I). 
 

Figure 4.7: The fit of the sigmoid to the data for the linear SVM on the 28 patients dataset. 
Each point is the probability value computed for the 28 patients falling into a bin of width 0-
1 (x-axis), corresponding to the SVM score calculated in the SVM training with the model of 
54-genes signature (y-axis). The solid line is the fitted sigmoid to the probability values. 
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As can be seen from the figure, the sigmoid function is defined from 28 
points, each corresponding to a patient.  
In order to evaluate if the probability value computated with the Platt's 
algorithm for each SVM output score was consistent with the class of 
response of the patients, I correlated graphically the probability output of 
each patient with the class of response (PR or NR) (fig. 4.8). Since the 
probability value obtained with this approach was the probability of 
belonging to the positive class of response (PR in this case), I expected a 
probability value under 0.5 for the not responder patients and a probability 
value over 0.5 for the partial responder patients. 
 

Figure 4.8: For each patient is shown the corresponding value of probability to belong to 
the positive (PR) class. The dashed line represents the probability threshold of 0.5 (see text 
for details). With a black ring are evidenced the patients with a probability value not 
consistent with their true class of response. 
 
As emerged from the graph (fig. 4.8) the patients that had a probability 
value to belong to the PR class not concordant with their true class of 
response were five, so that means one plus respect to the estimation of the 
SVM model. These five patients were all belonging to the NR class (14 NR, 
21 NR, 32 NR, 55 NR and 45 NR). Instead, another patient (17 PR), that was 
incorrectly classified with the 54-genes signature shows a probability value to 
belong to the positive class of response above 0.5, in agreement with her 
true class of response. Therefore, if we compare SVM outputs and 
probabilities, three patients were misclassified in both approaches (14 NR, 21 
NR and 32 NR), one patient was misclassified only with the SVM model (17 
PR) and two patients showed a low probability to belong to their true class of 
response using the sigmoid function (45 NR and 55 NR). The translation of 
SVM scores in probability values would under-estimates the accuracy of the 
classification computed with the LOO-CV. However, if we look at the 
probability values of the 2 patients misclassified with Platt's algorithm (and 
not with the SVM model) they show a "border line" probability value equal to 
0.53. Consistently to this probability, the SVM scores of these two patients 
were also "border line" values, -0.1 (45 NR) and -0.09 (55 NR), compared to 
a point on the optimal hyperplane (that separates the positive responders 
and the negative responders) whose distance is 0. Also the patient 17 PR, 
misclassified with SVM but not with Platt's method, has to be considered a 
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border line patient, having a SVM score of -0.01 and a probability value of 
0.55. Taken together, these data indicate that these three patients (17 PR, 
55 NR and 45 NR) representing "border cases", are differently treated from 
the two systems, that in fact have different range of values for establishing 
the class of response. These results, although discordant at the first analysis, 
could be read in a positive perspective. The translation of SVM outputs to 
probabilities can add informations for predicting the class of response of a 
new unclassified patient. In other words, we could give a statistical weight to 
the SVM score and make a better estimation of the prediction. For instance, 
the predictions of two patients, both classified as possible positive 
responders but with a probability of 0.7 and 0.54, could be considered 
differently at the moment of deciding about the most appropriate 
chemotherapic treatment to administer. 
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CONCLUDING REMARKS

During the last years breast cancer research made several efforts to identify 
markers predicting whether a patient will benefit from a specific 
chemotherapy treatment. The introduction of preoperative chemotherapy, 
also called NeoAdjuvant ChemoTherapy (NACT), made possible to have 
short-term responses to anticancer drugs, directly measuring the 
sensitivity/resistance of breast tumour to them [44]. It is unlikely that the 
resistance phenotype is the result of the action of a limited number of genes 
since the signaling pathways involved in tumour response to chemotherapy 
are complex and also dependent on the individual characteristics of the 
tumour. 
The gene expression profling using microarray technology allowed to perform 
a systematic analysis of the gene-expression pattern of the tumour samples 
enabling researchers to better understand the tumour heterogeneity. It has 
been showed that gene expression profiling is a successful tool for the 
classification of breast cancer [23], for distinguishing prognostic subgroups 
[21, 53, 54], and it can also help to predict response to chemotherapy [94, 
95]. Perou and colleagues [23] identified different molecular subtypes of 
breast cancer based on an intrinsic gene list: luminal-like, basal-like, erb-B2+ 
and normal-like subtypes. Subsequently it was reported that these subtypes 
could respond differently to neoadjuvant chemotherapy. In light of this I 
identified the molecular subtypes of the tumours included in my study and I 
evaluated how the clinical response to the treatment was associated to the 
molecular subtypes. It emerged that the luminal-like and erb-B2+ molecular 
subtypes were enriched of patients with a clinical Partial Response (PR) to 
the treatment. 
Knowing that gene expression profiles of pre-treatment breast tumour 
biopsies could be correlated with the clinical response to NACT treatment, I 
focused my research on the identification of predictive genes of 
responsiveness to NACT regimen based on paclitaxel/anthracyclines 
(doxorubicin or epirubicin) drugs. 
Two datasets of patients were considered to build the multigene predictive 
classifier: dataset I, containing the Partial Responders (PR) and the Non 
Responders (NR); dataset II, including in the group of Responders also the 
clinical Complete Responder (cCR) patients. 
An unsupervised hierarchical cluster analysis on the dataset I and II showed 
that the patients grouped on the basis of biological parameters different from 
the response to chemotherapy. As observed also in other studies, the 
predictive genes of sensitivity/resistance to chemotherapy are probably a 
subtle set of genes, that could be masked from the high number of 
differentially expressed genes and hardly to be identified with an 
unsupervised approach. 
Therefore a proper supervised approach was required to identify only those 
genes able to distinguish the tumours sensitive or resistant to the treatment. 
In order to have a more homogeneous class of positive response, I 
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considered as Responders only the PR patients, excluding the cCR patients 
from the analysis. 
The main obstacle of this study was the limited number of patients (28) 
compared to the high number of genes that defined their expression profile 
(more than 13000). In such a situation it would be easy to find set of genes 
discriminating the two classes of patients but these genes could have a low 
performance in classifying an independent set of patients (risk of overfitting). 
In light of this, a gene selection method based on Support Vector Machines 
(R-SVM) was considered a good approach for selecting a set of genes able to 
separate the PR and NR patients (gene classifier) with a good performance in 
classifying an independent test set. Since the small size of the dataset, I 
chose a Leave-One-Out Cross Validation procedure to assess the 
performance of the predictive genes selected with R-SVM.  
Using this procedure we identified a set of 54 genes that could separate PR 
and NR patients with a LOO-CV accuracy of 85%. This set of genes 
represents a multigene predictor of sensitivity/resistance to the 
paclitaxel/anthracyclines NACT. Based on the 28 patients using the 54 
predictive genes was trained a SVM model able to classify as responder or 
not responder a patient considering the gene expression values only of these 
selected genes. 
A literature research focused on each gene of the predictive signature 
showed that some of these genes (MYC, NUF2, SPC25; KFL5, CDKN1b, 
ITGA6, POSTN) are 'biologically plausible' since they have connections with 
the mechanisms of resistance to paclitaxel, doxorubicin or epirubicin. Others 
genes are related to breast cancer progression and metastasis (CXCL9, 
CEBPD, IRS2, TCF8, ADAMTS5, PPARGC1A), but their direct involvement in 
drug resistance to paclitaxel/anthracyclines chemotherapy did not emerge in 
this literature research. It may be that the genes not found in the literature 
research as related to the drug resistance phenotype, could have additional, 
as yet unknown functions which contribute to sensitivity or resistance of 
breast tumours to NACT. 
It should be pointed out that a single gene of the predictive list is not 
dicriminating per se, but the 54 genes are optimal for the classification only if 
taken together. 
Next step of the analysis was the use of the trained SVM model as a 
predictive tool of responsiveness to NACT. Since the SVM outputs are 
uncalibrated values, not easily usable in statistics prediction problems, our 
idea was to translate this output in probabilities using a sigmoid function. In 
practice, we transformed the SVM scores, that are a measure of the distance 
of the patient from the optimal hyperplane that separates the responders 
from the non responders, in a measure of probability belonging to the 
positive class of response (PR patients). With a probability value we could 
better appreciate how the patient is classified by the SVM. 
This approach, never used before in this type of studies, looks quite 
promising, although, so far, was applied to a small dataset of patients. 
In fact we can consider this study as an "exploratory" analysis because of the 
small number of patients and the two classes of response, partial responders 
and non responders, not completely distinct in terms of regression of tumour 
mass. Although these limiting factors, the method adopted to face the object 
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of the study, i.e. the identification of predictive genes of response to a 
particular regimen of neoadjuvant chemotherapy, has demonstrated to be 
effective and to produce reliable preliminary results. Applying the same 
methodological procedure to a larger cohoort of patients, in combination with 
a independent validation, could provide in the future the opportunity to 
better guide treatment decisions in breast cancer NACT. 
 
Another aspect evaluated in this thesis was the analysis of the prognostic 
markers commonly used in the clinical setting to predict the tumour course: 
ER, PR, Bcl-2, p53, Erb-B2 and Ki-67. The level of the protein expression was 
measured with ImmunoHistoChemistry (IHC) and the mRNA abundance with 
microarrays. The correlation analysis performed between IHC and microarray 
data showed a significant correlation for ER, PR and Bcl-2 markers but not 
for p53, Erb-B2 and Ki-67. These results could indicate that post-
transcriptional or translational mechanisms can modulate the level of some 
of these prognostic markers, leading IHC and microarrays to assess 
differently their level. 
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