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Abstract

The subject of this thesis is Superstring Theories on Anti de Sitter backgrounds that do
not have maximal supersymmetry (AdS; x CP3? and AdS; x S? x T), a feature that in-
troduces complications in studying these theories. In particular, in the non-maximally
supersymmetric backgrounds the Green-Schwarz superstring is not fully described by a
worldsheet sigma model on a corresponding supercoset space, since it has extra (non-
coset) fermionic degrees of freedom associated with the broken supersymmetries. We
concentrate on the study of the integrability of these theories with the aim to reveal
how the non-coset fermionic modes enter into and deform the integrable structure of
these string theories. We construct various (gauge-related) forms of the zero-curvature
Lax connecton for the superstrings in AdS,; x CP3 and AdS; x S? x T and show that
in the presence of the non-coset degrees of freedom the important property of the Lax
connection to be Z,-invariant persists. In the case of the AdSy x C'P? superstring we
also study the string instanton wrapping a non-trivial two-cycle in C'P? and find that
it has twelve fermionic zero modes associated with 1/2 of the supersymmetry of the
background, thus manifesting that this exact topologically non-trivial classical solution
is 1/2 BPS.



Abstract

L’argomento di questa tesi sono le Teorie di Superstringa su spazi Anti de Sitter che
non hanno supersimmetria massimale (AdS; x CP3 e AdSy x S?* x T®), una caretter-
istica che introduce molte complicazioni nello studio delle teorie stesse. In particolare,
in spazi non massimamente supersimmetrici la superstringa di Green-Schwarz non e
completamente descritta da un modello sigma di worldsheet sul corrispondente spazio
di coset, dato che possiede ulteriori gradi di liberta fermionici (non-coset), associati alle
supersimmetrie rotte. Ci concentriamo sullo studio dell’Integrabilita di queste teorie
con l'obbiettivo di scoprire come i modi ferionici di non-coset entrino in e deformino
la struttura integrabile di queste teorie di stringa. Costruiamo varie forme (collegate
da trasformazioni di gauge) di connessioni di Lax a curvatura zero per la stringa in
AdSy x CP? e AdSy x S? x T® e mostriamo che in presenza dei gradi di liberta non-
coset la Z-invarianza persiste. Nel caso della superstringa in AdSy x C'P? studiamo
anche l'istantone di stringa che si avvolge su di un ciclo non triviale in CP? e troviamo
che ha dodici zero modi fermionici associati con 1/2 delle supersimmetrie dello spazio,
quindi che questa soluzione classica, esatta e topologicamente non-banale ¢ 1/2 BPS.
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Introduction

It is not unusual in the world of research to find theories and arguments that originally
were introduced to solve or to reformulate certain problems and after a while they have
been reconsidered in a new unpredictable light. In the history of theoretical high energy
physics the String Theory case is maybe the most striking example. Even if it may seem
pedestrian, and not that original, to start the thesis with the well known “Story of the
History”, it is almost unavoidable if one has as a final goal to make a deeper insight
into the structure of Superstring Theory. Since to reach this goal the path is long and
hard, the motivations to face it have to base on deep and solid roots. For this reason
we are going to briefly sketch motivations also from the historical point of view.

A bit of history

Since its brith almost fifty years ago, string theory passed through two transitions,
the first, from being a candidate theory of strong interaction to the potential unifying
description of all forces in nature, was characterized by a fase in which string theory was
ruled out from the main stream of research, the second, in which the concept of string
theory as a dual description of gauge theory took form, led to consider string theory
not only as a possible “theory of everything” but also to take it into consideration as a
mathematical tool in investigating gauge theories.

Let us try to go slightly more in the details of this triple process. In the 60’s one of
the things that were not yet understood was the nature of strong interactions and one of
the first proposals to fill the lack of that theoretical description was using string theory.
What was found was that the scattering amplitudes for strong interacting particles can
be described by Veneziano amplitude, that turned out to appear in calculating string
amplitudes. This description however was soon discredited by experiments, with the
evidence of the Bjorken scaling, that lead to a parton interpretation for the high energy
hadrons’ scattering. This pointed out the necessity of a theory with a running coupling
constant that admits asymptotic freedom.
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Gross, Wilczek and Politzer in the early 70’s discovered asymptotic freedom in non-
Abelian gauge theories and this led to the formulation of what is known as Quantum
Chromo Dynamics (QCD), SU(N¢) gauge theory with No = 3 colors for each quark
family. The impressive agreement with the experimental data ruled definitely out string
theory as theory of strong interaction.

Then string theory had its first rebirth.

In 1974 the attention was captured by a particle-like excitation that is present
in the closed string spectrum and has spin two, this string mode was identified as a
graviton. This fact opened a new way of thinking about String theory. String theory
became a possible unified theory of all the interactions, including gravity. At the
beginning, however, the lack of phenomenological output and the impossibility of an
efficient realization of the known particle physics did not attract much attention to
String theory.

These theories containing gravity had a strong development in the 80’s, when it was
realized that Superstring theory has as a low energy limit the supersymmetric extension
of Einstein’s gravity, this fact allowed, at least, to soften discussions about the finiteness
of this low energy limit, called Supergravity, within Superstring Theory. At the same
time it has been realized that there are only five consistent ten dimensional superstring
theories, known as type I, type ITA, type IIB, heterotic SO(32) and heterotic Eg x Es.

In 1995 the breakthrough was the discovery that five different String theories were
actually five different perturbative limits of the same underlying theory, called M-theory,
and therefore they are related to each other by a web of dualities. In addition M theory
has an extension to 11 dimension [1, 2] which is based on the fact that Type ITA
superstring theory can be regarded as a compactification of an 11 dimensional theory
whose low energy limit is 11 dimentional supergravity that was costructed in 1978 by
Cremmer, Julia and Scherk [3].

This unified theory, however, presents many vacua, so, if one tries to extract from
string theory phenomenologically relevant models, by compactifying the extra dimen-
sions in order to get back to the observed four dimesions, one encounters the problem of
choosing among a huge landscape of string vacua and it is not obvious how to single out
a particular vacuum from all the others. This plethora of vacua led to the conception
of a Multiverse, one Universe for each vacua.

Then in 1997 the third phase started and sting theory began to be seen under a
new, more practical in many senses, light.

In fact in 1997 Maldacena conjectured that there was a correspondence between a
ten dimensional supestring theory and a four dimensional gauge theory [4]:

type I1B string theory on AdSs x S° < SYMN =4 d = 4.
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In the last fifteen years other examples of holographic dualities were found and ex-
plored and nowadays we speak of correspondences between a d-dimensional Conformal
Field Theory and a String Theory on a (d 4 1)-dimensional Anti de Sitter space, or,
more generally, between gauge theories with theories containing gravity.

Thanks to this last step string theory was recognized to be also a useful tool to
study theories that, at a first glance, have nothing to share with gravity theories. In
fact not only a new example of correspondence have been put forward, that is the case
of Type IIA string theory on AdS,; x C'P? background that is conjectured to be dual
to Chern-Simons ABJM theory! [7], but also these correspondences have been used in
studying physical systems. The first example was the quark-gluon plasma produced in
heavy-ion collisions [8]. This was followed by holographic realizations of many phenom-
ena of condensed matter systems: superconductivity and superfluidity [9], Fermi gas
at unitarity [10], the quantum Hall effect [11], non-Fermi liquids [12], quantum phase
transitions [13], exotical optical properties of materials [14]. See [15] for reviews.

Outline

The subject of this thesis is Superstring theories on Anti de Sitter backgrounds that
do not have maximal supersymmetry, a feature that introduces many complications in
studying these theories. In particular we shall concentrate on the study of integrabil-
ity of these theories and their topologically non trivial instanton-like solutions. The
characteristic of the backgrounds to break some supersymmetries, that we are going
to study, has as a peculiarity that the worldsheet description of strings in such super-
backgrounds is not exactly equivalent to a sigma model on a supercoset space, but has
extra (non-coset) degrees of freedom associated with the broken symmetries. In fact in
a maximally supersymmetric case, as it is for type IIB superstring theory on AdSs x S°
background, the number of supersymmetries and corresponding string fermionic modes
is the same, 32, that coincides with the number of Grassmann—odd directions of the
supercoset, which for AdSs x S® is %. When some supersymmetry is broken
we have to find a way to deal with the non supercoset modes of the superstring theory.
This happens for the theories that we are going to study, namely type ITA AdS, x C P3
and AdS5 x S? x T theories. In the absence of non-supersymmetric fermionic modes one
can describe the remaining string degrees of freedom using the corresponding supercoset

!This example of AdS4/CFT3 correspondence is related by dimensional reduction to that of M-
theory compactified on an AdSy x S7/Zy, (k =0,1,2,...) which is a near horizon geometry of a stack
of M2-branes whose effective worldvolume description in terms of an A" = 6, D = 3 superconformal
Chern-Simons theory was first proposed by Bagger and Lambert [5], and Gustavsson [6].
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OSp(6]4 PSU(1,1]2) XE(6 . -
space, SO(1,§§><|U)(3) nd 50(171§X()(f)is(())(6)2, that have respectively 24 and 8 fermionic de-

grees of freedom. This means that only 24 in AdS,; x CP? and 8 in AdS, x S% x T of
the 32 fermionic modes on the string worldsheet can be associated with the supercoset
Grassmann-odd directions, while the 8 or 24 remaining fermionic modes do not have
this group—theoretical meaning.

The presence of these non supersymmetric modes makes the study of this the-
ory much more involved in comparison with the supercoset sigma model. In fact the
two complete superstring theories, even if the bulk supergeometries have isometries
OSp(6|4) and PSU(1,1]2) x U5(1), are not formulated on a supercoset. It is not al-
ways possible to eliminate the extra non supercoset fermions, so these can play a role
in string dynamics. This means that, in general, the geometrical construction of the
complete theory is much harder than in the coset case, since we have to understand
how to incorporate the non supersymmetric fermions in the structure of the theory.

In the Green—Schwarz superstring sigma-model on AdSs x C'P? superspace these
eight non—supercoset fermionic modes can be put to zero by partially gauge fixing the
kappa—symmetry for almost all classical configurations of the string. This however is
not possible when the string motion is restricted to the AdS, subspace [20, 21] or when
the string forms a worldsheet instanton by wrapping a CP! cycle in CP3 [22]. In
these cases the supercoset kappa—symmetry gauge is inadmissible, and the non—coset
fermions carry physical worldsheet degrees of freedom®. Furthermore if we look at the
AdSy x S% x T® case the impossibility of getting rid of all the non supercoset degrees
of freedom is evident, since we would need to get rid of 24 fermions but we have only
a maximum of 16 Kappa-symmetry parameters at stock.

When all the worldsheet fermionic modes of the string are in one to one corre-
spondence with the Grassmann directions of the supercoset space, and thus this fully
describes the supergeometry of the supergravity solution, the classical integrability of
the string theory is fully determined by the algebraic and geometrical structure of the
corresponding supercoset. Conversely, in the cases that we are going to analize, even
if the integrability at the classical level of the supercoset sigma model is well stated,
due to the presence of the non supercoset fermions, the classical integrability of the

°In the AdSs x S? x TS case it is usefull to consider this supercoset because it captures all the

10 dimensional bosonic geometry. This can be achieved by noting that AdS, x S? x RS, with eight

fermionic directions, is described by the supercoset Soifg)(lx’yé))ig(g)(&, where the semi-direct product

with E(6), the Euclidean group in six dimensions, accounts for the R® factor. Since AdSs x S? x T°
is locally the same as AdSy x S? x RS, and we will only be interested in the local geometry, this gives
us a (local) supercoset description of AdSy x S2 x TS.

3Subtleties of gauge fixing kappa-symmetry in a way consistent with the light-cone gauge in a near
plane- wave limit of AdSy x CP3 has been discussed in [23].
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complete superstring theories is still to be demonstrated. In these less supersymmetric
theories we have to find a way to incorporate the non supersymmetric modes in the al-
gebric structure of the theory. In practice, since to demonstrate classical intgrability it
is sufficient to find a zero curvature connection, called Lax Connection, that depends
on the spectral parameter, we have to find the dependence of the connection on these
fermions, hoping that the flatness is preserved.

In the case of the supercoset sigma model the Lax connection is constructed with
the help of the Zj-automorphism of the isometry of the superalgebra, that plays an
important role in the applications of the integrability techniques. The hope is that the
introduction of the non supercoset coordinates do not spoil this important property.

A strategy to build the Lax connection can be using the Noether currents of the
isometries of the superbackground as building blocks [24, 25].When the non—coset
fermions are put to zero, the Lax connections of [24, 25] are related, by a superi-
sometry gauge transformation that depends on the spectral parameter [24], to those of
the supercoset model, that have been found in [20, 26, 28, 29].

The Noether current approach though has a drawback, i.e. it is not manifestly Zy4-
invariant. If we want not only to understand how to incorporate the non coset fermions
in the Lax connection but also to reveal a role of the non—coset fermionic and bosonic
modes in the corresponding Bethe—ansatz techniques, it seems useful to have at hand an
explicit expression which demonstrates how the Z,—graded supercoset Lax connection
gets generalized by terms depending on the non—coset degrees of freedom. We will see
how to build such a Lax connection for the theory at all orders in coset fermions and up
to the second order in non coset ones. In principle the construction can be extended to
all orders in the non-coset fermions, however in practice this becomes technically very
complicated unless one finds a hidden underlying structure which would allow to solve
the problem as it has been done in the supercoset case.

An interesting thing to note is that in the two cases, AdS; x CP3 and AdS, x
S? x T°, the Lax connections have formally the same structure, at least to the second
order in non coset fermions [30]. This is because the numbers of their target-space
supersymmetries complement each other to 32 = 24 4+ 8, the maximal number of 10d
type II supersymmetries, and the projectors which split 32—component fermions into
24— and 8—component ones are the same in both of the cases.

The power of integrability is that, if a theory reveals this property, one has the chance
to solve the theory completely, i.e. to find infinite number of integrals of motion and
if the integrability persist at the quantum level, to compute the spectrum of quantum
observables, e.g. the energy spectrum. Integrability represents a remarkable short cut
in the solution of the theory, in the sense that, instead of dealing with differential
equations, one can find a set of integral equations that, in a certain limit, simplify to a
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set of algebraic equations, the so-called asymptotic Bethe equations.

This is not the end of the story, if we really want to reveal all the features of the
superstring theory on AdSy x C'P? and AdS, x S? x T backgrounds, we have to take
into consideration that these have non perturbative solutions, in fact in these cases
there are cycles on which the strings can wrap to give instantonic configurations that
can contribute to the string effective action. So we are going to consider some cases of
instantonic solutions. In particular, in the case of the AdS, x C'P? superstring we study
the string instanton wrapping a non-trivial two-cycle in C'P? and find that it has twelve
fermionic zero modes associated with 1/2 of the supersymmetry of the background thus
manifesting that this exact topologically non-trivial classical solution is 1/2 BPS.

In Chapters 1 and 2 we will set up the background on which we are going to move
both in theoretical aspects and in the notation and formalism that we are going to refer
to in the rest of the thesis. In Chapter 3 we will look at geometrical aspects of the
spaces, AdS, x CP3 and AdS, x S? x T® superspaces, that we are going to work with,
also looking at the geometries of the corresponding super-coset spaces. In Chapter 4
we will consider, first of all, the equations of motion of sigma models on OS5p(614)

S0(1,3)xU(3)
and Solj(ff{)(irlj‘ff)xx]fq(g)(e) supercoset spaces, and then we will look at the complete type

ITA superstring theory on AdS; x C'P? and AdS; x S? x T, writing the equations of
motion, and presenting their expressions first up to the second order in all fermions,
both coset and non-coset, and then to all orders in coset fermions, but still to the second
order in non coset ones. In Chapters 5 and 6 we will move to consider the problem of
integrability. In Chapter 5 we will review what was done in the case of supercoset sigma
models. In Chapter 6 we will include the non-coset degrees of freedom in the integrable
structures of the theories. We will see how these fermions enter in the Lax connections,
first of all reviewing the result up to the second order in all fermions and then writing
the Lax connection to all orders in coset fermions and to the second order in non coset
one. Finally in Chapter 7 we will consider topologically non-trivial configurations of
superstrings on the backgrounds of interest, in particular we will explicitly compute the
instanton solution wrapping a C'P! cycle in CP3 in the AdS, x C'P? case.




Chapter 1

Setting the background:
Theoretical motivations

In this chapter we will review some basic theoretical arguments that will be useful for
understanding the core of the thesis.

1.1 AdS/ CFT correspondence

This section can be considered as part of the motivations of this work, in fact, even if in
this thesis we are not going to directly study the AdS/CFT correspondence problems,
this argument will be the background on which we are going to move, considering
that we are going to work with superstring theories that admit a dual field theory,
and what we will see has as a final outcome to enrich the Holographic dictionary of
the correspondences, by mean of a deeper knowledge of the theory on the string side.
There are many reviews on the subject, to cite a few [31, 32, 33, 34, 35|

In general it was found that there is a correspondence between d-dimensional gauge
theories, the boundary theory, and d+1 dimensional theory containing gravity on an
Anti de Sitter space, the bulk theory.

The Lagrangian of the CFT with external sorces can be written in the following
schematic form:

LAL;=L+) Oals (1.1.1)
A

where O are a basis of operators in the CFT and J are their sources, that can be
interpreted as boundary values of fields in the bulk. Let us now introduce the partition
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function Zepr|J] of the field theory

jScrrlr]

ZC’FT[J] :/D:re h s (112)

that is the generating function of the vacuum correlators of local operators in the CF'T,

ie.
<IJo. >:H%1nz. (1.1.3)

What the duality says is that one can obtain Z[J] from gravitational computation,
in fact at the base of the correspondence there is the relation between the partition
function of the CFT and the partition function of gravity (or string theory) evaluated
at the boundary:

Zerr[J) = Zar[¢ = J] ~ €57 |gom, g0 » (1.1.4)

Where ¢ is some bulk field in the gravity theory, that assumes J value at the boundary.
This manifests the basic idea that one can perform the computation in the more suit-
able side, usually the one in which one can realize the perturbative regime, to extract
information on the other side.

The ideas of holographic duality were first put forward by 't Hooft and Polyakov
[16][17], noticing that Feynman Diagrams in field theories possesses a double expansions,
that is a typical behavior in string theory.

Some concrete examples of this correspondence were proposed by Maldacena in 1997
[4]. In particular he stated that there is a correspondence between two theories, one
that contains gravity and lives in 10 dimensions and another one that is a gauge theory
in 4 dimensions:

type I1B string theory on AdSs x S° « SU(N) SYMN =4 d=4.
In this correspondence, that is a weak/strong coupling correspondence, i.e.

R* 4\
y and Gstr = T,

where ) is the 't Hooft coupling of the Super Yang Mills theory, R is the AdS5 radius,
o is the slope of the Regge trajectory and g, is the coupling constant of the string
theory, one finds a one to one relation between the energy spectrum of the string theory
and the spectrum of scaling dimensions for planar operators in the CFT.

The fact that the perturbative regime of one theory corresponds to the strong cou-
pling of the other theory represents the power of the correspondence, but it is also the
main obstacle to prove it.

A= (1.1.5)
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To evidence the correspondence Maldacena recurred to geometrical consideration,
by means of extended objects called Dp-branes. These are p dimensional objects on
which the open strings can end. The attached open string describes via its oscillations
a gauge field that lives on the brane and its fermionic counterpart.

Now if we take a stuck of N Dp-branes we notice that the strings can stretch from
one brane to another, this means that the string ends, that are atteched to one or two
different branes, can be labeled by two indices, each one that goes from 1 to N. Given
this, it is not hard to recognize on the branes a U (V) gauge theory. On the other hand
the p dimensional extended objects carry a charge which induces a (p+1)-form gauge
field with a (p+2)-form field strenght. The p+2-form thus acts as a flux which curves the
background. Indeed it is possible to find corresponding solutions of the supergravity low
energy limit of string theory that carry fluxes. If we analyze the solutions we discover
that there is an event horizon, which corresponds to a p dimensional black brane, and
we can look at the near horizon geometry.

For the first conjecture Maldacena took a stack of coincident D3-branes and con-
sidered what happens on the surface of the branes and what was the backreaction of
the branes on the background. He noticed that looking at the gauge theory on the
branes this is an U(N)' N’ = 4 Super Yang Mills Theory in four dimensions, since
the worldvolume of a D3-brane has 4 dimensions, and the near horizon geometry is
AdSs x S°. In the original paper of Maldacena was already present the idea that this
correspondence was not an isolated accident, but he studied similar setups for theories
on AdSy x S?, AdSs x S? and, for what concern 11 dimensional spaces, AdS,; x S™ and
AdS; x S*.

A great deal of attention has been given, in later times, to another example of
correspondence: the correspondence between a 10 dimensional type ITA superstring
theory on AdSy x CP3 and a three dimensional N" = 6 supersymmetric Chern-Simons-
matter theory (known as ABJM theory). The geometrical considerations to reach the
conclusion of a correspondence between these two theories are analogous to those that
Maldacena gave in 1997, but this time taking coincident M 2-branes.

Today the AdS/CFT is also applied to study problems of various physical sys-
tems, an example is the application in condensed matter theory. In dualities applied
in condensed matter problems the general idea is that the masses of the fields in AdS
correspond to the conformal dimensions of the operators in the gauge part:

!The U(1) factor of the U(N) ~ SU(N) x U(1) gauge theory corresponds to the center of mass of
the stuck of branes. The U(1) vector supermultiplet is decoupled from the rest. The theory in the AdS
bulk describes the SU(N) part of the gauge theory, while the U(1) sector corresponds to topological
B-fields in AdS (see [18] and [19], page 58 for more detailed discussion of this point).



Theoretical motivations 4

AdS ‘ Gauge theory

mass (m) | conformal dimension of the operators (A)

m? Ry, = A(A — 4) (1.1.6)
where Rg4s is the AdS radius.

1.1.1 Large N limit and gauge/gravity correspondence

In this subsection we are going to consider some intuitive hints of the correspondence
between string and gauge theories. Similarities were already noticed when string theory
was still considered as a candidate for strong interactions. The fact that the string
theory on flat space predicts that mass squared of hadronic resonances is in a linear
relation with their spins (Regge trajectories), as actually happens, led to consider this
for a while as the theory of strong interaction. Though afterwords QCD came into
the stage to become “the theory of strong interactions”, the flux tube that stretches
between two quarks can be interpreted in a certain limit as a string with a tension.

On the other hand, the large N limit of non-Abelian gauge theories proposed by
't Hooft in 1974 [12] in relation to QCD has revealed the relation of the topologiacal
structure of the 1/N expansion of gauge theory diagrams to that of the dual string
theory. We shall shortly return to more detailed discussion of ths point.

All these considerations are quite heuristic and can give to string theory, under some
assumptions, the role of an effective strong interaction theory. However this is not what
exactly AdS/CFT states, in fact in the correspondence the gauge theory and the string
theory are actually two different realizations of the same theory. Even if this argument
is not directly applied to QCD, that does not posses conformal symmetry, it can be
helpful to study it, considering the generality of some quantities that can be traced
in SYM theory (e.g the shear viscosity), for a review see [33]. Of course nowadays
the practical usefulness of dualities have found new applications also for other physical
systems, e.g. condensed matter ones.

The chance to compare gauge and string theories came from the use of the large N
limit ("t Hooft limit). This is in fact a limit in which the two theories resemble each
other.

The large N limit can be performed in SU(N), SO(N), and Sp(N) gauge theories,
and it consist in taking the rank of the group to be infinite (N — o0), while one
introduces a new gauge coupling A = g%, N, that has to remain finite. In this limit
one can perform a new expansion around A = 0 and to classify the Feynman graphs
through their genera. In fact graphs whose lines do not overlap can be drown on a
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surface of genus zero, while when overlaps occur the genus of the canvas surface grows.
In the large N limit the higher genera graph can be neglected this is why it is often
called planar limit.

Figure 1.2: genus 1 graph (QCD like graph)

The interesting fact is that we introduced a two dimensional structure in the gauge
theory, that reproduce the expansion in genera of the string theory, in which the genus
growth is due to interactions (gs, ~ 1/N).

As we have seen there are many clues of an actual correpondence between gauge
and gravity theories. What is now an on going work is to find a way of testing and
studying these correspondences, also moving away from the planar limit. One of the
most important features is the existence of Integrability.
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1.2 Integrability

The term Integrability is widely used in the field of Physics and Mathematics, so, before
entering into the details of its meaning in string theory and its well known importance
in the study of string theories and Gauge/Gravity correspondences, it is important to
review where the concept of Integrability comes from and why we can speak of integrable
systems when we consider superstring theories.

Integrability is a property that is natural to trace in two dimensional theories (for
review see e.g. the books [36], [37]). If we have an integrable model for an interact-
ing theory it means that we can find an infinite number of conserved charges (); in
involution.

For a classical theory this means that @); sutisfy:

{Qi,Q;} ={Qi, H} =0, (1.2.7)

where H is the Hamiltonian of the theory. Here we have used Poisson brackets, that,
taking two functions f an g, are defined:

~~ O0f g Of Og

{f,9} = izl{api S0 D on (1.2.8)
where q1, ..., ¢, p1, ..., Pn are the coordinates of the phase space, that sutisfy:
{ai; 45} = {pispi} =0, {pi,q;} = 05 (1.2.9)
From (1.2.7) we can see that @);s are integrals of motion:
dcgi = {H,Q;} = 0. (1.2.10)

If we move to consider a quantum system the Poisson brackets get replaced by the
(anti)commutators:

[Qi, Q] = [Qi, H] = 0. (1.2.11)

Moreover the concept of integrability in the field of mathematical physics is deeply
linked with the concept of solvability of the theory, in fact for an integrable theory in
principle one can solve its equations of motion and find e.g. the spectrum of the states.
To find the spectrum is not to find a simple analitical expression for it, but rather to
find a set of equations that enable us, if we manage to solve them, to have the spectrum
as a solution of them. The advantage is that for integrable systems what we have to
do is to solve a system of integrable equations, that, under certain assumptions, can be
reduced to algebraic equations, rather than differential ones.
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Approaching a theory one has to determine first of all if this theory is integrable at
the classical level and thus if it can be classically solved. In some cases the integrability
survives at the quantum level, if this happen one has a chance to find the full spectrum
of the quantum observables of the theory.

1.3 Integrability in String Theory and its dual

When integrability shows up in string theory it is not quite a surprise, in fact many two
dimensional sigma models on coset spaces show integrability, at least at the classical
level. What is rather astonishing is that such a property arises in gauge theories in three
and four dimensions. This feature was at first noticed in the case of the planar N/ = 4
SYM in four dimensions. The analitical solvability of the theory is addressable to the
fact that we are dealing with an integrable theory. The presence of integrability in this
gauge theory can be explained with the peculiarity that it possesses a dual integrable
string theory. Analyzing the situation more carefully we can realize that dealing with
integrability means really to test the correspondence, with integrability techniques we
can have the same predictions on the both sides of the correspondence.

Integrability techniques allow us to study physical systems without the employment
of perturbative calculations, that can introduce many complications in the computa-
tions. When a model turns out to be integrable, this represents a remarkable shortcut
to the knowledge of the observables of the theory.

When we consider a Gauge/Gravity duality, we have to study integrability on the
both sides of the correspondence. To see if the String Theory is classically integrable
we should find a Lax connection L(x) that satisfies the zero curvature condition. In the
field theory side the integrability techniques are based on the fact that one can apply
a spin chain realization of the theory and, as in the case of the Heisenberg spin chain,
one can use the Bethe Ansétz to solve the problem.

1.3.1 Integrability in String Theory

As we already said, we have to find a Lax connection L(x), such that:
dL(x) — L(x)L(x) =0, (1.3.12)

when the equations of motion of the system are satisfied, and vice versa the zero cur-
vature condition implies the equations of motion. Strategies to build this connection
will be pointed out in more details later. The Lax connection depends on a spectral
paremeter x.
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We can use this connection to define a monodromy matrix as a function of the
spectral parameter:

M@ﬁd%m(%uﬂ> (1.3.13)

The eigenvalues of the monodromy matrix form an infinite set of conserved currents.

To describe the classical solution of a theory we can use spectral curves, the spectral
curve is a complex curve defined by the eigenvalues of the monodromy matrix. In
particular if we diagonalize M(x) we get as eigenvalues the quasi-momenta, and we
may define the spectral curves in terms of these. If we now consider the spectral curves
of a finite genus, i.e. the finite-gap equations, we notice that those encode the solution
of the model. This is the strategy that one adopts in studying the classical integrability
of the superstring theories that we are going to analyze, even if in this work we are at
the early stages of the process.

An important example of integrable superstring theory is Type IIB superstring on
AdSs x S°. Tt not only was the first non-trivial example to appear and the one that is
more understood right now, but it also does not have difficulties that show up, when
we deal with superstring theories on less supersymmetric backgrounds. The key of the
demonstration of the integrability of such a theory, which is maximally supersymmetric,
is that it is described by a non-linear-sigma-model on the supercoset

PSU(2,24)
SO(4,1) x SO(5)’

(1.3.14)

which has AdSs x S° as the bosonic part, and 32 fermionic directions. In this particular
case the integrability is also conserved at the quantum level. This, of course, does not
mean that we already have the full solution of the theory in our hand, neither that we
have the full test of the correspondence, but that we have a chance, via integrability
techniques, to rich it.

The picture becomes more complicated if we deal with less supersymmetric theories.
The process that we have just described, in this case, as we have said, is still at the very
early stages, in fact the problem is the lack of knowledge of the Lax connection and,
as a consequence, of the integrability, even at the classical level, in the cases in which
the kappa gauge fixing is not allowed or not enough to eliminate non-coset degrees of
freedom and bring us back to a supercoset sigma-model.

What we intend to do, in the core of this thesis, is to address and develope the
problem of integrability for AdSy; x CP3 and AdS, x S? x T®, that are backgrounds
that break some of the supersymmetries.

Before to go on it is worth to consider a simple, but very instructive, example of
integrable model. For the very moment we are not going to consider supersymmetric
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theories, that will be taken into consideration later.

1.3.2 Classical Integrability: a simple bosonic example

Let us take a nonlinear bosonic sigma model on a coset symmetric space G/H and
k € G/H to be a coset element [26].
We can define the left invariant Cartan forms pulled back on the 2-dimensional

surface
J =k dk (1.3.15)

that can be decompose according to the decomposition of the Lie algebra G = H & P
J=H+P, (1.3.16)

the differential d in our conventions acts from the right, this means for example that
for two one-forms a and b we have:

d(ab) = a(db) — (da)b. (1.3.17)
The decomposition of the Lie algebra gives the following commutation relation:
[H,H]CH, [P,P]CH, [P,H CP (1.3.18)

this is a decomposition for the algebra that reflect the Zy-grading (H has Z,-grading 0
and P has grading 1).
The Lagrangian of the model is then

Tr(PrPh) (1.3.19)

where [ = 0,1 labels the two dimensional coordinates.
In order to construct the Lax connection of the model we can start either with the
left invariant form (1.3.15), or with the right invariant Cartan forms:

j=dkk™' = kJk™? (1.3.20)

We have to notice that for a generic f = kFk~! the following relation holds:
df =kdFk™ —jANf—fNj (1.3.21)
Let us notice that in this case p = kPk™! is the Noether current for the global

symmetry:
dxp =0, (1.3.22)
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where *p is the worldsheet Hodge dual of p, and that J sutisfies the Maurer-Cartan
equation:
dJ—JNJ=0 (1.3.23)

that decompose into:

dH=HANH+PAP,
dP=PANH+HAP (1.3.24)

this implies, introducing h = kHk™!, that:

dh = hANh+pAp—pANh—nhAp,
dp = —2pAp. (1.3.25)

This means that 2p is both flat and conserver and can be used to bild Lax connection:

[ = 2ap+ 20 *p, (1.3.26)
that turns out to be flat
dl—INl=4*—a—)pAp=0 (1.3.27)
with:
1 1.
a= 5(1 +coshx), (= 5sinhx (1.3.28)

where we have introduced the spectral parameter x.
This can be associated with the left invariant connection via a transformation:

L=Fk"lk+k"dk (1.3.29)

Till this moment we have not considered any supersymmety, we will see a super-
symmetric example when we will enter more in the details of the thesis.

1.3.3 Spin chain realization of a CFT

For completeness we sketch here integrability techniques based on spin chain represen-
tation for the CFT.

The first time that this structure for a gauge theory was pointed out was in 2002
by Minahan and Zarembo [38], and it was for the N'=4 D =4 SYM theory.
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The main consideration was that the local operators can be mapped in spin chain
states and the operator which measures the planar one-loop anomalous dimension cor-
responds to a spin chain Hamiltonian, thus one can write an effective Lagrangian for
the theory that is a Lagrangian of a one dimensional spin chain with nearest neighbor
interaction.

The first thing to do is to individualize the set of eigenvectors for the dilation
operator, that gives anomalous dimension as eigenvalue. To do this one performs the
so called BMN limit [27], singling out those operators that have finite A — J value,
when J, the R-charge, goes to infinity. This limit gives infinite size trace operators 2,
and taking as a ground state the operator that has A — J =0

Tr(ZZ2227Z ... 222) (1.3.30)

where Z is a field of dimension 1 and R-charge 1. Then we can build a tower of operators
starting to insert field X with dimension 1 and no R-charge in the operators

Tr(ZXZ..ZXZ.......... ZZ7) where A — J=H#of X (1.3.31)

These are in general not eigenvectors of the dilation operator, but we can sum them in
order to get a state with definite dimension.

The great intuition of Minahan and Zarembo was to find the analogy in the pla-
nar limit for these operators with a spin chain system, stating that the ground state
corresponds to a spin chain with all the spins up, and the excited (magnons, that are
labelled with X) states would correspond to the progressive spin flip at some sites of
the spin chain, since these are trace operators the only important thing is the relative
position of the exitation. They found that the action of the dilation operator on these
infinite chains (since J — oo in the planar limit) was analogous of an effective spin
Hamiltonian.

In this way we can rewrite the CF'T theory as a spin chain theory, i.e. as an
integrable system. This explains why in the planar limit of SYM N = 4 is exactly
solvable, it is an integrable theory!

It is also worth to emphasize that, as was at first done for Heisenberg Hamiltonians,
to get the spectrum of gauge theories that admit a spin chain representation, one can
use Bethe ansatz techniques.

2In general the effective Hamiltonian is an SO(6) spin chain Hamiltonian and the structure is rather
more involved. This simple structure is what one can find if one restrict to an SU(2) or an SL(2)
sector of the theory. Nevertheless this is a quite instructive framework to understand the idea, even if
it is not the more general one
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More recently the spin chain representation has been found also for ABJM theory,
thus people are trying to reconstruct the same considerations done for AdSs/SY M in
the case of AdS,;/ABJM? [39].

What one gets studying the spin chain representations of the gauge theories are
asymptotic Bethe equations, that turn out to be not enough to study the complete
theory, this means not perturbatively, but at all the intermediate values of the coupling
constant. To try to study the complete theory many people are developing what is
called Thermodynamic Bethe ansatz or Y-systems.

Having used integrability techniques on both sides, one can compare the results. In
this sense using Integrability we are not only computing the spectra of the theories, but
also giving a test of the correspondence which we briefly sketch in the next subsection.

1.3.4 The general idea of integrability for AdS/CFT

Integrability is, for the examples of dualities that up to now are known, a property that
is confined to the planar limit. Thus it helps in solving the theory at the planar level,
in which the string theory is free.

3 Another technique that allow to compare the results coming from the two sides of both the corre-
spondences, also trying to move from the plain wave limit, is the recursion to Landau-Lifshitz models
[40, 41, 42, 43].
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The main idea of integrability applied in a duality scenario is to find expressions for
physical quantities that are valid for every value of the coupling constant A. In fact in
gauge/gravity correspondence one tries to match the perturbative regime of the gauge
theory with the perturbative regime of the gravity theory, but this is not easy to do.
Integrability has the advantage of giving the scaling dimension of the local operator
as a function of X. In fact when we say that we are going to solve the theory with
integrability, this means to find equations of the form:

FIAN) =0 (1.3.32)

where A is the scaling dimension. As one can verify the spectral equations contain
the coupling constant in functional form. This means that with integrability we try to
access a theory over the complete range of the coupling constant A. At the end the
hope is to find the behavior of the theory at intermediate values of couplings for which
neither the perturbative regimes are valid.

1.4 Istantons

Usually when we study a theory we make recursion to perturbative expansions. But
it can be that not all the solutions of the theory are captured by that expansions, we
have to directly study these non-perturbative solutions in order to see whether they
contribute to the effective action of the theory. This is the case of the instantons
[44, 45, 46).

Istantons are usually defined as classical solutions of the equations of motion that
have a finite non zero action, infact, since these contribute to the path integral with a
weight

o (1.4.33)
where S is the classical action of the theory, they can not be found in a perturbative
expansion. This means that, if instantons are present, they can represent an essential
quantum correction to the classical behaviour of the theory.

Around an instanton solution there are quantum fluctuations. The subtlety in study-
ing instantons is that one has to take into account normalizable solutions of the lin-
earized equations for the fluctuations, that are called zero modes. These modes have
to be computed and studied separately from the non-zero modes.

Let us sketch how zero modes appear in perturbation theory. Once a classical
instanton solution is found, one can study quantum fluctuations above this solution, in
doing this we can write a solution

¢ = oa(y)+¢ (1.4.34)
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where ¢ is the quantum correction to the classical solution, we denote with ~+ the
parameters on which the classical solution depends, they are usually called collective
coordinates and they are associated to the invariances of the action. We can expand
the action:

S =38+ /£M§ +0(£%). (1.4.35)

The zero modes are eigenstates with a null eigenvalue of the M matrix. The linear term
vanishes due to the equations of motion

5Scl
5¢cl

— 0, (1.4.36)

that also imply:

0Sy 525,
0=0,—= | ————0-0¢u. 1.4.37
7(ngscl 6¢cl5¢cl ,Y¢l ( )

This means that, differentiating with respect to the collective coordinates the instanton
solution, one can find a zero mode, since 0,¢ is an eigenvector with null eigenvalue of
M = §25/560¢|assicar- This means that for each collective coordinate we have one zero
mode, so counting the parameters on which the instantonic solution depends one can
know the number of zero modes corresponding to that classical solution.

It is not a surprise to have the number of zero modes to be equal to the number of
collective coordinates, in fact, being M the second derivative of the action, in principle,
perturbing the least action solution we go to higher values for the action and this gives
modes with a positive eigenvalue, the only chance to have a zero eigenvalue is perturbing
the action in an invariant way, this means along collective coordinates.

Instanton effects are present in many theories, an example is the tunneling between
two vacua in Minkowski space-time, that classically is forbidden but quantum mechan-
ically can occur. The strategy to compute these instantons is to go to the Euclidean
space, by a Wick rotation, in fact in this passage the potential is turned upside down
and now to go from a vacua to another is classically admitted. In this way one computes
the non perturbative effects in the Euclidean space and, in order to see the physical
effect that can arise, one has to continue them to the Minkowski one.

In this thesis we shall study fermionic zero modes of the worldsheet instanton in
AdS, x CP? string theory, that are normalizable solutions of the Dirac equation. In
order to do this we are going to directly study the solution of the fermionic equations
of motion of the theory.
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1.4.1 Instantons in C'P" bosonic sigma model

This example will be useful to be compared with the instanton-like solution computed
in the last chapter of this thesis.

The instanton solution in the O(3) (or C'P') sigma-model was first found in [47] and
then generalized to the case of the C'P™ sigma—models in [48, 49, 50]. The instanton
solution in the supersymmetric C'P! sigma—model was first discussed in [51]. See [52,
53, 54] for a review and references on this subject.

The action of a C'P™ bosonic sigma model can be written as:

1 I
S = 7 /d2a: D,o,D"c" (1.4.38)

where o, are n + 1 complex fields for which is valid:
g,0% = 1. (1.4.39)

and D, =0, —00,0.
We can now introduce complex 2-dimensional coordinates:

z=x + 1Ty Z =21 — 1Ty (1.4.40)

It is not hard to show that the action can be rewritten in the following form:

2 S -
S== /dQZL’DZO'aDzO'a + Dzo,Ds0 (1.4.41)
g
We can introduce the topological charge ¢:
2 S -
qg=- / d*rD,0,D,0% — D;o,D;0%, (1.4.42)
c

¢ is a normalization factor that ensures that g takes only integer values. In the form
(1.4.41) it is easy to see that local minima for the action are obtained when:

D,c* =0, Ds;c* =0 (1.4.43)
that gives solutions with a finite action:
c
Sr = ?|q| : (1.4.44)
We can rewrite the action in terms of n fields ¢, by going from the variables

(01, ey Opy Opi1) (1.4.45)
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to
(P15 s Py Ont1) (1.4.46)

performing the following field redefinition:

(0'1, ey Op, O'n+1> == (0'”+1¢1, oo 70-n+1¢n7 O'n+1). (1447)
The conditions (1.4.43) translate into:
0:0,(2,2) =0 (or 0,¢,(2,2) =0), v=1,...,n (1.4.48)

that means that an (anti-)instanton solution is given by a (anti-)holomorphic function.
The solution to this form must sutisfy also the condition ¢ — ¢q at |z| — oo, chosing
¢o to be 1, in principle one can choose any point of C'P™ since this is homogeneous, ¢
can be written in the rational form:

by = [H(z - a?)] [[z=a)). (1.4.49)

Jj=1 J=1

Therefore each instanton solution with the topological charge ¢ is characterized by
2(n + 1)q real parameters (or collective coordinates). This means, in view of the rela-
tion (1.4.37), that each C'P™ instanton of unit charge has 2(n+1) zero modes.

Now we have reviewed all the main theoretical aspects that we need to understand
and contextualize the rest of the thesis, but, before to get into the main discussion, we
still need to fix some notation and to look at the formalism that we have chosen to use,
this will be the subject of the next Chapter.



Chapter 2

Setting the background: Main
Notation and Formalism

2.1 Swuperfields

In this thesis I will use the superfield formalism, that is based on the fact that one can
ensuit all the information about bosonic and fermionic fields in one single field, that
due to the supersimmetric nature of its components is called Superfield.

To be more specific let us take a set of supersymmetric coordinates Z* = (XM, ©O#),
where X™ are the bosonic coordinates and ©# are the fermionic ones. In the case of a
D dimensional theory we would have:

M=0,1,.,D-1
p=12 .. 2P"32

where [-] stands for the integer part.
One can thus introduce a superfield:

U (X, 0), (2.1.1)

that transform covariantly under susy transformation of Z™. In superfield spergrav-
ity supersymmetric transformations are part of the local diffeomorphisms of the super-
space, so the superspace description of supergravity uses the same quantities of Genaral
Relativity in the frame-like formalism. So using this formalism, the geometry of the
Supergravity backgrond can be described using the Supervielbeins

EAX,0) = dZMEL(Z) = (E4(X,0) = e*(X) + terms containing ©,£%(X, 0))
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(2.1.2)
and the Superconnection
Q48(X,0) = w*P(X) 4 terms containing O, (2.1.3)

where e? and w4? are respectively the bosonic vielbein and spin connection. We usually
use the first half of the latin alphabet to denote the flat tangent space indices and the
second half to denote the curved ones.

The covariant objects which describe superspace geometry are torsion:

T4 =vVEA (2.1.4)

and curvature
RAP = 418 + QA .QCF (2.1.5)

Note that in contrast to General Relativity in supergravity torsion is non-zero.

A drawback of the formalism is that using Superfields we introduce far too many
degrees of freedom and, in order to get rid of such a redundancy, we have to impose
some Supergravity constraints.

In 10 and 11 dimensions the most essential constraint which eventually removes
(together with partial gauge fixing superdiffeomorphisms) all the auxiliary fields and
puts the theory on the mass shell is on the vector component of the torsion. The torsion
constraint of type IIA supergravity that we are going to use is:

1
T4 =dEA + QA EP = —iETAE +iE4EN + gsf‘ EP o ¢, (2.1.6)
moreover we will have also a constraint on the NS-NS three-form superfield strength:
1
Hy = dBy = —iEAET AT E +iEPEAET 45T\ + 550535/* Hape . (2.1.7)

We are going to introduce what are the I' matrices in the next section, the other elements
entering these expressions, A and ¢, are the dilatino and dilaton superfield (See section
3.2 for more details).

2.2 Gamma Matrices

We will widely use the Gamma Matrices, that in a D-dimensional space time are defined
as satisfying the Clifford Algebra:

{1418}y =29*8, A,B=0,1,....D -1 (2.2.8)
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where 7 is the Minkowski flat metric:

-1 0 0
0 1 ...0

n=1\{. . . (2.2.9)
0 0 1

The dimension of the Gamma matrices is 2[P/2 x 2[P/2]
It is also usefull to define

pA-An — Pl Al (2.2.10)

as a totally antisymmetrized product of the matrices (the square brakets denotes the
total antisymmetization)
If D is even we can define:

[(DH) — jDD+D/2+1p0pL  pD—1 (2.2.11)

that is a matrix that has the property of anti commuting with the other gamma ma-
trices:

{r@+H P41 — 0. (2.2.12)

2.3 Fierz identities

The basic Fierz identity for the D = 11 gamma-matrices we use says that

s ig)ye) =0, (2.3.13)
where A = 0,...,10. In D = 10 notation this becomes the identities
Tos(Tal)ye) =0 (2.3.14)
and
Tios(Tan)vs) + TiasT1ls)rs = 0. (2.3.15)
We can also expand fermion bilinears in a Fierz basis as follows:
1 1 1
e’ = ﬁcaﬁ 00 — 32—.2(143&1)% er48r,,e — mrﬁc er4#ce
1 N I .
+ 255 (Tamcln) fer45er e + mFA%CD er45ePg (2.3.16)

where C is the charge conjugation matrix.
Beside these relations we have to remember the Fierz Identity:

I sl ans = 0. (2.3.17)

(«
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2.4 The Green-Shwarz Superstring

Now we focus on Superstring Theories in a D=10 dimensional space. The formalism
that we are going to refer to is the Green-Schwarz one. The Green-Schwarz superstring
action in a generic supergravity background can be written as:

1 1
/ d*e V=R h € nan — 5 / By, (2.4.18)

Ve

S:

where ¢7 (I, J = 0,1) are the worldsheet coordinates, hy;(€) is an intrinsic worldsheet
metric, £;4 are worldsheet pullbacks of target superspace vector supervielbeins and B
is the pull-back of the NS-NS 2-form:

By(§) = %dfldf"alZN 07 ZM By (2) (2.4.19)

Such an action possesses a local fermionic symmetry that is called k-symmetry and acts
in the following way:

1
5. ZMEY = S+ I)5K"(€), (2.4.20)
6. ZMEL =0,

where £%(€) is a 32-component spinor parameter and (1 + I') is a spinor projector
matrix (I'? = 1). This symmetry has the remarcable property that allows us to get rid
of 16 of the 32 fermionic degrees of freedom of the superstring and thus can be used
to partially gauge fix the theory, why this can be useful will be more clear afterwords
when we will examin explicitly some Superstring Theories, but by now will be clear to
the reader that this symmetry can be used to simplyfy the form of the action.

In general we can find the equations of motion from the Green-Schwarz action. The
fermionic equations of motion take the following

(1-D)[GYEATAE + AN =0, (2.4.21)

The equations of motion of the string bosonic modes is
Vi(V=GGE54) + V-GG EL Ta” Erp + %g” EPEC Heps =0, (24.22)
At this point we have fixed the language that we are going to use in the thesis and we

are ready to go into the geometrical and mathematical details of type ITA Superstring
theories on AdS,; x CP? and AdSy x S? x T® backgrounds.
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AdSy x CP3 and AdSy x 8% x TY
supergeometries

Before to go on, it is usefull to recall the form of the geometry of the backgrounds
that we are going to deal with. The geometry of AdS,; x C'P3 is known to all orders
in all the fermions and it was for the first time explicitly worked out in [21]. For
AdSy x 5? x T% we know the explicit form of the geometry only up to the second order
in non supercoset fermions [30]. In both these cases we have some fermionic modes
along directions that preserve the supersymmetry (24 in the case of AdS, x CP? and 8
in the case of AdS, x S? x T®) the other fermionic modes are non-supersymmetric. The
two theories can be reduced or truncated to supercoset sigma models in a consistent
way, as we will show later.

The theory on AdSy x C' P? reproduces a sigma model on the %% supercoset,
that has only 24 fermionic coordinates, if we get rid of the fermions along the non
supersymmetric directions, that is why we are often going to refer to them as non-
supercoset coordinates.

For AdS, x S? x T% in order to get a sigma model on SO})(f[{)(i’;J'(zl))xxg(g)(@’ that has

only 8 fermions, we have to get rid of the 24 non-supersymmetric fermions.

AdS, x CP3:
Parametrized by the coordinates 2™ (m = 0,1,2,3) and y™ (m' = 4,5,6,7,8,9). Its
vielbeins are e* = da™ e, *(x) (a = 0,1,2,3), and €% (y) = dy™ e,w® (y). The AdS,
curvature is
C 8 C Qa 4 a
Rabd—ﬁé[a iR Rb——@e e’ (3.0.1)
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where R is the C'P? radius or twice the AdS, radius, and the C'P? curvature is

! q! 2
Ra’b’Cd — _R

(56 Sy + Jiw® I + Jaw I (3.0.2)
where JY is the Kahler form on C'P3.

AdS, x S? x TS:

Parametrized by the coordinates z™ (m = 0,1), 2™ (i = 2,3) and y™ (m' =
4,5,6,7,8,9). Tts vielbeins are e* = dx™e,,*(x) (a = 0,1), e® = dz™e;,%(2) (a = 2,3)
and e”(y) = dy®. The AdS, curvature is
8 (& Qa 4 a
R = 7% 8, 57y R® = Nk e, (3.0.3)

where R is twice the AdSy (or S?) radius, and the S? curvature is

8 d ab a b
2 51;]’ R =mee- (3.0.4)

The reason to take R as twice the AdSs radius will be clear later, when we will write
AdS,; x CP? and AdSs x S? x T% elements in a unified way. We will often combine the
AdSy and S?% indices as a = 0,1,2,3, i.e. a = (a,a).

The D = 10 gamma-matrices satisfy

éd
Ry =

4, 8y =28 1A =(T%1v), ¢=0123 d=4,---,9. (3.05)

We also define

s = iF0123
S
I'nm = 77, (3.0.6)
all of which square to one.
We can write
M=1"®1, TI"=+"®", (3.0.7)

where 7* and 4% are the 4-dimensional and 6-dimensional gamma matrices.
For AdSy; x S? x T® case the 4 x 4 matrices can be represented in terms of 2 x 2
AdS; gamma-matrices p® (a = 0, 1) and the matrices p? associated with S? as

V=p"el,  t=aept, =" (3.0.8)
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The charge conjugation matrix is denoted C. The matrices C, CI" j54 and CI' 4545

are eleven dimensional, A = (A,11).
Finally we introduce a spinor projection operator which projects onto an 8-dimensional
subspace of the 32-dimensional space of spinors as follows
]. . alb/ 7
’Pg = g(? — ZJa/b/F Y ) s (309)
where J,y is the Kéhler form on CP? or T°. The complementary projection operator
which projects onto a 24-dimensional subspace is given by

1 AN)
Poy=1—"Pg = §(6 + 1Sy T b 77) . (3010)

These are the projectors that allowed us to project out the non supercoset fermions
from the supercoset ones.

We have to emphasize the fact that the role of the two projectors is interchanged
in the two theories, in this sense we can say that the two theories are “dual” to each
other.

Whenever is possible we will use a unified way of presenting the results, by using
the following notation:

OSp(6|4) PSU(1,1|2) x E(6)

Ve ok 0147 . (3.0.11)
P Pos Ps
R | 2Raqgs, 2R aqs,

So we can write the OSp(6[4) and the PSU(1,1|2)x E(6) superalgebras in a compact
way:

1
[Py, Pg| = —§RABCDMCD, [Mag, Pc| = nacPs — npcPa
[Map, Mcp) = nacMpp + nppMac — nscMap — napMpe, (3.0.12)
7 1
[Pa, Q] = EQ%FAP (Mag, Q) = —EQFABP, (3.0.13)

R
{Q,Q} = 2i(PTAP) Pa + Z(PFABV*P)RABCDMCD . (3.0.14)
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In terms of the generators this algebra has a Z4-grading structure, in fact we can see
that Map has grading 0 under Zs-automorphism, P4 has grading 2, while, defining
Q1 =1Q(1 —T") and Q5 = 3Q(1 +T*), it is easy to see that these have respectively
grading 1 and 3. Schematically we can write the Z,-grading structure of the theory as
follows:

(Mo, Mo] ~ My, [My, Po] ~ Ps, [P, P5] ~ My,
[MOa Ql} ~ Qb [M07 QS] ~ Q?n [P27 Ql] ~ Q?n [P27 Qd] ~ Q17 (3015)
{Q1,Q1} ~ P, {Qs,Q3} ~ P, {Q1,Qs3} ~ M.

3.1 Supercoset geometry

The supercoset geometry, in both the cases, is given by

EA = e il e(M?) DY (3.1.16)
E* = (s(M*)Dv)" (3.1.17)
QA8 = B 4 gﬁFCD%C(MQ)Dﬁ Rep™® (3.1.18)
where ¢ = PO,
9 sinh M
— 3.1.19
s(M”) v ( )
coshM —1
while ,
DY =P(V® + %ef‘ 7T 4)0 (3.1.21)
is the Killing derivative and
2 R
M? = —E(P%F A0)(9TAP) — gRABCD(FCDﬁ) (IT484,) . (3.1.22)

These elements are the components of the Cartan form valued in the isometry super-
group G (i.e. OSp(6|4) or PSU(1,1|2) x E(6))

1
K =g dg(X,0) = §QOABMAB L EAP 4+ Q.E*, g(X,9)€G/H. (3.1.23)

For this Cartan form we have the relation

dK = KK (3.1.24)
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that is called Maurer Cartan equation.

Splitting the Maurer-Cartan equation in linearly independent components one finds
the superspace torsion

VE4 = —iETAE (3.1.25)
VE = %EA (P1.L4E) (3.1.26)
and curvature
1 R
dQAP + QA0 P = <§EDEC - ZEFCD%E> Rep?®. (3.1.27)

3.2 Including non-supercoset modes

Now we are going to see what happens when we include the non-supercoset coordinates
in the geometry. From now on we will indicate the non supercoset fermions as:

v=(1-P)O (3.2.28)

3.2.1 AdS;xCP?

As already said, we know the full AdSs x C'P? supergeometry, that was worked out in
[21].
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The supervielbeins have the following form

sinh m

S“I(x, y,0,v) = e39(v) (Ea/(a:, y,9) + 2iv @b E(z, y,ﬁ)) ,

v
m

inh® M /2
Elx,y,0,v) = e39(v) (Eb(x, y, V) + 4ivy® % DU) Ay (v)

4 inh? M /2
-3 (A 0) - e TS Do) B,

, , 8 inh%m /2 . ,
5%@%aw:&Wme%mCW—E(fﬁﬂ%ﬂ) wﬁ&wwm.
yi

(3.2.29)

The functions of v appearing in these expressions, m, M, A, E;% and Sg, the dilaton
¢, dilatino A and RR one-form A; are given below. Contracted spinor indices have
been suppressed, e.g. (veV®)ai = Uﬁjajﬁga, where ¢;; = —¢j;, €10 = 1 is the SO(2)
invariant tensor. The covariant derivative of v is defined as

) 1
Dv = (d + %Ea(x, Y, ) Y Va — ZQ“b(x, Y, ) %b) v. (3.2.30)

The type IIA RR one—form gauge superfield is

s inh® M /2
Ai(z,y,9,0) = Re™3%W | [ A(z,y,9) — éU £y’ sinh” M/2 Duv £l o (v)
R M? kL, (3.2.31)
I . sinh* M /2 o
— | B 4ivy" —————— Dv | Ey, :
+klp ( ('Ta Y, 79) + 4oy M2 U) 7 (U):|

The RR four-form and the NS-NS three-form superfield strengths are given by

1 .
F4 = dAg - ./41 H3 = _Egdgcgbga (% 62¢(I)€abcd> — %ngAgéggefgb(FAB)%’
: p
6 _
—e€

Peapca o) — iEAEBEXT AT 11 )ap + iEPEAEX(T 45T N4
ki af «
P

(3.2.32)

1
Hs; = dBy = —ggcgbea(
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and the corresponding gauge potentials are

1
By = by + / dtioHs(z,y,t0),  © = (d,0) (3.2.33)
0

1
.A3 = a3+ / dt i@ (F4 + .Ang) (.CE, Yy, t@) s (3234)
0

where by and az are the purely bosonic parts of the gauge potentials and ig means
the inner product with ©2. Note that by is pure gauge while az is the RR three-form
potential of the bosonic background.

The dilaton superfield ¢(v), which depends only on the eight fermionic coordinates
corresponding to the broken supersymmetries is

p39(v) _ o \/<I>2+E7 B 1oy . (3.2.35)

where we introduced the eleven-dimensional Planck length [, = e%<‘f’>\/a and the
Chern—Simons level k.
The value of the dilaton at v = 0 is

2
g = e3P = 3.2.36
3|,y =e3 i, ( )

The fermionic field A*(v) describes the non-zero components of the dilatino superfield
and is given by the equation [55]

)\Oﬂ' = _%'Dai Qb('l)) . (3237)

The other quantities appearing in this section are:
R (M?)* 55 = 4(v)* (ver”) 55 — 2(v°7"0)* (v7a) gj — (V") ™ (V7YY )y, (3.2.38)

(m*)Y = —}—%UZ SR (3.2.39)

R? e3¢
272 2 R
k lp e3¢—|—m(b

5= e‘§¢ Y R CECTJTu L
,/esd’—i—

Aab = 5ab - E?a E’?ba

(3.2.40)

Q
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8i , sinh® M/2
Uy ———5—— €V

B(v) = — =2
T =g M2 ’ (3.2.41)
8 . sinh® M/2
d(v) = 1+Ev5’y — U

It will be useful for the rest of the discussion to consider the second order expansion
in v of this geometry. First of all we introduce the following notation:

EA = B + 200l E . (3.2.42)
Performing this expansion the supergeometry becomes
1 A
E4 = A1 - }—%Uy‘r’v)(EA + vl Dv) + O(v?)

1 1 1
PE = c(l — —=vl*yuTy + =l 0Ty + ——vv ) E 4 O(v?)

2R R 2R
(1-P) = cDv+ 0O
0
A= év‘f’v + O(v?)
2 ANJ ) aN;
Q8 = Q4B 4 E< — 88050 Y s B + 52108 vT P y5 Do + }%5(‘355 Ecol? v
2. / ’
_ Ez(géféf} EC uTe bc/U> + O(U3)
12i ,
Hape = _@Urabcrllv +O(v°). (3.2.43)
where ,
Du=(V+ %E“ 5T (3.2.44)
and
¢ = e, (3.2.45)

In order to explicitly compute the spin connection

QAP =B 10l (3.2.46)

cose

we can use the definition of the torsion
T4 =VEA = d&A + Q*BER = V0. £4 + QAP &5 (3.2.47)
We know that:

1
T4 = —iETAE + i EN + geA EPVpe. (3.2.48)
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It is worthwile to recall that in the Supercoset sigma model we have:

Veos B4 =T —iETAE (3.2.49)

coset —

Considering the second order expansion, where

¢ =—2vy v+ ¢y, (3.2.50)
. 0
Nai = =5 Dai 6(v) = 50"V (3.2.51)
we have
—iETAE = —iETAFE — 2iET4E, —iE,TAE, (3.2.52)
where

’ 1 1 2 :
E, = o5 %o (Vcosv + %772’}/5FBUEB — —EBvy’v + E?%FAFHEUI‘AW?U + EP(;FA’yf’vile) )

°R
(3.2.53)
; 1
—2iETAE, = —2ET4 (Vcosv + }%PWETBUEB) + iEEFAEzw% +
‘ 7
4 <}%> v TEPTAEWT 5 E — Zl—GEFDE75EUFAF11FBCU RpcPP =

1 .
= Vios <2ivFAE - EEAU’)/SU) + Zi%vF[AfFB}EEB +
iR

~1gPloerE ol AT TP R PP +
X .
—4i (}—_{) vy TEPTABVT g E — 2}%1)75%03@# (3.2.54)

where we have use the fact that due to the Fierz identities we can write:

_ L ETAEvyS + Q%EFAPGFBF“EUFBW + 4}%Erfw%iviE -

R
. . -
- 4}%EFAFBV7UUFBFHE n %EFAEW% n 21—6E1“DE75E oDAT | TBCy R PE

(3.2.55)

i TAE, = —i (vmu n %UF%%DQEB) P4 (vwsv n %Pﬂ%%EC) -
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. 2
— VCOS(MAVCOSU)—@(%) VB P, AP TV ECEp +

—1 (%> UFB’YSPQFAVCOSUEB —1 <%) VCOSUFA/V&]DQFBUE‘B + iUFAVCOSVCOSU =

= Vs (er <vcosv + éPﬂETCUEC)) — 2 (%) vI'BAP, T AV wE

. 2
—i <}%) VLB Py T APA TV ECER + tvT AV 005 Veos (3.2.56)
IEAEN = 2@%@75 (vcosu + %Pg’f’FBUEB) EA (3.2.57)

in the above calculation we used the Supercoset Maurer Cartan condition and the Fierz
identities. So

- 1
T4 = Vees (EA + 2ivTAE + juT? (Vmsv + }%7’275FBUEB> - EEAW%) T
. 1 )
+2 (%UF[A’}/5FB]E + EUF[APQ’)pFB} <vcosv + %P2FCUEC>> EB +
, 2 ) / /
+4i (é) oI TP Bl 5 E — R_ZUFAEW "B By =

= Veos (E7) +2 (%) wTAASTBIEE, 5 + 2 (%Ur[Apr]E

1 ) 2 ) / /
+ 5l Py T (vwsv - %PQF%EC)) Ep— R—erAevjbc,Ec Ey

(3.2.58)
Thus we finally get at the first oder in v:
QABM Qi%vF[AffFB]E (3.2.59)
The second order v-corrections to the spin connection are:
Qub® _ 2, 5pa (3.2.60)

R

/ 2. / /
qa ) — —R—ZQUF%UJI’C,EC (3.2.61)
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! 2. I /
que® — R—Zvrbewac,Ec (3.2.62)
a/b/(2) 21 c v
Qv = ﬁvf evJ Ec (3263)

3.2.2 AdS, x S?xT®

The AdS, x S? x T® supergeometry is known to all orders in the coset fermions, but
only up to the second order in v, it was for the first time found in [30]:

1 o
&4 = A1+ EU’V*U>EA + v Dv) + O(v?)

1 1 1
PE = cP(1+ —=ulByywlpy — —=vlBy, I olET — —uI'B%, v Lpo)E + O(0?)

2R 2R 4R

1 1 1
(1-P)E = c(Dv+ (1 —=P)(==vIByy0Tpy; — ﬁUFB%FHU gl — @UFBC’}/*U I'ze

2R
- %%UFI’C/FHU Vel b T'11 — ﬁUFde,U Vi Lpea ) E + O(U3)
A= —%”yw + O(v?),
where
Dv = (V + %EB (1—P)Tpv.)v. (3.2.65)

The spin—connection takes the form

2 w1 1
OB = QA8 Ecsgf‘csf]mra "R — EUP[A(l — P)Ply, Du — Evy*l‘["‘(l — P)LP Do

L USBI EC uT (1 — PYTY y, Do + =868 B o PTY

R2 a’ vy R2 a’ vy
22 A B c/ a/ 27/ A B é al
- ﬁ(sg, SPE ol (1 — P)MT v + ﬁag, SPLES o0
2 ) n 2 ) /
- R—’ngf‘éf]Echa b — R—ZagAéf]Ec vl + O(0%) . (3.2.66)

With this choice of the spin—connection it is not hard to verify that the torsion constraint
is satisfied, i.e.

TA = VEA = —iETAE 42 EN, (3.2.67)

(3.2.64)
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the way to proceed is analogous to AdS, x CP3.
The NS-NS three—form field strength is

6i ) .
Hape = Y (U’Y*FABCFH%U — 0 v BPL ey v — 6405 vl cjael 110
+ 5[‘1:45% UFC]déFHU) + O(0?). (3.2.68)

The demonstration that this actually is a closed form, that is what together with the
torsion constraint ensure us to have a supergravity solution (up to the second order in
non coset fermions), is given in Appendix C.



Chapter 4

Superstring Theories on AdS, x CP3
and AdSs x S2 x TP

4.1 Supercoset Equations of Motions

First of all, even if we already clarified that the supercoset sigma-model is not sufficient
for our purpose to describe the full theory, we will present the equations of motions of
the string reduced to the supercoset, in fact this will be useful for understanding the
integrability of the supercoset theory and to compare the situation with what happens
when the non supercoset degrees of freedom are taken into account.

In our conventions the super—coset equations of motion have the following form

Voo = i EAT4E)q —iE* (T4T'E)e =0,
B} = V*E*—4iET"T,E=0,

the various elements entring this formula were defined in section 3.1.
For completeness we mention also the second order expansion in fermions of (4.1.2)
and (4.1.1):

Vi [V=hhe;A +id(vV/=hh!7 — el/T11) (DAV 10 + 2 e ,PTAPy* T )]
_i (V=hh'" —"T11)LpP%0 Rpcp™ efPes” = 0 (4.1.3)

(\/ —h hIJ — SIJFH) BIAPAP(V‘]ﬁ + }%GJB’}/*FB’ﬁ) =0 s (414)



Superstring Theories on AdS; x CP? and AdS; x S% x T* 34

4.2 Theory up to the second order in fermions

The action for the GS superstring in a bosonic supergravity background (with zero
NS-NS flux and constant dilaton ¢) has the following form up to quadratic order in
fermions, both coset and non-coset [56, 57):

S = —T/ (% xeley + 1% e O DO — e’ O 4T D@) : (4.2.5)

where e4(X) (A = 0,1,---,9) are worldsheet pull-backs of the background vielbein
one—forms and

DO = (V — %ef‘ Fr,)e, (4.2.6)

is the fermionic vielbein to the lowest order in fermions ©. Here V = d + w is the
covariant derivative containing the spin connection of the background space—time,

s | I'm (ITA)
I'= { o5 (IIB) (4.2.7)
and the coupling to the RR fields is given in terms of the matrix
—3DAPT 1 Fap + 3 T4P9P Fapep (IIA)

iUQFAFA — %UIFABCFABC + 2%!(721—“43CDEFABCDE (IIB)

in the type IIA and type IIB case, respectively. The os are the Pauli matrices.

There is a caveat when we compare (4.2.5) with what one gets from (2.4.18) by
substituting the expressions for the vielbeins and the NS-NS two—form, respectively for
AdS,; x CP? and AdSy x S% x T, keeping only terms up to quadratic order in fermions,
in fact from (2.4.18) we get the following action:

260
s = = /de\/—_hh” (elAeJBUAB)

dna!
260
_ ;ml / d*¢O(V—=hh"" —"'Tyy)[ie/"T4D,0)]
260 ,
;m/ / A2/ —hh' e V(i OPL (1 —P)O), (4.2.9)

where we have adopted the unified notation.
The first two lines of this action coincide with the action (4.2.5) but the action
(4.2.9) also has the third term. It appeared because of our choice of parametrization of
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the AdS, x CP? and AdS, x S? x T® superspaces. It is not hard to see that the last
term in (4.2.9) can be canceled (modulo higher order terms in fermions) by making the
following shift of the bosonic coordinates y™ of C'P? or T°

y™ = g™ +iOPT (1 - P)Oey™ (9). (4.2.10)

After this field redefinition the two forms of the string action become equivalent.
Considering the case of AdS,; x C'P3, the fluxes are:

—¢
e
Fy = 7J2,
Ge—?
Fy, = —%eaebecedeabcd (4.2.11)

and we get:

20 , ,
s = & / &2&/—h bt (ejaernab-l-e[“ e’ 5a,b,)

4o
e — . 1
2w’ /d2§ O(V—hh'" — Ty [i er'TaV,0 — }_%QIAQJBFAP24'Y5FB@}
(4.2.12)
In the AdSy x S? x T case supported by the fluxes !:
—¢
F, = —%ebeagab,
e ? ;.
Fi = -y, (4.2.13)
this gives:
2
eg(bo 2 A/ 1J a b a l; a b
S - _477'0/ /dg —hh (el €J nab_'_el €J 5&B+€[ ey 5a’b’>
2
5% [ peio (VRniT — i 0 1 .
27 d 5119( —hh* —e FU) eily | V;+ Epéﬂrnrgef 9
24, - - , ) ) ,
B ;;O/ /dzfiﬁ (v —hh" — 6”Fn> Lo Vv iy +iv (\/—hh” — EUFH) LoV, 8y°

!There are several AdSy x S? x T® solutions with different fluxes [25], but we chose this one that
enables us to easily compare this case to the AdS,; x CP3 one.
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_ ;;o/ /d2§ iRﬁ <\/ —hh¥ — 5131"11) eiﬁrgpg,yrllralvajya (4.2.14)

+ é v <\/ —hh" — €ijF11> [Py Tyv @-y“/ajyb/,
where 1
¢i = Fgeﬂ(:p) + Fa/@-y“/, vj = aj + Z F@wj@(x) s (4215)

and w;%(x) and e;%(x) are the worldsheet pull-backs of the spin connection and the
local frame in AdSs x S?.

Going back to the unified notation, the bosonic equations of motion to the second
order in © are then

V (e +iOT4DO) + iOTAT DO — £+ B OTFT O — LeP OMDFT50)
—1 % ePeP OT'3°PO Ropp® + 1ePe? OT 3°PTO Ropp =0, (4.2.16)
and the fermionic equations (linear in ©) are
(xeAT 4 — e T4T) DO = 0. (4.2.17)

If the background has bosonic isometries, generated by Killing vectors K4(X), the
worldsheet model has the corresponding conserved Noether current one—form of the
following generic form (see [24] for more details)

Jg = JAK 4+ JBV  Kp = e* K 4 + fermions, (4.2.18)

The J4 and J4B terms in the current have the following form

JA = ¢ 1 ier4De — éeB OTAFT 30 +iOIT « DO — % «eBOTATFT,0, (4.2.19)

1 : : )
JAP = L(DAPO) winL = —%ec Or48.0 + % «e® O8I0, (4.2.20)

where L is the superstring Lagrangian in (4.2.5).
In those backgrounds that preserve some supersymmetries one also has a conserved
supersymmetry current:
7 A
Jousy = ﬁ(eA OT A= — xe? OT4I'E), (4.2.21)
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R is the dimension—of-length constant associated with the curvature radius of the back-
ground.

We recall some useful basic properties of Killing vectors of a D—dimensional sym-
metric space G/H. First of all K = dXM K, satisfy the Maurer—Cartan equations

dK = 2K NK dKNK=KANdK =-2KNKAK . (4.2.22)
The following relations also hold

[Va,Vp|Ke = —Rapc® Kp, VaKp = [Ka, Kgl,
VaVpKe = [VaKpg, Ko|+ [Kp,VaKc) = [VaKp, K] — [VaKe, Kg) = —2Rapc)” Kp,
[VaKg, Kc| = [[Ka, Kg|, Kc] = —Rapc” Kp,

[Ka, K, [Kc, Kpl| = Rapo” [Kpy, K] = Ropa® (K, Kr),
The Killing spinors satisfy the equation:

1
V= — geA Fr,==0. (4.2.23)

4.3 Theory up to the second order in non-coset
fermions

In this section we will present the expansion to the second order in non-supersymmetric
fermions, this means that we will extend the result in the previous section to all orders

in the coset fermions. This expansion will be later used to extend the results for

integrability that previously were found to the second order in all the fermions?.

The fermionic field equations are

U, =i % EATAE)w — iEA (T AT 11E ) + % 5« EAEL Ao + %5A53 (CapliA)a =0,
(4.3.24)

and the bosonic field equations are
_ 1 _ _
BY = V& 4+ ixELEN+ g(*gAgB Vpp — «EBEVAY) — iETAT 1€ — 2EP ETAT 1

1
+ 55083 Hpc =0. (4.3.25)

2So far a complete Lax connection to all orders in non-coset fermions has been constructed (in a
certain kappa-symmetry gauge [58]) only in the AdSy sub-sector of the AdS; x C'P3 superstring [24].
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This is the way to rewrite in differential form notation the equations (2.4.21) and
(2.4.22). The star x denotes the Hodge dual operation on the worldsheet and V * 4 =
d*EA +xEPQpA is the pull-back on the worldsheet of the target-superspace covariant
derivative.

Introducing the explicit form of the supergeometry elements for AdS, x C'P? the
fermionic equation of motion is given by:

U = ixBA(T4E) —iE* (TT1E)

—i % (20T E + ivTADv) (T4 E) + % « EAvyS0(DAE) + —— % EAuI50 (DT, E)

2R

R

—EEA vy’ (DA E) — ﬁ)EA vy (D4 T E) — }—_{EA Iy (T4TLE)

+§EA 00 (D E) + i % (EA + 200TAE) (D4Dv) — i(EA + 200TAE) (D 4Ty, Do)

R

whereas the bosonic one is:

B = Vs« FE*—{ET"T'\E

— L w BAuD T (AT T E) — ﬁz ¥ EAov (D g5 E) +i(2i0TAE + ivl Do) (T4, E)

1 1
+— % (B4 + 21T E) (Ey + 2ivT 4 E) y°v + }—%(EA + 2ivTAE)(E? + 200l PE) (T 45T 117%0)

(4.3.26)

1 . 2
+V * [(1 — Em%)(EA + vl Do) | — EEAD’U v — 26 ET T Du — i Dol 4T Do

1 1 1 2 . -
+2iETATH (1 + —UFby% 'y + —Urb’77U ryl'y; + —ov 75> E+ o * EB(5§5I?UFCL b Vs E

2R R 2R

2

) I 2
~% * By (6(‘1455 vl %y Do + %5(’3,(55 E¢olY v — !

§5£f55} E° UFa/bc/U>

4. 4 6i
+ R EPET o+ 2 DoT o — R—ZECEbUFabCFHv.
For AdS, x S? x T® we get:

U = ix EA(T4E) —iEA (T E)

—i % (200TAE + ivTADv) (T4E) — % s EAuT By, 770 (DAl gy )

7
+ﬁ x EAvT B, Tv (T4l E)

(4.3.27)
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i 1 :
+ 15 * EAUTBC, 0 (DAl g E) — 55 * EAT T o (T4(1 — Py T E)

_ﬁ % BAT2 ) 7, (T4 (1 = P)Thear ) E) + i(200TAE 4 ivTA Do) (4T, E)
+%EA vl By y0 (DA T gy E) + %%EA vI'Py,T0 (TATBE)
—ﬁ%E%rBCW (TATUT g E) + %EAUFZ’C/FHU Yo (TATH (1 = P)Dye T E)
+ﬁE%r’md’v Yo (AT (1 = P)lyear ) E) + i % (B + 200l E) (T 4 Dv)

—i(E* + 20T E) (T 4T, Do)
1 1
5 * (EA + 21T E)(Eg + 2ivT 4 E) v,v + E(EA + 2ivTAE)(E? + 200l PE) (T 4pT117,v)
(4.3.28)
and
B = VxEA—iET'T,E
. i A . A o z A oy 11 s A1l
+V x| (1 RU’V*U)(E + I Do) RE Dv~y,v —2iET A" Dv — iDuI'I' Du
+2ETATH (1 4 LUFB’}/ yrv T pyr — iurBy Iyolply — ivrB% vlpe | E
oR * |7 BT 2R x4 11 BL11 AR * BC
1 , 1 : 2 . "
2iET T (1 - P) (—ﬁvrbc oyl — Evr@d uy*r,wd,) E+ 5 Egéisivl* ~. B

2 1 1
——x Ep (—EUF[A(l — P8y, Dy — EU'Y*F[A(l —P)I' Dy

R
5504 8 BC U™ (1 = PV + 5000a B ol PI"

% (A By 2% (A B s
—ﬁ(sg, 0P EY vl (1 — P)IEC v + ﬁ(sg, SPES oI 0

2. 7 2 /
—R#ZQcSLééf]EC oI 0 — R—ZégA5f]Ec UF“%U)

4 2p A i 4 A pll
+EE ET gl y0 + ED’UF sl v

31 a e
_EECEB <U’Y*FABCF117*'U — 5[j4 U’y*FBprc]FQ’Y*FH’U — 5?{453 Urc]deFHU
+0,85 gy Czérllz)) —0. (4.3.29)

Note that the first row of each equation of motion has the same form of the correspond-
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ing supercoset equation of motion.

4.4 Truncation to the supercoset Sigma Model

One may wonder now if there exists a consistent truncation of these two theories from
the full theory to those on a supercoset. For the AdS; x S? x T® case a consistent
truncation is possible to the supercoset %, whose bosonic part is AdSy x S?,
in fact we see that switching off the non-supercoset degrees of freedom (24 fermionic
modes and 6 bosonic directins along T), one gets the sigma model on the supercoset
and its equations of motion. This happens because in the action of the full theory the
non supercoset coordinates never appear linearly (see the form of the action (4.2.14)).
This ensures us that to recover the supercoset sigma-model it is enough to put non-
supercoset degrees of freedom to zero.

This is not valid in the case of AdS, x C'P3, where the non-coset fermions appear lin-
early in the action, however a consistent truncation to the % supercoset exists
thanks to the Kappa-symmetry of the action. On the other hand, in the AdS, x C'P?
action the coset fermions and the C'P? coordinates always appear at least quadratically.
This allows one to put the coset fermions and C'P? modes to zero and reduce the theory
to a non-supersymmetric sigma-model on AdSy [21, 24, 58] .

The gauge fixing consists in introducing a projection which removes some of the
fermions:

- %(1 + )0 (4.4.30)

and in order to have a gauge fixing consistent with the Kappa-symmetry one has to take
~ either to be equal to I appearing in the Kappa-projector, either to not commute with
this. This is quite easy to understand, in fact to lowest order in fermions © transforms
under kappa—symmetry as

5,0 = %(1 + 1)k, (4.4.31)

where %(1 + I') is a projection matrix and (&) is an arbitrary spinor parameter. It is
then clear that if the two projectors coincide, we can pick a k such that %(1 +1oe =0,
or equivalently © = %(1 —I)O. In the case when the two projection operators do not
coincide a kappa-symmetry variation of the gauge-fixing condition %(1 F7v)O = 0 which
leaves it intact gives

0= (1FNA+T)s = S0 +T)AF9)(1+DnF b T+ s = F4 by T+ D,
(4.4.32)
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where in the last step we made use of the initial equation. This means that to have the
variation of gauge fixing vanishing if and only if all independent Kappa-paramenters
are put to zero the we have to choose [y,T'] # 0.

It is clear that kappa-symmetry is not enough for the AdS, x S? x T theory, in fact,
using the kappa symmetry, one can get rid at most of 16 ferminic degrees of freedom,
but in this case the sigma model possesses 24 non-coset fermionic ones. Note that,
since in this case there are only 8 coset fermions, there are classical sectors of the string
theory in which kappa-symmetry gauge fixing can completely remove them.

In the case of AdS; x C'P? a partial kappa symmetry gauge fixing can lead to the
supercoset model, but this is not always possible, for example this fails if one considers
a classical string moving entirely in AdSy, or in the case, that we are going to consider,
of an instanton wrapping a two-cycle in C'P3. In these cases the projector Py which
singles out 8 non-coset fermions commutes with I'; and hence kappa-symmetry cannot
eliminate all of them, as explained above. This explains why, if we would like to find
all the physical degrees of freedom of the theory and check its integrability, it is not
enough to check the integrability of the supercoset sigma-model, to say that the full
theory is integrable, but we need to explore how the non supercoset modes enters in the
integrable structure of the theory, and how these modes modify the Lax Connection.
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Chapter 5

Integrability of a supercoset sigma
model

Let us start the study of the integrable structures of the AdS, x CP? and AdS, x S%x T
superstrings by reviewing the form of the Lax connections of their supercoset subsectors:

OSp(6/4) PSU(1,1]2) x E(6)

0.1
03 x 5013 ™ 50011 x U(1) x S0(6) (50.1)

it is worth to mention that this study was at first proposed in [26] for

PSU(2,2/4)
5.0.2
SO(4,1) x SO(5) ( )
whose bosonic part is

50(4,2)  SOE) _ AdSs x S°. (5.0.3)

SO(4,1) ~* S0(5)

In these cases the superalgebra shows a Z, decomposition, this, as already men-
tioned, is one of the fundamental points of the study of the integrability, and it is the
key point in the construction of the Lax connection in the supercoset sigma model case.
All what we need to know to find a flat connection is, in fact, that we can decompose
the Cartan form and corresponding Maurer-Cartan equations and equations of motion
according to the Z4-grading of the algebra.

Let us take K to be a supercoset element and re-adopt the unified notation for the
two supercosets (5.0.1). If we consider the grading of the superalgebra (3.0.15), we can
write

K YK =0 Mg + E*Py+ EQ, + FQs. (5.0.4)
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It can be found that in this case a zero curvature Lax connection can be written as:
1
Leoser = §Q€BMAB +(1+a)EPy+agx EAPy+ QB2+ SiT11)E,  (5.0.5)

Considering the grading of the Maurer-Cartan equations, given in (3.1.25), (3.1.26)
and (3.1.27), and the equations of motion (4.1.1) and (4.1.2), we get:

choset - Lcosethoset = _Z<1 +a; — 6% + 6§)EFAEPA + i(Oég - ZBIBQ)EFAFHEPA
1
+§<_2a1 - Oé? + Oé%)EDECRCDABMAB
R

_Z(l — B} — B3)ETPy*ERcp™P Map

i
+E(04152 + f1)QY T4 EE!

0

+R(<1 +o1)B + o) QY TATMEEY =0,
(5.0.6)
where:
2x%?

(8% g

! 1—x2’
a% = a% + 201,

o

5 = F 71,
o= 4 (5.0.7)

o
It is very useful for further analysis to specify the properties of the 32 x 32 matrix

V =0+ 11, (5.0.8)
which enters the Lax connection (5.0.5). It is easily seen to satisfy the relations

VZ=ldar—aply, VVI=g =1, (V)% =—(CV'C)% = (62— 6:ln)%,

(5.0.9)
where C denotes the anti-symmetric charge-conjugation matrix. This means that we
can rewrite the Lax connection in the following way:

1
Leoset = 5Qg‘BMAB + (14 a))EPy + ay x EAPy + QVE. (5.0.10)
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The explicit dependence of the supercoset Lax curvature on the left-hand sides of the
supercoset field equations (4.1.1) and (4.1.2) looks as follows

1
choset - Lcoset A Lcoset = CVZ(B(‘?PA - EQVT’Y*\IJO) ) (5011)

where again 7, stands for 4° in the AdS, x C P? case and for I''47 in the AdS, x S% x T

case, By and ¥q are the right-hand-sides of the equations of motion of the supercoset

model given in (4.1.1). This means that the Lax connection is flat on the mass shell.
If one performs a Gauge transformation we get another form of the Lax connection:

Leoset = K Leoser K" — dKK ™! (5.0.12)

The coset Lax connection can be rewritten in the following form:

Leoset = K<OZ1EAPA +ag* EAPy + B1QT 1 E + (1 + 52)QE> K1

a
= K<Oé1 EAPy+(1+6) QE + (B) — ?2) QF11E> K™+ ay * Jooset
(5.0.13)

with

Jopset (X, 0) = K(X,9) A KX, 0) = K (X, ) (EAPA n %QFH R E) K~YX,9)
(5.0.14)

being the conserved current associated to the isometry.

5.1 74 symmetry of the supercoset Lax

The Lax connection (5.0.5) is Zy-invariant. In fact the Z, transformation acts on the
generators in the following way:

QT)=Q7'TQ Q(Map) = Map, Q(P4) = — Py, Q(Q) = —iQTy, Qt=1.
(5.1.15)
Note that in the AdS, x S? x T case the T° translation generators P, also have
Z,—grading one, as those of AdS, x S2.
It is easy to check that the Lax connection (5.0.5) is invariant under the Z,—
transformations of the generators (5.1.15) accompanied by the inversion of the spectral
parameter

Qx) = 1, (5.1.16)

X
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which implies that
Oél—>—041—2, Qg — —Q9, V—>ZF11V

Namely,

Q<Lcoset<x>) = Qichoset (1) Q= Lcoset(x) .

X

(5.1.17)



Chapter 6

Classical Integrability of AdS, x CP3
and AdSy x S2 x TP

In this chapter we will see how to study the classical integrability of these less su-
persymmetric theories, the adopted approach is to start to expand the theories in the
fermions, seeing at first what happens at the second order in all fermions. Once we
have computed the Lax connection to this second order, this can suggest us what is the
deviation that the non coset fermions introduce in the coset form of the Lax connection,
and then move to consider the expansion only in the non-supercoset fermions. The way
to proceed was first to deal with the AdSy x C'P? case, with the aim to complete the
proof of the integrability of the full theory, and then move to consider the AdSs x S? x T
case that, as already emphasized, is“dually analogous” to the AdS; x C'P3 one.

6.1 What happens up to the second order in fermions?

The form for the Lax connection for certain second order type IIA /B string theories was
found in [24, 25], this can be constructed in terms of the components of the conserved
current (4.2.18) and the supercurrent (4.2.21):

A=Kyt ag* Jg+ a3 J* BV 4K+ arog % JPPV K + —aoB1 Jousy + @282 * Jousy »
(6.1.1)
where the coefficients are those of the previous section (see equations (5.0.7)).
To show that this has a zero curvature we can use, as usual, the conservation of the
currents:

dx*Jg =0, d* Jgyusy = 0, (6.1.2)
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the first of these two conditions, considering the orthogonality of the Killing vectors
K4 and V,Kp = [K 4, Kp], implies that the following equations hold separately

(Vs JAB — 5 JABYK, K =0, (6.1.3)
V s« JA = 2Rpep? « JPeP = 0. (6.1.4)

Sketching the calculation of the curvature, we have:

AN = AN = a3(VIP + (J* = eM)eP)\VaKp + a3(B5 — B7) sy — 02B1dTsusy
+ o181 + a202) (I dsusy + JsusyJB)
— g fPe + a2f)(JB * Jeusy + ¥ JsusyJB) =
=aj ([VJY + (J* — eM)eP | VaKp + J2,,,)

- a?ﬁl (djsusy + Q(JBJsusy + Jsu,gyJB)) . (615)

Using the form of the supersymmetry current (4.2.21) and the equations of motion
we get

0 sy = é(eAeB OTAFT5E — xelel OT AT FT5E). (6.1.6)

Using the form (4.2.20) of JAP we find that
VJAE = —%e(f er4é,.ve + % % e OT1 B IV
= P erive —ixef erirve — %ecel’ OTr*PIFT 0
+ 116 % eCe? OT P T FT 10O, (6.1.7)

where we have again made use of the equations of motion. We can further rewrite this

as
VJAB A g8 — By = _L

16606[) Or BT 0 + % «eCeP OTTABIPT O |

(6.1.8)

If we consider AdS,; x CP? and AdSs x S? x T® case the curvature of the Lax indeed
vanishes.

6.1.1 Other forms of Lax connection

As we have already mentioned, other forms of Lax connection can be found by per-
forming a gauge transformation:

L=g'Ng+gldg. (6.1.9)
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where g € OSp(6]4) or € PSU(1,1|2) x E(6).
If one wishes to know which is the gauge transformation that relates the Lax con-

nection (6.1.1) constructed above, when v = 0, to the supercoset Lax connection in eq.
(5.0.13) , so that

ﬁcoset = g_1A|v:0 g+ g_ldg. (6110)
the g, that gives the answer, is:
(X500, 1, o) = K(X)e B I T RO Mop (=0T o~(146209Q -1 x)
(6.1.11)

One can perform this transformation without setting v to zero to get a new form of
the Lax connection to the second order in all fermions:

L = Lopset + o % 20072 DIK 4 + 02ivT TN DYK 4 +
+a262%2ivFHI‘APFBQ9KAeB _ 0@52}% % 20T APT I K ae +

—a251}%2ivFAPFBQ9KAeB n 0@51% « 20T TAPT g K 4o +
+a2ﬁ2§vFABCQ9VBKCeA - O./Qﬁgi x vy [HNTABCYY s Koeq +
—I—agﬁlivFHFABCﬁVBKCeA — agﬁli * vFABcﬂngceA

U A i 1A= ¢ Am U A=
—qo1=vI""Zes — 81— * v T Zey + agfs— x v Zey + agfo—=vI T Zey +
251]% A ZﬁlR A 252R A 2ﬁ2R A

g kol (Vv + 2%77’)/*1—‘31)(33) K4 — agivT' T4 (Vv + Q%PW*FBUGB) Ki+
+(ae + 041042)% * UFABCUVBKCeA — (g + 041042>%UF11FABCUVBK06A +

+a§£vf L BCuV p K et — agi « oD BOYV y K e, (6.1.12)

where L5 is defined in (5.0.13).

Since this is a gauge transformation, it does not destroy the zero curvature condition.
One can also explicitly check that this is a zero curvature Lax connection, in fact
when we introduce the non-supercoset degrees of freedom L,z is not the proper Lax
connection anymore, since it is not flat, due to the dependence of the equations of
motion on v:

dﬁcoset - Ecoset A ﬁcoset = —02 |:+VI (ZU( \% _thJ - EIJFH)FA (VJQ + 2]7_:2P675FB€6§> +
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+ (v —hh!? — 7T <vﬂ - 21736y5r3ve§> -

R

+ iv(vV=hh!? — 774 (VJU + 2}%73’67%‘31)6}9)) +

7

+ o(VERR = T PO R g e el +

l

+ ay

+

+ b

+ wf

+ Zv(\/—_thJ - e”Fll)FDBCvRBCDAefe?} Ky +

E(V—hn" — TN, (Vﬂ} + %P’y*FBve?) ef‘} +
E(V—hh" — Ty (VJU + %PW*FBve§> 6}41 +

IV {E, EHV—hh" — TN, (VJU + }%m*rme?) e;‘] +

IV {E, EHV—hh — T, (vJu + %PV*PB%?) 6}4]
_ (6.1.13)

It is not hard to see that these v-dependent terms in (6.1.13) are cancelled by the
v-dependent terms in the curvature of (6.1.12).

As we did in the coset case (see (5.0.10)) we would like to build a Lax connection in
a form in which the check of its Z-invariance would be more straightforward. To this
end we perform one more gauge transformation of £ (6.1.12):

where K (X,9) =

L=K'LK — K 'dK = Lepset + L, (6.1.14)

k(X)e’@. The Lax connection that we get is:

L = Lepset + 2 % (20074 DY) Py + vz (2000 T4 DY) Py + agﬂléQy*FAveA +

_a251§ * QY T TMvey — 04252E * QT ve, + agﬁQ}—%Qy*Fll[‘AveA

+avg * oA (VU + 2%737*1};1)63) Py — aqivTT4 (VU + Q%Pv*FBveB) Ps+

7 1
— (g + Oélag)g x ve'T BOvR g PE Mpp + (a0 + Oqozg)ngHeAFABCURBCDEMDE +

+agé * UF”@AFABCURBCDEMDE — agéveAFABCURBCDEMDE (6.1.15)
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We can see that dL + L A L = 0 up to the second order.
Note that:

1

X

Q(L(x)) =Q7'L ( ) Q= L(x).
(the action of Q was defined in (5.1.15) and (5.1.16)) and thus, in this form, the Lax
connection is Zj-invariant.

We can also find which is the transformation that relates (6.1.1) directly with
(6.1.15). The non-straightforward relation between the two connections is realized
by the following gauge transformation depending on the spectral parameter and ac-
companied by the shift in the X—dependence of A

AXM 4 0T™MY,0) = G (X,0) L(X,0)G.1(X,0) —dG,G, 1(X,0),  (6.1.16)

where both sides are truncated to quadratic order in fermions, ' = I' e, (X) and
Gx(X,©) is an isometry supergroup element depending on the spectral parameter x,
which in the exponential parametrization has the following form

G (XA, 0) = X HTAA-VIOPs (QVI () ABY) (6.1.17)

where
hin QAB) = ¢~ 50T 1=V)0 200 P (X0)Mas

is a compensating gauge transformation in the stability subgroup H (i.e. SO(1,3) X
U(3) or SO(1,1) x SO(2)) of the superisometry group G.

Note that in contrast to (6.1.15) the Lax connection (6.1.1) is not directly invariant
under the Z,—transformations (5.1.15), (5.1.16) and (5.1.17). In particular, its first (a;—
dependent) term acquires the shift —2eQ(gP1g|9—o). To get back A in its initial form
the Z,—transformed Lax connection

Q(A(x)) = Q_lA(i) Q
should undergo a compensating gauge transformation G and one finds
A=GoQN)Gy' — GadGy',  where  Go=G.Q'G.'Q,
G«(X,0) is the same as in (6.1.16) and A is evaluated at XM + joI'™9. Of course,

this gauge transformation, which also affects the spectral parameter x, is nothing but
a different form of the relation (6.1.16) taking into account the Z,—invariance of L.
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6.2 Integrability of the theory up to the second or-
der in v

Now we shall generalize this to all orders in .

Since the computation in the two cases, AdS, x C'P3 and AdS, x S? x T, present
some subtleties and differences we will first proceed in analyzing the AdS, x CP? case,
and then we will move to consider the discrepancies in the AdSy x S? x T case. This
can also be consider as a tribute to the way to proceed that during the last year we
used in our research.

6.2.1 AdS; x CP3

As we saw in the expansion to the second oreder in all fermions the curvature of the
coset Lax connection is not zero due to the terms in the equations of motion that depend
on the non- supercoset fermions. First of all we can analyze the situation at the first
order in non supersymmetric fermions. The curvature of the coset Lax connection is:

ALioset = Leoset N Leoser = =003 [V |20/ =RR 0T, |
+2}%v(\/—_hh” + T AP PE B g+
+ 2ie! E;rATH (Vﬂ) + %P675FBUEJB)1 Py +
+a2ﬁ1% [Q77(\/—_hhl" — T [(2iv T Er) TaE;+
+ (Ef)Ta <VJU - }%PWWBUEJB)H -
—0@52% [Q75(\/—_hh1‘] — T [D B, 2i0 TAE +

+ EfTy (vJU + %PMPBUEJB)H (6.2.18)

In writing the term proportional to the P4 generator we made use of this relation:

(B + 0T 49 (1 = P)W) |frst order in 0 = V * B4 — i ETATUE — 2 ETAT Vo
2 2 2
—}—zEBvPAP“P»f’rBE -5 EBuI APy TpE + EEBUFAP75FBF11E,
(6.2.19)
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we are allowed to use a combination of bosonic and fermionic equations of motion, since
we are going to ask for the curvature to vanish on the mass shell.

Let us see that it is sufficient, for ensuring zero curvature, to generalize the extra
pieces that were found in the O(©?) case (see equation (6.1.15)), introducing the full
supercoset supervielbeins.

L = Leoset + 0 % (2001 E) Py + ap (200l TAE) Py (6.2.20)

Then the curvarture takes the form:
dL —LANL = —ay {2%1)(\/—7}@” + eIJFll)FA'y5736FBEIEJB] Py +
+04251% {Q’ﬁ(\/—_hh” — T {(E}q) L4 <VJU + %’P675FBUEJB>:| +
+a252}% {ny’(\/—_hh” — T {Ef‘FA (vJU + %me’r%Ew)H -

+ (i + as) [(iv(\/—hh” - e”FH)FAEJ> E,C} R PEMpp +

a2 [(w(\/—hh” - EUFH)FHFAEJ) Ef] RPF Mpis (6.2.21)

To cancel the terms containing the coefficients 3; and 35 we include futher terms in
the Lax connection:

L = Lepset + 02 x (200T4E) Py + as (20T E) Py + a2ﬁ1%Q75FAvEA +
—04251}% * QY TAvE, + 04252}% % Qv TAvE, — a262%Q77FAvEA (6.2.22)
and the curvature becomes:
dL —LAL = —oy {2%@(\/—_%” - eerll)FApﬁyg’rBEfEJB} Py +

+ (i + as) [<2iv(\/—hh” e ) J) E,C] RaPEMpp +
+a? [(%v(\/—hh” - e”r”)r”rAEJ) Eﬂ R PP Mpp

+ (a2 — 2B2(B2 + 1) 4 232) {Q%U(V —hh!7 + EIJFH)FBPGV5FAEIEJB] P4+

+ (212 — a2f1 (B2 + 1) + aa3y) [2%71( V—hh'' + EIJFll)FBP6'77FAEIEJB:| Py +
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+ (28 + 0aBa(Ba + 1) — axhy) [ (200(V=RRY = T AT By ) B Ryc”F My
+ (Ozgﬁlﬁg + 01261 (ﬁg + 1) — Oégﬁl) |:<2i?](v —thJ — EIJFH)FAFHFBCEJ> E;‘:| RBCDEMDE
= (s + a») [<2iv(\/—hh” e ey AEJ) E;‘] RpPEMpp

—ad | (2iv(V=RR!T = T TITEOT L By ) B Ry Mpp = O(v%) (6.2.23)

In the last passage we have used the fermionic equation of motion (4.3.24) that ensures
us that the remaining contribution is of the second order in v.
At least at this order it was not necessary to introduce terms with a different struc-
ture with respect to those found in the previous section at the quadratic order in ©.
Let us see, if adding terms of the second order in v to the full supercoset Lax
connection, this is still true and let us see if it is possible to find which is the form of
the Lax connection up to the second order in v.
What is left from the first order computation is:

ALY —LOALD = {vf <z’v(\/ —hn'? — T4 (VJU + 2}%77675FBUE? ))

+ —v(v/=hh" 4+ TN PR, p ERED

|

4
+ Ev\/—hh”rAme’rBE,urﬂFBEJ] Py +
+O{261% |:Q’77(\/ —thJ — EIJFH) |:FAEJiU FA (V[U + %P2’75FBUE]B) +
FA (VJU + éPG’YSFBUEJB) QiUFAE[+
+EAT 4 g vy + 173 LT E ol By 7o + 373 Yuu'Ey )| +
T Y Rt B J Rl 67 Vi J
+a252% [Qﬂ\/—hh” — Tl [FAEJiU T4 (V}’U + %772751“3@&3) +
FA (Vﬂ) + %P@’YE)FBUEJB) 2iUFAE]+
+EAT 4 —LE vy + 173 LpTHE 0Ty + z'P Yuu'E +
I SR’ R J 67 Vi J
— (1 + ) [Ziv(\/ —hh!7 — e”FH)FBC (FAEJQZ'U ME+
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FA (VJU + %Pﬁ’ysFBUEJB) Ef) RBCDEMDE

a2 [221}(\/—hh” — TS (DB, 2i0 TAE +

' (VJU + %PGWSFBUEJB) E}q) Rpc"F Mpg

1
-1 Ra%v(\/—hh” + T 4Py TP Pl gu R Mpr

+az4ev FAEIUFBFHE Rag“PMep

+(a2B — a2fBy)— {Qv (V=hh!? — 7T, ( RP@W r UEJB) 2ivl A E;
+ QY (V=hn! — TN, (%PWSFBUEJB) QiUFAE[}

— O T (vl [2i\/—_thJUFAEJ]

+2}%v(\/—_hh” + T TEI B B gt

+2ie!/ E,TATH (VJU + %PGVE)FBUEJB)) +

—a2ﬁ2Q75I‘Av (VI [Qi\/—_thUFAEJ]

+2%v(\/—_hh” + e[Jfll)F[Afy5FB]E1EJB+

+2ie!’ B, ATH (VJU 1 %Pﬁyf’rBuEJB)) (6.2.24)

This time we used

(BA + 0l y°(1 — P)¥ — }_zw SUBY 64 second order in v = V * B4 — iETATYME — 2 ET AT Vo
2 2 2

—EEBUPAP“PfrBE -5 EBuI APy TpE + EEBUFAPVETBF”E

V # (MA (VJU + 2%7?675PBUE5‘>) v (MAF” (w + 2%7?67%3@133))

. . A
—i—ivFDBC vRpop EP + EP + ivF“FDBCvRBCDAEB * BP + }—%vrf‘my’)r% xR E.
(6.2.25)



Classical Integrability of AdS, x CP? and AdS; x S* x T° 56

We have to add O(v?)-terms to the Lax connection:

L=LY +ayxiwl? (w + 2%7367%3@]33) P4 — aivTHT4 (Vv + 2%P675FBUEB) Py,

that gives

dL—-LNL =

(6.2.26)

—ary Ev(\/—_hh” + €T " “vRpp EP ET

4
+ EU(\/—hh”)FAP675FBEIUFHFBEJ} Py +

+asfi— ! {QV (V— hh!’ — ”FH) [FA (VJU + R7367 r UEJB) 21l E+

1
+E{T4 (——EJ?W v+

5 RPGFBF LE ol By + 7367 Vv EJ) +

—Oézﬁz |:Q’7 (\/ hIJ IJFH) |:FA (VJU + 73675FB B) QZUFAEI+
o0 ]

1
+E/T 4 (——EJW v+ 776FBF LBl BTy + 7367 Vv EJ) +

1

+§ (1o + ) [Ziv(\/ —hh!7 — e“FH)FBC (FAEJQZ'U ME+
. B}

1Ty, (VJU + E'PG’}/5FEUEJE) E;‘) Ry Mpp

1
+503 [2“)(\/ hh!? — T IIEC (DB, 2i0 TAE +
+FA <VJU + }i%'PG’)ﬁFEUEJE) E}L‘) RBCDEMDE

+a§ﬁgiQ77(\/—hh” — T, (}%(1 + Pﬁ)FBy%EJB) 2iTA R,
026 — Qv (vV—=hh!7 — 7T, (%(1 + Pﬁ)FBq%EJB) 2ivTAE,

1
—Eoﬂv(\/—hh” + T 4 Pe TP Pl gv R M
+a24e"? oI EpoT BT B RogP Mep

—a2ﬁ1Q7 T'qv <V1 [2@'\/— hIJUFAEJ]
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+2}%v(\/—_hh” + TN B B B gt
+2iel B, 0ATH <v JU+ }%'Pg’y5FBUE JB>) +
—042/8262’751_‘,41) (V[ |:2i\/—_thJ'UFAEJ:|
+2}%v(\/—_hh” + e”FH)F[AfySFB]EIEJB—l—

+2ielY E,rATH <VJU + %P(s’)/SFBUEJB))

. .

—§a1(1 + ag)2iv(v/—hh!? — 7T <vﬂ; + 2}1%7367%3@}?) ESR, " Mpg
) .

— 50521 (V=hh!" — THIHTA (vw + 2%7367%3@?) Ef Ryo”" Mpp

+2000 B0 QT 4 E ivT AV 10 + 2009816/ Qr°T 4 E yivl AV v . (6.2.27)

The structure of (6.2.27) prompts us to add to the Lax connection more terms which
have already been obtained at the second order (see eq. (6.1.16)):
L = LW 4ay*il? (Vv + 2}%73675FBUEB) %) el <w + 2%7367%3@]53) +
—(ag + Oél()ég)é * vEAFABCURBCDEMDE + (g + alag)%UFHEAFABCURBCDEMDE +
+a%% « oD BAT BCYR . PP Mpy — a%%vEAI’ LBCuR PP M by, (6.2.28)
that gives the curvature:
4
dL—LANL = —a [Ev\/—hh”FAPny‘r’FBEIvF“FBEjl P+
+a 31— ! {ny (v =hh!7 — 7T {I’A (VJU + P675FBUEJB) 20T A E,+

FA (——Eﬂw v+ PﬁFBF LE ol BAyTy + 7767 Vv EJH

R
l

—Oégﬁgﬁ |:Q75 vV — hIJ IJFH) |:FA (VJU + P675F UEJB) 22’UF E[+

1
+E1T, (——Em v+ PGFAFHEJUPAJU + 7367 Vv EJ”

R
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— (10 + ) [w(\/—hh” )L AP (E;2iv FAEI)] Ry Mpp
a2 [z’v(\/—hh”)FHFAFBCEJQiU PAEI} R My
+04252 Q’Y (V=hh'" — /T (%(1 + 736)FB’YSUEJB) 20 By
+035Q7°(V—hh' — T4 (%(1 + Pﬁ)FB’ySUEJB) 21T B,
+a§51§(ECU(\/—_thJ _ 6[]:[\11)FCDE]_—JIU)RDEABQFABIJIE

R
+a§62§(ECv(\/—_hh” — TP T ) Rpp*P QT A E

r ] 1

+028,Q7T gv (v, 2iv/—hh!ToTAE; | + 2Eu(\/ R TATRIE B g+
+2ie" BT (V0)) +

i 11
+ 2 3,Q7°T 4v (v[ 2iv/—hh VT AES | 4+ 2=v(vV—hh! T TP E B 5+

R
+2ie!/ ;T4 (V j0))
+200 826" QT 4 E ivT' AV v + 20081677 Qy°T A EjivT AV v (6.2.29)

What has been done is not sufficient to ensure a zero curvature Lax connection, we
have to do a step further, adding contributions that are, at list, of the third order in
all the fermions. Such terms have not appeared in the second order Lax connection of
equation (6.1.16).

Using the Fierz identieties, with a bit of algebra one can simplify (6.2.29) and get:

4
dL—LANL = —a [Ev\/—hh”FAPG'y"TBEIvF“FBEjl P+

1
5 (10 + o) (V=R )T AT B 200 TA By | Ry Mg

1
—504% [iv(\/ —hh!TUT ,TBC E ;210 FAEI] Rpc""Mpp

+as B — ! Vs [QV (V' =hh!T 402i0T4 E[] +

R
l

R

+a251%6277(\/—hh” 7T, ( RPG ’)/5UEIB) 20T E,

Vs [Q’y (vV=hhIT 02607 EI} +

—04252
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— 2 3,Q7° (v —hh! — T, < RPG ’75UE]B> 2l E;
(6.2.30)

In order to cancel these terms we can introduce terms of the form vI'4y°Q2ivl' 4  E
and vI'Y7Q2ivl 4 x E .
The resulting zero curvature O(v?)-Lax connection is:

L = (a1 +1)EPy+ ayx EAPy + B1QT 1 E + B,QF + QP Mg
+ag * (2000 E) Pa+ ay (20T E) Py + i Q3 T vEs +
—aBi 3 ¥ QYT 0B + asfo # QY TWEL — a2 Qy T 0Es +
+ao 04 (w + 2%7367%3@153) Py — agivlHT4 (w + 2}%776751“BUEB> Py +
—(042 + Oéla/g)% * UEAFABCURBCDEMDE + (O./Q + 011(1/2)%UFHEAFABCURBCDEMDE +
+a§% « oD BAT BCYR L PP Mpy — a%%vE’AFABCvRBCDEMDE +
e O A G sra
agﬂlR * Qv T 0200l g F 4 agﬁgR * Qv T 0200l 4 B (6.2.31)

Summarizing the whole process we can rewrite the curvature of the Lax connection
as:

dL — LL = % i(U(VT)QFCD\II + %CBA vl A“PV20) Rep®F Mpp
+cBA P,y — %U%F“\P P, — EB“/ VY50 Py
B lew‘:’\Ij T oR? QVT\IJ VU= o QVT%F Vol'yysv — —QVT’WF U ol
;22; (QVA T Wl *y’v + QVA T, W ol y o) — RBA QVivlav|,  (6.2.32)

where we used the coefficients defined in (5.0.8). As in the coset case, the curvature is
proportional to the equations of motions and, hence, vanishes on the mass shell.

6.2.2 AdS, x S? x TS

A similar construction can be carried out in the AdS, x S? x TS case, paying attention
to the fact that the role of the projectors this time is interchanged and that v* com-
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mutes with six dimensional gamma matrices and with the gamma matrices of AdS; but
anticommutes with the matrices in S2.

The Lax connection in this case has the form:
L = (a1 +1)EPs+arx E'Ps+ B1QT1E + BQE + QP Myp
+ag * (20T E) Py — ay (200D TAE) Py — a251%Q75FAv5A +
~03f 75 # QYT H0E — sl * Qr'TAuEn — oo QT T A0 +
+ag * ol (Vv + 2%7367*FBUEB) Py — aivTHT4 (vu + 2%7)67*FBUEB) Py +
—agﬁléQv*FAv%vFAE + CYQﬁQ;_'iQ")/*FllFA’UZZ'/UFAE
— (g + alaz)é * UEAFABCURBCDEMDE — (g + 041042>évrllEAFABCURBCDEMDE +

+a§%*vFHEAFABCURBC MDE+%§UEAPAB%RBC EMpp (6.2.33)

If we look at the curvature of the Lax connection this time we have a slightly different
structure:

, _
dL—LL = 22 (Ve + gsﬁ oTW“V20) Ry M,y + B P,
; p

2
+ Z0RDA (1= P Py + 5B oM py,0 Py + 2 B” ol PT gy P

] .
— HQVILT TBA QViy. T gv — i RQQVH*FBC\IJ wIBCry, 0
2R2QV 1LY ol Pry0 — 2RZQV T ¥ ol Py, T
abc
2RQQV Y Lay 57 vl 50 — 4R2QV YL aber 1 W 01

5 R?( vI%0 QVA 1L ¥ + 0T 0 QVA 7. Ty 7. ¥

20T 7,110 QV Ty, U + 2009 ~,0 er”ra%qfﬂ L OW),
(6.2.34)

Also in this case we have that the curvature vanishes on shell.
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6.3 Some properties of the Lax connection

We have thus found that for the two theories, that we are studying, the Lax connections
have the same form and can be summarize as follows:

L = Leoset (X, 9) + o L (X, 9, 0) (6.3.35)
with
I = —Loy, [+(BEA 4+ 200l E) T4 Vo — (B4 + 200l E) D411 V]

R

—%Q% [i(oI T E)TaVo +i(vI4E) L al' Vo

2
+ (200l % E 4 ol % Vo — 7 EB ol 4P~,Tgv) Py

2
+ (20T T E + vl Vo — EEB vlT Py, pv) Py

(*E€ vl PPV — E€ ol oPPT ) V20) Rpp™? Mg, (6.3.36)

L
8

6.3.1 Zj,—invariance

The Lax connection (6.3.35) with L. and L’ given, respectively, in (5.0.5) and (6.3.36)
is invariant under the Z,—transformations (5.1.15) of the isometry generators and the
inversion of the spectral parameter (5.1.16) and (5.1.17). In fact performing a Z,-
transformation we have:

Lcoset - Lcoset7 L/ - _Lla Qg — —0g . (6337)
This demonstrates that the contribution of the non—coset fermions does not spoil the
Z,—symmetry of the supercoset Lax connection which is of crucial importance for the
derivation of the algebraic curve and the Bethe ansatz equations, both classical and

quantum [59, 60, 62, 61]. The Z,—invariance induces the corresponding conjugation
symmetry of the monodromy matrix (1.3.13) of the Lax connection

Q' M(1/x)Q = M(x)

used for the construction of the algebraic curve.
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6.3.2 The Lax connection and conserved currents

Let us now present an interesting observation: how the Lax connection L = Lyge; + o L/
can be related to the conserved current associated with the superisometries. First of
all notice that in the limit ay = ¢ — 0, in which

1 1
o=z +0(),  fi=—ge+0(e), Bp=1+0(),  (63.38)
and

V =0+ —1, VT:B2—51F11—>17

the Lax connection reduces to
L=K+O(e), (6.3.39)

where K (X, ) is the supercoset Cartan form introduced in (4.2.22).

In fact, the term denoted by O(e) in the (gauge-transformed) Lax connection is
the worldsheet Hodge dual of a superstring conserved current J associated with the
background superisometries, namely

1 L-K
xJ =1lim =~ (gLg~ ' —dgg™') = glir% gt (6.3.40)

e—0 € €

where g(X,9) is the superisometry group element determining K in (4.2.22).
The conservation of J, i.e. dxJ = 0, follows from the flatness of the Lax connection
and the Cartan form

dL—LL=0, dK-KK=0. (6.3.41)
Indeed, in view of (6.3.39), we have
dL — dK
dxJ = glirr(l) ¢ ' —xJgKg ' —gKg ' xJ
€e— €
L-K)K+K(L-K
= glir% ( JK + KA )g*1 —xJgKg ' — gKg ' % J = 06.3.42)
€— €

Note that in the case of the supercoset Lax connection (5.0.5) (when v = 0), the current
constructed in this way coincides with the conserved current of the G/H sigma-model
considered in [20, 24, 26]

1
Jcoset = g(EAPA - §QF11 * E)gil . (6343)

We can now write the correction (6.3.36) to the Lax connection in terms of (V-
transformed) components of the conserved current as

LI = gil * (j - Jcoset>g; (6344)
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where J and jcoset are, respectively, the complete conserved current (to second order
in v) (6.3.40) and the conserved current of the supercoset model (6.3.43), and the
tilde means that in their expressions we perform the following substitutions of spinorial
quantities

E—-V'E, Vo—-Vive and v— Vo
For instance,
~ 1
Jeoset = Q(EAPA - éQFHVT * E)g_l . (6345)

Whether this fact is of some deeper significance remains to be understood. Perhaps,
a better understanding of this could lead to a proposal for the complete Lax connection
to all orders in the non—coset fermions. We leave this problem for future analysis.

6.3.3 Lax connection and kappa—symmetry

The Green—Schwarz formulation of the superstring is invariant under the local fermionic
transformations (2.4.20) (2.4.21) of the target—space coordinates ZM = (XM ©#) where
the I' matrix that appears in the spinor projection matrix is:

1
r=—— 726, upl1, =1, 6.3.46
2%6 1 <J AB Ll 11 ( )

and g7y is an induced worldsheet metric.

The string equations of motion (4.3.24) and (4.3.25) transform into each other under
the kappa-symmetry variations. Since the condition for the Lax connection to have
zero—curvature is in one to one correspondence with the equations of motion, it is
natural to assume that on the mass—shell the Lax connection should be invariant under
the kappa—symmetry transformations, at least, modulo a gauge transformation. This
is indeed so in the case of the supercoset sigma—models (see e.g. [20]). The explicit
check that also the non—coset Lax connection (6.3.35), (6.3.36) possesses this property
would be somewhat cumbersome, but fortunately one should not do this, because there
is a simple generic proof that makes this fact evident. Indeed, since any Lax curvature
depends on the left-hand-sides of the equations of motion (as e.g. in (5.0.11) and
(6.2.34)), its variation under (2.4.20) and (2.4.21) also depends on the field equations
and hence vanishes on—shell. This means that kappa—variation of the Lax connection
leaves its curvature zero and, therefore, the kappa—transformed Lax connection is related
to the initial one by a corresponding infinitesimal gauge transformation taking values
in the isometry superalgebra.
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Chapter 7

Non perturbative solutions:
Instantons

In the theories that we are studying also string instantons are present. The importance
of looking at these solutions is that these can contribute as non perturbative corrections
to the string effective action.

7.1 Instantons on AdS, x CP?

This kind of corrections may be relevant also in the study of AdS/CFT correspondence,
in fact for the theory on AdS,; x C'P3 this effect seems to have a manifestation in dual
field theory [64].

Usually, for simplicity, when analyzing fermionic zero modes of the instanton solu-
tions, one first restricts the consideration to the second order in fermions and then tries
to infer whether the solution persists to all orders. So to study the string instantons
we take the quadratic action (4.2.5) in which we should perform a Wick rotation of
the worldsheet and the target space to Euclidean signature. The Wick rotation basi-
cally consists in replacing v/—h and v/—G, respectively with vk and VG, replacing
el’ with —ie!’ and taking into account that the fermions © become complex spinors,
since there are no Majorana spinors in ten-dimensional Euclidean space. However, the
complex conjugate spinors do not appear in the Wick rotated action and, hence, the
number of the fermionic degrees of freedom formally remains the same as before the
Wick rotation. Note also that the Euclidean 7% is defined as +® = 4! 42 ~3 4%, where 7*
is the Wick rotated 7°. So (7°)? =1 as in the case of Minkowski signature.

Thus, after the redefinition (4.2.10) and the Wick rotation the action takes the
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following form

gqf)o / /
Sp = ero/ /d2§\/ﬁh” <€Ia€Jb5ab +eres” 5‘“’/) (1
390 1
;Sra’ /d2§ @(\/ﬁ h' il T ) [Z e T4V ,0 — EeIAeJBFAPGVETB@}

and the kappa—symmetry matrix [' gets replaced by

i
= ————— 7 46,PTup T, r2=1. 7.1.2
2\/m I J AB 11 ( )

7.1.1 String instanton wrapping a two—sphere inside C P3

We are interested in a string whose worldsheet wraps a topologically non-trivial two—
cycle inside C'P? and thus is a stringy counterpart of the instantons of two—dimensional
C' P" sigma—models. To be topologically non—trivial this two—cycle should have a non—
zero pull-back on its worldsheet of the Kahler two—form .J, = % e e Jy of CP3. Such
a two—cycle is a C' P! ~ S? subspace of C'P3. To identify it, it is convenient to consider
the form of the Fubini-Study metric on C'P? given in [76]

ds* = R & (d6*+sin’ 9(d<p+% sin” o 073)”) +sin” g da2+i sin? g sin® a(o]+o5+cos® a o3)

(7.1.3)
where 0 <0 <7, 0 < ¢ <2rand 0 < a < 7, and 01, 09, 03 are three left-invariant one-
forms on SU(2) obeying do; = —o903 etc. (see Appendix B for more details). Notice
that with this choice of the C'P? coordinates, § and ¢ parameterize a two-sphere of
radius %. This two—sphere is topologically non—trivial and associated to the Kahler
form on CP3. The string instanton wraps this sphere. For instance, if it wraps the
sphere once # and ¢ can be identified with the string worldsheet coordinates, while all
other C'P? as well as AdS, coordinates are worldsheet constants in this case. Thus the
pullback on the string instanton of the metric (7.1.3) of C'P? (of radius R) is the metric
of the sphere of radius R/2

RQ

d2
ST

(d6* + sin® O dp? ) . (7.1.4)
In this coordinate system the S? vielbein e’ and the spin connection w;?;, (1,7 =1,2)
can be chosen in the form

R R
et = EdQ, e = EsiDGdgo, wes = cosfdyp, (7.1.5)

]

Y
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and the S? curvature is A
RY = dwgz =m eel. (7.1.6)

7.1.2 Bosonic part of the instanton solution

The bosonic part of the Wick rotated string action (7.1.1) is
r 26 VAR eie
SE:E d€ hh €r ey 5@']’7 (717)

2
Z ¢ . . . . . .
where T = ';fv and e’ are the vielbeins on S?. To discuss the instanton solution of

this C'P! sigma model it is convenient to introduce complex coordinates both on the
worldsheet and in target space (see [52] for a review of instantons in two—dimensional
sigma models). In the conformal gauge vVhh!/ = §' and in the (z,%) coordinate
system on the worldsheet the action takes the form

T o
SE' = 5 /dzz €ZZ€g] 51']' . (718)

To introduce complex coordinates on the target sphere it is convenient to describe it as
CP!. The Fubini-Study metric on C'P? is

dg d¢
dsipr = ———= . 7.1.9
o = T [ e
If we choose ( to be
0 .
¢ = tan 3 e, (7.1.10)
eq. (7.1.9) takes the form of the metric on S? of radius 5
1
ds* = Z(de2 + sin? 0 dp?) . (7.1.11)

In the ¢, ¢ coordinate system the string action takes the following form (which is similar
to that of the O(3)-sigma model)

IR [ g, OGP I

%= L+ [eP?

(7.1.12)

It is now obvious that a local minimum is attained if 9 = 0 or d¢ = 0, i.e. the
embedding is given by a holomorphic function { = ((z) for the instanton or by an
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anti-holomorphic function ¢ = {(2) for the anti-instanton. The remaining part of the
action can be shown to be a topological invariant, namely,

2
RCP3

Sr=nnTR*=
T m™n n2o/,

(7.1.13)

where n is the topolgical charge of the instanton and Rgps = 3% R is the CP® radius
in the string frame.

What we have just reproduced is the classical instanton solution of the two—dimensional
O(3) sigma-model [47] or rather its extension to C'P? [49, 48, 50] which in terms of the
Fubini-Studi coordinates ¢* (a = 1,2,3) of CP3? (see eq. (D.0.1) of Appendix D) has
the form

¢“=¢"z) or ("=¢"(2).
The difference with the C'P™ models is that in our case the string action is also in-
variant under worldsheet reparametrization. This means that every classical string
solution must satisfy the Virasoro constraints implying that the worldsheet bosonic
physical fields are associated with the string oscillations transverse to the worldsheet.
For the instanton solution the string excitations along AdS, are zero and the Virasoro
constraints have the following form in the conformal gauge
_ aCa agb
614 [¢)?) — ¢ (") ——2= =0. (7.1.14)
( ) (1+[¢]?)?

We see that the Virasoro constraints are identically satisfied by the (anti)instanton
solution.

Let us note that though in the AdS; x C'P? background the purely bosonic com-
ponents of the NS-NS 3-form field strength Hj3 are zero, the NS-NS 2-form may
have non—zero expectation values proportional to the Kahler two—form on CP3, By =
g—;aJa/b/ e” e where a plays the role of a constant axion. For such a two—form,
Hj3 = dBs is zero since J, is the closed (but not exact) form, d.J; = 0. In this case also
the Wess—Zumino part of the (Wick rotated) string action (2.4.18) will contribute to
the instanton action, which becomes

2
Re ps
2a’

S;=n(rR*T —ia) =n(

—ia). (7.1.15)

A similar situation one has in the case of string instantons on Calabi—Yau spaces [63, 77].
In the context of the AdSy/CFT; correspondence, the co-homologically non-trivial Bs
field appears from the string side in the generalization of the ABJM model to include
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gauge groups of a different rank proposed in [78] (see the Summary below for more
discussion of this point).

Finally, we note that the bosonic string instanton has twelve zero modes. Four
of them correspond to the directions along AdS; and, as has been demonstrated in
Subsection 1.4.1, eight are the instanton zero modes on C'P? [53]. We are now in a
position to proceed with the study of the fermionic zero modes carried by the string
instanton. We shall see that their number is also twelve.

7.2 Fermionic zero modes of the string instanton on
CP3

Now we re-introduce the fermionic modes up to the second order.

7.2.1 Restriction to the instanton solution

As we have discussed in Section 7.1.1, the instanton solution is supported on the C'P3
two—dimensional subspace whose tangent space is characterized e.g. by the first two

values of the CP3 tangent space index o’ = 1,2,...,6. Restricting to this solution we
have
" =0, e =(effe*=0), Jij=¢y, =12 and a=3,4,56.
(7.2.16)
It will be convenient to choose the CP? gamma matrices as follows
a’ i a 1 abed
V=10 ®Y),  w=—p"®%, %= fmn (7.2.17)

where (p!, p?, p?) = (¢!, 0%, —0? = i€) are the (re-labeled) Pauli matrices so that p'p* =

ip®, and 4% are 4 x 4 Dirac gamma matrices corresponding to the four-dimensional
subspace of C'P? orthogonal to the instanton C'P" and 77 = 1.
The Wick rotated kappa—symmetry projection matrix (7.1.2) then reduces to

2 .
e3®o 7 det e;*

IJ i, j, 30 ~ _ - .
& Crerpip sy = T /———=1575 = ~ V575
2VG \/det ehe,0;5

and the fermionic part of the Euclidean action (7.1.1) becomes

I'=1

(7.2.18)

Sp=T /d2§ VI3 O(1 —T)vs lier'piV 0 — Eefeﬂpﬂ%m@] , (7.2.19)
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where the metric g7 is defined:
_2
gry = ertesPnap = e 3% Grylo=o (7.2.20)

Note that in our case the fermionic terms of this two—dimensional theory differ from
those of the conventional 2d supersymmetric O(3) ~ C'P' (or in general C'P™") sigma-
model (see [52, 54] for a review and references). For comparison, the C'P" sigma-model
Lagrangian is

_ — z 1
Lopn = Gap(¢) (01C 01" + 19T DIW® ) = 2 Ropea(Wh0%) (07199), (7.2.21)

where now (*(€) (a,a = 1,...,n) are the complex CP" coordinates and ¥* and W¥fe
are independent complex 2n-component spinor fields, G ,;(¢, () is the Kihler (Fubini-
Study) metric on CP" (see eq. (D.0.1) of Appendix B for the C'P? case), D; ¥* =
Or W +T¢ 9r ® W and T'¢, and R,.q are the CP™ Christoffel symbol and curvature,
respectively.

In view of the form of the quadratic action (7.2.19) and of the fermionic equation
(4.1.4) it is natural to impose on the fermionic fields the conventional kappa—symmetry
gauge—fixing condition

1 1
51+ D)0 = (1 -7575)0 =0, (7.2.22)

which means that the fermions split into two sectors according to their chiralities in
AdS, and in the four-dimensional subspace of C'P? orthogonal to the instanton CP!

O 1504 =704 =0, O_: 1O =%0_=-0_. (7.2.23)

Using the form of the CP? gamma-matrices (7.2.17) we find that

J = —iduy e = =295 + iJy P s0® = =295 + 20T (1 — 73) | (7.2.24)
where ) . .
~ 2 7 72 prs ~
J = _leal?”ab = —gJa "1—n) JP= 5(1 =) (7.2.25)
So, the supersymmetry projection matrices P, and Pg become
1 1 -
Py = g240) = (14 D) = %)
1 1 -
Po = 5(6-J)= 1(3 +95 —p*J(1— 7)) . (7.2.26)
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Their action on the two sets of the chiral fermions is

P6@+ = @+ = 794_ y P2@+ = V4 = 0, (7227)

1 - 1 _
PO = 5(1- PO =19, PO = S(1+ pPPNe_ =uv. (7.2.28)

Note that from eqgs. (7.2.27) and (7.2.28) it follows that all the eight 9 are fermions
which correspond to unbroken supersymmetries of the AdS, x C'P? superbackground,
while in the ©_ sector four fermions (¢_) correspond to unbroken supersymmetries and
other four (v) to the broken ones. Note also that since for the instanton configuration
the kappa—symmetry projector (7.2.18) commutes with the ‘supersymmetry’ projectors
(7.2.26), it is not possible to choose the kappa—symmetry gauge—fixing condition which
would put to zero all the eight ‘broken—supersymmetry’ fermions. In terms of the fields
Y4, Y- and v the fermionic action (7.2.19) takes the form

. 2 A 1
Sp = 2T/d2§ dete {z e PV 0y — §ﬁ+0+ — Q(iveil P’V — }_BUU) )
(7.2.29)
where e;! is the inverse vielbein on S2.

For the instanton configuration the fermionic equation (4.1.4) reduces to the follow-
ing ones

eifplvﬂ9++§zq9+ ~ 0, (7.2.30)
eilplvfﬁ_—i—ﬁlv = 0, (7.2.31)
el pP’Viv = 0. (7.2.32)

From the form of the action (7.2.29) and the equation of motion (7.2.31) it follows that
the field v can be regarded as an auxiliary one, which can be expressed in terms of a
derivative of ¥_. However, for the analysis of the solutions of eqs. (7.2.30)—(7.2.32) it is
more convenient to consider it as an independent variable satisfying the Dirac equation
(7.2.32).

The covariant derivative Vi

Vv = (05 — jws™a — 20 A y7)v

V @ - 1!
d { VJT? = (8J — %CUJab’}/ab — leu}‘]a b ’ya/b/)ﬁ

(7.2.33)

contains the pullback on the instanton two-sphere of the C'P? spin connection.

1 /
Vs = (31 - —wfab

T ™" Yan) Vs (7.2.34)
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Computing the pullback of the C'P? connection, substituting it into the Dirac equations
and taking into account the projection properties of the spinors we get the fermionic
equations in the following form

) ) . ) .

el p’ V?Ql%r + EZ?9+ = e/pz(V}QQQ%F + }%eﬂpﬂﬁ) = 0, (7.2.35)

, - 2
e pH (V3 +iAr pP)0_ + EZU = 0, (7.2.36)
e p (VS —id v = 0, (7.2.37)
where Vg2 = d — %lwg; pij is the intrinsic covariant derivative on the sphere of radius
Rs: = R/2 with curvature jog = dngg = %ei ¢/ and A can be interpreted as the
electromagnetic potential induced by a magnetic monopole of charge g = —1/2 placed

at the center of the sphere. This is due to the fact that

IR R 2 g

F= d/I = — 626]51']' = 5 e'e’ Fji = Ej = —ﬁ iy = R—2€Z’j . (7238)
92

Note that %nggsij and A are equivalent up to a total derivative term
-1
A= 1 Ws2Cis + dA.

In our parametrization of CP3 (see Appendix D) and for a given embedding of S? in
CP3, wg: and A have the following form in terms of the angular coordinates on S?

~ 1
wss = cosOdy, A= 5(1 +cosf)dyp. (7.2.39)

We are now in a position to analyze the solutions of the fermionic equations (7.2.35)—
(7.2.37). Eq. (7.2.35) has the form of the Dirac equation for a fermion of mass 2. It is
the product of e;fp’ with the Killing spinor equation on the sphere

(v?+%qmmhzo. (7.2.40)
The Killing spinor equation on S? for a two-component spinor has two non-trivial
solutions [79]. Our ¥, spinors carry four (independent) external indices in addition to
the S*-spinor index. Therefore, eq. (7.2.40) has eight solutions which are obviously
solutions of the Dirac equation (7.2.35). These are actually the only regular eigenspinors
of the Dirac operator on the sphere with the eigenvalue —2i/R [65]. Thus, in the O,
sector the string instanton has eight fermionic zero modes which are the solutions of the
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Killing spinor equation (7.2.40). In spherical coordinates they have the explicit form
[66]

igl i 0 0
U, =e 2% e§¢p3€+ = <cos 5~ ip'sin 5) (cosg + ip’sin g) €4, (7.2.41)

where €, is an arbitrary constant spinor satisfying the chirality conditions e, =
V5€+ = €4

Let us now proceed with the analysis of the third fermionic equation (7.2.37). As we
have already mentioned, this equation describes the electric coupling of the fermionic
field v to the monopole potential on the sphere. The electric charge of v is e = +1 for
v = £p3v, i.e. when v is a chiral /anti—chiral two—dimensional spinor, respectively. The
analysis in [67] then tells us that there are non-trivial solutions of the charged Dirac
equation (7.2.37) of positive chirality when ge > 1/2 and of negative chirality when
ge < —1/2. Since we are in the opposite situation, there are no non—trivial solutions in
our case and hence v = 0.

If v =0, eq. (7.2.36) implies that ¥_ should satisfy the massless Dirac equation

L i i
einZ(Vf +iAr p)I_ = e p' (07 + §p38]g0)19_ =0. (7.2.42)

We observe that the electric charge of ¥_ is opposite to that of v, i.e. it is e = F1
depending on whether 1J_ is chiral or anti—chiral two—dimensional spinor, i.e. whether
v_ = +p3_. Now we are in the situation in which the requirement of [67] for the
Dirac equation (7.2.42) to have non-trivial solutions is saturated, i.e. in our case for
J_ of positive p*>—chirality ge = 1/2 and for ¥_ of negative p>—chirality ge = —1/2. By
the Atiyah-Singer index theorem there is one solution for each p®-chirality of 9¥_. The
general solution of (7.2.42) has actually a very simple form

I_=Se7#9 [(1+ p)A_(C) + (1= p*) u_(Q)] . (7.2.43)

DN | —

where A\_(¢) and u_(¢) are holomorphic and anti-holomorphic spinors in the projective
coordinates ¢ and ¢ of S? ~ C'P' which are anti—chiral in the directions transverse to
the instanton, i.e. Ao = —yA_, Ao = =y . p- = —yspu— and p— = —vyzu—. For the
anti-instanton the solution takes the same form but with anti-holomorphic A_(¢) and
holomorphic ().

In [67] it has been shown that the only normalizable solutions of the Dirac equation
(7.2.42) are those with constant A_ and p_ in (7.2.43). This allows us to conclude that

in the ¥_ sector the string instanton has four zero modes characterized by eq. (7.2.43)
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with constant A\_ and p_.! Note that for A\ = const and pu_ = const the spinor (7.2.43)
is the solution of the stronger equation

(r + %pga[go)ﬁ_ —0. (7.2.44)

This equation is the projection on the instantonic sphere of the AdS,; x CP? Killing
spinor equation for 1J_.

To summarize, when v = 0 and in view of the form of the fermionic supervielbeins
E* (a' = 1,...,6) % of the supercoset OSp(6|4)/U(3) x SO(1,3), the non-linear
fermionic equation of motion (2.4.21) as well as the linear one (4.1.4) involve the pull-
back on the string worldsheet of the AdS, x C'P? Killing spinor operator

DY = Doy = Pg (d + 2 eV, + ieal%f — lw“b%b — lw“/b/%/b/)ﬁ, (7.2.45)
R R 4 4

which acts on the 24 fermions ¥ associated with the supersymmetry of AdS, x CP3.
Therefore, if ¥ are the 24 Killing spinors on AdS; x C'P? they solve not only the linearized
equations (4.1.4) but also the complete fermionic equations (2.4.21). In the case of the
string instanton considered above, the kappa—symmetry projector reduces the number
of solutions of the pulled—back Killing spinor equation by half, leaving us with the
twelve physical fermionic zero modes. It should also be noted that these fermionic zero
modes do not contribute to the bosonic equations (2.4.22). This guarantees that the
bosonic instanton solution does not have a back reaction from the fermionic modes.

We should note that the Dirac equations (7.2.35)—(7.2.37) may have (non—normalizable)
solutions which are not the Killing spinors (as e.g. eq. (7.2.43) with non—constant A
and p). However, these other fermionic modes would modify the string field equations
at higher order in fermions. In particular, they would produce a non—trivial contribu-
tion to the bosonic field equations (2.4.22), i.e. back-react on the form of the purely
bosonic instanton and, hence, should be discarded.

Let us stress once again that, as we have shown, for the instanton solution considered
above the kappa—symmetry cannot eliminate all the eight fermions v associated with
the supersymmetries broken in the AdS; x C'P? background. Therefore, even if among
the instanton fermionic zero modes there is no v—modes, the fluctuations around the
instanton solution will have four physical fermionic degrees of freedom corresponding
to the target-space supersymmetries broken by the AdS, x C'P? background.

!'Remember that the eight-component spinor ©_ satisfies the additional projection condition
(7.2.28) which reduces the number of its components to four.

2To avoid confusion, let us note that the index a’ on spinors is different from the same index on
bosonic quantities.
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7.2.2 Fermionic zero modes and supersymmetry

Let us discuss in more detail how the fermionic zero modes are related to supersymmetry
of the AdS, x C' P? superbackground and, correspondingly, of the superstring action. At
the linearized level in fermions the supersymmetry part of the OSp(6|4) transformations
acts as follows

0 = e,
ov = 0,
SXMep (X)) = —iel 0, (7.2.46)

where € = Py (X)) are 24 supersymmetry parameters of OSp(6]4) satisfying the AdSy x
C'P3 Killing spinor equation

l

D:
€ V6+R

e Py’ T 46 = 0 (7.2.47)
with the explicit form of D given in eq. (7.2.45). Note that, at the leading order in
fermions, the eight fermions v are not subject to the supersymmetry transformations.
The action of the isometry group OSp(6|4) on these fermions is such that it takes the
form of induced SO(1,3) x U(1) rotations with parameters depending on X, ¢ and the
OSp(6]4) parameters

1
4
Thus the first nontrivial term in the supersymmetry variation of v is quadratic in
fermionic fields which is beyond the linear approximation we are interested in.

It is not hard to see that the quadratic string action (4.2.9) is invariant under the
supersymmetry transformations (7.2.46) (up to quadratic order in fermions). At the
same time, the action (7.1.1), which is obtained from (4.2.9) by the shift (4.2.10) of
the C'P? coordinates, is invariant under the supersymmetry with the transformations
of the shifted bosonic coordinates being

6v =~ Ap(e, X,0) TP 0. (7.2.48)

SXMepA(X) = —iel M) — el = —iel 0. (7.2.49)

Let us now briefly recall how the target—space supersymmetry gets converted into world-
sheet supersymmetry upon elimination of the un—physical fermionic degrees of freedom
by gauge fixing kappa-symmetry. A more detailed discussion of such a “transmuta-
tion” of supersymmetry and its partial breaking in the Green—Schwarz formulation of
superstrings and superbranes the reader may find e.g. in [68, 69, 70, 71].
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If we impose on the fermionic fields © = (¢, v) a kappa-symmetry gauge condition
as e.g. the one we have used for studying the instanton solution, eq. (7.2.22),

%(1 +T)6 =0, (7.2.50)
the kappa—symmetry gauge—fixing condition will not be invariant under all the twenty—
four supersymmetries (7.2.46) but only under half of them satisfying the condition
1

€pr = 5(1 —To)e. (7.2.51)
In egs. (7.2.50) and (7.2.51) we denoted the gauge—fixing projector by I'g to distin-
guish it from the more general projector matrix I" that appears in the kappa—symmetry
transformations (2.4.20),(2.4.21) and (6.3.46).

The target—space supersymmetries with the parameter ¢, are those which are spon-
taneously broken by the presence of the string. The reason is that the remaining twelve
fermionic fields 9 = %(1 —T'9) ¥ get shifted by these transformations and hence behave
as Volkov—Akulov goldstinos [72, 73].

The supersymmetries which remain unbroken and which become worldsheet super-
symmetries are identified as follows. The gauge fixing condition (7.2.50) is not invariant
under the supersymmetry transformations (7.2.46) with the parameter €,, = %(1 +T)e.
However, this can be cured by an appropriate compensating kappa—symmetry transfor-
mation that (at the leading order in fermions) satisfies the condition

1 1
—1736(1+F0)(1—|—F)/£:ew = 5(1+F0) €. (7.2.52)
This condition relates the components of the k—symmetry parameter appearing in the
transformation of ¥ to the supersymmetry parameter ¢,,. Since kappa-symmetry is the
worldsheet fermionic symmetry which can actually be identified with the conventional
local worldsheet supersymmetry [74], eq. (7.2.52) thus converts the unbroken target—
space supersymmetries into worldsheet supersymmetry. Note that eq. (7.2.52) does
not involve the part of the kappa—symmetry transformation acting on the v—fermions
since they are singled out with the complementary projector P,. This part of kappa—
symmetry is fixed by the gauge condition 1(1+ Ig)v = 0 (see eq. (7.2.50)).

As a result, (at a leading order in fermions and bosons) under the broken and
unbroken supersymmetries the worldsheet fermionic fields remaining after the gauge-
fixing (7.2.50) © = 1 (1—T)O = (¢, v) and the bosonic fields XM transform as follows

1
v =0, =6+ P(l-To)(1+T)s, (7.2.53)
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SXMey (X)) = —ie,I'O — 6,0% B,/ (X,0) + O(e, 0, X), (7.2.54)
SXMeyt(X) = —ie,'O —6,9°E, (X,0)+O(e,0,X),  (7.2.55)

where ¢ = 0,1 and L= 2,...,9 indicate the directions parallel and orthogonal to the
string worldsheet, respectively, the second terms in (7.2.54) and (7.2.55) come from the
compensating kappa-symmetry transformation (2.4.20) that at the linearized level is
just —iel'40, and O(e, ©, X) stand for terms which are non-linear in fields (and their
derivatives).

It is instructive to notice that the leading (linear) term in the supersymmetry trans-
formations of XM along the directions trasverse to the string worldsheet contains the
parameter of the unbroken supersymmetries, while along the worldsheet the linear
term contains the broken supersymmetry parameter. This reflects the fact that the
bosonic excitations transversal to the classical string configuration and kappa—gauge
fixed fermionic fields are associated with worldsheet physical fields forming supermulti-
plets under the unbroken supersymmetry. At the same time the supersymmetry trans-
formations along the string worldsheet can be compensated by an appropriated world-
sheet reparametrization.

For the instanton solution under consideration we have I' = I'y = —757; and v = 0.
So the supersymmetry transformations (at the leading order) become

ov = 0+4..., 0 =e€p+..., (7.2.56)
SXMeyt(X) = —2ie, M0 + .., (7.2.57)

where the dots stand for higher order terms in fermions.

Under the unbroken supersymmetry transformations the fermionic zero modes in-
duce an (isometry) transformation of the string coordinates in the transverse directions
which results in a shift of the bosonic parameters characterizing the string instanton.
This is analogous to the supersymmetry transformations of the ‘collective coordinates’
of the C'P" sigma—model instanton [52].

From egs. (7.2.56) and (7.2.57) we also see that if we start from the purely bosonic
instanton solution discussed in Section 7.1.1, we can find at least part of the instanton
fermionic zero modes by looking at the variation of the fermionic fields under super-
symmetry. The form of the supersymmetry transformations implies that the bosonic
instanton configuration is 1/2 BPS. Namely, the string instanton solution with © = 0
is invariant under the twelve supersymmetries €,,. Fermionic zero modes are generated
by the target—space supersymmetries (with the parameter €,,.) which are broken by the
string configuration, as we have already discussed in the end of Section 7.2.1 where we
have also directly shown that the instanton does not have other fermionic zero modes
associated with the fields v. Note that the latter could not be obtained from the purely
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bosonic solution by a supersymmetry transformation since the corresponding variation
of v is proportional to v itself (see eq. (7.2.48)).

Let us now compare our AdS; x C'P? superstring worldsheet theory (which has 12
unbroken worldsheet supersymmetries) with the supersymmetry properties of the con-
ventional N' = (2, 2)3 supersymmetric C'P" sigma-model (described by the Lagrangian
(7.2.21)) and with its instanton solutions [52, 54].

The supersymmetry transformations in the C'P" sigma-model have the following
form

5C = el U =ipledi¢ce + -+, (a=1,...,n) (7.2.58)

where € is now a constant complex two—component spinor parameter of N' = (2,2)
supersymmetry and the dots stand for the terms non-linear in the fields. The C'P"
sigma—model is also invariant under superconformal transformations [75]

6= (=AU, O = ip (D)0 4, (a=1l...n)  (7.259)

The superconformal transformations are similar to the rigid supersymmetries (7.2.58)
but with the complex two—component spinor parameters whose chiral and anti—chiral
components are, respectively, holomorphic and anti-holomorphic n(z, 2) = (n4.(2),n-(2)).
The superconformal symmetry of the C'P" sigma—model (which is broken by quan-
tum anomalies [52]) is in a sense a counterpart of the spontaneously broken part of the
target—space supersymmetry of the superstring action.
If one starts from the purely bosonic instanton solution of the C'P™ sigma—model

0C*=0 or 0¢C*=0 and ¥ =0 (7.2.60)

one can then generate solutions of the fermionic field equations and find the correspond-
ing fermionic zero modes by considering the supersymmetry transformations (7.2.58)
and (7.2.59) of W. In this way, taking into account that for the instanton the fields ¢* are
either holomorphic or anti-holomorphic, one finds that only half of the supersymmetry
transformations (7.2.58) and of the superconformal transformations (7.2.59) are non—
trivial, those with the parameters ¢ and 7 being (anti)chiral 2d spinors. The fermionic
zero modes obtained in this way are (anti)holomorphic (anti)chiral 2d spinor fields. We
observe that in contrast to the case of the string instanton whose fermionic zero modes
are generated by the spontaneously broken supersymmetry transformations, in the case
of the C'P™ sigma-model half of the fermionic zero modes are generated by the rigid
supersymmetry transformations and another half by the superconformal symmetry.

3N\ labels the real number of left— and right-handed worldsheet supersymmetries.
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7.2.3 Instantons in AdS; x S? x T©

The case of instantons in AdS, x S? x T is still to be systematically studied, so below
we will only briefly mention properties of some of them. There are several possible
instanton configurations in this case, in fact the string can wrap the S? sphere of the
metric but it can also wrap a 2-cycle in T or both.

If we concentrate on the simplest case, the S? case, what we know is that an in-
stanton in a bosonic sigma model on S? has 4 zero modes [52], to these one has to add
the zero modes corresponding to the directions of AdS, and T, so the total number of
bosonic zero modes for the case of AdS, x S? x T is 12.

As far as the fermions are concerned, it is easy to see that, restricting to the instanton
solution, the equations of motion of the coset and the non coset fermions decouple, and

1

if we impose the gauge (1 4+ I')© = 0, with I' being the same that appears in the

projector of the kappa symmetry (7.1.2), these become:

. 2
eI Vit + im0 =0. (7.2.61)
4T3 Visv = 0. (7.2.62)

The equation (7.2.62) has no solutions but the trivial one v = 0 [67], the equation
(7.2.61) is solved by the Killing spinors on S?. The S? Killing spinor has 2 components.
In our case the gauge fixed ¥ has 4 components, which correspond to two copies of
the Killing spinor. So we expect to have 4 fermionic zero modes. Moreover, since also
in this case the Killing spinors (in the absence of the non-coset fermions) solve the
fermionic field equations to all orders, the above instanton solution should be valid to
all orders in fermions.

We expect that the situation in the cases of the instantons wrapping a two-cycle in
TS or cycles in both, S? and T°, will be more involved.

We reserve the analysis and interpretation of these non-perturbative solutions for
future work.
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Conclusions

In this thesis we have studied and enlarged the knowledge of Type ITA Superstring
theories on AdS,; x CP? and AdS; x S? x TS. These are theories on non maximal
supersymmatric backgrounds, that hence could not be fully described by sigma models
on supercoset spaces %@3(3) and %. For this reason we have studied the
full structure of these Superstring theories with a particular attention to the non coset
degrees of freedom.

The study of these theories has been brought on, as much as possible, in a parallel
way for the two cases, this was possible since the two theories present remarkable
similarities. In fact they are in a certain sense complementary or dual to each other,
since for AdS, x C'P? there are 24 coset ferminic degrees of freedom and 8 non-coset
ones, for AdSy x S% x T the situation is the opposite, with only 8 supersymmetries
preserved. Furthermore the projectors that splits the fermions in two sets (24 + 8)
are, for both the theories, of the same form. This led us to write the OSp(6]4) and
PSU(1,1|2) x E(6) algebras in a unified way.

The first problem that we have addressed was Integrability. As we have seen, one
can, in a rather easy way, show the Classical Integrability of the sigma models on
500(18, ggi‘?(g) and solj(f,q)(iél(zl))ig(g)(ﬁ)' The problem is that it is not always possible to
truncate our theories to the corresponding coset sigma model. For this reason we have
studied how to include in the integrable structures of these theories the non coset
degrees of freedom.

To demonstrate that a theory is classically integrable one has to find a Lax connec-
tion with zero curvature. There are two possible ways of proceeding, starting from the
right invariant currents (Noether currents), or from the left invariant ones.

The construction of the Lax connection using the Noether currents, that has been
carried on up to the second order in all fermions, has the lack to be non manifestly Z,
invariant. We have not only proposed a construction that allowed us to write a Lax
connection that is invariant under Z,-transformation, but we have also been able to
write an extension of the complete supercoset Lax connection up to the second order
in the non coset fermions. We have written the Lax connections for the two theories in
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a unified way:

1
L = 5Qg“f’MAB +(1+a))E*Py +ayx EAPy + QVE

Q. [(BA 20T E) T4 Vo — (B + 20T A ) Ty Vo]

—}%Q% [i(vI T E) T aVo + i (0T E) T 4T V]

+ (2107 % E 4 0l % Vo — % * EP T 4Py, Tv) Py

+ (20vTAT B 4 ivT AT, Vo — %EB 4T Py, [ pv) Py

+ é(*EC vl PPV — BEC 0T PP V20) Rpp®® Mg + O(0?).

In the last part of the thesis we have moved to consider possible non perturbative
corrections to the effective action of the two theories. For the AdS, x C'P? case there is
the possibility of a string instanton wrapping a C'P! cycle in the C'P? part of the space.
For AdS; x S? x T there are several possible configuations, either a string wrapping
S? or an instanton in the T part or both.

We have thus found that the instanton in the AdS,x C P? theory has twelve fermionic
zero modes. They are associted with % of the supersymmetries of the background broken
by the instanton configuration, thus demonstrating that the instanton configuration is
: BPS.

Future directions

The work, that has been presented in this thesis, is a good starting point for further
study of type ITA Superstring theories on AdSy x CP? and AdS, x S? x T and their
dual theories.

What now one has to do is to understand the classical integrability of the full
theories, i.e. seeing if it is possible to include in the structure of the Lax connection the
non-supercoset fermions to all orders, preserving the zero curvature condition. Moreover
in the case of AdSy x S? x T we still have to compute the full geometry, since up to
now we know it only up to the second order in the non-supersymmetric fermions.

We found a form for the Lax connection that is manifestly Z,-invariant, character-
istic that in the previous examples (supercoset sigma models) turned out to be funda-
mental for the formulation of Bethe ansatz equations. What would be now interesting
to know is if, going to all orders in all the fermions, this invariance would be preserved.
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Another thing, that one has to look at is whether there exist Bethe equations that
take into account the non-supercoset degrees of freedom. This would allow us to better
understand the integrable structure of these string theories and, hopefully, also their
CFT duals.

In particular, in the case of AdS; x S? x T® we hope that the study of the superstring
theory would allow us to know something more concrete on the dual one-dimensional
CFT, whose nature up to now is mysterious.

For what concern the instanton-like solutions of the theories, that we have spoke
about, there is still some work to do. For the theory on AdS,; x C'P3 one should still
study possible instanton corrections to the effective action (see also [80] and [81]) and
compare the result with what was found in the CFT side [64], looking at a possible
enrichment of the holographic dictionary.

In the AdS, x S? x T theory we have still to analyze all the instantonic solutions
and their zero modes, looking at the amount of supersymmetry that each istantonic
solution preserves.

There is still a lot of work to dissolve all the questions concerning these and other
cases of less supersymmetric theories, but the bases, that have been built in this thesis,
represent a consistent step towards the final goal.
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Appendix A

Curvature of the Lax connection

The curvature of the Lax connection (6.3.35), (6.3.36) computed to quadratic order in
the non—coset fermions v can be split into three pieces corresponding to the generators
in the superalgebra, Mg, P4 and Q:

dL — LL = (dL — LL)y + (dL — LL)p + (dL — LL)q. (A.0.1)
With a bit of work one finds that, to order v?,

(AL — LL)y =
% [z « EAVTCOPT \V2E + i % EATCPT V2V — i EAvlCPT Ty, V2E
— (B2 TP AT V2V + 40T V2E ol PT L E + 40T  EolPT\V2E

— oM E ETCPPT V20 — oTAE ETCPPL AT V0 + %v x EA ol 9PV
1 4 4
— 5EFAEUFACDFHV% + ECEAVIPVEPA, T 4u — EECEA vIPV2T Py, T 4v

_ % « EBEAWT P, TCPPT AT v — %EBEA oL Py, LCPPT 40| Rop PP Mg 0.2)

where we have again introduced EA = E4 4+ 20TE to shorten the expressions. The
terms in the Lax curvature proportional to P, are

(dL — LL)p =
Qs [v % (B4 + il "Vo) — iETAT L E — 2iEDAT ), Vo — iVol AT, Vo

2 2 9 .
— EEB oI, Py, T5E — EEB vl Py, Vo — T EB ET4P~,I'gv
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2 2 . 2
— 5t EB Vol 4P, I gv + EEB ETAP~Tplv + }—%EB Vol 4P, pl v

2 2i 2
— & # EP oM PV + EZEFBEUFAFHP%FBU - EZEFBFHEUFAP%FBU

iR i
+ 1—6EFDE7*E ol AT T R PP — gEFED vI'BCT 10 Rpepr

. . N

- iEFED oI pBCT 10 Rper + %EB « EF 0T 2 PEy Rppp? — E%FBFHE ETAP~,Tpu
2 2

. EZUFBE ED*Py.Dpliv = —(V * B” — iBDPT, B) UFA'P’}/*FBU] Py (A.0.3)

Finally the terms proportional to ) in the Lax curvature become
(dL—LL)g =
D lipA . 1A t PA At

a2R (E7 4+ vl Vo) QVT T AT E+ E2 QV'~, T aT'11 Vo

— *(EA + iUFAVU) QVy,T4FE — w B4 QVT7, T 4Vu

- %EAEB QVyLaPY Tl — % « EAEP QVIy I 4Pyl po
2 2

- EB ETAP~,Tgv QVin, T hv + T EB T AP, Tpv QVin,T4E
2 2

-5 EB oI EQVY, T 4Py pu + }—%EB ETAP~,TpT 110 QVT,T 4

2 2
+ —EB ol T P, T gv QVIy T AFE + EEB VI E QVT, T 4Py slv

R
1 1

— EEB oI AT Py, T E QViy T yv — EEB vI'AP~, T E QViy T4l 1v
1 1

— EEB VT4 E QVT~, Ty, PTAT 10 — EEB I T E QViA, T gy, PT 4v

R
(*EC vl ¢PPv — ECuT PP 10) Rpp? QVIT 45 E

16

n a%#( « BB oTAE (2QV AT 4Py Dal v — QVy, Dy, PIAT )

+ *EPoTAT 1 E (2QV T AP, v — QV A, I, PL4v)
— EP Wl E 2QV A, T AP gv — QV, Iy PT )
— BB ol T E (2QV AL AP Il v — QVA T gy, PT Al )

2

R
— 1—6(*EC vlePPu — EC ol PP 0) Rpp? QVT 4T E
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R2
— T (B v PPl — B uloPPo) Rpy” QUT ABE)

| A 2
—_ @2% <V * EA — iEFAFHE — 2iEFAF11VU — EEB UFAF11P7*FBE

2 2
+ EEB ETAP~,Tpl'v — A EB EFAP%FBv) QVTy, T v, (A.0.4)

where we’ve used the fact that

2TAT L E)o(TAE) 5 + 2T AE)o(TAT 1 E) g + (T4T11)ap ETAE + (T4 ETAT1LE =0
(A.0.5)

and

IV QV I, T AT E + vTAT1, Vo QVTY, T4 E + ETAT 1 Vo QV1, T 4v
+ ETAVo QVT, LAl v + oI T E QVT, T AVo + v 4 E QV1~, 4T, Vo = (A.0.6)

which follow from the basic Fierz identity (2.3.14).
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Appendix B

Gamma-matrix identities

Some useful gamma-matrix identities are (a = 0,1, 2, 3)

Fabc — _igabcdrd75 (BOl)
re = —%ga’wdrcd%’ (B.0.2)
R (B.0.3)

and some useful identities involving the projection operators are

PV Py, = =307 Pyl Py (B.0.4)
PPy = i JY 4Py (B.0.5)
I"Psly = 2Py (B.0.6)
! / 1 1/ Z AN
rle'prtl = 57324rab7324+511‘”’777324 (B.0.7)
Paa(88 + Ty 47)TyPay = 0 (B.0.8)
Ps(6Y — iJy" ) TyPay = 0. (B.0.9)
R2
Poal(aPosy’ TPy = _§RABCDP24FCD’75,P24~ (B.0.10)

B.1 Projection of the Fierz identities

It is useful to project this identity in various ways using our projection operators. In
the AdS, x CP3 case when v = Pgv we get

1 1 1
v’ = g(Psc)aﬁ vu + g(’YSst)aﬂ vy’ — g(ra’ysps)aﬁ vl
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1
( ab777)8)aﬁ UFab’}/7U

1 7 8 7
o [0 Fa
+8( 7' Pg) ™ vy v — T

1 /N, [ANN)
3. (Ps atroPs) vl w4 ——— 35 (PB aveT11Ps) P ol Thqv
]. !l
32 (PBF Fb/ /d/’])g)aﬁ Fan ¢ d (Blll)
and it follows from this expression that
a', \« B8 1 af 5 1 5 apf a b
(T*v)* (Tav)” = _Z<,P24C) vy — —< "Pas) vy’ — Z(Fﬂ Pag)*” 0Ty v
1 1
— Z(Fa'y77324)0‘6 vy — g(Fab’y77324)°‘5 ol (B.1.12)

Similarly we have in the AdSy x S? x T case when v = Pyyv that

/ 1 1 1
(P v) (Fafv)ﬁ = —Z(ch)aﬁ VU — Z(Pg’)/g))aﬁ VY50 — Z(ng‘@’yg,)aﬁ vl Y50
1 1
— 1 (PsT97)™ vlanv — g(PsF@%)aﬂ vla70

1 / 1 /
- 1—1(7381“@/75)0‘5 vl 0 — g(PsF@c/)aﬁ oMy . (B.1.13)

These identities were used in many places in the calculation of the curvature of the Lax
connection.
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Check of the closure of H in
AdSy x S x TP

The NS-NS three-form superfield strength in the AdS; x S? x T background is given
by
1
H = —iEAETAT1E +iEBEAET ApT 1) + 550535*‘ Hape
= —iREAET W E — 2ic*EA ET AT, Dv — ic*E Dol ATy, Dv

- 4
+ %EA (UFB’}/*’WU ET apysE — 0TBy, 10 EDapE + 0T~ 0 ET 3T E

/ 1 ! 2 4 A A
— T T v By DAl E + §Ur@ v ET117, I AFM/E> + %EBEA ET agT117,v
2c* B A cf C "B A 3
+ EE EA DuT a5l 17,0 + 5E EPEA Haope + O(0?), (C.0.1)

where €4 and Hpe are given is (3.2.64) and (3.2.68) respectively, and B4 = E4 +
2iv'"E. We wish to demonstrate that this form is indeed closed.
After a bit of algebra using the torsion equation (2.1.6) and Fierz identities one finds

1 % % . % .
SdH = EZEB ETAE ET apT v + éEB ET upE ETAT 1,0 — EZEB ETWE ET py,v

4 ) / ! ) I 2 )

+ EZEb ol B ET iy T Vo + %EB ETY Dv ETy 5T — EZEQ ET ' E Duy,v
2i )

+ EZEQ vI'Dv ET Dy DhE — B2 (Qap — Qoap) ETAT 1 E — 20 B4 Dul' 4T,V Do

4
— 2iEP (Qap — Qoap) ETAT 1 Dv — EECEB (Qap — Qoan) ETA ¢y,
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4 / / )
+ ﬁEa E<ul” E ET gy Lo + }%EA v (UPB’}/*’WU ET apvsE — vI'P4, T 10 ET o FE

/ ]. !
+ UFAB’Y*’U EFBFHE — /UFQC FH’U E’}/*FAFQC/E + iUF@d v EFH’}/*FAF@d’E)

2 2
+d (EEBEA Dol 45T 17,0 + %ECEBEA HABC> : (C.0.2)

The terms in the first line vanish due to the Fierz identity (2.3.15). Using the expressions
for Q48 and Hapc given in (3.2.66) and (3.2.68) and simplifying further this becomes

1 :
— ﬁEch ETAE vy, TyT 4T 11 (1 — P)Teyv + . ..
2 2
+ ﬁE" EEU T yv ET 117Dy pv + ﬁEb E¢ET 117l wv By Tyl g
4 / ! 8 /
— EEb E¢ET"v ETy 1 Tyv — ﬁEBEQ ET 7" v ET Ty T
2 . 2 1
— ﬁEb E¢ED“E vl v — ﬁEb E¢ EyE vl yys50 — ﬁEb ECETT 1 E vl g
2 2
— ﬁEBEQ ETT 1 E vy, L eupyav + ﬁEBEQ ET%E vy, T ol 1170
1, 2% 2i
- ﬁEb E<ET*E UF%b/FHU + EZEa EFbCE Ura/b@’}/*FHV'U + EZEQ EFL[)E ’U’}/*FQFUV’U
2/1/ a b 4:7/ b/ al 87: B CLI
+ EE* EF@’%E 'U’}/*FJWV’U + EE vl B EFa/b/Fny*VU —+ EE ET* Vv EFa’BFIIfV*'U
4 ) / / 3 ) ! 3 ) /
+ ElEb vy, Dy E ETT}, Vo — EZEG ET2E vy,T T Vo — EZE“ BT, Ev7,T gy Vo
) ! ) / 2 )
- %E“ ETYE vl 7,01 Vo + %E“ BT E vl g7, Vo — EZEQ ET2E v7,I,T 11 Vo
2i 2i 2i
. EZEQ ETT}, E vy, Ty Vo + EZEA ET W Evy,TaVo — éEA ErrEvy,ysT aVo
4i
n EZE“ EvEvyysTw Vo, (C.0.3)

where the ellipsis in the first line denote three terms which, together with the previous
term, cancel due to the Fierz identitity (2.3.14). Using the Fierz identity in (B.1.13)
the terms with two bosonic vielbeins can be seen to cancel and we are left with

% 2i 2i
EZE“ ET%E 0T ey, Ty Vo + EZE@ ET @ E vy, Vo + EZE@ ET w1 E 07,1 Vo
4 ) / / 8 ) / 4 ) / !
+ EZE” oI E BTy Ty Vo + EZEB ETYVo ETy 5T 17,0 + EZEb vy, Py E ET9Ty, Vo
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3 ) ! 3 ) I ) !
- EZEG ETYE vy,Lyl Vo — EZEG BT E vy, Ty Vo — }%E“ ETYE ol yyy.01 Vo

v K i

+ %E“ ET'T E vl 7, Vo — EZEQ ET“E vy, Ty 01 Vo — EZEQ ETT}, E vy, Tyl Vo
2i 2i 4i

+ ]_;E ETWEvovyIaVu — EE Erv EvvyeysI'aVo + RE“ Ev;Evy sl Vo,  (C.0.4)

We now use the fact that

%E“ ET 3 FE vy, I Vo + i%E ET 75 E v, Vv
= %Ea EU TpE vy, TP Vo + ... + %E“E%FQFBE v PPy Vo + .
+ %an*rb’r EVul'yI' E — %Eam*rb’r I EVolyE
— Q—RZE ETy Evy, T, Vo — %E’ EvyrE vy g5 Vo
— %E“ vy, VT EVol'y 'y E — %Eamrb'r ' EVul'yE
— %E ET E vy, T, Vo — %E EvzE vy, LyysVu, (C.0.5)

where the first ellipsis denote the 5 terms which together with the previous term cancel

due to the Fierz identity (2.3.14) and similarly for the second ellipsis. This leaves us
with the following terms in dH

— %EB ETAE Vol T Ty, + . %Eb' ETAE Vol T Ty + ...

— %Eb' ETAEVuy, TyTalo + ..+ %Eb/ E~, Ty AE Vol 4Tv + . ..
LZEI" E~,Dyyv Vol T E + ;Eb E~,TyyTii0 VOI* E

+ i;E“ ET"E 0T eI Vo — %E Ev 11 EVulyv — %Eb EvE Vulyysv

+ i;Eb' ETHE vy Ty Vo + ;Eb EvE vy, Ty Vo . (C.0.6)

Again the ellipsis denotes terms which cancel together with the previous term due to
(2.3.14). Using the relation

29, 2
EZE“ ET"E vl e Vo
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= — " EY By,TD | EVol, v — %Eb’ Er,ysDl) ) E VT gy 50

2R
_ _ﬁzEb’ EN, AT E Vol T gv + ... — %%Eb' Ev, s AT E Vol 4T gy ysv + . .
4- / ’ 4 / !
- EZE” E~,Tawv VoI T E — EZE’? Er, Ty o VI E
+%E”’E E VTl 2 g BrL B Ver
R V7 vy 50 + 2 11 vl yyv
+%Eb’E EVul 2 gV BTy E VT
I vy vlyysv + R Vil 11 vl yv
4' / ! 4 / i
- —EZEb E~,Tayv VoI T E — éEb E~ Ty Tio VoI B
+ 2B By B VT 2L BY BDy B VT
R Y7 v b”Y*’Y5U+E 11 ULy v
% 2
+ EZEZ’ EvEVoTyysv + EZEb BT EVolyu (C.0.7)

we see that also the last remaining seven terms in dH cancel. This completes the proof
that the NS-NS three-form we have constructed for AdSs x S? x T© is indeed closed.
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C'P? Geometry

The Fubini-Study metric on CP? is
ds® = p~2dCed¢® — p~*¢ G, GdC®, (D.0.1)

where ¢ are three complex numbers and p?> = 1 4 (%(,. Real coordinates adapted to
the U(3) isotropy group can be introduced as follows [76]

Yo ,
Cl = tan 3 sin o sin B W =X)/2 i
(> = tan 5 cosa el
’ O v i(P+x)/2 i
(? = tan 5 Sin ¢ Cos § e /26t (D.O.2)

where 0 < 0,9 <7, 0< p,x <21, 0 < a < 7 and 0 < ¢ < 4m. In these coordinates
the metric becomes

1 1 1
ds® = 1 (d6*+sin® O(dp+ 5 sin” a 03)%) +sin” 2 da®+ = sin® 3 sin® a0} 405 +cos® ao3),

4
(D.0.3)
where
o1 = sinydd — cosy sind dy
oy = cosYdy + siny sind dy
o3 = dip + cosvdy (D.0.4)
are three left-invariant one-forms on SU(2) obeying do; = —o903 etc. Notice that

with this choice of coordinates # and ¢ parameterize a two-sphere of radius % This
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two-sphere is topologically non-trivial and associated to the Kahler form on C'P3. We
choose the C'P? vielbeins as follows

1
el = —df
2
1 . 1 .
e’ = —sinf(dy + = sin*aos)
2 2
3 1. .
e’ = ——sin- sinaoy
2 2
4 1.0 .
e® = —sin- sinao;
2 2
e = sin—=da
2
e® = —sin— sin(2a)os.
4 2
Using the fact that
de! 0
0 0
de? 2C0t(96261+200t§€665+260t§€463
0 cot v 4
d€3 COt—€3€1+_—96365+?66
2 sin § sin § sin(2a)
cot av 4
de? cot —etel + = 064 5 ?63
2 sin 5 sin 5 sin(2q)
0
de’ cot 3 edel
0 2 cot(2cv 2 cot v
d66 cot — 66 61 + # 66 65 4 64 63
2 sin sin
one can show that the connection can be taken to be
a2
w? = 2cotfhe? wH = cotge2—2.1§s#
) ) sin 3 sin(2a)
wld cot & e w¥H = —wtaed
sin 5
w23 — cot g et w3 = —:frff;‘ et
2
w? = cotfe? wh = gt
2
w? = —cot g e Wi = ——:I’Ifg e3
2
(2
w¥ = cotled W = cot ¥ 2 4 22 6
2 2 sin 5 !

(D.0.5)
(D.0.6)
(D.0.7)
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where @ = 3,4,5,6. The curvature of CP? is

AN 11/ ! AN, ! / ! / / !’ AN / !
RYY = dw®” + w” ww? = (6468 + Ju Jp")e“ et + TV Jug e e,

(D.0.8)

where J, are the components of the Kahler form with Ji, = J3y = J56 = 1.

The U(1) part of the connection is
1

w1 0 t 1 t
A= Juyw = —(cotf e’+cot = e2—3 a‘no; %) = cot 0 e%——dgp—&og
8 2 2 sin 5 4 2sin 5

e’ (D.0.9)

and it is easy to verify that it’s derivative is proportional to the Kahler form

dA=2¢e'e® +2e3e* + 26 €5,

(D.0.10)
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