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Abstract

Cryptocurrencies are cryptography-based digital currencies. In contrast to
the traditional fiat currencies that are issued by centralized banking sys-
tems, cryptocurrencies are decentralized and maintained through distributed
consensus mechanisms. The first truly functional cryptocurrency, i.e., Bit-
coin, was introduced in November 2008 by Satoshi Nakamoto. Within a few
years of its quiet launch, Bitcoin flourished to make a billion-dollar economy.
After the massive success of Bitcoin, several other cryptocurrencies have been
introduced to the market. As of September 2019, there are over 2500 active
cryptocurrencies with more than $250 billion total market capitalization and
nearly $50 billion daily volume.

Different cryptocurrencies work differently and aim to achieve different
goals, e.g., some cryptocurrencies focus on limiting transaction throughput
while others concentrate on performance. However, each cryptocurrency en-
sures a certain level of user anonymity. At the lowest level, users remain
pseudo-anonymous, i.e., the real identities of payer and payee remain ob-
scure. Consequently, cybercriminals have exploited the anonymity offered by
cryptocurrencies in various crimes, including money laundering and terror
financing. Moreover, cryptocurrencies bring several other severe concerns.

This thesis investigates the security and privacy implications of crypto-
currencies. This thesis is composed of three logical parts that focus on
recently thriving, prominent, and severe concerns related to: (i) Bitcoin;
(ii) Algorand ; and (iii) Cryptominers.

In the first part of this thesis, we investigate two issues related to Bitcoin
that hold significant importance in this era of cryptocurrencies. In particular,
we focus on alarmingly increasing ransomware campaigns and the privacy
concerns related to smartphone-based Bitcoin wallet apps. For the for-
mer, we present our comprehensive and longitudinal study on the recent
ransomware attacks and report the economic impact of such ransomware
from the Bitcoin payment perspective. For the latter, we present our work on
identifying sensitive user activities on Bitcoin wallet apps that are commonly
used for sending, receiving, and trading Bitcoin.
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The second part of this thesis focuses on Algorand. Algorand is a truly
democratic blockchain consensus protocol that has the potential to shape the
future of blockchain technology. To the best of our knowledge, it is the first
formal study on Algorand. In our security analysis, we propose a practically
feasible attack on Algorand and its possible countermeasures.

In the third part of this thesis, we explore covert cryptomining. The
demand for cryptomining has increased drastically with the increasing pop-
ularity of cryptocurrencies. In parallel to legitimate cryptomining demands,
covert cryptomining has emerged as a utility for malicious actors to gain
financial incentives. Cryptocurrencies, such as Monero, have further ag-
gravated the situation by enabling even naive users to mine via a browser
application. Considering the severity of the issue, we propose two efficient
solutions to detect covert cryptomining under different real-world scenarios.

vi



Contents

Abstract vi

1 Introduction 1
1.1 Research Motivation and Contribution . . . . . . . . . . . . . 2

1.1.1 Bitcoin . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Algorand . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Cryptominers . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 Journal Publications . . . . . . . . . . . . . . . . . . . 7
1.2.2 Conference and Workshop Publications . . . . . . . . . 7

I Bitcoin 9

2 Bitcoin Ransomware Campaigns 11
2.1 Background & Preliminaries . . . . . . . . . . . . . . . . . . . 13
2.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Ransom Identification Framework . . . . . . . . . . . . . . . . 16

2.3.1 Module 1: Identification of Ransomware Addresses . . 16
2.3.2 Module 2: Data Collection and Database Generation . 18
2.3.3 Module 3: Classifying a Payment as Ransom . . . . . 19

2.4 Economic Impact of Ransomware . . . . . . . . . . . . . . . . 20
2.4.1 CryptoLocker . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.2 CryptoDefense . . . . . . . . . . . . . . . . . . . . . . 26
2.4.3 CryptoWall . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.4 DMA Locker . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.5 Petya . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.6 KeRanger . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.7 WannaCry . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

vii



2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Privacy Issues in Bitcoin Wallet Apps 47
3.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Smartphone, App, and Action Selection . . . . . . . . 50
3.2.2 Equipment Setup . . . . . . . . . . . . . . . . . . . . . 52

3.3 Classifier Design . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.1 Data Preprocessing . . . . . . . . . . . . . . . . . . . . 53
3.3.2 Feature Selection . . . . . . . . . . . . . . . . . . . . . 53
3.3.3 Machine Learning . . . . . . . . . . . . . . . . . . . . 54
3.3.4 Training . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.5 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4.1 Evaluation Settings . . . . . . . . . . . . . . . . . . . . 57
3.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

II Algorand 63

4 Security Flaw in Truly Democratic Consensus Protocol 65
4.1 Algorand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1.1 The Limitations of Current Blockchain . . . . . . . . . 67
4.1.2 Salient Features of Algorand . . . . . . . . . . . . . . . 67
4.1.3 Protocol Assumptions . . . . . . . . . . . . . . . . . . 68
4.1.4 Network Communication . . . . . . . . . . . . . . . . . 68
4.1.5 Consensus Algorithm . . . . . . . . . . . . . . . . . . . 70
4.1.6 Cryptographic Sortition . . . . . . . . . . . . . . . . . 70

4.2 Our Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.1 Attack Preliminaries . . . . . . . . . . . . . . . . . . . 72
4.2.2 A Typical Flooding Attack . . . . . . . . . . . . . . . 72
4.2.3 Magnifying Attack’s Impact via Undecidable Messages 73

4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.1 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.2 Evaluation Settings . . . . . . . . . . . . . . . . . . . . 75
4.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Feasibility of the Attack . . . . . . . . . . . . . . . . . . . . . 78
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

viii



III Cryptominers 81

5 Detecting Covert Miners via Magnetic Side-channel 83
5.1 Background & Preliminaries . . . . . . . . . . . . . . . . . . . 85

5.1.1 Magnetic Field . . . . . . . . . . . . . . . . . . . . . . 85
5.1.2 Magnetic Field Sensor of the Smartphones . . . . . . . 86
5.1.3 Dynamic Time Warping . . . . . . . . . . . . . . . . . 86

5.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3 System Architecture . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.1 Core Concept . . . . . . . . . . . . . . . . . . . . . . . 89
5.3.2 Dataset Collection . . . . . . . . . . . . . . . . . . . . 90
5.3.3 Cryptocurrencies & Miners . . . . . . . . . . . . . . . 91
5.3.4 Classifier Design . . . . . . . . . . . . . . . . . . . . . 93

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.4.1 Binary Classification . . . . . . . . . . . . . . . . . . . 95
5.4.2 Currency Classification . . . . . . . . . . . . . . . . . . 96
5.4.3 Nested Classification . . . . . . . . . . . . . . . . . . . 97
5.4.4 Unseen-miner Program Classification . . . . . . . . . . 97
5.4.5 Cross-platform Classification . . . . . . . . . . . . . . 98

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.5.1 Zero-day Attack . . . . . . . . . . . . . . . . . . . . . 99
5.5.2 Probe’s Orientation & Position . . . . . . . . . . . . . 100
5.5.3 Interference due to Other Processes . . . . . . . . . . . 100
5.5.4 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.5.5 Restricted Mining . . . . . . . . . . . . . . . . . . . . 101

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Detecting Covert Miners via Hardware Performance
Counters 103
6.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . 105

6.1.1 Core Concept . . . . . . . . . . . . . . . . . . . . . . . 105
6.1.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . 106
6.1.3 Cryptocurrencies & miners . . . . . . . . . . . . . . . 107
6.1.4 Classifier Design . . . . . . . . . . . . . . . . . . . . . 109

6.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.2.1 Binary Classification . . . . . . . . . . . . . . . . . . . 112
6.2.2 Currency Classification . . . . . . . . . . . . . . . . . . 112
6.2.3 Nested Classification . . . . . . . . . . . . . . . . . . . 113
6.2.4 Sample Length . . . . . . . . . . . . . . . . . . . . . . 114
6.2.5 Feature Relevance . . . . . . . . . . . . . . . . . . . . 115
6.2.6 Unseen-miner Program Classification . . . . . . . . . . 115

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.3.1 Zero-day Attack . . . . . . . . . . . . . . . . . . . . . 116
6.3.2 Process Selection . . . . . . . . . . . . . . . . . . . . . 117

ix



6.3.3 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.3.4 Restricted Mining . . . . . . . . . . . . . . . . . . . . 117

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7 Conclusions 119
7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . 119

7.1.1 Bitcoin . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.1.2 Algorand . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.1.3 Cryptominers . . . . . . . . . . . . . . . . . . . . . . . 121

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.2.1 Bitcoin . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.2.2 Algorand . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.2.3 Cryptominers . . . . . . . . . . . . . . . . . . . . . . . 122

Bibliography 123

Appendix A Acronyms 139

Appendix B Standard Definitions 141

Appendix C Seed Bitcoin Addresses for Ransomware 143

x



Chapter 1

Introduction

Cryptocurrencies are virtually existing digital assets that use cryptography
to secure financial transactions, control the flow of new monetary units,
and verify the transfer of assets. In contrast to the conventional centralized
banking systems, cryptocurrencies are decentralized systems. These decen-
tralized systems employ a distributed ledger technology, called blockchain,
which serves as an append-only public database of the financial transactions.
New transactions are added to the ledger only after verification via a process
called cryptomining. The network nodes participating in the verification
process are called cryptominers.

The fundamental concept of an untraceable payment system dates back
to the ’80s. D. Chaum [52] presented the idea of creating untraceable pay-
ments in electronic payment systems in 1983. In 1993, researchers from
Carnegie Mellon University [203] and University of Southern California [148]
discussed the need of a cryptography-based digital currency. Nevertheless,
the idea of the first widely accepted and truly functional cryptocurrency,
i.e., Bitcoin [156], was introduced in November 2008 by a person or a group
of people under a pseudonym Satoshi Nakamoto. Bitcoin cleverly weaves
already existing knowledge derived from decades of research. Within a few
years of its quiet launch, Bitcoin flourished to make a billion-dollar economy.

After the success of Bitcoin, several other cryptocurrencies have been
introduced to the market. These new alternative cryptocurrencies are called
Altcoins. As of September 2019, there are over 2500 active cryptocurrencies
with over $250 billion total market capitalization and nearly $50 billion daily
volume [2]. JPMorgan Chase - a major financial institution - has recently
announced its digital coin for payments [122]. Several online shopping web-
sites, supermarkets, etc. nowadays accept cryptocurrency as a valid mode of
payment. Moreover, an increasing number of users are investing and trading
cryptocurrencies as regular commodities. To summarize, cryptocurrencies
are dramatically affecting and infusing in our day-to-day lives.
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1.1 Research Motivation and Contribution

Different cryptocurrencies aim to achieve different goals. For instance, some
cryptocurrencies focus on controlling the throughput of transactions while
others concentrate on performance. Nevertheless, users’ anonymity remains
the key feature across all the cryptocurrencies. The level of anonymity offered
by a cryptocurrency depends on its underlying design principles. At the low-
est level, users remain pseudo-anonymous, i.e., the real identities of payer and
payee remain obscure. Intuitively, cybercriminals have exploited cryptocur-
rencies for several illegal activities [190], e.g., terror financing [88], money
laundering [202], cyber-attacks [172] (in particular, ransomware [59]), and
to sell prohibited items over the darknet (e.g., Silk Road [204] and Black
Market Reloaded [102]). The pseudo-anonymity offered by cryptocurrencies
brings several severe concerns. In this thesis, we investigate the security and
privacy implications of cryptocurrencies. We present our research work in
the following three logical parts:

1. Bitcoin focuses on understanding Bitcoin-based ransomware campaigns
and privacy concerns related to smartphone-based Bitcoin wallet apps.

2. Algorand investigates a practically feasible attack on Algorand, which
is an innovative and truly democratic blockchain consensus protocol.

3. Cryptominers presents two efficient solutions to detect covert crypto-
mining under different real-world scenarios.

In what follows, we briefly introduce the parts mentioned above and highlight
our contributions. In this thesis, some passages have been quoted verbatim,
and some figures have been reused from the works [34, 58–60, 104], all co-
authored by the author of this thesis.

1.1.1 Bitcoin

Satoshi Nakamoto introduced Bitcoin in 2008, which is by far the most
successful peer-to-peer, decentralized, pseudo-anonymous, and cryptography-
based electronic currency [156]. Its source code was released as open-source
software in 2009 [157]. Bitcoin enables users to transact securely and pseudo-
anonymously by using an arbitrary number of aliases (Bitcoin addresses).
Bitcoin intelligently combines already existing works derived from decades
of research. Bitcoin made a billion-dollar economy within a few years of its
launch. Such a success of this pseudo-anonymous currency attracted cyber-
criminals to exploit the Bitcoin system in several different ways. Moreover,
it also comes with privacy concerns for the users. In Part I of this thesis,
we focus on two significantly important issues related to Bitcoin. In particu-
lar, we investigate alarmingly increasing ransomware attacks and the privacy
concerns for the smartphone-based Bitcoin wallet app users.
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Bitcoin Ransomware Campaigns

Ransomware is a class of malware that restricts access to the system it in-
fects until the victim pays the demanded ransom. According to a report by
Symantec Inc. [195], ransomware continued to be the most dangerous cyber-
crime threat to individual users and enterprises. Moreover, ransomware
attacks are becoming alarmingly frequent. Most recently, several schools
and universities were targeted by ransomware attacks across the United
States of America, which delayed the start of the year [161]. The evolving
class of ransomware has been exploiting privacy-preserving online services
(e.g., Tor hidden network [87]) to remain anonymous. Furthermore, the
pseudo-anonymous nature of decentralized cryptocurrencies (e.g., Bitcoin)
makes it difficult to trace a payee. Hence, the cybercriminals have been mis-
using cryptocurrencies to extort ransoms anonymously. Being the most com-
monly known cryptocurrency, Bitcoin is exploited the most by ransomware.

Contributions: In Chapter 2, we present our comprehensive and longitu-
dinal study on recent ransomware attacks and report the economic impact
of such campaigns from the Bitcoin payment perspective. We also present
a lightweight framework to identify, collect, and analyze Bitcoin addresses
managed by the same user or group of users (cybercriminals, in this case),
which includes a novel approach for classifying a payment as ransom. To ver-
ify the correctness of our framework, we compared our findings on CryptoLocker
ransomware with the results presented in the literature. Our results align
with the results found in the previous works except for the final valuation
in USD. The reason for this discrepancy is that we used the average Bit-
coin price on the day of each ransom payment whereas the authors of the
previous studies used the Bitcoin price on the day of their evaluation. Fur-
thermore, for each investigated ransomware, we provide a holistic view of
its genesis, development, the process of infection and execution, and char-
acteristic of ransom demands. Finally, we make our collected datasets and
knowledge-base publicly available.

Privacy Issues in Bitcoin Wallet Apps

Smartphones have become an integral part of our daily lives. Global smart-
phone sales have increased by nearly 1200% [160] in the last decade. Gen-
erally, smartphones come with standard tools and utilities out of the box.
Nevertheless, a user can download and install additional applications, called
apps, to get supplementary features in his/her smartphone. On another
side, Bitcoin has emerged as one of the most promising means for payments,
remittance, and trading. Supplemented by the convenience offered by smart-
phones, an increasing number of users are adopting Bitcoin wallet apps
for different purposes.
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Contributions: In Chapter 3, we focus on identifying user activities on
smartphone-based Bitcoin wallet apps that are commonly used for sending,
receiving, and trading Bitcoin. To accomplish our goal, we perform network
traffic analysis using machine learning techniques. Since we focus on apps of
the same type/functionality, it makes our classification problem even more
difficult compared to classifying apps tailored for discrete purposes. More-
over, our goal is to identify user activities even in the presence of encryption.
In our experiments, we considered the worldwide most downloaded Bitcoin
wallet apps on both Google Play Store and Apple’s App Store. We used
only physical hardware and omitted any emulator to build our experiment
scenario as close to the real environment as possible. We process the traf-
fic traces in several phases before extracting the features that are utilized
to train our supervised learning algorithms. We deal with the classification
problem in multiple stages in a hierarchical fashion. In our experiments, our
system attained nearly 95% accuracy in user activity identification.

1.1.2 Algorand

A variety of solutions, e.g., Proof-of-Work (PoW), Proof-of-Stake (PoS),
Proof-of-Burn (PoB), and Proof-of-Elapsed-Time (PoET), have been pro-
posed to make consensus mechanism used by the blockchain technology more
democratic, efficient, and scalable. However, these solutions have a num-
ber of limitations, e.g., PoW approach requires a huge amount of computa-
tional power, scales poorly, and wastes a lot of electrical energy. Recently,
an innovative and truly democratic protocol Algorand [54] has been pro-
posed to overcome these limitations. Algorand aims to solve the “blockchain
trilemma” of decentralization, scalability, and security. In Part II of this
thesis, we analyze this truly democratic blockchain consensus protocol from
a security point of view.

Security Flaw in Truly Democratic Consensus Protocol

Algorand uses a process, called cryptographic sortition, to securely and un-
predictably elect a set of voters from its network periodically. These voters
are responsible for reaching consensus through a Byzantine Agreement (BA) pro-
tocol for one block at a time, which guarantees an overwhelming probability
of the blockchain’s linearity and a block generation time of nearly a minute.
It is comparable to the works [40, 131] and has the potential to shape the
future of blockchain technology. Given the promising properties of Algorand,
its security aspects are crucial.

Contributions: In Chapter 4, we present a security analysis of Algorand.
To the best of our knowledge, it is the first security analysis as well as the
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first formal study on Algorand. We designed an attack scenario in which
a group of malicious users tries to break the protocol, or at least limits it
to a reduced partition of network users, by exploiting a security flaw in the
messages validation process of the BA protocol. Since the source code or an
official simulator for Algorand was not available at the time of our study,
we created a simulator to implement the protocol and assess the feasibility
of our attack scenario. Our attack requires the attacker to merely have the
trivial capability of establishing multiple connections with targeted nodes,
and it costs practically nothing to the attacker. Our results show that it is
possible to slow down the message validation process on honest nodes, which
eventually forces them to select default values on the consensus, leaving
the targeted nodes behind in the chain as compared to the non-attacked
nodes. Even though our results are subject to the real implementation of
the protocol, the core concept of our attack remains valid.

1.1.3 Cryptominers

Cryptomining is a process of validating and adding new transactions in the
blockchain digital ledger for a given cryptocurrency. It is an essential process
to keep most of the cryptocurrencies running. With an increasing number of
cryptocurrencies, the demand for cryptomining has increased notably. This
demand continues to remain huge because cryptomining, as mentioned be-
fore, is an inevitable operation to keep these currencies running. Such a
huge demand for mining has also attracted cybercriminals to earn financial
gains via covert cryptomining [11, 28]. Covert cryptomining is defined as
an unauthorized harnessing of computational resources to mine cryptocur-
rencies. In fact, unauthorized cryptomining attacks exceeded ransomware
attacks in 2018 and affected five times more systems [33]. Such exploitation
of the computational resources causes financial damage - primarily in the
form of increased electricity bills - to the victims, who often discover the
misuse when the damage has already been done. Additionally, prolonged
mining on an incompatible device may also harm the hardware [12]. In
Part III of this thesis, we investigate covert cryptomining and propose two
practical solutions to detect it under different real-world scenarios.

Detecting Covert Miners via Magnetic Side-channel

We can broadly categorize covert cryptominers into two classes: (1) conscious-
miners and (2) unconscious-miners. Conscious-miners (e.g., an unethical em-
ployee) exploit infrastructure allocated to them. Unconscious-miners (e.g., a
visitors to a website that hosts cryptomining scripts) mine unknowingly for
a third party. The task of cryptomining is to execute the core mining algo-
rithm repeatedly, which means that a robust signature can be constructed
for a particular algorithm. Interestingly, there are a limited number of min-
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ing algorithms. Hence, we focus on the mining algorithms. Notably, such
signature-based detection can be partially deceived by restricted cryptomin-
ing. But, it would directly affect the hashing rate and consequently the
profits; making the task of cryptomining less appealing.

Contributions: In Chapter 5, we present a novel approach that leverages
magnetic side-channel to detect both types of covert cryptominers. Our pro-
posed approach merely requires the physical proximity of the examiner and
a magnetic sensor, which is often available on smartphones, and it works
even when the examiner does not have login-access or root-privileges on the
suspect device. The fundamental idea of our approach is to profile the mag-
netic field emission of a processor for the set of available mining algorithms.
We built a complete implementation of our system using advanced machine
learning techniques. In our experiments, we included all the cryptocurrencies
supported by the top-10 mining pools, which collectively comprise the largest
share (84% during Q3 2018) of the market. By using the data recorded from
the magnetometer of an ordinary smartphone, our classifier achieved an av-
erage precision of over 88% and an average F1 score of 87%.

Detecting Covert Miners via Hardware Performance Counters

In continuation of our work on detecting covert cryptomining, we propose
an approach that is designed for another critical real-world scenario. Our
proposal in Chapter 5 uses magnetic side-channel to detect both types of
covert cryptomining. In that case, we assume that the examiner does not
have login-access (corresponds to conscious-mining) or root-privileges (cor-
responds to unconscious-mining) on the suspect device. Now, we specifically
focus on unconscious-mining, and unlike the previous case, the examiner here
owns the device and can elevate his/her access privileges on the device.

Contributions: In Chapter 6, we present an efficient and generic approach
to detect covert cryptomining on personal computers. We utilize Hardware
Performance Counters (HPC) to create signatures that grasp the execution
pattern of mining algorithms on a processor. We evaluated our methodol-
ogy on two different processors through an exhaustive set of experiments.
In our experiments, we considered all the cryptocurrencies supported by
the top-10 mining pools. Our results show that our approach can achieve
a near-perfect classification performance with samples of length as low as
five seconds. Due to its robust design, our solution can even adapt to zero-
day cryptocurrencies. We believe that our solution is practical and can be
deployed to tackle the uprising problem of covert cryptomining.

Finally, we draw conclusions and possible future works in Chapter 7.
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1.2 Publications

The research works presented in this thesis and done during my Ph.D. pro-
gram produced peer-reviewed journal, conference, and workshop publica-
tions. A complete list of the published and currently submitted papers is
listed in chronological order as follows: Section 1.2.1 lists the journal papers
and Section 1.2.2 lists the conference and workshop papers.

1.2.1 Journal Publications

[J1] M. Conti, A. Gangwal, and S. Ruj. “On the Economic Significance of
Ransomware Campaigns: A Bitcoin Transactions Perspective.” In Elsevier
Computers & Security, 79: 162-189, 2018. (JCR IF 2017: 2.650; IT-
ANVUR Class: 2)

[J2] A. Gangwal and M. Conti. “Cryptomining cannot Change its Spots:
Detecting Covert Cryptomining using Magnetic Side-channel.” In IEEE
Transactions on Information Forensics & Security, in press, 2019. (JCR
IF 2018: 6.211; IT-ANVUR Class: 1)

[J3] M. Conti, A. Gangwal, G. Lain, and S. G. Piazzetta. “Detecting Covert
Cryptomining using Hardware Performance Counters.” Under review at
IEEE Transactions on Dependable & Secure Computing, 2019.

[J4] M. Conti, A. Gangwal, M. Hassan, C. Lal, and E. Losiouk. “The Road
Ahead for Networking: A Survey on ICN-IP Coexistence Solutions.” Under
review at IEEE Communications Surveys & Tutorials, 2019.

1.2.2 Conference and Workshop Publications

[C1] A. Gangwal, M. Conti, and M. S. Gaur. “PANORAMA: Real-time
Bird’s Eye View of an OpenFlow Network.” In Proceedings of the 14th
IEEE International Conference on Networking, Sensing and Control (IC-
NSC), pages 204-209, 2017.

[C2] M. Conti, A. Gangwal, and M. S. Gaur. “A Comprehensive and Effective
Mechanism for DDoS Detection in SDN.” In Proceedings of the 13th IEEE
International Conference on Wireless and Mobile Computing, Networking
and Communications (WiMob), pages 1-8, 2017. (Acceptance rate: 28%).

[C3] M. Conti and A. Gangwal. “Blocking Intrusions at Border using Soft-
ware Defined-Internet Exchange Point (SD-IXP).” In Proceedings of the 3rd
IEEE Conference on Network Functions Virtualization and Software Defined
Networking (NFV-SDN), pages 1-6, 2017.

7



A. Gangwal
Security and Privacy

Implications of Cryptocurrencies

[C4] M. Conti, A. Gangwal, S. P. Gochhayat, and G. Tolomei. “Spot the
Difference: Your Bucket is Leaking - A Novel Methodology to Expose A/B
Testing Effortlessly.” In Proceedings of the 4th IEEE Workshop on Security
and Privacy in the Cloud (SPC) @ IEEE CNS, pages 1-7, 2018.

[C5] F. Aiolli, M. Conti, A. Gangwal, and M. Polato. “Mind Your Wal-
let’s Privacy: Identifying Bitcoin Wallet Apps and User’s Actions through
Network Traffic Analysis.” In Proceedings of the 34th ACM Symposium on
Applied Computing (SAC), pages 1484-1491, 2019.

[C6] M. H. Berenjestanaki, M. Conti, and A. Gangwal. “On the Exploitation
of Online SMS Receiving Services to Forge ID Verification.” In Proceedings
of the 14th International Conference on Availability, Reliability and Security
(ARES), pages 1-5, 2019. (Acceptance rate: 20.75%).

[C7] M. Conti, A. Gangwal, and M. Todero. “Blockchain Trilemma Solver Al-
gorand has Dilemma over Undecidable Messages.” In Proceedings of the 14th
International Conference on Availability, Reliability and Security (ARES),
pages 1-8, 2019. (Acceptance rate: 20.75%).

[C8] D. Pasquini, A. Gangwal, G. Ateniese, M. Bernaschi, M. Conti. “Im-
proving Password Guessing via Representation Learning.” Under review at
IEEE Symposium on Security and Privacy (S&P), 2020.
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Chapter 2

Bitcoin Ransomware Campaigns

Satoshi Nakamoto in 2008 proposed a decentralized and cryptography-based
electronic currency called Bitcoin [156]. Such financial systems eliminate
the control of centralized authority and provide ubiquity as well as fairness
via (quasi) real-time transactions. Such digital currencies also guarantee a
certain degree of anonymity, which raises novel and unique concerns, e.g., an
inevitable-growth in illegal activities.

On another side, ransomware is a class of malware that restricts access
to the system it infects until the victim pays the demanded ransom. Readily
available toolkits such as eda21 and Ransomware-as-a-Service (RaaS) en-
able even a novice user to create and launch ransomware. Furthermore, the
ransomware affiliate program lures users to spread ransomware in exchange
for profit share. According to the annual threat report-2017 published by
Symantec Inc. [195], ransomware continued to be the most dangerous cy-
bercrime threat to individual users and enterprises in 2016. Compared to
the previous year, the number of detected ransomware infection increased by
36% during 2016. Moreover, average ransomware detection rate reached over
1,500 incidents per day at the year-end. In particular, the average ransom
amount rose 266% from USD 294 in 2015 to USD 1,077.

The evolving class of ransomware has been exploiting privacy-preserving
online services, e.g., the Tor hidden network [87] to remain anonymous.
Moreover, the pseudo-anonymous nature of decentralized currencies such as
Bitcoin makes it difficult to trace a payee. Hence, the cybercriminals have
been misusing such payment systems to extort ransoms anonymously. In
this chapter, we present our comprehensive and longitudinal study on recent
ransomware and report the economic impact of such ransomware from the
Bitcoin payment perspective.

1eda2 is an abandoned open-source ransomware kit that was distributed only for ed-
ucational purposes.
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Contributions: Our contributions to the state-of-the-art are as follows:

1. We present a lightweight framework to identify, collect, and analyze
addresses that belong to the same user. We also propose a novel ap-
proach for classifying a payment as ransom.

2. Using our framework, we analyzed the economic impact (in terms of
ransoms extorted in Bitcoin) of all the recent ransomware: (i) that used
Bitcoin as at least one mode of ransom payment and (ii) for which at
least one Bitcoin address is publicly known.

3. We discuss the inception, evolution (where applicable), and function-
ality (including distribution, infection, and encryption procedure) of
every analyzed ransomware along with the magnitude and timeline of
their ransom demands.

4. We also release our dataset2 for future research endeavors. The dataset
contains a detailed transaction history of all the addresses we identified
for each ransomware. Hence, our results are fully reproducible.

To the best of our knowledge, our work is the first study that not only
elaborates the characteristics and functionality of various Bitcoin ransom-
ware, but it also gives more accurate insights on the economic impact of
such ransomware. In particular, our work is different from the state-of-the-
art on the following dimensions:

1. Unlike existing works [120,121,130,138,190], we consider both the day-
to-day lowest and highest Bitcoin price as well as the variations due to
the transaction fee to identify a payment as ransom.

2. To accurately assess the worth (in USD) of extorted ransoms, we use
the average Bitcoin price on the day of each ransom payment.

3. Our framework focuses on the transactions belonging to the address(es)
of interest rather than the entire blockchain, which saves bandwidth,
storage, and computational resources while querying the blockchain.

Organization: The rest of the chapter is organized as follows: Section 2.1
elucidates the essential concepts related to ransomware infection and the
Bitcoin currency system. Section 2.2 addresses the previous works on iden-
tification and assessment of cybercrimes in the Bitcoin ecosystem. In Sec-
tion 2.3, we explain our framework for ransom identification. In Section 2.4,
we present our findings and enlighten the economic impact the ransomware
that fulfilled our selection criteria. In Section 2.5, we discuss the limitations
of our proposed framework. Finally, Section 2.6 summarizes the chapter.

2https://tinyurl.com/y4u3c7zr
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2.1 Background & Preliminaries

In this section, we describe the chronology of a typical ransomware infection
and explain the fundamentals of the Bitcoin cryptocurrency system.

Ransomware: A typical ransomware infection includes the following events:

1. Infection: Similar to generic malware, ransomware are also distributed
via various infection vectors. These vectors include, but not limited
to, email spamming with malicious attachment (e.g., CryptoLocker) or
link to the malicious payload (e.g., CryptoWall), exploit packs (e.g., An-
gler browser exploit in TeslaCrypt and Neutrino exploit kit in DMA
Locker). Interestingly, recent ransomware incorporate self-propagation
capabilities. For instance, NotPetya and WannaCry exploit vulnera-
bilities in the network protocols to infect local computers on the same
network.

2. Encryption: After infiltration, ransomware silently encrypt files on the
infected system. In particular, ransomware target those files that are
valuable to the user, e.g., images, videos, documents. For the encryp-
tion process, ransomware use symmetric encryption algorithm, asym-
metric encryption algorithm, or even combination of the both. The
key for encryption is either generated locally or procured from a re-
mote Command and Control (C&C). Generally, the backup files are
also encrypted/deleted to prevent recovery. However, the files respon-
sible for running the system are not affected, at least until the deadline
for the ransom payment.

3. Extortion: After the encryption process, ransomware typically display
a ransom note on the screen. Generally, the ransom note of recent
ransomware includes a threat message, ransom amount specified in
fiat currency such as US dollar (for instance, USD 300 in NotPetya) or
cryptocurrency such as Bitcoin (for instance, 1 BTC in CryptoLocker),
a countdown timer that shows the time left before the deadline, and
a payment address. The payment address can be a Bitcoin address or
a website’s address that shows this Bitcoin address. The ransom note
often includes instructions on how and where to buy Bitcoin.

4. Decryption: After confirmation of the ransom payment, the ransom-
ware either automatically start the decryption process, or the victim
is asked to download and run a decryption tool.

Bitcoin: D. Chaum in his work [52] introduced the idea of untraceable
payments. Soon after, researchers from Carnegie Mellon University [203]
and University of Southern California [148] scrutinized the necessity for a
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cryptography-based digital currency. In November 2008, Satoshi Nakamoto
articulated a peer-to-peer, decentralized, cryptography-based electronic cur-
rency system called Bitcoin [156]. The basic terminologies used in the Bitcoin
system are:

• Address: A Bitcoin address is a string identifier of a possible destina-
tion for a Bitcoin payment. It is 26 to 35 alphanumeric characters long
and begins with the number 1 (Pay-to-Pub KeyHash or P2PKH type)
or 3 (Pay to Script Hash or P2SH type). Bitcoin addresses are hashed
public keys generated from the Elliptic Curve Digital Signature Algo-
rithm (ECDSA). Hence, each Bitcoin is associated with the owner’s
public key.

• Wallet: A wallet is a file that stores Bitcoin addresses along with the
corresponding private keys. It also maintains the Unspent Transaction
Output (UTXO) corresponding to each address.

• Blockchain: The blockchain is a shared, public ledger on which the
entire Bitcoin network relies. All confirmed transactions are included
in the blockchain without any exception. This way, new transactions
can be verified to be spending Bitcoin that are indeed owned by the
spender. The integrity and the chronological order of the blockchain
are enforced with cryptography.

• Block: An individual unit of the blockchain is called a block. Each
block includes the hash of the previous block to guarantee the in-
tegrity of the network, the nonce that assisted its mining, and a list of
the transactions.

• Transaction: A transaction refers to a transfer of Bitcoin between Bit-
coin addresses. To transfer Bitcoin, a payer creates a transaction mes-
sage. In this message, the payer specifies the payee’s Bitcoin address
as well as an amount of Bitcoin to transfer. As shown in Figure 2.1,
the payer authenticates the transaction by digitally signing it with
the private key of the corresponding address. Finally, Bitcoin network
broadcasts and confirms (typically, in the following 10 minutes) the
transaction through a process called mining. A confirmed transac-
tion is irreversible.
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Figure 2.1: An example of a simple Bitcoin transaction

A user can also purchase Bitcoin in exchange for other regulated curren-
cies. The unit of the Bitcoin currency is Bitcoin, abbreviated as BTC. Like
any other traded commodity, the price3 of Bitcoin varies. Figure 2.2 depicts
the BTC-USD exchange rate since July 18, 2010, the day when one of the
world’s first Bitcoin currency exchange market Mt. Gox was established.
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Figure 2.2: BTC-USD exchange rate trend

2.2 Related Works

Law enforcement authorities as well as the research community have made
several attempts to identify and measure cybercrimes in the Bitcoin ecosys-
tem. The authors in [44,86,147,175] proposed tools to analyze transactions in
the Bitcoin blockchain visually. Christin in [56] proposed a thorough analysis
of the Silk Road anonymous marketplace and discussed the socio-economic
implications of the findings. Ron and Shamir used the public blockchain
data to estimate the wealth of the Silk Road marketplace’s owner, known
as Dread Pirate Robert [178]. Soska and Christin studied anonymous online

3We use the term “price” to refer BTC-USD exchange rate.
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marketplaces including Silk Road, Sheep Marketplace, etc. and examined
how virtual marketplaces have evolved [189]. Meiklejohn et al. [149] pro-
posed an approach to comprehend overall transaction patterns of the Bitcoin
payments used for criminal or fraudulent purposes.

However, the literature on measuring the economic impact of ransom-
ware that accepted ransoms via Bitcoin (hereinafter referred to as “Bitcoin
ransomware”) is rather limited. Huang et al. [119] discuss the ethical and
technical issues of monitoring ransomware activities as well as the dynamics
of ransom payments. Liao et al. [138] analyzed the timestamps of ransom
payments to CryptoLocker. The work [130] provides a holistic view of the
general ransomware that appeared between 2006 and 2014. Additionally,
the authors also estimated the financial intensives gained by CyptoLocker
ransomware. Spagnuolo et al. proposed a framework called BitIodine [190].
The authors used BitIodine to investigate Bitcoin addresses associated with
CryptoLocker ransomware and Dread Pirate Roberts. The works [120, 121]
present a systematic analysis of CryptoLocker ransomware.

It is noteworthy that previous works [120, 121, 130, 138, 190] only con-
sidered either the daily average or highest Bitcoin price to classify ransom
payments and do not take into account the variations that might occur due
to the transaction fee. Furthermore, their estimation of the total worth of
extorted ransoms is based on the Bitcoin price on the day of their evalua-
tion, which exaggerates the results due to fluctuations (mostly, increase; see
Figure 2.2) in the price of Bitcoin. Additionally, the systems proposed in the
previous works [44, 86, 147, 175, 190] demand high bandwidth, storage, and
computational resources as they query the entire blockchain.

2.3 Ransom Identification Framework

To investigate the ransoms extorted by a ransomware, we first identify the
Bitcoin addresses linked to the ransomware. Then, we obtain the transaction
history of these addresses. Finally, we distinguish the transactions associ-
ated with the ransom payments. To this end, we propose our framework,
which consists of three stages/parts/modules: (i) identifying the Bitcoin ad-
dresses belonging to the ransomware (discussed in Section 2.3.1); (ii) data
(transaction history) collection and database generation from the blockchain
(presented in Section 2.3.2); and (iii) our considerations for classifying a
payment as ransom (elaborated in Section 2.3.3).

2.3.1 Module 1: Identification of Ransomware Addresses

Bitcoin offers privacy only through pseudonymity, and an increasing number
of works [43,149,175,177,178,189] suggest that information available in public
blockchain ledger can lead to de-anonymize (to a certain extent) Bitcoin
transactions.
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To collect the addresses associated with a ransomware, we began by
extensively searching various online resources: ransomware knowledge base
(e.g., ESET, Kaspersky Lab, Malwarebytes, Symantec); ransomware re-
moval guides (e.g., MalwareTips.com, 2-spyware.com, BleepingComputer-
.com, “How To” videos on YouTube); reports from Counter Threat Units
(CTU), Incident Responses (IR), and Security Operations Centers (SOC)
(e.g., Dell SecureWorks, PhishMe.com); online fora (e.g., Reddit) where vic-
tims and researchers post Bitcoin addresses associated with the concerned
ransomware; and screenshots of ransomware available in different image
search engines (e.g., Google, Yahoo). Considering the fact that not every
address related to a ransomware is posted on the Internet, we used two clus-
tering heuristics to identify the set of addresses controlled by the same user
(cybercriminals, in our case). Our heuristics are based on the fundamental
principles of the Bitcoin transaction protocol [156] and are as follows:

Multi-input transactions

A multi-input transaction usually4 takes place when a user U attempts to
make a payment, and the payment amount P cannot be sufficiently funded
by any of the individual Bitcoin balance available in U ’s wallet. In such a
scenario, the Bitcoin protocol allows grouping of a set of Bitcoin balances
from U ’s wallet to settle P and make payment through a multi-input trans-
action. Hence, we can conclude that if a set of input addresses Sinput is used
to disburse P , then Sinput is managed by the same user.

Shadow/change address

In the Bitcoin protocol, the whole input amount must be spent in the same
transaction. To deliver the “change” back to the user U , a shadow ad-
dress Ashadow is automatically generated and used to collect the unspent
amount of the transaction. If there are two addresses in the set of output
addresses Sout, and one address has never been seen before in the whole
blockchain while the other address has appeared before, then we can safely
presume that the newly generated address is a shadow address [149].

Algorithm 1 explains our approach to identify the addresses managed by
the same user, hereinafter referred to as “Cluster”. Here, Sinitial represents
the set of addresses collected from the online resources, Sinput is a set of
input addresses in a transaction, and Ashadow represents a shadow address
generated (if any) in a transaction.

4Nowadays, coin mixing services allow users to join their transactions to enhance
anonymity and unlinkability. However, such services have many security and privacy
concerns [61]. Hence, for simplicity, we assume that the user commonly does not make
use of Bitcoin mixers.
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Algorithm 1 Identifying addresses managed by the same user.
Input: Sinitial

1: Cluster := Sinitial
2: Cluster′ := {} B{ } is an empty set
3: while Cluster 6= Cluster′ do
4: Cluster′ := Cluster
5: M := {} BM stores Sinput
6: C := {} BC stores Ashadow
7: for i in Cluster do
8: Get all transactions Tx where i is an input address
9: for t in Tx do
10: M ∪ (Sinput in t) B∪ is set union
11: C ∪ (Ashadow in t)
12: end for
13: end for
14: Cluster := Cluster ∪M ∪ C
15: end while
16: return Cluster

Essentially, for a given list of addresses, our algorithm recursively finds
all the addresses satisfying our heuristics.

2.3.2 Module 2: Data Collection and Database Generation

As explained in Section 2.2, Bitcoin blockchain data is publicly available.
At the time of writing (December 2017), block height of the blockchain
was over 500,000 blocks, which means that downloading/querying the en-
tire blockchain is very expensive in terms of bandwidth, storage, and com-
putations. To address these issues, we built a lightweight system that uses
Blockchain Data API 5 to crawl and parse transactions associated only with
the address(es) of interest.

For each transaction associated with an address of interest (Address),
our system collects the hash of the transaction (HASH ), remitted Bitcoin
(BTC_to_Addr), GMT date (GMT_Date), and GMT time (GMT_Time),
input addresses (Trx_In_Addrs), and output addresses (Trx_Out_Addrs).
Listing 2.1 shows the SQL statement used to create our database.

5https://tinyurl.com/y6ssesr2
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CREATE TABLE tx (
HASH CHAR (64) NOT NULL PRIMARY KEY ,
BTC_to_Addr INT NOT NULL ,
Trx_In_Addrs TEXT ,
Trx_Out_Addrs TEXT ,
GMT_Date DATE ,
GMT_Time Time ,
Address CHAR (35) NOT NULL ,
Address_as_Input INT NOT NULL
);

Listing 2.1: SQL statement for creating our database

The field HASH serves as the Primary Key, which implicitly discards
any duplicate transactions reported for multiple participating/constituting
addresses. Address_as_Input denotes if the Address was used as an input
in the transaction. Our system also uses BitcoinAverage API 6 to collect
day-to-day highest, average, and lowest price of Bitcoin.

2.3.3 Module 3: Classifying a Payment as Ransom

A Bitcoin transaction involves two varying factors: (i) Bitcoin price, and
(ii) transaction fee. The price of Bitcoin changes frequently. Therefore, con-
sidering only the daily average, highest, or lowest price of Bitcoin is not
suitable, especially when the variation in the price is high. Furthermore, the
transaction fee is paid on the top of the transaction amount. A victim may
assume that the ransom amount to be paid includes (or excludes) the trans-
action fee, which leads to discrepancies in the payment-amount transferred
to an address. Moreover, the transaction fee depends on the size of the trans-
action, i.e., a transaction that involves a larger number of addresses would
incur more fee than a transaction with fewer addresses involved. Hence, to
classify a payment as ransom, our framework considers both the day-to-day
lowest and highest price of Bitcoin as well as the variation that might occur
due to the transaction fee.

In general, the cybercriminals specify the ransom either in Bitcoin (e.g.,
1 BTC) or USD equivalent BTC (e.g., Bitcoin equivalent to USD 300). Our
framework classifies a payment ρ to an address α in a transaction τ as ransom
if it satisfies at least one condition in Eq. 2.1a or Eq. 2.1b.

6https://tinyurl.com/ybzkbg7k
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demand in =


BTC =

{
rb = db,

rb = db − f,

USD =

{
vl ≤ du ≤ vh,
vl ≤ du − f ≤ vh,

(2.1a)

(2.1b)

where:

• f denotes the transaction fee, computed as the difference between the
total amount being spent and the total amount being received in τ .

• db denotes the ransom asked in BTC.

• du denotes the ransom asked in USD.

• rb denotes the BTC received by α in ρ.

• vl denotes the value of rb computed using the lowest BTC price of the
payment day.

• vh denotes the value of rb computed using the highest BTC price of
the payment day.

It is also important to mention that to evaluate the total ransom (in USD)
received by a ransomware cluster, it would be unfair to use the Bitcoin price
on the day of our evaluation as it would misrepresent the amount due to the
variations in the price. Hence, unlike previous works, we used the average
Bitcoin price on the day of each ransom payment.

2.4 Economic Impact of Ransomware

We found twenty ransomware that fulfilled our selection criteria, i.e., those
ransomware: (i) that used Bitcoin as at least one mode of ransom payment,
and (ii) for which at least one Bitcoin address is publicly known. Figure 2.3
depicts the reported debut period of these ransomware as well as the oc-
currence of their renamed/rebranded versions. We performed the numerical
assessment of the ransomware on December 7, 2017. Hence, all the data
reported in this chapter include the transactions until December 7, 2017. In
this chapter, we discuss only those ransomware for which the observed pay-
ments align with their period of activity and ransom demands. The details
of other ransomware have been omitted in this chapter to maintain the focus
of this thesis. The details of such ransomware can be found in our work [59].
Table 2.1 presents a summary of overall payments received by the addresses
of ransomware presented in this chapter. It also lists the payments classified
as ransom by our framework. Furthermore, for each payment class, it in-
cludes equivalent BTC/USD value (using day-to-day average Bitcoin price).
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It is clear that CryptoLocker received the maximum number of payments,
i.e., 51,766 payments that worth 133,045.9961 BTC, which is approximately
USD 42,292,191.17. However, our framework classified 3,730 payments re-
ceived by CryptoWall as ransom payments, which is the maximum number
of ransom payments extorted by any ransomware. These payments worth
5,351.2329 BTC or USD 2,220,909.12. On another side, KeRanger received
the minimum number of overall payments as well as the ransom payments.

Ransomware Overall Ransom
Payments BTC USD Value Payments BTC USD value

CryptoLocker 51,766 133,045.9961 42,292,191.17 804 1403.7548 449,274.97
CryptoDefense 128 138.3223 70,113.41 108 126.6960 63,859.49
CryptoWall 51,278 87,897.8510 45,370,589.00 3,730 5,351.2329 2,220,909.12
DMA Locker 298 1,433.3463 580,763.95 117 339.4591 178,162.77
NotPetya 70 4.1787 10,284.42 33 4.0576 9,835.86
KeRanger 13 10.0044 4,175.35 10 9.9990 4,173.12
WannaCry 341 53.2906 99,549.05 238 47.1743 86,076.76

Table 2.1: Summary of overall payments and ransom payments to the
ransomware for which the observed payments align with their period of ac-
tivity and ransom demands

Now, we discuss each ransomware in details.

2.4.1 CryptoLocker

Appeared in September 2013, CryptoLocker targets computers running Win-
dows operating system. It uses “Microsoft Enhanced RSA and AES Cryp-
tographic Provider (MS_ENH_RSA_AES_PROV)” to create encryption
keys and to encrypt users’ files with the strong RSA (CALG_-RSA_KEYX)
and AES (CALG_AES_256) algorithms. Before beginning the encryption
process, it establishes a connection with its C&C to obtain an RSA public
key. It encrypts each file with a unique AES key; after use, it encrypts each
AES encryption key with the RSA public key [120].

Infection: CryptoLocker infection spread through two modes. In its ini-
tial release beginning from September 5, 2013, the cybercriminals especially
targeted business professionals through spam emails. The messages of the
emails were typical “customer complaints" against recipients’ firm. Attached
to these emails was a ZIP archive that contained a single malicious Windows
executable (exe) file. The names of both the ZIP file and malicious executable
were identical (except for extensions) with 13 to 17 random alphabetical
characters. Later versions of CryptoLocker, starting from October 7, 2013,
were distributed by the peer-to-peer (P2P) Gameover ZeuS [193]. In this
case, Gameover Zeus used Cutwail spam botnet to send a huge number of
spam emails miming popular online retailers and banking institutions. These
emails often contained spoofed order confirmations, invoices, or urgent mes-
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sage for unpaid balances to entice victims to follow CryptoLocker exploit kits.

Ransom demand: The ransom note asks the victim to pay the ransom within
72 hours through any one of the various payment methods. It also threat-
ens that not paying the ransom would lead to (allegedly) destruction of
decryption keys. In the initial versions, the payment option included cashU,
Ukash, paysafecard, Bitcoin, or MoneyPak. However, later the ransoms
were collected only via Bitcoin or MoneyPak. All these payments methods
are anonymous (or at least pseudo-anonymous), which makes it difficult to
track the payer and the payee. The amount of demanded ransom and their
corresponding timelines (both the dates are included) are as follow:

• 2 BTC between September 5, 2013 and November 11, 2013 allowing a
three-day ransom period.

• 10 BTC between November 1, 2013 and November 11, 2013. The
payment was the fee for using “CryptoLocker Decryption Service” that
allowed victims, who failed to pay ransoms within the given time frame,
to recover their files.

• 1 BTC between November 8, 2013 and November 13, 2013 to allowing
a three-day ransom period.

• 0.5 BTC between November 10, 2013 and November 27, 2013 to allow-
ing a three-day ransom period.

• 2 BTC between November 11, 2013 and January 31, 2014. In this case,
the payment was the reduced fee for using “CryptoLocker Decryption
Service”.

• 0.3 BTC between November 24, 2013 and December 31, 2013.

• 0.6 BTC between December 20, 2013 and January 31, 2014.

Associated Bitcoin addresses and transactions: To evaluate the economic im-
pact of CryptoLocker, we initially began with four Bitcoin addresses listed
in Table C.1 in Appendix C. Using these addresses, Module 1 (Section 2.3.1)
generated 956 addresses belonging to CryptoLocker cluster (CCL). We ob-
tained the detailed transaction history of these addresses using Module 2 (Sec-
tion 2.3.2). Our analysis of transactions to CCL reveals that CCL received,
in total, over 51,000 payments, which accounts for over 133,000 BTC (more
than USD 42,000,000). Table 2.2 presents a summary of the total payments
credited to CCL.
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Payments BTC
USD valuez
(daily highest
BTC price)

USD value
(daily average
BTC price)

USD value
(daily lowest
BTC price)

51,766 133,045.9961 42,722,858.15 42,292,191.17 41,734,959.83

Table 2.2: Total payments credited to CCL including all ransom and non-
ransom payments

Economy of ransom payments in Bitcoin: To evaluate the gross economic
impact of only the ransom payments, we filtered the transactions using: (i)
the ransom amounts and their timeline, (ii) our classification criteria men-
tioned in Module 3 (Section 2.3.3). Figure 2.4 shows the total number of
ransoms paid by the victims by date. CCL received 33 payment on Octo-
ber 10, 2013, which is the maximum number of ransoms paid in a single day.
However, as shown in Figure 2.5, CCL received slightly more than 70 BTC
on November 5, 2013, which is the maximum number of Bitcoin received in
a single day. On another side, CCL received slightly above USD 23,000 on
November 8, 2013, which is the maximum USD collected in a single day, see
Figure 2.5.
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Figure 2.4: Number of ransoms paid to CCL
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Figure 2.5: Number of Bitcoin received (in ransoms) by CCL and their cor-
responding USD value
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By further analyzing the addresses of CCL, we discovered that approx-
imately 83.16% Bitcoin addresses received maximum two payments. More-
over, 13.33% Bitcoin addresses received no more than one Bitcoin perhaps
because victims were charged less due to a substantial increase in the Bitcoin
value in late November 2013. Moreover, an address7 collected 112.94 BTC
while a different address8 collected 83 ransom payments. These values cor-
respond to the maximum number of Bitcoin and the maximum number of
ransom collected by any address in CCL. Figure 2.6 and Figure 2.7 de-
pict Cumulative Distribution Function (CDF) of the number of ransoms and
number of Bitcoin received (in ransoms) per address respectively.
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Figure 2.6: CDF of ransoms received per address in CCL
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Figure 2.7: CDF of Bitcoin received (in ransoms) per address in CCL

In total, we have identified 804 ransom payments to CCL, which con-
tribute to a total of 1,403.75 extorted BTC. Using day-to-day average Bitcoin
price, we estimate that these ransoms convert to USD 449,274.97. Table 2.3
summarizes the ransoms paid to CryptoLocker.

716i7w5G2aoq8zqLDR3VJnawZ8VmYFZjVsd
81HFLn7JP7FZrufvNKkQPEfAWGjKUdFZEmy
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Ransom Time period Payments BTC USD value
2 BTC Sep. 05, ’13 - Nov. 11, ’13 443 884.9691 153,650.51

10 BTC (late) Nov. 01, ’13 - Nov. 11, ’13 17 170.0000 47,549.90
1 BTC Nov. 08, ’13 - Nov. 13, ’13 38 38.0000 14,302.26
0.5 BTC Nov. 10, ’13 - Nov. 27, ’13 118 59.0000 37,108.27

2 BTC (late) Nov. 11, ’13 - Jan. 31, ’14 106 212.0000 166,476.42
0.3 BTC Nov. 24, ’13 - Dec. 31, ’13 31 9.1856 8,584.88
0.6 BTC Dec. 20, ’13 - Jan. 30, ’14 51 30.6000 21,602.72
Total Sep. 05, ’13 - Jan. 30, ’14 804 1403.7548 449,274.97

Table 2.3: Summary of ransoms paid to CryptoLocker

Although we cannot be sure that the unaccounted transactions are not
ransom payments, our results align with the findings presented in works [120,
121, 138, 190] except for the final valuation in USD since the authors of
these studies used the Bitcoin price on the day of their evaluation. More
importantly, it implies that we can trust our methodology for evaluating
other ransomware where a baseline for comparison is not available.

2.4.2 CryptoDefense

With a sophisticated hybrid design, CryptoDefense first appeared in the
last week of February 2014. It incorporates many powerful techniques that
were used by previous ransomware. For example, use of Bitcoin and the
Tor network for anonymity, RSA-2048 based public-key cryptography for
strong encryption, and the typical pressure tactics such as a short deadline
for payment with threats of increasing the ransom after the deadline. It
targets Windows systems. CryptoDefense encrypts files using the AES-256
algorithm. It generates the encryption key on the victim’s computer using
Windows CryptoAPI library. After the file encryption process completes, it
encrypts the AES key using an RSA-2048 public key.

Infection: Primarily, CryptoDefense ransomware infiltrated via spam emails
that contained malicious payload disguised as a compressed PDF document.
Upon successful infiltration, it attempts to contact its C&C; and it sends
information about the infected system in the initial communication. Upon
receiving an acknowledgment from the C&C, it starts the encryption process.

Ransom demand: CryptoDefense asks USD/EUR 500 in Bitcoin within
four days to decrypt the files. The cost of decryption after four days in-
creases to USD/EUR 1,000. The attackers also provide a unique .onion page
for each victim. Here, the victims could see a screenshot of their compro-
mised system and decrypt one file as a proof of decryption.

Associated Bitcoin addresses and transactions: We began with two pub-
licly known Bitcoin payment addresses of CryptoDefense. These addresses
are listed in Table C.2 in Appendix C. In our analysis, the CryptoDefense
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cluster (CCD) had only two addresses as Module 1 generates no new address
from these addresses. Our analysis of transactions (obtained using Module 2)
to CCD indicates that CCD collected 128 payments. The total value of these
payments is somewhat above 138 BTC (more than USD 70,000). Table 2.4
presents a summary of the total payments credited to CCD.

Payments BTC
USD value

(daily highest
BTC price)

USD value
(daily average
BTC price)

USD value
(daily lowest
BTC price)

128 138.3223 72,342.26 70,113.41 67,715.88

Table 2.4: Total payments credited to CCD including all ransom and non-
ransom payments

Economy of ransom payments in Bitcoin: Due to the limited number of
transactions, we manually verified each payment to CCD. As shown in Ta-
ble 2.5, each Bitcoin address collected at minimum 35 ransom payments and
a minimum of about 36.83 BTC.

Address Payments BTC
19DyWHtgLgDKgEeoKjfpCJJ9WU8SQ3gr27 35 36.8339
1EmLLj8peW292zR2VvumYPPa9wLcK4CPK1 73 89.8622

Table 2.5: Number of ransoms and Bitcoin received (in ransoms) per address
in CCD

Figure 2.8 shows the total number of ransoms paid, and Figure 2.9 de-
picts the corresponding number of Bitcoin received and their value in USD.
Figure 2.8 and Figure 2.9 also depict that on March 28, 2014, CCD collected
around 13 BTC in 11 ransom payments, which amounts to approximately
USD 6,500. It is the day when it received the maximum number of ransom
payments/Bitcoin/USD in a single day.
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Figure 2.8: Number of ransoms paid to CCD
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Figure 2.9: Number of Bitcoin received (in ransoms) by CCD and their
corresponding USD value

In total, we identified 108 ransom payments to CCD, which corresponds to
126.70 extorted BTC. Using day-to-day average Bitcoin price, we compute
that the value of these ransom payments is equivalent to USD 63,859.49.
Table 2.6 summarizes the ransoms payments made to CryptoDefense.

Ransom Time period Payments BTC USD value
$/e500

Feb. 28, ’14 - Apr. 11, ’14
94 96.1758 49,271.63

$/e1,000 14 30.5202 14,587.86
Total 108 126.6960 63,859.49

Table 2.6: Summary of ransoms paid to CryptoDefense

Unexpectedly, CryptoDefense has a built-in flaw. It generates the asym-
metric key pair on the victim’s system. However, due to the poor implemen-
tation of the Microsoft’s cryptographic infrastructure, it leaves a local copy
of the keys. Anti-ransomware took advantage of this flaw to decrypt victim’s
computer. Such initiatives saved at least USD 175,000 worth ransoms [96].

2.4.3 CryptoWall

CryptoWall is recognized for its use of strong encryption algorithm, unique
.CHM file infection mechanism, and strong C&C activity over the anony-
mous Tor network. According to the Dell SecureWorks Counter Threat
Unit (CTU) research team [84], CryptoWall infection was spreading from
the first half of November 2013. However, the attackers activated it in the
first quarter of 2014. The earlier versions of CryptoWall closely imperson-
ated both the appearance and the behavior of the CryptoLocker. It affects
Windows operating systems by encrypting files using the RSA-2048 (and the
AES-256 encryption algorithm from version 3.0) encryption algorithm.

Infection: Since its genesis, CryptoWall had spread through several infec-
tion vectors, which included drive-by downloads, browser exploit kits (e.g.,
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Angler), and email attachments. Starting from late March 2014, it spread
through download links sent via the Cutwail spam botnet and malicious
email attachments. Interestingly, from June 2014, the malicious emails in-
cluded links to popular cloud services such as Dropbox, MediaFire, and
Cubby. The links pointed to a ZIP archive that contained the CryptoWall
executable. Later these emails used a standard “missed fax” decoy and also
mimicked message from government agencies or financial institutions that
included links to malicious payload hosted over cloud services.

Evolution: Each version of CryptoWall lasted for a few months until a
stealthier and enhanced version emerged.

• CryptoWall 1.0: Initial variants of CryptoWall lacked a unique name.
It surfaced with its official name in the first quarter of 2014.

• CryptoWall 2.0: It appeared in November 2014. This version was al-
most identical to the previous version. However, unlike its predecessor,
it creates a unique Bitcoin payment address for each victim and uses
its own Web-2-Tor gateways.

• CryptoWall 3.0: The third version of CryptoWall emerged in Jan-
uary 2015. This version uses a local symmetric (AES-256) key for
file encryption. The symmetric key is then encrypted using a unique
public (RSA-2048) key generated by the C&C server. Such process of
encryption is much faster as compared to the previous versions.

• CryptoWall 4.0: Another updated version with improved communica-
tions and better code design to exploit more vulnerabilities appeared
in November 2015.

Ransom demand: The attackers originally accepted ransom payments through
Litecoin [84]. However, the only witnessed Litecoin address9 never collected
any payment. Additionally, the victims could also pay the ransom via Bit-
coin. The amount of ransom fluctuated frequently. Also, the time frame
to pay the ransom varied up to seven days. According to our observation,
the demanded ransom and their corresponding timelines (both the dates are
included) are as follow:

• $200 worth BTC between March 2, 2014 and November 4, 2015.

• $500 worth BTC between March 2, 2014 and December 22, 2015.

• Late payment of $600 worth BTC between March 5, 2014 and Novem-
ber 5, 2015. This payment was three times the original ransom amount.

9LTv4m4y7NKHCXdw31dSEpTJmP6kXTinWDy
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• Late payment of $1,000 worth BTC between March 5, 2014 and De-
cember 2, 2015. This payment was twice the original ransom amount.

• $700 worth BTC between March 10, 2014 and December 11, 2015.

• Late payment of $1,400 worth BTC between March 11, 2014 and De-
cember 21, 2015. This payment was twice the original ransom amount.

Associated Bitcoin addresses and transactions: We began with forty-two
publicly known Bitcoin addresses of CryptoWall. These addresses are listed
in Table C.3 in Appendix C. Using these addresses, Module 1 generated
2,944 addresses belonging to CryptoWall cluster (CCW ). Our analysis of
transactions (obtained using Module 2) to CCW shows that CCW , in total,
received over 51,000 payments. The total worth of these payments is nearly
88,000 BTC (more than USD 45,000,000). Table 2.7 presents a summary of
the total payments credited to CCW .

Payments BTC
USD value

(daily highest
BTC price)

USD value
(daily average
BTC price)

USD value
(daily lowest
BTC price)

51,278 87,897.8510 46,526,673.59 45,370,589.00 44,020,263.63

Table 2.7: Total payments credited to CCW including all ransom and non-
ransom payments

Economy of ransom payments in Bitcoin: Using the timeline of ransom de-
mands, we carefully analyzed all the transactions with Module 3 to dis-
tinguish ransom payments and evaluated the net worth generated by such
payments. As shown in Figure 2.10 and Figure 2.11, on March 27, 2014,
CCW received slightly above 185 BTC in 158 payments. The total value
of these payments is over USD 100,000. It is the day when it received the
maximum number of ransom payments/Bitcoin/USD in a single day.
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Figure 2.10: Number of ransoms paid to CCW
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Figure 2.11: Number of Bitcoin received (in ransoms) by CCW and their
corresponding USD value

By investigating the addresses of CCW , we observed that approximately
43.77% Bitcoin addresses received no more than one payment and 40.10%
Bitcoin addresses collected maximum two Bitcoin. On another side, an ad-
dress10 collected 193.94 BTC in 209 ransom payments. These values cor-
respond to the maximum number of Bitcoin and the maximum number of
ransom collected by any address in CCW .

We have identified 3,730 ransom payments to CCW , which amount to
5,351.23 extorted BTC. Using day-to-day average Bitcoin price, we calculate
that these ransom payments are equivalent to USD 2,220,909.12. Table 2.8
summarizes the ransoms paid to CryptoWall.

Ransom Time period Payments BTC USD value
$200 Mar. 02, ’14 - Nov. 04, ’15 614 232.3343 121,849.84
$500 Mar. 02, ’14 - Dec. 22, ’15 1,631 2220.9167 821,741.46

$600 (late) Mar. 05, ’14 - Nov. 05, ’15 382 444.5144 226,558.14
$1,000 (late) Mar. 05, ’14 - Dec. 02, ’15 423 836.5054 422,576.75

$700 Mar. 10, ’14 - Dec. 11, ’15 466 966.7365 327,518.98
$1,400 (late) Mar. 11, ’14 - Dec. 21, ’15 214 650.2256 300,663.95

Total Mar. 02, ’14 - Dec. 22, ’15 3,730 5,351.2329 2,220,909.12

Table 2.8: Summary of ransoms paid to CryptoWall

Moreover, according to the report by CTU researchers [84], CryptoWall
attackers allowed the victims to decrypt their system by paying a further
increased amount even after the expired deadline. Although, we have not
directly observed any sample of CryptoWall demanding such compensations.
Nevertheless, the timing and the volume of such payments suggest that these
payments pertain to ransoms. Table 2.9 summarizes such payments.

1017AGazRCLStNguMDCxDoj7ZQHvaZBWTJZj
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Amount Time period Payments BTC USD value
$1,500 Mar. 12, ’14 - Dec. 12, ’15 222 678.7995 333,587.51
$1,750 Mar. 12, ’14 - Nov. 04, ’15 192 647.5063 336,578.87
$2,000 Mar. 06, ’14 - Jul. 06, ’14 170 650.7245 339,794.84
$10,000 Mar. 11, ’14 - Jul. 11, ’14 131 2623.3381 1,316,778.41
Total Mar. 06, ’14 - Dec. 12, ’15 715 4600.3684 2,326,739.63

Table 2.9: Summary of high value (possibly ransom) payments to Cryp-
toWall

If we add these payments to the originally identified ransom payments,
then the revenue of CryptoWall reaches nearly 10,000 BTC, i.e., approxi-
mately USD 4,500,000.

2.4.4 DMA Locker

DMA Locker is one of the most actively developed and updated ransomware
so far. From encryption algorithm to network communication, cybercrooks
perpetually updated each component of DMA Locker. Initially, it used only
the symmetric key cryptography for file encryption. However, later versions
employ a stronger encryption approach by combining the AES-256 and the
RSA-2048 encryption algorithms. It affects Windows operating system.

Infection: The distribution mechanism of DMA Locker also evolved with
the course of time. The malicious payload was hosted on compromised web-
sites, and their links were distributed via email spamming. It also infiltrated
by hacking Remote Desktops. The latest edition of the ransomware also
spread via Neutrino exploit kit [47].

Evolution: The development timeline of DMA Locker is discussed below:

• DMA Locker 1.0: The first version of DMA Locker was noticed in the
last week of December 2015 with support for two languages: Polish and
English. It performs file encryption by using the AES-256 algorithm
in ECB mode. It uses a single AES key to encrypt target files, which
is stored in the binary and deleted after use.

• DMA Locker 2.0: On February 3, 2016, DMA Locker was updated to
use separate keys for each file. After encrypting a file, it encrypts the
used AES key by a hardcoded RSA public key and stores the encrypted
AES key in the encrypted file.

• DMA Locker 3.0: Due to weak implementation of the random num-
ber generator, the AES key generated by the previous version can be
guessed. In view to fix the flaw, the third edition was released on
February 22, 2016. However, the entire campaign used the same RSA
key-pair. Meaning that single private key can be reused for decrypting
other infected systems.
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• DMA Locker 4.0: The latest version of DMA Locker was released on
May 19, 2016. This version generates a unique RSA key-pair on the
server for each victim. Unlike previous versions, DMA Locker 4.0 can
not work offline because it is designed to download the asymmetric
public key from the server [144].

Ransom demand: The cybercrooks behind DMA Locker accepted ransom
payments through Bitcoin. DMA Locker 4.0 gives payment instructions on
a website. The website was a regularly (not Tor-based) hosted site. Surpris-
ingly, the payment site used the same IP address as the C&C. Similar to
other components, the ransom amount was also updated with time. More-
over, the first two versions stipulate a strict deadline of four days to pay the
ransom. Other versions allow an extension of three days at the cost of an
increased ransom. The demanded ransom and their corresponding timelines
(both the dates are included) are as follow:

• 1 BTC between December 28, 2015 and July 22, 2016.

• 1.3 BTC between January 19, 2016 and May 30, 2016.

• 2 BTC between January 28, 2016 and July 22, 2016 to allowing a
three-day ransom period.

• 4 BTC between February 22, 2016 and June 5, 2016 to allowing a
three-day ransom period.

• 8 BTC as late fee between February 22, 2016 and August 5, 2016.

• 1.5 BTC as late fee between May 19, 2016 and July 11, 2016.

• 3 BTC between May 24, 2016 and August 25, 2016.

Associated Bitcoin addresses and transactions: To understand the economic
impact of DMA Locker, we began with eight Bitcoin addresses listed in
Table C.4 in Appendix C. Using these addresses, Module 1 generated 28
addresses belonging to DMA Locker cluster (CDL). Our scrutiny of transac-
tions (obtained using Module 2) to CDL shows that CDL received altogether
298 payments, i.e., more than 1,400 BTC (over USD 580,000). Table 2.10
presents a summary of the total payments credited to CDL.

Payments BTC
USD value

(daily highest
BTC price)

USD value
(daily average
BTC price)

USD value
(daily lowest
BTC price)

298 1,433.3463 593,498.26 580,763.95 567,543.86

Table 2.10: Total payments credited to CDL including all ransom and non-
ransom payments
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Economy of ransom payments in Bitcoin: We used Module 3, guided by
the timeline of ransom demands, to separate ransom payments. Figure 2.12
depicts the total number of ransoms paid by date. CDL received 5 payment
on April 27, 2016, which is the maximum number of ransoms paid in a
single day. On another side, as shown in Figure 2.13, CDL collected 12 BTC
on May 19, 2016, which corresponds to the maximum number of Bitcoin
received in a single day. Furthermore, CDL received over USD 6,300 on
August 5, 2016, which stands for the maximum USD received in a single
day, see Figure 2.13.
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Figure 2.12: Number of ransoms paid to CDL
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Figure 2.13: Number of Bitcoin received (in ransoms) by CDL and their
corresponding USD value

We further found that around 30% addresses in CDL collected no more
than one payment and nearly 20% Bitcoin addresses received less than one
Bitcoin. Furthermore, an address11 collected 112.87 BTC in 38 ransom pay-
ments. These values correspond to the maximum number of Bitcoin and the

111LPgKoErPUeM92SDY5axJzYCdQbeiRHD6i
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maximum number of ransom collected by any address in CDL. Table 2.11
summarizes the ransoms paid to DMA Locker.

Ransom Time period Payments BTC USD value
1 BTC Dec. 28, ’15 - Jul. 22, ’16 16 14.7526 7,052.37
1.3 BTC Jan. 19, ’16 - May 30, ’16 4 5.2470 2,424.01
2 BTC Jan. 28, ’16 - Jul. 22, ’16 16 32.0809 16,638.46
4 BTC Feb. 22, ’16 - Jun. 05, ’16 33 131.9950 60,443.98

8 BTC (late) Feb. 22, ’16 - Aug. 05, ’16 4 32.4892 16,960.59
1.5 BTC (late) May 19, ’16 - Jul. 11, ’16 6 8.9147 5,136.87

3 BTC May 24, ’16 - Aug. 25, ’16 38 113.9797 69,506.49
Total Dec. 28, ’15 - Aug. 25, ’16 117 339.4591 178,162.77

Table 2.11: Summary of ransoms paid to DMA Locker

We have identified 117 ransom payments to CDL, which contribute to
a total of 339.46 extorted BTC. Using day-to-day average Bitcoin price, we
estimate that these ransom payments value USD 178,162.77.

2.4.5 Petya

Initially seen in March 2016, this family of malware denies access to the full
system by targeting the low-level structures on the disk. Petya spread via
emails, and was delivered as Windows executable with an icon of a PDF
document. Upon running, it opens a User Account Control (UAC) window.
Accepting UAC allows Petya to run. In this case, it overwrites the Master
Boot Record (MBR) with a custom bootloader that loads a malicious ker-
nel. Then, this kernel encrypts the Master File Table (MFT) using Salsa20
stream cipher with a 32-byte long key, which leaves file system unreadable.
Figure 2.14 depicts the full process of Petya.

UAC 
prompt 

Infected exe

No infection

Reboot system, 
encrypt MFT

(Petya)

Accept

Reject

Figure 2.14: Workflow of Petya
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Mischa: In May 2016, the malware was modified to integrate another mali-
cious payload known as Mischa. Mischa was designed as a backup strategy
to Petya. Altogether, they target different (both high-level and low-level)
layers of a system. In this version, denying the UAC prompt directs Mischa
to encrypt local files on the victim computer; otherwise, Petya proceeds.
Figure 2.15 depicts the full process of Mischa. Both Petya and Mischa can
work offline without communicating with their C&C. The payload from the
dropper12 uses CryptGenRandom function from the Windows CryptoAPI
library to generate a random encryption key. Mischa uses a CBC-style file
encryption utilizing a randomly generated key along with the previously gen-
erated master key. Interestingly, Mischa can encrypt documents as well as
executables [38]. The cybercriminals also offered RaaS through their own
affiliate program.

UAC 
prompt

Infected exe

Encrypt local 
files (Mischa)

Reboot system, 
encrypt MFT

(Petya)

Accept

Reject

Figure 2.15: Workflow of Mischa

GoldenEye: The malware was again rebranded as GoldenEye in early De-
cember 2016. In contrast with the previous versions, GoldenEye executes
both payloads, where possible. Similar to its predecessors, it was also dis-
tributed via email. But, the payload was attached to an MS Excel document.
The document prompts the user to enable Macro content. Enabling Macro
content executes a malicious Visual Basic Script, which runs the Mischa
payload to encrypt documents on the system. After Mischa finishes, it at-
tempts to gain system privileges via DLL injection (Windows 7 - 8.1), or a
UAC prompt is shown (Windows 10). If DLL infection succeeds or the UAC
prompt is accepted, Petya payload encrypts the MFT. Figure 2.16 depicts
the full process of GoldenEye.

12The file that launches a malware.
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Figure 2.16: Workflow of GoldenEye

NotPetya: The latest variant of Petya surfaced on June 27, 2017. Kasper-
sky unofficially named13 it NotPetya/ExPetr due to significant differences in
its operations compared to the earlier versions. Initially, NotPetya was dis-
tributed as an update to MeDoc14 accounting software prevalent in Ukraine.
After infiltration, it self-propagates via two methods. One of the methods
is the EternalBlue exploit, which is an exploit of Windows’ Server Message
Block (SMB) protocol. The same exploit is also used by WannaCry ransom-
ware, which was released only a month before NotPetya. It can also spread
across network shares by Windows Management Instrumentation Command-
line (WMIC), for which it uses credentials acquired from the local machine.
In contrast with other ransomware, it focuses on the local network to spread
rather than the Internet. NotPetya works as a destructive data wiper tool
due to its inability to restore the encrypted sectors of the physical disk [197].

Associated Bitcoin addresses and transactions: We discuss the financial
13https://tinyurl.com/y4sqjo8o
14https://tinyurl.com/y2sy6oy7
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transactions associated with only NotPetya because the payments received
by the address clusters generated for Mischa and GoldenEye (using addresses
listed in Table C.5 and Table C.6 in Appendix C, respectively) were signif-
icantly less (no more than USD 3) than the demanded ransoms (roughly
USD 1,000). For NotPetya, cybercriminals used a single Bitcoin payment
address to collect a fixed ransom of USD 300. The address is listed in Ta-
ble C.7 in Appendix C. NotPetya cluster (CNP ) generated by Module 1 also
had only one Bitcoin addresses. We acquired the detailed transaction his-
tory of this address using Module 2. CNP received exactly 70 payments.
These payments worth slightly above 4 BTC (over USD 10,000). Table 2.12
summarizes the payments credited in CNP .

Payments BTC
USD value

(daily highest
BTC price)

USD value
(daily average
BTC price)

USD value
(daily lowest
BTC price)

70 4.1787 10,717.74 10,284.42 9,958.33

Table 2.12: Total payments credited to CNP including all ransom and non-
ransom payments

Economy of ransom payments in Bitcoin: We segregated ransom payments
using Module 3. As shown in Figure 2.17 and Figure 2.18, on the day of
its outbreak, i.e., on June 27, 2017 CNP received somewhat above 3 BTC in
total 27 payments that amount approximately USD 8,000. It collected the
maximum number of ransom payments/Bitcoin/USD on this day.
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Figure 2.17: Number of ransoms paid to CNP
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Figure 2.18: Number of Bitcoin received (in ransoms) by CNP and their
corresponding USD value

In total, we have identified 33 ransom payments to CNP , which add up
to roughly 4.06 extorted BTC. Using day-to-day average Bitcoin price, we
calculate that these ransom payments worth equivalent to USD 9,835.86.
Table 2.13 summarizes the ransoms paid to NotPetya.

Ransom Time period Payments BTC USD value
$300 Jun. 27, ’17 - Aug. 03, ’17 33 4.0576 9,835.86

Table 2.13: Summary of ransoms paid to NotPetya

Given the irreversible destructive nature and the targeted-software of
NotPetya, many researchers suggested that the primary aim of NotPetya
was not money. Other researchers speculated that it was probably a second
level attack to wipe traces of an early intrusion [141,184].

2.4.6 KeRanger

KeRanger emerged as the first fully functional ransomware that targets ma-
cOS operating system. It was discovered on March 4, 2016, by Palo Alto Net-
works. By nature it is a trojan horse, it uploads infected system’s informa-
tion (e.g., model name, UUID) to its C&C over the Tor network to obtain
an RSA public key. Along with the key it also receives victim-specific infor-
mation that it is writes to a file named “README_FOR_DECRYPT.txt.”
KeRanger encrypts each file F as follows:

1. Generate a random number (R).

2. Generate an Initialization Vector (I) using F’s content.

3. Encrypt R with the RSA key (obtained from C&C), and store it at the
beginning of F.encrypted file.
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4. Store I inside the F.encrypted file.

5. Mix R and I to generate an AES key.

6. Encrypt data of the original file with the AES key and write the en-
crypted data to F.encrypted file [50].

Infection: KeRanger was disseminated via two infected installers for the
open source BitTorrent client project Transmission version 2.90, which were
available for download on the official website. Moreover, these installers were
signed with a valid Mac app development certificate; hence, they bypassed
OS X’s Gatekeeper security feature.

Ransom demand: To decrypt the encrypted files, the cybercrooks asked
the victims to pay exactly one Bitcoin (around USD 400) through a website
hosted on the Tor network.

Associated Bitcoin addresses and transactions: We began with six identi-
fied Bitcoin address of KeRanger. These addresses are listed in Table C.8 in
Appendix C. Module 1 identified ten new addresses from these six addresses.
Therefore, KeRanger cluster (CKR) had a total of 16 addresses in our analy-
sis. The transactions (obtained using Module 2) to CKR show that CKR, in
total, received only 13 payments. These transactions worth around 10 BTC
(nearly USD 4,200). Table 2.14 presents a summary of the total payments
credited to CKR

Payments BTC
USD value

(daily highest
BTC price)

USD value
(daily average
BTC price)

USD value
(daily lowest
BTC price)

13 10.0044 4,204.54 4,175.35 4,147.01

Table 2.14: Total payments credited to CKR including all ransom and non-
ransom payments

Economy of ransom payments in Bitcoin: We isolated ransom payments
using Module 3. Figure 2.19 shows the total number of ransoms paid to
CKR. CKR received the last ransom payment on March 17, 2016. Fig-
ure 2.20 depicts the total number of Bitcoin received (in ransom) and their
corresponding value in USD. Moreover, we found that none of the address
received more than one Bitcoin (more than one ransom, in other words).
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Figure 2.19: Number of ransoms paid to CKR
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Figure 2.20: Number of Bitcoin received (in ransoms) by CKR and their
corresponding USD value

According to our analysis, CKR received only 10 ransom payments, which
contribute to roughly 9.99 extorted BTC. Using day-to-day average Bitcoin
price, we estimate that these ransoms convert to USD 4,173.12. Table 2.15
summarizes the ransoms paid to KeRanger.

Ransom Time period Payments BTC USD value
1 BTC Mar. 04, ’16 - Mar. 17, ’16 10 9.9990 4,173.12

Table 2.15: Summary of ransoms paid to KeRanger

One of the possible reasons for such low number of ransom payments
could be that by March 5, 2016, Transmission project removed the infected
installers from the website, and Apple revoked the abused certificate that
allowed Gatekeeper to block the infected installers.
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2.4.7 WannaCry

WannaCry (also known as WCry, WanaCrypt0r, Wana Decrypt0r 2.0) is
blended threat with characteristics of both a worm and a ransomware. It
was first seen on May 12, 2017. It affects Windows system by encrypting
files using a combination of the RSA and the AES algorithms. Interestingly,
it encrypts each file with a separate 128-bit AES encryption key in CBC
mode. Furthermore, it encrypts each AES key individually using the RSA-
2048 encryption algorithm [65].

Infection: WannaCry scans explicitly for the presence of the DoublePul-
sar backdoor on a target. If the DoublePulsar backdoor is not present, then
it tries to compromise the system using the EternalBlue exploit [143]. The
EternalBlue exploit was exposed merely a few months before the WannaCry
attack by a hacker group known as The Shadow Brokers.

Kill switch and kill mutex: A kill switch is usually employed to terminate
a program’s execution. In case of WannaCry, the kill switch was a domain
name15. Upon initialization, WannaCry tries to connect to the domain over
HTTP. If the connection is successful, then it stops and exits. Possibly, it was
designed to evade a sandbox testing. The kill switch domain was hardcoded
in the source code and was discovered by Marcus Hutchins16. On another
side, before beginning the encryption process, WannaCry attempts to create
a mutex named “MsWinZonesCacheCounterMutexA” and exits if the mutex
is already present.

Ransom demand: The ransom note asks the victims to pay USD 300 ransom
in Bitcoin within three days. The ransom note also states that the ransom
amount would become double (i.e., USD 600) after three days, and if the
ransom is not paid within seven days from the day of infection, all the en-
crypted files would be deleted.

Associated Bitcoin addresses and transactions: Cybercriminals intended to
create a unique Bitcoin payment address for each victim. But a race con-
dition bug prevents the correct execution of the code. In this situation,
it presents one of three hard-coded Bitcoin addresses to collect the ran-
som [198]. These addresses are listed in Table C.9 in Appendix C. Moreover,
using these addresses, Module 1 generated no new address. Hence, Wan-
naCry cluster (CWC) generated by our framework had only three Bitcoin
addresses during our analysis. We procured the detailed transaction history
of these three addresses using Module 2. CWC received 341 payments. These

15https://tinyurl.com/n5fy8nk
16https://tinyurl.com/y4t9gv39
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payments worth over 50 BTC (approximately USD 100,000). Table 2.16
summarizes the payments credited in CWC .

Payments BTC
USD value

(daily highest
BTC price)

USD value
(daily average
BTC price)

USD value
(daily lowest
BTC price)

341 53.2906 102,141.19 99,549.05 96,497.20

Table 2.16: Total payments credited to CWC including all ransom and non-
ransom payments

Economy of ransom payments in Bitcoin: Due to comparatively a smaller
number of transactions, we manually verified each payment to CWC . As
shown in Table 2.17, each Bitcoin address collected at minimum 69 ransom
payments and a minimum of nearly 13.52 BTC.

Address Payments BTC
12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw 77 15.1129
13AM4VW2dhxYgXeQepoHkHSQuy6NgaEb94 92 18.5431
115p7UMMngoj1pMvkpHijcRdfJNXj6LrLn 69 13.5183

Table 2.17: Number of ransoms and Bitcoin received (in ransoms) per ad-
dress in CWC

Figure 2.21 and Figure 2.22 indicate that on May 15, 2017, CWC re-
ceived 70 payments that amount to nearly 14 BTC, which is approximately
USD 24,000. It is the day when it received the maximum number of ransom
payments/Bitcoin/USD in a single day.
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Figure 2.21: Number of ransoms paid to CWC
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Figure 2.22: Number of Bitcoin received (in ransoms) by CWC and their
corresponding USD value

In total, we have identified 238 ransom payments to CWC , which add up
to 47.17 extorted BTC. Using day-to-day average Bitcoin price, we calculate
that these ransom payments worth equivalent to USD 86,076.76. Table 2.18
summarizes the ransoms payments made to WannaCry.

Ransom Time period Payments BTC USD value
$300

May 12, ’17 - Oct. 02, ’17
192 32.3430 58,416.62

$600 46 14.8313 27,660.14
Total 238 47.1743 86,076.76

Table 2.18: Summary of ransoms paid to WannaCry

The overall impact (including financial losses) due to WannaCry infection
could have been worse. Nevertheless, thanks to the early detection of the kill
switch, which prevented the infected computers from spreading WannaCry
further.

2.5 Limitations

One of the most important and decisive elements for the quality of the out-
comes of our framework is the address identification module, presented in
Section 2.3.1. It relies on the Bitcoin addresses collected from the pub-
lic sources; the quality of data collected from the public sources could be
a concern. One of the promising alternatives is to collect binaries of the
ransomware and execute them several times in a virtual environment to
witness/obtain Bitcoin addresses. However, the question of integrity and
authenticity of the binaries remains the same. Given the nature of the prob-
lem, we followed the approach used in the previous studies [138, 190] and
took extreme precaution while collecting addresses from the public sources.

The fundamental principles of the Bitcoin protocol implicitly impart two
types of flaws in our address identification module: overestimation and un-
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derestimation. Our methodology would overestimate when multiple users
pool their transactions into a single transaction; as in the case of mixers. On
another side, it would underestimate when there exists no evidence (in the
blockchain) of an address owned by a user being used in conjunction with
any other address of the same user. However, in a given scenario, it would
report more accurate results as compared to the existing approaches due to
its attributes of ransom classifications.

2.6 Summary

Pseudo-anonymity and irreversibility of Bitcoin transaction protocol have
made Bitcoin a dexterous utility among cybercriminals. Unlike genuine
users, who seek to transact securely and efficiently; cybercrooks exploit these
characteristics to commit immutable and presumably untraceable monetary
fraud. In this chapter, we have presented our comprehensive and longi-
tudinal study on recent Bitcoin ransomware along with their renamed/re-
branded versions. We have also introduced our framework to identify, collect,
and analyze Bitcoin addresses that belong to the cybercriminals behind the
ransomware. Moreover, we elaborated the characteristics and functionality
of the ransomware as well as reported the economic impact of such ransom-
ware from the Bitcoin payment perspective.
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Chapter 3

Privacy Issues in Bitcoin Wallet
Apps

Smartphones have become an integral part of our daily lives. Global smart-
phone sales have observed an enormous 1200% increase [160] in the past
decade. Generally, smartphones are equipped with standard utilities and
tools out of the box. To integrate supplementary features, the users can
download and install additional applications, also called apps.

Bitcoin has gained enormous attention when its price raised from ap-
proximately $1,000 in March 2017 to nearly $19,500 in December 2017 [59].
The market capitalization of Bitcoin also grew dramatically and reached a
level of $326 billion in Q4 2017. This growth in the value of Bitcoin attracted
masses to trade this cryptocurrency, and platforms such as Coinbase enabled
users to trade it conveniently. Moreover, several online shopping websites,
supermarkets, etc. accept Bitcoin as a valid mode of payment. Consequently,
an increasing number of users are adopting smartphone-based Bitcoin wallet
apps for different purposes such as payment, remittance, and trading.

Network traffic analysis, on the other side, has been extensively exploited
by adversaries to create user profiles and deduce sensitive information such as
which airline does the user fly with, which financial institution does the user
banks with, or which company provides insurance to the user. User profiling
is also used for other non-malicious activities such as network performance
optimization in the culture of bring your own device [158]. For traffic analy-
sis, traditional TCP/IP traffic may be identified using port information be-
cause applications tend to use “well-known” port numbers that are typically
reserved for standard services. Furthermore, to distinguish multiple sources
of data-traffic from services that utilize the same port number (e.g., Inter-
net browsing), it may sometimes adequate to inspect the HTTP headers,
in particular, IP addresses to identify the communicating peers. However,
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traffic analysis in the domain of the smartphones is complex because several
apps exchange data using HTTP/HTTPS. If the developers choose to use
HTTPS, the communication is encrypted, and thus, conventional techniques
of inspecting the traffic cannot help in the task of traffic identification. More-
over, many apps as well as ad networks use Content Distribution Network
(CDN) for scalable delivery of content and furnish Application Programming
Interfaces (APIs) to their applications. Using CDNs and APIs may cause
different apps to communicate via the same IP address (or IP range), which
consequently hinders the identification techniques that solely depend on the
IP addresses.

In this chapter, we focus on identifying activities of smartphone-based
Bitcoin wallet users via network traffic analysis. We motivate our work by
outlining one of the most critical situations arising in today’s cyber-space:
pseudo-anonymity offered by the Bitcoin system makes it difficult for law-
enforcing agencies to trace the masterminds behind modern cybercrimes,
e.g., ransomware campaigns, which are increasing day-by-day. We believe
that our work can assist in the hunt of cybercriminals by monitoring (or at
least by filtering) the potential Bitcoin wallet users. Most importantly, our
work can be extended to other categories of smartphone apps to improve
user profiling even further.

Contributions: We present our approach to identify user activities on
smartphone-based Bitcoin wallet apps. To accomplish our goal, we did
network traffic analysis using machine learning techniques. Since we focus
on apps of the same type/functionality, it makes our classification problem
even more difficult compared to classifying apps tailored for discrete pur-
poses. Moreover, our goal is to identify user activities even in the presence
of encryption.

Organization: The remainder of this chapter is organized as follows: Sec-
tion 3.1 discusses the previous works on traffic analysis. Section 3.2 elabo-
rates our system’s design. Section 3.3 covers the details of our classifier. We
present and discuss our results in Section 3.4. Finally, Section 3.5 summa-
rizes the chapter.

3.1 Related Works

Since our work relies on network traffic analysis, we will primarily discuss the
previous works related to it. Network traffic analysis using machine learning
techniques has been an active area of research. Several attempts have been
made to analyze network traffic from workstations, smartphones, etc. On the
surface, smartphones’ traffic analysis may appear as a sheer translation of
existing works for workstations. However, several studies [101,113, 136, 215]
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have concluded that despite having similarities (e.g., end-to-end communica-
tion using via IP addresses and ports), there are nuances in the characteris-
tics of the traffic generated by smartphones. Here, we will discuss the works
related only to the smartphones; i.e., the main focus of our work. However,
the interested readers may refer to the works [51, 114, 115, 139, 164, 174] to
comprehend traffic analysis on workstations.

In the domain of the smartphones, network traffic analysis has been
effectively utilized to leak sensitive user data [97], to find device’s loca-
tion [37], and to profile users based on the apps installed on their device [192].
Dai et al. [82] propose NetworkProfiler to automate profiling and identifi-
cation of Android apps. It scrutinizes HTTP payload, and thus the ap-
proach is not adequate when the payload is encrypted. Wang et al. [207]
present an approach for inspecting encrypted 802.11 frames to identify apps
from App Store. Qazi et al. [169] propose a framework, called Atlas, to
recognize Android apps using network flows obtained by leveraging SDN’s
data reporting. Mongkolluksamee et al. [153] use communication patterns
and packet size distribution to distinguish among distinct Android apps.
Alan and Kaur [36] use TCP/IP headers of the first 64 packets generated
upon app launch to identify Android apps. Taylor et al. [201] showed that a
passive eavesdropper can recognize Android apps by fingerprinting network
traffic. Conti et al. [62] suggest eavesdropping encrypted network traffic to
classify user actions within the scope of different Android apps. Similarly,
Saltaformaggio et al. [182] propose NetScope, which also examines encrypted
traffic to identify user activity. The work presented in [64] focuses on iMes-
sage and three other third-party messaging apps for iOS to detect messaging
activity. Zhou et al. [217] target a specific user action (i.e., send a tweet) on
the Twitter app installed on an Android smartphone.

To summarize, existing solutions either focus on apps from different cat-
egories that inherently generate distinct network traffic or consider a par-
ticular smartphone platform. Our work is different from the state-of-the-art
on two dimensions: (1) we focus on apps of same type/functionality, which
makes classification problem even more difficult; (2) we consider both An-
droid and iOS operating system, which collectively covers the majority of
smartphone users.

3.2 System Design

We elaborate our decision for selecting the smartphones, apps, and their
actions in Section 3.2.1. We also elucidate our equipment setup used for our
experiments in Section 3.2.2.
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3.2.1 Smartphone, App, and Action Selection

According to the report by Gartner [105], Android and iOS devices together
accounted for 99.9% of all smartphone sales by the end of the year 2017.
Hence, in our study, we used both Android (Samsung Galaxy S5 running An-
droid 6.0.1) and iOS (iPhone 5 running iOS 10.3.3) smartphones. Table 3.1
lists the worldwide most downloaded [45] Bitcoin wallet apps on both Google
Play Store and Apple’s App Store in the year 2017.

N. Google Play Store App Store
1 Coinbase Coinbase
2 Zebpay Blockchain

3 Bitcoin Wallet
(Bitcoin.com) Bread

4 Luno Bitcoin Wallet
(Bitcoin.com)

5 Xapo Xapo
6 Unocoin BitPay
7 Mycelium Zebpay
8 Wirex Wirex

9 Bitcoin Wallet
(Bitcoin Wallet Devs) BTC.com

10 BTC.com Copay

Table 3.1: Top 10 most downloaded Bitcoin wallet apps

From the apps listed in Table 3.1, we considered nine apps. These
apps are listed in Table 3.2. The apps we omitted in our experiments are
either country restricted (e.g., Unocoin requires Indian phone number and
tax code to register) or available for both the platforms with identical fea-
tures (e.g., Wirex). However, as the representative of the later class of apps,
we included Bitcoin Wallet (Bitcoin.com) app for both the platforms. For
non-Bitcoin apps, we chose the top-10 apps along with additional 20 Internet-
dependent apps from the respective official application store of each platform.
It is important to mention that these numbers do not include system apps
and the apps that do not require the Internet, e.g., calculator app.

We inspected each app and identified the actions available on it. For
Bitcoin wallet apps, we found seven classes of actions relevant to Bitcoin
transactions: open the app, receive Bitcoin, send Bitcoin, generate a new
Bitcoin address, buy/sell (trade) Bitcoin, see transaction history, and check
available balance. We omitted other actions available on the wallet apps
because they do not necessarily elicit network traffic, e.g., exit/close the app
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and share the app via SMS/Bluetooth. Table 3.3 lists the actions available
on the wallet apps mentioned in Table 3.1.
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Blockchain 3 3 3 7 3 ¨ e
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Xapo 3 3 3 7 3 v e

Zebpay 3 3 3 7 3 v e

3 Available 7 Not available e On app’s home ¨ Under individual
wallet/currency
9 Under dedicated menu for wallets’ summary v Under dedicated menu
for transaction history
@ Redirects to an external website, leaving the app

Table 3.3: Actions available on Bitcoin wallet apps
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From Table 3.3, it is clear that only three actions, i.e., open the app,
receive Bitcoin, and send Bitcoin are available across all the wallet apps.
Hence, we choose these three actions for classification, which indeed are
the most important actions for Bitcoin transactions. It is also important to
mention that opening the app may also be seen as the user’s intent to inquire
about the available balance or to synchronize transaction history. Given the
wide-variety of distinct apps in the non-Bitcoin app category, we collected
traffic traces for such apps while using each device normally for 8 hours.
Next, we explain our equipment setup for experiments and data collection.

3.2.2 Equipment Setup

Figure 3.1 shows our equipment setup for collecting network traffic generated
from the apps. The workstation was equipped with two Ethernet-based Net-
work Interface Controllers (NICs); one for connecting it to the Internet and
the other one for connecting it to the Wi-Fi Access Point (AP). The work-
station was configured to forward traffic between Wi-Fi AP and the Internet.
The smartphones were provided access to the Internet over a wireless con-
nection via Wi-Fi AP. It is important to mention that only one smartphone
was connected to the Wi-Fi AP at a time. To simulate user actions on the
smartphones and thus evoke network traffic, scripted-commands were sent
via USB. For the Android device, we used Android Debug Bridge (adb1),
while for iOS device, we used Alloy 2.1.12 app that allows to automate the
device without jailbreaking it. The generated network traffic was captured
on the workstation using Wireshark 2.2.63.

Internet

Wi-Fi AP

Scripted-commands sent via 
USB to simulate user actions

Ethernet Conn.
Wireless Conn.

Figure 3.1: Equipment setup

The captured traces were exported to Comma Separated Value (CSV)
files; each row holding the details of one captured packet. For each packet,
we collected time, source IP address, destination IP address, ports, packet
length, protocol, and TCP/IP flags. Although the packet’s payload was
gathered, it was discarded since it may or may not be encrypted. Finally, to

1https://tinyurl.com/y643gk3h
2https://tinyurl.com/yxrropge
3https://tinyurl.com/b86zcb
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make the experiment scenario as close to the real environment as possible,
we used only physical hardware and omitted any device emulator or virtual
machine. We used Actiona 3.9.14 tool to coordinate data collection process.

3.3 Classifier Design

In this section, we present the design of our classification procedure. At first,
we describe the data preprocessing phase necessary to get suitable training
instances for the classification algorithm. Then, we briefly define the machine
learning methods we used and how they have been trained and finally used
for the classification.

3.3.1 Data Preprocessing

To handle network traffic traces via machine learning models, we need to
perform a preprocessing step. In this work, we employ a procedure inspired
by [201]. The complete procedure is composed of the following steps:

1. Network trace capture: The network trace capturing process aims
to collect traffic data from a network in which simulated users are using
apps connected to such network. The full equipment setup has been
described previously in Section 3.2.2.

2. Traffic burstification: After the data collection phase, the network
traffic is parsed. The parsing aims to obtain chunks of traffic that
can be directly converted into training instances suitable for learning
models. The first part of the parsing step is the so-called traffic bursti-
fication: the network traffic is divided into macro-chunks called bursts.
A burst is defined as a sequence of traffic packets, where each packet
is either received or transmitted within a threshold of time. In our
experiments, such threshold has been fixed to one second.

3. Flows separation: The next part of the parsing step further divides
the bursts into chuncks, called flows, corresponding to traffic between
pairs of IP addresses/port. Anytime the port information was not
available the corresponding packet was discarded. Similarly, flows with
less than three packets has also been discarded.

3.3.2 Feature Selection

After the data preprocessing stage, we obtain a set of flows; each of them
corresponding to a particular action of a specific app. The final step consists
of converting the flows into training instances. It is important to notice that
a single action of an application can produce more than one flow, and hence

4https://tinyurl.com/y3462q7l
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it can produce more than one training instance. For each flow, the following
feature selection procedure has been performed:

• Assuming the local IP address as the target endpoint of the flow, we
convert each packet into a number corresponding to its length in bytes.
If the packet has been sent by the target, such number is negated.
At the end of this step, the flow is converted into a sequence (time
series) of integer numbers. It is worth to note that the lengths of
such sequences of numbers are not uniform and hence, in general, are
not directly suitable as training instances. Machine learning models
usually require fixed length input instances.

• The extracted sequence is finally converted into a training instance via
a statistical feature extraction procedure, which simply compute some
statistics over the time series. The used statistics are: length of the
series, minimum, maximum, mean, median, mode, variance, skewness,
kurtosis, and percentile at 25%, 50% and 75%. These statistics are
collected for the entire sequence, for the incoming packets only, and
for the outgoing packets only. Hence, the resulting training instance
has a dimension of 36 (12× 3). Finally, if we called x ∈ R36 the vector
containing the statistics, the complete training instance is described
by the pair (x, y), where y is the target classification value.

It is worth to mention that while source and destination IP addresses have
been used for flows separation, they were not leveraged in any way during
the classification. The full procedure, including the data preprocessing steps,
is depicted in Figure 3.2.

3.3.3 Machine Learning

Given the modularity of the proposed framework, any classification method
can be plugged to perform the task. For experimental purposes, we em-
ployed two of the most successful machine learning methods for classification,
namely Support Vector Machine (SVM) and Random Forest (RF).

SVM is one of the most used kernel methods in machine learning [63, 185,
205]. Besides its good reputation in terms of classification accuracy,
SVM’s popularity is also given by its strong theoretical foundation.
SVM aims to find a hyperplane that separates the instances with dif-
ferent labels. Such hyperplane is guaranteed to maximize the minimum
distance between two points with different label. This property entail
very good generalization capabilities to unseen examples, which is a
desired feature for any machine learning model.

RF also known as random decision forests [116], are learning algorithm of
the family of ensemble learning methods. RF for classification operate
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by constructing a set of decision trees at training time, and at the
prediction time, they output the class that is the mode of the classes
(classification) of the individual decision trees. One of the strengths
of RF are their efficiency and their simplicity. Since they are based
on decision trees, it is very easy to grasp what they do under the
hood. Moreover, RF have achieved state-of-the-art performances in
many classification tasks.

(a) Network traces capture: dif-
ferent colors represent different
applications.

(b) Traffic burstification: traces
are split into bursts.

(c) Flows separation: for each burst, dif-
ferent flows are separated by means of the
pairs of source-destination IPs.

(d) Training set creation: flows are con-
verted into vectors of statistical features
about the packets length.

Figure 3.2: Network traffic preprocessing

3.3.4 Training

The training phase consists of learning the model parameters using the train-
ing set. In our scenario, in which we want to identify whether a Bitcoin app is
being used and also which specific action of such app is being performed, we
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need to tackle the problem at different levels. We can identify the following
layers of classification:

1. Classify whether the instance represents a flow of a Bitcoin app or not;

2. If so, classify whether it belongs to an Android app or an iOS app;

3. If is categorized as Android (or iOS) app, classify the specific app;

4. Given the app from the previous step, classify the specific action.

The full stack of classification layers is depicted in Figure 3.3.

Bitcoin vs.
non-Bitcoin

iOS vs.
Android

Classify
app

Classify
action

Figure 3.3: Classification hierarchy: (i) Bitcoin apps are isolated from the
non-Bitcoin ones; (ii) Bitcoin apps are classified on the basis of the operating
system; (iii) For the target operating system, the Bitcoin app is identified;
(iv) given the app, the related action is identified.

Hence, the training phase requires to learn one model for each of the
classification tasks described above. Before starting the training, we apply
to the training instances a scaling function to normalize the input data.
In particular, we used both MinMax and Standard scaling techniques. See
Appendix B for further details on these scaling techniques.

3.3.5 Prediction

Given a new instance to classify, the prediction is performed using the same
steps as in the training phase. Clearly, if a wrong prediction is made in
one step, all the following steps will also be wrong except for user action
classification, which can be still correct. This is due to the fact that same
actions are shared between the applications, and it can be correctly identified
even if the app identification is not correct.

3.4 Evaluation

In this section, we show the evaluation procedure used to assess the quality
of the proposed approach. For each of the classification step identified in
Section 3.3.4, we first trained a classifier, and then we tested it on an hold
out set of instances. We performed two different experiments:

1. Single classifier assessment: in this setting, each single classifier is
tested independently of the others.
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2. Full stack classification: in this setting, the classification is performed
following the full-sequence of classification as described in Figure 3.3.

Here, we also argue about the obtained results.

3.4.1 Evaluation Settings

All the experiments have been conducted using a stratified 5-fold cross valida-
tion. In order to increase the statistical significance of the result, we repeated
each experiment 10 times with different 90-10% training and test splits. The
validation procedure is used to do model selection, and the validated hyper-
parameters for SVM and RF are shown in Table 3.4 and Table 3.5, respec-
tively. We chose standard range of values for the hyper-parameters [117].
We also validated the scaling techniques shown previously.

Parameter Validated values Effect on the model

γ {10−6, . . . , 103}
Shape parameter of the RBF kernel
which defines how an example influ-
ence in the final classification.

C {10−3, . . . , 103}

Regularization parameter that con-
trols the trade-off between the achiev-
ing a low training error and a low test-
ing error that is the ability to general-
ize your classifier to unseen data.

Table 3.4: Hyper-parameters validated for Support Vector Machine

Parameter Validated values Effect on the model
# of trees {10, 50, 100} Number of trees use in the ensemble.
Max depth 3, ∞ Maximum depth of the trees.

Bootstrap yes / no

Bootstrap Aggregation (a.k.a. bag-
ging) is a technique that reduces
model variances (overfitting) and im-
proves the outcome of learning on lim-
ited sample or unstable datasets.

Split criterion gini, entropy Criterion used to split a node in a de-
cision tree.

Table 3.5: Hyper-parameters validated for Random Forest

It is worth to mention that, even though the dataset has been collected
in a controlled setup, the full hierarchical classification well simulate a real-
world scenario in which instances are gathered in real time. Table 3.6 de-
scribes the instances distribution over the apps and over the actions for both
iOS and Android systems. The total number of instances for non-Bitcoin
app are 4662. After the preprocessing step, Luno app did not produce any
meaningful flow. Hence, we had to discard Luno app. One of the possible
reasons for such behavior of the app could be that the app mostly processes
the data off-line.
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App OS Open
App

Receive
Bitcoin

Send
Bitcoin Total

BTC.com Android 149 22 20 191
Bitcoin Wallet
(Bitcoin.com) Android 51 21 46 118

Coinbase Android 286 20 19 325
Mycelium Android 251 20 38 309
BitPay iOS 20 54 20 94

Bitcoin Wallet
(Bitcoin.com) iOS 49 40 137 226

Blockchain iOS 346 40 167 553
Bread iOS 29 208 217 454
Copay iOS 20 52 20 92

Total 1101 477 684 2362

Table 3.6: Dataset description: app name; operating system; number of
instances for open app, receive Bitcoin, and send Bitcoin actions; and the
total number of instances

It is worth to notice that the real proportion of Bitcoin and non-Bitcoin
apps is actually much more imbalanced. However, in machine learning one
of the standard approach to deal with highly imbalanced datasets is to use
over-sampling of the minority class [53]. Thus, in our setting, the almost
balanced dataset follows the same direction of the over-sampling technique.
All methods have been evaluated using standard classification metrics: Ac-
curacy, Precision, Recall, and F1 measure. See Appendix B for details on
these metrics.

3.4.2 Results

In this section, we present and discuss the results obtained by our proposal
on user activity identification task.

Single classifier assessment

The following battery of experiments aim to assess each classification layer
individually. In these cases, every layer works with a controlled training set
and independently from the others. The goal of this preliminary assessment
is to check whether some of the classifications are harder than others. Ta-
ble 3.7 to Table 3.12 present the results for single classifier for different tasks
mentioned in Section 3.3.4. Here, we present the classification performances
of RF and SVM over 10 runs of a stratified 5-fold cross validation. We report
the average results with their standard deviations, and (·) indicates the best
result for the metric.

For Bitcoin vs. non-Bitcoin app classification, we achieved an accuracy
of 97.7% using RF, see Table 3.7. Next, as shown in Table 3.8, we attained
an accuracy of 98.4% using RF in correctly identifying the OS to which an
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app belongs to. The performance metrics for Bitcoin app classification on
Android platform are listed in Table 3.9. Here, we reached an accuracy of
96.6% using RF. The accuracy in identification of user actions in Bitcoin
apps on Android platform is listed in Table 3.10. The performance metrics
for Bitcoin app classification on iOS platform are listed in Table 3.11. Here,
we attained an accuracy of 96.2% using RF. The accuracy in identification
of user actions in Bitcoin apps on iOS platform is listed in Table 3.12.

Method Accuracy Precision Recall F1
RF 0.977± 0.005· 0.977± 0.005· 0.973± 0.005· 0.975± 0.005·
SVM 0.930± 0.01 0.922± 0.01 0.923± 0.01 0.922± 0.02

Table 3.7: Bitcoin vs. non-Bitcoin app classification

Method Accuracy Precision Recall F1
RF 0.984± 0.01· 0.984± 0.01· 0.983± 0.01· 0.983± 0.01·
SVM 0.956± 0.01 0.955± 0.02 0.955± 0.02 0.955± 0.02

Table 3.8: App’s OS classification

Method Accuracy Precision Recall F1
RF 0.966± 0.01· 0.968± 0.01· 0.968± 0.01· 0.968± 0.01·
SVM 0.945± 0.02 0.948± 0.02 0.948± 0.02 0.948± 0.02

Table 3.9: Bitcoin app classification on Android

Method Bitcoin Wallet
(Bitcoin.com) BTC.com Coinbase Mycelium

RF 0.8± 0.15 0.98± 0.03· 0.991± 0.01· 0.971± 0.03·
SVM 0.85± 0.1· 0.975± 0.03 0.988± 0.02 0.958± 0.05

Table 3.10: Classification of user actions in Bitcoin apps on Android

Method Accuracy Precision Recall F1
RF 0.962± 0.02· 0.964± 0.02· 0.963± 0.02· 0.963± 0.02·
SVM 0.935± 0.02 0.938± 0.02 0.935± 0.02 0.935± 0.02

Table 3.11: Bitcoin app classification on iOS

Method Bitcoin Wallet
(Bitcoin.com) BitPay Blockchain Bread Copay

RF 1.0± 0.0· 1.0± 0.0· 0.920± 0.02· 0.943± 0.03 1.0± 0.0·
SVM 1.0± 0.0· 1.0± 0.0· 0.911± 0.03 0.958± 0.04· 1.0± 0.0·

Table 3.12: Classification of user actions in Bitcoin apps on iOS

As discussed above, we obtained slightly better results on Android for
Bitcoin app identification while user action identification was better on iOS.
Moreover, RF performed better over SVM in most of the tasks.
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Full stack classification

This experiment represents a simulation of a real-world scenario. Hence, the
identification of both Bitcoin app and Bitcoin-related user operations have to
be done assuming that the classifications made in the previous layers of the
classification stack are correct. A single error in any stage of the classification
stack influences all the subsequent ones. Figure 3.4 depicts the confusion
matrix for identification of Bitcoin apps using RF for Android (Figure 3.4 (a))
and iOS (Figure 3.4 (b)). Similar to the previous experiment setting, we
got better results on Android in Bitcoin app identification. Figure 3.5 (a)
shows the confusion matrix for classification of user actions in Bitcoin apps
using RF. Figure 3.5 (b) gives a comparison of accuracy achieved by RF and
SVM along the full stack classification.
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Figure 3.4: Confusion matrix for Bitcoin app classification using RF for both
(a) Android and (b) iOS. The confusion matrices are taken from one out of
the ten runs performed.

It is clear from Figure 3.5(b) that misclassification errors in one stage
are propagates to the subsequent stages. Hence, the results for a stage
of full stack classification are limited by the performance of the previous
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stage(s); except for user action classification, which can be still correct (see
Section 3.3.5). Nevertheless, we obtained an accuracy of nearly 95% in user
action identification using RF in the full stack classification.
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Figure 3.5: (a) Confusion matrix for user action classification in Bitcoin
apps using RF. The confusion matrices are taken from one out of ten runs
performed. (b) Accuracy of both RF and SVM along the classification stack.
Performance are reported as the average accuracy (%) over 10 runs.

3.5 Summary

The popularity of cryptocurrencies, especially Bitcoin, is increasing day-
by-day. Bitcoin is now recognized as a regular mode of payment. The
convenience of smartphones has also driven people to adopt and use this
new currency. In this chapter, we have focused on identification of user ac-
tions within Bitcoin wallet apps. By analyzing network traffic using machine
learning techniques, we have identified the most crucial user actions related
to Bitcoin transactions with a very high accuracy of nearly 95%.
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Chapter 4

Security Flaw in Truly Democratic Con-
sensus Protocol

The blockchain technology has been adopted by almost every scenario in to-
day’s digital world with an aim to keep temper-proof records [59]. Originally,
the concept of distributed consensus - upon which the blockchain technology
is founded - dates back to the ’90s [83, 103, 112, 199]. But, after the success
of Bitcoin, a multitude of other areas have been transformed by the idea
of a transparent and distributed public ledger, such as elections, contract
management, insurance, and charity [16].

The Bitcoin system combines together different well-known concepts in-
cluding digital signatures, hashing functions, Proof-of-Work (PoW), and
Merkle trees. However, with an exponential growth in the number of users
and Bitcoin-miners, the Bitcoin network has observed collateral effects of
its consensus protocol. In particular, it suffers from scalability [66], hashing
power centralization, mining strategies exposures [100,142,179], and energy-
and computational-deficiency [162]. To this end, a variety of solutions have
been proposed over time. Some of these solutions aim to improve the existing
version of PoW (e.g., Litecoin1, Primecoin2 [132]) while other proposals used
completely different concepts, such as Proof-of-Stake (PoS) [8, 133], Proof-
of-Burn (PoB) [163, 191], and Proof-of-Elapsed-Time (PoET) [10]. As a
representative example, PoS systems (both stake modification-based [7,133,
166, 176] and actual balance-based [8, 206]) have critical concerns from the
security point of view [137]; such issues have been partially solved by provid-
ing formally-proved security guarantees [40,131] or by discouraging users to
act maliciously through punitive procedures [48, 49]. Other works [167, 187]

1Litecoin adopted its scrypt PoW function’s design to increase the decentralization of
the system and further optimize the mining process [165].

2Primecoin exploits the computational power used for the mining activity to contribute
to mathematical research works.
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tried to achieve better scalability and throughput via a block graph structure
based on Directed Acyclic Graph (DAG), albeit, these solutions have their
own demerits.

On the other side, Algorand [54, 106] - an innovative protocol for the
blockchain technology - has been proposed to overcome these limitations.
Algorand not only guarantees an overwhelming probability of linearity of
the blockchain, but it also aims to solve the “blockchain trilemma” of decen-
tralization, scalability, and security. Algorand uses a process, called cryp-
tographic sortition, to securely and unpredictably elect a set of voters from
the network periodically. These voters are responsible for reaching consensus
through a Byzantine Agreement (BA) protocol, for one block at a time. It
guarantees an overwhelming probability of the blockchain’s linearity and a
block generation time of nearly a minute. It is comparable to the approaches
presented in the works [40,131] and has the potential to shape the future of
the blockchain technology.

Given the promising properties of the Algorand protocol in terms of de-
centralization and scalability, the security aspects of its consensus algorithm
are crucial. To the best of our knowledge, our work is the first analysis of
Algorand’s security. We aim to at least start a discussion about a possible
security flaws in the message validation process, which can possibly expose
honest nodes’ bandwidth and memory resources to Distributed Denial-of-
Service (DDoS) attacks.

Contributions: The major contributions of our work are as follows:

1. We demonstrate a practically feasible attack on the Algorand protocol.
The attack has the potential to target an arbitrarily sized group of
honest users and slow down the consensus process; leaving the targeted
nodes behind in the chain as compared to the non-attacked nodes.

2. We implemented the protocol in our Java-based simulator and evalu-
ated the feasibility of our attack. The simulator is available on request.

Organization: The rest of the chapter is organized as follows: Section 4.1
gives a thorough description of the Algorand protocol. We elucidate our at-
tack scenario in Section 4.2. Section 4.3 presents the implementation details
of our simulator, evaluation settings, and our results. Section 4.4 discusses
the feasibility of our attack and the possible countermeasures. Finally, Sec-
tion 4.5 summarizes the chapter.

4.1 Algorand

Since the main focus of our work is on Algorand, we being by introducing the
Algorand protocol. We elucidate the main limitations of current blockchain
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technologies in Section 4.1.1 and present the distinct features of Algorand in
Section 4.1.2. Section 4.1.3 discusses the assumptions specified by the Al-
gorand protocol with respect to the adversary model. Section 4.1.4 gives an
overview of the network topology, communication protocol, and description
of messages used by Algorand. Then, consensus mechanism of Algorand is
explained in Section 4.1.5. The technical details of cryptographic sortition,
a critical component of the consensus process, are discussed in Section 4.1.6.

4.1.1 The Limitations of Current Blockchain

The main motivation for the development of Algorand lies in the underlying
assumption and technical problems that are essentially shared by most of
the PoW-based blockchains [54]. Those assumption and limitations include:

1. [Assumption] Majority of nodes contributing to the computational
power of the network will be honest.

2. [Technical Problem] Wastage of computational power as well as elec-
trical energy.

3. [Technical Problem] Concentration of power, i.e., the total computing
power for block generation lies within just few mining pools.

4. [Technical Problem] Ambiguity in the consensus reached by different
network nodes on the confirmed transactions, which leads to a fork in
the blockchain.

4.1.2 Salient Features of Algorand

The protocol has the following distinct and promising features:

1. It is designed to be fully decentralized and democratic. Moreover,
there is no distinction between the role of different groups of users,
e.g., miners vs. “normal” users.

2. Each user runs the same functions with negligible hardware require-
ments (i.e., with negligible computational effort) as the concept of min-
er/mining does not exist in Algorand.

3. It is scalable with the number of nodes and with the confirmed transac-
tions throughput. The authors [106] have shown that the throughput
of Algorand is nearly fifty times that of the Bitcoin system.

4. The probability of forking is practically zero (Pfork = 10−12).
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4.1.3 Protocol Assumptions

To guarantee security of the blockchain, Algorand relies on the conventional
assumption of PoS systems, i.e., Honest Majority of Money (HMM). In par-
ticular, Algorand assumes a continuum in the ownership of currency belong-
ing to honest users, i.e., at any round r, at least a fraction h (greater than
two-third) of the money held by honest accounts on round r − k must still
belong to the honest users, for some integers h and k that are defined by the
protocol. Together with HMM, Algorand requires a partial synchronization
assumption on the honest nodes’ clocks. It states that the honest nodes’
clocks are not required to be strictly synchronized, but they are assumed to
have the same speed with a bounded tolerance.

Furthermore, Algorand was built to face a very strong adversary. The
adversary is capable to perfectly synchronize all malicious nodes that he3

controls and can corrupt honest users indiscriminately and instantly. How-
ever, the attacker’s capabilities are bounded by the following three main
facts: (1) he can corrupt honest users until the HMM property is main-
tained; (2) he cannot forge secret keys of the honest users that he has not
corrupted; and (3) he cannot prevent an honest recipient to receive messages.

4.1.4 Network Communication

The Algorand network is a Bitcoin-like peer-to-peer network. Each user
is identified by a public/private key pair, and each key pair corresponds
to a node in the topology. For simplicity, we will use the terms “user” and
“node” interchangeably. Each node establishes and maintains a different TCP
connection with each of his peers. The current specifications of Algorand do
not specify if a node has to choose his peers based on their stake, which
indeed exposes the network to a Sybil attack4.

Nodes broadcast messages through the network using a standard gossip
protocol - each node gossips his message to his peers, who in turn relays it
to their neighbors. A message has to be validated before it can be relayed,
and it is never sent twice to the same user. The protocol defines four types
of messages: (1) transactions; (2) voting messages; (3) block proposals; and
(4) credential messages.

A transaction (t) from user i to user j is defined as:

t = sigi(pki, pkj , a, I,H(SI)), (4.1)

where pku is the public key of the user u, a stands for the amount of Algorand
units to transfer from pki to pkj , I is an optional string to describe the
transfer, H(SI) is a 256-bit hash produced by hashing a secret string SI (not

3We refer to different entities as masculine entity without any gender-bias.
4In a sybil attack, the attacker creates a large number of nodes at zero cost (i.e., with

no stake) to increase the probability of connecting with his targets.
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specified in the body of the message), and sigu(x) denotes digitally signed
data x using the private key of user u.

A voting message (vm) from a user i in round r and step s is defined as:

vmr,s
i = (sig(vr,si ), σr,si ), (4.2)

where σr,si represents the sortition proof of the user i in sth step of rth round
(further details in Section 4.1.6), vr,si defines the vote of user i in round r
and step s.

A block proposal (bp) for round r from user i is defined as:

bpri = (Br
i , sigi(H(Br

i )), σ
r,1
i ), (4.3)

where Br
i is defined as:

Br
i =

{
(r, PAY r, sigi(Q

r−1), H(Br−1)), if Br
i 6= Er;

(r,Qr−1, H(Br−1)), otherwise;
(4.4)

where PAY r is a set of transactions t, and Qr is called seed and defined as:

Qr =

{
H(siglr(Qr−1, r)), if Br 6= Er;

H(Qr−1, r), otherwise;
(4.5)

where lr is the user who created the consensus block Br for round r. The seed
is a parameter needed in the sortition process (more details in Section 4.1.6).
Er is the default block for round r, and it is defined as:

Er = (r,Qr−1, H(Br−1)). (4.6)

Finally, credential message (cm) from a user i for a round r is defined as:

cmr
i = (σr,1i ). (4.7)

It consists of the sortition proof of the block proposer (in this case, user i).
Each sortition proof is associated with a priority value in a deterministic
way (further details in Section 4.1.6). Credential messages are far smaller
in size than the block proposals. Thus, they propagate faster through the
network. Credential messages are gossiped by the block proposers at the
beginning of a round along with their block proposals. Since the block pro-
posals and the credential messages from the same block proposer contain the
same sortition proof, the peer nodes can leverage the priority values from
the credential messages to not relay block proposals with low priorities. This
helps in preventing congestion in the network.
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4.1.5 Consensus Algorithm

Algorand’s consensus algorithm consists of a synchronous protocol that com-
bines the concepts of PoS systems with a Byzantine fault tolerance agree-
ment. The protocol virtually schedules the time into rounds. At each round,
all the network nodes attempt to reach consensus on a new block of trans-
actions. Each round is composed of the following actions:

• Each node in the network must first check its role to determine whether
he has to propose a block for a given round. To do so, the nodes use
cryptographic sortition, which requires them to run a trivial (a single
hash) computational challenge. In case a node has to propose a block,
he collects all the pending transactions inside a block proposal and
gossips it together with the sortition proof. The block’s size is limited
by a fixed parameter in the protocol.

• Each node waits for incoming block proposals from the previous step for
a predefined duration of time. Among all the valid blocks he receives,
he selects the one with the highest priority sortition proof. Then, he
computes an hash using this block and sets this hash as the input for
the BA of the next steps.

• All nodes in the network try to reach consensus on one block through
a BA protocol. The BA has two key phases. Both the phases are
composed by subsequent steps. At each step, a distinct group of users
(called committee members) is elected in an unpredictable way through
cryptographic sortition. These committee members spread their voting
messages based on votes received from the previous step. The commit-
tee members attach a sortition proof that proves their legitimacy while
spreading their voting messages.

The two phases of BA are as follows:

1. The first phase is called the reduction phase that comprises two steps.
In the first step, each committee member votes for the hash of the
blocks proposed for consideration. Next step, committee members vote
for the hash that received votes over a certain threshold (defined by
protocol). In case none of the hash/block receives enough votes, com-
mittee members vote for the hash of the default empty block.

2. The next phase does another binary BA to ensure that each node agrees
on the same consensus; the consensus can conclude on the output of
the previous phase or on the default value in the absence of a majority.

4.1.6 Cryptographic Sortition

Cryptographic sortition is used by each network node at the beginning of
every step of each phase to determine whether he has a role in that particular
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step. It is a simple and lightweight process that involves computing a single
hash and a digital signature. The sortition algorithm is implemented using
a Verifiable Random Function (VRF5) [150]. In particular, the hash for a
certain step s and round r is computed by the user i as:

y = H(sigi(r, s,Q
r−1)), (4.8)

where H is a hashing function, y a 256-bit long hash, and Qr−1 is the seed
quantity defined by Eq. 4.5. The quantity sigi(r, s,Qr−1) is called the sor-
tition proof and is attached to voting messages or block proposals to prove
the legitimacy of the corresponding voters or block proposers. The hash
is used by the nodes to verify sortition condition. The possibility that the
condition is verified is directly proportional to the stake of the node and a
constant parameter πrole that is fixed in the protocol, which guarantees that
on average a fixed number of nodes are elected at each step for a certain role.
For this reason, the protocol allows users to be elected more than once in
the same step. A user i can possibly be elected at each step wi times, where
wi is the number of user’s units of currency. Formally, the interval [0, 1) is
partitioned into wi intervals I, where the j-th interval Ij is defined as:

Ij =
[ j∑
x=0

B(x;wi; p),

j+1∑
x=0

B(x;wi; p)
)

; j ∈ (0, 1, ...wi), (4.9)

where B(x;wi; p) is the binomial probability that user i is elected exactly
x times on wi chances, each with probability p = πrole/W . Here, πrole
estimates the expected number of sorted users for that role and W is the
total amount of currency in the network. The number of votes are found by
applying the binary point operator to the hash (i.e., y/2y.length) and searching
the interval Ij with which the value is associated. If the value lies on the
j-th interval, then i can vote j times. There are at least three interesting
observations about this procedure:

1. Since on average a fixed number of nodes are elected at each step, the
traffic of voting messages in the network does not increase with the
number of participants.

2. The procedure to find if a user i is sorted for a certain step in a round
can be executed only by the user i as it involves a signing process.

3. Since Qr−1 can be computed by a node only when that node reaches
consensus on round r−1, the result of the sortition of user i in a certain
step of round r is unpredictable and unknown even to the user i. This
avoids the possibility of collusion between voters of one or more steps
to manipulate the consensus process on a certain round.

5VRF functions allow users to produce verifiable computations. A user produces a
proof using his private keys that can be verified by other users via the producer’s public key.
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4.2 Our Attack

We explain our attack in this section, starting from the attack preliminaries
in Section 4.2.1 followed by a brief introduction to the flooding attacks in
Section 4.2.2 and the description of our attack in Section 4.2.3.

4.2.1 Attack Preliminaries

In our adversary model, we assume that all the malicious nodes are coor-
dinated by a single/unique entity. This translates into the following two
properties of the malicious nodes:

1. Each malicious node can sign messages using any other malicious node’s
private key.

2. The malicious nodes participate in the protocol either passively or ac-
tively. These malicious nodes coordinate and use the messages they
receive from their honest peers to become aware of the protocol’s exe-
cution status.

We assume that all the malicious nodes and their public/private key pairs
were created by the adversary sufficiently in advance, i.e., before the attack
takes place. This enables all of them to become the voters or block proposers
in the protocol6. As mentioned in Section 4.1.4, we can also safely assume
that the network is vulnerable to the Sybil attack, meaning that the honest
nodes choose their peers randomly without relying on their stake. In this
way, the malicious nodes have the same probability as of the other nodes to
connect to honest peers. On the other side, honest peers can control/limit
the number of incoming connections, denoted by max-connections.

4.2.2 A Typical Flooding Attack

In a typical network scenario, a flooding attack targets honest nodes’ band-
width and memory resources by sending a huge number of message to him.
Typically, a flooding attack sends a huge number of fake or invalid messages
towards the target nodes to slow down their message reception and message
processing. Crafting such attacks from a single nodes is not very effective
because nodes in Bitcoin-like decentralized networks - where no level of trust
is assumed between participants - often rely on “misbehaviour” scores to la-
bel and identify possible malicious users. As soon as an honest node finds
that one of his peers is malicious, he can stop processing messages from that
peer, drop the connection, and blacklist him to prevent future connection

6This assumption is necessary because Algorand increases the unpredictability of the
outcome of the sortition process by limiting the set of keys that can participate in the
process. The eligible keys must be created at least k rounds before.
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requests from that peer for a certain time. Hence, the attacker needs a large
number of malicious nodes connected to the target. So, he can send some
messages from each connection in a coordinated manner and create the same
impact without being detected (or at least fully detected).

4.2.3 Magnifying Attack’s Impact via Undecidable Messages

Our attack aims to increase the impact of the flooding attacks by exploit-
ing the message validation process of Algorand. Due its design, our attack
also enables an adversary to have a longer connection time before getting
blacklisted by the target node. In Algorand, each message that is a part of
the consensus algorithm (i.e., voting messages (Eq. 4.2) and block propos-
als (Eq. 4.3)) is subject to two distinct checks during the validation process:

1. Stateless checks: A set of checks on a message/packet that a validator
node can perform to know its current status (e.g., packet’s structure,
packet’s authentication, check for duplicated messages).

2. Sortition proof check : The sortition proof must be checked to verify
that the sender/author of the message had the right to gossip it.

As described Section 4.1.6, the sortition proof is a byte-string that repre-
sents the signature of a user i in the form sigi(r, s,Q

r−1), the validator node
should hash this string to verify whether the given output satisfies the sor-
tition property. However, before blindly hashing the signature, the protocol
requires him to verify it first. Thus, he needs all the parameters - that were
originally used to create it - including the seed quantity Qr−1. This is a
stateful check because the validator should have already reached consensus
on the round r − 1 to independently compute Qr−1. If that is not the case,
then the message cannot be fully validated at the current status of the val-
idator node. In such a situation, the only option that the validator node
has is to store the message and wait until it can be fully validated because
messages that are not yet fully validated, cannot be discarded. We refer to
these messages as undecidable messages.

At this point, the aim of the attacker is to flood honest targets with
as many undecidable messages as possible to saturate their bandwidth and
possibly their memory. These two objectives decide the type and number
of messages used to construct our attack vector. With respect to the type,
we chose the largest possible message, i.e., block proposals containing max-
sized blocks. Since messages need to pass the stateless checks, each public
key can gossip only a single block proposal per round. However, keys are
created at zero cost and each malicious node can sign messages with any of
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the adversary keys. Hence, each node can include an arbitrary number of
block proposals in his payload - one for each key7.

Now, we describe the attack’s execution in practice. The attacker con-
nects to his target as one of his peers. Since the target node is assumed to
honestly execute the Algorand protocol, as soon as he receives and validates
a message for a certain round r, he has to relay it to all of his peers including
the malicious node. Hence, the attacker just needs to (1) prepare its payload
in advance8 for the attack in round r; (2) wait to receive a block proposal
or a credential message (Eq. 4.7) from his target9 in round r to be aware of
the fact that the target has started the execution of round r; and (3) send
the payload to the target from each connected malicious node.

4.3 Evaluation

Here, we present the evaluation of our proposed attack. Section 4.3.1 pro-
vides the technical details of our simulator while our evaluation settings and
results are presented in Section 4.3.2 and Section 4.3.3, respectively.

4.3.1 Simulator

Since, the source code or an official simulator for Algorand was not available
at the time of our experiments, we built our own simulator that is completely
written in Java. Both the works [54, 106] on Algorand propose slightly dif-
ferent, but overlapping versions of the protocol. The differences are in the
terminating conditions to reach the final majority consensus within BA. How-
ever, our threat model is independent of the particulars of the chosen version
of BA. We referred to the protocol described in the technical paper [106] for
the implementation in our simulator.

7As long as the messages are authenticated and sent only once, a single public key can
create a different undecidable message for every step in each round. It means that it can
create a block proposal on the first step and a voting message for every step of BA (until
the maximum m-th step allowed by the protocol). However, sending one message for
every step implies that the given public key is sorted at every step of that round, which
is very unlikely. A similar argument can be used by the target node to statistically label
malicious users without waiting for their messages to be fully verifiable. Moreover, given
a reasonable max-block size (order of MB) and m set to 150 steps [106], a single block
proposal containing a max-size block would make up the large majority of the total payload
weight. Hence, choosing a single block proposal for each key would imply that each user
is elected only once in a given round, and cheaters are more difficult to identify a-priori.

8The attacker does not need any information to pre-compute a payload for a certain
round r. He just needs to sign a random messages declaring them as if they belong to
round r + 1. All other information will be checked only after the message becomes fully
verifiable in round r + 1; by that time the attacker would have already achieved his goal.

9Block proposals together with the credential messages are gossiped first through the
network at each round.
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We model an honest node as an entity composed of three main compo-
nents: (1) a network interface to send/receive messages from peers; (2) a val-
idator process to verify the received messages; and (3) the process that runs
the protocol. Since our attack focuses on flooding block proposals or voting
messages, transactions are never sent/received directly in our simulation.
Instead, the throughput (transactions confirmed per second) is simulated
by creating block proposals containing a fixed number of arbitrary transac-
tions10.

To reduce the impact of simultaneous/parallel signature verification dur-
ing simulation, we simulate block validation by using a sleep procedure. Fur-
thermore, nodes are provided with a cache memory not to verify the same
transaction twice11. While block signatures and other checks, e.g., packet
authentication and sortition proof validation, are actually computed legiti-
mately. We do not assume any latency in the network communication for
the sake of presenting the minimum impact of our proposed attack, which
would further enhance in the presence of latency.

4.3.2 Evaluation Settings

All simulations were done on a virtual machine on OpenStack [24] running
Ubuntu 16.04 with 16 Intel Core Processors (Hashwell, no TSX, IBRS) and
64 GB of RAM. In our experiments, we simulated a network of 500 nodes,
where each node had a 30 Mbps upload and 30 Mbps download bandwidth.
The target nodes were connected to all the malicious nodes involved in the
attack. However, the number of malicious nodes does not represent the
max-connections parameter controlled by the honest nodes as honest nodes
were connected to malicious as well as other honest peers. For the sake of
simplicity, we assumed that once an undecidable message fails in the verifica-
tion process, then all messages from the sender of that message are discarded
without being processed. Each simulation was run for nearly 45 minutes, and
the attack payload was prepared using different blocks sizes during different
experiments.

To evaluate the effectiveness of our attack, we focus on: (1) the number
of “legitimate” messages received and validated in due time by the honest
nodes and (2) the average time taken to complete a round. These two metrics
are co-related in a way that if sufficient messages are not received/processed
in due time for a given step, the execution time of the corresponding step
increases until a timeout is reached. We thoroughly evaluated our attack
scenario by varying: (1) the number of malicious nodes involved in the attack;

10We assume that in a real implementation of the protocol, messages and transactions
are processed by independent processes.

11Without a dedicated cache, transactions are validated at least twice. The time
when the transaction is gossiped by its original creator and the time when it is received
in a block.
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(2) the number of block proposals sent from each malicious node, i.e., keys
per malicious node; and (3) the size (in MB) of the attack payload.

To show the impact of our attack, we considered realistic settings where
only a very low number of nodes (1% to 3%) are malicious in the network.
The maximum number of block proposals sent from one malicious node at the
time of attack was 70, following the analysis of the cryptographic sortition
for block proposers by the authors of the protocol [106]. We set the block
proposal receiving time and the step timeout (explained in the next section)
to 150 seconds and 60 seconds, respectively.

4.3.3 Results

The execution time for a round consists of two parts: (1) block proposal
receiving time and (2) step timeout. The block proposal receiving time
is constant and is defined as the maximum window of time for the nodes
to receive the block proposals for a given round. The step timeout is the
maximum amount of time by which each step must complete. Here, each
step finishes as soon as enough voting messages are processed or the step
timeout occurs. In “no attack” scenario, the largest contribution to round
time should come from the block proposal receiving time and the steps should
execute before the step timeout occurs. The same is reflected in our results
shown in Figure 4.1.
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Figure 4.1: Effect of the number of malicious nodes and keys per malicious
nodes upon average round time

Here, in the absence of malicious nodes, nearly 83% of the round time was
taken by the fixed block proposal receiving window. On the other side, the
round time remains nearly the same as “no attack” scenario with a lower
number of malicious nodes/keys per malicious node. However, the proto-
col’s performance starts to deteriorate with increasing number of malicious
nodes/keys per malicious node, starting from the attack payload of just
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500 blocks (10 malicious nodes with 50 malicious keys). In facts, the av-
erage round time with all the remaining higher attack configurations was
over 390 seconds; meaning that these configurations caused at least four
step timeouts in addition to the block proposal receiving time. As discussed
earlier, our proposed attack does not prevent nodes from reaching consensus.
Instead, it aims to significantly increase the execution time of each round,
which leads the attacked nodes to reach their consensus on the default value,
leaving the targeted nodes behind the non-attacked nodes in the chain.

The next important criteria to evaluate the impact of an attack on Al-
gorand is the percentage of “legitimate” messages received and “legitimate”
messages validated in due time. Figure 4.2 shows the effect of our attack
upon “legitimate” messages received and validated with respect to the num-
ber of malicious nodes and keys per malicious nodes. Also here, with an
attack payload of just 500 blocks (10 malicious nodes with 50 malicious
keys), the percentage of “legitimate” messages received/validated starts to
degrade considerably, which eventually lead to step failures.
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Figure 4.2: Effect of the number of malicious nodes and keys per malicious
nodes upon percentage of “legitimate” messages received and validated

It is important to mention that an adversary can tune our attack on the
number of malicious nodes/keys to prevent the detection while still creating
significant disturbance in the network. Moreover, the size of the blocks is
another important parameter to tune the attack. The results presented in
the Figure 4.1 and Figure 4.2 were obtained using 1 MB of attack payload.
Figure 4.3 and Figure 4.4 show the impact of attack payload’s size upon the
average round time and the percentage of “legitimate” messages received as
well as validated in due time, respectively. Our results show that the size of
the block does not significantly affect the performance of honest nodes in the
absence of the attack. However, increasing size of the attack payload severely
affect the performance of honest nodes in term of both the average round
time and messages processed. It happens as the block’s size directly affects
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the download time of a block, which is further worsened by the number of
malicious nodes and the keys per malicious nodes involved in the attack.
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Figure 4.3: Effect of the attack payload’s size upon average round time

4.4 Feasibility of the Attack

The attack costs practically nothing to an adversary. However, the adversary
has to overcome one minor challenge, i.e., to connect at least one malicious
node with the honest target. This malicious node can then flood the target
with an arbitrarily large number of block proposals - one for each public key
controlled by the adversary. However, the recipient can monitor and label
connections from which he receives a suspiciously large number of messages
for a round. Then, it is likely that the honest nodes would simply drop (or, at
least temporarily stop listening) from such a connection. Hence, the success
of our attack depends on how many malicious connections an attacker is able
to establish with the target node.

The other important aspects of our attack are: (1) since TCP connec-
tions are required to be established, IP spoofing is not an option12 and real

12Establishing TCP connections via IP spoofing is problematic as one cannot complete
the TCP three-way handshake protocol. In particular, SYN-ACK packets from the target
nodes are not sent to the real location of the malicious node. To make this happen,
the adversary must have control over at least one router on the path between the fake
address and the target, or the target node’s network has allowed source-routing [194] of the
messages, or the Initial Sequence Number (ISN) in the handshake protocol is vulnerable
to the prediction attack. All of these speculations are quite strong assumptions.
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Figure 4.4: Effect of the attack payload’s size upon the percentage of “legit-
imate” messages received and validated

addresses should be used; (2) the target’s max-connections parameter defines
the maximum number of connections allowed towards it. We believe that
the former issue can be solved by using botnet or relying on hidden services,
such as Tor, to protect address identity inside the network. However, the
max-connections parameter is out of the adversary’s control. Hence, it is
considered as an attack variable in our attack scenario. Consequently, estab-
lishing and maintaining a high number of connections with the target nodes
is somehow a bit more challenging. But, the goal is achievable in the current
design of the protocol, where peers are not weighted on their stake.

4.5 Summary

The Algorand protocol was proposed to overcome the limitations of conven-
tional blockchain technologies. The protocol has great potential and is in
under active development. In this chapter, we present a particular security
flaw of Algorand protocol that exploits its process of validating messages.
In particular, we evaluated a possible DDoS-like flooding scenario under
practical assumptions, where honest nodes suffer significant delays in the
execution of protocol. Furthermore, we also discuss the major factors that
make this attack scenario more challenging for the honest nodes. Finally, we
also present possible solutions to prevent such an attack.
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Chapter 5

Detecting Covert Miners via Magnetic
Side-channel

Cryptomining (or, simply mining) is a process of validating and adding new
transactions in the blockchain digital ledger for a given cryptocurrency. It is
an essential process to keep most of the cryptocurrencies running. Typically,
mining is a resource-intensive process that continuously performs heavy com-
putations. Upon successful mining, cryptominers (or, simply miners) receive
newly generated cryptocoins as their remuneration. Usually, newer cryp-
tocurrencies tend to pay a higher reward. Some cryptocurrencies, such as
Monero, make mining feasible on the web-browsers that enable even naive
users to participate in the mining process.

After the success of Bitcoin, several alternative cryptocurrencies (Alt-
coins) have been introduced to the market. At the time of writing, there
are over 2000 active cryptocurrencies [2]. The massive number of cryptocur-
rencies raises an enormous demand for mining. This demand continues to
remain huge because mining, as mentioned before, is an inevitable operation
to keep these virtual currency systems running. Such an immense demand
for mining has also attracted cybercriminals [11, 28] to earn financial gains,
who have already been exploiting cryptocurrencies to perform several types
of financial crimes, e.g., ransomware [59].

Apart from investment in hardware, the cost of electricity to power up
mining hardware and cooling facilities is one of the significant expenses as-
sociated with mining [22]. Mining popular cryptocurrencies, such as Bit-
coin, is not profitable using personal resources (mainly electricity) unless
the mining is done using specialized hardware [25]. However, mining can
be lucrative if it is done using “plundered” resources, e.g., exploiting infras-
tructure at workplace. We can broadly categorize such plundering into two
classes: (1) conscious-mining and (2) unconscious-mining. Conscious-
miners exploit infrastructure allocated to them, e.g., an unethical employee
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who mines at the workplace. Unconscious-miners mine unknowingly for a
third party, e.g., a visitors to a website that hosts cryptomining scripts.
Such exploitation of the computational resources causes financial damage -
primarily in the form of increased1 electricity bills - to the victims, who often
discover the misuse when the damage has already been done.

On another side, a recent study [154] has suggested that “Bitcoin usage
could alone produce enough CO2 emissions to push global warming above
2 ◦C within less than three decades.” The current situation would further
worsen with illegal/unauthorized/covert cryptomining. Besides, unethical
mining has lured all members of the modern society: government employ-
ees [13], corporate employees [26], students [18], teachers [30], researchers [9],
nuclear scientists [23], and undoubtedly, hackers [11, 28].

To summarize, we can say that covert cryptomining has financial con-
sequences, such as monetary losses, as well as societal influences such as
ethical and psychological impacts. Moreover, a solution to detect covert
cryptomining that focuses on a particular cryptocurrency may not be ade-
quate to tackle the current situation, where new currencies emerge every day
that gives miners a wide variety of options to choose from.

Contributions: In this chapter, we make the following contributions:

1. We propose a novel approach that leverages the magnetic side-channel
to detect covert cryptomining. The scope of our approach is broader
as we target the core of the mining process, i.e., the mining algorithms.

2. We implemented our approach and built a complete system. We in-
cluded twelve different cryptocurrencies in our experiments, which in-
deed are the most mined cryptocurrencies.

3. We thoroughly evaluate the quality of our proposed approach. To this
end, we designed and performed five different experiments: (1) Bi-
nary classification; (2) Currency classification; (3) Nested classifica-
tion; (4) Unseen-miner program classification; and (5) Cross-platform
classification. Our results show that our approach can reliably classify
cryptomining activities.

Organization: The remainder of this chapter is organized as follows: Sec-
tion 5.1 presents the essential concepts related to our work. Section 5.2
provides a comparative summary of the related works. We elucidate our sys-
tem’s architecture in Section 5.3 and its evaluation in Section 5.4. Section 5.5
addresses the potential limitations of our proposed approach. Finally, Sec-
tion 5.6 summarizes the chapter.

1A machine consistently performs heavy computations while it does cryptomining,
which, in turn, continuously draws electricity.
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5.1 Background & Preliminaries

In this section, we briefly explain the fundamental concepts related to our
work. Section 5.1.1 introduces the magnetic field, Section 5.1.2 describes
the magnetic field sensor of the smartphones, and Section 5.1.3 elucidates
dynamic time warping that serves as the similarity measure for our classifier.

5.1.1 Magnetic Field

The magnetic field at any point in space is represented by a vector quantity.
It is specified by its magnitude as well as direction and measured in Tesla (T ).
In practice, magnetic fields are measured in the unit of millitesla (mT ) or mi-
crotesla (µT ). Electric current produces a magnetic field. The total magnetic
field generated around an enclosed path is directly proportional to the cur-
rent which passes through that path [181]. In standard computers, the CPU
is one of the biggest consumers of the electricity. The power consumption of
modern energy efficient CPUs is dynamically affected by the workload [134].
In the most fundamental case, overloading the CPU with computations will
draw more current, and hence, will generate a stronger magnetic field. To
demonstrate this effect, we created a script that recursively engages all avail-
able CPUs for 2 seconds and then sleeps for 2 seconds. Figure 5.1 shows the
CPU usage and the generated magnetic field while executing this script.
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Figure 5.1: The CPU usage (dashed line) and the generated magnetic field
(plain line) while executing a script that recursively uses all available CPUs
for 2 seconds and then sleeps for 2 seconds

It is clear from Figure 5.1 that the magnetic field around a processor is
directly affected by the workload of the processor. Hence, this side-channel
can be exploited to infer a processor’s activities.
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5.1.2 Magnetic Field Sensor of the Smartphones

Nowadays, smartphones are equipped with a variety of sensors. One of
these sensors is the magnetic field sensor, which typically measures the
strength (magnitude and direction) of the magnetic field along the three
physical (x, y, z) axes. Using the three dimensional data from the magnetic
sensor, we can calculate the total magnetic field (Mtotal) as:

Mtotal =
√
M2
x +M2

y +M2
z , (5.1)

where Mx, My, and Mz represent the strength of the magnetic field along x,
y, and z axis respectively.

5.1.3 Dynamic Time Warping

Dynamic Time Warping (DTW) is a widely adopted approach to find the
optimal non-linear alignment between two time series that may vary in time
as well as speed. DTW is also used as a distance measure to find similarity
between time series [41]. Let us consider two discrete time series: Q =
(q1, q2, . . . , qi, . . . , qn) of length n ∈ N and C = (c1, c2, . . . , cj , . . . , cm)
of length m ∈ N. DTW uses an n × m matrix, whose (i, j)th element
represents the distance d(qi, cj) between qi and cj (i.e., d(qi, cj) = (qi−cj)2).
Each matrix element (i, j) corresponds to the alignment between the points
qi and cj . A warping path W = (w1, w2, . . . , wk, . . . , wK) is a contiguous
set of matrix elements that defines a mapping between Q and C. The kth

element of W is defined as wk = (i, j)k for max(m,n) ≤ K < m + n − 1.
The warping path is typically subject to the following constraints:

1. Boundary condition: w1 = (1, 1) and wK = (m,n).

2. Continuity: Given wk = (a, b), then wk−1 = (a′, b′), where a − a′ ≤ 1
and b − b′ ≤ 1.

3. Monotonicity: Given wk = (a, b), then wk−1 = (a′, b′), where a− a′ ≥ 0
and b − b′ ≥ 0.

There could be several warping paths that satisfy the conditions reported
above. However, our goal is to find the path that minimizes the warping
cost:

DTW (Q,C) = min


√√√√ K∑

k=1

wk

 . (5.2)

The optimal path can be found by computing the cumulative distance γ(i, j)
using the following recursive function:

γ(i, j) = d(qi, cj) +min(γ(i− 1, j − 1), γ(i− 1, j), γ(i, j − 1)). (5.3)
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Figure 5.2(a) shows the alignment between two discrete time series TS-1
and TS-2. The arrows indicate the points that are matched by the DTW
algorithm. Figure 5.2(b) depicts the heat-matrix for these two time series.
The color of a cell (i, j) depicts the minimum distances to reach the cell (i, j)
from the cell (0, 0). The optimal warping path has been highlighted using
a yellow line that starts from the cell (0, 0), which also satisfies boundary,
continuity, and monotonicity constraints mentioned above.

(a) Alignment between TS-1 and TS-2 (b) Illustration of the optimal warping
path

Figure 5.2: A representative example of DTW algorithm applied to two
discrete time series: TS-1 and TS-2

Standard DTW is optimal, but it is computationally expensive, both
in space and time complexity. Standard DTW has a complexity of O(nm)
where n and m are the lengths of the first and second time series respec-
tively. The performance of DTW can be improved by restricting the amount
of warping allowed, which typically limits the number of cells computed in
the DTW distance matrix. There are several proposals that claim to im-
prove DTW such as PrunedDTW [186], SparseDTW [35], FastDTW [183],
and MultiscaleDTW [155,168]. These approaches [35,155,168,183,186] pro-
pose ways to speed-up exact DTW computation for two time series. Next,
LB_Keogh lower bound [123] is a technique that allows efficient indexing
and comparison of many time series via lower-bound approximation (less
than exact DTW value). Moreover, Wang et al. [212] found that except for
LB_Keogh lower bound [123], all other techniques are inefficient. Hence,
in this work, we use LB_Keogh lower bound to speed up DTW, which is
computed as shown in Eq. 5.4:

LB_Keogh(Q,C) =

√√√√√ n∑
i=1


(ci − Ui)2, if ci > Ui;
(ci − Li)2, if ci < Li;

0, otherwise.
(5.4)
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Here, Li and Ui are lower and upper bounds for time series Q, which are
defined as Li = min(qi−r : qi+r) and Ui = max(qi−r : qi+r) for a reach r.
LB_Keogh lower bound method has linear complexity, which makes it very
useful for searching over large sets of time series.

5.2 Related Works

The side-channel information leakage has been thoroughly studied over the
previous years. Several research works focused on various side-channels to
leak information from different type of systems. We will primarily discuss
previous studies that are relevant to our work.

Quisquater et al. [170] show that the electromagnetic attack on pro-
cessors can reveal as much information as power consumption-based side-
channel analysis. Mateos et al. [145] use specialized magnetic sensors to
recover a secret key. Song et al. [188] investigate acoustic and magnetic
side-channel attacks on 3D printers using smartphone’s built-in sensors.
Biedermann et al. [42] use the smartphone’s magnetic sensors to finger-
print hard-drives. The authors are able to deduce ongoing system activities
based on the emitted magnetic field due to movements of the hard drive’s
magnetic head. However, their methodology is inapplicable to the mod-
ern computers equipped with Solid State Drive (SSD) storage. Similarly,
Matyunin et al. [146] establish a covert channel using the magnetic field be-
tween a laptop that is infected with a special program and a smartphone
equipped with a magnetic sensor. The authors claim that their approach
can decode the emanated signal up to a distance of roughly 12 cm from the
laptop. ODINI [111] and MAGNETO [110] employ malware to control work-
load on the CPU, which, in turn, regulates the magnetic fields emitting from
the target device. ODINI uses a high-precision magnetic sensor to receive
data up to 150 cm while MAGNETO can receive data up to a maximum
distance of 12 cm using a regular smartphone.

The literature on detecting the mining of cryptocurrencies is rather lim-
ited. Bonneau et al. [46] present a systematic study of various cryptocurren-
cies and discuss open research challenges. Huang et al. [118] in their analysis
of Bitcoin mining malware have shown that modern botnets generate addi-
tional revenue via illicit mining. Eskandari et al. [99] present a security analy-
sis of in-browser mining of cryptocurrencies. Recent works [135,140,173,180,
208] focus specifically on browser-based mining. However, only a small subset
of cryptocurrencies supports in-browser mining. MineGuard [200] focuses on
mining operations in the cloud infrastructure. The authors utilize privileged
hardware performance counters to fingerprint and detect covert mining.

Our work is different from the state-of-the-art on the following dimen-
sions: (1) our proposed approach is a generalized approach that applies to all
forms of cryptomining on computers; (2) Our approach does not require any
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specialized equipment, malware/software installation, user-/root-privileges,
or even login-access to the monitored system. The only requirements are
the physical proximity of the investigator and a magnetic sensor; (3) Our
methodology does not impart any performance overhead on the monitored
system; and (4) Our study includes cryptocurrencies supported by the top-10
mining pools, which covers the largest share of the market of cryptomining.

5.3 System Architecture

We explain the foundation of our work in Section 5.3.1, our data collec-
tion strategy in Section 5.3.2, our decision for selecting cryptocurrencies in
Section 5.3.3, and the design of our classifier in Section 5.3.4.

5.3.1 Core Concept

The task of mining is to execute a core Proof-of-Work (PoW2) algorithm
repeatedly, which means that a robust signature can be constructed for a
particular algorithm. Interestingly, there are a limited number of PoW al-
gorithms. Therefore, we focus on the mining algorithms. The major benefit
of our strategy is that the signature constructed for an algorithm would be
able to detect even metamorphic and polymorphic implementations of that
algorithm used by other cryptocurrencies. Notably, such signature-based de-
tection of cryptomining can be partially deceived by restricted mining. But,
it would directly affect the hashing rate and consequently the profits; making
the task of mining less appealing.

Previous works [42,110,111,146] have shown the effectiveness of the mag-
netic side-channel to exfiltrate information from computers. We designed our
system for detecting and classifying covert cryptomining using the magnetic
side-channel for the following reasons:

1. The examiner/investigator may not always have login-access3 or root-
privileges4 on the device.

2. As discussed in Section 5.1.1, magnetic field emission is a fundamental
phenomenon associated with electronic circuits and it can even pene-
trate air-gaps and a faraday-cage.

3. Since the miners have to adhere to and repeatedly execute the core
PoW algorithm used by a cryptocurrency, the pattern of the magnetic
field emitted while mining a cryptocurrency is distinct as well as con-
sistent. For the same reason, even a smaller signature database is
sufficient for reasonable classification results.

2We use “PoW” as the representative of various consensus algorithms.
3E.g., an administrator in BYOD culture, who suspects an employee’s machine.
4E.g., an employee, who suspects an infection in the company-provided machine.

89



A. Gangwal
Security and Privacy

Implications of Cryptocurrencies

5.3.2 Dataset Collection

To better elucidate our work and to maintain the flow of reading, we first
explain the data collection stage. We used two different systems in our
experiments. These systems have the following configuration: (1) S1, a laptop
with an Intel Core i5-7200U @ 2.50 GHz (1 socket x 2 cores x 2 threads =
4 logical compute resources) processor, 8 GB memory, 256 GB SSD storage,
and Intel HD Graphics 620 mounted on Dell Inc. 0M60Y2 motherboard
with Ubuntu 16.04 as the operating system and (2) S2, a laptop with an
Intel Core i7-8550U @ 1.80 GHz (1 socket x 2 cores x 4 threads = 8 logical
compute resources) processor, 16 GB memory, 512 GB SSD storage, and
Intel UHD Graphics 620 mounted on Dell Inc. 02PG84 motherboard with
Ubuntu 18.04 as the operating system. To show the effectiveness of the
proposed method, we used an ordinary smartphone (Samsung Galaxy S5
running Android 6.0.1), hereinafter referred to as probe device, to record the
generated magnetic field. Figure 5.3 depicts a representative demonstration
of data collection on S1 using the probe device. Section 5.5.2 presents a
detailed discussion on probe’s orientation and position.

Figure 5.3: A representative demonstration of data collection on S1 using
the probe device

We mined and profiled each cryptocurrency (discussed in Section 5.3.3)
individually and collected a total of thirty samples per cryptocurrency per
system, where each sample comprises measurements taken over a time inter-
val of thirty seconds. The sampling rate of probe’s magnetic sensor was 10Hz.
To obtain clean signatures of the core PoW algorithms, we profiled the min-
ers in their stable stage, i.e., omitting the bootstrapping phase. As repre-
sentatives of non-mining tasks (negative-class), we chose: Internet browsing;
PDF document scrolling; Skype test call; 3D benchmarking; solving N-queens
problem (N=18); 4K video streaming; H.264 video encoding; network perfor-
mance test via iperf tool; machine learning with scikit-learn; deep learning
with TensorFlow ; stress-ng [6] stress test via CPU-only workers; and stress-
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ng stress test with CPU, memory, I/O, and disk workers together. It is worth
mentioning that these user-tasks represent low to high compute-intensive
tasks and all belong to the same category (i.e., non-mining) for classification
purposes. Similar to the mining tasks, we profiled each non-mining task for
the same time interval and number of samples.

Before any experiment was performed, we estimated the background
magnetic field to calibrate subsequent measurements (triplets). We took
100 measurements (10sec @ 10Hz) along the three (x, y, z) axes and calcu-
lated the mean (M̄x, M̄y, M̄z) of the background noise. We calibrated each
measurement, collected during the experiments, by eliminating the mean
background noise from it. Finally, we computed Mtotal for each calibrated
measurement using Eq. 5.1.

5.3.3 Cryptocurrencies & Miners

In the context of cryptocurrency mining, miners pool their resources so they
can generate blocks more quickly, and therefore earn a portion of the block
reward on a consistent basis. Mining pools are characterized by their hash-
ing power. Table 5.1 lists the cryptocurrencies supported by the top-10
mining pools [17], which collectively comprise the largest share (84% dur-
ing Q3 2018) of the cryptomining market. See Appendix A for acronyms
and their corresponding cryptocurrency. We included all the cryptocurren-
cies supported by these mining pools in our experiments. Additionally, we
included QRK whose mining algorithm - unlike other currencies - consists
of a combination of different hashing algorithms. To mine these currencies,
we used open-source miner programs that are readily available online. Each
miner was configured to mine with public mining pools and to use all avail-
able CPUs on the machine. Table 5.2 lists the mining algorithm of different
cryptocurrencies as well as the CPU miners that we used to mine them.

As explained in Section 5.3.1, different cryptocurrencies that employ the
same mining algorithm exhibit the same signature. Therefore, it is sufficient
to consider one currency for each mining algorithm listed in Table 5.2. We
excluded BCH, SBTC, UBTC, ETC, and XMC. In our study, we used only
CPU-based miners as the proof-of-concept implementation. Nevertheless,
our approach is also valid to distinguish GPU-based miners because a GPU
operates differently than a CPU. For the same reason, GPU-based mining
generates a distinct magnetic field in terms of magnitude as well as form.
As a representative example, Figure 5.4 shows the generated magnetic field
while mining XMR on CPU and on GPU5.

5Using ccminer v2.3 on 4 GB NVIDIA GeForce GTX 960M.
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Cryptocurrency Mining algorithm CPU miner
BCD X13 cpuminer-opt 3.8.8.1

BCH, BTC,
SBTC, UBTC SHA-256 cpuminer-multi 1.3.4

BTM Tensority bytom-wallet-desktop 1.0.2
DASH X11 cpuminer-multi 1.3.4
DCR Blake256-r14 cpuminer-multi 1.3.4

ETC, ETH Ethash (Modified
Dagger-Hashimoto) geth 1.7.3

LTC scrypt cpuminer-multi 1.3.4

QRK
BLAKE + Grφstl + Blue
Midnight Wish + JH +
Keccak (SHA-3) + Skein

cpuminer-multi 1.3.4

SC BLAKE2b gominer 0.6
XMC, XMR CryptoNight cpuminer-multi 1.3.4

XZC Lyra2z cpuminer-opt 3.8.8.1
ZEC Equihash Nicehash nheqminer 0.3a

Table 5.2: Mining algorithm and CPU miner for different cryptocurrencies
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Figure 5.4: Generated magnetic field while mining XMR

5.3.4 Classifier Design

The data for the generated magnetic field can be represented as a time series.
Thus, our problem converts to time series classification. In our scenario, we
can identify the following two main objectives of the classification stage:

• Classify if a given instance represents the mining activity or not;

• If so, then predict the specific currency (algorithm).

Now, we discuss our data preprocessing, machine learning model selection,
training, and prediction phase.

Data preprocessing

The results of time series classification are affected by the quality of input
data. All the time series data in our dataset are of equal length. Before
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starting the training, we employ a scaling function to normalize the input
data. In particular, following the suggestion from the work [171], we use the
Z-normalization technique. See Appendix B for further details on the scaling
technique. Next, we smooth [15] the input data to remove noise.

Machine learning

Figure 5.5 depicts the generated magnetic field while mining BTC and XMR.
The time series graphs shown in Figure 5.5 are different from each other
because each of these cryptocurrencies uses a distinct PoW algorithm that
performs a discrete task and has a different iteration cycle.

26.0

27.0

28.0

29.0

30.0

31.0

0 1 2 3 4 5 6 7 8 9 10

M
ag

ne
tic

 fi
el

d 
(u

T
)

Time (s)

(a) BTC

27.6

27.9

28.2

28.5

28.8

29.1

29.4

0 1 2 3 4 5 6 7 8 9 10

M
ag

ne
tic

 fi
el

d 
(u

T
)

Time (s)

(b) XMR

Figure 5.5: A representative example of the generated magnetic field while
mining BTC and XMR

We use the K-Nearest Neighbors (KNN) algorithm for the classification
of our time series consisting of the values for Mtotal at each measurement,
where DTW distance serves as the similarity measure. In particular, we use
the KNN classifier with K = 1 because previous studies on the classification
of time series data demonstrated that DTW-based 1NN classifier - which
selects the first nearest neighbors - is “the best” [98,152], “Nearest Neighbor
DTW is very hard to beat” [39], and “1NN with DTW is exceptionally hard to
beat” [214]. Nevertheless, we also performed stratified 4-fold cross-validation
on training data, which we obtain from 80-20% stratified partitioning of our
dataset into training-test split, and we observed least error rate for K=1
among all the single digit odd values of K.

Training and prediction

Our classification model is instance-based. For every instance in the test-set,
a search is performed through all the instances in the training-set to find the
most similar time series. Given the quadratic complexity of DTW, we use
LB_Keogh lower bound (see Section 5.1.3) to speed up the classification
stage. Given a new instance to classify, the prediction is made for both the
objectives discussed at the beginning of this section.
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5.4 Evaluation

Here, we describe the evaluation procedure used to thoroughly assess the
quality of our proposed approach. For the objectives of the classification
stage, mentioned in Section 5.3.4, we performed the following five experi-
ments: (1) binary classification; (2) currency classification; (3) nested clas-
sification; (4) unseen-miner program classification; and (5) cross-platform
classification. In order to increase the statistical significance of the results,
we repeated each experiment five times with stratified 80-20% training-test
partitioning. It is worth to state that even though the dataset has been col-
lected in a controlled setup, our experiments fairly simulate the real-world
scenario, where samples are gathered in real-time. Table 5.3 describes the
sample distribution in our dataset for each system, i.e., S1 and S2. Here,
sub-classes of the mining task refer to the cryptocurrencies (discussed in
Section 5.3.3) while sub-classes of the non-mining task refer to the actual
user-tasks that belong to the negative class (mentioned in Section 5.3.2). It
is important to mention that we created a single training-set where we kept
the instances from both S1 and S2 together.

Task Sub-classes
per task

Samples per
sub-class

Total samples
per task

Mining 12 30 360
Non-mining 12 30 360

Table 5.3: Dataset: name of the task, sub-classes per task, samples per
sub-class, and total samples per task for each system.

We evaluated our classifier using standard classification metrics: Accu-
racy, Precision, Recall, and F1 score. For the statistical certitude of our
results, we report the mean and the margin of error for the results with 95%
confidence interval from five runs of each experiment for each of the evalu-
ation metric. See Appendix B for details on the evaluation metrics and the
related statistical terms. We use the notation mean ± margin_of_error
to report our results.

5.4.1 Binary Classification

In this setting, we consider our classification problem as a binary classifica-
tion task for Mining (positive) class and non-mining (negative) class. All the
instances of various cryptocurrencies are treated as the positive-class while
all the instances of non-mining user-tasks fall in the negative-class. This
assessment aims to evaluate our classifier’s ability to detect the presence of
cryptomining activities. Figure 5.6 presents the results of binary classifica-
tion. Figure 5.6 (a) and Figure 5.6 (b) correspond to S1 and S2, respectively.
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(a) S1 (b) S2

Figure 5.6: Results of the binary classification (whiskers represent the margin
of error)

On S1, we achieved an average accuracy of 85.59%±1.33%, precision
of 89.59%±1.03%, recall of 84.61%±1.68%, and F1 score of 87.02%±1.26%
while on S2, we attained an average accuracy of 86.61%±0.77%, precision of
86.78%±1.29%, recall of 87.22%±0.94%, and F1 score of 86.99%±0.84%.

5.4.2 Currency Classification

We designed this experiment to comprehend the level of difficulty in distin-
guishing various cryptocurrencies. Hence, the input data for this experiment
comprised of instances belonging only to cryptocurrencies. Figure 5.7 show-
cases the confusion matrix for classification among various cryptocurrencies.
We drew the confusion matrices using the aggregate results from all five runs.
Figure 5.7 (a) and Figure 5.7 (b) correspond to S1 and S2, respectively.

(a) S1 (b) S2

Figure 5.7: Confusion matrix for currency classification
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On both S1 and S2, our classifier achieved an overall-average performance
of over 93% for each of the evaluation metric. Furthermore, the results from
this assessment also help us to better understand the outcomes of nested
classification, which is discussed next.

5.4.3 Nested Classification

This assessment aims to evaluate our classifier’s ability to fulfill both our
classification objectives, i.e., first, identify whether the given instance rep-
resents a mining activity, and if so, then predict the specific currency. It is
worth to mention that an error in the primary stage of the nested classifica-
tion influences the subsequent stage. Furthermore, given that our classifier
makes a correct decision in the primary stage, the difficulty level of the sub-
sequent stage affects the final results. Figure 5.8 depicts the results of the
nested classification. Figure 5.8 (a) and Figure 5.8 (b) correspond to S1 and
S2, respectively.

(a) S1 (b) S2

Figure 5.8: Results of the nested classification (whiskers represent the margin
of error)

On S1, we attained an average accuracy of 76.95%±1.17%, precision
of 83.85%±0.69%, recall of 73.89%±1.83%, and F1 score of 78.54%±1.27%
while on S2, we achieved an average accuracy of 77.08%±1.31%, precision
of 85.88%±2.05%, recall of 71.78%±1.21%, and F1 score of 78.17%±1.17%.
Given the lenient requirements (mentioned in Section 5.2) of our method-
ology, we believe that the results of the nested classification are justifiable.
Nevertheless, our primary aim is to identify the presence of the covert cryp-
tomining, for which, our binary classification has shown promising results.

5.4.4 Unseen-miner Program Classification

Since there can be more than one miner programs for a cryptocurrency and
training a classifier on every miner program might not be possible. There-
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fore, we designed this experiment to evaluate the proficiency of our approach
in such circumstances. The goal of this experiment was to perform the bi-
nary classification of all mining and non-mining samples, as mentioned in
Section 5.4.1. However, we selected two additional miner programs for BTC,
namely, BFGMiner 5.5 and cgminer 4.10. During the training, the classifier
was exposed to samples from one of the three miner-programs for BTC. In
contrast, during the testing phase, samples from one of the remaining two
miner-programs for BTC were used. Table 5.4 reports our results of classi-
fying samples from the miner programs that were not seen in training.

System Set Accuracy Precision Recall F1 score

S1

αβ 0.966± 0.015 0.969± 0.015 0.965± 0.016 0.967± 0.016
αγ 0.952± 0.024 0.957± 0.022 0.951± 0.023 0.953± 0.024
βα 0.966± 0.016 0.968± 0.016 0.964± 0.016 0.966± 0.016
βγ 0.969± 0.016 0.971± 0.015 0.967± 0.016 0.969± 0.016
γα 0.955± 0.023 0.958± 0.020 0.954± 0.022 0.954± 0.022
γβ 0.966± 0.021 0.970± 0.019 0.964± 0.021 0.966± 0.021

S2

αβ 0.957± 0.010 0.961± 0.011 0.955± 0.010 0.957± 0.011
αγ 0.943± 0.018 0.949± 0.017 0.941± 0.016 0.943± 0.018
βα 0.951± 0.014 0.954± 0.014 0.950± 0.012 0.952± 0.013
βγ 0.954± 0.015 0.957± 0.015 0.953± 0.014 0.955± 0.015
γα 0.941± 0.016 0.945± 0.015 0.941± 0.015 0.941± 0.015
γβ 0.953± 0.019 0.957± 0.017 0.951± 0.018 0.953± 0.019

Table 5.4: Results of the unseen-miner program classification

The notation MN means that for BTC, the classifier was trained with
samples from M while samples from N were used for testing. α =cpuminer-
multi 1.3.4, β = BFGMiner 5.5, and γ = cgminer 4.10. It is important
to mention that even though we performed the classification with all the
mining and non-mining sub-classes, Table 5.4 presents the results only for
BTC mining to preserve the goal of this experiment.

As mentioned in Section 5.3.1, the miners have to adhere to the core PoW
algorithm used by a cryptocurrency. Our results presented in Table 5.4
support our notion that the pattern of the magnetic field emitted while
mining a given cryptocurrency is consistent across different miner programs.

5.4.5 Cross-platform Classification

We designed this experiment considering one of our key motivations, i.e., to
build a system that can detect covert cryptomining in situations where the
hardware is heterogeneous, e.g., BYOD workplace. Here, we used two ad-
ditional laptops, S1’ and S2’, to collect a new test set. S1’ and S2’ has a
distinct hardware configuration but identical processor as S1 and S2, respec-
tively. For each sub-class of both mining and non-mining tasks, we collected
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15 separate samples on both S1’ and S2’. The target of this experiment was
to perform the binary classification of mining and non-mining samples, as
mentioned in Section 5.4.1. We used our dataset collected previously on S1
and S2 as the training set, but for testing, we used samples obtained from
S1’ and S2’. Figure 5.9 depicts the results of cross-platform classification.
Figure 5.9 (a) and Figure 5.9 (b) correspond to S1’ and S2’, respectively.

(a) S1’ (b) S2’

Figure 5.9: Results of the cross-platform classification

Essentially, our proposed approach is to profile the magnetic field emis-
sion of a processor for the set of available mining algorithms. As shown in
Figure 5.9, the performance of the binary classifier on S1’ and S2’ is nearly
at par (with a maximum performance degradation of 5.5%, which is in the
precision) with its average performance on S1 and S2 (see Figure 5.6), where
the training set was originally collected.

Finally, we used the profile of one processor to classify samples from
another processor. In these separate experiments, we used training-set from
one device (S1 | S2 ) and test-set from another device (S2 or S2’ | S1 or
S1’ ). We found that the profile of one processor may not be reliably used
to classify instances from another processor. In fact, these results align with
our fundamental idea to profile the magnetic field emission of individual
processors for the set of available mining algorithms.

5.5 Discussion

In this section, we discuss the important aspects of our proposed approach
and address its potential limitations.

5.5.1 Zero-day Attack

In our context, a zero-day attack would be to mine a cryptocurrency that
uses a brand new or custom PoW algorithm. However, for such a currency
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to have a value/worth in the real-world, its PoW algorithm must be math-
ematically robust as well as accepted by the crypto-community and its core
network must be supported by moderate-to-large scale miners/pools. Hence,
by the time a zero-day cryptocurrency becomes ready for mining, its algo-
rithm would be public knowledge, providing us sufficient time to train our
system for this new currency’s signature.

On another side, conscious-miners as well as the actors behind uncons-
cious-mining tend to mine more profitable currencies (whose mining algo-
rithms are certainly public knowledge) to maximize their profit and avoid
hashing the less valuable ones. In our experiments, we considered all the
mining algorithms supported by the top-10 mining pools, which indeed are
the most mined cryptocurrencies.

5.5.2 Probe’s Orientation & Position

The orientation as well as the position of the probe with respect to the
processor are the critical aspects of our work. Our approach relies on the
total magnetic field (Mtotal), which is computed using Eq. 5.1. The magnetic
sensor’s reading - which can be positive as well as negative depending on the
direction - for each component of the magnetic field is squared first, which
eliminates the influence of the probe’s orientation.

Since the magnetic fields decay over distance, the distance (position) of
the probe from the processor can be seen as a limitation of our approach. In
our scenario, the investigator has at least physical-access - if not login-access
- to the system. Hence, one can place the probe near the processor simply
by understanding the system’s physical architecture. Any light-offset in po-
sitioning the probe would still perceive the same waveform of the generated
magnetic field though with a different amplitude, which is neutralized dur-
ing data normalization phase. Nevertheless, using high-precision magnetic
sensors may help to manage this limitation to some extent.

5.5.3 Interference due to Other Processes

The miner programs tend to exploit all available compute resources and
deprive other processes of these resources. However, minute interference
due to the occasional scheduling of other processes can be handled by the
very nature of our classification methodology, DTW in particular. Such
interference would be minimum in the case of the conscious-miners, who
would allocate all the resources to the mining process to maximize the profit.
Whereas unconscious-mining would interfere with its victim’s tasks; this is
the situation6 where the victims can halt their tasks and use our system to
detect covert cryptomining.

6Modern malware can hide and circumvent standard detection approaches.

100



Security and Privacy
Implications of Cryptocurrencies A. Gangwal

5.5.4 Scalability

The fundamental idea of our proposed approach is to profile the magnetic
field emission of a processor for the set of available mining algorithms. Given
the finite number of CPUs/GPUs, obtaining signatures is merely a data
collection task. At the beginning, it might appear a tedious task. But, once
completed, keeping it up-to-date is relatively easy because only a limited
number of processors are released from time to time.

5.5.5 Restricted Mining

A mining strategy to evade detection from our proposed methodology can
be restricted mining that aims to change the pattern of the emitted mag-
netic field. Here, the miner can either throttle the mining down or perform
arbitrary tasks during mining. But, both maneuvers would directly affect
the hashing rate and consequently the profits; making the task of mining
less appealing. Nevertheless, like any signature-based detection technique,
it may be seen as a limitation of our work.

5.6 Summary

In this chapter, we present a novel methodology to detect and classify covert
cryptomining. Our proposed approach focuses on the core of the cryptomin-
ing, i.e., mining algorithms. Since it uses the magnetic side-channel, it works
even if the examiner does not have login-access or root-privileges on the sus-
pect machine. In our study, we considered a wide variety of cryptocurrencies
and empirically demonstrated the effectiveness of our system.
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Chapter 6

Detecting Covert Miners via Hardware
Performance Counters

In continuation of our work presented in Chapter 5, we propose an approach
that is designed for another critical and real-world scenario of covert cryp-
tomining. In the former case, we utilize magnetic side-channel to detect two
types of covert cryptomining, i.e., conscious-mining and unconscious-mining.
In that case, we assume that the investigator does not have login-access1 (cor-
responds to the case of conscious-mining) or root-privileges2 (corresponds to
the case of unconscious-mining) on the suspect device.

In this chapter, we specifically focus on unconscious-mining. However,
unlike the previous case, the investigator here owns the device and can ele-
vate his/her privileges to the root-level. This category of covert cryptomining
is also known as cryptojacking. Similar to covert cryptomining, cryptojack-
ing is also defined as an unauthorized use of the computing resources on
computers, tablets, mobile phones, etc. to mine cryptocurrencies.

Cybercriminals have made several ingenious attempts to spread crypto-
jackers in the form of malware [31], malicious browser extensions [20], etc. by
exploiting vulnerability [27], compromising third-party plug-ins [29], maneu-
vering misconfigurations [19], taking advantage of web-based hosting ser-
vice [21], and so on. To evade intrinsic detection techniques (e.g., pro-
cessor’s usage), some cryptojackers suspend their execution when the vic-
tim is using the computer [81], use “pop-under” windows to keep mining
for a comparatively longer duration [14], and utilize legitimate processes
of the operating system to mine [57]. Moreover, merely monitoring CPU
load, etc. is an ineffective strategy because of both false positives and false
negatives [135]. To further aggravate the situation, various cryptocurrency
mining services (e.g., Coinhive [1], Crypto-Loot [3]) easily integrate into web-

1E.g., an administrator in BYOD culture, who suspects an employee’s machine.
2E.g., an employee, who suspects an infection in the company-provided machine.
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sites to monetize the computational power of their visitors. In fact, crypto-
jacking attacks exceeded ransomware attacks in 2018 and affected five times
more systems as compared to ransomware [33].

To tackle such a complex scenario, we focus on the core mining algo-
rithms and utilize Hardware Performance Counters (HPC) to create clean
signatures that grasp the execution pattern of these algorithms on a pro-
cessor. HPC are special-purpose registers in modern microprocessors that
count and store hardware-related activities. These activities are commonly
referred to as hardware events3. HPC are often used to conduct low-level
performance analysis and tuning. HPC-based monitoring has very low-
performance overhead, which makes it suitable even for latency-sensitive
systems. Several works have shown the effectiveness of using HPC to de-
tect generic malware [85, 209, 216], kernel-level rootkits [210], side-channel
attacks [55], unauthorized firmware modifications [211], etc.

Contributions: The major contributions of our work are as follows:

1. We propose an efficient approach to detect cryptojacking. In particu-
lar, our approach uses HPC to profile the core of the mining process,
i.e., the mining algorithms, on a given processor to accurately identify
cryptomining in real-time. We designed our solution to be a generic
one, i.e., it is not tailored to a particular cryptocurrency or a specific
form (e.g., browser-based) of cryptomining.

2. We exhaustively assess the quality of our proposed approach. To this
end, we designed six different experiments: (1) binary classification;
(2) currency classification; (3) nested classification; (4) sample length;
(5) feature relevance; and (6) unseen-miner program classification. For
a thorough evaluation of our proposed solution, we considered all the
cryptocurrencies supported by the top-10 mining pools. Our results
show that our classifier can accurately classify cryptomining activities.

3. In the spirit of reproducible research, we make our collected datasets
and the code publicly available4.

Organization: The remainder of this chapter is organized as follows: We
explain our system’s architecture in Section 6.1 and discuss its evaluation in
Section 6.2. Section 6.3 addresses the potential limitations of our proposed
solution. Finally, Section 6.4 summarizes the chapter.

3Formally, an event is defined as a countable activity, action, or occurrence on a device.
4https://tinyurl.com/y2uq25y3
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6.1 System Architecture

We elucidate the key concept behind our approach in Section 6.1.1, our data
collection phase in Section 6.1.2, selection of cryptocurrencies Section 6.1.3,
and our classifier’s design in Section 6.1.4.

6.1.1 Core Concept

The task of cryptomining requires a miner to run the core PoW5 algorithm
repetitively to solve the cryptographic puzzle. At a coarse-grained level, some
PoW algorithms are processor-oriented (e.g., BTC) while some are memory-
oriented (e.g., XMR) due to their underlying design. At a fine-grained level,
each PoW algorithm has its own unique mathematical/logical computations
(or, in other words, the sequence of operations). Thus, each algorithm upon
execution affects some specific events more as compared to other events on
the processor. Consequently, when an algorithm is executed several times
repetitively, the “more” affected events outnumber the other - relatively un-
der affected - events. It means that a discernible signature can be built
using the relevant events for a PoW algorithm. As a representative example,
Figure 6.1 depicts the variation in events while mining different cryptocur-
rencies and performing some common user-tasks. LTC, for instance, shows
a more erratic pattern in cache-misses as compared to the other events that
are affected during LTC mining. On the other hand, a Skype video call has
more disparity in context-switches.

As discussed in Chapter 5, there is a finite number of PoW algorithms
upon which the cryptocurrencies are established. Thus, we again concentrate
on the mining algorithms instead of individual currency in our solution.
The primary advantage of our approach is that the signature built for an
algorithm would be able to identify even polymorphic, metamorphic, and
heavily obfuscated implementations of that algorithm because the core PoW
algorithm - that we profile in our solution - remains the same. To this end,
we use supervised machine learning (explained in Section 6.1.4) to construct
signatures and build our classifier.

On another side, an adversary may attempt to circumvent such signature-
based detection in the following ways: (1) by controlling/limiting the mining;
or (2) by neutralizing the signatures. Limiting the mining would reduce the
hashing rate, which would indeed make the mining less profitable. Whereas,
to neutralize the signatures, the adversary has to succeed in two main hur-
dles. First, the adversary must have to find those computation(s) that only
changes those events that are unrelated to the PoW algorithm. Second, the
adversary must have to run these computation(s) in parallel to the PoW
algorithm, which would again hamper the hashing rate, and thus the profit.

5We use the term “PoW” to represent different consensus algorithms.
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Figure 6.1: A representative example of variation in events while mining
different cryptocurrencies and performing some common user-tasks. HPC
were polled every 100ms. The line-points in the graphs do not represent
data points and are merely used to make lines distinguishable.

6.1.2 Data Collection

To better explain our work, we first describe what data we collect and how
we collect it. We used the perf [5] tool to profile the processor’s events us-
ing HPC. In particular, we focus on hardware6 events (e.g., branch-misses),
software7 events (e.g., page-faults), and hardware cache8 events (e.g., cache-
misses) on CPU as the mining processes - depending on their design - require

6Basic events, measured by Performance Monitoring Units (PMU).
7Measurable by kernel counters.
8Data- and instruction-cache hardware events.
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different type of resources. We profiled each program of both positive (min-
ing) and negative (non-mining) class individually and collected a total 50
samples per program. Each sample consists of recordings of 28 events (de-
scribed in Table 6.1) for 30 seconds with a sampling rate of 10Hz, which
means that each sample comprises 300 readings of 28 events, i.e., 8400 read-
ings. To obtain clean signatures: (1) we profiled each program in its stable
stage, i.e., omitting the bootstrapping phase and (2) restarted the system to
remove any trace of the previous sample.

For the positive class, we profiled a total of 11 cryptocurrencies discussed
in Section 6.1.3. As the representatives of negative class, we chose: 3D ren-
dering; 7z archive extraction of tar.gz files; H.264 video encoding of raw
video; solving mqueens problem; Nanoscale Molecular Dynamics (NAMD)
simulation; Netflix movie playback; execution of Random Forest (RF) ma-
chine learning algorithm; Skype video calls; stress-ng [6] stress test with
CPU, memory, I/O, and disk workers together; playing Team Fortress 2
game; and Visual Molecular Dynamics (VMD) modeling and visualization.
It is worth mentioning that these user-tasks represent low to high resource-
intensive tasks.

We used two different systems to build our dataset for the experiments.
The configuration of these systems are as follows: (1) S1, a laptop with an
Intel Core i7-7500U @ 2.70 GHz (1 socket x 2 cores x 2 threads = 4 logical
compute resources) processor, 8 GB memory, 512 GB SSD storage, NVIDIA
GeForce 940MX 2 GB dedicated graphic card, Linux kernel 4.14 and (2) S2,
a laptop with an Intel Core i7-8550U @ 1.80 GHz (1 socket x 2 cores x 4
threads = 8 logical compute resources) processor, 16 GB memory, 512 GB
SSD storage, Linux kernel 4.14.

All miner programs and the perf tool were launched in user -mode. Even
though we did not use any system-level privileges, we believe that using root
permissions for defense against cryptojacking is reasonable. It is worth em-
phasizing that even though the dataset has been accumulated in a controlled
setup, our experiments (discussed in Section 6.2) well simulate real-world
scenario, where samples are collected in the real-time.

6.1.3 Cryptocurrencies & miners

Typically, the mining pools are characterized by their hashing power. Ta-
ble 5.1 shows the top-10 mining pools [17] and the cryptocurrencies mined
by them. At the time writing, these ten mining pools collectively constitutes
the biggest share (84% during Q3 2018) of the cryptomining business. See
Appendix A for the acronyms and their corresponding cryptocurrency.

We considered all the cryptocurrencies mentioned in the Table 5.1 in our
experiments. We used open-source miner programs to mine these cryptocur-
rencies. Each miner program was configured to mine with public mining
pools and to utilize all available the CPUs present on the system. At the
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Event Type Description
branch-instructions HW N. of retired branch instructions.
branch-load-misses HW N. of Branch load misses.
branch-loads HW N. of Branch load accesses.
branch-misses HW N. of mispredicted branch instruc-

tions.
bus-cycles HW N. of bus cycles, which can be different

from total cycles.
cache-misses HC N. of cache misses.
cache-references HC N. of cache accesses.
context-switches SW N. of context switches.
cpu-migrations SW N. of times the process has migrated.
dTLB-load-misses HC N. of load misses at data TLB.
dTLB-loads HC N. of load hits at data TLB.
dTLB-store-misses HC N. of store misses at data TLB.
dTLB-stores HC N. of store hits at data TLB.
instructions HW N. of retired instructions.
iTLB-load-misses HC N. of instruction fetches that missed

instruction TLB.
iTLB-loads HC N. of instruction fetches that queried

instruction TLB.
L1-dcache-load-misses HC N. of load misses at L1 data cache.
L1-dcache-loads HC N. of loads at L1 data cache.
L1-dcache-stores HC N. of stores at L1 data cache.
LLC-load-misses HC N. of load misses at the last level

cache.
LLC-loads HC N. of loads at the last level cache.
LLC-store-misses HC N. of store misses at the last level

cache.
LLC-stores HC N. of stores at the last level cache.
mem-loads HC N. of memory loads.
mem-stores HC N. of memory stores.
node-load-misses HC N. of load hits at Non-Uniform Mem-

ory Access (NUMA) node.
node-loads HC N. of load misses at NUMA node.
node-store-misses HC N. of store hits at NUMA node.
node-stores HC N. of store misses at NUMA node.
page-faults SW N. of page faults.
ref-cycles HW N. of total cycles; not affected by CPU

frequency scaling.
task-clock SW The clock count specific to the task

that is running.

Table 6.1: The events that we monitor using HPC. Here, HW = hardware,
SW = software, and HC = hardware cache event.
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time of our experiments, the miner program for SC was not able to mine
using only CPU. Hence, we excluded SC from our experiments. To compen-
sate SC, we included QRK whose mining algorithm - in contrast to other
cryptocurrencies - uses multiple hashing algorithms. Table 5.2 shows the
mining algorithm of different cryptocurrencies and the CPU miners we used.

Since our approach focuses on the underlying core PoW algorithm, we
considered one currency for every mining algorithm mentioned in Table 5.2.
We excluded BCH, SBTC, UBTC, ETC, and XMC in our study. As the
proof-of-concept implementation, we considered only CPU-based miner pro-
grams because each computer has at least one CPU, which cryptojackers
can harness to mine. Nevertheless, our approach is also valid to distinguish
GPU-based miners because dedicated profiling tools, such as the nvprof [4]
tool for NVIDIA GPUs, allow us to monitor GPU events. Apart from most
of the standard events found on CPUs, GPUs have several dedicated events
that can assist in creating unique signatures for GPUs.

6.1.4 Classifier Design

In this section, we elucidate the design of our classification methodology.
Algorithm 2 describes the pipeline of our classifier.

Algorithm 2 Pseudo code for our supervised classification.
1: for each run i from 1 to 10 do
2: Create raw_train_set and raw_test_set by 90-10% stratified parti-

tioning.
3: Data preprocessing

• Replace NaN values from raw_train_set and raw_test_set with
arithmetic mean of the considered event.

4: Feature engineering
• train_set := Extract_feature(raw_train_set)
• test_set := Extract_feature(raw_test_set)

5: Feature scaling
• scaler := StandardScaler()
• scaler.fit(train_set) BFit scaler on train_set
• scaler.transform(train_set)
• scaler.transform(test_set)

6: Feature selection
• Compute features’ importance with forests of trees on train_set and
select the most relevant features.

7: Training
• Learn the model parameters for the given classifier (RF/SVM) on
the training set using grid search with 5-fold stratified CV.

8: Predict/classify the test_set.
9: end for
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Our supervised classification algorithm begins with splitting the base-
dataset of 1100 samples (2 classes x 11 instances x 50 samples) into 90-10%
stratified train-test sets, denoted as raw_train_set and raw_test_set. Then,
these subsets are processed as follows:

1. Data preprocessing: The first step of any machine learning-based clas-
sification is to process the raw datasets to fix any missing value. Since
each event we monitor returns a numerical value, we replace the miss-
ing values, if any, with the arithmetic mean of the respective event.

2. Feature engineering: In this step, we obtain features that can be used
to train a machine learning model for our prediction problem. Here, we
compute 12 statistical functions (listed in Table 6.2) for every event.
This step converts each sample consisting of 300 readings (rows) x
28 events (columns) to a single row of 336 (28 events x 12 features)
data-points. The features extracted in this phase, hereinafter referred
to as train_set and test_set, are used for the subsequent stages.

0.2, 0.4, 0.6, and 0.8 quantile 1, 2, and 3 sigma
Arithmetic and geometric mean Kurtosis

Skewness Variance

Table 6.2: The statistical functions used for our feature engineering phase

3. Feature scaling: It is an essential step to eliminate the influence of
large-valued features because features with larger magnitude can dom-
inate the objective function, and thus, deterring an estimator to learn
from other features correctly. Hence, we standardize features using
standard scaler, which removes the mean and scale the features to unit
variance.

4. Feature selection: In machine learning, feature selection or dimension-
ality reduction is the process of selecting a subset of relevant features
that are used in model construction. It aims to improve estimators’
accuracy as well as to boost their performance on high-dimensional
datasets. To do so, we calculate the importance of features using forests
of trees [32] and select the most relevant features.

5. Training: The training phase consists of learning the model parameters
for the given classifier on the training set, i.e., train_set. Given the
nature of the problem, we resort to supervised machine learning proce-
dures. In particular, we employed two of the most successful machine
learning methods for classification, namely Random Forest (RF) [116]
and Support Vector Machine (SVM) [63].
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For model selection, we use grid search with 5-fold Cross Validation (CV).
The validated hyper-parameters for RF and SVM are shown in Ta-
ble 6.3 and Table 6.4, respectively. We chose standard range of values
for the hyper-parameters [117].

Parameter Validated values Effect on the model

n_estimators {10, 25, 50,
100, 125, 150} Number of trees use in the ensemble.

max_depth [2, ∞) Maximum depth of the trees.

max_features ‘auto’, ‘log2’ Number of features to consider when
looking for the best split.

split_criterion gini, entropy Criterion used to split a node in a de-
cision tree.

bootstrap true, false

Bootstrap Aggregation (a.k.a. bag-
ging) is a technique that reduces
model variances (overfitting) and im-
proves the outcome of learning on lim-
ited sample or unstable datasets.

random_state 10 The seed used by the random number
generator.

Table 6.3: Hyper-parameters validated for RF classifier

Parameter Validated values Effect on the model

kernel ‘rbf’, ‘poly’,
‘sigmoid’

Specifies the kernel type to be used in
the algorithm.

C [10−3, 105]

Regularization parameter that con-
trols the trade-off between the achiev-
ing a low training error and a low test-
ing error that is the ability to general-
ize your classifier to unseen data.

γ
‘auto’,

[10−7, 103]

Shape parameter of the RBF kernel
which defines how an example influ-
ence in the final classification.

degree default=3
Degree of the polynomial kernel func-
tion (‘poly’). Ignored by all other ker-
nels.

random_state 10
The seed of the pseudo random num-
ber generator used when shuffling the
data for probability estimates.

Table 6.4: Hyper-parameters validated for SVM classifier

6. Prediction: Finally, prediction is made on test_set.

The process is repeated ten times for a given experiment and the final results
are computed over these ten runs.

6.2 Evaluation

We throughly evaluated our approach by performing an exhaustive set of ex-
periments. We performed the following six different experiments: (1) binary
classification; (2) currency classification; (3) nested classification; (4) sample
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length; (5) feature relevance; and (6) unseen-miner program classification.
Table 6.5 describes the sample distribution in our base-dataset for each sys-
tem, i.e., S1 and S2. Here, sub-classes of the mining task refer to the cryp-
tocurrencies (discussed in Section 6.1.3) while sub-classes of the non-mining
task refer to the actual user-tasks that belong to the negative class (men-
tioned in Section 6.1.2). We use the entire base-dataset (1100 samples per
system) for each experiment, unless otherwise stated in an experiment.

Task Sub-classes
per task

Samples per
sub-class

Total samples
per task

Mining 11 50 550
Non-mining 11 50 550

Table 6.5: Dataset: name of the task, sub-classes per task, samples per
sub-class, and total samples per task for each system

We evaluated our classifier using standard classification metrics: Accu-
racy, Precision, Recall, and F1 score. To increase the statistical significance
of our results, we report the mean and the margin of error for the results
with 95% confidence interval from ten runs of each experiment for each of
the evaluation metric. See Appendix B for details of these evaluation metrics
and the related statistical terms. We use (·) indicates the best result for the
metric and report the results as mean±margin of error.

6.2.1 Binary Classification

Our main goal is to identify whether a given instance represents the mining
task or not. Hence, in this experiment, the label of each sample was defined
as the positive or negative class, accordingly. Table 6.6 presents the results
of the binary classification using both RF and SVM.

System Method Accuracy Precision Recall F1

S1 RF 1.000± 0.000· 1.000± 0.000· 1.000± 0.000· 1.000± 0.000·
SVM 0.999± 0.002 0.999± 0.002 0.999± 0.002 0.999± 0.002

S2 RF 0.999± 0.002· 0.999± 0.002· 0.999± 0.002· 0.999± 0.002·
SVM 0.990± 0.018 0.991± 0.016 0.990± 0.018 0.990± 0.018

Table 6.6: Results for binary classification

Both the RF and SVM yielded superior performance. However, RF per-
formed better than SVM on both the system, i.e., S1 and S2. For the same
reason, we report the results only for RF for the subsequent experiments.

6.2.2 Currency Classification

The aim of this experiment is to understand the difficulty level of classifica-
tion among various cryptocurrencies. Therefore, the input dataset for this
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experiment contained instances only of the cryptocurrencies. Table 6.7 lists
the results of the currency classification.

System Accuracy Precision Recall F1
S1 0.987± 0.017 0.992± 0.011 0.988± 0.016 0.985± 0.020

S2 0.986± 0.018 0.981± 0.027 0.985± 0.018 0.982± 0.024

Table 6.7: Results for currency classification

Figure 6.2 depicts the confusion matrices for the classification among
various cryptocurrencies to provide a better perception of the results. Here,
Figure 6.2 (a) and Figure 6.2 (b) correspond to S1 and S2, respectively.
The confusion matrices are drawn using the aggregate results from all the
ten runs. Currency classification is a multi-class classification problem, and
some cryptocurrencies were misclassified among each other (see Figure 6.2).
Hence, the results are slightly lower than that of the binary classification.

(a) S1 (b) S2

Figure 6.2: Confusion matrix for classification among various currencies

6.2.3 Nested Classification

This experiment represents a simulation of a real-world scenario. Here, we
first classify whether a given instance belongs to the positive class. If so, we
identify the cryptocurrency it belongs to. Essentially, nested classification
is equivalent to performing currency classification on the instances classified
as positive in the binary classification. Figure 6.3 depicts the hierarchy of
nested classification.
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Binary
classification

Currency
classification

if ‘+’ instance

Figure 6.3: Hierarchy of nested classification

Table 6.8 shows the results of the nested classification. In the worst case,
we expect the outcome of this experiment to be lower than that of the binary
classification and currency classification together because a crucial aspect of
such staged classification is that an error made in the prediction during the
primary stage influences the subsequent stage; the results for S1 shows this
phenomenon. However, in a common scenario, the expected outcome of this
experiment would be between the results for the binary classification and
currency classification; the results for S2 shows this effect.

System Accuracy Precision Recall F1
S1 0.973± 0.020 0.972± 0.026 0.972± 0.020 0.967± 0.026

S2 0.996± 0.007 0.997± 0.006 0.996± 0.008 0.996± 0.008

Table 6.8: Results for nested classification

6.2.4 Sample Length

The objective of this experiment is to understand the effect of length of the
samples. For deployment in the real-world scenario, any solution - apart
from being accurate - must be able to detect cryptojackers rapidly. To this
end, we performed the binary classification of samples of a length of 5, 10, 15,
20, 25, and 30 seconds, each in separate experiments. It is worth mentioning
that we used samples of identical length for both the training and testing.
Figure 6.4 shows the F1 score when using samples of different length.
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Figure 6.4: F1 score when using samples of different length (whiskers repre-
sent margin of error)
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As explained in Section 6.1.1, the task of mining is to repeatedly execute
the core PoW algorithm. Hence, even samples of shorter length can grasp the
signature. As shown in Figure 6.4, our system can achieve high performance
with samples of 5 seconds. The dip in the curve for S1 corresponds to the
thousandths digit of the F1 score. For the sake of brevity, we omitted the
results for sample shorter than five seconds and only focus on the required
minimum sample length to attain high performance with our solution.

6.2.5 Feature Relevance

Next, we focus on our feature selection process (see Section 6.1.4). After cal-
culating the importance of features, we sorted them in the ascending order
of their importance and selected the first-Ψ% features to do the binary clas-
sification. Figure 6.5 depicts the F1 score when using first-Ψ% features.
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Figure 6.5: F1 score when using first-Ψ% features (whiskers represent margin
of error)

Since the features are sorted in the ascending order of their importance,
we begin with the feature with lowest significance. Intuitively, including
important features further improves the classification process. As shown in
the Figure 6.5, our classifier attains high performance on both the systems
using only the first-40% (less relevant) features, which verifies/approves our
feature engineering and selection process.

6.2.6 Unseen-miner Program Classification

There can be several different miner-programs to mine a given cryptocur-
rency. These programs come from different sources. Consequently, there can
be some variations in the behavior of the miner-program itself, e.g., in the
code section before/after the PoW function or handling (on the programming-
side) a correct nonce found while mining. The reason is that they are devel-
oped by different developers, which intuitively causes variations. Training a
model for each program may not be feasible for a variety of reasons. Hence,
to investigate the effectiveness of our approach, we set up another experi-
ment. Here, we selected the binary classification as the target. However, we
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chose two additional miner programs for BTC, namely, BFGMiner 5.5 and
cgminer 4.10. We collected additional 50 samples each for BFGMiner 5.5 and
cgminer 4.10 on both S1 and S2 separately. In the training phase, we used
samples from one of the three miner programs for BTC. On the contrary, we
used samples from one of the other two miner programs for BTC during the
testing phase. Table 6.9 presents the results of classifying samples from the
miner programs that were unseen in the training phase.

System Task Accuracy Precision Recall F1

S1

αβ 0.997± 0.006 0.997± 0.006 0.997± 0.006 0.997± 0.006
αγ 0.998± 0.005 1.000± 0.000 0.997± 0.006 0.998± 0.004
βα 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000
βγ 0.999± 0.001 0.999± 0.002 0.999± 0.002 0.999± 0.002
γα 0.999± 0.002 0.999± 0.002 0.999± 0.002 0.999± 0.002
γβ 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

S2

αβ 0.999± 0.001 0.999± 0.002 0.999± 0.002 0.999± 0.002
αγ 0.998± 0.002 0.997± 0.003 0.997± 0.003 0.997± 0.003
βα 0.999± 0.002 0.998± 0.003 0.998± 0.003 0.998± 0.003
βγ 0.999± 0.001 0.999± 0.002 0.999± 0.002 0.999± 0.002
γα 0.999± 0.001 0.999± 0.002 0.999± 0.002 0.999± 0.002
γβ 0.999± 0.001 0.999± 0.002 0.999± 0.002 0.999± 0.002

Table 6.9: Results for unseen-miner program classification

The notation XY means that the training was done with the samples
from X while the testing was done with the sample from Y for BTC. Here,
α = cpuminer-multi 1.3.4, β = BFGMiner 5.5, and γ = cgminer 4.10.
It is important to mention that these results are for the classification of all
the mining and non-mining tasks with BTC being trained and tested upon
samples from different programs.

As discussed in Section 6.1.1, the miners have to execute the same core
PoW algorithm for a given cryptocurrency. Hence, samples from different
miner programs for the same cryptocurrency retain the same signatures,
which is reflected in our results.

6.3 Discussion

In this section, we address the potential limitation of our proposed approach.

6.3.1 Zero-day Attack

As explained in Section 5.5, a zero-day cryptocurrency would be a currency
that uses a completely new/custom and unseen PoW algorithm. For a cryp-
tocurrency to obtain market value, its core-network should be supported by
miners/pools as well as its PoW algorithm must be accepted by the crypto-
community and tested mathematically for its robustness. Therefore, the
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PoW algorithm for a new cryptocurrency would become public by the time
it gets ready for mining, which would give us sufficient time to capture this
new cryptocurrency’s signature and to train our model. In our experiments,
we considered all the popular cryptocurrencies, and our results (presented
in Section 6.2) demonstrate the high quality of our proposed approach along
various dimensions.

6.3.2 Process Selection

As mentioned in Section 6.1.2, our system requires per program/process-
based recording of HPC for different events as the input to the classifier. In
practice, several processes run in the system. Hence, monitoring each process
may consume time and can be seen as a limitation of our work. However,
as shown in Figure 6.4, our system can achieve high performance even with
samples of 5 seconds. On another side, the miner programs attempt to use
all the available resources. Thus, an initial sorting of processes based on
their resource usage can help to boost the detection process in real-time.

6.3.3 Scalability

The key concept of our approach is to profile the behavior of a proces-
sor’s events for mining algorithms. Since there are only a finite number of
CPUs/GPUs, procuring their signature is only a matter of data collection.
However, it might appear as a ponderous job and may be seen as a limita-
tion of our work. But, once it is accomplished for the available CPUs/GPUs,
maintaining it is relatively simpler as merely a limited number of CPUs/G-
PUs are released over a period of time.

6.3.4 Restricted Mining

A mining strategy to evade detection from our proposed methodology can
be restricted mining that aims to change the footprint of the mining process.
Here, the miner program/process can be modified to perform arbitrary oper-
ations during mining. But, such maneuvers would directly affect the hashing
rate and consequently the profits; making the task of mining less appealing.
Nevertheless, like any signature-based detection technique, it may be seen
as a limitation of our work.

6.4 Summary

Cybercriminals have developed several proficient ways to exploit cryptocur-
rencies with an aim to commit many unconventional financial frauds. Cryp-
tojacking is one of the most recent means to monetize the computational
power of the victims. In this chapter, we present our efficient methodology
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to identify cryptojacking. Our solution has a broader scope as it targets the
core PoW algorithms and uses the low-performance overhead HPC that are
present in modern processors to create discernible signatures. We tested our
generic approach against a set of rigorous experiments that include eleven
distinct cryptocurrencies. We found that our classifier attains high perfor-
mance even with short samples of five seconds.
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Chapter 7

Conclusions

The popularity of cryptocurrencies has increased enormously over the last
decade. Many cryptocurrencies, e.g., Bitcoin, are now recognized as a reg-
ular mode of payment. With a growing demand for cryptocurrencies, new
currencies are introduced each day. At the time of writing, there are over
2000 active cryptocurrencies in the market. Typically, these virtual currency
systems aim to provide pseudo-anonymity to hide the real identity of the
payer and payee. The pseudo-anonymity offered by these cryptocurrencies
has, unfortunately, made such currencies a handy utility among cybercrim-
inals. Apart from giving birth to novel cybercrimes, these currencies also
come with novel security and privacy concerns.

In this thesis, we focused on the recently thriving, prominent, and severe
concerns arising due to cryptocurrencies. In particular, we focused on issues
related to Bitcoin in Part I, the security flaw in Algorand’s truly democratic
blockchain consensus protocol in Part II, and covert cryptomining associated
with various cryptocurrencies in Part III. We first summarize our contribu-
tions to the state-of-the-art in Section 7.1 and outline the possible future
works in Section 7.2.

7.1 Summary of Contributions

In this section, we summarize the contributions of our works presented
in this thesis.

7.1.1 Bitcoin

In Part I, we investigated issues related to the most popular cryptocurrency,
i.e., Bitcoin. Out of several concerns associated with Bitcoin, we studied
two issues that hold significant importance in this era of cryptocurrencies.
In particular, we focused on rapidly increasing ransomware campaigns and
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the privacy concerns related to the Bitcoin wallet apps. For the former, we
presented our comprehensive and longitudinal study on the recent ransom-
ware attacks and reported the economic impact of such ransomware from
the Bitcoin payment perspective. For the latter, we presented our study on
identifying sensitive user activities on smartphone-based Bitcoin wallet apps
that are commonly used for sending, receiving, and trading Bitcoin.

• Bitcoin Ransomware Campaigns: To the best of our knowledge, our
work presented in Chapter 2 is the first study that discusses the char-
acteristics and functionality of various Bitcoin ransomware, as well as
it also gives more accurate insights on the economic impact of such
ransomware. To this end, we presented a lightweight framework that
can identify, collect, and analyze Bitcoin addresses that belong to the
same user(s). Next, we proposed our novel approach to classify a pay-
ment as ransom. We used our framework to analyze the economic
impact (in terms of ransoms extorted in Bitcoin) of those ransom-
ware: (i) that used Bitcoin as at least one mode of ransom payment
and (ii) for which at least one Bitcoin address was publicly known.

• Privacy Issues in Bitcoin Wallet Apps: In Chapter 3, we aimed to
identify a set of sensitive and fundamental user actions on smartphone-
based Bitcoin wallet apps. To do so, we resorted to analyzing encrypted
network traffic that elicits from these apps in response to the user’s in-
teraction. We built a complete implementation of a machine learning-
based framework to perform the analysis. We designed our experi-
ments to reasonably simulate the real-world scenarios, where traffic
traces from both Android and iOS devices were classified in nested
classification layers. Our framework can help to scrutinize potential
Bitcoin wallet users, which consequently, may help in the hunt of cy-
bercriminals that exploit Bitcoin in various forms.

7.1.2 Algorand

In Part II, we investigated Algorand that is a recently proposed innovative
blockchain consensus protocol. To the best of our knowledge, it is the first
formal study on Algorand. In particular, we presented a security analysis of
Algorand. Algorand guarantees an overwhelming probability of linearity of
the blockchain. Moreover, it is designed to solve the “blockchain trilemma”
of decentralization, scalability, and security. Hence, our aim here was to
analyze and further strengthen such a truly democratic consensus protocol.

• Security Flaw in Truly Democratic Consensus Protocol: In Chapter 4,
we demonstrated a practically feasible attack on the Algorand protocol.
We evaluated the impact of our proposed attack in our simulator that
we created from scratch in Java. We found that an adversary using our
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attack can target a group of honest users and slow down the consensus
process, which consequently, leaves the targeted nodes behind in the
chain. Moreover, we elaborated the major factors that make such an
attack scenario challenging for honest nodes. Finally, we also presented
possible countermeasures to prevent such an attack.

7.1.3 Cryptominers

With the increase in the popularity of cryptocurrencies, the demand for
cryptomining has increased drastically. In parallel to legitimate mining de-
mands, covert cryptomining has emerged as a utility for malicious actors
to gain financial incentives. Cryptocurrencies, such as Monero, has enabled
even naive users to mine via a browser application. We have investigated
covert cryptomining in Part III and proposed two efficient solutions to detect
it under different scenarios.

• Detecting Covert Miners via Magnetic Side-channel: In Chapter 5, we
considered both conscious-miners and unconscious-miners. Here, we
leveraged the magnetic side-channel to detect covert cryptomining. We
built a complete implementation of our system using advanced machine
learning techniques. We considered twelve different cryptocurrencies in
our experiments, which indeed are the most mined cryptocurrencies.
We designed and performed five different experiments to thoroughly
assess the quality of our approach. Our proposed unique approach
works even when the investigator does not have root-privileges or login-
access on the suspect device.

• Detecting Covert Miners via Hardware Performance Counters: In Chap-
ter 6, we specifically focused on unconscious-mining. However, unlike
the previous case, the investigator here owns the device and can elevate
his/her privileges to the root-level. We utilized HPC to create clean
signatures of the execution patterns of the underlying PoW algorithms
on a given processor. In a battery of assessments of our proposed
generic approach, we found that our approach can near-perfectly de-
tect cryptominers for various cryptocurrencies.

7.2 Future Work

In this section, we present the possible future directions of our research
contributions reported in this thesis.

7.2.1 Bitcoin

Despite being one of the most comprehensive and accurate studies on ransom-
ware campaigns, there is still some room for significant improvements in our
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work discussed in Chapter 2. In particular, we hope to improve our work to
deal with its limitations, i.e., overestimation and underestimation. Moreover,
we will extend our framework to other cryptocurrencies. We will also inves-
tigate the ransoms extorted via other payment options; we hope to present
a comprehensive report that will include ransom payments from all payment
option endorsed by the ransomware. Finally, we will attempt to trace how
the received ransoms were used and by whom. As a future direction of our
proposal in Chapter 3, we will investigate the security and privacy implica-
tion of transacting on such apps by considering a stronger adversary model.
On the other hand, we also intend to find efficient countermeasures to pre-
serve the privacy of the Bitcoin wallet app users. Finally, we will also explore
the possibility to deanonymize a financial transaction placed via the wallet
apps.

7.2.2 Algorand

As far as the work presented in Chapter 4 is concerned, we will evaluate our
proposed attack on the actual test-network of Algorand’s real-world imple-
mentation. The rigorous formalization of our proposed countermeasures is
also kept as one of the future efforts related to this work. We will also work
in the direction to find even more effective countermeasures with an aim to
make Algorand more secure and reliable.

7.2.3 Cryptominers

Extending our work described in Chapter 5, we will investigate the varia-
tions in the magnetic profiles of even more processors. We will explore the
possibility of creating a common profile across different processors for a given
PoW algorithm. We will also evaluate the performance of our approach un-
der different mining rate as well as in scenarios with varying magnetic field
profiles, e.g., server rooms. Finally, we hope to release a smartphone app for
real-time identification of covert cryptomining. For our work introduced in
Chapter 6, we will investigate the variations in the samples from different
operating system and virtualized environments. We also hope to release a
desktop application for real-time identification of covert cryptomining.

We will also work in the direction to: (1) preserve privacy and improve
security for the legitimate cryptocurrency users; (2) make cryptocurrency
systems more democratic by enhancing their fundamental protocols; and
(3) prevent exploitations of pseudo-anonymity offered by cryptocurrencies.
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Chapter A

Acronyms

BCD Bitcoin Diamond

BCH Bitcoin Cash

BTC Bitcoin

BTM Bytom

DASH Dash

DCR Decred

ETC Ethereum Classic

ETH Ethereum

LTC Litecoin

QRK Quark

SBTC SuperBitcoin

SC Siacoin

UBTC UnitedBitcoin

XMC Monero-Classic

XMR Monero

XZC Zcoin

ZEC Zcash
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Chapter B

Standard Definitions

MinMax scaler scales each feature in the range [0,1]. Specifically, given
a feature x and one of its assumed value xi the following formula is
applied:

minmax(xi) =
xi −min(x)

max(x)−min(x)
,

where min(x) and max(x) are the minimum and maximum value of the
feature x in the dataset.

Standard scaler transforms each feature in such a way that the mean be-
comes zero and standard deviation becomes one. Specifically, given a
feature x and one of its value xi, the following formula is applied:

Z(xi) =
xi − µ(x)

σ(x)
,

where µ(x) and σ(x) are the mean and standard deviation of the vari-
able x. It is also referred to as Z-score normalization.

Standard error of a variable y is expressed as:

SE(y) =
σ(y)√
n
,

where n and σ(y) are the number of observations and standard devia-
tion of the variable y.

Margin of error is the range of values above and below the sample mean
for a given confidence interval. It is calculated as:

z ∗ SE(y),

where z is the coefficient for the selected confidence level. E.g., z is
1.96 for 95% confidence interval.

141



A. Gangwal
Security and Privacy

Implications of Cryptocurrencies

Accuracy measures how often the classifier makes the right prediction de-
fined as the ratio between the number of hit and the number of pre-
dictions.

Precision quantifies the ability of a classifier to not label a negative example
as positive. It is computed as the ratio of the number of true positives
and the total number of instances labeled as positives.

Recall defines the probability that a positive prediction made by the clas-
sifier is actually positive. It is computed as the ratio of the number of
true positives and the total number of positives in the set.

F1 score is a single metric that combines both precision and recall via their
harmonic mean:

F1 score = 2× precision× recall
precision + recall
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Chapter C

Seed Bitcoin Addresses for Ransom-
ware

# Address Source(s)
1 135N2nfAkextd6E25quXpM98qLSi2BccCb [67]2 1AEoiHY23fbBn8QiJ5y6oAjrhRY1Fb85uc
3 18iEz617DoDp8CNQUyyrjCcC7XCGDf5SVb [67,68]4 1KP72fBmh3XBRfuJDMn53APaqM6iMRspCh

Table C.1: CryptoLocker

# Address Source(s)
1 19DyWHtgLgDKgEeoKjfpCJJ9WU8SQ3gr27 [196]2 1EmLLj8peW292zR2VvumYPPa9wLcK4CPK1

Table C.2: CryptoDefense
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# Address Source(s)
1 1PoebUjR5pdH88tc9ECQ1PCLaCrtPnG9fm [69]
2 128pJdREzcR6xorYPQAPzGf8RwMQjRBzDt [73]
3 15WUYqKerTtxi4rUEmnakw5gRMkr3nZCQd [74]
4 1L66AcnbuZkYjs8eE6uVbTUxmorHYGKxFJ [75]
5 16REtGSobiQZoprFnXZBR2mSWvRyUSJ3ag [76]
6 16Z6sidfLrfNoxJNu4qM5zhRttJEUD3XoB [77]
7 12LE1yNak3ZuNTLa95KYR2CQSKb6rZnELb [78]
8 1JYYzNHDaGC7noiE4eKatuYA4AThqVocDd [79]
9 1BhLzCZGY6dwQYgX4B6NR5sjDebBPNapvv [80,84]
10 16yd1Wj2NZa2uLZ6W4UDCDJ2Ttw92uFaT7 [70,84]
11 1LGnuv6KX9SXB8eM72dnBAcECeaC8Z2zje [71,84]
12 1L7SLmazbbcy614zsDSLwz4bxz1nnJvDeV

[72,84]13 19yqWit95eFGmUTYDLr3memcDoJiYgUppc
14 16N3jvnF7UhRh74TMmtwxpLX6zPQKPbEbh
15 1ApF4XayPo7Mtpe326o3xMnSgrkZo7TCWD

And, 27 other distinct addresses that are listed on [84]

Table C.3: CryptoWall

# Address Source(s)
1 1MrKJhiECV3RufrY1dSybSXRCwSw11Co6i [90]
2 1C8yA7wJuKD4D2giTEpUNcdd7UNExEJ45r [91]
3 166vHLnGB1pCQGxdBkRiMkHW5WGQDbsw6s [92]
4 1BA48s9Eeh77vwWiEgh5Vt29G3YJN1PRoR [93]
5 18mfoGHSfe9h145e8djHK5rChDTnGfPDU9 [94]
6 16hHkyuzCDRFzoejVuqajqrnbmKHSmEfQM [95]
7 1382JAg5xbQv7QNwq1svDeyw6ELtNCmujG [89]8 1KXw7aJR4THWAxtnxZYzmysdLXVhLfa97n

Table C.4: DMA Locker

# Address Source(s)
1 13dN96pRTQDhpWRqKyLTbgRxeTN52p2CqY [151]

Table C.5: Mischa

# Address Source(s)
1 1BAdEKq6zE1JDL8g2pA1MDRHbW1wvYCWhT [107]
2 1MGnopAa6MAGjUpCEmRiSAcVKZNB6n8gnR [108]
3 17xV74Hp2zNR74yG3AJvPpNMchPJHm2iUo [109]

Table C.6: GoldenEye

# Address Source(s)
1 1Mz7153HMuxXTuR2R1t78mGSdzaAtNbBWX [159,197]

Table C.7: NotPetya
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# Address Source(s)
1 1PGAUBqHNcwSHYKnpHgzCrPkyxNxvsmEof [124]
2 1Lhgda4K77rFMTkgBKqmsdinDNYYVbLDJN [125]
3 1KGusS7xB9hnqZQdCZ1G8Tno16RfTS95ey [126]
4 1KPPqHpd8Z9S6pQH1qVovzyejyfDMghp4u [127]
5 1J9PMCpbrnicZoBUdyuNBwi4QvXwq6Korq [128]
6 16hhyeg7WMh4Go7JqNKRwmD95bRd4aenwz [129]

Table C.8: KeRanger

# Address Source(s)
1 13AM4VW2dhxYgXeQepoHkHSQuy6NgaEb94

[65,213]2 12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw
3 115p7UMMngoj1pMvkpHijcRdfJNXj6LrLn

Table C.9: WannaCry

145


	Abstract
	Introduction
	Research Motivation and Contribution
	Bitcoin
	Algorand
	Cryptominers

	Publications
	Journal Publications
	Conference and Workshop Publications


	I Bitcoin
	Bitcoin Ransomware Campaigns
	Background & Preliminaries
	Related Works
	Ransom Identification Framework
	Module 1: Identification of Ransomware Addresses
	Module 2: Data Collection and Database Generation
	Module 3: Classifying a Payment as Ransom

	Economic Impact of Ransomware
	CryptoLocker
	CryptoDefense
	CryptoWall
	DMA Locker
	Petya
	KeRanger
	WannaCry

	Limitations
	Summary

	Privacy Issues in Bitcoin Wallet Apps
	Related Works
	System Design
	Smartphone, App, and Action Selection
	Equipment Setup

	Classifier Design
	Data Preprocessing
	Feature Selection
	Machine Learning
	Training
	Prediction

	Evaluation
	Evaluation Settings
	Results

	Summary


	II Algorand
	Security Flaw in Truly Democratic Consensus Protocol
	Algorand
	The Limitations of Current Blockchain
	Salient Features of Algorand
	Protocol Assumptions
	Network Communication
	Consensus Algorithm
	Cryptographic Sortition

	Our Attack
	Attack Preliminaries
	A Typical Flooding Attack
	Magnifying Attack's Impact via Undecidable Messages

	Evaluation
	Simulator
	Evaluation Settings
	Results

	Feasibility of the Attack
	Summary


	III Cryptominers
	Detecting Covert Miners via Magnetic Side-channel
	Background & Preliminaries
	Magnetic Field
	Magnetic Field Sensor of the Smartphones
	Dynamic Time Warping

	Related Works
	System Architecture
	Core Concept
	Dataset Collection
	Cryptocurrencies & Miners
	Classifier Design

	Evaluation
	Binary Classification
	Currency Classification
	Nested Classification
	Unseen-miner Program Classification
	Cross-platform Classification

	Discussion
	Zero-day Attack
	Probe's Orientation & Position
	Interference due to Other Processes
	Scalability
	Restricted Mining

	Summary

	Detecting Covert Miners via Hardware PerformanceCounters
	System Architecture
	Core Concept
	Data Collection
	Cryptocurrencies & miners
	Classifier Design

	Evaluation
	Binary Classification
	Currency Classification
	Nested Classification
	Sample Length
	Feature Relevance
	Unseen-miner Program Classification

	Discussion
	Zero-day Attack
	Process Selection
	Scalability
	Restricted Mining

	Summary

	Conclusions
	Summary of Contributions
	Bitcoin
	Algorand
	Cryptominers

	Future Work
	Bitcoin
	Algorand
	Cryptominers


	Bibliography
	Appendix Acronyms
	Appendix Standard Definitions
	Appendix Seed Bitcoin Addresses for Ransomware


