

A Java-based Wrapper for Wireless Communications

A. Genco, S. Sorce, C. Ferrarotto, R. Gallea, A. Gentile, S. Impastato, M. Morana
DINFO – Dipartimento di Ingegneria Informatica

Viale delle Scienze, edificio 6 - 90128 Palermo, Italy
{genco,sorce}@unipa.it; {gallea,morana}@csai.unipa.it

Abstract

The increasing number of new applications for
mobile devices in pervasive environments, do not cope
with changes in the wireless communications.
Developers of such applications have to deal with
problems arising from the available wireless
connections in the given environment. A middleware is
a solution that allows to overcome some of these
problems. It provides to the applications a set of
functions that facilitate their development. In this
paper we present a Java-based communication
wrapper, called SmartTraffic, which allows
programmers to seamlessly use TCP or UDP protocols
over Bluetooth or any IP-based wireless network.
Developers can use SmartTraffic within their Java
applications, thus focusing on the application goals,
and leaving out details about how it should interact
with the available wireless connection.

1. Introduction

The main goal of pervasive systems is to spread a
real-life environment with a large variety of smart
devices, in order to supply people with some kind of
service, thus becoming an augmented environment.
Pervasive systems improve environment capabilities by
the use of a variety of interaction devices such as
sensors, actuators, remote displays, wearable
computers and so on. These devices are capable of
making our natural reality an augmented reality where
all things and beings can be enriched by virtual
contents.

The exponential diffusion of such devices, third-
generation wireless and Bluetooth communication
devices, as well as location technologies, have led to a
growing interest towards the development of
pervasively-accessible and context-aware services.
Context factors, such as who, when, where, are used to
provide people with useful information in relation with
the user profile and with the environment within the
user is in.

Personal mobile devices, such as PDAs or

Smartphones, are currently successfully exploited in
the human-environment interaction, where they could
be made suitable to operate as remote controllers, or
personal I/O interfaces, for some application remotely
running. There is a large variety of application fields
where services can be pervasively accessed by mobile
devices, such as multimodal context-aware information
provision within university campuses [1], interactive
user profile-based guides in cultural heritage sites [2],
augmented reality objects assembly in mobility [3],
healthcare systems [4], personal communications
systems [5].

The interest towards the use of mobile devices in
pervasive environments, led to the proliferation of
specific programming platforms and toolkits, such as
the J2ME from Sun, thus allowing the programmers to
develop applications for mobile devices.

Despite these existing useful software development
instruments, programmers of mobile device have still
to deal with device-specific issues, and in particular
with the use of the available wireless connection. As a
matter of fact, programmers of a given application to
be executed within a mobile device, have to know what
kind of wireless connection is available both on the
mobile device side and on the environment side (e.g.
IP-based or Bluetooth networks), in order to use the
correct functions to access the pervasive system.

In this paper we present a Java-based
communication wrapper, called SmartTraffic, which
allows programmers to seamlessly use both Bluetooth-
to-Bluetooth connections, and TCP or UDP protocols
over IP-to-IP or Bluetooth-to-IP connections from their
applications running on devices, either mobile or not.
Developers can use SmartTraffic within their J2SE or
J2ME applications (MIDlets), thus focusing on the
application goals, and leaving out details about how it
should interact with the available wireless connection.

2. Related Works

There are several research groups that are currently
dealing with middleware-related problems within
pervasive applications. Among them, Bisignano et al.

International Conference on Complex, Intelligent and Software Intensive Systems

0-7695-3109-1/08 $25.00 © 2008 IEEE
DOI 10.1109/CISIS.2008.129

769

International Conference on Complex, Intelligent and Software Intensive Systems

0-7695-3109-1/08 $25.00 © 2008 IEEE
DOI 10.1109/CISIS.2008.129

769

International Conference on Complex, Intelligent and Software Intensive Systems

0-7695-3109-1/08 $25.00 © 2008 IEEE
DOI 10.1109/CISIS.2008.129

769

Authorized licensed use limited to: Universita degli Studi de Palermo. Downloaded on December 1, 2008 at 04:47 from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Palermo

https://core.ac.uk/display/53250214?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

[6] presented a middleware for mobile peer-to-peer
computing on handheld devices. Its key features
include the interoperability with other well-known P2P
frameworks, and the ability to work even in ad-hoc
configurations, where no connection to a fixed network
exists.

Authors of [7] discusses a middleware that takes
care of all resource discovery issues using a cluster
based dynamic hash algorithm, lying on a object
request broker. They also addressed knowledge
usability and self-healing properties of pervasive
computing, and incorporated them in the proposed
middleware as services.

The research work in [8] proposes a dependable
device discovery mechanism for the middleware of the
applications consisting of rapidly reconfiguring mobile
devices. The approach claims to offer a
comprehensive solution to potential problems that can
arise in highly adaptive mobile ad-hoc networks of
pervasive computing environments, by means of three
algorithms. The discussed algorithms operate at
middleware level, instead of other previously
developed ones that operate at MAC level.

A context-aware and service-oriented middleware
architecture is proposed in [9], in order to provide
satisfactory services to end users of mobile nodes
within pervasive environments. This work shows how
a suitable middleware layer is needed in such
environments, due to the mobile nature of involved
devices, their limited available resources and their
reliability, in terms of energy, bandwidth, visualization
capabilities.

The Mobile Service Manager middleware
architecture [10] enables multiple interaction models
suitable for mobile devices, and discuss its
components. The proposed architecture dynamically
composes the services bouquet for each user, thus
avoiding a pervasive service to be discovered from
users who cannot actually interact with such a service,
possibly because their mobile device is not capable of
running the service.

Another middleware for mobile computing
environment is discussed in [11], where authors
addressed the problems due to great heterogeneity of
devices in such environment. To this end, they present
a middleware for multi-client and multi-server mobile
applications, taking into account the resource
restrictions of mobile devices. The proposed
middleware offers a transparent communication API
and allows applications to divide their work amongst
server and client sides.

This short review of recent research works, show
the need to provide managers of pervasive systems
with middleware instruments in order to take into
account the heavy heterogeneity of such systems, both

from the fixed part and from the mobile part. In this
paper we mainly address issues related to problems
programmers have to deal with when they have to take
into account different wireless connections.

3. The SmartTraffic Wrapper

Our proposed Java-based communication wrapper,
called SmartTraffic, allows programmers to develop
applications providing them with a suitable tool to
connect a mobile device with a fixed device, such as a
PC, over a wireless connection. SmartTraffic also
allows programmers to share the PC internet
connection from mobile devices, thus transforming the
PC in a proxy server. This feature can be useful to
access a Bluetooth-based pervasive framework, where
a mobile device “enters” the system through a PC near
to it via the Bluetooth connection. The SmartTraffic
comes with a number of Java packages including
classes for different types of connection, and some
utility class. The main packages and their use within
SmartTraffic are:
• SmartTraffic.microedition, contains several classes

which allow mobile devices to be connected with
PCs using both TCP or UDP protocols over IP-to-
IP or Bluetooth-to-IP connections.

• SmartTraffic.standardedition, contains classes for
Bluetooth-to-IP connection bridging from the PC-
side, carried on by means of Bluetooth USB
dongles;

• BTOperations, contains utility classes used to
search for Bluetooth devices in the neighborhood,
and to start and manage the connection between
mobile and fixed device over Bluetooth;
The proposed wrapper thus provide MIDlets

programmers with three network access modes:
• IP-to-IP, by means of the Java standard socket

classes. The mobile device can use GPRS or Wi-Fi
connections, and both TCP and UDP protocols are
implemented (Fig.1). In this case, only the
SmartTraffic.microedition package is involved on
the mobile device side;

• Bluetooth-to-Bluetooth, by means of classes
belonging to SmartTraffic.microedition packages
on the mobile device side (Fig. 2). Both data packet
and data stream connections are implemented;

770770770

Authorized licensed use limited to: Universita degli Studi de Palermo. Downloaded on December 1, 2008 at 04:47 from IEEE Xplore. Restrictions apply.

Figure 1. IP-to-IP network access mode

• Bluetooth-to-IP, by means of a proxy “BT2IP”
server, which is equipped with both network
interfaces (Fig. 3). In this case, all the three
packages above described are used. In more detail,
the classes of the BTOperations package on the
mobile side allow the MIDlet to perform first a
neighborhood scan for Bluetooth device and service
discovery. Data to be sent is then wrapped by
means of appropriate classes of the
SmartTraffic.microedition package, thus sending
them over the Bluetooth channel. Once wrapped
data arrive on the server side, classes of the
SmartTraffic.standardedition provide instruments
to extract the TCP/UDP packets and to forward
them on the IP channel to the rest of the network.
Of course, data can follow the reverse path, that is
from the BT2IP server to the mobile device, with
the same operations flow.

Figure 2. Bluetooth-to-Bluetooth network

access mode

4. Midlet Programming with SmartTraffic

People who want to use the SmartTraffic wrapper
within their applications, first have to import the
appropriate package according to where applications
are planned to be run.

In the following we will give some more detail
about the programming using SmartTraffic, and in
particular about the main classes to be used in mobile
devices applications and in PCs applications.

Figure 3. Bluetooth-to-IP network access mode

4.1. SmartTraffic.microedition classes

There are two main class groups: the IP group, and
the Bluetooth group.

The IP group contains classes for:
• TCP over IP connections;
• TCP over Bluetooth connections;
• Combined TCP over IP and Bluetooth connections;
• UDP over IP connections;
• UDP over Bluetooth connections;
• Combined UDP over IP and Bluetooth connections.

Among this group, the classes for TCP connections
are STTCPSocket, STTCPOverBTSocket and
STTCPSocketSelector. The first one can be used to
make connections over a IP connection only
(GPRS/UMTS, Wi-Fi); the second can be used to make
connections by means of the Bluetooth proxy server;
the third class encapsulates both previous ones, thus
allowing programmers to use both kind of connections.
All these classes present the same software interface,
which is represented by the following methods:
public STTCPSocket(MIDlet parent, String
host, int port) throws IOException

public STTCPOverBTSocket(MIDlet parent,
String host, int port) throws
IOException

public STTCPSocketSelector(MIDlet
parent, String host, int port) throws
IOException

The parameters to be passed are: the reference to the
parent application the object belongs to; the IP address
or the host name of the remote machine; the port to be
connected.

In a similar way, the classes of the IP group for
UDP connections are STUDPSocket,
STUDPOverBTSocket and STUDPSocketSelector. Like

771771771

Authorized licensed use limited to: Universita degli Studi de Palermo. Downloaded on December 1, 2008 at 04:47 from IEEE Xplore. Restrictions apply.

above described, the first two classes have to be used
to use an IP or Bluetooth only connections
respectively, the third one encapsulates both previous
classes. All the UDP classes present the same software
interface, which is represented by the following
methods:
public STUDPSocket(MIDlet parent, String
host, int port) throws IOException

public STUDPOverBTSocket(MIDlet parent,
String host, int port) throws
IOException

public STUDPSocketSelector(MIDlet
parent, String host, int port) throws
IOException

The parameters to be passed are again: the reference
to the parent application the object belongs to; the IP
address or the host name of the remote machine; the
port to be connected.

All the IP group classes have methods to send and
receive data, and to close the connection:
public void send(byte[] data) throws
IOException

public byte[] receive() throws
IOException

public void close() throws IOException

4.2. The Bluetooth classes group

The two classes of the Bluetooth group have to be
used to make Bluetooth connections, and they allow
programmers to use both data stream and data packet
communications.

The first one, STBTStreamSocket, is devoted to the
stream communications, the second one,
STBTDatagramSocket, allow data packet
communications. Constructors of both classes are
respectively:
public STBTStreamSocket(MIDlet parent,
UUID uuid) throws IOException

public STBTDatagramSocket(MIDlet parent,
UUID uuid) throws IOException

The parameters to be passed are the reference to the
parent application the socket belongs to, and the UUID
(Universal Unique IDentifier) of the needed service.
The constructor start the connection process, and a list
of available devices with the needed service is
presented, after a Bluetooth neighborhood inquiry. At
last, the user will have to choice which device has to be
connected.

Of course, the Bluetooth group classes have
methods to send and receive data, and to close the
connection:

public InputStream getInputStream()
throws IOException

public OutputStream getOutputStream()
throws IOException

public void close() throws IOException

5. Examples of Midlets with SmartTraffic

In order to test the SmartTraffic operations, we
created two simple trial MIDlets. The first one
connects a SMTP server to send an e-mail message, the
second one connects a RSS (Really Simple
Syndication) server to read the corresponding XML
feed.

We also created a Java 2 Micro Edition (J2ME)
class, called Matlet, to remotely use Matlab and its
features from mobile devices, in order to test the
SmartTraffic effectiveness, even in atypical application
fields for a mobile devices, such as image enhancement
and complex functions analysis and plot. To this end,
we also developed two MIDlet applications, both
including the Matlet class. The first one is called
MatImager, and the second one is called MatFunction.

5.1. MailSender

The MailSender MIDlet allows its users to connect
a SMTP server and to send e-mail messages. In this
case, we first need to declare a member of the
STTCPSocketSelector class:
private STTCPSocketSelector myClient =
null;

Once the object is initialized, we obtain the handles
to the input and output streams:
myClient = new
STTCPSocketSelector(parent,host.getStr
ing(),
Integer.parseInt(port.getString()));

in = myClient.getInputStream();

out = myClient.getOutputStream();

At this point, programming can go on in the same
way as we are developing a typical network Java
application. SmartTraffic will automatically route the
traffic over the available connection.

Once the SMTP server has been connected, user of
the MIDlet fills in the text fields with recipient’s
address, subject, and message body, and at last the
message is forwarded. Fig. 4a and 4b show the
screenshots of the MailSender MIDlet running on the
J2ME Wireless Toolkit (J2WTK) mobile device
emulator.

772772772

Authorized licensed use limited to: Universita degli Studi de Palermo. Downloaded on December 1, 2008 at 04:47 from IEEE Xplore. Restrictions apply.

Figures 4a and 4b. The MailSender MIDlet

5.2. RSS Reader

The RSS Reader MIDlet allows its users to read
XML feeds. In a similar way as above described, a
STTCPSocketSelector object is first declared thus
obtaining the input and output streams. Then, the RSS
request string is composed and forwarded over the
created output stream:
STTCPSocketSelector socket = new
STTCPSocketSelector(instance,
host,80);

InputStream = socket.getInputStream();

String request = "GET " + requestURI + "
HTTP/1.1\r\nHost: " + host +
"\r\n\r\n";

socket.getOutputStream().write(request.g
etBytes());

The received XML document is parsed and finally
the corresponding feeds are presented on the mobile
device display (fig. 5a and 5b).

Figures 5a and 5b. The RSS Reader MIDlet

5.3. MatFunction with Matlet

MatFunction is a MIDlet application which runs on
Smartphones and allows users to plot functions, being
them calculated on a remote Matlab server. MatImager
includes the Matlet class for remote use of Matlab

features.
Once a wireless connection has been established,

users write the function to be plotted in a text field.
The function is then sent to the Matlab server, which
parses the text and computes the values corresponding
to a given range. Results are sent back to the MIDlet
which only use them to plot corresponding points in a
Canvas object (Fig. 6a and 6b).

It has to be noticed that no parsing or computing are
carried on the Smartphone side, which are hard tasks
for a reduced-resource device. As a consequence, the
time taken to plot a function is mainly due to the
complexity of the function itself in relation with the
computing capabilities of the machine on which
computations take physically place.

The overhead due to the use of a mobile device is
given by the data transfer time from and to the mobile
device.

Figures 6a and 6b: a sample plot with

MatFunction on a Nokia N70 Smartphone

5.4. MatImager with Matlet

MatImager is a MIDlet which runs on Smartphones
and allows users to do operations on images, provided
that there is a corresponding script on the Matlab
server side. MatImager includes the Matlet class for
remote invocation of Matlab scripts (Fig. 7a and 7b).
The steps leading to the processed image are:

1. send the image to be processed to the Matlab
server;

2. remotely invoke a script on the image;
3. download the processed image.
This way, algorithms do not have to be rewritten in

Java for execution on mobile devices, since they are
executed on the server side as Matlab scripts.
Furthermore, users can apply even complex algorithms
on their images, since they do not require any
computing power from mobile devices. Actually,
mobile devices can be used for other tasks waiting for
the server to end the requested image processing.

773773773

Authorized licensed use limited to: Universita degli Studi de Palermo. Downloaded on December 1, 2008 at 04:47 from IEEE Xplore. Restrictions apply.

Figures 7a and 7b: MatImager on a Nokia N70

Smartphone for image thresholding

6. Conclusions and Future Work

A communication wrapper to help programmers in
developing Java applications for both personal mobile
devices and PCs in order to use different wireless
connections available in a pervasive environment has
been presented, along with some program example by
using the proposed solution. The sample MIDlets we
implemented for our tests show that SmartTraffic make
the programmers work easier, due to the very small
programming overhead. The implementation work
showed the actual advantage of the wrapper, both for
its technical soundness and for its effective
management of resources.

SmartTraffic allow pervasive service providers to
use more the Bluetooth wireless technology for the
interaction with their users, taking even more
advantage of its large diffusion in personal mobile
devices, of its low power consumption, and of its
increasing bit rate.

Future work will investigate the development of an
integrated middleware for pervasive environment
composition, in order to provide programmers with
further instruments to be included in their applications.
The main goal is to allow them to focus its attention on
service provision related problems, with no care about
the actual communication and execution available
frameworks.

References

[1] S. Sorce, A. Augello, A. Santangelo, G. Pilato, A.
Gentile, A. Genco, S. Gaglio, “A Multimodal Guide for
the Augmented Campus”, in proc. of the ACM-
SIGUCCS 2007 Fall Conference, 7-10 oct. 2007,
Orlando, FL (USA), pp. 325-331

[2] Raptis D., Tselios N., Avouris N., “Context-based design
of mobile applications for museums: a survey of existing
practices”, Proc. of the 7th ACM International
Conference on Human-Computer Interaction with Mobile
Devices & Services, Salzburg, Austria 2005, pp: 153-160

[3] Henrysson A., M. Ollila, M. Billinghurst, “Mobile phone
based AR scene assembly”, Proc. of the 4th International
Conference on Mobile and Ubiquitous Multimedia,
Christchurch, New Zealand 2005, pp. 95-102

[4] Price, S.; Summers, R., “Mobile Healthcare in the Home
Environment”, Proc. of 28th Annual International
Conference of the IEEE Engineering in Medicine and
Biology Society EMBS '06, New York, NY, Aug. 2006,
pp. 6446-6448

[5] S. Sorce, F. Cinquegrani, S. Anzalone, D. Caccìa, A.
Gentile and A. Genco, “A Dynamic System for Personal
Communications: the Opportunistic Chat”, in proc. of the
IEEE International Conference on Intelligent Pervasive
Computing (IPC-07), 11-13 oct 2007, Jeju Island, Korea,
pp. 307-312, DOI: 10.1109/IPC.2007.9.

[6] Bisignano, M.; Di Modica, G.; Tomarchio, O.;
“JMobiPeer: a middleware for mobile peer-to-peer
computing in MANETs”, 25th IEEE International
Conference on Distributed Computing Systems
Workshops, 6-10 June 2005 Page(s):785 – 791

[7] Sharmin, M.; Ahmed, S.; Ahamed, S.I.; “MARKS
(Middleware Adaptability for Resource Discovery,
Knowledge Usability and Self-healing) for Mobile
Devices of Pervasive Computing Environments”, Third
International Conference on Information Technology:
New Generations, ITNG 2006, 10-12 April 2006,
Page(s):306 - 313

[8] Ahamed, S.I.; Zulkernine, M.; Anamanamuri, S.; “A
dependable device discovery approach for pervasive
computing middleware”, First International Conference
on Availability, Reliability and Security, ARES 2006,
20-22 April 2006, DOI: 10.1109/ARES.2006.5

[9] Huigui Su; Xiufen Fu; Zhiqing Li; Qunsheng Yang;
Shaohua Teng; “A Service-oriented Middleware for
Pervasive Computing Environments”, 1st International
Symposium on Pervasive Computing and Applications,
3-5 Aug. 2006, Page(s):36 – 41

[10] Mahmoud, Q.H.; Al-Masri, E.; “MSM: A Middleware
Architecture for Enhancing Interaction with Mobile
Services”, 2nd International Symposium on Wireless
Pervasive Computing, ISWPC '07, 5-7 Feb. 2007.

[11] Rocha, B.P.S.; Rezende, C.G.; Loureiro, A.A.R.;
“Middleware for multi-client and multi-server mobile
applications”, 2nd International Symposium on Wireless
Pervasive Computing, ISWPC '07, 5-7 Feb. 2007.

774774774

Authorized licensed use limited to: Universita degli Studi de Palermo. Downloaded on December 1, 2008 at 04:47 from IEEE Xplore. Restrictions apply.

