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ABSTRACT  

The resting state functional magnetic resonance imaging (fMRI) approach has 

allowed to investigate the large scale organization of processing systems in the 

human brain, revealing that it can be viewed as an integrative network of 

functionally interacting regions. However, to date the neuronal basis of the 

fluctuations of the fMRI signal at rest are not fully understood, preventing the 

possibility to elucidate their functional role. In this scenario, the integration with 

information derived from electroencephalography (EEG) is very useful, since 

conversely from fMRI, EEG represents a direct measure of neuronal activity.  

EEG-fMRI resting state studies investigating the correlation between fMRI signals 

and corresponding global EEG spectral characteristics in single spectral bands have 

provided a certain degree of inconsistency in the results. This may be due to the 

fact that the distinct functional networks involve more than a single frequency band 

and therefore analysis of simultaneous EEG/fMRI data should consider the whole 

frequency spectrum. A couple of studies have been performed in this directions but 

they either did not investigate how the scalp distribution of the EEG spectral 

metrics affects the patterns of correlations between EEG spectral dynamics and 

fMRI-derived resting state network or did not identify the specific scalp regions 

that specifically determined the pattern of observed results. 

To overcome this gap, with the aim to identify specific spatio-spectral fingerprints 

of distinct networks, a first study was conducted using an analytical approach that 

allows to take into account the interplay between the different EEG frequency 

bands and the corresponding topographic distribution within each network. 

Specifically, this approach was applied to four sub-components of the Default 

Mode Network (DMN). Results revealed for the first time the presence of 

distinctive subcomponent-specific spatial-frequency patterns of correlation 

between the fMRI signal and EEG rhythm.  
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It should however be noted that spatial resolution of the EEG signal is too low to 

reliably infer about the location of the involved EEG sources. Therefore, a further 

step forward could be to try extending the findings of the first study in this 

direction by performing a source estimation study. Since it is not clear whether the 

64 channels EEG system employed in the first study can provide adequate 

localization performance as regard our regions of interest, an investigation of the 

source reconstruction accuracy throughout the brain was performed in a second 

study. Specifically, the 64-channel montage was compared to 32-channel montage, 

the standard in the clinical practice, as well as to 128-channel montage and to 256-

channel montage, considered as the upper reference point. Unlike previous studies, 

source performances were evaluated all over the cortical grey matter.  

Results indicate that the localization of the cortical sources of the spatio-spectral 

fingerprints revealed by the previous study can be adequately inferred by using 64 

channels, but a confirmation study with a 128, or even better 256, channels 

montage is needed. Moreover, particular attention should be paid to investigate 

deep regions, where localization performance is worse regardless the number of 

electrodes used.  

 

This work was funded by the 7FP/2007-2013 European Research Council Starting 

grant LEX-MEA (GA no. 313692) to Antonino Vallesi. 
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 Resting State EEG-fMRI 1

acquisition 

1.1 Resting State  

In recent years, the temporal dynamics and associated topographies of a number of 

specific EEG-derived oscillations of neural activity in different frequency bands 

have been identified in the context of different types of task-related, “active” 

mental activity. For example, converging evidence from numerous studies using a 

variety of experimental paradigms and tasks (e.g., Stroop, flankers, Simon), data 

analysis techniques, and spatial and temporal filtering approaches, indicates that 

the (stimulus- and response-locked) modulation of theta oscillations (4-7 Hz) in the 

frontal regions is a sensitive and reliable electrophysiological marker for the need 

of cognitive control and the recruitment of the brain's action monitoring system. 

Indeed, transient event-related modulations of theta-band oscillations generated in 

the medial prefrontal cortex have been observed, in particular, during tasks that 

provoke a conflict between multiple available and competing behavioural and 

cognitive responses (Cohen and Donner 2013, Oehrn et al. 2014, Cavanagh and 

Frank 2014). 

This is only one example of the numerous band-specific EEG spectral markers of 

task-related mental activity that have been discovered in the recent years. 

Importantly, multimodal EEG-fMRI studies have shown that trial-by-trial theta-

related EEG measure of conflict-related cognitive processing significantly 

predicted both behavioural performance and the fMRI activity in brain regions 



Resting State EEG-fMRI acquisition 

4 

playing key roles in these processes (Debener et al. 2005, Lavallee et al. 2014). 

These results not only confirm that investigations of the dynamic coupling between 

EEG- and fMRI-derived signals provide a promising and powerful approach for the 

study of higher order brain processes, but they also highlight the importance of 

performing the spectral decomposition of EEG data when conducting multimodal 

EEG-fMRI analysis in order to elucidate the functional and behavioural meaning of 

BOLD oscillations. 

By contrast, the electrophysiological correlates of spontaneous brain activity during 

the awake resting state (i.e., a task-free, relaxed wakefulness state) have been less 

well described and distinguished, despite their importance in clinical practice and 

the fact that the awake resting state have been the first condition that was ever 

investigated with EEG (Berger 1929). This is even more surprising when 

considering that the exploration of brain activity at rest has gained great interest in 

recent years in neuroscience, especially in the field of resting state fMRI. Indeed, 

since the seminal work by Biswal and colleagues (1995), there was a steady 

increase of the number of fMRI studies investigating the spontaneous fluctuations 

of BOLD signal during resting state (see figure 1.1). 

 

Figure 1.1: Number of resting state fMRI papers published each year since 1995, 

as revealed by the Pubmed results for the ["resting state" AND ("fMRI" OR 

"functional magnetic resonance")] query. 
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In that study, he demonstrated that BOLD signals at rest are temporally correlated 

within the somatomotor system and, thus, the slow spontaneous fluctuations of 

BOLD signal represents neural activity, rather than physiological noise as initially 

thought (Weisskoff et al. 1993, Purdon and Weisskoff 1998).  

The resting state fMRI approach has been proven extremely useful to investigate 

the fundamental large scale organization of processing systems in the human brain, 

allowing to understand that brain can be viewed as a network of numerous different 

brain regions with specific functions, but which are constantly sharing information 

with each other; in other words, an integrative network of functionally interacting 

brain regions. Indeed, brain’s spontaneous activity, as measured with fMRI-derived 

BOLD signal during resting state, has been shown to be organized into multiple, 

highly specific functional-anatomical networks, the so-called resting state networks 

(RSNs) (for reviews see Fox and Raichle 2007, Cole et al. 2010). As such, these 

RSNs are in turn organized to form a complex, higher-level network in which 

information is continuously computed and integrated by being transferred between 

structurally and functionally linked brain regions. 

In particular, analytical approaches assessing functional connectivity, that is, the 

statistical association or dependency among two (or more) BOLD time-series from 

anatomically distinct brain locations (Friston 1994, Friston et al. 1996) have been 

extremely useful for resting state research (van den Heuvel and Hulshoff Pol 2010) 

and have greatly supported and contributed to the mounting scientific interest in the 

intrinsic neural activity of the brain. A number of reliable RSNs characterized by 

putative functional specificity have been described, such as, the visual, 

somatomotor, dorsal and ventral attention, default, cognitive control, limbic, 

auditory RSNs. These RSNs fluctuate at frequencies ranging between 0.01 and 0.1 

Hz (Cordes et al. 2001), and strongly overlap with the corresponding networks of 

brain regions whose activity has been commonly shown to be modulated during 

active behavioural tasks (Smith et al. 2009). More importantly, resting-state 

research, by providing information about brain’s functional integration, represent 

an useful conceptual complement to the inferences made from task-related 

functional data, which gives information about brain’s functional segregation, that 
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is, the specialization of different brain regions for a given function. As a 

consequence of this, the resting state approach is increasingly being utilized across 

multiple fields of neuroscience (and also in medical sciences), to further inform our 

understanding of the functional organization of brain activity. Indeed, abnormal 

deviations from the normal pattern of functional connectivity at a system level are 

observed in a number of clinically relevant conditions, including varying states of 

consciousness, both physiological and pathological (e.g., Heine et al. 2012), and 

even neurological (e.g., Rombouts et al. 2005) and psychiatric disorders (e.g. 

Greicius et al. 2007). 

It is interesting here to note that the perhaps more studied and fundamental of the 

RSNs, the so-called default-mode network (DMN), is also the only one that had, at 

the time, unexpected brain topography and functional characteristics. Indeed, the 

DMN is composed by brain regions that had not previously been documented as a 

“proper functional system” as opposed to, for example, the motor or visual 

systems. Moreover, the DMN was first identified from a large meta-analysis of 

published PET data by the Raichle’s group (Shulman et al. 1997, note that the 

“default mode” name was firstly proposed in a later paper by the same group, 

Raichle et al. 2001). In this study, the authors revealed a reliable decrement of the 

neural activity in a specific and consistent set of brain areas during the execution of 

a cognitive task. The existence of such a DMN was soon confirmed in later meta-

analyses (Binder et al. 1999, Mazoyer et al. 2001) and by an fMRI study by 

Greicius and colleagues (2003) and, to date, by a tremendous number of studies 

using a variety of analysis methods (e.g., Sasai et al. 2012, Liu et al. 2017, 

Pasquale et al. 2010, Jerbi et al. 2010). Moreover, evidence of DMN-equivalent 

RSNs in other mammals have been provided in more recent years (monkey, 

Mantini et al. 2011b, cat, Popa, Popescu and Pare 2009, and even mouse, White et 

al. 2011). Interestingly, subsequent studies have suggested that the DMN can 

indeed be further decomposed into distinct sub-networks based on their specific 

functional characteristics (e.g., Whitfield-Gabrieli et al. 2011, Andrews-Hanna et 

al. 2010).  
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However, to date the neuronal basis of the low-frequency fluctuations of the BOLD 

signal are not fully understood, and the elucidation of the neurophysiological 

underpinnings of the RSNs, and of the neuronal dynamics underlying brain’s 

spontaneous activity more generally, is a critical step needed to understand their 

functional role. Contributing to this problem is the fact that BOLD signal is an 

indirect measure of neuronal activity related to hemodynamic (Ogawa et al. 1992), 

and may thus reflect other related physiologic properties such as cerebrovascular 

variations (Kennerley et al. 2010). Therefore, the neurophysiological basis of 

functional connectivity between spatially separate brain regions cannot be 

comprehensively investigated using the fMRI technique. By contrast, 

electroencephalography (EEG) is a direct measure of neuronal activity, and it can 

even furnish an effective measure of neuronal firing (e.g., Nunez and Silberstein 

2000, Nunez and Srinivasan 2006, Whittingstall and Logothetis 2009). It should 

also be noted that, despite representing different aspects of brain activity, EEG- and 

fMRI-derived signals have been shown to have a common origin (Logothetis et al. 

2001). Therefore, the combination of EEG and fMRI can yield insights that are not 

accessible to one modality alone. The simultaneous EEG-fMRI multimodal 

approach has also received attention due to the complementary temporal and spatial 

resolutions inherent to each technique, as the EEG technique poses the problem of 

source localization.  

The first EEG-fMRI studies investigating healthy volunteers at rest were focused 

on the BOLD correlates of the so-called alpha rhythm (Berger 1929), the most 

prominent EEG feature during the awake resting state, which was characterized by 

oscillations in the 8-12 Hz frequency band most noticeable over posterior regions 

of the scalp. Berger also noticed a desynchronization of these alpha waves due to 

engagement in attention-demanding tasks. Consistently with Berger’s observations, 

the first EEG-fMRI studies investigating the BOLD correlates of spontaneous 

fluctuations in alpha activity (Goldman et al. 2001, Goldman et al. 2002, 

Moosmann et al. 2003, Laufs et al. 2003b, Laufs et al. 2003a) have shown that the 

expected posterior regions, but also other brain regions across the cortex, showed 

BOLD activity that was negatively correlated with posterior alpha fluctuations. In 

particular, Laufs and colleagues (2003b) found that the alpha desynchronization 
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was correlated with the BOLD activity in a frontal-parietal network that was 

previously (and independently) characterized as an attentional system. Similar 

findings were also observed in a study by Mantini and colleagues (2007b).  

However, there is a certain degree of inconsistency in the results from these and 

other EEG-fMRI studies investigating the correlation between BOLD signals and 

corresponding global EEG spectral characteristics in single spectral bands (Laufs 

2008), such as the theta, alpha, and beta ones (Goldman et al. 2002, Laufs et al. 

2003a, Laufs et al. 2003b, Moosmann et al. 2003, Feige et al. 2005, Goncalves et 

al. 2006, Scheeringa et al. 2008). As highlighted by Mantini and colleagues 

(2007b), however, this can be explained by the fact that “From a theoretical 

standpoint […], the assumption that a single cerebral rhythm is associated with a 

specific cerebral functional network is not likely” (Mantini et al. 2007b, p. 13170), 

suggesting that multiple frequency bands should be involved in distinct functional 

networks (see also Laufs et al. 2006), and, thus, “analysis of simultaneous 

EEG/fMRI data requires methods that consider the whole frequency spectrum 

rather than single frequency bands” (Mantini et al. 2007b, p. 13171). 

The above-mentioned study by Mantini and colleagues was indeed the first one to 

investigate in a comprehensive and systematic way the relationship between 

coherent low-frequency fluctuations of BOLD signal and oscillations of the 

neuronal electrical activity in different EEG frequency bands. In particular, they 

first identified six RSNs by analyzing the independent spatio-temporal patterns in 

hemodynamic activity using independent component analysis (ICA). Next, they 

directly correlated the time courses of different RSNs with the time courses of EEG 

spectral fluctuations across delta, theta, alpha, beta, and gamma bands averaged 

over all the EEG channels. The results of this study revealed that each RSN was 

associated with a specific neurophysiological spectral signature, a unique pattern of 

correlations across frequency bands. 

Despite the importance of this study cannot be questioned, it shares with earlier 

EEG-fMRI resting state studies an crucial limitation, that is, it did not allow to 
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understand the impact of the scalp distribution of the EEG spectral metrics in 

shaping the patterns of correlations between EEG spectral dynamics and fMRI-

derived RSNs. Indeed, using single (at the spatial level) EEG spectral metrics, such 

as the power averaged over all scalp channels (Mantini et al. 2007b) or extracted by 

single of few channels (Goldman et al. 2002, Laufs et al. 2003a, Laufs et al. 2003b) 

causes the loss of spatial specificity of electrical oscillations, a source of 

information about EEG spectral activity that is essential to appreciate its functional 

meaning. Indeed, as highlighted by Jann and colleagues (2010), the scalp 

distribution of spectral power “is an important and sensitive marker for changes of 

brain functional state, on a local and global level. Deviations from the resting state 

during task execution or alterations caused by disease are often local, i.e., at 

delimited scalp locations […] and changes of the distribution of EEG rhythms are 

well-established markers for changes of brain state” (Jann et al. 2010, p. 1).  

Despite Jann et al. themselves (2010) tried to tackle this issue, they too failed to 

reveal whether RSNs activity can be related to EEG spectral oscillations in specific 

scalp regions. They assessed the topographic association of EEG spectral dynamics 

and RSNs fluctuations by means of the statistical approaches called EEG 

covariance mapping (Koenig et al. 2008) and topographic ANOVA (TANOVA, 

Koenig and Melie-Garcia 2009, Strik et al. 1998). They found significant and 

specific RSN-related scalp distributions of the spectral power across frequencies or, 

in other words, significant frequency-dependent differences between EEG-fMRI 

covariance maps distributed over the scalp, both across bands and within each 

single frequency band. However, these statistical tests, which compare entire scalp 

distributions, could not identify the scalp regions that specifically determined the 

pattern of observed results and were also not followed by specific post-hoc tests 

aimed to determine the interplay between the different frequency bands in driving 

the observed results.  
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1.2 Aim of the study 

The aim of the present study is to fill the gap in the literature that was presented in 

the previous section. To this aim, the patterns of correlations between EEG spectral 

dynamics and fMRI-derived RSNs were investigated by 1) analyzing the spectral 

dynamics in the different frequency bands composing the entire (1-45 Hz) power 

spectrum, 2) analyzing the channel-by-channel distribution of spectral metrics, so 

to cover the entire scalp, and, importantly, 3) using an analytical approach and a 

state-of-the-art data-driven statistical method that allows to take into account the 

interplay between different EEG frequency bands (i.e., to compare their specific 

patterns of correlations with RSN activity) and the corresponding topographic 

distribution within each RSN, but also to compare the specific RSN-related 

topographic association of EEG spectral dynamics and BOLD fluctuations to 

identify specific spatio-spectral fingerprints of distinct RSNs. As an applicative 

proof of concept, this analytical approach was applied to the sub-networks 

composing the DMN in order to verify its validity and potential to identify even the 

subtle differences in the specific spatio-spectral correlates of related sub-RSNs. 

1.3 Technical challenges in EEG-fMRI 

simultaneous acquisition 

Apart from the specific issues detailed in the previous sections, the simultaneous 

registration of EEG and fMRI signals poses a number of technical challenges. 

To measure EEG inside the scanner, some technical and safety related issues 

should be considered. The main sources of artifacts that affect EEG data are: 1) the 

static field (B0), namely the field strenght of the scanner (which is always there, 

even when not scanning); 2) the rapidly changing magnetic fields (B1), also called 

“gradient switching”, which refer to the spatial gradients generated in the x, y and z 

direction; 3) the Radio Frequency (RF), namely pulses from the trasmit coil, 
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always present during scanning; and 4) the heart pulse, namely movements 

deriving from the cardiac cycle. 

During a simultaneous EEG-fMRI acquisition, subject lies supine in the magnet 

wearing an electrode cap. Therefore, cap, electrodes and electrode leads are 

exposed to the static magnetic field of the scanner, to quickly variable magnetic 

fields generated by gradient switching and to radio frequency energy emitted 

during the MRI acquisitions (Ullsperger and Debener 2010). Since both electrodes 

and leads are made up of electrically conducting materials, in accord with 

Faraday’s law, any changes in the magnetic field, both induced by the switching of 

the magnetic gradients and by subject or cable movement, induces a current 

flowing through them (Hill et al. 1995, Lemieux et al. 1997). The induced flux of 

current results in a variation of the electric potential that is measured along with the 

brain electrical activity as an artifact. The amplitude and rate of change of this 

gradient artifact (GA) superimposed signal are much higher than those of the EEG, 

up to two orders of magnitude for the amplitude and three for the rate of change 

(Allen, Josephs and Turner 2000, Ritter et al. 2007). Specifically, the amplitude 

and frequency characteristics of the GA depend on factors related to the MRI 

environment, like the strength and slew rate of the gradient, as well as to the EEG 

system, like the filter characteristics of the amplifier and the length of the leads. 

Concerning long leads, they tend to have a more antenna-like behaviours and may 

pass through inhomogeneous portions of the magnetic field increasing the magnetic 

induction. The fundamental frequencies of the GA are the slice acquisition 

frequency of fMRI sequence and its harmonics. For example, with a TR = 2 s and a 

fMRI volume of 30 slices, the fundamental frequency will be at 15 Hz and the 

harmonics at 30 Hz, 45 Hz and so on. Another important frequency is the 

frequency of gradient switching during the spatial encoding within a slice. For 

example, if the lines per image are 64, there will be a peak at frequency 64 × 15 = 

960 Hz (Ullsperger and Debener 2010). This peak does not directly affect the band 

of interest of the EEG, but without an antialiasing filter it could compromise the 

lower frequency during the EEG sampling. Since the gradient artifact is technical 

in nature, repetitive, predictable and temporally stable (synchronized with the 

repetition time), an accurate trigger and interface with the scanner allows the 
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artifact handling and removal. Due to electrode and cable arrangement within the 

cap and their position in the gradient field, the GA varies in amplitude and shape 

across EEG channels. Therefore, the gradient artifact calculation and correction is 

done per channel. Artifacts induced in the EEG by the scanning process have a 

strong deterministic component, therefore their correction is generally considered a 

resolvable problem (Allen et al. 2000, Niazy et al. 2005).  

After GA, another important artifact distorting the EEG is the heart pulse-related 

artifact (cardioballistographic artifact, BCG). It is a distortion of the EEG signal 

due to movement related to the cardiac cycle in the magnetic field. It has a 

physiological rather than a technical nature. Motion related to cardiac activity 

induces electromotive forces in the circuit formed by the EEG leads and the 

subject, which is caputered by the amplifier. The sources of this artifact are 

multiple: axial head rotation (rocking, nodding head motion, Anami et al., 2003), 

the pulsatile properties of the blood vessels, the acceleration of blood, which is 

electrically conductive (Hall effect). This artifact is related to the static field (B0), 

therefore it is always present. It is irregular both between and within participants. 

Accordingly, the BCG is subject to substantial temporal fluctuations, making its 

removal challenging. Importantly, it contributes to the low frequency portion of the 

EEG signal (< 15 Hz). A concurrent recording of the electrocardiogram (ECG) 

with the EEG reveals that the periodic distortion present in most EEG channels is 

related to the cardiac cycle. 

During a simultaneous acquisition, one of the hazards for the subject is the 

heating of some scalp sites due to the dissipation of the RF energy. Positioning 

the EEG electrode cap on the scalp and creating a contact between the 

electrodes and the scalp tissue by means of a conductive gel creates a 

conductive surface with high thermal resistance. RF energy induces surface 

current densities that shield the inside surface of the skull. So, to achieve the 

desired flip angle and a good quality image, higher RF energy is necessary. 

However, this energy is dissipated as warming at the point of the highest 

thermal resistance, that is, the scalp/gel border. It can be showed that 

temperature changes induced by the sequences depend on their RF energy 
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emitted, which in turn reflects the number of RF excitation and inversion pulses 

(Ullsperger and Debener 2010).  

Another issue to be considered is RF energy coupling onto cable loops. The 

induction effect can even melt the sheath of the cable at the crossing points. 

This effect, although exacerbated in the presence of loops, could affect any 

cable with length and shape such that it becomes resonant at the particular MR 

scanner’s Larmor frequency (42.58 MHz/T) or at any related harmonic 

(Ullsperger and Debener 2010). 

Obviously, leads and electrodes must be made from non-ferromagnetic 

materials; usually the former are produced in carbon fibres or stranded copper, 

whereas the latter in sintered Ag/AgCl or gold. To reduce the risk of RF-

induced cable heating, RF shielding resistors are conductively glued to the 

electrodes surface. Their resistivity varies between 5 and 15 kΩ in function of 

the field strength and the length of the leads (Lemieux et al. 1997). Since the 

induced effect in a conductive loop is proportional to the loop area, the area of 

any loop that could not be avoided should be minimized. Therefore, electrode 

leads are bunched together and then twisted along the path toward the input of 

the amplifier. This solution keeps the leads close together minimising the loop 

area and results in a cancellation of the currents induced in adjacent leads 

(Mulert and Lemieux 2009). Moreover, to prevent the leads movement they are 

fixed to the cap. Particular attention should also be paid to the peripheral leads 

such as that used to record electrocardiogram (ECG). Since it is longer than 

other leads and crosses inhomogeneous parts of the magnetic field, it is exposed 

to a greater MR gradient and RF energy induction. Therefore, differently from 

the scalp electrodes leads, it is upholstered with a heat resistant tube. The 

electrode is also covered by means of a plastic holder to avoid the direct contact 

with the skin and its RF shielding resistor is 15 kΩ (Ullsperger and Debener 

2010). 
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EEG system can be arranged in the scanner control room or inside the bore. If 

the equipment is located outside the scanner room, it does not have to meet MR 

compatibility and MR safety criteria. On the other hand, the leads have to be 

very long to cover the distance between the amplifier and the electrodes on the 

subject scalp. In addition to the gradient and RF induction related issues, longer 

cables entail also a signal decay and their movement are not easily avoidable. 

But, the biggest problem is that they need to pass through the filter panel into 

the MR control room by means of a conduit. In this way, an electrical 

connection between scanner and control room is made, which can lead to RF 

energy leakage into the MR chamber. When EEG system is placed inside the 

bore, leads are shorter and, thus, MR gradient, RF signal and cable movement 

artifacts are reduced. Moreover, in this situation, signal can be transmitted from 

the amplifiers to the recording computer, in the control room, by means of fibre 

optical leads with no risk of creating an RF leak. In this situation, amplifiers are 

battery powered and are enclosed in a MR shielding box, where there are also 

RF filters and two channel fibre optical links. Communications with the 

recording software are made through an USB interface that contains the 

electronically critical components like the electronics of the acquisition clock, 

the logic for integrating external events, and the circuit for the synchronization 

with an external clock signal (Ullsperger and Debener 2010).  

To limit the EEG artifact related to MRI environment, lead movements should 

be limited. Their movements can be due to the BCG (Allen et al. 2000), 

subject’s head movements, and vibrations induced by the cryogenic pump and 

by the gradient switching itself (Garreffa et al. 2004). These vibrations affect 

also the amplifier (when it is inside the bore) and the electrodes leads it is 

connected to, intensifying the induced oscillations. To minimise artifacts, leads 

are usually weighed down with sandbags, paddings are put under the amplifier, 

and the subject is immobilized as much as possible with cushions placed 

laterally and under his head. 

The amplifier of an MR-compatible EEG system must be tuned differently with 

respect to those of a classic EEG system, because of gradient switching effect 
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indeed, the input signal is extremely different compared to the signal usually 

recorded. The gradient artifact has a broad spectrum, extended from the low 

frequencies to thousand Hertz. Containing the gradient energy within the 

bandwidth of the amplifier and avoiding aliasing effects is not trivial. The most 

common MR compatible EEG systems sample the signal at 5000 Hz, so that, in 

accordance with the Nyquist theorem, the highest representable frequency in the 

data is 2500 Hz. However, gradient artifacts power spectrum has peaks also 

beyond this frequency. An analog band limiting filter is useful to reduce the 

signal energy avoiding aliasing artifacts (Ullsperger and Debener 2010). 

Another important aspect to consider is the maximal amplifier gain to prevent 

risk of amplifier saturation. Of course, it depends on the AD bit count and its 

dynamic range, but gradient artifacts should also be considered, since its 

amplitude and frequency are several orders bigger than those of the classical 

EEG.  

To correct the gradient artifact from the EEG data, the onset of each gradient 

activity should be known. This is not a matter, since MR scanners have in their 

console a TTL or fiber optical output which send a pulse when the slice or 

volume acquisition starts. The EEG system receives the onset pulse and saves it 

with its next data point. So, with the typical data acquisition rate of 500 Hz, the 

marker could be saved at most under 2 ms later. EEG data are then segmented 

based on the marker position and averaged to build the artifact template. The 

problem is that given the high frequency content of the gradient artifact, its 

shape changes along the 2 ms. Therefore, data that are averaged are not aligned. 

To avoid this inflated standard deviation at the gradient onset points, the 

sampling rate is increased, usually to 5000 Hz. Even at this higher sample rate, 

temporal jitter in the EEG sampling, although with minor size, are still present. 

A valid alternative is to have the EEG acquisition clock drives by the 10 MHz 

MR system clock. MR scanners indeed provided on commonly used connector a 

clock signal that is collected by the synchronization hardware. Signal is then 

stabilized and transported from the MR system electronics cabinet to the 

scanner control room. Stabilization is needed to prevent decay or slurring of the 
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signal edges, important for high frequency phase alignment. Finally a clock 

divider circuit down sample the MR signal into a clock signal that can be used 

by the EEG amplifier (Ullsperger and Debener 2010). 

1.4 Participants and resting acquisition 

Twenty-two healthy young people took part in the experiment in exchange for 

payment (about 8 € per hour). Data from two participants were discarded because 

of excessive head movements (see paragraph 2.3). Therefore, the results are 

reported here for 20 participants (12 female; mean age: 23 years; age range: 20 – 

28 years). They were all right-handed, according to the Edinburgh Handedness 

Inventory (Oldfield 1971) and reported normal or corrected-to-normal visual acuity 

(MRI-compatible glasses were used when appropriate). The study was approved by 

the Bioethical Committee of the Azienda Ospedaliera di Padova and was conducted 

in accordance with the guidelines of the Declaration of Helsinki. All participants 

signed a written informed consent prior to their participation. The acquisition 

protocol included resting-state and task-related simultaneous EEG-fMRI, and a 

structural image. The task-related activity analysis is not discussed in this thesis 

and has already been published in (Tarantino et al. 2017). In the resting state 

session, subjects were asked to lie inside the scanner, to move as little as possible, 

and to fix a cross in the centre of a screen. The screen was placed at the rear of the 

bore and was visible to the participants through a double mirror system mounted on 

the head coil. 

1.4.1 MRI acquisition 

Structural and functional images were acquired using a 3T Ingenia Philips whole 

body scanner (Philips Medical Systems, Best, The Netherlands) equipped with a 

32-channel head-coil, at the Neuroradiology Unit of the University Hospital of 

Padova, Italy.  
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Functional data were obtained using a whole head T2∗-weighted echo-planar image 

(EPI) sequences (repetition time, TR: 2000 ms; echo time, TE: 35 ms; 25 axial 

slices with ascending acquisition; voxel size: 2.4 × 2.4 × 4.8 mm; flip angle, FA: 

90°; field of view, FOV: 230 mm, acquisition matrix: 84 × 80; SENSE factor: 2 in 

anterior-posterior direction). The functional time series consisted of 200 volumes, 

equivalent to 400 s. At the start of each volume acquisition, a transistor–transistor 

logic (TTL) pulse was sent from the MRI scanner to the EEG recording system. 

Special care was taken to ensure that frontal areas and cerebellum were included in 

the volume. In order to avoid head movement, small foam cushions and sponge 

pads were placed around the participant’s head. Subjects also wore earplugs to 

reduce acoustic noise.  

After functional session, high-resolution T1-weighted anatomical images (TR/TE: 

8.1/3.7; 180 sagittal slices; FA: 8°; voxel size: 0.49 × 0.49 × 1 mm; FOV: 220 mm; 

acquisition matrix: 220 × 220) were acquired. 

1.4.2 EEG acquisition 

The EEG signal was recorded using an MR-compatible system (Brain Products, 

Munich, Germany), connected to 64 sintered Ag/AgCl ring electrodes and mounted 

on an elastic cap (BrainCap MR) according to the extended 10–20 system. 

Electrocardiographic (ECG) signal was acquired by means of an electrode placed 

in the middle of participants’ back, approximately 4 cm left to the spine. Channels 

FCz and AFz served as online reference and ground, respectively. Acquisition did 

not start until electrodes impedance was set at values less than 5 kΩ. The EEG 

signal was band-pass filtered between 0.016 and 250 Hz and digitized at a 

sampling rate of 5 kHz. The amplifiers were placed at the rear of the scanner bore 

such that connection with subject’s EEG cap could be realized by means of short 

cables. To minimize artifacts induced by movements and vibrations, both 

amplifiers and cables were fixed with sandbags. 
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1.5 MRI preprocessing 

Anatomical images were bias-field corrected and skull stripped with FreeSurfer 

(Fischl 2012) software suite version 5.3.0 (Massachusetts General Hospital, 

Harvard Medical School; http://surfer.nmr.mgh.harvard.edu). A non-linear 

transformation from T1-weigthed images to standard Montreal Neurological 

Institute (MNI) template was estimated using FSL (FMRIB Software Library, 

version 5.0.7) (Smith et al. 2004). 

This software was also used to preprocess individual functional data. To eliminate 

the fMRI signal decay associated with magnetization reaching equilibrium, the first 

seven volumes were discarded. Afterwards, functional data were slice-timing 

corrected using the middle slice as the reference frame and rigidly realigned to the 

first volume. To quantify participants’ head movements during the acquisition, 

framewise displacement (FD) was calculated for each participant (Power et al. 

2012). This index represents the sum of the absolute values of the derivatives of the 

translational and rotational realignment parameters. Subjects with mean FD above 

two standard deviations from the mean of all subjects (group mean = 0.09 mm, 

standard deviation = 0.02 mm) were excluded.  

To perform normalization, the 12-parameter affine transformation from the first 

volume of the functional data to the anatomical image was combined with the 

transformation from the anatomical image to the template and applied to all 

volumes. In the same operation, data were also resliced to 2 × 2 × 2 mm voxels. 

After grand mean scaling, the functional images were temporally filtered with a 

high-pass filter with cut-off frequency of 0.01 Hz and spatially smoothed using a 

Gaussian kernel with a full-width at half-maximum (FWHM) of 4 mm.  

FMRI data of all subjects were decomposed into 50 functional networks using a 

group-level spatial ICA as implemented in the GIFT toolbox 

(http://mialab.mrn.org/software/gift/). The number of components was taken as the 

mean of the estimated components for each dataset using the minimum description 
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length criterion modified to account for spatial correlation (Li, Adali and Calhoun 

2007). Before performing the ICA, Principal Component Analysis (PCA) was used 

in a two-step process to reduce the dimensionality of the data. The first step was 

applied to each individual dataset, which was reduced to its first 75 principal 

components. The second step was applied to the group data and 50 components 

were retained. The Infomax ICA algorithm (Bell and Sejnowski 1995) was run 10 

times in ICASSO (http://www.cis.hut.fi/projects/ica/icasso/) (Himberg, Hyvarinen 

and Esposito 2004) to identify the most stable components across all iterations. 

Since Resting State Networks (RSNs) are characterized by low frequency 

fluctuations (Cordes et al. 2001), components whose power spectrum of their 

associated time course felt 50 % or more above a high frequency range (> 0.1 Hz) 

were rejected (Greicius et al. 2004). Then, component of interests were selected by 

visual inspection based on previous literatures (Beckmann et al. 2005, Allen et al. 

2014) and back-reconstructed through dual regression (Filippini et al. 2009) to 

produce individual RSNs spatial maps and time courses. The dual regression 

proceeds in two steps. For each subjects, group spatial maps are regressed against 

fMRI data to obtain one time course for each component. Then, time courses are 

regressed against fMRI data to obtain spatial maps of each network. 

Before proceeding with network analysis, a multiple regression of the movement 

parameters was performed on the time courses of the 26 selected networks, for 

each subject separately. Indeed, although previous studies (Kochiyama et al. 2005, 

McKeown, Hansen and Sejnowsk 2003) have been demonstrated that spatial ICA 

detects motion related components that can be further removed from the data, given 

the spatial non-stationarity of movements, residual motion related variance cannot 

be completely discarded (Allen et al. 2014).  

The next step aimed to distinguish sub-networks belonging to larger major RSNs 

characterized by putative functional specificity, such as, the visual, somatomotor, 

dorsal and ventral attention, default, cognitive control, limbic, auditory RSNs. In 

particular interest was in distinguishing the different sub-networks composing the 

so-called default-mode network (DMN). Therefore, groups of RSNs that are alike 

based on similarities in their BOLD time courses were identified by performing an 
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agglomerative hierarchical cluster analysis using the Ward’s linkage method 

(variance-minimizing approach, Ward Jr 1963) based on the Euclidean distance 

metric. This procedure generates a hierarchy of clusters represented as a 

dendrogram (Johnson 1967), a binary tree where each node is associated with the 

higher-level cluster obtained by merging its two children clusters. 

1.6 EEG preprocessing 

The EEG data preprocessing was performed using EEGLAB 13.6.5 (Delorme and 

Makeig 2004) and Matlab R2016b (The MathWorks, Natick, 2016).  

The gradient artifact (GA) was removed using the fMRI artifact slice template 

removal (FASTR) algorithm implemented in the FMRIB plug-in (Niazy et al. 

2005). Briefly, contaminated data were upsampled to a sampling rate of 20 kHz 

and locations of triggers sent by MRI machine at the beginning of each volume 

acquisition were adjusted with respect to a reference segment. Here “segment” or 

“artifact” are referred to EEG data between two consecutive trigger positions. To 

do this, all artifacts, save the first one that is taken as reference, were shifted 

forward and backward and each time correlation with the reference was calculated. 

For a given triggers, the new position was one that maximized correlation. This a 

posteriori synchronization was fundamental for the next step in which an artifact 

template was created. Indeed, due to the fact that MRI and EEG system were 

driven by distinct clocks, locations of trigger relative to the artifact could be not 

aligned across the volumes. For each segment of corrupted data, a template was 

built by averaging n artifacts (20 in this study) around current position and then it 

was subtracted from the data. However, only sudden changes in the waveform of 

gradient artifact (due to movement for example) were taken into account, in this 

way. To remove residual variance related to slow variations of the shape, a set of 

basis function with PCA were derived from the data previously cleaned. This 

optimal basis set (OBS), whose number of principal components was determined 

based on the amount of variance explained, was then fitted to, and subtracted from, 
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each segment. A further step of adaptive noise cancellation filter was considered to 

remove any remaining residuals. In this study, the last two steps were performed 

only on brain channels, since on ECG channel they resulted in the loss of data. 

Essentially, their application warped so much the signal that R peaks were no 

longer detectable. At the end, GA-free signal was brought back to its original 

sample rate. 

Removal of ballistocardiographic (BCG) artifact was usually carried out by means 

of adaptive average subtraction (Allen et al. 2000) or optimal basis set (Niazy et al. 

2005). Both these methods rely on the assumption that BCG artifacts follow the R 

peaks of ECG trace with a fix delay of around 200 ms. Recently, instead, it has 

been demonstrated that the delay of BCG artifact with respect to ECG is variable 

(Oh et al. 2014, Iannotti et al. 2015, Marino et al. 2017) and so the commonly used 

methods to its removal could be suboptimal. Therefore, in order to take the variable 

delay into account, the BCG was here removed using a semiautomatic procedure 

implemented in Matlab. As an initial step, the QRS complexes of every heart pulse 

were automatically detected on the ECG channel. To ensure the correct 

identification of all R peaks, the result was visually inspected and eventually 

adjusted. PCA was applied on the continuous brain recording and the first principal 

component was taken as an estimate of the artifact related to cardiac activity. On 

this signal, the highest peak in a time window from 100 to 300 ms after R peak was 

marked as an occurrence of BCG artifact. EEG signal was then epoched based on 

BCG peaks. Since heart rate is not constant along the acquisition, epochs were 

interpolated to have all the same length. PCA was performed and the first three 

components (including the mean effect) were used as an OBS to remove artifact. 

Clean epochs were then brought back to the original length and concatenated in 

time. To avoid discontinuity, the segment spanning 100 points before and after 

each conjunction point was replaced with its smoothed version obtained with a 

robust local regression using weighted linear least squares and a 2nd degree 

polynomial mode.  

In order to get rid of line and high frequency noise and as a preprocessing step for 

ICA (Winkler et al. 2015), data were bandpass filtered by applying a zero-phase 
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Hamming windowed sinc FIR filter with cut-off frequencies of 1.5 and 49.5 Hz 

(bandwidth = 1 Hz, ripple = 0.0022). The EEG signal was then down-sampled to 

250 Hz.  

A first rough automatic detection of bad channel was performed based on their 

correlation (computed in time window of 1 s) with all the other channels. A 

channel was rejected if the 98th percentile of the absolute values of the correlations 

was less than 0.4 for more than 1% of the windows (Bigdely-Shamlo et al. 2015). 

Next, a finer channel rejection procedure was also conducted (Bigdely-Shamlo et 

al. 2015). At this step, channels that correlated, in absolute value, less than 0.7 with 

their robust estimate (computed on the basis of a 100-point random sample 

consensus procedure) for more than 25% of the recording were removed. 

The MRI artifact residuals, ocular movements and muscular activity were removed 

by means of Independent Component Analysis (Debener et al. 2007), based on fast 

fixed-point ICA (FastICA) algorithm (http://research.ics.aalto.fi/ica/fastica) using a 

deflation approach and hyperbolic tangent as contrast function (Mantini et al. 

2011a). Independent components that did not represent brain activity were 

automatically pinpointed and then confirmed as artifacts by visual inspection of the 

time course along with power spectrum and scalp topography. In particular, GA-

related components were identified based on the presence in their power spectrum 

of peaks at frequency of 12.5 Hz (number of slices in a volume/TR) and harmonics. 

BCG-related components were identified based on a correlation bigger than 0.2 

with the BCG signal (previously identified as the first principal component of the 

GA–free continuous recordings) (Mantini et al. 2007a). Concerning ocular 

artifacts, components were selected depending on kurtosis values bigger than 13 

(blinks) and specific scalp topographies (saccades) (Liu et al. 2017, Viola et al. 

2009). Muscular activity-related components were selected among those having a 

ratio of high frequency (> 25 Hz) content to low frequency content bigger than one.  
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Removed channels were then interpolated using spherical splines (Perrin et al. 

1989) and data were re-referenced to the average of all electrodes, with the 

exception of the ECG channel, which was discarded. 

EEG data were segmented into epochs of 2000 ms, according to the TR of fMRI 

acquisition, and power spectrum was computed for each of them using a Welch's 

overlapped segment averaging estimator to obtain a 0.5 Hz resolution (250-points 

Hamming window, 500-points discrete Fourier transform, 125 points of overlap). 

From the absolute power spectrum, relative power for the delta (1-3.5 Hz), theta (4-

7 Hz), alpha (7.5–12.5 Hz), beta (13–24 Hz) and gamma (24.5-45 Hz) were 

calculated. Moreover, to have quantitative measures reflecting temporal changes of 

attention and vigilance levels during resting state condition, the alpha/theta and 

beta/alpha ratios were also computed (Laufs et al. 2006, Ambrosini and Vallesi 

2016). 

For each specific rhythm (and ratio), relative powers along the epochs were 

concatenated and the resulting time serie was convolved with the standard SPM12 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) hemodynamic response 

function (onset = 0 s, delay of response relative to onset = 6 s, delay of undershoot 

relative to onset = 16 s, dispersion of response = 1 s, dispersion of undershoot = 1 

s, ratio of response to undershoot = 6 s, length of kernel = 32 s). Finally, the first 7 

points were discarded as done for fMRI data. 

1.7 EEG-fMRI integration 

To analyze the correspondence between neuronal rhythms and RSNs, for each 

subject and channel, the RSNs average signals were correlated to the different 

band-power time series. Correlations were then Fisher-transformed and analyzed at 

group level. Given a specific network and an EEG channel waveforms, the 

statistical significance of their correlation among subjects was first evaluated with a 

two-tailed one-sample t-test. The significance level was corrected for multiple 
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comparisons by using the 'threshold-free cluster-enhancement' technique followed 

by permutation test as implemented in the ept_TFCE-matlab toolbox 

(https://github.com/Mensen/ept_TFCE-matlab) with a family-wise alpha level of 

0.05 (Mensen and Khatami 2013). A total of 64 tests (repeated measure ANOVAs), 

one for each channel used for the EEG recording, and 2500 permutations were 

performed. Therefore, the most extreme t-values in each of the 2500 permutations 

after TFCE transformation were used to estimate the t distribution under the null 

hypothesis against which to compare the 64 observed t-values. TFCE considered a 

trade-off between sensitivity to intense local effect versus smaller amplitude effect 

but with a more diffusion over the scalp and frequencies. It had been shown that it 

provided a strong control of the type-I family-wise error rate and thus a great 

degree of certainty that both the sign and the spatial localization of a given effect 

were reliable (Mensen and Khatami 2013).  

The same analyses were also performed with the beta/alpha and alpha/theta ratios. 

Then, to detect specific inter-band topographical patterns of significant EEG-fMRI 

relationship, for each network the Fisher-transformed correlation coefficients were 

analyzed over the sensor space by means of mass-univariate analysis (ANOVA) 

with the five bands as factor (TFCE corrected, p < 0.05).  

After the ANOVA, in order to assess the differences in how a resting state network 

correlated with the five frequency bands, ten post hoc pairwise t-tests were 

performed (TFCE corrected, p < 0.05). These evaluations were only computed in 

the channels belonging to cluster where F achieved the necessary level of statistical 

significance. 

Finally, to investigate the presence of specific spatio-spectral fingerprints of 

distinct RSNs, a further mass univariate ANOVA in sensor-frequency space with 

the networks of interest as a factor were performed. The total comparisons were 

320, corresponding to the combination of the 64 channels used for the EEG 

recording and the five bands of interest. 
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1.8 Results 

1.8.1 EEG and fMRI 

Subcomponents of the networks of interest were identified by means of the 

hierarchical clustering. This analysis revealed that four ICs components with 

similar time courses were grouped together into an extended RSN that could be 

considered, based on the spatial maps of the four lower-level RSNs, as the Default 

Mode Network. The spatial maps and the average signals of the subcomponents 

were illustrated in figure 1.2. The first network included the middle and the medial 

part of the orbitofrontal cortex, the anterior part of the cingulum and the medial 

part of the superior frontal cortex. It was labelled Self+Rest. The second network, 

called Rest, was constituted by the middle temporal and the angular gyrus, the 

cuneus, the precuneus, the posterior part of the cingulum and the middle frontal 

gyrus. The third network, called Self, mostly included the medial part of the 

superior frontal gyrus anteriorly. Finally, the fourth network, called Rest2, 

extended to the angular gyrus, inferior parietal lobe, the middle part of the 

cingulum, the middle frontal gyrus and the medial part of the superior frontal 

cortex posteriorly. The four sub-networks of the DMN were labelled according to a 

recent study by Whitfield-Gabrieli and colleagues (2011), which proposed a similar 

decomposition of the DMN based on the functional associations and dissociations 

between different sub-networks of the DMN: Self+Rest subcomponent involved 

regions that were involved in both self-reference and rest processes; Rest and Rest2 

were more related to purely rest process; and Self regions were preferentially 

engaged during explicit self-reference process. 
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Figure 1.2: Axial spatial maps and related time courses of the resting state 

networks of interest reconstructed by group ICA. All spatial maps were converted 

to Z statistic images and thresholded at Z = 3. 

 

 

As regards the spectral data, figure 1.3 illustrated the spatial distribution of the 

mean relative power of each band. As shown by the scalp topographies, relative 

power in delta band showed the lowest values over the midline and the highest 

values over the lateral scalp sites. Relative power in theta band had the smallest 

values over the centro-parietal electrodes and the biggest values over the lateral 

frontal electrodes. Relative power in alpha band was higher in the occipito-parietal 
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electrodes and lower in the fronto-temporal electrodes. The biggest values in beta 

band were localized over the central and the occipital electrodes. Concerning 

gamma band, the higher values were identified over mid lateralized central frontal 

electrodes.  

 

Figure 1.3: Spatial distribution over the scalp of the mean relative power across 

subjects in the delta (1-3.5 Hz), theta (4-7 Hz), alpha (7.5–12.5 Hz), beta (13–24 

Hz) and gamma (24.5-45 Hz) bands. For each subject, the relative power in the 

bands of interest was computed in epochs of 2 s and then averaged. Each scalp 

topography was centred with respect to the minimal and maximal relative power of 

the electrodes. In this way, in all the topographical plot the minimal value is blue 

and maximal value is red (see the colour-scale on the right of each map). 
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1.8.2 Within network 

Self+Rest 

To infer how the time course of this RSN correlated with the different bands, 

five two-tailed one-sample t-tests were performed. Analyses revealed a number 

of statistically significant positive correlations with alpha, as well as negative 

correlations with theta (see figure 1.4). Scalp sites in the central-frontal region 

showed both positive correlation with alpha in Fz and F2 electrodes and 

negative correlation with theta in F1, Fz, F2 and FCz electrodes. In addition, 

significant positive correlations with alpha were distributed over the occipito-

parietal electrodes with a clear right lateralization, whereas significant negative 

correlations were localized in the right occipito-parietal scalp sites. 

Electrodes showing inter-band differences in the correlation with the fMRI signal 

were identified with ANOVA. Based on their topography, these significant band-

dependent correlation differences were grouped into two distinct clusters (see 

Figure 1.4). The first cluster was located over central-frontal electrodes (FC1, F1-2, 

Fz). Post-hoc analyses on the electrode with the maximum effect (Fz) of the cluster 

revealed a significant difference in the mean EEG-fMRI correlations between alpha 

and theta bands (figure 1.4). The second cluster included electrodes over an 

extended bilateral occipito-temporo-parietal region, with a clear right lateralization 

of the magnitude of the effect. Post-hoc analyses on the electrode with the 

maximum effect (P6) revealed that mean network correlation with alpha band 

significantly differed from the correlation with other bands (figure 1.4).  

Concerning correlations computed using complex measures derived from the ratios 

of different bands, results were shown in figure 1.4. In particular, significant 

negative correlation with beta/alpha ratio were found over the occipito-parietal 

electrodes (O1-2, Oz, PO8, P6) and significant positive correlations with 

alpha/theta ratio were found over Fz and F2 and over occipito-parietal electrodes 

with a right lateralization, mirroring the pattern of results observed in the analysis 

using the single bands (see above). 
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Figure 1.4: Results of the analysis aimed at investigating the spatial distribution of 

correlations between the activity of the “Self+Rest” network and the EEG rhythms. 

The figure shows the “Self+Rest” network by means of the three most informative 

orthogonal slices. The first scalp topography from top of the image illustrates the 

results of the ANOVA: electrodes in which a significant effect (TFCE corrected, p 

< 0.05) was found are indicated as black dots. White circles indicate the electrode 

with the maximal effect for each spatio-spectral cluster. For these electrodes, the 

across-subjects mean values of the correlations between the time course of the 

network and the different band power time series are plotted in the graphs on the 

left of the image. Black asterisks above or under the blue line indicate correlations  

between the activity of the network and the specific EEG rhythms that were 

significantly different from 0 (TFCE corrected, p < 0.05). Black asterisks over a 

black bar identify the significant results of the post-hoc tests (TFCE corrected, p < 

0.05). On the right of the graphs, scalp topographies illustrate the bands in which 

significant correlations with the time course of the “Self+Rest” network were 

found; the significant electrodes are highlighted with black dots. 
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Rest 

Electrodes in which the time course of the posterior regions of the Default Mode 

Network significantly covaried across subjects with the band-power time series 

were presented in figure 1.5. In particular, t-test analyses showed clusters of 

significant negative correlations with both delta and theta bands and positive 

correlations with alpha band. Negative correlations with delta were spread over the 

occipito-temporo-parietal sites, over the frontal electrodes and over the right 

central-frontal ones. In a spatially complementary cluster including central-frontal 

electrodes (C1, Cz, FC1 and FCz), negative correlations with theta were instead 

found. Finally, a cluster of electrode presenting significantly positive correlation 

with alpha were identified in the right temporal-parietal regions. 

As shown in figure 1.5, ANOVA analysis revealed a significant modulation of 

EEG power-fMRI correlation across bands mainly in the posterior electrodes, with 

a right lateralization of the effect magnitude. The significant cluster also included 

temporal, left central-frontal and right frontal electrodes. The post-hoc test results 

for a frontal and a posterior representative electrodes (F1 and P6) are shown in 

figure 1.5. In details, analysis disclosed differences between alpha-fMRI 

correlations and delta- and theta-fMRI correlations in both the posterior and frontal 

electrodes. Other differences were found between delta and beta and between delta 

and gamma in the posterior and frontal electrodes, respectively.  

Finally, significant positive correlations with alpha/theta ratio were identified in the 

central frontal electrodes (F1, FC1, FCz and Cz) and in the right parietal electrodes 

(P8, P6, P4, P2, TP8, CP6 and CP4) and illustrated in figure 1.5. 
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Figure 1.5: Results of the analysis aimed at investigating the spatial distribution of 

correlations between the activity of the “Rest” network and the EEG rhythms. The 

figure shows the “Rest” network by means of the three most informative 

orthogonal slices. The first scalp topography from top of the image illustrates the 

results of the ANOVA: electrodes in which a significant effect (TFCE corrected, p 

< 0.05) was found are indicated as black dots. White circles indicate the electrode 

with the maximal effect for each spatio-spectral cluster. For these electrodes, the 

across-subjects mean values of the correlations between the time course of the 

network and the different band power time series are plotted in the graphs on the 

left of the image. Black asterisks above or under the blue graph line indicate 

correlations between the activity of the network and the specific EEG rhythms that 

were significantly different from 0 (TFCE corrected, p < 0.05). Black asterisks 

over a black bar identify the significant results of the post-hoc tests (TFCE 

corrected, p < 0.05). On the right of the graphs, scalp topographies illustrate the 

bands in which significant correlations with the time course of the “Rest” network 

were found, the significant electrodes are highlighted with black dots. 
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Self 

Tests for the statistical significance of the correlations between band power time 

series and the time courses of the network highlighted a number of significant 

negative correlations for delta and theta bands and positive correlations for alpha 

band, as shown in figure 1.6. Based on their spatial characteristics, correlations 

with delta time series were grouped in two clusters in the right part of the scalp. A 

smaller cluster was localized over the frontal and fronto-temporal electrodes (F6-8, 

FC6, FT8-10), whereas a bigger one was found over parietal and central-parietal 

electrodes. Correlations with theta band were widely distributed over occipito-

parietal-temporal electrodes (with a right lateralization involving the temporo-

parietal electrodes) and over bilateral fronto-central electrodes. Finally, correlations 

with alpha were observed over bilateral occipito-parietal electrodes (with a right 

lateralization concerning the effect magnitude), over right temporal and frontal 

electrodes and in a distinct left-lateralized cluster over central-frontal electrodes 

(F1-2, Fz, FC1-3). 

Significant differences in the way the several bands correlated with the network 

BOLD signal were identified by means of ANOVA analysis over most of the scalp 

(see figure 1.6). Electrodes where the effect was maximal were localized in the left 

frontal region and in the right centro-temporo-parietal area. In these two subgroups, 

F1 and P4 electrodes were taken as representative to show the results of the post-

hoc analysis. As presented in figure 1.6, significant differences in the EEG-fMRI 

correlations were found between delta and gamma, delta and alpha, theta and alpha, 

theta and beta both in the anterior and posterior areas. Other spatial-specific 

significant differences were also detected. Specifically, differences were shown 

over F1 electrode between delta and theta and over P4 electrode between theta and 

beta. 

Significant correlations with alpha/theta ratio were also identified in a wide region 

of the scalp including frontal, central, parietal, occipital and right temporal scalp 

sites (figure 1.6). 
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Figure 1.6: Results of the analysis aimed at investigating the spatial distribution of 

correlations between the activity of the “Self” network and the EEG rhythms. The 

figure shows the “Self” network by means of the three most informative orthogonal 

slices. The first scalp topography from top of the image illustrates the results of the 

ANOVA: electrodes in which a significant effect (TFCE corrected, p < 0.05) was 

found are indicated as black dots. White circles indicate the electrode with the 

maximal effect for each spatio-spectral cluster. For these electrodes, the across-

subjects mean values of the correlations between the time course of the network 

and the different band power time series are plotted in the graphs on the left of the 

image. Black asterisks above or under the blue graph line indicate correlations 

between the activity of the network and the specific EEG rhythms that were 

significantly different from 0 (TFCE corrected, p < 0.05). Black asterisks over a 

black bar identify the significant results of the post-hoc tests (TFCE corrected, p < 

0.05). On the right of the graphs, scalp topographies illustrate the bands in which 

significant correlations with the time course of the “Self” network were found, the 

significant electrodes are highlighted with black dots.. 
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Rest2 

As shown in figure 1.7, activity of the network significantly correlated with the 

slow EEG-derived time series mainly over the right posterior scalp electrodes. 

Specifically, significant negative correlations with delta and positive correlations 

with alpha were localized over a small cluster of parietal electrodes (CP2, P2-4 and 

P4-6, respectively). Significant correlations with theta covered a more extended 

region, including right centro-temporo-parietal electrodes and left central-frontal 

electrodes.  

Significant modulations of EEG power-fMRI correlations across bands were found 

with ANOVA in a number of electrodes (see figure 1.7). Considering the 

topography and the strength of the effect, electrodes could be divided into two 

clusters: a smaller one with weaker effects over mid-left frontal electrodes (F1-

FC1) and a more widespread one with stronger effects in the right centro-temporo-

parietal electrodes. Significant differences in the way the band power time series 

were coupled with the BOLD signal were presented in figure 1.7 for the electrodes 

with the maximum F of the clusters. The ANOVA effects were explained by 

significant differences involving the alpha band as compared to theta, beta and 

gamma bands. Specifically, differences between alpha and theta correlations were 

found for both clusters, whereas differences between alpha and both delta and beta 

were only identified in the parietal cluster.  

As regard the complex measures, figure 1.7 showed significant positive 

correlations with alpha/theta ratio over central-temporo-occipital electrodes. 
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Figure 1.7: Results of the analysis aimed at investigating the spatial distribution of 

correlations between the activity of the “Rest2” network and the EEG rhythms. The 

figure shows the “Rest2” network by means of the three most informative 

orthogonal slices. The first scalp topography from top of the image illustrates the 

results of the ANOVA: electrodes in which a significant effect (TFCE corrected, p 

< 0.05) was found are indicated as black dots. White circles indicate the electrode 

with the maximal effect for each spatio-spectral cluster. For these electrodes, the 

across-subjects mean values of the correlations between the time course of the 

network and the different band power time series are plotted in the graphs on the 

left of the image. Black asterisks above or under the blue graph line indicate 

correlations between the activity of the network and the specific EEG rhythms that 

were significantly different from 0 (TFCE corrected, p < 0.05). Black asterisks 

over a black bar identify the significant results of the post-hoc tests (TFCE 

corrected, p < 0.05). On the right of the graphs, scalp topographies illustrate the 

bands in which significant correlations with the time course of the “Rest” network 

were found, the significant electrodes are highlighted with black dots. 
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1.8.3 Between networks 

The results described above reflect the inter-band differences in the topographical 

distribution of EEG power-fMRI relationship for each subcomponent of the 

Default Mode Network taken separately. To find out whether these EEG-fMRI 

correlation patterns were component-specific or rather general features of the 

DMN, a mass univariate ANOVA in sensor x frequency space was performed with 

the four networks as a factor. 

As shown in figure 1.8, the analysis revealed several spatio-spectral clusters of 

significant inter-networks differences in the EEG-fMRI correlations. A first cluster 

was visible over the occipital electrodes, which involved mainly theta and gamma 

bands; a second cluster was located over the right temporo-frontal electrodes and 

involved bands from delta to alpha; a third small cluster was present in the right 

parietal region of the scalp (CP6, P4-6) and involved the delta band; finally, a one-

channel cluster was found over Cz for the theta band. Notably, concerning the 

spectral dimension, none of the clusters involved the high-frequency bands (beta 

and gamma bands). In figure 1.8, mean correlation between network fMRI signals 

and delta, theta and alpha bands, measured in a representative electrode of each 

spatio-spectral cluster, were plotted as function of the different networks. For the 

Oz electrode, located in the more widespread cluster, positive correlations with 

alpha as well as negative correlations with theta distinguished the two RSNs 

involved in self-related processes (Self+Rest and Self networks) from Rest and 

Rest2. In F2 electrode, belonging to the lateralized frontal cluster, positive 

correlation with alpha identified Self+Rest, Rest and Self networks with respect to 

Rest2, whereas negative correlation with theta discerned between the self-related 

and the rest-related subcomponents. In this scalp site, thus, each subcomponent of 

the DMN could be distinguished from the other ones, based on the combination of 

their correlation with alpha and theta bands. As regard the two minor clusters, in P6 

electrode a negative correlation with delta band was specific of the Rest networks, 

whereas in Cz electrode a lack of negative correlation with theta band was 

characteristic of the Self+Rest subcomponent. 
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Figure 1.8: Results of the analysis aimed at investigating specific spatio-spectral 

patterns that were significantly different across the subcomponents of the Default 

Mode Network. Scalp topographies on the left of the image show the results of the 

ANOVA. On the right of the image, the across-subjects mean correlation between 

the networks and delta-, theta-, and alpha- band power time series in three 

electrodes are plotted. The three graphs refer to F2, Cz, and Oz, indicated in the 

scalp topographies with blue, grey, and white circles, respectively. In the graphs, 

the thicker lines represent bands for which the EEG-fMRI correlation significantly 

differed across networks. Beta and gamma bands are not presented because none 

of the clusters involved these bands.  
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1.9 Discussion 

In the present study, an innovative and completely data-driven approach was used 

in order to investigate the scalp distribution of the patterns of correlations between, 

on the one side, the EEG spectral activity in the entire (i.e., 1-45 Hz) power 

spectrum and, on the other side, the low-frequency coherent fluctuations of the 

BOLD signal in different RSNs. 

Concerning the EEG analysis, the scalp topographies of the mean relative power of 

each band presented here (see figure 1.3) revealed common band-dependent spatial 

distributions. For example, the spectral power in the alpha band was mainly 

distributed over the parieto-occipital scalp sites, while the power in the beta band 

has a more anterior distribution as compared to the alpha one. These results are 

thus consistent with the EEG scalp distributions previously reported in the 

literature (e.g.Michel et al. 1992) and indicate that the EEG preprocessing 

employed here was successful in reconstructing of the EEG data by eliminating the 

artifacts induced by simultaneous fMRI scanning.  

As regards the fMRI BOLD data analysis, the hierarchical clustering analysis 

following the ICA identified a number of clusters, representing the different RSNs 

well established in the resting state fMRI literature using ICA, including a cluster 

of four sub-networks that, combined together, formed the (extended) default mode 

network (DMN). This finding is in line with previous studies showing that the 

DMN can be fractionated into distinct sub-networks based on their specific 

functional characteristics (Whitfield-Gabrieli et al. 2011, Andrews-Hanna et al. 

2010). Specifically, it has been shown that there are associations and 

dissociations in cortical structures composing the DMN and either specifically 

related to self-referential thoughts and processes, such as the dorsal portion of the 

medial prefrontal cortex, or specifically related to “pure” (i.e., non self-referential) 

resting state, such as the precuneus and the angular gyri, or related to both mental 

states, such as the ventral portion of the medial prefrontal cortex (Whitfield-

Gabrieli et al. 2011).  
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Given the mounting importance that the DMN has gained in current neuroscience 

research, we decided to apply our innovative analytical approach to the four sub-

networks composing the DMN as an applicative proof of concept. The aim in 

making this choice was also to employ a conservative approach in verifying the 

validity and potential of the analytical approach used here in identifying even the 

supposedly more subtle differences exhibited by these four related sub-RSNs in 

their specific EEG-derived spatio-spectral fingerprints. 

Generally, in line with a number of previous studies the RSN-specific results 

revealed that the four sub-networks of the DMN correlated positively with the 

alpha power over occipital channels (e.g., Jann et al. 2009, Jann et al. 2010, 

Mantini et al. 2007b) and negatively with theta power over frontal channels (e.g., 

Scheeringa et al. 2008, Mo et al. 2013, Jann et al. 2010). Moreover, despite these 

across-the-board correlations, this approach highlighted, for the first time, the 

presence of distinctive subcomponent-specific spatial-frequency patterns.  

In conclusion, the present results confirm the idea that spontaneous brain activity 

during resting state can be characterized by a finite set of spatio-spectral patterns 

(Mantini et al. 2007b). More importantly, however, they also extend previous 

findings by identifying, for the first time, the specific scalp regions showing: 1) 

significant EEG-fMRI correlations within each specific band and (sub-)RSN, 2) 

significant inter-band differences in EEG-fMRI correlations within each-specific 

(sub-)RSN, and, importantly, 3) significant differences in patterns of EEG-fMRI 

correlations over different frequency bands across different (sub-)RSNs, 

representing specific spatio-spectral fingerprints of those RSNs. The present 

results thus suggest that the innovative analytical approach used in the present 

study can be fruitful in identifying the specific spatio-spectral fingerprints of 

the RSNs. 

These results are useful to better understand the functional role of the low-

frequency coherent fluctuations of the BOLD signal. Indeed, since EEG, contrarily 

to fMRI, is a direct measure of the neuronal activity, knowing which 
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electrophysiological rhythm is specifically related to a particular network provides 

new insights about the neuronal basis of the network function. This study therefore 

gives an important contribution to the identification of specific scalp distributions 

of the EEG-fMRI correlations (namely, regions of the scalp where the EEG-fMRI 

correlations are significant for a given network, or regions where pattern 

correlations are different among networks). It should still be noted that spatial 

resolution of the EEG signal is too low to infer about the location of the involved 

EEG sources. A further step forward could be thus to try extending the present 

findings in this direction by performing a source estimation study. However, it is 

currently not clear whether the EEG system we employed in the present study can 

provide adequate localization performance. For this reason, in order to assess the 

feasibility of future source estimation studies, an investigation of the source 

reconstruction accuracy with the EEG system used in the present study and the 

state-of-the-art techniques is needed. This issue is indeed the subject of the next 

study presented in this thesis.  
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 Source Estimation Accuracy 2

2.1 The source estimation problem 

As seen in the discussion of the previous chapter, the main limit of the EEG 

technique is its low spatial resolution, around 5 to 9 cm with the common EEG 

system (Nunez and Westdorp 1994, Babiloni et al. 2001). The EEG channels 

record electrical activities that are generated several centimetres below the scalp 

and that go through different resistive layers before being measured (Nunez and 

Westdorp 1994). These layers, especially the skull (Srinivasan et al. 1996), caused 

a blurring effect at the scalp level and so, the recorded activities are weighted sums 

of the underlying brain sources. Due to this volume-conduction-induced mixture, a 

given scalp topography could in principle have been generated by many different 

sources configuration. Therefore, a maximal activity over certain electrodes cannot 

be unequivocally attributes to the sources of the underlying area (Michel et al. 

2004). 

To overcome this limit, it is needed to solve the source reconstruction problem, that 

is, estimating the sources of the current inside the brain that most likely generated 

the voltage potentials measured on the scalp. It is well accepted that neuronal 

activity can be approximated by current dipoles (de Munck, van Dijk and 

Spekreijse 1988). To solve the source localization problem the first thing to do is 

computing the scalp potentials resulting from the current dipoles inside the head, 

the so-called forward problem. The next step consists to work back and in 

combination with the EEG data, calculate the sources that best fit the measure, the 

so-called inverse problem. The accuracy of the solution depends on several factors, 
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including the number and arrangement of the electrodes over the scalp, the 

approximation used to describe the head model and inverse solution method 

adopted (see for reviews Michel et al. 2004, Hallez et al. 2007, Grech et al. 2008). 

In mathematical terms, solving the inverse problem means computing the potential 

g(r,rdip,d) generated by a dipole with dipole moment d (magnitude d and orientation 

e) and position rdip, measured at a scalp site with position r. That is, solving the 

Poisson’s equation to obtain the potential V on the scalp due to the activity of the 

dipole inside the head. If there is more than one active source, the electrode 

potential can be expressed as follow: 

���� = � ���, �
��
 , ����                                                �1� 

and considering the superposition principle, it can be written as: 

� ���, �
��
�� ����, ���, ����� = � ���, �
��
�� ����                       �2� 

where di = (dix,diy,diz) is a vector of the three dipole magnitude components. For N 

electrodes and p dipoles: 

� = ������⋮������ = �����,�
��
� … ����,�
����⋮ ⋱ ⋮����,�
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� … ����,�
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where i = 1, …, p and j = 1, …, N.  

Adding a noise matrix n: 

& = " × $ + (                                                            �4� 

where M is the matrix of EEG measures, G is the leadfield matrix describing the 

projection from each of p dipoles to each of N electrodes and D is the matrix of 

dipole moments. Matrix G is obtained solving the forward problem. Under this 
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formulation solving the inverse problem consists of estimate the matrix of the 

dipole moments $*  given the electrode positions and the EEG data M, and the 

leadfield matrix G (Grech et al. 2008). 

The choice of which mathematical model to use depends on the number of dipoles 

considered and on the assumptions about their positions, orientations and 

magnitudes. The possible models presented in literature (see for review Grech et al. 

2008) are: a single dipole having unknown time-varying magnitude, position, and 

orientation; a given number of dipoles with unknown time-varying magnitudes and 

unknown, but constant positions and orientations; a given number of dipoles with 

fixed known positions and unknown time-varying magnitudes and orientations; 

variable number of dipoles with a set of constraints on magnitudes, orientations and 

positions. The two main approaches to solve the inverse problem are the parametric 

and non-parametric methods. In the parametric methods, the model considers only 

few dipoles having unknown positions and orientations. With this assumptions 

solutions of the problem is non linear. On the other hand, non-parametric models 

(or Distributed Source Models) assume several dipole sources with fixed known 

locations (and usually fixed known orientations) in the whole brain or cortical grey 

matter and unknown magnitudes. In this case, since the dipole positions is already 

known the problem is linear. However, having p≫N, the problem is ill-posed, that 

is, solution is non-unique and highly sensitive to small data variations.  

As we can see later, in order to respond to the aim of our study, a non parametric 

method was used. So in the next lines, the bayesian framework from which this 

technique can be derived, will be introduced.  

Bayesian formulation of the inverse problem 

This technique aims to compute the solution ,-  that maximizes the posterior 

distribution of x given the data y (Baillet and Garnero 1997). Solution can be 

written as: 

,- =  �.,�/0�,|2�3                                                    �5� 
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where p(x|y) is the conditional probability density of x given the data y. According 

to Bayes’law: 

0�,|2� =  0�2|,�0�,�0�2�                                                  �6� 

if the posterior density is assumed to have a Gaussian distribution, we find: 

0�,|2� =  0�2|,�0�,�0�2� =  6,0/−89�,�3/; 0�2�                                 �7� 

where z is a normalization constant, Fα(x)=U1(x)+αL(x) where U1(x) and L(x) are 

the energy function associated with p(y|x) and p(x), respectively, and α>0 is the 

regularization parameter. So the solution ,- can be expressed as: 

,- =  �=>�?89�,�@                                                     �8� 

assuming the data noise to be white, Gaussian and with zero-mean, U1(x) can be 

written as: 

B��,� =  ‖D, − 2‖E                                                   �8� 

where K represents here the forward solution and ‖. ‖2 is the L2 norm. It should be 

noted that L(x) may be defined as a combination of spatial and temporal priors. 

Combining the previous equations: 

,- =  �=>�?89�,�@ =  �=>�?‖G, − 2‖E + HI�,�@                    �9� 

Solution ,-  is therefore a compromise between the fidelity to the data and the 

spatial/temporal smoothness based on the α value (Grech et al. 2008, Baillet and 

Garnero 1997, Gavit et al. 2001).  
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Concerning the source inverse problem, using the previous notation the current 

distribution estimate $*  can be compute as: 

$* = min?B�$�@                                                    �10� 

where: 

B�$� = ‖& − "$‖OE + HI�$�                                     �11� 

The different methods belonging to Distributed Source Models class differed based 

on how L(D) is implemented. 

2.2 Accuracy of the solution: the number of 

electrodes 

EEG measures the surface electrical potential field generated by the neuronal 

activity. Obviously this field is continuous, but to be measured it is spatially 

sampled based on the electrode positions in the EEG montage. In accordance with 

Nyquist’s theorem, sampling rate should be at least twice the highest frequency 

present in the signal. This statement can be applied in the temporal domain as well 

as in the spatial one. However, while antialiasing filters can be applied for temporal 

sampling, this is not possible for the spatial characteristics of the measure recorded 

over the scalp electrodes. Nonetheless , due to the fact that skull behaves as a low-

pass filter of the electrical field (Srinivasan, Tucker and Murias 1998), 

theoretically, spatial sampling could be performed without risk of aliasing if a 

sufficient number of channels are used. For years, skull conductivity was assumed 

to be low (Rush and Driscoll 1968, Cohen and Cuffin 1983), so measuring the 

electric field in a small number of positions did not seem a problem. However, 

more recent studies (e.g., Zhang, van Drongelen and He 2006b, Oostendorp, 

Delbeke and Stegeman 2000) have revealed that skull conductive was higher and, 

therefore, an increase of the sampling density has become necessary. Freeman and 

colleagues (2003) suggested an optimal electrodes distance of 1 cm, implicating 
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that around 500 channels should be used (Song et al. 2015). Considering that, in the 

clinical environment 32 channels or less are usually employed, whereas in the 

research 64- and 128- channel montages are the most widely used, spatial sampling 

presently used may be sub-optimal. 

Several studies (e.g., Laarne et al. 2000, Lantz et al. 2003) dealt with the defining 

of a minimum number of electrodes to avoid poor performance. Laarne et al. 

(2000) examined the relationship between the number of electrodes and dipole 

localization accuracy using a realistic head model and simulated data. In particular, 

they considered two different montages with 19 and 58 channels and 45 cortical 

source locations, to which random noise were added. In the forward model, 

computed using finite difference method (FEM), they took into account scalp, 

skull, cerebrospinal fluid, grey matter and white matter. Dipoles localizations were 

estimated with a least square algorithm and for two different values of the skull 

resistivity. They found that, by increasing the number of the electrodes, localization 

accuracy improved in the presence of noise. The first study in which the 

performances of EEG source localization results were estimated for montages with 

more than 100 electrodes was reported in a study by Lantz et al. (2003). They 

compared the accuracy of source localization with nine different electrodes 

configuration, from 25 to 166 channels, using epileptiform activity and simulated 

data. Forward model was solved based on a three-shell spherical head model for 

simulated data and on an anatomically-constrained spherical head model for the 

clinical data. They estimated the inverse problem by using EPIFOCUS (Grave de 

Peralta Menendez et al. 2001, Lantz et al. 2001) and found that, in general, 

precision on source localization did not exhibit a linear relationship with the 

number of electrodes. Specifically, the bigger improvement was seen from 31 to 63 

channels, whereas around 100 electrodes, the pattern reached a plateau. These 

results were in line with the general suggestion of a 3 cm inter-electrode spacing, 

achievable with about 100 electrodes (Michel et al. 2004, Plummer, Harvey and 

Cook 2008). Also Wang et al. (2011) and Lu et al. (2012) observed better 

performance using a higher number of electrodes, but in both studies the 

performances were analysed until 76 electrodes montages.  
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A more extended analysis was recently reported by Sohrabpour and colleagues 

(2015). Specifically, in their study, they investigated the mean localization errors 

when source estimations were computed on 32, 64, 96 and 128 electrodes montage. 

Assessments were conducted on epileptic paediatric patients and on synthetic data 

with various SNR values (10, 7, 3, 0 dB). As regard simulated data, dipoles were 

located in 100 points with random position and orientation and performances were 

averaged across them. They used three layer boundary element method (BEM) 

describing scalp, skull and brain to build the head model and calculated the 

distributed dipole inverse solution with sLORETA (Pascual-Marqui 2002). Authors 

found that localization improvement rate decreased with increasing number of 

electrodes both in patient’s data and simulations. In particular synthetic data 

showed this pattern regardless of noise level. To statistically analyse the general 

impact of different electrode configurations on localization errors, they also 

performed paired t-test between any pair of electrode configurations and found that 

all the comparisons were significant. These results were then replicated by Song et 

al. (2015), who compared the accuracy on source reconstruction as a function of 

the channels density and coverage of the inferior and superior head regions. They 

conducted the analysis both on simulated data, to which 10 SNR Gaussian noise 

were added, and epileptform EEG data. Solutions were computed with Minimum 

Norm (MN) (Dale and Sereno 1993) and sLORETA (Pascual-Marqui 2002) based 

on a realistic head model describing scalp, bone, cerebral spinal fluid, white matter, 

grey matter, air compartments and eyeballs. They found that in general sLORETA 

and the whole-head coverage allowed to achieve better performance in terms of 

mean localization errors across brain sources (2447 dipoles in the simulated data, 

2000 dipoles in the patient’s data). More, by comparing the performance obtained 

with 32, 64, 128 and 256 channels montages, they reported that localization was 

accurate when using 128 electrodes and that only slight increases were observed 

with a 256 channels montage.  
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2.3 Aim of the study 

All the above-mentioned studies reported the mean localization errors across brain, 

and regional performances were only evaluated with clinical data, where epileptic 

seizure happened, often the temporal lobe (Lantz et al. 2003, Sohrabpour et al. 

2015, Song et al. 2015). To our knowledge, no study has yet investigated the 

accuracy of source localization throughout the whole brain, depending on EEG 

sensors density. In this study, in order to overcome the limit of previous studies 

consisting in assessing the performances based on the mean values, 20 simulations 

for 32-, 64-, 128- and 256- channels EEG montages were performed. In this way, a 

statistical comparison between electrodes configuration at the voxel level became 

possible.  

Briefly, based on the structural magnetic resonance imaging of the Colin template a 

realistic head model was built. The EEG montages were registered to the scalp and 

the locations of dipoles (i.e., brain sources) were arranged in a grid covering the 

grey matter. For each montage, the scalp potentials generated by the activity of 

each source were calculated. This source localization technique was applied to the 

simulated potentials and performances of reconstruction were quantified by means 

Localization Error and Spatial Spread. 

Although 32-channels and 256-channels configuration are not widely used because 

of their bad performance and high cost, respectively, they were considered as the 

extremes to which compare performance of 64-channels and 128-channels. 

The analyses were performed using NET Software, courteously provided by BIND 

group (http://www.bindgroup.eu/), and Matlab R2016b (The MathWorks, Natick, 

2016), according to each specific preprocessing step. 
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2.4 EEG electrode montages 

Electrode positions of the 256-channel montage were obtained from the 256-

channel HydroCel Geodesic Sensor Net (Electrical Geodesics, EGI, Eugene, OR). 

Then, the 128-, 64-, and 32- channel positions were derived, as follows: the 

corresponding standard EEG montages derived from the extended 10-20 system 

were coregistered to the 256-channel montage and, for each of these three 

montages, the position of each channel in the standard configuration was replaced 

by the closest position in the 256-channel configuration. The sensor positions of 

each montage are shown in figure 2.1.  

 

2.5 Generation of simulated data 

The generation of simulated EEG scalp potentials, obtained from the activity of a 

brain source, requires the head model estimation and the definition of the electrode 

positions in the same coordinate system as the structural image.  

Figure 2.1: Position of the electrodes in the 32-, 64-, 128-, and 256-channel EEG 

montages. 
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First, the volume conductor model was derived from a “representative” individual, 

Colin27 (http://www.bic.mni.mcgill.ca/ServicesAtlases/Colin27) (Holmes et al. 

1998). This image was already matched to the MNI305 atlas, the Montreal 

Neurological Institute’s 305-subject average MRI (http://imaging.mrc-

cbu.cam.ac.uk/imaging/MniTalairach). For the head model, the description of the 

different head tissue types, each with a specific conductivity value, was needed. 

Typically, only scalp, skull, cerebrospinal fluid and brain (possibly separated into 

white and grey matter) are distinguished. They can be represented with a set of 

concentric spherical shells (e.g.,Vatta, Bruno and Inchingolo 2005) or incorporated 

in a realistic geometric model of the head (e.g., Fuchs, Wagner and Kastner 2001, 

Zhang et al. 2006a) .The latter approach has been shown to significantly improve 

the source localization (Vatta et al. 2010), therefore it was chosen. Moreover, in 

line with Liu and colleagues (2017), a realistic head model taking into account 12 

tissue classes (skin, compact bone, spongy bone, cerebrospinal fluid, cortical grey 

matter, cerebellar grey matter, cortical white matter, cerebellar white matter, 

brainstem, eyes, muscle and fat) was used (see figure 2.2 for the details of the 

segmentation). The spatial resolution of the Colin structural image (voxel size: 1 × 

1 × 1 mm) was not enough to directly identify all the tissues in it, so the template, 

where the segmentation was defined, was coregistered to the structural image with 

NET software. Twelve-tissue segmented image was obtained from 

(www.itis.ethz.ch/virtual-population/regional-human-models/mida-model/mida-v1-

0) (Iacono et al. 2015) and the conductivity values, listed in table 3.1, were taken 

from literature (Haueisen et al. 1997).  

  Figure 2.2: Result of the segmentation of the anatomical image of the template. 
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Tissue Conductivity (S/m) 

Skin 0.4348 

Compact bone 0.0063 

Spongy bone 0.0400 

CSF 15.3850 

Cortical gray matter 0.3333 

Cerebellar gray matter 0.2564 

Cortical white matter 0.1429 

Cerebellar white matter 0.1099 

Brainstem 0.1538 

Eyes 0.5000 

Muscle 0.1000 

Fat 0.0400 

 

Table 2.1: Conductivity values of the different tissues considered in the head model 

construction. Values were taken from literature (Haueisen et al. 1997). 

 

 

To align the EEG electrodes to MR space the procedure described in the study by 

Liu et al. (2017) and implement in the NET software was adopted. First of all, 

based on three anatomical landmarks (nasion, left and right preauricular, MNI 

coordinates [0, 85,-30], [–86, 16, 40], and [86, 16, 40]), whose positions were 

known in both reference systems (EEG and MR), a rigid-body transformation was 

estimated and then applied to the electrode positions. This step alone did not 

guarantee their correct arrangement, since some of them might have been turned up 

inside the head. The issue was fixed using the Iterative Closest Point (ICP) 

registration algorithm (Besl and McKay 1992), with the head surface, derived from 

the structural image, considered as target. In a further step, each electrode position 

was then projected onto the closest head surface point. 

A leadfield matrix, which describes the scalp electric potential generated by each 

source, was computed using the Simbio FEM method as implemented in FieldTrip 

toolbox (http://www.fieldtriptoolbox.org). To do this, geometric and electric 

properties of the head model have to be represented with a mesh. So, from the 
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coregistered template a regular hexahedral mesh (the points of the mesh are 

connected in such way that they create hexahedrons) was estimated for each of the 

12 tissue types. Hexahedral mesh was chosen as a good compromise between a fast 

model construction process and good accuracy (Rullmann et al. 2009).  

Since we are interested in assessing the performance of source reconstruction in all 

the possible positions of the sources, locations of the dipoles, corresponding to 

brain sources, were derived by discretizing the grey matter with a regular 3 mm 

grid. This resulted in 408,858 dipoles (namely, 136,286 dipole locations with x, y 

and z orthogonal directions). 

The simulated EEG potentials were obtained by forward projection of each dipole 

to scalp sensors using the leadfield matrix, equation 4. A Gaussian white noise 

realization was added to each scalp topography in order to achieve a SNR (signal-

to-noise-ratio) equal to 10 (Song et al. 2015, Pascual-Marqui et al. 2011). SNR was 

here calculated as the ratio between variance of the signal and variance of the 

noise.  

The aforementioned steps (except for procedures related to image segmentation) 

were performed for each montage, and 80 simulated dataset (20 for each 

electrode configuration) were generated. 

2.6 Source Localization 

Inverse problem was solved with a Distributed Source Model, specifically with  the 

exact low resolution brain electromagnetic topography algorithm (eLORETA) 

(Pascual-Marqui et al. 2011), as implemented in Fieldtrip. The primary feature of 

this method is that it has been shown to have zero localization error when tested 

with point-sources anywhere in the brain, under noise-free conditions. Going back 

to equation 10-11, the formulation of the problem can be stated as follow: 
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P* = .Q� �=>R  S‖T − UP‖E + HP�VPW                                     �12� 

where H > 0  is the Tikhonov regularization parameter, which represents the 

relative weight between the data fitting error and the spatial smoothness constraint, 

and V Y ℝ�×� is a symmetric positive definite weight matrix. The solution of this 

problem is: 

P = V[�U� �UV[�U� + H\�]T                                         �13� 

where the superscript + denotes the Moore-Pensore pseudoinverse operator (which 

is equal to the inverse operator if the matrix is non-singular), and \ Y ℝ�×� is the 

average reference operator. In eLORETA, weights are obtained from the following 

non-linear system of equations: 

^� =  _U���UV[�U� + H\�]U�`� E⁄                                       �14� 

where ^�, for = = 1, … , 0, are the elements of the diagonal weight matrix V, and U� Y ℝ�×� indicates the =th column of the leadfield matrix G. 

By solving the inverse problem (see equations 12-14), the contribution of each 

source along x, y, and z directions (P�, P�, P�, respectively) were obtained for each 

scalp topography. Electrical activity of each dipole was then computed by the 

formula: 

8 = bP�E + P�E + P�E                                                       �15� 
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2.7 Assessment of source localization accuracy 

Simulated data consisted of 408,858 forward projections of each dipole with 

known location and orientation to scalp electrodes (x, y, z directions at 136,286 

locations). Therefore, performance of source localization could be quantified for 

each dipole by means of Localization Error (LE) and Spatial Spread (SS) (Hauk, 

Wakeman and Henson 2011, Song et al. 2015, Molins et al. 2008). Localization 

Error (equation 6) is the Euclidean distance between the inverse solution’s peak 

and the true location of the generating source, whereas Spatial Spread (equation 7) 

is a measure of the width of the distribution around the true source location. In the 

best scenario, both LE and SS should have small value. For a given dipole c, LE 

and SS can be estimated with the following formulae: 

Ide = f,e − ,gh�f                                                  �6� 

where ,e is the coordinate of the true source and ,� is the coordinate of the dipole 

with the maximum power. 

iie = j� ��e8�eE� � 8�eE�k                                          �7� 

where 8�e is the electrical activity measured at the position of the dipole = when the 

dipole c is active and ��e is the Euclidean distance between dipole = and c. 

Metrics were computed for all the 408,858 forward projection. For a given metric, 

three values were assigned to each dipole, corresponding to the accuracy of the 

estimation depending on its orientation. Potential differences along x, y, and z were 

evaluated by means of mass-univariate analysis (ANOVA) with the three 

orientations as factor. Since no significant effect of orientation emerged for any 

electrodes configurations (FDR corrected, p < 0.05), metrics were averaged across 

the orientations. Brain regions in which an increase of the spatial sampling density 
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(i.e., a higher number of electrodes) was related to a better performance were 

identified by means of right tailed Wilcoxon ranksum test (FDR corrected, p<0.05).  

2.8 Results 

2.8.1 Localization Error 

The violin plots in Figure 2.3 showed, for each electrodes montage, the distribution 

of localization errors averaged across simulations and directions. For 32, 64, 128 

and 256 channels, median LE (interquantile range, iqr) were respectively 2.20 (iqr 

= 1.60), 1.26 (iqr = 1.26), 0.84 (iqr = 1.1) and 0.53 (iqr = 0.52) cm. 

 

Figure 2.3: Violin plots showing the distribution of LE values as a function of the 

number of electrodes of the EEG montages. For each montage, LE values were 

averaged across x, y, and z directions and across the 20 simulations. 

 

 

This metric exhibited a non-linear decay as a function of number of channels Ne; 

specifically, as shown in figure 2.4, it followed the power function 
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(Idgl
�hm�nl� = 25.45 × nl[o.p�, R2 = 0.995), approaching zero as the number of 

channels increased.  

 
Figure 2.4: Graph showing the median of LE values as a function of the number of 

the electrodes of the EEG montage. Values (blue diamonds) were fitted with a 

power function (black line). 

 

 

To evaluate the performance in estimating superficial and deep sources, LE for a 

given source position was plotted in figure 2.5 as a function of the distance of that 

source from the centre of the head (the lower the distance value, the deeper the 

source position). 
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Figure 2.5: Graphs showing, for each EEG montage, the corresponding LE values 

as a function of the distance of the dipoles from the centre of the head. Last row 

shows in a color-scale the distance with respect of the centre of the head of each 

dipole position (see colorbar in the bottom right corner of the figure).  

 

 

It can be seen that, independently from the sampling density of the montage, there 

was a monotonic decrease of LEs with increasing distances. It is interesting to note 

that the shapes of these relations can be fitted by sigmoid functions. To further 

assess the impact of source depth on LEs, the brain distribution of LEs was 

evaluated (see figure 2.6). All the configurations showed radials patterns of LEs, 

with the highest values in the subcortical structures and the lowest ones in the more 

superficial areas. By reading the figure by column, it can be seen that LE values 

decreased as a function of the number of the electrodes, although the spatial 
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patterns remained the same. Considering for instance the sources in the insula, 

errors committed in the estimation of their position were around 4 cm with a 32 

channels montage (red colour), but decreased with 64 and 128 electrodes (green 

colour) up to reach values around 1 cm (blue colour) when using 256 channels.  

 
Figure 2.6: Spatial maps showing, in a color-scale, the brain distribution of LE 

values for each EEG montage (see colorbar in the bottom right corner of the 

figure). 

 

 

The tests to assess if the localization errors significantly decrease across montages 

(Wilcoxon ranksum test) revealed that, when using 64 channels, error significantly 

decreased in all positions with respect to 32 channels. Moreover, significant 

improvements were also found switching from the 64-channel montage to the 128-

channel one. However, as shown in figure 2.7, the deepest structures and some 
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cortical regions within the superior frontal gyrus, the supramarginal gyrus, the 

angular gyrus, the primary motor cortex and the lateral prefrontal cortex yielded 

comparable results; in other words, the localization of sources in these regions did 

not significantly improved when using 128 channels instead of 64 channels. 

Finally, with 256 channels the improvement was remarkable in the whole brain 

with respect to 128 channels.  

 
Figure 2.7: Spatial map showing the results of the Wilcoxon runksum test between 

LE values of the 64- and 128-channel montages. Blue color indicates the cortical 

regions in which LE values did not significantly decrease moving from the 64-

channel to 128-channel montage.  

 

 

To evaluate whether the performance for a given dipole position could depend on 

how much that position was close to all the electrodes, for each montage, the 

median distance of all the dipoles to all the electrodes was computed. In figure 2.8, 

LEs were plotted as function of this measure (right panel); at the left of each plot, 

the measure profile of the corresponding configuration was portrayed. As can be 

seen, the spatial pattern was different across montages due to their differences in 

the scalp distribution and density of channels. In all montages, although with 

different patterns, LE decreased in a non-linear way with increasing distances. 
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Figure 2.8: The right column of the figure shows for each EEG montage, the 

corresponding LE values as a function of the dipoles median distance from all the 

electrodes (Distance from electrodes). The left column shows, for each montage, 

the brain distribution of the “Distance from electrode” measure (colorbar 

illustrated on the bottom left of the figure). Note that spatial profile changes with 

the EEG montage. 

 



 

61 

2.8.2 Spatial Spread  

In figure 2.9, the violin plots of average spatial spread across simulations and 

directions were presented for each channels configuration. For 32, 64, 128 and 256 

electrodes, median SS were respectively 2.35 (iqr = 0.08), 2.16 (iqr = 0.13), 2.10 

(iqr = 0.18) and 1.97 (iqr = 0.22) cm. As for LE, SS exponentially decreased as a 

function of the number of channels Ne, (iigl
�hm�nl� = 3.09 × nl[o.oq , R
2 = 

0.966), see figure 2.10. 

 
Figure 2.9: Violin plots showing the distribution of SS values as a function of the 

number of electrodes of the EEG montages. For each montage, SS values were 

averaged across x, y, and z directions and across the 20 simulations. 
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Figure 2.10: Graph showing the median of SS values as a function of the number of 

the electrodes of the EEG montage. Values (blue diamonds) are fitted with a power 

function (black line). 

 
 
In figure 2.11, SS was plotted as a function of the dipole’s distance from the centre 

of the head separately for each montage. Despite the presence of non-coherent sub-

samples of data points, data seemed to follow a sigmoid function, especially for 

montages with 64, 128 and 256 electrodes.  
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Figure 2.11: Graphs showing, for each EEG montage, the corresponding SS values 

as a function of the distance of the dipoles from the centre of the head. Last row 

shows in a color-scale the distance with respect of the centre of the head of each 

dipole position (see colorbar in the bottom right corner of the figure). 

 
 
Distributions of Spatial Spread across dipoles position as a function of the number 

of channels were presented in figure 2.12. Patterns were broadly similar across 

electrodes configuration. In particular, whereas 64, 128 and 256 channels montage 

showed a clear radial distribution with the highest spread values located in the 

deepest positions, with 32 electrodes there were also some peripheral regions with 

high SS values. By reading the figure by columns, it can be seen that solutions 

became less widely distributed with a larger number of electrodes. 
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Figure 2.12: Spatial maps showing, in a color-scale, the brain distribution of SS 

values for each EEG montage (see colorbar in the bottom right corner of the 

figure). 

 

 
As for LE, the Wilcoxon ranksum test revealed that switching from 32 to 64 and 

from 128 to 256 channels, significant improvements were found all over the 

brain. In figure 2.13, regions where an increase of electrodes from 64 to 128 did 

not implicate a significant less spread solution where shown. In particular, 

comparable results were found in the supramarginal gyrus, the angular gyrus, 

the primary motor cortex, the lateral prefrontal cortex, the insula, and in the 

deepest structures and medial cortices.  
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Figure 2.13: Spatial map showing the results of the Wilcoxon runksum test between 

SS values of the 64-channel montage and 128-channel montage. Blue color 

indicates the cortical brain regions in which SS values did not significantly 

decrease moving from the 64-channel to 128-channel montage.  

 
 
Concerning the median distance of the dipole for all the electrodes, as can be seen 

in figure 2.14, only 256 channels montage showed a monotonic decrease of SS as a 

function of this metric. 
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Figure 2.14: The right column of the figure shows, for each EEG montage, the 

corresponding SS values as a function of the median dipoles distance from all the 

electrodes (Distance from electrodes) (see colorbar in the bottom left of the figure). 

The left column shows, for each montage, the brain distribution of this latter 

measure . Note that spatial profile changes with the EEG montage. 
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2.9 Discussion 

It is now generally accepted that the accuracy of EEG source reconstruction 

depends on several factors such as the EEG electrodes montage, the degree of 

approximation considered to build the head model, and the algorithm used to solve 

the inverse problem (for reviews see Michel et al. 2004, Hallez et al. 2007). 

However, all the existing (non-clinical) studies investigating the factors 

affecting EEG source reconstruction accuracy only reported the mean 

localization errors averaged across dipoles throughout the whole brain. To the 

best of our knowledge, thus, it still remains to be investigated in details how 

source localization accuracy is distributed across the brain, as well as the impact 

of EEG sensors density and configurations. The present study aimed to fill this 

gap. Here, source localization performances with simulated data on 32-, 64-, 

128-, and 256-channel EEG montages were compared in order to investigate the 

effect of channel configuration on source estimation. Importantly, in the present 

study the gold standard techniques for both the head model description and the 

inverse problem solution were used.  

Concerning the head model, a very computationally efficient solution consists in 

modelling the head as three or four concentric spherical shells representing scalp, 

skull, cerebrospinal fluid and brain, a solution that has been widely used in earlier 

source reconstruction studies (Sun 1997, Cuffin and Cohen 1979, Rush and 

Driscoll 1968, Stok 1987). However several studies highlighted that these 

representations produced relatively poor results (Zhang and Jewett 1993, Yvert et 

al. 1997) because they do not take into account the thickness and curvature of the 

skull (Cuffin 1993, Chauveau et al. 2004), and the geometry of the head (Roth et al. 

1993, Roth et al. 1997, Huiskamp et al. 1999). Better performance could instead be 

achieved with more realistic descriptions of the head tissues (Vatta et al. 2010, 

Akalin Acar and Makeig 2013, Ramon, Schimpf and Haueisen 2006) using the 

boundary element method (Akalin-Acar and Gencer 2004), finite element method 

(Gencer and Acar 2004, Wolters et al. 2002) or finite difference method 

(Vanrumste et al. 2000). Concerning how many tissues should be accounted for in 
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such realistic description, previous studies demonstrated that the accuracy of the 

source estimation benefited from distinguishing white and grey matter tissues 

(Akalin Acar and Makeig 2013, Van Uitert, Johnson and Zhukov 2004), from 

distinguishing compact and spongy bone tissues composing the skull (Dannhauer et 

al. 2011, Montes-Restrepo et al. 2013) and from adding a compartment for CSF 

(Akalin Acar and Makeig 2013, Hyde, Duffy and Warfield 2012, Lanfer et al. 

2012). Based on these findings, thus, 12 tissues were here considered in order to 

give an as detailed as possible description of the head.  

As regard the inverse problem solution, several studies (Pascual-Marqui 2002, 

Grech et al. 2008, Song et al. 2015) showed that sLORETA (Pascual-Marqui 

2002), gives the more accurate solution when localizing a single source as 

compared to other parametric algorithm commonly used. In this study, source 

estimation was not computed with this technique, but rather with its improvement 

version, eLORETA. This method was proved to produce clearer and less blurred 

solutions as compared to sLORETA (Jatoi et al. 2014, Pascual-Marqui et al. 2011). 

A first result of the present study, as revealed by the simulation employed here, is 

that performance on source estimation improved with increasing the number of 

electrodes, as expected based on previous works (Michel et al. 2004, Lantz et al. 

2003, Song et al. 2015, Sohrabpour et al. 2015). Specifically, as shown in figure 

2.4, the analyses revealed that the median of the localization errors exponentially 

decreased as function of the number of electrodes used in the simulation. Although 

in the above-mentioned studies (Sohrabpour et al. 2015, Song et al. 2015, Lantz et 

al. 2003) the fit was not provided, those authors also qualitatively observed that the 

rate of localization errors reduction decreased as montage spatial sampling 

increased.  

A second, related, result of the present study is illustrated in figure 2.5, which 

shows, for each montage, the relationship between localization errors and the 

dipole positions with respect to the centre of the head. This plot clearly indicates 

that, in each configuration, the decay of the localization error as a function of the 
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dipole location (relative to the head centre) followed a sigmoid function, thus 

indicating higher localization errors for deeper sources as compared to more 

shallow ones. This is in line with the pattern of worst localizations for deeper 

sources that has already been observed in several studies in which different head 

models, electrodes configurations and inverse problem solutions were adopted 

(e.g., Dale and Sereno 1993, Grave de Peralta-Menendez and Gonzalez-Andino 

1998, Sohrabpour et al. 2015).  

It is important here to remark that existing studies usually provided performances 

assessment considering all the dipoles together, without took into account their 

relative position in the grey matter. In this work, instead, the improvement in 

source estimation with increasing number of electrodes was evaluated for each 

source. It was found that all the sources were better localized (FDR corrected, p < 

0.05) with 64 channels as compared to 32 channels, whereas moving from 64 to 

128 channels favored, in general, only shallow sources (see figure 2.7). In literature 

there are not studies to which compare these latter results. As regard the whole 

brain improvement from 32 to 64 electrodes, it could be explained considering the 

big LE decay observed in Lantz et al. (2003), Sohrabpour et al. (2015) and Song et 

al. (2015) when using 64 channels montage in place of a lower density montage. 

Concerning the regional improvement from 64 to 128, it could be justified 

considering that the mean marginal improvement observed in Lantz et al. (2003), 

Sohrabpour et al. (2015) and Song et al. (2015) from 64 to 128 channels could be 

due to better performance in the more superficial sources and comparable 

performance in the deeper sources. Unexpectedly, significant better performances 

all over the brain were also found in the present study with 256 channels montage 

as compared to 128 channels one. However, this result should be considered in 

light of the observed effect size and, especially, the entire distribution of 

localization error across the brain. Indeed, the figure 2.3 show that the difference 

between medians of localization errors of 256 channels and 128 channels 

configurations was in the order of few millimeters, and the brain maps of 

localization errors for these EEG montages are very similar.  



Source Estimation Accuracy 

70 

It is worth noting the limitations of the present study. First of all, performances 

were evaluated without taking into account typical artifacts that usually corrupted 

EEG data, e.g., the muscular activity that predominantly affects the recordings in 

the lower regions of the head and in the neck, and the ocular artifacts that mainly 

interest the electrodes over the face. Solution of the inverse problem from noisy 

data could become inaccurate resulting in a regional or whole brain decline of the 

estimate performances. Another limitation of the study is that the accuracy of the 

source reconstruction was assessed based on the ability to localize the activity of a 

single point source, which is physiologically not plausible. It would be thus 

important evaluating localization error both in the presence of multiple point 

sources at different distances between each other, and in the presence of distributed 

sources, as well as the interaction between these factor and the regularization 

parameter. Also, a confirmatory study with real data could be useful. For example, 

several fMRI studies have shown that median nerve stimulation activate 

somatosensory cortex and insula (Francis et al. 2000, Ferretti et al. 2004, Del Gratta et al. 

2000), two regions that showed very different performances as function of the number 

of electrodes (see figure 2.6). To confirm our results, the source reconstruction 

computed on EEG data acquired during this simulation should be able to localize 

with high accuracy the somatomotor cortex starting from 64 electrodes 

configuration, but the accurate localization of the insular sources should be 

achieved only using 128- or 256-channel montages. 

In conclusion, taken together the present results highlight the importance of using 

at least 64 channels to achieve an acceptable accuracy on source reconstruction. 

Moreover, regardless the number of electrodes, it was shown that accuracy strongly 

depend on the position of the sources in the head. This evidence suggested that the 

decision about how many electrodes are needed to obtain an accurate solution 

should be pondered based on the localization of the region of interest involved in 

the experiment. For example, if the area of interest is in the parietal lobe, an EEG 

montage with 64 channels is enough to localize that region with an error lower than 

1 cm; by contrast, in order to obtain the same accuracy in other regions of the 

brain, a 256 channel montage would be needed. 
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 Conclusion 3

To date, the functional role of the fluctuations of the fMRI signal at rest is still not 

clear, mainly because their neuronal basis are yet to be elucidated. In this scenario, 

the integration with information derived from electroencephalography (EEG) is 

very useful, since conversely from fMRI, EEG represents a direct measure of 

neuronal activity. Therefore, a first resting state EEG-fMRI study was conducted 

with the aim to identify specific spatio-spectral fingerprints of distinct resting state 

networks. With this aim, an analytical approach was used that allows to take into 

account the interplay between the different EEG frequency bands and the 

corresponding topographic distribution within each network. Specifically, this 

approach was applied to four sub-components of the Default Mode Network 

(DMN).  

Results of the first study revealed for the first time that the scalp distribution of the 

EEG spectral correlates of fMRI RSNs provides a rich source of information about 

the physiological underpinnings and the functional characterization of the different 

(subcomponent of the) RSNs. In particular, more detailed analyses allowed to 

identify some putative specific spatio-spectral fingerprints of distinct 

(subcomponent of the) RSNs. These results highlight the importance to take into 

account the interplay between different EEG frequency bands, and the 

corresponding topographic distribution, in future EEG-fMRI integration studies. 

However, the spatial resolution of the EEG signal is too low to reliably infer about 

the location of the involved EEG sources, and it is not clear whether the 64 

channels EEG system employed in the first study can provide adequate 

performance in localizing the related cortical sources. Therefore, an investigation 



Conclusion 

72 

of the source reconstruction accuracy throughout the brain with different EEG 

montages was performed in a second simulation study.  

Results of this second study showed the general superiority of 256-channel 

montage with respect to lower density EEG montages in enabling accurate source 

localizations. Moreover, analysis showed that the improvement of the 

performances moving from 128 channels to 256 channels is modest, and that some 

regions does not show significant improvement switching from 64 channels to 128 

channels. Therefore, the take-home message is that at least 64 channels should be 

used, and would be adequate in most cases, to achieve an acceptable accuracy on 

source reconstruction. An attempt to extend the first resting state coregistration 

study with the source reconstruction could be workable, although a confirmation 

study with a 128-, or even 256-, channel montage is needed, especially to infer 

about the deep midline regions. 
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