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Abstract

Significant advancements have been made in the recent years concerning both data
acquisition and processing hardware, as well as optimization and machine learning
techniques. On one hand, the introduction of depth sensors in the consumer market
has made possible the acquisition of 3D data at a very low cost, allowing to overcome
many of the limitations and ambiguities that typically affect computer vision appli-
cations based on color information. At the same time, computationally faster GPUs
have allowed researchers to perform time-consuming experimentations even on big
data. On the other hand, the development of effective machine learning algorithms,
including deep learning techniques, has given a highly performing tool to exploit the
enormous amount of data nowadays at hand.

Under the light of such encouraging premises, three classical computer vision
problems have been selected and novel approaches for their solution have been pro-
posed in this work that both leverage the output of a deep Convolutional Neural
Network (ConvNet) as well jointly exploit color and depth data to achieve compet-
ing results. In particular, a novel semantic segmentation scheme for color and depth
data is presented that uses the features extracted from a ConvNet together with
geometric cues. A method for 3D shape classification is also proposed that uses
a deep ConvNet fed with specific 3D data representations. Finally, a ConvNet for
ToF and stereo confidence estimation has been employed underneath a ToF-stereo
fusion algorithm thus avoiding to rely on complex yet inaccurate noise models for
the confidence estimation task.
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Chapter 1

Introduction

A series of rapid advancements concerning both data acquisition and processing
hardware, as well as algorithmic solutions and software implementations, has recently
opened the path to the development of novel and effective strategies to tackle several
classical computer vision problems like image recognition, segmentation or semantic
labeling. Furthermore, new problems have appeared in the meanwhile that were
not even conceivable a few years ago, such as image caption generation [109], visual
questioning answering [63, 47] photo-realistic image generation [82, 123] or amodal
instance segmentation [58].

On one hand, the introduction of depth sensors in the consumer market has made
possible the acquisition of 3D data at a very low cost, allowing to overcome many
of the limitations and ambiguities that typically affect algorithms based on color
information alone. At the same time, significant improvements in GPU technology
have increased the computational power available at the hands of researchers by a
considerable factor, enabling the test of time-consuming approaches even on large
scales. On the other hand, the development of more powerful machine learning
algorithms including recent deep learning techniques has allowed to take advantage
of the enormous amount of data nowadays available.

Deep learning techniques and in particular deep Convolutional Neural Networks
(ConvNets or CNNs) have represented a real breakthrough in computer vision, be-
coming a widely used tool for many research groups working in this field. They have
basically allowed to move from pattern recognition approaches based on hand-crafted
feature extraction to fully trainable processing pipelines capable to infer compact hi-
erarchical representations even for objects belonging to complex high-dimensional
spaces, as is the case of multi-channel images. Starting from Rosenblatt’s percep-
tron [85], a binary classifier capable to model at most linear functions [68], significant
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CHAPTER 1. INTRODUCTION 5

advances have been made first with shallow Multi-Layer Perceptron (MLP) networks
and back-propagation [112], then with ConvNets [124, 56] allowing for multiple con-
volutional and pooling layers to be stacked in a deeper structure, until recently
with Residual Networks [39] encompassing thousands of layers. A comprehensive
overview on deep learning containing a detailed explanation of various state-of-the-
art approaches can be found in [29].

This thesis aims at showing how exploiting deep learning techniques and depth
data from consumer range cameras can positively impact on the solution of a num-
ber of classical yet challenging problems in the computer vision field, namely data
fusion, joint segmentation and semantic labeling and object recognition. In particu-
lar, three novel methods are provided in Chapters 3, 4 and 5 to perform each of the
aforementioned tasks respectively, together with experimental validation results and
comparisons with state-of-the-art approaches.

On one hand, this research demonstrates how effective deep learning approaches
can be when applied to even long-term scene understanding problems like semantic
segmentation or recognition, for which several competing solutions have already been
proposed in literature along the years. While it is clear how approaches using deep
learning and in general machine learning can alleviate the burden of manually design
ad-hoc low-level processing tools, it is not obvious whether they can actually achieve
better or even comparable results on any given task.

On the other hand, it shows the importance of depth data as a valuable source of
information complementary to color data, experimentally demonstrating how jointly
exploiting both types of data from RGB-D images can lead to improved perfor-
mances. In general, such a result cannot be taken for granted either, given the
significant amount of noise and artifacts that usually affect depth data acquired
with consumer range cameras as the ones employed in the experiments. Moreover,
equipping a system with depth cameras usually results in an increased price and
energy consumption (e.g. ToF cameras) or higher requirements in terms of compu-
tational power (e.g. stereo systems). Experimental results provide an estimate of
the improvement one can get when depth data are coupled to color data, allowing
for choosing a trade off between an improved accuracy and an increase in the overall
system cost.

1.1 Thesis Overview

This research focuses on the application of deep learning techniques to the solution
of several computer vision problems, as well as on the joint exploitation of color and
depth data for improved performances.
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Chapter 2 contains a brief overview on depth data acquisition and related con-
cepts, providing some deeper insight on Time-of-Flight (ToF) cameras and stereo
vision systems. In particular, the pin-hole projection model and Heikkila’s distor-
tion model are first presented, giving the reader a theoretical representation for the
depth acquisition process that is independent from the specific device implementa-
tion. Then, ToF cameras and their key working principles are presented, including
some considerations about the most common sources of noise affecting data form such
devices. Finally, binocular stereo vision systems are introduced, devoting some at-
tention to the stereo correspondence problem (also known as the matching problem),
which is at the core of any stereo disparity estimation algorithm. Many concepts and
notations used in this chapter will be used in the subsequent chapters as well.

In Chapter 3 a novel framework is proposed for the fusion of depth data produced
by a Time-of-Flight (ToF) camera and a stereo vision system. The key problem of
balancing between the two sources of information is solved by extracting confidence
maps for both sources using deep learning. A new synthetic dataset accurately
representing the data acquired by the proposed setup is also introduced and used to
train a ConvNet to regress the reliability of both data sources at each pixel location.
The two depth fields are finally fused enforcing the local consistency of depth data
taking into account the confidence information.

In the subsequent chapters two approaches are proposed for two scene under-
standing tasks, namely RGB-D image segmentation and semantic labeling and 3D
shape recognition.

Chapter 4 presents a joint color and depth segmentation scheme exploiting to-
gether geometrical clues and a learning stage. The approach starts from an initial
over-segmentation based on spectral clustering. The input data are also fed to a
ConvNet thus producing a per-pixel descriptor vector for each scene sample. An
iterative merging procedure is then used to recombine the segments into the regions
corresponding to the various objects and surfaces. The proposed algorithm starts by
considering all the adjacent segments and computing a similarity metric according
to the ConvNet features. The couples of segments with higher similarity are con-
sidered for merging. Finally, the algorithm uses a NURBS surface fitting scheme on
the segments in order to understand if the selected couples correspond to a single
surface.

In the last chapter a novel approach is proposed for the classification of 3D
shapes exploiting surface and volumetric clues inside a deep learning framework.
Specifically, the algorithm uses three different data representations. The first is a
set of depth maps obtained by rendering the 3D object. The second is a novel
volumetric representation obtained by counting the number of filled voxels along
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each direction. Finally NURBS surfaces are fitted over the 3D object and surface
curvature parameters are selected as the third representation. All the three data
representations are fed to a multi-branch ConvNet. Each branch processes a different
data source and produces a classification vector by using convolutional layers of
progressively reduced resolution. The extracted classification vectors are eventually
fed to a linear classifier that combines the outputs in order to get the final results.



Chapter 2

Depth Cameras

2.1 Introduction

Depth cameras and range sensing systems in general [119] allow to easily extract
valuable 3D information describing the geometry of the scene by providing range
measurements relative to a set of observed surface points in the scene. The use
of depth cameras has recently experienced a great boost following their introduc-
tion into the mass market segment resulting in a substantial decrease of their price
and a consequent increase in the number of possible applications. These two factors,
namely the ability of collecting considerable amounts of depth data using inexpensive
yet accurate devices and the intrinsic appeal generated by their much wider applica-
tion spectrum, have encouraged more and more academic and industry researchers
to explore novel approaches explicitly tailored to advantage of the 3D information
content carried by such data in order to tackle long-term challenging problems in the
computer vision field, as well as new ones.

Several depth cameras typologies are currently available, corresponding to as
many different range sensing methods and working principles. Despite this variety,
depth cameras can be conceived as functionally equivalent in that they are all capable
to provide a depth map of the scene as output, i.e. a dense or sparse set of values
spatially arranged as a lattice, each value roughly accounting for the distance between
some observed surface point in the scene and the camera.

A more precise explanation can be given about the content of a depth map by
defining a 3D coordinate system called the Camera Coordinate System (CCS) as-
sociated to the camera frame 1 with axes x, y and z oriented as depicted in Figure

1Whenever a multiple camera system such as a stereo vision system is considered, a 3D coordinate
system associated to the reference camera frame is defined.
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(a) (b)

Figure 2.1: An intuitive example showing the content of a depth map for a generic
acquisition scenario. Range data acquired by a camera (a) are mapped on a depth
map (b). The value of a pixel in the depth map encodes for the z-coordinate of
its corresponding point in the scene given with respect to the Camera Coordinate
System (CCS). Darker regions correspond to lower depth values (e.g., pixel p1 cor-
responding to the point P 1 with CCS coordinates P2 = (x1, y1, z1)T ), lighter re-
gions to higher ones (e.g., pixel p2 corresponding to point P 2 with CCS coordinates
P2 = (x2, y2, z2)T , note that z1 < z2).

2.1 i.e. with origin O located at the camera aperture and the z-axis aligned with
the camera optical axis. Notice that, in doing so, a series of assumptions have been
subsumed regarding the geometry of the camera, partially anticipating the pin-hole
camera model that will be introduced in the following section. Modeling each pixel
or cell in the camera sensor array as a point in a 2D normalized lattice, a dense depth
map extracted from the camera is a function mapping each 2D point in the lattice to
the z coordinate of a corresponding 3D point in the scene given with respect to the
camera coordinate system CCS. The way 3D points in the scene can be associated to
sensor pixels will be the subject of the following section. In a sparse depth map not
all pixels are assigned a value, or equivalently a are assigned a conventional invalid
value such as a negative number.

Many algorithms exploiting depth data are completely unaware of the working
principles beneath the range sensing process implemented by the particular depth
camera used to extract the data. As well, their design does not require any detailed
knowledge about the way depth data are acquired. From this perspective, depth
cameras can be treated as black boxes from which depth maps can be pulled at a
certain frame rate and then processed.
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On the contrary, other algorithms exist that need to explicitly account for the
particular depth data acquisition process in order to be properly designed. An ex-
ample is the Stereo-ToF data fusion algorithm described in Chapter 3 for which
limitations and error sources peculiar to stereo vision systems and ToF cameras re-
spectively have been considered. Also, aside from depth maps, other data might
be exposed to the user depending on the particular device implementation. As an
example, many Time-of-Flight cameras allow the user to retrieve from the camera
buffer both amplitude and intensity data as well.

For this reason it is worth to briefly introduce here some of the differences be-
tween the various range sensing methods that are commonly implemented by most
consumer depth cameras.

To start with, all depth cameras considered in this and following chapters im-
plement some kind of reflective optical distance measurement method. This large
family can be further divided into two main groups encompassing methods relying
on passive and active range measurements respectively.

The first group includes methods that exploit passive sensing techniques in order
to estimate the range of the various scene points. On-board sensors are used to
capture the radiation already present in the scene, e.g. visible light from a natural or
artificial light source, and reflected by the various scene surfaces towards the camera.
Stereo vision systems such as the StereoLabs Zed camera [122] (see Figure 2.2(d))
belong to this first group.

Methods belonging to the second group work by first projecting some form of
electro-magnetic radiation in the scene. The transmitted radiation is then back-
reflected by the scene surfaces and captured via suitable sensors similarly to passive
range measurement methods. Commonly used radiations are infrared (IR) or near-
infrared (NIR). Structured light and matricial Time-of-Flight (ToF) cameras are both
part of this group, yet they rely on completely different working principles. Creative
Senz3D (see Figure 2.2(c)) and the first version Microsoft Kinect (see Figure 2.2(b))
are two popular ToF cameras, while the first version Microsoft Kinect is a prominent
example of structured-light depth camera (see Figure 2.2(a)). A deeper insight on
the working principles of ToF cameras and stereo vision systems is given in Section
2.3 and Section 2.4 respectively.

2.2 From 3D World to Image Plane

This section aims in providing a mathematical formulation modeling the way electro-
magnetic radiation from surface points in the observed scene is projected onto the
camera sensor. Although strong assumptions are made, the proposed model and de-
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(a) (b)

(c) (d)

Figure 2.2: Examples of consumer depth cameras: Microsoft Kinect v1 (a), Microsoft
Kinect v2 (b), Creative Senz3D (c), StereoLabs ZED (d).

rived projection function are expected to accurately fit most of the reflective projec-
tion cameras now available, including standard cameras used in stereo vision systems
or ToF cameras, both described in more detail in the next sections.

To express this goal in more precise terms, let a 3D coordinate system called
the World Coordinate System (WCS) be associated to the scene frame and denote
with PW = (xW , yW , zW )T the coordinates of a scene point P given with respect
to WCS. Moreover, consider S the camera sensor plane (also known as the image
plane), define on it a 2D coordinate system called the Sensor Coordinate System
(SCS) and denote with p = (u, v)T the coordinates of a sensor point p given with
respect to SCS. The idea is to provide an accurate projection function π taking in
input the coordinates PW of a 3D point in the scene and returning as output the
coordinates p of a corresponding 2D point on the sensor plane, i.e.

π(PW ) = p (2.1)

In order to simplify the whole analysis, an ideal pin-hole camera model is in-
troduced to describe the geometry of the camera. Starting from this premise, a
straightforward projection function can be easily derived as detailed in Section 2.2.1
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using simple geometry tools. The Heikkila’s model is then used in Section 2.2.2 to ac-
count for the distortion introduced by the several optical elements that the incoming
radiation usually encounters along its path to the camera sensor.

Both the pin-hole model and the Heikkila’s distortion model are defined through
a fixed set of parameters whose values must be properly chosen in order to achieve a
good accuracy. A set of factory default values are usually available to this purpose.
Alternatively, an optimal set of parameter values can be explicitly derived following
a process called camera calibration. An extensive overview on several calibration
procedures together with a detailed explanation can be found in [119].

2.2.1 The Pin-Hole Camera Model

The pin-hole camera model assumes the camera aperture is an ideal point, small
enough to let one light ray only per observed point in the scene to pass trough it.
The model uses a few intrinsic parameters to describe the geometry of the camera,
while a set of extrinsic parameters encode for the camera pose with respect to the
world coordinate system WCS.

Leveraging the simplicity of the pin-hole model, a straightforward yet accurate
approximation for the projection function (2.3) can be derived, parametrized with
respect both to the intrinsic and extrinsic parameters

In order to further simplify the derivation process leading to the desired projection
function, a 3D coordinate system called the Camera Coordinate System (CCS) is
associated to the camera frame, denoting with P = (x, y, z)T the coordinates of a
scene point P given with respect to CCS. The derivation of a projection function in
the form of Equation (2.3) can be split into two separate steps. In the first step, points
with given CCS coordinates are projected to points on the sensor plane expressed in
terms of SCS coordinates. In the second step, such projection is modified in order
to directly project scene points with given WCS coordinates rather than CCS ones.

To start with, let the coordinate system origin or center of projection O be located
at the camera aperture and assume that the x, y and z are oriented as depicted in
Figure 2.3(a). Also, assume the sensor plane S is parallel to the xy-plane of the CCS
coordinate system, intersecting the z-axis at the negative z-coordinate f , where |f |
is the camera focal length. Finally, let the z-axis intersect S at the point c with
coordinates c = (cx, cy)

T given with respect to SCS. Within this framework, the
following relationship holds between SCS and CCS coordinates:

u = x+ cx
v = y + cy

(2.2)
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Using triangle similarities, it is easy to write down the equations projecting a
scene point P with coordinates P = (x, y, z)T to a corresponding sensor point p with
coordinates p, namely







u = f
x

z
+ cx

v = f
y

z
+ cy

(2.3)

The same projection formulated by Equation (2.3) can be put into a convenient
matrix form by using homogeneous coordinates, leading to

z





u
v
1



 =





f 0 cx
0 f cy
0 0 1









x
y
z



 (2.4)

Typically, two scale factors ku and kv are introduced to deal with the actual
horizontal and vertical size respectively of sensor cells in the camera sensor matrix,
obtaining

z





u
v
1



 =





fx 0 cx
0 fy cy
0 0 1









x
y
z



 = K





x
y
z



 (2.5)

where K is the intrinsic parameter matrix associated to the camera, defined as

K =





fx 0 cx
0 fy cy
0 0 1



 (2.6)

with fx = fku and fy = fkv x-axis and y-axis focal lengths respectively.
Finally, let R and t be the rotation matrix and translation vector of the rigid

transformation mapping WCS to CCS, a concise mathematical formulation for the
function mapping a scene point P with coordinates PW to its projection p onto the
camera sensor plane can be written using homogeneous coordinates as





u
v
1
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1

z
K(R|t)









xw
yw
zw
1









=
1

z
KM









xw
yw
zw
1









(2.7)

where M = K(R|t), called the projection matrix, is built from both the intrinsic
parameter matrix K and the extrinsic parameters R and t.
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(a) (b)

Figure 2.3: A simple sketch representation for an ideal pin-hole camera model: per-
spective view (a), side view (b).

2.2.2 Heikkila’s Distortion Model

The presence of lenses and other optical elements introduces distortions that are
not captured by the pin-hole camera model of Section 2.2.1, making the projection
defined by Equation () inaccurate. In general, such distortions can be modeled by
a function ψ so that a light ray coming from a point P in the scene and entering
the pin-hole camera aperture is projected onto the image plane at coordinates ψ(p)
instead than coordinates p as computed by Equation (). As a result, the value
measured by pixel p with coordinates p can no longer be associated to scene points
P with coordinates PW such that π(PW ) = p.

To cope with this mis-matching issue an anti-distortion transformation ψ−1 can
be applied to adjust pixel coordinates p to new coordinates ψ−1(p). Alternatively,
one can update the projection function π as defined in Equation () so that it includes
the distortion transformation ψ.

In many scenarios, the model proposed by Heikkila in [41] is enough to accurately
describe the distortion introduced by camera optics. Following the model, the anti-
distortion function is defined as

ψ−1(p̂) = p =

(

û(1 + k1r
2 + k2r

4 + k3r
6) + 2d1ûv̂ + d2(r

2 + 2û2)
v̂(1 + k1r

2 + k2r
4 + k3r

6) + d1(r
2 + 2v̂2) + 2d2ûv̂

)

(2.8)

where r =
√

(û− cx)2 + (v̂ − cy)2, p̂ are distorted image plane coordinates and
p are the corresponding undistorted ones. As can be noticed, just five constant
parameters are required to completely determine the model, namely ki with i =



CHAPTER 2. DEPTH CAMERAS 15

1, 2, 3 accounting for radial distortion and di with i = 1, 2 accounting for tangential
distortion. The model can be easily included in the projection function of Equation
() and the distortion parameter vector d = (k1, k2, k3, d1, d2)

T added to the set of
intrinsic camera parameters.

2.3 Time-of-Flight Cameras

ToF devices operate following the RADAR (Radio Detection and Ranging) principle
thus relying on the fact that the electro-magnetic radiation travels in air at light
speed c ≈ 3 × 108[m/s]. Hence the distance ρ[m] covered in time τ [s] by an optical
radiation is ρ = cτ . The radiation sE(t) emitted at time 0 by the ToF transmitter
TX travels straight towards the scene for a distance ρ. It is then echoed or back-
reflected by a scene surface point P , covering again a distance ρ to travel back. At
time τ it reaches the ToF receiver (or sensor) RX, ideally co-positioned with the
transmitter, as signal sR(t) (see Figure 2.4). Assuming this is the only path covered
by the signal (no other reflections in-between), the round-trip distance is equal to 2ρ
and the following relationship can be established between ρ, the distance of P from
the sensor, and τ , the time spent for the signal to come back, i.e.

ρ =
cτ

2
(2.9)

Equation 2.9 is the basic expression of a ToF camera’s distance measurement.
The accurate measurement of the round-trip time τ is the fundamental challenge

in ToF systems. Methods that solve this task can be divided into two broad families.
On one side direct approaches, that address the measurement using pulsed light and
trying to directly estimate the time τ , or alternatively the phase shift φ using a
continuous wave. On the other side, indirect approaches try to derive τ or φ from
time-gated measurements of signal sR(t) at the receiver. More details can be found
in [119].

2.4 Stereo Vision Systems

Stereo vision systems or simply stereo systems are able to provide range estimates
using a set of multiple standard cameras with partially overlapping fields of view.
Binocular stereo systems represent the most common configuration for such typology
of devices. They are made by two cameras, one of them referred to as the reference
camera, the other one as the target camera. In this section, some basic concepts
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Figure 2.4: ToF measurement basic principle. An electro-magnetic signal is emitted
by the transmitter TX, back-reflected by a scene surface at a distance ρ from the
device and finally captured by the receiver RX after a time interval τ .

about stereo vision are presented by examining the case of a simplified binocular
stereo system while referring to [119] for a more detailed explanation including N-
views stereo systems.

A pictorial representation of a binocular stereo system can be seen in Figure 2.5
where the left camera, denoted with R, has been chosen as the reference camera
while the right camera, denoted with L is the target camera.

Both cameras can be modeled with a pin-hole camera model like the one de-
scribed in Section 2.2.1, each with its own camera and sensor coordinate systems. In
particular, let R-CCS and T-CCS be the camera coordinate systems associated to
the reference and target cameras respectively, PR = (xR, yR, zR)

T the coordinates of
a scene point P with respect to R-CCS and PT = (xT , yT , zT )

T the coordinates of
the same point given with respect to T-CCS. Moreover, let R-SCS and T-SCS be the
2D coordinate systems defined on the reference and target camera sensor planes such
that the coordinates of a point pR on the reference camera sensor plane are denoted
with pR = (uR, vR)

T while the coordinates of a point pT on the target camera sensor
plane are denoted with pT = (uT , vT )

T .
Both reference and target cameras are assumed to be calibrated with intrinsic

parameter matrices KR and KT respectively.
Looking at Figure 2.5, any point P in the scene can be projected onto the reference

and target camera sensors following the projection rules their associated pin-hole
models, resulting in a pair of conjugate or corresponding points pR and pT . As will
be clearer in a moment, the search for such conjugate pairs is at the core of any
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(a) (b)

Figure 2.5: A simple sketch representation for a binocular stereo vision system where
each camera is described using a pin-hole camera model: perspective view (a), side
view (b).

stereo vision algorithm, allowing to estimate the depth of P using triangulation.
In what follows, a relationship between the depth of P and the coordinates of

its associated conjugate pair pR and pT is derived, providing in particular a simple
equation to compute zR from pR, pT and the relative pose of the reference camera
with respect to the target one.

To let the derivation be as simpler as possible, some assumptions are made.
Specifically, the two cameras are assumed to be substantially identical, sharing the
same intrinsic parameter matrix KR = KT = K where K is

K =





f 0 cx
0 f cy
0 0 1



 (2.10)

Moreover, the two cameras are assumed to have parallel optical axes, their sensors
to lie on the same plane and be aligned so that pR and pT have identical vertical
coordinates vR = vT . Whenever this is not the case, a rectification procedure must
be applied beforehand.

Within these settings, the disparity of pR, denoted with d, is defined as the differ-
ence between its horizontal coordinate and the horizontal coordinate of its conjugate
point pT , i.e.

d = uR − uT (2.11)



CHAPTER 2. DEPTH CAMERAS 18

With this notation, the coordinates of pR and pT with respect to R-SCS and
T-SCS respectively can be rewritten as

pR =

(

uR
vR

)

pT =

(

uT = uR − d
vT = vR

)

(2.12)

Using extended vectors p̃R = (uR, vR, 1)
T and p̃T = (uT , vT , 1)

T and inverting
(2.5) allows one to write the coordinates of P with respect to R-CCS and T-CCS as

PR = zRK
−1p̃R

PT = zTK
−1p̃T

(2.13)

Finally observe that the way the two cameras are aligned allows to express the
rigid transformation (R, t) mapping T-CCS to R-CCS in a much simpler form than
the one holding for general rotation matrix R and translation vector t. Indeed,
under the given assumptions, R is equal to the identity matrix while t = (−b, 0, 0)T ,
resulting in the following straightforward relation between PR and PT

PR = PT +





−b
0
0



 (2.14)

Combining (2.13) and (2.14),the depth zR of P given with respect to R-CCS can
be expressed as

zR =
bf

d
(2.15)

For a rectified stereo system it is straightforward to derive d from (2.11) once the
the conjugate pair is given, while b is a known fixed parameter characterizing the
system. From 2.15 it is clear that, in order to estimate a dense depth map for the
observed scene, it is crucial to be able to associate the correct conjugate point (pixel)
to every point (pixel) in the reference camera sensor plane (image). The problem of
extracting conjugate points from a pair of stereo images is known as the stereo pair
correspondence or matching problem, which is the subject of the following section.

2.4.1 The Correspondence Problem

The computation of a depth map from a stereo image pair via triangulation assumes
conjugate points pR and pT are already available. For this reason, the stereo corre-
spondence problem (sometimes called the stereo matching problem), i.e. the problem
of finding such conjugate pairs between the reference and target images, represents a



CHAPTER 2. DEPTH CAMERAS 19

key step for any stereo vision algorithm. Still nowadays no ultimate solution has been
proposed to this problem, which keeps being considered a challenging one mainly for
two reasons. On one side, due to occlusions, some of these pairs may not exist. Usu-
ally, not every pixel in the reference image has a conjugate pixel in the target image.
On the other side, there might be cases for which finding such a pair might result
extremely difficult or even impossible. Scene appearance plays an important role in
determining the feasibility of such task. Consider the extreme case where every pixel
in both reference and target images encode for the same color, which can happens
e.g. when the stereo system is placed at a close distance from a white uniform wall.
Clearly, no meaningful correspondence between points in the two images could be
set in this case, being every pair relating any point in the reference image to any
point in the target image potentially feasible.

A simple taxonomy of approaches to the correspondence problem divide them
into spare and dense as well as local and global ones.

Dense stereo vision approaches aim finding the conjugate pixel for every pixel in
the reference image, provided it exist. On the contrary, sparse approaches usually
limit this search to a much smaller subset of all existing pairs, whether or not it
covers all pixels in the reference image.

A more interesting distinction is the one between local and global methods. Local
methods look for a conjugate point by maximizing local similarities. Specifically, for
a given point pR in the reference image and candidate point pT in the target image
a cost function is evaluated that compares a support window N(pR) centered at pR
with a corresponding support windowN(pT ) centered at pT , penalizing dissimilarities
between the two windows.

Assuming undistorted and rectified stereo image pairs, only pixels in the target
image that are located at the same row of pR are picked as candidates. Furthermore,
candidate pixels corresponding to disparity values higher or lower than a threshold
are typically excluded from the search. In this case, the search for a conjugate point
can be cast to the search for a suitable disparity in a range of candidate dispari-
ties {dmin, . . . , dmax}. To speed the process a winner-takes-all strategy is typically
enforces, selecting a conjugate point among candidates minimizing the cost function.

Cost aggregation methods [87] add an additional processing step by summing or
averaging the costs computed at neighboring points inside the support window. The
rationale behind this strategy is the underlying assumption that the disparity map
is piecewise smooth except in correspondence of depth discontinuities.

To cope with discontinuities between smooth regions some approaches have been
proposed that properly adapt the size or shape of the support window [105] or ag-
gregate the costs by a weighted average where weights are adjusted based on the
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(a) (b)

Figure 2.6: For a given rectified stereo pair and pixel pR on the reference image
(left), stereo matching local methods look for candidate pixels pT in the target image
(right) at the same row as pR. For each candidate, a cost function is evaluated that
penalizes dissimilarities between the content of a support region N(pR) surrounding
pR and the content of a corresponding support region N(pT ) surrounding pT . Images
from the Middlebury Stereo Datasets 2014 [86].

window content [118].
Global methods usually aim at estimating the entire disparity map by minimizing

a suitable cost function both accounting for local matches as well as enforcing some
form of smoothness between disparity hypotheses at different points [100].

In general, global methods allow for finding more accurate matchings at a cost
of an increased computational effort. As a drawback, the entire system is possibly
prevented to run at real-time, thus making it inadequate for a number of possible
applications.

The semi-global stereo matching algorithm by Hirschmuller [44] tries to combine
advantages from both local and global approaches, achieving an accuracy comparable
to top-ranked global algorithm while maintaining its complexity linear in the number
of pixels and disparity levels.

2.4.2 A Locally Global Disparity Refinement

As mentioned in Section 2.4.1, several approaches have been proposed to solve the
stereo correspondence problem using both local or global methods. Assuming a
rectified binocular stereo pair, it is straightforward to derive the disparity of a point



CHAPTER 2. DEPTH CAMERAS 21

pR in the reference image once its conjugate point pT has been found in the target
image. Given the disparity, a corresponding depth value can easily computed via
triangulation as in (2.15).

Local methods based on Cost Aggregation (CA) (see Section 2.4.1) rely on a
crucial assumption i.e. disparity values vary smoothly within neighboring points
except at depth discontinuities. At the same time, different from global approaches,
they do not enforce any constraint to account for mutual dependencies between
disparity assumptions at different points. In other words, the aggregated disparity is
estimated at a given point in a way that is completely unaware about the aggregate
disparities estimated at other neighboring points, despite the piecewise smoothness
assumption suggests that a strong correlation should exist between such assumptions.

The approach proposed by Mattoccia in [65] aims at explicitly model these depen-
dencies and refine the disparity values estimated via local approaches by explicitly
enforcing such dependencies.

To grasp the rationale behind the strategy proposed in [65], first consider a point
pR in the reference image for which a disparity value d has been estimated. Provided
the disparity piecewise smoothness assumption holds, if pR has disparity d then all
neighboring points in a support window S(pR) centered at pR are likely to have the
same disparity as well, except for discontinuities. The same can be said about any
other point in the reference image and in particular about any neighboring point
qR ∈ S(pR). Namely, for a given neighbor qR, all points within its support S(qR) are
implicitly assumed to have the same disparity as the one assigned to qR by the CA
algorithm. Moreover, if pR has disparity d then its conjugate point pT in the target
image is implicitly assumed to have disparity −d as well as its neighboring points
qT ∈ S(qT ) following an analogous reasoning.

Provided a disparity value is estimated for each pixel in the reference image by
the CA aggregation algorithm, as many assumptions are implicitly made about pR
disparity as the number of points in the reference image whose supports contain
pR. For fixed size support windows n× n pixels wide, n2 assumptions are made, all
potentially different.

The idea is to force these assumptions to be consistent with each other by applying
a two-step procedure. First, a suitable function PRpR→qR

(d) is defined encoding for
the plausibility of the disparity assumption d made by a point pR in the reference
image on a neighboring point qR withing its support

PRpR→qR
(d) = e−

∆pR,qR
γs e−

∆
ψ
pR,qR
γc e−

∆pT ,qT
γs e−

∆
ψ
pT ,qT
γc e

−
∆
ω
qR,qT
γt (2.16)

where ∆ accounts for spatial proximity, ∆ψ and ∆ω account for color similarity
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and γs, γc and γt control the behavior of the distributions (a detailed explanation is
provided in [65]).

Similarly, a function PTpT→qT
(d) is defined to encode for the disparity assumptions

made by points in the target image.
In the second step all assumptions made about the disparity of a given point are

gathered by properly accumulating the plausibilities evaluated in the first step. More
precisely, the following accumulated plausibilities ΩR

pR
(d) and ΩT

pT
(d) are computed

ΩR
pR
(d) =

∑

qR∈S(pR
PRqR→pR

(d)

ΩR
pR
(d) =

∑

qT∈S(pT
PTqT→pT

(d)
(2.17)

and an overall plausibility ΩRT
pR

(d) is obtained for each point pR in the reference
image via cross-check

ΩRT
pR

(d) = ΩR
pR
(d)ΩT

pT
(−d) (2.18)

Finally, a winner-takes-all strategy is applied to select, for each point pR, the
disparity value maximizing the overall plausibility (2.18), i.e.

d∗ = argmax
d∈{dmin,...,dmax}

ΩR
pR
(d) (2.19)



Chapter 3

ToF and Stereo Data Fusion

3.1 Introduction

There exist many different devices and algorithms for real-time depth estimation
including active lighting devices and passive systems exploiting only regular cam-
eras. The first family includes Time-of-Flight (ToF) sensors (see Section 2.3) and
structured light cameras while the most notable example of the second family are
the (binocular) stereo setups (see Section 2.4).

None of these solutions is completely satisfactory, active devices like Time-of-
Flight and structured light cameras are able to robustly estimate the 3D geometry
independently of the scene content but they have a limited spatial resolution, a high
level of noise and a reduced accuracy on low reflective surfaces. Passive stereo vision
systems, although widely used for the simple technology, have various limitations, in
particular their accuracy strongly depends on the scene content and the acquisition
is not very reliable on regions with uniform or repetitive texture. On the other side,
passive stereo vision systems have a high resolution and a limited amount of noise.
The characteristics of the two approaches are complementary and the fusion of data
from the two systems has been the subject of several research studies in the last
years.

In this chapter, a depth estimation algorithm combining together ToF and stereo
data is proposed [27]. An effective solution for this task needs two fundamental
tools: the estimation of the reliability of the data acquired by the two devices at each
location and a fusion algorithm that exploits this information to properly combine
the two data sources.

ToF sensors are typically affected by several sources of noise [119]. The reliability
of ToF data has traditionally being estimated by using simple to sophisticated models

23
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to describe such noise sources. As an example, shot noise can be estimated from the
amplitude and intensity of the received signal, while other depth estimation issues
specific of their working principles, like the presence of mixed pixels or the multi-
path error, represent a much bigger challenge. Multi-path error due to light rays
scattered multiple times before reaching the sensor is particularly difficult to be
directly estimated and removed. The idea is to use a deep ConvNet to regress the
confidence of ToF data rather than rely on traditional noise models.

Stereo data confidence is typically estimated with different metrics based on the
analysis of the shape of the cost function [48]. While these metrics are able to capture
the effects of the local matching cost computation, the same cannot be applied for
the most recent stereo vision techniques. The latter typically exploit complex global
optimization schemes whose behavior is hard to be captured by standard metrics.
For this reason, coherently with the approach used for ToF data, a deep learning
framework is adopted to for stereo confidence estimation.

Confidence estimates are exploited inside an extended version of the Local Con-
sistency (LC) framework [15, 64] able to exploit such information to perform the
fusion of the two data sources.

3.2 Related Works

Binocular stereo vision systems can estimate depth data from two standard images
by exploiting the well known triangulation principle (see Section 2.4). A significant
amount of research studies focused on this family of 3D data acquisition systems
and a detailed review can be found in [104]. The depth estimation accuracy of these
systems depends on many factors, including not only the specific matching algorithm
used to estimate the disparity map but also the photometric content of the scene.
In particular, the estimation is prone to errors in regions with fewer details, e.g. a
planar wall with no texture, or repetitive patterns. For this reason it is important to
estimate the reliability of the computed data. An exhaustive review about techniques
for confidence estimation in stereo vision systems can be found in [48]. Notice how
the confidence information for stereo systems used to be computed with deterministic
algorithms based on the analysis of the matching cost function and only recently deep
learning approaches have been exploited for this task [78, 89, 79].

ToF cameras have also attracted the attention of the research community work-
ing on depth acquisition systems [36, 83, 120, 76, 50, 31], since they can acquire
depth information in real-time and many low cost devices using ToF principles are
currently available in the consumer market. Differently from stereo vision systems,
ToF cameras can estimate accurately the depth values also in regions without tex-
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ture or with repetitive patterns since they do not rely uniquely on the scene content
for depth estimation. On the other side, these devices have various limitations as
the low resolution and high noise levels. Furthermore, as already mentioned, they
are affected by systematic errors as multi-path interference, mixed pixels and noisy
estimation on low reflective regions. In [50] it is possible to find a detailed analy-
sis of the various error sources while [31] offers an insight on the effects of the low
reflectivity of the scene on the depth estimation.

ToF cameras and stereo vision systems are based on different depth estimation
principles and they have complementary strengths and weaknesses, suggesting that
a fusion of the data acquired from the two sources can lead to a more reliable depth
estimation. Different works on stereo-ToF depth fusion can be found in the literature,
e.g., [30] and [119] present two complete reviews of the different approaches.

The combination of a ToF camera with a stereo vision system in order to es-
timate and then fuse two depth maps of the scene has been used in several works
[55, 31, 24, 53]. In order to perform the fusion Zhu et al. [127, 126, 128] used a
MAP-MRF Bayesian formulation where a global energy function is optimized with
belief propagation. Dal Mutto et al. [11] also used a probabilistic formulation and
computed the depth map with a ML local optimization. In a more recent version of
the approach [14] a global MAP-MRF optimization scheme has been used in place
of the ML optimization.

Nair et al. [71] instead used a variational fusion framework. An interesting
contribution of this approach is the use of confidence measures for the ToF and stereo
vision systems in order to control the process. Evangelidis et al. [20] estimate the
depth information by solving a set of local energy minimization problems. Another
solution [15] consists in using a locally consistent framework [65] (see Section 2.4.2)
to fuse the two data sources. This approach has been improved in [64] by extending
the LC framework driving the fusion process with the depth map confidences in order
to take into account the different nature and reliability of the data sources. The same
approach is also applied here. However, instead of computing confidence data based
on heuristic cues a deep ConvNet is used instead for such estimation. More details
about [64] can be found in the next Section 3.4.

Finally, it is worth to mention that a strictly related problem is the fusion of the
data delivered by a ToF camera with data from a single color camera [17, 117, 116,
88, 26, 18]. For this task different strategies have been proposed, including methods
based on bilateral filtering [117, 116], edge-preserving schemes [26] and methods
exploiting confidence information for ToF data [88].
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3.3 Proposed Method

The proposed algorithm starts by reprojecting ToF data on the stereo camera view-
point and then upsamples the data to the spatial resolution of the stereo setup by
using a combination of segmentation clues and bilateral filtering [15]. Then, confi-
dence information for ToF depth data is estimated. For this task an ad-hoc Convo-
lutional Network (ConvNet) has been developed that takes in input multiple clues,
i.e., the stereo and ToF disparities, the ToF amplitude and the difference between
the left image and the right one warped according to disparity information, providing
a hint of the stereo matching accuracy, and jointly estimates both stereo and ToF
confidence measures.

It is customary to use a good amount of data for the training of the ConvNet
with the corresponding ground truth information. At the time of writing there are no
available datasets containing these data and furthermore the acquisition of accurate
ground truth data for real world 3D scenes is a challenging operation.

For this reason 55 different 3D synthetic scenes have been rendered using Blender
[4], with examples of various acquisition issues including reflections and global illu-
mination. Realistic stereo and ToF data have been simulated on the rendered scenes
using LuxRender [62] and a simulator realized by Sony EuTEC starting from the
simulator presented by Meister et al. [67]. This have been used to train the Con-
vNet that proved to be able to accurately estimate a confidence measure for both
stereo and ToF depth acquisitions even in challenging situations like mixed pixels
on boundaries and multi-path artifacts affecting ToF estimations. Finally, the two
data sources are fused together. The proposed fusion algorithm has been derived
from [64]. The framework extends the LC method [65] to combine the confidence
measures of the data produced by the two devices. It computes a dense disparity
map with subpixel precision by combining the two sources of information enforcing
the local consistency of the measures weighted according to the computed confidence
information. More details are given in Section 3.4.

The considered acquisition system is made of a ToF camera and a stereo vision
system each producing an estimation of depth data from the corresponding view-
point. The goal of the proposed method is to provide a dense depth map from the
point of view of one of the color cameras of the stereo setup.

Two acquisition systems are assumed to have already been jointly calibrated (this
can be done using ad-hoc techniques for this kind of setups, e.g., the one proposed
in [11]). The algorithm includes four steps (see Figure 3.1):

1. The depth information acquired from the ToF sensor is firstly reprojected to
the reference color camera viewpoint. Since ToF sensors have typically a lower
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Figure 3.1: Flowchart of the proposed approach.

resolution than color cameras, it is also necessary to interpolate the ToF data.
For this task the approach proposed in [15] has been used. More in detail
the color image is firstly segmented using Mean-Shift clustering [8] and then
an extended cross bilateral filter with an additional segmentation-based term
besides the standard color and range ones is used to interpolate the data and
to produce a high resolution depth map aligned with the color camera lattice.
Since the fusion algorithm works in disparity space, the computed depth map
is also converted to a disparity map with the well known inversely propor-
tional relationship between the two quantities. For more details on the ToF
reprojection and upsampling, the reader is referred to [15].

2. A high resolution depth map is computed from the two color views by applying
a stereo vision algorithm. The proposed approach is independent of the stereo
algorithm used to compute the disparity map, however for the current im-
plementation the Semi-Global Matching (SGM) algorithm [44] has been used.
This algorithm performs a 1D disparity optimization on multiple paths that
minimizes an energy term made of point-wise or aggregated matching costs
and a regularization term.

3. Confidence information for the stereo and ToF disparity maps are estimated
using the Convolutional Network architecture of Section 3.6.

4. The upsampled ToF data and the stereo disparity are finally fused together
using an extended version of the LC technique [65].



CHAPTER 3. TOF AND STEREO DATA FUSION 28

3.4 Locally Consistent ToF-Stereo Data Fusion

The Local Consistency (LC) method [15, 64] allows to exploit knowledge about the
reliability of ToF and stereo data in order to better combine them into a more accu-
rate disparity map. This method is based on the locally global approach presented
by Mattoccia in [65] and already discussed in Section 2.4.2, which was originally
conceived as a fast and effective tool to refine stereo matching data. In [15] this
approach has been extended in order to be used with multiple disparity hypotheses,
e.g. from a stereo system and da ToF camera, as is the case considered here. The
idea behind is to start by considering each point pR of the reference image that has
at least one valid range measurement provided by the ToF camera or stereo system.
The plausibility of the measure originated from each sensor is computed similarly
to Equation 2.16 thus accounting for both color and spatial consistency of the data
Multiple plausibilities are then propagated to neighboring points and accumulated
into overall plausibilities, cross-checked and normalized. A winner-takes-all strategy
is finally used to compute the optimal disparity value. Although the extension pro-
posed in [15] produces reasonable results, it has the limitation that it assigns the
same weight to the two data sources, without accounting for their specific reliabil-
ity. The approach proposed by [64] tries to overcome this drawback by assigning
different weights to the plausibilities, depending on the confidence estimation for the
considered depth acquisition system computed at the considered point, i.e.

ΩpR(d) =
∑

qR∈N (pR)

(

PT (qR)P
T
qR→pR

(d) + PS(qR)P
S
qR→pR

(d)
)

(3.1)

where ΩpR(d) is the plausibility at point pR in the reference image for depth
hypothesis d, PTqR→pR

(d) is the plausibility propagated by neighboring points qR ac-
cording to ToF data and PSqR→pR

(d) is the one according to stereo data.
Finally, for any given point p, PT (p) and PS(p) are the ToF and stereo confidence

values at that location.
Different from [64] where confidence information comes from a deterministic al-

gorithm based on the noise model for the ToF sensor and from the cost function
analysis for the stereo system, in the proposed approach the confidence is estimated
with a ConvNet whose architecture is detailed in Section 3.6.

3.5 SYNTH3: A ToF and Stereo Synthetic Dataset

A synthetic dataset called SY NTH3 has been developed for supervised machine
learning applications. The dataset is split into two parts, a training set and a test
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set. The training set contains 40 scenes, including 20 unique scenes plus 20 more
scenes obtained from the former by rendering them from different viewpoints. It
is worth noticing that, even if the size of the dataset is quite small if compared to
the size of datasets used at the moment in other fields, it is still the largest dataset
for stereo-ToF fusion currently available, with scenes encompassing a large range of
different characteristics. Additional 15 unique scenes are included in the test set.

Each synthetic scene is realized using the Blender 3D rendering software [4].
Blender scenes have been downloaded from the BlendSwap website [5], appropri-
ately adjusted and finally rendered into virtual cameras thus generating the stereo-
ToF data examples included in the dataset. The various scenes contain furnitures and
objects of several shapes relative to different environments e.g., living rooms, kitchen
rooms or offices. Furthermore, some outdoor locations with non-regular structure are
also included in the dataset. In general, they appear realistic and suitable for the
simulation of Stereo-ToF acquisition systems. The depth range across the scenes
goes from about 50[cm] to 10[m], providing a large range of measurements.

Each scene has been rendered by simulating a stereo system with characteristics
resembling the ones of the ZED stereo camera [122] and a ToF camera with char-
acteristics similar to a Microsoft Kinect v2 [90, 119]. The stereo system is made by
two Full-HD (1920× 1080) color cameras with a baseline of 12[cm] and optical axes
and image planes parallel to each other so that to virtually acquire already rectified
stereo image pairs. Also the image plane and optical axis of the Kinect sensor are
parallel to those of the ZED cameras and the Kinect sensor is placed under the right
camera of the stereo system at a distance of 4[cm]. The considered acquisition sys-
tem is depicted in Figure 3.2 that shows the relative positions of the 2 cameras and
ToF sensor. Table 3.1 summarizes the parameters of the acquisition system.

Stereo setup ToF camera
Resolution 1920× 1080 512× 424

Horizontal FOV 69◦ 70◦

Focal length 3.2[mm] 3.66[mm]
Pixel size 2.2[μm] 10[μm]

Table 3.1: Parameters of the stereo and ToF subsystems.

For each scene, the following data are provided: 1) the 1920 × 1080 color image
acquired by the left camera of the stereo system, 2) the 1920 × 1080 color image
acquired by the right camera of the stereo system, 3) the depth map estimated by
the ToF sensor on the synthetic scene, 4) the relative amplitude map of the ToF
sensor.
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Figure 3.2: Representation of the Stereo-ToF acquisition system. The Figure shows
the relative position of the color cameras and ToF camera.

The color images have been generated directly in Blender using the 3D renderer
LuxRender [62]. The data captured by the Kinect ToF camera have been obtained by
using the ToF -Explorer simulator developed by Sony EuTEC. The ToF -Explorer
simulator was first designed according to the ToF simulator presented by Meister et
al. in [67] that accurately simulate the data acquired by a real ToF camera including
different sources of error as shot noise, thermal noise, read-out noise, lens effect,
mixed pixels and the interference due to the global illumination (multi-path effect).
The ToF simulator uses as input the scene information generated by Blender and
LuxRender.

Moreover, the dataset contains also the scene depth ground truth relative to the
point of view of both the Kinect and the right color camera of the stereo system.
The dataset is publicly available at [99].

3.6 ConvNet for Joint ToF and Stereo Confidence

Estimation

A Convolutional Network (ConvNet) model can be used to regress the confidence
information required by the LC fusion algorithm of Section 3.4 in order to produce
the final disparity map. The proposed ConvNet takes as input both ToF and stereo
clues and outputs a confidence map for each of the two devices.

Such clues can be easily computed trough a fast pre-processing stage from the
ToF and stereo disparity maps, the ToF amplitude and the color image pair. The
process operates by first applying suitable projections and color conversions to the
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Figure 3.3: Architecture of the proposed Convolutional Network (ConvNet). The
size of the outputs produced at the end of each convolutional layer is also reported
for the case where a single 4-channel training patch of size 142× 142 is fed as input
to the ConvNet.

raw data:

• DT,i the ToF disparity map reprojected on the reference camera of the stereo
vision system.

• AT,i the ToF amplitude image reprojected on the reference camera of the stereo
vision system.

• DS,i the stereo disparity map.

• IR,i the right stereo image converted to grayscale.

• IL′,i the left stereo image converted to grayscale and reprojected on the right
camera using the disparity computed by the stereo algorithm.

The four clues are then derived as follows. The first clue, ∆′
LR,i, is extracted from

the left and right grayscale images IL′,i and IR,i in a two-step procedure. First, the
absolute difference between their scaled versions is computed:

∆LR,i =
∣

∣

∣

IL,i
µL,i
−
IR,i
µR,i

∣

∣

∣ (3.2)

where the scaling factors µL,i and µR,i are the averages calculated on the left and
right images respectively. The value returned by Equation (3.2) is then divided by
σ∆LR , the average of the standard deviations calculated for each ∆LR,j for j varying
across the scenes in the training set:

∆′
LR,i = ∆LR,i/σ∆LR (3.3)
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The other three clues D′
T,i, D

′
S,i and A

′
T,i are obtained straightforwardly from ToF

and stereo disparities and ToF amplitude by applying a normalization similar to the
one in Equation (3.3), that is:

D′
T,i = DT,i/σDT (3.4)

D′
S,i = DS,i/σDS (3.5)

A′
T,i = AT,i/σAT (3.6)

where σDT , σDS and σAT are the average of the standard deviations calculated for
each disparity or amplitude representation in the training set. Finally, the four clues
∆′
LR,i, D

′
T,i, D

′
S,i and A

′
T,i are concatenated in a four-channel input image which is

fed to the ConvNet in order to produce two confidence maps PT and PS for ToF and
stereo data respectively.

The inference process is better explained by Figure 3.3 that shows the architec-
ture of the proposed ConvNet. It contains a stack of six convolutional layers each
followed by a ReLU non-linearity with the exception of the last one. The first five
convolutional layers have 128 filters each, the first layer has a window size of 5 × 5
pixels while all others have a window size of 3 × 3 pixels. The last convolutional
layer has only two filters, producing as output a two-channels image where the two
channels contain the estimated ToF and stereo confidence respectively. Notice that,
in order to produce an output with the same resolution of the input, no pooling
layers have been used. At the same time, to cope with the boundary effect and size
reduction introduced by the convolutions, each input image is padded by 7 pixels
along their spatial dimensions, where the padded values are set to be equal to the
values at the image boundary.

3.7 Experimental Results

The proposed fusion algorithm has been trained and evaluated on the training set
and test set of the SYNTH3 dataset (see Section 3.5) respectively.

As pointed out in Section 3.5, the test set contains 15 different scenes. The
thumbnails of the various scenes are shown in Figure 3.4, notice how they contain
different challenging environments with different acquisition ranges, complex geome-
tries and strong reflections. Also different materials, both textured and un-textured
have been used. The acquisition setup and the camera parameters are the same of
the training set discussed in Section 3.5. Ground truth data have been computed by
extracting the depth map from the Blender rendering engine and then converting
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it to the disparity space. The algorithm takes in input the 512 × 424 depth and
amplitude maps from the ToF sensor and the two 960 × 540 color images from the
cameras. The color cameras resolution has been halved with respect to the original
input data in the dataset. The output is computed on the point of view of the right
camera at the same (higher) resolution of color data and it has been cropped to
consider only on the region that is framed by all the three sensors.

Input Scene ToF Stereo Fusion
Color Ground Disparity Error Disparity Error Disparity Error
view truth

Figure 3.4: Results of the proposed fusion framework on 5 sample scenes (one for
each row). In error images, gray pixels correspond to points excluded since they are
not valid on one of the disparity maps. The intensity of red pixels is proportional to
the absolute error. (Best viewed in color)

In order to train the ConvNet of Section 3.6, a large set of training examples has
been generated by randomly extracting a number of patches from each scene in the
training set. Each patch has a size of 128× 128 pixels (that becomes 142× 142 after
padding). During this process, a set of standard transformations have also been
applied to augment the number of training examples and ease regression, namely
rotation by ±5 degrees, horizontal and vertical flipping. In the experiments, 30
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patches from each of the 40 scenes included in the training set have been extracted,
and considering also their transformed versions at the same corresponding location
a total of 6000 patches have been obtained.

Both ToF and stereo ground truth confidence maps have been generated from the
absolute error of the two disparity estimations against the disparity ground truth of
the scene, that is available in the dataset. More specifically, each ground truth confi-
dence map has been computed by first clipping all values above a given threshold in
the corresponding disparity absolute error map, then dividing by the same threshold
in order to obtain values in the range [0, 1].

The network has been trained to minimize a loss function defined as the Mean
Squared Error (MSE) between the estimated ToF and stereo confidence maps and
their corresponding ground truth. To this aim, a standard Stochastic Gradient De-
scent (SGD) optimization has been employed with momentum 0.9 and batch size 16.
An initial set of weight have been derived with Xavier’s procedure [28]. As for the
learning rate, an initial value of 10−7 has been used, subject to a constant decay by
a coefficient of 0.9 every 10 epochs. The network has been implemented using the
MatConvNet framework [108]. The training of the network took about 3 hours on a
desktop PC with an Intel i7-4790 CPU and an NVIDIA Titan X (Pascal) GPU.

Before evaluating the performances of the fusion scheme, the confidence infor-
mation computed with the proposed ConvNet used to control the fusion process is
analyzed. Some confidence maps computed with the proposed ConvNet are shown
in Figure 3.5. The second column shows the ToF confidence, it is noticeable how
the ConvNet is able to estimate the areas of larger error by assigning low confidence
(darker pixels in the images). A first observation is that in most of the confidence
maps it is possible to see how the error is larger in proximity of the edges. It is a
well-known issue of ToF sensors due to the limited resolution and due to the mixed
pixel effect. Furthermore, by looking for example at rows 2 and 4, it is visible how the
ConvNet has also correctly learned that the ToF error is higher on dark surfaces due
to the lower reflection (e.g., on the dark furniture in row 2 or on the black squares of
the checkerboard in row 4, or on some of the rocks in row 1). The multi-path is more
challenging to be detected, but row 4 shows how the confidence is lower on the wall
edges or behind some stairs element in row 3. Concerning the stereo confidence the
results are also good. Also in this case the limited accuracy on edges is detected and
a low confidence is assigned. Furthermore, some surfaces with uniform or repetitive
patterns have a lower confidence, e.g., some rocks in row 1.

The computed confidence information is then used to drive the fusion process.
Figure 3.4 shows the output of the proposed algorithm on some sample scenes. Col-
umn 1 and 2 show a color view of the scene and the ground truth disparity data.
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a) Color view b) ToF confidence c) Stereo confidence

Figure 3.5: Confidence information computed by the proposed deep learning archi-
tecture for some sample scenes: a) Color view; b) Estimated ToF confidence; c)
Estimated stereo confidence. Brighter areas correspond to higher confidence values,
while darker pixels to low confidence ones.
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The up-sampled, filtered and reprojected ToF data are shown in column 3, while
column 4 contains the corresponding error map. Columns 5 and 6 show the dis-
parity estimated by the stereo vision algorithm and the corresponding error map.
Concerning stereo data, the OpenCV implementation of the SGM stereo algorithm
has been used with pointwise Birchfield-Tomasi metric, 8 paths for the optimization
and a window size of 7× 7 pixels. The fused disparity map and its relative error are
shown in columns 7 and 8. Starting from ToF depth data, this is the more accurate
of the two data sources, the filtered and interpolated data is quite accurate, even
if there are issues in proximity of edges that are sometimes not too accurate. Also
low-reflective surfaces like the black checkers in row 4 are very noisy and sometimes
not acquired at all. The multi-path affects some regions like the steps of the stairs.
Stereo based disparity maps usually have sharper edges but there are several artifacts
due to the well-known limitations of this approach. The fusion algorithm reliably
fuse the information coming from the two sensors providing a depth map with less
artifacts on edges and free from the various problems of the stereo acquisition.

A quantitative performance evaluation is shown in Table 3.2 and confirms the
visual analysis. The table shows the RMS in disparity space averaged on all the
15 scenes. For a fair comparison, only pixels with a valid disparity value in all the
compared disparity maps (stereo, ToF and fused disparities) have been considered
valid. By looking at the averaged RMS values, the ToF sensor has a high accuracy
with a RMS of 2.19, smaller than the RMS of 3.73 of the stereo system. This
is a challenging situation for fusion algorithms since it is difficult to improve the
data from the best sensor without affecting it with errors from the less efficient one.
However confidence data helps in this task and the proposed approach is able to
obtain a RMS of 2.06 with a noticeable improvement with respect to both sensors.
Comparison with state-of-the-art approaches is limited by the use of the new dataset
and the lack of available implementations of the competing approaches. However, the
approach has been compared with the highly performing method of Marin et al. [64].
This approach has a RMS of 2.07, higher than the one of the proposed method even if
the gap is limited and the results comparable. The method of [64] outperforms most
state-of-the-art approaches, so also the performances of the proposed method are
expected to be competitive with the better performing schemes, with the advantage
that the proposed approach does not involve heuristics.
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Method RMS Error
Interpolated ToF 2.19

SGM Stereo 3.73
Proposed ToF-Stereo Fusion 2.06

Marin et al. [64] 2.07

Table 3.2: RMS in disparity units with respect to the ground truth for the ToF and
stereo data, the proposed method and [64]. The error has been computed only on
non-occluded pixels for which a disparity value is available in all the methods.



Chapter 4

Segmentation and Semantic

Labeling

4.1 Introduction

Recent achievements in the computer vision field allowed to obtain a relevant im-
provement in algorithms dealing with the semantic segmentation task, boosted by
two key advancements in particular. The first is the development of more powerful
machine learning algorithms, specially deep learning techniques, that allowed to bet-
ter understand the semantic content of the images. The second is the introduction of
consumer depth sensors that allowed to easily acquire the 3D geometry of the scene,
a very useful source of information overcoming several limitations and ambiguities
of color information.

Clustering techniques, e.g., normalized cuts spectral clustering [93], are an effec-
tive approach for segmentation well-suited for the extension to the joint segmentation
of color and geometry information [12]. However, the normalized cuts algorithm has
a bias towards producing regions of similar sizes and for this reason it is challenging
to properly separate all the objects avoiding at the same time to over-segment the
scene.

The problem can be solved by exploiting an over-segmentation performed with
normalized cuts followed by an iterative region merging approach scheme. This
work follows this rationale and uses together two different cues in order to decide
which segments must be merged. The first is a segment similarity measure obtained
from the descriptors computed by a Convolutional Network (ConvNet). The other
is obtained, for a given couple of segments, by fitting a Non-Uniform Rational B-
Spline (NURBS) on each segment taken separately and on their union. The fitting

38
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accuracies are then compared and the two segments are merged whenever their union
results in an increased fitting accuracy [74]. Notice how this idea allows to detect if
the two segments are part of the same scene surface (and thus are candidate to be
merged) and to properly handle also non-planar object and surfaces.

The proposed approach has been presented in [69] first, then in [72] where an
enhanced classification algorithm has been proposed that also addresses the semantic
labeling task besides segmentation. In particular, a deeper Convolutional Network
(ConvNet) architecture has been employed in [72], which has been fed with with
surface curvatures together with fitting error (this is the first time this kind of data
is used in a deep learning framework), other than color and HHA descriptors [35]
(disparity, height and orientation angle) instead than orientation data.

4.2 Related Works

Segmentation of RGB-D data has been the subject of many research works (a recent
review is contained in [119]). Clustering techniques are commonly used for image
segmentation and they have been exploited for the combined segmentation of color
and geometry by using multi-channel feature vectors [13, 12]. The method of [51]
performs multiple clusterings with K-means and combines them together.

Region splitting and rowing methods are another commonly used approach. The
approach of [97] starts from an over-segmentation and combines segments corre-
sponding to the same planar region by exploiting a method based on Monte Carlo
Markov Chain and Rao Blackwellization. The method of [73] exploits region splitting
and iteratively refines the segmentation by recursively splitting regions that do not
correspond to a single surface. The work of [74] uses the same criteria in a bottom-up
approach starting from an over-segmentation of the scene. Gupta et al. [33] use a
hierarchical segmentation starting from edge detection information. The method of
[94] starts with an over-segmentation computed with watersheds and then exploits a
hierarchical approach. Hasnat et al. [37, 38] start from a joint clustering method on
the color, geometry and orientation data and then apply a region merging algorithm
searching for planar regions. Finally, [102] uses dynamic programming to extract
planar surfaces.

A closely related problem is semantic segmentation, i.e., joint segmentation and
labeling of the segments. This problem is typically solved by using machine learning
approaches. Ren et al. [84] exploit an over-segmentation with Markov Random
Fields followed by a tree-structured algorithm. The works of [16] and [60] instead
use Conditional Random Fields (CRF). The method of [52] also uses a CRF model
that captures planar surfaces and dominant lines. Another work based on CRFs is
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[42], that combines them with decision forests. The approach of [16] combines CRF
with mutex constraints based on geometry data while the approach of [60] combines
2D segmentation, 3D geometry data and contextual information. The work of [3] is
instead based on a proposal process that generates spatial layout hypotheses followed
by a sequential inference algorithm.

Recently, deep learning algorithms have been exploited for the semantic segmen-
tation task [45, 10, 61]. One of the first solutions exploiting deep learning is [10],
that uses a multiscale Convolutional Network. The method of [61] is able to achieve
a very high accuracy by exploiting Fully Convolutional Networks. The approach of
[35] uses a ConvNet working on geometric features. Wang et al. [111] use two differ-
ent ConvNets, one for color and one for depth, and a feature transformation network
able to separate the information common to the two modalities from the one specific
of each modality. The work of [19] jointly solves the semantic labeling together with
depth and normal estimation using a multiscale ConvNet. Finally the method of
[110] uses deep learning to extract superpixel features that are then classified with
SVMs.

The combination of segmentation and semantic labeling has been considered in
[107], that employs multiple segmentations to generate the regions to be used for ob-
ject detection and recognition. Multiple segmentations are used also by [7] that deals
with the problem of object segmentation using a sequence of constrained parametric
min-cut problems.

Even if several different approaches for this task have been proposed, the pro-
posed method has some original features not present in previous works, in particular
the usage of surface fitting cues and the strict coupling between the semantic label-
ing and the segmentation, with the idea of exploiting the deep learning descriptors
to control the iterative merging together with fitting cues. This allows it to obtain
very accurate results even if the deep learning framework is simpler than some of
the related works. Furthermore, while many related works strongly rely on the pla-
nar surface assumption the proposed model properly accounts for arbitrarily shaped
regions.

4.3 Proposed Method

The proposed method is organized in 3 main blocks as shown in Figure 4.1. Color and
depth data are used to compute a set of nine-dimensional vectors containing the 3D
location, the surface normal information and the color representation for each sample.
Then the algorithm computes an over-segmentation of the scene using the 9D vectors
exploiting a spectral clustering algorithm derived from [12, 74] (Section 4.4). After
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Figure 4.1: General architecture of the proposed method.
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performing the over-segmentation, a NURBS surface is fitted over each segment using
the approach detailed in Section 4.5. The fitting error and the curvature information
for the fitted surfaces are also extracted. This information is fed to a Convolutional
Network together with color and HHA descriptors. The network (Section 4.6) is
trained for the semantic labeling task and computes a descriptor vector for each
sample representing the probabilities of the various classes at the pixel location. The
descriptors are aggregated inside each segment in order to obtain a unique descriptor
for the segment. The third step is an iterative region merging algorithm (Section
4.7). It firstly analyzes the segments and computes an adjacency map. In the map
two segments are marked as adjacent if they are connected and have compatible
color and geometry data on their shared boundary. The similarity between ConvNet
descriptors is then used to sort the couples of adjacent segments. Couples with
a low similarity score according to the ConvNet descriptors are discarded and the
remaining ones are processed in order of similarity. After selecting a couple, a NURBS
surface is fitted over the merged region obtained by joining the two segments and
the accuracy of the fitting is compared with the ones of the two segments. If the
fitting error decreases after the merging (a hint that the two segments belong to the
same surface) the merging is performed, otherwise the operation is discarded. The
algorithm proceeds iteratively until there are no more segments to merge. Finally
the probability vectors from the ConvNet are used to assign a label to each of the
final segments in order to get also the semantic information. The obtained results
are presented in Section 4.8.

4.4 Over-segmentation

To segment the acquired scene, a multi-dimensional vector enclosing the color and
spatial information is built for every pixel pi of the input image with valid depth infor-
mation. The first three components L(pi), a(pi), b(pi) contain the color information
in the perceptually uniform CIELab space. Then, the 3D position x(pi), y(pi), z(pi)
and the surface normal nx(pi), ny(pi), nz(pi) are considered (the 3D coordinates are
calculated based on the sensor calibration information while for normal computa-
tion the approach of [46]) has been used. To achieve a consistent representation
for these different types of information, the color, geometry and orientation aver-
age standard deviations σc, σg and σn are computed from the input image and depth
map. Then, each of the 3 set of components is normalized by the corresponding stan-
dard deviation, providing normalized vectors [L̄(pi), ā(pi), b̄(pi)], [x̄(pi), ȳ(pi), z̄(pi)]
and [n̄x(pi), n̄y(pi), n̄z(pi)] and finally the nine-dimensional representation:
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p9D
i = [L̄(pi), ā(pi), b̄(pi), x̄(pi), ȳ(pi), z̄(pi), n̄x(pi), n̄y(pi), n̄z(pi)]. (4.1)

These 9D vectors representing the acquired scene are then segmented [12, 74] by
means of Normalized Cuts spectral clustering [93] with Nyström acceleration [23].
The algorithm parameters are set in order to create a large number of segments (over-
segmentation), since the final result will be produced by the merging procedure of
Section 4.7.

The following step is the approximation of each segment with a Non-Uniform
Rational B-Spline (NURBS) surface [77]. This is used twice in the proposed method:
firstly, in order to produce an additional set of input cues for the ConvNet classifier
(Section 4.6), secondly, in order to evaluate if segments produced by the merging
operations correspond to a single scene object (Section 4.7).

4.5 NURBS Fitting

By means of NURBS it is possible to approximate each segment (including non-
planar regions) with a continuous parametric surface S(u, v), computed by solving
an over-determined system of linear equations in the least-squares sense. The reader
is referred to [74] for the details on how the NURBS parameters are selected (e.g.,
the degrees) and how the linear system has been set up. It is worth noting that, in
this formulation, the number of surface control points, corresponding to the degrees
of freedom of the model, is proportional to the number of pixels in the segment to
approximate. This prevents the fitting accuracy to be better on smaller segments,
favoring over-segmentation in the final result [74]. Moreover, the usage of NURBS
surfaces provides a geometric model suitable for arbitrary shapes, differently from
several competing schemes [102, 97] that are more appropriate for scenes where most
surfaces are planar.

After fitting the NURBS surfaces, two additional clues can be associated to each
sample. The first one is the fitting error, i.e., the distance between each 3D position
acquired by the sensor and the corresponding location on the fitted surface. This
will be used both as an input for the ConvNet classifier and to recognize if a segment
contains a single object (for segments, the Mean Squared Error will be considered).
Notice how a large fitting error is a hint of the fact that a segment covers multiple
objects, as exemplified in Figure 4.2. The second one is given by the two principal
curvatures (i.e., the maximum and minimum local curvature values, see [106]) at
each pixel location. These quantities are intrinsically related to the geometric shape
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Figure 4.2: Fitting error for a NURBS surface approximating a segment containing
2 different objects. The red areas correspond to larger fit error. Notice how the large
fit error between the teddy head and the monitor reveals that the two segments do
not actually belong to the same object.

of the fitted surface, hence they have been used as an additional input channel for
the ConvNet classifier.

4.6 A ConvNet for Semantic Labeling

A machine learning stage is employed in this step in order to produce classification
data for the input scene, that is used not only to produce the semantic labels but also
to decide which regions of the over-segmentation should belong to the same segment
in the final segmentation.

The idea is to exploit the output of a Convolutional Network (ConvNet) trained
for semantic image segmentation in order to compute a pixel-wise high-level descrip-
tion of the input scene. Specifically, a descriptor vector is associated to each pixel
by considering the final layer of the network, a standard softmax classifier. This
information is then used to compute a similarity score between couples of adjacent
segments and, at the same time, to provide the input image with semantic labels. In
particular, the proposed similarity score is exploited to drive the merging procedure
detailed in Section 4.7, using it both to decide whether any two adjacent segments
should be merged together as well as to determine the order in which candidate
couples of segments are selected for the merging operations.

The ConvNet takes in input various cues:



CHAPTER 4. SEGMENTATION AND SEMANTIC LABELING 45

• Color data, represented by the 3 components in the RGB color space.

• The geometry information. It is represented using three channels containing,
for each sample, the horizontal disparity h1, the height above the floor h2, and
the angle of the normal with the vertical direction a. This representation, typ-
ically abbreviated with HHA, has been introduced by [35] and provided better
performances than the direct usage of geometry and orientation information.

• Surface fitting information, represented with a 3D vector containing the fitting
error f and the two principal curvatures c1 and c2.

For each point of the scene, a 9D vector is used to store this information as

pcni = [R(pi), G(pi), B(pi), h1(pi), h2(pi), a(pi), f(pi), c1(pi), c2(pi)]. (4.2)

Finally, the vectors are arranged over the image pixel lattice to produce, for each
scene in the dataset, a 9-channel input representation.

Figure 4.3: Layout of the proposed Convolutional Network.

An overview of the employed network structure is shown in Figure 4.3. The
network has been constructed starting from the architecture employed in [21, 9, 69]
by extending each of the original layers into a group of 3 layers. In order to avoid
a too large increase in computation time no multi-scale input representation has
been used. A sequence of convolutional layers is applied in order to extract a local
representation of the input.

More in detail, each 9-channel input image passes through nine convolutional
layers, arranged into three main blocks each one containing three layers (see Figure
4.3). Each block corresponds to one of the layers in the previous approach [69]
and works with a constant resolution and number of filters. Moving from one block
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to the next instead the resolution is reduced of a factor of 2 and the number of
filters increases. Every block is made up to three convolutional layers (CONV) each
followed by a hyperbolic tangent activation function (TANH). The first two blocks
have also a final max-pooling (MAXP) layer, while the last convolutional layer of
the last block does not have any activation function. Finally, a pixel-wise softmax
classifier is applied on top of the last convolutional layer.

In order to reduce the computation time, input data are fed to the ConvNet at
the reduced resolution of 320 × 240. The convolutional layers have 90 filters in the
first block, 128 in the second block and 256 in the last one (notice that the layers
in the last blocks work at a lower resolution, thus an higher number of filters can
be used without affecting too much the computation time). All filters have a size of
7 × 7 pixels, while the final softmax classifier has a weight matrix of size 256 × 14
and no bias.

The first layer filters are arranged into 9 groups so that filters in the i-th group
are connected to the i-th input channel only. Also, local contrast normalization
is applied to each input channel independently, allowing filter weights in the first
convolutional layer to converge faster.

The network is trained to produce a semantic segmentation of the input image by
labeling each pixel in the scene with one out of 14 different semantic labels. To this
aim, a multi-class cross-entropy loss function is minimized throughout the training
process.

4.7 Region Merging

The next step is the merging procedure, that starts from the initial over-segmentation
and iteratively joins couples of segments to finally obtain the objects of the scene. The
process is visualized in the bottom half of Figure 4.1 and summarized in Algorithm
1.

The procedure first identifies the couples of segments that are suitable to be
merged. To this aim, it creates an adjacency matrix, storing for each couple of
segments whether they are adjacent (that is, candidate for merging) or not. Two
segments are considered as adjacent if the following conditions hold (see [74] for
additional details):

1. They must be neighboring on the grid given by the depth map.

2. The depth information must be compatible along the shared boundary. Pre-
cisely, the difference ∆Zi between the depth values on the two sides of the edge
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is computed for each point Pi in the common boundary CC . This difference
must be smaller than a threshold Td along at least half of the boundary, i.e.,:

|Pi : (Pi ∈ CC) ∧ (∆Zi ≤ Td)|

|Pi : Pi ∈ CC |
> 0.5 (4.3)

3. Also the color information must be consistent. A condition similar to the one
used for the depth data is required for the color difference in the CIELab space
∆Ci with a threshold Tc:

|Pi : (Pi ∈ CC) ∧ (∆Ci ≤ Tc)|

|Pi : Pi ∈ CC |
> 0.5 (4.4)

4. The same is required for the orientation information, the angle between the
two normal vectors ∆θi being compared to a threshold Tθ:

|Pi : (Pi ∈ CC) ∧ (∆θi ≤ Tθ)|

|Pi : Pi ∈ CC |
> 0.5 (4.5)

If the above conditions are fulfilled, the two segments are considered as adjacent.
If necessary in order to reduce computation time, this procedure can be dropped
and replaced by the assumption that all the connected segments are adjacent with a
limited impact on the algorithm performances.

Subsequently, for each couple of adjacent segments the similarity bi,j is computed
from the information inferred during the machine learning stage. The exploited idea
is that, apart from predicting the semantic labels, the output of the softmax classifier
can also be used to produce a descriptor vector associated to each segment and, in
the end, to compute a similarity score for any couple of segments. For each pixel
pi, a descriptor vector ci = [c1i , . . . , c

14
i ] is extracted from the output of the softmax

classifier. Notice that a linear interpolation is applied in order to resize the output
from its actual size (i.e., 80 × 60 × 14 pixels) to the size of the input image. Each
descriptor vector can be considered as a discrete probability distribution (PDF)
associated to the corresponding pixel, since its elements are non-negative values
summing up to 1.

A probability density function si = [s1i , . . . , s
14
i ] can be associated to each segment

Si as well, by simply computing the average of the PDFs associated to the pixels
belonging to the segment, i.e.,
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si =

∑

j∈Si
cj

|Si|
. (4.6)

Given two segments Si and Sj, an effective approach in order to estimate their
similarity is to compute the Bhattacharrya coefficient between their PDFs si and sj
respectively, i.e.,

bi,j =
∑

t=1,..,14

√

stis
t
j. (4.7)

As an example, Figure 4.4 depicts the proposed similarity score between touching
segments on a sample image. The lower is the similarity bi,j between segments, the
darker is the color of the boundary between them. As can be seen in Figure 4.4a,
different objects usually have a low similarity value while segments belonging to the
same object tipically share higher bi,j values (lighter boundaries). Notice how in
Figure 4.4b the boundaries between segments at the very end of the merging stage
(see Section 4.7) are more likely to correspond to low similarity scores.

a) b)

Figure 4.4: Similarity values bi,j computed on a sample scene: a) bi,j values between
segments in the initial over-segmentation; b) bi,j values between segments at the end
of the merging procedure. The color of the boundary between any two touching
segments is proportional to their similarity score (white corresponds to high bi,j
values and black to low ones).

The couples are placed in a priority queue QA sorted based on their similarity
values bi,j, and the ones with similarity bi,j smaller than a threshold Tsim are discarded
so that they will not be considered for the merging operations (Tsim = 0.77 was used
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in the results). The aim is to prevent segments with low similarity to be merged,
since it is reasonable to expect that they correspond to different objects or portions
of the scene.

The algorithm then processes the couple with the highest similarity score. Let
Si∗ and Sj∗ be the two segments and let Si∗∪j∗ be their union. A NURBS surface
is fitted on each of the two regions i∗ and j∗ (see Section 4.5) and the fitting error,
i.e., the Mean Squared Error (MSE) between the actual and the fitted surface, is
computed for both segments providing the values ei∗ and ej∗ . The fitting error ei∗∪j∗
on segment Si∗∪j∗ is also computed and compared to the weighted average of the
errors on S∗

i and S∗
j :

ei∗ |Si∗ |+ ej∗ |Sj∗ | > ei∗∪j∗(|Si∗ |+ |Sj∗ |) (4.8)

If Equation (4.8) is satisfied, i.e., the fitting error is reduced, then the two seg-
ments are joined, otherwise the union of the two segments is discarded. If the joining
of S∗

i and S∗
j is performed, all the couples including any of the two segments are

deleted from QA. The priority queue is then updated by considering Si∗∪j∗ adjacent
to all segments that were previously adjacent to Si∗ or to Sj∗ and by adding the cor-
responding couples if their similarity score is greater than or equal to Tsim. In order
to compute the similarity of the new couples, the descriptor vector si∗∪j∗ associated
to Si∗∪j∗ is first calculated with Equation (4.6), then Equation (4.7) is used.

The next couple to be processed is then removed from the front of the queue and
the algorithm iterates until no more couples are present in the queue.

After getting the final segmentation, a semantic label is also computed for each
segment by checking the descriptors of all the pixels in the segment (computed in
Section 4.6) and assigning the most common class to the segment. Notice that
average and max pooling have also been considered for this task, but they did not
lead to better performances than this simple strategy.

Algorithm 1 summarizes the whole merging procedure, while some examples of
intermediate steps are shown in Figure 4.5 and in the videos available as additional
material.

4.8 Experimental Results

Tthe proposed approach has been tested on the NYU Depth Dataset V2 (NYUDv2)
[94]. The NYUDv2 dataset is made of 1449 indoor scenes acquired with a first
generation Kinect. For each scene a color view and a depth map are provided. The
updated ground truth labels from [34] are used, since the original ones have missing
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Algorithm 1 The merge algorithm.

QA ← Priority queue, sort by similarity value
for each couple of adjacent segments Ai,j = {Si, Sj} do
if bi,j ≥ Tsim then

QA.push(Ai,j)
end if

end for

while QA 6= ∅ do
Ai∗,j∗ ← QA.pop()
Compute fitting error on merged segment Si∗∪j∗
if Equation (4.8) is satisfied then

Remove all Ai,j such that i = i∗ ∨ j = j∗ from QA

for each Sk adjacent to Si∗∪j∗ do

if bi∗∪j∗,k ≥ Tsim then

QA.push(Ai∗∪j∗,k)
end if

end for

end if

end while

Initial Segm. Iteration 5 Iteration 10 Iteration 15

Iteration 20 Iteration 25 Iteration 30 Final Result

Figure 4.5: Some steps of the merging procedure on the scene of Figure 4.6, row 5.
The initial over-segmentation, the output after 5, 10, 15, 20, 25, 30 iterations and
the final result (iteration 32) are shown.
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areas. The original 894 categories have been clustered into 14 classes as proposed
in [9] since this grouping is used for the evaluation of competing approaches. The
dataset has been divided in two subsets using the standard train/test separation
with 795 and 654 scenes respectively. For the semantic labeling, results on the test
set are provided, this being the approach used by all the competing approaches. For
segmentation instead most approaches are evaluated on the complete dataset. To
get the results in this case two independent evaluations have been done: in the first
experiment the standard train/test subdivision has been used as before while in the
second the train and test sets have been swapped.

Notice that no expansion of the dataset has been used in the training. Concern-
ing the parameters, σ = 3 has been used for the normalized cuts algorithm while
Td = 0.2 m, Tc = 10 and Tθ = 4◦ have been set as threshold values for the adjacency
computation. Stochastic gradient descent and a quadratic regularization with coef-
ficient 0.001 have been used to optimize the weight of the ConvNet. The learning
rate has been set to an initial value of 0.01, then updated with an adaptive decay
policy, reducing it of a factor 0.7 after 10 epochs without improvement. The training
of the ConvNet network on the NYUDv2 dataset required around 36 hours on a
workstation with an Intel i7-970 CPU at 3.2 Ghz and an NVIDIA Tesla K40 GPU.

The proposed method produces a segmentation with semantic labels and it can be
exploited both as a segmentation algorithm and as a semantic classification one. This
section is split in two parts evaluating the proposed algorithm for the two considered
tasks.

4.8.1 Evaluation of the Segmentation Accuracy

Results of comparison of the proposed approach with state-of-the-art methods on
the NYUDv2 dataset are presented in Table 4.1 (the results of some competing ap-
proaches have been collected from [37] and [74]). The works of [37] and [38], among
the compared approaches, are based on clustering and region merging, the MRF
scene labeling approach of [84], a variation of [22] that exploits also geometry data,
the method of [102] exploiting dynamic programming and the multi-layer clustering
strategy of [51]. Other approaches taken into consideration for the comparison are
[12] based on normalized cuts, the region merging approach of [74] and the method
of [69] that represents the starting point for this work. The method of [74] exploits
an iterative merging scheme driven by surface fitting but does not exploit any ma-
chine learning clue, so it can be used as a reference to evaluate the impact on the
performances due to NURBS surface fitting (i.e., roughly corresponding to the dif-
ference between [12] and [74]) and due to the ConvNet descriptors (i.e., the further
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improvement from [74] to the proposed work).
The results have been compared with ground truth data using 2 different metrics

(see [1] for details). The first is the Variation of Information (VoI) and the second
the Rand Index (RI). The mean VoI score of the proposed approach is 1.92. This
is the best value among all the considered approaches and the gap is significant.
The only method getting close to the proposed one is [69] (i.e., the previous version
of this work based on the same segmentation algorithm with a simpler semantic
classification stage). The mean score according to the RI metric is 0.91. This value
is better than most compared approaches, i.e., [22], [102], [12], [74], [37] and [84],
and is the same of the two best competitors, i.e., [38] and [69]. Another advantage
is that the method proposed here does not rely on the assumption of planar surfaces
(NURBS can handle complex shapes), while many competitors (e.g., [37], [38] and
[102]) exploit this assumption thus getting accurate results on the NYUDv2 dataset
(that has many planar surfaces), but reducing their generalization capabilities on
scenes with non-planar surfaces.

Table 4.1: Average VoI and RI values on the NYUDv2 dataset (1449 scenes). The
Table shows the data for some state-of-the-art methods from the literature and for
the proposed method. Note that lower values are better for VoI while higher ones
are better for RI.

Method VoI RI

Hasnat et al. (2014) [37] 2.29 0.90
Hasnat et al. (2016) [38] 2.20 0.91

Ren et al. [84] 2.35 0.90
Felzenszwalb et al. [22] 2.32 0.81

Taylor et al. [102] 3.15 0.85
Khan et al. [51] 2.42 0.87

Dal Mutto et al. [12] 3.09 0.84
Pagnutti et al. [74] 2.23 0.88
Minto et al. [69] 1.93 0.91

Proposed method 1.92 0.91

Some visual examples of segmentations performed with the proposed approach
are displayed in Figure 4.6. The sequence of merging steps for a couple of sample
scenes is shown in the videos available at http://lttm.dei.unipd.it/paper_data/
iet_semantic . The images show that the algorithm is able to properly segment
different challenging scenes. The background and the larger surfaces are divided in

http://lttm.dei.unipd.it/paper_data/iet_semantic
http://lttm.dei.unipd.it/paper_data/iet_semantic
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several segments in the initial over-segmentation but they are properly merged by
the iterative algorithm since the ConvNet descriptors are a very useful clue in order
to detect if segments are part of the same object or region. On the other side the
algorithm is able to correctly recognize and keep separate most of the scene objects.
It is also possible to observe that the objects’ edges are precise and there are no
small segments close to edges as in some competing methods. However there are a
few minor mistakes specially on small objects.

4.8.2 Evaluation of the Classification Accuracy

The proposed approach provides also a semantic label for each segment. In order to
evaluate the accuracy of this labeling, it has been compared with some competing
approaches on the NYUDv2 test set. The compared state-of-the-art approaches are
the methods of [10] that uses a multi-scale ConvNet, of [43] that uses a hierarchy
of super-pixels to train a random forest classifier, of [110] that uses deep learning
to extract super-pixels features, of [111] exploiting two different ConvNets, of [42]
using Random Forest and CRFs and finally [19] using a multi-scale deep learning
architecture.

Table 4.2 reports the results: two different metrics have been considered, the per-
pixel accuracy, counting the percentage of correctly classified pixels and the average
class accuracy, obtained by computing the percentage of correctly classified pixels for
each class independently and averaging the values. Notice that the second number is
smaller since classes with a low number of samples are typically harder to recognize.

The proposed deep learning architecture achieves a mean pixel accuracy of 64.4%
on the test set. By taking the segmentation output of Subsection 4.8.1 and assigning
a single label to each segment as described in Section 4.7 it is possible to refine the
labeling and increase the accuracy to 67.2%. This is a very good result outperform-
ing all the compared approaches except [19]. Notice that [19] achieves very high
performances by exploiting a much more complex deep learning architecture. In any
case the method proposed here is the one that gets closer to it, while even the very
recent methods of [43] and [111] have lower performances than ours.

The results are also confirmed by the average class accuracy. The ConvNet output
accuracy is of 51.7%, a remarkable result outperforming all compared approaches
except [111] and [19]. By refining it with the segmentation the accuracy increases
to 54.4%, outperforming also [111]. Table 4.3 reports also the accuracy for each
class, notice how it is very high on several classes and quite low only for a few
classes. In particular the accuracy is lower on classes without a well defined geometric
structure, like the Objects class, that includes many different things inside or the
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Color Initial Over- Final
View Segmentation Segmentation

Figure 4.6: Initial over-segmentation and output of the proposed approach for some
example scenes. The displayed scenes are the number 72, 330, 450, 846, 1110 and
1313 of the NYUDv2 dataset.
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Picture/wall deco class, that is associated to a quite flat and not very descriptive
geometry. Another issue is that the dataset is not balanced and there are uncommon
classes for which a limited amount of training data is available, e.g., the TV/monitor
class, that accounts for just 1% of the samples got the worst score in the results. On
the other side the Floor and Wall classes have a very regular structure are detected
with an high accuracy. Table 4.2 also report the improvement obtained by refining
the output with the segmentation, notice how it improves for all classes except a
small loss on the Picture/wall deco and Object classes. This is due to the fact that
the segmentation improves the boundary accuracy and removes isolated detections
typically due to noise (but they can seldom correspond to small objects).

A visual evaluation of the results on some sample scenes is shown in Figure 4.7,
notice how the classification is accurate even in challenging situations (e.g., closed
windows) and how the refinement with segmentation largely improves the edges
accuracy. However a few errors are present, e.g., beds exchanged with sofas that
have a similar visual appearance.

Different approaches have been tried than simply selecting the most common label
for the segmentation-based refinement, however the average pooling scheme lead to
the same pixel accuracy of 67.2% with just small differences on the accuracy of the
single classes, while the max-pooling scheme lead to less satisfactory performances
with a 65.9% accuracy.

The implementation of the approach has not been optimized, currently the pro-
cessing of a scene requires on average less than 2 minutes. Furthermore most com-
putation time is spent on the initial over-segmentation (87s) that could be replaced
with a simpler superpixel segmentation scheme.
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Table 4.2: Average pixel and class accuracies on the test set of the NYUDv2 dataset
(654 scenes) for some state-of-the-art methods from the literature and for the pro-
posed method.

Approach Pixel Accuracy Class Accuracy

Couprie et al. [10] 52.4% 36.2%
Hickson et al. [43] 53.0% 47.6%
A. Wang et al. [110] 46.3% 42.2%
J. Wang et al. [111] 54.8% 52.7%

A. Hermans et al. [42] 54.2% 48.0%
D. Eigen et al. [19] 75.4% 66.9%

Proposed method (ConvNet output) 64.4% 51.7%
Proposed method (with segmentation) 67.2% 54.4%

Table 4.3: Average accuracy for each of the 13 classes on the test set of the NYUDv2
dataset for the proposed approach (the unknown class has not been considered con-
sistently with the evaluation of all the compared approaches).

Class Accuracy Accuracy Accuracy
(ConvNet) (with segmentation) Improvement

Bed 58.0% 64.1% 6,1%
Objects 43.2% 41.8% -1,4%
Chair 35.4% 38.4% 3,0%

Furniture 64.7% 70.2% 5,5%
Ceiling 62.8% 64.2% 1,4%
Floor 92.2% 93.7% 1,5%

Picture / wall deco 30.5% 26.8% -3,7%
Sofa 55.8% 66.5% 10,7%
Table 42.0% 46.0% 4,0%
Wall 83.7% 86.3% 2,6%

Window 53.9% 55.8% 1,9%
Books 23.8% 24.0% 0,2%

Monitor / TV 26.2% 29.1% 2,9%
Average 51.7% 54.4% 2,7%
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Color ConvNet Final labeling Ground
View labeling (with segm. truth

Bed Objects Chair Furniture Ceiling Floor Picture/Deco

Sofa Table Wall Windows Books Monitor/TV Unknown

Figure 4.7: Semantic labeling of some sample scenes from the NYUDv2 dataset.
The figure shows the color images, the labeling from the Convolutional Network, the
refined labeling exploiting segmentation data and the ground truth for scenes 39,
280, 433 and 462.



Chapter 5

3D Shape Recognition

5.1 Introduction

The recent introduction of consumer depth cameras has made 3D data acquisition
easier and widely increased the interest in methods for the automatic classification
and recognition of 3D shapes. This has been a long term research task, however
algorithms dealing with this problem have achieved a completely satisfactory perfor-
mance only recently, specially thanks to the introduction of deep learning techniques.
Differently from standard images, that can be straightforward sent to Convolutional
Networks (ConvNets), the processing of 3D point clouds with deep learning tech-
niques requires first of all to represent the data into a form that is suitable for the
deep learning algorithms. In this chapter a novel method [70] is presented for the
classification of 3D shapes based on the idea of representing the data with multiple
2D structures and then exploiting a multi-branch ConvNet. Three different repre-
sentations are proposed. The first, derived from the approach presented in [121], is
given by a set of different depth maps obtained by rendering the input shape from six
different viewpoints, which is a quite standard approach. The second representation
is a novel volumetric descriptor that captures the density, i.e., the amount of filled
voxels, along directions parallel to the 3D axes. Finally, parametric NURBS surfaces
are also fit on the objects, then the two principal curvatures are calculated at each
surface location, obtaining 2D maps that describe the local curvature of the shape.

The three representations are used as input for the neural network in Section
5.4: the ConvNet has 15 branches, each branch analyzing a different data source.
Specifically, there are 6 branches for the depth maps, 3 for the volumetric data and
finally 6 for the curvature data. Each branch contains 4 (for depth and surface data)
or 5 (for the volumetric densities) layers that progressively reduce the resolution

58
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until a single description vector is obtained for each of them. In order to reduce the
complexity weights have been shared by dividing the depth and curvature branches
in two groups, one containing the four side views and one for the top and bottom
views. Finally, the classification outputs are concatenated into a single vector which
is fed to a final linear layer that produces the shape classification.

5.2 Related Works

The retrieval and classification of 3D shapes is a long term research field. Many dif-
ferent schemes based on global representations and local shape descriptors have been
proposed in the past. For an overview of the field see review papers like [101, 32, 57].
As for many other classification tasks, the introduction of deep learning approaches
has allowed large improvements and completely changed the way of dealing with this
problem. Several different deep learning techniques and in particular ConvNets have
been proposed. The fundamental issue with these methods is that 3D representations
do not lay on a regular structure as 2D images, making it necessary to convert the
data into a representation suitable for the network structure or to adapt the network
model.

A first family of approaches is based on the idea of rendering the 3D model
from different viewpoints and then use the obtained silhouettes, images or depth
maps as input to a standard convolutional network. The work of [96] exploits a
spherical parametrization to represent the mesh in a geometry image containing
curvature information that is fed to a ConvNet. The method of [92] exploits the idea
of representing the 3D object with a panoramic view and uses an ad-hoc ConvNet
structure for this kind of images. In the scheme of [49] pairs of views of the object
are used together with a second ConvNet for the selection of the best viewpoints.
Another approach exploiting this strategy is [98] that extracts a set of color views
from the 3D model and combines the information into a single shape descriptor using
a ConvNet architecture. Multiple depth maps rendered from the object have been
exploited in [121], which are taken as a starting point for the depth-based component
of the proposed method.

A second possibility is to use volumetric representations instead, together with
three-dimensional ConvNets applied on the voxel structure. In [114] a Convolu-
tional Deep Belief Network is exploited to represent input shapes as probability
distributions on a 3D voxel grid. A highly performing method based on the voxel
representation is [6], which exploits a variation of the ResNet architecture.

PointNet is introduced in [25] where density occupancy grids are fed as input to a
ConvNet for 3D shape classification. The approach of [66] relies on a 3D ConvNet fed
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with volumetric occupancy grids while [113] jointly exploits Volumetric Convolutional
Networks and Generative Adversarial Networks (GANs).

A comparison between the volumetric and the multi-view scheme is presented in
[81], also proposing various improvements to both approaches.

Finally, some approaches exploit non-standard deep learning architectures in or-
der to deal with unstructured data. The approach of [59] exploits field probing filters
to extract the features and optimizes not only the weights of the filters as in standard
ConvNets but also their locations. Another scheme of this family is the one of [54],
which presents a deep learning architecture suited for the Kd-tree representation of
volumetric data. A deep network able to directly process point cloud data has been
presented in [80].

5.3 Surface and Volume Representations

The proposed algorithm works in two stages: a pre-processing step that constructs
the input data followed by a multi-branch ConvNet that performs the classification.
The proposed data representation is described in this section while the ConvNet
architecture will be the subject of Section 5.4. Three different data representations
are considered:

1. A multi-view representation made of a set of six depth maps extracted from
the 3D model.

2. A volumetric representation obtained by measuring the number of filled voxels
along directions parallel to the 3D space axes.

3. A surface representation given by the curvatures of NURBS surfaces fitted over
the 3D model.

5.3.1 Multi-View Representation

In order to build this representation the bounding box of the input 3D model is
first computed. Then the 3D model is rendered from six different viewpoints, each
corresponding to one of the six faces of the bounding box. The depth information
from the z-buffer is extracted for each of the six views, thus obtaining six different
depth maps for each object (see Figure 5.1). The output depths have a resolution
of 320× 320 pixels which, following experiments, proved to be a reasonable trade-off
between the accuracy of the representation and the computational effort required
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(a) (b) (c)

(d) (e) (f)

Figure 5.1: Example of the six depth maps used for the analysis of a chair 3D model:
Four side views, namely front view (a), left view (b), back view (c) and right view
(d), and two additional views namely bottom view (e) and top view (f).

to train the ConvNet. The six depth maps represent the input for the proposed
classifier. Their usage makes it possible to capture a complete description of the
3D shape without considering a full volumetric structure that would require a larger
amount of data due to the higher dimensionality. Furthermore, the depth map
conveys a greater information content if compared with the silhouettes of the shape.
Notice that, assuming the object is lying on the ground, the six views can be divided
into four side views with a similar structure and the bottom and top views. Indeed,
for many real world objects it is reasonable to assume they can rotate around the
vertical axis while being constrained to lay on the ground. Furthermore, the fact
that typically the four side views have a similar content while the top and bottom
capture a different representation will be exploited in the construction of the neural
network. Finally, local contrast normalization is applied to each input depth map
independently.

5.3.2 Volume Representation

Volumetric representations have been exploited in various 3D classification schemes
like the ones of [114, 113, 66]. Unfortunately, the performance of approaches exploit-



CHAPTER 5. 3D SHAPE RECOGNITION 62

ing the full volumetric representation is affected by the fact that the 3D structure
containing the voxel data uses a considerable amount of memory and requires 3D
convolutional filters with a higher number of parameters. The increased dimension-
ality and requirements are typically compensated by using low resolution and simpler
networks, but this also impacts on the performance. In order to exploit the infor-
mation given by the volumetric data and at the same time preserve the simpler and
faster operations of 2D representations a novel data representation has been intro-
duced. The idea is to build a set of three density maps representing the density of
filled voxels along the directions corresponding to each of the three axes. More in
detail, the X-axis representation is built by quantizing the Y Z-plane into 32 × 32
cells and counting how many filled voxels are encountered by going down along the
X-axis from each location (i.e., letting X vary after fixing the value of the Y and
Z coordinates). The representation for the Y -axis and Z-axis are built in the same
way by swapping the axes (i.e., fix X and Z and let Y vary or fix X and Y and let
Z vary). A visual example on a table model is shown in Figure 5.2. Notice how,
for example, the Z profile (i.e., the top-to-bottom profile) captures the table surface
(low density) and four high density spots corresponding to the four legs of the table.
Finally, as for depth information, local contrast normalization has been applied to
the data.

(a) (b) (c) (d)

Figure 5.2: Example of a table 3D model (a) and corresponding voxel density maps
computed along the x-axis (b), y-axis (c) and z-axis (d) respectively.

5.3.3 Surface Representation

The third data representation is based on geometric properties of parametric surfaces
that approximate the objects shape. The idea is to consider the six views of the first
representation and to obtain a Non-Uniform Rational B-Spline (NURBS) fitting
surface for each of them. In order to perform this task the 3D points corresponding
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to each depth sample have been approximated with a continuous parametric surface
S(u, v), computed by solving an over-determined system of linear equations in the
least-squares sense. Notice that the u, v parametric range of the NURBS surface
corresponds to the rectangular grid structure of the depth map. The NURBS degrees
in the u and v directions have been set to 3, while the weights are all equal to 1,
i.e., the fitted surfaces are non-rational (splines). The same surface fitting algorithm
presented in [69, 75] is used here, see these publications for more details on this task.
Notice how the usage of NURBS surfaces provides a geometric model that is well
suitable to describe arbitrary shapes, not only planar ones. After fitting the surfaces
their two principal curvatures k1 and k2 are determined at each sample location.
An example of the resulting information is visible in Figure 5.3, that shows the two
curvature maps for a sample object. Such data are locally normalized and then used
as the last input for the ConvNet classifier.

Figure 5.3: Example of curvature maps for a 3D model of the monitor class. The
first row shows the k1 curvature maps for the six views, while the second row shows
the data relative to k2. The data have been scaled for visualization purposes (dark
colors correspond to negative values and bright colors to positive ones).

5.4 3D Shape Recognition with ConvNet

The proposed classifier takes in input the three representations and gives in output
a semantic label for each scene. For this task an ad-hoc ConvNet architecture with
multiple branches has been developed.

The structure of the network for this task is summarized in Figure 5.4. It is made
of two main parts, namely a set of branches containing convolutional layers and a
linear classification stage combining the information from the different branches. The
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Figure 5.4: Layout of the proposed multi-branch Convolutional Network.



CHAPTER 5. 3D SHAPE RECOGNITION 65

architecture of the network has been designed in order to produce a single reliable
classification output for each 3D object and to be suitable for the multi-modal input
of Section 5.3. Its structure stems from the semantic segmentation architectures
presented in [21, 9, 69], but greatly differs from them due to the different task and
the particular nature of the exploited data. In the first part there are 15 different
branches, divided in 3 groups (see Figure 5.4). The first group has 6 branches and
processes the depth information. Each branch takes in input a single depth map at
the resolution of 320 × 320 pixels and extracts a classification vector for the input
by applying a sequence of convolutional layers. More in detail, each branch has
4 convolutional layers (CONV), each followed by a rectified linear unit activation
function (RELU) and a max-pooling layer (MAXP). The first layer has 48 filters
while the second, third and fourth ones have 128 filters, all being 3× 3 pixels wide.
The max-pooling stages subsample the data by a factor of 4 in each dimension in
the first three stages and of 5 in the last one. The rationale behind these values is
to progressively reduce the resolution of the data until a single descriptor vector is
obtained for each depth map. Notice that, by using this approach only the first layer
works at the full resolution, the latter being significantly reduced in the next layers
up to the point where a single classification hypothesis is obtained for the whole
depth map in the last layer. This scheme allows to limit the computational resources
required for the training since in the inner layers the resolution is strongly reduced.
The final output is a 128-elements descriptor for each depth map. Concerning the
weights of the convolutional filters there are two approaches commonly used. The
first is to have independent weights for each branch of the network. This allows to
better adapt the network to the various views, however it leads to a large amount of
parameters thus increasing the computational complexity and the risk of over-fitting.
Furthermore, this makes also the approach more dependent on the pose of the model
since, changing the pose, data can move from one view to another. Other approaches
share the weights across the various branches [21, 9], thus reducing the complexity
but also the discrimination capabilities of the network. A key observation is that
the captured data are typically similar in the four side views but different for the
top and bottom ones. Thus a hybrid solution between the two approaches has been
used, with a shared set of weights for the four side views and a different set for the
top and bottom ones. This proved to be a good trade-off between the two solutions,
providing a good accuracy with a reasonable training time and a partial invariance
at least to the rotation along the vertical axis. Notice that the approach assumes
that the objects are laying on the ground in order to distinguish between the side and
top or bottom views, however this is a reasonable assumption for most real world
objects. The branches in the second set deal with volumetric data. In this case
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Table 5.1: Summary of the properties of the various layers in the ConvNet.

Layers
Input Branches L1 L2 L3 L4 L5

Depth 6 Filters 48 128 128 128 -
Conv 3× 3 3× 3 3× 3 3× 3 -
Pooling 4× 4 4× 4 4× 4 5× 5 -

NURBS 6 Filters 48 128 128 128 -
Conv 3× 3 3× 3 3× 3 3× 3 -
Pooling 4× 4 4× 4 4× 4 5× 5 -

Volumetric 3 Filters 48 128 128 128 128
Conv 3× 3 3× 3 3× 3 3× 3 3× 3
Pooling 2× 2 2× 2 2× 2 2× 2 2× 2

there are 3 branches, associated to the X-axis, Y -axis and Z-axis respectively. The
input data have a lower resolution, namely 32 × 32 pixels (see Section 5.3.2 for the
rationale behind this choice). Each branch has 5 convolutional layers, each one with
a RELU activation and a max-pooling stage. There are 48 convolutional filters in
the first layer and 128 in the other ones. The filters are still 3× 3, however this time
the max-pooling stages subsample the data by a factor of 2 due to the lower starting
resolution. In this case weights are independent for each branch since the three
profiles capture different data. Notice also that, given the low resolution, sharing
the weights among the three branches would not bring any substantial reduction in
the training effort to be performed. Finally, the third set of branches is devoted
to the surface fitting data. There is a set of coefficients contained in a 2-channel
320×320 pixels map for each 3D view, the structure being very similar to the one of
first group. In this case, there are two channels corresponding to the two principal
curvatures instead of one only. Aside from this, the network architecture is exactly
the same as the one of the first group.

The 128-elements descriptor vectors produced by each one of the 15 channels
are then concatenated in a 15 × 128 = 1920 elements vector and fed to a final
softmax classifier with weight matrix of size 1920 × nc and no bias, where nc is the
considered number of classes. Parameter nc is set equal to 10 and 40 depending
on the dataset used for experimental results. The network is trained as described
in Section 5.5 to produce a labeling of each 3D shape by assigning it one out of
the nc different categories. To this aim, a multi-class cross-entropy loss function is
minimized throughout the training process. Epochs have been limited to 100, even
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if the optimal solution is typically reached earlier.

5.5 Experimental Results

The performance of the proposed approach has been evaluated on the Princeton
ModelNet dataset [114], a large-scale dataset containing 3D object models along
with their ground truth categories. Results are presented for both the 10-class sub-
set ModelNet10 and the larger 40-class subset ModelNet40. In particular, ConvNet
described in Section 5.4 has been trained and tested on the two subsets indepen-
dently. To this aim, standard training and test splits have been adopted as provided
along with each subset data. Specifically, results on the ModelNet10 subset have
been obtained by training the network on 3991 samples, leaving aside 908 samples
for the test. Similarly, training and testing on ModelNet40 has been performed using
9843 and 2468 samples respectively.

In both cases the training has been carried out by minimizing a multi-class cross-
entropy loss function with the Stochastic Gradient Descent (SGD) algorithm. The
Theano framework [103] has been used for the implementation of the optimization
algorithm.

Starting from the ModelNet10 subset, the impact of each one of the three data
representations separately if first evaluated. The results reported in Table 5.2 sug-
gest that the depth maps extracted from the 3D model rendering carry the largest
information content, achieving an average accuracy of 93.2% when used alone. A
remarkable accuracy can also be obtained by feeding the ConvNet with volumetric
profiles only, correctly predicting 91.2% of the models in the test set. Despite this
value is lower than the one derived using depth data, it is still noteworthy that it has
been obtained with a low resolution data representation (32×32 pixels). Even if vol-
umetric profiles size equal to just 1% of depth data, results demonstrate that is still
possible to correctly classify most of the 3D models using this representation alone.
Finally, the accuracy that can be obtained using only surface (NURBS) curvature
data is 90.9%, lower than the other two descriptors but still noticeable, proving also
the effectiveness of this representation. By combining all the three representations
together, an average accuracy of 93.6% has been achieved on the test set, higher
than the one obtained by taking each representation separately.

An in-depth analysis of the performance is shown in Table 5.3, which contains
the confusion matrix of the proposed approach on the ModelNet10 dataset and in
Table 5.4, which reports the average accuracies obtained on each separate class.

Notice how the proposed method is able to achieve a very high accuracy on most
classes. Some of them are almost perfectly recognized, e.g. the bed, chair, monitor
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and toilet classes. On the other side, some critical situations also exist such as the
confusion between the night stand and dresser classes, an expected issue since these
two classes have similar shapes and the disambiguation is difficult in some samples
even for a human observer. Another challenging recognition scenario is given when
it comes to distinguish between the table and desk classes. In several instances
these classes share a typical structure made by a flat surface supported by the legs.
Nonetheless, most samples in these classes are correctly recognized even if some errors
are present.

Table 5.2: Average accuracies on the ModelNet10 and ModelNet40 datasets for the
proposed method when using the three different data representations taken separately
as well as their combination.

Approach ModelNet10 ModelNet40

Depth maps 93.2% 88.0%
Volumetric 92.2% 86.9%
NURBS 90.9% 85.2%
Combined 93.6% 89.3%

The performance of the proposed approach has also been compared with some
recent state-of-the-art approaches on the ModelNet10 dataset (all the compared ap-
proaches can be dated back to the last two years). The comparison is reported in
Table 5.5: the average accuracy of 93.6% obtained by combining all three data rep-
resentations is higher than most of previous works. Specifically, only [6] and [54]
outperform the proposed approach, the second one by a limited performance gap.

The approach has been evaluated also on the larger ModelNet40 subset that,
as expected, proved to be more challenging due to the larger number of classes
and higher variety of models. The results on this subset are reported in the last
column of Table 5.5. The depth information alone allows to obtain an accuracy of
88.0%, a lower value than the one achieved on ModelNet10. Yet the loss (about 5%)
is quite limited, especially if considering that the model is expected to discriminate
between 4 times more categories. Accuracy undergoes a similar drop also when using
volumetric data, being able to correctly recognize 86.9% of the models compared to
92.2% on the ModelNet10 subset. As for NURBS data, the test gave an accuracy of
85.2%, consistently with the results obtained with depth and volumetric data. Notice
how the relative ranking of the three representations is the same as for ModelNet10,
being depth the most accurate, followed by volumetric data and finally NURBS
curvatures. Finally, the combined use of the three representations led to an accuracy
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Table 5.3: Confusion matrix for the proposed approach on the ModelNet10 dataset.
Values are given in percentage.
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bathtub 92 8 0 0 0 0 0 0 0 0
bed 0 100 0 0 0 0 0 0 0 0
chair 0 0 100 0 0 0 0 0 0 0
desk 0 1 0 86 0 0 7 1 5 0

dresser 0 0 0 0 85 1 14 0 0 0
monitor 0 0 0 0 1 99 0 0 0 0
night st. 0 0 0 0 13 0 80 0 7 0
sofa 0 0 0 1 0 0 2 97 0 0
table 0 0 0 7 0 0 0 0 93 0
toilet 0 0 1 0 0 0 0 0 0 99

Table 5.4: Accuracy of the proposed approach on the various classes of the Model-
Net10 dataset. The number of samples belonging to each class is also reported.

Class Acc. Samples Class Acc. Samples

bathtub 92% 50 monitor 99% 100
bed 100% 100 night st. 80% 86
chair 100% 100 sofa 97% 100
desk 86% 86 table 93% 100
dresser 85% 86 toilet 99% 100
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Table 5.5: Average accuracies on the ModelNet10 and ModelNet40 datasests for
some state-of-the-art methods from the literature and for the proposed method.

Approach ModelNet10 ModelNet40

3DShapeNets [114] 83.5% 77.0%
DeepPano [92] 85.5% 77.6%
VoxNet [66] 92.0% 83.0%
Klokov and Lempitsky [54] 94.0% 91.8%
Zanuttigh and Minto [121] 91.5% 87.8%
LightNet [125] 93.39% 86.90%
Xu and Todorovic [115] 88.00% 81.26%
Pairwise [49] 92.8% 90.7%
3D-GAN [113] 91.0% 83.3%
VRN Ensemble [6] 97.14% 95.54%
Geometry Image [96] 88.4% 83.9%
GIFT [2] 92.4% 83.1%
ECC [95] 90.0% 83.2%
FusionNet [40] 93.11% 90.8%
PANORAMA-NN [91] 91.1% 90.7%
Proposed Method 93.6% 89.3%
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of 89.3%. Notice that, in this case, the gap with respect to the various representations
taken separately is larger, revealing the effectiveness of the combined use of multiple
representations particularly when dealing with more challenging tasks. The drop
with respect to ModelNet10 when all representations are used is just around 4%.

The average accuracy for each single class is shown in Table 5.6, while some
examples of correctly and wrongly classified objects are shown in Figure 5.5 and
5.6 respectively. The accuracy is high on most classes except for a few of them,
e.g., the flower pot and radio classes. These correspond to classes with a limited
amount of training samples and a large variability between the samples for which
the algorithm is not able to properly learn the structure. Inter-class similarities
are also more common given the larger number of fine-grain classes present in the
subset. In general, classes sharing a similar appearance are more challenging to
disambiguate, leading the model to confuse e.g. table instances with desk instances.
Similarly, flower pot instances are often misclassified as plant or vase while a number
of cup instances have been wrongly assigned to the vase category (some examples in
these classes are shown in Figure 5.6).

The comparison with competing approaches on the ModelNet40 dataset is also
reported in Table 5.5. In this case the proposed approach ranks 6th out of 15 com-
pared methods, a very good performance even if the relative ranking is slightly lower
than in the previous case, specially considering that all the compared approaches are
very recent and from top conferences and journals.

Bookshelf Cup Bed Car
574 94 518 203

Figure 5.5: Examples of 3D models from theModelNet40 dataset correctly recognized
by the proposed approach.

Finally concerning the training time, it is about 22 hours for the ModelNet10
dataset and 51 hours for the larger ModelNet40 dataset. The tests have been per-
formed on a system equipped with an 3.60 GHz Intel i7-4790 CPU and an NVIDIA
TitanX (Pascal) GPU and refer to the complete version of the approach with all the
three representations.
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Wardrobe Cup Flower pot Flower pot
95 93 153 150

(Bookshelf ) (Vase) (Vase) (Plant)

Figure 5.6: Examples of 3D models from the ModelNet40 dataset wrongly recognized
by the proposed approach. The predicted categories are reported in parenthesis.

Table 5.6: Accuracy of the proposed approach on the various classes of the Model-
Net40 dataset. The number of samples belonging to each class is also reported.

Class Acc. Samples Class Acc. Samples

airplane 100% 100 laptop 100% 20
bathtub 90% 50 mantel 94% 100
bed 97% 100 monitor 99% 100
bench 80% 20 night st. 76% 86
bookshelf 97% 100 person 100% 20
bottle 96% 100 piano 89% 100
bowl 100% 20 plant 91% 100
car 97% 100 radio 60% 20
chair 96% 100 r. hood 94% 100
cone 90% 20 sink 70% 20
cup 65% 20 sofa 96% 100
curtain 80% 20 stairs 75% 20
desk 84% 86 stool 90% 20
door 95% 20 table 77% 100
dresser 80% 86 tent 90% 20
flower pot 15% 20 toilet 97% 100
glass box 96% 100 tv st. 84% 100
guitar 93% 100 vase 74% 100
keyboard 100% 20 wardrobe 80% 20
lamp 75% 20 xbox 70% 20



Chapter 6

Conclusions

Three problems have been faced, namely ToF-stereo data fusion, semantic segmen-
tation of RGB-D images and 3D shape classification.

In all three cases, a ConvNet has been used to directly tackle the problem or one of
its sub-part. In Chapter 3 a deep ConvNet trained on a synthetic dataset is employed
to estimate the reliability of ToF and stereo data obtaining reliable confidence maps
identifying the most critical acquisition issues of both sub-systems. The solution to
the fusion problem is then demanded to a different algorithm, the LC algorithm [64],
which fuses the ToF and stereo disparities exploiting their estimated confidences. In
Chapter 4 a multi-scale ConvNet is used to extract suitable descriptors from color
and geometry clues. Once such descriptors have been extracted, a similarity measure
is computed from them and then exploited together with surface fitting errors to drive
the merging operations iteratively applied to go from an initial over-segmentation
to the final result. Finally, the 3D shape recognition problem in Chapter 5 is fully
addressed (except for a pre-processing stage) by a multi-branch ConvNet that takes
as input suitable surface and volume representations of a given 3D model and outputs
its predicted class.

3D data have also been exploited throughout all three approaches, i.e. depth and
volumetric data has been used for the classification task, while color and depth data
have been jointly exploited in the ToF-stereo fusion and RGB-D semantic segmen-
tation.

Results suggest that, for the tasks being considered, both the use of deep ConvNet
models as well as the joint exploitation of geometry clues together with color ones
represent a successful strategy. In particular, the approaches proposed in Chapter
4 and 5 for semantic segmentation and 3D shape recognition respectively proved
to achieve a state-of-the-art performance. As for ToF-stereo fusion, the gap with

73
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other state-of-the-art approaches is still small. In this specific case however, tests
made by driving the fusion with ground truth confidence maps revealed a substantial
improvement, suggesting that the use of a more powerful ConvNet and likely more
accurate confidence estimates would led to better results.



Bibliography

[1] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik. Contour
detection and hierarchical image segmentation. IEEE transactions on pattern
analysis and machine intelligence, 33(5):898–916, 2011.

[2] Song Bai, Xiang Bai, Zhichao Zhou, Zhaoxiang Zhang, and Longin Jan Latecki.
Gift: A real-time and scalable 3d shape search engine. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 5023–
5032, 2016.

[3] Dan Banica and Cristian Sminchisescu. Second-order constrained parametric
proposals and sequential search-based structured prediction for semantic seg-
mentation in rgb-d images. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 3517–3526, 2015.

[4] Blender website. https://www.blender.org/, Accessed July 31st, 2017.

[5] Blend swap website. https://www.blendswap.com/, Accessed July 31st, 2017.

[6] Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Generative
and discriminative voxel modeling with convolutional neural networks. arXiv
preprint arXiv:1608.04236, 2016.

[7] Joao Carreira and Cristian Sminchisescu. Cpmc: Automatic object segmen-
tation using constrained parametric min-cuts. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 34(7):1312–1328, 2012.

[8] Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward
feature space analysis. IEEE Transactions on pattern analysis and machine
intelligence, 24(5):603–619, 2002.

75



BIBLIOGRAPHY 76

[9] Camille Couprie, Clément Farabet, Laurent Najman, and Yann LeCun.
Indoor semantic segmentation using depth information. arXiv preprint
arXiv:1301.3572, 2013.

[10] Camille Couprie, Clément Farabet, Laurent Najman, and Yann Lecun. Convo-
lutional nets and watershed cuts for real-time semantic labeling of rgbd videos.
Journal of Machine Learning Research, 15(1):3489–3511, 2014.

[11] Carlo Dal Mutto, Pietro Zanuttigh, and Guido M Cortelazzo. A probabilistic
approach to tof and stereo data fusion. 3DPVT, Paris, France, 2, 2010.

[12] Carlo Dal Mutto, Pietro Zanuttigh, and Guido M Cortelazzo. Fusion of geom-
etry and color information for scene segmentation. IEEE Journal of Selected
Topics in Signal Processing, 6(5):505–521, 2012.

[13] Carlo Dal Mutto, Pietro Zanuttigh, Guido M Cortelazzo, and Stefano Mattoc-
cia. Scene segmentation assisted by stereo vision. In 3D Imaging, Modeling,
Processing, Visualization and Transmission (3DIMPVT), 2011 International
Conference on, pages 57–64. IEEE, 2011.

[14] Carlo Dal Mutto, Pietro Zanuttigh, and Guido Maria Cortelazzo. Probabilistic
tof and stereo data fusion based on mixed pixels measurement models. IEEE
transactions on pattern analysis and machine intelligence, 37(11):2260–2272,
2015.

[15] Carlo Dal Mutto, Pietro Zanuttigh, Stefano Mattoccia, and Guido Cortelazzo.
Locally consistent tof and stereo data fusion. In Computer Vision–ECCV 2012.
Workshops and Demonstrations, pages 598–607. Springer, 2012.

[16] Zhuo Deng, Sinisa Todorovic, and Longin Jan Latecki. Semantic segmentation
of rgbd images with mutex constraints. In Proceedings of the IEEE interna-
tional conference on computer vision, pages 1733–1741, 2015.

[17] James Diebel and Sebastian Thrun. An application of markov random fields
to range sensing. In Advances in neural information processing systems, pages
291–298, 2006.

[18] Jennifer Dolson, Jongmin Baek, Christian Plagemann, and Sebastian Thrun.
Upsampling range data in dynamic environments. In Computer Vision and
Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 1141–1148.
IEEE, 2010.



BIBLIOGRAPHY 77

[19] David Eigen and Rob Fergus. Predicting depth, surface normals and semantic
labels with a common multi-scale convolutional architecture. In Proceedings
of the IEEE International Conference on Computer Vision, pages 2650–2658,
2015.

[20] Georgios D Evangelidis, Miles Hansard, and Radu Horaud. Fusion of range and
stereo data for high-resolution scene-modeling. IEEE transactions on pattern
analysis and machine intelligence, 37(11):2178–2192, 2015.

[21] Clement Farabet, Camille Couprie, Laurent Najman, and Yann LeCun. Learn-
ing hierarchical features for scene labeling. IEEE transactions on pattern anal-
ysis and machine intelligence, 35(8):1915–1929, 2013.

[22] Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient graph-based image
segmentation. International journal of computer vision, 59(2):167–181, 2004.

[23] Charless Fowlkes, Serge Belongie, Fan Chung, and Jitendra Malik. Spectral
grouping using the nystrom method. IEEE transactions on pattern analysis
and machine intelligence, 26(2):214–225, 2004.

[24] A Frick, F Kellner, B Bartczak, and R Koch. Generation of 3d-tv ldv-content
with time-of-flight camera. In 3DTV Conference: The True Vision-Capture,
Transmission and Display of 3D Video, 2009, pages 1–4. IEEE, 2009.

[25] Alberto Garcia-Garcia, Francisco Gomez-Donoso, Jose Garcia-Rodriguez, Ser-
gio Orts-Escolano, Miguel Cazorla, and J Azorin-Lopez. Pointnet: A 3d con-
volutional neural network for real-time object class recognition. In Neural
Networks (IJCNN), 2016 International Joint Conference on, pages 1578–1584.
IEEE, 2016.

[26] Valeria Garro, Carlo Dal Mutto, Pietro Zanuttigh, and Guido M Cortelazzo.
A novel interpolation scheme for range data with side information. In Visual
Media Production, 2009. CVMP’09. Conference for, pages 52–60. IEEE, 2009.

[27] Agresti Gianluca, Minto Ludovico, Giulio Marin, and Pietro Zanuttigh. Deep
learning for confidence information in stereo and tof data fusion. In Computer
Vision–ECCV 2017 Workshops. Springer, 2017.

[28] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, pages 249–256, 2010.



BIBLIOGRAPHY 78

[29] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016.

[30] Marcin Grzegorzek, Christian Theobalt, Reinhard Koch, and Andreas Kolb.
Time-of-Flight and Depth Imaging. Sensors, Algorithms and Applications:
Dagstuhl Seminar 2012 and GCPR Workshop on Imaging New Modalities, vol-
ume 8200. Springer, 2013.

[31] Sigurjon Arni Gudmundsson, Henrik Aanaes, and Rasmus Larsen. Fusion of
stereo vision and time-of-flight imaging for improved 3d estimation. Inter-
national Journal of Intelligent Systems Technologies and Applications, 5(3-
4):425–433, 2008.

[32] Yulan Guo, Mohammed Bennamoun, Ferdous Sohel, Min Lu, and Jianwei
Wan. 3d object recognition in cluttered scenes with local surface features:
a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,
36(11):2270–2287, 2014.
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