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Dipartimento di Matematica Pura ed Applicata
via G. Belzoni n.7, I-35131 Padova, Italy

DOTTORATO DI RICERCA IN

MATEMATICA

X CICLO

PERTURBATION ANALYSIS OF THE
CONFORMAL SEWING PROBLEM AND

RELATED PROBLEMS

Coordinatore: Ch.mo Prof. Valentino Cristante

Tutore: Ch.mo Prof. Massimo Lanza de Cristoforis

Dottorando: Luca Preciso

31 dicembre 1998



Contents

Riassunto 3

Abstract 5

Chapter 1. Preliminaries and notation 7

1.1. Notation 7

1.2. Basic properties of Schauder spaces 8

Chapter 2. Complex analyticity of the Cauchy singular integral in Schauder

spaces 17

2.1. Introduction 17

2.2. Introduction of a modified problem and real analyticity of the

Cauchy singular integral 19

2.3. Complex analyticity of the Cauchy singular integral 27

Chapter 3. Perturbation analysis of the conformal sewing problem in

Schauder spaces 33

3.1. Introduction 33

3.2. The integral equation associated to the sewing problem. Analyticity

of the operator G 36

3.3. Regularity of the operator F associated to the sewing problem 46

Chapter 4. Roumieu spaces and Sewing Problem 49

4.1. Introduction 49

4.2. The composition operator in Roumieu spaces associated to the

differentiation operator 49

4.3. Analyticity of the operators associated to the sewing problem in

Roumieu spaces 57

References 65

References 65

1





Riassunto

In questa tesi sviluppiamo due problemi connessi di analisi funzionale non lin-

eare: l’analisi di tipo perturbativo del problema di cucitura conforme negli spazi

di Schauder e di Roumieu che, nella nostra formulazione, richiede come prerequi-

sito lo studio di un secondo problema, ovvero l’analiticità dell’integrale singolare

di Cauchy negli spazi di Schauder. Nel Capitolo II, consideriamo l’integrale sin-

golare di Cauchy

C[φ, f ](·) ≡ 1

2πi
p. v.

∫
∂D

f(t)φ′(t)

φ(t)− φ(·)
dt =

1

2πi
p. v.

∫
φ

f ◦ φ(−1)(ξ)

ξ − φ(·)
dξ

dove la curva semplice orientata φ e la funzione densità f sono entrambe definite

nel bordo orientato ∂D del disco unitario aperto D. Nonostante temi di ricerca

come le proprietà dell’operatore lineare C[φ, ·] ed il calcolo numerico della fun-

zione C[φ, f ] siano stati approfonditamente studiati a partire dal secolo scorso in

vista di numerose applicazioni alle equazioni integrali e ai problemi al contorno

(cf. e.g. Muskhelishvili (1953) and Gakhov (1966)), l’analisi della dipendenza

funzionale di C[φ, f ] da entrambe gli argomenti, ed in particolare da φ, sembra

cominciare solo di recente (cf. Introduzione Cap. II). Questo nuovo argomento

di ricerca può essere applicato allo studio di tipo perturbativo di problemi non

lineari in cui compaia l’integrale singolare di Cauchy. Nel Capitolo II estendiamo

un risultato di analiticità di Coifman & Meyer (1983b) ad un contesto di spazi

di Schauder. Assumiamo che φ e f appartengano ad uno spazio di Schauder, che

chiameremo Cm,α∗ (∂D,C), costituito dalle funzioni di classe Cm,α su ∂D, dove m è

un numero naturale positivo ed α ∈ ]0, 1[. È ben noto che sotto queste ipotesi su

φ e f , la funzione C[φ, f ](·) è di classe Cm,α. Dimostrando esistenza ed unicità

di soluzione per un problema al contorno di tipo ellittico ed applicando il Teo-

rema della Funzione Implicita, otteniamo che l’operatore C[·, ·] è reale analitico.

Successivamente calcoliamo tutti i differenziali di C[·, ·] e proviamo che C[·, ·] è

analitico in senso complesso. Questo risultato di Lanza & Preciso (1998) è stato

applicato nella seconda parte della tesi ed in un altro problema di perturbazione

relativo ad una equazione integrale non lineare (cf. Lanza & Rogosin (1997)).

Nel Capitolo III, introduciamo il problema di cucitura conforme associato ad

uno shift φ di ∂D, i.e. un omeomorfismo di ∂D in sé. Tale problema consiste nella

ricerca di una coppia di funzioni (F,G) definite in D e C \ clD, rispettivamente,
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4 RIASSUNTO

tali che le loro estensioni continue a clD e C\D, F̃ e G̃ rispettivamente, soddisfino

F̃ (φ(t)) = G̃(t)

per ogni t ∈ ∂D. Una semplice condizione di normalizzazione e risultati noti

assicurano che il problema di cucitura conforme abbia un’unica soluzione (F,G) e

indichiamo con (F [·],G[·]) la coppia di operatori che mappa lo shift φ nella traccia

su ∂D di tale soluzione. Le proprietà di regolarità degli operatori F [·] e G[·] in

spazi di funzioni regolari possono essere usate per ottenere informazioni sulle

funzioni F [φ] e G[φ], che in generale risultano solo implicitamente determinate

come soluzioni di equazioni integrali. Una tale analisi può avere un parziale

interesse nello studio degli spazi di Teichmüller, che costituiscono un importante

argomento nella teoria geometrica delle funzioni (cf. Nag (1996)). Quindi ci siamo

proposti di trovare spazi di funzioni regolari rispetto ai quali gli operatori F [·]
e G[·] siano analitici. Prima studiamo la regolarità di tali operatori negli spazi

di Schauder Cm,α∗ (∂D,C), con m ≥ 1, α ∈ ]0, 1[. Utilizzando un metodo classico

di equazioni integrali con shift già applicato al problema di cucitura conforme,

mostriamo che G[φ] e F [φ] = G[φ]◦φ(−1) appartengono a Cm,α∗ (∂D,C) quando φ

appartiene Cm,α∗ (∂D,C). In tale contesto di spazi di Schauder, usando l’analiticità

dell’integrale singolare di Cauchy (cf. Cap. II) ed applicando il Teorema della

Funzione Implicita ad un’opportuna equazione integrale, mostriamo che G[·] si

estende ad un operatore analitico in senso complesso. Proviamo poi che questo

contesto di spazi di Schauder non è sufficiente per ottenere un’estensione analitica

dell’operatore F [·]. Infatti una condizione naturale per avere F [·] analitico si

rivela essere l’appartenenza di φ ad uno spazio di funzioni reali analitiche di ∂D
in C. Nel Capitolo IV introduciamo dei ben noti spazi di funzioni reali analitiche,

vale a dire gli spazi di Roumieu associati all’operatore di differenziazione. In

questo contesto dimostriamo che gli operatoriG[·] e F [·] si estendono ad operatori

analitici in senso complesso utilizzando i risultati di regolarità per l’operatore di

composizione e di inversione di Lanza (1994 e 1996b).

Ringraziamenti. Desidero ringraziare vivamente il Prof. Massimo Lanza

de Cristoforis per avermi pazientemente seguito nella preparazione della tesi di

dottorato. Un sentito ringraziamento al Maestro Prof. Adalberto Orsatti per

avermi guidato nel percorso di formazione alla ricerca. Ringrazio il Referee per

aver esaminato con cura la tesi e per i suoi attenti suggerimenti. Infine esprimo

gratitudine ai Dottori Riccardo Colpi, Alberto Tonolo e Maria Emilia Maietti

per i loro consigli sull’orientamento della mia ricerca.



Abstract

In this dissertation, we develop two related problems in the nonlinear func-

tional analysis. The first is the analyticity of the Cauchy singular integral in

Schauder spaces which is motivated by the second problem, namely the per-

turbation analysis of the conformal sewing problem in Schauder and Roumieu

spaces. In Chapter II, we consider the Cauchy singular integral

C[φ, f ]( · ) ≡ 1

2πi
p. v.

∫
∂D

f(t)φ′(t)

φ(t)− φ(·)
dt =

1

2πi
p. v.

∫
φ

f ◦ φ(−1)(ξ)

ξ − φ(·)
dξ

where the oriented simple closed curve φ and the density function f are both

defined on the counterclockwise oriented boundary ∂D of the plane unit disk D.

Although the linear operator C[φ, ·], for a fixed φ, and the numerical compu-

tation of C[φ, f ] have been extensively studied for the last century, in view to

several applications to integral equations and boundary value problems (cf. e.g.

Muskhelishvili (1953) and Gakhov (1966)), the analysis of the nonlinear func-

tional dependence of C[φ, f ] upon both its arguments seems to be a subject ana-

lyzed only more recently (see Introduction Ch. II). This new subject of research

finds application in the nonlinear problems of perturbation nature which involve

the Cauchy singular integral. In Chapter II we extend the analyticity result for

the operator C[·, ·] of Coifman & Meyer (1983b) to a Schauder spaces setting.

We assume that both φ and f belong to a Schauder space, say Cm,α∗ (∂D,C), of

complex-valued function of class Cm,α on ∂D, with m a positive natural num-

ber and α ∈ ]0, 1[. As it is well-known, under such conditions on φ and f , the

function C[φ, f ](·) is also of class Cm,α. By proving the unique solvability of a

boundary value problem of elliptic nature in D and by applying Implicit Function

Theorem to a suitable functional equation, we show the real analyticity of C[·, ·].
Then we show the complex analyticity of C[·, ·] and we compute all its differen-

tials. This result of Lanza & Preciso (1998) will be applied in the second part of

this dissertation and in another perturbation problem associated to a nonlinear

integral equation (cf. Lanza & Rogosin (1997)).

In Chapter III, we introduce the conformal sewing problem associated to a

shift φ of ∂D, i.e. a homeomorphism of ∂D to itself. It consists in finding a pair

of conformal functions (F,G) defined in D and C \ clD, respectively, such that
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6 ABSTRACT

their continuous extensions to clD e C \ D, F̃ and G̃ respectively, satisfy

F̃ (φ(t)) = G̃(t)

for all t ∈ ∂D. A simple normalization condition and well-known results ensure

that the sewing problem associated to φ has a unique solution (F,G) and we

denote by (F [·],G[·]) the pair of operators which maps φ to the trace on ∂D
of such solution. The regularity properties of the operators F [φ] and G[φ] in

spaces of regular functions can be used in the study of Teichmüller spaces, which

constitute an important subject in geometric function theory (see Nag (1996)).

Our aim is to find natural Banach spaces of regular functions where to obtain

the analyticity of F [·] and G[·]. First we study the regularity of such operators

in Schauder spaces Cm,α∗ (∂D,C), with m ≥ 1, α ∈ ]0, 1[. By using the classical

integral equation approach to the sewing problem, we show thatG[φ] and F [φ] =

G[φ] ◦ φ(−1) belong to Cm,α∗ (∂D,C) when φ belongs to Cm,α∗ (∂D,C). In this

setting, by using the analyticity of the Cauchy singular integral (cf. Ch. II) and by

applying Implicit Function Theorem to a suitable integral equation, we show that

G[·] extends to a complex analytic operator. Then we prove that this Schauder

spaces setting is not sufficient in order to obtain an analytic extension of the

operator F [·]. Indeed a natural assumption in order to have F [·] analytic, is that

φ belongs to a space of real analytic functions of ∂D to C. In Chapter IV we

introduce Banach spaces of real analytic functions, namely the Roumieu spaces

associated to the differentiation operator. In this setting we show that G[·] and

F [·] can be extended to complex analytic operators by employing the regularity

results on the composition and on the inversion operator of Lanza (1994 and

1996b).
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CHAPTER 1

Preliminaries and notation

1.1. Notation

Let X , Y be normed spaces over K, with K = R or K = C. We say that

X is continuously imbedded in Y, provided that X ⊆ Y and that the inclusion

map is continuous. Let N be the set of nonnegative integers including 0 and let

n ∈ N \ {0}. Let {Xi : i = 1, . . . , n} be normed spaces over K. Unless otherwise

specified, we understand that the product
∏n
i=1Xi is equipped with the sup-norm

of the norms of the components. LnK(
∏n
i=1Xi,Y) (or Ln(

∏n
i=1Xi,Y) if there is

no ambiguity) denotes the normed space of the continuous K-n-linear maps of∏n
i=1Xi into Y and is equipped with the topology of the uniform convergence

on the unit sphere of
∏n
i=1Xi. Let x0 ∈ X , ρ > 0. B(x0, ρ) denotes the open

ball of center x0 and radius ρ of X . To emphasize the finite dimensional case,

when X = Rn we use the symbol B(x0, ρ) with the same meaning of B(x0, ρ). To

emphasize that the variables of a certain operator F are functions rather than

scalars, we write F [φ] or F [φ, f ] instead F (φ) or F (φ, f). For standard definitions

of Calculus in normed spaces, we refer e.g. to Prodi & Ambrosetti (1973) or to

Berger (1977). [ · ]n denotes the diagonal map of X to X n defined by [v]n ≡
(v, . . . , v) for all v ∈ X . A complex normed space can be viewed naturally as a

real normed space. Accordingly, we will say that a certain map between complex

normed spaces is real differentiable, real analytic or real linear, to indicate that

such map is differentiable, analytic or linear respectively as a map between the

corresponding underlying real spaces. To emphasize that we are retaining the

complex structure, we will say that the map is complex differentiable, complex

analytic or complex linear. The inverse function of a function f is denoted f (−1)

as opposed to the reciprocal of a complex valued function G or the inverse of

a matrix A, which are denoted G−1 and A−1 respectively. Let r ∈ N \ { 0}.
Mr(K) denotes the set of r× r matrices with entries in K . A dot ‘·’ denotes the

matrix product. Throughout the paper, we make no formal distinction between

complex numbers and pairs of real numbers, so D denotes the open unit disk

both in C and in R2. Let B ⊆ Rn. Then clB denotes the closure of B and intB

denotes the interior of B. If B is an open subset of R2, H(B) is the set of all

holomorphic functions of B to C. If G ≡ G1 + iG2 ∈ C1(clB,C), we set as usual

∂G ≡ 1
2(∂x1G+ i∂x2G) = 1

2 [(∂x1G1 − ∂x2G2) + i(∂x1G2 + ∂x2G1)].

7



8 1. PRELIMINARIES AND NOTATION

1.2. Basic properties of Schauder spaces

We now introduce the Schauder spaces on open subsets of Rn. As usual we

set |η| ≡ η1 + · · · + ηn for all η ∈ Nn. Let m ∈ N. Let Ω be an open subset

of Rn and let (Y, ‖ ‖Y) be a normed space over K. We denote by Cm(Ω,Y)

the space of m-times continuously real differentiable functions of Ω to Y and by

Cm(cl Ω,Y) the subspace of those functions F ∈ Cm(Ω,Y) such that for all η ∈ Nn

with |η| ≤ m, the function DηF ≡ ∂|η|F
∂
η1
1 ...∂ηnn

can be extended with continuity to

cl Ω. In particular if n is even the elements of Cm(cl Ω,Y) or of Cm(Ω,Y) are not

necessarily holomorphic (i.e. complex analytic) in Ω even when m > 0. If Ω is a

bounded open subset of Rn, we equip Cm(cl Ω,Y) with the norm ‖F‖Cm(cl Ω,Y) ≡∑
|η|≤m supcl Ω ‖DηF‖Y . The subspace of Cm(cl Ω,Y) whose functions have m-th

order derivatives that are Hölder continuous with exponent α ∈ ]0, 1] is denoted

Cm,α(cl Ω,Y). If F ∈ C0,α(cl Ω,C), then its Hölder quotient |F : Ω|α or more

simply |F |α, is defined as

sup

{
‖F (ξ1)− F (ξ2)‖Y
|ξ1 − ξ2|α

: ξ1, ξ2 ∈ cl Ω, ξ1 6= ξ2

}
.

] The space Cm,α(cl Ω,Y) is equipped with its usual norm

‖F‖Cm,α(cl Ω,Y) ≡ ‖F‖Cm(cl Ω,Y) +
∑
|η|=m

|DηF |α .

It is well known that (Cm(cl Ω,Y), ‖ ‖Cm(cl Ω,Y)) and (Cm,α(cl Ω,Y), ‖ ‖Cm,α(cl Ω,Y))

are Banach spaces over K. IfB ⊆ Y, Cm(cl Ω, B) denotes the set {F ∈ Cm(cl Ω,Y) :

F (cl Ω) ⊆ B}. Similarly we define Cm,α(cl Ω, B). Let r ∈ N \ { 0}. As usual, if

F ∈ C1(cl Ω,R r) and x0 ∈ cl Ω, (DF )(x0) denotes the r × n Jacobian matrix of

F at x0. Standard norm inequalities imply that the normed spaces Cm(cl Ω,K r),

Cm,α(cl Ω,K r) and Cm,α(cl Ω,Mr(K)) are isomorphic to (Cm(cl Ω,K))r, (Cm,α(cl Ω,

K))r and (Cm,α(cl Ω,K))r
2
, respectively. In particular Cm(cl Ω,K r), Cm,α(cl Ω,K r)

and Cm,α(cl Ω,Mr(K)) are Banach spaces. In accordance with our definitions,

the real Banach spaces Cm,α(cl Ω,C) and Cm,α(cl Ω,R2) coincide algebraically

and have equivalent norms. Let K be a bounded connected subset of Rn and let

x, y ∈ K. Let λ(x, y) be the infimum of the lengths of piecewise smooth curves

γ of [0, 1] to K (i.e. there exist r ∈ N and an increasing finite sequence {ai ∈
[0, 1] : i = 0, . . . , r} with a0 = 0, ar = 1 such that f[ai,ai+1] ∈ C1([ai, ai+1],K) for

all i < r) with γ(0) = x, γ(1) = y. We set

(1.2.1) c[K] ≡ sup

{
λ(x, y)

|x− y|
: x, y ∈ K, x 6= y

}
.

The subset K of Rn is said to be regular in the sense of Whitney if K is bounded,

connected and if c[K] < +∞. It is well known that if Ω is a bounded, connected,

open subset of Rn of class C1, then c[Ω] < +∞ (cf. e.g. Jones (1981, p. 73)).
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We now state two abstract results that we need to prove some technical facts

on the composition and on the reciprocal operator in Schauder spaces. The

validity of the following has been pointed out in Lanza (1996, Prop. 3.11).

Lemma 1.2.2. Let X , Y, Z be normed spaces. Let A ⊆ X . Let S be a map of

Y × A to Z such that for all x ∈ A, the map S[·, x] is linear from Y to Z (i.e.

S is linear in its first variable). Then the following statements are equivalent.

(i) S maps bounded sets of Y ×A to bounded sets of Z.

(ii) There exists an increasing function ψ (i.e. ψ(ρ1) ≤ ψ(ρ2) whenever

ρ1 ≤ ρ2) of [0,∞[ to itself such that ‖S[y, x]‖Z ≤ ‖y‖Y ψ(‖x‖X ) for all

(y, x) ∈ Y ×A.

Proof. Statement (ii) follows by statement (i) by setting ψ(r) ≡ sup{‖S[y, x]‖Z :

(y, x) ∈ Y × A, ‖y‖Y = 1, ‖x‖X ≤ r} where sup ∅ ≡ 0. Statement (i) is an

obvious consequence of statement (ii). �

The validity of the following abstract Proposition concerning the regularity of

the reciprocal map is well-known and can be verified by a standard argument (cf.

e.g. Hille & Phillips (1957, Thm. 4.3.2 and Thm. 4.3.4)).

Proposition 1.2.3. Let X be a real or complex Banach algebra with unity (pos-

sibly noncommutative). Let I be the subset of the elements of X which are in-

vertible with respect to the product of X . Then I is open and the reciprocal map,

which takes an element x of I to its reciprocal with respect to the product of X ,

is analytic.

Then we have the following.

Lemma 1.2.4. Let m,n, r, h ∈ N, n, r, h ≥ 1, α, β ∈ ]0, 1]. Let Ω be an open

subset of Rn, regular in the sense of Whitney. Then we have the following.

(i) Cm+1(cl Ω,C) is continuously imbedded in Cm,α(cl Ω,C).

(ii) The pointwise product in Cm,α(cl Ω,R) is a continuous bilinear map of

(Cm,α(cl Ω,R))2 to Cm,α(cl Ω,R). In particular Cm,α(cl Ω,R) with this

product is a commutative Banach algebra with unity.

(iii) The pointwise matrix product in Cm,α(cl Ω,Mr(R)) is a continuous bi-

linear map of (Cm,α(cl Ω,Mr(R)))2 to Cm,α(cl Ω,Mr(R)). In particular

Cm,α(cl Ω,Mr(R)) with this product is a noncommutative Banach algebra

with unity.

(iv) The reciprocal map in Cm,α(cl Ω,Mr(R)), which maps an invertible ma-

trix of functions M to its inverse matrix M−1, is real analytic from the

open subset {M ∈ Cm,α(cl Ω,Mr(R)) : det(M(x)) 6= 0, ∀x ∈ cl Ω} of

Cm,α(cl Ω,Mr(R)) to itself.
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(v) Let Ω1 be an open subset of Rr, regular in the sense of Whitney. If F ∈
Cm,α(cl Ω1,Rh) and if G ∈ Cm,β(cl Ω, cl Ω1) then F◦G ∈ Cm,γm(α,β)(cl Ω,Rh),

with γ0(α, β) = αβ and γm(α, β) = min{α, β} if m > 0. Furthermore,

there exists an increasing function ψ of [0,+∞[ to itself such that

‖F ◦G‖Cm,γm(α,β)(cl Ω,Rh) ≤ ‖F‖Cm,α(cl Ω1,Rh)ψ(‖G‖Cm,β(cl Ω,Rr)),

for all (F,G) ∈ Cm,α(cl Ω1,Rh)× Cm,β(cl Ω, cl Ω1).

(vi) Let m ≥ 1. If G ∈ Cm,α(cl Ω,Rn) is injective and satisfies the condition

det DG(x) 6= 0 for all x in cl Ω then G(Ω) is a bounded connected

open subset of Rn, and G(cl Ω) = clG(Ω), and c[G(Ω)] < +∞, and

G(−1) ∈ Cm,α(clG(Ω), cl Ω).

Proof. Statement (i) is an obvious consequence of the inclusion C1(cl Ω,C) ⊆
C0,α(cl Ω,C), which holds because Ω is regular in the sense of Whitney. State-

ment (ii) is well-known (cf. e.g. Lanza (1991, Lemma 2.4 (v))); we can prove

statement (iii) by using (ii) and by a simple computation. By Proposition 1.2.3

and by statement (iii) we obtain statement (iv). The first part of statement

(v) can be proved by induction on m, by using the chain rule and by state-

ment (i) and (ii) (see also Lanza (1991, Lemma 4.20)). We can prove the second

part of (v) by Lemma 1.2.2 and by showing that the composition operator of

Cm,α(cl Ω1,Rh)×Cm,β(cl Ω, cl Ω1) to Cm,γm(α,β)(cl Ω,Rh) maps bounded sequences

to bounded sequences, a fact which easily follows by induction on m, by the chain

rule and by statement (ii). To prove statement (vi), we note that G(Ω) is open by

the Inverse Function Theorem. Since cl Ω is compact, G is a homeomorphism of

cl Ω onto G(cl Ω) and then we have G(cl Ω) = clG(Ω). Inequality c[G(Ω)] < +∞
follows for example from Lanza (1991, Lemma 4.26). Then by induction on m,

by exploiting statement (v) and equality DG(−1)(y) = (DG(G(−1)(y)))−1 for all

y ∈ clG(Ω), we obtain G(−1) ∈ Cm,α(clG(Ω), cl Ω). �

As we shall see later, we parametrize Jordan domains by one to one functions

defined on the unit disk. Thus we will employ the following (cf. Lanza (1991,

Cor. 4.24, Prop. 4.29)).

Lemma 1.2.5. Let h ∈ N \ {0} and let Ω be a bounded open subset of Rh, regular

in the sense of Whitney. Let Ψ ∈ C1(cl Ω,Rh). Let

lΩ[Ψ ] ≡ inf

{
|Ψ(x)− Ψ(y)|
|x− y|

: x, y ∈ cl Ω, x 6= y

}
,

AΩ ≡ {Ψ ∈ C1(cl Ω,Rh) : lΩ[Ψ ] > 0} .

Then the following statements hold.

(i) lΩ[Ψ ] > 0 if and only if Ψ is injective and detDΨ(x) 6= 0 for all x in

cl Ω.
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(ii) The function of C1(cl Ω,Rh) to R which maps Ψ to lΩ[Ψ ] is continuous;

in particular AΩ is open in C1(cl Ω,Rh).

(iii) Let m ∈ N \ {0}, α ∈]0, 1]. Then Cm,α(cl Ω,Rh) ∩ AΩ is open in

Cm,α(cl Ω,Rh).

Proof. Statement (i) follows by Lanza (1991, Cor. 4.24). Since Ω is regular in

the sense of Whitney, C1(cl Ω,Rh) is continuously imbedded in C0,1(cl Ω,Rh).

Then Lanza (1991, Prop. 4.29) implies statement (ii). Since Cm,α(cl Ω,Rh) is

continuously imbedded in C1(cl Ω,Rh), statement (ii) yields statements (iii). �

We now want to define the Schauder spaces on plane Jordan curves, which

are particular compact subsets of C with no isolated points. With somewhat

more generality, we define the Schauder spaces on a general compact subset K of

C with no isolated points. We say that a function f of K to C is complex differ-

entiable at z0 ∈ C if limK3z→z0
f(z)−f(z0)

z−z0 exists finite. We denote such limit by

f ′(z0). As usual the higher order derivatives, if they exist, are defined inductively.

Let m ∈ N. We denote by Cm∗ (K,C) the complex normed space of m-times con-

tinuously complex differentiable functions f of K to C equipped with the norm

‖f‖Cm∗ (K,C) =
∑m

i=0 supK |f (i)|. We say that f is Hölder continuous on K with ex-

ponent α ∈ ]0, 1] provided that |f : K|α ≡ sup
{
|f(z1)−f(z2)|
|z1−z2|α : z1, z2 ∈ K, z1 6= z2

}
is finite. We denote by Cm,α∗ (K,C) the subspace of Cm∗ (K,C) of functions having

α-Hölder continuous m-th order derivatives. We equip Cm,α∗ (K,C) with the norm

‖f‖Cm,α∗ (K,C) ≡ ‖f‖Cm∗ (K,C) + |f (m) : K|α. If B ⊆ C, we set Cm,α∗ (K,B) ≡ {f ∈
Cm,α∗ (K,C) : f(K) ⊆ B}. Then the following variant of Lanza (1991, Cor. 4.24,

Prop. 4.29) holds.

Lemma 1.2.6. Let K be a compact subset of C with no isolated points. Let

φ ∈ C1
∗(K,C). Let

lK [φ] ≡ inf

{
|φ(x)− φ(y)|
|x− y|

: x, y ∈ K,x 6= y

}
AK ≡ {φ ∈ C1

∗(K,C) : lK [φ] > 0} .

Then the following statements hold.

(i) Assume that for all φ ∈ C1
∗(K,C) and for all x ∈ K, the limit

lim
{(ξ,η)∈K2,ξ 6=η}3(x,y)→(x,x)

φ(x)− φ(y)

x− y

exists and equals φ′(x). Then lK [φ] > 0 if and only if φ is injective and

φ′(ξ) 6= 0 for all ξ in K.

(ii) If K is such that C1
∗(K,C) is continuously imbedded in C0,1

∗ (K,C), then

the function of C1
∗(K,C) to R which maps φ to lK [φ] is continuous, and

in particular AK is open in C1
∗(K,C).
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(iii) Let m ∈ N\{0}, α ∈]0, 1]. Then Cm,α∗ (K,C)∩AK is open in Cm,α∗ (K,C).

Proof. The necessity of the condition of statement (i) is obvious. We now

show the sufficiency by a contradiction argument (cf. Lanza & Antman (1991,

Lemma 4.11)). If lK [φ] = 0, then by the compactness of K, there exist two

sequences {xn}n∈N and {yn}n∈N in K with xn 6= yn for all n, which converge to

x and y respectively, and such that

lim
n→+∞

|φ(xn)− φ(yn)|
|xn − yn|

= 0 .

If x 6= y then φ(x) = φ(y), a contradiction. If x = y, then, by the assumption

on K, we must have φ′(x) = 0, a contradiction. Statement (ii) can be shown

by following the proof of the corresponding statement for φ ∈ C1(cl Ω,R2), with

Ω open and bounded in R2 (cf. Lanza (1991, Prop. 4.29)). Since Cm,α∗ (K,C) is

continuously imbedded in C1
∗(K,C), statement (ii) implies statement (iii). �

Remark 1.2.7. It can be easily verified that K = ∂D satisfies the assumptions

on K of conditions (i), (ii) of Lemma 1.2.6 and that accordingly the conclusions

of Lemma 1.2.6 (i), (ii) hold for K = ∂D.

We are now ready to state the following, which collects a few facts which we

need on the spaces Cm,α∗ (K,C).

Lemma 1.2.8. Let m ∈ N, α, β ∈ ]0, 1], φ ∈ A∂D, L = φ(∂D). Then the following

statements hold.

(i) There exists a positive constant cφ depending only on φ such that for all

f ∈ C1
∗(L,C) and for all z1, z2 ∈ L

|f(z1)− f(z2)| ≤ cφ(sup
L
|f ′|)|z1 − z2| .

(ii) Cm+1
∗ (L,C) is continuously imbedded in Cm,α∗ (L,C).

(iii) Cm∗ (L,C) and Cm,α∗ (L,C) are complex Banach spaces.

(iv) The pointwise product is a continuous bilinear map of (Cm,α∗ (L,C))2 to

Cm,α∗ (L,C).

(v) The reciprocal map in Cm,α∗ (L,C), which maps a nonvanishing func-

tion f to its reciprocal, is complex analytic from the open subset {f ∈
Cm,α∗ (L,C) : f(ξ) 6= 0, ∀ξ ∈ L} of Cm,α∗ (L,C) to itself.

(vi) Let φ1 ∈ A∂D, L1 = φ1(∂D). If f ∈ Cm,α∗ (L1,C) and if g ∈ Cm,β∗ (L,L1),

then f ◦ g ∈ Cm,γm(α,β)
∗ (L,C) with γ0(α, β) = αβ and γm(α, β) =

min{α, β} if m > 0. Furthermore there exists an increasing function

ψ of [0,+∞[ to itself such that

‖f ◦ g‖Cm,γm(α,β)
∗ (L,C)

≤ ‖f‖Cm,α∗ (L1,C)ψ(‖g‖Cm,β∗ (L,C)
),

∀(f, g) ∈ Cm,α∗ (L1,C)× Cm,β∗ (L,L1) .
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(vii) Let m ≥ 1. If g ∈ Cm,α∗ (L,C) is injective and satisfies condition g′(ξ) 6=
0, for all ξ ∈ L, then g(−1) ∈ Cm,α∗ (g(L), L).

(viii) Let m ≥ 1 and φ ∈ Cm,α∗ (∂D,C) ∩ A∂D. Then the map T φ defined by

T φ[f ] ≡ f ◦ φ is a complex linear homeomorphism of Cm,α∗ (L,C) onto

Cm,α∗ (∂D,C).

Proof. We prove (i). Let j = 1, 2, θj ∈ [0, 2π], sj = eiθj , zj = φ(sj),

σ(θ1, θ2) ≡ min
{
|t1 − t2| : tl ∈ R, eitl = eiθl , l = 1, 2

}
,

η ≡ inf

{
|eiθ1 − eiθ2 |
σ(θ1, θ2)

: θ1, θ2 ∈ [0, 2π], σ(θ1, θ2) 6= 0

}
.

As shown in Lanza & Antman (1991, Lemma 4.11), η > 0. Since f ◦ φ(eit) ∈
C1(R,C), we have

|f(z1)− f(z2)| ≤ ( sup
θ∈[0,2π]

|f ′(φ(eiθ))φ′(eiθ)|)σ(θ1, θ2)

≤ (sup
L
|f ′|)( sup

[0,2π]
|φ′|)η−1(l∂D[φ])−1|z1 − z2| .

Then statement (i) follows by setting cφ ≡ (sup[0,2π] |φ′|)η−1(l∂D[φ])−1. State-

ment (ii) is an immediate consequence of (i). We now prove statement (iii). It

clearly suffices to show that Cm∗ (L,C) is complete. We proceed by induction on

m. Case m = 0 is well-known. Case m = 1 can be shown by observing that if

f ∈ C1
∗(L,C), then f(φ(eit)) ∈ C1(R,C) and by using a standard argument. Case

m+1 can be deduced by case m and by applying case m = 1. Statement (iv) can

be proved by a standard inductive argument (cf. e.g. Lanza (1991, Lemma 2.4

(v))) and by using statement (ii). Statement (v) is an immediate consequence

of (iii), (iv) and of Proposition 1.2.3. We can prove statement (vii) and the first

part of (vi) by induction on m, by using the chain rule, the rule of differenti-

ation of the inverses and statements (ii) and (iv). By statements (ii) and (iv)

and by induction on m, it can be easily shown that the composition operator

maps bounded sequences of Cm,α∗ (L1,C) × Cm,β∗ (L,L1) to bounded sequences of

Cm,γm(α,β)
∗ (L,C). Then by Lemma 1.2.2, we conclude the existence of ψ as in the

second part of statement (vi). Statement (viii) is an immediate consequence of

statements (vi) and (vii). �

Now let φ ∈ A∂D. By the Jordan Theorem (cf. e.g. Godbillon (Cor. 4.4

p. 214)), C\φ(∂D) consists of two open connected components. We denote by I[φ]

and E[φ] the bounded and the unbounded component of C \φ(∂D), respectively.

We collect in the following Lemma some properties of I[φ], of E[φ] and of the

trace of a function of class Cm,α in cl I[φ].

Lemma 1.2.9. The following statements hold.

(i) If φ ∈ A∂D, then ∂I[φ] = ∂E[φ] = φ(∂D) and c[I[φ]] < +∞.
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(ii) Let m ∈ N, α ∈ ]0, 1], φ ∈ Cm,α∗ (∂D,C) ∩ A∂D. Then the trace operator

R from Cm,α(cl I[φ],C) to Cm,α∗ (φ(∂D),C) defined by R[F ] = F/φ(∂D) is

complex linear and continuous.

Proof. Conditions φ(eit) ∈ C1(R,C), φ′(eit) 6= 0 for all t ∈ R, l∂D[φ] > 0 imply

that φ(∂D) is a real connected submanifold of class C1 and of codimension one of

C. It follows that the boundary of I[φ] and E[φ] is φ(∂D) and that I[φ] and E[φ]

are open subsets of C of class C1. Then c[I[φ]] < +∞. We now prove statement

(ii). Let φ1 and φ2 be the real and the imaginary part, respectively, of φ. A simple

induction on m shows that φ1 and φ2 belong to Cm,α∗ (∂D,C). We now fix m and

prove by induction on j = 0, . . . ,m that R is continuous from Cj,α(cl I[φ],C)

to Cj,α∗ (φ(∂D),C). Case j = 0 is obvious. We now assume that the statement

holds for an arbitrary but fixed j ∈ {0, . . . ,m − 1}, and prove it for j + 1. Let

F ∈ Cj+1,α(cl I[φ],C). By Lemma 1.2.4 (v), we have F (φ(eit)) ∈ C1(R,C). Then

F ′ exists. By the chain rule applied to the function F (φ(eit)), we deduce that

F ′(z) =

[
∂F

∂x
(z)φ′1(φ(−1)(z)) +

∂F

∂y
(z)φ′2(φ(−1)(z))

]
(φ′(φ(−1)(z)))−1

for all z ∈ φ(∂D). By inductive assumption and by Lemma 1.2.8 (iv), (v), (vi),

(vii), there exists a constant c > 0 such that ‖F ′‖Cj,α∗ (φ(∂D),C)
≤ c‖F‖Cj+1,α(cl I[φ],C).

Then statement (ii) follows immediately. �

We now show that our representation of a Jordan domain depends analyti-

cally on the curve which parametrizes the boundary of the Jordan domain. To

do so we need the following which is a restatement of a corresponding lemma of

Lanza (1997, Lemma 2.13).

Lemma 1.2.10. Let m ∈ N \ { 0}, α ∈ ]0, 1[. Let φ0 ∈ Cm,α∗ (∂D,C) ∩ A∂D,

z0 ∈ I[φ0]. Then the following hold.

(i) There exists at least an element Ψ0 ∈ Cm,α(clD,C)∩A such that Ψ0/∂D =

φ0 and that Ψ0(0) = z0.

(ii) There exists a continuous complex linear extension map E of Cm,α∗ (∂D,C)

to Cm,α(clD,C) such that the affine map between the same spaces defined

by

(1.2.11) Eφ0 [φ] ≡ Ψ0 +E[φ− φ0] ,

maps an open neighborhood Uφ0 of φ0 contained in Cm,α∗ (∂D,C) ∩ A∂D
into {Ψ ∈ Cm,α(clD,C) ∩ A : Ψ(0) = z0} and satisfies Eφ0 [φ]/∂D = φ

for all φ ∈ Uφ0.

Proof. Clearly, the function φ0(eit) is a simple closed curve of class Cm,α defined

on [0, 2π] with d
dt{φ0(eit)} 6= 0 for all t ∈ [0, 2π]. Then by Lanza (1997, Lem-

mas 2.7, 2.13 (i)) statement (i) holds. To prove statement (ii), we take k ∈
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C∞([0, 1], [0, 1]) such that k([0, 1
3 ]) = {0}, k([2

3 , 1]) = {1} and we set E[h](x) ≡
h( x
|x|)k(|x|), for all x ∈ clD, h ∈ Cm,α∗ (∂D,C). By exploiting Lemma 1.2.4 (ii)

and (v), it can be verified that E[ · ] is a complex linear and continuous operator

of Cm,α∗ (∂D,C) to Cm,α(clD,C) and that E[h]/∂D = h for all h ∈ Cm,α∗ (∂D,C).

Then by using Lemmas 1.2.5 (ii) and 1.2.6 (ii), it is easy to check that the affine

map defined in (1.2.11) satisfies the required properties. �





CHAPTER 2

Complex analyticity of the Cauchy singular integral

in Schauder spaces

2.1. Introduction

In this chapter, which contains the results of Lanza & Preciso (1998), we

analyze the analytic dependence of the Cauchy singular integral

(2.1.1) C[φ, f ](·) ≡ 1

2πi
p.v.

∫
∂D

f(t)φ′(t)

φ(t)− φ(·)
dt

upon the oriented simple closed curve φ and the density function f , both defined

on the counterclockwise oriented boundary ∂D of the plane unit disk D. The

Cauchy singular integral is involved in the functional equation associated to the

conformal sewing problem. Then our aim is to apply the results of this chapter

to a perturbation analysis of the conformal sewing problem.

We assume that both φ and f belong to a Schauder space, say Cm,α∗ (∂D,C), of

complex valued functions of class Cm,α on ∂D, with m a positive natural number

and α ∈]0, 1[. (The ‘∗’ subscript just means that we are taking the derivatives

with respect to the variable on ∂D.) As it is well-known, under such conditions

on φ and f , the function C[φ, f ](·) is also of class Cm,α∗ (∂D,C), and we consider

Cm,α∗ (∂D,C) as the target space of C[φ, f ]. Although the linear operator C[φ, ·]
for a fixed φ has been studied extensively during the last century and a consid-

erable amount of work has been done on the numerical computation of C[φ, f ]

(cf. e.g. Muskhelishvili (1953), Gakhov (1966) and Wegert (1992)), especially

in view of the several applications to integral equations and to boundary value

problems, the analysis of the nonlinear functional dependence of C[φ, f ] upon

both of its arguments, and in particular on φ, seems to be a subject analyzed

only more recently. We mention the contribution of Calderón, Coifman, Meyer,

McIntosh, David, whose work implies the analyticity of singular integral opera-

tors strictly related to C. Calderón (1977, Thm. 1) has shown that if φ is the

graph of a Lipschitz function ψ, i.e. if φ(x) = x+ iψ(x) with ψ′ ∈ L∞(R), and if

‖ψ′‖L∞(R) < ε for some ε > 0, then the linear integral operator with singular ker-

nel φ′(y)
φ(y)−φ(x) is an element of the space LC

(
L2(R,C), L2(R,C)

)
of the linear and

continuous operators of L2(R,C) to itself. Then by using a standard argument

of truncated kernels, one can deduce the analytic dependence of the operator

17
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with kernel φ′(y)
φ(y)−φ(x) upon ψ′, when ‖ψ′‖L∞(R) < min{1, ε} (cf. e.g. Meyer &

Coifman (1991, p. 438)). Later Coifman, McIntosh & Meyer (1982, Thm. 1)

and, by different methods, David (1984b, p. 178) have extended the validity of

the same analyticity result to the case in which ‖ψ′‖L∞(R) < 1. Coifman &

Meyer (1983b) have considered the dependence of the Cauchy singular integral

upon an arc-length parametrized curve φ defined on R, with values in the plane

and determined by a function, say θ, which represents the direction of φ′, and

have shown that the Cauchy singular operator of LC
(
L2(R,C), L2(R,C)

)
with

kernel φ′(y)
φ(y)−φ(x) depends analytically on θ, if θ ranges in a suitable open subset of

the John-Nirenberg space BMO of functions with bounded mean oscillation (cf.

Coifman & Meyer (1983b, p. 10)). Later Wu (1993, p. 1310), under the advice

of Coifman, has extended the analyticity result of Coifman & Meyer (1983b) on

the Cauchy singular integral to arc-length parametrized simple closed curves.

In our work, we consider simple closed curves φ, which are not necessar-

ily arc-length parametrized, but which are more regular than those considered

by Coifman & Meyer (1983b). Correspondingly, the Cauchy singular operator

C[φ, ·] acts in Cm,α∗ (∂D,C), as opposed to that of Coifman & Meyer (1983b) or

Wu (1993), which acts in L2(R,C) or in L2(∂D,C), respectively. Although our

curves are more regular, our analyticity results cannot be deduced by the work of

the authors mentioned above, and do not seem to follow by an immediate mod-

ification of their methods. An advantage of this approach , is that the Cauchy

singular operator C[φ, f ] is defined for φ in an open subset of Cm,α∗ (∂D,C).

We present an alternative approach to the study of the regularity of the

Cauchy singular operator. As in Lanza (1997), we represent a Jordan domain

by an injective and differentiable function, which we denote by Ψ , of clD to R2,

rather than by the more traditional curve φ parametrizing the boundary of the

Jordan domain. Then we observe that a Cauchy singular integral on a contour

is uniquely determined by the pair, say (S+, S−), of “sectionally holomorphic”

functions, which are associated to the Cauchy singular integral, which are defined

in the interior and in the exterior of the contour respectively and which satisfy

a certain boundary value problem. Then we transform such boundary value

problem into a nonlinear boundary value problem of elliptic nature defined on

the unit disk, which we now write in the form of an abstract nonlinear operator

equation as

(2.1.2) Λ[Ψ, f, T+, T̃ ] = 0,

where (T+, T̃ ) is a pair of functions which is associated to the pair (S+, S−).

Then we show that we can apply to equation (2.1.2) the Implicit Function Theo-

rem and we deduce that the solution set of (2.1.2) is the graph of a real analytic

operator depending on (Ψ, f). By this result, it follows easily the real analytic
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dependence of C[φ, f ] on (φ, f). An advantage of such approach is that in equa-

tion (2.1.2) there are no singular integrals and that the operator Λ of equation

(2.1.2) is easily seen to be analytic. Although to apply the Implicit Function

Theorem we still have to prove an isomorphism theorem for the linearized prob-

lem associated to (2.1.2), the difficulties we encounter in doing so are only of

linear type. In principle, it seems that our method could be employed even with

weaker regularity assumptions on the curve φ and on the density f . Once the

real analyticity of C is established, we compute all order derivatives of C and

we show that C is actually complex analytic. The statement concerning the real

analyticity of C[φ, f ] as a function of (φ, f) we prove in this chapter, finds ap-

plication in problems of nonlinear integral equations, and in particular in those

of perturbation nature (cf. Lanza & Rogosin (1997)).

2.2. Introduction of a modified problem and real analyticity of the

Cauchy singular integral

We now turn our attention to the dependence of the Cauchy singular integral

of (2.1.1) upon φ, f . We understand that all line integrals on ∂D are computed

with respect to the parametrization θ 7→ eiθ, θ ∈ [0, 2π] and that all line integrals

on φ ∈ C1
∗(∂D,C) are computed with respect to the parametrization θ 7→ φ(eiθ).

Let φ ∈ C1
∗(∂D,C). We denote by ind[φ] the index of the curve θ 7→ φ(eiθ),

θ ∈ [0, 2π] with respect to any of the points of I[φ]:

(2.2.1) ind[φ] ≡ 1

2πi

∫
φ

dξ

ξ − z
, z ∈ I[φ] .

The map ind [·] is obviously constant on the open connected components of A∂D
in C1

∗(∂D,C). Now it is well known that the Cauchy singular integral

1

2πi

∫
φ

f ◦ φ(−1)(ξ)

ξ − z
dξ

determines a so-called “sectionally holomorphic function” which vanishes at infin-

ity and which jumps across the contour of integration, as shown by the Plemelj

formula. Also the jump condition and the condition at infinity determine the

“sectionally holomorphic function”. We formulate such known facts in the fol-

lowing statement.

Theorem 2.2.2. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let φ ∈ Cm,α∗ (∂D,C) ∩ A∂D,

f ∈ Cm,α∗ (∂D,C). Then there exists one and only one pair of functions

(S+, S−) ∈ Cm,α(cl I[φ],C)×
(
C1(clE[φ],C) ∩ Cm,α∗ (φ(∂D),C)

)
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which satisfies the following boundary value problem associated to (φ, f)

(2.2.3)



∂S+ = 0 in I[φ],

∂S− = 0 in E[φ],

S+ − S− = f ◦ φ(−1) on φ(∂D),

S−(∞) ≡ lim
z→∞

S−(z) = 0 .

We denote such unique solution (S+, S−) by (S+[φ, f ],S−[φ, f ]). The functions

S+[φ, f ] and S−[φ, f ] can be written explicitly as follows

S+[φ, f ](z) =
ind[φ]

2πi

∫
φ

f ◦ φ(−1)(ξ)

ξ − z
dξ ∀z ∈ I[φ],

S−[φ, f ](z) =
ind[φ]

2πi

∫
φ

f ◦ φ(−1)(ξ)

ξ − z
dξ ∀z ∈ E[φ],

and the following Plemelj Formula holds

(2.2.4)

S±[φ, f ](z) = ±1

2
f ◦ φ(−1)(z) +

ind[φ]

2πi
p. v.

∫
φ

f ◦ φ(−1)(ξ)

ξ − z
dξ ∀z ∈ φ(∂D) .

Proof. We first consider the uniqueness. Assume that (S+
j , S

−
j ), j = 1, 2 are

solutions of (2.2.3), then
∂[S+

1 − S
+
2 ] = 0 in I[φ],

∂[S−1 − S
−
2 ] = 0 in E[φ],

(S+
1 − S

+
2 )− (S−1 − S

−
2 ) = 0 on φ(∂D),

(S−1 − S
−
2 )(∞) = 0.

We observe that by Lemma 1.2.9 (i), we have ∂I[φ] = ∂E[φ] = φ(∂D). Thus the

function

G(z) =

(S+
1 − S

+
2 )(z) if z ∈ cl I[φ],

(S−1 − S
−
2 )(z) if z ∈ C \ cl I[φ],

is holomorphic in C \ φ(∂D) and continuous on C. Then a well known result

(cf. e.g. Muskhelishvili (1953, p. 36)) implies that G is holomorphic in C. Since

G(∞) = 0, Liouville’s Theorem implies that G = 0. By Lemma 1.2.8 (vi) and

(vii), we have f ◦φ(−1) ∈ Cm,α∗ (φ(∂D),C) and thus, by the well-known properties

of the Cauchy singular integral (see e.g. Lu (1993, Thm. 2.5.1 p. 23, Thm. 3.1.1

p. 28 and Corollary 3.2.2 p. 36)) and by Lemma 1.2.9 (ii), we deduce the existence

of (S+, S−) and equation (2.2.4). �

Then by Lemma 1.2.9 (ii), we deduce the following corollary.
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Corollary 2.2.5. Let m ∈ N \ {0} and let α ∈ ]0, 1[. The integral defined by

C[φ, f ](·) ≡ 1

2πi
p. v.

∫
∂D

f(t)φ′(t)

φ(t)− φ(·)
dt =

1

2πi
p. v.

∫
φ

f ◦ φ(−1)(ξ)

ξ − φ(·)
dξ

for all (φ, f) ∈ (Cm,α∗ (∂D,C) ∩ A∂D) × Cm,α∗ (∂D,C), belongs to Cm,α∗ (∂D,C).

Thus C defines a nonlinear operator of (Cm,α∗ (∂D,C) ∩ A∂D) × Cm,α∗ (∂D,C) to

Cm,α∗ (∂D,C).

Remark 2.2.6. By (2.2.4), by Lemma 1.2.9 (ii) and by the constancy of ind [·]
on the open connected components of Cm,α∗ (∂D,C) ∩ A∂D, the study of the

regularity of the operator C[φ, f ] is equivalent to that of the operator from

(Cm,α∗ (∂D,C) ∩ A∂D) × Cm,α∗ (∂D,C) to Cm,α∗ (∂D,C) which maps a pair (φ, f) to

S+[φ, f ] ◦ φ.

To enable the application of our methods, we now represent the contour of

integration of our Cauchy singular integrals by the restriction to ∂D of a function

Ψ defined on clD. Let Ψ ∈ Cm,α(clD,C) ∩ AD, m ≥ 1, φ ≡ Ψ/∂D. By Brouwer’s

Theorem on the invariance of the domain (cf. e.g. Hurewicz & Wallman (1948,

p. 95)) and by a simple topological argument (cf. e.g. Lanza (1997, Lemma 2.2)),

we have Ψ(D) = I[φ] and C \ Ψ(clD) = E[φ]. Now our aim is to prove that the

nonlinear operator defined by

(2.2.7) T+[Ψ, f ] ≡ S+[Ψ/∂D, f ] ◦ Ψ

is real analytic from (Cm,α(clD,C) ∩ AD)×Cm,α∗ (∂D,C) to Cm,α(clD,C). Clearly,

the function S+[φ, f ] ◦ φ is the restriction to ∂D of T+[Ψ, f ]. By Lemmas 1.2.9

(ii) and 1.2.10, the real analyticity of T+ implies the real analyticity of the

operator C.

We note that problem (2.2.3) has been formulated in part on the unbounded

domain C\Ψ(clD). Since we find more convenient to work on a bounded domain,

we now transform the problem in C\Ψ(clD) into a problem defined in a bounded

domain, by means of the following.

Proposition 2.2.8. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ψ ∈ Cm,α(clD,C) ∩ AD,

f ∈ Cm,α∗ (∂D,C). Let γ be the function of ∂D to C defined by γ(t) ≡ 1
Ψ(t)−Ψ(0) .

Then we have the following.

(i) γ ∈ Cm,α∗ (∂D,C \ {0}) ∩ A∂D.
(ii) Let (S+, S−) ∈ Cm,α(clΨ(D),C)×

(
C1(cl(C \ Ψ(clD)),C) ∩ Cm,α∗ (Ψ(∂D),C)

)
.

Let the limit S−(∞) ≡ limz→∞ S
−(z) exist in C. Let S̃ be the map of

cl I[γ] to C defined by

S̃(w) ≡

S−(Ψ(0) + 1
w ) if w ∈ cl I[γ] \ {0},

S−(∞) if w = 0 .
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Then (S+, S−) = (S+[Ψ/∂D, f ],S−[Ψ/∂D, f ]) holds if and only if the

pair (S+, S̃) ∈ Cm,α(clΨ(D),C) × Cm,α(cl I[γ],C) satisfies the following

boundary value problem

(2.2.9)


∂S+ = 0 in Ψ(D),

∂S̃ = 0 in I[γ],

S+(z)− S̃( 1
z−Ψ(0)) = f ◦ Ψ (−1)(z) ∀z ∈ Ψ(∂D),

S̃(0) = 0 .

(iii) There exists a unique solution (S+, S̃) in Cm,α(clΨ(D),C)×Cm,α(cl I[γ],C)

of problem (2.2.9).

Proof. We first observe that the function H(z) = 1
z−Ψ(0) is a one to one map of

C \ {Ψ(0)} onto C \ {0} and that H is holomorphic with its inverse map G(w) =

Ψ(0) + 1
w . Furthermore H is a one to one map of cl(C \ Ψ(clD)) onto cl I[γ] \

{0}. Since Cm+1
∗ (Ψ(∂D),C) is continuously imbedded in Cm,α∗ (Ψ(∂D),C) (cf.

Lemma 1.2.8 (ii)), Lemmas 1.2.8 (vi) and 1.2.6 (i) imply that γ ∈ Cm,α∗ (∂D,C \
{0})∩A∂D. We now prove statement (ii). If (S+, S−) = (S+[Ψ/∂D, f ],S−[Ψ/∂D, f ]),

then an easy computation shows that

S̃(w) = −w · S+

[
γ,
f

γ

]
(w)

for all w ∈ cl I[γ]. By Theorem 2.2.2, S+[φ, f ] ∈ Cm,α(cl I[φ],C) for all (φ, f) ∈
(Cm,α∗ (∂D,C) ∩ A∂D)× Cm,α∗ (∂D,C). Then by using Lemmas 1.2.8 (iv), (v) and

1.2.4 (i), (ii), it is easy to check that (S+, S̃) has the required regularity and

satisfies (2.2.9). The converse follows by an easy computation. The existence

in statement (iii) is a consequence of statement (ii) and of Theorem 2.2.2. We

now show the uniqueness of problem (2.2.9). Let (S+
j , S̃j) ∈ Cm,α(clD,C) ×

Cm,α(cl I[γ],C), j = 1, 2 be solutions of (2.2.9). By Lemma 1.2.9 (ii), we have

S̃j/∂I[γ] ∈ C
m,α
∗ (∂I[γ],C). Then by Lemma 1.2.8 (ii) and (vi), by chain rule

and by simple computations, (S+
j , S

−
j ≡ S̃j ◦ H) has the required regularity

properties and satisfies (2.2.3) associated to (Ψ/∂D, f). Then Theorem 2.2.2 yields

the conclusion. �

With the same notations of Proposition 2.2.8, we wish to represent the closure

of I[ 1
Ψ/∂D(·)−Ψ(0) ] as the image of some regular function G[Ψ ] of clD to C with

G[Ψ ](t) = 1
Ψ(t)−Ψ(0) for all t ∈ ∂D. We do so by means of the following.

Lemma 2.2.10. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ψ0 ∈ Cm,α(clD,C) ∩ AD. Then

there exists an open neighborhoodWΨ0 of Ψ0 in the open subset Cm,α(clD,C)∩AD

of Cm,α(clD,C) and a complex analytic map G of WΨ0 to Cm,α(clD,C)∩AD such
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that

G[Ψ ](t) =
1

Ψ(t)− Ψ(0)
∀t ∈ ∂D,

G[Ψ ](0) = 0,

for all Ψ ∈ WΨ0.

Proof. By Lemma 1.2.9 (ii), the map of Cm,α(clD,C) to Cm,α∗ (∂D,C), which takes

Ψ to (Ψ/∂D−Ψ(0)), is complex linear and continuous and thus complex analytic.

Moreover, (Ψ/∂D−Ψ(0)) ∈ Cm,α∗ (∂D,C\{0})∩A∂D for all Ψ ∈ Cm,α(clD,C)∩AD.

By Lemma 1.2.8 (v), the reciprocal map is complex analytic from Cm,α∗ (∂D,C \
{0})∩A∂D to itself. Then we can conclude the proof by applying Lemma 1.2.10,

with φ0(·) ≡ 1
Ψ0(·)−Ψ0(0) in ∂D and with z0 = 0. �

We now reformulate the boundary value problem (2.2.9) as a boundary value

problem on the fixed domain clD. To do so, we note that by Lemma 1.2.4 (v),

(vi), Lemma 1.2.8 (vi), (vii) and by immediate computations, it can be easily

verified that the following holds.

Proposition 2.2.11. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ψ0 ∈ Cm,α(clD,C) ∩ AD.

Let WΨ0 be the neighborhood of Ψ0 in Cm,α(clD,C) ∩ AD of Lemma 2.2.10. Let

(Ψ, f) ∈ WΨ0 × C
m,α
∗ (∂D,C). Let γ be the function of ∂D to C defined by γ(t) =

1
Ψ(t)−Ψ(0) . The pair of functions (S+, S̃) ∈ Cm,α(clΨ(D),C) × Cm,α(cl I[γ],C)

satisfies (2.2.9) if and only if the pair of functions (T+, T̃ ) defined byT+ ≡ S+ ◦ Ψ,

T̃ ≡ S̃ ◦G[Ψ ],

belongs to (Cm,α(clD,C))2 and satisfies the following boundary value problem

(2.2.12)


∂[T+ ◦ Ψ (−1)] = 0 in Ψ(D),

∂[T̃ ◦ (G[Ψ ])(−1)] = 0 in G[Ψ ](D),

T+ − T̃ = f on ∂D,

T̃ (0) = 0 .

In particular, problem (2.2.12) has a unique solution in (Cm,α(clD,C))2.

To proceed further, we wish to rewrite the equations of (2.2.12) in a way

suitable to the application of our methods. To do so we introduce the following

Lemma, whose proof is of immediate verification (cf. Lanza (1997, Lemma 3.1)).

Lemma 2.2.13. Let m ∈ N, α ∈ ]0, 1]. Let Ω be an open subset of R2. Let L be

the linear and continuous map of Cm,α(cl Ω,M2(R)) to itself defined by

L[F ] =

(
F22 −F21

−F12 F11

)
∀F ≡

(
F11 F12

F21 F22

)
∈ Cm,α(cl Ω,M2(R)),
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and let I be the identity map in Cm,α(cl Ω,M2(R)). Then the following hold.

(i) L ◦L = I and, in particular, (I +L) ◦ (I −L) = 0.

(ii) (I −L)[F ] = 0 if and only if F11 = F22, F12 = −F21.

Remark 2.2.14. With the same notation of Lemma 2.2.13, let G ≡ G1 + iG2 ∈
Cm+1,α(cl Ω,C). Then both the first row and the first column of the 2×2 matrix

1

2
(I −L)[DG]

equal (Re ∂G, Im ∂G). Furthermore, we have (I − L)[DG] = 0 in Ω if and only

if G1 + iG2 is holomorphic in Ω.

Thus we have the following.

Proposition 2.2.15. Let m ∈ N \ {0}, α ∈ ]0, 1[, Ψ0 ∈ Cm,α(clD,C) ∩ AD.

Let WΨ0 be the neighborhood of Ψ0 in Cm,α(clD,C) ∩ AD of Lemma 2.2.10. Let

(Ψ, f) ∈ WΨ0 × C
m,α
∗ (∂D,C). The pair (T+, T̃ ) ∈ (Cm,α(clD,C))2 satisfies the

boundary value problem (2.2.12) if and only if the same pair satisfies the following

boundary value problem

(2.2.16)


(I −L)[DT+(·) · (DΨ(·))−1] = 0 in D,

(I −L)[DT̃ (·) · (DG[Ψ ](·))−1] = 0 in D,

T+ − T̃ = f on ∂D,

T̃ (0) = 0 .

In particular, problem (2.2.16) associated to (Ψ, f) has a unique solution in

(Cm,α(clD,C))2, which we denote by (T+
Ψ0

[Ψ, f ], T̃ Ψ0 [Ψ, f ]). Finally we have that

T+
Ψ0

[Ψ, f ] = S+[Ψ/∂D, f ] ◦ Ψ .

Proof. By Remark 2.2.14, condition ∂[T+ ◦ Ψ (−1)] = 0 can be rewritten as

(2.2.17) (I −L)[D(T+ ◦ Ψ (−1))] = 0 in Ψ(D) .

By taking the composition of both hand-sides of (2.2.17) with Ψ , one obtains the

first equation of (2.2.16). The second equation can be obtained similarly. Then

we conclude by Propositions 2.2.11 and 2.2.8. �

Our strategy is now to recast (2.2.16) in a form suitable for the application

of the Implicit Function Theorem. We note that the application of the Implicit

Function Theorem normally involves difficulties of two types. The first type of

difficulty is concerned with showing the regularity of the nonlinear operators in-

volved and with this respect we know that all the operators appearing in (2.2.16)

are easily seen to be real analytic (cf. Lemmas 1.2.4 (iii), (iv) and 2.2.10). The

second type of difficulty is inherent with the unique solvability of the linearized

problem. Although the latter type of difficulty still remains, we note that our
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approach has completely annihilated all the difficulties of “nonlinear type”. A di-

rect approach to show the analyticity of (φ, f)→
∫
∂D

f(t)φ′(t)
φ(t)−φ(·) dt would, instead,

have to deal with difficulties of nonlinear type aggravated by the presence of a

singular integral.

Theorem 2.2.18. Let m ∈ N \ {0}, α ∈ ]0, 1[. Then the nonlinear operator

defined by

(2.2.19) T+[Ψ, f ] ≡ S+[Ψ/∂D, f ] ◦ Ψ

is real analytic from (Cm,α(clD,C) ∩ AD)× Cm,α∗ (∂D,C) to Cm,α(clD,C).

Proof. Let (Ψ0, f0) ∈ (Cm,α(clD,C) ∩ AD)×Cm,α∗ (∂D,C). Let WΨ0 be the neigh-

borhood of Ψ0 of Lemma 2.2.10. By Proposition 2.2.15, we have T+[Ψ, f ] =

T+
Ψ0

[Ψ, f ], for all (Ψ, f) ∈ WΨ0 × C
m,α
∗ (∂D,C). Thus by the arbitrariness of

(Ψ0, f0), it suffices to show that the map

(Ψ, f) 7−→ T+
Ψ0

[Ψ, f ]

is real analytic in a open neighborhood of (Ψ0, f0) contained inWΨ0×C
m,α
∗ (∂D,C).

With the notation of Lemma 2.2.13, we set

Vr,α ≡ {V ∈ Cr,α(clD,M2(R)) : (I +L)[V ] = 0 in clD},

for all r ∈ N. Then Vr,α is a closed subspace of the Banach space Cr,α(clD,M2(R)).

To recast problem (2.2.16) in the form of a nonlinear operator equation, we de-

fine the operator Λ of WΨ0 × C
m,α
∗ (∂D,C) × (Cm,α(clD,C))2 to (Vm−1,α)2 ×

Cm,α∗ (∂D,C)× C by means of the following equality

Λ[Ψ, f, T+, T̃ ] ≡
(

(I −L)[DT+(·) · (DΨ(·))−1],

(I −L)[DT̃ (·) · (DG[Ψ ](·))−1], T+ − T̃ − f, T̃ (0)
)
.

The membership of the first two components of Λ[Ψ, f, T+, T̃ ] to (Vm−1,α)2 is an

easy consequence of Lemma 2.2.13 (i). By Proposition 2.2.15 we have

(2.2.20) Λ[Ψ, f, T+, T̃ ] = 0 if and only if (T+, T̃ ) = (T+
Ψ0

[Ψ, f ], T̃ Ψ0 [Ψ, f ]) .

We now apply the Implicit Function Theorem (cf. Prodi & Ambrosetti (1973,

Thm. 11.6) or Berger (1977, p. 134)) to the operator equation (2.2.20). By the

real analyticity of the real multi-linear continuous operators and by Lemmas 1.2.4

(iii), (iv) and 2.2.10, the operator Λ is real analytic. Furthermore Λ is defined

between an open subset of a Banach space and a Banach space. Thus all we have

to show is that the differential

H ≡ d
(T+,T̃ )

Λ[Ψ0, f0,T
+
Ψ0

[Ψ0, f0], T̃ Ψ0 [Ψ0, f0]]
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of the affine map (T+, T̃ ) → Λ[Ψ0, f0, T
+, T̃ ] is a real linear homeomorphism

of (Cm,α(clD,C))2 onto (Vm−1,α)2 × Cm,α∗ (∂D,C) × C. Since H is real lin-

ear and continuous, by the Open Mapping Theorem it suffices to show that

for all (V +
∗ , Ṽ∗, g, c) ∈ (Vm−1,α)2 × Cm,α∗ (∂D,C) × C there exists a unique pair

(W+
∗ , W̃∗) ∈ (Cm,α(clD,C))2 satisfying

(2.2.21)


(I −L)[DW+

∗ (·) · (DΨ0(·))−1] = V +
∗ in D,

(I −L)[DW̃∗(·) · (DG[Ψ0](·))−1] = Ṽ∗ in D,

W+
∗ − W̃∗ = g on ∂D,

W̃∗(0) = c .

By composing the first and the third equation of (2.2.21) with Ψ
(−1)
0 and the

second with G[Ψ0](−1), system (2.2.21) can be rewritten as

(2.2.22)


(I −L)[D(W+

∗ ◦ Ψ
(−1)
0 )] = V +

∗ ◦ Ψ
(−1)
0 in Ψ0(D),

(I −L)[D(W̃∗ ◦G[Ψ0](−1))] = Ṽ∗ ◦G[Ψ0](−1) in G[Ψ0](D),

W+
∗ ◦ Ψ

(−1)
0 − W̃∗ ◦ Ψ (−1)

0 = g ◦ Ψ (−1)
0 on Ψ0(∂D),

W̃∗(0) = c .

Clearly

Ψ
(−1)
0 (z) = G[Ψ0](−1)(

1

z − Ψ0(0)
) ∀z ∈ Ψ0(∂D) .

Now we set

W+ ≡W+
∗ ◦ Ψ

(−1)
0 ,

W̃ ≡ W̃∗ ◦G[Ψ0](−1),

V + ≡ first row of
1

2
V +
∗ ◦ Ψ

(−1)
0 ,

Ṽ ≡ first row of
1

2
Ṽ∗ ◦G[Ψ0](−1) .

Then in view of Remark 2.2.14 and of Lemma 1.2.4 (v) and (vi), the existence and

unique solvability in (Cm,α(clD,C))2 of problem (2.2.21) for all (V +
∗ , Ṽ∗, g, c) ∈

(Vm−1,α)2 × Cm,α∗ (∂D,C)×C is equivalent to existence and unique solvability in

Cm,α(clΨ0(D),C) × Cm,α(clG[Ψ0](D),C) of the following linear boundary value

problem

(2.2.23)


∂W+ = V + in Ψ0(D),

∂W̃ = Ṽ in G[Ψ0](D),

W+(z)− W̃ ( 1
z−Ψ0(0)) = g ◦ Ψ (−1)

0 (z) ∀z ∈ Ψ0(∂D),

W̃ (0) = c,
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for all (V +, Ṽ , g, c) ∈ Cm−1,α(clΨ0(D),C)×Cm−1,α(clG[Ψ0](D),C)×Cm,α∗ (∂D,C)×
C. By Lemma 1.2.9 (ii) and by Proposition 2.2.8 (iii), system (2.2.23) has

at most one solution. We now consider the existence. Let (V +, Ṽ , g, c) ∈
Cm−1,α(clΨ0(D),C)×Cm−1,α(clG[Ψ0](D),C)×Cm,α∗ (∂D,C)×C. It is well known

(cf. Vekua (1963, p. 56)) that there exist U+ ∈ Cm,α(clΨ0(D),C) and Ũ ∈
Cm,α(clG[Ψ0](D),C) such that

∂U+ = V + in Ψ0(D),

∂Ũ = Ṽ in G[Ψ0](D) .

By possibly subtracting a constant to Ũ , we can assume that Ũ(0) = c. Thus all

we have to show is the existence of a pair of functions (S+, S̃) ∈ Cm,α(clΨ0(D),C)×
Cm,α(clG[Ψ0](D),C) such that

(2.2.24)
∂S+ = 0 in Ψ0(D),

∂S̃ = 0 in G[Ψ0](D),

S+(z)− S̃( 1
z−Ψ0(0)) = g ◦ Ψ (−1)

0 (z)− U+(z) + Ũ( 1
z−Ψ0(0)) ∀z ∈ Ψ0(∂D),

S̃(0) = 0 .

Let h be the function of Ψ0(∂D) to C be defined by

h(z) ≡ g ◦ Ψ (−1)
0 (z)− U+(z) + Ũ

(
1

z − Ψ0(0)

)
.

By Lemmas 1.2.9 (ii), 1.2.8 (vi) and by Proposition 2.2.8, we have h ◦ Ψ0/∂D ∈
Cm,α∗ (∂D,C). Then Proposition 2.2.8 (iii) ensures the existence of a pair of

solutions (S+, S̃) of problem (2.2.24). �

By the previous Theorem, by Lemma 1.2.10 and by Remark 2.2.6, we imme-

diately deduce the validity of the following.

Theorem 2.2.25. Let m ∈ N \ {0}, α ∈ ]0, 1[. The nonlinear operator C from

(Cm,α∗ (∂D,C) ∩ A∂D)× Cm,α∗ (∂D,C) to Cm,α∗ (∂D,C) defined by

C[φ, f ](·) =
1

2πi
p. v.

∫
∂D

f(t)φ′(t)

φ(t)− φ(·)
dt

is real analytic in all its domain.

2.3. Complex analyticity of the Cauchy singular integral

LetC be the Cauchy singular integral as in Theorem 2.2.25. We now compute

all the differentials C(n) of C and show that C is complex analytic in its domain.

Proposition 2.3.1. Let m,n ∈ N \ {0}, α ∈ ]0, 1[. Let C be the nonlinear

operator of Theorem 2.2.25. Let (φ0, f0) ∈ (Cm,α∗ (∂D,C) ∩ A∂D) × Cm,α∗ (∂D,C).
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Then the following formulas for the real partial differentials of C hold.

(i)
∂nC

(∂φ)n
[φ0, f0][h1, . . . , hn](·) =

=
(−1)n(n− 1)!

2πi

∫
∂D
f ′0(t)

n∏
i=1

( hi(t)− hi(·)
φ0(t)− φ0(·)

)
dt,

for all (h1, . . . , hn) ∈ (Cm,α∗ (∂D,C))n.

(ii)
∂nC

(∂φ)n−1∂f
[φ0, f0][h1, . . . , hn−1, kn](·) =

=

C[φ0, kn](·) if n = 1,
(−1)n−1(n−2)!

2πi

∫
∂D k

′
n(t)

∏n−1
i=1

(
hi(t)−hi(·)
φ0(t)−φ0(·)

)
dt if n ≥ 2,

for all (h1, . . . , hn−1, kn) ∈ (Cm,α∗ (∂D,C))n.

(iii) C(n)[φ0, f0][(h1, k1), . . . , (hn, kn)] =

=
∂nC

(∂φ)n
[φ0, f0][h1, . . . , hn] +

n∑
i=1

∂nC

(∂φ)(n−1)∂f
[φ0, f0][h1, . . . , ĥi, . . . , hn, ki],

for all (h1, k1, . . . , hn, kn) ∈ (Cm,α∗ (∂D,C))
2n

. The ‘̂’ symbol on a term denotes

that such term must be omitted. In particular, C is complex analytic in its

domain.

Proof. It clearly suffices to consider the case in which ind[φ0] = 1. Let R be

the trace operator of Cm,α(clD,C) to Cm,α∗ (∂D,C). Let z0 ∈ I[φ0] and let E,

Eφ0 , Ψ0 and Uφ0 be as in Lemma 1.2.10. Clearly, we can assume that ind[φ] = 1

for all φ ∈ Uφ0 . The operator Eφ0 is complex differentiable at all points of its

domain, with differential given by the operator E which satisfies E[h]/∂D = h for

all h ∈ Cm,α∗ (∂D,C). We now compute the Taylor expansion of the real analytic

operator C[ ·, f0] at φ0. By the definition of T+ (cf. (2.2.19)) and of C, we have

(2.3.2) C[φ, f0] = −1

2
f0 +R[T+[Eφ0 [φ], f0]],

for all φ ∈ Uφ0 . Since R is linear, it suffices to find the Taylor expansion at

Ψ0 ≡ Eφ0 [φ0] of the operator T+[·, f0] of Cm,α(clD,C) ∩ AD to Cm,α(clD,C).

Since for all Ψ ∈ Cm,α(clD,C) ∩ AD T
+[Ψ, f0] is a Cauchy type integral and in

particular is not singular, we try to reach the boundary values of T+[Ψ, f0] by

extending the disks of a smaller radius. We set

Dρ = {(x1, x2) ∈ R2 : |(x1, x2)| < ρ} ∀ρ ∈ ]0, 1[
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and we denote by Rρ the restriction operator of Cm,α(clD,C) to Cm,α(clDρ,C).

Then we have that

(2.3.3) Rρ ◦ T+[Ψ, f0](w) =
ind[Ψ/∂D]

2πi

∫
∂D

f0(t)Ψ ′(t)

Ψ(t)− Ψ(w)
dt ∀w ∈ clDρ,

for all Ψ ∈ Cm,α(clD,C) ∩ AD and for all ρ ∈ ]0, 1[. Now we note that, by

Theorem 2.2.18, Rρ ◦T+[ ·, f0] is real analytic on Cm,α(clD,C)∩AD and that by

standard calculus

(2.3.4)

Rρ ◦
(∂nT+

(∂Ψ)n
[Ψ0, f0]

)
[[U ]n] =

∂n

(∂Ψ)n
(Rρ ◦ T+)[Ψ0, f0][[U ]n]

=
dn

(dε)n|ε=0
{Rρ ◦ T+[Ψ0 + εU, f0]}

for all U ∈ Cm,α(clD,C). Since the integral in (2.3.3) is not singular when

w ∈ clDρ and since Cm,α(clD,C) is continuously embedded in C0(clD,C), then

by a standard result on the differentiation of integrals depending on a parameter

and by a straightforward computation, we obtain that

dn

(dε)n|ε=0
{Rρ ◦ T+[Ψ0 + εU, f0]}(w) =

=
1

2πi

∫
∂D

dn

(dε)n|ε = 0

{
f0(t)(Ψ ′0 + εU ′)(t)

(Ψ0 + εU)(t)− (Ψ0 + εU)(w)

}
dt

=
(−1)n−1n!

2πi

∫
∂D

( U(t)− U(w)

Ψ0(t)− Ψ0(w)

)n−1{
−f0(t)Ψ ′0(t)(U(t)− U(w))

(Ψ0(t)− Ψ0(w))2

+
f0(t)U ′(t)

Ψ0(t)− Ψ0(w)

}
dt

=
(−1)n−1(n− 1)!

2πi

∫
∂D
f0(t)

d

dt

{( U(t)− U(w)

Ψ0(t)− Ψ0(w)

)n}
dt

=
(−1)n(n− 1)!

2πi

∫
∂D
f ′0(t)

( U(t)− U(w)

Ψ0(t)− Ψ0(w)

)n
dt

for all w ∈ clDρ, where the last equality follows by integration by parts. Then if

w ∈ D, we can choose ρ such that |w| < ρ < 1 and by (2.3.4), we obtain

(2.3.5)
∂nT+

(∂Ψ)n
[Ψ0, f0][[U ]n](w) =

(−1)n(n− 1)!

2πi

∫
∂D
f ′0(t)

( U(t)− U(w)

Ψ0(t)− Ψ0(w)

)n
dt .

Since U ≡ U1 + iU2 belongs to C1(clD,C), by Lemma 1.2.5 (i) and by the mean

value inequality, we obtain

(2.3.6)
∣∣∣ U(t)− U(w)

Ψ0(t)− Ψ0(w)

∣∣∣ ≤ |U(t)− U(w)|
lD[Ψ0]|t− w|

≤

∑
1≤h,j≤2 supclD

∣∣∣∂Uh∂xj

∣∣∣
lD[Ψ0]

,

for all (t, w) ∈ ∂D × clD with t 6= w. Then by the Theorem of continuity

of integrals depending on a parameter, the right hand-side of (2.3.5) depends

continuously on w ∈ clD and then equality (2.3.5) holds for all w ∈ clD. By
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(2.3.6), the equality

H[U1, . . . , Un](w) ≡ (−1)n(n− 1)!

2πi

∫
∂D
f ′0(t)

n∏
i=1

(Ui(t)− Ui(w)

Ψ0(t)− Ψ0(w)

)
dt, ∀w ∈ clD

for all (U1, . . . , Un) ∈ (Cm,α(clD,C))n, defines a complex n-linear symmetric map

of (Cm,α(clD,C))n to C0(clD,C). Clearly

H[[U ]n] =
∂nT+

(∂Ψ)n
[Ψ0, f0][[U ]n]

for all U ∈ Cm,α(clD,C)). Since Cm,α(clD,C) is continuously embedded in

C0(clD,C) and both H and ∂nT+

(∂Ψ)n [Ψ0, f0] are real n-linear symmetric maps which

coincide on the diagonal of (Cm,α(clD,C))n, we must have

H =
∂nT+

(∂Ψ)n
[Ψ0, f0]

and accordingly ∂nT+

(∂Ψ)n [Ψ0, f0] is a complex n-linear map. By using the chain rule

combined with the properties of the map Eφ0 , we obtain statement (i). The

linearity of C in the variable f implies the validity of statement (ii) and of

equality

(2.3.7)
∂j+2C

(∂φ)j(∂f)2
[φ, f ] = 0

for all (φ, f) in the domain of C and for all j ∈ N. Since the n-th differential of C

is the sum of the partial differentials of C of order n, we obtain statement (iii) by

statements (i), (ii) and (2.3.7). Since for all r ∈ N\{0}, C(r)[φ0, f0] is a complex

r-linear symmetric map from (Cm,α∗ (∂D,C))r to Cm,α∗ (∂D,C), Theorem 2.2.25

implies that C is a complex analytic operator. �

We now show that the formal expansion of the Cauchy kernel with respect

to the curve φ studied by Tran-Oberlé (1989) for graph curves in C around the

inclusion map of R in C, gives, in our setting, the Taylor series of the Cauchy

singular operator as a map of the contour φ. As a consequence, we deduce the

validity of a result of Coifman and Meyer (1983b, p. 10) in our Schauder space

setting and for curves which are not necessarily arc-length parametrized.

Corollary 2.3.8. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let C be the nonlinear oper-

ator of Theorem 2.2.25. The nonlinear operator C̃ from Cm,α∗ (∂D,C) ∩ A∂D to

LC
(
Cm,α∗ (∂D,C), Cm,α∗ (∂D,C)

)
defined by

C̃[φ] ≡ C[φ, ·]

is complex analytic. Furthermore, if φ0 ∈ Cm,α∗ (∂D,C) ∩ A∂D and if we denote

the integral operators f 7→
∫
∂D f(t)k(·, t)dt and f 7→ p.v.

∫
∂D f(t)k(·, t)dt associ-

ated to a given complex-valued function k(·, ·) defined on {(s, t) ∈ (∂D)2 : s 6= t}



2.3. COMPLEX ANALYTICITY OF THE CAUCHY SINGULAR INTEGRAL 31

by k(·, t)dt and p.v.k(·, t)dt respectively, we have the following Taylor expan-

sion which has radius of convergence greater or equal to r̃ ≡ sup{r > 0 :

clCm,α∗ (∂D,C)B(φ0, r) ⊆ Cm,α∗ (∂D,C) ∩A∂D}:

1

2πi
p. v.

φ′0(t) + h′(t)

φ0(t)− φ0(·) + h(t)− h(·)
dt

=
1

2πi
p. v.

φ′0(t)

φ0(t)− φ0(·)
dt+

∞∑
n=1

(−1)n−1

2πin

d

dt

{( h(t)− h(·)
φ0(t)− φ0(·)

)n}
dt .

for all h ∈ Cm,α∗ (∂D,C) such that ‖h‖Cm,α∗ (∂D,C) < r.

Proof. We first observe that C is linear in its second variable. Accordingly, if f0

is an arbitrary but fixed element of Cm,α∗ (∂D,C), we have

C̃[φ] =
∂C

∂f
[φ, f0]

for all φ ∈ Cm,α∗ (∂D,C)∩A∂D. Then the analyticity of C̃ follows from that of C.

A simple computation based on the Hölder continuity of φ′0, h′ and on Lemmas

1.2.6 (i), 1.2.8 (i), shows that there exists a constant c > 0 depending only on h,

φ0, such that
∣∣∣ ddt( h(t)−h(t0)

φ0(t)−φ0(t0)

)∣∣∣ ≤ c
|t−t0|1−α , for all t, t0 ∈ ∂D, t 6= t0 (see also Lu

(1993, Ex. 5 p. 20)) and that accordingly the integral
∫
∂D f(t) ddt

(
h(t)−h(t0)
φ0(t)−φ0(t0)

)
dt

exists in the sense of Lebesgue for all f ∈ C0
∗(∂D,C) and for all t0 ∈ ∂D. By

Proposition 2.3.1 (ii) and by integration by parts, we obtain the validity of the

Taylor expansion of the statement in a ball B(φ0, r′) of sufficiently small ra-

dius r′ > 0. Let r > 0 be such that B ≡ clCm,α∗ (∂D,C)B(φ0, r) is contained in

Cm,α∗ (∂D,C)∩A∂D. To complete the proof it suffices to show that C̃[·] is bounded

on B. By a standard application of the Ascoli-Arzela Theorem, the set B is a

compact subset of C1
∗(∂D,C). Then Lemma 1.2.6 (ii) implies that the map l∂D[·]

has a strictly positive minimum on B. Then by Privalov Theorem (cf. e.g. Lu

(1993, Thm. 3.1.1)) and by standard properties of the Cauchy integral, it follows

the boundedness of C̃[·] on B.

�

Now we restate Theorem 2.2.25 by using a domain of integration more general

than ∂D.

Corollary 2.3.9. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let φ ∈ Cm,α∗ (∂D,C) ∩ A∂D,

L = φ(∂D). The set of g ∈ C1
∗(L,C) which are injective and satisfy condition

g′(ξ) 6= 0, for all ξ ∈ L coincides with AL and is open. The nonlinear operator

of (Cm,α∗ (L,C) ∩ AL)× Cm,α∗ (L,C) to Cm,α∗ (L,C) defined by

CL[γ, f ] ≡ 1

2πi
p. v.

∫
L

f(t)γ′(t)

γ(t)− γ(·)
dt,
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where we understand that the line integral is computed with respect to the parame-

trization φ(eiθ), θ ∈ [0, 2π], is complex analytic. The partial differentials of CL

can be obtained by those of C∂D = C by replacing the integration on ∂D with an

integration on L.

Proof. By simple computations and by Lemma 1.2.8 (ii), it follows that K =

φ(∂D) satisfies the assumptions on K of conditions (i), (ii) of Lemma 1.2.6. Ac-

cordingly the conclusions of Lemma 1.2.6 (i), (ii) hold for K = φ(∂D). Let T φ be

the complex linear homeomorphism of Cm,α∗ (L,C) to Cm,α∗ (∂D,C) of Lemma 1.2.8

(viii). Clearly

CL[γ, f ] = T
(−1)
φ

[
C[T φ[γ],T φ[f ]]

]
for (γ, f) ∈ (Cm,α∗ (L,C) ∩ AL) × Cm,α∗ (L,C). Then the chain rule yields the

conclusion. �



CHAPTER 3

Perturbation analysis of the conformal sewing

problem in Schauder spaces

3.1. Introduction

In this chapter we do a perturbation analysis of a classical boundary value

problem with shift, namely the conformal sewing problem. Although the bound-

ary value problems with shift have been extensively studed (cf. e.g. Litvinchuk &

Zwerovich (1968), Aizenshtadt, Karlovich & Litvinchuk (1992) and Kravchenko

& Litvinchuk (1994)), the perturbation analysis of such problems seems to be

a subject less analyzed. We first introduce the geometric interpretation of the

sewing problem to sketch the setting of our work and its geometric motivations.

Let Ĉ ≡ C ∪ {∞} and let J be a Jordan domain of Ĉ, i.e. an open subset

of Ĉ which boundary is the image of a Jordan curve of Ĉ, namely continuous

and injective function g of ∂D to Ĉ. Clearly J is one of the two connected

components of Ĉ \ g(∂D). We want to define a map, say welding map, which

associates to a normalized Jordan domain a homeomorphism of ∂D to itself. Let

t1, t2, t3 be three distinct points of ∂D such that the orientation induced by

these points in ∂D is counterclockwise and let z1, z2, z3 be three distinct points

of Ĉ. Let ∆′ be the set of the Jordan domains J such that ∂J contains z1, z2,

z3 and has J to the left when ∂J has the orientation induced by z1, z2, z3. Let

F1 and G1 be conformal maps (i.e. meromorphic and injective and then with

at most one simple pole) of D and Ĉ \ clD, respectively, such that F1(D) = J
and G1(Ĉ \ clD) = Ĉ \ cl J. As it is well-known the maps F1 and G1 can be

extended by continuity to clD and Ĉ \ D, respectively, and such extensions are

homeomorphisms in the respective images. The pair (F1, G1) is uniquely fixed

by the normalization conditions F1(ti) = zi, G1(ti) = zi, i = 1, 2, 3. Let W1 be

the welding map from ∆′ to the subset of C0
∗(∂D,C) of the homeomorphisms of

∂D to itself which fix ti, i = 1, 2, 3, defined by

(3.1.1) W1[J] = F
(−1)
1/∂D ◦G1/∂D

for all J ∈ ∆′. Clearly with a different choice of the points ti and zi, i = 1, 2, 3,

we obtain a map which differs from the first only in a composition and in a

conjugation by Möbius transformations. If (F1, G1) is a pair of maps as above,

there is a unique Möbius transformation H such that the pair (H ◦ F1, H ◦G1)

33
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satisfies the normalization condition limz→∞H(G1(z))− z = 0. Then there is a

natural one-to-one correspondence between ∆′ and the set ∆ of all pairs (F,G)

of continuous and injective functions, defined in clD and Ĉ \ D, holomorphic in

D and C \ clD, respectively, and satisfying the normalization condition

(3.1.2) lim
z→∞

G(z)− z = 0 .

The conformal sewing problem consists in finding a sort of right inverse of the

welding map W1. Indeed, let φ be a homeomorphism of ∂D to itself, more simply

a shift of ∂D. A solution of the conformal sewing problem associated to φ is a

pair (F,G) in ∆ such that the following condition holds

(3.1.3) F/∂D ◦ φ = G/∂D .

It is easy to check that the sewing problem associated to a shift φ consists in

finding the conformal structures of the topological space, homeomorphic to Ĉ,

clD ∪φ Ĉ \ D (obtained by identifying t with φ(t), for all t ∈ ∂D), which extend

the natural conformal structures of D and Ĉ \ clD (see Nag (1990, Prop. II.1)).

For a general shift φ, the sewing problem can admit no solutions (as observed

by Lehto (1987, p. 100)) or admit infinitely many solutions (see Nag (1990,

Part II)). By the theory of the quasiconformal maps in C (cf. e.g. Lehto (1987,

Ch. 1 and p. 96–101)), W1 restricts to a one-to-one map from the subset ∆′′ of

∆′, consisting of the quasidisks (i.e. the image of D by a quasiconformal map) in

∆′, and the subset Υ of the quasisymmetric shifts (see e.g. Pommerenke (1992,

p. 95)) which fix t1, t2, t3. ∆′′ and Υ are models of the universal Teichmüller

space which is an important subject in geometric functions theory. Under the

assumption that φ is quasisymmetric, we define the pair of operators (F [·],G[·])
which maps the shift φ to the trace on ∂D of the solution (F,G) of the sewing

problem (3.1.3) (by composing by Möbius transformations, the uniqueness follows

also for quasisymmetric shifts which do not fix t1, t2, t3). Clearly F [φ] and G[φ]

determine uniquely the conformal maps F and G. Nag (1996, sec. 1) illustrates

the importance to obtaining F [φ] and G[φ] from φ in the theory of Teichmüller

spaces. Nag (1996) considers a real analytic family of shifts ωt, t ∈ ]−ε, ε[, ε > 0

with ω0 real analytic. By assuming the real analyticity on t of F [ωt] and G[ωt]

and the applicability of the Plemelj formula, he obtains a recursive method to

determine all the variations of both F [ωt] and G[ωt] in terms of the variations

of ωt. Our aims for these chapters is to show that in a suitable Banach space

setting, the solution of the conformal sewing problem, (F [φ],G[φ]), depends

real analytically upon φ. As a corollary of our result, we can deduce that if φ

depends analytically on a real parameter t then (F [φ],G[φ]) depends analytically

on the same parameter. Thus in particular, Nag’s perturbation scheme can be

applied. In the literature there are some results about the continuous dependence
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of (F [φ],G[φ]) on φ (cf. Monakhov (1983, p. 363) and Huber & Kühnau (1994,

p. 319)). In this chapter we study the regularity of the operators F [·] and G[·] in

a setting of Schauder spaces of regular functions and we show that this setting is

not sufficient to obtain the analyticity of F [·]. To pursue our goals, we proceed

independently on the quasiconformal maps theory and we employ the classical

results about boundary value problems with shift (cf. e.g. Lu (1993, p. 416)) and

the Implicit Function Theorem for maps between Banach spaces.

Let m ∈ N \ {0}, 0 < α < 1. We first assume that (F,G) is a solution for the

conformal sewing problem associated to the shift φ, which we assume to belong to

the space Cm,α∗ (∂D,C) of m-times continuously differentiable functions, with α-

Hölder continuous m-th order derivative, and to be one-to-one, index preserving,

and with everywhere nonvanishing tangent vector. Though a shift φ belonging

to Cm,α∗ (∂D,C) is quasisymmetric and then there is a unique solution for the

sewing problem (3.1.3), we will show the unique solvability of problem (3.1.3)

by different tools. Then we derive (see section 2) an integral equation involving

(φ, g ≡ G/∂D), which we can write as

(3.1.4) Γ [φ, g] = 1∂D

where 1∂D is the identity map of ∂D. Since ultimately, we intend to employ the

Implicit Function Theorem to equation (3.1.4), and since the Implicit Function

Theorem requires that the domain of Γ be open, while the set of functions which

map ∂D to ∂D is not open, we make sure that the operator Γ in equation (3.1.4)

makes sense and is regular for φ’s in a neighborhood U in Cm,α∗ (∂D,C) of the

functions which map ∂D to itself. As a next step, we need to show that equation

(3.1.4) has a unique solution g of class Cm,α∗ for all φ belonging to U . We do so by

a two steps argument. We first show that for φ in Cm,α∗ (∂D,C), equation (3.1.4)

has a unique solution which is of class C0,α
∗ . Then we show that if (φ, g) solves

(3.1.4), φ of class Cm,α∗ , g of class C0,α
∗ , then g must belong to Cm,α∗ (∂D,C) (cf.

section 2). Then we show that if (φ, g) is of class Cm,α∗ , and solves (3.1.4), then

(g ◦ φ(−1), g) is the trace of the solution for the conformal sewing problem. Next

we apply the Implicit Function Theorem to equation (3.1.4) for complex analytic

operator by exploiting the complex analyticity of the dependence of a Cauchy

singular integral upon its contour (cf. Lanza & Preciso (1998, Prop. 4.1)) and

we deduce that the set of zeros of equation (3.1.4) is the graph of a holomorphic

operator, which for shifts φ’s satisfying φ(∂D) = ∂D coincides with the map

which takes φ to G[φ]. In section 4, we study the differentiability properties of

the operator F defined by

F [φ] ≡ G[φ] ◦ φ(−1)
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for all shift φ of class Cm,α∗ . Let k ∈ N \ {0}. By exploiting the result of Lanza

(1997), we prove that F has an extension to an open neighborhood U′ in the

subspace Cm+k,α,p
∗ (∂D,C), defined as the closure in Cm,α∗ (∂D,C) of the smooth

functions and this extension is of class Ck from U′ to Cm,α∗ (∂D,C). Then we

show that the introduction of Cm+k,α,p
∗ (∂D,C) was actually necessary. Namely,

we prove that if r ∈ N \ {0} and F were to have an extension of class Cr from

an open neighborhood of the admissible φ’s in Cm,α∗ (∂D,C) to Cm,α∗ (∂D,C), then

the φ’s in the domain of F must belong to Cm+r,α,p
∗ (∂D,C).

3.2. The integral equation associated to the sewing problem.

Analyticity of the operator G

In this section we present the classical integral equation approach to show

the unique solvability of the sewing problem in a Schauder space setting. In view

of a perturbation analysis in a Banach space and of a consequent application of

the Implicit Function Theorem, we need to deal with an open set of shifts. Let

A∂D be the open subset of C1
∗(∂D,C) of the injective maps with nonvanishing

derivative (cf. Lemma 1.2.6). We set

A∗∂D ≡ {φ ∈ A∂D : ind[φ] = 1 } .

Analogously we define A∗L for L = γ(∂D) and γ ∈ A∂D. By the constancy

of the index under small perturbations in C1
∗(∂D,C), the set A∗∂D is open in

C1
∗(∂D,C). Let m ∈ N \ { 0 }, 0 < α < 1. Then we consider the open neigh-

borhood Cm,α∗ (∂D,C) ∩ A∗∂D of Cm,α∗ (∂D, ∂D) ∩ A∗∂D and we call the elements of

Cm,α∗ (∂D,C) ∩ A∗∂D “generalized shifts”. As usual, if Ω is an open subset of C,

H(Ω) will denote the holomorphic functions of Ω.

Definition 3.2.1. Let 0 < α < 1, γ ∈ C1,α
∗ (∂D,C) ∩ A∗∂D, L ≡ γ(∂D). Let

φ ∈ C1,α
∗ (∂D,C) ∩A∗∂D. We say that the pair of complex-valued functions (F,G)

defined in cl I[φ ◦ γ] and clE[γ], holomorphic in I[φ ◦ γ] and E[γ], respectively,

is a solution of the boundary value problem with generalized shift φ on L (or

(BVPφ) on L) if (F/φ(L), G/L) ∈ C0,β
∗ (φ(L),C) × C0,β

∗ (L,C), for some β ∈]0, 1[,

and the following condition hold

(3.2.2) F (φ(t)) = G(t)

for all t ∈ L.

Now we state an integral equation satisfied by a solution of problem (BVPφ).

Proposition 3.2.3 (cf. Lu (1993, p. 417)). Let 0 < α < 1, γ ∈ C1,α
∗ (∂D,C)∩A∗∂D,

L ≡ γ(∂D). Let φ ∈ C1,α
∗ (∂D,C) ∩ A∗∂D. Let (F,G) be a solution of problem

(BVPφ) and let P (·) be a polynomial function of C such that limz→∞G(z) −
P (z) = 0. Let C be the Cauchy singular integral defined in Corollary 2.2.5. Let
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kφ(·, ·) be the complex-valued function of L2 \ { (t, ξ) ∈ L2 : t 6= ξ } defined by

(3.2.4) kφ(t, ξ) ≡ 1

ξ − t
− φ′(ξ)

φ(ξ)− φ(t)

for all (t, ξ) ∈ L2, t 6= ξ. Then (F,G) satisfies the following integral equation

(3.2.5) G(t) +
1

2πi
p. v.

∫
L
kφ(t, ξ)G(ξ) dξ

= G(t) +C[1∂D, G/L](t)−C[φ,G/L](t) = P (t)

for all t ∈ L. We intend that the line integral on L are computed with respect the

parametrization γ(eiθ), θ ∈ [0, 2π].

Proof. Since φ is a positively oriented closed curve of class C1,α
∗ , by the Cauchy

formula and the Plemelj formula we have

F (z) =
1

2πi

∫
φ(L)

F (η)

η − z
dη, z ∈ I[φ ◦ γ],

G(w)− P (w) = − 1

2πi

∫
L

G(ξ)− P (ξ)

ξ − w
dξ, w ∈ E[γ],

and

F (t1) = lim
z→t1

F (z) =
1

2
F (t1) +

1

2πi
p. v.

∫
φ(L)

F (η)

η − t1
dη(3.2.6)

G(t)− P (t) = lim
w→t

G(w)− P (w)(3.2.7)

=
1

2
(G(t)− P (t))− 1

2πi
p. v.

∫
L

G(ξ)− P (ξ)

ξ − t
dξ

for all t1 ∈ φ(L) and for all t ∈ L. By setting t1 = φ(t), η = φ(ξ) and by

exploiting equation (3.2.2), (3.2.6) becomes

(3.2.8) G(t) =
1

2
G(t) +

1

2πi
p. v.

∫
L

G(ξ)φ′(ξ)

φ(ξ)− φ(t)
dξ

for all t ∈ L. By using that P (·) is holomorphic in C and by adding (3.2.7) with

(3.2.8), we obtain (3.2.5). �

In order to study the integral equation (3.2.5), we show this lemma which

is a variant of a classical result about integral operators (cf. e.g. Kantorovich &

Akilov (1964, p. 363 Thm. 4 and p. 365 Rem. 2)).

Lemma 3.2.9. Let 0 < α < 1 and let k(·, ·) be a complex-valued function of (∂D)2\
{ (t, ξ) ∈ (∂D)2, t 6= ξ }. We assume that for each fixed ξ ∈ ∂D, the derivative

with respect t exists and is continuous in all compact subsets of ∂D \ { ξ }. Let

M1 and M2 be positive constants such that the following conditions hold

|k(t, ξ)| ≤ M1

|ξ − t|1−α
(3.2.10)
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∣∣∣∣ ≤ M2

|ξ − t|2−α
(3.2.11)

for all (t, ξ) ∈ (∂D)2, t 6= ξ. Then the integral operator U with kernel k(·, ·) maps

continuously L∞(∂D,C) in C0,α
∗ (∂D,C).

Proof. Let t1, t2 ∈ ∂D and let

(3.2.12) σ(t1, t2) ≡ inf{ |θ1 − θ2| : eiθ1 = t1, e
iθ2 = t2 }.

It is easy to check that

(3.2.13) |ξ − t| ≤ σ(ξ, t) ≤ π

2
|ξ − t|

for all (ξ, t) ∈ (∂D)2. Let | · |0 the usual norm of L∞(∂D,C). We observe that

(3.2.14)

|U [g](t)| =
∣∣∣∣∫
∂D
k(t, ξ)g(ξ) dξ

∣∣∣∣ ≤ ∫
∂D

M1|g|0
|ξ − t|1−α

|dξ|

≤ 21−αM1|g|0
π1−α

∫
∂D

1

σ(ξ, t)1−α |dξ|

=
21−αM1|g|0

π1−α

(∫ π

0

1

θ1−α dθ +

∫ 2π

π

1

(2π − θ)1−α dθ

)
= 22−απ2α−1M1|g|0 = C1|g|0

for all g ∈ L∞(∂D,C) and for all t ∈ ∂D by setting C1 ≡ 22−απ2α−1M1 (|dξ| is the

usual arc-measure of ∂D). Then by using the theorem of continuity of an integral

depending on a parameter, U is continuous from L∞(∂D,C) to C0
∗(∂D,C). Now

we have to estimate the quotient

(3.2.15)
|U [g](t+ h)−U [g](t)|

|t|α

for all g ∈ L∞(∂D,C) and for all (t, t+h) ∈ (∂D)2, h 6= 0. First we assume |h| ≥
1/2. Then it easy to check that quotient (3.2.15) is less or equal to 2α+1|U [g]|0 ≤
2α+1C1|g|0. Let (t, t+ h) ∈ ∂D2 and let |h| ≤ 1/2. We set

I(t, h) = { ξ ∈ ∂D : |ξ − t| < 2|h| }, E(t, h) = { ξ ∈ D : |ξ − t| ≥ 2|h| } .

Then we have

(3.2.16)

|U [g](t+ h)−U [g](t)| ≤
∣∣∣∣∫

E(t,h)
(k(t+ h, ξ)− k(t, ξ))g(ξ) dξ

∣∣∣∣
+

∣∣∣∣∫
I(t,h)

(k(t+ h, ξ)− k(t, ξ))g(ξ) dξ

∣∣∣∣
≤
(∫

E(t,h)
|k(t+ h, ξ)− k(t, ξ)| |dξ|

+

∫
I(t,h)

|k(t+ h, ξ)| |dξ|+
∫
I(t,h)

|k(t, ξ)| |dξ|
)
|g|0 .
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We now choose two points at,h, bt,h on ∂D in such away that the triple (bt,h, t, at,h)

induces a counterclockwise orientation on ∂D and in such away that { at,h, bt,h } =

{ η ∈ ∂D : |η − t| = 2|h| }. Let t̂(·) be the parametrization of ∂D defined by

t̂(θ) = teiθ, θ ∈ [0, 2π[. Let θh ∈ ]0, 2π[ such that t̂(θh) = t+h and let [t, t+h] be

the smaller arc of ∂D between t and t+h. Clearly |η−t| ≤ |h| for all η ∈ [t, t+h].

Then we have that

(3.2.17)

|η − ξ| ≥
∣∣∣∣|η − t| − |t− ξ|∣∣∣∣ ≥ |t− ξ| − |η − t|

≥ |t− ξ| − |h| ≥ |t− ξ|
2

for all ξ ∈ E(t, h) and for all η ∈ [t, t+ h]. Then by (3.2.11) and (3.2.17) we can

write

|k(t+ h, ξ)− k(t, ξ)| = |k(t̂(θh), ξ)− k(t̂(0), ξ)|

≤
(

sup
[0,θh]

{ ∣∣∣∣ ddθk(t̂(θ), ξ)

∣∣∣∣ })θh
≤
(

sup
η∈[t,t+h]

{ ∣∣∣∣∂k∂t (η, ξ)

∣∣∣∣ })π2 |h|
≤
(

sup
η∈[t,t+h]

{
M2

|η − ξ|2−α

})
π

2
|h| ≤ 21−απ

|ξ − t|2−α
|h|

for all ξ ∈ E(t, h). Let θa, θb ∈ ]0, 2π[ such that t̂(θa) = at,h, t̂(θb) = bt,h. By

(3.2.13), we have that∫
E(t,h)

1

|ξ − t|2−α
|dξ| ≤

(
π

2

)2−α ∫
E(t,h)

1

σ(ξ, t)
|dξ|

≤
(
π

2

)2−α[∫ π

θa

1

θ2−α dθ +

∫ θb

π

1

(2π − θ)2−α dθ

]
=

π2−α

22−α(1− α)

[
θα−1
a + (2π − θb)α−1 − 2πα−1

]
≤ π2−α

22−α(1− α)

[
2α−1|h|α−1 + 2α−1|h|α−1

]
=

π2−α

22−2α(1− α)
|h|α−1 .

As a consequence, the following inequality holds

(3.2.18)

∫
E(t,h)

|k(t+ h, ξ)− k(t, ξ)| |dξ| ≤ C2|h|α

where C2 ≡ 2α−1π3−α(1 − α)−1. Let η ∈ I(t, h) and let γ̂ the parametrization

of ∂D defined by γ̂(s) = bt,he
is, s ∈ [0, 2π[. Let st, sη, sa ∈ ]0, 2π[ such that
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γ̂(st) = t, γ̂(sη) = η, γ̂(sa) = at,h. By (3.2.10), the following inequalities hold

(3.2.19)∫
I(t,h)

|k(η, ξ)| |dξ| ≤
∫
I(t,h)

M1

|η − ξ|1−α
|dξ|

≤
(
π

2

)1−α ∫
I(t,h)

M1

σ(ξ, η)1−α |dξ|

=
π1−αM1

21−α

(∫ sη

0

1

(sη − s)1−α ds+

∫ sa

sη

1

(s− sη)1−α ds

)
=
π1−αM1

21−α

(
sαη + (sa − sη)α

)
≤ 2απ1−αM1s

α
a ≤ πM1|at,h − bt,h|α ≤ 22αM1|h|α .

By (3.2.14), (3.2.18) and (3.2.19) it follows that

|U [g]|C0,α∗ (∂D,C)
≤ ((1 + 2α)C1 + C2 + 22α+1M1)|g|0

for all g ∈ L∞(∂D,C). This yields the conclusion. �

In the hypothesis of Proposition 3.2.3, we show that (BVPφ) admits at most

one solution when the polynomial P (·) is fixed.

Proposition 3.2.20. Let 0 < α < 1, γ ∈ C1,α
∗ (∂D,C) ∩ A∗∂D, L = γ(∂D). Let

φ ∈ C1,α
∗ (L,C) ∩ A∗L. The following statements hold.

(i) Let kφ(·, ·) be the complex-valued function of L2 \ { (t, ξ) ∈ L2 : t 6= ξ }
defined in (3.2.4). Then the function k(·, ·) from ∂D2 \ { (s, η) ∈ ∂D2 :

s 6= η } to C defined by

k(s, η) ≡ kφ(γ(s), γ(η))γ′(η)

for all (s, η) ∈ ∂D2, s 6= η, satisfies conditions (3.2.10) and (3.2.11) of

Lemma 3.2.9.

(ii) If (F,G) is a solution of (BVPφ) on L satisfying G(∞) ≡ limz→∞G(z) =

0, then F = 0 and G = 0.

Proof. By arguing as in Lu (1993, p. 418), we have that there exists cφ > 0 such

that

(3.2.21)

∣∣∣∣φ(ξ)− φ(t)

ξ − t
− φ′(ξ)

∣∣∣∣ ≤ cφ|ξ − t|α
for all (t, ξ) ∈ L2, t 6= ξ. Then we obtain that

|kφ(t, ξ)| = 1

|ξ − t|
· |ξ − t|
|φ(ξ)− φ(t)|

·
(∣∣∣∣φ(ξ)− φ(t)

ξ − t
− φ′(ξ)

∣∣∣∣)
≤

cφ
lL[φ]

· 1

|ξ − t|1−α
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(see Lemma 1.2.6 for the definition of lL[·]). Then bu substituting t = γ(s),

ξ = γ(η) and by using l∂D[γ] > 0, it follows that k(·, ·) satisfies condition (3.2.10).

A computation based on (3.2.21), lL[φ] > 0 and l∂D[γ] > 0, shows that k(·, ·)
satisfies condition (3.2.11). Now we prove statement (ii). Let (F,G) be a solution

of (BVPφ) on L such that G(∞) = 0. We can assume that G/L ∈ C
0,β
∗ (L,C)

with 0 < β ≤ α. Let Uφ be the integral operator with kernel kφ(·, ·). We

observe that the right composition by γ is a complex linear homeomorphism

from L∞(L,C) to L∞(∂D,C) and its restriction to C0,α
∗ (L,C) is a complex linear

homeomorphism onto C0,α
∗ (∂D,C). Then by statement (i) and by Lemma 3.2.9,

Uφ maps continuously L∞(L,C) to C0,α
∗ (L,C). Since β ≤ α and C0,β(L,C) is

compactly imbedded in L∞(L,C), Uφ is a compact operator from C0,β
∗ (L,C) to

itself. Let n ∈ N \ { 0 }. By Proposition 3.2.3, (G/L)n belongs to the kernel of

the operator I + Uφ (where I is the identity operator of C0,β
∗ (L,C)). We now

assume by contradiction that (F,G) 6= (0, 0). By the holomorphic extendability

of G/L to C \ cl I[γ] it is easy to check that { (G/L)n : n ∈ N \ { 0 } } is a linearly

independent subset of C0,β
∗ (L,C). Since the kernel of I + Uφ is a subspace of

finite dimension of C0,β
∗ (L,C), we have a contradiction. Then (F,G) = (0, 0). �

Definition 3.2.22. Let 0 < α < 1, φ ∈ C1,α
∗ (∂D,C) ∩A∗∂D. The pair of injective

functions (F,G) defined in I[φ] and C\D, respectively, is a normalized solution of

the generalized conformal sewing problem associated to φ (or (GSPφ)) if (F,G)

satisfies (BVPφ) on ∂D and the following normalization condition holds

lim
z→∞

G(z)− z = 0 .

Remark 3.2.23. Let (F,G) be a solution of (GSPφ). It is easy to check that

F (I[φ]) and G(C \ clD) are the two open connected components of C \ G(∂D).

Clearly if φ(∂D) = ∂D, (F,G) is a normalized solution for the conformal sewing

problem (cf. (3.1.3)).

By Proposition 3.2.20 (ii), the problem (GSPφ) has at most one solution. In

the sequel we show the existence of a solution for problem (GSPφ) which has

the same regularity of φ.

Lemma 3.2.24 (cf. Lu (1993, p. 419–420)). Let 0 < α < 1, φ ∈ C1,α
∗ (∂D,C)∩A∗∂D.

Let I be the identity operator of C0,α
∗ (∂D,C). Let kφ(·, ·) be the map defined in

( 3.2.4) and let Uφ be the operator from C0,α
∗ (∂D,C) to itself defined by

(3.2.25) Uφ[g](t) ≡ 1

2πi

∫
∂D
kφ(t, ξ)g(ξ) dξ = C[1∂D, g](t)−C[φ, g](t)

for all g∈ C0,α
∗ (∂D,C) and for all t ∈ ∂D. Then I + Uφ is a complex linear

homeomorphism of C0,α
∗ (∂D,C) to itself.
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Proof. By Proposition 3.2.20 and by Lemma 3.2.9, Uφ is a compact operator.

To conclude it suffices to show that I + Uφ is injective. Let g0 be such that

(I +Uφ)[g0] = 0. We consider the pair of functions (Φ+
0 ,Φ

−
0 ) defined by

Φ+
0 (z) ≡ 1

2πi

∫
∂D

g0(ξ)

ξ − z
dξ(3.2.26)

Φ−0 (w) ≡ 1

2πi

∫
φ(∂D)

g0 ◦ φ(−1)(η)

η − w
dη(3.2.27)

for all z ∈ D and for all w ∈ E[φ]. By well-known properties of a Cauchy integral

Φ+
0 and Φ−0 have continuous extension to clD and clE[φ] = E[φ] ∪ φ(∂D) which

are of class C0,α
∗ in ∂D and φ(∂D), respectively. By the Plemelj formula

Φ+
0 (t) =

1

2
g0(t) +

1

2πi
p. v.

∫
∂D

g0(ξ)

ξ − t
dξ(3.2.28)

Φ−0 (t1) = −1

2
g0 ◦ φ(−1)(t1) +

1

2πi
p. v.

∫
φ(∂D)

g0 ◦ φ(−1)(η)

η − t1
dη(3.2.29)

for all t ∈ ∂D and for all t1 ∈ φ(∂D). We set η = φ(ξ) and t1 = φ(t) in (3.2.29)

and we observe that

Φ+
0 (t)− Φ−0 (φ(t)) = g0(ξ) +

1

2πi

∫
∂D

[
1

ξ − t
− φ′(ξ)

φ(ξ)− φ(t)

]
g0(ξ) dξ = 0

for all t ∈ ∂D. Then Φ+
0/∂D ◦ φ

(−1) = Φ−0/φ(∂D) and limz→∞Φ−0 (z) = 0. By

Proposition 3.2.20 (ii), Φ+
0 = 0 and Φ−0 = 0. By (3.2.28) and (3.2.29), we obtain

that

g0(t) = − 1

πi
p. v.

∫
∂D

g0(ξ)

ξ − t
dξ

g0 ◦ φ(−1)(t1) =
1

πi
p. v.

∫
φ(∂D)

g0 ◦ φ(−1)(η)

η − t1
dη

for all t ∈ ∂D and for all t1 ∈ φ(∂D). By the conditions of holomorphic extension,

there exist two maps Ψ+
0 and Ψ−0 defined in cl I[φ] and C \D and holomorphic in

I[φ] and C \ clD, respectively, such that

Ψ+
0 (t1) = g0 ◦ φ(−1)(t1)

Ψ−0 (t) = g0(t)

for all t1 ∈ φ(∂D), t ∈ ∂D and limz→∞Ψ−0 (z) = 0. By the equality Ψ+
0/φ(∂D) ◦φ =

Ψ−0/∂D and by Proposition 3.2.20 (ii), it follows that g0 = 0. �

In order to obtain a regularity result about the solution of the integral equa-

tion (3.2.5), we need the following Lemma.
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Lemma 3.2.30. Let m ∈ N \ {0}, 0 < α < 1, β < α. Let φ ∈ Cm,α∗ (∂D,C)∩A∂D.

We assume that the integral operator C∗ defined by

C∗[g] ≡ C[1∂D, g]−C
[
φ,

g

(φ′)m

]
(φ′)m

is continuous from C0,β
∗ (∂D,C) to C0,α

∗ (∂D,C). Then the integral operator Uφ

defined in (3.2.25) maps continuously Cm,β∗ (∂D,C) to Cm,α∗ (∂D,C).

Proof. It suffices to show that the operator which maps g toUφ[g](h) is continuous

from Cm,β∗ (∂D,C) to C0,α(∂D,C) for all h = 0, . . . ,m. We will prove by induction

that for all h = 0, . . . ,m there exists a continuous operator Hh from Cm,β∗ (∂D,C)

to Cm−h,α∗ (∂D,C) such that

(3.2.31) Uφ[g](h) = C[1∂D, g
(h)]−C

[
φ,

g(h)

(φ′)h

]
(φ′)h +Hh[g]

for all g ∈ Cm,β∗ (∂D,C). Then conclusion will follow by using well-known prop-

erties of continuity of the operator C[γ, ·] for all γ ∈ Cm,α∗ (∂D,C) ∩ A∂D and

Lemma 1.2.8 whenever 0 ≤ h < m and by using the hypothesis whenever h = m.

Case h = 0 holds with H0 = 0. We assume that property (3.2.31) holds for

0 ≤ h < m and we show that holds for h+ 1. We observe that, by formula of the

derivative of a Cauchy singular integral, the following equality holds,

(3.2.32) C[γ, f ]′(t) = C
[
γ,
f ′

γ′

]
(t)γ′(t)

for all (γ, f) ∈ (C1,β(∂D,C) ∩ A∂D) × C1,β
∗ (∂D,C) and for all t ∈ ∂D. Then if

h = 0, case h+ 1 holds by setting H1 ≡ 0. If h ≥ 1, by using (3.2.32), induction

and Lemma 1.2.8, it easy to check that the operator Hh+1 defined by

Hh+1[g](·) ≡ hC
[
φ,
g(h)φ(2)

(φ′)h+2

]
(·)(φ′(·))h+1

− hC
[
φ,

g(h)

(φ′)h

]
(·)(φ′(·))h−1φ(2)(·) +Hh[g]′(·)

for all g ∈ Cm,β∗ (∂D,C) is continuous from Cm,β∗ (∂D,C) to Cm−(h+1),α
∗ (∂D,C). �

Then we have the following Proposition which shows the existence of a unique

solution for the problem (GSPφ) with the same regularity of φ (cf. Lu (1993,

p. 424 Thm. 2.2.1)).

Proposition 3.2.33. Let α ∈ ]0, 1[. Let Ĝ be the operator from C1,α
∗ (∂D,C)∩A∗∂D

to C0,α
∗ (∂D,C) which maps γ to the unique Hölderian solution of the integral

equation

g +C[1∂D, g]−C[γ, g] = 1∂D

for all γ ∈ C1,α
∗ (∂D,C) ∩ A∗∂D. Then the following statements hold.
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(i) Let m ∈ N \ {0}. Let I and Uφ be the operators of Lemma 3.2.24.

We assume that φ ∈ Cm,α∗ (∂D,C) ∩ A∗∂D. Then I + Uφ is a complex

linear homeomorphism of Cm,α∗ (∂D,C) to itself. In particular, Ĝ[φ] ∈
Cm,α∗ (∂D,C).

(ii) Let φ ∈ C1,α
∗ (∂D,C)∩A∗∂D. Then Ĝ[φ] ∈ C1,α

∗ (∂D,C)∩A∗∂D and the pair

of functions (F,G) defined by

F (z) =


1

2πi

∫
φ(∂D)

(Ĝ[φ] ◦ φ(−1))(η)

η − z
dη if z ∈ I[φ]

(Ĝ[φ] ◦ φ(−1))(z) if z ∈ φ(∂D)

(3.2.34)

G(w) =


− 1

2πi

∫
∂D

Ĝ[φ](ξ)

ξ − w
dξ + w if w ∈ C \ clD,

Ĝ[φ](w) if w ∈ ∂D,
(3.2.35)

for all z ∈ cl I[φ], w ∈ C \ D, is the unique normalized solution of prob-

lem (GSPφ). Furthermore, for all m ∈ N \ {0} (Ĝ[φ] ◦ φ(−1),G[φ]) ∈
(Cm,α∗ (φ(∂D),C)∩A∗φ(∂D))×(Cm,α∗ (∂D,C)∩A∗∂D) whenever φ ∈ Cm,α∗ (∂D,C)∩
A∗∂D.

Proof. We prove statement (i). By Lemma 3.2.24, it suffices to show that Uφ is

a compact operator of Cm,α∗ (∂D,C) to itself. Let 0 < β < α. Clearly, the kernel

k(·, ·) of the integral operator C∗ of Lemma 3.2.30 is given by the formula

k(t, ξ) =
1

ξ − t
−
( φ′(ξ)

φ(ξ)− φ(t)

)(φ′(t)
φ′(ξ)

)m
= kφ(t, ξ)− φ′(ξ)

φ(ξ)− φ(t)

(φ′(t)m − φ′(ξ)m
φ′(ξ)m

)
for all (t, ξ) ∈ ∂D2, t 6= ξ. A computation based on the α-Hölder continuity of φ′

and on l∂D[φ] > 0, shows that the function defined by

(t, ξ) 7−→ φ′(ξ)

φ(ξ)− φ(t)

(φ′(t)m − φ′(ξ)m
φ′(ξ)m

)
for all (t, ξ) ∈ (∂D)2, t 6= ξ, satisfies conditions (3.2.10), (3.2.11) of Lemma 3.2.9.

Then by Proposition 3.2.20 (i), k(·, ·) satisfies conditions (3.2.10), (3.2.11) of

Lemma 3.2.9. By Lemma 3.2.9 and since C0,β
∗ (∂D,C) is continuously embedded

in L∞(∂D,C), it follows that C∗ is continuous from C0,β
∗ (∂D,C) to C0,α

∗ (∂D,C).

Since Cm,α∗ (∂D,C) is compactly embedded in Cm,β∗ (∂D,C), Lemma 3.2.30 yields

statement (i). Statement (ii) follows by adapting standard argument of theory

of boundary value problems with shift to our setting of generalized shifts and

by using statement (i). Indeed by e.g. Lu (1993, p. 419–420), the maps F and

G, defined in 3.2.34 and 3.2.35 respectively, satisfy problem (BVPφ) on ∂D (cf.

Definition 3.2.1). By statement (i) it follows that Ĝ[φ] ∈ C1,α
∗ (∂D,C). By e.g.
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Lu (1993, p. 425–426 together with p. 421), we obtain that F and G are injective

and Ĝ[φ] ∈ A∗∂D. The regularity property of the second part of statement (ii)

follows by statement (i). �

Then we have the following.

Corollary 3.2.36. Let α ∈ ]0, 1[. Let Ĝ be the operator defined in Proposi-

tion 3.2.33. Let F and G be the operators from C1,α
∗ (∂D, ∂D)∩A∗∂D to C1,α

∗ (∂D,C)∩
A∗∂D defined by

(3.2.37) (F [φ],G[φ]) ≡ (Ĝ[φ] ◦ φ(−1), Ĝ[φ])

for all φ ∈ C1,α
∗ (∂D, ∂D) ∩ A∗∂D. Then (F [φ],G[φ]) is the trace of the nor-

malized solution of the conformal sewing problem associated to the shift φ ∈
C1,α
∗ (∂D, ∂D) ∩ A∗∂D. Furthermore, if m ∈ N \ {0} and φ ∈ Cm,α∗ (∂D,C) ∩ A∗∂D

then (F [φ],G[φ]) ∈ (Cm,α∗ (∂D,C) ∩ A∗∂D)2.

Remark 3.2.38. Let α ∈ ]0, 1[, φ ∈ C1,α
∗ (∂D,C)∩A∗∂D. Let (F,G) ∈ C0(cl I[φ],C)

×C0(C \D,C) be a pair functions, holomorphic in I[φ] and C \ clD, respectively.

We assume that (F,G) satisfies the boundary condition

F/φ(∂D) ◦ φ = G/∂D .

By adapting a standard argument to transfer a problem with shift to a ordinary

problem for “sectionally holomorphic” functions and by using Proposition 3.2.33,

it follows that F/φ(∂D) ∈ C
1,α
∗ (φ(∂D),C) and that G/∂D ∈ C

1,α
∗ (∂D,C). Then by

removing the hypothesis of Hölder continuity for the traces of a solution in the

problem (BV Pφ) (cf. Definition 3.2.1), we obtain an equivalent problem.

Now we show the analytic dependence of G[φ] on φ in Schauder spaces.

Theorem 3.2.39. Let α ∈ ]0, 1[, m ∈ N \ {0}. Let Ĝ, G be the operators defined

in Proposition 3.2.33 and Corollary 3.2.36, respectively. Then Ĝ extends G and

is complex analytic from Cm,α∗ (∂D,C) ∩ A∗∂D to itself.

Proof. By (3.2.37) Ĝ coincides with G in Cm,α∗ (∂D, ∂D)∩A∗∂D. We now show the

analyticity of Ĝ. Let Γ be the operator of (Cm,α∗ (∂D,C) ∩ A∗∂D) × Cm,α∗ (∂D,C)

to Cm,α∗ (∂D,C) defined by

Γ [φ, g] ≡ g +C[1∂D, g]−C[φ, g]

for all (φ, g) ∈ (Cm,α∗ (∂D,C) ∩ A∗∂D) × Cm,α∗ (∂D,C). By Proposition 2.3.1, Γ [·, ·]
is complex analytic in its domain. By Lemma 3.2.24, the graph of the operator

Ĝ[·] from Cm,α∗ (∂D,C)∩A∗∂D to itself is the solution set of the functional equation

Γ [φ, g] = 1∂D .

By linearity of Γ [·, ·] on g and by Proposition 3.2.33 (i), it follows that ∂Γ
∂g [φ, Ĝ[φ]]

= Γ [φ, ·] is a complex linear homeomorphism of Cm,α∗ (∂D,C) to itself for all
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φ ∈ Cm,α∗ (∂D,C)∩A∗∂D. Then, Implicit Function Theorem in the form of Prodi &

Ambrosetti (1973, Thm. 11.6) or Berger (1977, p. 134), yields the conclusion. �

3.3. Regularity of the operator F associated to the sewing problem

Let (F [φ] = G[φ]◦φ(−1),G[φ]) be the trace of the normalized solution (F,G)

of the conformal sewing problem associated to the shift φ (cf. Corollary 3.2.36).

In this section we study the regularity of the dependence of F [φ] on φ in Schauder

spaces. In particular, we show that F does not admit an extension of class C∞

in Schauder spaces.

Let m,h, k ∈ N \ {0}, h, k ≥ 1, α ∈ ]0, 1[ and let Ω be a bounded open

subset of Rh, regular in the sense of Whitney. As in Lanza (1994, Def. 2.18),

Cm,α,p(cl Ω,Rk) denotes the closure in Cm,α(cl Ω,Rk) of the set of polynomial

functions. By Stone-Weierstrass Theorem and well-known properties of the open

subsets regular in the sense of Whitney, Cm,α,p(cl Ω,Rk) coincides with the clo-

sure in Cm,α(cl Ω,Rk) of Cm+1(cl Ω,Rk) and, in particular, of C∞(cl Ω,Rk) ≡⋂+∞
r=0 Cr(cl Ω,Rk). In this Lemma we introduce the subset of function of ∂D to

C of class Cm,α,p.

Lemma 3.3.1. Let α ∈ ]0, 1[, m ∈ N. We set

Cm,α,p∗ (∂D,C) = clCm,α∗ (∂D,C)(Cm+1
∗ (∂D,C)) .

Then the following statements hold.

(i) Cm,α,p∗ (∂D,C) coincides with the closure in Cm,α∗ (∂D,C) of C∞∗ (∂D,C) ≡⋂+∞
r=0 Cr∗(∂D,C).

(ii) Let φ0 ∈ Cm,α,p∗ (∂D,C)∩A∂D. Then there exist an open neighborhood Uφ0
of φ0 in Cm,α,p∗ (∂D,C)∩A∂D and a complex analytic extension operator

Eφ0 from Uφ0 to Cm,α,p(clD,C) ∩ AD such that

Eφ0 [φ]/∂D = φ

for all φ ∈ Uφ0.

Proof. Clearly, the operator which maps f to f(eiθ), θ ∈ [0, 2π] is a linear home-

omorphism from Cm,α∗ (∂D,C) to the subspace

{g ∈ Cm,α([0, 2π],C) : g(i)(0) = g(i)(2π), i = 0, . . . ,m} .

Then statement (i) follows by the equality

Cm,α,p([0, 2π],C) = clCm,α([0,2π],C)(Cm+1([0, 2π],C))

= clCm,α([0,2π],C)(C∞([0, 2π],C)) .

To prove statement (ii), it suffices to consider the operator defined in the proof

of Lemma 1.2.10 and to apply statement (i). �
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Then we have the following.

Proposition 3.3.2. Let α ∈ ]0, 1[, m, r ∈ N, m ≥ 1. Let F be the operator

defined in Corollary 3.2.36 and let φ0 ∈ Cm+r,α,p
∗ (∂D, ∂D) ∩ A∗∂D. Then there

exist an open neighborhood Uφ0 of φ0 in Cm+r,α,p
∗ (∂D,C) ∩ A∗∂D and an operator

F̂ φ0 of class Cr from Uφ0 to Cm,α,p∗ (∂D,C) such that

F̂ φ0 [φ] = F [φ]

for all φ ∈ Uφ0.

Proof. Let Ĝ be the operator from Cm+r,α
∗ (∂D,C) ∩ A∗∂D to itself defined in

Proposition 3.2.33. By Proposition 3.2.33 (i), Ĝ[γ] ∈ C∞∗ (∂D,C) whenever

γ ∈ C∞∗ (∂D,C) ∩ A∗∂D. Then by the continuity of Ĝ and by Lemma 3.3.1 (i), Ĝ

maps Cm+r,α,p
∗ (∂D,C) ∩A∗∂D to itself. Let g0 ≡ Ĝ[φ0]. Let Ug0 and Eg0 [·] be the

open neighborhood of g0 in Cm+r,α,p
∗ (∂D,C) ∩ A∗∂D and the extension operator

from Ug0 to Cm+r,α,p(clD,C)∩AD, respectively, of Lemma 3.3.1 (ii). Analogously,

let Uφ0 and Eφ0 [·] be the open neighborhood of φ0 in Cm+r,α,p
∗ (∂D,C) ∩ A∗∂D

and the extension operator from Ug0 to Cm+r,α,p(clD,C) ∩ AD, respectively,

of Lemma 3.3.1 (ii). Since D is convex, by Lanza (1994, Lemma 2.10 and

Lemma 2.20 (iv)), there exist R > 1 and an extension operator E[·] from

Cm+r,α,p(clD,C) to Cm+r,α,p(clB(0, R),C) such that

(3.3.3) E[F ]/ clD = F

for all F ∈ Cm+r,α,p(clD,C). By Lanza (1994, Thm. 5.9 together with Lemma 2.20

(iv)), there exist a neighborhood WΦ0 of Φ0 in Cm+r,α,p(clD,C)∩AD and an op-

erator ĴΦ0 [·] of class Cr from WΦ0 to Cm,α,p(clD,B(0, R)) such that

(3.3.4) ĴΦ0 [Φ] = Φ(−1)

for all Φ ∈ WΦ0 ∩Cm+r,α,p(clD, clD). Let R be the trace map from Cm,α(clD,C)

to Cm,α∗ (∂D,C). By Lemma 1.2.9 (ii) and Lemma 3.3.1 (ii), R is linear and

continuous from Cm,α,p(clD,C) to Cm,α,p∗ (∂D,C). Let T be the composition

operator from Cm+r,α,p(clB(0, R),C) × Cm,α(clD,B(0, R)) to Cm,α(clD,C). By

Lanza (1994, Thm. 4.2), T is of class Cr and maps Cm+r,α,p(clB(0, R),C) ×
Cm,α,p(clD,B(0, R)) into Cm,α,p(clD,C). By possibly shrinking Uφ0 , we define

the operator F̂ φ0 by setting

F̂ φ0 [φ] ≡ R
[
T
[
E
[
Eg0

[
G[φ]

]]
, ĴΦ0

[
Eφ0 [φ]

]]]
for all φ ∈ Uφ0 . Then F̂ φ0 is of class Cr from Uφ0 to Cm,α,p∗ (∂D,C). By (3.3.3)

and (3.3.4), we have that

F̂ φ0 [φ] = F [φ]

for all φ ∈ Uφ0 ∩ C
m+r,α,p
∗ (∂D, ∂D). �
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In this Proposition we show that the regularity result of Proposition 3.3.2

is sharp and, in particular we clarify the introduction of spaces Cm,α,p. It will

follow that F does not admit an extension of class C∞ in Schauder spaces.

Proposition 3.3.5. Let α ∈ ]0, 1[, m, r ∈ N, m ≥ 1. Let φ0 ∈ Cm+r,α
∗ (∂D, ∂D)∩

A∗∂D. We assume that there exists an operator F̂ φ0 of class Cr+1 from an open

neighborhood Uφ0 of φ0 in Cm+r,α
∗ (∂D,C) ∩ A∗∂D to Cm,α∗ (∂D,C) such that

(3.3.6) F̂ φ0 [φ] = F [φ]

for all φ ∈ Uφ0 ∩ C
m+r,α
∗ (∂D, ∂D). Then φ0 ∈ Cm+r+1,α,p

∗ (∂D, ∂D) ∩ A∗∂D.

Proof. Let ε > 0. We consider the C∞, one-parametric family of functions be-

longing to Cm+r,α
∗ (∂D, ∂D) ∩ A∗∂D

φθ(t) ≡ e−iθφ0(t)

for all θ ∈ ]−ε, ε[, t ∈ ∂D. Let f0 ≡ F [φ0]. By the unique solvability of problem

(GSP-φθ), we have that

G[φθ] = G[φ0]

F [φθ](t) = f0(eiθt)

for all θ ∈ ]−ε, ε[, t ∈ ∂D. By the regularity assumption on F̂ φ0 , the family{
F [φθ]

}
θ∈]−ε,ε[

is of class Cr+1 from ]−ε, ε[ to Cm,α∗ (∂D,C). It is easy to check

that

(3.3.7)
dh

(dθ)h

{
F [φθ]

}
(η)(t) =

dh

(dθ)h

{
f0(eiθt)

}
(η)

for all η ∈ ]−ε, ε[, t ∈ ∂D and for all h = 0, . . . , r + 1. It follows that f0 ∈
Cm+r+1,α
∗ (∂D,C). Furthermore, by the equality

lim
θ→0

∥∥∥F [φθ]− f0

θ
− d

dθ

{
F [φθ]

}
(0)
∥∥∥
m,α

= 0

and by (3.3.7), we obtain that f0 ∈ Cm+r+1,α,p
∗ (∂D,C). Since G[φ0] is a Riemann

map of E[f0] and f0 is of class Cm+r+1,α,p
∗ , a standard argument implies that

G[φ0] ∈ Cm+r+1,α,p
∗ (∂D,C). By adapting standard result (cf. e. g. Lanza (1994,

Lemma 5.5 (i) and Thm. 3.3 (ii))), it follows that φ0 ∈ Cm+r+1,α,p
∗ (∂D, ∂D). �



CHAPTER 4

Roumieu spaces and Sewing Problem

4.1. Introduction

In section III.3 we have shown a regularity result for the operator F defined

by

F [φ] = G[φ] ◦ φ(−1)

for all shifts φ of class C1,α
∗ , 0 < α < 1, in a setting of Schauder spaces Cm,α∗ (∂D,C),

m ≥ 1. Clearly F [φ] is the trace of the first component of the solution (F,G) of

the conformal sewing problem associated to the shift φ. In section III.3 we have

seen that the regularity of the shift φ must increase if we require a higher order

of differentiability for the operator F [·]. Then the assumption that φ belongs to

a Banach space of real analytic functions of ∂D to C appears natural in order to

show the existence of an analytic extension of the operator F [·]. The operator

F [·] can be expressed as a composition of the operator, say J , which takes an

invertible function into its inverse, of a composition operator and of the operator

G[·], which has an analytic extension in Schauder spaces. Thus we will concerned

with the problem of finding a proper space of real analytic functions for our φ’s

in order to have such operators analytic. In section 2 we introduce a space which

turn to be suitable to this purpose, namely the Roumieu space C0
ω,ρ(cl Ω,Rk) (see

Definition (4.2.11)). Then in this setting we prove an analyticity result for the

composition operator, for the inversion operator J and for the operators G[·] and

F [·] by adapting the regularity results on the composition and on the inversion

operator of Lanza (1994 and 1996b). In doing so we encounter some technical

difficulties, among which we mention the construction of an extension operator

(cf. Proposition 4.2.10 (ii) and Lemma 4.2.10 (iii)). We want to underline that

there are a lot of problems in which the Roumieu spaces have been applied. We

mention e.g. the contributions of Roumieu (1960), Lions & Magenes (1970) and

Nazarov (1990).

4.2. The composition operator in Roumieu spaces associated to the

differentiation operator

Let h, k ∈ N \ { 0 } and let Ω be a bounded open subset of Rh. In this section

we will introduce a natural Banach space setting to find an analytic extension

of the operator F [·]. By Proposition 3.3.5, we need that our Banach spaces are

49
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continuously embedded in Cm(cl Ω,Rk) for all m ∈ N. By observing that the

composition operator is involved in the definition of F [·], we deduce that the

assumption of real analyticity for the shifts φ in the domain of F [·] is a natural

condition.

Proposition 4.2.1. Let m,h, k ∈ N, h, k ≥ 1. Let Ω and Ω′ be bounded open

subsets of Rh and Rk, respectively. Let F be a function of cl Ω to R. We assume

that the operator T F from Cm(cl Ω′, cl Ω) to Cm(cl Ω′,R) defined by

T F [G] ≡ F ◦G

for all G ∈ Cm(cl Ω′, cl Ω) has a real analytic extension T̃ F defined in an open

neighborhood N of Cm(cl Ω′, cl Ω) in Cm(cl Ω′,Rh). Then F extends to a map F̃

which is real analytic in some open subset Ω̃ ⊇ cl Ω.

Proof. Let x ∈ Rh and let c(x) be the constant function of cl Ω′ to Rh with

constant value x. Clearly, the map c(·) is linear and continuous from Rh to

Cm(cl Ω′,Rh) and

Ω̃ ≡
{
x ∈ Rh : c(x) ∈ N

}
is an open subset of Rh which contains cl Ω. Let a ∈ cl Ω′ and let V be the

linear and continuous functional of Cm(cl Ω′,R) defined by V [H] = H(a) for all

H ∈ Cm(cl Ω′,R). Then the map F̃ defined by F̃ (x) ≡ V [T̃F [c(x)]] for all x ∈ Ω̃,

yields the required extension of F . �

Before we introduce Banach spaces of real analytic functions, we observe the

validity of the following standard lemma.

Lemma 4.2.2. Let h ∈ N \ { 0 } and let Ω, Ω̃ be bounded open subsets of Rh such

that Ω̃ ⊇ cl Ω. Let (Y, ‖ ‖Y) be a real Banach space and let F be a real analytic

function of Ω̃ to Y. Let L(n)((Rh)n,Y) be the space of all n-linear maps of (Rh)n

to Y and let ‖ ‖L(n)((Rh)n,Y) be its usual norm. Then there exist ρ′ > 0 and

M1 > 0 such that the following Cauchy estimates of analyticity hold

(4.2.3)
ρn′ ‖dnF (x)‖L(n)((Rh)n,Y)

n!
≤M1

for all x ∈ cl Ω and for all n ∈ N. (dnF (x) is the n-th differential of F at x). In

particular we have that

(4.2.4)
ρ
|η|
′ ‖DηF (x)‖Y

|η|!
≤M1

for all x ∈ cl Ω and for all η ∈ Nh.

Proof. By the compactness of cl Ω, it suffices to show that for all a ∈ cl Ω there

exist ρ′ > 0 and M1 > 0 such that B(a, ρ′) ⊆ Ω̃ and the estimates (4.2.3) hold for
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all x ∈ B(a, ρ′). By the analyticity of F there exists R > 0 such that B(a,R) ⊆ Ω̃

and that

(4.2.5)
∑
n≥0

Rn‖dnF (a)‖L(n)((Rh)n,Y)

n!
< +∞

and

(4.2.6) F (x) =
∑
n≥0

dnf(a)[x− a]n

n!

for all x ∈ B(a,R). By standard calculus on normed spaces, we obtain that

(4.2.7) dkF (x)[v1, . . . , vk] =
∑
n≥0

dn+kF (a)[v1, . . . , vk, [x− a]n]

n!

for all k ∈ N, x ∈ B(a,R) and for all (v1, . . . , vk) ∈ (Rh)k. By (4.2.5) there exists

M > 0 such that

(4.2.8)
Rn‖dnF (a)‖L(n)((Rh)n,Y)

n!
≤M .

Let ρ′ < R/2. Then by (4.2.7) and (4.2.8), we obtain that for all k ∈ N and for

all x ∈ B(a, ρ′). the following inequality holds.

(4.2.9)

ρk′ ‖dkF (x)‖L(n)((Rh)n,Y)

k!
≤ ρk′
k!

(∑
n≥0

ρn′ ‖dn+kF (a)‖L(n)((Rh)n,Y)

n!

)

≤M
(∑
n≥0

(
ρ′
R

)n+k (n+ k)!

n!k!

)

≤M
(∑
n≥0

(
ρ′
R

)n+k

2n+k

)
≤M 1

1− 2ρ′/R
.

This yields the conclusion. �

We now define standard Banach spaces of real analytic functions of a bounded

open subset Ω, namely the Roumieu spaces (cf. Roumieu (1960)) constructed on

the basis of the differentiation operator for functions of Ω.

Proposition 4.2.10. Let ρ > 0, k ∈ N \ { 0 } and let Ω be a bounded open subset

of Rk. Let (Y, ‖ ‖Y) be a real Banach space and let ‖ ‖0 be the usual sup-norm

of the space C0(cl Ω,Y). We set

(4.2.11) C0
ω,ρ(cl Ω,Y) ≡

{
F ∈

⋂
m∈N
Cm(cl Ω,Y) : sup

η∈Nk

{
ρ|η|‖DηF‖0
|η|!

}
< +∞

}
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and we endow C0
ω,ρ(cl Ω,Y) with the norm

(4.2.12) ‖F‖ω,ρ ≡ sup
η∈Nk

{
ρ|η|‖DηF‖0
|η|!

}
for all F ∈ C0

ω,ρ(cl Ω,Y). If B ⊆ Y, C0
ω,ρ(cl Ω, B) denotes the subset of C0

ω,ρ(cl Ω,Y)

of functions F such that F (cl Ω) ⊆ B. The following statements hold.

(i) C0
ω,ρ(cl Ω,Y) is a Banach space and for all m ∈ N C0

ω,ρ(cl Ω,Y) is con-

tinuously embedded in Cm(cl Ω,Y).

(ii) We set Ωρ ≡ Ω + B(0, ρ) for all ρ > 0 and we assume that Ω is regular

in the sense of Whitney, i.e. c[Ω] < +∞. Then there exist ρ′ > 0,

depending only on ρ and c[Ω], and a continuous extension operator EΩ,ρ′

from C0
ω,ρ(cl Ω,Y) to C0

ω,ρ′(cl Ωρ′ ,Y) such that

EΩ,ρ′ [F ]/ cl Ω = F

for all F ∈ C0
ω,ρ(cl Ω,Y).

(iii) The set
⋃
ρ>0 C0

ω,ρ(cl Ω,Y) coincides with the set of all real analytic func-

tions F of Ω to Y which admit a real analytic extension to an open subset

ΩF ⊇ cl Ω.

Proof. Statement (i) follows by standard arguments. We prove statement (ii).

Let F ∈ C0
ω,ρ(cl Ω,Y) and let x ∈ Ω. Since all partial derivatives exist and are

continuous in Ω, F is a C∞ map. We want to estimate the norm of the n-th

differential of F . Let β(n, k1, . . . , kh) be natural numbers such that

(t1 + · · ·+ th)n =
∑

k1+···+kh=n

β(n, k1, . . . , kh)tk11 · · · t
kh
h

for all n ∈ N and for all (t1, . . . , th) ∈ Rh. Clearly∑
k1+···+kh=n

β(n, k1, . . . , kh) = hn .

Let { ei : i = 1, . . . , h } be the canonical basis of Rh and let v =
∑h

i=1 viei ∈ Rh

such that |v| ≡ sup{ |vi| : i = 1, . . . , h } ≤ 1. Then the following inequality holds

(4.2.13)

‖dnF (x)([v]n)‖Y =

∥∥∥∥ ∑
k1+···+kh=n

(β(n, k1, . . . , kn)vk11 · · · v
kh
h D

(k1,...,kh)F (x))

∥∥∥∥
Y

≤
( ∑
k1+···+kh=n

β(n, k1, . . . , kh)

)
n!‖F‖ω,ρ

ρn

=
n!‖F‖ω,ρ
(ρ/h)n

.
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By standard properties of n-linear symmetric maps (cf. e.g. Prodi & Ambrosetti

(1973, p. 84–85)), it follows that

‖dnF (x)‖L(n)((Rh)n,Y) ≤
nn‖F‖ω,ρ

(ρ/h)n
,

for all n ∈ N. By ratio criterion there exists M < +∞ such that

1

3n
nn

n!
≤M

for all n ∈ N. Then we obtain

(4.2.14) ‖dnF (x)‖L(n)((Rh)n,Y) ≤
Mn!‖F‖ω,ρ

(ρ/3h)n

for all n ∈ N. Clearly the map Fx from the open ball B(x, ρ/3h) of Rh to Y,

defined by

Fx(w) =

+∞∑
n=0

dnF (x)([w − x]n)

n!

for all w ∈ B(x, ρ/3h), is real analytic. Let ρ′′ < ρ/6h. Then by (4.2.14) and by

arguing as in (4.2.8), there exists M1 independent on F and x such that

(4.2.15)
ρn′′‖dnFx(w)‖L(n)((Rh)n,Y)

n!
≤M1‖F‖ω,ρ

for all n ∈ N and for all w ∈ clB(x, ρ′′). Clearly by (4.2.14) and by a standard

argument on Cauchy estimates (cf. e.g. Prodi & Ambrosetti (1973, Thm. 10.5)),

F is real analytic in Ω and coincides with Fx in a neighborhood of x. Let

ρ′ < ρ′′/c[Ω]. Let z ∈ B(x, ρ′)∩Ω. Since Ω is regular in the sense of Whitney, there

exists a piecewise smooth curve γ from [0, 1] to Ω such that γ(0) = x, γ(1) = z

and `γ < c[Ω]ρ′ (`γ is the length of γ). It follows that γ([0, 1]) ⊆ B(x, ρ′′) ∩ Ω

and then all points of B(x, ρ′) ∩ Ω belong to the same connected component in

B(x, ρ′′)∩Ω. This implies that F and Fx coincide in B(x, ρ′)∩Ω. Let y ∈ Ω. We

show that Fx and Fy coincides in S ≡ B(x, ρ′) ∩ B(y, ρ1). If S is different from

∅, there exists a piecewise smooth curve γ from [0, 1] to Ω such that γ(0) = x,

γ(1) = y and `γ < 2c[Ω]ρ′. Let t ∈ γ([0, 1]) be the point with arc-length `γ/2.

Since x, y ∈ B(t, ρ′′), by considering Ft we obtain that Fx and Fy coincide in

B(x, ρ′)∩B(y, ρ′). Then we can define an extensionEΩ,ρ′ [F ] of F in cl(Ω+B(0, ρ′))

and by (4.2.15), it follows statement (ii). Statement (iii) is an easy consequence

of Lemma 4.2.2 and of statement (ii). �

Now we show an analyticity result about the composition operator (cf. Lanza

(1996a, Prop. 2.17)).

Proposition 4.2.16. Let m,h, k ∈ N, h, k ≥ 1. Let α ∈ ]0, 1[, ρ > 0. Let Ω, Ω′

be bounded open subsets of Rh, Rk, respectively, regular in the sense of Whitney.
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Then the operator T defined by

T [F,G] ≡ F ◦G

for all (F,G) ∈ C0
ω,ρ(cl Ω,R)×Cm,α(cl Ω′,Ω) is real analytic from the open subset

C0
ω,ρ(cl Ω,R)× Cm,α(cl Ω′,Ω) of C0

ω,ρ(cl Ω,R)× Cm,α(cl Ω′,Rh) to Cm,α(cl Ω′,R).

Proof. Let (F0, G0) ∈ C0
ω,ρ(cl Ω,R) × Cm,α(cl Ω′,Ω). By a well known argument

on Cauchy estimates (cf. e.g. Prodi & Ambrosetti (1973, Thm. 10.5)), it suffices

to show that there exist ρ0 > 0, M0 > 0 and a neighborhood U of (F0, G0) in

C0
ω,ρ(cl Ω,R)× Cm,α(cl Ω′,Ω) such that

(4.2.17)
ρs0‖(dsT )[F,G]‖L(s)

s!
≤M0

for all (F,G) ∈ U and for all s ∈ N. For the sake of brevity, we set d0T ≡ T and

L(s) ≡ L(s)((C0
ω,ρ(cl Ω,R)× Cm,α(cl Ω′,Rh))s, Cm,α(cl Ω′,R)).

Let s ∈ N\{ 0 }. Since C0
ω,ρ(cl Ω,R) is continuously embedded in Cm+s,α,p(cl Ω,R)

(cf. Proposition 4.2.10 (i) and Lemma 1.2.4 (i)), Lanza (1996b, Thm. 4.1) (cf.

also Lanza (1994, Thm. 4.2)) implies that the operator T is of class Cs and that

the s-th differential of T at (F,G) is delivered by the formula

(4.2.18) (dsT [F,G])[(V[1],W[1]), . . . , (V[s],W[s])]

=

s∑
j=1

s∑
`1,...,̂̀j ,...,`s=1

T [D`1 · · ·D`j · · ·D`sV[j], G](W1,`1 · · · Ŵj,`j · · ·Ws,`s)

+

h∑
`1,...,`s=1

T [D`1 · · ·D`sF,G](W1,`1 · · ·Ws,`s)

for all (V[j],W[j] ≡ (Wj,1, . . . ,Wj,n)) ∈ C0
ω,ρ(cl Ω,R)×Cm,α(cl Ω′,Rh), j = 1, . . . , s.

(We understand that the first summation of the right hand side of (4.2.18) is

T [V[1], G] if s = 0; the “ˆ” symbol on a term denotes that such term must be

omitted). Let r ∈ N and let ‖ ‖r and ‖ ‖r,α be the usual norms of the spaces

of functions of class Cr and Cr,α, respectively, in the closure of an open subset.

Since c[Ω] < +∞, there exists C1 > 0 such that ‖H‖0,α ≤ C1‖H‖1 for all

H ∈ C1(cl Ω,R). Let C2 > 0 such that ‖W′W′′‖m,α ≤ C2‖W′‖m,α‖W′′‖m,α for all

W′, W′′ ∈ Cm,α(cl Ω′,R). By Lemma 1.2.4 (v), there exists an increasing function

of [0,+∞[ to itself such that

‖V ◦ W̃‖m,α ≤ ‖V ‖m,αΨ(‖W̃‖m,α)

for all (V, W̃ ) ∈ Cm,α(cl Ω,R)×Cm,α(cl Ω′,Ω). By (4.2.18), we have that for all s ∈
N \ { 0 } and for all ((V[1],W[1]), . . . , (V[s],W[s])) ∈ (C0

ω,ρ(cl Ω,R)×Cm,α(cl Ω′,Ω))s

with ‖V[j]‖ω,ρ ≤ 1, ‖Wj,ρ‖m,α ≤ 1, j = 1, . . . , s, ` = 1, . . . , h, the following
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inequality hold.

(4.2.19) ‖(dsT [F,G])[(V[1],W[1]), . . . , (V[s],W[s])]‖m,α

≤
s∑
j=1

h∑
`1,...,̂̀j ,...,`s=1

(C1C
s−1
2 ‖D`1 · · · D̂`j · · ·D`sV[j]‖m+1Ψ(‖G‖m,α))

+
h∑

`1,...,`s=1

C1C
s
2‖D`1 · · ·D`sF‖m+1Ψ(‖G‖m,α) .

If Ṽ ∈ C0
ω,ρ(cl Ω,R), then for all η ∈ Nh we have that

(4.2.20)

‖DηṼ ‖m+1 ≤
(m+1∑
p=0

hp[(|η|+ p)!]

ρ|η|+p

)
‖Ṽ ‖ω,ρ

≤ (|η|+m+ 1)!

ρ|η|

(m+1∑
p=0

(
h

ρ

)p)
‖Ṽ ‖ω,ρ

=
(|η|+m+ 1)!

ρ|η|
C3‖Ṽ ‖ω,ρ

with C3 positive constant depending only on m, h, ρ and independent on |η|. By

(4.2.19) and (4.2.20), it follows that for all s ∈ N

(4.2.21)

‖(dsT )[F,G]‖L(s) ≤
shs−1C1C

s−1
2 C3((s+m)!)

ρs−1
Ψ(‖G‖m,α)

+
hsC1C

s
2C3((s+m+ 1)!)

ρs
‖F‖ω,ρΨ(‖G‖m,α)

= as
ρC1C3Ψ(‖G‖m,α)

hC2
+ bsC1C3‖F‖ω,ρΨ(‖G‖m,α)

with

(as, bs) ≡
(

(s+m)!(hC2)ss

ρs
,
(s+m+ 1)!(hC2)s

ρs

)
.

Let 0 < ρ1 < 1 and let ρ2 ≡ (ρ1ρ)/(hC2). By ratio criterion, it can be easily to

checked that there exists M > 0 such that

ρs2as
s!
≤M,

ρs2bs
s!
≤M

for all s ∈ N. Let U be a bounded open neighborhood of (F0, G0) in C0
ω,ρ(cl Ω,R)×

Cm,α(cl Ω′,Ω). By setting ρ0 ≡ ρ2, it is easy to find M0 > 0 such that the

estimates (4.2.17) hold for all (F,G) ∈ U . �

Then we have the following analyticity result on the inversion operator (cf.

Lanza (1994, Thm. 5.9)).

Corollary 4.2.22. Let m,h ∈ N, h ≥ 1. Let 0 < α < 1, ρ > 0. Let Ω, Ω′ be

bounded open subsets of Rh, regular in the sense of Whitney. Let AΩ be the open
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subset of C1(cl Ω,Rh) of all injective functions of cl Ω to Rh with nonvanishing

jacobian in cl Ω (cf. Lemma 1.2.5). Let F0 ∈ C0
ω,ρ(cl Ω, cl Ω′) ∩ AΩ and let J

be the inversion operator from C0
ω,ρ(cl Ω, cl Ω′) ∩ AΩ to Cm,α(cl Ω′,Rh) defined

by J [F ] = F (−1) for all F ∈ C0
ω,ρ(cl Ω, cl Ω′) ∩ AΩ. Then there exists an open

neighborhood WF0 of F0 in C0
ω,ρ(cl Ω,Rh) ∩ AΩ and a real analytic operator Ĵ F0

from WF0 to Cm,α(cl Ω′,Rh) such that

(4.2.23) Ĵ F0 [F ] = J [F ]

for all F ∈ C0
ω,ρ(cl Ω, cl Ω′)∩WF0. The differential of Ĵ F0 at F ∈ C0

ω,ρ(cl Ω, cl Ω′)∩
WF0 is delivered by the formula

(4.2.24) (dĴ F0 [F ])[H] = −((DF )−1 ◦ F (−1)) · (H ◦ F (−1))

for all H ∈ C0
ω,ρ(cl Ω,Rh).

Proof. Let ρ′ > 0, Ωρ′ ≡ Ω+B(0, ρ′), EΩ,ρ′ be as in Lemma 4.2.10 (ii). By possi-

bly changing ρ′, a compactness argument shows thatEΩ,ρ′ [F0] ∈ C0
ω,ρ′(cl Ωρ′ ,Rh)∩

AΩρ′ . By a standard argument on partitions of unity, there exists an open subset

Ω′′ of Rh of class C∞ (in particular regular in the sense of Whitney) such that

cl Ω ⊆ Ω′′ ⊆ Ωρ′ . Since C0
ω,ρ′(cl Ω′′,Rh) is continuously embedded in C1(cl Ω′′,Rh),

by Lemma 1.2.5 there exists a neighborhood W̃F0 of F0 in C0
ω,ρ(cl Ω,Rh) ∩ AΩ

such that

EΩ,ρ′ [F ]cl Ω′′ ∈ AΩ′′

for all F ∈ W̃F0 . Let T̃ be the operator defined by

T̃ [F,G] ≡ EΩ,ρ′ [F ] ◦G

for all (F,G) ∈ C0
ω,ρ(cl Ω,Rh) × Cm,α(cl Ω′,Ω′′). By Proposition 4.2.16, T̃ is real

analytic from C0
ω,ρ(cl Ω,Rh) × Cm,α(cl Ω′,Ω′′) to Cm,α(cl Ω′,Rh). Furthermore, if

F ∈ C0
ω,ρ(cl Ω, cl Ω′) ∩ W̃F0 , the equation

(4.2.25) T̃ [F,G] = idcl Ω′

has a unique solution G ≡ F
(−1)
0 . We now apply Implicit Function Theorem to

equation (4.2.25) around the pair (F0, F
(−1)
0 ). By formula (4.2.18), the partial

differential of T̃ at (F0, F
(−1)
0 ) with respect to the variable G, is delivered by

∂T̃

∂G
[F0, F

(−1)
0 ][H′] = (DF0 ◦ F (−1)

0 ) ·H′

for all H′ ∈ Cm,α(cl Ω′,Rh). Since F0 ∈ C0
ω,ρ(cl Ω,Rh) ∩AΩ, by Lemma 1.2.4 (iv)

it follows that ∂T̃
∂G [F0, F

(−1)
0 ] is a linear homeomorphism of Cm,α(cl Ω′,Rh). Then

Implicit Function Theorem yields the existence of a real analytic operator Ĵ F0

which has property (4.2.23) by the unique solvability of equation (4.2.25). An

easy computation, based on formula (4.2.18), yields formula (4.2.24). �
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4.3. Analyticity of the operators associated to the sewing problem in

Roumieu spaces

In this section we introduce some natural Banach spaces of complex differ-

entiable functions of a compact subset K of R2 to C. When K = ∂D, these

spaces constitute the natural setting in order to find an analytic extension of the

operators F and G associated to the sewing problem.

In this Proposition, we define the space of complex-valued functions of class

C0
∗,ω,ρ on a compact subset K with no isolated points: in this setting by using

the methods of the last section, we state an analyticity result for the composition

and the inversion operator.

Proposition 4.3.1. Let ρ > 0 and let K be a compact subset of C with no

isolated points. Let ‖ ‖0 be the usual sup-norm of the Banach space C0
∗(K,C) (cf.

Ch. II ). We set

(4.3.2) C0
∗,ω,ρ(K,C) ≡

{
f ∈

+∞⋂
n=0

Cn∗ (K,C) : sup
n∈N

{
ρn‖f (n)‖0

n!

}
< +∞

}
and we endow C0

∗,ω,ρ(K,C) with the norm

(4.3.3) ‖f‖ω,ρ ≡ sup
n∈N

{
ρn‖f (n)‖0

n!

}
for all f ∈ C0

∗,ω,ρ(K,C). If B ⊆ C, C0
∗,ω,ρ(K,B) denotes the subset of C0

∗,ω,ρ(K,C)

of functions f such that f(K) ⊆ B. The following statements hold.

(i) C0
∗,ω,ρ(K,C) is continuously imbedded in Cm∗ (K,C) for all m ∈ N.

(ii) Let m ∈ N, α ∈ ]0, 1[, ρ > 0. Let Ω be a bounded open subset of

C regular in the sense of Whitney. Then the space Cm,α∗ (cl Ω,C) and

the subspace Cm,α(cl Ω,C)∩H(Ω) of Cm,α(cl Ω,C) coincide algebraically

and have equivalent norms. Furthermore, the space C0
∗,ω,ρ(cl Ω,C) and

the subspace C0
ω,ρ(cl Ω,R2)∩H(Ω) of C0

ω,ρ(cl Ω,R2) coincide algebraically

and have the same norms. In particular C0
∗,ω,ρ(cl Ω,C) is a Banach

space.

(iii) We set A` ≡ { z ∈ C : dist(z, ∂D) < ` } for all ` ∈ ]0, 1[. Then there

exist ρ′ > 0 and a complex linear and continuous extension operator

E∂D,ρ′ from C0
∗,ω,ρ(∂D,C) to C0

∗,ω,ρ′(clAρ′ ,C) such that

E∂D,ρ′ [f ]/∂D = f

for all f ∈ C0
∗,ω,ρ(∂D,C). In particular E∂D,ρ′ [·] is a complex linear

homeomorphism of C0
∗,ω,ρ(∂D,C) onto C0

∗,ω,ρ′(clAρ′ ,C).
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(iv) Let m ∈ N, α ∈ ]0, 1[, ρ > 0. Let Ω and Ω′ be bounded open subsets of

C, regular in the sense of Whitney. Then the operator T defined by

T [F,G] ≡ F ◦G

for all (F,G) ∈ C0
∗,ω,ρ(cl Ω,C) × Cm,α∗ (cl Ω′,Ω) is complex analytic from

the open subset C0
∗,ω,ρ(cl Ω,C)×Cm,α∗ (cl Ω′,Ω) of C0

∗,ω,ρ(cl Ω,C)×Cm,α∗ (cl Ω′,C)

to Cm,α∗ (cl Ω′,C).

(v) Let m ∈ N, α ∈ ]0, 1[, ρ > 0. Let Ω, Ω′ be bounded open subsets of

C regular in the sense of Whitney. Let F0 ∈ C0
∗,ω,ρ(cl Ω,C) ∩ AΩ. We

assume that cl Ω′ ⊆ F0(Ω). Then there exist an open neighborhood WF0

of F0 in C0
∗,ω,ρ(cl Ω,C) ∩ AΩ and a complex analytic operator JF0,Ω′ [·]

from WF0 to Cm,α∗ (cl Ω′,C) such that

(4.3.4) JF0,Ω′ [F ] = F
(−1)
/ cl Ω′

for all F ∈ WF0.

Proof. Statement (i) follows by an immediate estimate. By using the Cauchy-

Riemann equations and the well-known properties of differentiability at the bound-

ary for functions of class C1 in the closure of an open subset regular in the sense

of Whitney, we obtain statement (ii). We prove statement (iii). Let ρ0 < ρ and

let f ∈ C0
∗,ω,ρ(∂D,C). It is easy to check that the power series

St(z) ≡
+∞∑
i=0

f (i)(t)

i!
(z − t)i

defines an holomorphic function on B(t, ρ0). Let t, z ∈ ∂D and let ` = σ(t, z)

(cf. (3.2.12)) be the length of the shorter arc between t and z. Let γ be an

injective curve of class C1 from [0, `] to ∂D such that γ(0) = t and γ(`) = z. Let

n ∈ N \ {0}. By integrating by parts the line integral

(4.3.5)
1

(n− 1)!

∫
γ
(z − η)n−1f (n)(η)dη

we obtain the following Taylor formula for f which holds for t, z ∈ ∂D.

(4.3.6) f(z) =
n−1∑
i=0

f (i)(t)

i!
(z − t)i +

1

(n− 1)!

∫
γ
(z − η)n−1f (n)(η)dη .

We now estimate the line integral (4.3.5). We observe that∣∣∣ 1

(n− 1)!

∫
γ
(z − η)n−1f (n)(η)dη

∣∣∣ ≤ ‖f (n)‖0
(n− 1)!

∫ `

0
(`− x)n−1dx =

`n‖f (n)‖0
n!

.

Since ` = σ(t, z) ≤ π
2 |z − t|, by (4.3.6) it follows that f coincides with St(z) in

B(t, 2
πρ0)∩∂D. Let ρ′ ≡ ρ0/5 and let E∂D,ρ′ [f ] be the function of Aρ′ to C defined
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by

(4.3.7) E∂D,ρ′ [f ](z) ≡ St(z)

for all (t, z) ∈ ∂D×Aρ′ such that z ∈ B(t, ρ0/4). Although there are more choices

of t in the definition (4.3.7), the value St(z) does not depend on t. Indeed let

z ∈ C and let t1, t2 ∈ ∂D be such that z ∈ B(t1, ρ0/4) ∩ B(t2, ρ0/4). Let η ∈ ∂D
be such that |z − η| = min{|z − t| : t ∈ ∂D}. Then η ∈ B(t1,

2
πρ0) ∩ B(t2,

2
πρ0)

and f(η) = St1(η) = St2(η) for all η ∈ B(t1,
2
πρ0) ∩ B(t2,

2
πρ0) ∩ ∂D. By the

Identity Principle for holomorphic functions, it follows that St1(z) = St2(z).

Now we prove that E∂D,ρ′ [f ] ∈ C0
∗,ω,ρ′(clAρ′ ,C) for all f ∈ C0

∗,ω,ρ(∂D,C) and

that the operator E∂D,ρ′ [·] is continuous from C0
∗,ω,ρ(∂D,C) to C0

∗,ω,ρ′(clAρ′ ,C).

Let z ∈ Aρ′ and t ∈ ∂D such that z ∈ B(t, ρ′). By (4.3.7) and by standard

differentiation properties of a power series, we have that

ρk′ |E∂D,ρ′ [f ](k)(z)|
k!

=
ρk0|S

(k)
t (z)|

5k(k!)

≤ ρk0
2k(k!)

(+∞∑
n=0

|f (n+k)(t)|
n!

|z − t|n
)

≤ ρk0‖f‖ω,ρ
2k

(+∞∑
n=0

(n+ k)!

n!k!

ρn0
ρn+k2n

)

≤ ‖f‖ω,ρ
(+∞∑
n=0

(
n+ k

k

)
1

2n+k

(
ρ0

ρ

)n+k)
≤ ‖f‖ω,ρ

1− ρ0/ρ
.

This yields statement (iii). Statement (iv) follows by Proposition 4.2.16, formula

(4.2.18) and by observing that the differential of T , which is delivered by the

formula

(dT [F,G])[V,W ] = V ◦G+ (F ′ ◦G)W

for all (F,G) ∈ C0
∗,ω,ρ(cl Ω,C)×Cm,α∗ (cl Ω′,Ω) and for all (V,W ) ∈ C0

∗,ω,ρ(cl Ω,C)×
Cm,α∗ (cl Ω′,C), is complex linear. We consider statement (v). By Corollary 4.2.22,

there exist a neighborhoodWF0 of F0 in C0
∗,ω,ρ(cl Ω,C)∩AΩ and a real analytic op-

erator JF0,Ω′ from WF0 to Cm,α∗ (cl Ω′,C) satisfying property (4.3.4). By (4.2.24),

we have that

(dJF0,Ω′ [F ])[H] = −(F ′ ◦ F (−1)
/ cl Ω′

)(H ◦ F (−1)
/ cl Ω′

)

for all F ∈ WF0 and for all H ∈ C0
∗,ω,ρ(cl Ω,C). Since dJF0,Ω′ [F ] is complex

linear, it follows the complex analyticity of JF0,Ω′ [·]. �

Now we can prove our analyticity result about the operator F [·] and G[·]
associated to the sewing problem.
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Theorem 4.3.8. Let ρ > 0. Let (F [·],G[·]) be the pair of operators which maps

the shift φ ∈ C0
∗,ω,ρ(∂D, ∂D) ∩ A∗∂D to the trace of the solution of the sewing

problem (3.2.22) (cf. Cor. 3.2.36). Let φ0 ∈ C0
∗,ω,ρ(∂D, ∂D) ∩ A∗∂D. Then there

exist ρ′ > 0, a neighborhood Wφ0 of φ0 in C0
∗,ω,ρ(∂D,C) ∩ A∗∂D and two complex

analytic operators Ĝφ0 [·], F̂ φ0 [·] from Wφ0 to C0
∗,ω,ρ′(∂D,C) such that

Ĝφ0 [φ] = G[φ]

F̂ φ0 [φ] = F [φ]

for all φ ∈ C0
∗,ω,ρ(∂D, ∂D) ∩Wφ0.

Proof. We first consider the operatorG[·]. Let m ∈ N. By Proposition 3.2.39 and

Lemma 4.3.1 (i), G[·] has a complex analytic extension Ĝ[·] from C0
∗,ω,ρ(∂D,C)∩

A∗∂D to Cm∗ (∂D,C) ∩ A∗∂D. Let ε > 0 such that B(φ0, 2ε) ⊆ C0
∗,ω,ρ(∂D,C) ∩ A∗∂D

and such that the map Ĝ[·] from B(φ0, 2ε) to C0
∗(∂D,C) is bounded. Let ` > 0

and let ‖ ‖`m be the norm of Cm∗ (∂D,C) defined by

‖f‖`m ≡ sup
h=0,...,m

`h‖f (h)‖C0∗(∂D,C)

h!

for all f ∈ Cm∗ (∂D,C). Clearly ‖ ‖`m is equivalent to the usual norm of Cm∗ (∂D,C).

Let

C(m, `, η) ≡ sup
φ∈B(φ0,η)

{
‖Ĝ[φ]‖`m

}
for all m ∈ N, 0 < ` ≤ ρ, 0 < η ≤ ε (possibly +∞). Let m ∈ N. Since

Ĝ[·] is complex analytic from C0
∗,ω,ρ(∂D,C) ∩A∗∂D to Cm∗ (∂D,C) and B(φ0, 2ε) ⊆

C0
∗,ω,ρ(∂D,C) ∩ A∗∂D, the following Cauchy estimates hold

(4.3.9)
(η/6)k‖dkĜ[φ]‖`

m,L(k)

k!
≤ C(m, `, η)

for all k ∈ N, 0 < ` ≤ ρ, 0 < η ≤ ε and for all φ ∈ B(φ0, η/2) (see e.g.

Berger (1977, p. 88) together with Prodi & Ambrosetti (1973, p. 85); L(k) ≡
L(k)
C ((C0

∗,ω,ρ(∂D,C))k, Cm∗ (∂D,C)) for the sake of brevity and ‖ ‖`
m,L(k) is the

usual norm on L(k) associated to the sup norm on ((C0
∗,ω,ρ(∂D,C))k and ‖ ‖`m

on Cm∗ (∂D,C)). We will show that there exist 0 < ρ′ < ρ and 0 < ε′ ≤ ε such

that

(4.3.10) sup
m∈N
{C(m, ρ′, ε′) } < +∞ .

Then , by (4.3.9), (4.3.10) and by a standard argument on Cauchy estimates, it

follows that Ĝ[·] is a complex analytic operator from B(φ0, ε′/6) to C0
∗,ω,ρ′(∂D,C).

We prove (4.3.10). Let 0 < ρ0 < 1 and let E∂D,ρ0 be the extension operator

of Proposition 4.3.1 (iii). A standard compactness argument shows that, by

possibly shrinking ρ0, we can assume E∂D,ρ0 [φ0] ∈ AAρ0 . Since C0
∗,ω,ρ0(clAρ0 ,C)∩
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AAρ0 is open in C0
∗,ω,ρ0(clAρ0 ,C), there exists a neighborhoodWφ0 of φ0 such that

E∂D,ρ0 [φ] ∈ AAρ0 ,

E∂D,ρ0 [φ](Aρ0 ∩ D) ⊆ I[φ],

E∂D,ρ0 [φ](Aρ0 ∩ (C \ clD)) ⊆ E[φ],

for all φ ∈ Wφ0 . Let Fφ be the holomorphic extension to I[φ] of the function

Ĝ[φ] ◦ φ(−1) of φ(∂D) to C and let Gφ be the holomorphic extension to C \ clD
of Ĝ[φ] (cf. Proposition 3.2.33 (ii)). We set

Sφ(z) ≡

Gφ(z) if z ∈ Aρ0 ∩ (C \ D)

Fφ(E∂D,ρ0 [φ](z)) if z ∈ Aρ0 ∩ D .

Since Sφ(·) is holomorphic in Aρ0 \ ∂D and continuous in Aρ0 , it follows that

Sφ(·) is holomorphic in Aρ0 . Furthermore the Maximum Principle applied to

the functions Fφ and Gφ(1/w) − 1/w belonging to C0(cl I[φ],C) ∩ H(I[φ]) and

C0(clD,C) ∩H(D) respectively, shows that

‖Fφ‖C0(cl I[φ],C) ≤ ‖F‖C0∗(φ(∂D),C) = ‖Ĝ[φ]‖C0∗(∂D,C)

‖Gφ‖C0(cl(Aρ0∩(C\D)),C) ≤ ‖Ĝ[φ]‖C0∗(∂D,C)

for all φ ∈ Wφ0 . Let 0 < ε′ < ε such that B(φ0, ε′) ⊆ Wφ0 and let

M ≡ sup{ ‖Ĝ[φ]‖C0∗(∂D,C) : φ ∈ B(φ0, ε′) } .

By the assumption on ε, M < +∞. Let ρ′ ≡ ρ0/3. Then the Cauchy estimates

of the function Sφ(·) (cf. Berger (1977, p. 88)) yield

(4.3.11)
(ρ0/3)h|Ĝ[φ](h)(t)|

h!
≤M

for all h ∈ N, t ∈ ∂D and for all φ ∈ B(φ0, ε′). It follows that C(m, ρ′, ε′) ≤M for

all m ∈ N. This completes the proof for the operator G[·]. We now consider the

operator F [·]. We first construct an extension F̂ φ0 of F [·] in a neighborhood of φ0

in C0
∗,ω,ρ(∂D,C)∩A∗∂D and then we show the analyticity of F̂ φ0 . Let 0 < ρ2 < 1.

Let E∂D,ρ2 be the extension operator from C0
∗,ω,ρ′(∂D,C) to C0

∗,ω,ρ2(clAρ2 ,C) of

Proposition 4.3.1 (iii). Clearly, E∂D,ρ2 ◦ Ĝ is a complex analytic operator from

B(φ0, ε′) to C0
∗,ω,ρ2(clAρ2 ,C). Let 0 < ρ0 < ρ2. Let E∂D,ρ0 be the extension

operator of Proposition 4.3.1 (iii) considered above. Let Φ0 ≡ E∂D,ρ0 [φ0]. Since

Φ0(Aρ0) is an open subset of C and contains ∂D, there exists 0 < ρ3 < 1 such

that clAρ3 ⊆ Φ0(Aρ0). Let 0 < α < 1. Let WΦ0 and J ≡ JΦ0,Aρ3 be the

open neighborhood of Φ0 in C0
∗,ω,ρ0(clAρ0 ,C) ∩ AAρ0 and the complex analytic

operator from WΦ0 to C1,α
∗ (clAρ3 ,Aρ0) of Proposition 4.3.1 (v). Let m ∈ N. By

applying Proposition 4.3.1 (v) to each Φ ∈ WΦ0 , we obtain that J is complex

analytic from WΦ0 to Cm∗ (clAρ3 ,Aρ0). By possibly shrinking ε′, we can assume
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that E∂D,ρ0 [φ] ∈ WΦ0 for all φ ∈ B(φ0, 2ε′). By Proposition 4.3.1 (iv), (v), the

operator F̃ φ0 defined by

F̃ φ0 [φ] ≡ E∂D,ρ2 [Ĝ[φ]] ◦ J [E∂D,ρ0 [φ]]

for all φ ∈ B(φ0, 2ε′), is complex analytic from B(φ0, 2ε′) to Cm∗ (clAρ3 ,C) for all

m ∈ N. Let R be the operator from Cm∗ (clAρ3 ,C) to Cm∗ (∂D,C) which maps F

to F/∂D. Clearly, the operator F̂ φ0 ≡ R ◦ F̃ φ0 satisfies

F̂ φ0 [φ] = F [φ]

for all φ ∈ B(φ0, 2ε′) ∩ C0
∗,ω,ρ(∂D, ∂D). Let ρ4 ≡ ρ3/3 and let

M1 ≡ sup{ ‖F̃ φ0 [φ]‖C0(clAρ3 ,C) : φ ∈ B(φ0, ε′) } .

By the continuity of E∂D,ρ2 and by (4.3.11), M1 < +∞. The Cauchy estimates,

applied to the holomorphic function F̃ φ0 [φ] and to the complex analytic operator

F̂ φ0 [ · ] from B(φ0, 2ε′) to Cm∗ (∂D,C), imply that

(ε′/6)k‖dkF̂ φ0 [φ]‖ρ4
m,L(k)

k!
≤ sup

h=0,...,m

ρh4‖F̂ φ0 [φ](h)‖C0∗(∂D,C)

h!

≤ ‖F̃ φ0 [φ]/ clA2ρ4
‖C0(clA2ρ4 ,C) ≤M1

for all k ∈ N and for all φ ∈ B(φ0, ε′/2). Since M1 does not depend on m ∈ N, it

follows the complex analyticity of F̂ φ0 [ · ] from B(φ0, ε′/6) to C0
∗,ω,ρ4(∂D,C). �
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