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Abstract

Neighbourhood effects have been defined by Oakes (2004) as the independent causal

effects of neighbourhood on a given number of health or social outcome(s).

The aim of this thesis is to estimate the neighbourhood effect on old population

in Turin with a propensity score approach. To achieve this goal, we need to work on

adapting propensity score techniques to work well in a framework with many treat-

ments (with ten or more treatments). Data used in the thesis come from the Turin

Longitudinal Study (SLT), described in chapter 3. Our main goal is to understand if

the observed differences in health outcomes across neighbourhoods can be causally at-

tributed to neighbourhoods’ as opposed to their different composition, i.e. to the fact

that individuals with different risks factors live in different areas.

In order to adjust for confounders and simulate an experimental approach, we focused

on propensity score techniques that are briefly described in chapter 2. The first part of

the analysis focuses on the performance evaluation of an inverse probability of treatment

approach (IPTW) in a 10-treatment framework (chapter 4) and its application on real

data on two different health outcomes: hospitalized fractures and mental health (chapter

5).

In the second part of the thesis we propose a novel method that consists on a matching

based on partially ordered sets (poset) (chapter 6). The Matching on Poset based

Average Rank for Multiple Treatment (MARMoT), tested with some simulations, has

revealed to be really useful to estimate neighbourhood effect, reducing bias of estimates

because of the initial improvement of covariates’ balance between groups.





Sommario

L’effetto di vicinato è stato definito da Oakes (2004) come l’effetto causale indipendente

di un vicinato su qualsiasi esito sociale o di salute. Lo scopo principale di questo elabo-

rato consiste nello stimare l’effetto di vicinato sullo stato di salute degli anziani residenti

a Torino con un approccio basato sull’uso del propensity score. Tuttavia, risulta neces-

sario adattare le tecniche di propensity score, generalmente utilizzate con trattamenti

dicotomici, a casi di trattamento multiplo, in cui siano eventualmente coinvolti molti

trattamenti (10 o più). I dati utilizzati nella tesi provengono dallo studio longitudinale

torinese (SLT), descritto nel capitolo 3. Una delle domande di ricerca principali in que-

sta tesi consiste nello stimare quanto le differenze osservate nello stato di salute degli

anziani residenti in diversi vicinati siano dovute al vicinato di residenza e quanto invece

siano legate alle diverse caratteristiche degli individui che lo compongono.

Per aggiustare per l’effetto dei confondenti e ricostruire un approccio sperimenta-

le, abbiamo preferito adottare tecniche basate sull’uso del propensity score, che sono

brevemente descritte nel capitolo 2. Nella prima parte delle analisi viene valutato il fun-

zionamento di un approccio di inverse probability of treatment weighting in uno scenario

costituito da 10 trattamenti (capitolo 4). Viene poi applicato su dati reali per stimare

l’effetto di vicinato su due esiti di salute: le fratture ospedalizzate e le malattie mentali

(capitolo 5).

Nella seconda parte della tesi invece viene descritta una proposta originale che con-

siste in un matching che sfrutta la teoria degli ordinamenti parziali (poset). Questo

approccio, che abbiamo chiamato Matching on Poset based Average Rank for Multiple

Treatment (MARMoT), è stato testato attraverso uno studio di simulazione e si è rivelato

essere particolarmente utile per la stima degli effetti di vicinato, riducendo la distorsione

delle stime grazie al miglioramento del bilanciamento delle variabili confondenti tra i

vicinati.
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Introduction

Overview

During last 20 years the interest in effects of neighbourhood context on individuals’ lives

has grown exponentially (Arcaya et al., 2016), creating a new important research field in

social epidemiology. These effects are usually called neighbourhood effects, indeed, they

have been defined by Oakes (2004) as the independent causal effects of neighbourhood

on a given number of health or social outcome(s).

In this thesis we are going to estimate the neighbourhood effect on two health out-

comes on old population of residents in Turin: hospitalized bones fractures and mental

health. Indeed, the interest in this topic comes from a real need of the the Unit ”SCaDU

Servizio Sovrazonale di Epidemiologia” in Grugliasco (Turin, Italy). In some researches

old people are shown to be more susceptible to neighbourhood effect, because they spend

more time close to the neighbourhood they live with respect to younger and working

people (Melis et al., 2015; Turrell et al., 2014).

A key issue when estimating the neighbourhood effect is that its estimation typically

relies on observational data. The most valid way to obtain unbiased estimates would be

to conduct community trials - because they are designed to control for the treatment

allocation mechanisms, and make them largely negligible (Oakes, 2004) - but in practise

they are infeasible in neighbourhood effect estimation (Harding, 2003). So the crucial

question in most studies on the neighbourhood effect is whether differences between

neighbourhoods can be causally attributed to the neighbourhood itself, rather than to

differences between individuals living in the various areas (Harding, 2003).

Neighbourhood effects have been typically estimated using multilevel models, where

neighbourhoods are represented as the highest level. Regression models can help us to

adjust for observed confounders, when the treatment groups show some overlapping re-

gions. On the other hand, it has been documented in the causal inference literature that,

if groups differ considerably, then regression models may provide biased estimates of any

1



2 Main contributions of the thesis

treatment effects due to extrapolations that can be liable to model misspecification (Li

et al., 2013; Drake, 1993).

In order to estimate the neighbourhood effect, we focussed on methods based on a

propensity score that allow us to better deal with selection on observables and con-

sequently provide also less biased estimates (Austin, 2011a). Moreover, handling the

adjustment for observable confounders separately from the estimation of the treatment

effect on the outcome, assumptions about the functional form of the relationship between

covariates and outcome are not needed, there are less risks of model misspecification

and collinearity among confounders is not a problem (Harding, 2003). However, the

use of propensity score techniques in the estimation of neighbourhood effect brings to

some methodological complications linked with the fact that we are dealing with neigh-

bourhoods as treatments. The direct consequence is that the number of treatments to

be considered is huge, according to the neighbourhood size, and usually applications

of propensity score techniques with more than three groups are extremely rare. In our

peculiar case, Turin is composed by 10 districts, but it is possible to distinguish also 23

smaller areas and 94 more circumscribed zones.

Main contributions of the thesis

The aim of this thesis is to estimate the neighbourhood effect on old population in

Turin with a propensity score approach, in order to do so we need to work on adapting

propensity score techniques to work well in a multi-treatments framework with many

treatments (starting from ten to higher numbers). Main methodological contribution is

divided in two parts: in the first we evaluate the performance of an existing method,

usually used in a three treatments framework, in a framework with 10 treatments; in the

second part we propose an original algorithm to handle a higher number of treatments.

Applications of propensity score methods in multiple-treatment frameworks remain

mainly scattered in the literature, with few applications in three (or four) treatments

regimes (Lopez and Gutman, 2017).

In the first part of the thesis, we start from evaluating the effect of the ten districts

on subjects’ health. Thus, we estimate probabilities of belonging to each neighbour-

hood (treatment) conditional on observed variables, also known as propensity scores,

with Generalized Boosted Models (McCaffrey et al., 2013). The estimated propensity

score is transformed to become a weight that recreates a synthetic sample where bal-

ance of confounders among treated and untreated subjects is achieved using an inverse

probability of treatment weighting approach (IPTW). The Generalized Boosted Models
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technique, together with other machine learning approaches to compute the propensity

score, allows the researchers to fit also complex relations overcoming variables selection

and model building processes in an automatic way (Cannas and Arpino, 2018), reducing

the risk of misspecification of the model.

In order to evaluate the performance of IPTW in the case of many treatments, we

engage in Monte Carlo simulations. We assess IPTW performance under three different

scenarios representing different treatment allocations of individuals and compare it with

a simple parametric approach, i.e. logistic regression with neighbourhoods as indepen-

dent variables. In the simulations, IPTW is found to be less biased although it shows

a higher variance than logistic regression. This part of the thesis demonstrates that an

approach in which treatment assignment and occurrence of the outcome are handled

separately is more successful than linear regression models, because it produces less bi-

ased estimates. However, increasing the number of treatments using IPTW makes the

computational effort to compute propensity scores explode. That is why the application

of this approach in a scenario with more than ten neighbourhoods results to be highly

inconvenient and nearly impossible.

This last issue is the motivation for the second part of the thesis, where the research

goes into the direction to find an useful and practical way to deal with confounders

adjustment in a framework with higher number of treatments. In this way, we would

be able to estimate the effect of living in one of the 23 areas or 94 zones of Turin. After

a review of methods to be applied for balance in multiple treatment frameworks, we

ended up with the elaboration of an original proposal that consists on a matching based

on Partially Ordered Sets (poset), that we called Matching on Poset based Average

Rank for Multiple Treatments (MARMoT). The goal of this method consists in making

comparable the characteristics of residents in all the considered areas simultaneously.

Increasing the number of treatments, the computational time to estimate the propen-

sity score grows together with the complexity of the variable that shows the treatment

allocation (a categorical one with many levels). In order to overcome this obstacle

and summarize confounders’ information, we introduced poset theory, that has lately

been involved in the construction of synthetic indicators (Boccuzzo and Caperna, 2017).

Thanks to poset theory, we are able to assign to each profile, that is each combination

of individual characteristics, an approximation of its reciprocal position in the ranking

of all profiles. Indeed, if we suppose that individual characteristics that affect living in a

specific neighbourhood may be seen as the reflection of a complex latent concept (that

includes for instance individuals’ socio-economic status and aspirations), it is possible

to order individuals’ profiles through that concept and match them according to their
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order. Thus, with MARMoT technique we solved the so called curse of dimensional-

ity, the need to summarize confounders, using the approximation of the rank of these

individuals.

Having a score that summarize individuals’ characteristics, it is possible to proceed

with a matching that assigns to each individual in each neighbourhood one individual

in all the other neighbourhoods, and discards those who cannot be matched in order

to respect the overlap condition and to make all neighbourhoods comparable. After

MARMoT procedure has balanced confounders among neighbourhoods, it is possible to

estimate treatment effects using common estimands such as Average Treatment effect

on the Treated (ATT).

Before using MARMoT method to estimate neighbourhood effect on real data, we

tested it with some simulations with two different scenarios for the allocation of indi-

viduals to 23 treatments and two scenarios for the occurrence of the outcome. This

technique has proved to be really useful to balance for confounders and reduce bias in

estimates.

Thanks to this method, it was possible to estimate the neighbourhood effect on

hospitalized fractures in elderly population considering different geographical partitions

(10 district, 23 smaller areas and 94 more circumscribed zones) without selection bias

due to the different composition of neighbourhoods. These information will be useful

for the SCaDU Service to implement prevention policies in the population and urban

interventions focusing on neighbourhoods at higher risk.



Chapter 1

Challenges in the estimation of

neighbourhood effect

1.1 Introduction

The neighbourhood effect has been defined by Oakes (2004) as the independent causal

effect of neighbourhood on a given number of health or social outcomes. Issues linked

to the influence of neighbourhood on health and social outcomes have been studied

with great interest in the last decades. In this literature review we compare different

approaches used to estimate neighbourhood effects listing and discussing some problems

and methodological issues. The majority of the analysed studies deals with observational

data collected in the United States.

Thus, in literature there are many references to the term neighbourhood, that is

often used to delineate person’s immediate residential environment and its material and

social characteristics that are assumed to have an impact on individuals’ outcomes (e.g.,

deprivation, walk-ability, air pollution, crime and social cohesion) (Diez Roux, 2001).

The considered outcomes come from different fields, such as life course events (Rabe and

Taylor, 2010), educational achievement (Leckie, 2009) or health outcomes (Cubbin et al.,

2000; Pickett and Pearl, 2001). More commonly analysed health outcomes deal with

mental health (Kim, 2008; Mair et al., 2008; Truong and Ma, 2006), early child health

outcomes (Christian et al., 2015; Sellström and Bremberg, 2006), all-cause mortality

(Meijer et al., 2012) and other health outcomes in old population (Roux et al., 2004;

Yen et al., 2009). Among principal neighbourhood risk factors there are deprivation,

walk-ability, food environment, air pollution, crime and social cohesion (Arcaya et al.,

2016). One important concept that these studies disclose is that the exposure to a given

5
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neighbourhood with peculiar characteristics can affect health outcomes, this statement

reveals to be important in a social epidemiology framework.

Even if the interest in this topic is increasing exponentially, no fully convincing

methodological approaches can still be found in literature to estimate neighbourhood

effects on different phenomena. Indeed, the main problem for the estimation is that

we are dealing with observational data. Thus, the crucial question in most of these

studies is whether differences between neighbourhoods can be causally attributed to

the context or whether they are simply due to differences between individuals living in

different neighbourhoods (Harding, 2003). We call this issue selection bias, because the

distribution of individuals in the territory (among neighbourhoods) is not at random,

it depends on individual characteristics.

Another discussed problem in this field is endogeneity, that causes issues both in the

estimation and in the interpretation of the neighbourhood effect and that is difficult to

explain and recognise because of a lack of agreement on its definition in the literature.

In literature, there are a lot of examples of multilevel models where neighbourhoods

are represented by a level. These models are useful to handle the within-group de-

pendence, but they do not overcome the selection bias problem, nor the endogeneity

problem (Oakes, 2004). A lot of different studies try to provide a theoretical framework

to identify and estimate the neighbourhood effect, among them the most successful is

the work of Galster (2008), which is described in the following section.

1.2 Methodological Challenges

A preliminary formulation for the estimation of neighbourhood effects is given by Galster

(2008), who pinpointed a systematic list of methodological problems to be discussed in

order to try to estimate the neighbourhood effect. In order to quantify neighbourhood

effect on an observed outcome (O) at time t for individual i residing in neighbourhood

j in metropolitan area k Galster (2008) expressed the following model:

Oijkt = α + β[Pijkt] + γ[Pijk] + φ[UPijkt] + δ[UPijk] + θ[Njkt] + µ[Mkt] + ε

where:

Pijkt are the observed personal characteristics that can vary over time, of individual i

residing in neighbourhood j in metropolitan area k at time t ;

Pijk are the observed personal characteristics that do not vary over time, of individual

i residing in neighbourhood j in metropolitan area k ;
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UPijkt are the unobserved personal characteristics that can vary over time, of individual

i residing in neighbourhood j in metropolitan area k at time t ;

UPijk are the unobserved personal characteristics that do not vary over time, of indi-

vidual i residing in neighbourhood j in metropolitan area k ;

Njkt are the observed characteristics of neighbourhood j in metropolitan area k where

individual i resides during time t ;

Mkt are the observed characteristics of metropolitan area k in which individual i resides

during time t.

This basic model raises a list of questions, or challenges, to be faced carefully:

1. The definition of the more appropriate geographic scale(s) to conceptualise the

neighbourhood N;

2. The identification of the causal process that generates the relationship between

the neighbourhood and the outcome;

3. The selection of the appropriate characteristics in order to well operationalise

the neighbourhood N;

4. The identification of the intensity and the duration of individual’s exposure

to the neighbourhood N;

5. The selection of individual’s variables and the definition of strategies to min-

imise the bias from omitted unobserved individual’s characteristics;

6. Identifying and facing the problem of endogeneity trying to minimise the bias

in the neighbourhood effects estimation.

These are the first six challenges proposed by Galster (2008), but questions to be an-

swered and challenges in order to estimate the neighbourhood effect are still not fully

covered. In the following are expressed other interrogatives that can be found in litera-

ture, on which a deepen deliberation could drive to better results:

• In Galster (2008) paper only observable time variant neighbourhood character-

istics are considered, but time-invariant and unobservable neighbourhood

characteristics should be taken into account as well, at least in a theoretical

representation;
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• In the real world the allocation of individuals in the territory is not completely

at random, each person consciously chooses and decides where to live according

to his/her own characteristics and possibilities. This process creates a selection

bias;

• The social stratification may confound neighbourhood comparisons absorbing

all the between-neighbourhoods variability (Oakes, 2004);

• In order to justify extrapolation, the exchangeability of individuals between

neighbourhoods is usually assumed in a model, which disagrees the real world

logic (Oakes, 2004);

• In a more dynamic perspective, the movement of groups of people with similar

characteristics between two neighbourhoods may create an effect called disequi-

libria (Oakes, 2004);

• There are no elements to guess that the neighbourhood effect has a linear be-

haviour on individual’s outcomes, thus in literature several authors suppose that

it is likely a threshold or non-linear effect (Galster, 2014).

As already mentioned, the interest in this work is in investigating the effect that

each neighbourhood (treatment) has on individual’s health outcomes, adjusting for in-

dividual’s characteristics (confounders). These relationship may be summed up with the

graph in figure 1.1. All the issues mentioned before may be linked with some element

in the graph 1.1 and grouped in four thematic areas:

1. Representation of neighbourhoods: define the scale and the size of neighbour-

hoods, identify relevant neighbourhood’s characteristics and measure the exposure

to neighbourhood (section 1.2.1).

2. Representation of individuals: identify relevant individual’s characteristics to be

included in the analysis (section 1.2.2).

3. Description of the relation between neighbourhood and outcome: identify

mechanisms of neighbourhood effect and the functional form that better express

the neighbourhood effect (section 1.2.3).

4. Description of the relation between individual’s characteristics and neighbourhoods:

two main issues are present, both of them are linked to the fact that we are dealing

with a two-way relation. The first issue is that individual’s attributes and neigh-

bourhood’s characteristics may be mutually causal and it is difficult to recognise
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causes and effects (reflection problem), the second problem deals with the fact that

individuals chose their own treatment, the neighbourhood in which they live, ac-

cording to their own characteristics and preferences (selection bias)(section 1.2.4).

Figure 1.1: Summary of methodological problems to be faced in the estimation of
neighbourhood effect.

1.2.1 Representation of neighbourhoods

1.2.1.1 Scale and neighbourhood definition

The first issue deals with the definition of the neighbourhood and its scale. There are

ambiguous guidelines on how to identify the correct neighbourhood dimension in litera-

ture, in fact several possible definitions are available. This brings on many ambiguities

because together with the size of the neighbourhood also the neighbourhood effect can

change both in intensity and in direction (Galster, 2008). Different criteria to delineate

neighbourhood boundaries can be adopted depending on the application: they can be

historical, based on people characteristics, on administrative boundaries or based on

people’s perceptions (Diez Roux, 2001). Those criteria do not necessarily overlap and

the choice between them is not trivial, because different neighbourhood definitions lead

to different meanings of it and a different effects on individual’s outcomes.

According to the review of Galster (2008) about neighbourhood effect studies, there is

a strong relation between the definition of the neighbourhood and the local political and

institutional boundaries. In U.S., the considered neighbourhood areas are mainly the
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census tract, which are possibly demographically homogeneous areas containing roughly

4,000 inhabitants, on average. In Western Europe it is possible to find a greater variety

of scales: postal codes, ”city districts” of various sizes among nations, wards (similar

to tracts) and others. For instance, U.K.-based studies used administrative data from

wards, lower super output areas (roughly 1,400 inhabitants), and school catchment

areas. Moreover, in Italy the census is organized through small geographical partitions

that are called census sections, that include on average 170 individuals; starting from

them, some aggregations are possible according to the geographical zone.

Usually in these studies the choice of neighbourhoods’ boundaries is strictly connected

with the available data without a proper attention to its scale and meaning. The

importance of the choice of the most meaningful size of the spatial data is taken into

account by a serious analytical issue named modifiable areal unit problem (MAUP). In

order to include the spatial dimension in quantitative analysis, the areal unit definition

is something to deal with carefully, instead of assuming boundaries and areas in the

name of pragmatism (Manley, 2014).

On this topic, Manley (2014) described two aspects of the modifiable areal unit

problem: the scale effect and the zonation effect. The scale effect consists in having

different areal results if we analyse the same phenomenon on several scales; the choice

of the scale can drive also to a trade-off between availability of data for a small scale unit

system and to a loss of local detail having bigger aggregated areas. In fact, according to

Buck (2001) and Bolster et al. (2006) research, comparing results on different scales, the

neighbourhood effect has higher intensity on smaller scales. In the two last mentioned

works, the scale problem is partially solved and confronted by adopting and comparing

estimates with different scales and discussing results.

The zonation effect is about how the space has to be divided up; thus, results can

vary if, even keeping constant the number of different considered areas, alternative

areas aggregations are taken into account. According to Manley (2014), the delineation

of areal boundaries is even more arbitrary than the choice of the number of units to

consider (which is in other words the scale problem) and can lead to even more unstable

statistical analysis.

Another important issue to be considered in the analysis of neighbourhood effect is

the Uncertain Geographic Context Problem (UGCoP), which refers to circumstances in

which there is a limited knowledge about which geographic scale is causally relevant for

health (Arcaya et al., 2016). Thus, the neighbourhood of residence is only one of the

places people spend their time, and it might not adequately capture people’s exposure

to relevant contextual influences. Indeed, according to Kwan (2012), it is important to
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consider also space in a more dynamical perspective in order to take into consideration

that people move around to undertake their daily activities.

Moreover, in the majority of paper about neighbourhood effects estimation, spatial

relationships among areas are not considered, nor whether neighbourhoods are situated

within larger geographies (Arcaya et al., 2016).

According to Galster (2008), a particular intriguing and promising approach is to

consider bespoke neighbourhoods, which are concentric circles of varying radii centred

on each analysed individual. In this way it is possible to define different radius mea-

sures and to try different scales (as in Bolster et al. (2006) work); unfortunately, this

approach requires a big amount of data with a peculiar territorial detail, which is not

so common. A further development of this technique can be represented by overlap-

ping the topographical and street patterns to quantify the radius using a distance not

merely geographic, but that may takes into account also the potential for street-level

interactions (Grannis, 1998).

1.2.1.2 Identification and measurement of neighbourhood characteristics

The operationalisation of neighbourhood characteristics is not so trivial, it implies the

use of some well calibrated proxies in order to measure different categories of neigh-

bourhood effects. Some potential effects may be measured with proxy variables from

administrative data, but surveys data with multi-item scales combined in order to re-

trace social phenomena such as social networks, inter-group interactions and stereotypes,

perceptions of disorder and anti-social behaviour, neighbourhood evaluations, etc. are

often used in literature (Galster, 2008).

In order to obtain good proxies to describe neighbourhoods, a great effort is necessary

and resource-intensive data collection activities are required (Galster, 2008). Neigh-

bourhood characteristics that may be useful to consider are deprivation, walk-ability,

air pollution, crime and social cohesion, among others. However, the processing of

good composite indicators to sum up neighbourhood characteristics from census data is

possible and can even drive to satisfying results.

One of the most successful operationalisation of neighbourhood characteristics is

given by Sampson et al. (1997), where a collective efficacy index was developed as the

aggregation of two multi-item scales of informal social control and social cohesion and

trust. The index has been validated using three composite factor-scores indexes based on

ten aggregate neighbourhood-level census variables. The three factor were: concentrated

disadvantage (composed with poverty, receipt of public assistance, unemployment, fe-

male headed-families, density of children and percentage of black residents), immigrant



12 Section 1.2 - Methodological Challenges

concentration (made of the percentage of Latinos and the percentage of foreign-born

people) and residential stability (linear combination of the percentage of people living

in the same house as 5 years earlier and the percentage of owner occupied homes).

These three factors explained the 70% of the neighbourhood variation in collective effi-

cacy that is defined as social cohesion among neighbours combined with their willingness

to intervene on behalf of the common good (Sampson et al., 1997).

1.2.1.3 Measuring the exposure to neighbourhood

Another important point to be explored in order to estimate the neighbourhood effect is

the degree to which individuals are exposed to mechanisms that convey neighbourhood

effects. Moreover it can be difficult to figure out if those mechanisms have an immediate

effect, if their influence has an impact with a temporal lag or if the effect is cumulative

through time (Galster, 2008). Anyway the effect is supposed to be stronger for those

individuals who have mostly intra-neighbourhood social relationship and for those who

have lived in the same place for an extended time period.

Figure 1.2: A conceptual model of the life course approach to neighbourhood effects
(de Vuijst et al., 2016).

One recent working paper by de Vuijst et al. (2016) proposes a life course approach

to study neighbourhood effects, that should represent a comprehensive and dynamic

spatial-temporal framework, as shown in Figure 1.2.

Even if the temporal dimension seems fundamental in order to determine the inten-

sity of the neighbourhood effect, the time dimension remains implicit in many studies,

receiving still limited attention. Part of the problem deals with the availability of useful
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data in order to implement more deepened analysis. The conceptual model proposed by

de Vuijst et al. (2016) is based on the idea that an individual follows a peculiar time-

space path over his/her life course, being influenced by various spatial contexts such as

the residential neighbourhood, but also by other contexts such as places of work, leisure

and schools.

1.2.2 Representation of individuals

According to Galster (2008), individual characteristics that have to be included in the

model to estimate the neighbourhood effect can be both time variant and invariant, and

they can both observable and unobservable.

Main problems concern the presence of unobservable individual characteristics that may

drive to biased estimates of the neighbourhood effects. Thus, even in the most com-

prehensive dataset, some variables may still remain unobserved; some of these may

influence also the selection process that deals with the allocation of individuals among

neighbourhoods. Any observed relationship between neighbourhood conditions and out-

comes for such individuals may therefore be biased because of this systematic spatial

selection process, even if all the observable characteristics are controlled (Galster, 2008).

A possible strategy proposed by Galster (2008) consists in the analysis of only those

subjects who did not moved during the observation period. This expedient should be

able to remove the selection due to the unobservable variables. However, this peculiar

sample selection inserts a new source of selection bias linked to different propensities of

individuals to move according to their own characteristics.

1.2.3 Description of the relation between neighbourhood and

outcome

1.2.3.1 Mechanisms of neighbourhood effect

Neighbourhood effects are community influences on individual, social or economic out-

comes. Examples include health outcomes, labour force activity, child outcomes, crimi-

nal behaviour, and other socio-economic phenomena (Dietz, 2002). Neighbourhood is a

multi-dimensional package of causal attributes, thus, each part of the package will need

to be identified and measured directly (Galster, 2012). Several mechanisms can be found

in literature to explain these influences, and to better analyse them in both a qualitative

and quantitative way. A possible classification, based on a systematic literature review,

has been proposed by Galster (2012):
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socio-interactive mechanisms involve social processes endogenous to neighbourhoods

(for example social-networks, social cohesion, parental mediation, competition);

environmental mechanisms refer to natural and human-made attributes of the lo-

cal space that may affect directly the mental and/or physical health of residents

without affecting their behaviours (for example the exposure to violence, physical

surroundings and toxic exposure);

geographic mechanisms imply aspects of spaces that may affect residents’ life courses

arising because of the neighbourhood’s location in a larger political or economi-

cal scale (for example relative to less accessibility to job opportunities, called by

Galster (2012) spatial mismatch, or related with public services availability);

institutional mechanisms involve actions by those typically not residing in the given

neighbourhood who control important institutional resources located there (for

instance stigmatization, which implies reduced opportunities because of public

areal stereotypes, local institution resources and local market actors) (Galster,

2012).

The causal relationship between urban structure and health of residents, or health in-

equalities, is currently strongly supported by a considerable amount of studies and

literature reviews (Diez Roux, 2001; Pickett and Pearl, 2001; Truong and Ma, 2006; Yen

et al., 2009).

A conceptual model: Spatial Opportunity Structure Model (Galster and

Sharkey, 2017) Galster, in his works, tried to find an explanation for the spatial

foundation of inequalities. He conceptualised the influence of space on people’s socio-

economic outcomes with a model that explains the spatial opportunity structure. In this

model the space works as a mediator between personal attributes and achieved status

and as a modifier of personal attributes effects, as Figure 1.3 shows.

In order to well explain spatial effects on individuals’ outcomes it is necessary to

start considering the most basic effects: individual’s attributes influence on the achieved

status (path A in Figure 1.3), the effect that individual’s life decisions has on individual’s

attributes (path C in Figure 1.3) and the influence that parental characteristics have

over both individual’s attributes and life decisions (path B and D in Figure 1.3). An

example to well represent this theoretical model is given by the achieved education level

(Individual’s achieved status), which is certainly influenced by individual’s attitude, such

as skills and desire to continue the course of studies. Individual’s life decisions directly
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Figure 1.3: Conceptual framework of spatial inequalities (Galster and Sharkey,
2017).

influence his/her skills and desires, but they are absolutely conditioned by parents’ (or

caregivers’) attributes and expectations: well cultured parents will expect and incentive

their children to reach high educational levels.

Moreover, it is necessary to consider that even the spatial opportunity structure can

be a modifier of personal attributes both in a direct and in an indirect way, as we can

see from path E, F and G in Figure 1.3. One example of direct effect of the spatial

opportunity structure on individual’s attributes is given by the school-based peers and

collective socialization that can shape individual norms, preferences, aspirations and

behaviours, like the school leaving. Some life decisions can also be attributable partially

to the spatial opportunity structure, in fact it affects individual’s perception of what it

is socially more desirable (path F in Figure 1.3). Thus, neighbourhood or school-based

peers, role models, and other collective socialization forces can shape a person’s norms

and preferences, thereby altering the perceived prospective pay-offs associated with

various life decisions (Galster and Sharkey, 2017). Moreover, parents and caregivers

can alter their parenting styles in response to their perception of the spatial context

(Galster and Santiago, 2006), path G in Figure 1.3.

In order to complete the conceptual model, Galster and Sharkey (2017) added three

more effects, called feedback effects. The first one, path H in Figure 1.3, deals with the

impact that individual’s attributes has on Individual’s life decisions. Thus, for instance,

the acquisition of educational credentials provides a different set of opportunities in

individual’s life course. The other two feedback effects are caused by the individual’s

achieved status, which has an effect both on individual’s attributes (path I in Figure 1.3)

and on the spatial opportunity structure (path J in Figure 1.3). An example of the effect

of the achieved status on the spatial opportunity structure consists in the increased

income that can guarantee changes in the housing and in the neighbourhood itself.

The conceptual framework, as explained, is quite complex and implies to take care
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of several methodological and theoretical problems such as endogeneity, stratification,

selection bias, reverse causality, intraclass correlation, that are going to be explained

in depth in the following pages. Of course, this is only one possible interpretation

and theoretical conceptualization of the influence of the neighbourhood on individual’s

outcomes, but several other models are possible and sustained in literature. Therefore,

even in the just explained framework some simplifications are needed in order to estimate

and operationalize all the involved effects.

1.2.3.2 Threshold and non-linear effect

In order to well explain this topic, a pharmacological metaphor is useful: the ”dosage-

response”. In this framework it is necessary to look at the neighbourhood as a multi-

element dosage of distal context that generates a response from individual residents

that has physical, psychological, attitudinal and/or behavioural manifestations (Galster,

2014).

Thus, two functional forms can be described:

A non-linear neighborhood effect occurs when the dosage-response relationship is

not proportional across all ranges of dosage.

A threshold neighborhood effect is a special case of non-linear effect. It consists

in a change of the marginal dosage-response relationship from zero to non-zero (or

the opposite) in proximity of a ”threshold point”.

According to Galster (2014), there are at least three mechanisms through which

the neighbourhood has a non-linear behaviour on individual’s outcomes. They are

socialization, collective social control and stigmatization mechanisms.

The socialization mechanisms works as a process of contagion as described by Crane

(1991): if the incidence of problems stays below a critical point, the frequency or preva-

lence of the problem tends to gravitate toward some relatively low-level equilibrium. But

if the incidence surpasses a critical point, the process will spread explosively.

The collective social control mechanism deals with the ability of social norms to

modify individuals’ behaviour, aspirations and desires. In this case the threshold exists

because a group can develop a significant influence in individuals’ behaviour only when

it reaches some critical mass of density or power.

The stigmatization mechanism suggests that when a peculiar group, for instance

a ”disreputable” one, reaches a critical mass, the public opinion is likely to see the

whole neighbourhood as represented by that group and acts consistently. Following
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the example, if a disreputable group of people gains power and grows over a defined

threshold, institutions are inclined to reduce resources and opportunities toward that

specific neighbourhood.

Having in mind these mechanisms, it is important to discuss the functional form of

the neighbourhood effect without taking the linear form for granted, because it may

create bias in the estimates.

1.2.4 Description of the relation between individual’s charac-

teristics and neighbourhoods

1.2.4.1 The reflection problem

In order to study and analyse how society affects individual’s outcome, a long list of

different hypothesis can be taken into account. There is a loss of consensus between

economist and sociologists to explain groups dynamics, but even among sociologist sev-

eral approaches can be found. An interesting interpretation and framework is given by

Manski (1995). He explained the identification of different components of society influ-

ences on individual’s outcomes with a meaningful icon: the reflection of an image in a

mirror, calling it the reflection problem. ”Suppose that you observe the almost simulta-

neous movements of a man and his image in a mirror. Does the mirror image cause the

man’s movements or reflect them? If you do not understand something of optics and

human behaviour, you will not be able to tell.” (Manski, 1995).

In the same way it is difficult to exactly distinguish causes, effects and mechanisms

of groups’ and individuals’ behaviour: is the group behaviour affecting the individual’s

outcome or is the individual’s outcome changing the group composition? Thus, accord-

ing to Manski (1993), individuals belonging to the same group tend to behave similarly,

creating the following effects:

Endogenous effects: the propensity of an individual to behave in some way vary with

the prevalence of that behaviour in the group.

Exogenous (contextual) effects: the propensity of an individual to behave in some

way vary with the distribution of background characteristics in the group.

Correlated effects: individuals in the same group tend to behave similarly because

they face similar institutional environments or have similar individual character-

istics.

In order to better understand these three concepts, Manski (1995) considers an example

where the outcome is represented by the school achievement of teenage youth. An
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endogenous effect happens if, ceteris paribus, individual achievement tends to vary with

the average achievement of the reference group. A contextual effect is observable if

the individual achievement tends to vary with the socio-economic composition of the

reference group, while a correlated effect is present if students in the same school tend

to achieve similarly because of the same environments and backgrounds (families and

teachers).

The distinction of these three social effects is more important in a policy imple-

mentation framework, because, for instance, endogenous effects are interested by social

multiplier phenomena (implementing a policy to improve individual achievement of few

individuals, the average of the whole population is enhanced).

Endogeneity. According to Manski (1995), neighbourhood effects are emergent

properties of the social interactions of the residents, the behaviour of the neighbourhood

influences individual’s outcome. Indeed, the endogeneity concept comes with the fact

that the neighbourhood is composed of people, so individual characteristics and neigh-

bourhood characteristics may be mutually causal (Galster, 2008). One obvious empirical

implication is that some individual characteristics Pit and neighbourhood characteris-

tics Nit may suffer from multicollinearity (Galster, 2008). Thus, the more an individual

is a part of a given neighbourhood, the more his/her characteristics will be similar to

neighbourhood characteristics and the neighbourhood effect on the individual’s outcome

becomes more difficult to identify and to estimate.

Endogeneity is translated in the empirical difficulty to estimate an unbiased neigh-

bourhood effect by means of a linear (multilevel) regression model. Indeed, even after

conditioning on some confounders, Z, it is not possible to estimate the conditionally

independent effect of X on Y if context effects are endogenous, so by definition not

conditionally independent (Oakes, 2004).

1.2.4.2 Selection bias

The problem of selection bias deals with the fact that individuals live in neighbourhoods

according to their attributes which are themselves related to the outcome (Diez Roux,

2004). This sort of self-selection causes the social stratification, in fact individuals move

through the territory in order to stay close to people with similar characteristics and

to live in a suitable neighbourhood. According to these movements, peculiar profiles

of individual characteristics may be extremely common in some neighbourhoods and

completely absent in some others, and this creates problems in exchangeability hypoth-

esis. For example, neighbourhoods with bad characteristics and less or worse public



Chapter 1 - Challenges in the estimation of neighbourhood effect 19

services will have a high concentration of individuals with low socio-economic status,

while these people will not live in neighbourhoods that present better characteristics

and likely higher rents.

If the neighbourhood represents the treatment assigned to an individual, then the

selection bias issue becomes clearer, indeed in this case the treatment is not assigned

exogenously to individuals, thus the correspondent estimated coefficient in a linear re-

gression model is not legitimate to be called neighbourhood effect (Manski, 1995).

The self-selection of individuals in their treatment group can be partially controlled

using observable confounders, but sometimes variables that are involved in the selec-

tion process are not fully observable. There are several different approaches to try to

overcome the selection bias problem, based on different hypothesis regarding the set of

variables to be considered in the selection process (Galster and Sharkey, 2017):

• Difference models based on longitudinal data can be used if the bias comes from

unobserved time invariant variables.

• Fixed-effect models on a siblings sample, but the related estimators have usu-

ally big standard errors and they do not control for time-variant unobservable

characteristics (Aaronson, 1998).

• Instrumental variables for spatial context characteristics may be devised, but the

related estimator presents three different limitations: high standard errors, unreal-

istic assumptions and it is relevant just for a sub-sample of the analysed population

(for those whose assigned neighbourhood was defined by the instrument).

• Propensity score techniques, if it is realistic to assume that individuals matched

by observable characteristics are likely to be matched on their unobserved charac-

teristics as well.

Another problem raised by Oakes (2004) is social stratification, that consists on

the fact that individuals are stratified among neighbourhoods according to their socio-

economical status. This is the direct observable consequence of selection bias issue. The

selection equation of any given person observed in a neighbourhood is nearly identi-

cal for those who lives in the same neighbourhood and almost completely different for

individuals residing in other neighbourhoods, because of the social selection. Having

social stratification means that neighbourhood are really different between each oth-

ers, wandering if the between-neighbourhood differences in the outcome are due to the

composition of the neighbourhood or to some exogenous neighbourhood characteristic.
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Indeed, in Galster (2012) work, are well described mechanisms that influence indi-

vidual’s outcomes and that can be seen as exogenous or, at least, not involved with

the social stratification, such as environmental (as pollution), geographical (as spatial

mismatch) and institutional mechanisms.

Moreover, social stratification brings on another important issue for the estimation.

Indeed, if the individuals’ characteristics distribution among neighbourhoods changes

deeply, neighbourhood are not comparable between each other and problems regarding

extrapolation need to be faced for the estimation of neighbourhood effect. For instance,

in the implementation of a multilevel model, the interest is in the estimation of inter-

cepts and slopes in order to well represent and fit observed data. The main point here is

that the theoretical model is made by some straight lines that are extended infinitely in

two directions by means of the linear extrapolation (Oakes, 2004). Even if some peculiar

cases are not observed, or even impossible to observe, the model assumes a predicted

value based on observed data and often biased, because of the exchangeability assump-

tion. Exchangeability is an important assumption that is usually given for granted and

it assumes that individuals may be moved from one neighbourhood to another, as if

they are exchangeable. However, it may result unsuitable in in the real world. For in-

stance, in figure 1.4, it is represented a multilevel model to estimate the neighbourhood

effect on a health outcome, considering three neighbourhoods (B, C, and D) and the

socio-economic status (SES) of individuals. The linear extrapolation extends the model

infinitely as a straight line, even in areas where the model is not supported by observed

data, such as in correspondence of low SES levels even for neighbourood D. In the case

shown in figure 1.4 neighbourhoods B and D are not comparable because they include

individuals with different levels of SES. Instead of blindly trust exchangeability, it is de-

sirable to check for overlap, especially in situations in which we can expect the presence

of social stratification. Indeed, if there is little overlap between neighbourhoods, the

estimation will be based mostly on extrapolation and inference will not be supported

by data, having an identification error.

Disequilibria In a causal framework, a treatment given to an individual should not

have any effect on the assignment of the treatment to other individuals, Rubin (1976)

named this important hypothesis the stable unit-treatment assumption (SUTVA). In

neighbourhood effect estimation there is the risk of violation the SUTVA. Thus, for

instance, moving a large number of poor people to a wealthy neighbourhood reduces

the wealth of the target neighbourhood (Oakes, 2004). Characteristics and compositions

of neighbourhoods may be modified by people movements across territory, this means
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Figure 1.4: Extrapolation in arbitrary multilevel models to estimate neighbourhood
effects. The graph shows the within and between relationship of SES and some health
outcome and highlights the ”within slopes” of three arbitrary neighborhoods, B, C,
and D (Oakes, 2004).

that the self-attribution of an individual to a given neighbourhood can affect the context

causing changes in the treatment of other individuals already residing in the observed

neighbourhood. This aspect has to be taken into account in the analysis in order to

select the observed population carefully and avoid disequilibria issues.

1.3 Methodological approaches to estimate neigh-

bourhood effect

1.3.1 Community trials

The randomized community trial is the canonical design for social epidemiology, in par-

ticoular for neighbourhood effect studies (Oakes, 2004). They are a valid instrument

to measure the neighbourhood effect, but they are expensive, demanding, difficult to

perform and unethical. In the 90ties a social experiment had been performed by the

Department of Housing and Urban Development (HUD) in United States, it was called
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Moving to Opportunity for Fair Housing (MTO). In this experiment a sample of ex-

tremely poor subjects has been moved in a different neighbourhood. In that case the

main goal was to remove or at least reduce the problem of social selection and segre-

gation in neighbourhoods, but the study design presented some limitations: the sample

was not representative of the whole population because only voluntary and poor sub-

jects were involved in the study, causing selection bias (Harding, 2003). Anyway, this

social experiment was a fundamental turning point in the estimation of neighbourhood

effect, providing robust results regarding effects on mental health and perceived security

(Small and Feldman, 2012).

Difficulties in the implementation of experimental studies to develop the neighbour-

hood effect estimation topic caused the dissemination of observational studies and the

consequent development of methodologies to face the new limitations delivered by ob-

servational studies.

1.3.2 Multilevel models

The concept of considering the context around analysed subjects represents a fundamen-

tal base for social epidemiology and it can be translated in a more theoretical statistical

framework as clustering. This is the main reason to use multilevel regression models

(Merlo et al., 2005; Caceres et al., 2013). Multilevel studies that examine the relation-

ship between neighbourhood and health had a great growth in the period from 1995 to

2014, with observational data (Arcaya et al., 2016).

Thus, the most common approach to estimate the neighbourhood effect consists in

multilevel regression models which allow the simultaneous examination of the within

and between neighbourhood variability of the considered outcome. In these models

usually neighbourhoods are represented by one level (the highest in the hierarchy) of

the model, while other levels usually are the individual (lowest one) and the family one

(as for example in Garner and Raudenbush (1991) work).

Since these models include both individual and neighbourhood characteristics, it is

possible to evaluate neighbourhood effects on the outcome controlling for individual

confounders. The theoretical form of these models is the same proposed by Galster

(2008) and cited in section 1.2.3.1, but, some of the multilevel models’ assumptions

are not perfectly fitted by the empirical framework involved in the neighbourhood effect

estimation (Oakes, 2004), creating also some methodological unsolved problems.

Regression models can help adjusting for observed confounders, when the treatment

groups present some overlapping regions. However, in the causal inference literature, it

has been documented that if groups differ greatly, i.e. social stratification is present,
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they may provide biased estimates due to extrapolation that can be sensitive to model

misspecification (Li et al., 2013; Drake, 1993). In other words, multilevel models just

smooth over areas that does not have a common support.

Multilevel models need assumptions about the functional form to represent the re-

lationship between the neighbourhood and the outcome and usually it is hypothesized

to be linear. However, as it is explained in the dedicated section (section 1.2.3.2), the

relation is usually supposed to be non-linear. If we handle the adjustment for observable

confounders separately from the estimation of the treatment effect on the outcome, as-

sumptions about the functional form of the relationship between covariates and outcome

are not needed.

With a high number of individual’s characteristics, collinearity among confounders

may create some misspecification problem using regression models.

Even if multilevel models can easily handle a great number of different neighbour-

hoods, the whole estimation is based on a model that does not take care of some impor-

tant problems such as endogeneity, selection bias and comparability of neighbourhoods,

extrapolation and non-linearity of the effect.

1.3.3 Propensity score techniques

The gold standard in avoiding selection bias is the use of (quasi) experimental data

in which households are randomly assigned to neighbourhoods (Manley and van Ham,

2012). Anyway this is not always possible, so the application of techniques to randomize

individuals among neighbourhood retrospectively seems to be a good practise. Indeed,

according to Antonakis et al. (2010), if treatment has not been randomly assigned to

individuals in groups, if membership to a group is endogenous, or samples are not rep-

resentative between-groups, estimates must be corrected using the appropriate selection

model or other procedures (difference-in-differences, propensity scores). Several gains

exist in using propensity score techniques in order to estimate the neighbourhood effect

starting from the fact that selection bias issues are solved taking care of the selection

equation and leading back the analysis to a (quasi) experimental situation in the first

part of the analysis.

Propensity score, the probability to be treated, may be used to adjust for coun-

founders in observational studies in many ways, through matching, stratification, co-

variate adjustment or used as a weight (inverse probability of treatment weighting). In

all these cases the main goal is the same: reduce the selection bias, leading back the

observational study to an experimental one and making different groups (treatments’

groups) comparable (Austin, 2011a).
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After the propensity score adjustment, the neighbourhood effect estimate can be

computed and this allows more flexibility then, for instance, a multilevel model. No

functional form between individual’s or neighbourhood’s characteristics and the effect is

given for granted, so non-linear process can be easily estimated. If the outcome is rare,

there are less problems of under representation of cases and the estimating process is

more precise and balanced. Moreover, after the adjustment, it is possible and easy to

estimate the neighbourhood effect on more than one outcome.

Since the estimation process is not based on a linear model, but is it taken on in two

steps, there are also less worries about collinearity and miss-specification of the selection

model. Moreover, estimates are not based on extrapolation because using propensity

score techniques, it is necessary to verify the overlap, the comparablity of individuals’

characteristics in different treatment groups, and just comparable subjects are included

in the analysis.

Mainly two aspects remain risky and potential source of bias: endogeneity and dis-

equilibria are not solved. Even if these two problems remains, the estimation of neigh-

bourhood effect through propensity score techniques seems a promising direction to be

followed.

In the following chapter, some methods based on the counterfactual approach are de-

scribed, in particular propensity score techniques.
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Propensity score techniques

2.1 Introduction

Some philosophers of science defined causal effects using the concept of “possible

worlds.” The actual world is the way things actually are. A possible world is a way

things might be. The possible world represents in this definition the counterfactual

framework.

The best situation in which it is possible to estimate the causal effect is randomiza-

tion of treatments, when each treatment is assigned completely randomly to individuals

in the sample. Unfortunately, randomization is not always possible, thus, in some sit-

uations the researcher can not control the treatment assignment. How is it possible

to estimate a causal effect when just observational data are available? Some methods

exist in causal inference to try to replicate retrospectively and synthetically a random-

ization. The main idea is to try to replicate the treatment assignment process in order

to identify and control for all the variables that are relevant in that equation. Thus, the

number of factors involved in the treatment assignment may be huge; in order to over-

come this dimensionality problem, Rosenbaum and Rubin (1983) proposed the use of a

balancing score based on the probability of receiving the treatment given pretreatment

characteristics, the propensity score.

Propensity score may be involved in the balancing procedures mainly in four different

ways (Austin, 2011a):

Propensity Score Matching (PSM), where treated and untreated individuals with

the same propensity score values are matched and their outcomes are compared;

25
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Propensity Score Stratification, according to which the propensity score is used to

stratify subjects into mutually exclusive subsets where the balance of counfounders

should be reached;

Propensity Score Covariate adjustment where the outcome is regressed using the

computed propensity score and the assigned treatment; the estimation of treat-

ment effect is given by its estimated coefficient.

Inverse probability of treatment weighting (IPTW) that involves the propensity

score as a weight that should recreate a synthetic sample where balance of coun-

founders among treated and untreated subjects is achieved.

Since the aim of this thesis is to compute the neighbourhood effect, using propensity

score matching techniques, in this chapter a brief introduction to these methods is pro-

vided, drawing some connections to the empirical application. After an introduction

about basics of the counterfactual approach in a binary treatment framework, the four

propensity score methods just mentioned are briefly described. Last part of this chap-

ter is dedicated to the extension of the counterfactual approach in a multi-treatment

framework.

2.2 Counterfactual approach and propensity score

Let suppose there is a population composed of N individuals, each of them indexed

by i = 1, . . . , N . Two fundamental variables are associated with each subject: a binary

variable T that represents the dichotomous treatment and assumes value 1 if the sub-

ject receives treatment 1 (lives in neighbourhood 1) and value 0 if the subject receives

treatment 0; and the outcome variable Y . Moreover, each subject has a pair of potential

outcomes: Y0i and Y1i, are the outcomes under the treatment T = 0 and the treatment

T = 1, respectively. However, each subject receives only one of the treatments (control

treatment or active treatment) (Austin, 2011a). The causal effect for subject i of living

in neighbourhood 1 is τi = Y1i − Y0i; i.e., the difference between the outcome of indi-

vidual i who lives in neighbourhood 1 and the outcome for the very same individual if

he/she lived in neighbourhood 0, (Holland et al., 1985) and the effect may differ among

subjects.

In practice, it is not possible to observe the very same individual living in the same

period in two different neighbourhoods. Thus, we can observe just one potential outcome

corresponding to the assigned treatment for each individual.

There are two most used causal estimands, that are defined as follows:
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• the average treatment effect, ATE, is defined as

ATE = E(Y1 − Y0)

that corresponds to the causal estimand for the whole population.

• the average treatment effect on the treated, ATT, which is

ATT = E(Y1 − Y0|T = 1)

that is the average treatment effect on those subjects who ultimately received the

treatment (Austin, 2011a).

In order to apply propensity score techniques, some assumptions are needed, such as

temporality, which implies that the treatment selection T must occur before the outcome;

the strong ignorability, which is composed of two assumptions, unconfoundedness and

positivit; and the stable unit treatment value assumption (SUTVA). According to the

unconfoundedness assumption, the potential outcomes (Y1, Y0) are independent of the

treatment (T ) assignment, given a set of observable variables X that are not affected by

the treatment, Y1, Y0 ⊥⊥ T |X. This assumption is also known as selection on observables,

as it is based on the premise that there are no unmeasured confounders, because all of

the variables that are involved in the selection process have been observed, measured,

and included in the propensity score computation. The positivity or overlap assumption

is based on the premise that each subject must have a positive probability to be included

in the treatment or control group, 0 < P (Ti = 1|Xi) < 1. The SUTVA includes two

assumptions: the no interference and the stable treatment assumption. According to

the SUTVA, the potential outcomes for any given unit do not vary with the treatments

assigned to other units; and, for each unit, there are no different forms or versions of

each treatment level that lead to different potential outcomes (Imbens and Rubin, 2015).

To be able to include all of the observable confounders, we may have to deal with

a large number of covariates; this problem is called the curse of dimensionality, and

can be solved with the use of a so-called balancing score (Caliendo and Kopeining,

2008). A balancing score, b(X), is a function of the observed covariates X such that

the conditional distribution of X given b(X) is the same for treated (T = 1) and con-

trol (T = 0) units; that is, X ⊥⊥ T |b(X) (Rosenbaum and Rubin, 1983). Rosenbaum

and Rubin (1983) have demonstrated that the propensity score ei, or the probability

that each individual has to receive the treatment, ei = P (Ti = 1|Xi), is the coarsest

balancing score. Propensity scores are usually estimated using parametric models, such
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as a logistic regression. If these models are misspecified, the balance of the covariates

may be not satisfactory. This is the reason why several different methods for estimating

the propensity score have recently been implemented and compared (Setoguchi et al.,

2008; Li et al., 2013), such as some CART-based (Lee et al., 2010) (pruned, bagged,

and boosted (McCaffrey et al., 2004)), neural network, and random forests. The use

of data mining techniques in this field has been shown to produce more balance and

less bias in the causal estimators based on the propensity scores. Indeed, these flexible

data-driven algorithms allow researchers to fit complex relations while automatically ad-

dressing challenges arising from variable selection and model building processes(Cannas

and Arpino, 2018). If the relationship between the counfounders and the treatments is

not linear or is not additive, machine learning techniques are able to gather and handle

them automatically in the estimation process. Even if these techniques provide mod-

els that are difficult to interpret, they represent an important resource for estimating

the propensity score, because interpretation is not a fundamental consideration in this

step of the analysis, whereas the balance that can be reached with propensity score

adjustments is of primary interest.

In order to measure the balance of each confounder X between treatment groups,

the Absolute Standardized Bias (ABS) measure, is usually employed:

ASB =
|X̄0 − X̄1|√

S2
0

2
+

S2
1

2

(2.1)

where X̄0 and X̄1 are the means of variable X of individuals living respectively in

neighbourhoods T = 0 and T = 1; S0 and S1 are the standard deviations of variable X

for individuals living in neighbourhoods T = 0 and T = 1, respectively.

2.3 Propensity score matching

The propensity score matching technique consists in forming matched sets composed by

individuals of different treatment groups with similar propensity score value (Rosenbaum

and Rubin, 1983). This technique is more commonly applied in the one-to-one matching,

in which pairs are formed matching one treated individual with a control subject (Austin,

2011a). The aim is to get, after matching, a balanced sample where confounders have

the same distribution in the treatment and the control groups. There are different

methods to select individuals to form the matched sets to be included in the balanced

sample, several choices to define the matching algorithm that better fits the analysed

context.



Chapter 2 - Propensity score techniques 29

The first one is to choose between matching with and without replacement. For each

treated individual it is necessary to find an untreated subject with similar propensity

score, when the couple is formed the difference between with and without replacement

matching becomes relevant. If the control unit already included in a matched pair is

still available to form other couples, then the matching is called with replacement, while

if the already matched control unit is no longer available as potential match for other

treated subjects, it is a without replacement matching.

Another possible choice is between greedy and optimal matching (Rosenbaum, 2002).

In a greedy matching algorithm, the control subject with the closest propensity score

is selected to be matched with each randomly selected treated unit, even if the selected

control unit would have been the best match for another treated subject. On contrasts,

the optimal matching forms couples in order to minimize the total within-pair difference

of the propensity score.

The third decision to make involves the choice of the control unit with the ”clos-

est” propensity score. There are many matching methods, the two most commonly

used are: the nearest neighbourhood and the nearest neighbourhood within a specified

caliper distance matching. According to the nearest neighbourhood matching method,

given a treated unit, the control subject with the closest propensity score is selected;

if there are more than one untreated individuals equally close to the treated one, the

second member of the couple is randomly selected among them. However, in this way

there are not guarantees about the distance of the propensity scores between the two

matched individuals. The nearest neighbourhood within a specified caliper introduce

some restrictions that regard the maximum distance between the propensity scores of

the subjects included in the matched couple. Indeed, the maximum allowed distance

(called also caliper) in this case is fixed. If it is not possible to find a control unit with

a propensity score in the range of values defined by the caliper, the treated subject will

not be matched with any control unit and it will be excluded from the analysis.

Having in mind to perform a nearest neighbourhood within a specified caliper dis-

tance matching, the choice of the dimension of the caliper becomes another important

decision to make. In the literature this value is usually proportional to the standard

deviation of the propensity score, such as the standard deviation divided by 4 (Cochran

and Rubin, 1973; Lunt, 2013) or 5 (Austin, 2011b), and there are some simulation stud-

ies that show that a caliper value equal to the standard deviation divided by 5 provides

a reduction of approximately 99% of the bias due to the measured confounders (Gu and

Rosenbaum, 1993).



30 Section 2.4 - Inverse probability of treatment weighting (IPTW)

After matching is performed, the treatment effect may be computed just comparing

the outcome in treatment and control groups in the matched sample.

Propensity score matching is an extensively used method to balance for confounders

and in literature it is possible to find several variations of those just described. More-

over, other matching procedures to balance for confounders exist that are not based

on propensity score, for instance the template matching (Silber et al., 2014) and the

coarsened exact matching (Iacus et al., 2012).

2.4 Inverse probability of treatment weighting (IPTW)

According to the inverse propensity score weighting procedure, the main goal is to

create an artificial sample in which the distribution of covariates is independent of the

treatment assignment, such that the treated individuals have the same characteristics as

the untreated individuals. The balanced sample is composed of the real sample including

all observed individuals, but weighted according to the propensity score value. In this

case, the weights work as sampling weights (Horvitz and Thompson, 1952; Morgan and

Todd, 2008).

Thus, the weights can be defined as

wi =
Ti
ei

+
(1− Ti)
1− ei

. (2.2)

In other words, a subject’s weight is equal to the inverse of the probability of living

in the neighbourhood in which the individual is actually living (Austin, 2011a). With

these weights it is possible to estimate the Average Treatment Effect (ATE), using the

following expression(Austin, 2011a):

ˆATE =
1

N

N∑
i=1

TiYi
ei
− 1

N

N∑
i=1

(1− Ti)Yi
1− ei

. (2.3)

The resulting estimator can be seen as the difference between two weighted means.

Some individuals may display very low probabilities of being in a given neighbourhood;

i.e., high weights. Particularly high weights cancause an inflated variance of estimates,

and can also cause a distortion of the results, which is why the trimming of extreme

weights has been studied in the literature (Lee et al., 2011). Indeed, this method may

have issues when the positivity assumption nearly fails. This method presents some

important pros: it requires just a good specification of the treatment assignment model

that does not fear the overfitting, including predictors of the outcome, for this peculiar
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approach because it may be rewarding in terms of precision. Moreover, this method can

be easily extend to multi-treatment and continuous treatment frameworks.

2.5 Propensity Score Stratification

The propensity score stratification consists in dividing analysed population into strata

according to the propensity score and computing an effect in each stratum. Indeed, the

first step is to order individuals according to their propensity score, then strata may be

defined using percentiles of the propensity score as thresholds. In literature, five strata

defined by quartiles have been used and shown to eliminate approximately 90% of the

bias due to measured confounders (Rosenbaum and Rubin, 1984). An increase of the

number of strata should improve the bias reduction, but the marginal drop of the bias

for each additional stratum will decrease increasing the number of strata.

Once strata are defined, it is possible to estimate the treatment effect within each

stratum and the overall effect will be the weighted mean of each stratum-specific treat-

ment effect, using strata’s sizes as weights.

Even if this method is easy to implement and gives stable estimators even when the

positivity assumption nearly fails, it requires a correct model for the propensity score

and fails to remove confonding bias if the within stratum distribution of the propensity

score differs between treated and controls individuals.

2.6 Propensity Score Covariate adjustment

In the propensity score covariate adjustment approach, the propensity score is used

as an independent variable included in a model to explain the outcome together with

an indicator variable denoting the treatment status. According to the nature of the

outcome, a linear regression model (for a continuous outcome) or a logistic regression

model (for a dichotomous outcome) is fitted and the effect of the treatment is represented

by the treatment estimated coefficient and interpreted as an adjusted difference in means

(for a continuous outcome) or as an odds ratio (for a dichotomous outcome).

Even if this method seems quite easy to implement, an important drawback is that

it requires an assumption about the functional form of the relationship between the

propensity score and the outcome.
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2.7 Propensity score techniques in a multi-treatment

framework

In a multi-treatment framework, it is possible to represent, for simplicity, the treat-

ment assignment with a set of dummies Dit(Ti) (Linden et al., 2016), where Ti is a

multivalued treatment variable that takes values from 1 to K (in our specific applica-

tion, it takes values from 1 to 10):

Dit(Ti) =

1 if Ti = t

0 otherwise.
for t = 1, . . . , K (2.4)

Consequently, we will have a set of potential outcomes Y = (Y1i, ..., YKi) for individual

i considering all different treatments, and just one of them is observed.

In a multi-treatment framework the choice of the most adequate estimand to rep-

resent the effect of the treatment is not trivial. Indeed, even considering the already

mentioned ATE and ATT, different choices are possible depending on the comparisons

the researcher considers of interest. One possibility is to compute the ATE and the ATT

as if each neighbourhood is considered as a dichotomous treatment, so the comparison

becomes between neighbourhood t and the rest of the city tc. The specification for the

ATE for each treatment t will be

ATEt,tc = E[Yt − Ytc ], (2.5)

while the specification for the ATT for each treatment t will be

ATTt,tc = E[Yt − Ytc |T = t]. (2.6)

However, in other cases the most informative comparison may be between two neighbour-

hoods or each neighbourhood and a common reference (for instance the neighbourhood

with lowest rate of hospitalized fractures). It is possible to obtain those estimands with

just small variations of these formulas (4.3,4.4).

In the multi-treatment case, the same assumptions as in the dichotomous treatment

framework are needed, but under the circumstance that there are K counterfactual

outcomes, and not just two (Lopez and Gutman, 2017). The SUTVA needs to be

extended to a vector of potential outcomes (Imai and Van Dyk, 2004), while the strong

ignorability for the multi-treatment framework becomes

• Pr[Y|T = t, x] = Pr[Y|x], referring to the unconfoundedness assumption; and
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• 0 < Pr[T = t|x]∀t ∈ T , referring to the positivity assumption.

Finally, also for the measure of balance or ASB it is possible to find in literature

more than one possible expression according to treatment comparisons of interest. In

this work we define the ASB as

ASB =
|X̄t − X̄|√
S2
t

2
+ S2

2

(2.7)

where X̄ and X̄t are the means of variable X of individuals living respectively in the

whole population and in the neighbourhoods t; S and St are the standard deviations of

variable X with respect to individuals living respectively in the whole population and

in the neighbourhood t.

In a multi-treatment framework, the propensity score also needs a different speci-

fication. Imbens (2000) proposed a modified definition of the propensity score. The

generalized propensity score (GPS) is the conditional probability of receiving a partic-

ular level of the treatment, given the pretreatment variables. Generalized propensity

score applications remain largely scattered in the literature, however, with few applica-

tions in regimes involving three (or four) treatments (Lopez and Gutman, 2017). Some

of these involve binomial comparisons (Lechner, 2001, 2002) that may pose problems

in terms of common overlap and computational effort when the number of treatments

increases. Other attempts have focused on forming triplets to compare subjects in a

three-treatment framework using matching algorithms (Hade, 2012; Rassen et al., 2011),

or larger numbers with vector matching (Lopez and Gutman, 2017). The application

of IPTW approaches has been explored by combining different techniques (McCaffrey

et al., 2013; Linden and Yarnold, 2016). Other methods that have been tested and

compared (Linden et al., 2016) include: regression adjustment (Spreeuwenberg et al.,

2010); marginal mean weighting through stratification (Hong, 2010, 2012); and doubly

robust methods like the Inverse Probability of Treatment Weighting (IPTW) regression

adjustment (Uysal, 2015).

None of these methods are practical, however, if the number of treatments greatly

increases. Some important assumptions (such as the overlap) become difficult to satisfy,

and estimating the propensity score becomes computationally demanding. The most

common model for estimating a GPS is the multinomial logistic regression (Lopez and

Gutman, 2017): using this model, K propensity scores eit with t = 1, ...K are esti-

mated, one for each treatment, and they sum to 1. The dependent variable of such a

model in a framework with many treatments is therefore categorical with many levels.

The result of such a model in a multi-treatment framework would be an estimation
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of many small probabilities, with small differences between them (generally speaking,

with 23 treatments we would expect a mean of the predicted values of around 0.04 for

each individual). An alternative approach, to solve the curse of dimensionality without

needing to estimate the probability of receiving each treatment, is template matching.

This method can handle the balance of many treatments, and it has been used to com-

pare the performance of hospitals, for instance, reducing the bias due to their different

case-mix of patients (Silber et al., 2014). Taking this approach, a sample of individuals

represented in all the treatment groups is selected so as to make the individuals in all

the treatment groups included in the analysis comparable. This sample becomes the

template. Then the matching algorithm matches individuals from all treatment groups

with the template, and all other individuals are discarded. The analysis is thus restricted

to individuals belonging to the common support of covariates across all the treatment

groups. The matching procedure remains similar to the binary case, focusing only on

the template and its selected variables. The final dataset will comprise a sample of

individuals for each treatment group that resembles the template as much as possible.

This simplification enables a huge number of treatments to be managed, but limits the

analysis to the individuals comprising the template, and to the choice of template. This

means that the target population experiencing the estimated effects may differ consid-

erably from the whole sample population, even though it will be relevant with respect

to the chosen template.
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Data

3.1 Introduction

The topic of this thesis comes from the real need of the Regional Unit of Epidemiology

and Health Promotion in the Piedmont Region about measuring the impact of the Turin

neighbourhoods on health among old individuals. Indeed, the thesis is one of the results

of a fruitful collaboration with the Unit ”SCaDU Servizio Sovrazonale di Epidemiologia”

in Grugliasco (Turin, Italy), that is involved with the Department of Statistical Science

of the University of Padova in a formal agreement.

ASL TO3 is a leader health unit in Italy and it is involved in several European

projects (2015-2018), all concerning health and health inequalities in urban contexts:

• LIFEPATH – Lifecourse biological pathways underlying social differences in healthy

ageing;

• HORIZON 2020 (http://www.lifepathproject.eu);

• MINDMAP, Promoting Mental Wellbeing In The Ageing Urban Population: De-

terminants, Policies and Interventions In European Cities;

• EURO-HEALTHY, Shaping European Policies to Promote Health Equity

(http://www.euro-healthy.eu).

The data used in this thesis are part of the health administrative datasets of Turin,

Italy, and they have been managed and prepared for the analysis in Turin with the help

and under the supervision of Prof. Giuseppe Costa and his collaborators of the SCaDU

Service.

35
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In the first part of this chapter the Turin Longitudinal Study is described, in the

second section are listed and described all the confounder variables that we used in the

empirical application and in the simulations and the third part is about the geographical

partitions of Turin.

3.2 Turin Longitudinal Study

The data used in our analysis come from a longitudinal study conducted in Turin,

that gave rise to an integrated database, which combines administrative data flows

on residents drawn from censuses with health data flows (hospital discharge records,

prescription charges and exemptions, and territorial drug prescriptions). The hospital

discharge records contain information on the patient’s diagnosis, admission modality

(emergency, compulsory, voluntary), and dates of admission and discharge. The pre-

scription charges database lists all exemptions from payment of health services to which

some patients are entitled due to chronic conditions or low income. The territorial drug

prescriptions database contains details of prescribed drugs, the quantities involved, and

their classification (based on their therapeutic, pharmacological and chemical proper-

ties). The census data includes not only basic demographic details, such as age, sex, and

place of birth, but also some important information about individuals’ socio-economic

status, such as their occupation, education, home ownership, and family composition.

All these different data sources have been pooled together over time (see figure 3.1).

Starting with the censuses and population registries available in 1971, Turin’s residents

have been registered and tracked as a historical migration dataset, considering all move-

ments of individuals living in Turin for at least one day from 1971 onwards (Costa

et al., 2017). Several other data sources were added over time, such as the cause of

death archives in 1971, the cancer registry in 1985, the hospital discharge records in

1995, drug prescriptions data in 1997, and so on. In this work we are dealing with

big-data, since we have a lot of information about the whole population of the city of

Turin (table 3.1). Thus, the population of Turin is around 850.000 and dimension of

archives that are part of the Longitudinal Study in Turin are huge: for instance, the

hospital discharge records counts 3.219.996 records from 1995 to 2013 and the territorial

drug prescriptions database contains 119.146.470 records from 1997 to 2013.

In order to get the variables of interest and to select the population for the analy-

sis, several deterministic record linkage based on anonymous identification codes were

performed.
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Figure 3.1: The Turin Longitudinal Study, 1971-2013. Source: (Costa et al., 2017)

Table 3.1: Data sources included in SLT (Costa et al., 2017).

Source Records
Civil Registry (at 30/08/2015) 2391833
Residential History (1971-2015) 4566180
Parenthood linkage (1971-2011) 996806
Census 1971 1023578
Census 1981 1091287
Census 1991 930072
Census 2011 849686
Causes of Death (1971-2013) 490869
Cancer registries(1985-2006) 123078
Hospital admissions (1995-2013) 3219996
Drug prescriptions (1997-2013) 119146470
Specialist visits and First Aid (2002-2005) 44258010

3.2.1 Variables

Based on the literature on neighbourhood effects on older people’s health (Roux

et al., 2004; Yen et al., 2009), we consider the following variables as possible confounders:

gender, age (considering five-year age brackets: 60-64, 65-69, 70-74, 75-79, 80 and over),

region of birth, marital status, family composition, educational attainment, last known
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occupational condition, ethnicity (that distinguish between individuals born in Italy

or outside of Italy), living alone, type of housing, overcrowding and home ownership.

The region of birth is coded, distinguishing between individuals born: in Piedmont (the

region to which Turin belongs); in other regions of northern Italy; central Italy; southern

Italy or islands; or outside Italy. Marital situation distinguishes between never married,

married, widow or divorced. The variable representing family composition combines

marital status with the number of components: living alone; married and living only with

partner (family of two); unmarried and not living alone (family of two or more); married

and living in a family of more than two people. The last known occupational situation

is a variable obtained from the census data from 1971 to 2001, and aims to capture the

last type of occupation prior to retirement. This was not possible for some individuals

because they were already retired in 1971 (or in all the censuses concerning them), or

they were not working for other reasons. The occupation variable distinguishes between

the above-mentioned case and home-makers, entrepreneurs, white-collar workers, and

manual workers. The variable living alone has been composed using previous censuses, it

distinguishes between individuals that do not live alone at 2001 census date, individuals

that live alone at 2001 census date but not at 1991 census date and individuals that were

already living alone at 1991 census date. Type of housing is a variable that describes

the house in which each individual live and it is an ordinal variable with three levels

that describe the wealth and comfort of the house. The variable overcrowding consists

on the ratio between the number of rooms and the number of family components.

Moreover, we consider variables that describe health conditions of individuals in

neighbourhoods: diagnoses of hypertension or cardiac issues and the number of different

kinds of drugs that have been prescribed to individuals. We do not use these variables in

the empirical study because they can be themselves be affected by the treatment. How-

ever, they are included in the sample of variables that are considered in the simulation

study because in that context we are manipulating the true data-generating models.

3.3 Neighbourhoods in Turin

The city of Turin can be split into 10 districts, 23 areas, or 94 zones, considering

neighbourhoods that might be causally relevant to health (Arcaya et al., 2016). The

three partitions may relate to different living conditions (deprivation, walkability, crime,

and social cohesion) and population characteristics, but the three geographical layers

are only partially hierarchical. For instance, the same zone may belong to two or more

areas, or districts.
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Figure 3.2: Geographical partition of Turin in 10 districts and 23 areas.





Chapter 4

Evaluating inverse propensity score

weighting in the presence of many

treatments.

4.1 Introduction

In this chapter, we propose using inverse probability of treatment weighting (IPTW)

to deal with the non random allocation of individuals to neighbourhoods, thus mak-

ing neighbourhoods comparable with respect to observable individuals’ characteristics.

IPTW has been previously assessed with a limited number of treatments (2 or 3). How-

ever, in estimating neighbourhood effects a considerably higher number of treatments

(i.e., neighbourhoods) arises. In this chapter we engage in Monte Carlo simulations to

evaluate the performance of IPTW in the case of many treatments. Specifically, using

Generalized Boosted Models, we estimate probabilities of belonging to each neighbour-

hood (treatments) conditionally on observed variables, also known as propensity scores.

We assess IPTW performance under three different scenarios representing different treat-

ment allocations of individuals and compare it with a simple parametric approach, i.e.

logistic regression with neighbourhoods as main independent variables. In the simu-

lations, IPTW was found to be less biased although it showed a higher variance than

logistic regression.

In the first part of the chapter the IPTW approach is described for the multi-

treatment framework, focusing on the approach proposed by McCaffrey et al. (2013).

Then the simulation study is described with details on the design and results.
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4.2 IPTW in multi-treatment framework

The IPTW estimator based on propensity score presented in section 2.4 for the

dichotomous case can also be extended to the multi-treatment framework, in which the

propensity score needs a different specification.

The most common model for estimating a GPS is the multinomial logistic regres-

sion(Lopez and Gutman, 2017), which produces K propensity scores eit with t = 1, ...K,

one for each treatment, that sum to 1. Having the propensity score eit, weights are de-

fined as

wi =
K∑
t=1

Dit(Ti)

eit
. (4.1)

In a multi-treatment framework, the identification of the most adequate estimand to

represent the effect of the treatment is not trivial. Indeed, even considering the already

mentioned ATE, it is possible to compute this estimator in different ways depending

on the purpose of the study, while assuming different comparisons. For instance, if the

aim is to evaluate the causal effect of living in a given neighbourhood t′ versus another

specific neighbourhood t′′, the ATE may be computed through the following formula

(Linden et al., 2016):

ˆATEt′,t′′ =
1

N

N∑
i=1

YiDit′(Ti)

eit′
− 1

N

N∑
i=1

YiDit′′(Ti)

eit′′
. (4.2)

Alternatively, it may be more informative to compare each neighbourhood t with all of

the others, considering all possible couples and computing
(
K
2

)
pairwise ATE. Otherwise,

the comparison with the rest of neighbourhoods may be considered the more explicative

for the analysed phenomenon. It is possible to obtain those estimators with just small

variations of formula 4.2.

As anticipated in the introduction, parametric models are often used in neighbour-

hood observational studies. For example, it is possible to use a logistic regression with

dummy variables representing K − 1 neighbourhoods and controlling for confounders.

To make the comparison between this approach and an approach based on IPTW easier,

we estimated a logistic regression weighted by the inverse probability of treatment, as we

would do with sampling weights. More specifically, we consider odds ratios, OR = eβ̂,

as the estimand of interest.

In order to implement the IPTW approach, we adopted an approach proposed by

McCaffrey et al. (2013) for a multi-treatment framework. This method is based on a

Generalised Boosted Model (GBM) for computing the propensity score while reducing
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the risk of the misspecification of the treatment assignment model; and it is implemented

in the twang package in R (Ridgeway et al., 2006) (Toolkit for Weighting and Analysis

of Nonequivalent Groups).

The first part of the algorithm consists of estimating the propensity score as in a

dichotomous framework, while considering the treatment groups separately and bal-

ancing them with the whole population. For each neighbourhood t, the GBM fits a

piecewise constant model composed of many simple regression trees in order to predict

the dichotomous treatment ”living in neighbourhood t or elsewhere in the city”. These

regression trees are combined to iteratively adjust the log-odds of treatment assignment

g(X) in order to maximise the log-likelihood function:

`(g) =
N∑
i=1

Dit(Ti)g(Xi)−
N∑
i=1

log{1 + exp[g(Xi)]} (4.3)

where Dit(Ti) is the treatment assignment indicator and X contains all the confounders

(McCaffrey et al., 2004). The iteration proceeds until the stopping rule is satisfied; in

this case, it regards the balance of pre-treatments covariates. A possible balance measure

is the Population Standardized Bias (PSB) for each variable v and each neighbourhood

t′. This measure compares the distribution of the confounders in each treatment group

and in the whole population, while considering all treatment groups. It is given by the

formula:

PSBvt′ =
| ˆ̄Xvt′ − ˆ̄Xvp|

σ̂vp
∗ 100, (4.4)

where X̄vt′ is the mean of variable v computed on the analysed sample weighted with

the inverse of the propensity score of being in neighbourhood t′, and X̄vp and σ̂vp are

the unweighted mean and the standard deviation of variable v in the whole population

(McCaffrey et al., 2013). According to the literature, the possible thresholds for defining

a balanced population are 25%, 20%, and 10% (Austin, 2009; Rosenbaum and Rubin,

1985).

The PSB balance measure is computed automatically for each variable and each

neighbourhood, and needs to be summarised. It is possible to chose between two sum-

mary statistics: namely, their mean value or their maximum value among all considered

covariates.

As we have a lot of dichotomous variables in our analysis, we have decided to use the

Population Standardized Bias to measure the balance among the covariates; and, to be

more conservative, to summarise it by its maximum value (instead of using the mean)

among the pre-treatment variables. Indeed, minimising the maximum PSBs guarantees
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that all of the other values are smaller than the maximum, whereas if we use the mean

for the minimisation, we risk having high values of the PSB offset by low values.

The R function twang allows us to set other important parameters such as the maxi-

mum number of trees to be combined (to reduce the risk of over-fitting), their maximum

interaction level, and the shrinkage level. In this work, we used mainly default values

of the function mnps in the R package twang; except for the following cases, in which we

also followed other suggestions found in literature(McCaffrey et al., 2004) (the results

of these additional attempts are available from the authors):

• The number of generalised boosted model iterations (n.trees): we used the de-

fault value (10,000) for the empirical application, but, since we observed that the

balance was reached with fewer iterations, we set it at 3000 in order to save time

and computational effort. However, we also ran also some simulations with 5000,

10,000, and 20,000 generalised boosted model iterations in order to check whether

the lower number negatively affected the performance of inverse probability of

treatment weighting.

• A shrinkage parameter was applied to each tree in the expansion (shrinkage). The

default value was 0.01, but we also used 0.0005 in some simulations, as suggested

in the literature(McCaffrey et al., 2004).

• For the fraction of the training set, observations were randomly selected to propose

the next tree in the expansion (bag.fraction), while introducing randomness into

the model fit if it was less than 1. The default value was 1, but we also used 0.5

in some simulations, as suggested in the literature(McCaffrey et al., 2004).

• For the maximum number of iterations for the direct optimisation (iterlim): the

default value was 1000, but we also tried some simulations with a higher value

(10000) to check whether 1000 was enough.

After the GBM computation of the propensity scores for each individual and for each

treatment with respect to the rest of the population has been implemented, the result is

a matrix with K propensity scores for each individual, each one of which is referred to as

one of the treatments. In other words, the first part of the algorithm produces a matrix

that shows the computed probability of living in each neighbourhood (and not in other

neighbourhoods) for each subject. This step produces propensity scores that are useful

for making each treatment group comparable with the rest of the population. The sum

of the K propensity scores for each individual is not equal to 1, as in the multinomial

model, because these values are the results of different models that consider treatments
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separately. Since propensity scores are used in this work primarily in order to balance

the weights, this is not an issue, and it is not necessary to modify these values to make

them sum to 1. Indeed, such a transformation would simply modify the scale of the

weights, and would not have any effect on the final result. The final weight for each

subject is given by the inverse of the propensity score of the received treatment, while

all of the other weights computed for that individual and relative to the propensity for

receiving other treatments are discarded.

When dealing with IPTW, it is common to find extremely high weights that cause

the variance of estimates to increase. Therefore, weight trimming has been considered

as a way to reduce the variance with small losses in terms of bias(Lee et al., 2011). How-

ever, the optimal level of trimming for improving the inference and achieving the best

compromise between bias and variance is difficult to determine. Thus, it is sometimes

more effective to focus on the procedure for computing weights, such as a proper spec-

ification of the propensity score model (Lee et al., 2011). This is the main reason why

we also implemented an asymmetrical trimming of the higher weights in the simulation

study, while setting the extreme weights equal to the upper bound threshold, even if

there is no proof of a substantial improvement in the overall performance of the GBM

in an inverse weighting procedure in dichotomous cases (Lee et al., 2011).

4.3 Simulation design

In order to keep our experiment realistic and to simplify our computations, we ex-

tracted from the total population a 10% sample from each neighbourhood. The original

data structure was thereby preserved, but with a reduced sample size that makes the

computations less demanding (the simulation dataset contains 22,690 individuals). In

order to keep the simulation simple, we selected a small number of covariates from the

variables described in section 3.2.1: gender, age, education (Edu0, Edu1, Edu2, and

Edu3), overcrowding, hypertension, and drugs.

In the simulation experiment, we included variables describing the health conditions

of the population that we had discarded in the empirical study, because in our simula-

tions we established both the temporality and the causality direction given by the data

generation design: i.e., we simulated first the treatment and then the outcome; whereas

in the empirical framework, this assumption could not be trusted with respect to health

conditions.

In line with other studies(Arpino and Cannas, 2016; Setoguchi et al., 2008), and

given the real distribution of these six covariates, we decided to simulate the treatment
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assignment and the outcome according to three different scenarios that reflect three

different treatment allocation settings: the first one reflects the real circumstances with

a simple, linear, and additive model; the second one shows a case in which the treatment

allocation equation is complex and may be misspecified; and the third one represents a

highly unbalanced situation.

In the first scenario, the treatment assignment equation is simple and close to reality.

The treatment is generated through a multinomial logistic model, using neighbourhood

6 as a reference; that is, the neighbourhood with the lowest crude hospitalised fractures

rate. Thus, for each neighbourhood t and each individual i, the treatment equation will

be

ln

(
Pr(Ti = t)

Pr(Ti = 6)

)
= 1β

t
0 +1 β

t
1 ∗Genderi +1 β

t
2 ∗ Agei +1 β

t
3 ∗ Edu1i +1 β

t
4 ∗ Edu2i +

+ 1β
t
5 ∗ Edu3i +1 β

t
6 ∗Overcrowdingi +1 β

t
7 ∗Hypertensioni +

+ 1β
t
8 ∗Drugsi. (4.5)

In order to choose the values for the coefficients, we estimated a multinomial logis-

tic model on the whole population and used the same rounded parameters for t =

1, ..., 5, 7, ..., 10 for the intercept 1β
t
0 and for other coefficients 1βv v = 1, ...8 (the exact

values of the parameters are reported in table A.1 in appendix A.1).

The second scenario relies on a more complex treatment assignment equation that

includes six interaction terms and three quadratic terms, while having the following

equation form for each neighbourhood t

ln

(
Pr(Ti = t)

Pr(Ti = 6)

)
= 2β

t
0 +2 β

t
1 ∗Genderi +2 β

t
2 ∗ Agei +2 β

t
3 ∗ Edu1i +2 β

t
4 ∗ Edu2i +

+ 2β
t
5 ∗ Edu3i +2 β

t
6 ∗Overcrowdingi +2 β

t
7 ∗Hypertensioni +

+ 2β
t
8 ∗Drugsi +2 β

t
9 ∗ Age2i +2 β

t
10 ∗Overcrowding2i +

+ 2β
t
11 ∗Drugs2i +2 β

t
12 ∗Genderi ∗ Agei +2 β

t
13 ∗Genderi ∗ Cardioi +

+ 2β
t
14 ∗Genderi ∗Drugsi +2 β

t
15 ∗ Agei ∗ Cardioi +

+ 2β
t
16 ∗ Agei ∗Drugsi +2 β

t
17 ∗Drugsi ∗ Cardioi. (4.6)

As in the first scenario, the parameters for these treatment assignment equations were

chosen based on the parameters estimated by a multinomial logistic model with the

same functional form for the whole population (the exact values of the parameters are

reported in table A.2 in appendix A.1).

The third scenario relies on the very same treatment assignment equation as in the
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first scenario, but with different parameters. Indeed, starting with the coefficients in

scenario 1, some of the parameters were modified to obtain a greater initial imbalance.

Moreover, in order to keep the simulated dataset close to a potentially real situation in

terms of the hospitalised fractures percentage, the intercepts were modified as well (the

exact values of the parameters are reported in table A.3 in appendix A.1).

We evaluated the initial balance of these three scenarios in all of the 1000 simulations

using the Population Standardized Bias. The mean values of the PSB among all of

the 1000 simulations for each scenario are reported in table 4.1. While in the first

scenario the initial situation is only mildly unbalanced, in scenarios 2 and 3 more extreme

imbalanced situations can be observed.

Table 4.1: Mean of PSB among neighbourhoods of the unweighted sample in all the
iterations

Neighbourhoods

Scenario Variable 1 2 3 4 5 6 7 8 9 10

Male 4.64 1.33 1.59 2.58 2.33 2.49 1.68 2.33 1.61 5.02
Female 4.64 1.33 1.59 2.58 2.33 2.49 1.68 2.33 1.61 5.02
Age 17.84 5.61 5.11 6.88 8.46 9.47 3.80 12.70 2.61 16.65
Primary Educ. or lower 36.04 10.56 6.76 6.53 22.68 23.36 2.24 26.42 1.35 26.14
Lower Secondary Educ. 8.40 5.94 3.04 1.74 2.68 3.29 1.30 3.76 5.42 4.94

1 Upper Secondary Educ. 19.90 6.99 4.81 5.79 16.12 17.14 1.86 15.57 2.40 18.54
Tertiary Educ. 31.30 1.56 0.83 1.14 15.87 14.45 1.27 20.77 5.61 15.36
No Hypertension 7.41 1.48 1.83 1.77 2.22 5.29 1.91 4.23 1.80 3.95
Hypertension 7.41 1.48 1.83 1.77 2.22 5.29 1.91 4.23 1.80 3.95
Overcrowding 26.34 6.00 2.19 1.36 12.02 10.18 2.54 21.93 4.44 2.32
Drugs 24.53 1.71 5.29 4.04 10.31 12.92 2.14 13.22 3.99 14.71

Male 6.26 1.41 1.64 6.05 1.42 6.38 6.22 3.76 2.78 1.59
Female 6.26 1.41 1.64 6.05 1.42 6.38 6.22 3.76 2.78 1.59
Age 30.81 6.14 13.49 29.99 2.49 14.87 26.13 26.09 38.62 1.58
Primary Educ. or lower 29.91 9.77 10.60 8.64 23.39 14.35 2.73 21.47 4.02 20.31
Lower Secondary Educ. 3.42 5.39 4.00 2.78 3.14 1.89 2.67 3.22 5.84 7.39

2 Upper Secondary Educ. 15.61 6.47 6.36 7.04 15.14 10.56 2.21 13.87 5.84 12.81
Tertiary Educ. 24.22 1.21 2.25 2.45 18.31 14.96 2.33 15.25 7.51 6.26
No Hypertension 1.39 3.94 5.45 6.98 1.79 3.30 5.22 9.65 7.74 2.51
Hypertension 1.39 3.94 5.45 6.98 1.79 3.30 5.22 9.65 7.74 2.51
Overcrowding 19.63 9.68 2.65 10.62 17.49 11.54 11.88 14.70 15.59 1.00
Drugs 13.52 11.52 9.99 11.93 3.85 2.52 15.86 17.31 7.14 4.79

Male 22.94 3.75 6.95 38.93 8.38 5.34 1.55 13.88 7.79 5.61
Female 22.94 3.75 6.95 38.93 8.38 5.34 1.55 13.88 7.79 5.61
Age 258.46 23.91 17.88 7.20 27.36 23.28 15.68 20.03 18.78 13.86
Primary Educ. or lower 4.19 22.26 23.94 9.30 27.75 26.14 10.24 52.42 3.44 31.52
Lower Secondary Educ. 6.70 33.45 10.18 4.36 2.88 2.24 6.12 27.87 8.68 5.90

3 Upper Secondary Educ. 1.12 4.59 44.43 1.15 21.08 20.27 15.01 10.57 5.85 22.65
Tertiary Educ. 2.29 12.91 13.03 9.53 21.48 19.93 8.85 92.91 13.00 21.24
No Hypertension 28.29 3.94 3.70 2.42 1.16 3.22 7.56 10.45 1.59 13.86
Hypertension 28.29 3.94 3.70 2.42 1.16 3.22 7.56 10.45 1.59 13.86
Overcrowding 34.09 6.35 5.08 3.67 30.76 8.17 3.47 21.79 4.21 4.67
Drugs 27.08 4.81 11.89 2.72 5.21 9.27 8.47 28.43 2.24 44.81
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After the treatment generation, the outcome has also been simulated given the six

covariates and the treatment assignment according to the following model:

ln

(
Pr(Yi = 1)

Pr(Yi = 0)

)
= β0 + β1 ∗Genderi + β2 ∗ Edu1i + β3 ∗ Edu2i + β4 ∗ Edu3i +

+ β5 ∗ Cardioi + β6 ∗ Agei + β7 ∗Overcrowdingi + β8 ∗Drugsi +

+ β9 ∗Di1(Ti) + β10 ∗Di2(Ti) + β11 ∗Di3(Ti) + β12 ∗Di4(Ti) +

+ β13 ∗Di5(Ti) + β14 ∗Di7(Ti) + β15 ∗Di8(Ti) + β16 ∗Di9(Ti) +

+ β17 ∗Di10(Ti), (4.7)

where Di1(Ti), Di2(Ti), ..., Di10(Ti) are dichotomous variables that take value 1 if the

individual i lives in the considered neighbourhood, and value 0 otherwise. As before,

the reference is neighbourhood 6. The coefficients are close to those estimated by the

same model for the whole population, but the parameters from β9 to β17 were inflated

to obtain a larger neighbourhood effect for the purposes of estimation (the exact values

of the parameters are reported in table A.4 in appendix A.2). Indeed, when the true

neighbourhood effects are small, there is a risk that the simulations will produce more

biased and less stable estimates, and that the inverse weighting approach will perform

badly (Cepeda et al., 2003). . However, we also ran some simulations with smaller

neighbourhood effects in order to explore and verify this result in a multi-treatment

framework.

We evaluated the performance of the two approaches, the logistic regression, and the

IPTW, while comparing the estimates of nine neighbourhood coefficients (the reference

is neighbourhood 6, the one with the lowest crude rate of hospitalised fractures) and

the true treatment effect used to simulate the outcome. The analysis was focused on

three measures: the mean and the median of the relative bias (the percentage difference

from the true treatment effect), the variance of the estimated values among the 1000

simulations, and 95% confidence interval coverage (the percentage of times the true

value is included in the 95% confidence interval of the obtained estimates among all of

the simulations). In this setting, we preferred to take into account the median, and not

just the mean, of the bias because the median is less influenced by extreme values that

may be the consequence of less plausible scenarios.

4.4 Simulation results

For each replicate in every scenario, we estimated the neighbourhood effect using

both the logistic regression approach and the IPTW approach. Since we were trying
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to improve the balance of the confounders among the neighbourhoods, we observed the

distribution of the PSB across all of the simulations, neighbourhoods, and variables. To

summarise them all, we reported the mean of the PSB of the weighted samples among

all of the simulations in table 4.2.

In the first two scenarios, the balance attained with IPTW was extremely good, with

all of the considered confounders showing an average PSB that was lower than 5% for

all of the neighbourhoods; indeed, in many cases, the PSBs was even lower than 1%.

Using even the most restrictive threshold cited in literature, we can state that in these

two scenarios the balance was reached.

In the most complicated scenario (scenario 3), the PSBs tended to be higher. This

was especially the case for neighbourhood 1, for which most of covariates had PSBs

higher than 10%, and the average PSB for age was 53.23%. Even though the balance

was not satisfactory, it should be noted that in scenario 3 the initial imbalance was very

high (e.g., the PSB for age in neighbourhood 1 was 258.46; table 4.1). Indeed, if we

compare the balance after weighting (table 4.2) with the initial balance, we can see that

even in scenario 3, the use of the IPTW approach guarantees a considerable improvement

in the degree of similarity of the confounders’ distributions across the neighbourhoods.

Since the residual imbalance was higher, we expected to observe higher bias for the

IPTW estimator in scenario 3.

Whereas in scenarios 1 and 2 the bias of the IPTW estimates was quite good, or lower

than 5% in most cases; in the third scenario, there were two parameters with a bias

higher than 10%. However, as was already explained, in the third scenario, the initial

balance was particularly challenging in terms of the distribution of the confounders

among the different treatment groups. Moreover, when the bias of IPTW estimates was

high, the logistic regression method also provided biased estimates.

In the first scenario, we observe that the biases relative to the estimates produced by

IPTW were smaller than those produced by the logistic regression method, except for one

neighbourhood, number 10. This neighbourhood had the highest PSBs, and was the only

one for which a PSB higher than 5% was found.Relative to the other neighbourhoods,

the third had the largest bias with respect to both the estimation approaches and the

mean and the median. Indeed, the bias of this parameter was expected to be the

highest because its true value was the smallest and closest to 0. According to the

literature(Cepeda et al., 2003), higher bias is often observed for estimates of smaller

effects. In general, in the first scenario, almost all of the parameters were estimated by
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Table 4.2: Mean of PSB among neighbourhoods of the weighted sample in all the
replicates

Neighbourhoods

Scenario Variable 1 2 3 4 5 6 7 8 9 10

Male 1.90 0.42 0.51 0.73 0.82 0.88 0.54 1.42 0.48 1.62
Female 1.90 0.42 0.51 0.73 0.82 0.88 0.54 1.42 0.48 1.62
Age 0.96 1.45 0.79 1.02 2.66 2.91 1.30 1.47 2.00 5.48
Primary Educ. or lower 1.55 0.29 0.27 0.40 1.60 1.67 0.56 1.01 0.57 3.23
Lower Secondary Educ. 0.83 0.40 0.32 0.40 0.53 0.51 0.38 0.84 0.72 0.80

1 Upper Secondary Educ. 0.73 0.24 0.20 0.26 0.72 0.87 0.50 0.41 0.42 1.75
Tertiary Educ. 0.35 0.53 0.27 0.33 2.38 2.26 0.55 0.27 1.45 4.04
No Hypertension 0.93 0.42 0.31 0.44 0.65 1.01 0.74 0.91 0.64 1.53
Hypertension 0.93 0.42 0.31 0.44 0.65 1.01 0.74 0.91 0.64 1.53
Overcrowding 3.35 1.05 0.26 0.41 0.47 0.41 0.43 3.12 0.45 2.10
Drugs 1.08 0.96 0.52 0.80 2.18 2.41 0.98 1.24 1.69 4.48

Male 1.04 0.42 0.85 2.67 0.67 0.70 1.20 2.35 1.73 0.60
Female 1.04 0.42 0.85 2.67 0.67 0.70 1.20 2.35 1.73 0.60
Age 0.52 0.53 1.87 6.13 1.73 2.88 4.59 6.21 7.87 2.01
Primary Educ. or lower 1.07 0.35 0.62 1.23 1.64 1.62 1.24 1.56 2.35 1.22
Lower Secondary Educ. 0.66 0.31 0.51 1.13 0.63 0.63 1.09 1.26 1.80 0.19

2 Upper Secondary Educ. 0.38 0.22 0.38 0.91 0.59 0.71 1.29 0.86 2.00 1.02
Tertiary Educ. 0.22 0.21 0.31 1.09 2.78 2.58 1.00 0.68 3.62 0.63
No Hypertension 0.57 0.35 0.59 1.42 0.43 0.96 1.27 1.56 1.52 0.50
Hypertension 0.57 0.35 0.59 1.42 0.43 0.96 1.27 1.56 1.52 0.50
Overcrowding 1.33 1.93 0.50 0.94 0.48 0.40 0.79 3.22 1.23 0.48
Drugs 0.57 1.18 0.63 2.23 1.64 1.97 1.64 2.28 3.55 0.97

Male 9.59 0.85 0.57 1.66 1.53 1.46 0.98 1.47 1.21 2.25
Female 9.59 0.85 0.57 1.66 1.53 1.46 0.98 1.47 1.21 2.25
Age 53.23 5.51 4.00 4.59 7.35 7.11 5.47 4.82 5.87 8.70
Primary Educ. or lower 10.46 0.54 0.33 1.28 2.80 2.59 1.73 1.73 1.36 5.18
Lower Secondary Educ. 8.80 1.30 0.58 0.61 0.73 0.81 0.69 0.88 1.13 1.13

3 Upper Secondary Educ. 9.16 0.45 0.54 0.74 1.20 1.15 1.79 0.81 0.85 2.54
Tertiary Educ. 7.07 2.19 1.80 2.32 4.02 3.86 1.45 0.70 2.76 6.74
No Hypertension 11.19 0.61 0.54 0.78 0.78 0.97 0.99 1.54 0.73 2.61
Hypertension 11.19 0.61 0.54 0.78 0.78 0.97 0.99 1.54 0.73 2.61
Overcrowding 18.68 1.36 0.49 0.85 1.98 0.66 0.64 2.02 0.59 2.20
Drugs 17.18 1.22 0.74 1.07 2.31 2.62 1.24 1.91 1.87 9.59

both of the models with bias lower than 5%; except for neighbourhoods 1, 3 (already

mentioned), and 4, where, on average, the inverse weighting approach seems to have

provided better estimates.

In the second scenario, the estimates given by the IPTW method for neighbourhoods

4, 8, and 9 had a particularly high median bias, of between 5% and 10%. This was

probably because the balance in these neighbourhoods was not completely achieved,

especially for the variable age, which had a mean PSB of more than 5% in these three

neighbourhoods (table 4.2). On the other hand, the logistic regression model provided

estimates that were particularly biased for the effect of neighbourhood 1; probably

because of the initial highly unbalanced situation (as shown in table 4.1).

In the third scenario, both methods performed well for most of the neighbourhoods

(numbers 2, 5, 7, 8, 9, and 10), as they had both mean and median biases of less
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than 5%. However, when the IPTW approach was applied, the biases became slightly

smaller for all of these neighbour- hoods. The logistic regression model produced better

results in terms of bias in neighbourhoods 3 and 4. However, both methods performed

poorly with respect to the estimates for neighbourhood 1, for which the initial situation

was extremely unbalanced (as shown in table 4.1). While the situation of the first

neighbourhood remained unbalanced even after weighting (as shown in table 4.2), the

IPTW approach produced estimates for this parameter that had, on average, half the

bias of those produced by the logistic regression model.

A general observation with respect to table 4.3 is about variances. Indeed, in all of the

scenarios and for all of the neighbourhoods, the variances of the estimates generated by

the inverse probability of treatment weighting approach were higher than those produced

by the logistic regression model. In the first scenario, which corresponds most closely

to reality, the variances of the two models were more similar and smaller than those in

the other two scenarios, in which the allocation of individuals to treatments was more

complex (in the second one) and more unbalanced (in the third one).

Since in the presence of weights the variance may increase and the estimates may

be greatly affected, especially if the weights are extreme, we also tried an asymmetrical

trimming. We trimmed only the extremely high weights, reducing the influence of those

individuals who were under-represented in some of the neighbourhoods, based on the

assumption that these individuals were outliers who did not reflect the population as

a whole. Selecting different levels of trimming (percentiles from 99 to 85 and 75), we

assigned the threshold weight value to those individuals who had higher weights. This

technique proved to be quite useful for reducing the variance, but the gain was associated

with an increase in bias in some cases.

In figures 4.1 and 4.2, two examples are presented that show how trimming affected

the mean bias and the variance of the estimates produced by the IPTW approach

relative to the mean bias and the variance of the logistic regression’s estimates for

neighbourhoods 5 and 8 in the first scenario. In some cases, as for neighbourhood 5 in

figure 4.1, it was possible to increase the level of trimming while having a limited impact

on the bias, or even causing it to decrease slightly at around the 85th percentile, while

ensuring that it remained lower than the bias of the estimates produced by the logistic

regression. On the other hand, the variance of the trimmed estimates was substantially

reduced, and assumed values closer to the variance of the logistic regression’s estimates

when the level of trimming was increased. Thus, when we consider this example, we

can state that the optimal level of trimming in order to reduce both the bias and the

variance may be around the 85th percentile. A completely different situation can be
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Figure 4.1: Comparison of mean biases and variances of estimates obtained by
IPTW at different levels of trimming for the neighbourhood effect of neighbourhood 5
in the first scenario with logistic regression’s (Logit) results (represented as horizontal
dashed lines).

observed for the estimates of neighbourhood 8 in the first scenario, where the trade-

off between the bias and the variance was more severe than in the previous example.

Indeed, when the level of trimming was increased, the bias grew from around 0% in

the absence of trimming to around 8% at the 75th percentile of trimming. However,

the variance decreased when moving closer to the variance of the logistic regression’s

estimates. Indeed, finding the optimal level of trimming was harder in this case, as the

level at which the estimates were less biased was the one at which the variances were

higher. Moreover, at around the 96th percentile of trimming, we got estimates with the

same bias as the logistic regression’s estimates, but with a variance that was 15% higher.

In general, even after observing all of the trimmed estimates in all of the simulations,

it was not possible to find a common criterion we could use to define a best practice

in terms of trimming. The fact that we had nine different parameters to estimate did

not make this choice easier, because the levels that ensure a balance between bias and

variance may be different for each parameter. Moreover, in an empirical framework, it

is not possible to observe the bias of estimates. Thus, it would have been even more

difficult to discern which trimming level was the best to use without quantifying the

loss in terms of bias. Thus, we would not recommend the trimming of weights when

using the IPTW approach in a multi-treatment framework.

In order to improve the performance of the inverse probability of the treatment

weighting approach, we also tried to change some default settings in the twang package.
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Figure 4.2: Comparison of mean biases and variances of estimates obtained by
IPTW at different levels of trimming for the neighbourhood effect of neighbourhood 8
in the first scenario with logistic regression’s (Logit) results (represented as horizontal
dashed lines).

As we mentioned before, we ran some simulations with different numbers of generalised

boosted model iterations (3000, 5000, 10,000, and 20,000), levels of shrinkage (0.01 and

0.0005), fractions of the training set to fit the trees (1 and 0.5), and maximum numbers

of iterations for the direct optimisation (1000 and 10000); as well as several combinations

thereof. However, as the balance after weighting was not improved and the bias was not

reduced, we decided against deepening this research path, and instead opted to use all

of the default values for the simulations, except for the number of generalised boosted

model iterations (the default was 10,000, but to save time and computational effort, we

used 3000, since the balance was reached with fewer iterations).

4.5 Conclusions

The purpose of this chapter was to estimate neighbourhood effects adjusting for

confounders through IPTW techniques, using as a motivating study the estimation of

neighbourhood effect on hospitalized fractures in the Italian city of Turin. One of the

most intriguing points with respect to a methodological point of view is linked to the

number of treatments that is not trivial to handle. The main objective of this chapter

was to examine the performance of IPTW approach in the case of many treatments

(10, specifically). This was done implementing simulation studies where IPTW was
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also compared to a standard logistic regression approach. These approaches were also

applied on real data originating from our motivating case study.

The simulation study was performed under three possible scenarios for the allocation

of individuals to neighbourhoods, one close to reality, one with a complex misspecified

treatment allocation and one with an extremely unbalanced initial situation. IPTW

performed very well in terms of reducing the initial imbalance of confounders across

the different neighbourhoods in all scenarios. However, in scenarios characterized by

higher initial imbalance, bias of estimated causal effect was higher than the first scenario

characterized by a lower initial imbalance.

It is widely stressed in the causal inference literature (Cannas and Arpino, 2018) that

researchers should examine balance measures because higher (residual) imbalance tend

to be associated with higher bias of causal estimates. This is confirmed in our analyses

where bias tended to be higher for both logistic regression and IPTW in scenarios

characterized by higher initial (and residual) imbalances.

Our results indicate that IPTW is a promising approach for reducing confounders

imbalance in a multi-treatment context even in the presence of a number of treatments

as high as 10.

However, the IPTW approach is more computationally demanding than a standard

logistic regression (computation of weights may last several hours if the number of

treatments is high, as in our case). Future research may be devoted to investigate more

computationally efficient approaches, which are especially necessary in the presence of

a even higher number of treatments than we considered here.

One limitation in the application we considered is represented by the fact that mo-

bility of individuals among neighborhoods may invalidate the SUTVA. Indeed, in some

neighbourhoods individuals may have a higher propensity to move and to be affected

by other neighbourhoods. Since our focus is on older people that is considered a more

stable population, this risk is lower, but in future researches would be interesting to

take into account also this aspect.





Chapter 5

Neighbourhood effect with an

IPTW approach

5.1 Introduction

The increase in average life expectancy during the 20th century ranks as one of

society’s greatest achievements (WHO et al., 2011). Indeed, data on life expectancies

between 1840 and 2007 show a steady increase averaging about three months of life per

year. In particular, according to Istat, the life expectancy at birth in Italy has grown

from 67.2 years for men and 72.3 for women in 1961 to 80.1 years for men and 84.7 for

women in 2015; according to Istat projections, these numbers are going to increase to

86.6 years for men and 91.5 for women in 2065 (Istat, 2016). However, health inequalities

are still present in the territory. These are mostly due to socio-economical differences,

but also to the geographical residence (Graham, 2009). During the last years, one

important objective of health policies has been the reduction of health inequalities,

with an increased attention to elderly people. With this aim, also the investigation of

neighborhood effect on health outcomes earned attention in social epidemiology.

5.2 Neighbourhood effect on two health outcomes

In this chapter some empirical results are reported, the neighbourhood effect has been

estimated with IPTW method described in chapter 4 on two different health outcomes:

the hospitalized fractures and mental health. These two were selected because of their

importance among old population but also because the neighbourhood may affect them

in two different ways. The hospitalized fracture may be seen more as an event than as

57
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a disease, thus it seems plausible that previous events and history of individuals have

a low impact on the probability of the outcome. Thus, the hypothesis that just the

neighbourhood in which each subject is living needs to be taken into account and not

the previous holds. On the contrary, mental diseases are for sure the results of a complex

mixture of events and elements that intersect with the time dimension.

According to characteristics of the two outcomes, we selected the populations for the

analysis in order to make the causal inference assumptions described in section 2.2 hold.

The geographical partition that we consider in this chapter counts just 10 neigh-

bourhoods, indeed, since the IPTW technique proposed by McCaffrey et al. (2013) is

computationally demanding, the computation of neighbourhood effect on neighbour-

hoods with smaller scale would be highly unpractical and nearly impossible.

5.3 Neighbourhood effects on hospitalized bones frac-

tures

Interest in the neighbourhood effect on hospitalized fractures among over-60-year-olds

stems from a real need expressed by Turin’s Epidemiology Service. Neighbourhoods may

affect elderly fracture rates in two main ways: they may be difficult to walk around, or

have inadequate street lighting, and thus increase the risk of falls; and/or people living

in the area may be discouraged from engaging in physical activity, and their muscle

tone and bone structure consequently deteriorate (Ambrose et al., 2013; Barnett et al.,

2017; Sànchez-Riera et al., 2010). The focus here is on people over sixty, partly because

of their greater exposure of hospitalized fracture, and also because they are assumed

to be a more stable resident population. In fact, some researchers have found older

people more susceptible to neighbourhood effects because they spend more time in their

neighbourhoods than younger people (Melis et al., 2015; Turrell et al., 2014). Older

people are also less likely to move house (the annual rate for the observed population

was only around 1%).

We estimated neighbourhood effect using the IPTW method proposed by McCaffrey

et al. (2013) and described in chapter 4. As in chapter 4, we computed the neighbour-

hood effect also with the logistic regression in order to compare the results.

5.3.1 Data and population

The analysed population consists of all participants in the 2001 population census,

with some additional restrictions. We consider only the individuals who where aged 60
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or older on 31 December 2001. In order to be able to collect information on possible

confounders related to past health information, we focus on the individuals who were

living in Turin between 1 January 1997 and 31 December 2001. Finally, we measure

the outcome; i.e., the incidence of hospitalised fractures during the year following the

census (2002). Therefore, we restrict our analyses to individuals who were living in

Turin over the whole period between 1 January 1997 and 31 December 2002. Our

design allows us to measure the time-varying confounders before the treatment, which

is in turn measured before the outcome is observed. We excluded also individuals living

in institutions such as rest or nursing home.

In this empirical application we consider the geographical partition given by the 10

districts.The list of neighbourhoods with their population (% of the total population of

Turin in parentheses) is as follows (hereafter, the neighbourhoods are referred to using

the corresponding numerical identifier):

1. Centro, Crocetta: 18,224 individuals (8.07%);

2. Santa Rita, Mirafiori nord : 30,437 individuals (13.48%);

3. San Paolo, Cenisia, Cit. Turin, Pozzo Strada: 33,072 individuals (14.64%);

4. San Donato, Parella, Campidoglio: 23,065 individuals (10.21%);

5. Borgo Vittoria, Madonna di Campagna, Lanzo, Lucento, Vallette: 30380 individ-

uals (13.45%);

6. Regio Parco, Barca, Bertolla, Barriera di Milano, Rebaudengo, Falchera, Vil-

laretto: 25,288 individuals (11.20%);

7. Aurora, Vanchiglia, Sassi, Madonna del Pilone: 20,434 individuals (9.05%);

8. Borgo Po, San Salvario, Cavoretto: 13,591 individuals (6.02%);

9. Nizza Millefonti, Lingotto, Filadelfia: 20,729 individuals (9.18%);

10. Mirafiori sud : 10,608 individuals (4.70%).

Thus, the aim of this section is to estimate the causal effect of living in a given neigh-

bourhood at the 2001 census on the probability of suffering from at least 1 hospitalized

fracture in 2002. The considered confounders are age, gender, region of birth, family

composition, education level, last observed professional condition, home ownership and

overcrowding, described in detail in section 3.2.1. Table 5.1 presents some descriptive
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statistics on the outcome and confounders considered in our empirical analyses by neigh-

borhoods. In the first row of table 5.1 is reported the percentage of hospitalized fractures

in each neighbourhood. This event affects a small portion of population, 0.9% of over-60

years old individuals living in Turin, with some differences among neighbourhoods: from

neighbourhood 6 that presents the lowest proportion (0.71%) to the neighbourhood 1

with 1.05% of hospitalized fractures in 2002.

Table 5.1: Descriptive statistics on the outcome and confounders by neighbourhoods.

Neighbourhoods

Variables 1 2 3 4 5 6 7 8 9 10 Total

Hospitalized Fractures (%) 1.05 0.93 0.85 0.92 0.84 0.71 1.03 1.02 0.92 0.85 0.90

Female (%) 60.60 57.40 58.88 59.50 56.75 56.67 58.67 58.97 57.48 55.07 58.63

Age (Mean) 71.99 70.63 71.22 71.35 70.48 70.43 71.14 71.68 70.87 70.02 70.96

Region of Birth(%)

Piedmont 56.43 48.84 50.12 49.59 34.74 34.92 48.73 59.47 47.64 30.75 45.93
North of Italy 13.83 14.75 15.14 15.63 13.56 13.09 12.67 13.43 14.80 12.87 14.12
Center of Italy 3.74 3.51 2.76 2.89 2.59 2.73 2.57 3.24 3.24 2.42 2.97
South of Italy 21.19 27.54 26.73 27.04 39.98 41.91 31.25 19.59 27.42 47.62 30.93
Outside of Italy 4.81 5.37 5.25 4.86 9.13 7.36 4.77 4.28 6.91 6.33 6.05

Family composition (number of components) (%)

Alone (1) 35.74 26.46 30.05 31.09 25.89 26.44 31.34 32.20 27.37 20.65 28.73
Married couple (2) 33.99 44.97 42.33 41.30 44.90 43.62 41.00 37.97 43.46 45.71 42.28
Married couple (> 3) 17.35 19.14 17.24 16.85 18.55 19.52 17.19 18.20 19.15 23.34 18.41
No married couple (> 2) 12.92 9.42 10.38 10.76 10.66 10.42 10.47 11.63 10.02 10.29 10.58

Educational attainment (%)

Primary or lower 26.05 40.73 43.04 43.15 60.99 61.42 48.37 31.42 47.19 63.03 46.94
Lower Secondary 25.73 34.15 32.40 31.43 29.22 28.84 30.53 28.47 33.88 27.95 30.69
Upper Secondary 25.43 18.38 17.28 17.80 7.64 7.23 14.03 22.96 13.70 6.73 14.94
Tertiary 22.79 6.74 7.28 7.61 2.15 2.51 7.08 17.16 5.23 2.29 7.42

Home owner (%) 71.15 81.43 77.99 75.48 71.21 72.54 76.87 78.99 80.01 79.48 76.34

Last observed professional condition (%)

No observed work 13.75 11.61 13.28 14.11 14.25 15.72 16.65 13.92 14.74 12.08 14.00
Home-maker 34.05 35.24 36.02 34.81 35.02 33.74 33.51 34.85 33.50 36.53 34.74
Entrepreneur 16.90 5.75 6.73 7.07 2.45 2.34 6.09 13.63 4.89 1.73 6.34
White collars 24.45 26.73 24.53 24.67 17.32 17.14 22.79 24.75 23.29 14.88 22.33
Manual workers 10.85 20.66 19.44 19.33 30.96 31.06 20.96 12.85 23.59 34.78 22.59

Overcrowding (Mean) 0.64 0.74 0.78 0.77 0.84 0.82 0.78 0.66 0.79 0.76 0.77

Hypertension 51.16 54.89 54.49 54.73 57.04 58.85 56.52 53.09 56.45 58.08 55.58

Drugs (Mean) 7.35 7.84 7.72 7.78 8.09 8.16 7.87 7.61 7.96 8.18 7.86

5.3.2 Results of IPTW approach and comparison with logistic

regression estimates

We estimated the weights for the IPTW approach using the default values of the

function mnps in the R package twang, and included the n.trees number of generalised
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boosted model iterations that was set to 10,000, even if such a large number was not

necessary. Indeed, as 5.1, shows, gains in balance become smaller after 3000 iterations;

and in some cases, such as in neighbourhood 7, increasing the complexity of the GBM

model may worsen the obtained balance of the weighted variables and cause overfitting.

However, when a huge number of treatments are to be considered, the decision about

what number of iterations are optimal for getting good results in correspondence with

each of them it is not trivial.

Figure 5.1: Reduction of the balance measure (the Population Standardized Bal-
ance, computed as in equation 4.4) during the weights estimation process in correspon-
dence of an increasing number of iterations for the ten considered neighbourhoods,
considering the whole population.

Nevertheless, as shown in figure 5.2, the final result is quite satisfying with respect to

the initial unweighed situation, with almost all significant reduction of PSB differences

considering the maximum among all pairwise comparisons.

There are small differences between the logistic regression and the IPTW estimates.

We computed the neighbourhood effect for the whole population (All), and for the

female (Women) and male (Men) populations separately. In table 5.2, we report the

neighbourhood effect estimates in terms of the odds ratio, with standard errors and 95%
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Figure 5.2: Comparisons of absolute standardised differences (considering the max-
imum of pairwise comparisons) in the whole population before and after weighting.

confidence intervals for the two estimation approaches, and with respect to the three

different populations selected.

The parameters estimated with the two approaches on the whole population were

similar, except for neighbourhood 10, for which the effect was greater in the logistic

regression model. The odds ratio for the individuals living in neighbourhoods 2 and 7

was 33% higher than for the people living in neighbourhood 6 (odds ratio equal to 1.33).

The main differences in the estimation of the neighbourhood effects were also observed

in neighbourhoods 1 and 10 for the female population and in neighbourhoods 4, 5, 7,

and 10 for the male population. In general, there were more discrepancies between the

two estimation approaches for the effect of neighbourhood 10 than for the effects of the

other neighbourhoods.

This may be explained with the observation of table 5.1, indeed the composition

of this neighbourhood is quite different from the others. In this neighbourhood there

is a higher percentage of men, individuals born in the South of Italy, subjects with

primary or lower education than in the rest of Turin. Moreover, the most common

last occupations are home-makers and labourers. Neighbourhood 10 is called ”Mirafiori
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Sud” and it is a very famous industrial area that started being densely populated in

the 1950s when the FIAT factory was enlarged beckoning manpower from the South

of Italy. The negative effect of this neighbourhood on health conditions of individuals

living there is overestimated by the logistic regression probably because of a selection

bias issue. Indeed, the difference between the two models’ estimates is even greater for

the male population.

Finally, it is interesting to notice that neighbourhoods have different impact on hos-

pitalized fractures according to gender of individuals. While neighbourhood 6 is the

area with lowest risk to experience the outcome if we consider both the entire and the

female population, having in mind the male populations, neighbourhoods 10, 1 and 3

have a protective effect with respect to neighbourhood 6.

It is not possible to know exactly which of the two methods was more accurate in

this setting, but, given the results of the simulation study, we can assume that the

estimates based on the IPTW were more reliable because in the scenario closest to the

real situation, this method performed better, with less bias.
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5.4 Neighbourhood effects on mental health

Another interest of the SCaDU Services regards the neighbourhood effect on mental

health, indeed it is involved also in an European project called MINDMAP, Promoting

Mental Wellbeing In The Ageing Urban Population: Determinants, Policies and Inter-

ventions In European Cities. According to SCaDU Services, we decided to represent

mental health on old individuals with two diseases, depression and dementia, that are

the most common in over-60 years old population. Moreover, with the progressive aging

of the population, as mentioned in the introduction, prevention and management of

these degenerative diseases represent a strategical point in health policies planning.

In order to identify individuals affected by these diseases, we linked informations com-

ing from different sources and detected idividuals affected by depression and dementia

according to the following criteria:

Depression: at least on hospitalization with depression (source: hospital discharge

records) or at least three drugs prescriptions of antidepressants (source: territorial

drug prescriptions);

Dementia: at least on hospitalization with dementia (source: hospital discharge records)

or at least three drugs prescriptions of anti-dementia drugs (source: territorial drug

prescriptions) or having the exemption for dementia (participation in prescription

charges).

Mental diseases are chronic and degenerative diseases, so it is difficult to identify

their starting point and their determinants that caused the disease. Thus, we decided

to analyse the incidence of these two diseases between 2002 and 2006, in order to be

able to identify causes and estimate the neighbourhood causal effect.

5.4.1 Data and population

The analysed population consists of all participants to the 2001 population census

with some additional restrictions. We consider only individuals aged 60 or more on

31st December 2001. Moreover, we considered only individuals that had permanent

residence in the same section in Turin from 1991 to 2001; this restriction guarantees

that the estimated neighbourhood effect is referred to the observed neighbourhood in

2001 and not to other neighbourhoods. Moreover, we compared the distribution of

confounders among discarded individuals and those included in the analysed population

in order to verify that this restriction does not introduce a new source of selection bias.

Since the outcome of interest is the incidence of mental diseases, all individuals that
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were already affected by dementia or depression before the 2002 (in the observation

period between 1997 to 2001) are removed from the analysed population. We excluded

also individuals living in institutions such as rest or nursing home. In the end, the

population counts 194400 subjects.

As confounders we selected gender, age, ethnicity, educational attainment, marital

status, last observed professional condition, living alone, home owner, type of housing

and overcrowding. Moreover, in literature, some other diseases are listed as risk factors

for the incidence of mental diseases such as hypertension, heart diseases and ictus,

diabetes, Parkinson disease, disability and difficulty in movement, hypothyroidism and

malignant tumor. Since these diseases may also be affected by the neighbourhood, it is

not possible to use them in the propensity score computation.

5.4.2 Results and evaluation of the chronic disease variables’

impact

In the first column of table 5.3 we reported the standardized rates of dementia and/or

depression for sex and age in each of the 10 neighbourhoods. The neighbourhood with

the lowest standardized rate is district 5, while the one with the highest standardize

rate is district 10.

We computed the neighbourhood effect with the IPTW approach described in chapter

4 for the whole, the female and the male popoulation (reported in table 5.3 in columns

called (1)). The estimated neighbourhood effect for the whole population, represented

in figure 5.3, is expressed in terms of odds ratio and is significantly different from 1 at

5% level in three neighbourhoods: district 5 is the only one that has a protective effect

(consistently with the standardized rate), while districts 3 and 4 have an odds ration

higher than 1.

In order to include chronic diseases in the analysis we tried to include the six vari-

ables that represent risk factors for the outcome in the weighted logistic regression model

together with the neighbourhoods’ dummy variables. Our purpose is to verify if the es-

timated neighbourhood effect with IPTW is picking also up some other effects regarding

health conditions of individuals that we did not include in the propensity score. On the

contrary, effects, after the inclusion of chronic diseases variables, are more emphasized

than in the model with just neighbourhoods’ dummy variables.

Neighbourhood effects that are significantly different from 1 are not the same for

the male and the female population, as already noticed in the analysis in section 5.2.

Moreover, also the estimated effect with respect to the hospitalized fractures and the
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mental diseases are not exactly the same. This fact agrees with Galster (2008) theory

that neighbourhoods may affect individuals’ outcomes through different mechanisms

that may interact differently with different health outcomes.

Figure 5.3: Neighbourhood effect on mental health estimated with IPTW method.
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Table 5.3: Mental health standardized rate (STD Rate) and odds ratio for mental
health for each neighbourhood with respect to the mean. Estimates obtained with
IPTW as described in 4 (1) and with the inclusion of chronic conditions (2), significant
effects (level 5%) are written in bold.

Neighbourhood Std Rate Whole population Female population Male population

(1) (2) (1) (2) (1) (2)
1 10.67 0.942 0.953 0.945 0.958 0.929 0.935
2 10.75 0.984 0.986 0.979 0.980 0.985 0.990
3 11.11 1.054 1.063 1.056 1.066 1.048 1.057
4 11.24 1.044 1.050 1.032 1.039 1.063 1.066
5 9.88 0.909 1.905 0.943 0.939 0.854 0.852
6 10.64 0.966 0.956 0.995 0.982 0.915 0.913
7 10.92 1.032 1.031 1.025 1.023 1.044 1.044
8 11.62 1.042 1.045 1.000 1.002 1.122 1.120
9 11.04 1.019 1.017 1.025 1.022 1.016 1.015
10 11.64 1.018 1.006 1.007 0.996 1.054 1.039



Chapter 6

An original proposal: the

MARMoT approach

6.1 Introduction

In this chapter we propose an original method to estimate neighbourhood effect on

health of older people in Turin, a city in the North of Italy, adjusting for confounders.

Our methodological proposal consists on a Matching procedure on Poset based Average

Rank for Multiple Treatments (MARMoT). Poset theory is exploited to summarize

individuals’ confounders and the relative average rank is used to balance confounders

and match individuals in many neighborhoods (treatments). This technique results to

be particularly useful to balance confounders, even in frameworks in which the number

of considered treatments is high.

In the last part of the chapter we estimate the neighbourhood effect on hospitalized

fractures among older residents in Turin, a city located in the north of Italy. Our method

allows to adjust for confounders, even when the number of treatments (neighbourhoods)

is very high. Thus, main methodological contributions of this chapter consist in the

definition of this new matching approach based on poset theory, its validation through a

simulation study and its application to estimate the neighbourhood effect on hospitalized

fractures among individuals aged 60 or more according to three different geographical

partitions.

In the simulation and the empirical analysis we used data and variables described

in chapter 3. In section 6.2 we describe the distribution of the confounders among the

considered population in the 23 areas partition that is considered for the simulation

study of this chapter. In section 6.3, after a brief introduction to poset theory, the

69
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original methodological proposal is explained in depth. In section 6.4 we describe the

design structure and the results of the simulation study we performed in order to test

the reliability of the original proposal. Section 6.5 illustrates the empirical application

with real data comparing different neighbourhoods partitions.

6.2 Data and geographical partitions

As already explained in chapter 3, the city of Turin may be split in 10 districts, 23

areas or 94 zones, that are only partially hierarchical, for instance the same zone may

be divided in two or more areas or districts.

Table 6.1 shows some summary statistics for the sizes of the populations in each

geographical partition, considering the population selected in section 5.3.1. The ten

districts have an average population of 22,583, with the least populated accounting for

10,608 individuals, and the most populated for 33,072. The populations of the areas

range between 3,584 and 18,089, with a mean area population of 9,819. The number

of individuals living in each zone varies even more. More extensive information about

dimension and location of the considered zones, areas and districts are reported in table

B.1, in appendix B.1.

Table 6.1: Distribution of the population size for each geographical partition.

Partition Minimum 1st Q. Median Mean 3rd Q. Maximum
10 Districts 10608 18777 21897 22583 29107 33072

23 Areas 3584 7976 9609 9819 12606 18089
94 Zones 3 625 1870 2402 3876 7758

In our empirical analysis, we estimate the neighbourhood effect on hospitalized frac-

tures considering the three geographical partitions. In the case of the 94 zones, however,

we needed to reduce the neighbourhoods considered because some of them were too

small, as shown in the last row of table 6.1. We therefore excluded zones with a pop-

ulation of less than 625 (corresponding to the first quartile of the distribution of zone

populations). The number of individuals living in the zones thus discarded account for

only 3% of the whole sample population, and the final number of zones considered is

70. For the sake of brevity, in the simulation we focus on the intermediate partition,

i.e. the city divided into 23 areas.

We reported the distribution of confounders in the 23 areas in table 6.2. It interesting

to notice that there are a lot of differences among the 23 areas, such as the percentage

of individuals with primary education or lower varies between 22% in area 3 and more
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than 62% in areas 15, 19 and 23. The first row of table 6.2 reports the percentage

of hospitalized fractures in 2002 in each district. The selected outcome affects a small

portion of population, 0.9% of elderly living in Turin, with some differences among

neighbourhoods: from district 19 that presents the lowest proportion (0.67%) to the

district 8 with 1.18% of hospitalized fractures in 2002.

6.3 Matching on Poset based Average Rank for Mul-

tiple Treatment (MARMoT)

6.3.1 Introduction to poset theory

Partially ordered set (poset) is, in mathematics, a set of elements where a binary

relation that indicates an order can be traced, the word ”partial” refers to the fact that

not every pair of elements needs to be comparable. Poset theory is a theoretical field

between graph theory and discrete mathematics that quickly developed after the 1970s

thanks to technological advances that made greater computational efforts manageable

(Brüggemann and Patil, 2011). The main concepts needed to understand why this

method is useful to overcome the curse of dimensionality without using a parametric

model or introducing some subjective criteria are explained with a toy example.

When dealing with a population, the people comprising it can be ranked and ordered

using a single variable: level of education, for instance, enables two different individuals

to be arranged in an order. From the mathematical standpoint, an order is a binary

relation between the elements in a set that respects specific properties. Let P be a set,

an order on P is a relation (≤) between two elements in the set P such that, for all

x, y, z ∈ P , the following properties hold:

• Reflexivity: x ≤ x

• Antisymmetry: x ≤ y and x ≥ y implies x = y

• Transitivity: x ≤ y and y ≤ z implies x ≤ z.

A set equipped with such a relation is said to be ordered. If the comparison is drawn

using several variables, it may be that some elements are neither equal nor ordered, in

which case they are defined as incomparable (Davey and Priestley, 2002). The word

”partially” is added to ”ordered set” when some of its elements are incomparable, so

the order relation has to be changed to a partial order relation, which takes the incom-

parability (indicated with ||) of the elements into account:
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Table 6.3: Toy example for a group of observations.

Subject Age Education Homeowner
A 0 0 0
B 1 0 0
C 0 1 0
E 1 1 0
G 0 1 1
H 1 1 1

Incomparability: x||y ↔ x 6≤ y and y 6≤ x, x, y ∈ P .

Comparing the individuals in a population gives rise to a list of comparabilities and

incomparabilities, which can be represented in a graphic form called a Hasse diagram.

This diagram represents the elements in a poset: each node is an element, two or more

equal elements still form one node, and every line segment is an order relation between

comparable objects. Let us suppose that we have a population comprising six individuals

characterized by three dichotomous variables, as represented in 6.3: age (which takes a

value of 0 for individuals who are between 60 and 70 years old, and 1 if they are older);

education (which takes a value of 0 if they have a higher education, and 1 otherwise);

and homeowner (which takes a value of 0 if they own the house in which they live,

and 1 otherwise). These variables are ordered according to the risk of experiencing the

outcome, where a value of 1 corresponds to the highest risk of hospitalized fracture.

In this example, for the sake of simplicity, we included only dichotomous variables,

but categorical and continuous variables may be also considered in a poset. However,

in order to contain the entropy of the poset, it is recommended to reduce continuous

variables in meaningful classes. Indeed, since the AR is just used as a balancing tool, the

most suitable classes are those that help providing a better balance of the continuous

variable among different treatment groups and that may guarantee the smaller distortion

of results.

A Hasse diagram can be used to visualize the order relations between the elements

in a poset, and it is based entirely on the order of the elements, disregarding any

quantitative information.

In Figure 6.1(a), the six individuals are represented by their profile in the Hasse

diagram, where each node stands for a profile. When two individuals are comparable,

they are connected by line segments in the diagram, like A and B or B and E, whereas

there is no ascending or descending path between incomparable elements, like B and C.

The list of all the ranks that each individual may occupy is shown in part (b) of

Figure 6.1, where all the linear extensions of the poset are listed. Linear extensions are
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Figure 6.1: A poset and its linear extensions: part (a) represents the Hasse diagram
of subjects in table 6.3; part (b) lists all linear extensions for subjects in table 6.3;
and in part (c) the exact average rank for individuals of table 6.3 is showed.

all the possible rankings of elements in the poset that respect its comparabilities (the

connections in the Hasse diagram) and incomparabilities (Brüggemann and Patil, 2011;

Davey and Priestley, 2002). The average rank (AR) of a node represents the mean of

all the ranks that the element occupies in all possible linear extensions, starting from

the known order relations, as listed in Figure 6.1 part (c).

The AR is a single value for each element in the set that describes the relative posi-

tion of a given element with respect to the rest of the population. It can be normalized

in the interval [0;1]. Even if the AR has been used also as a composite indicator to

represent complex or latent concepts, its involvement in the MARMoT approach is just

as a balancing tool. Since the AR purpose is to reduce data dimensionality and bal-

ance on observable individuals’ characteristics, there is no need in finding a substantial

interpretation to AR values.

6.3.2 Approximating the average rank

If the number of individuals and variables increases, the linear extensions become too

many to be examined thoroughly, and it becomes computationally almost impossible to

find the exact AR as in the example in Table 6.3. That said, satisfactory approximations

of the number of linear extensions of a poset can be found in works by Dyer et al. (1991),

and De Loof (2009).

Researchers have used two main approaches to obtain a computationally efficient

calculation of the AR, by sampling linear extensions (Fattore, 2016; Lerche and Sorensen,
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2003), or defining an approximation formula. Different approximation formulas have

been proposed in the literature, such as the Local Partial Order Model (Brüggemann

and Carlsen, 2011), or the one based on Mutual Probabilities (De Loof, 2009). The

present work is based on De Loof’s approach (2009) because it provides better results

than other methods in terms of accuracy with a large sample size (De Loof et al., 2011).

Two concepts help us to understand this approximation, for a sample P with |P |
elements:

The rank probability P (rank(x) = i) is the fraction of linear extensions in which an

element’s rank equals i, where i = 1, . . . , |P | all possible ranks in the sample of

size |P |.

The mutual rank probability P (x > y) of two elements x, y ∈ P is the fraction of

linear extensions in which the element x is ranked higher than element y.

Now we can establish a relation between the last-mentioned two concepts and the

real AR of elements x, h̄(x), starting from a sample P with |P | elements, including x

and y:

h̄(x) =

|P |∑
i=1

i · P (rank(x) = i) = 1 +

|P |∑
y=1

P (x > y). (6.1)

In other words, the first part of formula 6.1 describes the real AR value, h̄(x), as the

expected value, multiplying each possible rank value i by the fraction of linear extensions

in which the element’s rank equals i. The second part of formula 6.1 expresses the real

AR value as the sum of all the mutual rank probabilities that involve the element

x. Starting from this formula, we need to find an approximation for the mutual rank

probability. To do so, we have to define three subsets of the poset P, given a generic

element x ∈ P :

Downset: O(x) = {y ∈ P : y ≤ x};

Upset: F (x) = {y ∈ P : y ≥ x};

Incomparables: U(x) = {y ∈ P : y||x}

If y ∈ O(x), then P (rank(x) > rank(y)) equals 1, and if y ∈ F (x), then P (rank(x) >

rank(y)) equals 0, so the mutual rank probabilities only need to be approximated with

respect to the reciprocal ranks of the incomparable elements. The following approxima-

tion was proposed by Brüggemann et al. (2004)

P ∗(x > y) =
[o(x) + 1][f(y) + 1]

[o(x) + 1][f(y) + 1] + [o(y) + 1][f(x) + 1]
, (6.2)
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Table 6.4: A numerical example of the approximation of the average rank according
to De Loof (2009) approach.

x o(x) f(x) U(x) Pr∗ (x > y) õ(x) f̃(x) AR(x)
y = A y = B y = C y = E y = G y = H

A 0 5 0 . 0.20 0.25 0.08 0.10 0.03 0.00 5.00 1.00
B 1 2 C, G 0.80 . 0.57 0.25 0.31 0.10 1.88 3.12 2.90
C 1 3 B 0.75 0.43 . 0.20 0.25 0.08 1.43 3.57 2.43
E 3 1 G 0.92 0.75 0.80 . 0.57 0.25 3.57 1.43 4.57
G 2 1 B, E 0.90 0.69 0.75 0.43 . 0.20 3.12 1.88 4.10
H 5 0 0 0.97 0.90 0.92 0.75 0.80 . 5.00 0.00 6.00

where o(x) = |O(x) \ {x}| and f(x) = |F (x) \ {x}| are respectively the number of

elements in the downset and the upset of x without {x}. Two more quantities are

needed to approximate the AR according to the De Loof (2009) formula, õ(x) and f̃(x):

õ(x) = o(x) +
∑
y∈U(x)

P ∗(x > y) and (6.3)

f̃(x) = f(x) +
∑
y∈U(x)

P ∗(x < y), (6.4)

and the AR approximation proposed by De Loof (2009) is

AR(x) = o(x) + 1 +
∑
y∈U(x)

[õ(x) + 1][f̃(y) + 1]

[õ(x) + 1][f̃(y) + 1] + [õ(y) + 1][f̃(x) + 1]
. (6.5)

In other words, using formula 6.5, the AR of x is given by the number of elements in its

downset and the sum of probabilities of being a part of x’s downset for all incomparable

elements with respect to x, using the approximation of the mutual rank probabilities.

Following the toy example in Table 6.3, the steps needed to approximate the AR with

the De Loof (2009) approach are solved in Table 6.4, including the estimation of the

AR.

In the present work, the approximated AR was computed using the R software, with

an R function proposed by Caperna (2016) that can cope with large datasets (Boccuzzo

and Caperna, 2017; Caperna and Boccuzzo, 2018).

6.3.3 The Matching

We use our MARMoT technique to address the so-called curse of dimensionality, the

need to summarize confounders, applying a poset-based AR of the individuals. The

individuals’ characteristics are summarized by unique numbers, and individuals who
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have a similar AR have similar profiles. Using this score, which summarizes individ-

uals’ characteristics, enables us to proceed with a matching whereby each individual

in a given neighbourhood is allocated an individual with a similar AR in all the other

neighbourhoods, and those who cannot be matched are discarded in order to respect

the overlap condition and make all neighbourhoods comparable simultaneously, without

any need for a template.

Once the AR has been computed, the first step is to build a frequency table where

each row corresponds to one value of the AR (ARr, r = 1, . . . , R), and each column

represents a treatment group (t, t = 1, . . . , K).

In order for each value of the AR to be represented equally in all the treatment groups,

the desired result would be a table where fr,1 = fr,2 = · · · = fr,t = · · · = fr,K = fr,

∀t = 1, . . . , K in every row r.

Thus, for every row, we must choose the most appropriate frequency fr for each

AR value to impose in the balanced population. In the artificial final population, the

distribution of AR values will be balanced in all the treatments groups so as to balance

all confounders too. At the end of the matching procedure, each ARr value will be

present in the balanced population K ∗ fr times, with fr individuals in each of the

K treatment groups. The value for fr may be chosen according to different criteria:

for example, it may be the maximum, the mean, the median or the minimum of the

frequencies in row r. In this work, we define the reference fr as

fr =

1 if median(fr,1, fr,2, . . . , fr,K) = 0

median(fr,1, fr,2, . . . , fr,K) otherwise.
(6.6)

Instead of discarding all the AR values with median(fr,1, fr,2, . . . , fr,K) = 0, we set the

minimum value of fr at 1 in order to have a matched population that includes all the

profiles in the real population. The choice of the value for fr may affect both the final

dimension of the balanced dataset, and the performance of the MARMoT method in

terms of balance. For instance, if we define fr as the maximum of the frequencies in row

r, the final dimension of the dataset will be more than double the dimension obtained

with the previous definition and also the quality of matches will be worse. Indeed, for

AR values where the frequency matrix is sparse, individuals are duplicated creating

distortion and noise in the final dataset.

Having established the frequency that each value of AR should have in each treat-

ment, the algorithm could proceed in three different ways, depending on the dimensions

of fr,t and fr, for every r and every t:
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1. if fr,t = fr: all individuals with ARr in the treatment group t are copied in the

final dataset.

2. if fr,t 6= fr and fr,t 6= 0: a random sample with replacement of size fr is selected

from among the individuals with ARr in the treatment group t, and included in

the final dataset.

3. if fr,t = 0: a random sample with replacement of size fr is selected from among the

individuals with an AR close enough (with a given tolerance) to ARr in treatment

group t, and included in the final dataset. If there are no individuals close enough,

then all individuals with an AR equal to ARr have to be deleted from the final

dataset.

While points (a) and (b) are just a matter of matching individuals with identical AR

values, point (c) is the trickiest because it involves inexact matching, and possibly ex-

cluding some individuals from the final dataset. In this work we define the tolerance

interval as [ARr− SAR

4
;ARr + SAR

4
], considering as a caliper the value SAR

4
that is recom-

mended in the propensity score matching literature (Cochran and Rubin, 1973; Lunt,

2013). Thus, if all frequencies f.,t that correspond to AR values included in the interval

[ARr − SAR

4
;ARr + SAR

4
] equal 0, the ARr value will not be considered in any treatment

group for the final population, as if its row in the frequency table had never existed.

This criterion ensures that the overlap assumption is respected.

Once the MARMoT algorithm has matched the individuals and balanced the con-

founders, any common causal inference estimand can be used to calculate the effect of a

treatment. In the following paragraphs, we use the ATT to estimate the neighbourhood

effect.

6.4 Simulation study

Before using the MARMoT method to estimate the neighbourhood effect on real data,

we tested it with some simulations in two different scenarios for allocating individuals

to 23 treatments, and two for the occurrence of the outcome.

6.4.1 Simulation design

To keep our simulation close to the real situation of interest, we considered the real

population of Turin and the individuals’ observed characteristics. Starting from the

seven confounders described in section 3.2.1, we just simulated the treatment allocation
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and the occurrence of the outcome. Since the computation of the AR depends only on

individual variables (which come from the observed population and are not simulated

artificially), and not on the treatment or the outcome, AR values computed directly on

the observed data could be used, meaning that they were based exclusively on the real

population, not on simulated values.

We chose to simulate the treatment allocation and the occurrence of the outcome

according to two different scenarios, their combination giving rise to four scenarios in

all.

In the first scenario, the treatment allocation equation is simple and close to the

real situation. The treatment is generated through a multinomial logistic model, taking

neighbourhood 20 (the one with the lowest crude hospitalized fractures rate) for refer-

ence. Thus, for each neighbourhood t, and each individual i, the treatment equation

is

ln

(
Pr(Ti = t)

Pr(Ti = 20)

)
= βt0 + βt1 ∗Genderi + βt2 ∗ LowerSecondaryi +

+ βt3 ∗ UpperSecondaryi + βt4 ∗ Age65− 69i + βt5 ∗ Age70− 74i +

+ βt6 ∗ Age75− 79i + βt7 ∗ Age > 79i + βt8 ∗MarriedCouple(2)i +

+ βt9 ∗MarriedCouple(> 3)i + βt10 ∗NoMarriedCouple(> 2)i +

+ βt11 ∗HomeMakeri + βt12 ∗ Entrepreneuri + βt13 ∗WhiteCollarsi +

+ βt14 ∗Manualworkersi + βt15 ∗NorthofItalyi +

+ βt16 ∗ CenterofItalyi + βt17 ∗ SouthofItalyi +

+ βt18 ∗OutsideofItalyi + βt19 ∗Homeowneri. (6.7)

In order to choose values for the coefficients, we estimated a multinomial logistic model

on the whole population. The result was a matrix with 23 rows and 20 columns con-

taining all coefficients βtv for t = 1, ..., 19, 21, 22, 23, and coefficients βv v = 0, ...19 for

the other variables in the model. These coefficients were perturbed by adding a random

value coming from a uniform distribution between −0.01 and +0.01, and rounded up or

down to just three decimals.

The second scenario envisages a more complex treatment allocation equation, which

includes all the interactions between the seven variables considered. As in the first

scenario, the choice of parameters for these treatment allocation equations was based

on those estimated by a multinomial logistic model, perturbed by a uniform distribution

between −0.1 and +0.1, and rounded up or down to just three decimals.
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As for generating the outcome, it was simulated for two different scenarios, one simple

and one that also included significant interaction terms.

To simulate the outcome, we used a logistic regression model and the equation in-

cluded dummy variables representing the neighbourhood effect on the outcome.

As in the generation of the treatment, the choice of parameters for generating the

outcome equation was based on those estimated by the logistic regression model, per-

turbed by a uniform distribution between −0.1 and +0.1, and rounded up or down to

just three decimals.

Only statistically significant (at 10% level) interactions between variables were in-

troduced in the second outcome scenario, and the path for selecting the values of the

coefficients in the model was the same as for the first outcome scenario.

For the simulation of the outcome we used a logistic regression model and the equa-

tion includes also dummy variables that represent the neighbourhood effect on the out-

come. The first outcome scenario is simulated with:

ln

(
Pr(Yi = 1)

Pr(Yi = 0)

)
= β0 + β1 ∗Genderi + β2 ∗ LowerSecondaryi +

+ β3 ∗ UpperSecondaryi + β4 ∗ Age65− 69i +

+ β5 ∗ Age70− 74i + β6 ∗ Age75− 79i + β7 ∗ Age > 79i +

+ β8 ∗MarriedCouple(2)i + β9 ∗MarriedCouple(> 3)i +

+ β10 ∗NoMarriedCouple(> 2)i + β11 ∗HomeMakeri +

+ β12 ∗ Entrepreneuri + β13 ∗WhiteCollarsi +

+ β14 ∗Manualworkersi + β15 ∗NorthofItalyi +

+ β16 ∗ CenterofItalyi + β17 ∗ SouthofItalyi +

+ β18 ∗OutsideofItalyi + β19 ∗Homeowneri +

+ +β20 ∗Neigh1i + β21 ∗Neigh2i + β22 ∗Neigh3i + . . .

+ β38 ∗Neigh19i + β39 ∗Neigh21i + β40 ∗Neigh22i +

+ β41 ∗Neigh23i, (6.8)

where Neigh1, Neigh2, ... , Neigh19, Neigh21, Neigh22, Neigh23 are dichotomous vari-

ables that take value 1 if the individual i lives in the considered neighborhood and 0

otherwise. The reference, as before, is the neighborhood number 20. As in treatment

generation, parameters for the outcome generation equation were chosen according to

those estimated by the logistic regression model, perturbed by a uniform distribution

between −0.1 and +0.1 and rounded to have just three decimals.
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In the second outcome scenario only statistically significant (at 10% level) interac-

tions between variables were introduced and the path to select values of coefficients of

the model is the same to those described for the first outcome scenario.

6.4.2 Results

The main results of the simulations are shown in Table 6.5, where column T indi-

cates the above-described treatment allocation scenarios (coded as 1 for the linear and

additive, and 2 for the one with interactions), and column O indicates the outcome

occurrence scenarios (coded as 1 for the linear and additive, and 2 for the one with

interactions). The first part of Table 6.5 shows the results of the simulation as de-

scribed in the previous section, the differences between the scenarios, the differences in

the distribution of the individuals among the neighbourhoods, and the distribution of

the outcomes among the neighbourhoods.

We examined the initial balance of the two scenarios in all 1000 simulations using

the ASB. Having 23 neighbourhoods and seven variables (for a total of 24 levels), we

chose to summarize the information by computing the minimum, the 1st quartile, the

mean, the median, the 3rd quartile and the maximum of all the ASB, counting ASB

values over 5% and 10% for each iteration. The means of these values among all 1000

simulations before and after the balancing procedure for each scenario are given in Table

6.6. The balance was much improved in both scenarios after the matching procedure,

which fixed even extremely unbalanced situations. After matching, the mean number of

ASB over 10% corresponded to one tenth of the number beforehand. The central part of

Table 6.5 shows the means (among the simulations) of the number of ASB higher than

5% and 10% before and after adjusting for each neighbourhood. From these results, we

can see that our MARMoT method greatly improves the balance of confounders among

neighbourhoods: it achieves a five-fold reduction in the number of ABS over 5%, and

an almost ten-fold reduction in those over 10%, in both the treatment scenarios.

The last part of table 6.5 shows the mean bias of the estimates with respect to

the unbalanced and balanced situations. It is expressed in terms of difference between

the estimates of ATT and the true ATT value, then since those differences were really

small, we multiplied them for 100 in order to read results easily. As already said,

the bias is really small, lower than 0.003, in all treatments in all the four considered

scenarios. Higher values are presented in the second treatment scenario, in particular

in correspondence of neighbourhood 8, 11, 20 and 23 in both the outcome scenarios and

in neighbourhood 12 in the first outcome scenario.
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Table 6.6: Mean of ASB summary statistics in the first and the second scenario
before ad after balance among 1000 simulations.

Scenario Balance Min 1st Quartile Median 3rd Quartile Max Mean Over 5% Over 10%
First Before 0.01 1.98 4.43 9.59 63.72 8.01 252 132

After 0 0.58 1.3 2.59 16.95 2.12 52 15
Second Before 0.02 2.42 5.63 11.89 68.41 9.1 297 175

After 0 0.62 1.37 2.71 16.84 2.24 60 18

Table 6.7: Mean of ASB summary statistics in the empirical study in different
geographical partitions before ad after balance.

Partitions Balance Min 1st Quartile Median 3rd Quartile Max Mean Over 5% Over 10%
10 Before 0.012 1.689 3.563 7.587 56.207 7.242 101 46

Districts After 0 0.192 0.427 0.937 8.948 0.846 5 0
23 Before 0.072 1.934 4.198 9.774 63.763 7.938 248 132

Areas After 0.003 0.482 1.169 2.33 15.802 1.973 51 11
70 Before 0.008 2.556 5.723 12.287 105.132 10.02 914 522

Zones After 0.008 1.539 3.523 7.075 55.625 5.725 624 265

6.5 Empirical Results

n this section, we use our MARMoT technique to estimate neighbourhood effects con-

sidering 10 districts, 23 smaller areas and 94 zones. As explained in section 6.2, rather

than considering all 94 zones, we selected 70 of them with a sufficient number of individ-

uals (more than 625) to avoid the individuals in the excluded neighbourhoods causing

problems in the balancing procedure. Table 6.7 shows that the MARMoT method sub-

stantially reduces the ASB in the three partitions, but slightly less successfully in the

case of the 70 zones.

The computational time required for the MARMoT is acceptable, as the procedure

to balance the 10 districts took less than 18 minutes, the one for the 23 areas took 36

minutes, and the balancing of the 70 zones took 116 minutes.

Figures 6.2, 6.3 and 6.4 plot the neighbourhood effects estimated in the three geo-

graphical partitions, expressed as ATT ∗100, before and after the MARMoT procedure.

As expected, there are several differences in the ATT values before and after matching.

Considering smaller areas also enabled us to identify the less smoothed neighbourhood

effects, even though it proved necessary to discard an extensive portion of the 70-zone

partition (grey in figure 6.4). These discarded areas are scarcely populated, however:

the eastern part of the map (in grey) is hilly and essentially very different and scarcely

comparable with the rest of Turin. More extensive information about the estimated

neighbourhood effect in the considered zones, areas and districts are reported in table

B.2, in appendix B.2.
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Figure 6.2: Neighbourhood effect estimates (ATT) before and after MARMoT in
the 10 districts geographical partition.
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Figure 6.3: Neighbourhood effect estimates (ATT) before and after MARMoT in
the 23 areas geographical partition.
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Figure 6.4: Neighbourhood effect estimates (ATT) before and after MARMoT in
the 70 zones geographical partition.
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6.6 Conclusions

The aim of this chapter was to estimate the neighbourhood effect on hospitalized

fractures involving Turin residents over 60 years old, using a propensity score matching

approach to adjust for confounders. To this end, we adopted an original approach

based on poset theory, that we labelled MARMoT. The main idea behind our method

was to obtain a population in which each profile, each combination of confounders

summarized by the poset-based AR, was equally represented in all the treatment groups.

The MARMoT approach proved very useful in balancing for confounders and reducing

biases in our estimates. The matching involved is not bound to subjective choices (of

the template, for instance), and the computation time required is limited, even in the

case of 70 different treatments.

Our method enabled us to estimate the neighbourhood effect on hospitalized frac-

tures involving the elderly, considering different geographical partitions (10 districts,

23 smaller areas, and 94 more circumscribed zones) without any selection bias due to

the different composition of the neighbourhoods. This information will be useful to the

Piedmont Region’s Epidemiological Service when implementing prevention policies for

Turin’s population and urban interventions focusing on the neighbourhoods at greatest

risk.

The choice of geographical scale is a very important issue in neighbourhood studies,

and several authors have suggested considering different scales, and examining neigh-

bourhood effects on outcomes for individuals in more detail, in order to better discern

which geographical scale is causally relevant to health (Arcaya et al., 2016). The impor-

tance of choosing the most meaningful scale for spatial data is illustrated by a serious

analytical issue known as the modifiable areal unit problem (MAUP). Using our MAR-

MoT method, neighbourhood effects can be estimated and compared in different geo-

graphical partitions, enabling an assessment of the sensitivity of neighbourhood effect

estimates to different choices of geographical scale.

On the other hand, the MARMoT method is strongly influenced by five fundamental

aspects:

• the number of variables considered, which directly affects the number of AR values

(the number of rows of the table);

• the number of the levels of ordinal and categorical variables and the inclusion of

a continuous variable that may increase the entropy of the poset (and the number

of rows of the table);
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• the number of treatments, i.e. the number of columns in the table; and

• the size of the total population, N , which corresponds to N =
∑R

r=i

∑K
t=i fr,t;

• the choice of fr that affects both the final dimension of the balanced dataset and

the quality of matches.

An increase of one of the first three (rows and columns) without a proportional growth

of the fourth point will cause an increase of not exact matching cases with a consequent

slight worsening of the balancing. An interesting development would be to test limits

of this method changing the first four points in the list. Indeed, when the considered

number of treatments is highest, there is still room for improvement. Several adjust-

ments may be done tuning some choices such as the choice of frequency reference fr for

each AR, the caliper and some additional cleaning of less frequent AR values. Further

steps will be taken in these direction to improve this already promising technique.



Conclusions

Two main methods were used in the thesis in order to estimate the neighbourhood

effect, both are based on propensity score techniques. From both empirical applications

and simulations studies it was possible to see that the use of propensity score tech-

niques helps reducing the bias of estimates, thanks to the improvement of the balance

of confounders.

However, applications of propensity score techniques in multi-treatment framework

with a high number of treatments is particularly challenging, especially, when the num-

ber of treatments is high (more than 10), because of computational charge.

Our original proposal, the Matching on Poset based Average Rank for Multiple Treat-

ments (MARMoT) has shown to be promising and useful: it handles high number of

treatments, improves the balance and it is pretty fast.

Indeed, the MARMoT proposal solves the curse of dimensionality by summarizing

individual characteristics with the help of poset theory. Thanks to poset theory, we

are able to assign to each profile (i.e. each combination of individual characteristics)

an approximation of its reciprocal position in the ranking of all profiles. Having a

unique score that summarizes individuals’ characteristics, it is possible to proceed with

a matching that assigns to each individual in each neighbourhood one individual in

all the other neighbourhoods, and discards those who cannot be matched in order to

respect the overlap condition and to make all neighbourhoods comparable. The main

idea that underlies this technique is to obtain a population in which each profile is

equally represented in all the treatment groups. Having a balanced population, the last

step consists in the estimation of the treatment effect using a causal estimand, such as

the average treatment effect on treated individuals.

We used this technique to evaluate neighbourhood effect on hospitalized fractures in

three different geographical partitions of the city of Turin, 10 districts, 23 areas and 94

zones. The balance of confounders after matching was significantly improved and the

algorithm performs the matching very quickly.

Our future work may go in different directions. With respect to the IPTW method
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presented in chapter 4, some more steps could be taken in using weights derived from

other machine learning algorithms. Indeed, the boosting procedure is particularly time

consuming, but it is possible to make use of good properties such as flexibility in es-

timating the functional relation between the treatment and covariates also with other

machine learning techniques that are able to estimate the propensity score faster.

Moreover, as far as the MARMoT approach is concerned, it will be necessary to test

its sensitivity in different conditions: considering various sets of variables (including

eventually continuous, categorical and ordinal variables with many levels), several num-

bers of treatments and different size of the whole population. Moreover, some choices

such as the definition of the frequency reference fr for each AR, the caliper and some

additional cleaning of less frequent AR values should be reconsidered in order to im-

prove the MARMoT procedure. In the MARMoT approach poset based average rank is

exploited as a balancing tool with the purpose of reducing the dimensionality. However,

it would be interesting to compare its performance with other more common propensity

score techniques, such as the propensity score matching, even in a framework with a

small number of treatments.
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A.1 Parameters to simulate the three scenarios
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A.2 Parameters to simulate the outcome

Table A.4: Parameters used to simulate the outcome.

Variables Parameter Value

(Intercept) β0 −13, 553
Gender β1 0, 740
Lower Secondary Educ. β2 −0, 012
Upper Secondary Educ. β3 0, 098
Tertiary Educ. β4 0, 128
Hypertension β5 0, 029
Age β6 0, 100
Overcrowding β7 0, 006
Drugs β8 0, 077
Neighbourhood 1 β9 0, 820
Neighbourhood 2 β10 1, 310
Neighbourhood 3 β11 0, 375
Neighbourhood 4 β12 0, 720
Neighbourhood 5 β13 0, 915
Neighbourhood 7 β14 1, 430
Neighbourhood 8 β15 0, 950
Neighbourhood 9 β16 1, 020
Neighbourhood 10 β17 1, 535
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B.1 Distibution of individuals in the 10 districts, 23

areas and 94 zones

Table B.1: Distibution of individuals in the 10 districts, 23 areas and 94 zones

Dis. 23 Areas 94 Zones Sect. Sub.

1 1 Centro 01-Municipio 75 1409

02-Palazzo Reale 9 30 *

03-Palazzo Carignano 43 830

04-Piazza San Carlo - Piazza Carlo Felice 53 825

05-Piazza Statuto 68 1481

06-Piazza Vittorio Veneto 32 1196

07-Borgo Nuovo 26 1021

08-Comandi militari 66 1181

3 Crocetta 10-Porta Nuova - San Secondo 43 1519

18-Politecnico 66 1561

26-Crocetta 54 3724

27-Ospedale Mauriziano 30 1845

28-Corso Lepanto 19 912

4 S.Paolo 35-Polo Nord 1 0

10 Lingotto 56-Mercati generali 2 32

11 S.Rita 54-Stadio Comunale - Piazza d’Armi 8 658

2 4 S.Paolo 35-Polo Nord 9 1014

11 S.Rita 53-Santa Rita 71 5940

54-Stadio Comunale - Piazza d’Armi 9 163

55-Istituto di Riposo per la Vecchiaia 36 6070

95
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12 Mirafiori Nord 59-Corso Siracusa 74 7758

60-Fiat Mirafiori 39 3667

62-Gerbido 48 5825

3 4 S.Paolo 34-Monginevro 31 2138

35-Polo Nord 54 3215

5 Cenisia 17-Porta Susa - Nuovo Tribunale 48 2365

17 bis-Carcieri - Officine Ferroviarie 10 219 *

31-Boringhieri 19 1511

33-San Paolo 97 5535

13 Pozzo Strada 32-Cenisia 53 4303

51-Pozzo Strada 62 5042

52-Parco Ruffini - Borgata Lesna 36 4073

63-Venchi Unica 82 4671

4 6 S.Donato 16-San Donato 111 4819

25-Teksid - Ospedale Amedeo di Savoia 47 1857

29-Campidoglio 80 3882

14 Parella 30-La Tesoriera 50 3660

50-Parella - Lionetto 85 6712

64-Aeronautica 36 1917

15 Lucento Vallette 47-Ceronda-Martinetto 9 210

49-Parco della Pellerina 5 1

65-Le Vallette 2 7

16 M.Campagna Lanzo 44-Officine Savigliano 3 0

5 14 Parella 30-La Tesoriera 4 91

15 Lucento Vallette 47-Ceronda-Martinetto 35 1742

48-Lucento 88 7199

49-Parco della Pellerina 6 378 *

65-Le Vallette 21 3739

16 M.Campagna Lanzo 43-La Fossata 66 4839

44-Officine Savigliano 25 1330

45-Madonna di Campagna 46 3201

46-Barriera di Lanzo 43 1882

66-Strada di Lanzo 35 1630

17 Borgo Vittoria 42-Borgata Vittoria 46 3762

67-Basse di Stura 21 587 *
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6 18 Barriera di Milano 36-Cimitero generale 7 225 *

37-Maddalene 44 3420

38-Monterosa 89 5275

39-Monte Bianco 41 1684

19 Rebaudengo Falchera 41-Barriera di Milano 41 4379

68-Barriera di Stura 40 2248

76-Villaretto 15 60 *

77-Falchera 19 2204

78-Villaggio Snia - Abbadia di Stura 20 718

20 Regio Parco Barca 40-Regio Parco 38 2542

79-Bertolla 44 2533

7 1 Centro 01-Municipio 2 0

7 Aurora 12-Borgo Dora 82 2594

23-Rossini 51 1445

24-Aurora 77 3940

8 Vanchiglia 11-Vanchiglia 45 3141

21-Gasometro 16 609 *

22-Vanchiglietta 64 5112

18 Barriera di Milano 36-Cimitero generale 14 9 *

21 Madonna del Pilone 14-Motovelodromo 29 986

71-Madonna del Pilone 14 528 *

72-Sassi 33 750

73-Valgrande - Cartman 5 289 *

74-Val Piana - Val San Martino 7 477 *

80-Superga 10 128 *

81-Mongreno 4 52 *

82-Reaglie - Forni e Goffi 6 231 *

84-Eremo - Strada di Pecetto 9 143 *

8 2 S. Salvario 09-San Salvario 44 2369

09 bis-Parco del Valentino 4 3 *

19-Piazza Nizza 62 2557

20-Corso Dante - Ponte Isabella 80 3859

3 Crocetta 28-Corso Lepanto 1 33

9 Nizza Millefonti 57-Molinette - Millefonti 3 0
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22 Cavoretto Borgo Po 13-Parco Michelotti - Borgo Po 64 1543

15-Piazza Crimea 34 486 *

69-Fioccardo 11 587 *

70-Pilonetto 18 672

75-Val Salice 7 138 *

83-Santa Margherita 7 375 *

85-San Vito 6 285 *

86-Parco della Rimembranza 5 42 *

87-Cavoretto - Val Pattonera 12 456 *

88-Strada Ronchi - Tetti Gramaglia 8 186 *

9 9 Nizza Millefonti 57-Molinette - Millefonti 70 4263

58-Lingotto - Barriera di Nizza 43 3972

10 Lingotto 56-Mercati generali 68 5930

61-Corso Traiano 70 6564

10 10 Lingotto 61-Corso Traiano 9 770

12 Mirafiori Nord 60-Fiat Mirafiori 2 3

62-Gerbido 1 0

23 Mirafiori Sud 89-Giardino Colonnetti 42 2539

90-Borgata Mirafiori 52 5207

91-Drosso 20 2079

92-Cimitero Parco Torino sud 3 10 *
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B.2 Neighbourhood effect in different geographical

partitions (ATT*100), before and after the MAR-

MoT procedure

Table B.2: Neighbourhood effect in different geographical partitions (ATT*100 Be-
fore and After the RaMMy procedure)

10 Districts 23 Areas 94 Zones

Code Before After Code Before After Code Before After CI 95%

1 0.161 0.044 1 0.12 0.196 01 0.52 0.565 -0.342 1.472

03 0.182 -0.183 -0.682 0.316

04 -0.663 -0.506 -1.103 0.091

05 0.451 0.361 -0.39 1.112

06 0.017 0.038 -0.557 0.633

07 0.372 0.106 -0.5 0.713

08 -0.397 -0.472 -0.828 -0.116

3 0.138 -0.081 10 0.085 -0.302 -0.67 0.066

18 0.252 0.293 -0.504 1.09

26 0.256 0.055 -0.347 0.457

27 -0.036 0.259 -0.526 1.045

28 -0.163 -0.2 -0.766 0.366

11 0.186 0.205 54 0.561 0.361 -0.603 1.325

2 0.038 0.159 4 0.092 -0.043 35 0.164 -0.217 -0.533 0.099

11 0.186 0.205 53 0.145 0.361 -0.13 0.852

54 0.561 0.361 -0.603 1.325

55 0.156 0.123 -0.326 0.572

12 -0.071 0.062 59 0.026 0.191 -0.228 0.611

60 -0.059 -0.081 -0.423 0.261

62 -0.204 -0.047 -0.443 0.35

3 -0.62 -0.061 4 0.092 -0.043 34 -0.062 -0.234 -0.619 0.151

35 0.164 -0.217 -0.533 0.099

5 0.025 -0.233 17 -0.143 -0.251 -0.828 0.326

31 0.09 -0.149 -0.593 0.295

33 0.075 -0.268 -0.509 -0.027
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13 -0.131 -0.081 32 0.122 0.072 -0.275 0.419

51 -0.214 -0.081 -0.441 0.279

52 -0.195 0.225 -0.263 0.713

63 -0.201 0.174 -0.336 0.684

4 0.026 0.015 6 0.119 0.062 16 0.116 0.31 -0.201 0.822

25 -0.15 -0.149 -0.606 0.308

29 0.235 -0.03 -0.397 0.338

14 -0.072 -0.024 30 0.139 0.157 -0.299 0.614

50 -0.132 0.004 -0.404 0.412

64 -0.279 -0.149 -0.661 0.363

15 0.004 0.186 47 0.226 0.633 -0.155 1.422

5 -0.074 0.11 14 -0.072 -0.024 30 0.139 0.157 -0.299 0.614

15 0.004 0.186 47 0.226 0.633 -0.155 1.422

48 -0.23 -0.217 -0.585 0.151

65 0.331 0.327 -0.25 0.905

16 -0.139 -0.024 43 -0.015 0.497 -0.12 1.114

44 0.075 0.004 -0.502 0.51

45 0.003 -0.2 -0.524 0.125

46 -0.321 -0.2 -0.711 0.311

66 -0.724 -0.71 -0.901 -0.519

17 -0.027 -0.033 42 0.028 -0.013 -0.433 0.407

6 -0.212 -0.104 18 -0.133 -0.205 37 -0.086 -0.132 -0.647 0.383

38 -0.168 -0.098 -0.539 0.343

39 -0.072 -0.472 -0.73 -0.214

19 -0.244 -0.214 41 -0.152 -0.404 -0.64 -0.168

68 -0.553 -0.251 -0.717 0.215

77 -0.133 0.191 -0.66 1.042

78 -0.067 -0.319 -1.002 0.364

20 -0.235 -0.414 40 -0.277 -0.608 -0.781 -0.435

79 -0.195 -0.2 -0.582 0.182

7 0.146 0.125 7 0.003 -0.043 12 0.062 0.123 -0.348 0.594

23 0.415 0.31 -0.307 0.928
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24 -0.196 -0.098 -0.532 0.336

8 0.297 0.253 11 0.537 0.446 -0.11 1.002

22 0.117 0.021 -0.362 0.404

21 0.05 0.015 14 0.519 0.004 -0.517 0.525

72 0.031 -0.217 -0.765 0.331

8 0.131 -0.152 2 0.165 0.062 09 0.709 0.446 -0.075 0.968

19 -0.043 0.072 -0.482 0.627

20 -0.049 0.021 -0.37 0.412

22 0.066 -0.109 13 -0.061 -0.132 -0.678 0.414

70 0.736 0.429 -0.541 1.4

9 0.018 -0.028 9 -0.001 -0.005 57 0.084 -0.132 -0.459 0.195

58 -0.099 -0.047 -0.407 0.313

10 0.019 0.377 56 0.21 0.31 -0.1 0.721

61 -0.144 -0.166 -0.541 0.21

10 -0.054 -0.009 10 0.019 0.377 61 -0.144 -0.166 -0.541 0.21

23 -0.048 0.091 89 0.282 0.514 -0.194 1.223

90 -0.217 -0.319 -0.575 -0.063

91 -0.037 0.242 -0.499 0.983
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