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Abstract

Complex dependence structures characterising modern data are routinely encountered
in a large variety of research fields. Medicine, biology, psychology and social sciences
are enriched by intricate architectures such as networks, tensors and more generally
high-dimensional dependent data. Rich dependence structures stimulate challenging re-
search questions and open wide methodological avenues in different areas of statistical
research, providing an exciting atmosphere to develop innovative tools. A primary in-
terest in statistical modelling of complex data is on adequately extracting information
to conduct meaningful inference, providing reliable results in terms of uncertainty quan-
tification and generalisability into future samples. These aims require ad-hoc statistical
methodologies to appropriately characterize the dependence structures defining complex
data as such, further improving the understanding of the mechanisms underlying the
observed configurations.

The focus of the thesis is on Bayesian modelling of complex dependence structures via
latent variable constructs. This strategy characterises the dependence structure in an
unobservable latent space, specifying the observed quantities as conditionally indepen-
dent given a set of latent attributes, facilitating tractable posterior inference and an
eloquent interpretation. The thesis is organized into three main parts, illustrating case
studies from different fields of application and focused on studying modern challenges in
neuroscience, psychology and criminal justice. Bayesian modelling of the complex data
arising in these domains via latent features effectively provides valuable insights on dif-
ferent aspects of such structures, addressing the questions of interest and contributing
to the scientific understanding.





Sommario

Strutture di dipendenza complesse sono molto diffuse in diverse applicazioni. Medic-
ina, biologia, psicologia e scienze sociali sono arricchite da architetture complicate quali
reti, tensori e più generalmente dati dipendenti ed ad alta dimensionalità. Strutture
di dipendenza articolate stimolano complesse domande di ricerca ed aprono ampi spazi
metodologici in diversi ambiti di ricerca statistica, creando una frizzante atmosfera nella
quale sviluppare strumenti innovativi. Un obiettivo cruciale nella modellazione statistica
di dati complessi consiste nell’estrazione di informazione per condurre inferenza coerente
e ottenere risultati affidabili in termini di quantificazione dell’incertezza e di validità per
dati futuri. Questi obiettivi necessitano di metodologie statistiche ad-hoc per caratter-
izzare un modo appropriato le strutture di dipendenza che definiscono dati complessi
in quanto tali, migliorando ulteriormente la conoscenza dei meccanismi sottostanti tali
strutture.

Questa tesi si concentra sulla modellazione Bayesiana di strutture di dipendenza com-
plessa tramite costrutti a variabili latenti. Tale strategia caratterizza la struttura di
dipendenza in uno spazio latente, specificando le quantità osservate come condizionata-
mente indipendenti dato un insieme di attributi latenti, i quali semplificano l’inferenza a
posteriori e permettono un’eloquente interpretazione. La tesi è organizzata in tre parti
principali, le quali illustrano diverse applicazioni in neuroscienze, psicologia e giustizia
criminale. Una modellazione Bayesiana tramite variabili latenti dei dati complessi che
nascono in questi ambiti fornisce interessanti intuizioni su diversi aspetti di tali strut-
ture, rispondendo a diverse domande di ricerca e contribuendo alla conoscenza scientifica
in materia.
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Introduction

Overview

In a large variety of fields of application, structured high-dimensional data are com-
monly collected for different purposes. Some notable example include networks, ten-
sors, functions, texts and images, routinely arising in different scientific fields such as
medicine, biology, social sciences and demography, among many others. With complex
data comes challenging research questions, opening new avenues to improve current
scientific knowledge and ideally advise policy. Practitioners have often focused on pre-
processing such complex data to force them into simpler structures such as matrices,
vectors and scalars, where standard techniques work without efforts. However, such
an approach inevitably destroys the intrinsic dependence underlying structured data,
which is a precious source of information to investigate patterns, regularities and the
relations among structured data and other factors of scientific interest.

For example, there has been growing interest in understanding the connectivity struc-
ture within human brains, investigating how regions are connected and how such struc-
tures relate with subject-specific traits, such as intelligence or diseases. A standard
approach would attempt to reduce such rich structure into a set of predictors xi and a
response yi amenable to standard regression or classification methods. Unfortunately,
it has been observed that such an approach often leads to unreliable results, poorly
interpretable inference and over-confident conclusions which do not generalize to future
samples (Dunson, 2018). Therefore, formal statistical methodologies are required to un-
derstand data with complex structures, providing meaningful and interpretable results
with solid assessment of uncertainty of estimation.

This thesis focuses on methods leveraging conditionally independence specifications,
given a set of latent features which characterise the dependence structure in an un-
observable space. Such an approach leads to substantial advantages in interpretation,
providing a natural way to make sense out of complex dependence structures with a
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2 Main contributions of the thesis

moderate number of parameters and use such simple representations to address the
research questions of interest. Compact latent representations provide also gains in
computation, allowing to conduct posterior inference efficiently via data-augmentation
algorithms leveraging Monte Carlo simulation or optimisation techniques.

The concrete advantages of latent variables approaches to inference are illustrated in
different applications ranging from criminal justice, psychology and neuroscience. Such
fields of research provide complex data structures and stimulate challenging research
aims, with the focus being on modelling and explaining the dependence and association
patterns characterising such complex data. Using latent structures, these aims can be
successfully addressed with computational efficiency. Clearly, the methods proposed
in the following chapters should not be regarded as exclusively limited to the specific
illustrative applications, but could also be directly adapted to different case studies
involving dataset similar in the structure, but arising in completely different field of
research. This aspect is crucial in the development of modern statistical methodologies,
which should always have an exhaustive view that is broad enough to embrace different
fields and allow the statistician to “get to play in everyone’s backyard”.

Main contributions of the thesis

Latent space models for network data

Chapter 1 focuses on latent structures modelling for the analysis of network data, which
are commonly collected in a large variety of fields of application. Some notable examples
include social sciences (McPherson et al., 2001), biology (Jonsson et al., 2006), economics
(Jackson, 2014) and neuroscience (Bullmore and Sporns, 2009), where the analysis of
interconnected units can provide valuable insights on the functionality of the entire
complex system. In practice, it is of interest to investigate different aspects of network
data, ranging from simple descriptive statistics to complete specification of the network
generating process and its dependence structure.

The benefits of network modelling leveraging latent structures are illustrated with
two case studies motivated by the recent abundance of brain scan data, measuring the
physical connections among pre-specified sets of brain regions in live humans. These
data are increasingly available for multiple individuals along with additional informa-
tion on the regions anatomy; for example, the 3–dimensional anatomical coordinates of
the regions, and their membership to hemispheres and lobes. Although recent studies
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have explored the spatial effects underlying brain networks, there is still a lack of statis-
tical analyses on the net connectivity structure which is not explained by the physical
proximity of the brain regions.

In answering the above questions, popular approaches in neuroscience focus on net-
work summary statistics, such as the number of connections, the average path length
and the clustering coefficient, among others (Rubinov and Sporns, 2010). The goal of
these analyses is to evaluate whether the brain connectivity structure is characterized by
small–world or scale–free properties and community structures, possibly varying with
region–specific predictors (e.g. Bullmore and Sporns, 2009, 2012; Sporns, 2013; Stam,
2014). Although these descriptive analyses offer valuable insights, statistical modeling
of brain network data is fundamental to provide scientific inference on heterogeneous
structures. For example, brain connectivity could vary systematically in relation to
predictors, or endogenously due to underlying dependence structures among the edges.
The above considerations have motivated an increasing interest in more sophisticated
statistical modeling of networks; for example, Exponentially Random Graphs Models
(ergm) provide a popular tools for the analysis of brain network data (e.g. Simpson
et al., 2011), but often lead to poor characterisations of the network structure and face
computational bottlenecks (Hunter et al., 2012).

In Chapter 1, latent structure models for network data will be extended to include
region–specific covariates, while allowing joint modelling of multiple networks associated
with different individuals. Explicitly accounting for these covariates in latent space
models provides key insights on how network architectures relate to brain anatomy and
which patterns departs from physical proximity. Indeed, the first method developed in
Section 1.4 generalises latent space models with nodes clustering allowing finer grouping
of brain regions via a mixed membership clustering. Such a specification allows to detect
clusters of brain regions which are similar with respect to a subset of latent features,
providing a more detailed explanation of the brain architecture underlying connectivity.
The approach illustrated in Section 1.5, instead, provides an important computational
contribution in the development of Bayesian models for network data. Specifically, a
Mean-Field Variational Bayes algorithm to conduct approximate inference for the latent
factor model for networks is developed and extended to include additional covariates.
This contribution allows to conduct approximate Bayesian inference for high-quality
network scans including hundreds of brain regions, and provide meaningful inference on
the connectivity patterns and on its anatomical determinants.
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Latent structures models for multivariate categorical data

Chapter 2 focuses on latent structure modelling for multivariate categorical data, which
are crucial in a large number of fields of research. From medical studies to social sciences,
there is an immense variety of applications in which the analysis of observations on
categorical scales is a routine problem (e.g. Agresti, 2003). Categorical data are collected
whenever individuals are asked to report opinions or feelings about something; for
example, how close do they feel to a political party or their emotions during particular
situations. The development of methods to analyse categorical data began well back in
the 19th century, and has constantly received attention remaining a very active area of
research (e.g. Fienberg and Rinaldo, 2007).

Several research questions can be addressed characterising the dependence struc-
ture underlying the categorical variables and their low-dimensional functionals, such as
the marginal bivariate or conditional distributions (Agresti, 2003). Therefore, it is of
substantial interest to develop parsimonious, yet flexible, statistical methodologies for
categorical data, in order to characterize such complex structures and conduct mean-
ingful and reliable statistical inference. This problem is particularly challenging with
multivariate categorical data, since the resulting contingency is tremendously large,
with a number of cells that grows exponentially with the number of features. Latent
variable models provide concrete benefits to reduce the number of free parameters and
provide efficient estimates by assuming that the dependence structure is modelled via
latent features, with categorical variables given the latent structure having a simple
specification.

Section 2.3 focuses on latent structure modelling for high-dimensional multivariate
categorical data, introducing a novel methodology to combine two popular approaches
for categorical data, log-linear modelling and latent class analysis. Specifically, the fo-
cus is on obtaining a model for categorical data which allows a simple interpretation
of its parameters in terms of association among categorical variables, relying on latent
structures to improve the flexibility of the approach in characterising higher order de-
pendences. Compared to standard log-linear models, our approach can accommodate a
large number of categorical variable with modest computational power, while compared
with latent class models and tensor decompositions, our procedure is able to characterize
complex dependent categorical data with a limited number of mixture components.

The advantages of the proposed approach are illustrated on a case study involving
psychological questionnaires administered to suicide attempts patients at the hospital
of Padova, carefully described in Section 2.2. Specifically, the focus of the application is
on investigating which psycho pathological symptoms are associated in suicide attempt
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survivors, and whether is there some associations structure between the psychological
symptoms and the empathic profiles of suicide attempts. Although there has been some
preliminary evidence on the relation and intensity among these two aspects in healthy
individuals, a statistical assessment on a sample of suicide attempt is still lacking, and
can provide important insights to understand dynamics underlying such a tragic act.

Latent structures models for removing dependence

Traditionally, statistical modelling through latent variables is motivated as a strategy to
characterize intricate dependence structures in an unobservable latent spaces, specifying
the observed quantities as conditional independent given such latent features. This
approach is also the leading strategy of Chapter 1 and Chapter 2, where the benefits
in terms of computational efficiency and interpretation are highlighted and illustrated
through different case studies. Chapter 3, instead, focuses on a different setting in which
latent variables are introduced as an effective tool to manipulate complex dependence
structures at multiple levels.

In high-stakes decision processes, there has been growing interest on providing ma-
chine learning tools to guarantee that algorithms will be neutral with respect to “pro-
tected” information; for example, race or gender of the candidates during job interviews.
It has been argued that decisions taken by algorithms would automatically be fair since
personal prejudices carried by humans cannot influence automated algorithms, which
only rely on computers. However, there is growing recognition that algorithms will
reproduce the same biases observed in the training data. For example, if a company
has been affected by gender-gap in the salaries, then automated algorithms will “learn”
this aspect and reproduce it in predictions, therefore propagating the issues in future
samples instead of reducing it.

An illustrative case study from criminal justice is described in Section 3.2, where in-
terest is on predicting two years recidivism for defendants as a function of several demo-
graphic information. Specifically, such predictive tools are used in American courtrooms
to advise judges on the likelihood that a defendant will be rearrested in the future, and
such predictions are used to inform the court; for example, to decide the amount of the
bail. Clearly, there is strong ethical interest in making such predictions independent
of protected information – such as race membership – in order to guarantee that in-
dividuals will be treated the same regardless their racial group. Algorithms to predict
recidivism are generally trained on arrest data, and there is strong evidence that such
source of data is drastically biased with respect to race, since police patrols can choose
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which neighborhood should be patrolled and who looks more suspicious. Without ad-
justment, predictions of algorithms trained on such data would automatically reproduce
the same racial biases observed in the training sample, therefore providing predictions
for minority groups which are systematically higher.

In order to solve these issues, Section 3.3 focuses on latent structure modelling for fair
decision processes, introducing a Gaussian latent factor model which allows to charac-
terise the dependence structure of the data via a set of low-dimensional latent variables,
and facilitates to constrain the dependence among such a compact representation and
the protected attributes during estimation. The proposed algorithm is fast and effi-
cient, and allows to release adjusted dataset where practitioner can apply any algorithm
with guarantees in terms of independence among resulting predictions and protected
information.



Chapter 1

Latent space models for network

data

1.1 Network data

A challenging field of research in which latent variable modelling leads to tractable
and interpretable specification of complex dependence structures is network science.
In general terms, a network can be defined as a collection of interconnected units,
while from a mathematical perspective it is more rigorous to represent a network as a
graph G = {V , E}, which is a collection of two sets denoting the interconnected units
and their connections, respectively. More specifically, V = {1, . . . , n} denotes the set
of n = |V| interconnected nodes while E ⊂ V × V the edges interconnecting them;
see Newman (2018) and references therein for an introduction to the topic. From a
modelling perspective, it is more useful to represent a network as an n × n adjacency
matrix A with elements aij characterising the edge from node i to node j. Such a
representation is conceptually equivalent to a graph, but provides a simpler way to
focus on the random nature of the edges and to properly model them as elements of an
interconnected structure. In this chapter the focus will be on undirected binary networks,
which are represented by symmetric binary matrices indicating the presence or absence
of a connection between nodes. Since such adjacency matrices are symmetric, it is
sufficient to characterise the lower-triangular part of A, thereby letting aij = aji = 1 if
there is and edge between the pair (i, j) with i = 2, . . . , n and j = 1, . . . , i − 1 and 0

otherwise.

From a statistical perspective, the main challenges in network modelling arise from
the characterisation of the intricate dependence underlying such data. Since such con-
nectivity structure defines and characterise the network as such, forcing network data

7



8 Section 1.2

into standard structures or assuming oversimplified specifications leads to poor charac-
terisations and tremendously biased estimates (e.g. Hoff et al., 2002). On the other hand,
it is necessary to reduce the complexity of those structures and characterise the main
properties of the network with a parsimonious representation, comprising a moderate
number of parameters performing a significant dimensionality reduction. Latent struc-
tures modelling, adapted to the context of network data, successfully addresses these
two issues. Such methods assume conditional independence among the edges, given a
latent structure which characterises the dependence patterns. Several specifications are
available for both the latent variables and the conditional model, covering a large vari-
ety of methods. For example, discrete latent variables induce stochastic block-models
(Nowicki and Snijders, 2001), while continuous variables define latent space models (Hoff
et al., 2002). More recent generalisations provide additional layers of complexity, such as
mixed-membership stochastic block-model (Airoldi et al., 2008) and latent space models
with nodes clustering (Handcock et al., 2007). See also Durante et al. (2017); Gollini and
Murphy (2016) for recent extensions and generalisation to multiple networks. Models
based on conditional independence assumptions are particularly appealing from a com-
putational point of view, solving several estimation issues encountered in other popular
models such as Exponential Random Graph Models (ergm) (Hunter et al., 2012). Be-
side this important aspect, latent variables offer important benefits from interpretative
point of view; for example, it is quite natural to interpret discrete latent variables as
clusters of nodes, while continuous latent variables are interpreted as positions in a
low-dimensional latent space amenable for data visualisation.

1.2 Data description and motivation

As outlined in the Introduction chapter, neuroscience provides fascinating network data
stimulating challenging research questions and novel statistical methodologies to address
them. A particularly active area of research in network science is motivated by recent
developments in neuroscience, where modern advances in neuro–imaging have made it
possible to measure brain connectivity non–invasively in live humans (e.g. Craddock
et al., 2013; Smith et al., 2011). These network data commonly denote functional syn-
chronization in brain activity, measured via fMRI (e.g. Smith et al., 2011), or structural
interconnections among brain regions made by white matter fibers reconstructed from
DTI (e.g. Craddock et al., 2013). Refer also to Bullmore and Sporns (2009, 2012); Sporns
(2013); Stam (2014) for an overview on state–of–the–art network data in neuroscience
and the associated methods of analysis. Recently, there has been an increasing interest
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on structural connectivity. Indeed, these data measure the physical connections among
brain regions which provide the fundamental axonal pathways for brain signals (e.g.
Craddock et al., 2013). In particular, nodes of structural brain networks correspond
to a specific brain parcellation providing a set of regions of interest, whereas the edges
represent physical interconnections made by white matter fibers (e.g. Craddock et al.,
2013).

In this chapter, we analyze two problems involving structural brain networks data
from two different studies. The fist application is drawn from the neuro–imaging study
kki-21, comprising data for m = 21 individuals with no history of neurological disease
(Landman et al., 2011). Here the focus is on the structural brain networks obtained
by pre–processing the raw imaging data under the migraine pipeline (Roncal et al.,
2013), focusing on the n = 68 brain regions characterizing the Desikan atlas (Desikan
et al., 2006) The second application is drawn form the study described in Hagmann
et al. (2008) available at HCP (2019). Specifically, the study focuses on extremely high-
resolution scans with n = 998 brain regions obtained dividing the anatomical cortex
into sections of about 1.5 cm2 width for m = 5 healthy subjects. See Hagmann et al.
(2008) for detailed information on the preprocessing, the pipelines and the construction
of the structural brain network.

In both studies, the brain network of each individual k is available via a n × n

symmetric adjacency matrix A(k) having elements a(k)ij = a
(k)
ji = 1 if at least one white

matter fiber has been observed between regions i = 2, . . . , n and j = 1, . . . , i − 1 in
subject k = 1, . . . ,m, and a(k)ij = a

(k)
ji = 0 otherwise; see Figure 1.1 for an illustration in

the first case study. Additionally, for each region i anatomical covariates are available.
These predictors comprise the 3-dimensional anatomical centroid positions, denoted as
xi, yi and zi, for i = 1, . . . , n, membership to the left or right hemisphere, and in which

Subject 3 Subject 18

Figure 1.1: Adjacency matrices characterizing the brain networks of two subjects. Black
refers to an edge; white to a non-edge.
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Figure 1.2: Plot of the relative edge frequencies for every pair of brain regions (i, j), with
i = 2, . . . , n and j = 1, . . . , i− 1, versus their anatomical normalized Euclidean distance.

anatomical lobe (in the first application) or cortical cortex (in the second) the region is
located.

The aim of both applications is to learn shared anatomical effects and latent struc-
tures underlying the replicated brain networks A(1), . . .A(k). In this regard, Figure 1.2
focuses on the first application and suggests that brain regions tend to connect with oth-
ers that are spatially closer, and belonging to the same hemisphere and lobe. However,
these patterns are not sufficient to explain the whole variability in regions connectivity,
thereby motivating studies on the net wiring structures which are not related to the
observed anatomical covariates. A first step towards addressing this question is taken
via latent space models for replicated brain network data, which characterize the edge
probabilities as a function of observed and latent effects specific to every brain region.
The former allows inference on how brain anatomy—measured via physical proximity,
along with hemispheres and lobe membership—relates to brain connectivity. The latter
characterizes, instead, patterns not captured by exogenous predictors, thus stimulating
future studies to explain these departures via alternative determinants, such as regions’
morphology or other biological processes. In the first case study, we develop a latent
space model with local clustering, which allows to address the aims discussed above
while providing further insights on the brain architecture not explained by anatomical
constraints partitioning the brain regions in the latent space. The model is illustrated
and quantitatively evaluated in Section 1.4. The second case study is analysed in Sec-
tion 1.5, and motivates more computationally tractable algorithms leveraging latent
factor models for networks, which effectively address the main aims of the applications
for high-quality scans.

1.3 Latent space models for network data

Before going into the illustration of the contributions for this Chapter, it is worth recall-
ing some details on the state-of-the-art modelling for network data via latent structures.



Chapter 1 - Latent space models for networks 11

Table 1.1: Latent variable specification for network data under Equation (1.1).

α(wi,wj) Additional parameters
Stochastic block-model wᵀ

iΘwj Θ symmetric
Latent distance model ||wi −wj||2 -
Latent factor model wᵀ

iΛwj Λ diagonal

As outlined in Section 1.1, there is a rich literature on latent structure modelling for
networks, with stochastic block models (Nowicki and Snijders, 2001) and latent distance
models (Hoff et al., 2002) being popular building blocks for many complex approaches.
Focus for the moment, and without loss of generality, on a single binary network with
associated adjacency matrix A, and let pr(aij = 1 | πij) = πij ∈ (0, 1), denote the popu-
lation probability of an edge between node i and j, for each i = 2, . . . , n, j = 1, . . . , i−1.
Following Hoff (2019), latent structure models for binary undirected networks can be
defined with a common specification as follows.

(aij | πij) ∼ Bern(πij)

g(πij) = α(wi,wj) (1.1)

where α is a function of the node-specific latent features wi ∈ Rr, i = 1, . . . , n and g is
a link function which guarantees that πij ∈ (0, 1), as in a classical Generalized Linear
Model (glm) specification. Generalisation to directed networks and weighted edges are
straightforward, directly adapting Equation (1.1) to the undirected case or modifying
the stochastic component accordingly.

Table 1.1 illustrates how different latent variable models can be represented using
Equation (1.1). Specifically, stochastic block models correspond to discrete latent vari-
ables wi ∈ {0, 1}r indicating block-membership, with an r × r symmetric matrix Θ

specifying in-block specific probabilities over the main diagonal and between-block prob-
abilities outside. Latent distance models are instead recovered by introducing latent
positions wi ∈ Rr and computing the Euclidean distance between pairs of nodes in the
latent space. Such an approach will be the building block of the next Section 1.4, where
we generalize it in order to model multiple networks, include covariate information and
perform clustering over the latent space. Finally, the latent factor model can be in-
terpreted as an eigenvalue decomposition of the symmetric adjacency matrix, where
wi ∈ Rr denotes its eigenvectors and Λ the diagonal r × r matrix of eigenvalues. We
focus on such a flexible representation in Section 1.5, providing a computationally ef-
ficient algorithm to perform approximate posterior inference with high-resolution scan
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data. Bayesian inference is generally performed via Markov Chain Monte Carlo (mcmc,
adapting the data augmentation strategy of Albert and Chib (1993) in case of a probit
link function g or using a Metropolis-Hasting routine. More recent developments focus
instead on approximate inference for network models, leveraging Variational Bayes or
approximate mcmc (Gollini and Murphy, 2016; Airoldi et al., 2008; Lachal et al., 2016).

Stochastic block models have received much attention for at least the last decade.
This popularity is mainly due to the ease of interpretation of such an approach, which
allows to cluster nodes into groups as a byproduct of model estimation. Indeed, it
has been observed that many real networks exhibits important clustering behaviour,
with such a grouping driven by endogenous information or unobservable attributes (e.g.
Wasserman and Faust, 1994). Motivated by the above consideration, Handcock et al.
(2007) extended the latent distance model of Hoff et al. (2002) introducing a mixture
of Gaussian prior over the latent coordinates wi, i = 1, . . . , n, in order to induce a
model-based clustering of observations in the latent space. Specifically, Handcock et al.
(2007) rely on the following specification.

(aij | πij) ∼ Bern(πij)

logit(πij) = ||wi −wj||2

wi ∼
H∑
h=1

νhNr(µh, σhIr)

(1.2)

independently for each i = 2, . . . , n, j = 1, . . . , i − 1 and k = 1, . . . ,m. The model
defined in Equation (1.2) allows to cluster nodes in the latent space into H spherical
groups according to their position, and improves estimation of the latent structure by
facilitating borrowing of information across nodes (Handcock et al., 2007). In the next
Section, we extend such an approach to deal with multiple networks, include covariate
information and improve the clustering scheme induced by the prior distribution.

1.4 Latent space model with local clustering

1.4.1 Model specification

Let pr(a(k)ij = 1 | πij) = πij ∈ (0, 1), denote the population probability of an edge
between brain regions i and j, for each i = 2, . . . , n, j = 1, . . . , i− 1 and k = 1, . . . ,m.
The focus of this chapter is on a flexible representation for πij which can learn anatomical
effects and latent patterns in the observed brain network data. Adapting latent variable
models for networks, the edges a(k)ij = a

(k)
ji , k = 1, . . . ,m are assumed as conditionally
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independent Bernoulli variables given πij, thus obtaining

(a
(k)
ij | πij) ∼ Bern(πij), (1.3)

independently for each i = 2, . . . , n, j = 1, . . . , i − 1 and k = 1, . . . ,m. To flexibly
characterize variations in πij across pairs of nodes, while learning anatomical and latent
patterns in the edge–specific probabilities, we introduce the logistic model

logit(πij) = β0 + β1hemij + β2lobeij + β3dij − d̄ij, (1.4)

for each pair i = 2, . . . , n and j = 1, . . . , i − 1, where hemij and lobeij are binary
predictors indicating shared membership to the same hemisphere and lobe, respectively,
whereas dij and d̄ij denote the anatomical and latent Euclidean distances between brain
regions i and j, respectively.

Based on Equation (1.4), the edge probability between regions i and j is allowed to
change with their shared hemisphere and lobe membership, in addition to their anatomi-
cal distance dij. The parameter d̄ij adds instead a further layer of flexibility, which allows
modeling of edge probabilities that are not properly explained by brain anatomy. To
address this issue, d̄ij is expressed as a function of the regions’ coordinates x̄i, ȳi and z̄i,
for i = 1, . . . , n in a latent space, via d̄ij =

√
(x̄i − x̄j)2 + (ȳi − ȳj)2 + (z̄i − z̄j)2, thus

obtaining a more parsimonious and interpretable formulation which borrows information
via the shared dependence on a common set of latent coordinates. Indeed, according to
Equation (1.4), the closer two brain regions are within this latent space, the more likely
it is to observe a connection among them, after controlling for the anatomical structure.
Hence, by providing inference on the latent positions x̄i, ȳi and z̄i for each brain region
i = 1, . . . , n, a deeper understanding of brain connectivity is allowed.

The statistical model in Equations (1.3) and (1.4) is in the same spirit of the flex-
ible latent space model proposed by Hoff et al. (2002), and therefore is characterized
by similar properties and theoretical support. However, differently from Hoff et al.
(2002), the focus in this chapter is on joint modeling of multiple adjacency matrices
A(1), . . . ,A(m), instead of just one. Although this difference may apparently require
novel computational methods and inference procedures, note that, under the model
in Equation (1.3), a sufficient statistic aij in the joint likelihood for the data a

(k)
ij ,

k = 1, . . . ,m, is aij =
∑m

k=1 a
(k)
ij ∼ Binom(m,πij), for every pair of regions i = 2, . . . , n

and j = 1, . . . , i−1. Hence, joint modeling of multiple adjacency matrices A(1), . . . ,A(m)

under the model in Equation (1.3)–(1.4), coincides with providing inference on the
weighted network A =

∑m
k=1 A(k) with binomial edges having probabilities factorized
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as in Equation (1.4).

1.4.2 Bayesian inference

A Bayesian approach to estimation and inference is followed. Consistent with this choice,
the specification of a prior distributions for the coefficients in β and for the latent space
coordinates x̄i, ȳi, z̄i for i = 1, . . . , n in Equation (1.4) is seek to obtain a flexible, com-
putationally tractable and interpretable characterization of the edge probabilities in the
model defined in Equation (1.3). Indeed, besides studying the embedding structure of
the regions in the latent space, a recent focus in neuroscience is on estimating groups of
brain regions which are devoted to locally specialized processes (Bullmore and Sporns,
2009). Within the proposed Bayesian approach to inference, this aim can be addressed
by considering a finite mixture of distributions as prior for the latent space coordinates,
thus allowing regions with similar positions to cluster together. This choice also im-
proves borrowing of information in inference on the latent coordinates by exploiting the
grouping structure.

One possibility to accomplish the above goal is to rely on the latent space model with
nodes clustering proposed by Handcock et al. (2007) and illustrated in Equation (1.2).
In the model considered in this Chapter, this choice would imply that the 3–dimensional
latent space can be partitioned into spherical groups, with regions in the same cluster
having similar vectors of latent coordinates. Although this strategy improves flexibility
and offers insights on community structures, clustering regions with respect to the join
vector of latent coordinates (x̄i, ȳi, z̄i), i = 1, . . . , n, might provide an oversimplified
characterization of complex connectivity patterns via a single joint partition. Indeed,
joint clustering of the entire vector of latent coordinates might fail to detect groups of
brain regions which are similar with respect to a subset of the latent traits, but are
significantly different relatively to the others. This issue is particularly important for
brain networks, since it is well known in the literature that regions co-operate in a large
variety of different tasks. Incorporating this structure under a single joint clustering
process would, in fact, lead to an inefficient allocation into too many clusters, or to an
oversimplified representation via fewer groups with high within–cluster variability.

The above issue is addressed by performing separate clustering for each latent space
dimension via mixtures of univariate Gaussian priors for every x̄i, i = 1, . . . , n, ȳi,
i = 1, . . . , n, and z̄i, i = 1, . . . , n, thus allowing the brain regions to belong to different
clusters depending on the latent coordinate considered. This structure provides a more
parsimonious, yet flexible, local borrowing of information, which relies on a separate
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partition structure for each latent coordinate. Consistent with this assumption, we let

x̄i ∼ Px, Px =
Hx∑
h=1

νxh
N(µxh

, σ2
xh

), i = 1, . . . , n,

ȳi ∼ Py, Py =

Hy∑
h=1

νyh
N(µyh

, σ2
yh

), i = 1, . . . , n,

z̄i ∼ Pz, Pz =
Hz∑
h=1

νzh
N(µzh

, σ2
zh

), i = 1, . . . , n,

(1.5)

where νxh
∈ (0, 1) is the probability that the latent x̄–coordinate of a generic brain

region belongs to cluster h, with
∑Hx

h=1 νxh
= 1. The parameters (µxh

, σ2
xh

) characterize,
instead, the mean and variance of this coordinate in cluster h. A similar interpretation
holds for νyh

, (µyh
, σ2

yh
) and νzh

, (µzh
, σ2

zh
), with respect to the latent ȳ–coordinate and

z̄–coordinate, respectively.

Note that priors in Equation (1.5) and the model in Equations (1.3) and (1.4) effec-
tively generalize Hoff et al. (2002) and Handcock et al. (2007). Indeed, the standard
latent space model of Hoff et al. (2002) is obtained as a degenerate case when the num-
ber of components Hx = Hy = Hz is set to 1, whereas the mixture model specification
of Handcock et al. (2007) described in Equation (1.2) can be regarded as a particular
case of Equation (1.5) in which the cluster membership is identical across the latent
coordinates. It is worth emphasizing that such a single joint partition can be obtained,
when required, by summarizing the marginal partitions into a single global clustering
index. In fact, the 3 marginal assignments can be combined to create a joint similarity
matrix C with elements cij ∈ {0, 1, 2, 3} denoting the number of marginal partitions
in which regions i and j share the same cluster. Based on C, a single global grouping
structure can be then obtained by applying classical clustering methods.

Following Rousseau and Mengersen (2011), a conservative upper bound H for Hx,
Hy, Hz is specified, with adaptive deletion of redundant components favored via a
sparse Dirichlet prior for the probabilities νx = (νx1

, . . . , νxH
), νy = (νy1

, . . . , νyH
),

νz = (νz1
, . . . , νzH

). This choice provides

νx ∼ Dirichlet
(

1

H
, . . . ,

1

H

)
,

νy ∼ Dirichlet
(

1

H
, . . . ,

1

H

)
, (1.6)

νz ∼ Dirichlet
(

1

H
, . . . ,

1

H

)
.



16 Section 1.4

The prior for the means and variances of the Gaussian kernels in Equation (1.5) is
instead specified to favor simple posterior computation. Due to this, Normal–Inverse
Gamma priors with common hyperparameters are considered. Focusing on the x̄–
coordinate, this choice implies

(µxh
| σ2

xh
) ∼ N(µ0, σ

2
xh
/κ0), σ−2xh

∼ Gamma(η0/2, η0ξ0/2), (1.7)

for every component h = 1, . . . , H, with µ0 denoting the mean of the prior for the
kernels’ locations, κ0 controlling the precision and (η0, ξ0) denoting the hyperparameters
for the prior of the kernel variances. The priors for (µyh

, σ2
yh

) and (µzh
, σ2

zh
), are defined

similarly to (1.7), for each h = 1, . . . , H.

To conclude prior specification, the prior for the coefficients β = (β0, β1, β2, β3)
ᵀ is

specified as multivariate Gaussian, obtaining

β = (β0, β1, β2, β3)
ᵀ ∼ N4(0,Λ0), Λ0 = diag(λ0, . . . , λ3). (1.8)

Due to the absence of a closed–form posterior, Bayesian inference for model de-
fined in Equations (1.3) and (1.4) with priors Equations (1.5) and (1.8), proceeds via
a (mcmc) strategy, whose key steps are summarized in Appendix A.1. The implemen-
tation benefits from the recently developed Pólya–Gamma data augmentation strategy
(Polson et al., 2013; Choi and Hobert, 2013) which allows recasting the logistic model
defined in Equations (1.3) and (1.4) into a classical Bayesian regression having trans-
formed Gaussian responses. This representation induces full–conditional conjugacy for
all the model parameters except the latent coordinates, due to the Euclidean distance
in Equation (1.4) which requires a Metropolis–Hastings step.

It is worth noticing that the latent positions are only identifiable up to translation,
rotation and reflection. Handcock et al. (2007) address this issue via unity–norm con-
straints. Alternatively, it is possible to post–process the unconstrained samples via a
Procrustean transform with the maximum likelihood estimate of the latent positions as
reference vector (e.g. Krivitsky and Handcock, 2008). In fact, consistent with Krivitsky
and Handcock (2008), also the empirical findings provided in this chapter suggest that
unconstrained sampling improves computational tractability and performance. More-
over, since the Procrustean rotation is unique, the transformed samples coincide with
draws from a constrained posterior (Hoff et al., 2002). Finally, it is well known in the
literature that label–switching issues of mixture models can affect posterior inference
on the clustering structure. This issue is induced by the invariance of the likelihood
function under different labelling of the mixture components (Stephens, 2000). The
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presence of such an issue can be easily detected via visual inspection of the trace-plots
of the mcmc chains; standard relabelling procedures can be applied when this issue
arises (e.g. Stephens, 2000).

1.4.3 Simulation study

To asses the empirical performance of the proposed methods, a simulation study is
considered. In particular, m = 21 replicated network data with n = 68 nodes are
simulated from model defined in Equations (1.3) and (1.4), also including one dummy
covariate mimicking the hemisphere membership; its associated β effect is set to 2. The
latent space structure is instead assumed of growing complexity across the scenarios, in
order to evaluate whether the proposed model and its priors can flexibly detect varying
latent space architectures.

In the first scenario, the latent x̄–coordinates are sampled from a mixture of two
Gaussians, while the ȳ–coordinates and the z̄–coordinates are generated from standard
Gaussians. The second scenario considers instead a mixture of two Gaussians for the
latent x̄–coordinates and the latent ȳ–coordinates, and samples the z̄–coordinates from a
standard Gaussian. Finally, in the last scenario, all the three latent space coordinates are
generated from a mixture of two Gaussians. The main challenge in these scenarios is due
to different local complexities and varying cluster membership across latent dimensions.
Indeed, even when the number of clusters is equal across the latent dimensions, the
underlying group partitions can be different across the latent coordinates. Indeed, the
true number of mixture components (H0

x, H
0
y, H

0
z) is equal to (2, 1, 1) in the first scenario,

(2, 2, 1) in the second, and (2, 2, 2) in the third.

Posterior inference is conducted by relying on default hyperparameters Λ0 = diag(2, 2),
κ0 = 2, µ0 = 0 η0 = 30, ξ0 = 1, and set the upper bound H to 5. Moderate variations
of the hyperparameters in sensitivity analyses did not lead to substantially different
conclusions. This robustness to hyperparameters is possibly due to the borrowing of
information provided by the latent space embedding and the clustering of the coordi-
nates.

Posterior computation relies on 5000 iterations with a burn–in of 2500 and a tuned
step size for Metropolis–Hastings steps to obtain an acceptance ratio close to 0.2 (e.g.,
Gelman et al., 2014, 1996). Relabelling, when required, is performed via the r package
label.switching (Papastamoulis, 2016; Stephens, 2000). Convergence and mixing are
assessed via the trace–plots and effective sample sizes.

Figure 1.3 compares the true latent positions with their posterior means estimated
from the mcmc samples. The mean square error among the true latent positions and
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Figure 1.3: Bivariate plots for the latent positions and cluster membership in the simulation
study. True coordinates are reported as light gray crosses. The estimated latent coordinates
are illustrated as full points, with colors and shapes denoting the estimated cluster member-
ship. First, second and third column display the estimated cluster membership induced by
the x̄–coordinate, ȳ–coordinate and z̄–coordinate, respectively. First, second and third row
refer to the first, second and third scenario, respectively.

their posterior estimates is 0.03 in the first scenario, 0.16 in the second, and 0.18 in the
third, respectively. As expected, when the complexity of the latent space increases, the
precision in recovering the underlying structure deteriorates. However, in each scenario,
the posterior means of the latent positions still provide satisfactory estimates of the
true latent structure. Estimates were satisfactory also for the number of clusters and
the parameter β; see Appendix A.1.2 and Aliverti and Durante (2019) for additional
details.
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1.4.4 Application to the KKI-21 dataset

The methods described in Sections 1.4.1 and 1.4.2 are applied to the kki-21 dataset
outlined in Section 1.2. Posterior inference is performed with the same hyperparameters
as in the simulation study, with a more conservative upper bound H = 10 and relying
on 5000 mcmc samples with a burn–in of 2500, obtaining satisfactory convergence and
mixing, measured via effective sample sizes. Posterior computation is based on a simple
R implementation and requires approximately 2 minutes per 1000 iterations on a laptop
with an intel(r) core(tm) i7-7700hq @ 2.8 ghz processor and 16gb of ram running
Linux.

Figure 1.4 highlights the gains in model flexibility and interpretability that can be
obtained by characterizing the net connectivity structure via a latent space representa-
tion. This is done by comparing the performance of model defined in Equations (1.3)
and (1.4) with a purely anatomical specification holding out in Equation (1.4) the latent
distances d̄ij, for each i = 2, . . . , n and j = 1, . . . , i− 1. According to the left matrix in
Figure 1.4, anatomical information have an effect in modeling edge probabilities, but are
not sufficient to capture specific wiring mechanisms. In fact, the model based on purely
anatomical predictors overestimates the intrahemispheric connectivity patterns associ-
ated with regions in the temporal lobe, while underestimating interhemisperic wiring
mechanisms in the parietal and occipital lobes—among others. As shown in the right
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Figure 1.4: Graphical representation of the difference between the observed edge frequencies∑21
k=1 a

(k)
ij /21 and the posterior mean E(πij | A) of the corresponding edge probabilities under

model (1.3)–(1.4) with (right matrix) and without (left matrix) the latent space effects in (1.4).
Brain regions are grouped by combinations of lobe and hemisphere membership. Colors range
from dark red to dark green as the differences go from −1 to +1.
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Figure 1.5: Graphical representation of the anatomical coordinates (upper panel) and the
posterior means of the latent positions (lower panel). Shapes and colors refer to hemisphere
and lobe membership.

matrix of Figure 1.4, incorporating a latent space component substantially increases per-
formance in modeling edge probabilities, with the latent coordinates flexibly capturing
net connectivity patterns not subject to anatomical constraints. These findings, which
are specific to the proposed model construction, can provide relevant insights for neu-
roscientists, thus stimulating novel studies to explain these departures via alternative
anatomical or morphological determinants.

These results motivate inference on the posterior mean ˆ̄xi, ˆ̄yi and ˆ̄zi, i = 1, . . . , n

of the 3–dimensional latent coordinates, which are compared with the corresponding
anatomical ones in Figure 1.5. According to Figure 1.5, the 3–dimensional anatomical
and latent positions are interestingly related. However, as expected, the coordinates
of the regions in the latent space do not coincide with the anatomical positions, and
characterize those net connectivity patterns after controlling for anatomical constraints.
For example, consistent with results in Figure 1.4, the brain regions in the temporal
lobe have a more peripheral position in the latent space, whereas regions in the parietal
and occipital lobes become more central. These findings, provided by the latent space
embedding, suggest that the connectivity structures which are not explained by the
observed anatomical covariates might still have a relation with the physical proximity
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Figure 1.6: Graphical representation of the estimated cluster partitions and anatomical
coordinates. Colors and shapes are defined by the estimated cluster membership for the x̄–
coordinate (first column), ȳ–coordinate (second column) and z̄–coordinate (third column).
The locations of the brain regions are given by their anatomical centroids. Each row corre-
sponds to a different bivariate view of the 3–dimensional brain locations.

among the regions. This might be due, for instance, to local neighboring structures, but
additional determinants should be considered to fully explain structural brain connec-
tivity, such as the shape and morphology of the brain regions.

To conclude the analysis, Figure 1.6 compares the results from the clustering scheme
with the anatomical coordinates of the brain regions. The first column of Figure 1.6



22 Section 1.5

Table 1.2: Summaries of the posterior distribution for the parameters in β.

Mean Median Std. Dev. Cred. Int.95%
Intercept 7.27 7.27 0.18 (6.94, 7.60)
hemisphere 0.60 0.61 0.18 (0.29, 0.92)
lobes 0.24 0.24 0.06 (0.13,0.35)
distance -0.35 -0.35 0.06 (-0.47,-0.23)

represents the partition induced by the latent x̄–coordinate, and clearly encodes the
brain segmentation into the two hemispheres. This result is coherent with Figure 1.5,
where the distinction between hemispheres still persists in the latent space and is mainly
captured by the latent x̄–coordinate. The grouping structures characterizing the latent
ȳ–coordinate and z̄–coordinate, in the second and third column, mainly incorporate
spatial brain segmentation from back–to–front and top–to–bottom, respectively, with
the clustering on the ȳ–coordinate partially related also to lobe segmentation, although
not exactly overlapping. See also Appendix A.1.3 for additional results.

The posterior summaries for the parameters controlling the effects of the anatomical
covariates in Equation (1.4) are reported in Table 1.2. The insights in Figure 1.2 are
confirmed in Table 1.2, thereby highlighting a general preference for the brain regions to
connect with others that are spatially closer and within the same hemisphere (e.g. Bull-
more and Sporns, 2012; Sporns, 2013). Variations in the hyper-parameters’ specification
did not affect the main empirical conclusion drawn in this Chapter.

1.5 Latent factor model

1.5.1 Motivation and model specification

The methodologies introduced and described in the previous sections are based on mcmc

estimation, and face severe computational bottlenecks when the number of nodes exceeds
few hundreds (Hoff, 2019). This drawback clearly limits the analysis on high-quality
brain scans, which are becoming increasingly popular in neuroscience and motivates
more challenging research questions (e.g. Stanley et al., 2013). Therefore, it is crucial
to develop methodologies which can scale to such dimensions while accounting for the
dependence structures and the topology of the brain network.

This section focuses on the latent factor model (lfm) for networks, a latent space
model which relies on a set of multiplicative random effects to characterise network
dependences (Hoff, 2008). The development of scalable computational tools for such a
method is particularly important for the network literature, since it has been shown that
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the lfm generalises popular latent variable methods for network data. For example, the
stochastic block models and the latent distance models are specific cases of the lfm

(Hoff, 2008).

Adapting the notation introduced in Section 1.4.1, the lfm is specified as follows.

(a
(k)
ij | πij) ∼ Bern(πij)

logit(πij) = β0 + β1hemij + β2cortexij + β3dij + d̃ij, (1.9)

for each pair i = 2, . . . , n and j = 1, . . . , i− 1, with d̃ij = ψxx̃ix̃j + ψyỹiỹj + ψz z̃iz̃j and
with cortexij denoting membership to the same cerebral cortex, used instead of lobe
membership since such an information was not provided in this dataset. In analogy with
the latent space model described in Section 1.4.1, the vector (x̃i, ỹi, z̃i) ∈ R3 corresponds
to the position of the brain region i in the 3-dimensional latent space. The additional
parameters (ψx, ψy, ψz) ∈ R3 measure the overall importance and the direction of the
first, second and third latent dimension on the brain network connectivity pattern. For
example, a value ψx > 0 implies that brain regions are more “similar” if they have
the same sign in the first latent dimension x̃, while the absolute value |ψx| determines
how relevant the first coordinate is in characterising the observed connectivity pattern.
Therefore, the quantity d̃ij ∈ R can be interpreted as a weighted similarity among region
i and j in the latent space, with more similar regions having larger similarities resulting
in greater probability of being connected. See Hoff (2019) for a recent overview and a
comparison among the lfm and other latent variable methods for networks.

We seek simple specification of the prior distributions, leading to efficient computa-
tional algorithms. With this motivation in mind, the prior distributions for the coeffi-
cients and latent structures are specified as follows.

β = (β0, β1, β2, β3)
ᵀ ∼ N4(0,Σ0), Σ0 = diag(σ0, . . . , σ3),

x̃i ∼ N(0, 1), ỹi ∼ N(0, 1), z̃i ∼ N(0, 1) i = 1, . . . , n, (1.10)

(ψx, ψy, ψx) ∼ N3(0, γψ0I3)

Note that, compared with the model of Equation (1.3)-(1.4) and the priors speci-
fied in Equation (1.5), the proposed lfm for networks is much simpler and does not
focus on estimating clusters of brain regions in the latent space. Also, the multiplica-
tive similarities of the lfm are less interpretable than the Euclidean distance used in
Equation (1.4), since the analogy with the anatomical counterpart is lost. There is a
clear trade-off between ease of interpretation and fast computation, and the approaches
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described in this Chapter lie at the extremes of this continuum. The selection of a
particular approach should be driven by practical consideration on the problem under
study, discussing with the practitioners what type of inference is more appropriate and
the practical implications of each scenario.

1.5.2 Approximate Bayesian inference via variational methods

In this Section, we provide a coincise review of approximate Bayesian inference, focusing
on Variational Bayes (vb). The term “variational approximations” comes from a specific
mathematical topic developed in the 18-th century known as variational calculus, while
its application in statistics is more recent and dates back at the early years of 2000

(e.g. Jordan et al., 1999). Recent applications involving massive amount of data have
stimulated additional interest on such a body of techniques, which have been successfully
used to conduct inference for complex models in extremely high-dimensional settings.

In order to provide a general notation, let us denote as y the set of observed data and
as ϑ the set of model’s parameters, including “standard” parameters and latent variables,
when present. The focus of vb is on finding an approximate posterior distribution
q(ϑ) in a suitable family Q of densities which provides the best approximation of the
true posterior distribution p(ϑ | y), proportional to the conditional likelihood p(y | ϑ)

times a joint prior p(ϑ). A popular choice in vb is to use optimisation to minimize
the Kullback-Lielber (kl) divergence among the approximate posterior and the truth,
thereby obtaining

q?(ϑ) = arg min
q∈Q

KL {q(ϑ) || p(ϑ | y)} . (1.11)

Since the posterior distribution is analytically intractable, direct minimisation of
Equation (1.11) is not directly computable. In practice, vb optimizes an alternative
objective called the evidence lower bound (elbo), formally equal to

elbo(q) = Eq(ϑ)
[
log

{
q(ϑ)

p(ϑ | y)

}]
, (1.12)

with expectation taken with respect to the variational distribution q(ϑ). It is easy to
show the elbo in Equation (1.12) corresponds to the negative kl divergence in Equa-
tion (1.11) plus the marginal likelihood (e.g. Blei et al., 2017). Therefore, maximising
the elbo in Equation (1.12) is equivalent to minimizing the kl divergence of Equa-
tion (1.11); see Blei et al. (2017); Bishop (2006) for a proof. The family Q needs to
be explicitly specified in order to complete the definition of the optimisation problem.
There is a clear trade-off between the accuracy of the approximation and computational



Chapter 1 - Latent space models for networks 25

convenience of the vb routine, with more complex families leading to less efficient algo-
rithms but more accurate approximations. For example, Q can be specified as the space
of Gaussian distributions with appropriate size, and the optimisation of Equation (1.11)
reduces at finding the best Gaussian approximation of the posterior in kl sense. A
particularly important family is induced by the Mean Field (mf) approximation, which
specifies posterior independence among blocks of parameters (Blei et al., 2017, e.g.).
The use of mf with conditionally conjugate exponential families is motivated both from
a practical and a theoretical perspective. Indeed, the factorisation of the approximate
posterior density is the only assumption which is required to obtain closed form ex-
pressions for the optimal distributions, further facilitating analytical derivations and
computations (e.g. Ormerod and Wand, 2010).

1.5.3 Approximate Bayesian inference for the LFM

From an algebraic standpoint, the main advantage of the lfm lies in the linearity of
the parameters with respect to the log-odds of the probability of observing an edge.
This feature, combined with the Pólya–Gamma data augmentation of Polson et al.
(2013), allows to recast the model in terms of a conditionally conjugate exponential
family. Indeed, the lfm has served as a building block for more complicated models; for
example, Durante et al. (2017); Sewell and Chen (2017). Beside allowing to implement
a Gibbs Sampler, the availability of closed form expressions for the full-conditional
distributions facilitates also approximate Bayesian inference based on vb (Bishop, 2006;
Blei et al., 2017).

In order to use a more compact notation, denote as W the (n×3) matrix of latent co-
ordinates with generic row wᵀ

i = (x̃i, ỹi, z̃i), i = 1, . . . , n, and denote as ψ = (ψx, ψy, ψx).
In particular, the following product restriction will be assumed for the variational family
of distributions.

q(β,W,ω,ψ) = q(β)q(W)q(ω)q(ψ). (1.13)

Under the mf factorisation in Equation (1.13), it is possible to show (e.g. Blei et al.,
2017, Sec 2.4) that the optimal distributions q? have closed form expressions proportional
to

q?(β) ∝ exp
{
Eq(W,ψ,ω [log p(β | −)]

}
,

q?(ψ) ∝ exp
{
Eq(β,W,ω) [log p(ψ | −)]

}
,

q?(wi) ∝ exp
{
Eq(β,{wj}j 6=i,ψ,Ωi) [log p(wi | −)]

}
i = 1, . . . , n,

q?(ωij) ∝ exp
{
Eq(β,wi,wj ,ψ) [log p(ωij | −)]

}
i = 2, . . . , n, j = 1, . . . , i,

(1.14)
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with Ωi denoting the i-th row of the n × n matrix of Pòlya–Gamma augmented vari-
ables such that [Ω]ij = ωij, and where each expectation is taken with respect to the
optimal distributions of the parameters indicated in the subscripts. Note that p(β | −)

denotes the density of the full-conditional distribution for β, and similarly for the other
parameters.

Since the lfm falls within the class of conditionally conjugate exponential families,
each full conditional distribution — available in closed form — is in the exponential
family, being either multivariate Gaussian or Pòlya–Gamma. Therefore, the optimal
distribution for each factor is in the same parametric (exponential) family of the corre-
sponding full conditional distribution, with natural parameters replaced with variational
expectations (Hoffman et al., 2013) which can be easily computed for both the Gaus-
sian and the Pòlya–Gamma distributions. Since each expectation in Equation (1.14)
is a functional of different parameters, the optimal solution can be found with itera-
tive methods; for example, iteratively maximising each variational distribution on the
basis on the current values of the remaining parameters, until convergence. Such a
technique is known as Coordinate Ascent Variational Inference (cavi), and guarantees
a monotonic sequence of the elbo ensuring converge to a local maxima (Blei et al.,
2017). Pseudo code illustrating the analytical form of the updates in Equation (1.14) is
reported in the Appendix A.2

Note that vb for the latent distance model is also available (Gollini and Murphy,
2016; Salter-Townshend and Murphy, 2013). However, the lack of conjugacy requires
to introduce further approximations of the expected log-likelihood via Taylor expan-
sions (Salter-Townshend and Murphy, 2013) or via Jensen’s inequality (Gollini and
Murphy, 2016). Instead, exploiting the conditionally conjugacy induced trough the
Pòlya–Gamma data augmentation, it is possible to leverage on a pure mf factorisation,
thus allowing further improvements via recent computational advances in the variational
inference literature (e.g. Blei et al., 2017); see also Durante and Rigon (2019) for related
arguments.

1.5.4 Simulation study

To evaluate the empirical performance of the vb algorithm, a simulation study is con-
ducted focusing on different scenarios. The focus of the simulations will be on determin-
ing whether approximate Bayesian inference for the lfm provides reasonable estimates
for artificial networks simulated under different data generating processes.

In the first setting, artificial networks are simulated form a lfm with H = 2 latent
factors, ψ = (2,−2) and latent factors generated from standard multivariate Gaussians.
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Networks in the second scenario are generated from from a latent distance model with
H = 2 latent coordinates randomly sampled from multivariate Gaussians. The third and
last setting focuses on stochastic block models (Nowicki and Snijders, 2001). Specifically,
2 latent blocks with equal membership probabilities are considered and, conditionally
on group allocation, the probability of a connection within the same group is 0.6 in the
first block and 0.8 in the second, while the probability of connection across groups is
equal 0.2. For each setting described above, networks are generated with a number of
nodes n = {100, 500, 1000, 5000}.

The approach of Salter-Townshend and Murphy (2013), which performs vb for the
latent distance model, is considered as a competitor, relying on the r implementation
available through the package vblpcm and using default configuration. Prior parame-
ters for the lfm are specified as σ2

0 = 5, γψ0 = 5, and the algorithm is run until changes
in the elbo are lower than 10−5. Performance is assessed in terms of the Area Under the
Roc curve (auc) and Accuracy (acc) of the adjacency matrices predicted via posterior
means under both methods.

Table 1.3 reports the results of the simulations. First, second and third block of rows
correspond to the first, second and third scenario, while columns are associated with
different network sizes. The competitor is denoted as ldm. The empirical findings of the
simulations suggest that in the first scenario, the lfm has an overall better performance
than the competitor, and the gap increases in particular when the number of nodes is
large. In the second scenario, the performance of the two approaches is similar, with
the competitor providing better results with n = 500 and n = 1000. In the third and
last scenario, the competitor approach has poor performance, while the lfm provides
satisfactory results, better than the competitor in all the settings considered.

It is worth highlighting that since both algorithms perform approximate Bayesian
inference, in general it is not guaranteed that the approximate posterior — which is

Table 1.3: Results for the simulation study. lfm indicates the method proposed in the
Chapter, while the competitor approach of (Salter-Townshend and Murphy, 2013).

n = 100 n = 500 n = 1000 n = 5000
lfm ldm lfm ldm lfm ldm lfm ldm

Scenario 1 auc 0.861 0.743 0.849 0.793 0.849 0.799 0.848 0.609
acc 0.685 0.622 0.663 0.688 0.662 0.787 0.658 0.591

Scenario 2 auc 0.730 0.693 0.659 0.688 0.650 0.677 0.648 0.558
acc 0.565 0.651 0.547 0.593 0.597 0.673 0.673 0.459

Scenario 3 auc 0.787 0.586 0.736 0.706 0.727 0.696 0.713 0.593
acc 0.705 0.591 0.694 0.631 0.698 0.661 0.700 0.541
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Figure 1.7: Graphical representation of the anatomical coordinates (upper panel) and the
posterior means of the latent positions (lower panel). Shapes and colors refer to hemisphere
and lobe membership.

the best member in the approximating family — provides a good approximation of the
true posterior distribution. Indeed, if the approximating family is poorly chosen or if the
approximation of the marginal likelihood is inaccurate, the optimised lower bound might
not be tight enough to provide a reasonably good approximation. The empirical results
of the simulation, instead, suggest that under both approaches the resulting posterior
is a reasonable approximation, providing accurate predictions from moderate to large
network settings.

1.5.5 Application to high-quality brain imaging

The simulations results motivate inference on the mean of the approximate posterior
distributions q?(x̃i), q?(ỹi), q?(z̃i), i = 2, . . . , n of the 3–dimensional latent coordinates,
which are compared with the corresponding anatomical ones in Figure 1.7. Coherently
with the results of Section 1.4.4, also the coordinates of the regions in the latent space
do not coincide with the anatomical positions measured for high-scan imaging. For ex-
ample, the brain regions in the cingulate and entorhinal areas have a more peripheral
position in the latent space, whereas regions in the precuneus and supramarginal areas
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become more central. Differently from the results of the results of Section 1.4.4, the
effect of hemisphere segmentation is not apparent in the latent coordinates, and is en-
tirely captured by the covariates information. This effect might be due to the different
structure imposed by the multiplicative similarity of the lfm, which characterise more
details of the unobserved structure. These findings are coherent with the results on
the kki-21 dataset, and suggest that the connectivity which are not explained by the
observed anatomical covariates might still have a relation with the physical properties
of the brain. Also the effect of the different covariates is similar to the findings of Sec-
tion 1.4.4, highlighting a general preference for brain regions to connect with regions
that are closer (−0.536), belonging to the same areas (0.796) and hemisphere (1.211).
This findings were expected and coherent with the main empirical findings in the brain
network literature (e.g. Bullmore and Sporns, 2012; Sporns, 2013). However, as al-
ready discussed, the contributions proposed in this chapter complete and refine these
findings by explicitly modelling also the connectivity architectures not captured by the
anatomical covariates.





Chapter 2

Latent structures models for

multivariate categorical data

2.1 Categorical data

Latent structure modelling provides concrete benefits also in the analysis of multivari-
ate categorical data, which are routinely collected in many application areas. The
challenging complexity of such data relies in the intricate interaction structure across
the different categorical variables, which often provides precious insights on many re-
search questions but whose estimation is very difficult when the number of variables is
moderate. Indeed, categorical data can be organized as multiway contingency tables,
where individuals are cross classified according to their values for the different variables.
As the number of cells in the table grows exponentially with the number of variables,
many or even most cells will contain zero observations; for example, 16 categorical vari-
ables with 4 categories each define a contingency table with a total number of cells
larger than 1-billion, and clearly no study will ever collect so many individuals. This
severe sparsity motivates appropriate statistical methodologies that effectively reduce
the number of free parameters, with latent structure analysis being a successful option
(e.g. Lazarsfeld, 1950; Dunson and Xing, 2009; Bhattacharya and Dunson, 2012; Zhou
et al., 2015; Russo et al., 2019).

Latent variable models for categorical data are specified in terms of one or more la-
tent features, with observed variables modelled as conditionally independent given the
latent features. Marginalising over the latent structures, complex dependence patterns
across the categorical variables are induced (e.g. Andersen, 1982). Some representative
examples include latent class analysis (Lazarsfeld, 1950) and the normal ogive model

31
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(Lawley, 1943), where an univariate latent variable with discrete or continuous sup-
port, respectively, captures the dependence structure among the observed categorical
variables. Leveraging data-augmentation schemes, estimation of latent variable models
is feasible in high-dimensional applications via mcmc, Expectation-Maximisation (em)
(Dempster et al., 1977) and combinations of the two (e.g. Fruhwirth-Schnatter et al.,
2019). Beside providing tractable computational methods, in several applications the
heterogeneity of the population can be studied making inference on the latent struc-
tures; for example, estimating groups of individuals with similar response patterns, or
measuring item difficulties (Andersen, 1982).

The success of latent structure modelling and the recent computational developments
have motivated several extensions in different areas, with methods based on more com-
plicated multivariate latent structures becoming increasingly popular. Some example
include Grade of Membership models (Erosheva, 2005) and Mixed Membership models
(Airoldi et al., 2014). Specific latent variable models for multivariate categorical admits
natural Bayesian nonparametric specifications allowing an infinite number of compo-
nents (Dunson and Xing, 2009; Bhattacharya and Dunson, 2012; Zhou et al., 2015). See
also Carota et al. (2015).

An alternative class of models for categorical data consists of log-linear models, which
represent the logarithms of cell probabilities as linear terms of parameters related to
each cell index, and with coefficients that can be interpreted as interactions among
the categorical variables (Agresti, 2003). The relationship between Multinomial and
Poisson log-likelihoods allows one to obtain Maximum Likelihood estimates (mle) for
log-linear models leveraging standard Generalized Linear Model (glm) algorithms (e.g.,
Fisher-Scoring), with the vectorized table of cell counts used as a response variable.
As already discussed, the number of cells of the contingency table grows exponentially
with the number of variables, leading to infinite mle (Fienberg and Rinaldo, 2007).
To overcome this issue and obtain unique estimates, it is assumed that a large set is
coefficients is zero, and estimation is performed via penalised likelihood (Nardi and
Rinaldo, 2012; Tibshirani et al., 2015; Wainwright and Jordan, 2008; Ravikumar et al.,
2010). However, the computation and storage of the joint cells counts — required to fit
the approaches mentioned above — becomes unfeasible even for moderate values of the
number of variables p.

Bayesian approaches for inference in log-linear models restrict consideration to spe-
cific nested model subclasses; for example, hierarchical, graphical or decomposable log-
linear models (Lauritzen, 1996). Conjugate priors on the model coefficients are available
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(Massam et al., 2009), but exact Bayesian inference is still complicated since the result-
ing posterior distribution is not particularly useful, lacking of closed form expressions for
important functionals – such as credible intervals – and sampling algorithms to perform
inference via Monte Carlo integration. As an alternative, the posterior distribution can
be analytically approximated with a Gaussian distribution, if the number of cells is not
excessively large (Johndrow and Bhattacharya, 2018). When the focus is on selecting
log-linear models with high posterior evidence, stochastic search algorithms evaluating
the exact or approximate marginal likelihood are available (Dobra and Massam, 2010).
Unfortunately, the size of the model space is enormous and these algorithms scale poorly
with the number of variables, being essentially unfeasible in applications with more than
15 binary variables (Johndrow and Bhattacharya, 2018). While hierarchical log-linear
model can be justified from a practical perspective, the same does not hold for other
nested subclasses, which are justified only from an algebraic point of view. For example,
hierarchical log-linear models including all two-factor interactions are very popular in
practice, but do not belong to the graphical subclass and are therefore excluded from
consideration by these methods.

2.2 Data description and motivation

We consider a psychiatric study on suicide attempt, a dramatic phenomenon which has
motivated a huge variety of scientific studies over the past decades (e.g. Nock et al.,
2008; De Leo et al., 2004). Studies on suicide attempt survivals are crucial for the
development of novel intervention treatments based on the early identification of psy-
chological symptoms (e.g. Hawton and Fagg, 1988), and also for accurate descriptions
of the psycho–pathological profiles more likely to attempt suicide acts. For example, de-
pression and hostility symptoms are often associated in suicide attempts (Ben-Ya’acov
and Amir, 2004), while some recent work have also suggested that empathy could be
an important risk factor associated with specific psychiatric disease and the suicidal act
(e.g. Lachal et al., 2016).

In particular, it is of interest to analyse the psychopathology of attempt suicide pa-
tients, their empathic profile and the possible interactions across these two psychological
aspects. This case study has been motivated by a collaboration with doctor Paolo Scocco
from Padova Hospital, which is kindly acknowledged for providing the data and for the
stimulating discussions on the definition of the problem and on the interpretation of the



34 Section 2.2

results from a clinical perspective.1 Individuals analysed in the study correspond to a
sample of 58 inpatients hospitalized after an attempted suicide at the psychiatric ward of
Padova Hospital (Italy) between January 2017 and December 2018. For the purposes of
the study, an “attempted suicide” was defined as a person who deliberately harmed their
body, and spontaneously declared that the act was intended to end their life. When the
person was not sure about the reasons for their act, attempted suicide was diagnosed
when the self-harm caused medically serious consequences requiring hospitalization. See
also Goodfellow et al. (2019); De Leo et al. (2004) for additional comments. Data were
collected by self administered questionnaires aimed at evaluating different psychologi-
cal aspects of attempted suicidal, with the Symptom Check List (scl-90) (Derogatis
et al., 1973) and the Interpersonal Reactivity Index (iri) (Davis, 1980) being reliable
instruments for these purposes.

Specifically, the scl-90 is commonly used to describe psychiatric symptoms, using
90 items scored on a five-point Likert scale; additionally, scores can be grouped into
nine subscales (somatization, obsessive-compulsive, interpersonal sensitivity, depression,
anxiety, hostility, phobic anxiety, paranoid ideation, psychoticism) corresponding to
well-defined psychiatric profiles (Derogatis et al., 1973). As suggested by the clinician, it
is of particular interest to focus on 4 subscales of the questionnaire: obsessive-compulsive
(oc), depression (dep), anxiety (anx) and hostility (hos), encompassing a total of 28

items. See Appendix B.2 for an illustration of the items under investigation. The
reliability of the Italian version of the instrument has been assessed in previous studies
(e.g. Prunas et al., 2012).

The iri is a 28-item instrument scored on five-point Liker scale that measures the
emotional and cognitive components of a person’s empathy, into four subscales. Indeed,
the iri measures the cognitive capacity to see things from the point of view of others
(Perspective Taking, pt), the tendency to experience reactions of sympathy, concern and
compassion for other people undergoing negative experiences (Empathic Concern, ec),
the tendency to experience distress and discomfort in witnessing other people’s negative
experiences (Personal Distress, pd) and the capacity to strongly identify oneself with
fictitious characters in movies, books, and plays (Fantasy, fs). See also Davis (1983)
for further comments and again Appendix B.2 for a more detailed description of the
dataset.

1I would also like to acknowledge Prof. Giovanna Capizzi for introducing me to Dr. Scocco and for
her active contribution in the discussions and the definition of the problem.
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In the psychological literature, investigation of the relationship among different em-
pathic profiles and psycho-pathological symptoms has been a challenging research objec-
tive in the last years. Generally, variations in empathy are also associated with depres-
sion (Cusi et al., 2011; Schreiter et al., 2013), obsessive compulsive disorders (Fontenelle
et al., 2009), anxiety (Perrone-McGovern et al., 2014) and hostility (Guttman and La-
porte, 2002). For example, a frequent symptom of depression is the inability to perceive
our own emotions, which is also realistically associated with the inability to comprehend
other individuals’ ones (e.g. Cusi et al., 2011). Another example include anxiety symp-
toms, which are likely to be associated with personal distress and hostility (Guttman
and Laporte, 2002). However, the relationship among psycho-pathological symptoms
and empathic profiles in attempt suicidal is still not completely understood. Indeed,
individuals who attempted suicide might exhibit unexpected association patterns across
the psycho-pathological diseases and empathic profiles. For instance, a depressed in-
dividual with a strongly empathic profile would be in the state of having inconsistent
thoughts, unable to describe its own feeling and overwhelmed by other people’s emo-
tions, including their worse suffering. Such a state, sometimes referred to as “cognitive
dissonance” in psychology, has been identified as a potential relevant cause of attempt
suicide (Zhang and Lester, 2008). At the same time, it is reasonable to assume that
several associations are similar between attempted suicidal people and the healthy pop-
ulation, and it is of interest to include such information in a statistical model.

As outlined in Section 2.1, latent structure models are efficiently estimated in high-
dimensional settings via data-augmentation algorithms. Therefore, such approaches
are effective at estimating very high-dimensional models in reasonable time with solid
assessment of uncertainty when a Bayesian approach to inference is followed. However,
interest often relies on low-dimensional functionals of such massively high-dimensional
structures — such as some bivariate measures of association — but it is not clear what
type of functional form is imposed over such quantities of interest. Indeed, when interest
is on such functionals, it is customary to post-process the mcmc output and conduct
Monte Carlo inference on such quantities (e.g. Bhattacharya and Dunson, 2012; Dunson
and Xing, 2009). Therefore, the inclusion of simple prior information on the association
structure is unpractical within this class of model. On the other hand, log-linear models
directly parametrise the interactions among the categorical variables (Agresti, 2003)
and the lower-dimensional marginal distributions (Bergsma and Rudas, 2002; Roverato
et al., 2013), but estimation is generally unfeasible when the number of variables is
moderate to high, due to the huge computational bottlenecks and the massively large
model space. Sparse log-linear models and latent class structures are deeply related in
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the way in which sparsity is induced (Johndrow et al., 2017), but a formal methodology
mixing the benefits of the two families is still lacking.

Motivated by the above considerations, Section 2.3 introduces a novel class of Bayesian
tools for multivariate categorical data, which we refer to as mills. The focus of this
methodology is to combine the two large classes of methods for categorical data —
log-linear models and latent structure analysis — in order to reduce the reciprocal dis-
advantages illustrated above. We propose to model the multivariate categorical data as
a composite mixture of log-linear models with first order interactions, thereby allowing
characterisation of the bivariate distributions with simple and robust models while ac-
counting for dependence beyond first order via mixing different local models. Such a
specification allows one to model the categorical data with a simple, yet flexible, specifi-
cation which can take into account complex dependencies with a relatively small number
of components. In addition, inference on low-dimensional marginal distributions – and
induced measures of association — is obtained efficiently.

The idea of mixing simple low-dimensional models for modelling complex data to
reduce the growth of the number of parameters has a long history in statistics. A
notable example of mixing simple models accounting for first order dependencies is the
mixture of transition matrix of Raftery (1985), originally developed to model higher-
order Markov chains. See also Fruhwirth-Schnatter et al. (2019) for related ideas.

2.3 Composite mixture of log-linear models for cat-

egorical data

2.3.1 Log-linear models

The notation of Lauritzen (1996) is adopted. Let V = {1, . . . , p} index a set of p
categorical variables. Let (Yj, j ∈ V ) denote the categorical variable taking values in
the finite set Ij with dimension |Ij|= dj. For simplicity in exposition, and without
loss of generality, we can assume Ij = {1, . . . , dj}. Categorical data are generally
collected as an n × p data matrix with elements yij ∈ Ij, i = 1, . . . , n, j = 1, . . . , p,
and can also be represented as a contingency table. Let IV =×j∈V

Ij denote the
set with generic element i = (i1, . . . , ip). The elements i of Iv are referred to as the
cells of the contingency table IV , which has size |IV |=

∏p
j=1 dj. Given a sample of

size n, the number of observations falling in the generic cell i is denoted as y(i), with∑
i∈IV y(i) = n.
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A log-linear model is a generalised linear model for the resulting multinomial like-
lihood, which represents the logarithms of cell probabilities with additive terms. Let
p = (p(i), i ∈ Iv) denote the vectorised cell probabilities and let ϑ denote the set of log-
linear coefficients. Following Letac and Massam (2012); Johndrow and Bhattacharya
(2018), it is possible to relate cell probabilities and log-linear coefficients as follows:

log p = Xϑ, (2.1)

where X is a full rank |IV |×|IV | matrix if the transformation is invertible; for example,
when X is the identity matrix, the so-called identity parametrisation is obtained. Iden-
tifiability is imposed through careful specification of the matrix X, which determines the
model parametrisation and, consequently, constraints on the parameters (Agresti, 2003).
Equation (2.1) can be extended to embrace a larger class of invertible and non-invertible
log-linear parametrisations; for example, marginal parametrisations (e.g. Bergsma and
Rudas, 2002; Roverato et al., 2013; Lupparelli et al., 2009). In general, it is desirable
to specify a sparse set of k coefficients with k � |Iv|, corresponding to some notion of
interactions among the categorical variables; for example, representing conditional or
marginal independence (Agresti, 2003). When a sparse parameterisation is employed,
it is common to remove in Equation (2.1) the columns of X associated with zero coef-
ficients, thereby obtaining a more parsimonious design matrix with dimension |IV |×k.
In this article we focus on the corner parameterisation, which is particularly popular
in the literature for categorical data (Agresti, 2003; Massam et al., 2009; Letac and
Massam, 2012), and is generally the default choice in statistical software. The columns
of X under the corner parameterisation can be formally expressed in terms of Moebius
inversion (e.g. Letac and Massam, 2012, Preposition 2.1); see also Massam et al. (2009,
Lemma 2.2). For simplicity in exposition, we prefer to use matrix notation.

Let y = (y(i), i ∈ Iv) denote the vectorised cell counts. The likelihood function
associated with the multinomial sampling and log-linear parameters can be expressed,
in matrix form, as follows.

∏
i∈IV

p(i)y(i) = exp {yᵀXϑ− nκ(ϑ)} = exp {ỹᵀϑ− nκ(ϑ)} , (2.2)

with κ(ϑ) = log [1ᵀ exp(Xϑ)]. Such a parametrisation yields a very compact data
reduction, since the canonical statistics yᵀX = ỹᵀ correspond to the marginal cell
counts relative to the highest interaction term included in the model (Massam et al.,
2009; Agresti, 2003). In particular, we will consider hierarchical log-linear models which
include all the main effects and all the first-order interactions; under such a specification,
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the canonical statistics ỹ correspond to the marginal bivariate and univariate tables (e.g
Agresti, 2003).

2.3.2 Composite likelihood

The log-partition function in Equation (2.2) involves a sum of |IV | terms, the total num-
ber of cells. Clearly, this operation becomes infeasible even for very modest values of p,
thereby preventing the likelihood function from being evaluated and numerically max-
imised. Approximations of intractable likelihoods have been proposed in the literature,
with Monte Carlo Maximum Likelihood (Snijders, 2002; Geyer and Thompson, 1992)
being one valid option. Composite likelihoods provide a computationally tractable alter-
native to the joint likelihood, replacing the original density with a product of carefully
chosen marginal or conditional distributions; see Varin et al. (2011) for an extensive
overview. Extending the work of Meng et al. (2013), Massam and Wang (2018) focused
on Composite Maximum Likelihood Estimation for log-linear models, with a careful
choice of the conditional and marginal distributions based on the conditional depen-
dence graph. In practice, the dependence graph is unknown and its estimation can be
very demanding and affected by large uncertainty (Dobra and Massam, 2010); hence, it
is more desirable to rely on a model specification which is coherent with any unknown
underlying structure, without relying on a pre-selected graphical structure.

We propose to replace the joint likelihood with a more simple and robust alternative.
Denote as P2 the set of subsets of V with cardinality 2. For each E2 ∈ P2 let yE2

denote the vectorised E2-marginal bivariate table of counts. We define, for each yE2
, a

saturated log-linear model with corner parametrisation as follows.

p(yE2
; ϑE2) = exp

{
yᵀ
E2

X2ϑE2 − nκ2(ϑE2)
}

= exp
{
ỹᵀ
E2
ϑE2 − nκ2(ϑE2)

}
, (2.3)

where κ2(ϑE2) = log [1ᵀ exp(X2ϑE2)] and with dimϑE2 = dim ỹE2
= |IE2|=

∏
j∈E2

dj

and ϑE2 ∈ R|IE2
|. There is an important difference between yE2

and ỹE2
. The former

refers to the E2-marginal bivariate table, while the latter refers to the sufficient statistics
of the log-linear model with corner parametrisation, which are indeed elements of the
bivariate and univariate E2-marginal table; see, for example, Agresti (2003).

We define a surrogate likelihood function combining the distributions defined in Equa-
tion (2.3) as follows:

exp

{ ∑
E2∈P2

log p(yE2
;ϑE2)

}
= exp

{ ∑
E2∈P2

ỹᵀ
E2
ϑE2 − n

∑
E2∈P2

κ2(ϑE2)

}
(2.4)
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Equation (2.4) is constructed with the same motivation of composing simplified like-
lihood from marginal densities in composite likelihood estimation; see, for example, Cox
and Reid (2004); Varin et al. (2011). Differently from Massam and Wang (2018), we
include contribution for all the bivariate distributions in Equation (2.4) since the un-
derlying graphical structure is not known a priori, and it is not possible to decide which
marginal densities should be included accordingly.

The use of Equation (2.4) can also be justified and motivated from an inferential
point of view. When interest is on making inference on low-dimensional marginal dis-
tributions, such as univariates and bivariates, estimates based on the pseudo likelihood
in Equation (2.4) and the original likelihood Equation (2.2) are equivalent, since the
joint model is a closed exponential family which includes only first order interactions in
the sufficient statistics (Mardia et al., 2009, Theorem 2). With respect to this consid-
eration, it is also worth highlighting that the sufficient statistics ỹE2

of the simplified
model Equation (2.3) is actually a subset of the sufficient statistics of the joint model
ỹ in Equation (2.2) and that

⋃
E2∈P2

ỹE2
= ỹ. When, instead, inference focuses on

higher-order distributions, parameters of Equation (2.4) can be combined effectively to
provide estimates on such quantities.

We have motivated the use of the simplified likelihood in terms of focusing inference
on low-dimensional margins, which is often the objective in a variety of applications.
Even when interest is on such low-dimensional margins, a model which includes only first
order interactions might be oversimplified, since the presence of dependencies beyond
first order might actually lead to misleading results and a very poor representation. We
propose to address the above issues by mixing different composite likelihoods. Denote
with iE2 the elements of IE2 , cells of the E2-marginal bivariate table. The contribution
to the composite likelihood for a single observation yi = (yi1, . . . , yip) can be expressed
as

p̃(yi;ϑ) = exp

 ∑
E2∈P2

∑
iE2
∈IE2

I(yi, iE2)X2ϑE2 −
∑
E2∈P2

κ2(ϑE2)

 , (2.5)

where I(yi, iE2) denotes a vectorial indicator function over the vectorised E2-marginal
table, corresponding to a vector of length |IE2| with all elements equal to 0 and 1 in the
position corresponding to the cell in which the E2 component of yi falls. The product
over all the data points is clearly equivalent to the full likelihood in Equation (2.4)

In order to mix different models, we rely on a latent structure construction. We
suppose that the population can be divided into H latent group, each characterised by
a group-specific composite likelihood which takes into account the marginal bivariate
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association structure in the group. In doing so, we introduce for each multivariate ob-
servations yi a latent group indicator zi with pr[zi = h] = νh, νh > 0 and

∑H
h=1 νh = 1.

Conditionally on group membership, we regard Equation (2.5) as the likelihood contri-
bution for yi conditionally on zi. Considering only observations yi such that zi = h and
denoting with nh the number of observations in group h, we can interpret Equation (2.4)
as a model for the contingency table conditional on cluster membership, as

p̃(yh;ϑh, z) = exp

{ ∑
E2∈P2

ỹhᵀE2
ϑhE2
− nh

∑
E2∈P2

κ2(ϑ
h
E2

)

}
. (2.6)

We can interpret Equation (2.6) as local models to characterise the association structures
of the categorical variable for the subjects in the h-th group. To make inference at the
population level, the local models needs to be combined in order to yield a realistic
global one, and clearly such an operation should be carefully addressed. Marginalising
over the latent feature and considering the contribution for all the data points, we obtain
a joint model with likelihood function equal to

p̃(y;ϑ,ν) =
n∏
i=1

H∑
h=1

νh p̃(yi;ϑ
h), (2.7)

with ϑh = {ϑhE2
}E2∈P2 , ϑ = {ϑh}Hh=1 and ν = {νh}Hh=1.

Equation (2.7) corresponds to a finite mixture of composite first order log-linear
models, an will be refer to as mills in the sequel. Inference on bivariate distributions
is simple under the proposed mills specification. For example, a natural estimator for
the E2 bivariate probabilities is given by

p(iE2) =
H∑
h=1

νh
exp

(
ϑhE2

)
1 + 1ᵀ exp(X2ϑ

h
E2

)
, (2.8)

which corresponds to a weighted average of the local model, with weights given by the
mixture proportions.

2.3.3 Bayesian inference

We proceed with a Bayesian approach to inference, and specify prior distributions for
the parameters ν and ϑhE2

. For computational convenience, we rely on spare Dirichlet
priors for the mixture weights ν, thereby letting

ν ∼ Dirichlet
(

1

H
, . . . ,

1

H

)
. (2.9)
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Choosing a conservative upper bound H, sparse Dirichlet weights favor the deletion of
redundant components (Rousseau and Mengersen, 2011). The prior distributions for
the log-odds of the cell probabilities are specified as standard multivariate Gaussian dis-
tributions. This choice allows computational tractability adapting the Pólya–Gamma
data augmentation to multinomial regression (Polson et al., 2013), and to include simple
prior information on the marginal bivariate association structure by choosing appropri-
ate prior mean values. This choice implies

ϑhE2
∼ N|IE2

|(µE2 , σ
2I), E2 ∈ P2, h = 1, . . . , H. (2.10)

The statistical model defined in Equation (2.7) does not correspond to a genuine like-
lihood, since it’s not a distribution function of the observed data given a parameter
value. Therefore, some additional attention is required before proceeding with standard
Bayesian inference. There is a rich literature on the use of alternative likelihoods for
Bayesian inference; for example, approximate likelihood (Efron, 1993), partial likelihood
(Raftery et al., 1995), empirical likelihood (Lazar, 2003) and adjusted profile likelihood
(Chang and Mukerjee, 2006), among many others. See also Greco et al. (2008) for re-
lated arguments. The use of composite likelihoods as components of Bayesian inference
has been investigated more recently (Ribatet et al., 2012; Pauli et al., 2011).

In particular, we will conduct inference using the composite posterior distribution

p̃(ϑ,ν | y) =

p(ϑ)p(ν)
n∏
i=1

H∑
h=1

νh p̃(yi;ϑ
h)

∫ ∫
p(ϑ)p(ν)

n∏
i=1

H∑
h=1

νh p̃(yi;ϑ
h)dϑdν

, (2.11)

which is guaranteed to be proper by the following Lemma.

Lemma 2.1. The quantity in Equation (2.11) is a proper probability distribution.

Proof. In order to show that Equation (2.11) is a probability distribution, it is necessary
to show that the normalising constant exists and is finite. Hence, it is necessary to show
that ∫ ∫

π(ϑ)π(ν)
n∏
i=1

H∑
h=1

νh p̃(yi | ϑh)dϑdν <∞. (2.12)

Since the priors specified in Equations (2.9) and (2.10) are proper distributions, it is
sufficient to show that

sup
ϑ,ν

n∏
i=1

H∑
h=1

νh p̃(yi | ϑh) <∞. (2.13)
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Boundedness holds under the mills specification since

p̃(yi | ϑh) =
∏
E2∈P2

exp

 ∑
iE2
∈IE2

I(yi, iE2)X2ϑ
h
E2
− κ2(ϑhE2

)

 , (2.14)

is always bounded, being a product of probabilities.

Since the quantity in Equation (2.11) is a proper distribution, we can conduct in-
ference via mcmc, simulating from the pseudo posterior and conducting inference via
Monte-Carlo integration. Key steps of the Gibbs Sampler are illustrate in Appendix B.
An alternative procedure for fast inference on the Maximum-A-Posteriori (map) can be
developed through an em algorithm with nested Expectation step, adapting the strategy
of Durante et al. (2019) to the composite mills kernel.

2.4 Simulation study

In order to evaluate the model performance, we considered a simulation study over
three different settings. In each scenario, we focus on a challenging setting with p = 15

variables with d1 = . . . = d15 = 4, dividing the categorical variables in groups char-
acterised by different dependence structure. In the first scenario, variables in the first
group J = (5, 10, 12, 15) are generated from a latent class model with 5 latent classes
with equal membership probabilities and within-group probabilities generated from a
symmetric Dirichlet distribution with unit parameters. The remaining variables are
generated from independent Dirichlet-Multinomial distributions with hyper-parameter
α = (3, 3, 3, 3)ᵀ. This setting generates a subset of variables with a relevant depen-
dence structure, while leaves the other unstructured. In the second scenario, vari-
ables J = (1, 2, 3, 4, 5) are generated from a dense log-linear model with first order
interactions. Main effects are randomly sampled from standard Gaussians, while co-
efficients associated to the same interaction term are sampled from standard Gaus-
sians and constrained to have the same sign. Since the dependence structure is explic-
itly parametrised, this settings allows complete control on its intensity and direction,
while in the first setting this operation was not possible. The remaining variables are
generated from independent Dirichlet-Multinomial distributions with hyper-parameter
α = (3, 3, 3, 3)ᵀ. Note that simulation from a log-linear model is doable since we are
considering a small subset of categorical variables, with |J |= 5. Simulation from a log-
linear model encompassing a substantially larger groups of variables is unfeasible, since
it would lead to the same issues described in Section 2.3.1. The third and last scenario
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builds on the second one, but focus on imposing additional structure in the subset of
variables J ′ = (5, 6, 7, 8, 9, 10), generated from a dense hierarchical log-linear model
with second order interactions. Main effects are sampled from standard Gaussians,
while coefficients associated to the same interaction term are sampled from standard
Gaussians and constrained to have the same sign.

The focus of these settings is on inducing challenging data generating processes,
characterised by complex dependencies over subsets of specific categorical variables.
Posterior inference in each scenario for the mills approach relies on 3000 iterations
collected after a burn-in period of 2000, setting a conservative upper bound H = 5

and σ2 = 3. The priors for the log-linear coefficients were centered on 0 in each mix-
ture kernel. As a competitor approach, we considered a finite approximation of the
parafac tensor decomposition proposed in Dunson and Xing (2009), approximating
the Dirichlet Process with a finite Dirichlet distribution with 10 components and sparse
hyper-parameter. Estimation is performed via Hamiltonian Monte-Carlo using the r

package rstan (Team, 2018) and simulating 3000 iterations after a burn-in period of
2000.

Posterior inference focuses on marginal bivariate associations, measured via Cramer-
V. In particular, we consider the posterior median of the Cramer-V under both methods
and the posterior probability that the Cramer-V between variable j and variable j′ –
denoted as ρj j′ – is above a specified significance threshold. Such an estimator can also
be used to conduct a formal test to asses the presence of a significant bivariate rela-
tionship among pairs of categorical variables. Coherently with studies in social sciences,
we choose a threshold of 0.2 for the Cramer-V, and focus only on those ρj j′ > 0.2 (e.g.
King et al., 2008; Russo et al., 2018).

Results are reported in Figure 2.1, 2.2 and 2.3, indicating a satisfactory performance
of both methods in detecting the underlying dependence patterns. Indeed, first and
second panel of Figure 2.1, 2.2 and 2.3, report the posterior median of the Cramer-V
under the mills and the parafac decomposition, respectively. Bivariate distributions
with true Cramer-V greater than 0 are denoted are red crosses. Results suggest a good
performance of both methods in estimating the Cramer-V under different data generat-
ing processes. However, the parafac underestimates several associations patterns when
the generating process is complex, such as the third scenario illustrated in Figure 2.3.
This behaviour is confirmed in the third and fourth panels of Figure 2.1, 2.2 and 2.3,
which illustrate the estimated p̂r(ρj j′ > 0.2) under the mills and the parafac de-
composition, respectively, and confirming a tendency of the parafac to assign very low
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Table 2.1: Posterior estimates for the number of the active components in the simulation
studies. The upper bound for mills is fixed at H = 5. Modal frequencies are denoted in
boldface.

1 2 3 4 5 6 7 8
Scenario 1 parafac 0.000 0.000 0.000 0.000 0.561 0.463 0.165 0.011

mills 0.166 0.803 0.030 0.001 0.000 · · ·
Scenario 2 parafac 0.000 0.000 0.003 0.997 0.000 0.000 0.000 0.000

mills 0.935 0.064 0.001 0.000 0.000 · · ·
Scenario 3 parafac 0.000 0.000 0.000 0.000 0.467 0.440 0.093 0.000

mills 0.821 0.174 0.005 0.000 0.000 · · ·

evidence to some significant associations patterns, in particular under complex data gen-
erating process. This behaviour is not surprising, since the latent class model requires
several components to adequately characterise complex dependence patters, while the
more structured mills kernels mitigates such problem and provides satisfactory results
with substantially fewer components. However, results from Figure 2.3 also suggest that
mills might instead overestimate some associations more severely than a parafac de-
composition, providing an higher false discovery rate. This issue should be investigated
with more attention, and it might be due to the inclusion of some redundancy in the
composite-likelihood specification in Equation (2.7). Since such an issue is not partic-
ularly severe, and affects only a small number of settings and of association terms, we
can arguably trust the results of posterior inference from the current specification.

To further confirm this intuition, Table 2.1 shows the posterior estimates for the
number of active components under both approaches. This estimates are obtained
computing, at each step of the mcmc, the total number of non-empty mixture compo-
nents. For example, the first scenario provides evidence of 5 mixture components for
the parafac versus 2 components for mills. Similar results are achieved also in the
second and third scenario, in which mills focuses on one mixture components while
parafac requires 4 or 5 components. These results are highly expected, and confirm
the ability of the mills composite kernel to induce dependence patterns within each
component, therefore allowing to model categorical data with fewer components than
a parafac decomposition, which leverage a conditional independence assumption and
often requires a prohibitive number of mixture components (Johndrow et al., 2017).
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Figure 2.1: First scenario. Posterior median for the Cramer-V and pr(ρj j′ > 0.2) estimated
under the mills approach and a competitor latent class model. Colors range from white
to black as values range from 0 to 1. Red crosses indicate the bivariate distribution with
significant association under the data generating process.

X X X X
X X X X
X X X X
X X X X
X X X X

X X X X
X X X X
X X X X
X X X X
X X X X

X X X X
X X X X
X X X X
X X X X
X X X X

X X X X
X X X X
X X X X
X X X X
X X X X

Estimated Cramer − V

MILLS

Estimated Cramer − V

PARAFAC

Estimated pr( ρjj′ > 0.2 )

MILLS

Estimated pr( ρjj′ > 0.2 )

PARAFAC

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 2.2: Second scenario. Posterior median for the Cramer-V and pr(ρj j′ > 0.2) es-
timated under the mills approach and a competitor latent class model. Colors range from
white to black as values range from 0 to 1. Red crosses indicate the bivariate distribution
with significant association under the data generating process.
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Figure 2.3: Third scenario. Posterior median for the Cramer-V and pr(ρj j′ > 0.2) estimated
under the mills approach and a competitor latent class model. Colors range from white
to black as values range from 0 to 1. Red crosses indicate the bivariate distribution with
significant association under the data generating process.



46 Section 2.5

2.5 Application

The method described in Section 2.3.2 is applied over the dataset illustrated in Sec-
tion 2.2. Posterior inference is performed with a more conservative upper bound H = 10

and relying on 5000 mcmc samples with a burn–in of 2500, obtaining satisfactory con-
vergence and mixing, measured via effective sample sizes and analysis of the trace plots.
Posterior computation is based on a mixed r and c++ implementation and requires
approximately 1 minutes per 1000 iterations on a laptop with an intel(r) core(tm)

i7-7700hq @ 2.8 ghz processor and 16gb of ram running Linux.

Differently from the simulations, we have opted for a different tool to visualise results
from posterior inference. Indeed, it is useful to visualise the estimated association struc-
ture as a network, with nodes representing categorical variables and edges the presence
or the degree of a specific pairwise measure of association. It is worth highlighting that
the tool “network” is used here in the sense of the graphical modelling literature , where
the focus is on assessing the presence of marginal or conditional dependence across a set
of variables, and eventually measuring its intensity and direction (e.g. Lauritzen, 1996).
Therefore, the sets of graph G = {V , E} correspond here to the index set of categorical
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Figure 2.4: Association structure of the items. Color of the nodes varies with subscales,
while edges width varies with the value of the posterior mean of the pairwise Cramer-V. Edges
with values lower than 0.4 are not reported.
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Figure 2.5: Association structure of the items. Color of the nodes varies with subscales,
while edges width varies with the posterior probabilities p̂r(ρj j′ > 0.2). Edges with values
lower than 0.9 are not reported.

variables V = {1, . . . , p} and to the posterior estimates of the marginal association,
respectively. Such an interpretation is totally different from the “data” interpretation of
Chapter 1, and indeed highlights how network science can be a powerful ally in many
field of application.

Figure 2.4 illustrates the posterior median of the estimated pairwise Cramer-V. Edges
size varies according with the posterior median of the Cramer-V, with thicker edges
corresponding to stronger associations. In order to further improve the graphical vi-
sualisation of the results, we have focused only on pairs with an estimated Cramer-V
above 0.4, excluding from the visualisation nodes without connections. Results suggest
a general tendency of items to create links with others that are in the same sub-scales,
with items in the scl-dep being strongly associated and suggesting a strong associa-
tions among depressive profiles in suicide attempts patients. This result is expected and
confirms the validity of the tools to measure psyco-pathological symptoms and empathic
profiles. More interesting associations involve items in different subscales. For exam-
ple, it is worth highlight the presence of an association between the items scl-anx-23

(“Suddenly scared for no reason”) and scl-anx-80 (“Feeling that familiar things are
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strange or unreal”) with the item from the iri questionnaire emp-1 (“I daydream and
fantasize, with some regularity, about things that might happen to me”). Another inter-
esting association involves the items scl-51 (“Your mind going blank”) and iri-19 (“I
am usually not effective in dealing with emergencies.”), likely to define individuals with
low-capacity to handle panic situations.

Figure 2.5 further refines this findings providing additionally insights on the associ-
ation structure among the items. Specifically, the posterior probabilities p̂r(ρj j′ > 0.2)

are computed for each pair of variable post-processing the mcmc output. Figure re-
ports only edges associated with estimated posterior probabilities greater than 0.5. The
main empirical findings are similar with Figure 2.4, suggesting a general preference to
observe strong associations within the same subscales, and suggesting the presence of
connections between depressive states and obsessive compulsive profiles.



Chapter 3

Latent structures models for

removing dependence

3.1 Biased data

In the previous chapters, the use of latent variable modelling was motivated as a strategy
to characterize complex dependence structures in an unobservable latent space, there-
fore modelling the observed quantities as conditionally independent given the latent
variables. This modelling approach allows one to take into account intricate structures
balancing flexibility with a drastic reduction in the number of parameters, and conduct
posterior inference efficiently in involved case studies. The complexity of the depen-
dence structures of this chapter arise instead from different considerations on the data
generating process and the research objectives. Specifically, it is of interest to charac-
terize such structures in order to restrain some specific aspects and achieve conditions
motivated by peculiar case studies. Indeed, we will show that modification of the main
strategy used so far can be successfully introduced to solve these more broader issues.

Recently, there has been growing interest in developing algorithms and statistical
tools to assist, and eventually replace, humans in high-stakes decision processes. Some
examples include credit scoring, hiring and sentencing, among many others (e.g. Dun-
son, 2018). The desire for introducing algorithms in such decisions settings comes from
different considerations, ranging from attempting to reduce unethical differences to im-
proving the efficiency and costs of the recruitment process (e.g. Friedler et al., 2019).
Indeed, it has been often argued that decisions relying on automated systems would be
automatically fair, efficient and objective, since computers are not supposed to encode
prejudices or to make decision driven by subjective arguments. Fairness and objectiv-
ity are crucial in high-stake decision processes, since these outcomes have significantly

49
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impact on the entire society as a whole and on individuals.

The relevance of this problem has motivated different research threads on evaluating
fairness of automated procedures. Indeed, the centrality of the data in the development
of statistical tools becomes even more relevant in the context of fair decisions making;
see, for example, the report of Munoz et al. (2016). Modern statistical applications
often rely on large datasets collected within observational studies for a convenience
sample of individuals, where interest is on detecting relationships between features and
outcome variables; for example, diseases or behaviors. Such processes create datasets
in which the sampling mechanism is complex, unknown, and often subject to some
form of systematic bias which might affect fairness and objectivity of decisions based
on automated tools (Dunson, 2018). Indeed, when selection bias exists in the sampling
mechanism, the data often encode spurious associations, and there is growing recognition
that machine learning algorithms will reproduce and often amplify bias in the data upon
which they were trained (e.g. Angwin et al., 2016; Zech et al., 2018). For example,
recruiters in high-tech companies commonly short-list potential candidates on the basis
of their curriculum-vitae, leveraging algorithms trained on past interviews (e.g. Hoffman
et al., 2017). If a systematic gender-gap has been observed in the past, this tendency
will be propagated into the estimated algorithms and into future predictions, therefore
amplifying such phenomena instead of mitigating it.

More recently, great attention has been devoted to the algorithmic aspect of the
problem of fair high-stake decision making (Corbett-Davies et al., 2017). This line of
research has focused on the development of algorithms to predict an outcome of interest
as a function of different covariates, excluding from the analysis variables measuring
sensitive attributes; for example, predicting the salary during a job interview on the basis
of the information contained in the curriculum-vitae, excluding gender of the candidate
to avoid gender-gap effects. However, strong associations are often observed among
sensitive attributes and other demographic features, and the naive exclusion of sensitive
information is not sufficient to mask those information, which can still be retained
on the basis of other covariates. More recently, researchers have proposed to include
specific penalisation into the algorithms, optimizing models with respect to ad-hoc loss
functions; for example, equating the proportions, across ethnic groups, of individuals
incorrectly classified (Dwork et al., 2012). Such an approach requires to include very
specific constraints, which are often impossible to be satisfied simultaneously (Friedler
et al., 2016) and are limited to the specific model which included them.
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3.2 Criminal justice bias

An important area in which unwanted associations arise is in criminal justice data. There
has been much recent attention on the use of criminal risk assessment models, many
of which use demographic, criminal history, and other information to predict whether
someone who has been arrested will be re-arrested in the future. These predictions then
inform decisions on pre-trial detention, sentencing, and parole. In practice, the data
used to train the models are based on police arrest records, which are well known to
be subject to racial bias (Simoiu et al., 2017; Rudovsky, 2001). For example, different
studies have highlighted that records in police databases are not representative of the
phenomena of interest (criminality), likely due to police patrols discretion in choosing
which neighborhoods should be patrolled and who should be detained (Lum and Isaac,
2016). When risk assessment models are trained on such data, racial minority groups
which are oversampled in the training data tend to be systematically assigned to higher
risk categories on average (e.g. Lum and Isaac, 2016; Angwin et al., 2016).

In this chapter we will focus on an arrest record database, which we refer to as
compas dataset (Angwin et al., 2016). Data consists of police records for n = 6180

defendants in Broward County, Florida, collected during 2013 and 2014 and referred to
detection of minor offenses; for example, marijuana possession. The database is publicly
available at the link github.com/propublica/compas-analysis; see also Larson et al.
(2016) for a detailed description of the data collection process. For each individuals,
several demographic information are available, including age, sex, and information on
prior offenses, along with their outcomes within 2 years of the decision and the race of
the defendant. We will focus the analysis on the demographic information and all the
interactions terms among them, for a total of p = 63 covariates.

To confirm our intuition on the presence of racial bias, Figure 3.1 reports the empirical
distribution functions for the out-of-sample predictions of the probability of recidivism.
Specifically, a Bayesian logistic regression estimated on the training data was used to
provide estimates for the probability of recidivism over an independent test set. The em-
pirical distribution of the predicted values is compared across racial groups in Figure 3.1.
Predictions are reported for two different regressions, including race as a control and
removing it from the analysis, respectively in the first and second panel. Results suggest
that non-Caucasian individuals are systematically assigned to higher risk of recidivism,
with the black dotted curves being shifted towards higher risks of recidivism. These
results also suggest that removing racial information from the analysis, as suggested for
a long time by practitioners, is basically ineffective in mitigating systematically different

github.com/propublica/compas-analysis
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Figure 3.1: Out-of-sample predictions on the probability of recidivism for the compas
dataset. Gray continuous lines refer to Caucasian, black dotted to non-Caucasian.

predictions.

The focus of this chapter is on providing an adjusted dataset to guarantee that any
algorithm can be estimated with strong guarantees in terms of fairness of predictions.
Specifically, predictions are defined as “fair” (with respect to race) if they are inde-
pendent from race (Johndrow and Lum, 2019). Leveraging latent structure modelling,
we characterize the dependence among the observed data, and then we constrain such
structure to remove aspects which depend on racial information, thereby guaranteeing
fairness of predictions obtained from models estimated on such structures. This aim is
addressed with a constrained Gaussian Latent Factor Model for continuous data, which
decomposes the dependence structure using a compact representation which retains the
main features of the data and impose independence among the estimated latent structure
and the sensitive attributes via constrained optimisation.

3.3 Gaussian Latent Factor Model

3.3.1 Model specification

Let X denote an n×p data matrix of p features measured over n subjects, and let Z de-
note an additional group membership variable. Lastly, let Y define a response variable.
In the recidivism example, these quantities correspond to the data matrix of demo-
graphic information, the race of the defendant and two-years recidivism, respectively.
The focus of our approach is on providing a general procedure to obtain predictions for
Y, denoted as Ŷ, such that Ŷ ⊥⊥ Z. Following Johndrow and Lum (2019), we develop
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procedure to create an adjusted matrix X̃ with X̃ ⊥⊥ Z. This condition is sufficient
to guarantee that predictions Ŷ based on the adjusted matrix are also independent
of Z (Johndrow and Lum, 2019). Since such a procedure focuses directly on prepro-
cessing the data, instead of on a specific algorithm to predict recidivism, it allows to
estimate any algorithm on the adjusted matrix X̃ with guarantees of fairness of the
predicted values. In order to address this aim, we propose an explicit statistical model
for the data matrix X, which allows us to characterise the dependence structure across
the different features leveraging a low-dimensional latent variable representation, and
to impose further constraints across such representation and the protected variable Z

during estimation.

Let xᵀ
i ∈ Rp define a generic p-dimensional row of X. We will suppose that xi is

generated from a Gaussian latent factor model, specified as follows.

(xi | Λ,wi,Σ) ∼ Np(Λwi,Σ),

(wi) ∼ Nk(0, Ik) i = 1, . . . , n,
(3.1)

with Σ = diag(σ1, . . . , σp), Λ p× k loading matrix and wi k-dimensional latent factors.
Using a matrix notation, the matrix X generated from a Gaussian latent factor model
can be represented ad follows.

X = WΛᵀ + ε, (3.2)

with W denoting the n×k latent factors matrix and ε = (ε1, . . . , εn)ᵀ denoting the n×p
error matrix, with εᵀi ∼ Np(0,Σ) for i = 1, . . . , n. Popular choices for identifiability
impose some additional structure in the loading matrix Λ; for example, lower triangular
constraints (Geweke and Zhou, 1996). This specification allows to remove the invariance
of the latent space with respect to orthogonal transformations, and provides a direct
way to interpret the latent factor by ordering them in terms of their relative importance.
In our case study, interpretation of the latent factors is not required, as long as their
joint structure captures the relevant properties of the data. Indeed, the choice of the
coordinates used to describe such latent space is not relevant, and therefore we prefer
to avoid constraints and rely on the over-parametrised representation of Equation (3.1).

Conditionally on wi, each xi is assumed to be uncorrelated given the latent factors.
Similarly to the latent structure methods of Chapter 2, dependence is explicitly obtained
marginalising over the distribution of the latent factors, with standard Gaussian theory
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showing that

(xi | Λ,Σ) ∼ Np(0,ΛΛᵀ + Σ), i = 1, . . . , n.

The Gaussian latent factor model, similarly to the approaches discussed in Chapter 1
and Chapter 2, provides a simple and effective way to model high-dimensional data
with intricate dependence structures using a moderate number of parameters. Indeed,
the matrix W provides a natural candidate for a low-dimensional representation of
the data, in analogy with Probabilistic PCA (Tipping and Bishop, 1999) and other
probabilistic dimensionality reduction techniques (e.g. Bishop, 2006, chapter 12). It is
also worth stressing that the dependence structure among the columns X is entirely
modelled through the latent factors W, while from the loading matrix Λ specifies the
location of each column of X as a linear combination of the columns of W. Therefore,
we focus on estimating a constrained version of the latent factors W, which guarantees
an accurate low-dimensional approximation of X and is such that W ⊥⊥ Z.

3.3.2 Constrained Bayesian Inference

A Bayesian approach to inference is followed. For a complete specification of the model
defined in Equation (3.1), we specify prior distributions for the elements of the loading
matrix Λ and of Σ. For computational convenience, conjugate priors are specified,
thereby letting

λj ∼ Nk(0,Ψ), σ2
j ∼ Gamma(a0, b0) j = 1, . . . , p, (3.3)

with Ψ = diag(ψ, . . . , ψ). This choice allows one to obtain closed form expressions for
the full conditional distributions and, for example, implement a simple Gibbs Sampler
algorithm to draw from the posterior distribution p(W,λ,Σ | X) or derive an highly-
scalable mfvb routine, similarly to the approach followed in Section 1.5.3. This aim can
be addressed recasting the Gaussian latent factor model expressed with matrix notation
in Equation (3.1) into conditionally multivariate linear regressions, in the same spirit
of the lfm for network data of Section 1.5; see also Lopes and West (2004) for related
arguments. Although a complete characterisation of the posterior distribution is crucial
in a large number of applications, the case study of this chapter justifies faster and
scalable inferential procedures focusing only point estimates. Indeed, since interest is
on providing a single low-dimensional representation of the data, a precise quantification
of the uncertainty of the estimation process is not necessary for addressing such an aim.
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Computational methods to estimate the posterior mode of high-dimensional distri-
butions — sometimes referred to as Maximum-A-Posterior (map) estimation — are
crucial in a large variety of applications. Indeed, several numerical problems can be
recasted as optimisation procedure for map estimation, thereby allowing to introduce
recent advances in Bayesian optimisation (e.g. Cockayne et al., 2018). Among different
methods for optimising high-dimensional functions, the em algorithm (Dempster et al.,
1977) is certainly one of the most popular ones. Although it is more commonly used for
likelihood maximisation, the em algorithm naturally extends to map estimation with
minor modifications (Dempster et al., 1977).

A straightforward application of the Bayes theorem allows us to express the posterior
distribution as follows.

p(W,Λ,Σ | X) =

p(Λ)p(Σ)
n∏
i=1

p(xi | Λ,wi,Σ)p(wi)∫ ∫ ∫
p(Λ)p(Σ)

n∏
i=1

p(xi | Λ,wi,Σ)p(wi)dWΛdΣ

, (3.4)

with p(xi | Λ,wi,Σ) and p(wi) defined in Equation (3.1) and the prior distributions in
Equation (3.3). Since the parameters are marginalised out in the normalising constants,
it follows that

arg max
W,Λ,Σ

p(W,Λ,Σ | X) = arg max
W,Λ,Σ

p(Λ)p(Σ)
n∏
i=1

p(xi | Λ,wi,Σ)p(wi), (3.5)

and therefore maximising the posterior distribution is equivalent to maximising the
likelihood function times the prior distribution.

This results notably simplifies map estimation via em algorithm, since it allows to
adapt a standard em routine for mle introducing the contribution of the prior only in
the m step of the algorithm as a penalty term (McLachlan and Krishnan, 2007, Section
6.5). In case of conditionally conjugate exponential families with closed-form m-step,
this extension is further simplified since it generally require minor algebraic adaptations.

We modify the em algorithm for map estimation in the Gaussian latent factor model
by adding an additional step to impose further constraints in the latent vectors W.
The Gaussian specification simplifies such a constraint since uncorrelation also implies
independence under a multivariate Gaussian specification; see also Takai (2012) for
related arguments on constrained em algorithms and their properties.
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Specifically, following Bishop (2006, Sec. 12.2.4), the e-step of the algorithm leads
to

E[wi] = GΛΣ−1xi, i = 1, . . . , n (3.6)

with G = (Ik + ΛᵀΣ−1Λ)−1. Such expectations are adjusted with a projection step in
which we compute the residuals of a multivariate regression of E[W] over Z, thereby
letting

ŵi = E[wi]− Z(ZᵀZ)−1ZᵀE[W]. (3.7)

The m-step is available in closed form, plugging the adjusted ŵi. This choice leads to

Λ =

[
n∑
i=1

xiŵ
ᵀ
i

][
nG +

n∑
i=1

ŵiŵ
ᵀ
i + Ψ−1

]−1

σj =

[
2b0 +

n∑
i=1

(xij − λᵀ
j ŵi)

2

]
[2a0 + n+ 2]−1 .

(3.8)

The algorithm proceeds iteratively until variations in the parameters are sufficiently
small. In our experience, speed of convergence can be greatly improved with appropriate
initialisations; for example, initialising ŵi at the left singular vectors of X. We refer
to this procedure as Constrained Maximum a Posterior for the Gaussian latent factor
model in the sequel; for brevity, cmap.

3.4 Simulation Study

We conduct a simulation study to evaluate the empirical performance of the proposed
algorithm. The focus of the simulations is on assessing the success in removing the
influence of the group variable from predictions for future subjects and evaluation of

Table 3.1: Simulation studies. Out-of sample prediction of the response variable

.

psva combat cmap

Scenario 1 rmse 82.26 41.66 31.08
mae 91.94 30.49 22.76

mdae 32.88 21.69 15.02

Scenario 2 rmse 19.29 17.54 11.25
mae 15.46 14.19 9.15

mdae 13.11 12.58 8.1

Scenario 3 rmse 20.82 12.77 12.88
mae 16.38 10.10 10.12

mdae 13.65 10.26 7.93
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the goodness of fit of predictions. We also compare our method with two competitor
approaches developed in biostatistics. Specifically, we focus on the combat method of
Johnson et al. (2007) and the psva approach of Leek and Storey (2007). Indeed, there
is a strong connection among the problem of fair predictions and batch effect removal
in biostatistics, where high dimensional data are subject to selection biases due to the
experimental design (Aliverti et al., 2019, 2018).

The first scenario focuses on a setting with n = 1000, p = 200 and true low-rank
structure for X with k = 10. Specifically, the data matrix X is constructed in two steps.
Firstly, we simulate a loading matrix S, with size (n, k), and a score matrix U with size
(k, p), with entries sampled from independent Gaussian distributions. A group variable
Z of length n is sampled from independent Bernoulli distributions with probability equal
to 0.5. Each p-dimensional row of the (n× p) data matrix X is drawn from a p-variate
standard Gaussian distribution with mean vector µi = (si − λzi)U, i = 1, . . . , n and λ
sampled from a k-variate Gaussian distribution. Lastly, a continuous response Y with
elements yi, i = 1, . . . , n is sampled from independent Gaussians with mean (si − λzi)β
and elements of β sampled uniformly in (−5, 5). We highlight that in this setting the
data matrix X has a low-rank structure and the response variable Y is a function both
of the group variable Z and on the low-dimensional embedding of X.

In the second setting the generating process for data matrix X is identical to the
first setting, while the response variable Y does not depend on Z. Indeed, elements yi
of Y are sampled from standard Gaussians with mean vector µi = siβ, i = 1, . . . , n.
Therefore, the response Y depends only on the low-dimensional embedding of X. The
third setting focuses on a “large p - small n” setting, in which the dimension of the
data matrix X is n = 100, p = 2000 with k = 10. The construction of the matrix X

follows the first setting, and dimensions of the score and loading matrix are changed
accordingly.

In each setting, data are divided into a training set and a test set, with size equal to
3/4 and 1/4 of the observations, respectively. Therefore, the number of observations in
the training and test set is equal to (750, 250) in the first, second and fourth scenario,
and equal to (150, 50) in the third. Adjustment methods are applied separately on the
train and test sets. Separate linear regressions are estimated on the adjusted training
sets, and predictions Ŷ are provided for the adjusted test sets.

Table 3.1 reports the root mean square error (rmse), mean absolute error (mae)
and median absolute error (mdae) for the adjusted predictions from the competitors
(combat, psva) and the proposed method (cmap). Results suggest that the perfor-
mance of cmap for the Gaussian latent factor model is similar to the competitors in
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Figure 3.2: Empirical cumulative distribution functions for Ŷ in the first simulation scenario.

terms of predicting the response Y. Specifically, the proposed method outperforms the
competitors in the first and second scenario, with a better performance with respect to
all the metrics considered. In the third scenario, we observe a slight better performance
for the psva. However, it is worth mentioning that the performance of cmap is very
close with the best performing competitor.

Figure 3.2 illustrates the predictive performance of the three methods over the in-
dependent test set. Predictions are reported also for an unadjusted case (fourth panel)
to illustrate that a simple model without adjustment actually leads to relevant differ-
ence across predictions. Figure 3.2 also justifies the substantially worse performance
of sva in the first setting. Although the predictive gap has been reduced, predictions
are quite poor and the method is not able to adjust predictions without loosing in pre-
dictive power. Instead, combat and cmap report reasonable results, both in terms of
predictive power and in term of reduction of predictive gap.

3.5 Application to the criminal justice dataset

The adjusted Gaussian latent factor model is applied over the dataset described in
Section 3.2. Data was randomly divided into a training set and a test set, with 3/4 and
1/4 of observations, respectively; cmap was independently applied over the two sets,
and a logistic regression and a random forest estimated on the adjusted training set was
used to provide predictions on the test set.

Figure 3.3 compares the out-of-sample predictive distribution for the predicted risk
of recidivism under a random forest (left panel) and a logistic regression (right panel).
Compared with the motivating Figure 3.1, the gap between the two curves is notably
reduced, leading to predictions which are more similar across different racial groups for
both methods. Specifically, under the proposed approach, predictions for different racial
groups are very similar in terms of estimated probabilities, although the predictive gap
is not completely removed.
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Figure 3.3: Empirical cumulative distribution functions for Ŷ under two adjusted ap-
proaches. Light solid gray refers to white ethnicity, dotted black to non-white.

Table 3.2 reports results for the model previously described and other competitor ap-
proaches. The first and second columns of Table 3.2 represent, respectively, results for a
logistic regression using all the available original covariates and their interaction terms
(logistic) and all the variables, interaction terms and race (logistic,z). The column
compares instead predictive performance for a random forest (rf), using all the unad-
justed available covariates and their interactions. Predictive performance is measured
via Accuracy (acc), Area Under the Roc Curve (auc), True Positive Rates (tpr), True
Negative Rates (tnr), Positive Predicted Values (ppv) and Negative Predicted Values
(npv) for the out-of-sample predictions. Results are averaged over 50 splits over train
and test set, and standard deviations across splits are reported in brackets. Results for
the unadjusted procedures suggest a reasonably good performance in predicting the risk
of recidivism, with the logistic regression which includes racial information being the
overall best model. However, as highlighted in Figure 3.1, such predictions are system-
atically different by race, producing predictions for black individuals which are assigned
to higher values on average.

Table 3.2: Predictive performance on the compas dataset.

logistic logistic, z random forest logistic,cmap rf, cmap

acc 0.669 (0.02) 0.671 (0.01) 0.671 (0.01) 0.654 (0.01) 0.606 (0.01)
auc 0.712 (0.02) 0.714 (0.02) 0.712 (0.01) 0.708 (0.01) 0.642 (0.01)
tnr 0.719 (0.02) 0.716 (0.04) 0.766 (0.02) 0.659 (0.02) 0.608 (0.01)
tpr 0.609 (0.05) 0.617 (0.03) 0.558 (0.02) 0.649 (0.01) 0.602 (0.02)
ppv 0.644 (0.02) 0.645 (0.02) 0.665 (0.02) 0.613 (0.01) 0.562 (0.02)
npv 0.689 (0.02) 0.692 (0.01) 0.675 (0.01) 0.692 (0.01) 0.647 (0.01)
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The second part of Table 3.2 illustrates results for the adjusted procedures. Each
adjusted method relies on datasets adjusted trough cmap with k = 20. Specifically,
cmap adjustment was estimated independently over the train and test set, and we rely
on a logistic regression model (logistic, cmap) and a random forest (rf, cmap) es-
timated over the adjusted training data to perform predictions over the adjusted test
sets. Predictive performance after adjustment is highly comparable with the unad-
justed procedures; for example, auc for logistic regression drops from 0.712 to 0.708.
The empirical distributions for the predicted values is illustrated in Figure 3.3, and sug-
gests that adjustments is successful at removing dependence in predictions from both
approaches. These results, combined, provide a compelling argument in favour of the
proposed method, which allows to successfully remove dependence of predictions with-
out significantly affecting predictive power.



Conclusions

Discussion

This thesis has focused on Bayesian modelling for complex dependent structures. Through
different case studies, it has been shown how latent variable specifications provide a
powerful modelling strategy to characterise dependence structures with flexible speci-
fications amenable to efficient computational algorithms. Modelling dependence in an
unobservable space also allows to improve the interpretation of the results, focusing on
a compact representation of the data which characterises the main property of the rich
dependence structure.

The aim of Chapter 1 has been on illustrating the use of latent structure specifications
with network data. Specifically, novel latent space models are developed for learning
shared anatomical effects and latent structures underlying replicated brain networks, fo-
cusing on two applications involving structural brain scans. The main empirical findings
are consistent across the two case studies, suggesting a general preference for the brain
regions to connect with others that are spatially closer and within the same hemisphere.
Moreover, both applications indicate an interesting relationship between the estimated
positions of the brain regions in the latent space and their anatomical counterpart, con-
firming the presence of an intricate structure in the brain architecture which cannot be
explained only in terms of anatomical determinants.

Chapter 2 has focused on latent structures for multivariate categorical data, provid-
ing a novel methodology to combine the benefits of latent class analysis with log-linear
modelling. The findings on the psychiatric case study of interest shown interesting
association patterns across different psychological profiles, suggesting important asso-
ciations among patients with depressive states and obsessive compulsive disorders, and
among the fantasy component of empathy and empathic concern. Moreover, there is
evidence of significant associations across the fantasy component of empathy and some
psychological symptoms. Our approach makes a first step toward understanding the
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relation across important psychological dimension in suicide attempt patients, and the
inferential results can contribute to the scientific knowledge on the topic.

The focus of Chapter 3 has been on illustrating the use of latent structures to re-
move dependence patterns in high-stakes decisions processes, focusing on a case study
in criminal justice. The methods illustrated in Chapter 3 significantly reduce the pre-
dictive gap in predictions of recidivism across black and white defendants, providing a
model-based pre-processing tool which allows to estimate any algorithm on the adjusted
data. Moreover, accuracy of adjusted predictions is only slightly reduced after adjust-
ment, providing an additional important motivation for introducing such an approach
in courtrooms.

Future directions

Some potential future directions are certainly worth to be mentioned. The methods of
Chapter 1 relate with an increasing interest in Bayesian approaches for multi-resolution
medical imaging data (e.g. Peruzzi and Dunson, 2018). Clearly, high quality scans
require more expensive capacities and efforts in terms of medical equipment and data
storage, which do not automatically lead to more interesting inferential results. A
desirable objective is to investigate the optimal resolution of such scans, providing the
best trade-off between costs and benefits in terms of power. An alternative improvement
involves the modelling of more detailed data, such as white fibers counts instead of their
presence or absence. Some approaches which might be useful to develop novel tools in
this direction comes from the ecological literature, where there has been much interest
in modelling species counts via latent determinants (e.g. Gotelli and Ellison, 2004).

Some developments for Chapter 2 involve a more rigorous characterisation of the
theoretical properties of the baseline mills model. There has been some interest in
the literature on developing asymptotic arguments for Bayesian modelling with non-
standard likelihood function; for example, Pauli et al. (2011). Also, the statistical
efficiency of the algorithm could be improved by introducing additional latent variables
characterising groups of categorical variables with similar associations. This direction
is currently under investigation.

Chapter 3 motivates further extensions to deal with non-continuous data, relaxing
the multivariate Gaussian assumption explicitly allowing for variables on discrete scales,
such as counts and categorical variables. One possibility to address this objective is to
introduce a link function similarly to a glm specification, therefore considering the
glfm as a further latent model for the linear predictor of such specification.
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Appendix for Chapter 1

A.1 Latent space model with local clustering

A.1.1 Computational Details

Let S denote the n(n− 1)/2 vector comprising the lower–triangular elements of A, and
define S̄ = S−(m/2) ·1n(n−1)/2, with 1n(n−1)/2 a n(n−1)/2 vector of ones. Moreover, let
X be the n(n−1)/2×4 matrix with a first column equal to 1n(n−1)/2, and the remaining
three comprising the vectorized version of the edge covariates hem, lobe, and d. Finally,
define d̄ as the n(n− 1)/2 vector corresponding to the vectorized version of d̄ij. Under
these settings, and adapting the Pólya–Gamma data augmentation scheme for logistic
regression Polson et al. (2013), the Metropolis–within–Gibbs routine to draw samples
from the posterior distribution, iterates among the following steps.

• Pólya–Gamma update. Update the augmented data from the Pólya-Gamma
full–conditional

(ωl | −) ∼ PG(m, Xlβ − d̄l),

for every l = 1, . . . , n(n− 1)/2.

• Coefficients update. Sample β from the full–conditional

(β | −) ∼ N4[(X
ᵀΩX + Λ−10 )−1(XᵀS̄ + XᵀΩd̄), (XᵀΩX + Λ−10 )−1],

with Ω denoting the n(n − 1)/2 × n(n − 1)/2 diagonal matrix with elements
(ω1, . . . , ωn(n−1)/2).

After the above steps, the algorithm proceeds separately for the x̄, ȳ and z̄ latent
dimensions. The detailed steps to update the latent x̄–coordinates are reported below.
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The steps associated with the latent ȳ–coordinates and z̄–coordinates, proceed in a
similar manner.

• Cluster assignment update. Let cxi
denote the clustering indicator for the

brain region i with respect to the latent coordinate x̄. Assign each i = 1, . . . , n to
one of the mixture components by sampling from the full–conditional categorical
variable with probabilities

pr(cxi
= h | −) =

νxh
φ(x̄i;µxh

, σ2
xh

)∑H
q=1 νxq

φ(x̄i;µxq
, σ2

xq
)
,

for each h = 1, . . . , H and i = 1, . . . , n, where φ(x̄i;µxh
, σ2

xh
) indicates the density

of the Gaussian with parameters (µxh
, σ2

xh
) evaluated at x̄i.

• Latent coordinates update. Let pr(S | β, d̄,X) denote the joint distribution
of the observed edges under model (1.3)–(1.4). Update the each latent coordinate
x̄i, for i = 1, . . . , n, from a random walk Metropolis–Hastings step with Gaus-
sian proposal and full–conditional distribution (x̄i | cxi

= h,−) proportional to
φ(x̄i;µxh

, σ2
xh

)pr(S | β, d̄,X).

• Kernel parameters update. Let

nxh
=

n∑
i=1

I[cxi
= h], m̄xh

= n−1xh

n∑
i=1

x̄iI[cxi
= h], s2xh

=
n∑
i=1

(x̄i − m̄xh
)2I[cxi

= h]

denote the cluster size, the intra–cluster mean and the intra–cluster sum of squares
deviations from the mean. Sample (µxh

, σ2
xh

) from the Normal–Inverse Gamma

(σ−2xh
| −) ∼ Gamma(ηxh

/2, ηxh
ξxh

/2)

(µxh
| σ2

xh
,−) ∼ N

(
κ0µ0 + nxh

m̄xh

κ0 + nxh

,
σ2

xh

κ0 + nxh

)

with ηxh
= η0 + nxh

and ξxh
= [η0ξ0 + s2xh

+ κ0nxh
(m̄xh

− µ0)
2/(κ0 + nxh

)]/ηxh
for

each h = 1, . . . , H.

• Mixing probabilities update. Sample the mixing probabilities of the prior for
the x̄–coordinate from the full conditional

(νx | −) ∼ Dirichlet
(

1

H
+ nx1 , . . . ,

1

H
+ nxH

)
.
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Table A.2: Summaries of the posterior distribution for the parameter β in the simulation
studies.

Mean Median Std. Dev. Cred. Int.95%
Scenario 1 1.99 1.99 0.03 (1.92, 2.05)
Scenario 2 1.98 1.98 0.04 (1.90, 2.05)
Scenario 3 2.05 2.04 0.05 (1.96, 2.14)

A.1.2 Simulation study

Table A.1 provides additional details on the simulation study conducted in Section 1.4.3.
In particular, Table A.1 illustrates the posterior distribution for the number of active
components H̄x, H̄y and H̄z characterizing the clustering structure induced by the la-
tent coordinates x̄, ȳ and z̄, respectively. These posterior distributions can be easily
obtained by computing, for each step of the mcmc, the total number of non–empty
mixture components having at least one region assigned in steps [3–x], [3–y] and [3–z],
respectively. Table A.1 provides the relative frequency tables obtained from the pos-
terior samples of these quantities and confirms the ability of our model to learn the
correct number of components in each simulation scenario. This result is also confirmed
in Figure 1.3. Lastly, Table A.2 shows how the posterior distribution of the coefficient
β correctly concentrates around the truth.

Table A.1: In each simulation scenario, posterior distribution for the number of active
components H̄x, H̄y and H̄z characterizing the clustering structure induced by the x̄, ȳ and
z̄ latent coordinates, respectively.

1 2 3 4 5

Scenario 1 H̄x 0.00 0.88 0.11 0.01 0.00
H̄y 0.67 0.20 0.08 0.02 0.03
H̄z 0.63 0.26 0.10 0.01 0.00

Scenario 2 H̄x 0.00 0.76 0.22 0.02 0.00
H̄y 0.00 0.87 0.12 0.01 0.00
H̄z 0.68 0.18 0.11 0.02 0.01

Scenario 3 H̄x 0.00 0.61 0.32 0.05 0.02
H̄y 0.01 0.58 0.35 0.06 0.00
H̄z 0.00 0.55 0.33 0.11 0.01
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A.1.3 Additional details on the application

Consistent with Figure 1.6 and recalling the analyses on the number of clusters discussed
in the simulation study, Table A.3 provides evidence of two clusters for the latent x̄–
coordinate and three for the ȳ–coordinate and the z̄–coordinate.

Table A.3: Posterior distribution for the number of active components H̄x, H̄y and H̄z

characterizing the clustering structure induced by the x̄, ȳ and z̄ latent coordinates, respec-
tively. Results are shown for a maximum of six non–empty clusters, since higher values were
associated with 0 relative frequencies.

1 2 3 4 5 6

H̄x 0.005 0.785 0.200 0.006 0.004 0.000
H̄y 0.000 0.183 0.655 0.157 0.005 0.000
H̄z 0.003 0.085 0.642 0.253 0.016 0.001

A.2 Latent factor model

A.2.1 Computational Details

Let Ψ denote the diagonal matrix with elements (ψx, ψy, ψz), and let Υ the square
matrix with elements [Υ]ij = υij = β0 +β1hemij +β2cortexij +β3dij. The conditionally
conjugacy allows to express each optimal factor in the same exponential family form
of its full conditional distribution, with natural parameters replaced with variational
expectations. Therefore, in order to develop a cavi algorithm, it is sufficient to express
the analytical form of the natural parameters of the exponential family and illustrate
each variational expectation.

• Pólya–Gamma augmented variables. The optimal distribution for ωij is
Pólya–Gamma with natural parameter

E[ηωij
] = −0.5

[
E(wᵀ

iΨwj + υij)
2
] 1

2 . (A.1)

Algebraic manipulations and the mf factorisation in Equation (1.13) shows that
variational expectations of the natural parameter is equal to

−0.5

[
1ᵀ
{
E [ΨΨᵀ]⊗ E [wiw

ᵀ
i ]⊗ E

[
wjw

ᵀ
j

]
+ E

[
(υij)

2
]

+

2
[
E[wi]E[Ψ]E[wj] + E [υij]

]
1
}] 1

2
(A.2)
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with expectations taken with respect to the other optimal factors in Equation (1.14),
which correspond to multivariate Gaussian distributions with natural parameters
that will described shortly.

• Latent Factors. Let W[−i] denote the matrix W with the i-th row removed, let
Ω[−i] denote the n × n matrix with element [Ω]ij = ωij and similarly Ω[−i]. The
optimal distribution for wi is Gaussian with natural parameters

E
[
η(1)

wi

]
= E

[
Wᵀ

[−i]Ω[−i]W[−i] + I
]
, E

[
η(2)

wi

]
= E

[
Wᵀ

[−i](Ai − 0.5m−ΩiΥi)
]
,

(A.3)
which can be further decomposed as

E[η(1)
wi

] = E[W[−i]W
ᵀ
[−i]]E[Ω[−i]]+I), E

[
η(2)

wi

]
= E[Wᵀ

[−i]](Ai−0.5m−E[Ωi]E[Υi]).

(A.4)
It is worth recalling that if X ∼ PG(m.p), than E[X] = m

2p
tanh(p/2).

• Loading matrix. Let W̃ define the n(n− 1)/2× 3 matrix[
[x̃2x̃1, x̃3x̃1, . . . , x̃nx̃n−1]

ᵀ, [ỹ2ỹ1, ỹ3ỹ1, . . . , ỹnỹn−1]
ᵀ, [z̃2z̃1, z̃3z̃1, . . . , z̃nz̃n−1]

ᵀ
]
,

and let Ω̃ the n(n − 1)/2 × n(n − 1)/2 diagonal matrix with elements ω =

(ω12, ω13, . . . , ωn−1n). The optimal distribution for (ψx, ψy, ψz)
ᵀ is Gaussian with

natural parameters

E
[
η
(1)
ψ

]
= E

[
W̃ᵀΩ̃W̃ + γψ0I

]
, E

[
η
(2)
ψ

]
= E

[
W̃ᵀ

(
S̄−ΩL(Υ)

)]
. (A.5)

The first canonical parameter involves quite demanding expectations involving
Gaussian cross products. Indeed, denote as W† the 3 × 3 × n(n − 1)/2 array
obtained stacking matrices[[

E[w1w
ᵀ
1]⊗ E[w2w

ᵀ
2]
]
,
[
E[w1w

ᵀ
1]⊗ E[w3w

ᵀ
3]
]
, . . . ,

[
E[wn−1w

ᵀ
n−1]⊗ E[wnw

ᵀ
n]
]]

in slice order. Then it can shown that

E
[
W̃ᵀΩ̃W̃

]
= W† ×3 E[ω] (A.6)

• Coefficients update Similarly to the update of the loading matrix, the problem
can be recasted into a conditionally Gaussian regression leading to an optimal
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distribution for β which is Gaussian with

E
[
η
(1)
β

]
= E [XᵀΩX + Σ0] , E

[
η
(2)
β

]
= E

[
Xᵀ(S̄−ΩL(WΨWᵀ)

]
, (A.7)

which is particularly simple since all the terms are linear in the variational expec-
tations.
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Appendix B

Appendix for Chapter 2

B.1 Gibbs sampler for mills

The Gibbs sampler algorithm for the mills approach described in Section 2.3 iterates
across the following steps.

• Cluster Allocation. For i = 1, . . . , n, update each zi sampling from its full
conditional categorical distributions with

pr[zi = h | −] ∝ νhp̃(yi | ϑh) (B.1)

• Mixture weights. Update µ from its full conditional Dirichlet distribution.

(ν | −) ∼ Dirichlet
(

1

H
+ n1,

1

H
+ nH

)
, (B.2)

with nh =
∑n

i=1 I[zi = h]

• Kernel Update. This step is performed separately for each bivariate distribution
leveraging a nested Pòlya-Gamma data augmentation for multinomial likelihood
and Gaussian prior for the log-odds (Polson et al., 2013, Supplementary Material).
Indeed, it is more convenient to sample directly the log-odds ϑ̄hE2

= X−1ϑhE2

and then transform the sampled values after each iteration into the canonical
parameters.

Focusing on a specific marginal table ȳ = yhE2
= (ȳ1, . . . , ȳ|E2|), conditional on

cross-classifying individuals i such that zi = h, we focus on updating the associated
ϑ̄ = ϑ̄

h
E2

with elements ϑ̄ = {0, ϑ2, . . . , ϑ|E2|}.

Specifically, for k = 2, . . . , |E2|,
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1. Define ȳk = ϑk − ck, with ck = log(1 +
∑

j 6=k exp(ϑj))

2. Sample a nested augmented Pòlya-Gamma value from (ω | −) ∼ PG(nh, ψ)

3. Sample the log odds from (ϑk | −) ∼ N
(
ȳk − nh/2− ωck

ω + 1/σ2
,

1

ω + 1/σ2

)

B.2 Additional data information

As outlined in Section 2.2, we focus on two different instruments measuring the empathic
profile and the psychopathology of attempt suicidal patients. Table B.1 illustrates the
questions of the iri-28 tool, which asks to the subjects “The following statements inquire
about your thoughts and feelings in a variety of situations. For each item, indicate
how well it describes you”. Subjects respond to the questions with letters (a,b,c,d,e),
ranging from “This item does not describe me very well” (a) to “This item describes
me very well” (e). See this link for an illustration. Some items are associated with
positive behaviour, while some others with negative ones. However, the methodologies
of Chapter 2 focus on unordered categorical data, and the ordering of the answers is not
a concern. The subscales described in Section 2.2 are reported in brackets.

Table B.2 report the subscale of the scl-90 questionnaire, focusing on the psycho
pathological profiles of interest measured via the questions reported in Table B.2. The
subjects are asked “ ‘How much were you bothered by”, and respond with numbers in
[0− 4], respectively corresponding to “Not at all”, “A little bit”, “Moderately”, “Quite a
bit”, “Extremely”. See this link for an illustration of the entire scl-90 questionnaire.
The subscales described in Section 2.2 are reported in brackets.

Finally, for illustrative purposed, Table B.3 reports the descriptive statistics of the
data.

https://fetzer.org/sites/default/files/images/stories/pdf/selfmeasures/EMPATHY-InterpersonalReactivityIndex.pdf
https://accesscm.org/wp-content/uploads/2013/03/SCL-90.pdf
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