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Summary

Summary   

   The phase problem represents one of the major challenges along the way of structure 
solution by x-ray crystallography. This is especially true when the object under study are 
macromolecular crystals, which have many atoms in the unit cell and often diffract poorly, 
so not allowing to measure the higher resolution shells of the diffraction pattern. 
    For these reasons, no general method exists nowadays to solve the macromolecular phase 
problem,  but  rather  a  variety  of  approaches,  mostly  experimental,  and  requiring  an 
additional amount of work to be carried out in order to collect several different datasets 
from  chemically  modified  crystals.  Ab  initio methods,  that  is,  knowledge-independent 
methods working on a single dataset, are rarely used, because of the lack of high-resolution 
data. However, some arguments support the thesis that ab initio phasing should be possible 
even in the absence of atomic resolution data or specific additional information. In fact, 
some general  constraints  on  the  resulting  electron  density  distribution  exist  that  can  in 
principle  lead  to  an  overdetermined  problem;  finding  an  effective  way  to  impose  such 
constraints  would  result  in  a  general  phasing  method  able  to  solve  the  majority  of 
macromolecular structures starting from a single, medium resolution dataset. 
  The work described in this thesis was addressed to experiment alternative methods for 
macromolecular  ab  initio solution,  and  can  be  divided  in  three  sections.  First,  neural 
networks were investigated as potential tools for encoding unknown relationships between 
phases and magnitudes; then the power of some real-space constraints was studied, jointly 
with iterative algorithms to impose them; and finally, an analysis of Patterson maps was 
carried out in the hope of identifying autocorrelation features that could be related to the 
presence and orientation into the unit cell of known secondary structure elements, like  α-
helices and β-strands and sheets. This last topic, while not aiming at direct solution of the 
phase problem, but rather at extracting some raw structural information from the measured 
data, is among the three different approaches the one that gave the most promising results.
   The neural network section (chapter 2) describes one-dimensional tests that were carried 
out  in  order  to  assess  the  network  ability  in  learning  unknown  relationships  between 
diffracted magnitudes and the corresponding phases. A simple, atomic case was chosen to 
evaluate the network behaviour in conditions that are known to be favourable. The result of 
this investigation is mainly that neural networks are not the right tool for phasing, at least 
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not with the approach described here.     
   The work about iterative methods (described in chapter 3) has been motivated by some 
recent results (Lunin  et al., 2002) showing that macromolecular phasing at low resolution 
can be accomplished if a binary mask, instead of a continuously valued electron density, is 
searched for. Some attempts are described here in building iterative phasing algorithms that 
impose the binary constraint on the electron density; the implemented methods have shown 
to work in some simple binary 2D cases, but it is doubtful that they can be applied to find 
binary  approximations  to  continuous  densities.  A  subsection  of  this  work  has  been 
conducted on modifications of an existing algorithm in order to accommodate topological 
restraints, with interesting but not conclusive results about phase extension.
    The final part of this thesis (chapter 4) outlines a new approach to Patterson map analysis, 
aiming at elucidating its connection with the secondary structure content of the unit cell. It 
is shown that, in favourable cases, information on the presence and orientation of α-helices 
and β-sheets can be easily extracted from the Patterson map. There is no need for high 
resolution data since the concept of atom is not used in the derivation of the method. The 
approach needs  further  refinement  to  be  turned  into  a  reliable  tool  for  macromolecular 
crystallography; in perspective, it could provide phase estimates, to be used as a starting 
point for and extension and refinement procedure.  
    At the end of this thesis, a short experimental work on TpF-1 protein from the pathogenic 
bacterium  Treponema  Pallidum has  been  reported.  The  structure  of  this  immunogenic 
protein was solved at the beginning of the Ph.D. Project. 
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Sommario

   Il problema della fase costituisce uno dei maggiori ostacoli nel processo di determinazione 
strutturale  per  via  cristallografica.  Ciò  è  particolarmente  vero  nel  caso  dei  cristalli 
macromolecolari, a causa dell'elevato numero di atomi nella cella e del disordine intrinseco, 
che limita la risoluzione massima delle intensità misurabili.
  Per questi motivi, non esiste al momento un metodo generale per risolvere il problema 
della  fase  in  campo macromolecolare,  bensì  una  grande  varietà  di  tecniche  (per  lo  più 
sperimentali), che richiedono una mole di lavoro supplementare al fine di misurare diversi 
set di dati da cristalli opportunamente trattati. Per via della limitata risoluzione a cui i dati 
vengono  normalmente  raccolti,  i  metodi  ab  initio,  che  non  necessitano  informazioni 
aggiuntive e sono in grado di ricostruire la struttura da un singolo set di dati, possono venire 
utilizzati  solo  raramente.  D'altra  parte,  diverse  argomentazioni  fanno  supporre  che  la 
risoluzione  strutturale  ab  initio  di  macromolecole  dovrebbe  essere  possibile  anche  in 
assenza di dati a risoluzione atomica e di informazioni  a priori sulla struttura. Infatti, vi 
sono vincoli  di  natura  generale  in  grado di  rendere  il  problema sovradeterminato;  se si 
trovasse un modo efficiente di imporre tali vincoli la maggior parte delle macromolecole 
potrebbe essere risolta da un singolo set di dati di diffrazione a media risoluzione  (1.5-3 Å).
   Il lavoro di ricerca esposto nella presente tesi era volto a sperimentare metodi alternativi 
per la risoluzione ab initio di macromolecole, e si articola in tre parti. In un primo momento, 
si è indagato sulle potenzialità delle reti neurali nell'apprendere relazioni esistenti tra fasi e 
moduli diffratti; in seguito, sono stati studiati algoritmi iterativi in grado di imporre specifici 
vincoli sulla densità;  infine, si è tentato di stabilire quale relazione sussista tra la mappa di 
Patterson e gli elementi di struttura secondaria presenti nella cella elementare (α-eliche, β-
strands  e  β-sheets),  con lo  scopo di  individuare  un modo per  desumerne la  presenza e 
l'orientazione. In quest'ultimo ambito, che non mira alla risoluzione del problema della fase 
bensì ad ottenere direttamente dai dati sperimentali alcune informazioni strutturali di base, si 
sono ottenuti i risultati più interessanti.
Nella parte relativa alle reti neurali (capitolo 2) vengono descritti esperimenti basati su dati 
1-D artificiali, ideati allo scopo di verificare la capacità di apprendimento di una rete neurale 
riguardo a relazioni non-lineari esistenti tra moduli e fasi. Per valutare il comportamento 
della rete, si è scelto un caso semplice e dotato di atomicità, per il quale è effettivamente 
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possibile ricavare relazioni probabilistiche. Questo studio ha portato a concludere che le reti 
neurali non sono in grado di svolgere questo compito; ciò non esclude che non possano 
essere sfruttate in altro modo all'interno di una procedura di phase retrieval.   
   La parte di lavoro relativa ai metodi iterativi (descritta nel capitolo 3) è stata ispirata da 
studi condotti in questi ultimi anni (Lunin et al., 2002), nel corso dei quali si è dimostrato 
che  il  problema  della  fase  per  cristalli  macromolecolari  può  essere  risolto  a  bassa 
risoluzione se si approssima la densità elettronica (dotata di una distribuzione continua di 
valori) a una funzione binaria. In una prima fase del lavoro sono stati studiati  algoritmi 
iterativi in grado di imporre il vincolo binario, nel tentativo di trovare un metodo più rapido 
ed efficace di quello originale. Gli algoritmi implementati si sono dimostrati in grado di 
ricostruire semplici densità binarie bidimensionali, ma la loro applicazione per approssimare 
densità continue è risultata difficile. In una seconda fase sono state introdotte modifiche ad 
algoritmi  esistenti  in  modo  da  imporre  vincoli  topologici;  questo  ha  portato  a  risultati 
interessanti, ma non conclusivi, per quanto riguarda l'estensione a partire da fasi esistenti.   
   L'ultima parte della tesi (capitolo 4) descrive un nuovo metodo di analisi della mappa di 
Patterson, che è stato sviluppato nel tentativo di individuare le relazioni tra questa mappa e 
il tipo di struttura secondaria presente nella cella elementare. In casi favorevoli è possibile 
estrarre facilmente  informazioni  sulla  presenza e l'orientazione di  α-eliche e β-sheets;  il 
metodo non richiede l'uso di dati a risoluzione atomica perché si basa su caratteristiche a 
media risoluzione della mappa di Patterson. Questo tipo di approccio necessita di essere 
ulteriormente  affinato  in  vista  di  applicazioni  reali  nel  campo  della  cristallografia  di 
proteine; in prospettiva, esso potrebbe fornire stime iniziali delle fasi a partire dalle intensità 
diffratte, utilizzabili come punto di partenza per un processo di estensione. 
    In calce alla tesi è stato riportato un articolo relativo alla determinazione strutturale della 
proteina  immunogenica  TpF-1,  codificata  nel  genoma del  batterio  patogeno  Treponema 
Pallidum. Questo lavoro sperimentale è stato portato a termine durante il primo anno di 
dottorato.
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Chapter 1

Introduction
  The  aim  of  protein  crystallography  is  to  reconstruct,  from  a  diffraction  spectrum,  a 
molecular  electron  density  distribution,  which  can be  interpreted  in  terms  of  an atomic 
model. Such a model can provide insight into the protein structural properties, mechanisms 
of enzymatic catalysis, protein-substrate or protein-protein interactions and offers a rational 
approach to drug design.
    Key steps in the process of structural determination via x-ray crystallography are protein 
production or  extraction from living cells  or tissues,  protein purification,  crystallization, 
diffraction  data  collection,  the  solution  of  the  phase  problem,  and  model  building  and 
refinement.  In  many  stages  of  this  pipeline  intrinsic  difficulties  can  arise,  making  the 
success of a project rather unpredictable. 
  Solving  the  phase  problem  is  one  of  the  bottlenecks  of  the  process.  It  consists  in 
reconstructing the  electron density  distribution from diffraction data.  These latter are  in 
principle complex quantities, describing the electric field of diffracted waves, and furnishing 
an alternative, equivalent description of the crystal. The diffracted waves contain in fact the 
full  spatial  information  about  the  unit  cell  content;  experimentally,  however,  it  is  not 
possible to measure the phase differences of the diffracted beams, which can be known only 
in  absolute  value  (real  quantities).  This  substantially  incomplete  knowledge  of  the 
diffraction image causes an infinite number of possible object to be compatible with the 
measured data.
   Different techniques are available for solving the macromolecular phase problem, most of 
them  being  experimental  ones  (Zanotti,  2002).  They  rely  on  some  kind  of  chemical 
modification of the crystal, like introducing heavy (metal) atoms or anomalous scatterers 
(typically replacing the sulfur in methionines with selenium). This allows to measure an 
independent set of diffracted intensities, which can be used to solve a system of equations 
involving phase values. These techniques are nowadays widely used, although being time-
consuming and not  guaranteed to  succeed.  Often,  they represent  the  only way to  solve 
structures lacking relevant sequence similarity with other proteins of known structure. When 
a significant similarity with previously solved structures is found, at least in some domain, a 
frequent option is represented by molecular replacement (MR) methods, in which one tries 
to optimally reproduce the observed data by orienting and translating a known fragment in 
the unit cell (Rossmann and Blow, 1962).  
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Both  experimental  phasing  methods  and  MR involve  the  introduction  of  some  kind  of 
independent knowledge specific to the particular case to be solved. 
     Instead, by the name of 'ab initio methods' are commonly indicated phasing strategies 
that do not involve any prior knowledge about specific structural features. These methods 
rely instead on general properties of the density to be reconstructed, and require only a 
single set of measured intensities as input data. When they can be applied, such techniques 
are likely to represent the best option; in fact, they find wide application in the field of small 
molecule crystallography. Unfortunately, and despite their constant improvement, they are 
still seldom useful for proteins, mainly because of the low data to parameters ratio of the 
problem. 
    This latter is function of the resolution limit dmin, or minimum distance between adjacent 
crystal planes giving rise to a measurable diffracted intensity. A small value for  d (high 
resolution) corresponds to a wide angle between incoming and scattered rays, and is related 
to fine details of the electron density (such as atomic peaks). Conversely, reflections with 
high values of d (low resolution) carry the information about more global parameters of the 
image (like molecule position and general shape).  

Fig. 1  Schematic representation of the diffraction process from a crystal. The incoming x-ray beam interacts with the sample 
and diffracted intensities are recorded on the detector plane as isolated spots.
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Chapter 1

The nature of the phase problem
    The phase problem is a very important topic in many fields of optics, affecting all those 
techniques known as diffractive (or lensless) imaging. In all these methods, experiments can 
be set to measure the diffraction pattern arising from some object under study, with the aim 
of reconstructing the distribution of scattering matter in the object. So diffractive imaging 
exploits the wave properties of radiation, differently from refractive techniques which rely 
over  the  laws  of  geometric  optics  and  appear  to  be  diffraction-limited.  In  optical 
microscopy, for example, diffraction is an unavoidable phenomenon that sets a limit for 
resolution: it is not possible to image an object which is smaller than the wavelenght of the 
illuminating radiation. The resolution is given in fact by the expression d=/2 AN , where 
the  numerical aperture AN is always lower than 1 (for lenses operating in air). In lensless 
imaging, conversely, it is not possible to obtain images at a level of detail much smaller than 
the  wavelenght  of  the  radiation  used.  This  sets  the  useful  wavelenght  range  for 
crystallographic studies to the hard x-ray region and precisely around 1 Å (0.1 nm), which is 
the order of magnitude of atomic bonding distances.  Another difference is that in diffractive 
imaging the quality of the data is strongly correlated to the coherence of the light beam, 
since  the  measured  quantities  arise  from interference  phenomena.  Temporal  and  spatial 
incoherence  degrade  the  quality  of  the  diffraction  data,  limiting  the  resolution  of  the 
reconstructed  images  and  in  extreme  cases  preventing  image  reconstruction  (Thibault, 
2007). 
   Restricting the analysis  to the far-field (Fraunhofer) diffraction regime,  the diffracted 
wave f  s  is given by the Fourier transform ( FT ) of the object density   x  , so that a 
complete knowledge of the former  would allow the straighforward calculation of  x   by 
means of an inverse transform:
                                    

                                     f  s=FT [ x] , x =FT −1 [ f s ] .                                    (1.1)

The space where f  s  is defined is called frequency space 1, since the function f describes 
the object density in terms of its spatial frequencies.
   The quantity f  s =∣ f  s∣ e is   is in general a complex function describing the electric 
field of the diffracted wave in amplitude ∣ f  s∣ and phase s  ; because of the difficulty of 

1 It is also called Fourier space or reciprocal space (this last name is of common use in crystallography).
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realizing interference experiments with a reference beam, often the relative phases cannot be 
measured,  and  the  only  quantities  available  from  most  diffraction  experiments  are  the 
intensities  I=∣ f  s∣ 2  (that  is,  only  half  of  the  information  needed  for  object 
reconstruction).  It turns out that some  a priori  knowledge about the object is needed in 
order to make the problem overdetermined. Stated in mathematical terms, solving the phase 
problem consists in retrieving the unknown phases of a complex function f  s , given its 
modulus ∣ f  s∣ and a  sufficient  amount  of  independent information on the  nature of its 
inverse Fourier transform  x  . In position space (also called direct or real space), where
 x  is defined, the solution of an ideal phase problem is represented by the intersection of 

two subsets: the first one is the subset of all the possible densities which are consistent with 
the  observed moduli,  the  other  is  the  subset  of  all  the  densities  satisfying  the  a priori 
constraints. An analogous representation can be given in the phase space (the subspace of 
frequency domain spanned by phase values),  since for  fixed moduli  there is  a  bijective 
correspondence  between  the  functions  x  and  s  .  It  should  be  observed  that  the 
intersection between the two subsets is not generally a single point, because the choice for 
the origin and the handedness of the axes (enantiomorph) in real space is arbitrary and not 
constrained in any way by the diffracted intensities. This means that the equivalence
                           
                                                            x   ~  xt                                                    (1.2)

holds,  where  =±1  gives  the  axes  handedness  and  t is  an  arbitrary  translation. 
Consequently, in Fourier space one has 

                                                      s  ~ [s−2 s⋅t ] .                                           (1.3)
   
     In the most general case, when the object is specified by a complex, non-periodic  x  , 
the  corresponding  Fourier  transform  is  non-centrosymmetric  and  continuous.  In  three 
dimensions, it can be written as  

                                                  F s =∫ xe 2i  s⋅x d x .                                           (1.4)

Moreover, assuming a given sampling in both spaces, one has:
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F hr , k s , l t =∑
u=1

N x 

∑
v=1

N  y 

∑
w=1

N  z 

xu , yv , zw exp[ 2 i hr xuk s yvl t zw]

                    =∑
u=1

N  x

∑
v=1

N  y

∑
w=1

N z

 xu , yv , zw qh
x qk

y ql
z .

         (1.5)

If  F can  be  factorized,  then  the  solution  of  the  problem  is  not  unique.  In  fact, 
F=F 1 F 2... F n  and any function like H=F 1 F 2

* ... Fn , where conjugation is applied to one 

or  more  factors,  have  the  same  squared  modulus.  This  is  always  the  case  for  one-
dimensional  functions,  because  the  fundamental  theorem  of  algebra  states  that  any 
polynomial in a single variable can be written as a product of first-order terms. However, 
almost all cases of practical interest occur in 2- or 3-dimensional spaces, and since almost 
all polynomials in two or more variables are irreducible, the uniqueness of the solution is 
guaranteed in practice (Millane, 1990).   
    Given that there is no intrinsic degeneracy of solutions, it is necessary to set the problem 
so that is is overdetermined, by specifying the minimum amount of  a priori information 
needed to make the ratio equations/unknowns favourable. In d dimensions, once introduced 
a sampling in direct and reciprocal space, we have 

                       F s j=∑
i=0

N−1

 x iexp2 i s j⋅x i , N=∏
i=1

d

ni , j=1 ,− , N                (1.6)

where  N is the total number of pixels and  ni is the number of sampling intervals (pixels) 
along the i-th dimension. Since F is known only in modulus, we need to solve a system of N 
non linear equations:
                                     

                                         ∣F  s j∣=∣∑i=0

N−1

 x iexp2 i s j⋅x i ∣                                           (1.7)

If the density is complex valued, then the number of unknowns will be 2N, since for each 
x i  one needs to know the values of the real and the imaginary part of  x i . The problem 

is  doubly  underdetermined  since  we  dispose  of  N equations  only.  The  same 
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equations/unknowns ratio  is  valid  for  a  real  valued density;  in  that  case  the  number of 
unknowns would drop to N, but since the Fourier transform of a real function has to be even 
( F s =F −s  ), the number of equations would also reduce to N/2. The conclusion is that 
the problem is always underdetermined by a factor of 2, regardless of the dimensionality d 
and of the nature of  x   (Miao, 1998). 
  To make the problem solvable, it is necessary to increase the number of equations, by 
introducing some knowledge about the values of the function  x  . It is clear that knowing 
a  priori  the    values  for  M pixels  provides  M new equations,  so that  for  M>N/2 the 
problem becomes overdetermined. An alternative, once the size of the object is known2, is to 
choose  a  fine  enough sampling  in  reciprocal  space;  this  corresponds  in  direct  space  to 
surrounding  the  object  domain  with  a  zero-valued  jacket.  This  method  (known  as 

oversampling) finds wide application in optics, where the unknown  is non periodic and 

the quantity  F s  , being continuous, can be sampled as finely as needed. So, any non-
periodic  object  can be  reconstructed from its  diffraction pattern,  given that  the  latter  is 
known at  a  sufficient  level  of  detail.  In  these  last  years,  this  consideration has  brought 
interesting  developments  in  the  field  of  lensless  imaging,  where  many  successful 
experiments have been carried out. Among the reconstructed objects with synchrotron x-ray 
radiation  are  living  cells  (Shapiro  et  al.,  2005);  a  similar  technique  based  on  electron 
diffraction allowed imaging of single carbon nanotubes down to a resolution of ~1 Å (Zuo 
et al., 2003). With the most powerful existing x-ray sources, the free electron lasers (FELs), 
it  has been shown that  images can be obtained down to a resolution of some tenths of 
nanometers, by recording a femtosecond diffraction pattern from the object before that this 
latter is turned into a plasma (Chapman et al., 2006). The birth of this new field in x-ray 
science has led to the development of very efficient phasing algorithms, capable of working 
in absence of any knowledge about the object under study (Marchesini et al., 2003; Wu et  
al., 2004; He, 2006; Marchesini, 2007). A difficult task remains that of bringing the FELs to 
work  at  atomic  (~1  Å)  wavelenghts;  this  technological  achievement  would  in  principle 
allow imaging of single molecules, and some theoretical studies have already been carried 
out to address some of the most challenging aspects of the project, such as the creation of a 
molecular beam of proteins (Wu and Spence, 2005; Spence et al., 2005), the control over 
molecular orientation, the lifetime of the strongly irradiated sample and the reconstruction 

2 The size can be estimated from the autocorrelation function  Au=FT −1 [∣ f s ∣2]
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of  a  three-dimensional  image  from multiple  dataset  recorded  from many  copies  of  the 
molecule of interest (Miao et al., 2001). The single-molecule thechnique would overcome 
one  of  the  most  difficult  and  unpredictable  steps  in  protein  crystallography,  that  is, 
crystallization; this in turn would allow structural investigation of very unsoluble species, 
like membrane proteins (which constitute less than 0.1% of the coordinates files deposited 
in the PDB3 database).    

The crystallographic phase problem
  While for non periodic objects the phase problem is in principle always solvable, a very 
different situation occurs in crystallography. Here the object has a periodicity given by the 
crystal lattice, whose axes a,b,c coincide in lenght and direction with the edges of the unit 
cell. This latter is the fundamental 'building block' of the crystal, which can be seen as the 
collection of identical copies of the cell translated by lattice vectors  u av bw c .   The 
repetition of unit cells in the crystal has the effect of superposing the diffraction fringes of 
the crystal lattice to the diffraction pattern of the single unit cell, giving rise to a 'natural 
sampling' that diffraction intensities to be non zero only for angles satisfying Bragg's law 
(Bragg, 1913):

                                                               n=2 d sin                                                     (1.8)

where d is the lattice spacing between two adjacent crystallographic planes, θ is the angle of 
incidence of the incoming beam on that family of planes, λ is the x-ray wavelenght and n is 
the order of diffraction. Since the same crystallographic planes give rise to many diffracted 
beams of different order, the Bragg formula can be simplified to =2 d h sin  assuming that 
the higher orders of diffraction (n>1) are due to imaginary planes of spacing d h=d /n . Here 
h≡h , k , l   is a triple of Miller indexes specifying a family of crystallographic planes that 
intercepts the three points  a /h ,b /k ,c / l ,  or some multiple thereof. Diffracted spots (also 
somewhat improperly called reflections) can be recorded by a single-beam detector or by a 
two-dimensional one. Usually, the smallest distance  dmin for which measurable intensities 
arise  (and  related  to  the  widest  angle  of  diffraction  θmax by  d min=/2sinmax )  is  called 

3 The PDB database is accessible on web at the address: http://www.rcsb.org/pdb/home/home.do
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resolution of an experimental dataset. The name is due to the level of detail expected in the 
reconstructed electron density: a dataset with high resolution is one comprising intensities 
recorded at wide angles, that is, with small dmin values. 

Fig. 2   Diffraction geometry: the incoming x-rays interact with the crystal and give rise to a diffracted beam at angle 2 ,θ  
which can be thought as being 'reflected' by a crystallographic plane. This has nothing to do with true reflection, however, 
since it only occurs for the angles satisfying the Bragg law, that is, sin=n/2 d   

This means that the diffraction pattern F S   is non-zero only for those values of S which 
satisfy the Laue equations (Laue, 1912):

                                                             {a⋅S=h
b⋅S=k
c⋅S=l

                                                             (1.9)

where  the  scattering  vector S is  given  by S= s−s0/ ( s0  and  s  are  unit  vectors 
specifying the  direction  of  incoming and diffracted x-rays).  This  can  be  put  in  a  more 
condensed form by observing that the values of  S for which a diffracted intensity can be 
observed lie at the nodes of an imaginary lattice S=ha*k b*l c* . This abstract object is 
called  reciprocal lattice  and its axes  a* ,b* ,c*  are defined by the nine scalar products 
a i⋅a j *= ij

4.  The  diffracted  wave  observed  at  the  nodes  of  the  reciprocal  lattice  is 
proportional to the unit cell Fourier transform or structure factor, F h :

4 The generic vector ai  can take the values a ,b , c .
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                                                  F h =∫V
r e2 i h⋅r dV .                                               (1.10)

The  value  of  F h  in  any  point  in  between reciprocal  nodes  (that  is,  for  fractional  h 
indices) cannot be known. Early observations about the connection between phase problem 
and the unknown diffracted intensities between reciprocal lattice nodes were made by Sayre 
(Sayre, 1952b) on the basis of the Shannon sampling theorem (Shannon, 1949). The nature 
of crystal diffraction patterns is consistent with Fourier transform theory, which states that a 
periodic function must have a discrete spectrum5; in fact, the inverse relationship writes

                                             r  = 1
V ∑h

∣F h∣e i  h−2h⋅r                                            (1.11)

The physical meaning in position space is that the unit cell cannot be surrounded by a zero 
contour by simply enlarging the bounds of the real domain, since other identical unit cells 
are encountered. An obvious conclusion is that, when diffraction occurs from a periodic 
object,  oversampling  is  no  longer  feasible,  and  the  phase  problem  is  always 
underdetermined by a factor of 2. Additional a priori constraints are then needed to identify 
the correct set of phases.  

Constraints in direct and reciprocal space 
   The most powerful constraint in crystallography is represented by the atomicity property; 
that is, the solution of the phase problem must correspond to an electron density made of 
well  resolved  atomic  peaks,  emerging  from  a  sea  of  near-zero  values.  Two  general 
approaches  have  been  followed to  put  this  constraint  in  action,  the  real  space and  the 
reciprocal space approach. Both classes of methods have co-existed since their birth in the 
1930s: real space methods came in usage first, once it was clear that the vectorial properties 
of the Patterson function6 could be used to unravel simple structures. First observations were 
made by Patterson (Patterson,  1934),  who proposed a method to restrain the number of 

5 The Fourier transform reduces then to a Fourier series.
6 In crystallography, the Patterson function is an aliased autocorrelation function of the unit cell, that can be obtained 

by Fourier transforming the experimental intensities with zero phases.
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possible atomic coordinates based on the Patterson function. In the subsequent years, vector 
approaches exploiting Patterson map superposition were developed and applied. Starting in 
the early 1950s, the development of  direct methods, working entirely in reciprocal space, 
ended by establishing a new standard in ab initio crystallographic phasing. During the last 5 
decades, direct methods have grown in power (fig. 3), allowing solution of structures with 
hundreds of atoms in the asymmetric unit,  and also of small macromolecules. Patterson-
based approaches continued to be improved but could not reach such a broad use. However, 
recent  developments  have  shown that  Patterson  deconvolution  methods  can  outperform 
direct methods, allowing to solve macromolecular structures with as much as 2000 non-H 
atoms in the asymmetric unit, provided that data with a resolution higher than 1.5  Å are 
available.     

Direct methods: theory
    Despite  of  a long period of  skepticism, in the early 1950s it  became clear that  the 
crystallographic  phase  problem  could  be  solved  from  measured  intensities  alone.  The 
discovery can be ascribed to a change in the point of view, which had shifted from the 
unknown electron density to the atomic coordinates. It turned out that stating the problem in 
terms of atomic coordinates led to an overdetermined system of equations; so the solution 
was expected to be unique and only an appropriate method to find it was needed. In fact, 
since the electron density of the unit cell can be to a good approximation assumed equal to 
the sum of the individual atomic densities (that is, neglecting the deformation of the electron 
clouds caused by chemical bonding), the structure factor can be expressed as

                                                    F h =∑
j=1

N

f j r * e2 i h⋅r                                           (1.12)

where the sum extends over all  j atoms in the cell. The f j r*  are the  atomic scattering 
factors, defined as Fourier transforms of the atomic electron densities, which are assumed to 
be spherically symmetric:
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                             f j r*=∫0

∞
4 r2r  sin 2 r r *

2r r *
dr ,    r * = 2 sin

 .                      (1.13)

[mettere  grafico  f(r*)   -  didascalia:  the  decrease  of  fj  with  angle  reflects  in  a  similar 
behaviour for the total scattering intensity of a crystal]

Most of the direct methods theory has been developed from a description of the unit cell 
content in  terms of  point  atoms (that  is,  Dirac  δ(r)  distributions  of  electron density)  of 
constant scattering factor. The appropriate quantities in reciprocal space are the normalized 
structure factors E h , giving the Fourier transform for the point-atom structure. These can 
be obtained, at least approximately, from the observed structure factors, taking into account 
the symmetry, the unit cell content and the thermal motion: 

                                                E h= F hexp [Bsin2/2]

〈∣F obs h∣2〉r*h
                                      (1.14)

The oscillation of the atoms about their equilibrium position has the effect of speeding up 
the angular decay of the diffracted wave, and can be accounted for in the scaling procedure 
introducing an average temperature factor (B). 
   The observed moduli are a function of the 3N atomic coordinates  {x j , y j , z j} , which 
represent the unknowns of the problem. Each modulus contributes with and independent 
equation 

                                       ∣E h∣= −1 /2 ∣∑j=1

N

Z j exp2 i h⋅r j∣ .                                       (1.15)

When the data are measured up to atomic resolution, the number  M of observed moduli 
largely  exceeds  3N,  so  that  the  problem  is  overdetermined.  A  typical  value  of  the 
observables/parameters ratio is O/P = ~ 8 at a resolution of 1 Å; this proves that with atomic 
resolution data the solution must be unique (the ratio O/P decreases to a value of ~ 3 at 1.4 
Å, where is it assumed the breakdown of atomicity occurs). In direct methods, statistical 
relationships  between  phases  and  moduli  are  exploited  to  obtain  the  phases  for  strong 
reflections first. These relationships are derived without any assumption about the relative 
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coordinates of the peaks,  which are assumed to be uncorrelated, as for atoms randomly 
distributed in the unit cell. This is obviously not true, since in any crystal structure the atoms 
are  chemically  bonded,  but  the  correlations  arising  from  chemical  constraints  are  very 
difficult to introduce in the probabilistic framework of direct methods. Working entirely in 
reciprocal space, classical direct methods avoid to calculate many Fourier transforms and 
result to be quite fast;  only in the final stage an electron density map is calculated and 
searched for atomic peaks. The probabilistic method for deriving moduli/phases statistical 
relationships (Hauptman and Karle, 1953) can be described as follows:

• fix the set S of reflections E h  to be used for phase determination;
• calculate the characteristic function 

                                         
         C 1,− ,m ,1,− ,m ,                                                (1.16)

where  i ,i  are carrying variables associated with the phases  hi  and the moduli 
∣E hi∣  ( hi∈S );

• calculate the joint probability distribution 
                                 

  P J h1 ,− ,hm ,∣E∣h1 ,− ,∣E∣hm                                   (1.17) 

by Fourier transforming the characteristic function. From the joint distribution  PJ the 
conditional probabilities

                                               
      PC hi |{ ,∣E∣}                                                  (1.18)

may be obtained. These provide the probability of the phase of indices  hi to take the 
value hi , given the set of known phases and moduli { ,∣E∣} . 

The most interesting quantities provided by this approach are of the form  PC n | {∣E∣} , 
giving the probability distribution for a linear combination of phases
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    n=∑
i=1

n

i                                                           (1.19)

once the set of known moduli {∣E∣}  has been fixed. In fact, since the phases depend on the 
choice of the origin, they are not uniquely defined; direct methods do not allow to make 
predictions about the values of individual phases, but rather on some linear combinations of 
them which are origin-independent. Those combinations are called structure invariants (s.i.) 
and take the general form     

                                   

       h1 ,−,hn =∑
j=1

n

h j with ∑
j=1

n

h j=0 .                                    (1.20)   

A less general (but useful) kind of linear combination of phases are the  structure semi-
invariants (s.s.): these quantities are not independent from any origin shift, but they do not 
change when the origin moves between cell positions possessing the same point symmetry 
(permissible origins). Obviously the definition of s.s. is space-group dependent.
  In general, a given structure invariant  n  will depend primarily on a small number of 
structure factor magnitudes |E|; the neighborhood principle (Hauptman, 1975) and the more 
general representation theory (Giacovazzo, 1977; Giacovazzo, 1980) allow to class the |E| 
magnitudes  in  order  of  their  decreasing  effectiveness  for  phase  estimation.  The  vectors 
belonging to the set {hi}i=1,−, n , whose phases appear in the expression of n , are called the 
basis  vectors of  n .  If  the  crystal  symmetry  is  higher  than triclinic  then  one or  more 
additional structure invariants of the form

                                               

     n
k=h1 R s...hn Rm                                         (1.21)

where R s ,− , Rm  vary over the set of rotation matrices and the condition 
                                                    

     h1 R s...hn Rm = 0                                                 (1.22)

is satisfied. The first representation of n  is defined as n  itself plus the set of invariants 

{n
k } , all differing by a constant phase angle which depends on the symmetry operators 
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only. A set of cross vectors is defined by the linear combination of basis vectors 
                                           

       m1 h1 Rs...mn hn Rm mi=0,1 .                                 (1.23)

The  moduli  corresponding  to  all  the  basis  and  cross  vectors  appearing  in  the  first 
representation constitute the first phasing shell of n .
    The most important s.i., extensively used in direct methods, are the triplets

                                                       hk=−hkh−k  ;                                                (1.24)

triplet values are expected to follow the Cochran distribution (Cochran, 1955):

                 
P hk=[2 I 0Gh, k]

−1 exp Gh k cosh k

Gh k=23 2
−3/2∣Eh Ek E h−k∣

7                               (1.25)

which constitutes a fundamental result of direct methods theory and can be derived applying 
the  central limit theorem under the assumption of atoms randomly distributed in the cell 
with  uniform  probability.  The  expression  for  P hk is  an  example  of  von  Mises 
distribution, the generalization of a normal distribution for cyclic variables. 
    The distribution (1.25) peaks around zero, and gets narrower as the |E| values of the three 
involved reflections increase; this means that a triplet with big Es is very likely to have a 
value close to zero. More sophisticated expressions can be derived for quartets (s.i. linking 4 
reflections), quintets and so on, but the usefulness of these higher-order invariants is very 
limited.  

    If r pairs of phases {k j
,h−k j

}j=1,− , r  are known, together with the correspondent moduli 

{∣E k j
∣,∣Eh−k j

∣} j=1,− , r ,  the  total  probability  distribution  for  the  phase  h  is  given by  the 

product of the corresponding distributions (assuming that thay are independent):

                           P h=∏
j=1

r

P j h=A exp[∑j=1

r

Gh k j
cos h−k j

−h−k j
]                        (1.26)

7 I0 is the modified Bessel function and the σ parameters depend on the atomic numbers of the atoms involved.
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and can be put in the form
                                                  P h=A exp [hh−h] .                                            (1.27)

with the following definitions:

                                            h= Sh
2C h

2 ,  tan h=
S h

C h
                                                 (1.28)

and

                          Ch=∑
j=1

r

Gh k j
cos k j

h−k j
 ,    Sh=∑

j=1

r

Gh k j
sin k j

h−k j
 .                  (1.29)

The expression obtained has still the form of a von Mises distribution; the maximum is 
attained for  h=h  and the variance depends on  h . The formula giving the value for 
tan h  is known as tangent formula and represents one of the cornerstones of direct methods 
phasing; the phase estimates obtained through it have an uncertainty that gets smaller as the 
quantity h  increases.
    An exact relationship for a structure made of identical, resolved atoms can be derived 
(Sayre, 1952a). The electron density in the unit cell can be written

                                           x =∑
j=1

N

 j x =∑
j=1

N

atom∣x−x j∣                                       (1.30)

Given that f h is the Fourier transform of the electron density atom x   of a single atom, 
the transform of the unit cell is simply the sum of N atomic contributions:

                        F h=F [x ]= f h∑
j=1

N

exp 2 i h⋅r j , f h=F [x ]                 (1.31)

Since the atoms are assumed to be well resolved, the squared density can be written as a 
sum of  individual 'squared atoms':

                                           2 x =∑
j=1

N

 j
2x =∑

j=1

N

atom
2  x−x j                                          (1.32)
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and the corresponding Fourier transform will also be a sum:

                       Gh=V F [2x ]=g h∑
j=1

N

exp2 i h⋅r j , g h=F [2x ] .               (1.33)

We see that 

                                                 F h= f h
g h

G h=hG h .                                           (1.34)

Observing that squaring in direct space means self-convolution in the Fourier space, one has 

                           V −1 Gh=F [2x ]=F [ x ]∗F [ x]=V−2 F h∗F h                      (1.35)

                                   G h=V−1 F h∗F h=V −1∑
k

F k F h−k                                (1.36)

and we are led to the Sayre equation:

                                           F h=hV−1∑
k

F k F h−k , or                                        (1.37)

                        ∣F h∣expih=hV −1∑
k
∣F k  F h−k ∣exp [i kh−k] .                   (1.38)

The equation (1.37) links together all the structure factors amplitudes and phases, showing 
that applying self-convolution to the structure factors is equivalent to scaling them by a 
function  V /h ,  where  h  is  the  ratio  between  the  scattering  factors  of  'normal'  and 
'squared' atoms. Although strictly valid for equal atom structures only, the equation has been 
succesfully applied even to organic structures containing a few heavier atoms. The error 
introduced  by  the  different  chemical  identities  of  the  atoms  leads  mainly  to  an 
overweighting of heavier atoms, since in that  case the Sayre equation tends to give the 
phases for the squared density. 
    The Sayre (complex) equation can be partitioned in two (real) equalities, considering that 
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both sides must be equal in phase and in modulus. The phase equality resembles much the 
tangent formula:

                                          tanh=
∑

k
F k F h−k sinkh−k 

∑
k

F k F h−k cos kh−k
                                      (1.39)

However, it must be pointed out that the two equations have a very different meaning. The 
eq. (1.39) one is an exact equation, provided that the structure contains only equal atoms 
and that the sum is carried over the whole reciprocal space (that is, including all the possible 
indices  k).  The  tangent  formula  (1.28)  gives  instead  the  maximum  of  a  statistical 
distribution,  which  is  the  best  estimate  for  the  phase  h compatible  with  the  terms 
included in the summation. Moreover, no proof exists that the various estimates combined 
in the tangent formula are truly independent as required.
A more  effective  phase  equality  can  be  derived  from  the  whole  Sayre  equation  by 
considering that a good set of phases should satisfy a system of equalities of the form

                                                     Eh=
K
gh
∑

k
Ek E h−k                                                   (1.40)

where g h is the scattering factor for 'squared' atoms and K is an overall scaling constant. 
By minimizing the residual

                                               R=∑
h ∣gh E h−K∑

k
Ek E h−k∣2

                                         (1.41)

one obtains the Sayre-equation tangent formula (Debaerdemaeker et al., 1988b):

                     h= phase of [∑l
g hg lg h−l E l E h−l−2 K∑

l
∑

k
Eh−l E k E l−k]              (1.42)

This  expression  contains  both  triplet  and  quartet  terms  and  takes  into  account  the 
information from small-valued structure factors. It has been used in the program SAYTAN.
    The  first  implementations  of  direct  methods  programs  were  based  upon  symbolic  
addition: a small starting set of strong reflections is selected, while some origin-defining 
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phases are chosen and given explicit  values.  Symbols are assigned to the phases in the 
starting set, which then is expanded by means of a network of triplet relationships. At the 
end of this procedure, different numeric values are given to each symbolic phase to generate 
different  solutions,  which can be  ranked according  to  specific  figures  of  merit  (FOMs) 
measuring the deviation of phase values from their expected statistical behaviour. Since an 
initial  error  propagates  through  the  process,  unreliable  starting  triplets  can  give  rise  to 
wrong solutions. For this reason specific procedures have been devised to select a very good 
starting set. A drawback in symbolic procedures is that, because of the cyclic nature of the 
variables, it is not possible to combine together multiple estimates relating to the same phase 
but involving different symbols. To overcome this difficulty, the multisolution approach has 
been introduced: several sets of values are given to the initial phases, each set is expanded 
by means of a weighted  tangent formula, and FOM values are calculated for each solution. 
An example of such an approach is offered by the program MULTAN (Debaerdemaeker et  
al.,  1988a).  The  software  SHELX  (Usón,  1999)  makes  use  of  a  simulated  annealing 
procedure into phase refinement. This latter is still carried out by means of a modification of 
the well-known tangent formula, but phases are subjected to 'thermal fluctuations' around 
their predicted values, allowing a random walk in phase-space that avoids local minima.     
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Fig. 3 The growth in power of Direct Methods, expressed  
as the maximum number of atoms in the asymmetric unit  
of solvable structures.  
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   Direct methods have been an unvaluable tool in crystallography, allowing for automated 
structure solution up to hundreds of atoms in the asymmetric unit; they are still the preferred 
choice in solving the structure of small molecules. Since they operate only in reciprocal 
space, their request for computing resources is limited. However, they suffer from many 
limitations  that  have  prevented  until  now  their  extensive  use  in  macromolecular 
crystallography. These are: 

• the  probabilistic  relationships  become  weaker  as  the  number  of  atoms  N in  the  cell 
increases.  Structures with more than ~200 atoms in the asymmetric unit are difficult to 
solve; 

• they cannot deal with data at a resolution less than 1.2 Å, because of the breakdown of 
the atomicity assumption (the 1.2 Å limit has been somewhat relaxed in these last years);

• the atoms are assumed to be uniformly and randomly distributed in the cell, an unrealistic 
approximation since atom positions are correlated and the distribution is non-uniform 
(this is  especially true for macromolecular crystals).  Thus a lot of available chemical 
information, which would considerably strenghten the method, remains unexploited. 

• the probability distributions are derived through the use of questionable mathematical 
approximations (Bricogne, 1997a).

Classical direct methods only compute the conditional probability distributions for many 
small sets of phases (mainly triplets and quartets), and try then to put them together to get 
estimates on larger sets. This approach avoids many mathematical difficulties, but it relies 
on  questionable  approximations  and  ends  up  in  weakening  considerably  the  predictive 
power implicit in the random atom model.      
   A completely general  approach (Bricogne,  1997a) calls  for  bayesian statistics,  whose 
framework  allows  the  computation  of  joint  probability  distributions  for  large  sets  of 
structure factors. In that case, the mathematical treatment is much more complex than in 
classical direct methods, and no general analytical expression for the probabilities can be 
derived; one is forced instead to formulate different phase hypotheses, which can be then 
evaluated through a likelihood criterion to be accepted or rejected. A phasing procedure 
must then be strongly hierarchical, starting from a small set of phased structure factors and 
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extending it along a 'multisolution tree'. At each node of the tree, two quantities, entropy and 
likelihood, are used to estimate the best phases of the current reflection set. While entropy 
measures the strenght of phase estimates in relation to the basis set, the likelihood is the 
probability of having the observed values for reflections out of the basis set given the phases 
and constitutes a 'look-ahead' tool. Being more general and flexible, the bayesian approach 
would accommodate stereochemical constraints (Bricogne, 1997b) into a random fragment 
model (an  extension  of  the  random  atom  model)  and,  if  mathematical  difficulties  are 
overcome, allow ab initio phasing for macromolecules even when the diffraction data do not 
extend to atomic resolution. 
 

The Shake-and-bake approach
   A powerful dual-space method, capable of solving large structures, is the Shake-and-Bake 
algorithm, which has been implemented in the SnB computer program (Weeks et al., 1994), 
and  also  inspired  the  Half-baked procedure  (Sheldrick  and  Gould,  1995)  within  the 
SHELX-97 package.  SnB applies a real-space filtering by selecting atomic peaks in the 
electron  density  maps,  while  in  reciprocal  space  a  phase  constraint  arising  from direct 
methods  theory  is  applied.  This  consists  in  finding  the  minimum  for  the  'minimal 
function' (Hauptman, 1991):

                       m {} = ∑h , k
Gh , k

−1 ∑
h ,k

Gh , k[cos h ,k −
I 1Gh ,k
I 0Gh ,k  ]

2

                            (1.43)

which is  a measure of the deviation of all  the considered triplet  values  {}  from their 
expected value, and allows to state the phase problem in terms of global minimization. The 
dual space approach forces the same atomicity (and positivity) constraint in both spaces, 
resulting in a more powerful approach than the purely reciprocal-space one of traditional 
direct methods. In fact, one of the drawbacks in the minimization of m{}  is the presence 
of false minima; in this procedure, the problem is overcome by the real space peak search. 
Moreover, atomicity is imposed from the beginning, since the procedure directly starts with 
a random distribution of atoms in the asymmetric unit. This method is effective in solving 
structures containing up to 1000 independent non-hydrogen atoms, provided that atomic 
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resolution  (d<1.1  Å)  data  are  available.  It  is  frequently  used  to  solve  the  heavy  atom 
substructures  in  SAS  (Single  Anomalous  Scattering)   and  SIR  (Single  Isomorphous 
Replacement) applications, requiring only 3 Å resolution data.

The charge flipping algorithm
   An interesting dual space method has been developed recently, the Charge Flipping (CF) 
algorithm (Oszlányi and Sütő, 2004), which is inspired by the Fienup algorithms used in 
optics. The algorithm forces atomicity in a strange, indirect way, by flipping the values of 
every density pixel under a given (positive) threshold  . This flip preserves the norm of 
electron  density  while  inducing  a  phase  perturbation.  In  reciprocal  space,  no  value  is 
assumed for the zero-frequency term F000, which is initially set to zero and then allowed to 
change freely during the iterations, while the other known moduli are simply imposed at 
each cycle. The evolution in phase space is chaotic, showing a strong dependence on initial 
conditions.  Since the true, atomic solution represents a limiting cycle for the algorithm, a 
succession of iterations leads to structure reconstruction. When the solution is found, an 
abrupt change in total charge and R-factor occurs. No symmetry information is used and the 
reconstruction is carried out in a P1 cell; avoiding to fix the origin and the enantiomorph has 
the advantage that the structure can appear everywhere, so the efficiency of the algorithm is 
higher (the solution is not a point in phase space but rather a set of points, each of which 
corresponding to a different origin/enantiomorph choice).     

                                                 n1 r ={ nr  if n r 
−n r  if nr ≤

                                        (1.44)

This algorithm belongs to the output-output class, the less powerful among Fienup iterative 
schemes  (Fienup,  1978).  As  a  result,  the  iterations  suffer  from  stagnation.  Many 
modifications  of  the  algorithm  have  been  proposed  to  overcome  stagnation  problems, 
including a separated treatment for weak reflections  (Oszlányi, 2005)  and the introduction 
of  the  tangent  formula  into  the  algorithm  (Coelho,  2007).  The  algorithm  has  been 
succesfully applied to incommensurately modulated structures (Palatinus, 2004). A modified 
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form including  histogram matching  has  also  proven  to  be  effective  in  solving  difficult 
structures from powder diffraction data (Baerlocher, 2007). 
Due to the dimensionality of the phase space to be explored, even the best modifications of 
the method cannot work for large structures (more than ~300 non-hydrogen atoms in the 
asymmetric unit), even if atomic resolution data are available.

Patterson methods
    Only in the last few years this class of methods has raised new attention, due to their 
unsuspected  power  in  solving  macromolecular  structures.  Patterson  deconvolution  relies 
over an atomistic interpretation of the Patterson function. This latter is the Fourier transform 
of the squared structure factors:

                                          P u = 1
V ∑h

∣F h∣2 exp−2h⋅u .                                      (1.45)

According to the Wiener-Khinchin theorem,  P u  coincides with the autocorrelation of 
electron density:

                                                   P u=∫V
r  rud r .                                            (1.46)

This function  P u  differs from the autocorrelation of any localized function in being a 
cyclic  autocorrelation,  that  is,  it  has the same translational  periodicity  (unit  cell)  of  the 
electron density. The squared structure factors are proportional to the observable intensities; 
their expression as function of the atomic coordinates writes

                      
∣F h∣2 = F hF *h =  f j exp2 i h⋅r j  f k exp−2i h⋅r k  

                                      =∑
j
∑

k
f j f k exp [2 i h⋅ r j−r k ]

            (1.47)

                
where f j  and r j  represent the atomic scattering factor and the positional vector of the j-th 
atom. Substituting this expression in the Fourier series for P u  gives: 
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P u = 1
V ∑h {∑j

∑
k

f j f k exp [2 i h⋅r j−rk ]}exp −2h⋅u

        =∑
j
∑

k

1
V ∑h

f j f k exp {−2 i h⋅[u− r j−r k ]}

         =∑
j
∑

k
P jk [u− r j−r k ] .

               (1.48)

This shows that the Patterson function can be written as a sum of individual contributions or 
peak functions  P jk , each taking its maximum value when  u=r j−rk , that is, for a given 
interatomic vector.  Provided that  the  resolution  is  high enough,  the  individual  peaks  of 
which  P u  is  made  will  be  resolved  from each  other,  and  the  set  of  maxima of  the 
Patterson function will coincide with the set of interatomic vectors {r j−r k}  of the structure. 
Assuming that the Friedel law ∣F h∣=∣F −h∣  is valid (that is, that electron density and so 
the  f j  are  real  functions  -  no  anomalous  scatterers  are  present),  the  function  will  be 
symmetric  with  respect  to  the  origin:  P u=P −u .  This  is  consistent  with  the 
simultaneous presence of a vector r j−rk  and its opposite r k−r j . 
    The complete set of interatomic vectors can be obtained by joining many sets of atomic 
coordinates of the same structure, each translated of a vector which is taken each time equal 
to one of the atomic coordinates; that is, 

                                   {r j−r k}= {r j−r1}∪ {r j−r2}∪...∪ {r j−r N } .                                 (1.50)

Considering the distribution of peaks of the Patterson function, there is in principle one 
simple way to unravel the structure: it consists in a multiple superposition of the peak map 
with itself. If the map is translated by one of the interatomic vectors, that is, by setting the 
new origin on an arbitrary pivot peak u p = r a−rb , a set of peaks

 {r j−r k− ra−r b}= {r j−r1−r a−rb} ∪....∪ {r j−r N−ra−rb}                    (1.51)

will be obtained. The intersection between the original set and the new one will correspond 
to the vectors

                                                  {r j−r a}∪ {− r j−rb} ,                                                  (1.52)
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that is, to a single coordinate set with origin ra plus its enantiomorph with origin rb. If the 
peak in  up is a multiple one, arising from the superposition of  m different peaks, then the 
intersection operation leads to a union of  m different sets of the form (1.52). In any case, 
many  interatomic  vectors  will  be  ruled  out;  multiple  intersections,  using  each  time  a 
different pivot peak, can be performed, until the image has been extracted from the map. 
Unfortunately,  this  simple  procedure  is  not  applicable  in  practice,  since  real  peaks  will 
always have a finite width, giving rise to superpositions; only multiple peaks will emerge 
from the background of the map. For this reason, Patterson superposition methods have 
been used in  the  last  decades  mostly  to  exploit  the  knowledge represented by a partial 
model. To estimate the coincidence of the peaks some image-seeking functions have been 
proposed (Buerger, 1959):

                                              
r =P  r P r−u
 r =P r P r−u 
M r =min {P  r  , P r−u}

                                            (1.53)

These three functions (product, sum and minimum) are expected to take great values when a 
part of the map superposes exactly with itself.  
    Recently, the Patterson deconvolution approach has proven to be a very powerful one in 
solving macromolecular structures. A new approach combining Patterson vector methods 
and real space refinement has been devised and implemented first in the SIR2002 package 
(Burla et al., 2002); with some improvements it has been included in the crystallographic 
package  IL  MILIONE (Burla  et  al.,  2007).  In  this  multisolution  procedure,  different 
superpositions are calculated, by choosing each time one of the highest peaks as pivot point; 
the maps arising from the vector process are used as starting point for a series of density 
modification cycles. The starting point are implication transformations, which allow to take 
into account the crystallographic symmetry. They are defined as

                                                    
   I sr =P r−C s r / ns                                                  (1.54)

where r−C s r   is an Harker vector, and C s  is the s-th symmetry operator with multiplicity 
ns.  When  the  space-group  symmetry  has  more  than  two  primitive  operators,  all  the 
implication transformations can be combined into the multiple implication function:
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    SMF r =min
s=1

m

I s r                                                     (1.55)

which acts by selecting at each point the lowest value between all the set of functions I sr  . 
The  SMF  map  will  present  peaks  for  atomic  positions  compatible  with  any  of  the 
permissible origins for the space group and also for their enantiomorphs. The map is then 
cleaned by computing a minimum superposition function

                                            
 S  r =ISF [P r−r p , SMF r ]                                          (1.56)

where  r p  is a pivot peak selected from the highest peaks in the SMF map and ISF is one of 
the image-seeking functions (product, sum or minimum). The S  r   functions obtained by 
each chosen pivot peak are then used as starting points for a real space refinement. In the 
first  cycles of real space refinement the electron density map can be further cleaned by 
means of the PFF map, defined as

                                       
  PFF  r =min [P  r−r p ,FF rr p]                                         (1.57)

where the  FF map is a map showing peaks for the sum of atomic vectors and, unlike the 
Patterson map, depends on the phases:  

                                

    FF u= 1
V ∑h

∣F h∣2 exp2 ih−2 i h⋅u                                    (1.58)

The overall process can be seen as a repeated 'filtering' of the Patterson function, aiming at 
eliminating a number of 'multiple images' of the structure as well as the symmetry due to the 
inversion center. The method is less resolution-sensitive than direct methods; it is also faster 
with  respect  to  the  tangent  procedure  implemented in  the  same package,  since  a  lower 
number of trials are needed. Moreover, the efficiency of the deconvolution procedure does 
not depend on the number of atoms in the asymmetric unit (a.s.u), as direct method do, 
allowing the solution of structures with as many as 6000 atoms in the a.s.u., provided that 
atomic  resolution  data  are  available  and that  at  least  a  moderately  heavy atom (Ca)  is 
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present.    

Resolution and uniqueness of the phase problem for proteins 
   The real obstacle to apply any of the conventional ab initio methods, regardless of their 
real- or reciprocal-space nature,  to protein structure solution, is the limited resolution at 
which most macromolecular crystals diffract. As reported in (fig. 4), the majority of protein 
datasets has a resolution limit falling in the range 1.5-3 Å. In such cases, since the atomic 
resolution reflections are missing, the atomicity restraint is not strong enough to guarantee 
the uniqueness of solution. This degeneracy can be probed by a simple experiment (Baker et  
al.,  1993a):  the  atoms  of  a  protein  are  randomly  placed  in  the  unit  cell,  and  after 
minimization against  less-than-atomic resolution data (dmin>1.5  Å), it is observed that low 
R-factor values are always attained within little atomic displacements (rmsd 1.5-2.0 Å). The 
crystallographic R-factor is the residual defined by

                                              R =
∑

h
∣∣F calc h∣−K∣F obsh∣∣

∑
h
∣F obsh∣

 ,                                    (1.59)
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Fig. 4 Number of protein structures in the Protein Data Bank (PDB) ordered by resolution 
intervals. The majority (87%) of them falls in the resolution range 1.5-3 Å; less than 10% 
has atomic resolution and can thus be solved in principle by current ab initio methods. 
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where  K is a scale factor, required to bring the  ∣F obs h∣  and the  ∣F calch∣  on the same 
scale:

                                                          K =
∑

h
∣F calc h∣

∑
h
∣Fobsh∣

 .                                                (1.60)

   The quantity  R is a measure of the deviation between the structure factor magnitudes 
∣F calch∣  calculated  from the  model  and  the  experimental  ones  ( ∣F obs h∣ ).  When  the 
observations/parameters  ratio is  high,  low  R values are indicative of a  good (physically 
meaningful) model; however, when this condition is not fulfilled, arbitrarily low R values 
can  be  obtained  even from models  that  are  physically  meaningless.  Indeed,  the  phases 
corresponding to the atomic arrangements obtained do not show any correlation with the 
true ones (mean phase error MPE = 84-89 Å, very close to the 90° expected for  complete 
uncorrelation);  moreover,  the  phases  resulting  from  different  runs  are  also  completely 
uncorrelated with each other. This shows that the  R=Rr 1 , .. , r N   hypersurface has many 
local minima, the vast majority of them bearing no resemblance with the true structure. 
Those  minima  are  so  many  that  any  random  set  of  coordinates  has  one  in  its  close 
neighborhood. Restricting the atomic positions inside the true molecular envelope does not 
change the results: at low  resolution (14 Å) strong phase correlations with the true solution 
are obtained, reflecting the a priori knowledge about the protein/solvent boundary, while the 
higher resolution shells are still randomly phased. 
   Besides atomicity, another restraint named  connectivity can be defined on the basis of 
electron density  topology,  by selecting all  the points  of the density  map above a given 
threshold and joining them to form a skeleton; a high connectivity corresponds to a skeleton 
made of a few long segments, and the corresponding density is likely to be close to the true 
one.  Connectivity  is  strongly  correlated  to  phase  error,  decreasing  smoothly  as  MPE 
increases; indeed, false solutions obtained from minimization of random atomic coordinates 
show a very low connectivity (<0.1, compared to 0.97 of the true map). A very interesting 
property is that this correlation persists until  very low resolutions (dmin>12  Å), so that it 
could be exploited in phasing even in absence of atomic resolution data. Although a phasing 
process  through  a  direct  optimization  of  the  connectivity  is  not  possible,  because  no 
analytical  expression  exists  for  that  quantity  and  so  no  derivatives  can  be  computed, 
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connectivity can be used as a figure of merit to judge the quality of a set of phases. An 
iterative  skeletonization procedure,  based  on  this  idea,  has  been  proposed  for  phase 
improvement and implemented in the PRISM program (Baker et al., 1993b).

Conditional optimization
    Stereochemical data, like known ideal bond lenghts and angles, are a powerful constraint 
for macromolecular refinement, allowing the quality of the atomic model to be improved by 
maximizing  the  fit  with  experimental  data.  In  absence  of  bond  and  angle  constraints, 
refinement would diverge, because of the low observables/parameters ratio. Unfortunately, 
the usefulness of stereochemical constraints in ab initio phasing is limited by the difficulty 
of imposing them on electron density or phases without explicitly building an atomic model. 
Starting a conventional refinement from a random conformation of a pre-built model does 
not lead to the correcty structure because of the many local minima of the problem and the 
intrinsic slow nature of the search. 
  An  attempt  to  introduce  stereochemistry  into  a  phasing  process  is  the  method  of 
conditional optimization (Scheres and Gros, 2004), in which a kind of refinement is carried 
out  on  loose  atoms.  The  protocol  starts  from random coordinates  to  which  a  chemical 
identity is assigned each time according to their neighborhood and are refined under a force 
field  based  upon ideal  geometry.  The  method has  been tested for  model  building  from 
experimental phases, but also for ab initio solution with experimental data truncated at 2 Å 
resolution. All the helices of a four-helical bundle could be reconstructed at the end of 1000 
optimization steps, although the directionality of the resulting chain is not always correct 
and loops were missing in the final model due to intrinsic limitations of the force field.

Ab initio phasing starting from low resolution     
   The major problem in macromolecular phasing is the limited resolution of the measurable 
diffraction data. Alternative approaches to direct methods, which try to estimate first the 
phases of the strongest reflections, are an ensemble of techniques whose starting point is to 
build phase estimates for the lowest  resolution shell.  The basic idea is  to choose a few 
reflections at very low resolution (usually less than 15 Å) and assign them phases according 
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to real-space criteria (that is, requiring the corresponding electron density map to match 
some expected properties). This small set of phased reflections can be used in principle as a 
starting point for an extension procedure for phases extrapolation to higher resolution. Since 
some  very-low-resolution  reflections  are  always  missing  in  data  sets  recorded  with  a 
straightforward procedure, these methods require the diffraction experiment to be carried 
out with an experimental setting a little different from usual. Lunin and co-workers (Lunin 
et al., 2000a) investigated a general phasing process in which:

• a  small  number  of  very  low  resolution  reflections  are  chosen  (e.g.  39  independent 
reflections at 16 Å resolution), defining a starting set S.

• a great number of phase sets {h}h∈S for these reflections are generated at random;
• for each set of phases the corresponding electron density (Fourier synthesis) is computed;
• each of these low-resolution maps is evaluated according to a selection criterion;
• the phase sets giving rise to the more likely maps are retained;
• if necessary, cluster analysis of the phase sets is performed, in order to group them in 

classes  of  similar  solutions.  To  calculate  the  closeness  of  two  phase  sets  an  origin 
alignment is performed by maximizing the map correlation coefficient;  

• aligned phase sets belonging to the same cluster are averaged, giving rise to one of the 
final solutions.    

The alignment procedure is required because of the origin and enantiomorph ambiguity in 
defining the phases. Two phase sets that look completely different can actually give rise to a 
pair of similar electron density maps that are related by an origin shift (and/or enantiomorph 
inversion). An origin-shift is applied to the phases until the real space map correlation C

(Lunin and Woolfson, 1993) is maximized: 
              

       

C=
∫ [1 r −〈1〉] [2r −〈2〉]d r

∫ [1r −〈1〉]
2 d r∫ [2 r −〈2〉 ]

2 d r

                                                                =
∑

h
F obs h2cos [1h−2h]

∑
h

F obs h2

                  (1.61)
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Some selection criteria which have been tested are: 

• the closeness of map histogram to the expected one at the working resolution; 
• the connectivity  properties  of  the  maps (number of  connected regions above a given 

threshold);
• the  probability  of  obtaining  the  observed  structure  factor  magnitudes  by  placing  the 

atoms at random inside the connected regions.

    Each of these criteria is rather weak in discriminating between the sets which are close to 
the true solution from those that are far apart. Many individual phase sets can be wrong, and 
nevertheless  obtain  a  high  score  according  to  some  criterion,  while  better  sets  can  be 
incorrectly  classified  as  bad.  Nevertheless,  there  is  a  statistical  correlation  between  the 
closeness of the selected phase sets to the correct one and the measure of goodness offered 
by each criterion. This means that selecting out of the random ensemble the phase sets with 
higher score leads to a population statistically enriched in variants which are closer to the 
true  solution.  Averaging  over  this  smaller  ensemble  cancels  out  the  random differences 
between its elements, while common features are enhanced; the final averaged set of phases 
is much closer to the true solution than the majority of the selected variants. As by-product 
of  the  averaging procedure  over  M individual  phases   j h ,  a  figure  of  merit  m(h)  is 
obtained: 

                                      m hexp[ ibest h] = 1
M ∑

j=1

M

exp [ i jh]                                 (1.62)

Often, simply averaging the selected variants leads to a reasonable solution of the phase 
problem. In some cases, however, the variants tend to concentrate around more than one 
center. A better averaging strategy is then to group the selected phase sets in increasingly 
large clusters according to their 'distance', defined by 

                                       dist [{1h}, {2h}]= [21−C]
1 /2                                    (1.63)

A convenient level of clustering is then chosen, and averaging is carried out for each of the 
resulting clusters.  Low resolution maps obtained with different selection criteria show a 
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correlation of about 60-70 % with the exact one. 
    Among all the tested criteria, the most effective has proven to be connectivity (Lunin et  
al., 2000b). In the low-resolution context, this word does not imply the construction of a 
skeleton, but rather the segmentation of the electron density in a number of isolated regions. 
To analise the connectivity, a Fourier synthesis is computed on a grid from the trial phases 
and the observed moduli, and a mask   is then obtained by selecting the points in the 
synthesis which have values above a cutoff level  :

                                                         = {r :r }                                                   (1.64)

In order to make the connectivity independent of the scale of the synthesis it is convenient 

to define the cutoff level  as a function of the specific volume  :

                                           

                                           =
Volume k 

number of residues per unit cell
.                                       (1.65)

Once  has been fixed,  becomes a function of the scale, allowing the region  to be 

scale-independent.  An  optimal  choice  when  working  with  ~15  reflections  is 

=25 A3/residue ; for this specific volume each molecule in the cell is expected to give rise 
to a single separated region in the mask  . The mask is then separated into its connected 
components; each c.c. is formed by grid points that can be joined by a continuous chain of 
neighboring points belonging to the same component.  The selection of phase sets is then 
performed on the basis  of the number of connected components  in the unit  cell,  which 
should be equal to the number of expected molecules. Additional criteria, like the volume of 
connected regions, can be applied. 
   Connectivity-based phasing is a valuable tool when the standard crystallographic methods 
fail,  or when only low resolution data are available; for example, successful attempts to 
phase low-density lipoprotein to a resolution of 27 Å (Lunin et al., 2001) and lectin SML-2 
to 16 Å (Müller et al., 2006) have been reported. Some interesting results were obtained in a 
test case on the small,  61 residues long protein G, whose structure had been previously 
solved (Derrick and Wigley, 1994). Only one molecule per asymmetric unit is present, and 
since there are four asymmetric units (space group P212121) the low resolution map was 
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expected to show four separated regions of approximately the same volume. This criterion, 
with some additional restraints at higher resolution, allowed phasing to be performed from a 
very low resolution starting set (16 Å) up to an effective resolution of about 4.5 Å (Lunina 
et al., 2003). It must be observed that at the stage of variant clustering human intervention is 
still of great usefulness. Instead, for determining the most crucial parameters of the method, 
like  the  correct  choice  for  the  space  group and the  number  of  molecules  per  unit  cell, 
automated procedures have been proposed (Urzhumtseva et al., 2004). 
  

Weak constraints and the density modification scheme
     Although they cannot be generally considered tools for ab initio phasing, the so-called 
density modification methods, widely used in macromolecular crystallography, offer some 
examples of successful application of weak constraints for improving or extending existing 
phase sets (Cowtan and Zhang, 1999). The use of weak constraints is justified by the fact 
that  the  initial  estimates for  the  phases,  usually  arising from experiment,  are  in  a close 
neighborhood  of  the  correct  solution.  From  an  algorithmic  point  of  view,  density 
modification  follows  a  simple  alternating  scheme,  like  the  classical  Gerchberg-Saxton 
algorithm (Gerchberg and Saxton, 1972). The procedure goes back and forth between real 
and reciprocal space (fig. 5), restoring in turn the real constraints (which can be of many 
kinds) and the Fourier constraints (experimental moduli and initial phase estimates).  
     At each i-th cycle, proper weights must be calculated in order to combine the new phases 
{h}i  with  the  initial  ones  {h}0 .  This  is  done  by  multiplying  their  respective 
probability distributions:

                                          
    Pnew [h]=P init[h]Pmod [h]                                     (1.66)

The recombination of the modified phases with the initial ones is mandatory, because in 
almost all applications underdetermined constraints are used; however, the recombination 
process assumes independence between the two phase sets, which is not true and leads to 
strong bias with respect to the initial phases. The weights for the modified phases are given 
according to the agreement of the calculated factors with the observed ones. Unfortunately, 
due to underdeterminacy of the constraints, a large enough number of cycles will lead to an 
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arbitrarily  good  agreement  between  model  magnitudes  and  their  observed  value;  this 
agreement is not necessarily correlated with phase improvement. To limit this possibility, a 
small number of cycles is usually performed when weakly phased reflections are included.

Solvent flattening
   Most biological molecules have a roughly globular shape, so that the crystal packing 
shows many gaps that are filled with disordered solvent from the crystallization solution. 
With the exception of the hydration shell in the proximity of protein molecules, the solvent 
regions can be assumed to a good approximation as having a flat electron density, which is 
an  average  value  over  a  great  number  of  unit  cells.  If  the  solvent  regions  have  been 
identified, then the phases can be improved by imposing a constant value to the electron 
density in these regions. The most common method (Wang, 1985) for  selecting the solvent 
regions is the following:

• the electron density map is truncated:
                                    

     tr x ={x  ,     x solv

0,           x solv
                                          (1.67)

• the truncated map is smoothed by convoluting it with a smearing function (this operation 
is readily accomplished in reciprocal space): 

                                               av x = tr x ∗g x                                                 (1.68)
• the solvent region Ωsolv is obtained as

                          
          solv={x |av x cut}                                               (1.69)

                                               
The real space operation is then simply

                                                  mod  x={x      x∈ solv

solv      x∉solv
                                              (1.70)
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Histogram matching 
   Histogram matching is the most conservative among density modification constraints, 
since it does not change the ordering of values of the electron density. The histogram of 
electron density is the distribution of its values; it can be constructed by discarding all the 
positional information present in an electron density map and by ordering all its values in 
increasing order. The number of values falling in given ranges is then counted to obtain an 
histogram that  can be approximated by a continuous frequency distribution  P  .  At a 
resolution better than 6 Å, the histogram calculated over protein regions only is a function 
of the resolution and the temperature factor, whose effect can be removed. So, once the 
protein  region  is  known,  the  point  falling  inside  it  should  have  a  predictable  density 
distribution that  depends only on their  resolution. According to a standard technique in 
image  processing,  a  given  density  can  be  modified  in  order  to  have  the  theoretical 
histogram; since an infinite number of possible densities exist for a given histogram, the 
convention is not to alter the order of values in the map. 
   A variant of the method is the two-dimensional histogram matching (Nieh and Zhang, 
1999). This technique exploits the joint information of the distribution electron density and 
its  gradient  to  decouple  the  ordering  of  the  density  values  between  different  cycles  of 
refinement. In fact, the histogram constraint is a general but very weak constraint in that the 
locations  of  maxima  and  minima  in  the  density  is  left  unchanged.  The  2-D  histogram 
performs slightly better than the simple one. 

NCS averaging
     Non-crystallographic symmetry (NCS) arises in crystals when two or more molecules are 
related to each other by a symmetry operation that is not common to the whole crystal (that 
is, a local symmetry). The information about NCS can be used to average portions of the 
map corresponding to copies of the same molecule; moreover, the NCS operators cause the 
reflections  being linked together  by  supplementary  equations,  providing  powerful  phase 
constraints. To be exploited, this property needs first to identify the masks for the single 
molecules and the NCS matrices relating them. This kind of constraint can be very strong, 
so that NCS-averaging can be considered the most powerful density modification technique; 
for very symmetrical molecules (or molecular assemblies like viruses), ab initio phasing is 
also possible. 
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Iterative skeletonisation
     Connectivity can be imposed on electron density when an initial set of phases is available 
(from experimental methods or molecular replacement); the procedure, known as iterative 
skeletonisation, has been first implemented in the PRISM crystallographic software (Baker 
1993b) and is available into the CCP4 package as part of the DM program. At each cycle of 
the procedure, a skeleton is traced into the density by joining all the neighbouring points that 
lie  above  a  given  threshold,  and  the  density  is  modified  by  setting  to  zero  the  points 
belonging to small disconnected elements of the resulting graph. After Fourier transforming 
the  map,  new  phases  are  obtained  which  can  be  combined  with  the  starting  ones. 
Effectiveness varies much from one case to another. 

Motivation of the project
  From the exposition outlined above, it is clear that x-ray structural investigation in the 
macromolecular field is significantly hindered by the lack of high resolution data and the 
consequent underdeterminacy of the phase problem. Alternative approaches, which could be 
based  for  example  on  the  topological  properties  of  the  electron  density,  have  begun to 
develop in the last 20 years; however, they are still of very limited use, and often require 
human intervention, as well as careful setting of their basic parameters. Taking inspiration 
by these recent techniques, the present work is aimed at exploring some possible alternative 
approaches, that do not rely directly on the existence of atoms, but rather on some properties 
of the electron density that are likely to arise in (or persist until) a medium resolution regime 
(1.5-4.5 Å).       
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Fig. 5  The schematic representation of the density modification procedure
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Introduction
   In  search  of  a  new  approach  to  phase  problem  for  macromolecular  structures,  we 
addressed  artificial  neural  networks (ANNs)  as  a  potential  tool  to  extract  phase 
relationships from real examples. ANNs are parallel processors whose basic architecture is 
inspired to  biological  neural  networks (Haykin,  1999):  in fact,  they are  built  of  several 
interconnected  layers  of  simple  processing  units,  named  neurons.  Each  neuron  is  an 
implementation of a mathematical function ℝn ℝ , which integrates many input signals 
and transforms them through a transfer function, to give a single output signal which can be 
redistributed to other neurons connected to it. The ANN as a whole is a mathematical model 
defining  a  function  f : A B .  While  the  general  form of  this  function depends  on the 
specific  network  architecture  and  on  the  nature  of  the  transfer  functions,  its  precise 
operation is defined by the connection parameters.

Fig. 1  A biological neuron and the 'neuron' processor as defined in ANNs. Both are able to integrate many inputs to give a 
single output, which will be sent in turn to many similar processing units. The 'body' of an artificial neuron is a weighted sum 
(the scalar product  Wp  of  input vector and weight vector) upon which a  transfer function f  will act. (Adapted from: left,  
http://www.drugabuse.gov/MOM/TG/momtg-introbg.html; right, Matlab package documentation (The Mathworks))

   Two principal classes of architectures can be defined, depending if cycles are present 
(recurrent ANNs) or not (feedforward ANNs) in the connection graph. Cycles can lead to a 
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time-dependent behaviour; moreover they are present in Hopfield networks, a well-known 
class of networks that can act as associative memories. In feedforward networks the neurons 
are organized in layers (fig. 2), the output of one layer becoming the input for the next. 
    As in biological neural networks, the strenght of the connections between neurons can 
vary,  leading  to  different  behaviours  of  the  whole  network.  Each  connection  between 
neurons is given a  synaptic weight, a number by which the quantities sent through it are 

being scaled:  for  example,  in  order  to become an 
input for the neuron  j, the output from a neuron  i  
must  be  multiplied  by  the  weight  wij.  Specific 
learning algorithms allow a network to modify its 
weights  according  to  a  set  of  examples  (training 
set), in order to reproduce input/output relationships 
or to classify the inputs. If only input data are used, 
allowing  the  network  to  find  by  itself  their 
characteristic  features,  we  speak  of  unsupervised 
learning;  weight  modification  is  carried  out  by 
minimizing a  cost  function which depends on the 
data  and  on  the  output  values  and  can  have  any 
form.  On  the  other  hand,  in  supervised  learning 
both input and output are used, and the cost function 
to  be  minimized  is  a  measure  of  the  difference 
between calculated and expected outputs. If transfer 
functions are differentiable the learning process can 
be  accomplished  using  a  backpropagation 
algorithm, in which the corrections to be applied to 
the  weights  are  computed  backwards  from  the 
output layer up to the input layer. 

 In  a  so-called  feedforward ANN several  layers  of 
neurons (fig. 2) are interconnected; each neuron in the i-th layer collects its inputs from all 
the neurons in the (i-1)-th layer and processes them, originating an output which is sent to 
all the neurons in the (i+1)-th layer. The first layer of the network (input layer) is fed with 
the input vector, while the last layer (output layer) generates the output vector.  In between, 
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Fig.  2  A single layer of  neurons,  receiving an 
input vector  p and returning the output vector a. 
This last can become in turn the input vector for 
the next layer of the network. The dimensions of 
input  (R)  and  output  (S)  can  be  different.  (W, 
weight  matrix;  b,  bias  vector;  f,  vector  of  the 
transfer  functions  relative  to  each  neuron). 
(Adapted  from:  Matlab  package  documentation,  
The Mathworks)
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a number of inner (hidden layers) can be present (fig. 3). 
    Neural networks possess an intrinsic learning capability, which arises from having many 
adjustable parameters; a feedforward network can be used to model a complex function 
from a series of known points. During the learning process, input/output pairs constituting 
the  training  set are  presented  in  succession  to  the  network,  and  a  learning  algorithm 
modifies the weights in order to achieve the minimum difference between each calculated 
output and its target value found into the training set. At the end of this process, the network 
is able to reproduce at its best the output values corresponding to training set inputs. This 
means that, if some general relationship a i ~ b i exists between corresponding elements of 
two sets A and B, and we train a suitable network with a training set made of elements of the 
subsets  Atr∈A  and  Btr∈B , the network will learn to predict  b values from  a values 
also for those elements of A and B not belonging to the training set. It is clear that a good 
generalization is attained only with a wisely chosen training set; this latter should not be too 
small and its elements have to be evenly distributed across the whole sets A and B. 

   
    Network dimensions (number of neurons per layer and number of layers) have to be 
tailored for a specific application. While the input and output layer must have a number of 
elements respectively equal to input and output vectors, the dimensions of any other layer 
can vary. It is clear that a network is too small to accomplish a given task when the number 
of neurons (and as a consequence the number of adjustable parameters) is not sufficient to 
generalize the information contained in the training set. In that case no learning is observed. 
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Fig. 3  An example of feedforward network made of two layers with different transfer functions, a  
sigmoid and a linear one. (Adapted from: Matlab package documentation, The Mathworks) 
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     A network is conversely too big when it has so many parameters that it always learns to 
reproduce  well  a  given  training  set,  even  in  absence  of   general  relationships;  such  a 
network won't be useful, because in presence of a significant relationship in the data it will 
specialize  in  reproducing  the  specific  features  of  the  training  set,  losing  any predicting 
capability on the rest.  For real,  noisy data,  this means that the network learns to model 
exactly the training set noise, leading to a degraded mapping of the true relationship.  

Neural networks and the phase problem 

   The phase problem is  in  principle solvable  when appropriate  a priori  information is 
provided  to  constrain  the  solution.  Since  atomicity  implies  strong  moduli/phases 
relationships, when atomic resolution data are available sufficient  a priori  information is 
always present. If resolution is less than 1.2 Å, however, more detailed stuctural information 
is  needed,  which,  in  the  case  of  proteins,  ranges  from  protein/solvent  boundary  to 
stereochemical data (ideal bond distances and angles). Although this kind of information is 
currently exploited at the stage of model refinement, when an atomic model has already 
been fitted into the density, no efficient way has been devised yet to incorporate it into an ab 
initio phasing procedure. The main reasons for this are the mathematical difficulty and the 
high dimensionality of the search space. The hypothesis made in this work is that some 
general but unknown moduli/phases relationships should exists for protein structures at non-
atomic resolution. On this basis, one can guess that it could be possible to generalize them 
from examples; in this perspective neural networks are a very useful tool.

One-dimensional tests 

  As first  approach,  the problem was greatly simplified by restricting the study to  one-
dimensional atomic models. The choice of one dimension only was dictated by simplicity, 
while atomicity was required to test if the ANN approach could give results at least in a well 
known solvable  case.  The  purpose  of  these  over-simplified  experiments  was  in  fact  to 
explore  ANN  capabilities  in  a  case  where  the  solution  is  known  to  be  unique  and 
mathematical relationships between moduli and phases have already been derived in the 
context of direct methods. In the more complex case of macromolecular phasing in absence 
of atomic data,  direct methods relationships like Sayre equation have lost their strenght, 
although other relationships can exist, owing to general protein features. The training sets 
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were obtained by generating random coordinates for a given number of atoms along a line 
(fig. 5). The coordinates were passed to the software Shelx for structure factor computation, 
and the output file from Shelx was splitted in moduli and phases in order to create input and 
output training data. 
  When working with a neural network it  is  necessary to properly define the data to be 
processed. In particular, to a given input must correspond a single output, while it is known 
not to be the case when speaking about moduli and phases. These latter not only depend on 
the  choice  of  origin  and  handedness  of  real-space  axes,  but  in  addition  (being  cyclic 
variables) are only defined modulo 2 . A given set of phases {h} is equivalent to any 
other set of the form { h−2 h t 2 k h} ,  where  =±1 expresses the enantiomorph 
choice,  t  is a real space origin shift and the  k h  are arbitrary integer numbers. The cyclic 
ambiguity can in principle be avoided by transporting every phase value into the interval 

[− ,] ,  but  this  approach  can  generate  strong  discontinuities  in  the  function  to  be 

mapped since two extreme phase values (like 0.99  and −0.99 ), although very different 
numerically, relate in fact to very similar phase choices. For this reason, one should not use 
directly the phase values, but rather their sines and cosines, which do not suffer from this 
ambiguity. The multiplicity of phase sets due to origin definition can be addressed in two 
ways: 

• the origin can be fixed by choosing an index h  and applying to every phase set the 
required origin shift in order to have h=a  (where a is the same for every set). Taking 
h=1  and a=0 , the proper shift t can be obtained from  ' 1=1−2t=0 and one finds 

that each phase value of the set needs to be modified according to

                                                        ' h=h−h1=0 .                                                    (2.1)

• the network can be trained to predict only phases of structure invariants (s.i.). These are 
linear combinations of phases:

                                         k 1,− , k n=∑
i=1

n

k i ,                                              (2.2)

which are independent from the origin choice and are defined by
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   ∑
i=1

n

k i=0 .                                                           (2.3)

    The enantiomorph choice affects only the sign of the phases, so that  the sign of sines will 
be affected in the same way, while the cosines will be independent from the handedness. In 
principle  we can deal  with the enantiomorph choice in  a similar way to  that  for  origin 
definition: we choose an enantiomorph-fixing reflection with index h and we multiply all 
the phase values in a set by (+1) or (-1) in order to make the sign of h always positive (or 
negative) for every set of phases. The same idea can be applied to s.i., which being linear 
combinations of phases depend on the enantiomorph in the same way. The neural networks 
used in this work were created with the Matlab Neural Network Toolbox, which contains 
many predefined functions and allows the creation and training of a neural network object 
with a few lines of code. Structure factors were always normalized with the Matlab function 
premnmx, to get scaled moduli in the interval [0,1 ] . The output of the network did not need 
any post-processing since the output  layer neurons in all  the tested cases had a tangent 
sigmoid (tansig) transfer function (fig. 4), whose output values lie in the interval [−1,1 ] (as 
is expected for sine and cosine).
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Fig.  4   A sigmoid  transfer  function  used in neural  networks:  the  hyperbolic  tangent (Matlab tansig 
function) tanh n = 2 1e- 2n-1 -1 .  Another one is the logsig:  logsig n= 1e- n-1 . (Adapted from:  
Matlab package documentation - The Mathworks)
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Fig. 6  Plots of mean squared error versus number of epochs for different neural networks and training sets. Error on training 
set is blue, error on test set is red. Training and test sets size always is of 500 elements each. Number of neurons per layer 
is preceded by the transfer function specification, T (tansig) or L (logsig). (a) T150-T10 network trained on moduli (h=1-20) 
and cosines (h=1-10) (4-atom centrosymmetric structures), single run - (b) L50-T100-T10 network trained on moduli (h=1-20) 
and sines (h=1-10) (4-atom non-c.s.), single run - (c) T15-T100-T10 network trained with moduli (1-10) and cosines (1-10) (4-
atom c.s.) - (d) L60-L100-T10 network, moduli (1-10) / cosines (1-10). (4-atom c.s.) - (e) T60-T100-T10 network, moduli 
(1-10) / cosines (1-10) (4-atom non-c.s.) - (f) L60-T100-T10 network, moduli (1-10) / cosines (1-10). training set: 4-atom c.s., 
test set: 10-atom c.s.  
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   The  chosen  architecture  was  unidirectional  (feedforward)  and  the  backpropagation 
training algorithm was applied. The synaptic weights are corrected in a backwards process, 
in order to minimize the mean square error (mse) between calculated and expected outputs. 
The only requirement for the training algorithm is to use differentiable transfer functions; 

since  the  phase  problem  is  highly  non-
linear we used non-linear functions as the 
tangent sigmoid (which is used very often 
for is ability to compress any input value in

[−∞ ,∞ ] into the output domain [−1,1 ] ). 

The  learning  process  was  performed  in 
batch training mode. In each training cycle 
(an epoch) all the data in the training set are 
presented  to  the  network,  and  the 
corresponding  output  errors  are  recorded; 
weight updating takes place only at the end 
of each epoch, correcting for the deviations 
of all the training set elements in a single 
step process.  
Two  cases  were  first  considered:  the 
centrosymmetric (c.s) one, with 4 atoms per 
cell (i.e. 2 atoms per asymmetric unit),  and 
the non-centrosymmetric, with 3 atoms per 
cell. In both cases, training sets composed 
by 500 elements were used. 1-D structure 
factors were computed with Shelx (ref. ) as 

the  h00 reflections of a fictitious structure obtained by placing C atoms in the specified 
random fractional positions (xi,0,0) in a P1 cell with edges a=20 Å, b=c=10 Å. Initially, no 
restriction  was  imposed  on  the  atomic  positions,  which  were  randomly  generated  with 
uniform probability along the segment. This means that two atoms could happen to be very 
close,  the  corresponding  peaks  in  the  electron  density  being  completely  merged.  This 
obviously  violates  the atomicity  assumption which implies  well  resolved peaks;  we can 
speak of this relaxed condition on the model as pseudo-atomicity.  
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Fig. 5  Scheme of training and test set generation: from a  
random set of atomic coordinates moduli and phases are  
calculated and used as input and output vectors.

Electron density
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Training set input Training set output

Test set input Test set output
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Results and discussion
  Many tests have been carried out with cosine values (h=1-10) as output. These values were 
calculated after aligning the phase angles according to (eq. 1.1). The input consisted in the 
scaled moduli with h=1-10 or h=1-20; the training process was followed by monitoring the 
mean squared error (m.s.d.) for the training set and for an independent  test set of the same 
size. For the smallest structures (3 atoms non-c.s. and 4 atoms c.s.) the network correctly 
learns to predict cosine values (m.s.e. after 1000 epochs is as low as 0.01 – fig. 6a). Two 
layers of neurons (i.e. no hidden layers) are enough to give the network the learning ability; 
adding a hidden layer does not change much in performance while adding two hidden layers 
only results in a learning process which is slower and prone to stagnation. In a similar way, 
increasing the number of neurons in the layers over a certain limit has small or negative 
effect (when expanding the input layer), as can be predicted on the basis of the overfitting 
phenomenon. Good results were obtained with a two layer network with respectively 150 
and 10 sigmoid neurons in the input and output layers. In analogous experiments carried out 
with  the  sines  as  output  no learning  was observed,  and  this  is  not  surprising  since  the 
enantiomorph had not been defined (fig. 6b). 
  Unfortunately,  when  the  number  of  atoms  is  increased,  the  learning  is  dramatically 
reduced, even in going just from 4 to 6 atoms (in both c.s. and non-c.s. cases, although in 
the former only half of of the positions are independent). This phenomenon cannot be due to 
the increased complexity of the problem, since expanding the network in terms of number of 
layers and neurons per layer does not modify the situation, nor does the choice of bigger 
training sets (up to 5000 elements). The observed behaviour can be explained if we assume 
that increasing the number of atoms the moduli/phases relationships cease to be one-to-one, 
i.e. different sets of phases can correspond to very similar sets of moduli and generalization 
is  no more possible.  In  other words,  the pseudo-atomicity  criterion guarantees a unique 
solution only for structures made of very few atoms. The results learned for such small 
structures are not valid for larger ones, as seen from the plot in fig. 6f, where it is evident 
that a decreasing error for the 4-atom training set does not imply the same for a 10-atom test 
set.
   Furthermore, to prove that lack of learning has nothing to do with convergence problems, 
a  different  kind  of  neural  networks  was  exploited:  the  Generalized  Regression  Neural  
Networks (GRNN),  a  class  of  architectures  commonly  used for  function approximation. 
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GRNNs are conceived to perform interpolation tasks: the input layer has as many neurons as 
are the elements of the target set, and each of these neurons uses a gaussian transfer function 
centered on one input element of the target set. With GRNNs, it was again observed that 
actual  predictive  ability  only  shows  up  for  3-4  atoms  structures,  corroborating  the 
hypothesis of unicity breakdown for larger structures.    

Fig. 7  A generalized regression neural network (GRNN). The radial basis layer uses neurons with a gaussian firing function, 
each reaching the maximum of activation for a given target  vector.  (Adapted from:  Matlab program documentation,  The  
Mathworks)
  

Some additional trials for 2D problems, as well for some chosen phase invariant cosines, did 
not give positive results.  In particular, there is no easy explanation for cosine invariants 
failure in the same cases where simple (origin-aligned) cosines work.
   The results outlined here do not appear to support this simple approach of 'moduli-phases 
learning'; in addition, the quantity of data involved for protein structures makes it clearly 
intractable  through neural  networks.  In  fact,  following the  simple  moduli/phase  cosines 
scheme outlined here, the input and output vectors should have as many as 104-105 elements, 
requiring an impracticable network size. Moreover, taking into account the symmetry and 
3D structure of the data are not trivial aspects of the task.
  Nevertheless, the idea of exploiting neural networks for protein phasing still remains an 
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interesting one. The key is to find a suitable representation of the problem and to devise an 
approach in which the ANNs would do only a part of the work; that is, they could be used to 
model unknown functions into a well-defined mathematical framework, as well as tools for 
analising the protein electron density shape and topology. In this perspective, some recent 
advances in the ANN field allowing dimensionality reduction of multidimensional images 
(Hinton, 2006) could be useful for the real-space processing of electron density.
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Iterative methods



Chapter 3

Introduction
   Many iterative methods exist for non-periodic object reconstruction; from a general point 
of  view,  all  these methods operate by creating some succession of  points  in  phase (or 
density)  space,  that  is,  in  the  space  where  possible  solutions  are  defined.  Each  point 
represents a set of phases {h} , or, equivalently, the corresponding density function  x  . 
Usually, a starting point is chosen at random; the succession is constructed in such a way 
that,  almost  for  an appreciable  percentage of  starting  points,  convergence occurs  to  the 
solution. This latter, satisfying all the constraints simultaneously, must lie at the intersection 
between  two constraint  subsets:  one  defined  by  the  experimental  moduli  and  the  other 
determined by a priori constraints (which are often easier to express in real space).  The 
generator of the succession is a map

                                                                : nn +1
1,                                                      (3.1)

usually devised in such a way that the solution   is a fixed point attractor for the iterations: 

                                                                  =                                                              (3.2)

(some cases will be presented in which the attractor is a limiting cycle n  =  ). A fixed 
point  is  left  unchanged  by  an  application  of  the  map,  so  that  once  the  iterations  have 
converged to it, no further evolution occurs. Nevertheless, the existence of fixed points does 
not suffice per se to ensure convergence, so it is not possible to set an upper bound to the 
number of iterations needed to reach the solution. In this sense, a completely satisfactory 
phase retrieval algorithm has not been proposed yet.  

Given an N-point sampling, a generic density is represented by a vector in ℝN . If we call 

CR and CMOD the two subsets corresponding to the densities consistent respectively with real-
space  constraints  and  observed  moduli,  the  solution  must  belong  to  their  intersection 

C* = C R∩ C MOD . In absence of supplementary data, the starting point is a randomly chosen 

element in CMOD , which is generated simply by fourier transforming the known moduli with 

1 Iterating a map gives  rise to a memory-less trajectory or  Markov chain,  because only the last  point 
determines the next. It  can be argued that,  in this way, some useful information from the whole past 
trajectory remains unexploited.
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random phases. A repeated application of the map   generates a trajectory in phase space, 
which in favourable conditions is likely to end in the intersection. When the origin is not 
fixed  from the  beginning  (for  example,  by  specifying  some region  in  which  the  object 
density has known values) the intersection is not represented by a point, but rather by a 
continuous  set  of  points  (filament),  since  all  the  possible  choices  for  origin  and 
enantiomorph are equally valid. The trajectory can be thought to evolve in real space (object 
density)  as  well  in  phase  space,  since  for  a  given  set  of  moduli  there  is  a  one-to-one 
correspondence between points in the two spaces. 
   Usually, the map used in iterative phasing can be constructed by composing elementary 
operations known as vectorial subset projections. The projection of an element x∈U  on a 
subset of U Y⊂U  is written as  Y : x{y }  and associates to  x  the set { y} of its nearest 
elements in Y  :

                                      Y x ={ y∈Y  : ∥y−x∥=inf
y∈Y
∥y− x∥}                                     (3.3)

The set { y}  always contains a single element when the subset Y is convex. A set Y is said to 
be  convex when,  for  every  arbitrary  pair  of  points  x1 , x2∈A ,  all  the  points x in  the 
segment  

 {x=1−x2 x1  , 0≤≤1}                                          (3.4)

also belong to Y. For subsets of the euclidean plane ℝ2  the meaning is intuitive (see fig. 1). 
It is easy to show that the subset  CMOD  is not convex. In fact, given two densities  1 ,2

corresponding to the observed moduli  {F h} with the phase sets  {1}, {2} , the densities 
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Fig. 1  Convex and concave sets in euclidean plane. Every point  
lying on the segment drawn between any two points of a convex  
set belongs to the set itself. 
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on the segment =1−21  in general will not belong to CMOD , since they will not 
correspond to  the moduli {F h} unless a very special choice for  {1}, {2}  is made. As a 
consequence, the projection on CMOD  is not uniquely defined, since a zero-valued F h  is 
projected onto the set of points lying on the circle of radius  F obs h  (fig. 2). In Fourier 
space the projection of a generic element of {F h} on CMOD  can be written:

                             MOD  : F h{F obs hF h
∣F h∣     if F h≠ 0

F obs h eih          otherwise       
                           (3.5) 

where  the  function  h is  an  arbitrary  one.  It  is  common to  selects  among the  many 
possibilities the projection with h= 0 , which in the 
following will be called  MOD .    
  Another  drawback  due  to  non-convexity  of  the 
CMOD  subset is the presence of traps in a sequence of 
iterated  projections  (Stark,  1998).  Traps  are  fixed 
points  which  do  not  correspond  to  an  intersection 
between  the  subsets.  When  the  map  is  a  simple 
alternation  of  projections,  =12 ,  and  the 
constraints  are  non-convex,  traps  can  represent  a 
serious problem. If the trajectory of the representative 
point gets to a trap, in each successive iteration the 
density will  oscillate between  1∈C1  and  2∈C2 , 
each being the projection of the other, i.e. 12=1  

and  21=2  (fig.  3).  This  can be  viewed as a 
consequence  of  the  two  subset  attaining  a  local 
minimum  of  distance;  if  their  boundaries  are 
continuous,  the surface of the subset  C1  in  1 and 
that of subset  C2  in  2  will be parallel. In cases of 
nearly  parallel  surfaces  the  evolution  is  not 
completely blocked but becomes very slow; in that case we say the algorithm has entered a 
tunnel. These undesirable phenomena are known as stagnation.  
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Fig.  2   The  Fourier  modulus  projection 
represented on the Argand plane. The correct 
modulus subset is a circle of radius |Fh 

obs|; a 
generic  Fh is  projected on it  by leaving the 
phase angle unchanged and substituting the 
modulus  with  the  correct  one.  A null  vector 
Fh=0 would lie at the same distance from any 
point  of  the  circle,  and  the  arbitrary  choice 
made in defining  ΠMOD is  to project  it  with 
zero phase (green point).
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Fig. 3  Two trajectories constructed by alternated projections on non-convex subsets. The succession of points starting from a 
converges to the intersection, while the one beginning in b ends in a trap. This means that the iterates are being projected 
back and forth between two points lying at a local minimum of distance between the sets. 

An overview of some existing phasing algorithms
Traps and tunnels potentially occur in phasing when using the Gerchberg-Saxton (GS) 

algorithm  (Gerchberg  and  Saxton,  1972),  which  constitutes  the  first  phase  retrieval 
algorithm  ever  proposed.  The  real  space  constraint  allowing  image  reconstruction  is 
represented by the knowledge of the  object support S, defined as the region in which the 
density is expected to be non zero. The GS map is simply the repeated projection on support 
and moduli subsets:

                                                        GS =SMOD .                                                    (3.6)

The projection onto the correct support  subset  is obtained by simply setting to zero the 
density values outside the region S: 

                                                 S  : x{x    if x∈S  
0     if x∉S                                               (3.7)

  The success of the reconstruction obviously relies on some knowledge about the object 
size and shape. An upper bound for the support can be inferred from its autocorrelation 
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function, directly computable from Fourier moduli. In general, for a  N-point sampling,  a 
necessary  (but  not  sufficient)  condition  for  solution  uniqueness  is  that  the  sum of  the 
dimensions of the two subspaces must not exceed the dimension of the search space, that is, 
dim C Sdim CMOD≤N , otherwise the intersection cannot be empty. For this to be true, since 
the subset defined by known moduli has a dimension of N, we must have dimC SN /2 , that 
is, the object must be smaller than half of the image for the problem to be well posed..

The progress of the iterations can be followed by monitoring the summed distance error J, 
which  corresponds  to  the  sum  of  the  distances  between  the  current  density  and  its 
projections on the two subsets: 

  

                                        J =∥MOD −∥∥R−∥                                          (3.8)

Since this quantity can vanish only at the intersection of the subsets, a trap is characterized 
by  the fact that  J  stabilizes on a non-zero value. A powerful alternative to GS map was 
introduced by  Fienup algorithms (Fienup,  1978),  the  most  effective  being the  so-called 
Hybrid Input-Output (HiO): 

                                    HiO  : x{MOD x               if x∈S  
x−MODx     if x∉S                                    (3.9)

Density  within  the  support  is  modified  by  imposing  the  observed  moduli  like  in  GS 
algorithm; the difference lies in the outside region, where the density is no more set to zero 
but rather is to its previous value diminished by the feedback term  MODx  ,  which 
increases  with  the  difference  between  the  projected  density  outside  the  support  and  its 
expected value of zero. When the intersection has been found, the resulting density    is 
consistent with the observed moduli and is also zero outside the support, so that no further 
evolution is observed: 

                                                MOD x= x=0  ∀ x∉S                                           (3.10)

Compared to GS, the  HiO algorithm does not suffer from traps,  and the convergence is 
faster. In terms of projections, the HiO map can be written as 
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                                            HiO =SMOD1−S1−MOD                                       (3.11)

Recently a general form of map has been proposed  (Elser, 2003), the difference map (DM), 
which avoids stagnation and can be applied to any kind of non-convex constraints. The HiO 
algorithm turns out to be a particular case of DM in which the support constraint is used and 
a given choice of the parameters is made. The DM operator is defined by

                                                            DM = 1 ,                                                     (3.12)

                                                     =1 f 2−2 f 1 .                                                  (3.13)

The operator   DM  adds to the density a quantity    proportional to the difference of two 
composed maps. Each of these two maps results from the successive application of a map 
f i  and a projection  j on one of the two constraint subsets. 
A fixed point  of the difference map is characterized by = 0 , so that 

                                                   1 f 2 =2 f 1 = 1∩2                                                 (3.14)

where  the  element  1∩2 ,  lying  at  the  intersection  between  the  subsets  C1  and  C2 , 
represents the solution to the phase problem. It should be pointed out that here the solution 
does not coincide with the fixed point  . Since in a fixed point must vanish, its norm 

i =∥i∥                                                        (3.15)

can be used to follow the progress of the iterations.
While the global behaviour of the algorithm is not dependent on the nature of the f i , a 

careful choice of them is necessary to allow convergence. Setting for instance  f 1= f 2=1  
(the identity map) does not give attractive fixed points. A possible choice is to construct f i  
in a way that its operation on  produces a point on the line joining   to  i :

                       f i=1ii−i                                         (3.16)

The optimal parameter  values are  1 =−- 1 ,  2 = -1 ,  as  found by considering the local 
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behaviour in the proximity of a fixed point.  It can be shown that the difference map can 
escape traps; these cannot behave like fixed points because they do not allow the quantity 
  to vanish. 

The binary approximation
A possibility for restraining the number of solutions is to approximate the electron density in 
the unit cell to a binary function. This approximation is motivated by the physical reality of 
separated solvent and protein regions (fig.  4a).  The densities  of the two zones differ in 
average  value  and in  variance,  both  quantities  being  greater  in  the  protein  region.  The 
solvent density can be assumed to be flat to a good approximation, while in the protein 
region the density can deviate much from its average value (fig. 4b). Numerical tests show 
that approximating an image with a binary one leads, in Fourier space, to essentially correct 
phases,  while the moduli are more seriously affected. In terms of constraint subsets, the 
binary densities subset is not expected to intersect the moduli subset, so that an approximate 
solution would lie between the closest points of the two sets.  Moreover,  the (euclidean) 
distance between these two elements of the two sets should be appreciable.

Fig. 4  A) An example of molecular packing in a protein crystal: the trigonal form of rhamnogalacturonan acetylesterase, with 
a solvent content of 60% (adapted from: Mølgaard, 2003). The structure is viewed along two of the crystallographic axes and 
the unit cell  edges are shown in black. The molecules are displayed as Ca traces; the red and blue colors distinguish 
between the two independent molecules within the asymmetric unit. The solvent channels, accounting for a relevant fraction 
of the cell volume, are clearly visible as empty spaces. B) Electron density histograms for the protein at different resolutions 
(adapted from: Goldstein, 1998). 
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  Nevertheless,  the  two-value  approximation  can 

be justified to some extent if the resolution is low 
(> 4 Å). A search for a binary mask (Lunin, 2002) 
has proven to be successful  in reconstructing the 
density at a resolution of about 12  Å (fig. 5). A 
Binary Integer Programming (BIP) approach was 
used in that case,  whose main drawback is that 
the computing time grows exponentially with the 
complexity of the problem (i.e. with the number 
of  grid  points  chosen  to  sample  the  electron 
density).  In  this  perspective  a  more  efficient 
search method, as an iterative one,  could perhaps 
help in extending the resolution limit (at least in 
the  range  where  the  binary  approximation  is 
justified). A two-valued function can be scaled to 
a  binary  one (having only  0 and 1  as  possible 
values),  by  shifting  and  scaling  its  values.  To 
operate this scaling in Fourier space one needs to 

know the  expected fraction of  ones  in  the  unit  cell,  that  is,  the  volume defined by  the 
molecular envelope which is to be searched for. 

Two binary algorithms
  The subset of binary densities C01 = {x ∈{0,1}∀ x } is formed by disjoint points (the 
corners of an hypercube) and so it is not convex. The projection of    on C01  is element 
01∈C01  which minimizes the distance 

                                         ∥−01∥=∑
k
 xk −01 xk 

2
                                      (3.17)

and this means that the quantities  ∣ xk −01xk ∣  must be minimum for every pixel  k. 
This leads to the simple expression for the binary projector:
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Fig. 5  The BIP  phased electron density for Protein 
G (effective resolution of 12 Å) superimposed with 
the atomic model (adapted from: Lunin, 2002) 
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                                             01  :  x{0           : x1 /2  
{0,1}    :x =1/ 2  
1           :x 1/2

                                         (3.18)

This projector is  not  single-valued and some arbitrary choice has to be made about the 
treatment of densities with value ½ , since they can be indifferently set to 0 or 1. 
   Here both subsets are non-convex, so that alternate projections will fail. In fact, iteration 
of a map 01MOD  rapidly gets to a trap, because many different  x   possess the same 
projection. Once MODn+ 1 becomes too close to MODn  the evolution stops, since 01  
projects both of them on the same point of C01 .
   To find a solution to the binary phase problem is thus necessary to avoid that any iteration 
n  exactly  belongs to the subset  C01 .  For  this  reason in the present work an heuristic 
algorithm  inspired  to  the  HiO map,  and  in  particular  to  the  feedback  concept,  was 
conceived.  It  is  based on a  map   B ,  consisting in  the  alternate  application of  the  two 

operations  MOD
   and  01

 , ,  each  one  flipping  the  density  or  the  moduli  about  their 

'expected values':

                                                 B=MOD
  01

, .          , ,0                                         (4.19)

          01  : {−               :  
11−     :1−                                         (4.20)

 
MOD=F

- 1 MOD F
MOD  : ∣F h∣e

ih [∣F h
O∣∣Fh

O∣−∣F h∣] eih
                                  (4.21)

The 01
 , operator leaves unchanged the density values falling into the interval  [ ,1−] , 

while the remaining are flipped about the nearest expected value (0 or 1): 

The extent by which each pixel value is flipped is proportional to the parameter  .
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    A similar operation is carried out in reciprocal space on the values of the moduli by the 

operator MOD
 ; in that case the expected value of each fourier modulus ∣F h∣  is simply the 

known quantity ∣F h
O∣ and every modulus is flipped of a quantity proportional to  . It must 

be  noted  that  both  flipping  operations,  in  real  and  reciprocal  space,  are  needed for  the 
iterations to converge. Moreover, the previous knowledge of the zero-frequency term  F 0  
(which usually is experimentally unmeasurable) is also necessary, and a special flipping 
parameter 0 was introduced for it. The progress of the iterations can be followed by means 
of a kind of summed distance error (SDE):
                                                                                                      

           SDE = N - 1[∑k =1

M

∣MODx k − xk ∣∑
k =1

M

∣01xk −x k ∣]     [ k= pixels ]    (3.22)

The algorithm was implemented in Fortran 90 for the two-dimensional case, using the static 
libraries  GFT (Chergui,  2002) for  FFT computation.  Its  behaviour  has  been studied for 
different values of   , ,0 , , in order to identify the set of parameters giving the quickest 
convergence. Some test results are reported with a 2D trial density  (20×20 pixels). In fig. 6 
the SDE plots are shown for 20 independent runs of the algorithm (each relates to a different 
starting set of random phases). In each run, 1000 iterations were performed. Three cases can 
be identified:

• (a): convergence to the true solution. It occurs suddenly, once the algorithm enters the 
basin of attraction of the solution after a chaotic trajectory. Very low values of SDE are 
attained (~ 0.01).

• (b): stagnation. At some moment the figure of merit begin to decrease, but slowly sets to 
a non-zero value  (~0.1) because some kind of trap has been entered.

• (c): the trajectory extends over the performed 1000 iterations without entering any basin 
of attraction. 

The dependence of the behaviour on the different parameters can be rationalized as:
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• δ affects mostly the speed of convergence, which increases with δ until it rapidly goes to 
zero above ≈0.4 , probably because the basins of attraction of the fixed points become 
very small.

• β  and  γ,  since  they  determine  the  flipping  magnitude,  influence  the  ability  of  the 
algorithm to 'jump over' local minima (traps). Setting these parameters to small values 
leads to stagnation, while, at the other extreme, too high values prevent convergence. 
Since these two quantities play a similar role, they cannot be optimized independently; 
in fact, for each β value there exists a given range of γ in which convergence is possible. 

The situation after choosing the optimal parameters can be seen in fig. 7. Traps are avoided, 
and at the same time the basin of attraction of the true solution has been enlarged, so that the 
two unwanted situations (b) and (c) of fig. 6 are both much less probable. 
    The algorithm does not need knowledge about the support, but only about the fraction 1  
of  non-zero  pixels  in  the  solution  (which  relates  to  the  zero  frequency  term  through 
1 = F 0/N , where N is the number of pixels); the object can appear anywhere in the cell and 
obviously the two possible enantiomorph choices are equally probable.  Since the origin 
cannot  be  fixed  a  priori,  such  a  kind  of  algorithm  will  always  work  with  a  P1 cell, 
independently  from  crystallographic  symmetry,  which  cannot  be  taken  into  account. 
Symmetry  can  only  emerge  by  itself  and  for  this  reason  it  could  be  used  to  test  the 
correctness of the solution. For other phase retrieval algorithms without support it has been 
shown that any attempt to fix the origin reduces very much the algorithm power, probably 
because of the solution space collapsing to a single point. 
    An  alternative  algorithm  can  be  derived  as  a  special  case  of  the  difference  map 
D =1  with 

                             =01[ 1-1MOD−
-1 ]−MOD [ 1−- 101

-1]                    (3.23)

where the binary projector  01  has been defined according to one of the two possible 
choices in eq.  (4.18).  An advantage over the binary flipping algorithm is  that  the zero-
frequency term  F 0  can be unknown, as it will be found automatically by the algorithm 
itself; moreover, there is one single parameter to be optimized.
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Fig. 6  SDE versus iteration number for non optimized parameters 

( = 0.5, =0.2, β δ γ0=1.2, = 1.3) – 20 runsγ

                   

 

Fig. 7  SDE for optimized parameters  ( = 0.5, = 0.2, β δ γ0= 1.2, = 1.6) – 100 runsγ
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Fig. 8  Optimization plot for the parameter γ0 for fixed values of the other three parameters

    

   Various experiments have been conducted with different trial densities to determine the 
influence  of  β  on  the  speed  of  convergence  and  to  compare  the  behaviour  of  the  two 
algorithms. Two different optimal ranges of β have been found, one centered about -1 and 
the other about 0.8 (fig. 11). This is in agreement with the literature (Elser, 2003), where the 
optimum values for the β parameter are found to be close to ±1 . The comparison between 
binary  flipping  and  difference  map  shows  that  their  efficience  depends  greatly  on  the 
features of the object to be reconstructed, but the dependence differs from one algorithm to 
the other. The two methods are, at some degree, complementary; putting aside very simple 
cases,  often one of the two appears to perform well  in those situations where the other 
exhibits a very slow convergence (fig. 12). 
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Fig. 9  Snapshots of the density during its evolution, taken every 15 iterations. The abrupt change (fig. 6, case (a)) in the 
figure of merit (SDE) occurs near cycle 320, when the density suddenly begins to converge to the correct (binary) one.   

Fig. 10  An histogram showing the distribution of number of iterations needed for convergence (a sort of trajectory lenght) for 
the binary flipping algorithm. The distribution has an approximately exponential decay, indicative of a memory-less process.
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Fig. 11  Optimization plot for the binary difference map. The average number of iterations needed for convergence is shown 
as function of the single parameter β. Two optimal ranges are found, the first (centered on β=-1, the global minimum) being 
larger and deeper.

Fig. 12  Comparison between the performance of the two algorithms, expressed as average number of iterations before 
convergence, on different two-dimensional binary masks (20×20 pixels). Putting aside very simple cases (b,g,h), which are 
solved in less than 100 iterations, there is a considerable difference in convergence rate.  
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Binary approximations and real cases
  Once established that a method existed to solve the binary problem, a more realistic case 
was considered, consisting in pseudo-molecular data in two dimensions. The moduli were 
obtained   by  fourier  transforming  the  density  of  benzene  molecules  projected  onto  the 
molecular plane. The cell was a square of 10  Å  edge in which one, two or four benzene 
molecules had been placed. Data were used up to a resolution of 2 Å.  
   A binary approximation to the real density can be constructed by scaling the density and 
then setting a threshold z. The points with values higher than z are given the new value of 1 
and the others of 0. 

                                  01 x={1       : x≥ z  
0       :x z  

      F 01 x = F01h                          (3.24)

The  structure  factors  corresponding  to  the  binary  density,   F 01h ,  can  be  assumed 
proportional to the true ones, as in (Lunin, 2002):

                                                             F 01h≈ kF h                                                           (3.25)

where the constant k can be calculated from the knowledge of the fraction 1  of non-zero 
pixels in 01 :

                                 k=[ 1−1
2

∑h≠ 0
∣F h∣2 ]

1 /2

,            1 =
∑

i
01x i

N
                             (3.26)

   The data from molecular structures were scaled in this way and then given as input to the 
binary flipping algorithm. No convergence was observed, for none of the  , ,  parameter 
sets that had worked better for the ideal binary cases. This can be explained assuming that 
there is no intersection between the two constraint subsets, that is, no binary density exists 
that could reproduce the non-binary moduli. In fact, binarization of a density not only will 
affect the moduli in the chosen resolution sphere (in 2D, a circle), but it will create non-zero 
frequency components outside the sphere (where the original moduli had been set to be 
zero). To allow the two subsets to intersect in some point, out-of-sphere moduli should be 
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allowed to deviate to some extent from their expected value of zero; it is not clear, however, 
if any physically meaningful solution could be found in this way.

A simplified Sayre equation for binary images
   Another  possibility  for  phasing diffraction  data  from a  binary  object  can be  derived 
outside the iterative methods context, taking inspiration from the Sayre equation (Lunin, 
1985). While this relationship has been derived to exploit the atomicity property, it can be 
shown that it holds, in a simplified form, for binary densities too. In fact, the Sayre equation 
presupposes  that  density  and  squared  density  are  related  by  convolution  with  a  spread 
function g:

                             = g∗2                                                           (3.27)

  This is true for a density made of identical, well resolved, spherical peaks (equal atom 
structure); nevertheless, it is also consistent with a binary function, in which case g reduces 
to a constant. Assuming the density can take only the values 0 or a, we have

                                           a =2                                                            (3.28)

which in reciprocal space is equivalent to:

                                               Fh = aV -1∑
k

F k Fh - k                                                  (3.29)

where V is the unit cell volume (in the 3D case). This convolution relationship would allow 
the solution search to be carried out entirely in reciprocal space, borrowing a variety of 
existing algorithms from the field of direct methods. Moreover, a binary approximation to a 
non-binary object can be found by minimizing the deviation between the two sides of the 
equation,  while  iterative  algorithms  fail  in  this  task.  As  seen  before,  from the  lack  of 
intersection  between  the  constraint  subsets  follows  that  only  a  global  minimum of  the 
distance  between  the  subsets  can  be  searched.  But  this  minimum  is  not  qualitatively 
different from those non-meaningful local minima (traps) that a good algorithm is expected 
to avoid.
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Modifications of the charge flipping algorithm 
   A possible  criticism to the  application of the  binary flipping approach to non-binary 
density  is  that,  while  the  lowest  density  region  (corresponding  to  solvent  in  protein 
structures and to vacuum in small molecule structures) can be effectively assumed to be 
sharply distributed around zero, the object (molecular) density has a broader distribution. 
The behaviour of the algorithm becomes more interesting after suppression of the flipping 
about the upper value of 1, we let   tend to 1 and   to 0, and give F 0  the freedom to vary 
during  the  iterations:  the  density  of  a  single  benzene  ring  in  the  cell  could  be  slowly 
reconstructed.  With  these  modifications,  the  algorithm reduces  to  the  known method of 
charge flipping (Oszlànyi, 2003), which alternates moduli projection to a change in sign of 
low-valued density:

                         CF =MOD 0
 ,                                                        (3.30)

     0
 :{       :≥  

−    :  
     0                                           (3.31)

In term of projections, the flip operator can be written 

                                        0
= 2S −1                                                      (3.32)

where  S   stands for support projection. The 
important  thing  is  that  the  support  S   is  a 
dynamic one, being updated at each iteration by 
selecting  the  points  with  ≥ .  The  CF 
algorithm has been proposed in crystallography 
for  reconstructing  atomic  (<1.2  Å)  resolution 
structures,  but  it  has  been  shown  to  be  also 
applicable to the phase retrieval of non-periodic 
objects  that  lack  atomicity.  In  both  cases, 
however,  the  uniqueness  of  solution  is 
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Fig. 13   Test of the  CF algorithm ( =0.2) on aδ  
single  benzene  molecule  projection  (2  Å 
resolution). Upper plots: density and its histogram 
for  the  true  map.  Lower  plots:  same  for  the 
reconstructed map 
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guaranteed by the presence of extended regions of density with near-zero values and by (not 
strict) positivity. For non-atomic objects the algorithm tends more to stagnation, so that it 
has been used in conjunction with the HiO map: CF provides support evolution, while HiO 
drives to convergence because it is insensitive to traps.  
  The 2D benzene ring at 2 Å resolution does not display atomicity, but the presence of a 
vast majority of pixels with small absolute values of density still causes the solution to be 
unique.  Because  of  the  lack  of  atomicity  sudden  convergence  is  never  observed;  what 
happens  is  instead  a  slow,  gradual  approach  to  the  solution.  This  good  behaviour  is 
compromised in going from one molecule to two and four molecules per cell, because the 
ratio of null pixels to the total number of pixels decreases. With two molecules, although the 
null pixels still occupy more than half of the cell, the algorithm fails to reconstruct the rings, 
whose  density  is  rather  flat,  and  shows  a  preference  for  'peaky'  solutions  with  higher 
variance (fig. 13).    
  The only way to  find a solution with the  required characteristics  is  to  introduce new 
restraints; for example, an upper limit to density values can be used to force density flatness. 
A choice that proved to be effective is to set a proportionality constant   between average 
density  (calculated  with  the  values  above  the  flipping  threshold   )  and  the  maximum 
allowed density s;  at each CF cycle, the density values are modified by inversion about the 
expected maximum (plateau) value.

                                             s−−s  ,     s=〈〉                                               (3.33)

 

The value of  s is calculated at each cycle. With this additional restraint, correct solutions 
could be found for the cases of 2 and 4 molecules per cell (fig. 14). The best values for the 
parameters were α ≈ 1.3, η ≈ 2; the first one depends on the expected maximum value for 
the density and can be varied only in a very narrow range if  wrong solutions are to be 
avoided.
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Fig. 14 Densities reconstructed in four different runs of the upper-bounded CF algorithm. Four molecules per cell are present. 
Four unit cells are shown for clarity – note the different origin positions, which depend on the (random) starting point. 

   A 3D case was then considered, to test if this modified CF algorithm with upper bound 
restraint could phase bigger structures. Synthetic trial data were calculated with the software 
SHELX  (Sheldrick,  1996)  from  the  PDB  coordinates  of  one  molecule  of   Fatty  Acid 
Binding Protein  (FABP,  PDB code 2HMB -  Zanotti,  1992).  This protein consists in 131 
aminoacids, organized in a β structure which defines an internal cavity. The reflections were 
computed from a single molecule positioned in a P1 cell (for simplicity, a=b=c, α=β=γ=90° 
were  chosen).  Since  zero  density  zones  (which  can  be  identified  here  with  the  solvent 
regions) define the degree of determinacy of the problem, different tests have been carried 
out varying the lenght of the cell  edge, that is,  the unit cell  volume. The effect of data 
resolution was also investigated, across the range 20÷2.5  Å. 
   It has been found that setting an upper bound for the density has no or little effect on 
converging to the correct solution, which could be retrieved in a small percentage of runs 
only when the solvent content is very high (at least 85% of the unit cell volume, far too high 
to be found in any real crystal). This probably means that, under a given fraction of null 
pixels, the correct solution ceases to be a strong attractor for the  CF algorithm, and this 
happens well before the problem become underdetermined. 
   In fact it was noted that, even starting from the correct phases, there is a tendency to 
escape  from  the  correct  solution;  the  rate  of  this  process  increases  with  the  flipping 
threshold δ. This can be seen in fig. 15, where the correlation between final and starting 
(true) density (computed with 4 Å resolution data) has been reported as a function of δ, for a 
fixed number of iterations. Each line relates to a different solvent content. It can be noticed 
that there is a change in trend between 77% and 66%  of solvent: the 66% solvent density 
gets worse as δ increases. 
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   Another modification of the CF algorithm was tested in the perspective of phase extension 
of  protein diffraction data.  It  consists  in  imposing on the electron density  a topological 
restraint motivated by very general features of protein structures. A key process consist in 
dividing the image in the connected components, i.e. separated features appearing in density 
when the isosurface for a given cutoff value is constructed. For a given threshold   a mask 
  is defined as
                                                         = {x  :  x≥} ;                                                 (3.34)

the set of points   can be decomposed in a number M of connected components  i , each 

with a given volume v k
i  . A subset of points  ⊂  is said to be a connected component 

when every pair of points  {x1 , x 2} ∈   can be joined by some curve entirely contained in 
 .

                        

Fig. 15 Correlation between final and starting density maps for different values of 
solvent content and δ parameter.  In each case the true density at a resolution of 4 
Å was used as starting point for 700 cycles of CF algorithm.

   While connected component analysis identifies volume segments, without saying nothing 
about their shape, we can define a useful quantity for estimating the linear lenght of density 
pieces. This topological property, named connectivity, is computed by tracing the skeleton, 
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that is, the set of lines joining all neighboring points above a given threshold (Baker, 1993a). 
With density defined on a grid, the procedure is to select grid points having density greater 
than 1.4 standard deviations above the mean, and connect by edges the points which are 
nearest neighbors. Two grid points belong to the same graph if they are connected by a 
continuous set of edges. 
    By means of the skeleton we define the connectivity as:

                                      Connectivity  = number of points in longest graph
  total number of points in graphs .                            (3.35)

(An alternative definition for connectivity is the total number of graphs).
This quantity is obviously a function of the threshold and the phase set. If the threshold is 
appropriately chosen, the global maximum for connectivity should coincide with the true 
phases,  for  which  the  electron  density  shows  a  single  continuous  polypeptide  chain. 
Connectivity values relative to random phase sets are smaller than 0.1 while for correct 
phases a value above 0.9 is expected. It has been shown that the addition of an increasing 
phase error to the correct phase set always decreases the connectivity in a gradual way.
   The connectivity restraint could be exploited into an iterative algorithm by selectively 
eliminating the densities that belong to the shortest graphs. Although it  is  impossible to 
know if those small segments would result to be correctly placed in the final density, one 
surely knows that correct density should not show small, isolated blobs. So the idea is to 
force the density to evolve by growth of the longest fragments rather than by fusion of many 
small segments. An encouraging observation is that connectivity only depends on strong 
reflections and it is preserved even if a consistent fraction of moduli are given completely 
random phases (up to 80% of the weakest ones – test carried out at 4 Å resolution). 
   An implementation was tried in this work using a weaker topological constraint, based on 
the  segment  volume rather  than graph lenght.  The volume constraint  is  expected  to  be 
weaker than connectivity (as defined by Baker et al.) because it involves no restriction on 
the shape of the density; there is no reason to think that a general relationship between the 
volume of a  connected component  and its  skeleton lenght should exist.  However,  for  a 
densities  in  a  neighborhood  of  the  solution  (so  that  the  phase  error  is  acceptable  and 
connectivity is not too low) some kind of local relationship should arise, since the longest 
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elements will also be the largest ones. For that reason, one expects that the requirement for 

the  density  to  display  a  minimum number  of  volume elements    i  could  be  used  to 

improve or extend a set of known phases.  Thus, a modified  CF  algorithm was devised, 
introducing supplementary real space operations:
 

• a binary  mask is  created to  distinguish between points  above and below a  fixed 
threshold.

• a  segmentation  algorithm is  used  to  identify  the  connected  components  into  the 
density; 

• a sorted list of segments is created on the basis of their volume (number of pixels); 
• segments with volume below a certain minimum value  v min  are set to zero in the 

density map.

The segmentation method used here was essentially the 'burning grass' algorithm described 
by (Lunina, 2003) and consisting in the following steps (fig. 16):

• Initialization: the points above the threshold are given a value 1, the others 0. No 
found components are present.

• Search for a new component: the nodes of the grid are scanned until a node with 
value '1' is found. The number of found components is increased by one. A 'current 
front' is defined as a set consisting of this node only. The new found component is 
marked with a consecutive number m. If no more '1' nodes are present the algorithm 
stops.

• Isolation of a connected component:  the 'future front'  is  defined as the set of the 
nodes with value 1 that are neighbouring to one of the nodes of the 'current front'; 

• Propagation of the front: the nodes of the current front are marked as belonging to 
the m-th component. The 'future front' becomes the 'current front' and the algorithm 
goes  back to  the  preceding point.  This  loop is  repeated until  the  'future  front'  is 
empty, then a new component search is performed.
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Fig. 16 Flow chart for the 'burning grass' segmentation algorithm. Each m-th time a new initial point is found, the propagation 
loop is entered. The loop defines a 'future front' as the list of those points which are nearest-neighbors to points of the 
'current front'; these latter are then marked as belonging to the m-th segment and the procedure is repeated until no more 
nearest neighbors are found and all the m-th connected component has been isolated.   

   

The modified CF algorithm has shown some phase extension power in a series of error-free 
tests conducted with a starting set of exact phases (fig. 17) that were extended to cover a 
larger sphere of reflections.  Phases not belonging to the starting set were initially given 
random values,  while  known phases  were  kept  constant  at  each  run.  It  must  be  noted, 
however, that the algorithm is not able to improve a set of error-affected phases if these are 
given the freedom to vary from one cycle to the other. In fact, a divergent behaviour was 
always observed in that case, probably due to overdeterminacy.  
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Fig. 17  Starting and final correlation coefficient for some runs of the connectivity-restrained CF performed on ideal data from 
the protein FABP (reference!) with an exact starting set. The map correlation coefficient has been reported as function of 
starting and final resolution. Several hundreds of cycles were carried out, but in many cases the density ceased to evolve 
after only 50÷100 iterations.       
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Introduction
    The last part of this work focuses on the correlations between secondary structure and 
Patterson map. While not offering a strategy for the ab initio solution of the phase problem, 
analysis  of  these  correlations  could  provide  a  useful  crystallographic  tool,  allowing 
detection  and  orientation  of  secondary  structure  elements  in  the  cell  without  a  prior 
knowledge of phases. 
    In these last years, the relationship between the angular distribution of the diffracted 
intensities and the percentage of alpha and beta structure in the crystal has been investigated 
(Morris, 2004); the origin of this connection must be found in the characteristic interatomic 
distances and  periodic arrangements occurring in protein structures and closely related to 
secondary  structure  elements.  The  diffracted  intensities  provide  information  about  the 
spatial frequencies of electron density; in angular intensity distribution this information is 
averaged over all orientations, so that on this basis only global information, as the fraction 
of  α and β structure,  can be extracted.  In  this  work,  an attempt was made to explicitly 
analyse the frequency content in each spatial direction, and to put it in relation with the 
presence of alpha helices, beta strands and beta sheets.
    The reciprocal space point of view has been abandoned and the study has been carried out 
on  the  Fourier  transform  of  the  intensities,  the  well  known  Patterson  function.  This 
represents the self-correlation of electron density and can be more easily interpreted in terms 
of real space properties. Analysis of the Patterson map has shown that alpha helices give rise 
to strong, recognizable features in the direction of their axis. More difficult has proven to 
detect single beta strands, while it is possible to derive some indications about whole beta 
sheets. 

Secondary structure and diffracted intensities
   Recently it has been pointed out how the different layers of structural organization in 
protein  crystals  do  reflect  in  the  intensity  distribution  (Morris  2004).  The  quantity 
investigated was the square of the normalized structure factor

                                                            ∣E h∣2 =
∣Fobs h∣

2

〈∣F h∣2〉
                                                    (4.1)
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where  〈∣F h∣2〉  is  the  expectation  value  of  the  computed  structure  factor,  which  is 

estimated on the basis of the knowledge about the structure. In the absence of any structural 
information,  the  atomic  positions  are  assumed  to  be  random  variables,  uniformly  and 
independently distributed. The normalized structure factors are dimensionless quantities and 
are  suitable  to  characterize  the  atomic  arrangements  into  the  crystal  since  they  are  as 
independent as possible from the chemical identity of the atoms. In fact, if the assumption of 
random atomic positions was true,  ∣E h∣ would  coincide with the Fourier modulus of a 
point-atom structure, and its square would have a constant expectation value:  〈∣E h∣2〉 =1 . 
   In real crystals, atomic positions are correlated because of chemical bonding, and their 
distribution can deviate very much from a uniform one. This is especially true for protein 
crystals, which show different levels of atomic organization: aminoacid structure, secondary 
structure elements, protein fold and molecular packing. As a consequence, the normalized 
intensity  distribution  〈∣E∣2〉 d *  shows a  series  of  peaks  which are  connected with the 
relative abundance of some interatomic distances in the structure. In fact, for an equal atom 
structure, the following relationship holds:

                                I d *=N f d *2[1 1
N ∫ p r sinc2d * r dr ]                                 (4.2)

where f d *  is the atomic scattering factor, N is the number of atoms and p(r) is the radial 
pair  distribution  function.  This  formula  can  be  derived  by  rotationally  averaging  the 
expression for  I h  in terms of atomic positions; the quantity p r dr  gives the number of 
atoms  with  a  separation  distance  within  (r,  r  +  dr),  which  contributes  to  the  intensity 
through a sinc function1. In particular, secondary structure is responsible for characteristic 
atomic  distances  in  the  range  4.5-7  Å,  appearing  like  a  series  of  peaks  in  the  pair 
distribution function (located at 4.5, 4.9, 5.4, 6.2, 7.3 Å for alpha structure, at 4.8, 6.1, 6.6, 
6.9, 7.6 Å for beta). 
   In reciprocal space, a peak around 4-5 Å resolution2 (fig. 1) in the 〈∣E∣2〉 d *  distribution 
is  always  present  in  the  secondary  structure.  Such a  peak  could  not  be  reproduced by 

1 The sinc function is defined as sinc x =sin x
x .

2 The resolution  d = d *- 1 is used rather than  d * because it represents  real space distances.
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artificial structures unless the typical Ramachandran angles for α and β structure are forced. 
                       

                                  

Fig. 2  Hierarchical clustering tree relative to  〈∣E∣2〉d *  profiles from 600 different proteins. At a clustering distance of 
about 1.3 three main clusters can be identified, corresponding to alpha, beta and mixed structures. [Both fig. 1 and 2 are  
adapted from (Morris, 2004)]
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Fig.  1   log 〈∣E∣2〉d  plots  for  some protein  structures.  (the  intensity  has  been  reported  in  function  of  the  resolution 
d = d *- 1 for a better visualization). A) The ∞÷1 resolution range. Curves from different proteins look very similar. B) details 

of the same curves in the resolution range 1≤d min≤6 . 
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Cluster analysis of 〈∣E∣2〉 d *  distribution for a great number of protein crystals has shown 
that plots with similar content of alpha and beta structure tend to group together (fig. 2). The 
clustering process has been accomplished starting from single curves, which were grouped 
according to their euclidean distance in increasingly larger partitions (Morris, 2004). 

Secondary structure and Patterson maps
  The Patterson function can be obtained as Fourier transform of the diffracted intensities 
and coincides with the self-correlation of the electron density:              

                  P u  = r ∗ r   = ∫V
r  rud r  = V -1∑

h
∣F h∣ 2 cos 2h⋅u 3         (4.3)

 The two functions  I h  and  P u  provide  two alternative  descriptions  of  the  same 
object. The intensity represents the frequency spectrum of the Patterson function and the 
choice  to  analise  the  latter  was  made  because  it  bears  a  more  direct  relationship  with 
electron density (both are defined in real space). From the definition of self-correlation it is 
possible to interpret  P u  as a measure of the global superposition (a scalar product of 
square  integrable  functions)  between the  electron  density  of  the  unit  cell  and  the  same 
density translated of a vector  u.  At atomic resolution (d<1.2  Å) the peaks arising in the 
Patterson function correspond to interatomic vectors and the map can be used for ab initio 
phasing; recently it has been shown that these approaches, which were known since long 
time, can be succesfully applied to macromolecular structures (Burla, 2006).

 In the medium resolution range (1.5-4.5 Å) the peaks due to interatomic vectors cannot be 
isolated and the map should have lost any ab initio phasing power; this reflects the gradual 
merging  of  atomic  peaks  occurring  in  electron  density  as  the  resolution  decreases. 
Nevertheless,  in  a  protein  electron  density  the  polypeptide  chain  still  displays  good 
connectivity (that breaks down above ~4.5 Å) and one can easily recognize the secondary 
structure. So it is likely that the Patterson map will show some characteristic patterns due to 
correlations between secondary structure elements.    

3 The star (∗) denotes function correlation, related to convolution (×) by f  x∗g  x= f  x ×g - x 
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Fig 3  Portions of electron density maps for (a) alpha helices (myoglobin) and (b) beta strands 
(FABP) at 4 Å resolution. 

 Thinking about the unit cell content as a collection of α-helices, β-strands and segments 
without  secondary  structure  (loops),  the  density   r   can  be  written  as  a  sum  of 
contributions   i r   of  the  different  elements.  The  Patterson  function  then  results  by 
summing   the  self-correlations  of  individual  fragments  P ii u and  the  cross-correlation 
terms ( P ij u ) between fragment pairs:

              
P u  = r ∗ r   = ∑

i
∑

j
ir ∗ j r   = ∑

i
P ii u2∑

i
∑
ji

P ij u 

P ij u  = ir ∗ j r 
              (4.4) 

Assuming that atomic models are known for each fragment, from which the ideal electron 

densities  i
0 r   can be costructed, and that the orientations and positions in the unit cell 

(specified by rotation matrices R i  and translation vectors t i ) are unknown, one can write

         P ij u  = i
0Ri r−t i ∗ j

0 R j r−t j  = i
0Ri r  ∗ j

0 R j r−t ij  ,   t ij  = t i−t j .          (4.5)

 

For i = j  this reduces to

                                      P ii u  = i
0Ri r ∗i

0Ri r   = P ii
0 R iu                                      (4.6) 
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where  P ii
0 u  stands for the i-th fragment self-correlation expressed in the model reference 

frame. From this it is clear that the self-correlation functions  P ii u  depend only on the 
orientation of the structure elements, while cross-terms also on the relative positions t ij .
  If the element k gives rise to a characteristic distribution of peaks in the correlation space, 
one can think to detect its contribution  P kk u  in the Patterson function P u , obtaining at 
the same time its orientation. This principle is the basis of  molecular replacement  (MR) 
methods, which orient a known fragment in the unit cell by seeking the maximum for the 
rotation function  RC  4:

                             
RC   = ∫

P u Pkk
0 Cu d u  ,    C  = C 1 ,2 ,3

P kk
0 u  = P kk Rk

-1 u
                          (4.7)

where the partial Patterson function Pkk
0 u  can be computed from the known fragment k 

arbitrarily positioned in a arbitrary unit cell, and the rotation matrix is expressed as function 
of a set of three rotation angles (usually, the Euler angles). Again, expressing the function as 
sum contributions from the fragments 1,--,k,--,N, one has:

                          

RC =∑
i
∑

j
∫

P ij uPkk
0 Cu d u

=∑
i
∑

j

ij≠ kk

∫
P ij u Pkk

0 Cu d u∫
Pkk uPkk

0 Cu d u
                      (4.8)

where the terms ∫
P ij u Pkk

0 Cu d u , ij≠kk  can be thought as  'noise', while the signal 

of interest is represented by the function 

                                                          ∫
P kk u P kk

0 Cu d u ,                                            (4.9)

which exhibits a  pronounced peak of height  ∫
[P kk u]

2 d u  when  C=Rk
-1 ,  giving the 

correct orientation for the fragment. To be identified in the rotation function, the solution 
peak must be great when compared with the standard deviation [RC ] . This means that 
the  model  fragment  k cannot be too small  with respect  to  the  asymmetric unit  content, 

4. The integration domain    is a spherical shell chosen in such a way that the origin peak and the intermolecular 
vectors are excluded.
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otherwise its signal will be indistinguishable among the many local maxima arising from the 
other terms. In that case the problem will be undetermined, since many acceptable ways will 
exist to superpose the fragment self-correlation with the Patterson map. Even then, however, 
a way could exist to orient the fragment, if attention was paid to match only some special 
features of the model with the map; this hypothesis was the starting point of the present 
work.   

The self-correlation of an alpha helix
   To compute the self-correlation of an isolated alpha helix one can imagine to translate its 
electron density by every possible vector u,  each time evaluating the integral of the product 

(original  density)×(translated  density).  Since  the  helix  has  a  periodicity  in  the  axis 
direction, when the translation vector u has the same direction as the axis a periodic trend in 
self-correlation can be  predicted.  Maxima are  expected for  translations  by  one or  more 
helical pitches, since these transport a part of the helix on itself: ±n l a  , where l is the pitch 
of the helix (lα≈5.4  Å) and  a  is a unit vector specifying axis direction.  Furthermore, the 
height of the peaks should decrease with n since the portion of the helix which superposes is 
each time shorter; for an helix that is  k turns long, the last (and smallest) peaks occur at 
±k−1 l a . These reasonings are strictly valid only for a very idealized helix, since they do 
not take into account that in a α-helix there is not an integer number of residues per turn, so 
that after a translation of l the Cα positions would not coincide.    
  In the same way, the model does not consider that each turn of the helix will present 
different side chains, nor that the helix can be bent (which gives the notion of  'helical axis' 
only an approximate or average meaning). Nevertheless, in going from this idealized helix 
to a real one only minor changes are expected to take place in the Patterson map, since the 
effect of side chains can be neglected if compared to the strong main chain contribution. In 
fact, the computed Patterson map from a single alpha helix shows a periodic series of peaks 
in the same direction of the helical axis (fig. 4a,b). The periodicity can be seen in the linear 
profile of the Patterson map, which for generic direction n  is given by 
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Fig. 4  A. Atomic model and electron density of an alpha helix  B. The corresponding Patterson map (resolution is 3 Å and 
the maps are contoured at 3 sigma) showing a series of peaks with a spacing of about 5.4 Å 

                                          P n t =P  n t =V −1∑
h
∣F h∣2 cos 2h⋅n t                                    (4.10)

The linear periodicity can be analysed with the Fourier transform5 :

                       
G n , L s =F T [P n r ]=V −1∑

h
∣F h∣ 2∫−L

L
exp[ 2 i s−h⋅n r ]dr

=2 LV −1∑
h
∣F h∣ 2  sinc [2 L s−h⋅n]

                    (4.11)

where the unit vector n  can be expressed as function of the two spherical angles  , .

Both quantities  P ,r  and  ∣G , s ∣
2 can be seen in fig. 5, where the plots for different 

spatial directions are compared. 
It  turned out to be simpler to compute the Patterson map on a grid of crystallographic 

coordinates  using  an  existing  software;  the  one-dimensional  profiles  were  successively 
obtained by interpolation. The whole procedure consisted in the following steps:

5. The unit vector n is expressed in fractional crystallographic coordinates. The transformation to a polar 
spherical system must follow a conversion in cartesian coordinates through a matrix  A  depending on the 
cell parameters:  n=A nc nc  ,=sincos  ,sin sen , cosT

89

A B



                                                                                                 Patterson function and secondary structure

                          

                                          
Fig. 5  a) Profiles  P , r   (upper plots) and power spectra ∣G , s∣

2  (lower plots) for directions near to the helical axis. 
The strong peak in correspondence of the period d=5.4 Å indicates the presence of an helix. b) Same plots for a sparse set 
of directions being very different from the helix orientation.

• The Patterson function is computed at the desired resolution with the CCP4 package 
(CCP4, 1994). The output map covers the whole unit cell. 

• The map in CCP4 format is read in by a Fortran routine which performs spline 
interpolation in all the points of a polar grid covering half a sphere. In this way the 

conversion P nx  x ,n y y ,nz zP nr r , n , n  is carried out.

• The power  spectrum  ∣G , s ∣
2  is  computed along the  r coordinate  by  Fourier 

transforming P r , , in the range  a≤r≤L  , where a is chosen to exclude the 
origin peak and the choice of L should limit the calculation to a single unit cell.  

Since the Fourier transform is linear, one can write G , s   as a sum of simple and mixed 

contributions from the different partial structures in which the model has been divided:

       G , s =∑
i

G ,
ii  s   2∑

i
∑
ji

G ,
ij   s  G ,

 ij  s=∫−L

L
P ,

ij   r  e−2 i r s dr    (4.12) 

A structural element can be identified by means of the power spectrum ∣G , s ∣
2  if it has 
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a characteristic spatial period d since a peak for  s=d−1  will appear. Thus in principle the 

study of  ∣G , s ∣
2  can allow detection of substructures (as α-helices) which are too small 

to be oriented by a rotation function search.  

Detecting helices in real structures

 The best way to represent the spectrum is to plot the various sections ∣G d  ,∣ 2 . Each of 

these sections represents  the content of  the cell  in  period  d  as a function of  the spatial 
orientation.  As  a  first  step,  ideal  maps  were  derived  from atomic  models  to  assess  the 
validity of the assumption for single helices. As expected, in each case a strong peak was 
observed in the section corresponding to a period of 5.4 Å for a pair of angles  ,  giving 
the  direction  of  the  helical  axis.  The  first  tests  have  been  carried  out  using  a  P1  cell. 
Obviously  when symmetry  is  present  more  peaks  appear  in  the  power  spectrum,  being 
related by the symmetry of the Patterson space group.  
  

Fig. 6  Crystal packing of CagZ, as seen along two of the crystallographic axes. The unit cell edges have been traced. Four 
different orientations are possible, corresponding the fourfold symmetry observed in the angular plots. 
 
   In  a  subsequent  step,  real  diffraction  data  relative  to  already solved structures  were 
considered. Here the results can vary much, probably because in some cases the signal is 
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partially buried and appears for a period slightly different from the expected. The results 
were more interesting for structures with long helices (20-30 residues); in the case of CagZ 
(Cendron, 2004), an entirely α protein from Helicobacter pylori, the presence of three long, 
nearly parallel helices (fig. 7a) gives rise to a strong signal in the power spectrum, while the 
five much shorter helices are responsible for a group of weaker signals (fig. 7b). Here the 
space group was P212121 , corresponding to four asymmetric units, each one containing one 
single  molecule  (fig.  6),  so  that  only  one  fourth  of  the  power  spectrum  section  is 
independent  (two  planes  of  symmetry  are  present).  It  is  interesting  to  notice  that  the 
elongated  shape  of  the  strong  peak does  not  arise  from a  difference  in  the  orientation 
between the three long helices but is mostly due to the bent shape of the longest one.  

                                 

Figura 7. (a): Ribbon representation of the protein  CagZ (Cendron, 2004). The arrow indicates the direction of the three 
longest helices. (b): Section of the power spectrum  ∣G d  ,∣2 corresponding to the 5.4  Å period. Data up to  4  Å of 
resolution have been included in the calculation.
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Considerations about β structure
   An analogous approach was tried in order to identify the beta strands from the Patterson 
map. Observing a nearly linear strand (fig. 8) one can notice that some periodicity exists, 
although it must be very weak compared to that of an helix. Instead, translating the strand 
along its axis, something different happens. Considering the main chain atoms, there will 
always be an appreciable superposition, which should decrease in a roughly linear way with 
the translation. This can be seen in a plot of P ,r   (fig. 8).
     A possible way to identify this trend in the Patterson function is to compute the integral 

                                               H n=∫l 1

l 2 P n t dt=∫l 1

l 2 P n t  dt .                                           (4.13)

Since  the  contribution  of  the  strand  to  P ,r   slowly  decreases,  the  integral  over  a 

carefully chosen range [ l1 ,l 2]  should have a great value in the direction of a strand axis. As 
for the helices, the integration limits are to be chosen in order to get the maximum signal to 
noise ratio. Signal is relative to the single element contributions while the 'noise' arises from 
the mixed terms P ij .

    

Fig. 8 (a) stick representation of a (linear) beta strand. (b):  P ,r   plots for a single beta 
strand. The uppermost curves relate to directions which are close to the strand orientation, the 
others to distant ones.
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The lower limit should exclude the origin peak, while the upper one must be kept smaller 
than the maximum lenght of a beta strand in order to avoid as much as possible those radial 
contributions that do not arise from beta strands. 
   The idea was tested on data from the protein HiUase (Zanotti, 2006), whose structure is 
almost entirely beta, with rather long and linear strands. For this purpose, a H  , plot 
was constructed for the whole structure and compared with the single strand contributions, 
obtained by positioning only one strand at a time into the unit cell (fig. 9).

Fig.9 Integral plots for the protein HiUase. (a) is the plot relative to the whole structure (computed from experimental data). 
The three plots (b), (c), (d) are obtained from individual beta strands correctly positioned in a cell with the same dimensions 
and same space-group symmetry as the real structure. One can notice that only the  peaks from (c) are clearly visible in the 
plot (a) relating to the whole structure. 
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 Although the peaks arising from the isolated beta strands can be identified in the integral 
plot, many others strong signals cannot be ascribed to strands, so that this criterion alone is 
not  strong  enough  to  identify  the  strands.  Other  approaches  were  tried  by  taking  into 
account also the frequency content, but no simple criterion could be found, and a statistical 
study of the profiles is probably needed to get a reliable way (if any exists) to identify the 
strands. 

 While the single strands are difficult to identify, the association of many strands to give a 
so-called beta sheet structure introduces a periodic repetition which should be detectable in 
the power spectrum in the direction orthogonal to the strand axes. In principle the period 
expected  (~ 4.8  Å) is shorter than the alpha helix period, but the corresponding peak can be 
so broad to be well visible also in the 5.4 Å section. An example can be seen in the power 
spectrum relative protein G (Derrick,  1994),  where the short  helix gives rise to a weak 
signal, while the beta sheet is responsible for a big, broad peak (fig. 10b).   

     

Fig. 10 a) Ribbon representation of the Protein G structure. The two arrows show the two orthogonal directions of elongation 
of the strands and of beta sheet periodicity. b) 5.4 Å section of the power spectrum  ∣G d  ,∣ 2 . The strong, broad peak 
arises from the beta sheet, while small peaks in the middle are due to the short alpha helix.
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Conclusions 

   The work carried on was aimed at finding new ab initio phasing methods to be used in the 
field of macromolecular crystallography. Probably, more efficient phasing strategies, with a 
reduced sensitivity to resolution, can only be achieved through a radical change in strategy. 
Since now, ab initio phasing has been based mainly on the existence of atoms; only in the 
last years this classical approach has been complemented with methods specific for low 
resolution phasing. These latter often start from a small shell of very low resolution, and 
allow to retrieve rough structural information, such as position and shape of the individual 
molecules present in the cell. 
   Difficulties arise when trying to extend the low resolution phases; it can be argued that the 
amount of general information about electron density at low resolution (dmin > 5 Å) is very 
limited and strong constraints are difficult to identify. However, is one takes into account the 
data up to ~4 Å resolution the secondary structure should appear in the correct electron 
density and the polypeptide chain could be traced into the 'worm-like' density. Probably, this 
is the resolution region where potential  ab initio methods could be effective, since many 
topological constraints arise but the number of reflections to be phased is not so high (of the 
order of ~103). An interesting observation is that the connectivity depends mainly on the 
strongest  reflections,  so that  it  is  preserved even when as much as 80% of the weakest 
structure factors are randomly phased (provided that the remaining ones are given the exact 
phases). 
  In the course of this project very different approaches were tried. While neural networks 
seem not a promising option in phasing (at least, if used in the simple way described here), 
iterative  methods  could  be  useful  if  constraints  strong enough are  defined.  The  charge 
flipping algorithm, whose modifications are discussed in chapter 3, does not represent an 
efficient  way of  exploring  the  phase  space,  owing to  its  strong tendency to  stagnation; 
moreover, it does not allow to exploit arbitrary constraints (as the topological ones) in a 
simple, understandable way. A natural development of this strategy would make use of the 
more powerful  difference map algorithm, which shows a clever behaviour with respect to 
false  minima,  and  has  been  proposed  to  solve  a  variety  of  non-convex  optimization 
problems aside from phase retrieval (Elser et al., 2007).
  There is no doubt that the most interesting results are those obtained in the context of 
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Patterson map analysis. It has been shown that the presence of alpha helices and beta sheets 
reflects on significant frequency contributions to the Patterson map, allowing for detection 
and orientation of these elements. The generality of this approach is reduced by the wide 
variety of effects that can be observed across a class of structural elements; for instance, 
only helices long enough would give rise to detectable signals, and bent helices result in 
deformed peaks. Single beta strands can deviate much from linearity; even the most linear 
ones are difficult to locate in the Patterson function on the simple basis of radial integral 
values. 
  However,  the full  potential of the method could be assessed only by a more extended 
feasibility  study.  Probably,  statistical  analysis  of  Patterson  profiles,  together  with  viable 
methods to increase the signal-to-noise ratio (as, for example, an appropriate integration 
over Patterson peak width in a direction orthogonal to the profile axis), would allow for 
more sensitive secondary structure detection. The approach described here has an intrinsic 
interest in putting aside any atomistic interpretation, which of course is no more expected to 
hold at the resolutions chosen for this study. Further developments of the method would 
hopefully allow to assign initial phases on the basis of some identified fragment, or at least 
provide an useful tool to predict some of the protein structural features directly from the 
diffracted intensities.           
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STRUCTURE NOTE

Crystal Structure of Antigen TpF1 from Treponema
pallidum
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Introduction. Several bacterial genomes code for pro-
teins belonging to the Dps family, which includes dodecam-
ers, made up of 12 identical subunits, each of them with a
four-helix bundle folding similar to that of ferritins. The
crystal structure of several members of the family have
been determined: Dps from Escherichia coli (1DPS, 1F30,
1F33, 1JRE, 1JTS, 1L8H, 1L8I),1 Listeria Innocua Dps
(1QGH, 2BJY, 2BK6, 2BKC),2,3 HP-NAP from Helicobac-
ter pylori (1JI4),4 Dlp1 and Dlp2 from Bacillus anthracis
(1JI5, 1JIG),5 archaeal Dps-homolog from Halobacterium
salinarum (1MOJ, 1TJO),6 Dps protein from Bacillus
brevis (1N1Q),7 Agrobacterium tumefaciens Dps (1O9R),8

Dps-like peroxide resistance protein from Streptococcus
suis (1UMN),9 Dps from Mycobacterium smegmatis (1VEI,
1VEQ, 1UVH).10

Despite their structural similarity and the fact that
most of these proteins are capable of incorporating iron in
vitro, their biological function appear to differ among
family members. The E. coli and the B. subtilis proteins
protect DNA from oxidative damage (Dps, DNA protecting
protein under starved conditions),11–13 whereas the L.
innocua protein (Flp) is a true dodecameric ferritin func-
tioning in iron storage.2 The FtpA protein from H. ducreyi
is a structural protein of fine tangled pili.14 At variance
from these Dps proteins, the H. pylori homolog HP-NAP
appears to display different activities. It induces migration
and activation of human neutrophils and monocytes,15

adhesion of neutrophils to endothelial cells,16 and it causes
mast cell degranulation.17 HP-NAP binds to neutrophil
glycosphingolipids and to mucin, a component of the
stomach mucus layer.18,19 A major property of HP-NAP is
that of being highly immunogenic in humans.20,21 This
property is shared by a Dps-like protein, named TpF1,
produced by Treponema pallidum,22–25 and therefore, we
decided to undertake the determination of the crystal
structure of this protein, which is presented in this report.

Methods. The TpF1 gene, amplified by PCR starting
from a preparation of Treponema pallidum genome, was
cloned and expressed in E. coliXl1blue. E. coli containing
the plasmid pSM214G-TpF1 was grown for 15 h in Luria

Bertani medium supplemented with chloramphenicol 15
�g/mL. Details of expression and purification are better
described in supplementary material. Briefly, cells were
suspended in 10 mL of Tris-HCl 30 mM, pH 7.8, and
subjected to three passages through a French press. After
fractionated precipitation with ammomium sulphate, the
pellet containing the protein was suspended in NaCl 0,1
M, Tris 30 mM, DTT 5 mM, pH 8.4 and purified using an
ion-exchange chromatography (MonoQ column, Amer-
sham Biosciences) and a by gel filtration chromatography
(superdex 200 HR 10/30 column, Amersham Biosciences).

Crystals were obtained using the vapor diffusion tech-
nique with hanging or sitting drops at 20°C, using as
precipitant a solution containing 0.1 M Tris buffer, pH 7.5,
10% PEG 6000 or 8000, 8% ethylene glycol. They belong to
the trigonal P321 space group. The VM value of 2.48 is
compatible with the presence of one dodecamer and one
tetramer in the asymmetric unit, corresponding to a
solvent content of about 50%.

Diffraction data were measured at the X-ray diffraction
beam-line of the ELETTRA synchrotron in Trieste (Italy).
Data were processed with the software MOSFLM26 and
merged with SCALA.27

The structure of TpF1 was solved using the molecular
replacement method with the program AMoRe,28 using as
a template the model of HP-NAP from Helicobacter pylori
(PDB code 1JI4).4 Two different sets of solutions were
found, one of them corresponding to a dodecameric mole-
cule in a general position, the other one with the crystallo-
graphic threefold axis running through the dodecamer.
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Chimiche e ICB-CNR, Università di Padova, Via Marzolo 1, 35131
Padova, Italy. E-mail: Giuseppe.zanotti@unipd.it

Received 2 September 2005; Revised 27 September 2005; Accepted
28 September 2005

Published online 00 Month 2005 in Wiley InterScience
(www.interscience.wiley.com). DOI: 10.1002/prot.20828

PROTEINS: Structure, Function, and Bioinformatics 00:000–000 (2005)

© 2005 WILEY-LISS, INC.

tapraid5/z7e-protein/z7e-protein/z7e00206/z7e2529d06g heckt S�6 11/17/05 16:07 Art: 20828



Consequently, the refinement was carried out including
one dodecamer and one tetramer in the asymmetric unit,
using the software package CNS.29 Cycles of simulated
annealing and energy minimization, followed by manual
adjustments, reduced the crystallographic R factor to the
final value of 0.225 (Rfree � 0.253). Statistics and data
processing and refinement are reported in Table I.

Results and Discussion. TpF1 is a dodecamer, about 90
Å in diameter, displaying 32 symmetry [Fig. 1(A)]. Each
TpF1 subunit folds in a way very similar to the other
miniferritins: a four-helix bundle, with helices B and C
connected through a long stretch that includes a short
helix [Fig. 1(B)]. An alignment search using the TpF1
amino acid sequence(BLAST30) shows a high similarity
with Dlp2 miniferritin from B. anthracis (score 99, 38%
identity), and with other proteins of the same family with
known structure: HP-NAP from H. pylori (score 97), Dlp1
from B. anthracis (94), B. brevis (82), S. suis (79), L.
innocua (72), A. Tumefaciens (54), E. coli (45). The compari-
son of corresponding C� atoms of TpF1 model with H.
pylori HP-NAP and Dlp-1 and Dlp-2 from B. anthracis
gives root-mean-square deviation values of 0.8 and of 0.9
Å, respectively. Major differences are observed in the long
connection between helix B and helix C, and minor but
significant differences are present in the other loops
connecting the helices. Moreover, TpF1 is about 30 resi-
dues longer at the N-terminus with respect to most of the
other Dps family members. An SDS-PAGE electrophoresis
and the N-terminal sequence analysis performed on dis-
solved crystals (data not shown) shows that the protein
present in the crystals has undergone a proteolitic cleav-
age at residue Ser 22. A partial degradation took place
during the purification process, despite the use of protease
inhibitors, and proteolysis was completed during the few
days necessary for crystal growth. This finding strongly

suggests that the N-terminal 21 residues are quite flexible.
Moreover, the electron density in the crystal is clearly
visible only from residue 27 or 28, with the exception of
monomer B that starts at residue 22. In the latter, the first
six residues are organized as two short �-strands, running
antiparallel, connected by a tight �-turn in correspondence
of Gly25 and Pro24. The ordering of this chain in monomer
B is possibly favored by intermolecular contacts in the
crystals; while in the other monomers it is more flexible
and not clearly visible in the crystal, at least at this
resolution.

The arrangement of the 12 monomers of TpF1 results in
the nearly spherical shell typical of miniferritins, with an
internal cavity where the iron is stored. The dodecamer
possesses four threefold axes, each of them passing through
the shell in two different threefold environments that
arrange as pores. One of the two threefold pores possibly
corresponds to the postulated iron entry channel, because
it presents a strongly hydrophilic, negatively charged

TABLE I. Statistics on Data Collection and Refinement

X-ray data
Space group P 321
Cell parameters, a, c [Å] 184.92, 154.88
Resolution (Å) 60–2.45 (2.55–2.45)
Independent reflections 111,030 (11,886)
Multiplicity 5.1 (3.9)
Completeness (%) 95.7 (70.8)
I/�(I) 8.5 (1.5)
Rmerge 0.072 (0.37)

Refinement
Number of residues included 2416
Total number of atoms, including

ligands and solvent
19,892

Rcryst./Rfree (%) 22.5/25.3
Ramachandran plot (%)
Most favored 97.2
Additionally allowed 2.0
Generously allowed 0.7
Disallowed 0.0
RMS on bonds length (Å), angles (°) 0.007/1.2

Crystals were frozen at 100 K under a nitrogen gas cold stream without
the need of any cryoprotectant solution. A wavelength of 1.2 Å was used.
A CCD detector was positioned at a distance of 150 mm from the sample.
Rotations of 0.5° were performed.

Fig. 1. (A) Van der Waals representation of the dodecamer of TPF1.
Each subunit is colored differently. One of the threefold axis is running
approximately perpendicular to the plane of the paper in the center of the
image, through one of the putative tunnel for the iron entrance. (B)
Stereoview of the ribbon representation of TPF1 monomer. Each �-helix
is shown in different colors, Fe(II) ion as a black sphere. N- and
C-terminus are labeled N amd C, respectively.
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environment, contributed by Glu 147 at the entrance,
Asp-154 inside the tunnel, and Asp 159 at the end of it, and
their symmetry mates. A similar situation is present in
other members of the family, like HP-NAP, Dlp1 and 2 and
Flp, but the negatively charged residues are not conserved
in the amino acid sequence position. The second of the two
threefold pores is smaller, but it is not hydrophobic like in
others Dps-like proteins, owing to the presence of Glu64,
Gln 67, and Lys 66 and symmetry mates. The internal
surface of TpF1 also differs from that of other members of
the family, because it presents six negatives and two
positive charges per monomers pointing towards the inte-
rior of the cavity.

Dps-like proteins, like ferritins, bind one Fe ion per
monomer. This ion possibly represents the iron oxidation
site, but it has also some structural relevance, because it
strengthens the interaction among monomers. This Fe(II)
atom presents a coordination similar to that of the iron of
the other members of the family: the environment of the
cation roughly corresponds to a tetrahedral coordination,
where three corners of the tetrahedron are occupied by
protein atoms (two oxygen, one of Asp 84, and the other of
Glu 84, from one monomer and nitrogen of His 57 from
another monomer), whereas the fourth coordination posi-
tion is apparently occupied by a solvent molecule. Atomic
details of the metal coordination cannot be described, as
the resolution of the model is not high enough. TpF1
displays in vitro ferroxidase activity and the presence in
the iron coordination of carboxylate and histidine residues
suggests that this site functions as a ferroxidase center,
where histidines may play a role in the redox process.31

Immunogenic properties of the protein are more difficult
to rationalize on the basis of the crystal structure: they
largely depend from the flexible N-terminal portion, which
protrudes from the surface of the spherical shell.

Acknowledgments. We thank the staff of the X-ray
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SUPPLEMENTARY MATERIAL

CLONING, EXPRESSION AND PURIFICATION

TpF1 was cloned and expressed in E. coliXl1blue. TpF1 gene was amplified by PCR starting from a 

preparation of Treponema pallidum genome. The PCR reaction was carried out using standard 

method. The thermal cycling parameters were as follows: 5 min at 94°C, 30 cycles of 1 min at 

94°C, 1 min at 50°C, and 45 s at 72°C, and a final extension cycle of 10 min at 72°C. Primers used 

were TP1: 5'-ccggaattcacgatgaacatgtgtaca-3' and TP2: 5'-cccaagcttctaggctttcagggtagc-3', containing 

restriction site for EcoRI and HindIII, respectively. The amplified fragment was excised by 

digestion with EcoRI and HindIII and ligated into EcoRI and HindIII sites of the expression vector 

pSM214G. pSM214G contains an artificial constitutive promoter, a chloramphenicol resistance 

cassette, and two origins of replication that allow expression of cloned genes both in E. coli and in 

Bacillus subtilis.

E. coli containing the plasmid pSM214G-TpF1 was grown for 15 hours in Luria Bertani medium 

supplemented with chloramphenicol 15 µg/ml. The cells were pelleted by centrifugation at 6000 x g 

and suspended in 10 ml of Tris-HCl 30 mM pH7.8 plus protease inhibitors (Roche) for 500 ml of 

culture. After three passages through a French press and removal of debris by centrifugation at 

32000 X g, a solution of saturated ammonium sulfate was added to a final concentration of 12,5% 

w/v, at 4°C. At this percentage of ammonium sulfate most of the protein remained in solution. After 

3 h at 4°C at slow stirring the sample was centrifuged at 32000 x g for 30 min, the supernatant was 

recovered and ammonium sulfate was added to a final concentration of 22,5% w/v. The sample was 

kept for 3 h at at 4°C at slow stirring and then centrifuge at 32000xg for 30 min. The pellet 

containing the protein TpF1 was suspended in NaCl 0,1 M, Tris 30 mM, DTT 5 mM, pH 8,4 (buffer 

A) and dialyzed overnight in buffer A. The sample was fractionated by ion-exchange 

chromatography using a MonoQ column (Amersham Biosciences) equilibrated with buffer A. After 

the sample was applied, the column was eluted with a linear NaCl gradient in Tris 30mM, DTT 5 

mM, pH 8,4. Fractions were analysed by SDS-PAGE and TpF1-containing fractions were pooled. 

TpF1 was further purified by gel filtration chromatography using a superdex 200 HR 10/30 column 

(Amersham Biosciences) equilibrated with phosphate buffer saline, pH 7,8. 

Crystals were obtained using the vapor diffusion technique with hanging or sitting drops at 20 °C, 

using as precipitant a solution containing 0.1 M Tris buffer, pH 7.5, 10% PEG 6000 or 8000, 8% 

ethylene glycole. They belong to the trigonal P321 space group. The VM value of 2.48 is compatible 

with the presence of one dodecamer and one tetramer in the asymmetric unit, corresponding to a 

solvent content of about 50%.



DIFFRACTION DATA COLLECTION

Diffraction data were measured at the x-ray diffraction beam-line of the ELETTRA synchrotron in 

Trieste (Italy). A crystal was frozen at 100 °K under a nitrogen gas cold stream without the need of 

any cryoprotectant solution. For the measurements a wavelength of 1.2 Å was selected. A CCD 

detector (MAR Research, …) was positioned at a distance of 150 mm from the sample, 

corresponding to a maximum resolution of 2.45 Å. Rotations of 0.5 were performed. Data were 

processed with the software MOSFLM (Leslie, 1991) and merged with SCALA (CCP4). 

STRUCTURE SOLUTION AND REFINEMENT

The structure of TpF1 was solved using the molecular replacement method with the program 

AMoRe (Navaza, 1994). The search for the rotation and translation function was performed at 4 Å 

resolution using as templates the models of HP-NAP from Helicobacter pylori (PDB code 1JI4, 

Zanotti et al., 2003). Two different sets of solutions were found, one of them corresponding to a 

dodecameric molecule in a general position, the other one with the crystallographic 3-fold axis 

running through the dodecamer. Consequently, the refinement was carried out using one dodecamer 

and one tetramer in the asymmetric unit. In the initial stages of refinement the strict non-

crystallographic symmetry, as implemented in the software package CNS (Brünger et al., 1998), 

was used, whilst in the final stages restraints were imposed. Cycles of simulated annealing and 

energy minimization, followed by manual adjustments, reduced the crystallographic R factor to the 

final value of 0.225. (Rfree = 0.253). Water molecules were introduced in peaks of electron density 

close to hydrophilic residues and forming possible hydrogen bonds. 
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