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Chapter 1  
 

1. General introduction 

Psychiatric disorders are a large class of debilitating mental illnesses that affect everyday life 

of patients and people around them. In fact, they result in alteration of thinking, moods, 

behavior and increased risk of disability, pain, death, or loss of freedom [1]. Nevertheless, the 

exact mechanisms behind these diseases are still unknown. Over the last few years, researchers 

focused on the study of abnormalities in brain neurodevelopment [2] genetic mutations, impact 

of traumatic events [3], [4] and the interaction between these factors [5]–[7]. In particular, both 

genetic and environmental factors may influence brain developmental process throughout 

childhood, adolescence and adulthood. Previous studies investigated how genetic and 

environmental risk factors act during sensitive brain developmental periods whereby altering 

adult behavior and possibly causing vulnerability to neuropsychiatric disorders [8]. Different 

brain systems have been involved in the development of psychiatric disorders. However, for 

disorders such as attentional deficit hyperactivity disorder (ADHD), schizophrenia, and post-

traumatic stress disorder (PTSD) there are consistent evidence of a major implication of the 

dopaminergic and endocannabinoid systems [9]–[14]. 

 Dopamine (DA) plays an important role acting as a trophic factor, in the development of 

neuronal cyto-architecture and also modulating neurodevelopmental processes during the 

embryonic and postnatal period [8]. In particular, dopaminergic alterations within the 

prefrontal cortex (PFC) or Striatum, two brain area involved in cognition, learning and 

emotion, have been previously correlated to the etiology of neuropsychiatric disorders like 

schizophrenia, autism and ADHD [15]. On the other hand, several studies have related 

dysfunctions of endocannabinoid system to psychiatric disorders [16]. In fact, the relationship 

between cannabis consumption, especially during critical period of brain development, and 

schizophrenia onset has been demonstrated [17].  
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1.1 “Dopamine hypothesis” of schizophrenia 

Schizophrenia is a debilitating psychiatric disorder that affect about 1% of world population 

[18]. The etiopathology of schizophrenia is still not clear, and both genetic and environmental 

factors are thought to be implicated. The most used drugs to treat schizophrenia are the 

antipsychotics [18] which act blocking dopamine 2 receptors (D2R) [9] and suppressing 

dopaminergic activity. These drugs ameliorate the positive symptoms (hallucinations, 

delusions and disorganized thinking) [1] related to an over activation of D2R, which results in 

increased subcortical dopamine release [19]. However, the core symptoms of schizophrenia 

include negative symptoms, as well as cognitive impairments [1]. In particular, anhedonia, 

social withdrawal and diminished emotional expression are negative symptoms [1] usually 

related to hypo-activation of dopamine 1 receptors (D1R) especially in the PFC [19]. 

Furthermore, cognitive impairment including working memory and attentional deficits are also 

correlated with imbalance of D1R and D2R in PFC [20], in particular with hypo-activation of 

dorsolateral PFC. In fact, DA plays a pivotal role in several functions including movement, 

memory and reward and in modulating higher-order cognitive functions like behavior and 

emotion in mammalian, regulating cognitive performance which a U-shaped relationship 

where too much or too little DA are related to worse performances [10]. Despite this, the newest 

hypothesis about schizophrenia etiology suggests a hyperactive DA transmission in 

mesolimbic areas and a hypoactive dopamine transmission in PFC, but a dopaminergic 

disruption may be also observed in brain areas related with emotional processing such as 

amygdala [21].  Indeed,  DA is a neurotransmitter synthesized in dopaminergic neurons, whose 

cell bodies are located in ventral tegmental area (VTA) and then projected to Nucleus 

Accumbens (NAcc), Striatum and PFC. DA is stored in vesicles and released into the synaptic 

cleft where it may act binding dopaminergic receptors, or may be re-uptaken into dopaminergic 

neurons by the dopamine transporter (DAT) [22], or metabolized by  Catecholamine-O-

methyltrasferase (COMT) [23], [24]. While DAT is mainly expressed in the Striatum, COMT 

is abundantly expressed in pyramidal neurons of the PFC [23], [25], likely because of the 

scarcity of cortical DA transporters [26]. For this reason, a dysregulation of DAT and/or COMT 

activity may lead to a disruption of the dopaminergic system.  
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1.2 The endocannabinoid system 

Cannabis is among the worldwide used psychoactive drugs, with an estimates 125-227 million 

consumers all over the world [27]. The most powerful component of cannabis is the Δ9- 

Tetrahydrocannabinol (Δ9-THC), which acts as agonist on cannabinoid receptors CBRs 

modulating several functions such as learning [28], memory [29], cerebral development [30], 

but also social and emotional memories [31] and inflammatory responses [32].  

Actually, the most active receptor within the central nervous system (CNS) is the cannabinoid 

receptor 1 (CB1) [33]–[36], ubiquatary expressed in CNS [37]. Intriguingly, over the last few 

years, several studies displayed that CB1 receptor is present on astrocytes and their functioning 

in the astrocytes is particularly important in mediating cannabinoid-related effects [38], [39].  

Anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are endogenous ligands for CBRs, 

which are “on demand” synthesized at pre- synaptic level starting from phospholipid precursors 

[40].  Unlike other neurotransmitters, AEA and 2-AG did not activate after Ca2+ signaling, but 

because of their lipophilicity cross the cell- membrane and bind pre-synaptic CBRs [40]. 

However, AEA and 2-AG can act as retrograde neurotransmitters and regulating the release of 

“classical” neurotransmitters, including glutamate, GABA [41] and dopamine [42]. Indeed, 

AEA and 2-AG are able to act on a wide variety of neuronal populations by means of retrograde 

signaling, modulating their synaptic plasticity [34], [36], [43].   

As mentioned above, a dysfunction in dopaminergic signaling is the most validated theory 

about schizophrenia etiology [9]. Nevertheless, dopaminergic dysregulation is insufficient to 

explain the non-psychotic symptoms of schizophrenia, which required alternative conceptual 

models of schizophrenia [44].  

Several studies have  demonstrated an endocannabinoid systems dysfunctions in patients 

affected by schizophrenia [45], [46]. In fact, elevated endocannabinoids levels have been 

detected in the blood and cerebrospinal fluid [45]–[47] of patients with schizophrenia, which 

are normalized with both antipsychotics and clinical remission [44], [45]. In addition, other 

studies have demonstrated a strong relationship between heavy cannabis consumption and 

higher risk to develop psychosis [48].  

Nevertheless, not all cannabis consumers show psychosis, which means that other factors may 

be implicated in schizophrenia onset. Since genetic mutation were already proposed as main 

factor in developing psychiatric disorders, researchers investigated the role of COMT mutation 

in this pathology [17], [49], [50] in humans.  
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Despite the increased number of scientific reports, the mechanism by which gene x 

environmental interaction might cause schizophrenia is still unknown. Further research is 

needed to unravel the exact mechanism related to the interaction between genetic modifications 

and environmental factors in order to find new pharmacological strategies to ameliorate 

patients everyday life.  
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1.3 The endocannabinoid system and emotion  

“Social cognition” is the ability to understand and process information about the other people, 

and it is strictly related to the ability to distinguish emotions in the other [51]. However, patients 

affected by psychiatric disorders, such as schizophrenia or autism, showed deficits in this set 

of abilities. The most used task to diagnose anomalies in social cognition is the facial emotion 

recognition task (FERT). In fact, several studies of functional magnetic resonance, performed 

during FERT, highlighted brain areas involved in social cognition, such as PFC. Despite this, 

mounting evidence from human studies [52]–[55] converged on indicating a strong 

involvement of the endocannabinoid system in FERT. Nevertheless, these studies showed 

some limitations [53], [55]. In fact, in some cases the sample size was too small [53], in other 

cases cannabis users reported alcohol use for more days per month and years than controls and, 

although the cannabis users were instructed to remain abstinent from drugs for at least 24 hours 

before testing, this was not  tested [55].  For these reasons, rodents might help to clarify 

biological mechanisms and neural circuits involved in social cognition. However, there is no 

evidence that rodents may be able to discriminate individuals on the base of their emotional 

state. Although, previous studies identified the existence of a transmission of emotions from 

one rodent to a familiar observer, but the cognitive processes by which rodents discriminate 

conspecifics emotional states are not still understood. In order to investigate what are the 

systems involved in social cognition we designed a new powerful translational test to 

investigate emotion recognition in mice. We found that mice are able to discriminate negative 

and positive emotions evoked in unfamiliar conspecifics, provided first proof about the 

involvement of endocannabinoid system in modulation emotion recognition in mice. 
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1.4 Aims of the thesis 

The overall goal of my doctoral work was to develop and asses new tools with translational 

valence to investigate how genetic mutations and/or environmental factors might contribute to 

develop psychiatric disorder. In order to ultimately investigate mechanisms behind psychiatric 

disorders, we decided to use genetically modified mouse models, which allow us to better 

control the impact of specific genetic and environmental factors. In particular, we specifically 

focused on these four subtopics: 

• ADHD, schizophrenia and bipolar disorder are psychiatric diseases with a 

strong genetic component, which share dopaminergic alterations. DAT genetics might 

be implicated in all these disorders. However, the effects of DAT hypofunction 

especially in developmental trajectories have been poorly addressed. Thus, we 

comprehensively studied DAT hypofunctional mice (DAT +/-) from adolescence to 

adulthood to disentangle DAT-dependent alterations in the development of psychiatric-

relevant phenotypes [56]. 

•  Adolescence is a critical period for the development of higher-order cognitive 

functions. Unlike in humans, very limited tools are available to assess such cognitive 

abilities in adolescent rodents. We implemented a modified 5-Choice Serial Reaction 

Time Task (5CSRTT) to selectively measure attentiveness, impulsivity, broad 

monitoring, processing speed and distractibility in adolescent mice [57] 

• The PFC is a crucial hub for the flexible modulation of recent memories 

(executive functions) as well as for the stable organization of remote memories. DA in 

the PFC is implicated in both these processes and genetic variants affecting its 

neurotransmission might control the unique balance between cognitive stability and 

flexibility present in each individual. Functional genetic variants in the COMT gene 

result in a different catabolism of dopamine in the PFC. However, despite the 

established role played by COMT genetic variation in executive functions, its impact 

on remote memory formation and recall is still poorly explored. We investigated how 

transgenic mice overexpressing the human COMT-Val gene (COMT-Val-tg) might 

affect recent and remote memories. Indeed, COMT genetic over activity produced a 

selective overdrive of the endocannabinoid system within the PFC which was 

associated with enhanced remote memories [4]. 

• Social emotion recognition abilities are also evident in non-human primates, as 

well as in dogs and sheep. Despite this, there is no evidence that mice, the most widely 
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used laboratory animals, might be able to discriminate individuals on the base of their 

emotional state. Indeed, we developed a new method to investigate emotion 

discrimination abilities in mice. Recent studies demonstrated the endocannabinoid 

system implication in psychiatric disorders. Starting from the evidence that astrocytes 

express cannabinoid receptors and synthesize endocannabinoids, we hypothesized a 

dysfunction in this kind of cell in ‘social’ deficits. 
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Abstract 
 

ADHD, schizophrenia and bipolar disorder are psychiatric diseases with a strong genetic 

component which share dopaminergic alterations. Dopamine transporter (DAT) genetics might 

be potentially implicated in all these disorders. However, in contrast to DAT absence, the 

effects of DAT hypofunction especially in developmental trajectories have been scarcely 

addressed. Thus, we comprehensively studied DAT hypofunctional mice (DAT+/-) from 

adolescence to adulthood to disentangle DATdependent alterations in the development of 

psychiatric-relevant phenotypes. From pre-adolescence onward, DAT+/- displayed a 

hyperactive phenotype, while responses to external stimuli and sensorimotor gating abilities 

were unaltered. General cognitive impairments in adolescent DAT +/- were partially 

ameliorated during adulthood in males but not in females. Despite this, attentional and 

impulsivity deficits were evident in DAT+/- adult males. At the molecular level, DAT +/- mice 

showed a reduced expression of Homer1a in the prefrontal cortex, while other brain regions as 

well as Arc and Homer1b expression were mostly unaffected. Amphetamine treatments 

reverted DAT +/- hyperactivity and rescued cognitive deficits. Moreover, amphetamine shifted 

DAT-dependent Homer1a altered expression from prefrontal cortex to striatal regions. These 

behavioral and molecular phenotypes indicate that a genetic-driven DAT hypofunction alters 

neurodevelopmental trajectories consistent with ADHD, but not with schizophrenia and bipolar 

disorders. 
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2.1. Introduction 

Dopamine dysfunction is believed to be significantly implicated in the pathophysiology of 

several psychiatric disorders, among these being schizophrenia (SZ), attention deficit 

hyperactivity disorder (ADHD), and bipolar disorder (BD)[1]–[4]. These are conceptualized 

also as diseases of aberrant synaptic function, possibly on a neurodevelopmental basis [2]. 

These psychiatric disorders all share a strong genetic component [5]–[7]. However, how 

dopamine-related genetic variations might differently affect neurodevelopment, giving rise to 

divergent abnormalities consistent with ADHD-, SZ- or BD-related dimensions is still not 

clear. Dopamine pathophysiology, especially in subcortical regions, is highly linked to the 

function of the dopamine transporter (DAT) [2], whose gene variants have been implicated to 

different degrees in the above disorders [6], [8].   

Animal models of DAT disruption have mainly focused on mice with a complete absence of 

DAT. DAT null mutant (-/-) mice exhibit extreme phenotypes such as lack of ability to re-

uptake dopamine from the synaptic cleft, growth retardation, anterior pituitary hypoplasia, 

dwarfism, early life mortality and exorbitant hyperactivity [9]–[11].  

In agreement, DAT-/- have been ascribed as a bona-fide model for the DAT deficiency 

syndrome, also known as early Parkinson's disease )[12], [13]. In contrast, more subtle changes 

in DAT activity could be more suitable for understanding its contribution to phenotypes 

relevant to disorders such as ADHD, SZ, and BD, as suggested by human studies [14], [15]. 

Partial DAT hypofunctioning has been studied prevalently for locomotor responses and 

reactivity to psychostimulants such as cocaine and amphetamine, and only in adult mice 

(Supplementary Table1).  

Thus, in order to gain insight into the impact of partial DAT genetic disruption on disorders 

such as ADHD, SZ and BD, we characterized DAT hypofunctioning mice (DAT+/-) at 

different ages. In particular, considering the developmental aspect of these disorders, we 

performed behavioral investigations in adolescent and adult animals to follow the trajectory of 

dopamine dysfunction in DAT+/- mice.  

We also compared male and female DAT+/+ and +/- mice with and without exposure to 

amphetamine. Indeed, amphetamines may ameliorate symptoms in ADHD [16], conversely, 

these same drugs may precipitate or exacerbate psychotic symptoms in both BD [17] and SZ 

patients [18] Moreover, all these psychiatric disorders show sex-dependent differences of the 

correlated behavioral abnormalities [19], [20], [21]. Finally, in line with the hypothesis that 

dopamine dysregulation in SZ, BP and ADHD has been associated with the common final 
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pathway of an aberrant synaptic function influencing all dopamine and glutamate physiology 

[1], [22], we investigated in cortical and subcortical brain regions alterations of key transcripts 

of the postsynaptic density (Homer1a, Homer1b, and Arc). These genes have been 

demonstrated to be implicated in the pathophysiology and animal modeling of ADHD, SZ and 

BP [23]–[27]. 
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2.2. Methods and materials 

All procedures were approved by the Italian Ministry of Health (permit n.17 BIS/2014) and 

Animal Use Committee and were conducted in accordance with guidelines for the care and use 

of laboratory animals of the NIH and the European Community Council Directives. Original 

DAT-/- mice [10] were backcrossed with C57BL6J mice for at least 8 generations. The 

breeding scheme used to obtain the experimental mice involved mating DAT hypofunctioning 

(DAT+/-) male mice with C57BL6J (DAT +/+) females. DAT+/+ mice were used as female 

breeders in order to avoid altered maternal behavior. Only DAT+/+ and +/- littermates were 

used for all experiments. Mice were genotyped by PCR analysis of tail DNA. Mice were group-

housed (two to four per cage) in a climate-controlled animal facility (22 ± 2 C) and maintained 

on a 12 h light/dark cycle (7am-7pm) with ad libitum access to food and water, unless specified 

in particular experiments. All experimental tests were conducted in male and female adolescent 

(PND 28e45) and adult (3e7 months old) mice during the light phase. Mice were handled by 

the experimenter on alternate days during the week preceding the test. Experimenters were 

blind to the genotype during testing. 

 

2.2.1. Acoustic startle response (ASR) and prepulse inhibition (PPI) 

Acoustic startle response (ASR) and prepulse inhibition (PPI) were measured using four SR-

Lab System (San Diego Instruments) as previously described [27]–[29]. Startle experiments 

test sessions began by placing the mouse in the Plexiglas holding cylinder (5 cm diameter) for 

a 5 min acclimation period. After the acclimation period, each subject received 36 trials over 

the 9 min test session. There were six different sound levels (in decibels) presented: 70, 75, 80, 

85, 90, and 120. Each stimulus was 40 ms and presented four times in pseudorandom order 

such that each sound level was presented within a block of six trials. The interval between trials 

was 10e20 s. The ASR was recorded for 65 ms (measuring the response every 1 ms) starting 

with the onset of the startle stimulus. The maximum startle amplitude recorded during the 65 

ms sampling window was used as the dependent variable. The PPI is an attenuation of the 

startle response when the startle-eliciting stimulus (pulse), is preceded by a weaker sensory 

stimulus (prepulse). In this test, mice were presented with each of seven trial types across six 

blocks of trials for a total of 42 trials. Trial types were presented randomly within each block. 

The interval between trials was 10e20 s. One trial type measured the response to no stimulus 

(baseline movement), and another presented the startle stimulus alone (startle), which was a 40 

ms, 120 dB sound. The other five were acoustic prepulse plus acoustic startle stimulus trials. 
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Prepulse tones were 20ms at 70, 75, 80, 85, and 90 dB, presented 100 ms before the startle 

stimulus (120 dB). The maximum startle amplitude was the dependent variable. A background 

level of 70 dB white noise was maintained over the duration of the test session.  

 

2.2.2. Locomotor activity (LMA) and sensitization to psychostimulants 

The experimental apparatus consisted of four open field arenas (42 x 42 x 30 cm), illuminated 

by overhead white lighting (25 ± 5 lux). To quantify exploratory and locomotor activities a 

video tracking system (ANYMAZE©) was used during 1 h of test. Parameters analyzed were 

total distance travelled (m) and percentage of time in the internal zone. One week after basal 

assessment, mice were treated with amphetamine HCl (1.5 mg/kg i.p) immediately before the 

LMA test and the test was repeated for 5 consecutive days. 

 

2.2.3. Temporal order object recognition (TOR) task 

The test was performed as previously described [27], [30]. Mice were tested in an experimental 

apparatus consisting of an opaque open field box (42 x 42 x 30 cm) with even, overhead white 

lighting (25 ± 5 lux). Each session was video-recorded using an overhead camera from ANY-

maze (Stoelting Co.). Each mouse was monitored for its locomotor activity in the empty open 

field boxes for 1 h. The next day, in the TOR test, the subjects’ ability to differentiate between 

two objects presented at different intervals was assessed. The objects presented were 

rectangular boxes (3 x 3 x 6 cm), or two laboratory flasks (4 x 6 cm), each either black or white 

and too heavy for the animals to displace. The objects were placed in two corners of the open 

field apparatus, 8 cm from the sidewalls. This task comprised of two sample phases and one 

test trial. In each sample phase, the subjects were allowed to explore two copies of an identical 

object for a total of 5 min. Different objects were used for sample phases 1 and 2, with a 1-h 

delay between the two sample phases. The test trial (5- min duration) was performed 3 h after 

sample phase 2. During the test trial, a third copy of the objects from both sample phase 1 and 

sample phase 2 were used. Time spent exploring each object was subsequently scored from the 

ANY-maze videos as the number of seconds when each subject was facing the object and 1 cm 

away. If temporal order memory is intact, subjects will spend more time exploring the object 

from sample 1 (i.e., the object presented less recently compared with the object from sample 2 

(i.e., the object minimum of 2 s exploration in the sample or test phases were excluded from 

the analysis. Discrimination between the objects was calculated using a discrimination ratio 

that takes into account individual differences in the total amount of exploration. In particular, 

the discrimination ratio was calculated as the difference in time spent by each subject exploring 
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the objects from sample phase 1 compared with the objects from sample phase 2 divided by 

the total time spent exploring both objects during the test period. 

 

2.2.4 Five choice serial reaction time task (5CSRTT) 

The classical 5CSRTT has been used to measure different aspects of attentional control in 

rodents [31], with relevance to numerous clinical disorders such as ADHD [32], [33], SZ [34] 

and BD [35]. The first part of the task was performed as previously described [28], while the 

implemented modified parts as well as the SARAT paradigm was performed as extensively 

described in [36](Huang et al., 2017). 

 

2.2.4.1. Apparatus 

Training and testing were conducted in operant chambers (Med Associates, St. Albans, VT, 

USA), housed in sound-attenuating and ventilated boxes. Each operant chamber contained a 5 

nose-poke hole wall outfitted with a LED stimulus light for each hole. Two additional LED 

cue lights (red and green) were installed above each of the 5 nose-poke holes. Nose-poke was 

detected by an infrared beam. On the wall  the 5-hole array there was a food magazine and a 

head entry detector where food reinforcement (14 mg pellets of the 5 TUL purified rodent 

tablet, Test Diet®) was delivered by a pellet dispenser. A water dispenser on the latter wall 

allowed the mice to have full access to water throughout the test. A house light was located 7 

cm above the food magazine. The operant chambers were connected to a Smart Control Panel 

and interfaced to a Windows computer equipped with a MED-PC IV software (Med Associates, 

St. Albans, USA). 

 

2.2.4.2. Habituation 

During the handling sessions, mice were weighed to obtain a baseline of their ad libitum body 

weight. Food restriction was imposed on adult mice during the duration of the experiment in 

order to maintain at least 90% of body weight. All animals received 1 g pellet after each daily 

session. Mice were weighed and then placed into the operant chambers each morning at 9.30 

a.m. 

 

2.2.4.3. Training protocol 

Each day, adult mice were presented with one session. When head entry to retrieve the free 

reinforcement pellet was detected, the first trial began with an inter-trial interval (ITI). Any 

nose-pokes during the ITI was recorded as premature responses and resulted in a time-out 
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(default 5s) with the house-light turned on. At the end of the time-out, the house-light turned 

off and the ITI restarted. Any nose-pokes during the time-out reset the time-out. At the end of 

the ITI, the program randomly selected a stimulus location (1 out of 5 stimulus lights) and 

turned on the corresponding stimulus light. The stimulus light remained on for the stimulus 

duration (SD) value set. The animal has limited hold (LH) time to nose-poke into the lit hole. 

If the animal nose-poked into the correct lit hole before the LH time runs out, this was recorded 

as a correct response, the first response to stimulus was recorded, the stimulus light was turned 

off if not turned off earlier, the correct response latency was recorded and the pellet issued. If 

the animal responded to one of the nose-poke holes that was not lit, this was recorded as an 

incorrect response, the first response to stimulus was recorded, the stimulus light was turned 

off if not turned off earlier, the incorrect response latency recorded, and the house-light turned 

on for the time-out period. At the end of the time-out, the house-light was turned back off and 

the ITI started. Any nose-poke during the timeout reset the time-out. If the animal did not nose-

poke into any hole before the limited hold time runs out, this was recorded as an omission error, 

the first response to stimulus was recorded as 0, the stimulus light turned off if not turned off 

earlier, the correct/incorrect response latency was recorded as 0 (this value was not included in 

the calculation of correct/incorrect response latencies), and the house-light turned back off and 

the ITI started. Any nose pokes during the time-out reset the time-out. Training consisted of 6 

stages. To precede to each subsequent stage, mice were required to reach the criterion for 2 

consecutive sessions. Each stage was more challenging than the last, with the SD and LH period 

decreasing while other criteria (such as the required number of correct trials) become more 

demanding. Each 30-min session has a maximum limit of 100 trials. The following measures 

were recorded to assess task performance as showed in the results section: 

 Correct responses: Number of correct responses divided by total number of trials, 

multiplied by 100. 

 Correct Latency (average latency to a correct response): Total time from onset of light 

stimulus to the performance of a correct response divided by number of correct 

responses. 

 Choice accuracy: Number of correct responses divided by the sum of number of correct 

and incorrect responses, multiplied by 100. 

 Incorrect responses: Number of incorrect responses divided by total number of trials, 

multiplied by 100. 

 Omissions: Number of omissions divided by total number of trials, multiplied by 100. 
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 Reward Latency (average latency to collect a food reward): total time from the 

performance of a correct response to the retrieval of the food reward from the food 

magazine divided by the number of correct responses. 

 Premature responses: Number of premature responses divided by sum of correct, 

incorrect, premature, perseverative and timeout responses (total number of responses), 

multiplied by 100. 

 Perseverative responses: Number of perseverative responses divided by total number 

of responses, multiplied by 100. 

 

2.2.5. Number of time-out responses 

2.2.5.1. Stabilization (basic task) 

Upon reaching the final training stage, mice were subjected to one week of testing at this stage 

in order to achieve a stable performance. 

 

2.2.5.2. Spatial attentional resource allocation task (SARAT) 

The week after, mice were tested on the SARAT protocol. This consisted of 3 different trial 

types randomly presented. The trial type 1 (normal trial) was the same as in the stabilization 

stage where the stimulus light was turned on randomly in 1 of the 5 nose-poke holes. The 

second type of trial (Cued 1 trial) was the same as the normal trial type with the addition of a 

red cue light appearing over the correct nose-poke hole from 1 s before to 1 s after the stimulus 

light duration (i.e. number of cues=  1). The third type of trial (Cued 5 trial) was the same as 

the normal trial type with the addition of a red cue light appearing over each of the 5 nose-poke 

holes from 1 s before to 1 s after the stimulus cue duration (i.e. number of cues= 5). Any nose-

pokes made during the red cue light was lit, but before the stimulus light was presented, was 

considered a premature response and was not rewarded 

resulting in a time-out period. Each trial type was presented equally in a random fashion 

throughout each session. Mice were exposed to 1 week to this SARAT protocol presented in 2 

out of 7 testing days ( Monday and Thursday) while on the other 5 days (Saturday, Sunday, 

Tuesday, Wednesday, Friday), a normal stabilization stage was run. 
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2.2.5.3. Sub-chronic treatment with low doses of amphetamine 

After these different test manipulations, mice were administered daily with low doses of 

amphetamine (0.375 mg/kg/10ml i.p.) and immediately tested on the normal stabilization trial 

type for 5 consecutive days. After that, the last day immediately after the amphetamine 

injection mice were tested on the SARAT protocol. The amphetamine dose was selected based 

on the lowest one previously used in the 5CSRTT in mice [28] in order to avoid affecting 

locomotor activity. 

 

2.2.6. In situ hybridization 

Animals treated with vehicle or amphetamine (1.5 mg/kg, i.p.) were killed by decapitation 90 

min after the last injection. Brains were removed, quickly frozen on powdered dry ice and 

stored at -70 °C prior to sectioning. Serial coronal sections of 12 mm were cut on a cryostat at 

-18 °C through the forebrain at the level of the prefrontal cortex (PFC) and the middle-rostral 

striatum, using the mouse brain atlas by Paxinos and Watson as an anatomical reference. 

Sections were thaw-mounted on to gelatin-coated slides, and stored at 70 C for subsequent 

analysis. Probes used for radioactive in situ hybridization were oligodeoxyribonucleotides 

complementary to sequences of target genes mRNAs (MWG Biotech, Firenze). Details for all 

probes are listed in Supplementary Table 1. All probes were designed from Gen-Bank 

sequences and checked with BLAST in order to avoid cross hybridization. For each probe, a 

50 ml labeling reaction mix was prepared on ice using DEPC-treated water, 1X tailing buffer, 

7.5 pmol/ml of oligodeoxyribonucleotide, 125 units of terminal deoxynucleotidyl transferase 

(TdT) and 100 mCi 35S-dATP. The mix was incubated for 20 min at 37 °C. Unincorporated 

nucleotides were separated from radiolabeled DNA using ProbeQuant G-50 Micro Columns 

(Amersham- GE Healthcare Biosciences, Milano, Italy). Sections were processed for 

radioactive in situ hybridization according to previously published protocols. All solutions 

were prepared with sterile double distilled water. The sections were fixed in 4% formaldehyde 

in 0.12MPBS (pH 7.4), quickly rinsed three times with PBS, and placed in 0.25% acetic 

anhydride in 0.1 M triethanolamine/0.9% NaCl, pH 8.0, for 10 min. Next, the sections were 

dehydrated in 70%, 80%, 95% and 100% ethanol, delipidated in chloroform for 5 min, rinsed 

again in 100% and 95% ethanol and air-dried. Sections were hybridized with 0.4e0.6106 cpm 

of radiolabeled oligonucleotide in buffer containing 50% formamide, 600mMNaCl, 80 

mMTris-HCl (pH 7.5), 4 mM EDTA, 0.1% pyrophosphate, 0.2 mg/ml heparin sulfate, and 10% 

dextran sulfate. Slides were covered with coverslips and incubated at 37 °C in a humidified 

chamber for 22e24 h. After hybridization the coverslips were removed in SSC and the sections 
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were washed 4 -15 min in 2x SSC/50% formamide at 43e44 °C, followed by two 30-min 

washes with 1X SSC at room temperature. The slides were rapidly rinsed in distilled water and 

then in 70% ethanol. The sections were dried and exposed to Kodak-Biomax MR 

autoradiographic film (Sigma). A slide containing a scale of 16 known amounts of 14C 

standards (ARC-146C, American Radiolabeled Chemical) was co-exposed with the samples. 

The autoradiographic films were exposed in a time range of 14e30 days. The optimal time of 

exposure was chosen to maximize signal-to-noise ratio but to prevent optical density from 

approaching the limits of saturation. Quantitation of the autoradiographic signal was performed 

using a computerized image analysis system by ImageJ software (v. 1.46v, 

http://rsb.info.nih.gov/ij/). All hybridized sections used for comparative statistical analysis 

were exposed on the same sheet of X-ray film. Signal intensity analysis was carried out on 

digitized autoradiograms measuring mean optical density within outlined regions of interest 

(ROIs) as shown in Fig. 4A. Measurements of optical density within ROIs were converted into 

“relative dpm” using a calibration curve based on the standard scale co-exposed to the sections. 

14C standard values from 4 through 12 were previously cross-calibrated to 35S brain paste 

standards. In order to obtain a calibration curve for each X-ray film, a “best fit” 3rd degree 

polynomial was used. For each animal, measurements from 3 adjacent sections were averaged 

and the final data reported in relative dpm as mean ± S.E.M. The in situ hybridization procedure 

(sectioning, hybridization and quantification) was performed blinded with coded frozen brains.  

 

2.2.7. Statistical analysis 

Three and four-way ANOVAs (Analysis of Variance) were used to analyze the contribution of 

the categorization factors taken into account (genotype, sex, developmental stage, repeated 

measure) on the outcome of the dependent variable (behaviors and gene expressions). 

Newmane Keul's post-hoc test was used for making comparisons between groups when the 

overall ANOVA showed statistical significant differences for the main factors or their 

interactions. We also performed Student's t-test in each sex subgroup in order to analyze 

differences in gene expression levels in 

male and female animals separately. The accepted value for significance was p < 0.05. The 

statistical analyses were performed using JMP 9.0.1 and Statistica 11 (StatSoft) software. 
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2.3. Results 

2.3.1. DAT genetic hypo-function did not affect startle reactivity and sensorimotor gating 

abilities in adolescent and adult mice  

PPI is a sensorimotor gating measure that is highly conserved across mammalian species, and 

can be studied experimentally in mice [29]. PPI deficits are evident in patients with SZ [37], 

[38] and BD [39], while for ADHD current evidence are negative [38], [40]. 

A detailed analysis on responses to several acoustic startle stimuli and reaction thresholds 

revealed no DAT genotype effect in adolescent male (F1,31=  0.02; p = 0.88; Fig. 1A) and female 

mice  (F1,36=  0.22; p= 0.63; Fig.1B), as well as in adult male (F1,32 = 0.28; p= 0.60; Fig.1C) 

and female mice (F1,23= 0.0018; p= 0.96; Fig.1D). Similarly, the PPI of a 120 dB acoustic startle 

stimulus showed no DAT-dependent effects in all tested groups (F1,134 = 0.082; p= 0.77, Fig.1E 

e H). In all groups, PPI progressively increased with higher prepulse intensities (p < 0.0001). 

Again, no DAT-dependent differences were found in the startle amplitude measured 

(Supplementary Fig. 1). This is in contrast to DAT-/- mice which have been consistently 

reported to show startle and PPI deficits [41], [42] (see Supplementary Table 1). Overall, these 

results demonstrate that DAT hypofunctioning throughout the animal's life did not affect startle 

and PPI measures, discrepant to PPI deficits found in SZ and BD, but consistent with evidence 

reporting that these abilities are mostly intact in patients with ADHD. 
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Figure 1. Acoustic startle reaction amplitude (in arbitrary units) displayed by DAT+/+ and DAT+/- (A) adolescent 

males (+/+ = 15; +/-= 18), (B) adolescent females (+/+= 26; +/-= 12), (C) adult males (+/+= 21; +/-= 13), and (D) 

adult females (+/+= 15; +/-= 10) after the presentation of 70, 82, 90, 100, 110 and 120 acoustic startle stimuli. 

Prepulse inhibition (in percentage) of the 120 dB acoustic startle response displayed by (E) adolescent males (+/+= 

15; +/-= 21), (F) adolescent females (+/+= 24; +/-= 15), (G) adult males (+/+= 17; +/-= 15), and (H) adult females 

(+/+= 15; +/-= 12) after the presentation of 70, 75, 80, 85, 90 dB prepulse sound stimuli. Values represent mean 

± SEM throughout all Figures. 
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2.3.2. DAT genetic hypofunction produces a hyperactive phenotype from adolescence to 

adulthood 

Hyperactivity is markedly evident in ADHD as an inherent diagnostic factor and often a 

pervasive symptom dimension among clinical manifestations [43], while for SZ and BD levels 

of activity may be not substantially affected [44]. The term hyperactivity generally refers to 

excessive motor activity and in patients with ADHD might be qualitatively different between 

individuals and might vary depending on patient's age and sex [45]. A strong DAT genotype 

effect in the distance travelled in an empty open field arena was evident (F1,129=  33.82, p < 

0.0001; Fig. 2A e D). This effect was independent from the sex of the subjects or their 

developmental stage as no DAT-by-sex, DAT-by-developmental stage or DAT-by-sex-by-

developmental stage interactions were present (F1, 129= 33.82, p > 0.53). In particular, DAT+/- 

mice were consistently hyperactive compared to their +/+ littermates (p < 0.0005; Fig. 2). 

Moreover, in contrast to +/+ mice, DAT+/- did not show a normal habituation to the novelty 

of the open field arena (p < 0.05). No DAT-dependent differences were evident for other 

parameters such as time spent in the internal zone compared to the external one (Supplementary 

Fig. 2). Despite being significant, this hyperactive phenotype was much weaker than in DAT-

/- mice [10] (see Supplementary Table 1). Thus, previous statistically negative findings in 

DAT+/- [10] might derive by the overwhelming DAT-/- phenotype and/or by less sensitive 

tracking technology. Finally, general health assessment in DAT +/+ and +/- mice demonstrated 

no DAT-dependent differences, and no interactions with sex or developmental stage in body 

weight, physical aspect and life expectancy (Supplementary Table 3). Also this was in contrast 

with DAT-/- mice which show growth retardation, dwarfism, and very poor survival [46]. 

Overall, these data show that partial DAT genetic disruption results in a consistent hyperactive 

phenotype since adolescence (Fig. 2A e B) that persists throughout the lifespan. This is 

consistent with hyperactive phenotypes present in patients diagnosed with ADHD.  
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Figure 2. Spontaneous locomotor activity displayed by DAT+/+ and DAT+/- (A) adolescent males (+/+= 18; +/-

= 19), (B) adolescent females (+/+= 26; +/-= 15), (C) adult males (+/+= 18; +/-= 11), and (D) adult females (+/+= 

16; +/-=13). *p<0.05, **p<0.005, ***p < 0.0005 versus þ/þ littermates. Discrimination ratio displayed by DAT+/+ 

and DAT+/- (E) adolescent males (+/+=18; +/-= 14), (F) adolescent females (+/+= 21; +/-= 14), (G) adult males 

(+/+= 28; +/-= 8) and (H) adult females (+/+/=12; +/-= 8) during the 5-min temporal order object recognition test. 

**p<0.005 versus +/+ littermates. 
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2.3.3. DAT genetic hypofunction disrupts recency memory abilities more during 

adolescence than in adulthood 

Cognitive deficits have been suggested as core symptoms of SZ (Elvevåg and Goldberg, 2000), 

ADHD [47] and BD [48]. Thus as a first screening test we tested DAT hypofunctional mice in 

a temporal order object recognition task that has a broad implication of the medial prefrontal 

cortex (mPFC), hippocampus and perirhinal cortex (PRH)[49]. Temporal order object 

discrimination was disrupted in both adolescent males (F1, 30 = 5.98, p= 0.020; Fig. 2E) and 

females (F1, 27 = 4.43, p = 0.045; Fig. 2F). In contrast, only adult DAT+/- female mice showed 

this cognitive impairment (F1, 18 = 6.04, p = 0.03; Fig. 2H), while DAT+/- males were not 

affected (F1, 18 = 0.02; p = 0.95; Fig. 2G). No significant differences among groups were evident 

in the total time spent exploring both objects during sample and test phases in both adolescent 

(male: F1, 30 = 0.01, p = 0.90, females: F1, 27 = 0.40, p = 0.53; Supplementary Figs. 3A e B) and 

adult mice (males: F1,37 =  0.78, p = 0.38, females: F1,18 = 0.40, p = 0.53; Supplementary Figs. 

3C e D). Thus, DAT genetic reduction did not alter motivation, curiosity, motor, olfactory, 

tactile, or visual functions that might affect object recognition. No previous study assessed 

DAT involvement in recency memory in this kind of task. However, in the novel object 

recognition task, assessing different cognitive functions and relying on different brain areas 

[27], [49], adult DAT-/-, +/- and knock-in mice show impairments in the ability to recognize a 

familiar object [42], [50]–[53] (see Supplementary Table 1). Thus, our data indicate that DAT 

hypofunctioning produced general cognitive deficits during adolescence that seemed to 

diminish in male mice in adulthood. 

 

2.3.4. DAT genetic hypofunction produces selective inattentive and impulsive phenotypes 

in adulthood 

Based on evidence suggesting an ADHD-like profile in DAT+/- mice (Fig. 2) and a less general 

cognitive impairment in DAT+/- adult males (Fig. 2G), we aimed to dissect more subtle and 

ADHD-relevant cognitive impairments in adult DAT+/- male mice. To achieve this, DAT+/+ 

and +/- adult males were tested in the 5CSRTT which has been designed and validated to assess 

ADHD-relevant cognitive deficits at the preclinical level [36], [54]. A DAT genotype effect 

was found for parameters such as choice accuracy (F1, 17 = 7.23; p= 0.015), incorrect responses 

(F1,17 = 5.88; p = 0.027), and premature responses (F1,17= 10.39; p = 0.006). In particular, 

compared to +/+ littermates, DAT +/- mice displayed a decreased level of choice accuracy (p 

< 0.005; Fig. 3C), and they made more incorrect (p < 0.05; Fig. 3D) and more premature 

responses (p < 0.005; Fig. 3G).  
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Figure 3. Different parameters measured in the 5CSRTT displayed by adult male DAT+/+ (9) and DAT+/- (11) 

mice, during one week of stabilization at stage 6 after animals reached the training criteria. (A) Percentage of 

correct responses; (B) latency (in seconds) to a correct response; (C) percentage of choice accuracy; (D) 

percentage of incorrect responses; (E) percentage of omitted responses; (F) latency (in seconds) to collect a food 

reward; (G) percentage of premature responses; (H) percentage of perseverative responses; (I) number of time out 

responses. *p<0.05, **p<0.005 versus þ/þ littermates. 
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These deficits were selective as no DAT genotype effect was evident for all other parameters 

measured including correct responses (F1,17 = 0.11; p = 0.74; Fig. 3A), latency to make a correct 

response (F1,17 = 0.39; p = 0.54; Fig. 3B), omissions (F1,17 = 0.048; p =b0.83; Fig. 3E), reward 

latency (F1,17 =0.38; p = 0.54; Fig. 3F), perseverative responses (F1,15 = 2.98; p = 0.10; Fig. 3H), 

and time out responses (F1,17 = 2.25; p = 0.15; Fig. 3I). To our knowledge, DAT mutant mice 

have not been previously assessed in this task. Moreover, because of their extreme physical 

and hyperactive phenotypes, no meaningful data could be derived by DAT-/- mice. These 

current data demonstrate that DAT hypofunctioning produced selective impairments in indices 

of attentional and impulsive control, consistent with core behavioral alterations observed in 

patients with ADHD. 

 

2.3.5. DAT genetic hypofunction decreases Homer 1a expression in cortical executive 

function-related regions while sparing Arc and Homer 1b 

The short Homer protein Homer1a is transcriptionally induced only upon neuronal cell 

stimulation [23], [55]–[57]. Notably, specific silencing of Homer1a reportedly produces a 

hyperactive phenotype, and deficits in attentional and learning abilities reminiscent of ADHD-

related behaviors [58] . Moreover, the PFC expression of Homer1a gene and protein is 

disrupted in male spontaneous hypertensive rats (SHR), the most frequently used animal model 

of ADHD (Hong et al., 2009). Gene expression was analyzed by ANOVA. In case of significant 

ANOVA, group pairs were compared by the Newman Keul's post hoc test. For clarity, groups 

have been subdivided per genders in graphical rendering of gene expression levels. A DAT 

genotype effect on Homer1a mRNA levels was found in PFC regions particularly related to 

executive functions (ACC: F3,12 = 4.5, p = 0.02; MO: F3,11= 10.7, p = 0.001; VO: F3,11=18 04, 

p= 0.0001; LO: F3,11= 10.5, p= 0.001; Fig. 4A e D and Supplementary Figs. 5A and D). 

Specifically, DAT +/- mice displayed lower levels of Homer1a mRNA compared to +/+ 

littermates (ACC p= 0.003, MO p= 0.0004, VO p= 0.0001, LO p= 0.0002). These effects were 

consistent in both male and female animals. No DAT-dependent differences in Homer1a 

expression were found in lateral regions of the caudate-putamen, nucleus accumbens and in 

cortical regions related to motor and sensory functions (p > 0.05; Fig. 4 and Supplementary 

Figs. 5BeE). Alternative splicing of the Homer1 gene leads to the long isoform Homer1b, 

which is a constitutively expressed splice isoform without any activity-dependent regulation. 

Within dendritic spines, long Homer isoforms tetrameric complexes, which are required for 



                                          

34 
 

synaptic localization of the post-synaptic proteins Shank and PSD-95 and provide a binding 

platform for other synaptic proteins [59].  

 

 

 

Figure 4. (A) Graphical depiction of the regions of Interest (ROIs), where gene expression has been analyzed. 

(B) Representative autoradiograms of Arc, Homer1a and Homer1b mRNA expression throughout cortical and 

striatal subregions in naive DAT +/+ and DAT +/- male and female littermates. (C) Representative autoradiograms 

of Arc, Homer1a and Homer1b mRNA expression throughout cortical and striatal subregions in amphetamine-

treated DAT +/+ and DAT +/- male and female littermates. (D) Summary table showing the DAT genotype 

differences of Arc, Homer1a and Homer1b mRNA expression in naive and amphetamine-treated DAT +/+ and 

DAT +/- mice. Y  significant decreased expression versus +/+ littermates. ACC: anterior cingulate cortex; MO: 

medial orbital cortex; VO: ventral orbital cortex; LO: lateral orbital cortex; PrL: prelimbic cortex; DM: 

dorsomedial caudate putamen; DL: dorsolateral caudate-putamen; VM: ventromedial caudate-putamen; VL: 

ventrolateral caudate-putamen; CAb: core of the nucleus accumbens; SAb: shell of the nucleus accumbens; M2: 

secondary motor cortex; M1: motor cortex; SS: somatosensory cortex; IC: insular cortex; AI: agranular insular 

cortex. 
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DAT hypofunction did not alter expression of the constitutive Homer1b gene throughout the 

brain including PFC regions (p > 0.05), striatal (p > 0.05), and other cortical motor and sensory 

function-related ROIs (p > 0.05) (Fig. 4, Supplementary Fig. 6). Activity-regulated 

cytoskeletal-associated (Arc) postsynaptic signaling complexes are converging point of SZ-

relevant genetic variants. Arc genetic disruption has been associated with SZ [60], [61] and 

rodent correlates of SZ symptoms [27]. Moreover, reduced expression of Arc mRNA has been 

detected in the PFC of individuals with SZ [62]. DAT genotype effects on Arc expression were 

evident only in the ACC and VO (F3,9= 4.1; p= 0.04 and F3,9= 5.1; p= 0.02, respectively). In 

particular, mRNA levels in DAT +/- mice were significantly lower than in +/+ littermates 

(ACC p= 0.033, VO p= 0.008; Fig. 4 and Supplementary Fig. 7D). Comparison analyses 

revealed that these effects were mostly driven by female DAT+/- mice but not present in males 

(Supplementary Figs. 7A and D). No DAT-dependent effects were evident for Arc expression 

in both striatal (p > 0.05) and cortical motor and sensory functions-related ROIs. Overall, data 

from molecular imaging of gene expression in DAT +/- mice were consistent with the 

hypothesis that the DAT +/- genotype may be relevant to ADHD, but not to SZ and BD 

phenotypes. Indeed, the molecular alterations found in this genotype were strongly divergent, 

both quantitatively and topographically, from those reported in clinical and preclinical studies 

on SZ and BD. 
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2.3.6. Amphetamine rescues inattentive and impulsive phenotypes produced by DAT 

genetic hypofunction 

Amphetamines are the first-line pharmacological treatments in the management of ADHD, 

since they improve symptomatic domains such as inattentiveness and impulsivity [16]. Thus, 

we sub-chronically treated with amphetamine DAT +/+ and +/- adult male mice and tested 

them in the different protocols of the 5CSRTT. In contrast to what was found in drug naïve  

conditions (Fig. 3), DAT +/- treated with amphetamine did not show deficits in parameters 

such as choice accuracy (F1,15= 0.39; p= 0.54; Fig. 5C), incorrect (F1,15= 0.30; p= 0.59; Fig. 

5D) and premature responses (F1,15= 0.006; p= 0.94; Fig. 5G). As for previous tests, no DAT-

dependent effects were evident for all other parameters. These data indicate that treatment with 

amphetamine was sufficient to abolish DAT-dependent alterations in inattentive and impulsive 

cognitive domains. 
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Figure 5. Different parameters measured in the 5CSRTT displayed by adult male DAT+/+ (9) and DAT+/- (11) 

mice, following the daily exposure to amphetamine treatments. (A). Percentage of correct responses; (B) latency 

(in seconds) to a correct response; (C) percentage of choice accuracy; (D) percentage of incorrect responses; (E) 

percentage of omitted responses; (F) latency (in seconds) to collect a food reward; (G) percentage of premature 

responses; (H) percentage of perseverative responses; (I) number of time out responses. 
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2.3.7. Amphetamine decreases DAT-dependent hyperactivity in adults in both sexes, but 

only in males in adolescence 

Amphetamine exacerbates psychotic experiences in patients with SZ, can be psychogenic in 

normal human subjects, and its locomotor responses are used in rodents as correlates of SZ-

like positive and BD mania-like symptoms [63], [64]. In contrast, treatment with amphetamines 

ameliorates hyperactive phenotypes in patients diagnosed with ADHD [65]. Amphetamine 

treatments for 5 consecutive days revealed a DAT genotype-by-sex-by-developmental stage-

by treatment day interaction effect (F4,260= 2.35,p= 0.05; Fig. 6). In particular, as previously 

shown in adult DAT -/- males [11], adult DAT +/- males and females did not show the expected 

behavioral sensitization to amphetamine treatment as in DAT +/+  littermates (p < 0.005; Fig. 

6 C e D). A similar effect was evident in adolescent DAT +/- males (p < 0.005; Fig. 6A). In 

contrast, adolescent DAT +/- females responded to the amphetamine challenges as their +/+ 

littermates (p = 0.85; Fig. 6B). Overall, these findings indicate that DAT genetic 

hypofunctioning produced a paradoxical decreased locomotor response to amphetamine, which 

was absent only in adolescent females.  
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Figure 6. Locomotor activity measure after 5 consecutive days of amphetamine treatments displayed by DAT +/+ 

and DAT +/- (A) adolescent males (+/+= 5; +/-= 7), (B) adolescent females (+/+= 8; +/-= 7), (C) adult males (+/+ 

= 10; +/-= 13), and (D) adult females (þ/þ ¼ 13; þ/_ ¼ 11). **p<0.005, ***p < 0.0005 versus þ/þ littermates at 

the same time point. 

 

2.3.8. Amphetamine ameliorates the DAT-dependent altered pattern of expression of 

Homer1a in the PFC, while extended it at striatal levels 

Based on our behavioral findings that amphetamine treatment ameliorates ADHD-relevant 

behavioral abnormalities in DAT hypofunctional mice, we next investigated if amphetamine 

treatment might also modulate DAT-dependent molecular alterations. In the amphetamine-

treated groups, significant differences in Homer1a expression between DAT +/- and DAT +/+ 

mice were found in fewer executive function-related cortical regions than in drug naïve animals 

(only ACC: F3, 10= 10.9, p= 0.0017; MO: F3,9= 9.4, p= 0.003; VO: F3,10= 34.5, p= 0.0001). 

Moreover, the prominent effect of the DAT genotype on gene expression observed in naïve 

animals was lost (Fig. 4, Supplementary Fig. 5A). Amphetamine treated DAT +/- and DAT 

+/+ mice almost did not differ in the levels of PFC Homer1a gene expression, and this result 
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was more pronounced in the male sub-group (p > 0.05; Supplementary Fig. 8A). In contrast to 

drug-naïve mice, in amphetamine-treated mice, several DAT-dependent significant differences 

appeared in all striatal regions (DM: F3,10= 36.5, p ¼ 0.0001; DL: F3,10= 33.4, p= 0.0001; VL: 

F3,9= 81.4, p=  0.0001; VM: F3,10 = 35, p= 0.0001; Cab: F3,9=  34.5, p= 0.0001; F3,9= 15.6, p= 

0.0006; Fig. 4, Supplementary Fig. 8 C,F). In particular, DAT +/- displayed significantly lower 

levels of Homer1a mRNA compared to +/+ mice (DM p= 0.0003, DL p= 0.0008, VL p= 

0.0002, VM p= 0.0004, Cab p= 0.001, Sab p= 0.001). Planned comparisons revealed these 

effects to be largely driven by DAT +/- males, although similar effects were evident in females 

as well (Supplementary Fig. 8F). Homer1a expression in cortical regions related to motor and 

sensory functions was significantly affected in amphetamine-treated mice (p < 0.05), while in 

drug-naïve mice this was not the case (Fig. 4, Supplementary Figs. 5 and 8). As for drug-naïve 

mice, no DAT-dependent effects were evident in Homer1b expression in amphetamine-treated 

mice in PFC (p > 0.05; Fig. 4, Supplementary Fig. 9 A, D), striatal (p > 0.05) (Fig. 4, 

Supplementary Fig. 9 C, F), and motor and sensory functions-related ROIs (p > 0.05) (Fig. 4, 

Supplementary Figs. 9B and E). The pattern of Arc expression in amphetamine-treated mice 

closely resembled that observed in naive mice in the same cortical regions (ACC: F3, 12 = 3.63, 

p= 0.04; VO: F3, 12= 5.34, p= 0.014; Fig. 4; Supplementary Figs. 10B and E). Indeed, also after 

amphetamine treatment a significant genotype effect was observed on cortical Arc mRNA 

expression (ACC p= 0.0007, VO p= 0.002), with DAT +/- mice expressing lower gene levels 

compared to controls. Conversely, in contrast to drug-naïve mice, in the amphetamine treated 

groups Arc mRNA levels were significantly different through almost all caudate-putamen 

regions analyzed (DM: F3,10= 16.8, p= 0.0003; VL: F3,11= 9.9, p= 0.001; VM: F3,12= 80, p= 

0.003). A genotype effect was observed in the above-mentioned regions (DM p ¼ 0.0001, VL 

p= 0.0005, VM p= 0.0007), and in particular gene levels were higher in DAT +/+ mice 

compared to DAT +/- mice (Fig. 4, Supplementary Figs. 10C and F). As concerns cortical 

regions related to motor and sensory functions, gene expression assessed by two-way ANOVA 

showed significant differences only in SS and IC of amphetamine-treated groups (p < 0.05) 

(Fig. 4, Supplementary Figs. 10B and E; Supplementary Table 2). Overall, amphetamine 

treatment reverted in large part the altered expression of Homer1a in the PFC of DAT +/- mice. 

On the other hand, amphetamine reduced the expression of both Arc and Homer1a in a DAT-

dependent way mainly in striatal regions. These results parallel previous findings in which 

ADHD-like behaviors induced by Homer1a down-regulation were reverted by Homer1a up-

regulation after methylphenidate administration [58].   
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2.4. Discussion 

This study demonstrates that genetic variations resulting in DAT hypofunction produce several 

core behavioral alterations analogous to those reported in patients with ADHD, but not SZ or 

BD. These behavioral abnormalities were associated with a selectively reduced expression of 

Homer1a in cortical executive function related regions. Amphetamine ameliorated both DAT-

dependent behavioral and molecular alterations. DAT+/- mice were characterized by ADHD-

relevant phenotypes including persistent hyperactivity, cognitive alterations in attentional- and 

impulsive-control with intact sensorimotor gating abilities, as well as behavioral amelioration 

after treatment with amphetamine. In order to overcome previous weaknesses in DAT related 

literature and to get closer to the clinical setting, we specifically addressed two different time 

points: adolescence and adulthood. Like in ADHD, these behavioral abnormalities were 

evident throughout these developmental periods, while in SZ and BD onset of full-blown 

symptoms usually occurs during young adulthood [66], [67]. Consistent with DAT +/- 

phenotypes, patients with ADHD may show, starting from childhood, hyperactivity that 

persists during adulthood [43], [68]. In SZ patients, increased motor activity is not a trait of the 

disease, and when present is a more frequent agitation that is substantially different from 

hyperactivity. Moreover, an apparent opposite condition can be detected in SZ patients with 

predominating negative symptoms. In BD levels of activity are usually fluctuating, with 

episodic mood-congruent hypo/hyperactivity [44], [69]. Cognitive deficits, especially of the 

inattentive type, are another core and enduring feature of ADHD [68], [70], even if childhood 

ADHD persists into adulthood only in approximately one-half of patients [69]. Similarly, DAT 

+/- mice showed cognitive deficits more pronounced in attentional functioning. Indeed, DAT 

+/- male mice had a selective reduction in choice accuracy in the 5CSRTT, which is considered 

the main index of attention, thought to bypass non-specific influences such as motivational 

factors [31]. Similarly, clinical studies in adult ADHD patients demonstrated impaired focused 

and sustained attention [71], [72]. In contrast, patients with SZ have relatively spared 

visuospatial attentional cuing abilities [73], [74], while presenting more pronounced deficits in 

broad monitoring as measured with SARAT tests [75]. These same SZ relevant cognitive 

deficits in an equivalent new murine SARAT protocol [36] were completely absent in DAT +/- 

mice. Impulsivity indexes are used to describe different ADHD subtypes (e.g. hyperactive-

impulsive, predominantly inattentive and combined type) [76]. DAT+/- mice showed 

consistent high levels of impulsive behaviors since premature responses remained high during 

the different test challenges. Premature responses are thought to reflect a failure of inhibitory 
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response control, appearing when preparatory response mechanisms are disrupted [77]. This is 

in further agreement with elevated levels of impulsivity present in ADHD subjects as measured 

by a variety of tasks [78]. Finally, available studies in children [79], [80] and adults [38], [40], 

[81] diagnosed with ADHD suggest no major alterations in PPI measures in this pathology, 

even if these studies are not yet conclusive. Indeed, it should be noted that these evidence are 

still mostly underpowered in relationship to sample sizes and might present potentially 

confounding factors such as comorbidity with other psychiatric disorders (e.g Tourette's 

syndrome) or pharmacological treatments. In contrast, sensorimotor gating deficits are 

consistently found in patients with SZ [82], [83] and BD [39] throughout the lifespan. Our 

findings disentangle DAT-dependent alterations with remarkable similarity to what have been 

used to define and diagnose ADHD. 

Molecular outcomes further support DAT +/- as a model strongly related to ADHD but not SZ 

or BD. Indeed, previous evidence pointed to a reduction of Homer1a mRNA and protein levels 

in the PFC of SHR, which is one of the most widely used animal models of ADHD [25]. 

Furthermore, selective decreased expression of Homer1a by intra-cerebroventricular injection 

of a miRNA virus in rats resulted in increased locomotor activity and attentional disabilities 

[84] reminiscent of ADHD-like and DAT ± phenotypes. Moreover, viral restoration of 

Homer1a, but not Homer1c, into the PFC of homer1-/- mice rescued their persistent 

hyperactive phenotype while not influencing their PPI deficits [26]. Finally, pharmacological 

animal models SZ reported an up-regulation of Homer1a expression in fronto-cortical and 

striatal areas [85], [86]. Combined with previous evidence, our findings indicate that decreased 

Homer1a expression in the PFC may be relevant to ADHD but not SZ. In contrast, and again 

supporting DAT selective relevance for ADHD, but not SZ, is the lesser impact of DAT 

hypofunction in Arc expression. Indeed, Arc genetic disruption is gaining increasing relevance 

for the neuropathophysiology of SZ [27], [60]–[62], [87], [88]. Taken together, DAT 

hypofunctioning appears to implicate a PFC specific alteration of synaptic plasticity processes, 

above all those involving Homer1a that may be strongly relevant to ADHD. Stimulants such 

as amphetamine and methylphenidate are currently the most common treatment for ADHD 

[16], [74]. In particular, stimulant medications in ADHD patients ameliorate their hyperactive 

phenotype, improve attentional focus and alleviate impulsive behaviors. In contrast, these 

drugs may precipitate or exacerbate psychotic symptoms in both BD [17] and SZ patients [18]. 

In line with ADHD, DAT +/- mouse hyperactivity, attentional deficits and impulsive behavior 

were all ameliorated by administration of low doses of amphetamine. Low doses of 

psychostimulants, comparable to those used in ADHD patients, preferentially increase 
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catecholamine neurotransmission within the PFC enhancing cognitive functions [89]–[91]. 

Here, DAT dependent alterations of Homer1a in the PFC were normalized by amphetamine. 

Analogously, methylphenidate administration in male SHRs up-regulated Homer1a expression 

in their PFC [25]. Also, Homer1a silencing by RNA interference induced ADHD-like 

behaviors in rats that were reverted by methylphenidate administration, presumably via the up-

regulation of Homer1a expression in the PFC [58]. Moreover, over-expression of Homer1a 

improved attention and cognitive processes in rats [26]. Thus, amphetamine modulation of 

Homer1a expression in the PFC could mirror the molecular adaptations underlying the 

potential beneficial effects of low-dose psychostimulant administration in ADHD patients. 

Considering the role of Homer1a in the regulation of dendritic spine function and synaptic 

plasticity, as well as Homer1a responsivity to dopamine perturbation, these findings could 

represent, at least in part, a molecular correlate of psychostimulant mechanism of action in 

condition of striatal mild hyperdopaminergia. Previous studies on DAT functioning have 

mostly used mice completely lacking DAT (see Supplementary Table 1). While being an 

optimal mouse model for early Parkinson's disease [12], [13], [92], DAT-/- present 

characteristics that might make them less informative for psychiatric pathologies such as 

ADHD, SZ or BD. For example, DAT-/- mice exhibit dwarfism, have growth problems, and 

must be fed with enriched diet to avoid premature death [46] which, by modulating their 

metabolic activity and microbiota, might influence behavior [93]. Furthermore, DAT-/- mice 

have to be obtained from DAT +/- or -/- mothers. DAT genetic modifications change maternal 

behavior [10] which, in turn, could influence behavior of the offspring. In contrast to DAT +/-

, DAT-/- mice show strong PPI deficits [41], [94], [95]. This is again in agreement with PPI 

deficits in Parkinson patients [96] but not with ADHD [40], [79]–[81], [97], [98]. Finally, 

although DAT -/- mice show increased locomotor activity, this phenotype is so extreme that it 

renders problematic any other kind of behavioral assessment. Investigation of DAT +/- mice 

in the current study avoided all these issues. In conclusion, we report that genetic-driven 

hypofunction of DAT alter postnatal developmental trajectories consistent with ADHD-, but 

not SZ- and BD-relevant behavioral and molecular phenotypes. Particularly, taking into 

account different critical developmental periods, genetic mutations and the sex of a subject 

might help to implement early and personalized treatment in order to prevent or limit ADHD 

abnormalities. 
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2.9. Supplementary Tables 

 

2.9.1 Table 1 

 

 
 
Supplementary Table 1. Behavioral tasks in dopamine transporter (DAT) mutant mice. Summary table 

indicating previous studies in DAT mutant mice according to the following acronyms: DAT-/-= DAT knockout 

homozygous; DAT+/- = DAT knockout heterozygous; DAT KD= DAT knockdown; DAT-CI= DAT Cocaine 

Insensitive; DAT-OE= DAT overexpressing. The symbols indicate behavioral changes during the task used: 

↑ signiticant behavioral increase compared to WT mice. 

↓ significant behavioral decrease or impairment compared to WT. 

= no behavioral differences compared to WT. 

/ no data available. 
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2.9.2 Table 2 

 

Supplementary Table 2. Probes used for radioactive in situ hybridization were oligodeoxyribonucleotides 

complementary to bases sequence of target genes mRNAs (MWG Biotech, Firenze). All probes were designed 

from Gen-Bank sequences and checked with BLAST in order to avoid cross-hybridization. 

 

  

2.9.3 Table 3 

  

 
 

Supplementary table 3. General Health assessment for DAT+/+ and DAT +/-: body weight  (g) was checked at 

different developmental time points from adolescence (P28-45) until adulthood (P90-120); Physical 

Abnormalities  and life expectancy were evaluated to detect any physical artifacts that could confound the 

interpretation of phenotypes on more complex behavioral tasks. 

  

Probe cDNA length (bp) cDNA position mRNA Gen-Bank# 

Homer1a 48 1691–1738 Homer1a AF093257.1 

Homer1b 48 1714–1761 Homer1b AB019479.1 

Arc 48 278-325 Arc NM_018790.3  
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2.10. Supplemetary figures 

2.10.1. Supplementary figure 1 

 

 
 

Supplementary Figure 1. Startle reaction amplitude displayed in DAT+/+ and DAT+/- mice without stimuli 

and after presentation of 120 db acoustic startle stimuli  a, b, c, d; in order adolescent male(DAT+/+n=15 

DAT+/-n=18) (a), female(DAT+/+n=26; DAT+/-n=12) (b) mice and adult male(DAT+/+n=21; DAT+/-n=13) 

(c) and female(DAT+/+n=15; DAT+/-n=10) (d) mice. 
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2.10.2. Supplementary figure 2 

 

 
 
Supplementary Figure 2. Time spent in the internal zone displayed by DAT+/+ and DAT +/-: adolescent male 

(DAT+/+n=18; DAT+/-n=19) (a) and female (DAT+/+n=26; DAT+/-n=15)  (b), adult male (DAT+/+n=18; 

DAT+/-n=11) (c) and female(DAT+/+n=16; DAT+/-n=13)  (d) mice. 
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2.10.3. Supplementary figure 3 

 

 
 

Supplementary Figure 3. Time spent exploring two identical objects displayed by DAT+/+ and DAT +/- mice 

during 5 min acquisition session of the temporal order object recognition test. a,b,c,d. Exploration time in seconds 

(sec) during the sample and test phases of the temporal order object recognition test displayed by adolescent male 

(a) and female (b) and adult male (c) and female (d) mice.  
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2.10.4. Supplementary figure 4 

 

 
 

Supplementary Figure 4. Different parameters measured in the novel 5CSRTT Spatial Attentional Resource 

Allocation Task (SARAT) protocol displayed by adult male DAT+/+ (9) and DAT+/- (11) mice. (A) Percentage 

of correct responses; (B) latency (in seconds) to a correct response; (C) percentage of choice accuracy; (D) 

percentage of incorrect responses; (E) percentage of omitted responses; (F) latency (in seconds) to collect a food 

reward; (G) percentage of premature responses; (H) percentage of perseverative responses; (I) number of time out 

responses. 
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2.10.5. Supplementary figure 5 

 

 
 

Supplementary figure 5. Levels of Homer1a mRNA expression (expressed in relative dpm) for each Region of 

Interest (ROI, see Figure 5 for a depiction) displayed by DAT+/+ and +/- mice without any drug treatment. 

Histogram bars illustrate means ± SEM. *p<0,05 versus DAT+/+ at the same ROI. 
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2.10.6. Supplementary figure 6 

 

 
 

Supplementary figure 6. Levels of Homer1b mRNA expression (expressed in relative dpm) for each Region of 

Interest (ROI, see Figure 5 for a depiction) displayed by DAT+/+ and +/- mice without any drug treatment. 

Histogram bars illustrate means ± SEM. *p<0,05 versus DAT+/+ at the same ROI. 
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2.10.7. Supplementary figure 7 

 

 
 
Supplementary figure 7. Levels of Arc mRNA expression (expressed in relative dpm) for each Region of 

Interest (ROI, see Figure 5 for a depiction) displayed by DAT+/+ and +/- mice without any drug treatment. 

Histogram bars illustrate means ± SEM. *p<0,05 versus DAT+/+ at the same ROI. 
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2.10.8. Supplementary figure 8 

 

 
 

Supplementary figure 8. Levels of Homer1a mRNA expression (expressed in relative dpm) for each Region of 

Interest (ROI, see Figure 5 for a depiction) displayed by DAT+/+ and +/- mice subchronically treated with 

amphetamine. Histogram bars illustrate means ± SEM. *p<0,05 versus DAT+/+ at the same ROI. 
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2.10.9. Supplementary figure 9 

 

 
 
Supplementary figure 9. Levels of Homer1b mRNA expression (expressed in relative dpm) for each Region of 

Interest (ROI, see Figure 5 for a depiction) displayed by DAT+/+ and +/- mice subchronically treated with 

amphetamine. Histogram bars illustrate means ± SEM. *p<0,05 versus DAT+/+ at the same ROI. 
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2.10.10. Supplementary figure 

 

 
Supplementary figure 10. Levels of Arc mRNA expression (expressed in relative dpm) for each Region of 

Interest (ROI, see Figure 5 for a depiction) displayed by DAT+/+ and +/- mice subchronically treated with 

amphetamine. Histogram bars illustrate means ± SEM. *p<0,05 versus DAT+/+ at the same ROI. 
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Abstract 

 
 

Adolescence is a critical period for the development of higher-order cognitive functions. Unlike 

in humans, very limited tools are available to assess such cognitive abilities in adolescent 

rodents. We implemented a modified 5-Choice Serial Reaction Time Task (5CSRTT) to 

selectively measure attentiveness, impulsivity, broad monitoring, processing speed and 

distractibility in adolescent mice. 21-day old C57BL/6J mice reliably acquired this task with 

no sex-dependent differences in 10–12 days. A protocol previously used in adults was less 

effective to assess impulsiveness in adolescents, but revealed increased vulnerability in 

females. Next, we distinctively assessed selective, divided and broad monitoring attention 

modeling the human Spatial Attentional Resource Allocation Task (SARAT). Finally, we 

measured susceptibility to distractions using non-predictive cues that selectively disrupted 

attention. These paradigms were also applied to two genetically modified lines: the dopamine 

transporter (DAT) and catechol-O-methyltransferase (COMT) heterozygous. Adolescent DAT 

hypofunctioning mice showed attentional deficits and higher impulsivity as found in adults. In 

contrast to adults, adolescent COMT hypo-functioning mice showed decreased impulsivity and 

attentional resilience to distractors. These paradigms open new avenues to study the 

establishment of higher-order cognitive functions in mice, as well as an effective tool for drug-

testing and genetic screenings focusedon adolescence.  
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3.1. Introduction 
 

Adolescence is a critical transitional period of development from infancy to adulthood in which 

neurochemical and hormonal brain maturational processes extensively shape mammalian 

behaviors [1]–[3]. In particular, higher order cognitive functions drastically develop and mature 

during this time period[4]. Indeed, significant improvements in cognitive functioning are 

evident throughout late childhood and adolescence, with the most dramatic progress occurring 

in the development of attentional control, processing speed, decision making, planning, and 

response inhibition [5]–[7]. The development of attentional control is crucial because this 

ability might strongly influence all other cognitive domains[7], [8]. Attentional control abilities 

start to emerge in childhood [9], [10], but their full maturation peaks during adolescence [11]. 

Moreover, the speed of attentional control, its accuracy, inhibitory control towards irrelevant 

stimuli and the ability to disengage from one focus to another greatly improve throughout 

adolescence. Additionally, it has been observed that adolescents are more prone to risk taking 

behavior and impulsiveness, compared to infants and adults [12], [13]. Notably, adolescents 

with poorer attentional regulation have worse health, earn less money and commit more crimes 

during adulthood [14]. To trace the development of the above mentioned abilities from infancy, 

through adolescence, to adulthood, the serial reaction time task and other similar tasks have 

been extensively used in human studies [15]–[17]. Animal models are a useful tool to identify 

molecular and circuital processes potentially underlying the neurobiological basis of the 

maturational changes observed in human adolescence. The most drastic changes in terms of 

neuronal architecture and function have been identified within the prefrontal cortical areas 

(PFC) [18]–[20]. For example, in the PFC, adolescent rodents show prolonged neuronal 

pruning [21], a drastic maturation of the glutamatergic, dopaminergic and GABAergic systems 

[21]–[23] and a shift in the balance between mesocortical and mesolimbic systems [24]. 

Similarly, human neuroimaging studies suggest that adolescence is characterized by changes 

in patterns of brain activation, including increased activation in ventral PFC regions [25]–[27] 

and exaggerated accumbens activity related to rewarding outcomes compared to children or 

adults [28], [29]. However, despite several elegant studies dissecting the changes in brain 

circuits and molecular footprints in animal models, very limited behavioral tools that reliably 

assess higher order cognitive functions are available for adolescent rodents. Thus, there is still 

a significant gap between the extensive and complex human literature on cognitive 

development and the scarce equivalent tools in rodents. Behavioral paradigms able to 

selectively dissect different forms of attentional control during rodent adolescence could help 
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clarify the dynamic changes creditably observed at the molecular level, drawing better 

parallelisms with human studies. Finally, because adolescence is considered to be a period of 

higher vulnerability and increased risk of onset for several psychiatric disorders [30], 

appropriate cognitive tasks for rodents could help to discern the impact of genetic and 

environmental factors. Here we validated a modified version of the 5-Choice Serial Reaction 

Time Task (5CSRTT) for adolescent mice (Fig. 1a). Available tasks to assess higher-order 

cognitive functions have been designed and tested only in adult mice and rats [31]–[34]. This 

is mostly due to the long periods required for training, which are incompatible with the very 

short duration of rodent adolescence. Similarly to another recently modified 5CSRTT [35], our 

task is acquired by adolescent mice in about 12 days only, in the context of no food restriction 

regimens. Additionally, our task is performed minimizing single-housing, since adolescence is 

considered to be a delicate period for the development of social skills. Moreover, this new task 

did not require any additional cage other than the 5CSRTT apparatus. The novel automatic 

paradigms implemented are effective in differentially measuring multiple attentional functions 

such as selective and divided attention, broad monitoring, vulnerability to distractors, 

impulsivity, speed of processing and motivation in adolescent mice. This was validated in both 

males and females as well as in two different genetically modified mouse lines (i.e. DAT and 

COMT), highlighting substantial divergences in performance between adolescents and adults. 

Combined with the advanced techniques currently available to study the impact of molecular-

, circuital-, cell- and genetic-specific factors in mice, this new behavioral tool will help improve 

our understanding of adolescence. 
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3.2. Materials and Methods 

3.2.1. Mice  

All procedures were approved by the Italian Ministry of Health (permit n. 230/2009-B) and 

local Animal Use Committee and were conducted in accordance with the Guide for the Care 

and Use of Laboratory Animals of the NIH and the European Community Council Directives. 

The time period defined as “adolescence” is individually variable, but it generally corresponds 

to the onset of puberty (from about 9–12 to 15–17 years old in humans; from about 28 to 45 

days old in rodents [1], [36]). We used in-house bred mice within the range of 21–45 days old 

C57BL/6J (a total of 19 males and 16 females), or genetically modified (12 DAT+/+, 12 

DAT+/−, 7 COMT+/+ and 8 COMT+/−) littermates. Every other generation new C57BL/6J 

breeders bought from Charles River were used for the C57BL/6J colony, while the lines of 

genetically modified mice were backcrossed with C57BL/6J for at least 10 generations. The 

COMT and DAT colonies were the same as described in refs 48 and 70. The breeding scheme 

used to obtain the genetically modified mice involved mating a +/− heterozygous male with 

C57BL/6J females, in order to avoid altered maternal behavior. Experimenters were blind to 

genotype during testing. Mice were weaned at 21 or 26 postnatal day (PND), separated for sex 

and housed 2–4 per cage. Mice were housed in a climate-controlled animal facility (22 ± 2 °C) 

and maintained on a 12-hour light/dark cycle (light on: 7 am–7 pm). All behavioral tests were 

conducted during the dark phase of the cycle.  

 

3.2.2. Apparatus 

12 operant chambers (Med Associates, St. Albans, VT, USA), housed in sound-attenuating 

boxes each containing a fan for ventilation and constant background noise were used 

(schematics in Fig. 1a). Two strings of LED lights (one providing warm light and one providing 

cool light) were installed onto the ceiling of each of the sound-attenuating boxes controlled by 

a timer so that the 12-hour light/dark cycle was regulated (9 Lux when on). Each operant 

chamber contains, on 1 wall, 5 nose-poke holes (1 cm in diameter) that were each outfitted 

with a recessed stimulus light. Two additional LED pre-cue lights (red and green) were 

installed above each of the 5 nose-poke holes. An infrared beam transecting the aperture of 

each hole detected nose-pokes. Placed on the wall opposite to the 5-hole array, was a food 

magazine with an infrared beam and a head entry detector, where a pellet dispenser (ENV-203-

14P) delivered food reinforcement in the form of a reward pellet (14 mg 5TUL Purified rodent 

tablet, TestDiet). Such reward pellets are designed to be a complete diet for the animals. A 
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water dispenser into each operant chamber ensured full access to water throughout the 

training/test sessions. A house-light was located 7 cm above the food magazine. The operant 

chambers were connected to a Smart Control Panel and interfaced to a Windows computer 

equipped with a MED-PC IV software (Med Associates, St. Albans, VT, USA).  

 

3.2.3 Experimental design 

 3.2.3.1 Habituation  

We tested different habituation protocols in order to check whether the weaning timing or food 

regimen could influence the task performance. In particular, the weaning was done or at 21 or 

26 PND. From PND 21 to PND 23 mice were daily exposed to 1-min handling session, given 

ten 14-mg pellets of the 5TUL diet and weighted. Training was started or at 24 or 27 PND. 

When in the testing cage, mice received food in the form of pellets (5TUL Purified rodent 

tablet, Test Diet). Water was always ad libitum. With the “day-time food ad libitum” regime, 

mice received their normal food ad libitum when in the regular holding cage. In contrast, with 

the “day-time food restriction” regime, mice were not given access to the food when in their 

holding cage unless losing weight, in which case extra food was provided during the day in 

order to keep the mice at their normal body weight curve of adolescent growth. Such food 

regimens were kept throughout the entire test.  

 

3.2.3.2 Training protocol 

Throughout training and testing, mice were daily placed into the operant chambers in the 

evening between 5 and 5:30 pm and taken out of the chambers the following morning between 

10 and 10:30 am to be placed back into their regular holding cages (grouped house as weaned). 

Each night (between 7 pm and 7 am), mice were presented with three testing sessions semi-

randomly and automatically presented (with a variable delay between sessions of 2–5 hours). 

Mice were weighed every day in the morning immediately after being taken out of the 

apparatus. A free reinforcement pellet was delivered at the start of each testing session. When 

a head entry was detected, the first trial began with an inter-trial interval (ITI). Any nose-poke 

during the ITI was recorded as premature response resulting in a time-out period with the 

house-light turned on. At the end of the time-out, the house-light was turned back off and the 

ITI restarted. Any nose-poke during the time-out reset the time-out period. At the end of the 

ITI, the program randomly selected a stimulus location (1 out of 5 stimulus lights) and turned 

on the corresponding stimulus light. The stimulus light remained on for the stimulus duration 

(SD) value set. The animal had limited hold time (LH) to nose-poke into the lit hole. A nose-
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poke into the lit hole during the LH, was recorded as a correct response, the stimulus light 

turned off if not turned off earlier and a food pellet was delivered in the opposite-wall food 

magazine. A nose-poke into any of the other apertures was recorded as an incorrect response. 

Errors resulted in the initiation of a 5-sec time out (TO) phase, during which the house light 

switched on and all holes were unresponsive. A lack of response within the LH period, was 

deemed as omission and resulted in a time-out and no reward. Premature responses (occurring 

in the ITI before presentation of the trigger light stimulus) also led to a time-out without reward 

and to a resetting of the trial. A perseverative response was scored when mice continued to 

poke in the same response hole when it no longer stood for a correct choice. Time from the 

onset of the light stimulus to the performance of a correct nose-poke response and from the 

correct response to the retrieval of the food reward from the magazine were recorded as correct 

latency and reward latency, respectively. Training consisted of 6 stages. To proceed to each 

subsequent stage, mice were required to reach the criterion for 2 consecutive sessions. Each 

stage was more challenging than the last, with the SD and LH period decreasing while other 

criteria become more demanding (see below). Sessions ended after 30 minutes or 100 trials, 

whichever comes first. Criteria to reach each subsequent stage:  

1. Stage 1 to 2: SD = 20 s; LH = 30 s; ITI = 2 s. 

Criteria: ≥20 correct trials; ≥20% correct. 

2. Stage 2 to 3: SD = 10 s; LH = 30 s; ITI = 2 s. 

Criteria: ≥30 correct trials; ≥30% correct. 

3. Stage 3 to 4: SD = 8 s; LH = 20 s; ITI = 5 s. 

Criteria: ≥40 correct trials; ≥80% accuracy; ≤60% omission. 

4. Stage 4 to 5: SD = 4 s; LH = 10 s; ITI = 5 s. 

Criteria: ≥40 correct trials; ≥80% accuracy; ≤60% omission. 

5. Stage 5 to 6: SD = 2 s; LH = 7 s; ITI = 5 s. 

Criteria: ≥45 correct trials; ≥80% accuracy; ≤60% omission. 

6. Stage 6: SD = 1 s; LH = 7 s; ITI = 5 s 

Upon reaching Stage 6, mice were subjected to an extra day of testing at Stage 6. After that, 

mice were tested with three different test protocols with in between a day of Stage 6 as 

explained below and in the timeline (Fig. 1a). The following measures were recorded to assess 

task performance as previously described [33], [34]. Accuracy: number of correct responses 

divided by sum of number of correct and incorrect responses, multiplied by 100. 

 Correct responses: number of correct responses divided by total number of trials, 

multiplied by 100. 
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 Omissions: number of omissions divided by total number of trials, multiplied by 100. 

 Premature responses: number of premature responses divided by sum of correct, 

incorrect, premature, perseverative and time-out responses (total number of responses), 

multiplied by 100. 

 Perseverative responses: number of perseverative responses divided by total number of 

responses, multiplied by 100. 

 Time-out responses: number of time-out responses divided by total number of 

responses, multiplied by 100.  

 Correct latency: total time from onset of light stimulus to the performance of a correct 

response divided by number of correct responses. 

 Reward latency: total time from the performance of a correct response to the retrieval 

of the food reward from the food magazine divided by number of correct responses. 

 

3.2.3.3 5–7 ITI challenge 

During the 3 sessions of the night, randomly, in a 20% of the trials the ITI was increased from 

5 to 7 seconds. This implicated that mice must withhold an additional 2 seconds both before 

the appearance of the stimulus light and before making their correct choice. The SD and LH 

remain unchanged.  

 

3.2.3.4 Spatial Attentional Resource Allocation Task (SARAT) 

Two versions of the SARAT test were performed: SARAT v1 and v2 (Fig. 2 for a 

representative scheme). In SARAT v1 in each of the 3 sessions during the night, three different 

trial types were randomly presented: Cued 0, as stage 6. Cued 1, as stage 6 but with the addition 

of a red cue light appearing over the correct nose-poke hole from 1 s before to 1 s after the 

normal stage 6 yellow stimulus light. Cued 5, as stage 6 but with the addition of a red cue light 

appearing over each nose poke hole from 1 s before to 1 s after the stage 6 yellow stimulus 

light. Also in the SARAT v2 three different types of trials were  randomly presented. Cued 1 

trial as for SARAT v1. The Cued 3 trial was the same as the standard trial type with the addition 

of 1 red pre-cue light appearing over the correct nose-poke hole and 2 pre-cue red lights 

appearing over the 2 nose-poke holes adjacent the correct nose-poke hole from 1 s prior to 1 s 

after the stimulus light duration. The third type of trial was the Cued 5 trial as for SARAT v1. 

Each trial type was presented an equal number of times in a random fashion throughout each 

session. 
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3.2.3.5 Distractor test 

In this manipulation, two versions of the Distractor test were performed: distractor v1 and v2 

(Fig. 2 for a representative scheme). In v1, two different trial types were randomly presented. 

Cued 1 (80% of the time) like for the SARAT test. The Distractor (Dist) trial (20% of the time) 

was identical to the Cued 1 with the addition of three green cue lights flashing from 1 second 

before to 1 second after the normal stage 6 yellow stimulus light. In Distractor v2, the Cued 0 

trial (presented 80% of the time within a session) was the standard trial type as in Stage 6. The 

Distractor trial occurred 20% of the time and was the same as the Cued 0 trial with the addition 

of a flashing green pre-cue light over the nose-poke holes number 1, 3, and 5. In Distractor v2, 

no predictive pre-cue red lights were used. The green pre-cue light over the nose-poke holes 

were turned on from 1 s prior to 1 s after the stimulus light duration. Any nose-poke that 

occurred while the red/green pre-cue lights were lit, but before the normal stimulus light was 

presented, was considered a premature response and was not rewarded, resulting in a time-out. 

 

3.2.4. Statistical Analysis 

Results are expressed as mean ± standard error of the mean (SEM) throughout. One or two-

way analyses of variance (ANOVAs) with sex (male or female) or genotype (+/+ or +/−) as 

between subjects factors and trial type as the within-subject repeated measure was used to 

analyze each single parameter measured (body weight, % Correct, % Accuracy, % Omission, 

% Time out, % Premature, % Perseverative, Correct latency and Reward latency). Newman-

Keul’s post-hoc test with multiple comparisons corrections was used for making comparisons 

between groups when the overall ANOVA showed statistical significant differences for the 

main factors or interactions. Student’s t-test was used to compare the days needed to reach the 

criteria between males and females, the % Perseverative between DAT+/+ and +/−, the % 

Premature between COMT+/+ and +/−. The accepted value for significance was p < 0.05. All 

statistical analyses were performed using the Statistica version 12 software (Statistica, StatSoft, 

Inc.).  
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3.3. Results 

Adolescent mice readily acquired the modified 5CSRTT. In order to keep the duration of the 

task within the very short period of mice “adolescence” (i.e. ≈25–50 days old), the first 

challenge we had to face was to shorten the long training which is usually required for the 

classical 5CSRTT for adults [37]. The implementation of three testing sessions randomly 

presented during the night phase successfully decreased the time needed to acquire the task. 

Indeed, about 85% of mice were able to acquire the task in an average of about 12 days (Fig. 

1b,c). There was no sex-dependent effect on the number of days needed to reach the final stage 

(F1, 27 = 2.1, p = 0.15; Fig. 1b). Notably, at the end of the training phase, mice were still in the 

middle portion of “adolescence” (≈32 days old). This was achieved maintaining a normal 

adolescent body weight-growing curve (Fig. 1d,e). If ad libitum access to food was kept in the 

home cage during the light phase of the day, mice typically lost weight the mornings that 

followed the first 3 nights of testing (F21, 546 = 3.5, p < 0.0005), but all mice quickly recovered 

gradually growing throughout the test (p < 0.0001; Fig. 1d). In contrast, restricting the access 

to food during the light phase of the day, as is usually done in adults [34- 37], abolished the 

initial morning body weight loss (F21, 546 = 134.070, p < 0.0005; Fig. 1e). Nonetheless, under 

the two food regime conditions, mice performance did not vary in all parameters described 

below, a part from the omissions (66.8 ± 2.0 or 59.7 ± 2.0 for day-time food ad libitum or 

restriction, respectively; p = 0.01). This demonstrates that the three test sessions per night were 

sufficient to keep the normal growing curve of adolescent mice, while ensuring a quick 

acquisition of the task and maintaining a good level of performance. 
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Figure 1. (a) The modified 5CSRTT apparatus: (1) modified 5 nose-poke holes wall, each outfitted with a recessed 

LED stimulus light and 2 additional LED cue lights (red and green) above each of the 5 nose-poke holes. (2) A 

stainless steel grid floor modified for the use in adolescent mice. (3) Food magazine on the wall opposite to the 

5-hole array. (4) Water dispenser. (5) House-light. (6) Food pellet dispenser. (7) Smart Control Panel. (All the 

standard components were obtained from Med Associates, St. Albans, VT, USA). (b) Number of days taken by 

C57BL/6J male and female adolescent mice kept under food ad libitum condition during the light phase of the 

day to reach Stage 6 criteria. (c) Number of days taken by C57BL/6J male adolescent mice kept under food 

restriction condition during the light phase of the day to reach Stage 6 criteria. (d) Morning body weight 

measurements (in grams) of C57BL/6J male and female adolescent mice kept under food ad libitum condition 

during the light phase of the day. Ns = 15 males and 14 females. (e) Morning body weight measurements (in 

grams) of C57BL/6J male adolescent mice kept under food restriction condition during the light phase of the day. 

Ns = 6 males. Values represent mean ± SEM in all Figures. 
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3.3.1. The 5–7 second inter-trial interval (ITI) shift is not effective in triggering premature 

responses in male C57BL/6J adolescent mice.  

Upon reaching the training criteria with the basic stage of the 5CSRTT, adolescent mice were 

exposed to different paradigms with different trial manipulations as summarized in Fig. 2. The 

impulsivity trait in adult rats and mice becomes appreciable in the 5CSRTT when the ITI is 

increased from 5 to 7 seconds [34- 38]. To test whether a similar outcome could be obtained in 

adolescent mice, we tested in our modified 5CSRTT paradigm this same 5–7 ITI challenge 

(Fig. 2: impulsivity paradigm).  

 

 

 

Figure 2. Schematic diagrams of the trials type that were presented to the mice during the three different test 

manipulation paradigms: Impulsivity; SARAT v1 and v2 and Distractor v1 and v2. 
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A significant ITI-by-sex interaction effect was evident for accuracy (F2,54 = 4.94, p = 0.01) and 

premature responses (F2,54 = 6.78, p = 0.002). Post-hoc analyses revealed no significant effects 

for accuracy (p = 0.6; Fig. 3b), but an increase in premature responding in the 7-s trials in 

female adolescent mice (p = 0.008; Fig. 3d), but not in males (p = 0.5; Fig. 3d). As shown in 

Fig. 3, the 5- to 7-s ITI shift did not influence any other parameter including correct responses 

(F2,54 = 0.3, p = 0.7), omissions (F2,54 = 0.1, p = 0.8), perseverative responses (F2,54 = 0.2, p = 

0.8), time-out responses (F2,54 = 1.58, p = 0.2), latencies to correct responses (F2,54 = 0.1, p = 

0.8) and reward retrieval (F2,54 = 0.2, p = 0.8). These results indicate that this manipulation was 

less effective in inducing impulsive-like behaviors in adolescent mice than in adult mice. 

Moreover, similarly to what was reported for adult mice [37], females showed more 

vulnerability to impulsivity challenges than males.  
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Figure 3. Performance displayed by C57Bl/6J male and female adolescent mice during the Impulsivity screening 

at different Inter-trial Interval delays (i.e. ITI of 5 or 7 seconds). Percentage of (a) correct responses (correct 

responses/total number of trials*100), (b) accuracy (correct responses/(correct + incorrect responses)*100),(c)   

(omitted trials/total number of trials*100), (d) premature responses (premature responses/ (correct + incorrect + 

premature + perseverative + time-out responses)*100), (e) perseverative responses (perseverative 

responses/(correct + incorrect + premature + perseverative + time-out responses)*100), (f) timeout responses 

(time-out responses/(correct + incorrect + premature + perseverative + time-out responses)*100), (g) correct 

latency (time in seconds from onset of light stimulus to the performance of a correct response/number of correct 

responses) and (h) reward latency (time in seconds from the performance of a correct response to the retrieval of 

the food reward from the food magazine/number of correct responses). Data from consecutive sessions were 

averaged within each trial type. For clarity, the first depicted trial type represents the performance during the 

previous days of only Cued 0 trials, while the other two depicted trial types were the performance during the day 

of impulsivity screening. Ns = 15 males and 14 females. *p < 0.05 versus trials with a 5-second ITI. *p < 0.05 

versus performance at 5-ITI trials and versus males performance at the 7-ITI trials. 
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3.3.2. Adolescent mice showed faster reaction time with a valid pre-cue, but difficulties 

distributing attention broadly.  

 

The Spatial Attentional Resource Allocation Task (SARAT) has been described as a 

visuospatial attention paradigm in humans able to selectively investigate broad monitoring 

abilities and discriminate dysfunctions in patients with psychiatric disorders such as 

schizophrenia [4], [6], [7], [9], [20], [38]. Notably, visuospatial functioning is impaired in 

children and adolescents with psychiatric disorders such as schizophrenia, ADHD, autism and 

22q11.2DS [39]. Thus, here we implemented a variation of the 5CSRTT modelled after the 

human SARAT protocol (Fig. 2: SARAT v1 paradigm). The number of cued locations defined 

the predictability of the target location. Only 1 cued location (i.e. Cued 1 trials) provided a 

precise information about the target, allowing a narrower and more selective attentional focus. 

Conversely, the Cued 5 trials increased spatial uncertainty and the need to monitor broadly. As 

reported in Fig. 4, a trial effect was evident for correct responses (F3,81 = 23.4, p < 0.0001), 

accuracy (F3,81 = 123.5, p < 0.0001), omissions (F3,81 = 13.13, p < 0.0001), premature responses 

(F3,81= 54.7, p < 0.0001), perseverative responses (F3,81= 18.31, p < 0.0001), time out responses 

(F3,81= 13.54, p < 0.0001), and correct latency (F3,81= 23.54, p < 0.0001). In particular, the Cued 

5 trials produced a consistent decrease in correct responses (p = 0.0001; Fig. 4a) and accuracy 

(p = 0.0001; Fig. 4b). Both Cued 1 and Cued 5 trials decreased omissions (p < 0.05; Fig. 4c), 

increased time out responses (p < 0.005; Fig. 4f), increased premature responses (p < 0.05; Fig. 

4d) and decreased perseverative responses (p < 0.05; Fig. 4e). The Cued 1 trials selectively 

triggered faster correct responses (p = 0.0001 Fig. 4g). No trial effect was evident for reward 

latencies (F3, 81 = 2.53, p = 0.06; Fig. 4h). Moreover, no sex-dependent effects were evident for 

any parameter (p > 0.4). These findings provide evidence that this SARAT paradigm can be 

applied to adolescent C57BL/6J mice. Indeed, as well as that of adolescent mice, the 

performance of healthy humans displays faster reaction times in trials with more precise pre-

cues while attentional control is disrupted in trials where the pre-cues provide invalid 

information about the target [39]–[42]. 
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Figure 4. Performance displayed by C57Bl/6J male and female adolescent mice during the SARAT test version 

1. Percentage of (a) correct responses (correct responses/total number of trials*100), (b) accuracy (correct 

responses/ (correct + incorrect responses)*100), (c) omissions (omitted trials/total number of trials*100), (d) 

premature responses (premature responses/(correct + incorrect + premature + perseverative + time-out 

responses)*100), (e) perseverative responses (perseverative responses/(correct + incorrect + premature + 

perseverative + time-out responses)*100), (f) time-out responses (time-out responses/(correct + incorrect + 

premature + perseverative + timeout responses)*100), (g) correct latency (time in seconds from onset of light 

stimulus to the performance of a correct response/number of correct responses) and (h) reward latency (time in 

seconds from the performance of a correct response to the retrieval of the food reward from the food 

magazine/number of correct responses). Data from consecutive sessions were averaged within each trial type. For 

clarity, the first depicted trial type represents the performance during the previous days of only Cued 0 trials, while 

the other two depicted trial types were the performance during the day of SARAT screening. Ns = 15 males and 

14 females. *p < 0.05 and ***p < 0.0005 versus performance at all other trials type 
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3.3.3. Distracting cues selectively disrupted attentional accuracy in adolescent mice. 

 Adolescents show less control and more distractibility during cognitive tasks that require high 

demand of attention[43]. Moreover, increased distractibility during adolescence has been 

identified as a possible risk factor for psychiatric diseases [44]–[46]. Thus, we developed a 

protocol able to assess the impact of distracting cues on the cognitive performance of 

adolescent mice (Fig. 2: Distractor v1 paradigm). As shown in Fig. 5, a trial effect was evident 

for correct responses (F3,81 = 9.32, p < 0.0001), accuracy (F3,81= 52.59, p < 0.0001), omissions 

(F3,81= 14.68, p < 0.0001), premature responses (F3,81 = 61.39, p < 0.0001), perseverative 

responses (F3,81 = 14.63, p < 0.0001) and correct latencies (F3,81 = 23.54, p < 0.0001). In 

particular, trials with the distracting cues produced a decrease in correct responses (p < 0.0002; 

Fig. 5a) and accuracy (p < 0.0001; Fig. 5b). Both the Cued 1 and distractor trials triggered more 

premature (p < 0.0001; Fig. 5d) and less perseverative responses (p < 0.0001; Fig. 5e). Finally, 

consistent with the SARAT results, in the Cued 1 trials less omissions (p < 0.0001; Fig. 5c) 

and faster correct responses were made (p = 0.0005; Fig. 5g). 

A marked trial-by-sex interaction effect was evident in the time-out responses (F3,81= 14.79, p 

< 0.0001) and reward latency (F3,78 = 4.84, p < 0.05). Adolescent female mice made more time-

out responses (p < 0.05; Fig. 5f) and needed more time to retrieve the food pellet in the 

distractor trials (p < 0.05; Fig. 5h). These findings highlight the ability of the distracting 

manipulation to disrupt attentional control in both male and female adolescent mice. 
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Figure 5. Performance displayed by C57Bl/6J male and female adolescent mice during the Distractor test version 

1. Percentage of (a) correct responses (correct responses/total number of trials*100), (b) accuracy (correct 

responses/(correct + incorrect responses)*100), (c) omissions (omitted trials/total number of trials*100), 

(d) premature responses (premature responses/(correct + incorrect + premature + perseverative + time-out 

responses)*100), (e) perseverative responses (perseverative responses/(correct + incorrect + premature + 

perseverative + time-out responses)*100), (f) time-out responses (time-out responses/(correct + incorrect + 

premature + perseverative + time-out responses)*100), (g) correct latency (time in seconds from onset of light 

stimulus to the performance of a correct response/number of correct responses) and (h) reward latency (time in 

seconds from the performance of a correct response to the retrieval of the food reward from the food magazine/ 

number of correct responses). Data from consecutive sessions were averaged within each trial type. For clarity, 

the first depicted trial type represents the performance during the previous days of only Cued 0 trials, while the 

other two depicted trial types were the performance during the day of Distractor screening. Ns = 15 males and 14 

females. *p < 0.05, **p < 0.05, and ***p < 0.0005 versus performance at all other trials type.  
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3.3.4 The SARAT and Distractor are distinct paradigms assessing selective attentional 

control processes. 

To test whether the SARAT and the Distractor paradigms could grasp distinct aspects of 

attentional control in adolescent mice, we further implemented these two paradigms (Fig. 2: 

SARAT v2 and Distractor v2 paradigms), as done in adult mice [47].  

 

.  

 

Figure 6. Comparison of the performance in key parameters displayed by C57Bl/6J male and female adolescent 

mice between the SARAT version 2 and the Distractor version 2 paradigms. Percentage of (a and f) correct 

responses (correct responses/total number of trials*100), (b and g) accuracy (correct responses/ (correct + 

incorrect responses)*100), (c and h) omissions (omitted trials/total number of trials*100), (d and i) premature 

responses (premature responses/(correct + incorrect + premature + perseverative + time-out responses)*100), (e 

and j) correct latency (time in seconds from onset of light stimulus to the performance of a correct 

response/number of correct responses). Data from consecutive sessions were averaged within each trial type. Ns 

= 6 mice. *p < 0.05, **p < 0.005 and ***p < 0.0005 versus performance at all other trials type. 
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In particular, with the SARAT version 2, we directly linked mice performance to the number 

of presented pre-cues (i.e. 0, 1, 3 or 5) as is reported in human studies[39]–[41]. Instead, in the 

second version of the Distractor, we eliminated the overlapping presence of the distracting 

green lights with the valid red pre-cue light that could generate conflicting information to the 

mice (see Fig. 2 for trials illustrations and comparisons). The SARAT v2 demonstrated that 

cognitive performance is tightly related to the number of valid pre-cues. Indeed, increasing 

spatial uncertainty to three and five pre-cues proportionately decreased the accuracy (F3,15 = 

30.32, p < 0.0001; Fig. 6b), and increased omissions (F3,15 = 16.70, p < 0.0001; Fig. 6c). Instead, 

providing a more precise predicting cue (Cued 1 trials) greatly ameliorated the performance of 

adolescent mice increasing the amount of correct responses (F3,15 = 9.82, p < 0.0008; Fig. 6a), 

decreasing the omissions (F3,15 = 16.70, p < 0.0001; Fig. 6c) and fastening the speed of a given 

correct answer (F3,15 = 3.28, p < 0.05; Fig. 6e). Other parameters were not altered by this 

manipulation. In contrast, the distracting stimuli in the Distractor v2 decreased correct 

responses (t = 7.82; df = 5; p < 0.0006; Fig. 6f) and accuracy (t = −6.11; df = 5; p < 0.001; Fig. 

6g) with a stronger effect compared to Distractor v1 (Fig. 5). Other parameters were not altered 

by this manipulation. Notably, a direct comparison between the SARAT v2 and Distractor v2 

(Fig. 6 first column compared to second) highlighted the distinct pattern of performance 

triggered by the different stimuli. Overall, these data demonstrate that attentional control in 

adolescent mice can be selectively and differentially assessed by the SARAT and Distractor 

paradigms. 

 

3.3.5 Attentional control performance in adolescent DAT and COMT genetically hypo-

functioning mice.  

To accentuate the effectiveness of this novel task for adolescent genetically modified mice, we 

tested two mice lines which we previously assessed in the 5CSRTT at adult age [47]. 

Specifically, we tested dopamine transporter (DAT) and catechol-O-methyltransferase 

(COMT) heterozygous (+/−) knockout mutant male mice, because they are clinically relevant 

mouse models with effects on cognitive functions that recapitulate the effects of similar genetic 

variations in humans [34], [48], [49]. The performance of DAT+/+ and COMT+/+ wild-type 

littermates followed an identical pattern of performance as that of the C57BL/6J mice shown 

in Figs. 1–5. In contrast, compared to +/+ littermates, DAT+/− adolescent mice showed 

reduced accuracy during the training phase of the task (F2,29 = 4.37, p < 0.02; Fig. 7a), reduced 

levels of perseverative responses in the basic cued 0 trials (t = 2,29; df = 17; p < 0.04; Fig. 7b), 
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and increased premature responding following the 5–7 ITI challenge (F4,48 = 3.33, p < 0.01; 

Fig. 7c). 

 

 

 

 

Figure 7. (a–c) Performance displayed by DAT+/+ and DAT+/− adolescent littermates in the modified 5CSRTT 

in key parameters which showed a genotype effect. (a) Percentage of accuracy (correct responses/ (correct + 

incorrect responses)*100) during the training phase of the test. (b) Percentage of perseverative responses 

(perseverative responses/(correct + incorrect + premature + perseverative + time-out responses)*100) during the 

basic phase of the test with only trial type 0 without any extra cue. (c) Percentage of premature responses 

(premature responses/(correct + incorrect + premature + perseverative + timeout responses)*100) during the 5–7 

ITI challenge paradigm. DAT+/+ Ns = 12, DAT+/− Ns = 12. *p < 0.05 and **p < 0.005 versus performance of 

DAT+/+ at the same trial type. (d–f) Performance displayed by COMT+/+ and COMT+/− adolescent littermates 

in the modified 5CSRTT in key parameters which showed a genotype effect. (d) Percentage of premature 

responses (premature responses/ (correct + incorrect + premature + perseverative + time-out responses)*100) 

during the basic phase of the test with only trial type 0 without any extra cue. (e) percentage of correct responses 

(correct responses/total number of trials*100) and (f) accuracy (correct responses/(correct + incorrect 

responses)*100) during the Distractor paradigm. Ns: COMT+/+ = 7 and COMT+/− = 8. *p < 0.05, **p < 0.005 

and ***p < 0.0005 versus performance of COMT+/+ at the same trial type. 
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No other DAT-dependent effects were evident in any of the other parameters in all other 

paradigm manipulations (data not shown). Consistent with data from adult mice [48], these 

results highlight that genetic variations reducing DAT produced attentional and impulsive 

control deficits since adolescence. Notably, despite the 5–7 ITI shift was confirmed to be 

ineffective in wild-type mice, it triggered a consistent increase in premature responding in 

DAT+/− mice, suggesting that this challenge is still effective in vulnerable subjects. Finally, 

an unexpected DAT effect in reducing compulsive-related phenotypes during adolescence was 

detected. Instead, compared to their +/+ littermates, COMT+/− adolescent mice showed 

reduced levels of premature responses in the basic Cued 0 trials (t = 2,31; df = 14; p < 0.05; 

Fig. 7d), and increased correct responses (F2,26 = 8.54, p < 0.005; Fig. 7e) and accuracy (F2,26 

= 3.64, p < 0.05; Fig. 7f) in the distractor trials. No other COMT-dependent effects were evident 

in all other parameters in the other paradigm manipulations (data not shown). In contrast to 

what was found in adult mice [33], these results highlight that genetic variations reducing 

COMT are associated with reduced levels of basal impulsivity, and an attentional control that 

is more resilient to the detrimental effects of distracting cues in adolescence. 
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3.4. Discussion 

The data reported here demonstrate that this modified 5CSRTT can effectively test attentional 

control abilities in adolescent mice. Moreover, different challenges in the test were able to 

detect in adolescent mice: (i) impulsive-like behaviors defined as the ability to refrain to make 

a preponderant response, (ii) the ability to maintain focused or broad attention when different 

pre-cue stimuli were presented (SARAT) and (iii) the attentional vulnerability to distractors. 

While developing the task, preserving the chance to train mice in less than 12 days was crucial 

for the effectiveness of the task itself. Training in the 5CSRTT for adult mice usually requires 

from thirty days up to several months [33], [36], [50]. However, paradigms longer than twenty 

days would exceed the rodents’ short “adolescence” period which is considered to span from 

about 28 to 45 days of age [1], [36]. Notably, we were able to achieve this also maintaining the 

physiological curve of adolescent-growing body size, limiting the amount of stress and 

potential metabolic deficits that could derive from scarce food intake during this developmental 

period. Indeed, most of similar operant-based tasks in adult rodents require a food restriction 

protocol [33], [35], [51]. However, adolescence is a peculiar period for the vulnerability related 

to nutritional factors [22]. For example, an increasing body of literature illustrates a direct 

connection between an appropriate nutrition during adolescence and optimal cognitive and 

brain function [52]–[54]. Therefore, this novel paradigm can assess higher order cognitive 

functions such as attention, compulsivity, impulsivity, distractibility, decision making and 

processing speed in adolescent rodents with very few confounding factors. There is very scarce 

evidence regarding complex cognitive tasks designed for adolescent rodents. For example, 

intra-/extra-dimensional (ID/ED) set-shifting tasks or a two-choice visual discrimination task 

(2-CVDT) have been used in adolescent rats [55], [56]. However, in the ID/ED task, adolescent 

rats were also impaired in basic compound discrimination and in such studies food restriction 

was applied with no regard to the normal body weight growth of this developmental period. 

More recently, an all-day and self-pace testing in a similar 5CSRTT have been tested for 

adolescent mice[57]. In contrast to our setting, the latter task did not reveal any difference in 

performance of adolescents compared to adults, needed an additional cage attached to the 

5CSRTT apparatus, required continuous single-housing, and its testing schedule differed from 

the one used in humans which is restricted in a consecutive and limited time period. This latter 

factor is critical when assessing sustained attention as the self-pace regime greatly reduce the 

attentional load. To note, we are not aware of other similar studies using distracting cues in 

adolescent mice. However, we chose extra visual cues (i.e. green flashing lights) randomly 
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presented within the same session to more directly compare attentional performance with that 

of non-distractor trials, in order to avoid potential habituation processes found with noises [57] 

and confusion with the use of house lights [58] as reported in adults. Finally, as also previously 

discussed [47], we were able to demonstrate clear differences between the SARAT and 

distractor paradigms. Briefly, the combination of tasks used in the current work show that the 

cue lights were not simply treated as target stimulus lights, as only non-predictive cues 

decreased the accuracy and that this was directly proportional to the degree of unpredictability 

(e.g. 3 vs 5 vs distracting cues). The fact that accuracy and the speed of making a correct 

response were both directly and proportionately modulated depending on the number of valid 

pre-cues presented also suggested that the mice used the cues to orient attention in anticipation 

of a target, and that there was a difference in this process between predictive and non-predictive 

cues. Moreover, our data demonstrate that faster reaction time for correct responses in cued 

trials were not a reflection of trials with responses initiated by the cue and executed after the 

target light came on. Indeed, the speed of correct responses was proportional on the number of 

cues presented (Cued 1 > Cued 3 > Cued 0 and 5 trials), and distracting cues did not trigger 

faster reaction responses compared to Cued 0 trials. Overall, all the characteristics of our 

modified automatic task makes it well suitable to dissect different attentional control processes 

in adolescent rodents also for large genetic or pharmacological screenings. This could be 

relevant in the context of testing early intervention/pharmacological strategies while also 

understanding their mechanisms. Indeed, early intervention on cognitive deficits could 

potentially be more effective in mitigating or reversing pathological trajectories and ameliorate 

the quality of life of individuals at risk for psychiatric disorders [59]. With three different 

variations, we were able to selectively measure in adolescent mice subtypes of attentional 

control such as impulsivity, focused or broad attentiveness, processing speed and distractibility. 

In the “impulsivity” paradigm, adolescent female mice, but not males, increased the premature 

responses impulsivity index when the ITIs were changed from 5 to 7 seconds. Previous 

literature using delay-discounting tests found that both male and female adolescent rats 

exhibited greater levels of impulsive-like behaviors compared to adults [60]. However, other 

evidence accounted for a substantial impact of hormones in producing sex-dependent 

differences in impulsive actions in rodents[61]. Moreover, it has been demonstrated that in 

delay-discounting tasks under mild food restriction, adult female mice are more impulsive than 

males63. Premature responses are thought to reflect a failure of inhibitory response control that 

occurs when preparatory response mechanisms are disrupted [62]. Thus, the 5-to-7 ITI shift in 

adolescent mice might be applied to assess sex-dependent vulnerability to this kind of 
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impulsive control. Notably, our protocol offers another option to study impulsive control in 

mice. In particular, in contrast with the 5–7 ITI shift, the pre-cued trials of the SARAT protocol 

triggered a consistent increase in premature responding in both male and female mice. This 

kind of motor impulsivity is qualitatively different from the one triggered by the increase in 

ITI. Indeed, the pre-cue visual stimuli put forth a pre-potent response, which the mice must 

withhold from making in order to receive a food reward and then make a correct response. 

Thus, this measure of motoric impulsivity is potentially analogous to “false alarm” errors made 

in corresponding human tasks. Both these manipulations might constitute a valuable tool to 

assess impulsive behaviors in adolescent mice. In the SARAT paradigm, adolescent mice 

showed a decreased accuracy in the trials where all the red cue light were turned on (Cued 5), 

while faster speed of processing for target cues were evident in trials with more precise pre-

cues (Cued 1). This pattern of performance was very similar to that of human healthy subjects 

tested in the original SARAT, where faster reaction times are evident in trials with more precise 

pre-cues, while cognitive performance is disrupted in trials where the pre-cues provide invalid 

information about the target [39]–[41]. Thus, this  SARAT paradigm might be useful to 

distinguish deficits in selective attention from deficits in broad monitoring in adolescent mice 

with good translational validity concerning human studies. In particular, this could be relevant 

for schizophrenia, as patients demonstrate more selective attentional deficits when broad focus 

of attention is required, rather than when attention must be focused narrowly [41]. To date, no 

study specifically assessed such kind of abilities in adolescent mice, making this an additional 

tool in preclinical investigations designed to specifically manipulate spatial selective attention. 

In the Distractor test, we observed a selective disruption of attentional accuracy and increased 

time out responses in the distractor trials, where non-predictive flashing lights were turned on. 

Adolescence is considered to be a time during which many aspects of behavior including 

planning, multitasking and the ability to resist distractions, are profoundly shaped [63]. For 

instance, teenagers have more difficulties to concentrate and are easily distracted [43]. The 

maturation in the resistance to distractors has been associated with a decreased activation in 

the superior frontal sulcus between childhood and adulthood [64], possibly linked with 

developmental changes in grey matter architecture and long-range connections [65]. In 

particular, it seems like cortical brain region fully developed in humans up to the late twenties 

or even the early thirties, which is much later than previously thought [43]. Thus, in adolescent 

mice as well as in humans, it would be important to unravel the mechanisms of cognitive 

vulnerability to distractors, and our modified 5CSRTT might constitute a valid tool in this 

respect. A comparison between adolescents’ and adults’ performance in an equivalent task 
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might highlight interesting developmental peculiarities. Overall, the performance of adolescent 

mice here described was similar to that of adult mice tested in an identical 5CSRTT47, with 

few important exceptions. In particular, the sex-dependent differences in adults showing better 

performances in females compared to males [47] were not evident in adolescent mice. This 

might reflect long-lasting effects of the sexual hormonal changes that start to appear during 

puberty [66]–[68], and that are thought to play a critical role in the adult maturation of the 

cortex and complex cognitive behaviors [67]–[69]. In line with this and again in contrast with 

responses in adults [33], [70], we did not find any effect in C57BL6 male mice in premature 

responses when the ITIs were changed from 5 to 7 seconds. Furthermore, adolescent COMT+/− 

males showed decreased levels of premature responses (Fig. 7), while adult COMT+/− have 

been reported to have increased levels of premature responses [33], even if a direct comparison 

with the same 5CSRTT version is still missing. However, these effects parallel recent findings 

unraveling a divergent dopaminergic maturation of the PFC from adolescence to adulthood 

between males and females [67]. Moreover, these findings raise the intriguing possibility that 

the COMT-dependent impact on stress vulnerability in terms of cognitive responses (e.g. 

impulsivity as in ref. 34) might develop in male subjects only after adolescence. This adds to 

previous evidence reporting that COMT-by-sex interacting effects are noticeable only between 

puberty and menopause [67], [71], [72] and with data reporting a different maturation of the 

dopaminergic system in males compared to females [67], [71], [73], [74]. Notably, the SARAT 

paradigm with only one predictive cue produced attentional advantages in adolescent mice that 

were not evident in adults. Indeed, the increase in correct responses and the decreased 

omissions seen in adolescents (Fig. 6) were not apparent in adults [47], indicating an higher 

attentiveness to extra-cues in adolescents. Other developmental differences in the 5CSRTT 

performance were then evident in the distractor paradigm, as distractor trials triggered larger 

deleterious effects in adolescents than in adults. Indeed, additional parameters (i.e. premature, 

perseverative and time out responses) were altered in adolescent mice other than just accuracy 

and correct choices as in adults [47], and accuracy level was diminished to ≈40% in adolescents 

in contrast with ≈70% in adults. This might be related to human findings reporting higher 

vulnerability to distraction in adolescent subjects compared to adults [45]. Finally, in line with 

human findings [67], [75][70], [78], the better performance of COMT+/− in the distractor trials 

suggests that this manipulation might be a more sensible tool in order to highlight the cognitive 

advantages of COMT genetic reduction in males that were difficult to assess with classical 

5CSRTT34. Future studies might want to address trial-by-trial analyses in order to address 

whether adolescents might emotionally respond differently from adults following correct or 
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incorrect responses.  In conclusion, our results demonstrate that even within the brief duration 

of rodent adolescence, it is possible to assess different attentional control facets by a modified 

5CSRTT paradigm. Indeed, the adopted manipulations allowed to assess different subtypes of 

attentional control including impulsivity, focused or broad attentiveness, processing speed and 

distractibility. These features suggest that this task could be a useful tool with potential 

translational validity concerning human studies, applicable to genetic and pharmacological 

studies in mouse models relevant to cognitive abnormalities and psychiatric disorders. 
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Abstract 

 
The prefrontal cortex (PFC) is a crucial hub for the flexible modulation of recent memories 

(executive functions) as well as for the stable organization of remote memories. Dopamine in 

the PFC is implicated in both these processes and genetic variants affecting its 

neurotransmission might control the unique balance between cognitive stability and flexibility 

present in each individual. 

Functional genetic variants in the catechol-O-methyltransferase (COMT) gene result in a 

different catabolism of dopamine in the PFC. However, despite the established role played by 

COMT genetic variation in executive functions, its impact on remote memory formation and 

recall is still poorly explored. Here we report that transgenic mice overexpressing the human 

COMT-Val gene (COMT-Val-tg) present exaggerated remote memories (450 days) while 

having unaltered recent memories (24 h).  
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COMT selectively and reversibly modulated the recall of remote memories as silencing COMT 

Val overexpression starting from 30 days after the initial aversive conditioning normalized 

remote memories. COMT genetic over activity produced a selective overdrive of the 

endocannabinoid system within the PFC, but not in the striatum and hippocampus, which was 

associated with enhanced remote memories. Indeed, acute pharmacological blockade of CB1 

receptors was sufficient to rescue the altered remote memory recall in COMT-Val-tg mice and 

increased PFC dopamine levels. These results demonstrate that COMT genetic variations 

modulate the retrieval of remote memories through the dysregulation of the endocannabinoid 

system in the PFC.  
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4.1. Introduction 

The everyday activities of each individual are characterized by the dichotomy between the 

formation/manipulation of new memories (recent memories and executive functions) and the 

recall of remote memories. Previous studies have demonstrated that freshly formed memories 

are mostly dependent on hippocampal formation, whereas remote memories are mainly 

integrated by cortical networks converging into the prefrontal cortex (PFC) [1]–[3]. The genetic 

footprint of each individual can greatly affect these cognitive functions [4]–[6]. However, how 

selective genetic variations might impact the dichotomy between recent versus remote 

memories is not yet clear.  

Catecholamines within the PFC have an integrative role in the flexible updating of novel 

information (executive functions) as well as in the formation of stable remote memories [7], 

[8]. Genetic variations leading to individual differences in the enzymatic activity of the 

catechol-O-methyltransferase (COMT) produce predominant changes of cortical dopamine, 

but not norepinephrine metabolism [8]–[12]. In particular, because more than half of the 

dopamine flux in the PFC is accounted by COMT activity, this enzyme has a privileged 

position in relationship to PFC-dependent cognitive functions [9], [10], [13].  

In agreement, functional COMT genetic variations in both humans and rodents [4], [11], [14] 

have been consistently reported to modulate PFC-dependent cognition such as working 

memory and executive functions [11], [15], [16].  

Furthermore, COMT genetic variations have been associated with mental disorders 

characterized by specific alterations in cognitive performance and physiology such as 

schizophrenia [17], panic disorder [18] and posttraumatic stress disorder [19].  Despite this, the 

impact of COMT genetic variations on remote memory formation and recall is still poorly 

understood. Based on the established role played by COMT genetics in the modulation of PFC-

dependent cognitive processes, here we hypothesized that functional COMT genetic variations 

might also influence remote memories sparing short-term, hippocampus dependent memories. 

In particular, we used a humanized conditional mouse expressing the human COMT-Val gene 

(COMT-Val-tg) that simulates human genetic conditions resulting in relative increased COMT 

enzymatic activity during the life span. COMT-Val-tg mice recapitulate salient aspects of 

human behaviors associated with COMT polymorphisms and establish the biological validity 

of these associations. That is, a modest increase of COMT activity disrupts executive functions 

while reducing the reactions from anxiety-like states and stressful situations [11]. The 

endocannabinoid system has a central role in formation and extinction of long-lasting 
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memories [20]–[22] and clinical studies have suggested an interaction of this system with the 

human COMT Val genotype [23]. However, the impact of the COMT-Val genotype on this 

signaling complex and its potential link with memory functions is still unknown. Thus, 

transgenic (tg) mice overexpressing the human COMT-Val-allele provide an unequivocal 

model to evaluate the role of genetically determined increases in COMT and the underlying 

biology of the observed behavioral abnormalities.  
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4.2. Materials and Methods 

4.2.1. Mice 

All procedures were approved by the National Institute of Mental Health Animal Care and by 

the Italian Ministry of Health (permit no. 230/2009-B) and Animal Use Committee in 

accordance with the Guide for the Care and Use of Laboratory Animals of the National 

Institutes of Health and the European Community Council Directives. COMT-Val-tg mice 

were mated with control littermates. Construction and development of human COMTVal-tg 

mice has been previously described [11].  Mice were identified by PCR analysis of tail DNA. 

Mice were group housed (two to four per cage) in a climate-controlled animal facility (22 ± 2 

°C) and maintained on a 12 h light/dark cycle with ad libitum access to food and water. Testing 

was conducted in male mice, 3 to 6 months old, during the light phase. Distinct cohorts of naive 

mice were used for each experiment. Experiments were blind to the genotype during behavioral 

testing. Mice were handled by the experimenter on alternative days during the week preceding 

the tests. At least 1 h before any test manipulation, mice were habituated in a room adjacent to 

the testing room. 

 

4.2.2 Behavior 

4.2.2.1 Fear conditioning.  

Fear conditioning took place in a standard conditioning box (TSE Systems, Bad Homburg, 

Germany). The conditioned stimulus (CS) was a tone (4 kHz, 80 dB sound pressure level, 30 

s) and the unconditioned stimulus (US) was a scrambled shock (0.7 mA) delivered through the 

grid floor that terminated simultaneously with the tone (2 s). On experimental day 1, mice were 

placed in the training chamber and after a 2 min habituation period (baseline), three 

conditioning trials were presented (tones paired with shock) with an intertrial interval of 90 s. 

Then, the animals were returned to their home cages ∼ 2 min after the last CS–US pairing. 

After 24 h, mice were retested in the same chamber for 5 min without tone or foot shock (recent 

contextual memory). At 50 days following training, the mice were returned to the same 

conditioning chamber for contextual fear memory test (remote contextual memory). At 1 h 

after the recent and remote contextual memory recall, mice were placed in a new chamber and 

after 2 min of habituation (baseline) exposed to the conditioning tone for 2 min (cue) to test for 

recent and remote cued memory. Then, the animals were returned to their home cages after 2 

min (post cue). 
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4.2.2.2. Fear extinction.  

Mice were tested for fear extinction in the apparatus previously described. On day 1, animals 

were placed in the conditioning chamber and after 90 s without tone or shock, received 5 

habituation trials (tone alone, 4 kHz, 80 dB sound pressure level, 30 s), immediately followed 

by fear conditioning consisting of 5 presentations of the tone that coterminated with foot shocks 

(2 s, 0.7 mA). Approximately 90 s after the last CS–US pairing, mice were replaced in their 

home cages. After 2 h, mice were returned to the same conditioning chamber and were given 

extinction training consisting of 20 tone-alone trials. The extinction training lasted ~ 60 min. 

The chamber was cleaned with 70% ethanol and wiped dry before running the first mouse and 

after each animal completed the test. Behavior during fear conditioning, fear extinction, recent 

and remote recall of contextual and cued fear memories was recorded with digital video 

cameras for offline scoring of freezing with stopwatches. The percent time spent freezing 

during each trial (the absence of all movements except for respiration) was measured by an 

observer blind with respect to group assignment. 

 

4.2.2.3 Conditioned place aversion.  

The conditioned place aversion (CPA) was performed in a rectangular Plexiglas box (length, 

42 cm; width, 21 cm; height, 21 cm) divided by a central partition into two chambers of equal 

size (21 × 21 × 21 cm). One compartment had black walls and a smooth Plexiglas floor, 

whereas the other one had vertical black and white striped (2 cm) walls and a slightly rough 

floor. During the test sessions, an aperture (4 × 4 cm) in the central partition allowed the mice 

to enter both sides of the apparatus, whereas during the conditioning sessions the individual 

compartments were closed off from each other. To measure time spent in each compartment a 

video tracking system (ANYMAZE) was used. The CPA experiment lasted 52 days and 

consisted of three phases: preconditioning test, conditioning phase and post conditioning test. 

On day 0, each mouse was allowed to freely explore the entire CPA apparatus for 20 min, and 

time spent in each of the two compartments was measured (preconditioning test). Within each 

genotype, mice were divided in two groups with similar preconditioning time values in the 

preferred and non-preferred compartment of the CPA apparatus. Conditioning sessions took 

place on days [1], [3], [24]. During the morning session mice were injected with vehicle (Veh) 

and then  confined in the non- preferred compartment of CPA apparatus for 30 min a day. After 

4 h, mice were treated with naloxone (5 mg kg− 1) and confined for 30 min a day into their 

preferred compartment, as determined on preconditioning test. To test recent memory, post 

conditioning test was performed on day 4 in the same condition of preconditioning test. On day 
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52, mice were treated with Veh or AM251 (1 mg kg− 1) and tested again on postconditioning 

test. For each mouse, a place aversion score was calculated as the post conditioning time minus 

the preconditioning time (seconds) spent in the conditioning compartment of the CPA 

apparatus.   

 

4.2.2.4. Drugs  

Doxycycline hyclate (Sigma Aldrich, Dorset, UK) was freshly prepared every day and 

administered in drinking water (100 μg ml− 1) for 20 days before testing remote contextual 

fear memory. Cannabinoid receptor-1 (CB1R) antagonist AM251 (1-(2,4-Dichlorophenyl)-5-

(4-iodophenyl)-4-methyl-N-1- piperidinyl-1H-pyrazole-3-carboxamide, 1 or 2 mg kg− 1 

intraperitoneal [25]; Sigma Aldrich, UK) was first dissolved in polyethylene glycol 400 (2:8), 

then made up to volume with physiological saline (0.9% NaCl) and injected in a volume of 10 

ml kg− 1 of body weight. Control mice were injected with the same volume of saline.  

 

4.2.3. In vivo microdialysis 

Concentric dialysis probe, with a dialysis portion of 2.0 mm, were prepared as previously 

described [26]. Mice were anesthetized with isoflurane and then placed in a stereotaxic frame 

(Kopf Instruments, Tujunga, CA, USA) for the probe implantation. The probe was implanted 

into the medial PFC (mPFC), according to the Paxinos and Franklin mouse brain atlas [27] 

(AP: ± 1.9; ML: ± 0.1; DV:-3.0 from Bregma). Microdialysis sessions started 24 h after the 

surgical procedures. Probes were perfused with Ringer’s solution (147.0 mM NaCl, 2.2 mM 

CaCl2 and 4.0 mM KCl) at a constant flow rate of 1 μl min− 1. Collection of basal dialysate 

samples (20 μl) started 30 min after. To measure dopamine release, after 60 min of basal 

sampling, we injected amphetamine (1.5 mg kg− 1, intraperitoneal) followed by another 2 h of 

sampling collection. Dialysate samples (20 μl) were injected into high-performance liquid 

chromatography equipped with a reverse phase column (C8 3.5 μm, Waters, Milford, MA, 

USA) and dopamine was quantified by a coulometric detector (ESA, Coulochem II, Bedford, 

MA, USA). At the end of the experiment, mice were anesthetized with isoflurane and killed. 

Brains were removed and mPFC serial coronal sections were prepared with a vibratome to 

identify the location of the probes. All measurements were performed blind to the treatment 

and the genotype of the animals. 
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4.2.4. Lipid extraction 

Tissue fatty acyl ester levels were measured as previously described [28]. Briefly, prefrontal 

cortex was weighed (5–7 mg) and homogenized in methanol (1 ml) containing [2H4]-AEA, 

[2H4]-OEA, [2H4]-PEA and [2H8]-2-AG as internal standards (Cayman Chemical, Ann 

Arbor, MI, USA). Lipids were extracted with chloroform (2 ml) and washed with water (1 ml). 

After centrifugation (2500 × g, 15 min, 4 °C), organic phases were collected and dried under 

nitrogen. The organic extracts were fractionated by silica gel column chromatography. 

Anandamide (AEA), oleoylethanolamide (OEA), palmitylethanolamide (PEA) and 2-

arachidonoylglycerol (2-AG) were eluted with chloroform/methanol (9:1, v/v). Organic phases 

were evaporated under nitrogen and reconstituted in methanol/chloroform (9:1, v/v). Liquid 

chromatography/mass spectrometry (LC/MS) analyses were conducted on a Xevo TQ UPLC-

MS/MS system (Waters) equipped with a reversed-phase BEH C18 column (Waters), using a 

linear gradient of acetonitrile in water. Quantifications were performed monitoring the 

following transitions (parent m/z-.daughter m/z, collision energy eV): AEA 348-.62, 20; 

[2H4]- AEA 352-.66, 20; OEA 326-.62, 20; [2H4]-OEA 330-.66, 20; PEA 300-.62, 20; [2H4]-

PEA 304-.66, 20; 2-AG 379-.287, 15; [2H8]-2-AG 387-.295, 15. Analyte peak areas were 

compared with a standard calibration curve (0.1 nM to 1 mM). 

 

4.2.5. Western blot 

For western blot analyses, mice were killed by cervical dislocation and brains were quickly 

removed. The cerebral areas of interest (PFC, hippocampus and striatum) were obtained by 

regional dissection on ice, immediately frozen in liquid nitrogen and stored at − 80 °C until 

processing. The experiments were carried out as previously reported [29]. Briefly, equal 

amounts of protein lysates (30 μg) were run on a 10% SDS–polyacrylamide gel. The proteins 

were then transferred to polyvinylidene difluoride membranes and blocked for 2 h at room 

temperature before incubation overnight at 4 °C with the primary antibody. The following 

primary antibodies were used: rabbit polyclonal anti-CB1 (1:1000; Cayman Chemical), rabbit 

polyclonal anti-NAPE-PLD (1:3000; Cayman Chemical), rabbit polyclonal anti-FAAH 

(1:2000; Cayman Chemical), goat polyclonal anti-DAGL-α (1:1000; Abcam, Cambridge, UK), 

rabbit polyclonal anti-MAGL (1:1000; Cayman Chemical) and rabbit polyclonal anti-human 

COMT (1:5000; Chemicon International, Temecula, CA, USA). Bound antibodies were 

detected with horseradish peroxidase-conjugated secondary anti-rabbit or anti-goat antibody 

(1:2000–1:5000; Chemicon International). For normalization, the blots were stripped with 

Restore Western Blot Stripping Buffer (Thermo Scientific, Rockford, IL, USA) and reblotted 
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with mouse anti-β-actin monoclonal antibody (1:10 000; Sigma Aldrich, Milan, Italy) 

overnight at 4 °C. Bound antibodies were visualized using Clarity Western ECL Substrate (Bio-

Rad Laboratories, Hercules, CA, USA) and bands were detected with a GBOX XT camera 

(Syngene, Cambridge, UK). Optical density of the bands was quantified using Image Pro Plus 

7.0 software (MediaCybernetics, Bethesda, MD, USA). The density of the bands was 

normalized to β-actin and expressed as percentage of controls. 

 

4.2.6. Immunofluorescence 

Mice were deeply anesthetized with a 400 mg kg− 1 dose of chloral hydrate and then perfused 

with 4% paraformaldehyde. Following extraction, brains were stored at 4 °C in 4% 

paraformaldehyde for 24 h and cryoprotected in 30% sucrose for a minimum of 24 h. Brains 

were included in O.C.T. Compound (Sakura, Alpheen aan den Rijn, The Netherlands), cut in 

40 μm-thick sections using a cryostat and stored at − 20 °C in anti-freezing solution (30% 

glycerol, 30% ethylene glycol and 0.02% sodium azide in phosphate-buffered saline (PBS)). 

For CB1 receptor, fatty acid amide hydrolase (FAAH) and N-acylphosphatidyl-lethanolamine 

phospholipase D (NAPE-PLD) immunofluorescence, free-floating sections were incubated in 

sodium citrate 50 mM, pH 9, for 10 min at 90 °C for antigen retrieval. After blocking 

peroxidase activity with 3% H2O2 in PBS for 20 min, sections were incubated in blocking 

buffer (10% normal goat serum, 0.3% Triton X-100 in PBS) for 3 h at room temperature and 

then with rabbit polyclonal anti-CB1 antibody (1:200, Cayman Chemical), rabbit polyclonal 

anti-FAAH antibody (1:500, Cayman Chemical) or rabbit polyclonal anti-NAPE-PLD 

antibody (1:300, Cayman Chemical) in blocking solution overnight at 4 °C. On the second day, 

the sections were washed with PBS-Tryton 0.5% and signal was revealed by incubating 

sections with Alexa Fluor 594 goat anti-rabbit antibody (1:2000; Invitrogen, Eugene, OR, 

USA) for 2 h at 4 °C. After several washes in PBS, sections were mounted onto Superfrost 

slides, dehydrated and coverslipped with ProLong Gold antifade reagent with 4',6-diamidino-

2-phenylindole (Invitrogen). For double immunofluorescence, free-floating sections were 

processed for antigen retrieval, preincubated in blocking solution for 2 h at room temperature 

and then incubated with goat polyclonal anti-CB1 antibody (1:500; Santa Cruz Biotechnology, 

Santa Cruz, CA, USA) in blocking solution overnight at 4 °C. On the second day, the sections 

were washed with PBSTryton 0.5% and incubated with Alexa Fluor 488 donkey anti-goat 

antibody (1:2000; Invitrogen) for 2 h at 4 °C and then with rabbit polyclonal anti-VGLUT 

(1:1000; Abcam), vesicular GABA transporter (1:1000; Novus Biologicals, Littleton, CO, 

USA) or dopamine transporter (1:500; Sigma Aldrich, Italy) in blocking solution overnight at 
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4 °C. After washing, signal was revealed by incubating sections with Alexa Fluor 594 goat 

anti-rabbit antibody (1:2000; Invitrogen) for 2 h at 4 °C. After several washes in PBS, sections 

were mounted onto Superfrost slides, dehydrated and coverslipped with ProLong Gold antifade 

reagent with 4',6-diamidino-2-phenylindole (Invitrogen). Digital Images were captured using 

Retiga R1 CCD camera (QImaging, Surrey, BC, Canada) attached to an Olympus BX51 

(Tokyo, Japan). polarizing/light microscope. Ocular imaging software (QImaging) was used to 

import images from the camera. Images were acquired by first delineating the brain sections 

and the regions of interest at low magnification (×4 objective) and the region of interest outlines 

were further refined under a × 40 objective. Three sections per mouse were analyzed. Digital 

images were adjusted only for contrast and brightness and digitally merged to visualize the 

colocalization of signals using Adobe Photoshop (5.0, San Jose, CA, USA). JACoP plugin 

embedded in the ImageJ software (NIH, Bethesda, MD, USA) was used to calculate 

colocalization statistics [30]. Merged color images were separated into individual red, green 

and blue components using the RGB split feature, and Pearson’s coefficient, overlap coefficient 

and Mander’s coefficients were calculated as quantitative measures of colocalization.  

 

4.2.7. Statistical analysis 

Results are expressed as mean ± s.e.m. throughout. No statistical methods were used to 

predetermine sample size. No exclusion criteria were used and all animals and samples tested 

were included in the analysis. All behavioral manipulations performed on each animal were 

determined randomly. All randomization was performed by an experimenter, and no explicit 

randomization algorithm was used. Two-way analysis of variance with genotype (controls and 

COMT-Val-tg) as the between-subject factor and time as the within-subject repeated measure 

factor was used to examine the percentage of freezing during the repeated exposure to the 

context environment, and during the habituation, conditioning, extinction and recall phases of 

the fear extinction paradigm. As normality tests have little power to detect non-Gaussian 

distributions with small data sets, we did not explicitly test for the normality of our data sets. 

For the analysis of lipids (AEA, OEA, PEA and 2-AG) and of enzymes responsible for 

synthesis and degradation/reuptake of the endocannabinoids (NAPE-PLD, diacylglycerol 

lipase-α (DAGL-α), FAAH, monoacylglycerol lipase (MAGL)) we found similar results in 

naive animals and in mice after remote memory recall, and thus data were pooled together. 

Data were expressed as fold changes compared with control Veh. The post hoc analyses for 

individual group comparisons employed Newman–Keuls analyses. The accepted value for 

significance was P⩽0.05. Result sheets of statistical tests detailing (wherever applicable) 
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estimates of variance within each group, confidence intervals and comparison of variances 

across groups are available on request. 
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4.3.Results 

4.3.1 Increased remote fear memory in COMT Val-tg mice  

To study the effect of genetically dependent increase in COMT enzymatic activity on remote 

memories, we tested COMT-Val-tg mice in a Pavlovian fear conditioning. This paradigm 

combines the advantages of the formation of long-lasting memories following a single training 

experience with a well-known knowledge of timedependent brain circuits involved [24]. Re-

exposure to the same context.Contextual fear memories have been shown to strongly depend 

on hippocampus functioning up to 28 days after training [31]. Thus, to tackle remote memories 

that are critically dependent on the functioning of the PFC [32], [33], we re-exposed the mice 

to the conditioning context again after 50 days. In contrast to normal recent memory, COMT-

Val-tg mice showed higher expression of fear during the remote memory recall compared with 

their control littermates (Figure 1a). Indeed, while control mice showed a normal weakening 

of freezing behavior, COMT-Val-tg mice showed the same levels of freezing at 24 h and 50 

days after conditioning. Fear reaction in both genotypes groups was context specific. Indeed, 

when we exposed the mice to a modified context, very little COMT-independent freezing 

behavior was observed 24 h and 50 days post conditioning (Figure 1b). Similarly, COMT 

independent reactions to cued fear memory were evident in a novel modified context 

(Supplementary Figures 1a and b). These results indicate that genetic variations resulting in 

increased COMT enzymatic activity were associated with a more stable recall of contextual 

remote memory. To rule out the possibility that COMT over activity might alter the ability to 

extinguish conditioned fear memories, we next tested fear extinction in COMT-Val-tg and 

control mice. During training, conditioned responses increased gradually in control and 

COMT-Val-tg mice (Figure 1c), demonstrating a rapid acquisition of conditioned freezing to 

the tone independent on the COMT genotype. Similarly, a classical extinction procedure [34] 

demonstrated that both control and COMT- Val-tg ce were able to rapidly extinguish the 

conditioned freezing in a COMT-independent way (Figure 1d). Thus, genetic variations 

increasing COMT do not affect the ability to extinguish fear memories. Silencing COMT 

overexpression during late consolidation/recall re-established a normal expression of remote 

memories. To determine whether the enhanced expression of remote memories in COMT-Val-

tg mice was determined by concurrent increase of COMT activity or to chronic and/or 

developmental effects, we silenced the expression of the COMT transgene. Administration of 

doxycycline for 20 days, in drinking water, turned off the tetracycline-regulated COMT 

transgene expression (Figure 1e). Moreover, silencing of the COMT transgene also restored 
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normal levels of extracellular dopamine in the mPFC that were reduced in COMT-Val-tg mice 

(Figure 1f). In agreement with previous literature [9], [12], [11], [35] norepinephrine tissue 

content was unaffected in COMT-Val-tg mice compared with controls (Supplementary Figures 

2b and c).  

 

 

Figure 1. Increased remote memories in catechol-O-methyltransferase (COMT) Val-transgenic mice. (a) 

Behavioral paradigm: after 2 min of habituation in the conditioning chamber (Baseline), animals were presented 

with three tone–shock pairings. Mice were then tested for recent and remote memory in the same conditioning 

context respectively after 24 h and 50 days. Increased freezing behavior of COMT-Val tg mice (n=8) on the 

remote memory recall compared with control mice (n=11; two-way analysis of variance (ANOVA), F(2, 34)= 3.54, 

p< 0.05), but not on recent memory (p= 0.64). No difference between controls and COMT-Val-tg mice on baseline 

freezing behavior (p =0.99). *p < 0.05 vs control at same stage. (b) Freezing reaction of COMT-Val-tg (n=8) and 

wild-type control mice (n=11) during exposure to a modified context 24 h and 50 days after conditioning. Fear 

reaction to novel context after 24 h was negligible in both groups. At 50 days after the conditioning training, 

COMT-Val-tg and control mice showed relatively little level of freezing. No differences between groups (two-

way ANOVA: F(1, 17)= 0.00, p= 0.92). (c) Freezing behavior observed during fear conditioning and (d) extinction 

in COMT-Val-tg (n=6) and their control littermates (n=10). No COMT-dependent difference was present during 

the habituation phase in the experimental chamber (two-way ANOVA: F(1, 14)= 0.87, p= 0.37). We found no 

COMT genotype difference in both conditioning training (two-way ANOVA: F(1, 14)= 0.03, p= 0.86) and extinction 

(two-way ANOVA: F(1, 14)= 0.06, p= 0.81). (e) Representative western blot of the effect of vehicle (Veh) and 

doxycycline (DOX) on COMT levels in the prefrontal cortex (PFC) of control and COMT-Val tg mice. (f) Basal 

extracellular dopamine levels in the medial PFC (mPFC) of control (Veh n=7, DOX n=6) and COMT-Val-tg mice 
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(Veh n =7, DOX n=5) over a period of 60 min. Dopamine levels were lower in COMT-Val tg compared with 

control vehicle-treated mice (two-way RM ANOVA: F(1, 11)= 7.02, p< 0.05). Silencing of the COMT Val transgene 

restored dopamine up to control-like levels (two-way RM ANOVA: F(1, 11)=1.16, P =0.30). *p< 0.05 COMT-Val-

tg vs control after same treatment (Veh- DOX). (g) Freezing behavior in controls (Veh n=12, DOX n =11) and 

COMT-Val-tg (Veh n=8, DOX n =13) on recent and remote memory recall. Silencing of COMT transgene by 

DOX administration reduced freezing behavior in COMT-Val-tg mice compared with Veh treatment (two-way 

ANOVA: F(6, 80)= 2.39, p< 0.05). No effect of DOX treatment in control mice (p =0.86). We observed no COMT 

genotype (p =0.31) and DOX treatment (p =0.43) effects during recent context memory test. *p< 0.05 vs all other 

conditions at same stage. (h) No differences of freezing behavior during exposure to a novel context 24 h and 50 

days after conditioning between COMT-Val-tg (Veh n=8, DOX n =13) and wild-type control mice (Veh n=12, 

DOX n=11) (two-way ANOVA: F(3, 40)= 0.25, p= 0.85). Values represent mean ±s.e.m. throughout Figures 1, 2, 

3, 4.24 h after conditioning showed no differences in the expression of recent fear memory between COMT-Val-

tg and control mice (Figure 1a). These data indicate an intact learning and expression of recent fear-conditioned 

memories in COMT-Val-tg mice.  

 

Then, to explore whether the reduced dopamine level in COMT-Val-tg mice was established 

by an increased catabolism or reduced release, we measured amphetamine-induced synaptic 

release of dopamine in the mPFC. We found no difference in the rate of dopamine-induced 

release between control and COMT-Val-tg mice (Supplementary Figure 2), further confirming 

that increased COMT activity elevated dopamine catabolism, but not release, in the mPFC. We 

next turned off the COMT transgene after 30 days from the initial conditioning until the remote 

memory recall (day 50). This manipulation selectively tackled the hippocampal-independent 

late consolidation and/or retrieval phases, but not the encoding of fear memory [2].  Silencing 

of the COMT transgene exclusively during late consolidation and retrieval phases was 

sufficient to rescue the enhanced expression of remote fear memory in COMT-Val-tg mice 

back to the level of their control littermates (Figure 1g). Fear reactions on recent and remote 

memory recall were context specific, as when we exposed the mice to a modified context we 

observed negligible and COMT-independent fear reactions (Figure 1h). Moreover, the altered 

freezing responses in COMTVal- tg mice during remote memory recall were not associated 

with any alteration in active coping behaviors (Supplementary Figure 1c), which have also 

been used to assess conditioning induced fear memory [37]. Overall, these findings 

demonstrate that increased COMT activity is the cause of the increased expression of remote 

memories. Moreover, this effect is reversible and not developmental, and it is restricted to 

COMT modulation on late consolidation/recall of remote memories. 
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4.3.2. Increased COMT activity produced an overdrive of the endocannabinoid system in 

the PFC 

In order to explore possible molecular bases of the increased expression of remote memory in 

mice with increased COMT activity we first analyzed overall gene expression in the PFC. 

Indeed, COMT has a crucial role in the regulation of dopamine levels in the PFC [10], [13] and 

remote memories are thought to be stored in this cortical region [24], [38]. One of the genes 

for which the expression was tightly regulated by COMT was the CB1R. Indeed, we found a 

decreased CB1R expression in COMT-Val-tg mice (Figures 2a and b) and increased expression 

in COMT knockout mice (Supplementary Figure 3). The endocannabinoid system has a central 

function in formation and extinction of long-lasting aversive memories and CB1R deficiency 

is associated with a protracted expression of contextual fear memories [22]. Moreover, human 

COMT Val carriers are most likely to exhibit psychotic symptoms and to develop 

schizophreniform disorders if exposed to cannabis [23]. Thus, because the impact of the COMT 

Val genotype on the endocannabinoid system and its potential link with memory functions is 

unknown, we investigated more in detail the possible modulatory function of COMT genetics 

towards the endocannabinoid system. At the protein level, we confirmed a decrease of CB1R 

in the PFC of COMT-Val-tg mice compared with controls (Figures 2b and c) in both naive and 

fear-conditioned mice. A more detailed immunohistochemical analysis (Figures 2d and e and 

Supplementary Figure 4) revealed that the reduction of CB1R in COMT-Val-tg mice was 

specifically localized in the glutamatergic terminals in the PFC, the primary site of expression 

of COMT [11], [13]. Concurrent silencing of the COMT Val transgene was sufficient to re-

establish normal levels of CB1R (Figures 2b, c and e). These data demonstrate that CB1R 

expression in the PFC is tightly regulated by COMT enzymatic activity. To investigate whether 

the decrease of CB1R levels in the PFC of COMT-Val-tg mice was associated with changes of 

its signaling, we measured the levels of endocannabinoids. We observed an increase of AEA 

in COMT-Val-tg mice that was reversed after silencing of the COMT Val transgene (Figure 

2f). In contrast, we found no effects of the COMT Val genotype for the levels of the 2-AG 

(Figure 2g), OEA (Figure 2h) and PEA (Figure 2i). We next analyzed NAPE-PLD and FAAH, 

the main enzymes respectively responsible for synthesis and degradation of anandamide in the 

brain, and DAGL-α and MAGL that respectively modulate synthesis and degradation of 2-AG 

[38].   
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Figure 2. Increased catechol-O-methyltransferase (COMT) activity produced an overdrive of the 

endocannabinoid system in the prefrontal cortex (PFC). (a) Overview of the experiment. COMT-Val-tg and 

control mice were conditioned on day 1, and then tested for recent memory recall on day 2. On day 30, mice were 

administered with vehicle (Veh) or doxycycline (DOX) in drinking water for 20 days. On day 50, mice were tested 

for remote memory recall. After testing mice were killed and PFC was removed for analysis of the 

endocannabinoid system. Because we found similar results in naive (before conditioning) and in COMT-Val-tg 

and control mice after remote memory recall, data were pooled together. (b, left). Decrease of CB1R protein levels 

in the PFC of COMT-Val-tg mice (Veh n =7, DOX n=7) compared with controls (Veh n=9, DOX n=7; two-way 

analysis of variance (ANOVA): genotype × treatment, F(1, 26)= 8.23, p< 0.05) and representative western blot 

images. DOX treatment in COMT-Val-tg mice restored normal levels of CB1R in the PFC (p=0.50 vs control 

Veh), whereas it has no effect on control mice (p=0.66). *p<0.005 vs all other groups. (b, right) Reduction of 

CB1R mRNA expression in the PFC of COMT-Val-tg (n =6) compared with control mice (n =7; unpaired t-test: 

t=2.16, d.f.=11, p< 0.05). (c) Immunoreactivity (n=3 mice each group, 3 slices per mice) of CB1R in the PFC of 
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COMT-Val-tg and control mice after Veh or DOX administration. Images are shown at × 400 magnification. (d) 

Immunohistochemistry on sections of PFC for CB1 receptors (green) and vesicular glutamate transporter 

(VGLUT, red) from controls and COMT-Val-tg after Veh or DOX treatment. Scale bar 100 μM. (e) CB1R 

reduction colocalized with VGLUT (two-way ANOVA: F(1, 8)=9.48, P< 0.05), but not with vesicular GABA 

transporter (VGAT) and dopamine transporter (DAT) in the PFC of control and COMT-Val-tg mice following 

Veh or DOX administration. *p< 0.005 vs control Veh. (f) Increase of anandamide (AEA) in the PFC (two-way 

ANOVA: genotype × treatment, F(1, 25)= 4.69, p< 0.05) in COMT-Val-tg (Veh n =9, DOX n=5) compared with 

control mice (Veh n=10, DOX n= 5) was reversed by silencing of COMT transgene by DOX (p= 0.84 vs control 

Veh). *p< 0.005 vs control Veh. (g) No significant change of 2AG in the PFC (two-way ANOVA: genotype × 

treatment, F(1, 24)= 2.23, P =0.14) of COMT-Val-tg (Veh n=9, DOX n=5) and control mice (Veh n=9, DOX n=5). 

(h) A significant interaction between COMT genotype and DOX treatment was evident for oleoylethanolamide 

(OEA) levels in the PFC in COMT-Val-tg (Veh n=9, DOX n=5) compared with control mice (Veh n=10, DOX 

n=5; two-way ANOVA: genotype × treatment, F(1, 25)=5.64, Po0.05). However, post hoc comparisons did not 

show any significant difference between groups (p= 40.10). (i) No significant effect for the endocannabinoid PEA 

in the PFC of COMT-Val-tg (Veh n =10, DOX n=5) and control mice (Veh n =10, DOX n=5; two-way ANOVA: 

genotype × treatment, F(1, 26)= 3.07, p= 0.09). Data in (f–i) are expressed as fold changes compared with control 

Veh. 

 

Both NAPE-PLD and FAAH levels (Figures 3b, c and g and Figures 3b, e and h, respectively) 

were elevated in the PFC of COMT-Val-tg mice. Similarly, in COMT-Val-tg mice we found a 

25% increase in FAAH enzymatic activity compared with control mice (Figure 3e). Restoring 

the endogenous COMT levels normalized both enzymes to control-like levels (Figures 3b, c 

and g and Figures 3b,e and h, respectively). On the contrary, we found no COMT-dependent 

changes for the DAGL-α and MAGL (Figures 3d and f). Collectively, these findings indicate 

that genetic variations increasing COMT produce a hyperactive NAPE-PLD, anandamide and 

FAAH endocannabinoid pathway in the PFC. In contrast, the DAGL-α, 2-AG and MAGL 

endocannabinoid pathway was unaffected. These alterations were not permanent as turning off 

the COMT Val transgene normalized endocannabinoid signaling. 
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Figure 3. Increased catechol-O-methyltransferase (COMT) activity produced a hyperactive N-acyl phosphatidyl-

lethanolamine phospholipase D (NAPE-PLD) and fatty acid amide hydrolase (FAAH) endocannabinoid pathway 

in the prefrontal cortex (PFC). (a) Overview of the experiment. On day 50, mice were tested for remote memory 

recall. After testing mice were killed and PFC was removed for analysis of the NAPE-PLD, diacylglycerol lipase-

α (DAGL-α), FAAH and monoacylglycerol lipase (MAGL). Because we found similar results in naive (before 

conditioning) and in COMT-Val-tg and control mice after remote memory recall, data were pooled together. (b) 

Representative western blot images of DAGL- α, FAAH, NAPE-PLD and MAGL in the PFC of control and 

COMT-Val-tg mice after vehicle (Veh) or doxycycline (DOX) treatment. (c) Increase of NAPE-PLD (two-way 

analysis of variance (ANOVA): genotype × treatment, F(1, 28)= 4.45, p< 0.05) in the PFC of COMT-Val-tg (Veh 

n= 6, DOX n=8) compared with control mice (Veh n=9, DOX n=9). DOX in COMT-Val-tg mice restored NAPE-

PLD to control-like levels (p =0.70 vs control Veh). *p< 0.005 vs all other groups. (d) No differences of DAGL-

α (two-way ANOVA: genotype × treatment, F(1, 29)= 1.04, p= 0.31) levels in the PFC in COMT-Val-tg (Veh n=7, 

DOX n=8) and controls (Veh n=9, DOX n=9). (e) Increase of FAAH levels (two-way ANOVA: genotype × 

treatment, F(1, 28)=9.93, Po0.005) in COMT-Val-tg (Veh n=6, DOX n=8) in the PFC compared with control 
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mice (Veh n=9, DOX n=9). DOX in COMT-Val-tg reversed FAAH increase back to control-like levels (p= 0.99 

vs control Veh). *p < 0.005 vs all other groups. Inset shows increased FAAH enzymatic activity (expressed as 

pmol min− 1 mg− 1) in the PFC of COMT-Val-tg (unpaired t-test: t=2.87, d.f.=9, *p< 0.05). (f) No differences of 

MAGL (two-way ANOVA: genotype × treatment, F(1, 30)= 1.31, p= 0.26) levels in the PFC in COMT-Val-tg (Veh 

n=7, DOX n=9) and controls (Veh n=9, DOX n=9). (g) Representative immunoreactivity (n=3 mice each group, 

3 slices per mice) of NAPEPLD in the medial PFC (mPFC) in control and COMT-Val-tg after Veh or DOX 

administration. Images are shown at × 400 magnification. (h) Representative immunoreactivity (n=3 mice each 

group, 3 slices per mice) of FAAH in the mPFC in control and COMT-Val-tg after Veh or DOX administration. 

Images are shown at × 400 magnification. 

 

4.3.3 Increased COMT activity did not alter the endocannabinoid system in hippocampus 

and striatum. 

Given the role played by the hippocampus in memory consolidation [1], [39] and that a relative 

increase of COMT activity in mice might also alter dopamine release in the striatum [40] we 

also analyzed possible COMT-dependent effects on the cannabinoid system in these two brain 

regions. In contrast to the PFC, in the hippocampus we found no differences in CB1R levels 

(Supplementary Figures 5a and b), or in the levels of the endocannabinoids AEA, 2-AG, OEA 

and PEA (Supplementary Figures 5c–f) between COMT-Val-tg and control mice. Moreover, 

in the hippocampus there were no COMTdependent changes for the enzymes responsible for 

synthesis (NAPE-PLD and DAGL-α, Supplementary Figures 5g and j) and degradation (FAAH 

and MAGL, Supplementary Figures 4h and j) of the endocannabinoids. Similarly, all these 

measures of the endocannabinoid system did not differ between COMT-Val-tg and control 

mice in the striatum (Supplementary Figure 6). Thus, genetic variations increasing COMT 

enzymatic activity specifically modulated the endocannabinoid system in the PFC, and not in 

the hippocampus or in the striatum.  

 

4.3.3. CB1R blockade restored remote memories alterations dependent on COMT 

genotype  

A reduction of CB1R, in the context of increased NAPE-PLD, AEA and FAAH pathways 

found in the PFC of COMT-Val-tg mice, might indicate a compensatory mechanism to cope 

with an overdrive of the endocannabinoid system. To test directly the causal role of the altered 

endocannabinoid system on the stronger remote memory found in COMT-Val-tg mice, we 

tested the prediction that blocking the endocannabinoid signaling on CB1R during the remote 

recall could restore a normal expression of fear memory in COMT-Val-tg mice. To this end, 

50 days after fear conditioning, we injected Veh or the CB1R antagonist AM251 30 min before 
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the remote memory recall to reach the maximum effect of the drug [25].  Blockade of CB1R 

increased remote memory expression in controls, such that freezing behavior did not differ 

from Veh-treated COMT-Val-tg mice (Figure 4a). Conversely, in COMT-Val-tg mice the 

CB1R antagonist AM251 reversed the enhanced remote memory back to control levels (Figure 

4a). Active fear-coping behaviors during the remote memory recall test did not change 

depending on either the COMT genotype or AM251 treatment (Supplementary Figure 7a). 

Thus, blockade of CB1R signaling had opposite effects on remote memory in animals with 

normal or increased COMT activity. Finally, we addressed whether the COMT-by-

endocannabinoid interaction found in fear conditioning paradigms could be generalized to 

other form of remote aversive memories. In particular, we tested control and COMT-Val-tg 

mice in a naloxone-induced CPA, a well-established task to assess negative affective states in 

mice [41]. COMT-Val-tg mice showed higher aversion for environmental cues paired with 

naloxone injections received 50 days earlier during conditioning (Figure 4b), whereas we did 

not observe genotype-dependent differences on recent memory recall (Supplementary Figure 

7b). Conversely, AM251 had no effect on CPA in control mice (Figure 4b). This same 

treatment with AM251 increased extracellular dopamine in the mPFC, in particular we 

observed a peak in COMT-Val-tg 30 min after injection. Overall, these findings demonstrated 

that increased COMT activity modulated remote memories through an overactivation of the 

endocannabinoid system. 
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Figure 4. CB1 receptor blockade restored remote memory alterations dependent on catechol-O-methyltransferase 

(COMT) genotype. (a) Freezing behavior in controls and COMT-Val tg mice on remote memory recall after 

vehicle (Veh) or AM251 treatment (n=8–11 each group). AM251 reduced freezing behavior in COMT-Val tg 

mice (two-way analysis of variance (ANOVA): F(2, 44)= 12.03, p< 0.0005) compared with COMT-Val tg Veh (p< 

0.05) and Veh-treated control  animals (P =0.21). Increased freezing reaction in controls after CB1-R antagonist 

AM251 compared with Veh (Po0.05). Control: *Po0.05 vs Veh., #p< 0.05 vs COMT-Val tg AM251 (2 mg kg− 

1). COMT-Val tg: *p< 0.05 vs Veh. (b) Remote memory, assessed using conditioned place aversion (CPA), was 

increased in COMT-Val tg mice (two-way ANOVA: genotype, F(1, 33)= 7.22, p< 0.05). Administration of AM251 

reduced CPA in COMT-Val-tg (unpaired t-test: t =2.97, d.f.=14, p< 0.05), whereas it had no effects in controls 

(unpaired t-test: t =0.87, d.f.=19, P =0.39). Conditioning with Veh did not produce place aversion (one-way 

ANOVA: F(4, 39)= 4.51, p< 0.05 vs control naloxone (Nal) and COMT-Val-tg Nal). (c) Extracellular dopamine 

levels in the medial prefrontal cortex (mPFC) of controls (n=8) and COMT-Val-tg (n=8) mice following AM251 

(1 mg kg− 1, intraperitoneal). Systemic injection of CB1R blocker AM251 elevated dopamine levels in the mPFC 

(two-way ANOVA: time, F(6, 60)= 10.75, p <0.0005). In particular, COMT-Val-tg showed a peak of 

dopamine 30 min after AM251 injection, compared with baseline (p< 0.005). (d) Proposed model of the 

dysregulation of endocannabinoid system by genetically increased levels of COMT. In ‘Normal’ conditions in the 

PFC dopamine exerts an inhibitory control over the activity of glutamatergic pyramidal neurons. Dopaminergic 
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terminals may modulate pyramidal neurons activity directly through synaptic contacts to the pyramidal neuron 

spines or, alternatively, inhibition may occur indirectly via activation of GABAergic (γ-aminobutyric acid) 

inhibitory interneurons. In subjects with increased COMT activity (‘COMT-Val’) extracellular dopamine in PFC 

is decreased, resulting in lower inhibition of cortical pyramidal neurons. To counterbalance this reduced 

inhibition, the system will then produce an overactive anandamide tone by acting at CB1R. However, prolonged 

stimulation of CB1R by anandamide in the PFC enhanced the stability of remote memories. These alterations can 

be rescued increasing cortical dopamine levels by either blocking COMT or CB1R over activity. 
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4.4. Discussion 

Using a conditional humanized mouse overexpressing the COMT Val gene we demonstrated 

that remote memory recall is modulated by COMT genetic variations. Moreover, we 

established that the COMT Val genotype has a selective and reversible impact on the 

endocannabinoid system at the level of the PFC that was the cause of increased remote 

memories in COMT Val mutants. Mice with a relative increased COMT activity display an 

exaggerated recall of remote memories. This finding illuminates human neuroimaging studies 

showing a COMT-dependent effect on prefrontal activation during long-term memory 

encoding and retrieval [17], [42], [43]. In particular, in the present work we demonstrated that 

this effect on remote memories was reversible and selectively dependent on COMT concurrent 

activity. Furthermore, the more stable expression of remote memories in COMT-Val-tg mice 

was not influenced by factors such as deficits in conditioning/ extinction learning (present 

study) or increased levels of anxiety [11]. Notably, a wealth of evidence from humans and 

genetically modified mice established COMT as an exquisite and selective modulator of 

executive functions [11], [44]–[50]. In particular, COMT-Val-tg mice as well as humans 

carrying the COMT Val-allele show poorer executive functions, including deficits in cognitive 

flexibility and working memory [35], [51], [52]. In contrast, here we found that COMT-Val-tg 

mice show exaggerated remote memories recall, unraveling a more stable organization of these 

types of memories. This tradeoff between a genetic effect that disrupts cognitive flexibility 

(executive functions) but exaggerates remote memories provides a biological substrate on the 

dichotomy between stable maintenance of information and cognitive flexibility. COMT 

activity finely regulates dopamine levels in the PFC that, together with the balance between 

D1 and D2 receptor activation, have been proposed as the neurobiological basis regulating 

cognitive flexibility/stability balance [53]. In contrast, despite also being a COMT substrate, 

norepinephrine levels in the PFC are negligibly affected by COMT genetic variations [9]–[11], 

possibly because of the abundance of its norepinephrine transporter in this brain region [9].  

However, even if our own data did not show any major COMT dependent effect on 

norepinephrine levels in the PFC, we cannot exclude a possible involvement of this 

neurotransmitter given its relevance in the strengthening of aversive memories [54], [55]. Thus, 

our results suggest that the enhanced remote memories in subjects with increased COMT 

activity (and in turn reduced extracellular dopamine) may reflect a sort of ‘inflexibility’ of the 

PFC. This hypothesis is also consistent with the current model of remote memories storage that 

points to a more prominent role of the PFC over the hippocampus [2]. In relationship to the 
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clinical setting, our findings might indicate a possible role of COMT in psychiatric conditions 

associated with inappropriate retention of past aversive memories, such as posttraumatic stress 

disorder (PTSD). COMT genetics have been associated with both PTSD vulnerability and 

severity of symptomatology, even if the directionality of the effects are controversial [21], 

[56]–[58]. The discrepant results might be related to the ethnicity of the subjects, as in 

Caucasians (both children and adults) the COMT Val allele was associated with higher 

vulnerability and more severe PTSD symptoms, whereas the opposite effect was found in 

African-American children [57], [58]. Another factor to consider is the interaction between sex 

and the developmental stage of the individuals. Indeed, COMT genetic variants affect cognitive 

functions in opposite way in males and females but only during adulthood (between puberty 

and menopause) [44], [45], [59]. However, because relatively lower COMT increases anxiety 

states and vulnerability to stressful events [35], [60], [61], whereas increased COMT enhances 

aversive remote memories (present work), both too little and too much COMT activity could 

contribute to PTSD development and manifestations. In agreement, in a study with 236 Iraq 

War veterans, both Met/Met and Val/Val subjects were at increased risk for PTSD compared 

with Val/Met carriers [56].  Finally, our findings uncover an interaction between the COMT 

Val genotype and the cannabinoid system that has been previously suggested in schizophrenia 

development. Specifically, individuals carrying the COMT Val allele present higher risk to 

develop schizophrenia if exposed to cannabis [23]. Despite this coincidental evidence, the 

biological bases through which COMT genetics might influence cannabis-induced psychosis 

vulnerability are still unknown. The endocannabinoid overdrive we found in the PFC of 

subjects with genetic variations increasing COMT activity (COMT Val) could be one of the 

biological causes of these clinical associations. Damage of the ventromedial PFC reduce the 

occurrence of PTSD [62] and the PFC have been consistently implicated in the manifestation 

of schizophrenia-relevant cognitive phenotypes [63], [64]. Moreover, endocannabinoids are 

important in the regulation of memory for emotional events [65]. For example, aversive 

experiences stimulate the release of anandamide into the medial PFC to induce the formation 

of a strong memory trace [66]. This is in line with our finding of increased anandamide in the 

PFC of animals with higher COMT activity, leading to exaggerated expression of aversive 

memories. The COMT-dependent dysregulation of the endocannabinoid system also included 

a reduction of CB1R that seemed to be restricted to the glutamatergic terminals. This is in 

agreement with previous evidence that a primary localization of COMT is within glutamatergic 

pyramidal neurons in the PFC [9], [11], and suggesting this as the main site of COMT–

endocannabinoid interaction. However, because of the presence of COMT in astrocytes [13] 



                                          

124 
 

and the role of endocannabinoids in astrocytes [67] we cannot exclude astrocytes as a potential 

contributing site of action. At excitatory synapses, endocannabinoids function as retrograde 

messengers, binding to presynaptic CB1R that in turn mediates the suppression of glutamate 

release [65].  Moreover, dopamine in the mPFC inhibits glutamate outputs by acting at D2 

receptors on pyramidal neurons reducing neurotransmitter release probability at glutamatergic 

synapse [68], [69]. Thus, in the context of reduced extracellular dopamine in the mPFC (as 

found in COMT Val subjects), we might interpret the increase in tonic anandamide activity at 

CB1R in glutamatergic neurons as an adaptive mechanism to control an excessive 

glutamatergic excitatory drive. In line with this hypothesis, the reduction of CB1R would be 

the result of a compensatory phenomenon to cope with increased endocannabinoid tone. 

Accordingly, acutely blocking CB1R signaling by AM251 was sufficient to normalize remote 

memories recall in COMT-Val-tg mice and increased extracellular dopamine levels within the 

mPFC (general model depicted in Figure 4b). In this study, we unraveled an outstanding role 

of the PFC, while hippocampus and striatal regions were seemingly not involved. The selective 

effects of the COMT Val genotype in the regulation of the endocannabinoid system within the 

PFC are in line with a more prominent role of COMT enzymatic activity in the cortex [9] and 

with the theory that the neocortex represent a key site for permanent storage of long-term 

memories [2], [32]. Afferents from the PFC coordinate the integration of CS and US pairing 

within the lateral amygdala [70].  Moreover, the central amygdala is widely considered the 

major output center that controls brainstem and hypothalamic systems necessary for the 

expression of emotionally related conditioned responses such as freezing [71] and place 

aversion [72] In our paradigm we did not find differences in remote auditory cued fear memory 

that is known to be stored in the amygdala [70]. However, COMT genotype has been suggested 

to affect the processing of emotional stimuli in the amygdala and in the cortex as well as the 

functional connectivity between these two brain regions [60], [73]. Furthermore, cannabinoid 

transmission within the basolateral amygdala strongly modulates the formation of associative 

fear memory via functional interactions with the PFC [74]. Thus, the significance and possible 

involvement of COMT dependent changes in PFC–amygdala circuits might represent an 

important subject for future studies. In conclusion, we showed that a genetic condition of 

increased COMT activity enhanced aversive remote memories. We propose that COMT 

activity can modulate the stability of remote memories in the PFC at the expense of cognitive 

flexibility. The effect of COMT on dopamine metabolism in this cognitive balance might help 

us to better understand in mechanistic terms the derailment of cognitive and emotional 

functions in nervous system diseases like PTSD and schizophrenia. In this context, we found a 
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selective biological interaction between COMT genotype and the endocannabinoid system in 

the PFC. Thus, COMT-dependent alterations in the endocannabinoid system might explain 

some of the individual differences in the effects of cannabis use, and more in general COMT 

polymorphisms could influence the response to medication targeting the cannabinoid system. 
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4.8. Supplementary figures 

4.8.1 Supplementary figure 1 

 

 

 

Supplementary Figure 1. COMT and CB1R blockade did not affect proactive behavior. (a), Cued fear memory 

recall 24 hours after fear conditioning in control and COMT-Val tg mice. We did not find differences in freezing 

behavior during baseline, presentation of the cue and post-cue period (two-way RM ANOVA: genotype x time, 

F(2,34)= 0.02, p= 0.97; n=8-11 each group). (b), Cued fear memory recall 50 days after fear conditioning. Freezing 

behavior was similar during baseline, presentation of the cue and post-cue period in control and COMT-Val tg 

mice (two-way RM ANOVA: genotype x time, F(2,34)= 0.06, p= 0.93; n=8-11 each group). (c), Proactive behavior 

on remote memory recall after Veh or DOX treatment (n=9-12 each group). No differences between controls and 

COMT-Val tg mice (two-way ANOVA: genotype x treatment, F(1,38)= 0.05, p= 0.80). 
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4.8.2 Supplementary figure 2 

 

 

 

Supplementary Figure 2. Increased COMT enzymatic activity did not affect synaptic release of dopamine and 

norepinephrine levels in the mPFC. (a), Amphetamine-induced (1.5 mg/kg, i.p.) dopamine release in the mPFC 

of control (n=7) and COMT-Val-tg (n=7) mice. We found no differences between groups over a period of 60 

minutes after amphetamine injection (two-way RM ANOVA: F(1,10)= 0.19, p= 0.66). (b), Total mPFC content of 

norepinephrine in control (n=6) and COMT-Val-tg (n=8) mice (unpaired t-test: t=0.28, df=12, p=0.78). 
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4.8.3 Supplementary figure 3 

 

 

 

Supplementary Figure 3. CB1R were increased in COMT knock-out mice. Increase of CB1R gene expression 

in the mPFC of COMT knock-out mice (-/-, n=6) compared to wild-type controls (+/+, n=6; one-way ANOVA: 

F(2,14)= 4.42, p<0.05). *p< 0.05 vs COMT +/+. 
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4.8.4 Supplementary figure 4 

 

 

 

Supplementary Figure 4. CB1R reduction in COMT-Val tg mice did not involve dopaminergic and GABAergic 

terminals in the PFC. (a), Immunohistochemistry on sections of PFC for CB1 receptor (green) and vesicular 

GABA transporter (VGAT, red), and colocalization coefficient for controls and COMT-Val-tg mice after Veh or 

DOX treatment. (b), Immunohistochemistry on sections of PFC for CB1 receptor (green) and dopamine 

transporter (DAT, red), and colocalization coefficient for controls and COMT-Val-tg mice after Veh or DOX 

treatment. 
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4.8.5 Supplementary figure 5 

 

 

 

Supplementary Figure 5. Increased COMT activity did not alter the endocannabinoid system in the 

hippocampus. (a), Representative western blot images of DAGL-a, FAAH, CB1R, NAPE-PLD and MAGL in the 

Hippocampus of COMT-Val-tg and control mice after Veh or DOX treatment. (b), No change of CB1R (two-way 

ANOVA: genotype x treatment, F(1,29)=2.34, p= 0.13) in the hippocampus of COMT-Val-tg (Veh n=7, DOX n=8) 

and controls (Veh n=9, DOX n=9) after the remote memory recall. (c), No change of AEA in the hippocampus of 

COMT-Val-tg (Veh n=10, DOX n=5) and controls (Veh n=9, DOX n=6) after the remote memory recall (two-

way ANOVA: genotype x treatment, F(1,26)= 0.03, p= 0.85). (d), No change of 2AG in the hippocampus of COMT-

Val-tg (Veh n=10, DOX n=5) and controls (Veh n=9, DOX n=6) after the remote memory recall 2AG (two-way 

ANOVA: genotype x treatment, F(1,26)= 0.03, p= 0.84). (e), No change of OEA in the hippocampus of COMT-

Val-tg (Veh n=10, DOX n=5) and controls (Veh n=9, DOX n=6) after the remote memory recall (two-way 

ANOVA: genotype x treatment, F(1,26)= 0.61, p= 0.43). (f), No change of PEA in the hippocampus of COMT-Val-

tg (Veh n=10, DOX n=5) and controls (Veh n=9, DOX n=6) after the remote memory recall (two-way ANOVA: 

genotype x treatment, F(1,26)= 7.90, p= 0.91). (g), No change of NAPE-PLD in the hippocampus of COMT-Val-tg 
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(Veh n=6, DOX n=9) and controls (Veh n=9, DOX n=9) after the remote memory recall (two-way ANOVA: 

genotype x treatment , F(1,29)= 2.59, p= 0.11). (h), No change of FAAH in the hippocampus of COMT-Val tg (Veh 

n=7, DOX n=9) and controls (Veh n=9, DOX n=9) after the remote memory recall (two-way ANOVA: genotype 

x treatment, F(1,30)=3.25, p=0.08). Inset, no change of FAAH enzymatic activity (expressed as pmol/min/mg; 

unpaired t-test: t=0.40, df=13, p=0.68). (i), No change of DAGL-a in the hippocampus of COMT-Val-tg (Veh 

n=7, DOX n=8) and controls (Veh n=9, DOX n=8) after the remote memory recall (two-way ANOVA: genotype 

x treatment , F(1,28)= 0.35, p= 0.55). (j), No change MAGL in the hippocampus of COMT-Val-tg (Veh n=7, DOX 

n=9) and controls (Veh n=9, DOX n=9) after the remote memory recall (two-way ANOVA: genotype x treatment, 

F(1,30)= 0.10, p= 0.74).  
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4.8.6 Supplementary figure 6 

 

 

 

Supplementary Figure 6. Increased COMT activity did not alter the endocannabinoid system in the striatum. (a), 

Representative western blot images of DAGL-a, FAAH, CB1R, NAPE-PLD and MAGL in the striatum of 

COMT-Val-tg and control mice after Veh or DOX treatment. (b), No change of CB1R (two-way ANOVA: 

genotype x treatment, F(1,14)= 0.19, p= 0.66) in the striatum of COMT-Val-tg (Veh n=4, DOX n=5) and control 

mice (Veh n=4, DOX n=5) after the remote memory recall. (c), No change of AEA in the hippocampus of COMT-

Val-tg (Veh n=8, DOX n=5) and control mice (Veh n=6, DOX n=6) after the remote memory recall (two-way 

ANOVA: genotype x treatment, F(1,21)= 0.10, p= 0.75). (d), No change of 2AG in the striatum of COMT-Val-tg 

(Veh n=8, DOX n=5) and controls (Veh n=7, DOX n=6) after the remote memory recall 2AG (two-way ANOVA: 

genotype x treatment, F(1,22)= 0.68, p= 0.41). (e), No change of OEA in the striatum of COMT-Val-tg (Veh n=8, 

DOX n=5) and controls (Veh n=7, DOX n=6) after the remote memory recall (two-way ANOVA: genotype x 

treatment, F(1,22)= 1.80, p= 0.19). (f), No change of PEA in the striatum of COMT-Val-tg (Veh n=8, DOX n=5) 

and controls (Veh n=7, DOX n=6) after the remote memory recall (two-way ANOVA: genotype x treatment, 

F(1,22)=2.00, p=0.17). (g), No change of NAPE-PLD in the striatum of COMT-Val-tg (Veh n=4, DOX n=5) and 

controls (Veh n=4, DOX n=5) after the remote memory recall (two-way ANOVA: genotype x treatment, 
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F(1,14)=0.01, p=0.89). (h), No change of FAAH in the striatum of COMT-Val-tg (Veh n=4, DOX n=5) and controls 

(Veh n=4, DOX n=5) after the remote memory recall (two-way ANOVA: genotype x treatment, F(1,14)=0.12, 

p=0.72). (i), No change of DAGL-a in the striatum of COMT-Val-tg (Veh n=4, DOX n=5) and controls (Veh n=4, 

DOX n=5) after the remote memory recall (two-way ANOVA: genotype x treatment, F(1,14)=0.02, p=0.87). (j), No 

change of MAGL in the striatum of COMT-Val-tg (Veh n=4, DOX n=5) and controls (Veh n=4, DOX n=5) after 

the remote memory recall (two-way ANOVA: genotype x treatment, F(1,14)=0.00, p=0.93). 
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4.8.7 Supplementary figure 7 

 

 

 

Supplementary Figure 7. (a), Proactive behavior on remote memory recall after Veh or AM251 treatment 

(n=6-8 each group). No differences between control and COMT-Val-tg mice (two-way ANOVA: genotype x 

treatment, F(1,24)= 0.38, p= 0.53). (b), Nal administration induced conditioned place aversion 24 hours after 

conditioning (one-way ANOVA: treatment, F(2,23)= 1.79, p< 0.0005 vs Veh). No difference between COMT-

Val-tg and control mice (p=0.38). 
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Abstract 

Social cognition is a fundamental ability that influences development, survival and evolution 

of animals. Human social cognition is assessed measuring the ability to recognize others’ 

emotions, a function that remains elusive for laboratory animals. Here, we revealed that mice 

are able to discriminate unfamiliar conspecifics based on negative- or positive-valence 

emotional states. This process was distinct from sociability or observational transfer of 

emotions and was differently dependent on olfactory and visual cues. We showcase the value 

of the mouse emotion recognition paradigm unraveling the role of endocannabinoid system in 

social cognition.  
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5.1. Introduction 

Social interactions are fundamentally dependent on the ability to distinguish expression of 

emotions in others. This biologically innate process defined as “social cognition” has profound 

implications in everyone’s life [1], [2]. Consistently, disturbances in social cognition are early 

and distinctive features of many neuropsychiatric, neurodevelopmental and neurodegenerative 

disorders [2]. Abnormalities in social cue identification define autism spectrum disorders [3], 

and patients with schizophrenia have marked impairments in processing non-verbal social 

affective information while showing normal affect sharing and emotion experience [4]. 

Notably, social cognitive impairments in these individuals have a more deleterious impact on 

daily functioning than non-social cognitive deficits [5]. Emotion recognition tasks are the most-

extensively used paradigms to assess human social cognition [2], [4]. Indeed, the ability to 

“read” others’ emotions is fundamental to achieve more complex and high-level social 

processes. In agreement, several training programs targeting facial emotion perception have 

been implemented for individuals with schizophrenia and autism [6], [7]. Social emotion 

recognition abilities are also evident in non-human primates, as well as in dogs and sheep [8]. 

Despite this, there is no evidence that mice, the most widely used laboratory animals, might be 

able to discriminate individuals on the base of their emotional state. Previous studies identified 

the existence of a transmission of pain/fear responses from one rodent to a familiar observer, a 

process possibly related to affect sharing and empathy [9]-[12], and thought to be an automatic 

response [13]. However, the cognitive processes by which rodents discriminate conspecifics 

emotional states are poorly evaluated. In this study, we developed a new method to investigate 

emotion discrimination abilities in mice. We reliably showed measurable indices of mice 

discrimination of negative and positive emotions evoked in unfamiliar conspecifics. These 

measures were disconnected from any possible sign of automatic mimicry, contagion or basic 

social exploration processes. The initial application of the mouse emotion recognition task 

established the role of endocannabinoid system in social cognition. In fact, starting from 

evidence from fMRI studies that showed deficits in emotion recognition task in cannabis users 

[14]-[16], we hypothesized an involvement of CB1 receptors in this set of abilities. In 

particular, CB1 receptors within the astrocytes have been indicated to have profound effects in 

behavioral outputs [30]. More generally, astrocytes play a central role in controlling synapse 

formation and maturation, but also in the modulation of many aspects of synapses physiology, 

network activity, and cognitive functions [17]. In the context of emotion recognition, a brain 

region of particular interest indicated by several human studies is the prefrontal cortex (PFC), 
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which is thought to regulate the top down control of emotion recognition abilities. Intriguingly, 

within the PFC, astrocytes have been recently reported to have a major and peculiar impact in 

dopaminergic homeostasis [18].  Thus, according with our data about the selective interaction 

between dopaminergic and endocannabinoid system within the PFC in the modulation of 

cognitive functions [19], we hypothesized that a CB1 dysfunction in prefrontal astrocytes might 

lead to ‘social’ deficits. In order to investigate the role of astrocytic CB1R we decided to 

remove the receptor selectively in prefrontal astrocytes using CB1 floxed mice. Altogether, our 

results demonstrate the potential of this method to increase our knowledge of the mechanisms 

underlying social cognition in rodents, with a translational perspective. 
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5.2. Materials and Methods 

All procedures were approved by the Italian Ministry of Health (permits n. 230/2009-B and 

107/2015-PR) and local Animal Use Committee and were conducted in accordance with the 

Guide for the Care and Use of Laboratory Animals of the National Institutes of Health and the 

European Community Council Directives. Males and females C57BL/6J mice, and CB1 floxed 

mice all of 3-6 month-old were used. Animals were housed two to four per cage in a climate-

controlled (22±2 C) and specific pathogen free animal facility, with ad libitum access to food 

and water throughout, a standard environmental enrichment (material for nest and cardboard 

house), and with a 12-hour light/dark cycle (7pm/7am schedule). Experiments were run during 

the light phase (within 10am-5pm). All mice were handled on alternate days during the week 

preceding the first behavioral testing. Female mice were visually checked for estrus cycle 

immediately after the test and no correlation was found between estrus status and performance 

in the test. Behavioral scoring was performed a posteriori from videos by trained experimenters 

blind to the manipulations of both the observers and demonstrators. A sniffing event was 

considered when the observer touched with the nose the demonstrators’ wire cup or when the 

observer’s nose directly touched the demonstrator.  

 

5.2.1. Emotion recognition task. 

Habituation of the mice to the testing setting occurred on three consecutive days before the first 

experiment; each habituation session lasted 10 minutes. Test observer mice were habituated 

inside a Tecniplast cage (35.5x23.5x19 cm) to a separator and two cylindrical wire cups (10.5 

cm in height, bottom diameter 10.2 cm, bars spaced 1 cm apart; Galaxy Cup, Spectrum 

Diversified Designs, Inc., Streetsboro, OH), around which they could freely move, as occurred 

during the test. A cup was placed on the top of the wire cups to prevent the observer mice from 

climbing and remaining on the top of them. The separator (11x14cm) between the two wire 

cups was wide enough to cover the reciprocal view of the demonstrators while leaving the 

observer mice free to move between the two sides of the cage. The wire cups, separators and 

experimental cages were replaced with clean copies after each subject to avoid scent carryover. 

Similarly, the rest of the apparatus was wiped down with water and dried with paper towels for 

each new subject. After each testing day, the wire cups, separators, and cubicles were wiped 

down with 70% ethanol and allowed to air-dry. Testing cages were autoclaved as standardly 

performed in our animal facility. Demonstrator mice – matched by age, sex and genotype to 

the observers – were habituated inside the same Tecniplast cage (35.5x23.5x19 cm), under the 
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wire cups for three consecutive times, ten minutes each. During both habituation and behavioral 

testing, the cages were placed inside soundproof cubicles (TSE Multi Conditioning Systems) 

homogeneously and dimly lit (6±1 lux) to minimize gradients in light, temperature, sound and 

other environmental conditions that could produce a side preference. Digital cameras (imaging 

Source DMK 22AUC03 monochrome) were placed facing the long side of the cage and on top 

of the cage to recorded from different angles the three consecutive two-minute trials, using the 

program Anymaze (Stoelting). 

 

5.2.1.1.Observers.  

Before the test, mice were habituated to the experimental setting as reported above. The third 

day of habituation, mice were also habituated to the tone cue (4 kHz, 80 dB sound pressure 

level, three times for 30 seconds each with an intertrial interval of 90 seconds) without any 

conditioning. One hour prior to behavioral testing, mice were placed in the testing cage, in 

experimental setting (i.e. separator and two wire cups), in a room adjacent to the testing room. 

Five minutes before the experiment, the testing cages containing the observer mice were gently 

moved in the testing cubicles. After having placed one emotionally ‘neutral’ and one 

“emotionally altered” demonstrator mice under the wire cups, the 6-minute experiment began. 

The order of insertion of the neutral or emotionally-altered demonstrator was randomly 

assigned. 

 

5.2.1.2. ‘Neutral’ demonstrators.  

In the days before the test, all neutral mice were habituated to the experimental setting as 

reported above. For the “relief” condition, neutral demonstrators underwent no manipulation 

the day before the test. For the “fear” condition, the day before the test, neutral demonstrators 

were habituated to the tone cue inside the cups as for the experimental setting and as done for 

the observer mice. The day of the test, neutral demonstrators were brought inside their home 

cages in the experimental room one hour before the experiment began. Demonstrators were 

test-naïve and used only once. In some cases, we re-used the same demonstrator for maximum 

two/three times, with always at least one week between each consecutive test. No differences 

were observed in the performance of the observer mice depending on the demonstrators’ 

previous experience. 
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5.2.1.3. ‘Relief’ demonstrators.  

The days before the test, mice were habituated to the experimental setting as reported above. 

‘Relief’ demonstrators were then water deprived 23 hours before the experiment. One hour 

before the test ad libitum access to water was reestablished, and mice were brought inside the 

experimental room in their home cages. Food was ad libitum all the time and some extra pellets 

were put inside the home cage during the 1-hour water reinsertion. 

 

5.2.1.4. ‘Stressed’ demonstartors 

The days before the test, mice were habituated to the experimental setting as reported above. 

“Stress” demonstrators were put in the restrainer 15 minutes before the task. Stressed mice 

were put in the restrainer only once. In the rare case of a second exposure to the test, these 

demonstrators were re-exposed to the restrainer at least one week apart from the previous 

exposure.  

 

5.2.1.5‘Fear’ demonstrators.  

The days before the test, mice were habituated to the experimental setting as reported above. 

‘Fear’ demonstrators were fear conditioned using the parameters and context previously 

described23, and using the same tone delivered to the observers and neutral demonstrators 

during their habituation process. In particular, the conditioned stimulus was a tone (4 kHz, 80 

dB sound pressure level, 30 sec) and the unconditioned stimulus were three scrambled shocks 

(0.7 mA, 2-s duration, 90-s intershock interval) delivered through the grid floor that terminated 

simultaneously with the tone (2 sec). The day of the test these mice were habituated, inside 

their home cages, in a room adjacent to the testing room for one hour prior to the test; they 

were consequently brought inside the experimental room one by one, before placing them 

under their designated wire cup. Fear mice were conditioned only once and in a separate room 

and apparatus (Ugo Basile SRL, Italy) respect to where the emotion recognition task would be 

performed. In the rare case of a second exposure to the test, these demonstrators were just re-

exposed to the same conditioned tone, at least one week apart from the previous exposure and 

maximum 1 month from the initial conditioning. 

 

5.2.1.6. Shock” demonstrators.  

This manipulation was performed for direct comparison with a rat protocol and was performed 

as previously described [20]. In particular, these demonstrator mice were exposed to two 
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footshocks (1 mA, 5-s duration, 60-s intershock interval) immediately before the 6-minute test 

session. All other procedures were identical to the other demonstrators as described above. 

 

5.2.1.7. Habituation- dishabituation task. 

Social interaction in freely interacting mice was tested as previously reported [21]. Briefly, 

mice were individually placed in the testing cage 1 h prior to the testing. No previous single 

housing manipulation was adopted to avoid any instauration of home-cage territory and 

aggressive behaviors. Habituation – dishabituation task consisted of 5 trials (1 minute each), 

with 3 minutes interval lasted from each trial. Testing began when a stimulus mouse (S1), 

matched for sex and age, was introduced into the testing cage for the first 1-min period 

interaction. S1 mouse was showed to the test mouse for four time. A new stimulus mouse (S2), 

matched for sex and age, and was introduced during trial 5. During behavioral testing, the cages 

were placed inside soundproof cubicles (TSE Multi Conditioning Systems) homogeneously 

and dimly lit (5±1 lux) to minimize gradients in light, temperature, sound and other 

environmental conditions that could produce a side preference. Digital cameras (imaging 

Source DMK 22AUC03 monochrome) were placed facing the long side of the cage and on top 

of the cage to recorded from different angles the five 1 minute trials, using the program 

Anymaze (Stoelting). 

 

5.2.1.8. One-on-one social exploration tests. 

This test was similarly performed as previously described3. One hour prior to behavioral 

testing, each experimental subject was placed into a Tecniplast cage (35.5x23.5x19 cm) with 

shaved wood bedding and a wire lid, in a room adjacent to the testing room. Five minutes 

before the experiment, the testing cages containing the observer mice were gently moved in 

the testing sound proof cubicles. To begin the test a demonstrator mouse was introduced to the 

cage for 6 minutes (as for the emotion recognition task), and exploratory behaviors initiated by 

the test subject were timed by two independent experimenters blind to the manipulations. 

Demonstrators mice were used only once. Each observer was given tests on consecutive days: 

once with an unfamiliar naive conspecific, once with an unfamiliar fear conspecific (fear 

conditioning exactly as above), once with an unfamiliar relief conspecific (manipulated exactly 

as above), and once an unfamiliar stressed conspecific (stressed as previously explained). Test 

order was counterbalanced. 
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5.2.1.9. Sensory modality assessment. 

In the “complete darkness” experiments, mice were tested as above, but eliminating all sources 

of light within the testing cage as well as in the entire testing room. Videos were recorded for 

successive scoring either with an infrared thermal camera (FLIR A315, FLIR Systems) or with 

Imaging Source DMK 22AUC03 monochrome camera (Ugo Basile). The two cameras setting 

gave the same experimental results. For acoustic stimuli experiments, ultrasonic vocalisations 

(USVs) were recorded during the test phases performed as above in two different experimental 

settings: 1) exactly as above with one observer mouse and two demonstrators, and 2) with only 

one demonstrator for each emotional condition present in the apparatus. This was done to make 

sure that the USVs recorded could be attributed to a single emotional state and/or to a 

communication between demonstrators and observer. The ultrasonic microphone (Avisoft 

UltraSoundGate condenser microphone capsule CM16, Avisoft Bioacoustics, Berlin, 

Germany), sensitive to frequencies between 10 and 180 kHz, was mounted 20 cm above the 

cage to record for subsequent scoring of USV parameters. Vocalisations were recorded using 

AVISOFT RECORDER software version 3.2. Settings included sampling rate at 250 kHz; 

format 16 bit. For acoustical analysis, recordings were transferred to Avisoft SASLab Pro 

(Version 4.40) and a fast Fourier transformation (FFT) was conducted. Spectrograms were 

generated with an FFT-length of 1024 points and a time window overlap of 75% (100% Frame, 

Hamming window). The spectrogram was produced at a frequency resolution of 488 Hz and a 

time resolution of 1 ms. A lower cut-off frequency of 15 kHz was used to reduce background 

noise outside the relevant frequency band to 0 dB. Call detection was provided by an automatic 

threshold-based algorithm and a hold-time mechanism (hold time: 0.01 s). An experienced user 

checked the accuracy of call detection, and obtained a 100% concordance between automated 

and observational detection. Parameters analysed for each test day included number of calls 

and duration of calls. Quantitative analyses of sound frequencies measured in terms of 

frequency and amplitude at the maximum of the spectrum were not performed because of the 

paucity of emitted USVs in all conditions performed. For odor stimuli experiments, observers 

were tested as described above, but presenting as “demonstrator” only cotton balls impregnated 

with the odor of demonstrators. Odors were separately collected from neutral, relief (after the 

1 hour ad libitum access to water), fear (immediately after the delivery of the conditioned tone 

cue) and stressed (immediately after 15 minutes in the restrained) demonstrators by gently 

brushing the cotton ball all over the body of the mice (especially including the nose, body and 

anogenital parts). Odors were taken from one single mouse, which was not reused. Odors were 

used only once and always freshly taken. 
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5.2.2. Place conditioning. 

The place conditioning paradigm was performed in a rectangular Plexiglas box (length, 42 cm; 

width, 21 cm; height, 21 cm) divided by a central partition into two chambers of equal size 

(21×21×21 cm) as previously described22. One compartment had black walls and a smooth 

Plexiglas floor, whereas the other one had vertical black and white striped (2 cm) walls and a 

slightly rough floor. During the test sessions, an aperture (4×4 cm) in the central partition 

allowed the mice to enter both sides of the apparatus, whereas during the conditioning sessions 

the individual compartments were closed off from each other. To measure time spent in each 

compartment a video tracking system (Anymaze) was used. The place conditioning experiment 

lasted 5 days and consisted of three phases: preconditioning test, conditioning phase and post 

conditioning test. On day 1, each mouse was allowed to freely explore the entire apparatus for 

20 min, and time spent in each of the two compartments was measured (preconditioning test). 

Conditioning sessions took place on days 2 and 4. Mice were divided in two groups: neutral 

and relief. Mice of the same home- cage were assigned to the same group. As for the same 

manipulation in the emotion recognition test, the relief group was assigned to receive a 23-hour 

water deprivation period before the two conditioning sessions on the day 2 and 4, when they 

were confined with their cage mates in one of the two compartments for 1 hour with free access 

to water and food (conditioning). Food in the home cage was available all time. Other than the 

two 23-hr deprivation periods, water was available all time. The neutral group was exposed to 

the same procedure but without any water deprivation periods. Post conditioning test was 

performed on day 5 in the same condition of preconditioning test. For each mouse, a 

conditioning score was calculated as the post conditioning time minus the preconditioning time 

(in seconds) spent in the conditioning compartment of the apparatus. 

 

5.2.3. Corticosterone assay  

Corticosterone concentration was analyzed from mice plasma. Immediately after the 

behavioral test, each mouse was sacrificed by decapitation. The blood was quickly collected in 

EDTA(0,5M)-coated tubes and centrifuged at 2500 rpm for 10 min; the supernatant obtained 

was stored at -20°C until the assay. The corticosterone concentration was detected by a 

commercially available Detect X® corticosterone enzyme-linked immunoassay (ELISA) kit 

(Arbor Assays, MI, USA; Cat N K014-H1) following the manufacturer's protocol. The level of 

corticosterone was expressed as fold changes compared to the control group average. 
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5.2.4. Stereotaxic Injections. 

Mice were anesthetized with 2% isoflurane in O2 by inhalation and mounted into a stereotaxic 

frame (Kopf) linked to a digital reader. Mice were maintained on 1.5 - 2% isoflurane during 

the surgery. Brain coordinates of injections were chosen in accordance to the mouse brain atlas 

(Paxinos and Watson, 1998): mPFC (AP: +1.9 mm; L:  0.25 mm; DV: -2.5 mm). Mice had 

been injected with AAV-GFAP-mCherry-egfp (control) or AAV-GFAP-mCherry-Cre virus 

and were allowed 1 month to recover and for the viral transgenes to adequately express before 

undergoing behavioral experiments. The injected volume virus was 60 nl volume. Only mice 

with appropriate placements were included in the reported data.  

 

5.2.5. Statistical analyses. 

Results are expressed as mean+standard error of the mean (s.e.m.) throughout. Each observer 

behavior towards the two different demonstrator mice were analyzed using a within-groups 

Repeated Measures ANOVA. The behaviors of the two demonstrators were analyzed by Two-

Way ANOVAs with emotional state as between-subjects factors, and the within-session 2-min 

consecutive intervals as a repeated measure within-subject factor. The behaviors of the 

observer mice in the one-on-one setting were analyzed by Two-Way ANOVAs with the 

emotional state of the demonstrator as between-subjects factors, and the within-session 2-min 

consecutive intervals as a repeated measure within-subject factor. Two or One-Way ANOVAs 

were used for social interactions when different genotypes and treatments were involved. 

Newman–Keul’s post-hoc test with multiple comparisons corrections was used for making 

comparisons within groups when the overall ANOVA showed statistically significant 

differences. The accepted value for significance was p<0.05. Statistical analyses were 

performed using Statistica 13.2 (StatSoft). 
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5.3. Results 

5.3.1. Mice are able to discriminate unfamiliar conspecifics based on negative-valence 

emotional states. 

We hypothesized that mice could discriminate altered emotional states of unfamiliar 

conspecifics, showing selective behavioral responses. To test this hypothesis, we placed an 

“observer” mouse in a cage containing two age- and sex-matched unfamiliar conspecifics 

(“demonstrators”), in a wire cup that allowed visual, tactile, auditory and olfactory 

communication (Fig. 1a). This setting focused the task on social approach initiated by the 

observer mouse, similar to emotion recognition tests performed in humans [2], avoiding 

potential confounders resulting from aggressive or sexual interactions. In the first condition, 

we measured observer’s ability to discriminate between a “Neutral” demonstrator and a 

demonstrator that was previously fear-conditioned to a tone cue, or stressed (“Fear”; Fig. 1b; 

“Stress; Fig 2b), enabling the induction of a negative-valence state upon the tone presentation 

or restrained condition. In particular, in order to compare observers’ behaviors before, during 

and after the induction of this negative emotion, we used a 3-consecutive 2-minute trials in 

which the tone cue was delivered only during the second 2-minute trial (Fig. 1b). As expected, 

freezing response, and associated reduced rearing, were present only in the “fear” demonstrator 

and exclusively during the 2-minute tone presentation (Fig. 1c). No other behavioral 

parameters differed between the two demonstrators during the whole 6-minute test session (Fig. 

1c). Thus, this design allowed to tightly link any detectable observers’ behavior with the 

triggered alteration of the emotional state in one of the demonstrators. We found that both male 

and female observers displayed increased sniffing towards the fear demonstrator compared to 

the neutral one (Fig. 1d-e). In particular, the discriminatory sniffing was observed specifically 

in the last 2-minute trial, thus only after the altered emotion was triggered, but not during the 

tone presentation when the fear demonstrator was freezing. Observer discrimination during the 

last trial did not correlate with the quantity of freezing showed by the fear demonstrator, but a 

significant inverse correlation was evident during the 2-minute tone presentation (Fig. 1f-g). 

This indicate that freezing observation inhibited the observer approach during trial 2, but did 

not influence successive discriminatory behaviors. In light of previous evidence [10], [11], 

[20], [22] we searched for signs of potential fear-transfer or emotional contagion from the 

demonstrator to the observer, and we did not detect any. In particular, observers showed no 

freezing behavior, escape attempts or stress-related behaviors, no changes in rearing and 
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grooming (Fig. 1h) during the whole test. Similarly, no altered behaviors were evident when 

the observer was exposed to two neutral demonstrators. However, as expected, observers did 

not discriminate between two neutral demonstrators (Fig. S2). Observers’ corticosterone levels 

did not differ when exposed to two neutral or to a neutral and a fear demonstrators (Fig. S3). 

 

 

 

Figure 1. Mouse emotion recognition task for negative emotions. (a) Schematic drawing of the task setting. 

(b) Timeline of Pre-Test and Test procedures to trigger in one of the demonstrator a “fear” emotional states during 

the middle of the test phase. (c) Observable behaviors displayed by the neutral and fear demonstrator mice during 

the 6 minutes of the emotion recognition test, divided by three consecutive 2-minute time bean. No demonstrator 

defecated or urinated during the whole test session. Emotion-by-time statistical interaction for sniffing (F2,36= 

2,72, p= 0.08), grooming (F2,36=1,07, p=0.35), rearing (F2,36=5,09, p=0.01), biting (F2,36=1,28, p=0.29), and 

freezing (F2,36=48,82, p<0.0001). *p<0.05, and ***p<0,0001 versus all other points. N=10 demonstrators per 

group. (d, e) Time (in seconds) spent sniffing demonstrators in neutral (grey bars) or tone-induced fearful states 
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(red bars) displayed by (d) male and (e) female observer mice during the 6 minutes of the emotion recognition 

test, divided by three consecutive 2-minute time bean. Conditioned tone delivered between 2-4 minutes of the test 

(last 2-min RM ANOVA for males F1,15=6,51, p=0.022, and females F1,11=10,98, p=0.006). *p<0.05 versus the 

exploration of the neutral demonstrator. N=8-15 observers per group. (f, g)  Correlation analyses between (in y 

axis) the time spent freezing by the fear-conditioned demonstrator and (in x axis) time spent by the observer mouse 

sniffing the fear-conditioned demonstrator (f) in the time 2-4 or (g) in the time 4-6 of the emotion recognition test. 

(h, ) Other observable behaviors displayed by the same observer mice during the 6 minutes of the emotion 

recognition test, divided by three consecutive 2-minute time bean. 

 

These findings suggest that an observer mouse can evaluate and discriminate unfamiliar 

conspecifics based on a negative emotional state. Thus, we then investigated whether 

discriminatory behaviors could be detected even when negative-valence states was induced 

before the task. In fact, we exposed observer to a neutral demonstrator and to another that was 

put in the restrainer 15- minutes before the task (“Stress”; Fig. 2a-b). As expected, increased 

grooming response was found the “stress” demonstrators during all the 3- consecutive trials 

(Fig. 2c). No other behavioral differences were noticed between the two demonstrators during 

the whole 6-minutes test session (Fig. 2c). We found that both male and female observers 

showed increased sniffing towards the stress demonstrator compared to the neutral one (Fig. 

2d-e). In particular, the discriminatory sniffing was observed specifically in the first 2-minute 

trial. Nevertheless, observer discrimination during the first trial did not correlate with the 

quantity of grooming showed by the fear demonstrator (Fig. 2f). Moreover, the observers did 

not show any other discriminatory behaviors such as changes in rearing and grooming patterns 

towards the demonstrators (Fig. 2g). 
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Figure 2. Mouse emotion recognition task for negative (stress) emotions. (a) Schematic drawing of the task 

setting. (b) Timeline of Pre-Test and Test procedures to induce in one of the demonstrator “stress” emotional 

states during the first phase of the task. (c) Behaviors showed by the neutral and stress demonstrator mice during 

the 6 minutes of the emotion recognition test, divided by three consecutive 2-minute time bean. No demonstrator 

defecated or urinated during the whole test session. Emotion-by-time statistical interaction for sniffing (0-2 min: 

F1,15= 115.77; p= 0.09), grooming (F1,15=74.04, p= 0.0002); 2-4 minutes: F1,15= 27.413, p=0.001; 4-6 minutes 

(F1.15=32.89 p=0.005), rearing 0-2 min: (F1,15=70.73, p=0.57), biting 0-2 min:  (F1,15= 4.17, p=0.11), and freezing. 

*p<0.05, and ***p<0,0005 versus all other points. N=16 demonstrators per group. (d, e) Time (in seconds) spent 

sniffing demonstrators in neutral (grey bars) or restrainer induced stressful state (blue bars) displayed by (d) male 

and (e) female observer mice during the 6 minutes of the emotion recognition test, divided by three consecutive 

2-minute time bean  (0- 2-min ANOVA for males F1,17= 19.64, p=0.0004, and females F1,12 = 5.76, p=0.03). 

*p<0.05 , ***p<0.0005 versus the exploration of the neutral demonstrator. N=13-18 observers per group. (f)  

Correlation analyses between (in y axis) the time spent grooming by the stress demonstrator and (in x axis) by the 

observer mouse sniffing the stress demonstrator (f) in the time 0-2 of the emotion recognition test. (g) Other 
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observable behaviors displayed by the same observer mice during the 6 minutes of the emotion recognition test, 

divided by three consecutive 2-minute time bean. 

 

5.3.2. Mice are able to discriminate unfamiliar conspecifics based on positive-valence 

emotional states. 

Emotion recognition paradigms to assess human social cognition include the presentation of 

positive-valence emotions [2]. Thus, we then investigated whether discriminatory behaviors 

could be detected even towards positive-valence states. Observers were exposed to a neutral 

demonstrator and to another that received a 1-hour ad libitum access to water following 23-

hour water deprivation (Fig. 3a-b). Water was selected as a rewarding factor to avoid odor-

related cues that could differentiate the two demonstrators. We assumed that the relief from the 

latter distressful situation would result in a positive-valence emotional state (“relief”). 

Supporting this, we found that the 1-hour ad libitum access to water resulted in a conditional 

place preference only in mice that experienced the 23-hour water deprivation, but not in mice 

in the ad libitum water condition (Fig. 3c-d). We found no measurable behavioral difference 

between relief and neutral demonstrators (Fig. 3e). However, observers of both sexes equally 

showed more sniffing towards the relief demonstrator compared to the neutral, only in the first 

two minutes of the task (Fig. 3f-g and Fig. S1). The observers did not show any other 

discriminatory behaviors such as changes in rearing and grooming patterns towards the 

demonstrators (Fig. 3h). Moreover, observers did not show freezing behavior, escape attempts 

or stress-related behaviors during the entire test session. Observers’ corticosterone levels did 

not differ when exposed to two neutral or to a neutral and a relief demonstrators (Fig. S2). 

These data indicate that mice are able to discriminate emotions with a positive valence in 

unfamiliar conspecifics. 
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Figure 3. Mouse emotion recognition task for positive emotions. (a) Schematic drawing of the task setting. (b) 

Timeline of Pre-Test and Test procedures to trigger in one of the demonstrator a “relief” emotional states during 

the test phase. (c) Timeline of the Place Conditioning procedures used to assess if the “relief” manipulation was 

associated with a negative-, neutral- or positive-valence affective state. (d) Place conditioning scores (in seconds) 

displayed by mice conditioned during a neutral (grey bar) or relief (yellow bar) emotional state. For each mouse, 

a place conditioning score was calculated as the post- minus the preconditioning time spent in the conditioning-

paired compartment of the apparatus. A positive score indicate place preference, a negative score a place aversion, 

0 no place conditioning. N=7 per group. *p<0.05 versus the neutral group. (e) Observable behaviors displayed by 

the neutral and relief demonstrator mice during the 6 minutes of the emotion recognition test, divided by three 

consecutive 2-minute time bean. No demonstrator defecated or urinated during the whole test session. No 

significant emotion-by-time statistical interaction was evident for sniffing, grooming, rearing, biting, and freezing. 

N=10 demonstrators per group. (f, g) Time (in seconds) spent sniffing demonstrators in neutral (grey bars) or 

water-induced relief state (yellow bars) displayed by (f) male and (g) female observer mice during the 6 minutes 

of the emotion recognition test, divided by three consecutive 2-minute time bean (first 2-min  RM ANOVA for 
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males F1,14=15.07, p=0.001, and females F1,14=14,60, p=0.001).  **p<0.05 versus the exploration of the neutral 

demonstrator. N=15 observers per group. (h,) Other observable behaviors displayed by the same observer mice 

during the 6 minutes of the emotion recognition test, divided by three consecutive 2-minute time bean. 

 

5.3.3. Emotion discrimination abilities are a stable trait, not overlapping with sociability. 

Human emotion recognition paradigms present strong test-retest reliability [23], which is a 

critical feature for longitudinal, drug response, psychobiological and clinical trials studies. In 

agreement with this human evidence, the ability to distinguish unfamiliar conspecifics based 

on emotional states remained unchanged when the same observer mouse was re-exposed to the 

same paradigm or even if the same mouse was tested in the two different paradigms (Fig. 4a). 

This indicated that emotion discrimination in mice is a stable trait, and that this setting is well-

suited to be used for mechanicist pharmacological manipulations. Human emotion recognition 

tasks measure the ability to label or discriminate emotions in others, which is distinct from 

sociability (defined as the time spent interacting with others). Thus, we also evaluated the 

sociability of a mouse towards a neutral, fear, relief or stress conspecific measuring their free 

social interaction in one-on-one setting (Fig. 4b). We found that the levels of social exploration 

of the test mouse toward the subjects in neutral, negative or positive emotional states did not 

differ (Fig. 4b). In contrast, a recently published protocol in rats showed equivalent social 

interaction data in one-on-one and one-on-two settings [20]. The discrepancy might rely on the 

scalability feature of emotions [23]. Indeed, exposing the demonstrator immediately after the 

shock (Fig. 4c and [20]), generated a general aversion during the whole test session (Fig. 4c). 

Taken together, these data suggest that the changes in exploratory behavior we found in our 

setting (Fig. 1-3) indicate a specific discriminatory behavior between two different emotional 

states rather than a generalized index of sociability. 
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Figure 4. Reliability, distinction from sociability, and sensory modalities implication in the mouse emotion 

recognition task. (a) Schematic drawing of the test-retest reliability validation and time (in seconds) spent by 

observer mice sniffing the two demonstrators in the fear and relief paradigms during their first and second 

exposure to the 6-minute emotion recognition test. Time spent sniffing neutral demonstrators are depicted in grey, 

fear in red and relief in yellow. RM ANOVA for the “fear” manipulation, last 2-minute session, Test: F1,13=6,10, 

p=0.028; Re-Test: F1,13=8,59, p=0.012. RM ANOVA for the “relief” manipulation, first 2-minute session, Test: 

F1,10=5,15, p=0.046; Re-Test: F1,10=22,88, p=0.0008. *p<0.05, and **p<0,005 versus the exploration of the neutral 

demonstrator. N=11-14 observers per group. (b) Schematic drawing of the one-on-one test setting and time (in 

seconds) spent by observer mice sniffing a single demonstrator in a neutral, fear, stress or relief state during a 6-

minute free interaction test. Time spent sniffing neutral demonstrators are depicted in grey, fear in red, stress in 

blue and relief in yellow. The tone for which only the fear demonstrator was fear-conditioned, as reported in the 
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methods section, was delivered between 2-4 minutes of the test. ANOVAs revealed only a time effect with normal 

decreased exploration throughout the 6 minutes (F2,56=132.01, p<0.0001). N=12 observers. (c) Schematic drawing 

of the task setting and timeline of Pre-Test and Test procedures to trigger in one of the demonstrator a “shock” 

emotional state. The bar graph show the time (in seconds) spent by the observer mice sniffing demonstrators in 

neutral (grey bars) or shocked emotional state (green bars) during the 6 minutes of the emotion recognition test, 

divided by three consecutive 2-minute time bean (RM ANOVA, 0-2 min: F1,6=2.40, p=0.17; 2-4-min: F1,6=5.43, 

p=0.05; 4-6 min: F1,6= 8.11, p= 0.02). *p<0.05 versus the exploration of the neutral demonstrator. N=7 observers. 

(d) Schematic drawing of the test setting performed in complete darkness, and time (in seconds) spent by observer 

mice sniffing neutral (grey), fear (red), stress (blue)  or relief demonstrators (yellow) during the 6 minutes of the 

negative and positive valence versions of the emotion recognition test. RM ANOVA for the fear manipulation, 2-

4 minutes: F1,8=5.63, p=0.04; 4-6 minutes: F1,8= 28.08, p= 0.0007; for the stress manipulation, 0-2 minutes: F1,5= 

10.43, p= 0.02 for the relief manipulation, 0-2 minutes: F1,5= 33.32, p= 0.002. **p< 0.005 and *p< 0.05 versus 

the exploration of the neutral demonstrator. N=6/9 observers per group. (e) Schematic drawing of the test setting 

to record USVs, mean number of USV calls per minute, and mean duration of USVs in milliseconds emitted by 

mice during the fear, stress and relief emotion recognition tasks. N=6 observers per group. (f) Schematic drawing 

of the test setting to record USVs, mean number of USV calls per minute, and mean duration of USVs in 

milliseconds emitted by a single demonstrator mouse in neutral, fear, stress or relief emotional state. N=6 

demonstrators per group. (g) Schematic drawing of the test setting performed only with demonstrators odors, and 

time (in seconds) spent by observer mice sniffing the odors from neutral (grey), fear (red), stress (blue) or relief 

demonstrators (in yellow) during the 6 minutes of the negative and positive valence versions of the emotion 

recognition test. RM ANOVA for the fear manipulation, 4-6 minutes: F1,6= 9.15, p= 0.02; for the stress 

manipulation,  0-2 min: F1,6= 33.64, p= 0.001; for relief manipulation, 0-2 min: F1.,20= 4.25, p= 0.05 *p<0.05 , 

**p< 0.005 versus the exploration of the neutral odor. N=7/10 observers per group. 

 

5.3.4. Visual and olfactory cues differently influence measures of emotion recognition. 

Human emotion discrimination paradigms mostly rely on visual detection of facial and body 

expressions. The visual system in rodents is developed enough to acquire information as 

evident from observational transfer of fear/pain paradigms[11], [25]. However, in our setting 

the ability of mice to discriminate others’ emotions might also implicate information conveyed 

by auditory and olfactory signals. Thus, we addressed the impact of visual, acoustic and 

olfactory stimuli in the ability of the observer mice to discriminate emotions in unfamiliar 

conspecifics. To test the value of visual cues, we performed the task in complete darkness (Fig. 

4d). Observer mice showed increased sniffing towards the negative and positive emotionally 

altered demonstrators compared to neutral demonstrators (Fig. 4d), as found with lights on 

(Fig. 1-2). However, the lack of visual information extended the discrimination period. In fact, 

in the “fear” condition, the observer anticipated the discriminatory behavior at the presentation 

of the tone, while the discriminatory behavior in the “relief” paradigm tended to last for the 
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whole session. This evidence suggests a potential inhibitory control of visual cues in mouse 

emotion discrimination. To investigate the role of auditory information, we recorded ultrasonic 

vocalizations (USVs) in the fear, stress and relief manipulations. We used two different 

conditions: the standard setting with two demonstrators and the observer (Fig. 4e), and the 

isolated demonstrators (Fig. 4f). We found very few vocalizations, and no differences among 

the different conditions or emotional states (Fig. 4e-f). In agreement with previous evidence 

[28], our data indicated that USVs in mice do not communicate negative or positive emotions, 

and that auditory information are not necessary for emotion discrimination. To test the impact 

of olfactory cues on observer performance, we used a modified version of our setting in which 

the observer was presented to cotton balls enriched with the odor from neutral, fear, stress or 

relief demonstrators (Fig. 4g), instead of the demonstrators themselves. However, the relief 

odor induced in the observer the same pattern of discriminatory behavior as that found in the 

presence of the relief demonstrator. This suggests that odor cues are involved in emotion 

recognition, but the impact on the observer’s discriminatory behavior is linked to the presence 

of the demonstrators. Overall, this set of data indicates distinct implications of both visual and 

olfactory social cues in the expression of mouse emotion discrimination. 

 

5.4.5. Astrocytic CB1 receptor in PFC modulates emotion recognition in mice. 

We then asked whether this newly identified social cognitive ability in mice might be mediated 

by conserved neurobiological mechanisms consistent with those implicated in humans. The 

endocannabinoid system plays a crucial role in facial emotion identification in human, in fact, 

deficits in both identification and discrimination of facial emotions in cannabis dependent 

patients have been demonstrated [15], [16]. However, the exact mechanisms by which 

endocannabinoid system is involved in social cognition are poorly understood. In order to 

understand the role of CB1 receptor in PFC in social cognition we decided to switch off the 

CB1 receptor selectively in astrocytes (Fig.4a). After the surgery, we left the animal recovery 

for one months and then they were tested in the classical habituation- dishabituation task and 

in the emotion recognition task. While CB1 floxed mice injected with AAV-GFAP-mCherry-

Cre did not show an impairment in sociability and social memory abilities in the classic 

habituation- dishabituation task, we found that CB1 floxed mice injected with AAV-GFAP-

mCherry-Cre spent significantly less time to interact with familiar mice during trial 2 and trial 

3 in the social habituation- dishabituation task (Fig.4b). 
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Figure 5. Astrocytic CB1 receptor in PFC modulates emotion recognition in mice. (a) Schematic drawing of viral 

vector used to infect PFC of CB1 floxed mice. (b)Time spent sniffing (in seconds) during the habituation- 

dishabituation task by CB1 floxed mice injected with control AAV-GFAP-mCherry- egfp (blue) or AVV-GFAP-

mCherry-Cre (red). t test for trial *p < 0.05 vs Gfap- egfp mice. (c-e) Time (in seconds) spent sniffing each wire 

cage containing two stimulus mice during the emotion recognition test, and shown separately for each emotion 

by CB1 floxed mice injected with control AAV-GFAP-m Cherry- egfp or AVV-GFAP-mCherry-Cre. Time spent 

sniffing stimulus mice with neutral emotional state are depicted in grey and represented by grey bars. Time spent 

sniffing stimulus mice with (c) tone- induced fearful (last 2-min) or restrainer- induced stress (first 2-min) or 

water-induced happy state (first 2-min) are depicted in red, blue and yellow respectively. RM ANOVA  Fear last 

2-min, CB1 floxed mice injected with AVV-GFAP- egfp F 1,3= 13.43 p= 0.0035, CB1 floxed mice injected by 

AVV- GFAP-mCherry- Cre F1,3= 39.24, p= 0.91; stress first 2-min CB1 floxed mice injected with AVV- GFAP- 

egfp: F1.6 =  34.699, p=  0.001; CB1 injected by AVV- GFAP-mCherry- Cre F1,11= 10.541, p= 0.007 ; relief first 

2-min, CB1 floxed mice injected with AVV- GFAP-mCherry- egfp: F1,5= 10.098, p= 0.025; CB1 injected by AVV- 

GFAP-mCherry- Cre F1,10= 0.026, p=  0.875. N=4-12 . observers per group. *p<0.05; **p<0.005 versus the 

exploration of the neutral demonstrator. 

 

Relevantly, in CB1 floxed mice injected with AAV-GFAP-mCherry-Cre we identified emotion 

recognition deficits in both the fear and relief conditions (Fig. 4c-e), but not in stress condition 

(Fig.4 d). These data unravel a clinically-relevant genetic variation which concurrently 

produced deficits in emotion recognition abilities. 



                                          

163 
 

5.4. Discussion 

The mouse emotion recognition test, inspired by human paradigms, extends the opportunity to 

study in mice the ability to discriminate negative and positive emotional states in conspecifics. 

We characterized the sensory modalities involved in emotion recognition and identified 

specific features, which differentiate this ability from basal sociability and other higher-order 

social processes such as emotional contagion. Furthermore, we provided initial proofs that the 

endocannabinoid system may modulate social cognition and emotion recognition in mice. The 

developed paradigm revealed detectable and measurable mice’ ability to discriminate 

unfamiliar conspecifics based on either negative or positive emotions. Notably, observers’ 

emotion discrimination was evident after (and not during) the induction of the altered emotional 

state in the demonstrators. This is in line with theories that emotional states are differentiated 

from simple reflex responses in their persistence after the disappearance of the triggering 

stimuli24. The manipulations performed in demonstrator mice were designed to alter emotional 

states in conditions of minimal physical distress. These features are distinct from previous 

settings designed to study the phenomena of observational transfer of pain/fear responses from 

a demonstrator to an observer[9]- [12], [16]. Indeed, transfer of fear/pain responses requires 

the direct observation of the demonstrator under pain or a foot shock physical challenge10. In 

agreement, no transfer of freezing, state-matching, escape behaviors or altered corticosterone 

levels were observed in our setting in the observer mice. This is also in line with the effort we 

made to design a paradigm which is centered on measuring innate social abilities in the 

observer mouse. In particular, the fact that the observers’ discriminatory behaviors were 

different depending on the intensity of manipulations (e.g. fear versus shock), on visual cues 

(e.g. seeing or not freezing), or on olfactory cues (e.g. with or without the demonstrator) suggest 

some internal social cognitive appreciation of the context by the observer. This is distinct from 

previous evidence on emotional contagion processes, such as observational transfer of fear/pain 

which implies automatic responses to negative-emotional states13 or from reported consolatory 

behaviors which require a strict reciprocal connection and familiarity between the observer and 

the demonstrator9-12. Altogether, this evidence indicates that our paradigm mimics what is 

commonly measured in humans with emotion recognition tasks and defined as “social 

cognition” [2]-[4]. 

To detect emotion discrimination abilities, observer mice were simultaneously exposed to 

different conspecifics in different emotional states. Intriguingly, observer mice showed similar 

increased sniffing towards demonstrators in negative- or positive-valence emotional states. The 
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study of the sensory modalities involved in the processing of negative and positive emotions, 

however, provided some insight on possibly different ethological meaning of the three 

paradigms. In particular, exposing an observer to a relief mouse, with or without visual cues, 

or only to the odor of a relief mouse led to a similar approaching behavior, possibly implying 

general “attracting” signals. In contrast, while the exposure of an observer to a fear or stressed 

mouse induced an approach behavior, isolated fear and stress odor cues as well as exposure to 

a shocked mouse determined an aversion. Rodents have been reported to actively escape from 

intense aversive stimuli[11], from aversive USVs calls induced by heavy distress [25], [27], 

and from odors emitted by a shocked, heavily stressed, defeated, or sick conspecific[28]- [30]. 

Thus, the different directions and tunable nature of the discriminatory behaviors we observed 

point to the possibility to study with this novel setting different social cognitive processes 

possibly related to “attract”, “alarm” or “help” social information. 

Social discriminatory data in our emotion recognition paradigm were not predictive of 

exploratory sociability as assessed in one-on-one. This distinction indicates a true 

discriminatory social behavior dissociated from general sociability or automatic responses. In 

contrast, previous research on higher-order social functions is based on a one-on-one setting 

[9], [11]  or reproduce similar exploratory results in a one-on-one and a one-or-two setting [20]. 

This provide further evidence that our paradigm addresses a different aspect of rodents’ social 

abilities, complementing previous available tools. The first direct application of the new 

paradigm developed led us to reveal the role of astrocytic CB1 receptor in PFC, an essential 

brain area mediating emotion recognition [4]. Increasing studies showed that massive use of 

cannabis produced an impairment in social cognition in human [14]- [16]. However, heavy 

cannabis users usually take several kind of drugs at the same time, including alcohol. For this 

reason, it could be difficult to understand the exact mechanisms regulating these functions. For 

the first time, we provided a proof that astrocytic CB1 receptor regulate emotion recognition 

in mice. In fact, we removed receptor exclusively in the prefrontal astrocytes showing that this 

procedure cause deficits. This important result could be used for feature research that aim to 

discover new pharmacological treatment to rescue social deficits in psychiatric disorders.  In 

conclusion, this set of findings provides a new method to address still scarcely explored aspects 

of rodents social cognition. This could support more translational approaches between rodent 

and human social cognitive studies, with relevance to circuits, genetics and neurochemical 

systems involved in different psychiatric disorders. 
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5.6 Supplementary figures 

5.6.1 Mice did not discriminate unfamiliar two neutral conspecifics.  

 

 

 

Supplementary figure 1. No discrimination towards two neutral demonstrators. Schematic drawing of the task 

setting, and time (in seconds) spent sniffing two demonstrators in neutral (grey bars) states displayed by observer 

mice during the 6 minutes of the emotion recognition test, divided into three consecutive 2-minute time beans. 

RM ANOVAs reveled no significant differences for the 0-2, 2-4, and 4-6 minutes test periods. 
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5.6.2 Corticosterone levels 

 

 

 

Supplementary figure 2. Corticosterone levels. (a) Blood corticosterone levels displayed by observer mice 

immediately after being tested in the emotional recognition task with two neutral demonstrators (grey bar), one 

neutral and one fear demonstrators (red bar), and one neutral and one relief demonstrators (yellow bar). Data are 

expressed as fold changes compared to observers exposed to two neutral demonstrators (One-Way ANOVA: 

F2,13=0.90, p=0.43). N=5/6 observers per group. (b) Blood corticosterone levels displayed by demonstrator mice 

immediately after a period of 24-hour water deprivation (grey bar) or after a period of 1-hour ad libitum access to 

water following 23-hour water deprivation (yellow bar). (T-test: df: 19; p=0.05). *p=0.05 versus water deprived 

mice. 
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Chapter 6  

 

6.1 General discussion and conclusions 

In the first part of my work, we demonstrated that genetic variations resulting in DAT 

hypofunction produced several core behavioral alterations analogous to those reported in 

patients with ADHD, but not schizophrenia. In order to get closer to the clinical setting, we 

specifically addressed two different time points: adolescence and adulthood. Indeed, 

adolescence is a critical transitional period of development from childhood to adulthood in 

which neurochemical and hormonal changes occur. In particular, higher order cognitive 

functions develop and mature during this time period.  We provided a modified 5CSRTT to 

investigate behavioral changes in adolescent mice. We demonstrated that even within the short 

duration of mice adolescence, it is possible to evaluate different attentional control aspects 

using our modified 5CSRTT paradigm. Moreover, thanks to this new protocol we were able to 

asses cognitive abnormalities in both adolescent and adult DAT +/- mice throughout the 

lifespan. Furthermore, consistent with DAT +/- phenotypes, patients with ADHD may show, 

starting from childhood, hyperactivity and cognitive impairments that persists during 

adulthood. Taken together, these results could have a potential translational validity concerning 

human studies, applicable to genetic and pharmacological studies in mouse models relevant to 

cognitive abnormalities and psychiatric disorders. 

In the second part of my studies, we started to characterize endocannabinoid system in COMT-

Val tg mice. We found that increased COMT activity enhanced aversive remote memories and 

starting from this evidence, we proposed that the effect of COMT on dopamine metabolism in 

this cognitive balance might help to understand in mechanistic terms the dysfunction of 

cognitive and emotional functions in nervous system diseases like PTSD and SZ. In order to 

investigate the role of endocannabinoid system in emotional processes we assessed a new 

method to investigate emotion recognition in mice. In addition, our results could be important 

for translational approaches between rodent and human social cognitive studies. In fact, thanks 

to “emotion recognition task” we provided a proof about the role of astrocytic CB1 receptor. 

This is the first step to find new pharmacological treatments to recover deficits in social 

cognition in psychiatric disorders. In conclusion, our findings provided new methods to study 

different aspects of cognition in mice, giving new translational approaches between rodents 

and humans that could be used to better investigate biological mechanisms and neuronal 

circuits implicate in psychiatric disorders.  
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