Università degli Studi di Padova

Padua Research Archive - Institutional Repository

52gMn production route for multi-modal imaging applications

Original Citation: Availability: This version is available at: 11577/3439189 since: 2022-03-25T17:49:33Z Publisher: Published version: DOI: Terms of use: Open Access This article is made available under terms and conditions applicable to Open Access Guidelines, as described at http://www.unipd.it/download/file/fid/55401 (Italian only)

^{52g}Mn production routes for multi-modal imaging applications

<u>F. Barbaro^{1,2}</u>, L. De Nardo^{1,3}, L. Meléndez-Alafort^{4,5}, L. Canton¹, M.P. Carante⁶, A. Colombi^{2,6}, A. Fontana⁶

¹ INFN, Sezione di Padova, Padova, Italy.

² Dipartimento di Fisica dell'Università di Pavia, Pavia, Italy.

³ Dipartimento di Fisica dell'Università di Padova, Padova, Italy.

⁴ Istituto Oncologico Veneto IOV IRCCS, Padova, Italy.

⁵ INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova), Italy.

⁶ INFN, Sezione di Pavia, Pavia, Italy

The radionuclide ^{52g}Mn is of significant medical interest for the innovative PET-MRI multi-modal imaging technique. In this study we compare its standard cyclotron production route ^{nat}Cr(p,x)^{52g}Mn with the alternative reaction ^{nat}V(a,x)^{52g}Mn. The theoretical calculations are performed by a suitable tuning of the nuclear level density parameters of the TALYS reaction code, with the aim to obtain a good agreement with the experimental cross sections. The production route with ^{nat}V results in a more favorable radionuclidic purity than with ^{nat}Cr. Dosimetric studies are performed to establish the time frame in which 52*g*Mn can be used with an acceptable dose to the patient.

Sezione 5

francesca.barbaro@pd.infn.it