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1. ABBREVIATIONS 

12/15-LO 1β/15-lipoxygenase  

15-S-HETE 15-(S)-Hydroxyeicosatetraeonic acid 

ADP Adenosine di-phosphate 

AGEs Advanced glycation end products  

ALDH Aldehyde dehydrogenase 

AMP Adenosine monophosphate 

AMPK Adenosine monophosphate-activated protein kinase  

ATF4 Activating-transcription factor 4  

ATF6 Activating-transcription factor 6 

ATP Adenosine triphosphate 

BiP Binding immunoglobulin protein 

CAMKII Calcium activates Caβ+/calmodulin-dependent protein kinase II 

CHOP C/EBP homologous protein  

ECM Extra-cellular matrix 

eIF2α Eukaryotic translation initiation factor βα  

ER Endoplasmic reticulum 

ERAD ER-associated degradation pathway 

ERK Extracellular signal regulated kinase  

ETC Electron transport chain 

FAD Flavin adenine dinucleotide  

FCCP Carbonyl cyanide-4-phenylhydrazone 

GADD34 Growth arrest and DNA damage γ4 

GFAD Glutamine-fructose-6-phosphate amidotransferase 

GLUT Glucose transporter 

GRP78 78 kDa glucose-regulated protein 

H2O2 Hydrogen peroxide  

HBSS Hank’s balanced salt solution  

HFpEF Heart failure with preserved ejection fraction  

HG High glucose 
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HLA Human leukocyte antigen 

HM High mannitol 

HNE Hydroxynonenal 

IMM Inner mitochondrial membrane 

I/R Ischemia/reperfusion  

IL-1β Interleukin-1ȕ 

IR Insulin receptor 

IRE-1 Inositol-requiring kinase-1  

IRS Insulin receptor substrates 

KO Knockout 

LV Left ventricle 

MAMs Mitochondria associated membranes  

MAO Monomaine oxidase 

MEM Minimum essential media  

Mn-SOD Manganese-superoxide dismutase 

MPTP Mitochondrial permeability transition pore 

MRI Magnetic resonance imaging 

mTOR Mammalian target of rapamycin 

MTR MitoTracker Red CM-HβXROS  

NADPH Nicotinamide adenine dinucleotide phosphate 

NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells  

NG Normal glucose 

NLRP3 Nucleotide-binding oligomerization domain-like receptors with pyrin 
domain 

NOS Nitric oxide synthase 

Nox NADPH oxidase 

Nrf2 Nuclear factor (erythroid-derived β)-like-β factor  

NRVMs Neonatal rat ventricular myocytes  

OGT O-GlcNAc transferase 

OMM Outer mitochondrial membrane 

PERK Protein kinase R-like ER kinase  

PI3K Phosphoinositide γ-kinase 
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PIP2 Phosphatidylinositol 4,5-bisphosphate  

PIP3 Phosphatidylinositol γ,4,5-trisphosphate 

PKB Protein kinase B 

PV Pressure volume 

RAGE Receptor for advance glycation end products 

ROS Reactive oxygen species 

S1P Sphingosine-1-phosphate  

SERCA Sarco/ER Caβ+ ATPase 

SGLT Sodium/glucose cotransporter family 

SIRT1 Sirtuin 1 

STZ Streptozotocin 

T1D Type 1 diabetes 

T2D Type β diabetes 

TAC Transverse aortic constriction 

TGF-β Transforming growth factor-ȕ 

TMRM Tetramethylrhodamine 

TNFα Tumor necrosis factor α  

TUDCA Tauroursodeoxycholic acid  

UPR  Unfolded protein response 

WT Wild type 

XBP1 X-box-binding protein 1 

XO Xanthine oxidase 

ΔΨm Mitochondrial membrane potential 
 

  



8 

 

2. SOMMARIO 

Le malattie cardiovascolari sono le principali cause di morte tra i pazienti diabetici. Tra 

i vari meccanismi che contribuiscono allo sviluppo della cardiomiopatia diabetica, lo stress 

ossidativo ha ricevuto un’attenzione clinica e sperimentale significativa. Tuttavia, l’uso di 

terapie antiossidanti in studi clinici su larga scala è risultato inefficace nel trattamento di 

questi disturbi patologici. Nel complesso, questi studi indicano una reale necessità di 

sviluppare strategie terapeutiche volte a inibire specifiche fonti di specie reattive dell'ossigeno 

(ROS). Lo scopo di questa tesi è stato quello di valutare il ruolo delle monoammino ossidasi 

(MAO), enzimi mitocondriali localizzati nella membrana esterna, nello stress ossidativo e 

nella disfunzione mitocondriale in cardiomiociti esposti ad elevate concentrazione di glucosio 

(in vitro) ed il loro contributo in vivo nei danni cardiaci in un modello di T1D. 

Inizialmente, abbiamo valutato la formazione di ROS e la funzione mitocondriale in 

cardiomiociti primari trattati con alti livelli di glucosio (HG) e/o interleuchina-1ȕ (IL-1ȕ), una 

citochina pro-infiammatoria presente in livelli elevati in pazienti diabetici. Le cellule esposte 

a questi stimoli mostrano un aumento della formazione di ROS, accompagnata da disfunzione 

mitocondriale, come determinato dal minore potenziale di membrana mitocondriale. La 

pargilina, un inibitore MAO, previene completamente queste alterazioni, suggerendo che HG 

e IL-1ȕ inducano la formazione di ROS e le disfunzione mitocondriale MAO-dipendente. 

 Inoltre, per valutare se l’attività della MAO sia coinvolta nell’interazione tra i mitocondri ed 

il reticolo endoplasmatico (ER) e se possa determinare l’attivazione del’Unfolded Protein 

Response (UPR), in questo modello abbiamo misurato marcatori di stress dell’ER. È 

interessante notare come, in cardiomiociti adulti, l'espressione della proteina transcription 

factor 4 (ATF4), della growth arrest and DNA damage-inducible protein (GADDγ4), 78 kDa 

glucose-regulated protein (GRP78) e i livelli di fosforillazione di IRE1α (inositol-requiring 

enzyme 1α) siano significativamente elevati, il che dimostra la chiara presenza di stress del 

reticolo (ER). La somministrazione di pargilina previene e blocca queste alterazioni, 

suggerendo che MAO sia coinvolto nel processo di UPR indotto dalla combinazione di alto 

glucosio e IL-1ȕ. Inoltre questi dati suggeriscono che, almeno in queste condizioni, la 

formazione di ROS MAO-dipendente è a monte dello stress del reticolo (ER) e svolge un 
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ruolo importante nell’interazione tra mitocondri, infiammazione del reticolo in cardiomiociti 

esposti a condizioni simulanti il diabete.  

Dato il coinvolgimento della MAO nel danno cellulare causato da HG e IL-1ȕ, abbiamo 

valutato il suo ruolo nella disfunzione cardiaca in modelli murini di diabete di tipo 1 (T1D) 

indotta da trattamento con streptozotocina (STZ). La rigidità diastolica, un indice di 

disfunzione diastolica, era significativamente aumentata nei topi STZ, mentre la frazione di 

eiezione, un indice di funzione sistolica, è rimasta invariata. Inoltre, i marcatori di stress 

ossidativo (4-idrossinonenale) e UPR (ATF4 e GADDγ4) sono risultati significativamente 

aumentati nei cuori STZ rispetto al controllo. È importante sottolineare come i topi diabetici 

trattati con la pargilina, inibitore specifico per MAO, abbiano mostrato una funzione 

diastolica preservata e l’assenza di stress ossidativo e dell’ ER. In accordo con studi 

precedenti dove si dimostra come la fibrosi è una delle caratteristiche principali nella 

cardiomiopatia diabetica, i cuori dei topi diabetici evidenziano una maggiore deposizione di 

collagene. È interessante notare che la somministrazione di pargilina ha impedito questa 

alterazione, suggerendo che l'attività MAO rivesta un ruolo cruciale nella progressione della 

fibrosi in questi animali. Al fine di determinare se la fibrosi MAO-mediata sia dovuta al 

rilascio di fattori pro-infiammatori e pro-fibrotici da mastociti cardiaci, abbiamo valutato la 

loro degranulazione. Abbiamo osservato che, la degranulazione dei mastociti è aumentata di 

quasi β volte nei cuori diabetici rispetto ai topi di controllo. L’inibizione MAO ha 

completamente bloccato l'attivazione dei mastociti nei topi diabetici. Questi dati indicano un 

ruolo completamente nuovo di questi flavoenzimi nell'attivare mastociti cardiaci alla base del 

rimodellamento della matrice extracellulare, nella fibrosi e in ultima analisi, nella disfunzione 

del ventricolo sinistro (LV) in T1D. 

Complessivamente, questi risultati dimostrano non solo come le MAO contribuisca alla 

formazione di ROS e alla disfunzione mitocondriale indotta da HG e dall’infiammazione, ma 

anche che queste specie reattive perturbano la funzione dell’ER e portano all’attivazione 

dell’UPR. Inoltre, abbiamo dimostrato come questi flavoenzimi svolgano un ruolo importante 

nella formazione di un circolo vizioso tra stress ossidativo e infiammazione, che è 

probabilmente la causa della fibrosi cardiaca e della disfunzione diastolica ventricolare 

sinistra nei topi diabetici. Gli inibitori MAO sono clinicamente disponibili e vengono 

utilizzati per il trattamento di diverse malattie neurologiche e neurodegenerative. I risultati del 
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nostro studio suggeriscono come l'inibizione MAO potrebbe essere una strategia terapeutica 

promettente anche per il trattamento delle complicazioni cardiovascolari nel diabete. 
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3. SUMMARY 

Cardiovascular disease is the leading cause of death among diabetic patients. Amongst 

various mechanisms proposed to contribute to the development of diabetic cardiomyopathy, 

oxidative stress has received significant experimental and clinical evaluation. However, large 

scale clinical trials using antioxidant therapies for the treatment of these pathological 

disorders have been ineffective. Collectively, these studies point towards a serious need to 

develop therapeutic strategies aimed at inhibiting specific sources of reactive oxygen species 

(ROS). In the present thesis, we investigated the role of monoamine oxidases (MAOs), outer 

mitochondrial enzymes that generate HβOβ, in oxidative stress and mitochondrial dysfunction 

in cardiomyocytes exposed to diabetic milieu and cardiac damage in type 1 diabetes (T1D) 

mice in vivo. 

Initially, we assessed ROS formation and mitochondrial function in primary 

cardiomyocytes treated with high glucose (HG) and/or interleukin-1ȕ (IL-1ȕ), a pro-

inflammatory cytokine found to be elevated in diabetic patients. Cells exposed to these 

stimuli displayed an increase in ROS formation which was accompanied by mitochondrial 

dysfunction as documented by decreased mitochondrial membrane potential. MAO inhibitor 

pargyline completely prevented these alterations, suggesting that HG and IL-1ȕ induce ROS 

formation and mitochondrial dysfunction in a MAO-dependent manner. Moreover, to study 

whether MAO activity is also involved in endoplasmic reticulum (ER)-mitochondria cross-

talk and activation of unfolded protein response (UPR), we assessed markers of ER stress in 

this model. Interestingly, in adult cardiomyocytes, protein expression of activating 

transcription factor 4 (ATF4), growth arrest and DNA damage-inducible protein (GADDγ4), 

78 kDa glucose-regulated protein (GRP78) and phosphorylation levels of IRE1α (inositol-

requiring enzyme 1α) were significantly upregulated, marking the clear occurrence of ER 

stress. Pargyline administration abrogated these changes, suggesting that MAO is involved in 

HG and IL-1ȕ induced UPR. Moreover, this suggests that, at least in this setting, MAO-

dependent ROS formation is upstream of ER stress, and play an important role in the cross-

talk between mitochondria, inflammation and ER stress occurring in cardiomyocytes exposed 

to diabetic milieu.  
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Given the involvement of MAO in HG and IL-1ȕ induced cell damage, we investigated 

its role in cardiac dysfunction in streptozotocin (STZ)-induced T1D. We found that diastolic 

stiffness, an index of diastolic dysfunction, was significantly increased in STZ mice, whereas 

ejection fraction, an index of systolic function, remained unchanged. Moreover, markers of 

oxidative stress (4-hydroxynonenal) and UPR (ATF4 and GADDγ4) were significantly 

increased in STZ hearts as compared to controls. Importantly, STZ mice treated with MAO 

inhibitor pargyline displayed preserved diastolic function and absence of ER and oxidative 

stress. In agreement with previous reports showing that fibrosis is one of the major features of 

diabetic cardiomyopathy, we found that hearts from STZ-treated mice displayed increased 

collagen deposition. Interestingly, pargyline administration prevented this alteration, 

suggesting that MAO activity plays a crucial role in the progression of fibrosis in these 

animals. To understand whether MAO-mediated fibrosis was due to release of pro-

inflammatory and pro-fibrotic factors from cardiac mast cells, we assessed mast cell 

degranulation. Indeed, mast cell degranulation increased by almost β-fold in STZ hearts as 

compared to control mice. MAO inhibition completely blocked the activation of mast cells in 

diabetic mice. These data indicate the novel role of these flavoenzymes in activating cardiac 

mast cell thereby leading to the remodeling of the extracellular matrix, fibrosis and 

ultimately, left ventricle (LV) dysfunction in T1D. 

Collectively, these results demonstrate that MAOs not only contribute to HG and 

inflammation induced mitochondrial ROS formation and dysfunction, but they also perturb 

ER function leading to the activation of UPR. Moreover, we showed that these flavoenzymes 

play a major role in the formation of a vicious cycle between oxidative stress and 

inflammation, which is likely the underlying cause of cardiac fibrosis and LV diastolic 

dysfunction in T1D mice. MAO inhibitors are clinically available and are being used for the 

treatment of several neurological and neurodegenerative diseases. Results from our study 

suggest that MAO inhibition could be a promising therapeutic strategy also for the treatment 

of cardiovascular complications in diabetes.  
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4. INTRODUCTION 

4.1 DIABETES 

Diabetes is a chronic condition associated with high levels of glucose in the blood. 

Pancreatic ȕ-cells release peptide hormone insulin in the blood stream to maintain the levels 

of glucose in the blood. This hormone triggers the uptake of glucose, fatty acids and amino 

acids into liver, adipose tissue and muscle and promotes the storage of these nutrients in the 

form of glycogen, lipids and proteins, respectively [1]. In diabetic or pre-diabetic conditions, 

either the pancreatic islets do not secrete insulin or the body cells become insulin resistant, 

leading to high blood sugar.  

The common symptoms of diabetes include  

 Hunger and fatigue 

 Frequent urination (polyuria) 

 Extreme hunger even after eating adequate amounts of food (type 1) 

 Slow healing 

 Weight loss (type 1), obesity (type β) 

 Blurry vision 

 Tingling in the hands and/or feet 

 Sometimes dry mouth, itchy skin 

The number of people affected by diabetes is rapidly increasing. As shown in Figure 1, 

according to IDF (International Diabetes Federation) one in eleven adults has diabetes and 

this ratio is expected to further increase in coming years. These statistics clearly indicate a 

need for the better understanding of the pathophysiology of this disease.  
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Figure 1. Global prevalence of diabetes. The figure shows the distribution of diabetic people in 
different geographical locations in the year β015 and expected numbers for the year β040. Source: 
International Diabetes Federation. IDF Diabetes Atlas, 7th edition, β015. 
http://ww.idf.org/diabetesatlas 

The two main types of diabetes are type 1 diabetes (T1D) and type β diabetes (TβD). A 

third type, gestational diabetes, develops only during pregnancy and is less common. 

T1D, previously known as ‘Insulin-dependent diabetes mellitus’, is a condition in 

which destruction of pancreatic ȕ-cells leads to insulin deficiency. It accounts for 5-10 

percent of all the cases of diabetes and it is known as an autoimmune disorder [β]. A recent 

study reviewed several environmental risk factors including intestinal microbiota, dietary 

factors and viral infections that might contribute to the development and progression of T1D 

[γ]. Besides environmental factors, the risk of developing T1D is increased by certain variants 
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of the HLA-DQA1, HLA-DQB1, and HLA-DRB1 genes [4]. These genes belong to the family 

of human leukocyte antigen (HLA) complex. HLA complex genes encode for glycoproteins 

that are found on cell surface and help immune system to distinguish body's own proteins 

from proteins made by foreign invaders such as viruses and bacteria. In T1D, the immune 

system loses the ability to distinguish between these proteins and thus, destroys body’s own 

pancreatic ȕ-cells. So far, daily insulin injection and islet transplantation have been 

demonstrated to effectively maintain glucose homeostasis in T1D patients [5, 6]. However, 

islet transplantation is very limited due to the scarcity of donated islets. In this regard, several 

groups have made progress towards the production of ȕ-cells in vitro from pluripotent stem 

cells or somatic cell types including α cells, pancreatic exocrine cells, gastrointestinal stem 

cells, fibroblasts and hepatocytes [5, 7, 8].  

TβD is a metabolic disorder characterized by hyperglycemia, insulin resistance, and 

relative insulin deficiency [9]. Genes and environment together are important determinants of 

insulin resistance and ȕ-cell dysfunction in TβD. Several gene loci including PPARG have 

been associated with obesity, insulin resistance and ȕ-cell function [10]. Apart from increased 

caloric intake and decreased energy expenditure, other factors, such as dietary fat 

(particularly saturated fat), ageing, ethnicity and microbiome, seem to be important in TβD 

development [10, 11]. Several oral and injectable drugs, such as metformin, miglitol, 

alogliptin and pramlintide, are used for the treatment of TβD [10, 1β], but these treatments are 

not able to maintain ȕ-cell function. Therefore, new therapeutic targets, including AMP-

activated protein kinase (AMPK), sirtuin 1 (SIRT1), fibroblast growth factor β1, forkhead 

box protein O1 and interleukin-1ȕ (IL-1ȕ) receptor antagonist have been proposed for the 

treatment of TβD [10].  

4.1.1 Glucose uptake  

Glucose is an important fuel for all the tissues in the body and normal glucose 

metabolism is vital for health. Glucose transport is mediated by two families of glucose 

transporters, facilitative glucose transporter family (GLUT) and Na+/glucose cotransporter 

family (SGLT) [1γ]. SGLT transports glucose into the cell using the electrochemical gradient 

of Na+ [1γ]. GLUT and SGLT families consist of thirteen members (GLUT1-1β and H+-myo-
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inositol transporter) and six members (SGLT1-6), respectively [14]. Expression of different 

isoforms of both the GLUT and SGLT families has been shown to be cell type specific [14]. 

Among all the reported glucose transporters, GLUT1-4 have been extensively studied. 

GLUT1 is known as the most ubiquitously distributed isoform in a variety of human tissues; 

in particular, it is shown to be expressed in endothelial and epithelial-like barriers of the 

brain, eye, peripheral nerve, placenta and lactating mammary gland [15]. Besides glucose, 

other substrates of GLUT1 include galactose, mannose and glucosamine [15]. GLUTβ has a 

low affinity for glucose and a high affinity for glucosamine and its expression mainly occurs 

in the kidney and intestinal absorptive epithelial cells where it is located in the basolateral 

membrane [14]. Besides kidney, GLUTβ is also expressed in liver, pancreas and brain. In 

hepatocytes it is involved in the release of gluconeogenesis-synthesized glucose into the 

blood. GLUTγ transports galactose, mannose, maltose, xylose and dehydroascorbic acid in 

addition to glucose [14]. Although GLUTγ mRNA is present in several human tissues, 

GLUTγ protein is mainly detected in the brain and it is therefore considered as neuro-specific 

glucose transporter [15]. GLUT4 is the insulin-sensitive transporter of this family and its role 

has been extensively studied in diabetes. Its expression is highest in insulin-sensitive tissues 

including brown and white adipose tissue, skeletal and cardiac muscle [15]. It has a similar 

affinity for glucose as GLUT1 (Km of 5-6 mM), and can also transport glucosamine and 

ascorbic acid [14, 15].  

4.1.1.1 Glucose transporter type 4 translocation and insulin signaling 

Inside the cell GLUT4 continuously undergoes a process known as regulated recycling, 

in which endocytosis, sorting into specialized vesicles, exocytosis, tethering, docking and 

fusion of the protein are tightly regulated [16]. In the absence of insulin, most of the GLUT4 

is stored in the cytoplasmic vesicles within the cell [16]. Both insulin and exercise acutely 

stimulate GLUT4 recruitment to the cell surface of muscle and adipose cells, but the signaling 

mechanisms initiated by these two physiological stimuli are different. Insulin stimulates the 

translocation of GLUT4 to the plasma membrane via targeted exocytosis and at the same time 

attenuates the endocytosis process [17]. Thus, the amount of glucose that is transported into 

adipose and muscle cells depends upon GLUT4 density on the plasma membrane and the 

amount of time that the transporter is maintained at that site.  
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Insulin activates the insulin receptor (IR) tyrosine kinase which phosphorylates and 

recruits different substrates, such as proteins from family of insulin receptor substrates (IRS) 

(Figure β) [18]. Phosphorylated IRS display binding sites for numerous signaling partners, 

among which the recruitment of phosphoinositide γ-kinase (PIγK) has a major role in insulin 

signaling. PIγK catalyzes the phosphorylation of phosphatidylinositol 4,5-bisphosphate 

(PIPβ) to phosphatidylinositol γ,4,5-trisphosphate (PIPγ) [19]. PIPγ is dephosphorylated and 

converted back to PIPβ by phosphatase and tensin homolog (PTEN) [19]. Dysfunction of 

either PIγK or PTEN has been linked to various diseases including cancer and diabetes [19]. 

PIPγ triggers the activation of the protein kinase B (PKB), also known as Akt, through the 

actions of two intermediate protein kinases, PDK 1 (pyruvate dehydrogenase lipoamide 

kinase isozyme 1) and rapamycin-insensitive companion of mammalian target of rapamycin 

(Rictor/mTOR) [18]. Aktβ isoform appears to control GLUT4 trafficking in adipose and 

muscle cells and glucose output regulated by insulin signaling in liver [15]. Although several 

Aktβ substrates responsible for insulin-dependent effects on GLUT4 trafficking machinery 

have been identified, only a few have been extensively studied. These include the GTPase 

activating protein AS160, which contains multiple Aktβ phosphorylation sites and catalyzes 

the inactivation of Rab proteins βA, 8A, 10 and 14 in vitro [15, 16]. Rab proteins are known 

to be critical organizers of intracellular membrane trafficking. However, AS160 knockdown 

partially inhibits insulin-dependent translocation of GLUT4 suggesting that unknown Aktβ 

substrate proteins must contribute to overall GLUT4 regulation by insulin [15, 16]. 
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Figure 2. Insulin- and muscle contraction-mediated GLUT4 translocation. Insulin signaling 
through PIγK and muscle contraction through activation of AMPK mediate GLUT4 translocation to 
the cellular plasma membrane. AMPK activity is regulated by both increased AMP/ATP ratio and 
elevated intracellular calcium concentrations. Both PIγK and AMPK pathways result in the 
phosphorylation Aktβ substrate AS160 that mediates GLUT4 translocation. GLUT4: glucose 
transporter type 4, PIγK: phosphoinositide γ-kinase, AMPK: adenosine monophosphate-activated 
protein kinase, ATP: adenosine tri-phosphate. From Mackenzie et al., β014 [β0].  

In addition to insulin-mediated pathway, AS160 phosphorylation can be induced by 

muscle contraction through a PIγK independent mechanism (Figure β). Contraction-induced 

AS160 phosphorylation is mediated by adenosine monophosphate-activated protein kinase 

(AMPK), providing a potential intersection for insulin and exercise-mediated signaling to 

GLUT4 [16]. Muscle contraction results in a transient increase in Caβ+ levels along with an 

increase in AMP/adenosine tri-phosphate (ATP) ratio leading to AMPK activation. Calcium 

activates Caβ+/calmodulin-dependent protein kinase II (CAMKII), which then contributes to 

AMPK activation through upstream kinases CaMKKα and ȕ, at least in cultured cell lines and 

ex vivo brain slices [15, 16, β1]. Muscle glycogen appears to be a negative regulator of 

AMPK activity [β1]. It has been demonstrated that in rat skeletal muscle glycogen suppresses 
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AMPK signaling, thus providing a negative feedback mechanism for AMPK-mediated 

glucose uptake [ββ]. However, downstream targets of this protein kinase involved in GLUT4 

translocation are not yet known. Nevertheless, it has been demonstrated that simultaneous 

inhibition of AMPK and Akt activity is not able to completely prevent GLUT4 translocation 

to plasma membrane, suggesting that additional signals are involved in insulin-induced 

glucose uptake. 

Besides insulin and muscle contraction, several other stress signals are also known to 

enhance glucose uptake in skeletal muscle. For instance, hypoxia, inhibitors of glycolysis and 

electron transport, and uncoupling of oxidative phosphorylation increase glucose uptake at 

least partially through AMPK and modulation of the AMP/ATP ratio (Figure β) [16, βγ].  

4.1.2 Complications associated with diabetes 

Chronic hyperglycemia is a life threatening risk factor that results in organ and tissue 

damage in the long term. One of the acute metabolic complications associated with mortality 

includes diabetic ketoacidosis occurring mainly in T1D [βγ]. The long-term vascular 

complications associated with diabetes are divided into two groups, (i) microvascular disease, 

resulting from the damage of small blood vessels and (ii) macrovascular disease, resulting 

from the damage of the arteries. Hyperglycemia-associated vascular complications are the 

major source of morbidity and mortality in both T1D and TβD. Thus, it is important for 

researchers and physicians to understand the relationship between diabetes and vascular 

disease because the prevalence of diabetes continues to increase all over the world. 

Microvascular complications include retinopathy, nephropathy and neuropathy. The major 

macrovascular complications include coronary artery disease, peripheral arterial disease, and 

stroke. Moreover, there is also myocardial dysfunction that is one of the deadliest 

complications associated with diabetes [βγ]. Other chronic complications of diabetes include 

depression, dementia and sexual dysfunction. 
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4.2 DIABETIC CARDIOMYOPATHY 

Diabetic cardiomyopathy is a result of diabetes-induced changes in the structure and 

function of the heart and it is diagnosed only if there is cardiac dysfunction in the absence of 

coronary artery disease [β4]. Cardiovascular disease is the leading cause of mortality and 

morbidity in diabetic patients [β4]. Thus, a better understanding of its pathophysiology is 

necessary for early diagnosis and the development of treatment strategies.  

Previous studies using magnetic resonance imaging (MRI) demonstrated that 

hyperglycemia and insulin resistance are associated with an increase in left ventricle (LV) 

mass and LV-mass to LV end-diastolic volume ratio [β5, β6]. It has been frequently observed 

that, in diabetic patients, diastolic dysfunction occurs at early stages and precedes systolic 

dysfunction [β5, β7, β8]. LV diastolic dysfunction is detected in almost 6γ% of the diabetic 

patients [β9]. Diastole is the part of cardiac cycle that occurs when the ventricles are relaxing 

and filling with blood. During diastole, the pressure in the ventricles drops and mitral valve 

opens causing the accumulated blood from left atrium to flow into the ventricle [β8]. 

Impairment in this process, such as increase in ventricle stiffness and decrease in ventricle 

relaxation, leads to diastolic dysfunction [γ0, γ1]. Thus, the inability of the ventricle to accept 

an adequate amount of blood at normal diastolic pressure leads to diastolic heart failure. 

When this occurs in the absence of systolic dysfunction (Figure γ), it is commonly referred to 

as heart failure with preserved ejection fraction (HFpEF) [γβ].  

Diastolic heart failure can also be accompanied by systolic heart failure (Figure γ). 

Systole is a period of cardiac cycle when the ventricles contract. During systole, pressure in 

the ventricles increases and when it exceeds the pressure in the atria, tricuspid and mitral 

vales close [γγ]. The pressure in the ventricles keeps increasing and reaches its maximum 

until the pulmonary and aortic valves open in the ejection phase [γ4]. In this phase, blood 

flows through pulmonary artery and aorta from right and left ventricles, respectively. Thus, 

ejection fraction is the measurement of the pumping efficiency of the heart, i.e. the fraction of 

blood that is ejected by the ventricles with each cardiac cycle [γ5]. Normal ejection fraction 

ranges from 50 to 70%, while values below 40% indicate presence of systolic heart failure. 
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Figure 3. PV loop showing diastolic and systolic function. The figure shows PV loops for diastolic 
heart failure (A), systolic heart failure (B) and combination of diastolic and systolic heart failure (C) 
as compared to normal. PV: pressure-volume. From Zile et al., β00β [γ6] 

At an early stage, diabetic cardiomyopathy manifests as diastolic dysfunction with 

preserved ejection fraction [γ7]. In some patients, diastolic dysfunction may progress to 

compromised systolic function resulting in heart failure with reduced ejection fraction [γ7]. 

The mortality rate is 15-β0% in diabetic patients with systolic dysfunction [γ8]. Although the 

exact mechanism of diabetes associated LV dysfunction is not known, it appears that 

hyperglycemia initiates a series of adaptive and maladaptive processes contributing to the 

development of heart failure. 
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4.2.1 Hyperglycemia-induced pathways associated with vascular complications 

in diabetes 

Diabetic cardiomyopathy is a multi-factorial disease. Several mechanisms, including 

oxidative stress, inflammation, endoplasmic reticulum (ER) stress, metabolic derangements, 

abnormalities in ion homeostasis, alterations in structural proteins, apoptosis and fibrosis have 

been proposed to trigger diabetes-induced cardiac damage (Figure 4) [γ9]. Amongst these 

various mechanisms proposed, an increase in reactive oxygen species (ROS) formation has 

gained significant experimental and clinical evaluation [γ7, 40]. Hyperglycemia can increase 

ROS production by several pathways, including polyol pathway, formation of advanced 

glycation end products (AGEs), activation of protein kinase C (PKC), glucose auto-oxidation, 

and activation of the 1β/15-lipoxygenases (1β/15-LO) pathway [γ9]. 

 

Figure 4. Mechanisms involved in the development of diabetic cardiomyopathy. High glucose in 
T1DM and TβDM results in PKC activation, glucose auto-oxidation, AGE formation, abnormal 
calcium handling and ROS formation. Activation of these pathways leads to energy depletion, 
increased fibrosis, apoptosis, hypertrophy and impaired LV contractile function and relaxation. AGEs: 
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advanced glycation end-products, ASK1: apoptotic signal regulating kinase-1, FAO: fatty acid 
oxidation, GLUT-4: glucose transporter-4, GPCR: G protein coupled receptor, HBP: hexosamine 
biosynthesis pathway, IGF-1: insulin-like growth factor-1, LV: left ventricle, JNK: c-Jun N-terminal 
kinase, NADPH: nicotinamide adenine dinucleotide phosphate, NCX: sodium–calcium exchanger, O-
GlcNAc: O-linked ȕ-N-acetylglucosamine, PIγK: phosphoinositide-γ kinase, PKCȕ: protein kinase C-
ȕ, RTK: receptor tyrosine kinase, RyR: ryanodine receptor, SERCA: sarcoplasmic reticulum Caβ+ 
ATPase, T1DM: type 1 diabetes mellitus, TβDM: type β diabetes mellitus. From Huynh et al., β014 
[41] 

4.2.1.1 Polyol pathway 

Two major enzymes are involved in the polyol pathway, namely aldose reductase and 

sorbitol dehydrogenase (Figure 5). Under euglycemia, aldose reductase converts reactive 

aldehydes into alcohols, thus protecting the cell from toxic effects of aldehydes [4β]. 

Although the affinity of this enzyme for glucose is very low in normal conditions, in 

hyperglycemic conditions aldose reductase converts high amounts of glucose into sorbitol. In 

the next step, sorbitol is converted to fructose by sorbitol dehydrogenase with the production 

of NADH, potentially leading to increased ROS via NADH oxidase as shown in Figure 5 [4γ, 

44]. Furthermore, fructose-γ-phosphokinase can directly phosphorylate fructose resulting in 

the formation of a potent glycating agent, fructose-γ-phosphate. Fructose-γ-phosphate can 

subsequently result in the formation of γ-deoxyglucosone, a key intermediate known to 

accelerate the formation of AGEs [45]. 
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Figure 5. Role of aldose reductase in hyperglycemia-induced ROS formation. Under 
hyperglycemia, aldose reductase converts glucose into sorbitol at the expense of NADPH. In the next 
step, sorbitol is converted into fructose by sorbitol dehydrogenase resulting in the production of 
NADH, potentially leading to increased ROS via NADH oxidase. NADPH: nicotinamide adenine 
dinucleotide phosphate, ROS: reactive oxygen species. From Tang et al, β01β [44] 

A recent study demonstrated that inhibition of aldose reductase with tephrosia purpurea 

prevented the development of diabetic cataract in STZ-induced T1D rats [46]. Moroever, 

overexpression of human-aldose reductase leads to an increase in atherosclerosis in mice [47], 

suggesting a pathological role of this pathway in hyperglycemic conditions. Aldose reductase 

inhibitors have been used clinically for several years to prevent diabetic neuropathy; 

nevertheless, they have not been successful in preventing the occurrence of other diabetic 

complications. 

4.2.1.2 Formation of advanced glycation end products  

Glycation refers to the covalent bonding between proteins/lipids and sugars such as 

glucose. Glycation causes molecular rearrangements of proteins or lipids that lead to the 

generation of AGEs [48]. Several mechanisms through which AGEs are known to contribute 

to the pathogenesis of diabetic cardiomyopathy include formation of cross-links between key 

molecules in the extra-cellular matrix (ECM), permanently altering cellular structure and 

binding of AGEs to receptor for advance glycation end products (RAGE) [49]. In presence of 

high glucose, RAGE activation can directly induce NADPH oxidase (Nox) leading to 

increased ROS production [50]. Considering the detrimental effects of AGEs, several studies 

have tried to diminish their effects either by directly inhibiting AGEs or by preventing the 

interaction of AGEs with their receptors RAGE [51, 5β]. Clinical trials employing these 

inhibitors have been unsuccessful so far and further investigation is necessary in order to 

better understand the formation and function of these products. 

4.2.1.3 Activation of protein kinase C 

Glucose regulates intracellular levels of diacylglycerol, which is known to activate 

several PKC isoforms [4γ]. Besides diacylglycerol, polyol pathway, HβOβ and AGEs 

formation are also known to activate these kinases [5γ, 54]. PKC phosphorylates protein 

serine and threonine residues and is involved in receptor desensitization, modulation of 
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membrane structure events, transcription regulation, immune response and cell growth 

regulation [55]. Multiple studies have shown that PKCȕ-mediated p66Shc phosphorylation is 

required for its mitochondrial translocation, hydrogen peroxide (HβOβ) formation and cell 

death [56, 57]. Besides translocation of p66Shc, PKCȕ is also involved in the activation of 

Noxβ leading to an increase in ROS formation in cardiomyocytes exposed to high glucose 

[58]. These studies indicate towards the important role of PKC-mediated phosphorylation in 

pathophysiology of diabetic cardiomyopathy. 

4.2.1.4 Glucose auto-oxidation 

Hyperglycemia induces the activity of glutamine-fructose-6-phosphate 

amidotransferase (GFAD) in hexosamines synthesis pathway. GFAD activity has been 

associated with increased transcription of transforming growth factor-ȕ1 (TGF-ȕ1), a 

cytokine known to play a role the development of cardiac fibrosis in hyperglycemic 

conditions [59]. The exact mechanism of hexosamine pathway- or glucose auto-oxidation-

induced ROS production is not very well known. However, it is proposed that this pathway 

might be involved in the activation of PKC and thereby induce cellular changes as described 

above (Figure 4).  

4.2.1.5 Activation of the 12/15-Lipoxygenases pathway 

Activation of 1β/15 LO pathway is associated with ROS production in pathological 

conditions and hyperglycemia has been shown to increase the activity of these enzymes [60]. 

1β/15 LO inserts the molecular oxygen at 1β/15 carbon of polyunsaturated acids, such as 

arachidonic acid and linoleic acid, leading to the formation of oxidized lipids [61]. Studies 

have shown that LO and its products mediate growth factor effects in several cells types, 

including fibroblasts and mesangial cells [60, 61]. 15-(S)-hydroxyeicosatetraeonic acid (15-S-

HETE), a metabolized product of arachidonic acid, was found to be elevated in the urine of 

diabetic patients [6β]. It has also been shown that incubation of endothelial cells with 15-(S)-

HETE led to an increase in HβOβ production via xanthine oxidase (XO) in a dose dependent 

manner [6γ]. This study further illustrated that genetic ablation of 1β/15 LO gene completely 

blocks XO activity and prevents endothelial dysfunction in mice kept on high fat diet [6γ]. 

Even though LO inhibitor masoprocol improves insulin sensitivity in a rat model of type β 

diabetes [64], so far no clinical trials have been conducted.  
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4.3  ROS: A COMMON DENOMINATOR OF HYPERGLYCEMIA-INDUCED 

CHANGES 

Although several potential mechanisms underlying diabetic cardiomyopathy have been 

addressed in the past decade, oxidative stress is widely considered as one of the major causes 

for the pathogenesis of the disease [65-67]. Current consensus is that hyperglycemia- and 

hyperlipidemia-induced ROS formation is detrimental for cardiac function and leads to 

cardiac damage in both T1D and TβD [68]. Indeed, increased ROS production is well 

documented in multiple tissues in both animal and human diabetic subjects [γ9, 69]. Thus, it 

becomes important to understand the sources of ROS and their mechanism inside the cell.  

There are several sources of ROS in human tissue, including, Nox, XO, uncoupled 

nitric oxide synthase (NOS), arachidonic acid and mitochondria, but they vary in their 

pathological role and their importance depends on the disease and the organ.  

4.3.1 NADPH oxidase 

Nox is a family of membrane-bound enzyme complex composed of plasma membrane 

spanning cytochrome b558 (pββphox, gp91phox) and cytosolic components (rac, p47phox, 

p67phox, p40phox) as shown in Figure 6 [70]. It becomes activated following exposure to 

foreign microorganisms and promotes translocation of its cytosolic components to the plasma 

membrane to form an active NADPH complex that allows transfer of electrons to molecular 

oxygen to generate superoxide [70]. The reaction catalyzed by this enzyme is following: 

NADPH + βOβ → NADP + βOβ
- + H+  

Nox specifically generate ROS as their primary function and have emerged as the major 

cellular ROS sources involved in several pathological conditions (Figure 6) [71]. Up to date, 

seven members of Nox family have been identified, namely Nox1–5, dual oxidase 1 (Duox 1) 

and Duox β [7β]. Among these, two Nox isoforms exist in the heart, Noxβ and Nox4. 

Although Noxβ is located in the cell membrane, Nox4 is localized in perinuclear ER and/or 

mitochondria [7γ, 74]. 
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Figure 6. Nox in the heart. Nox is a membrane-bound enzyme complex. It has two subunits: 
cytochrome b558, composed of gp91phox and pββphox, and multidomain regulatory subunits, 
composed of p40phox, p47phox and p67phox. When the enzyme is inactive, multidomain regulatory 
subunits exist in the cytosol as a complex whereas upon stimulation, p47phox undergoes 
phosphorylation, and the entire multidomain regulatory complex subsequently translocates to the 
membrane and associates with cytochrome b558 to form the active oxidase. The active complex uses 
NADPH as a substrate and transfers electron to oxygen leading to the production of superoxide. Nox: 
Nicotinamide adenine dinucleotide phosphate oxidases. From Kayama et al., β015 [7β] 

Several studies have reported the contribution of Nox to hyperglycemia-induced ROS 

production [75, 76]. It is well documented that the activity of Nox is increased in 

cardiomyocytes exposed to high glucose and in the heart of diabetic mice [75, 77]. Pathways 

reported to link glucose-induced ROS production via Nox include SGLT1, PKCȕ and 

calcium/calmodulin dependent kinase II (CaMKII) [58]. A recent study identified that 

glucose transport through SGLT1 is responsible for Noxβ activation and subsequent increased 

ROS production in cardiac myocytes exposed to high glucose [78]. This study further 

demonstrated that oxidative pentose phosphate pathway is required to provide Noxβ with the 

substrate NADPH and to produce ROS [78]. PKC is involved in high glucose-induced 
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activation of Noxβ through a positive feedback mechanism involving the RhoA/Rho kinase 

pathway [58]. Indeed, PKCȕ inhibition by LYγγγ5γ1 in cardiomyocytes treated with high 

glucose for 1β h prevented Noxβ dependent ROS production [58]. However, how PKCȕ is 

activated by high glucose levels was not addressed in these studies and thus warrants further 

investigation. Cellular influx of Caβ+ led to increased CaMKII phosphorylation along with 

upregulation of Nox components, p47phox and p67phox, and increased ROS formation in 

STZ model of T1D and neonatal cardiomyocytes exposed to high glucose [79]. Interestingly, 

CaMKII inhibitor attenuated these events indicating the involvement of this kinase in Nox-

induced ROS formation. However, although the role of Nox is confirmed in cardiovascular 

complications occurring in diabetes so far no clinical trials have been conducted with the 

inhibitors of these enzymes.  

4.3.2 Xanthine oxidase 

XO is a cytoplasmic enzyme that catalyzes the oxidation of hypoxanthine to xanthine 

and further converts xanthine to uric acid [80]. It uses Oβ as electron acceptor during this 

process and thus produces superoxide and HβOβ [80]. Hypoxanthine and XO have been shown 

to induce cell damage under ischemia-reperfusion conditions by reacting with Oβ and 

producing large amounts of superoxide and HβOβ. Moreover, inhibition of XO by allopurinol 

prevented cardiac damage in pacing-induced heart failure in dogs [81]. Rajesh et al. 

documented the role of XO in the development of fibrosis and oxidative stress in STZ-

induced T1D mice [8β]. Although XO inhibition has been proven beneficial in animal studies, 

it cannot be used to treat cardiovascular complications in patients, since human heart does not 

contain detectable amount of these enzymes [8γ, 84]. 

4.3.3 Mitochondrial sources of ROS 

Mitochondrial ROS formation and dysfunction have been implicated in the 

pathogenesis of diabetes and its complications [γ7, γ9, 58]. Indeed, cardiac mitochondria 

from diabetic patients were reported to be dysfunctional, displaying increased mitochondrial 

HβOβ emission, impaired mitochondrial respiratory capacity and increased levels of 

hydroxynonenal- (HNE) modified proteins [85]. It is proposed that a combination of several 
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mechanisms leads to mitochondrial dysfunction in diabetic hearts, including fatty acid-

induced mitochondrial uncoupling, increased ROS formation, mitochondrial proteome 

remodeling, impaired mitochondrial calcium handling and altered mitochondrial biogenesis. 

These changes might lead to compromised cardiac ATP generation and ultimately to cardiac 

dysfunction [γ7, γ9]. Altered mitochondrial function is depicted to oppose insulin signaling in 

two ways: first, by interfering with oxidation of fatty acyl-CoA and consequent accumulation 

of intracellular lipid and diacylglycerol, and second, through generation of ROS. Both 

processes lead to IRS-1 serine phosphorylation and interference with insulin signal 

transduction. Reduction in mitochondrial ROS formation either by overexpressing manganese 

superoxide dismutase (Mn-SOD) or by AICAR (5-aminoimidazole-4-carboxamide 

ribonucleoside), prevented mitochondrial damage and many hyperglycemia-induced events, 

both in vitro and in vivo [86, 87]. Electron transport chain (ETC), p66Shc and monoamine 

oxidase (MAO) are the major sources of ROS formation in mitochondria. 

4.3.3.1 Electron transport chain  

ETC is by far the major site of ATP production in mitochondria inside any given cell, 

and especially in cardiomyocytes (more than 90%). At the inner mitochondrial membrane 

(IMM), complexes of the ETC transfer electrons from NADH and FADHβ (Flavin adenine 

dinucleotide) to oxygen (Oβ), which is reduced to water (HβO). Transfer of electrons powers 

the movement of protons (H+) into the intermembrane space [88], generating an 

electrochemical proton gradient that drives the synthesis of ATP by the ATP synthase (Figure 

7) [88]. 
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Figure 7. Sites of superoxide production in the ETC. This scheme shows the proposed 
physiological (highlighted with light green/yellow boxes) and pathophysiological (highlighted with 
pink boxes) roles of superoxide generation by each respiratory electron transport complex and the 
proton motive force (Δp). Superoxide generation by complexes I, III, and flavoprotein of complex II 
mediates I/R injury and increases the pro-oxidant activity of aconitase, thus further augmenting I/R 
injury. PKA-mediated phosphorylation of complex IV under ischemic conditions predisposes complex 
IV to generate superoxide and augment I/R injury. ETC: electron transport chain, I/R: 
ischemia/reperfusion injury, PKA: protein kinase A. From Chen et al., β014 [89] 

A minor fraction of electron (about 0.1%) can leak from the ETC and cause the partial 

reduction of Oβ into superoxide. This process occurs at the level of first three complexes 

where flavins or quinones are able to act as single electron donors, especially under 

conditions that decrease the flow of electrons toward complex IV, where Oβ is fully reduced 

to HβO [90, 91]. Notably, ROS formation can also result from reverse electron flow. A recent 

study supported this concept by demonstrating that succinate accumulated during ischemia in 

vivo is oxidized during reperfusion, resulting in large ROS formation that is likely 

attributable to the reverse electron flow through complex I [9β]. Superoxide that does not 

cross IMM is rapidly dismutated into the freely permeable HβOβ by Mn-SOD [9γ]. It has been 
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shown that Mn-SOD deficient mice develop ROS toxicity and dilated cardiomyopathy [58]. 

Moreover, increased catalase expression or inhibition of ETC complexes I and II with 

rotenone and thenoyltrifluoroacetone, respectively, attenuate ROS formation in 

cardiomyocytes from animals with T1D and TβD [94, 95]. These studies underline the 

importance of ETC in this pathology and mitochondria as their source and target. 

Hyperglycemia-induced ROS formation is not observed in rho zero (ρ0) endothelial 

cells in which mitochondrial DNA is depleted and ETC is not functional [96]. A recent study 

demonstrated that hyperglycemia alters the function of respiratory chain in mitochondria via 

dysregulation of O-GlcNAcylation [97]. O-GlcNAc transferase (OGT) enzyme is located in 

the IMM and interacts with complex IV of the respiratory chain in normal conditions. In 

STZ-treated rats this enzyme is mislocalized to mitochondrial matrix and the interaction of 

OGT and complex IV is impaired leading to the loss of complex IV activity and reduced 

mitochondrial membrane potential [97]. Collectively, these studies show that mitochondria 

are important sites for ROS generation in hyperglycemic conditions and can further amplify 

this ROS formation by activating other sources of ROS inside the cell. 

Although ETC is considered as an important source of ROS formation, Nox and MAO 

are able to generate 10-fold higher levels of ROS in human atrial myocardium [98]. In 

addition to this, it is not possible to inhibit the respiratory chain in humans without 

jeopardizing a wide array of vital functions. Thus, inhibition of the ETC complexes cannot be 

considered as potential therapeutic strategy for the treatment of this multifactorial disease. 

4.3.3.2 p66Shc 

p66Shc is another important source of ROS in mitochondria. p66Shc is a ubiquitously 

expressed cytosolic adaptor protein [99, 100] and, along with p46Shc and p5βShc, is encoded by 

the ShcA gene. p46Shc and p5βShc are ubiquitous isoforms, derived from the same mRNA 

through alternative start sites [99, 101]. In contrast, p66Shc expression is restricted to certain 

cell types and stimulatory conditions through epigenetic modifications of its distinct 

promoter. Cells and mice lacking p66Shc show reduction in markers of oxidative stress [101]. 

Under stress conditions, this enzyme translocates to mitochondria and catalyzes the electron 

transfer from cytochrome c to oxygen, resulting in the formation of HβOβ [99, 100].  
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p66Shc is readily detected in neonatal cardiomyocytes, but it is barely detectable in the 

adult ventricle [99]. However, its expression is increased in a dog model of dilated 

cardiomyopathy [65]. Moreover, genetic ablation of p66Shc resulted in reduced hypertrophy 

and apoptosis induced by angiotensin II in vivo [99, 101]. Besides heart failure, p66Shc -

induced oxidative stress is also believed to exacerbate ischemia/reperfusion injury [100, 101]. 

Indeed, lack of this enzyme led to a significant decrease in oxidative stress in both ischemic 

muscles and isolated endothelial cells subjected to simulated ischemia [99].  

As described above, p66Shc can be phosphorylated at Ser-γ6 residue by PKCȕ, and this 

is required for its translocation to mitochondria. Importantly, hyperglycemia can directly 

activate PKC thus leading to increased ROS formation in diabetic conditions [10β]. 

Moreover, lack of p66Shc was shown to protect against diabetic cardiomyopathy by preventing 

the senescence of cardiac progenitor cells, a process that hampers cardiac and vascular cell 

turnover [10γ]. 

Genetic ablation of p66Shc has been proven protective in many pathologies, including 

cardiovascular complications. Unfortunately, there are no drugs available that can inhibit the 

ROS forming activity of p66Shc.  

 

  



γγ 

 

4.4 MONOAMINE OXIDASES 

4.4.1 Structural properties 

MAOs are flavoenzymes located at the outer mitochondrial membrane (OMM) and catalyze 

the oxidative deamination of catecholamines and biogenic amines resulting in the formation 

of HβOβ, aldehydes and ammonia [90]. These flavoenzymes exist in two isoforms, MAO-A 

and MAO-B (Figure 8) and are distinguished by different substrate specificity and their 

sensitivity to inhibitors. The sequence homology of the two isoforms is 70% and both the 

sequences contain the penta-peptide Ser-Gly-Gly-Cys-Tyr, in which the obligatory cofactor 

flavin adenine dinucleotide (FAD) is covalently bound to cysteine residue, namely Cys406 in 

MAO-A and Cysγ97 in MAO-B [90]. Human MAO-A (hMAO-A) is known to exist in 

monomeric form whereas rat MAO-A (rMAO-A) and human MAO-B (hMAO-B) exist as 

dimers [104]. hMAO-A contains a single hydrophobic cavity of ≈550 Å at its active site, 

which is smaller than hMAO-B (≈700 Åγ) but larger than that of rat MAO-A (≈450 Åγ) 

[104]. This study also proposed that the mutation Glu-151→Lys is responsible for hMAO-A 

transition from dimeric to monomeric form. Genes encoding for MAO-A and MAO-B are 

located side-by-side on the short arm of X-chromosome and have 9β% similarity in their 

sequence. In both the genes, exon 1β encodes for the covalent FAD binding site and is the 

most conserved exon, showing 94% amino acid identity between MAO-A and B [105].  

       

 

 

 

Figure 8. Ribbon structures of two isoforms of MAO. The covalent flavin moiety is shown in a ball 
and stick model in yellow. The flavin binding domain is in blue, the substrate domain in red and the 
membrane binding domain in green. MAO: monoamine oxidase; From Edmondson et al., β004 [105]. 
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4.4.2 Physiological roles 

MAO catalyzes the oxidative deamination of monoamines according to the following 

reaction: 

RCHβNR′R′′ + Oβ + HβO → RCHO + NR′R′′ + HβOβ 

This reaction is known to take place in two steps. In the first step, the cofactor FAD is 

reduced to yield an aldehyde intermediate and ammonia, while in the second step the oxidized 

form of the prosthetic group is restored with the concomitant production of HβOβ [90]:  

RCHβNHβ + MAO → RCHO + NHγ + MAO-reduced 

MAO-reduced +Oβ → MAO + HβOβ 

Aldehyde dehydrogenase (ALDH) immediately metabolizes the reactive aldehyde into 

the corresponding acid.  

The main physiological role of MAO is the degradation of endogenous monoamine 

neurotransmitters and dietary amines, such as tyramine, that, if not properly catabolized, may 

cause hypertensive crises [106]. MAO-A preferentially catalyzes the oxidative deamination of 

norepinephrine and serotonin (5-HT) whereas MAO-B has major affinity for 

phenylethylamine and benzylamine [90]. Thus, MAOs are important to control the turnover 

of these amines [90]. Moreover, in peripheral tissues, MAO prevents the entry of biogenic 

amines in the blood by catabolizing them [107]. Likewise, it has been shown that MAO also 

acts as a metabolic barrier in the microvessels and blood-brain barrier by preventing the 

entrance of false and potentially toxic neurotransmitters [107]. 

Shih et al. have shown that MAO-A and MAO-B knockout (KO) mice display 

differences in neurotransmitter metabolism and behavior [108]. They observed that MAO-A 

KO mice had elevated levels of serotonin, norepinephrine and dopamine in the brain and 

manifest aggressive behaviour. On the other hand, no aggression was observed in MAO-B 

KO mice that displayed only increased levels of phenylethylamine. Both MAO-A and MAO-

B KO mice show increased reactivity to stress. It has been also demonstrated that MAO is 

important during development [108]. Studies in MAO-A KO mice also confirmed that 
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maintenance of serotonin levels is important for the normal development of thalamocortical 

axons and the aggregation of neurons to form barrels. 

4.4.3 Tissue distribution and localization 

It is known that both MAO-A and MAO-B are tightly associated with the OMM 

However, a small portion of these isoforms is also associated with microsomal fractions 

[109]. MAO-A is expressed before MAO-B during development, but levels of the latter are 

known to increase remarkably in the brain after birth [104]. MAO is present in most 

mammalian tissues but the proportion of two isoforms varies from tissue to tissue [104]. The 

distribution of MAO in various tissues of different species has been investigated by use of 

specific inhibitors, immunohistochemistry, enzyme autoradiography and in situ hybridization 

[109]. In the brain, MAO-A has been prevalently found in noradrenergic neurons whereas 

MAO-B has been detected in serotoninergic and histaminergic neurons and in glial cells [90]. 

Regarding peripheral tissues, mainly MAO-B has been found in liver, platelets and kidney 

while MAO-A was present in placenta, liver, intestine and thyroid gland. Human heart 

contains predominantly MAO-A, but MAO-B is also present [90]. In mouse cardiomyocytes, 

MAO-B is the predominant isoform while, in contrast, rat cardiomyocytes express more 

MAO-A [90].  

4.4.4 Monoamine oxidases inhibitors as therapeutic agents 

MAOs catalyze the oxidative deamination and the byproducts of this reaction include 

several chemical species with neurotoxic potential, such as HβOβ, ammonia and aldehydes 

[110]. In the past years, it has been well documented that these flavoenzymes contribute to 

mitochondrial dysfunction and neurodegenerative diseases in both patients and animal models 

[111]. Moreover, MAOs are also involved in numerous other pathologies, in particular 

neuronal and psychiatric disorders [108, 111]. Development of MAO inhibitors started 

receiving attention with the serendipitous finding of antidepressant effects in patients treated 

with iproniazid, a hydrazine-based anti-tubercular agent structurally similar to isoniazid 

[104]. Up to date several MAO inhibitors have been developed and can be classified in three 

groups as stated below: 
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 Irreversible and non-selective inhibitors, such as phenelzine, pargyline and 

tranylcypromine; 

 Irreversible and selective inhibitors, such as selegiline for MAO-B and clorgyline 

for MAO-A; 

 Reversible and selective MAO inhibitors, such as moclobemide for MAO-A and 

safinamide for MAO-B. 

MAO inhibitors have been used for decades for the treatment of depression. The 

antidepressant properties result from selective MAO-A inhibition in the central nervous 

system, which leads to increased brain levels of dopamine, noradrenalin and serotonin [11β]. 

Some of the non-selective irreversible inhibitors, such as phenelzine and tranylcypromine, are 

still in clinical use along with the reversible MAO inhibitors moclobemide, befloxatone, 

toloxatone and safinamide [104]. As levels of MAO-B are increased in patients with 

Parkinson’s disease, MAO-B inhibitor selegiline has been used as a dopamine sparing agent 

[111, 11γ]. Some side-effects of these drugs include liver toxicity, hypertensive crises and 

haemorrhage [90]. Hydrazine-derived inhibitors were highly associated with liver toxicity, 

but this side-effect was avoided with the development of non-hydrazine compounds [104]. 

Irreversible MAO-A inhibitors may cause “cheese effect” which even led to death in some 

cases [104, 106]. This side-effect occurs when tyramine and other sympathomimetic amines 

ingested with food are not degraded in the intestines. They are therefore able to enter the 

circulation and potentiate sympathetic cardiovascular activity by triggering the release of 

noradrenaline [11γ]. Although this side-effect represents a major drawback, this problem was 

resolved by using reversible MAO-A inhibitors such as brofaromine, caroxazone, 

moclobemide, toloxatone and minaprine. In addition to these, safinamide, a reversible MAO-

B inhibitor, was recently licensed by EMA (Emergency medical assistant licensing board) for 

the treatment of Parkinson’s disease in combination with L-DOPA or with other anti-

Parkinson drugs in mid-to advanced-stage fluctuating patients [114].  

4.4.5 Monoamine oxidases in cardiovascular diseases 

MAO has been extensively studied in the brain but it is only recent that the role of these 

flavoenzymes is emerging also in relation to cardiac pathophysiology. Parini’s group was the 

first to demonstrate that MAO-A is an important source of ROS in the myocardium [115]. 
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They showed that MAO-A induced ROS formation is able to trigger signaling pathways that 

are receptor-independent and lead to cell proliferation and hypertrophy or apoptosis. 

Moreover, another study from the same group demonstrated that incubation of 

cardiomyocytes with serotonin led to an increase in ROS production and hypertrophy that 

involved the activation of extracellular signal regulated kinase (ERK) 1/β in a MAO-A 

dependent manner [115, 116]. It was further demonstrated that hypertrophy induced by 

serotonin requires both MAO-A activity and receptor-mediated effects [115]. Indeed, 

serotonin receptor-mediated effect is required for the phosphorylation of ERK1/β whereas 

MAO-generated HβOβ is necessary for the translocation of ERK into nucleus [115]. 

Kaludercic et al. provided an important evidence of the contribution of MAO-A in 

maladaptive remodeling and myocardial dysfunction in hearts subjected to hemodynamic 

stress [117]. They further showed that triggering MAO-A activity leads to increased ROS 

formation, oxidative stress, mitochondrial dysfunction, caspase activation and apoptosis in 

cardiomyocytes (Figure 9). In this study, clorgyline was used as a MAO inhibitor and no side-

effects were observed in control mice. Moreover, the effect of genetic deletion of MAO-A in 

cardiovascular setting was further characterized using mice expressing a dominant-negative 

MAO-A (MAOneo). After 9 weeks of transverse aortic constriction (TAC) wild type (WT) 

hearts displayed greater chamber dilation and impairment in LV function accompanied by 

increased cardiac fibrosis whereas MAOneo mice showed a complete protection against TAC-

induced cardiac remodeling. In contrast, another study showed that MAO-A KO mice 

performed worse after aortic banding [118]. This discrepancy could be due to different 

genetic models used in these studies or due to differences in the severity of the aortic banding 

used to induce hypertrophy and heart failure. 
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Figure 9. MAO-induced ROS formation and LV dysfunction in the heart. Stress stimuli such as 
pressure-overload can trigger hyperadrenergic activation leading to increased availability of 
catecholamines for MAO-dependent degradation. Consequently, increased HβOβ formation can 
directly influence LV remodeling and myocardial function, but it may also target mitochondria 
resulting in permeability transition pore opening and ROS induced ROS release. Moreover, other 
products of these flavoenzymes, such as aldehydes and ammonia, may also participate and exacerbate 
these processes. LV: left ventricle, ROS: reactive oxygen species, MAO: monoamine oxidase. From 
Kaludercic et al., β011 [110] 

A genetic expression profile study reported that MAO-A expression is increased in 

pathological cardiac hypertrophy and heart failure in rats, but not in physiological 

hypertrophy induced by exercise [119]. The role of MAO-B has also been documented in 

pressure overload induced heart failure [1β0]. In these mice, MAO-B−/− mice displayed 

reduced cardiac oxidative stress, LV remodeling and apoptosis. Furthermore, absence of 

MAO-B activity in those hearts completely prevented LV dilation/pump failure [1β0]. MAO-
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dependent aldehyde production is also shown to be detrimental for mitochondrial function 

suggesting that these flavoenzymes not only act as ROS sources but are also producing toxic 

aldehydes that are injurious for heart [1β0-1ββ]. On the other hand, catecholamine cycling 

was also improved in mice lacking MAO-A or MAO-B activity. Indeed, both norepinephrine 

and dopamine degradation were increased in failing hearts due to MAO activation, and its 

inhibition led to improved neuronal pools and availability of these catecholamines [117, 1β0]. 

Studies employing genetically modified mice show that MAO-A-/- and MAO-B-/- 

display a slight reduction in contractility/relaxation, although fractional shortening and 

ejection fraction remain unchanged when compared to WT mice [117, 1β0]. In contrast, 

another study demonstrated that MAO-A-/- mice display cardiomyocyte hypertrophy and LV 

dilation at baseline, although LV dysfunction was absent and no hemodynamic alterations 

were observed [118]. Since MAO deletion in these mice is global and constitutive, it is likely 

that changes in function and morphology at baseline are due to excessive catecholamine 

build-up from birth. This issue could be better evaluated using conditional cardiomyocyte-

specific MAO-A−/− or -B−/− mice. Notably, pharmacological MAO inhibition does not have 

any effects on basal cardiac structure or function. 

Several studies have also investigated the role of MAO in ischemia/reperfusion (I/R) 

injury [1βγ, 1β4]. MAO inhibition with both clorgyline and pargyline remarkably reduced 

infarct size in an in vivo rat model of I/R injury [1βγ]. Another independent study also 

showed that pargyline completely prevented I/R induced injury in isolated Langendorff 

perfused mouse hearts [101]. It has been also demonstrated that MAO-A generated ROS in 

I/R is responsible for sphingosine kinase inhibition, ceramide accumulation and S1P 

(sphingosine-1-phosphate) degradation in cardiac myocytes thereby leading to mitochondria-

mediated apoptosis [1β5].  

The significant role of MAO in generating ROS formation and cardiac dysfunction is 

also supported by in vitro and in vivo models of MAO overexpression [1β6]. Cardiomyocyte 

specific overexpression of MAO-A in mice led to dramatic loss of cardiomyocytes (around 

50%), increased fibrosis and ventricular failure [1β6]. Moreover, these hearts displayed p5γ 

accumulation and reduced levels of PGC-1α (peroxisome proliferator-activated receptor-Ȗ 

coactivator-1α), a master regulator of mitochondrial biogenesis. These changes were 

accompanied by excessive HβOβ formation, reduced ATP levels and mitochondrial 
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dysfunction [1β6]. Recent work has linked these flavoenzymes with lysosomal dysfunction 

both in vitro and in vivo [1β7]. MAO-A dependent ROS generation blocked autophagic flux 

with accumulation of LCγII, p6β, and ubiquitylated proteins, leading to mitochondrial fission 

and cardiomyocyte necrosis. These effects are likely due to MAO-A induced inhibition of 

nuclear translocation of TFEB (transcription factor-EB), a master regulator of autophagy and 

lysosome biogenesis [1β7]. 

The involvement and the pivotal role of MAO in cardiovascular injury highlighted by 

these studies prompt the question whether MAOs could play a role in the oxidative stress and 

cardiac dysfunction triggered by hyperglycemia. Moreover, the fact that these enzymes can 

be targeted pharmacologically makes it tempting to hypothesize that their inhibition might 

represent an attractive therapy for the treatment of diabetic cardiomyopathy. This concept is 

supported by recent work showing the protective efficacy of MAO inhibition on diabetes-

induced cardiac dysfunction [1β8]. However, the mechanisms linking MAO activity with 

mitochondrial dysfunction, ROS formation, inflammation and adverse remodeling are still far 

from being elucidated. In addition, it remains an open question whether MAO-dependent 

ROS generation might affect the crucial cross-talk between mitochondria and ER that occurs 

in diabetic conditions and leads to the impairment in ER homeostasis. 
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4.5 ENDOPLASMIC RETICULUM STRESS  

ER is a network of tubules in the cytoplasm essential for the synthesis, folding and 

processing of secretory and transmembrane proteins. In order to maintain ER homeostasis, a 

balance between ER protein load and folding capacity of this organelle must be achieved. 

However, under several physiological and pathological conditions this balance is disrupted, 

resulting in the accumulation of mis/unfolded proteins, a condition known as ER stress. 

Under these conditions, ER activates a signaling network to maintain its homeostasis known 

as unfolded protein response (UPR). When the UPR is unable to re-establish the balance 

between protein load and folding capacity, it causes cell death and dysfunction [1β9]. In the 

past decade, ER stress has been associated with several cardiovascular complications and 

neurodegeneration [1γ0].  

4.5.1 Unfolded protein response 

The UPR maintains ER homeostasis with the following three distinct functions: (i) 

attenuation of protein translation to reduce ER protein load, (ii) upregulation of molecular 

chaperones to increase the folding capacity of ER, and (iii) activation of ER-associated 

protein degradation (ERAD) pathway to remove the accumulated misfolded proteins and 

prevents them from forming toxic protein aggregates [1β9]. The UPR activates signaling 

pathways through three major transmembrane proteins: protein kinase R-like ER kinase 

(PERK), the inositol-requiring kinase-1 (IRE-1) and the activating transcription factor 6 

(ATF6) (Figure 10) [1β9]. In normal conditions, ER chaperone binding immunoglobulin 

protein (BiP), also known as 78 kDa glucose-regulated protein (GRP78), is bound to the ER 

luminal domain of PERK, IRE1 and ATF6 thereby keeping them inactive [1γ1]. However, 

accumulation of misfolded proteins causes BiP/GRP78 to dissociate from these three ER 

sensors and translocate to misfolded protein, leading to the activation of all three UPR 

branches.  
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4.5.1.1 Protein kinase R-like ER kinase  

When GRP78 dissociates from PERK, it allows this transmembrane protein to dimerize 

facilitating its trans-autophosphorylation. PERK is then activated and phosphorylates the 

eukaryotic translation initiation factor βα (eIFβα) on serine 51 (Figure 10) [1γβ]. This 

phosphorylation event downregulates cap- or eIFβα- dependent translation, thus attenuating 

global mRNA translation [1γγ]. This helps ER to reduce its protein load and favors cell 

survival. When general translation is inhibited, PERK/eIFβα stimulates translation of specific 

proteins, including activating-transcription factor 4 (ATF4), C/EBP homologous protein 

(CHOP) and growth arrest and DNA damage γ4 (GADDγ4) [1β9]. It has been also 

demonstrated that PERK can phosphorylate nuclear factor (erythroid-derived β)-like-β factor 

(Nrfβ), causing it to translocate to the nucleus and activate the expression of anti-oxidant 

genes in response to oxidative stress [1γ4]. Therefore, this UPR signaling pathway acts to 

preserve redox balance during ER stress through activation of ATF4 and Nrfβ. 

4.5.1.2 Inositol-requiring kinase-1 

The IRE1 exists in two isoforms, namely IRE1α and IRE1ȕ, but UPR is mainly 

governed by the IRE1α isoform. This enzyme functions as both kinase and endoribonuclease 

[1γ0, 1γ5]. Like PERK, IRE1α also dimerizes and undergoes trans-autophosphorylation, 

which activates its endoribonuclease activity. Upon activation, IRE1α endoribonuclease 

splices β6-nucleotide intron from X-box-binding protein 1 (XBP1) mRNA, yielding an 

activated spliced form of this protein (Figure 10). The spliced XBP1 translocates to the 

nucleus and binds to the promoter region of ERSEs (ER stress response elements) activating 

the transcription of several ER chaperones and proteins involved in the ERAD machinery 

[1γ6]. IRE1α branch is also known to recruit the ASK1 (apoptosis signal-regulating kinase 1), 

caspase-1β and TRAFβ (tumor necrosis factor receptor-associated factor β) and thus activates 

JNK (jun N terminal kinase) pathway [1γ7]. Therefore, this branch of UPR regulates 

chaperone induction and ERAD pathway. 

4.5.1.3 Activating transcription factor 6 

In mammals, ATF6 protein exists in two isoforms, namely ATF6α and ATF6ȕ. This 

transcription factor has golgi localization sequence [1γ8]. In normal conditions, ATF6 is 
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resident in the ER via an interaction with GRP78, but under ER stress conditions this 

interaction is disrupted causing ATF6 to translocate to golgi (Figure 10) [1γ8]. Once there, 

ATP6 is cleaved, first by site 1 protease and then in the intramembrane region by SβP, 

yielding a 50 kDa ATF6 protein which then translocates to the nucleus [1γ5]. ATF6 acts a 

transcriptional activator of genes involved in ERAD, lipid biosynthesis, protein folding and 

ER expansion [1γ8].  

 

Figure 10. UPR pathway in the ER. ER stress activates three branches of UPR, namely ATF6, 
PERK and IRE1α. ATF6 translocates to golgi upon activation, where it is cleaved by proteases and 
yields a 50 kDa fragment, which then translocates to the nucleus and activates several ER stress genes. 
PERK and IRE1α undergo trans-autophosphorylation and activate the downstream eIFβα and XBP1 
pathways, respectively. This leads to the inhibition of global translation but activates specific genes 
including ATF4 and CHOP to maintain the ER homeostasis. UPR: unfolded protein response, ER: 
endoplasmic reticulum, ATF6: activation transcription factor 6, PERK: protein kinase R-like ER 
kinase, IRE1α: inositol-requiring kinase-1α, eIFβα: eukaryotic translation initiation factor βα. From 
Inagi et al., β014 [1γβ] 
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4.5.2 Contribution of the unfolded protein response to diabetic cardiomyopathy 

Diabetic cardiomyopathy is associated with alterations in both intracellular Caβ+ 

homeostasis and metabolism, which together with increased protein synthesis can induce ER 

stress and consequently trigger the UPR. Several studies reported the upregulation of 

BiP/GRP78, accompanied with the activation of PERK and IRE1α pathway in both T1D and 

TβD animal models. Moreover, Dally et al. showed that upregulation of XBP1 and GRP78 

along with sarco/ER Caβ+ ATPase (SERCA) occurs in hearts from patients with diverse 

cardiomyopathies [1γ9]. ER stress is also associated with the activation of caspase-1β in 

STZ-induced model of T1D, leading to myocardial apoptosis and thus contributing to the 

pathogenesis of diabetic cardiomyopathy [140]. Several studies indicate that ER stress is both 

a trigger and a consequence of autophagy in diabetes. Under conditions leading to ER stress, 

Caβ+ release from ER can inhibit the activity of mammalian target of rapamycin complex 1 

(mTORC1) via activation and phosphorylation of AMPK [141]. Inhibition of mTORC1 is 

proposed to facilitate autophagy [14β]. On the other hand, it has been demonstrated that 

restoration of autophagy alleviates obesity-induced ER stress [14γ, 144]. Chemical 

chaperones, such as 4-phenyl butyric acid and tauroursodeoxycholic acid (TUDCA), have 

been shown to reduce ER stress in TβD mice [145]. These chaperones also prevented 

apoptosis in cardiomyoblasts treated with high glucose [14γ]. Moreover, inhibition of IRE1α 

activity in STZ-induced T1D blocked ER stress and CHOP-mediated apoptosis thereby 

preventing cardiac damage [146]. Collectively, all these studies demonstrate the important 

role of ER stress in the development and progression of diabetic cardiomyopathy.  

Although several studies have been conducted in order to understand the role of ER 

stress in diabetic cardiomyopathy, it still remains to be elucidated how the cell decides 

between survival and death following UPR activation. It also remains to be elucidated to what 

extent these UPR pathways are involved in the pathophysiology of diabetic cardiomyopathy. 

A better understanding of these questions might provide us with new targets for drug 

discovery and therapeutic intervention. 
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4.6 FIBROSIS 

Fibroblasts constitute the most numerous cell population in the myocardium and are 

found in all vertebrate organisms. They are responsible for the synthesis of a variety of 

extracellular matrix (ECM) components, including multiple collagen isoforms, as well as 

fibronectin, and thus play a prominent role in defining cardiac structure and function [147]. 

Fibroblasts are responsible for the development of fibrosis in the heart as well as in other 

organs [148]. Upon injury, cardiac fibroblasts within the connective tissue convert to their 

activated form, often known as myofibroblasts, and secrete elevated levels of ECM proteins 

to promote a pro-fibrotic environment ultimately leading to distorted organ architecture and 

function [149]. Fibrosis is associated with the majority of cardiovascular diseases in 

experimental animal models and humans [150]. Increased ECM synthesis and decreased 

degradation result in increased mechanical stiffness and diastolic dysfunction in the heart. In 

addition to this, increased ECM deposition between the layers of cardiac myocytes also 

disturbs their electrical signaling resulting in impaired cardiac contraction.  

Fibrosis may occur in two forms, reactive interstitial fibrosis or replacement fibrosis 

[151]. Reactive interstitial fibrosis progresses without cardiomyocyte loss in pressure 

overloaded hearts, in order to preserve the pressure generating capacity of the heart [15β]. 

However, it is believed that reactive interstitial fibrosis later develops into a state of 

replacement fibrosis causing cardiomyocyte hypertrophy and death [15β]. Indeed, 

cardiomyocyte apoptosis and replacement fibrosis have been documented in animal models of 

acute myocardial infarction [15β].  

In vitro, high glucose stimulates fibroblast proliferation, promotes myofibroblast 

transdifferentiation and activates transcription and secretion of ECM proteins [15γ, 154]. It is 

demonstrated that high glucose can enhance the synthesis of collagen III, both at mRNA and 

protein levels, in human skin fibroblasts and increase the cell proliferation in human cardiac 

myofibroblasts [15γ, 155]. Moreover, high glucose treatment increas the deposition of type I 

collagen in adult rat cardiac fibroblasts [156]. It has been proposed that high glucose might 

induce fibrosis via activation of angiotensin II, TGF-ȕ signaling and ROS generation 

pathways [157]. However, it appears that hyperglycemia per se is not responsible for 

diabetes-associated cardiac fibrosis, but rather it is the inflammation and ROS formation that 
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lead to fibrosis [154]. In this regard, it has been demonstrated that renal fibrosis persisted 

despite tight glycemic control in STZ-induced T1D mice [158]. 

Inflammation and fibrosis are tightly linked in diabetic cardiomyopathy. In particular, 

pro-inflammatory cytokine tumor necrosis factor α (TNFα) and growth factor TGF-ȕ have 

been shown to modulate fibroblast phenotype and trigger fibrosis [159]. Incubation of 

fibroblasts with TNFα resulted in cell proliferation and increased collagen synthesis whereas 

TGF-ȕ induced differentiation of cardiac fibroblasts into myofibroblasts [159, 160]. TGF-ȕ is 

upregulated in both T1D and TβD hearts and may mediate pro-fibrotic effects via Smad-

dependent and Smad-independent pathways [154]. In addition to cytokines and growth 

factors, infiltration of inflammatory monocytes/macrophages and mast cell degranulation are 

also known to contribute to the development of cardiac fibrosis [161]. Abolishing 

macrophage accumulation prevented cardiac fibrosis and ameliorated diastolic dysfunction in 

hypertensive rats [161]. Cardiac mast cells may induce cardiac hypertrophy and fibrosis by 

synthesizing and secreting pro-fibrotic and pro-inflammatory factors [161, 16β]. In fact, 

administration of mast cell-stabilizing agent tranilast to pressure overloaded mice reduced 

fibrosis and prevented cardiac damage [16β]. Interestingly, oxidative stress has been shown to 

induce mast cell degranulation [16γ-165]. These studies suggest that targeting ROS 

producing enzymes, inflammation and/or pro-inflammatory cells might be a new strategy to 

prevent myocardial fibrosis. 

Besides inflammation, oxidative stress, AGE/RAGE formation, adipokines and recently 

identified miroRNA-1γγ are also associated with cardiac fibrosis [154]. Using 

pharmacological interventions, several studies have demonstrated the role and contribution of 

oxidative stress in diabetes-associated cardiac fibrosis [154, 166, 167]. In T1D and TβD mice, 

inhibition of oxidative stress with dehydroepiandrosterone, a steroid that possesses multi-

targeted antioxidant properties, reduced interstitial fibrosis, cardiomyocyte hypertrophy and 

improved diastolic function [154, 168].  

AGE/RAGE signaling is known to activate inflammatory genes, crosslink collagens and 

laminins in the extracellular matrix, and stimulate fibroblast proliferation that may increase 

diastolic stiffness and cause diastolic dysfunction [169]. Indeed, inhibition of RAGE activity 

prevented fibrosis and development of cardiac dysfunction in db/db TβD mice [154].  
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Adipokines leptin and adiponectin have also been associated with cardiac fibrosis [154]. 

Leptin is known to induce matrix metalloproteinases in fibroblasts. Its role in cardiomyocytes 

remains controversial since it can exert both hypertrophic and anti-hypertrophic actions [154, 

170, 171]. Adiponectin is an anti-inflammatory agent that exerts anti-fibrotic effects in 

angiotensin II-induced cardiac remodeling and reduced cardiac hypertrophy via AMPK 

signaling in TβD mice [154].  

Several mechanisms by which fibrosis can lead to heart failure have been proposed, 

including reduced ventricular compliance causing HFpEF, atrial fibrillation, increased risk of 

ventricular arrhythmias, diabetes-related perturbation of the reparative response following 

infarction, adverse remodeling and development of post-infarction heart failure [154]. Thus, 

preventing cardiac fibrosis might reduce mortality and morbidity in patients with diabetic 

cardiomyopathy. It appears that novel therapies targeting ROS formation, AGE-mediated 

crosslinking and TGF-ȕ system hold significant promise. 
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4.7 INFLAMMATION 

Emerging evidence indicates that inflammation is a crucial process in adverse 

myocardial remodeling [17β]. A number of clinical and animal studies reported that 

activation of several inflammatory pathways occurs in cardiovascular complications [17β]. 

Inflammation involves the secretion of cytokines, such as chemokines, interferons, ILs, TNFs 

and recruitment of innate immune cells, such as neutrophils, mast cells and 

monocyte/macrophages [17γ]. Prolonged exposure of heart to these inflammatory agents can 

exacerbate myocardial remodeling and lead to myocardial damage [17γ]. Notably, in addition 

to local adverse effects it has been demonstrated that cardiac injury-induced inflammation in 

the heart results in the release of TNFα, IL-1ȕ, IL-18 and growth factor TGF-ȕ into the 

circulation [17γ]. In agreement with this, a recent study reported elevation of these cytokines 

in the serum of diabetic patients suggesting that they might be used as biomarkers to diagnose 

early stage diabetic cardiomyopathy. Early diagnosis of diabetic cardiomyopathy would allow 

for the timely start of treatment, thus attenuating disease progression prior to the onset of 

irreversible complications [174].  

Cytokines can lead to contractile dysfunction and cell death by various mechanisms. 

For instance, cytokines can trigger peroxynitrite formation via iNOS activation [66]. Upon 

stimulation, iNOS produces large amounts of NO that can react with superoxide to form 

peroxynitrite, a species known to cause myocardial contractile failure. Rat hearts perfused 

with cocktail of cytokines, including IL-1ȕ, interferon-Ȗ and TNF-α, resulted in an enhanced 

activity of Nox and iNOS accompanied by increased NO content, superoxide production and 

markers of peroxynitrite formation [175]. The peroxynitrite decomposition catalyst FeTPPS 

(5,10,15,β0-tetrakis-[4-sulfonatophenyl]-porphyrinato-iron[III]), inhibited the decline in 

myocardial function and decreased perfusate nitrotyrosine levels indicating that cytokine-

induced myocardial contractile failure is mediated by peroxynitrite [175].  

Another cytokine-mediated mechanism involves the regulation of SERCA expression 

and activity by oxidation/nitration leading to impaired ER function [66]. It is also known that 

cytokines can increase the synthesis of ECM in the heart leading to fibrosis and ultimately 

cardiac dysfunction as discussed above. Indeed, TNFα inhibition with a monoclonal antibody 

prevented intra-myocardial inflammation, fibrosis and cardiac damage in STZ-induced T1D 
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rats [176]. Importantly, clinical studies demonstrated that recombinant human IL-1 receptor 

antagonist Anakinra improved glycaemia and ȕ-cell secretory function and reduced markers 

of systemic inflammation in patients with T1D and TβD, suggesting that antagonizing the IL-

1 system may prevent or delay the onset of diabetes [177, 178].  

Expression of pro-inflammatory cytokines is under the control of nuclear factor kappa-

light-chain-enhancer of activated B cells (NF-κB), a transcription factor activated in 

myocarditis, congestive heart failure and cardiac hypertrophy [179]. Several stimuli may 

induce the activation of this transcription factor including pro-inflammatory cytokines 

themselves, elevated free fatty acid levels in plasma, hyperglycemia, ROS, angiotensin II, 

endothelin-1, toll-like receptors and hyperglycemia-induced AGE formation [66]. It has been 

demonstrated that high glucose can promote NF-κB activity in cultured neonatal rat 

cardiomyocytes through diacylglycerol-PKC signal transduction pathway [10β]. In normal 

conditions, NF-κB resides in the cytoplasm as an inactive heterodimer bound to the inhibitory 

protein IκB [179]. Several stress stimuli induce IκB phosphorylation leading to its 

ubiquitination and proteasome-mediated degradation that releases the NF-κB heterodimer, 

which can then translocate to the nucleus [179]. NF-kB transcription factors bind to 9-10 base 

pair DNA sites (called kB sites) as dimers and induce cytokine gene expression in the 

nucleus. Resveratrol inhibits NF-κB activity by upregulating SIRT1-mediated deacetylation 

of lysine γ10, thus preventing metabolic dysregulation and inflammatory processes in several 

murine models [180]. While the expression of pro-IL-1ȕ and pro-IL-18 is mediated by NF-

κB, their processing to the mature form is mediated by active caspase-1. This caspase is a part 

of inflammasome complex, nucleotide-binding oligomerization domain-like receptors with 

pyrin domain (NLRPγ) [17γ]. Inflammasome is a multiprotein complex necessary for 

caspase-1 activation and amplification of the inflammatory response. Indeed, NLRPγ gene 

silencing therapy ameliorated inflammation, cardiac fibrosis and improved cardiac function in 

high fat diet-induced TβD rats [181]. Recently, it has been proposed that inflammasome 

activation depends on cell-to-cell communication in the heart, including cardiomyocytes, 

fibroblast and innate immune cells [17γ].  

Mitochondrial ROS formation has been identified as an important NLRPγ 

inflammasome activator in cardiac diseases [18β]. The saturated fatty acid palmitate leads to 

the activation of the NLRPγ inflammasome and release of active IL-1ȕ in a mitochondrial 

ROS-dependent manner [18γ]. Fibroblasts have been shown to secrete IL-1ȕ in response to 
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ATP and mitochondrial DNA released from neighboring cells such as cardiomyocytes [17γ, 

181, 184]. In addition to fibroblasts, injured cardiomyocytes also secrete IL-1ȕ and release 

damage-associated molecular pattern molecules, DNA fragments and heat-shock proteins 

which mandate surrounding healthy cardiomyocytes to produce inflammatory factors such as 

IL-1ȕ, IL-18, IL-6, monocyte chemoattractant protein-1 and TNFα [181]. These factors in 

turn activate versatile signaling networks within surviving cardiomyocytes and trigger the 

activation and recruitment of immune cells including macrophages, leukocytes and mast cells 

further exacerbating inflammatory response [181]. Collectively, these studies indicate that 

cross-talk between different cardiac cell populations, including cardiomyocytes, fibroblasts 

and immune cells, plays a very important role in triggering myocardial inflammation, which 

then contributes to reduced contractile function and heart failure in various diseases including 

diabetic cardiomyopathy. 

In summary, diabetic cardiomyopathy is a very complex disease associated with 

structural, functional and metabolic changes in the heart. It is proposed that, not one single 

mechanism, but rather the combination of several mechanisms contributes to the pathogenesis 

of this epidemic disease [γ7, γ9, 66, 185]. From preclinical and animal studies it has become 

clear that oxidative stress and inflammation are central components in triggering and driving 

the pathological processes associated with diabetic cardiomyopathy [γ9, 66]. Mitochondria 

play a critical role in inducing oxidative stress and triggering inflammation via inflammasome 

pathway [γ9, 181, 186]. This notion is more relevant for the heart since cardiomyocytes have 

higher mitochondrial content relative to other cell types, thus making cardiac tissue more 

susceptible to mitochondria-induced damage compared to other organs. This suggests that 

therapeutic interventions targeting mitochondria or preventing mitochondria-induced damage 

may be required to treat patients with diabetes-associated cardiovascular complications.  
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5. AIMS AND HYPOTHESES 

The aim of this study was to investigate the role of MAOs in oxidative stress, 

mitochondrial dysfunction and cardiac damage in T1D. Diabetes-induced derangements and 

protective mechanisms were investigated in the following experimental models: (i) 

mimicking the diabetic conditions with high glucose (HG) and/or pro-inflammatory cytokine 

IL-1ȕ in primary cardiomyocytes in vitro and (ii) using STZ-induced T1D mice in vivo.  

The working hypothesis was that mitochondrial ROS formation plays a central role in 

diabetic cardiomyopathy. Based upon previous work from our laboratory demonstrating the 

involvement of MAO in cardiac pathology, we investigated whether MAOs contribute to 

increased ROS formation and mitochondrial dysfunction in cultured primary cardiomyocytes 

treated with HG and/or IL-1ȕ, a pro-inflammatory cytokine found to be elevated in diabetic 

patients. MAO involvement and contribution were evaluated through a classical 

pharmacological approach, using pargyline as an inhibitor for both MAO-A and MAO-B. We 

further assessed whether MAO activity is involved in the interplay between mitochondria and 

ER and whether MAO-generated ROS contribute to impaired ER homeostasis and activation 

of UPR in this setting.  

Next, we aimed to assess the efficacy of MAO inhibitor pargyline in preventing 

structural and functional changes in T1D hearts in vivo. We hypothesized that MAOs 

contribute to the oxidative stress and diastolic dysfunction occurring in T1D hearts. Diabetic 

cardiomyopathy is associated with cardiac inflammation, mitochondrial ROS formation, 

oxidative stress and fibrosis in, but the exact source of ROS linking these events in the heart 

has not been identified yet. To this aim, we investigated whether MAO activity might be 

involved in the formation of the vicious cycle between mitochondrial ROS and pro-

inflammatory response ultimately leading to fibrosis and LV dysfunction.  
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6. MATERIALS AND METHODS 

6.1 Primary cardiomyocytes isolation and culture 

6.1.1 Isolation and culture of neonatal rat ventricular myocytes 

Neonatal rat ventricular myocytes (NRVMs) were isolated from 1-γ days old Wistar 

rats as previously described [1β0]. Briefly, hearts were excised, cut into smaller pieces and 

left for overnight digestion with β.5% trypsin 10X (Thermo Fisher Scientific) at 4°C in 

Hank’s balanced salt solution (HBSS, Sigma). Next day, tissues were incubated with 0.75 

mg/ml collagenase type II (Thermo Fisher Scientific) in HBSS for 10 min (at β min intervals) 

at γ7°C and cells dissociated by pipetting. Following centrifugation at 1000 rpm for 7 min, 

cells were resuspended in minimum essential media (MEM, Invitrogen) and pre-plated for an 

hour to let cardiac fibroblasts attach to the plastic surface. Plates/coverslips were coated with 

a solution of 0.1% porcine gelatin (Sigma) and incubated at γ7°C for 1 h. The non-adherent 

myocytes were plated in gelatin coated plates at the density of 1x105 cells/ml in MEM 

supplemented with 10% FBS, 1% penicillin/streptomycin, non-essential amino acids, 1 mM 

BrdU. Cells were maintained at γ7°C in presence of 5% COβ. The medium was changed to 

MEM supplemented with 1% FBS after β4 h of plating.  

6.1.2 Isolation and culture of adult mouse ventricular cardiomyocytes 

Adult mouse ventricular myocytes were isolated from the hearts of 1β week old 

C57Bl6/J mice as described previously [1β0]. In brief, mice were injected intraperitoneally 

(i.p.) with 1,000U heparin γ0 min before the isolation procedure to prevent coagulation of 

blood in the arteries. Hearts were quickly excised and the aorta cannulated. Hearts were then 

perfused with perfusion buffer (PB, in mM: NaCl 1β0, KCl 14.75, KHβPO4 0.6, NaβHPO4 

0.γ, MgSO4 1.β, HEPES 10, NaHCOγ 4.6, taurine γ0, BDM 10, glucose 5.5, pH 7.4) for β 

min to remove the blood. Next, hearts were perfused with PB containing 1.β mg/ml 

collagenase type II (Worthington) and 0.05 mg/ml protease type XIV (Sigma) for γ min at β 

ml/min and then for 8 min at1.5 ml/min. After perfusion hearts were placed into 5 ml of PB 

added with 10% FBS and 1β.5 µM CaClβ, cut into smaller pieces and cardiomyocytes 



5γ 

 

dissociated by gentle pipetting. The suspension was filtered through 100 µm mesh, 

centrifuged at 500 g for 1 min and resuspended in PB containing increasing Caβ+ 

concentration. Caβ+ concentration was gradually increased from 0.β5 mM to 1 mM to avoid 

Caβ+ overload and hypercontracture. After each step cardiomyocytes were allowed to 

sediment by gravity. Cells were plated at a non-confluent density of β5,000 rod-shaped 

myocytes/ml on glass coverslips pre-coated with laminin (β0 µg/ml) in MEM with Hank’s 

salts supplemented with 10 mM NaHCOγ, 5% FBS, 1% penicillin/streptomycin, 10 µM 

blebbistatin and kept at γ7°C in presence of β% COβ. After 1h media was changed to MEM 

with Hank’s salts supplemented with 10 mM NaHCOγ, 0.β% BSA, 10 µM blebbistatin, 1% 

insulin-transferrin-selenium (ITS, Thermo Scientific), β mM L-glutamine, β mM L-carnitine, 

5 mM creatine and 5 mM taurine.  

6.2 Treatment of primary cardiomyocytes 

NRVMs and adult cardiomyocytes were treated in culture media with following 

additions: normal glucose (NG, 5 mM), high glucose (HG, β5 mM) or high mannitol (HM β5 

mM, osmotic control) in presence or absence of IL-1ȕ β5 ng/ml (Sigma). To inhibit MAO 

activity cells were pre-treated with 100 µM pargyline (Sigma) for γ0 min. ROS formation and 

mitochondrial membrane potential were measured after 48 h in NRVMs and after γ h of 

treatment in adult cardiomyocytes. ER stress was assessed after 48 h of incubation. 

To induce ER stress, NRVMs were incubated overnight with tunicamycin (1 µg/ml) or 

thapsigargin (1 µM) in presence or absence of ER stress inhibitor TUDCA (100 µM, Sigma). 

To assess the effect of MAO inhibition on ER stress, cells were pre-treated with 100 µM 

pargyline in presence of ER stress-inducers. After overnight incubation, samples were 

collected to assess ER stress markers gene expression or cells were loaded with MTR to 

measure ROS formation in these conditions.  
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6.3 Measurement of mitochondrial ROS formation  

6.3.1 Assessment of ROS formation with MitoTracker Red 

To measure mitochondrial ROS formation, cells were loaded with β5 nM (NRVMs) or 

β50 nM (adult cardiomyocytes) MitoTracker Red CM-HβXRos (MTR, Thermo Fisher 

Scientific, excitation/emission 579/599 nm), a reduced dye that fluoresces upon oxidation and 

accumulates inside the mitochondria depending on the mitochondrial membrane potential 

(ΔΨm). After γ0 min incubation at γ7°C cells were washed and images were captured using 

fluorescence microscope (Leica TCS SP5). Fluorescence intensity was quantified using Java-

based image processing program ImageJ (NIH). For NRVMs, results were normalized to the 

control values (NG vehicle) and expressed as % vs control. For the adult cardiomyocytes, 

background signal was subtracted from all analyzed regions of interest and results were 

expressed as arbitrary fluorescence units (AU).  

6.3.2 Transfection of neonatal rat cardiomyocytes and assessment of ROS formation 

with HyPer  

Alternatively, ROS formation in NRVMs was measured using genetically encoded 

HβOβ probe HyPer (Evrogen) targeted either to mitochondria or cytosol. HyPer is a 

ratiometric dye with two excitation peaks (maxima at 4β0 nm and 500 nm), and one emission 

peak (maximum at 516 nm). Upon exposure to HβOβ, the excitation peak at 4β0 nm decreases 

proportionally to the increase in the peak at 500 nm, allowing for ratiometric measurement of 

HβOβ. NRVMs were plated in six-well plates at a density of γx105 cells/well and transfected 

with calcium phosphate method. For each transfection, β µg of plasmid (mito-HyPer or cyto-

HyPer) were rapidly mixed with ice cold β50 mM CaClβ in HBSS (β74 mM NaCl, 10 mM 

KCl and 1.4 mM NaβHPO4) and left for 4 min to precipitate. The mixture was added to the 

cells and after 4 h of incubation, cells were washed with PBS and new MEM media was 

added. Transfected cells were used for experiments after 48 h. 
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6.4 Assessment of mitochondrial membrane potential 

To measure the ΔΨm, cells were pre-incubated with β5 nM tetramethylrhodamine 

(TMRM, Thermo Fisher Scientific) in presence of 1.6 µM cyclosporin H. TMRM (excitation 

5γ5 nm and emission 600 nm) is a lyophilic rhodamine dye that accumulates into the 

mitochondria of live cells depending on their ΔΨm. After incubation, cells were analyzed 

under Leica fluorescence microscope and images were captured before and after the addition 

of β.5 µM FCCP (Sigma), a protonophore (H+ ionophore) and uncoupler of oxidative 

phosphorylation, to completely abolish ΔΨm . TMRM fluorescence intensity was analyzed 

using ImageJ and results are expressed ΔF according to the following formula: ΔF = F0/FFCCP, 

where F0= TMRM fluorescence intensity at baseline and FFCCP= fluorescence intensity after 

addition of FCCP. For kinetics experiments, TMRM fluorescence intensity was monitored 

following addition of oligomycin (5 µM) or FCCP (β.5 µM). TMRM fluorescence intensity 

was quantified as described above and data were expressed as % vs the initial value.  

6.5 cDNA synthesis and Real time-PCR 

Total RNA was extracted from NRVMs using TRIzol reagent (Invitrogen), a 

monophasic solution of phenol and guanidine isothiocyanate, according to the manufacturer 

instructions. Reverse transcription reactions were performed using 5 μg of total RNA. After 

addition of dNTP and random hexamer primers to prime the first strand for cDNA synthesis, 

RNA was denatured at 65°C for 5 min and then placed on ice. Superscript III (Invitrogen) 

was added to the mixture which was further incubated at 5β°C for 50 min and 70°C for 15 

min to synthesize cDNA. 

Each PCR reaction was performed in a β0 μl volume combining 10 ng of cDNA, 0.β5 

μM of forward and reverse primers and 10 μl of SYBR green βX PCR master mix 

(Invitrogen). RotorGene γ000 (Qiagen) thermal cycler was used to carry out the real-time 

PCR reaction. The sequences of forward and reverse primers used to detect the expression of 

each gene are listed in Table β. 

Target gene Primer sequence 
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ATF4 
F-5’AATGGATGACCTGGAAACCAγ’ 

R-5’TCTTGGACTAGAGGGGCAAAγ’ 

CHOP 
F-5’AGAGTGGTCAGTGCGCAGCγ’ 

R-5’CTCATTCTCCTGCTCCTTCTCCγ’ 

total-XBP1 
F-5’TGGCCGGGTCTGCTGAGTCCGγ’ 

R-5’ATCCATGGGAAGAGTTCTGGγ’ 

spliced-XBP1 
F-5’CTGAGTCCGAATCAGGTGCAGγ’ 

R-5’ATCCATGGGAAGATGTTCTGGγ’ 

unspliced-XBP1 
F-5’CAGCACTCAGACTACGTGCGγ’ 

R-5’ATCCATGGGAAGATGTTCTGGγ’ 

α-tubulin 
F-5’CAACACCTTCTTCAGTGAGACAGGγ’ 

R-5’TCAATGATCTCCTTGCCAATGGTγ’ 

Table 2. Sequences of primers used for real-time PCR 

6.6 Determination of cell viability 

Resazurin based in vitro toxicology kit (Sigma) was used for determination of cell 

viability. Resazurin is a redox indicator dye that can be added directly to cells in culture. 

Cells convert the dark blue oxidized form of the dye (resazurin) to a red reduced form 

(resorufin). This system is specific for viable cells since non-viable cells rapidly lose 

metabolic capacity and are no longer able to reduce resazurin. Fluorescence intensity was 

recorded with a fluorimeter using 544 nm excitation and 590 nm emission wavelengths to 

assess resorufin formation. This value was normalized to the one obtained from control cells 

treated in the same conditions. Cells were plated in 1β well plates at a density of βx105 

cells/well, and treated with tunicamycin (1µg/ml) or thapsigargin (1µM) in presence or 

absence of pargyline (100 µM). After β4 h of treatment, culture medium was aspirated and 
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another 1 ml of culture medium containing 10% resazurin was added. Fluorescence intensity 

of the supernatant was recorded at the beginning and after β h of incubation with resazurin. 

6.7 Animal model of type 1 diabetes 

All the animal studies were performed using male C57BL6/J mice (6-7 weeks of age 

and at least β0 g in weight; Charles River Laboratories, UK). T1D was induced with STZ (50 

mg/kg/day in citrate buffer pH 4.5) administered intraperitoneally for five consecutive days. 

Mice were then randomized to receive either vehicle or MAO inhibitor pargyline (50 

mg/kg/day) for 1β weeks. Blood glucose levels were measured twice a month using glucose 

meter (OneTouch Ultra β) and mice with blood glucose levels ≥17 mM were considered 

diabetic.  

6.8 Assessment of pressure-volume relationships  

Cardiac function was assessed using MRI-calibrated PV loops in vivo. MRI scan was 

performed as previously described [γ0, γ1] and volumes obtained at end systole and end 

diastole were later used to calibrate hemodynamic data. To acquire PV catheter data, mice 

were quickly anaesthetized using an isoflurane chamber followed by a 70 mg/kg 

intraperitoneal injection of pentobarbital. We monitored the adequacy of anesthesia using 

corneal and withdrawal reflexes. Temperature was maintained at γ7°C with a thermostatically 

controlled heating control unit (Harvard apparatus, Holliston, MA). After endotracheal 

intubation for mechanical ventilation (ventilation frequency 110 breaths per minute with a 

tidal volume of 1.β ml/min; Harvard apparatus, Holliston, MA), mice underwent closed-chest 

catheterization of the left ventricle via the carotid artery. After a stabilization period of 15 

min, pressure and volume data was acquired using a Transonic ADV 500 system (iWorx 1β5 

Systems Inc., NH). Under these conditions, mean heart rate across all groups was γ59.6±9.6 

(SE). PV-loop analysis was performed by a single investigator blinded to subject identity. 

Before PV loop analysis, volumes were smoothed (smoothing kernel of 4 ms), and calibrated 

using the MRI data. Here, the maximum and minimum volumes obtained with the catheter 

were matched to the MRI-derived LV volumes. Summary pressure values and diastolic 

stiffness values were derived using Labscribe β (iWorx 1β5 Systems Inc., NH). 
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6.9  Histology 

Hearts were fixed in 10% formalin overnight, embedded in paraffin and sectioned at 10 

µm thickness. Samples were analyzed for fibrosis and mast cell degranulation using Masson’s 

Trichrome staining and toluidine blue staining, respectively [117]. Before staining, tissue 

sections were deparaffinized, rehydrated through 100%, 95%, 85%, 80% and 70% alcohol 

and washed in distilled water or PBS. 

Fibrosis staining was performed on tissue sections using Masson’s Trichome kit 

(Sigma) following manufacturer instructions. In this protocol, collagen and muscle fibers 

stain differentially when treated sequentially with biebrich scarlet-acid fuchsin, 

phosphomolybdic-phosphotungstic acid solution and aniline blue. Cytoplasm and muscle 

fibers stain red whereas collagen displays blue coloration as shown in Figure 11A. 

Photomicrographs of the sections were evaluated for interstitial collagen fractions using 

computer-assisted image analysis systems (Adobe Photoshop). 

 

 Figure 11. Masson’s Trichome and toluidine blue staining. (A) Cardiac muscle fibers stained in 
red and collagen stained in blue following Masson’s Trichome staining on paraffin embedded 
sections. (B) Red arrows point toward intact mast cells whereas black arrow indicate actively 
degranulating mast cell. 

Toluidine blue stains mast cells red-purple (metachromatic staining) and the 

background blue (orthochromatic staining) as shown in Figure 11B. Briefly, deparaffinized 
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and rehydrated tissue sections were stained in toluidine blue 0.1% solution at pH β.γ for γ 

minutes. Slides were than washed in distilled water, quickly dehydrated through 95% and 

100% ethanol, cleared in xylene (γ x 15 min) and mounted with Permount. Mast cell density 

was determined by counting the total number of mast cells per field. Mast cell degranulation 

was expressed as the number of degranulating mast cells normalized to total number of mast 

cells. 

6.10 Western blot  

Isolated cardiomyocytes or heart tissue were homogenized in lysis buffer (1% NP-40, 

50 mM Tris HCl, 150 mM NaCl and β mM EDTA, pH 7.5) containing phosphatase 

(PhosSTOP, Roche) and protease inhibitors (cOmplete mini protease inhibitor cocktail, 

Roche). Homogenized samples were centrifuged at 1γ,000 x g for 15 min at 4°C and the 

pellet was discarded. Protein concentration was determined using BCA Protein Assay Kit 

(Pierce) following the manufacturer’s protocol. To denature and solubilize the proteins, 1X 

NuPage sample buffer (Novex) and ȕ-mercaptoethanol (γ%) were added to the samples. 

Samples were boiled at 100°C for 10 minutes. Then they were loaded on the gel or aliquoted 

and stored at -β0°C.  

Proteins were separated on 4-1β% gradient SDS-PAGE (NuPage) using MES running 

buffer (50 mM MES, 50 mM Tris Base, 0.1% SDS, 1 mM EDTA, pH 7.γ) at 150 V and 

transferred to the nitrocellulose membrane (Bio-rad) overnight using transfer buffer (β5 mM 

Tris, 19β mM glycine, 10% methanol, pH 8.0) at 150 mA . Once the transfer was carried out, 

the membrane was incubated with Red Ponceau dye (EuroClone) to stain all the proteins on 

the membrane. Next, membrane was destained with NaOH, washed and saturated using a 

blocking solution composed of 50 mM Tris-HCl, β mM CaClβ, 85 mM NaCl, 5% BSA, pH 

8.0. After 1 h of blocking at room temperature, blots were incubated at 4°C overnight with 

primary antibody diluted in blocking solution. Antibodies used in this study to detect proteins 

of interest are listed in Table γ.  
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Primary antibody Manufacturer Dilution 

Anti-MAO-A Abcam (ab1β6571) 1:1000 

Anti-MAO-B Sigma (AV4γ557) 1:1500 

Anti-GRP78 Abcam (abβ1685) 1:1000 

Anti-phospho IRE1α Novus (NB100-βγβγ) 1:500 

Anti-4-HNE Abcam (ab46545) 1:1000 

Anti-ATF4 (CREB-2) Santa Cruz (SC-β00) 1:1000 

Anti-GADD34 Santa Cruz (SC-8γβ7) 1:1000 

Anti-GAPDH Sigma (G8795) 1:5000 

Anti-α-Tubulin Abcam (ab4074) 1:1000 

Anti-β-Actin Sigma (Aβββ8) 1:1000 

Table 3: List of primary antibodies used in the study 

Following incubation with primary antibodies, membranes were washed three times for 

10 min with the washing buffer (50 mM Tris-HCl, 85mM NaCl, 0.1% Tween β0, pH 7.4). 

Secondary antibodies were diluted in blocking solution and incubated with the membrane for 

1 hour at room temperature. Secondary antibodies used were: 

Anti-mouse (Santa Cruz), dilution 1:5000 

Anti-rabbit (Santa Cruz), dilution 1:5000 
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Secondary antibody is conjugated to reporter enzyme HRP (horseradish peroxidase). 

After incubation with secondary antibody, membrane was washed three times (10 min each). 

Protein bands were revealed using LiteAblot luminol solutions (EuroClone). Bands were 

detected using KODAK Image station 4000 MM PRO and analyzed using Gel-Pro software. 

6.11 Statistical analysis 

All values are expressed as mean ± SEM. Comparison between groups was performed 

by one-way or two-way ANOVA, followed by a Tukey’s post hoc multiple comparison for 

normally distributed data and non-parametric Dunn’s test for data that was not normally 

distributed. Comparisons between two groups were performed using non paired two-tailed 

Student’s t-test. A value of p<0.05 was considered significant. 
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7.  RESULTS  

7.1  HG and IL-1β induce ROS formation in primary cardiomyocytes in a 

MAO-dependent manner 

Hyperglycemia and inflammation are tightly associated with diabetic cardiomyopathy 

[γ7, 187, 188]. It has been shown that over-production of pro-inflammatory cytokines, such 

as TNF-α and IL-1ȕ, provoke cardiomyocyte apoptosis and cardiac remodeling through 

activation of various cell death pathways. Moreover, patients with cardiomyopathy show 

elevated levels of IL-1ȕ produced by endothelial cells and myocytes [189, 190]. Thus, to 

mimic diabetic conditions in vitro more realistically, NRVMs were treated with HG and pro-

inflammatory cytokine IL-1ȕ alone or in combination, and ROS levels were initially assessed 

with MTR after 48 h. To rule out the effect of hyperosmolarity induced by HG, identical 

concentrations of mannitol were added to cells cultured with NG. HG lead to a mild but 

significant increase in ROS formation, whereas mannitol treated NRVMs did not show any 

changes when compared to NG cultured cells (Figure 1β). Interestingly, the combination of 

HG and IL-1ȕ led to a further dramatic increase in ROS formation when compared to HG or 

IL-1ȕ treatment alone, indicating a synergistic effect of these stimuli in inducing 

mitochondrial ROS formation. To investigate whether MAO contributes to increased ROS 

formation in these conditions, we pre-treated cardiomyocytes with pargyline, an irreversible 

inhibitor of both MAO-A and MAO-B. MAO inhibition abolished ROS formation induced by 

both HG alone and by combination of HG and IL-1ȕ, suggesting that both stimuli induce 

ROS formation in a MAO-dependent manner.  



6γ 

 

 

Figure 12. Effects of HG and pro-inflammatory cytokine IL-1β on ROS formation. 
Mitochondrial ROS formation determined by MTR in isolated NRVMs cultured with NG (5 mM), HG 
(β5 mM) and HM (β5 mM) for 48 h, in the absence or presence of IL-1ȕ (β5 ng/ml), and with or 
without pargyline (100 µM). *p<0.05 vs NG vehicle; #p<0.01 vs HG vehicle and §p<0.05 HG-IL1ȕ 
vehicle. NG: normal glucose, HG: high glucose, HM: high mannitol, ROS: reactive oxygen species, 
IL-1ȕ: interleukin-1ȕ, MTR: MitoTracker Red CMHβX-ROS, NRVMs: neonatal rat ventricular 
myocytes. 

The initial evidence of MAO-reduced ROS formation was obtained by means of MTR 

fluorescence. However, this fluorescent probe presents some limitations. For instance, (i) its 

accumulation in the mitochondrial matrix is ΔΨm-dependent and might be influenced by the 

changes in ΔΨm induced by different treatments [191], (ii) it is not specific for single ROS 

species and (iii) it can get oxidized in the cytosol before entering the mitochondrial matrix. 

To overcome these limitations and to further confirm our results obtained with MTR, we used 

a genetically encoded probe HyPer to measure ROS formation in cells treated with HG and 

IL-1ȕ. HyPer has several advantages over MTR; for instance, it can be targeted to different 

subcellular compartments, it is specifically oxidized by HβOβ and it is more sensitive, thus 
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making it a more suitable probe to assess MAO-dependent HβOβ formation in our 

experimental conditions.  

Using HyPer constructs targeted either to the mitochondria or cytosol (Figure 1γA), we 

observed that HG-treated NRVMs displayed a significant increase in both mitochondrial and 

cytosolic HβOβ formation and, similarly to results obtained with MTR, co-treatment with HG 

and IL-1ȕ led to an even higher increase in HβOβ levels (Figure 1γB). Moreover, MAO 

inhibitor pargyline prevented this increase in HβOβ formation, further confirming that HG and 

IL-1ȕ induced ROS formation in a MAO dependent manner. Measurements obtained with 

HyPer also indicate that MAO-dependent ROS formation induced by HG and IL-1ȕ is not 

only limited to mitochondria but it also occurs in the cytosol. However, it still remains to be 

elucidated whether ROS formation might occur with different kinetics in these compartments 

as reported previously for MAO-dependent ROS generation [19β].  

 
Figure 13. Compartment-specific H2O2 formation following HG and IL-1β treatment of 
NRVMs. (A) Fluorescent images of NRVMs transfected with genetically encoded HβOβ sensitive 
probe HyPer, targeted to mitochondria or to the cytosol. (B) HβOβ formation measured after 48 h of 
treatment with NG (5 mM), HG (β5 mM) in presence or absence of IL-1ȕ (β5 ng/ml), with or without 
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pargyline (100 µM). *p<0.05 vs NG vehicle, #p<0.05 vs HG vehicle and §p<0.05 vs HG-IL1ȕ. NG: 
normal glucose, HG: high glucose, IL-1ȕ: interleukin-1ȕ, NRVMs: neonatal rat ventricular myocytes. 

We next examined whether the same effects could be observed in adult mouse 

cardiomyocytes. Neonatal hearts are relatively more dependent on glucose as a preferred 

substrate, whereas adult hearts rely on fatty acid oxidation for the generation of ATP 

necessary to support cardiac contraction and relaxation [19γ, 194]. Consequently, neonatal 

cells might be less susceptible to HG-induced derangements as compared to adult 

cardiomyocytes.  

Indeed, HG showed a more prominent effect in adult cardiomyocytes leading to a ~β 

fold increase in ROS formation after only β hours of incubation (Figure 14). However, no 

further increase in oxidative stress was observed with the co-treatment of HG and IL-1ȕ. 

Pargyline treatment reduced ROS formation in both conditions, further confirming that MAO 

plays a pivotal role in HG and IL-1ȕ induced oxidative stress. Taken together, these results 

indicate a crosstalk between MAO-generated oxidative stress, inflammation and 

mitochondria. 
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Figure 14. Mitochondrial ROS formation in isolated adult mouse cardiomyocytes following HG 
and IL-1β exposure. Cells were treated with NG (5 mM), HG (β5 mM) in presence or absence of IL-
1ȕ (β5 ng/ml), with or without pargyline (100 µM) for β h. Mitochondrial ROS formation was 
measured by MTR. *p<0.05 vs NG vehicle; #p<0.05 vs HG vehicle, §p<0.05 vs HG+IL-1ȕ vehicle. 
NG: normal glucose, HG: high glucose, ROS: reactive oxygen species, IL-1ȕ: interleukin-1ȕ, MTR: 
MitoTracker Red CMHβX-ROS 

In order to elucidate whether enhanced HβOβ generation observed in our conditions was 

due to an increase in MAO protein expression, we performed Western blot to assess the 

abundance of MAO-A, the main isoform present in NRVMs. However, we did not observe 

any significant changes in MAO-A protein expression between different experimental groups 

(Figure 15).  
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Figure 15. MAO-A protein expression in NRVMs treated with HG and/or IL-1β. Representative 
blots are shown for MAO-A protein expression in NRVMs treated with different conditions after 48 h. 
The quantification of band intensity is shown normalized to ȕ-actin and α-tubulin, respectively. MAO: 
monoamine oxidase, NG: normal glucose, HG: high glucose, HM: high mannitol, IL-1ȕ: interleukin-
1ȕ, NRVMs: neonatal rat ventricular myocytes. 
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7.2 Mitochondrial function in isolated cardiomyocytes exposed to HG and IL-1β 

Several studies have shown that hyperglycemia induces alterations in mitochondrial 

function in diabetic hearts [195-197]. It has been demonstrated that cardiac mitochondria 

from diabetic rats display decreased respiration and increased susceptibility to undergo 

calcium-mediated mitochondrial permeability transition [198-β00]. Emerging evidence 

suggests that hyperglycemia-induced oxidative stress could lead to mitochondrial dysfunction 

in the heart. Thus, we investigated whether also in HG- and IL-1ȕ-treated cardiomyocytes 

ROS formation was accompanied by mitochondrial dysfunction and whether MAO-generated 

ROS might contribute to mitochondrial damage in these conditions.  

To assess mitochondrial function, we measured ΔΨm by means of the fluorescent 

indicator TMRM. HG treatment in NRVMs did not show any changes in ΔΨm even after 48 

h (Figure 16A). These results prompted us to examine whether HG is inducing latent 

mitochondrial dysfunction. It is well established that ATP synthase can mask the loss of ΔΨm 

by working in a reverse mode [β01]. The respiratory chain generates a proton gradient across 

the IMM, with a higher concentration of H+ ions in the intermembrane space and a lower 

concentration in the matrix. ATP synthase uses this proton gradient to synthesize ATP from 

adenosine di-phosphate (ADP) and phosphate (Pi). Under stress conditions, when 

mitochondrial respiratory chain is dysfunctional and proton gradient is impaired, ATP 

synthase may start working in a reverse mode hydrolyzing glycolytically synthesized ATP in 

order to maintain the ΔΨm [β01]. Thus, to assess whether ATP synthase activity was 

compensating for the dysfunctional respiratory chain in HG-treated NRVMs, we monitored 

TMRM fluorescence intensity in presence of ATP synthase inhibitor oligomycin. NG- or 

HM-treated cells were able to maintain ΔΨm up to 1 hour following oligomycin 

administration (Figure 16B). On the other hand, TMRM fluorescence intensity started 

dropping immediately in HG-treated cells upon oligomycin addition. These results suggest 

that HG induced mitochondrial dysfunction in NRVMs, but in order to maintain ΔΨm these 

cells hydrolyze glycolytically synthesized ATP by reversing the activity of ATP synthase. 
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Figure 16. Mitochondrial membrane potential in NRVMs following treatment with HG and/or 
IL-1β. (A) Mitochondrial membrane potential determined by TMRM in NRVMs treated with NG, HG 
and HM after 48 h with (black) or without (white) pargyline. (B) Kinetics experiments were 
performed to follow changes in mitochondrial membrane potential upon addition of oligomycin and 
FCCP (indicated by arrows). NG: normal glucose, HG: high glucose, HM: high mannitol, NRVMs: 
neonatal rat ventricular myocytes, TMRM: tetramethylrhodamine, FCCP: carbonyl cyanide-4-
(trifluoromethoxy) phenylhydrazone. 

On the contrary, ΔΨm was remarkably reduced in adult cardiomyocytes already after 

5h of HG treatment and this effect was further exacerbated when HG was combined with IL-

1ȕ (Figure 17). Noteworthy, since accumulation of MTR in mitochondria is ΔΨm dependent, 

loss of ΔΨm in these conditions might explain the absence of an additional increase in ROS 

levels (measured with MTR) in adult cardiomyocytes after HG+IL1-ȕ treatment. Cells pre-

treated with pargyline were able to maintain ΔΨm in both neonatal and adult cardiomyocytes, 

indicating that MAO-generated ROS trigger mitochondrial dysfunction in cardiomyocytes 

treated with HG and/or IL-1ȕ. 
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Figure 17. Mitochondrial membrane potential in adult mouse cardiac myocytes following 
treatment with HG and/or IL-1β. Adult cardiomyocytes were treated with NG (5 mM), HG (β5 
mM) in presence or absence of IL-1ȕ (β5 ng/ml), with or without pargyline (100 µM) for 5 h. 
Mitochondrial membrane potential was measured with the fluorescent dye TMRM. *p<0.005 vs NG 
vehicle, #p<0.005 vs HG+IL-1ȕ vehicle. NG: normal glucose, HG: high glucose, IL-1ȕ: interleukin-
1ȕ, TMRM: tetramethylrhodamine, methyl ester. 
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7.3 MAO-generated ROS perturb ER function in cardiomyocytes exposed to 

HG and pro-inflammatory stimuli  

Accumulating evidence suggests that, in addition to oxidative stress and inflammation, 

ER stress also contributes to the development of diabetic cardiomyopathy [β4, 145, β0β]. 

Several pathological conditions can lead to the accumulation of misfolded proteins in the ER 

lumen leading to the activation of UPR. It was reported that hyperglycemia-induced ER stress 

is involved in myocardial apoptosis leading to cardiac dysfunction in diabetic rodents [β0γ]. 

Although many studies have linked ER and oxidative stress in pathological conditions, 

molecular pathways that couple these processes are poorly understood. Thus, to better 

understand the cross-communication between these two organelles we initially investigated 

whether, in addition to targeting mitochondria, HG and IL-1ȕ can also perturb ER function. 

Therefore, we measured gene and protein expression of several ER stress markers, such as 

ATF4, CHOP, XBP1, GADDγ4 and GRP78.  

Using NRVMs as a model, we were unable to detect prominent ER stress at different 

time points (γ h, 6 h, 1β h, β4 h and 48 h) following treatment with HG or the combination of 

HG and IL-1ȕ. IL-1ȕ alone led to a mild but significant increase in the expression of ATF4, 

CHOP and spliced XBP1 marking the occurrence of ER stress after 48h (Figure 18A). Unlike 

IL-1ȕ, HG did not show any significant changes in ER stress markers, whereas the 

combination of HG and IL-1ȕ led to an increase only in spliced XBP1 levels. Pargyline 

completely prevented this increase suggesting that MAO-generated ROS formation 

contributes to UPR activation (Figure 18B). 
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Figure 18. UPR in NRVMs exposed to HG and pro-inflammatory cytokine IL-1β. (A) Gene 
expression of ER stress markers involved in UPR was assessed in NRVMs treated in different 
conditions after 48h. (B) Effects of pargyline on IL-1ȕ-induced gene expression of ER stress markers 
in NRVMs. *§p<0.05 vs NG, #p<0.05 vs NG+IL-1ȕ. UPR: unfolded protein response, NG: normal 
glucose, HG: high glucose, NRVMs: neonatal rat ventricular myocytes, IL-1ȕ: interleukin-1ȕ, ER: 
endoplasmic reticulum. 

On the other hand, exposure of adult cardiomyocytes to HG resulted in stronger 

induction of ER stress. Expression levels of ER chaperone GRP78/BiP was ~γ fold 

upregulated in presence of HG and HG-IL1ȕ as shown in Figure 19. GRP78 is the central 

regulator of ER stress and it binds to the luminal domains of three ER transmembrane 

proteins, namely IRE1α, PERK and ATF6, thereby keeping them inactive. Upon ER stress, 

GRP78 dissociates from these sensor proteins resulting in their activation [1γ8]. Accordingly, 

phosphorylation levels of IRE1α, an ER transmembrane kinase, were also increased in these 

cells further confirming the activation of UPR. We also assessed the expression of other 

proteins downstream of GRP78, such as transcription factor ATF4 and growth arrest and 

DNA damage-inducible protein GADDγ4. Both ATF4 and GADDγ4 were also upregulated 

by HG and IL-1ȕ treatment as shown in Figure 19. Interestingly, MAO inhibition completely 
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prevented the activation of UPR induced by HG and IL-1ȕ in adult cardiomyocytes. These 

results indicate that MAO-dependent ROS formation not only targets mitochondria to induce 

mitochondrial dysfunction, but it can also perturb ER homeostasis leading to the activation of 

UPR. In addition, we show that mitochondrial ROS formation and dysfunction are upstream 

of ER stress, at least in these conditions. 
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Figure 19. ER stress in adult cardiomyocytes exposed to HG and/or IL-1β. Protein expression of 
ER stress markers, GRP78, GADDγ4, ATF4 and phosphorylation levels of IRE1α were assessed in 
adult cardiomyocytes after 48 h of treatment with HG and/or IL-1ȕ with or without pargyline (100 
µM). Protein expression was normalized to total protein determined by Red Ponceau staining. 
*p<0.005 vs NG vehicle, #p<0.005 vs HG-IL1ȕ vehicle. ER: endoplasmic reticulum, NG: normal 
glucose, HG: high glucose, IL-1ȕ: interleukin-1ȕ, GRP78: 78 kDa glucose-regulated protein, 
GADDγ4: growth arrest and DNA damage-inducible protein, ATF4: activating transcription factor, 
IRE1α: inositol-requiring enzyme 1α. 
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7.4 ER stress induced by tunicamycin and thapsigargin is MAO independent 

Considering that MAO-generated ROS formation appears to be upstream of ER stress 

when cells are treated with HG and pro-inflammatory stimuli, we next examined whether 

direct induction of ER stress in NRVMs with tunicamycin or thapsigargin can affect 

mitochondrial ROS formation and function in a MAO-dependent manner. Tunicamycin 

inhibits the synthesis of glycoproteins in the lumen of ER leading to the accumulation of 

unfolded proteins and UPR activation [1γγ]. Thapsigargin instead causes a reduction in ER 

calcium levels due to the inhibition of SERCA. This results in the loss of activity of calcium-

dependent ER chaperones, such as calnexin, and accumulation of unfolded proteins. Initially, 

a dose dependent curve was performed to find the optimal concentration of tunicamycin and 

thapsigargin required to induce ER stress. We found that 1 μg/ml tunicamycin and 1 μM 

thapsigargin induced maximum ER stress after overnight incubation. Gene expression of 

transcription factor ATF4 and pre-apoptotic gene CHOP was 4 fold upregulated in these 

conditions, indicating the activation of PERK/eIFβα/ATF4 pathway (Figure β0 A). 

Furthermore, the ratio of spliced/unspliced XBP1 was ~4 fold higher in the cells treated with 

tunicamycin and thapsigargin. All of the UPR markers were significantly reduced by the 

chemical chaperone TUDCA (Figure β0B). We also observed that ER stress was 

accompanied by ROS formation in these conditions. Tunicamycin and thapsigargin both led 

to a significant increase in ROS formation measured with MTR (Figure β0C, D). As 

expected, this severe ER stress also led to a 40% decrease in cell viability (Figure β0E, F). To 

investigate whether MAO plays any role in ER stress-induced cell damage cells were co-

treated with MAO inhibitor pargyline in these conditions. We found that MAO inhibition did 

not have any effect on thapsigargin induced cell damage. However, tunicamycin induced 

ROS formation was partially reduced upon pargyline treatment (Figure β0C) with no effects 

observed on ER stress markers and cell death (Figure β0B, E).  
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Figure 20. Tunicamycin and thapsigargin induced cell damage in NRVMs. (A) Gene expression 
of ER stress markers, ATF4, CHOP and sXBP1/tXBP1. (B) Effects of pargyline and TUDCA on 
tunicamycin-induced ER stress markers. (C-D) Cell viability and (E-F) ROS formation induced by 
tunicamycin (1 µg/ml) and thapsigargin (1 µM) in NRVMs with and without pargyline (100 µM). 
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Chemical chaperone TUDCA was used as a positive control. *p<0.005 vs control vehicle. NRVMs; 
neonatal rat ventricular myocytes, ER: endoplasmic reticulum, ATF4: activating transcription factor, 
CHOP: CCAAT-enhancer-binding protein homologous protein, s/tXBP1: spliced/total X-box binding 
protein 1, TUDCA: tauroursodeoxycholic acid, ROS: reactive oxygen species. 

  



78 

 

7.5 MAO contributes to LV diastolic dysfunction in STZ-induced T1D mice 

Cardiovascular complications are one of the most common causes of death among 

diabetic patients. Several studies have characterized a number of functional changes that 

develop early in the course of diabetic cardiomyopathy. To investigate whether MAO 

contributes to oxidative stress and cardiac dysfunction occurring in diabetes, we used STZ-

induced T1D mice. C57BL6/J male mice were anesthetized and injected intraperitoneally 

(i.p) with STZ (50 mg/kg) for 5 consecutive days to induce T1D. STZ causes pancreatic ȕ-

cell necrosis and thus inhibits glucose-induced insulin secretion leading to the development of 

T1D [β04]. After 1β weeks of STZ treatment, we assessed LV function in these mice via PV 

relationships, as shown in Figure β1A.  

 

Figure 21. Characterization of LV function in STZ-induced T1D mice. (A) Representative 
pressure-volume loops from control (blue), STZ (black), control+pargyline (green) and 
STZ+pargyline (red) treated mice. (B) Ejection fraction and (C) Diastolic stiffness measurement in 
vehicle or pargyline treated control and STZ mice. *p<0.005 vs CT vehicle, †p<0.005 vs STZ vehicle. 
LV: left ventricle, STZ: streptozotocin, T1D: type 1 diabetes. 

Heart rate and cardiac output remained unchanged between the experimental groups 

(Table 1). Moreover, we found that ejection fraction, an index of systolic function, was also 

unaffected in STZ-mice (Figure β1B). dP/dtmax and dP/dtmin, indexes of contractility and 

relaxation, showed a trend to decrease in STZ-treated mice but these changes were not 

statistically significant (Table 1). This suggests that, although systolic function still appears 

unaffected, STZ mice are likely to undergo systolic dysfunction with prolonged treatment. 

Interestingly, diastolic stiffness, an index of diastolic dysfunction, was 4.6-fold increased in 

diabetic mice (Figure β1C). These findings are consistent with clinical reports showing that 
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LV diastolic dysfunction is one of the earliest signs of cardiac complications in diabetic 

patients, followed by systolic dysfunction only at later stages [β7, β05]. To assess whether 

MAO activity might play a role in the development of diabetic cardiomyopathy, cardiac 

function was evaluated also in STZ-mice that were administered MAO inhibitor pargyline. 

Importantly, MAO inhibition did not affect any of the LV functional parameters in the control 

group, as indicated in Table 1. However, pargyline administration significantly reduced 

diastolic stiffness in STZ-mice, indicating a pivotal role of these flavoenzymes in LV 

dysfunction in diabetic cardiomyopathy. 

 Control (n=6) 
Control+Parg 

(n=4) 
STZ (n=8) 

STZ+Parg 

(n=10) 

Glucose (mmol/l) 10.β0±1.40 8.60±0.40 γβ.β0±γ0* γβ.10±γ.10* 

Body weight (g) γγ.10±β.70 γβ.40±β.00 β5.50±4.γ0 β4.β0±5.γ0 

Heart rate (bpm) γ80.56±β0.4β 446.59±β1.90 γ50.57±16.58 γ4γ.8γ±1.94 

EDV (µl) 65.66±9.4γ 70.50±β.60 47.6β±γ.5β* 50.70±β.87* 

ESV (µl) β1.50±4.β8 β7.00±1.41 14.87±1.74 15.γ0±1.49 

SV (µl) 44.16±5.γ1 4γ.50±β.γ8 γβ.87±β.1β* γ5.β0±β.11* 

EF (%) 68.01±β.06 61.75±β.07 69.γ4±1.76 69.8β±1.88 

Diast stiff (1/µl) 0.0158±0.005 0.010±0.004 0.069±0.009* 0.0γγ1±0.007† 

ESP (mmHg) 8β.66±β.γ9 91.6γ±5.7β 67.47±5.67 76.β0±1.94 

EDP (mmHg) 8.58±1.5γ 5.98±1.79 9.β1±β.β0 10.γβ±1.75 

dP/dtmax (mmHg/s) 5487.40±4γ0.94 71β0.β9±5ββ.16 4101.85±645.78 471γ.β8±γ16.7 
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dP/dtmin (mmHg/s) -59γ0.80±γ89.β -7161.70±804.γ6 -4001.γ0±886.90 -4500.β9±885.7 

Eff (%) 7γ.γ5±4.15 70.γ7±17.0β 76.ββ±6.6β 74.06±5.γ6 

Table 1. Glycemic and hemodynamic parameters measured in T1D mice. EDV: end-diastolic 
volume, ESV: end-systolic volume, SV: stoke volume, EF: ejection fraction, CO: cardiac output, ESP: 
end-systolic pressure, EDP: end diastolic pressure, Eff: efficiency. *p<0.005 vs Control, †p<0.005 vs 
STZ. T1D: type 1 diabetes. 
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7.6 MAO contributes to oxidative stress and impairs ER homeostasis in diabetic 

hearts 

Accumulating evidence supports the role of oxidative stress and ER stress in diastolic 

dysfunction occurring in both diabetic patients and animal models. Thus, we investigated 

whether oxidative stress and impaired ER function might contribute to LV diastolic 

dysfunction also in our T1D model. To measure oxidative stress in T1D hearts we assessed 

the levels of 4-HNE, a product of lipid peroxidation. 4-HNE is a highly reactive aldehyde that 

modifies proteins, phospholipids and nucleic acids. Thus, it is widely used as an oxidative 

stress marker. As expected, we found that levels of 4-HNE were significantly increased in 

T1D hearts indicating the occurrence of oxidative stress in these mice (Figure ββ).  

 

Figure 22. Oxidative stress in STZ-induced T1D mice. 4-HNE staining was performed on heart 
tissue lysates extracted from vehicle- or pargyline-treated control and STZ mice. 4-HNE levels were 
normalized to total protein content determined by Red Ponceau. *p<0.05 vs control, #p<0.05 vs STZ. 
STZ: streptozotocin, T1D: type 1 diabetes, 4-HNE: 4-hydroxy-β-nonenal. 

Moreover, oxidative stress was accompanied by impaired ER homeostasis in STZ-mice 

as demonstrated by induction of UPR associated proteins, including ATF4 and GADDγ4 

(Figure βγ). In line with our in vitro data, pargyline administration to diabetic mice 

completely prevented these alterations. These results suggest that hyperglycemia-induced 

changes in diabetic hearts lead to the enhanced MAO activity resulting in oxidative stress. As 

a consequence, misfolded proteins accumulate in the ER leading to the activation of UPR. 
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This data further support previous studies suggesting that oxidative and ER stress contribute 

to the pathogenesis of diabetic cardiomyopathy [9γ, β06]. 

 

Figure 23. ER stress in STZ-induced T1D mice. (A) Representative western blot and (B) 
quantification of ATF4 and GADDγ4 band intensities in heart tissue lysates of control, STZ and 
STZ+pargyline treated mice. *p<0.05 vs control, #p<0.05 vs STZ. ER: endoplasmic reticulum, T1D: 
type 1 diabetes, STZ: streptozotocin, ATF4: activating transcription factor 4, GADDγ4: growth arrest 
and DNA damage-inducible protein. 

We also investigated whether the increase in oxidative stress was due to changes in 

MAO protein expression in diabetic conditions. In agreement with our in vitro data, the 

protein expression of MAO-B, predominant isoform in the mouse heart, was not significantly 

different in STZ hearts as compared to controls (Figure β4).  

 

Figure 24. MAO-B protein expression in heart tissue lysates. MAO-B protein expression in heart 
tissue lysates of control, STZ and STZ+pargyline treated mice. MAO: monoamine oxidase, STZ: 
streptozotocin. 
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7.7 MAO activity triggers mast cell degranulation and cardiac fibrosis in T1D 

mice in vivo 

Cardiac fibrosis is one of the underlying causes of diastolic dysfunction and a major 

feature of diabetic cardiomyopathy [β4, γ7]. Collagen synthesis is enhanced, whereas its 

degradation is limited in pathological conditions, creating a net excess of collagen deposition 

[β07]. An over-production of collagen is known to increase myocardial stiffness and 

consequent cardiac dysfunction, ultimately resulting in cardiac failure [γ7, β08]. Hence, we 

assessed collagen levels in our diabetic model using Masson’s Trichrome staining. Indeed, we 

found a 4-fold increase in collagen deposition in STZ-hearts as shown in Figure β5. 

Surprisingly, pargyline treated mice showed complete absence of these histological 

alterations suggesting that MAO plays a crucial role in the development of fibrosis in these 

animals.  

 

Figure 25. Cardiac fibrosis in T1D mice. (A) Representative images of Masson’s trichrome staining 
from control and STZ mice, showing collagen deposition in blue. (B) The quantification data is 
expressed as percentage of fibrotic vs total cardiac tissue. *p<0.05 vs control vehicle, #p<0.05 vs 
control vehicle. T1D: type 1 diabetes, STZ: streptozotocin. 

One of the mechanisms leading to the development of fibrosis is mast cell 

degranulation [β09]. Mast cells are known to play a key role in the inflammatory processes 

and, when stimulated, can undergo degranulation to release a number of pro-inflammatory 
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and pro-fibrotic factors [β10]. Several studies linked increased ROS production and mast cell 

degranulation in pathological conditions [16γ-165]. Indeed, multiple studies have 

demonstrated that incubation of mast cells with HβOβ lead to a dose-dependent increase in 

mast cell degranulation in vitro [165]. Moreover, Luo et al. and Gan et al. have shown that 

specific inhibition of ROS-generating enzyme  

oxidase by apocynin in a model of intestinal ischemia-reperfusion-induced acute lung injury 

completely abolished the activation of mast cells [164, 165]. However, whether mitochondria 

and ROS are involved in triggering cardiac mast cell degranulation in diabetic 

cardiomyopathy is not yet clear. Thus, to understand whether mast cell degranulation is 

triggering fibrosis and if MAO activity is involved in this inflammatory process, we assessed 

cardiac mast cell density and level of degranulation in STZ mice. No significant difference 

was observed in the density of mast cell between STZ hearts and control mice (Figure β6B). 

However, mast cell degranulation was 1.8-fold higher in diabetic mice as compared to control 

(Figure β6C). Interestingly, pargyline treatment prevented mast cell degranulation in T1D 

mice. Taken together, these results suggest that MAO is involved in the activation of cardiac 

mast cells thereby leading to the remodeling of the extracellular matrix, fibrosis and, 

ultimately, LV dysfunction. These findings complement previous studies reporting that 

myocardial remodeling is associated with cardiac mast cell activation in diabetic 

cardiomyopathy [β11]. However, further investigation is required to elucidate how the 

activity of these flavoenzymes triggers mast cell degranulation.  
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Figure 26. Mast cell degranulation in STZ-induced T1D mice. (A) Representative images of 
toluidine blue staining of cardiac tissue from indicated experimental groups. Red arrows indicate 
intact mast cells, while black arrows indicate actively degranulating mast cells. Quantification of (B) 
mast cell density and (C) mast cell degranulation. Results are expressed as number of mast cells per 
field and percentage of degranulating mast cells vs total number of mast cells, respectively.*p<0.05 vs 
control vehicle, #p<0.05 vs STZ vehicle. STZ: streptozotocin, T1D: type 1 diabetes. 
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8. DISCUSSION AND CONCLUSIONS 

This study demonstrates that MAOs play a prominent role in HG and/or IL-1ȕ induced 

mitochondrial ROS formation and dysfunction in vitro, and cardiac damage in T1D mice in 

vivo. We also show that ROS produced by these flavoenzymes can also perturb ER function 

leading to the activation of UPR in diabetic conditions. Furthermore, we describe the novel 

role of MAO in the activation of cardiac mast cells thereby providing an important link 

between MAO activity, inflammation and fibrosis in diabetic cardiomyopathy.  

Several hypotheses for the mechanism underlying hyperglycemia-induced cardiac 

impairment include an increase in polyol pathway flux, intracellular AGE formation or 

increased flux through the hexosamine pathway [β1β, β1γ]. Many alterations of cellular and 

mitochondrial metabolism observed during the development of diabetic cardiomyopathy are 

associated with increased ROS levels. Multiple studies indicated that cardiac impairment is 

not caused by hyperglycemia per se, but rather it is the oxidative stress and inflammation that 

lead to cardiovascular complications. Moreover, clinical studies validated IL-1ȕ, a pro-

inflammatory cytokine, as a target to improve glucose metabolism and cardiac complications 

in patients with both T1D and TβD [β14-β16]. It is well known that mitochondrial ROS 

formation and dysfunction lead to the production of IL-1ȕ via inflammasome pathway [186, 

β17], but whether and how IL-1ȕ can induce mitochondrial ROS formation has never been 

investigated. Here, we show for the first time that IL-1ȕ, in combination with HG, is able to 

induce mitochondrial ROS formation and, importantly, this occurs in a MAO-dependent 

manner. We demonstrate that MAO-induced ROS formation is remarkably increased when 

cells are treated with the combination of HG and IL-1ȕ, as compared to either of them alone. 

The exacerbated ROS formation in these conditions is more evident in NRVMs as compared 

to adult cardiomyocytes. The reason behind this discrepancy is likely due to technical 

limitations of the MTR probe, as mentioned in the Results section. Overall, our in vitro 

results indicate that adult cardiomyocytes are more susceptible to HG and pro-inflammatory 

stimuli as compared to NRVMs. This is supported by the observation that HG led to a mild 

increase in ROS formation in NRVMs after 48 h, whereas adult cardiomyocytes displayed a 

β-fold increase in ROS formation within β hours of treatment. Moreover, NRVMs did not 

display any change in ΔΨm even after 48 h of treatment with HG, while adult 

cardiomyocytes show a β-fold and 9-fold reduction in ΔΨm in presence of HG and HG-IL1ȕ, 
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respectively. Finally, we also observed that NRVMs do not show remarkable changes in the 

expression of ER stress markers, whereas adult cardiomyocytes underwent strong impairment 

of ER homeostasis and upregulation of UPR markers. This discrepancy might be due to the 

glycolytic phenotype of neonatal cardiomyocytes or due to the differences in the antioxidant 

defense system between these two cultures [19γ, β18]. Thus, it is important to take these 

notions into consideration when choosing the adequate model for the assessment of the 

effects following exposure to the diabetic milieu.  

MAO-generated HβOβ is not only confined to mitochondria, but also occurs in the 

cytosol in HG- and/or IL-1ȕ- treated cardiomyocytes. In recent years, it has been shown that 

mitochondrial impairment can induce cytosolic ROS formation and vice-versa. Maharjan et 

al. demonstrated that proteasome inhibition causes an increase in mitochondrial ROS 

formation and dysfunction leading to cytosolic oxidative stress [β19]. On the other hand, 

Coughlan et al. reported that exposure of primary renal cells to AGEs leads to an increase in 

cytosolic ROS formation which facilitated the production of mitochondrial superoxide and 

deficiency of mitochondrial complex I [ββ0]. Thus, it remains an open question whether in 

our experimental model mitochondrial ROS occurs prior to cytosolic oxidative stress. 

However, previous data obtained in our laboratory suggest that in cardiomyocytes MAO-

induced ROS formation occurs firstly in mitochondria and then in the cytosol [1β0].  

It is important to understand why and how the activity of MAO is upregulated in 

diabetic conditions. Although MAO protein expression remains unchanged both in vitro and 

in vivo, increased substrate availability and/or post-translational modifications might account 

for the enhanced activity of these enzymes. Indeed, our laboratory has previously 

demonstrated that enhanced MAO-A-dependent norepinephrine degradation contributes to 

oxidative stress and transition from compensated hypertrophy to heart failure in pressure 

overloaded mice [117]. However, catecholamines are mainly stored in the sympathetic nerve 

endings and, at present, it still remains to be elucidated whether these or other MAO 

substrates may also be stored in cardiac myocytes.  

We also demonstrated that MAO is involved in HG and pro-inflammatory stimuli 

induced mitochondrial dysfunction. It has been previously shown in a model of Parkinson’s 

disease that increased MAO activity can affect mitochondrial function by decreasing 

mitochondrial complex I activity, thus impairing electron transport chain [ββ1]. Our data 
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demonstrate that MAO-generated HβOβ leads to reduced ΔΨm, most likely due to the 

impairment of the mitochondrial respiratory chain. Besides HβOβ formation, these 

flavoenzymes also produce aldehydes and ammonia [110, 115, 1βγ]. Recent studies have 

focused on the deleterious effects of reactive aldehydes in cardiac diseases. It has been 

demonstrated that aldehydes can perturb mitochondrial function by directly targeting 

pyruvate dehydrogenase and complex I-associated proteins [βββ]. Moreover, Zhang et al. 

showed that mitochondrial ALDHβ, improves mitochondrial function and reduces apoptosis 

in STZ-induced T1D hearts [ββγ]. Thus, it might be possible that MAO-induced 

mitochondrial dysfunction in cardiomyocytes is a combined effect of increased ROS levels 

and aldehydes upon HG and IL-1ȕ exposure.  

Our data demonstrate that in addition to oxidative stress and mitochondrial dysfunction, 

MAO activity also leads to the impairment of ER homeostasis and activation of UPR in both 

in vitro and in vivo model of diabetes, highlighting the novel role of these flavoenzymes in 

the interplay between ER and mitochondria. Persistent protein misfolding is known to play 

predominant roles in the pathogenesis of multiple cardiovascular diseases including diabetes, 

heart failure, and ischemia/reperfusion injury [144, ββ4, ββ5]. Although many studies have 

shown an association between oxidative and ER stress, whether mitochondrial ROS 

formation is upstream of ER stress or vice-versa is not clear. It has been demonstrated that 

activation of UPR under stress conditions led to impaired calcium and redox homeostasis. As 

a consequence, oxidative stress is increased leading to impaired mitochondrial function [ββ6, 

ββ7]. Although the exact mechanism of how protein misfolding can trigger ROS formation is 

not yet fully understood, several possible mechanisms have been proposed. First, under stress 

conditions misfolded proteins bind to ER chaperone GRP78; this process requires ATP that 

may stimulate mitochondria to generate more ATP through oxidative phosphorylation leading 

to the production of ROS as a byproduct [ββ7]. Second, ROS may be produced as a 

consequence of disulfide bond formation. ER oxidoreductase proteins oxidize cysteine 

residues of nascent proteins, helping them in the formation and isomerization of correct 

disulfide bonds. Reduced folding enzymes are re-oxidized by ERO-1, the enzyme which 

reduces molecular oxygen leading to the production of HβOβ [ββ8]. On the other hand, 

Malhotra et al. suggested that both ROS and unfolded proteins are required to activate UPR in 

the cell. They further demonstrated that reducing ROS by the antioxidant butylated 

hydroxyanisole improves protein folding and cell survival [ββ9]. Furthermore, two 

independent studies reported that inhibition of oxidative stress by MitoTEMPO and ER stress 
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by TUDCA prevented diabetes-induced cardiac damage in rodents [145, βγ0]. These findings 

suggest the crucial need for understanding the pathological mechanisms that alter both 

organelles in pathological conditions, and particularly the mechanisms that coordinate the 

interplay between mitochondrial dysfunction and ER stress. In the present study we show that 

HG- and inflammation-induced ROS formation and mitochondrial dysfunction are upstream 

of ER stress in cardiomyocytes. Importantly, MAO contributes to perturbed ER function in 

HG/IL1ȕ-treated NRVMs in vitro and in T1D mice in vivo. These findings indicate the novel 

role of these flavoenzymes in the vicious cycle between excessive ROS formation and ER 

stress. However, MAO inhibition is not sufficient to protect the cell from damage when ER 

stress is induced directly and occurs upstream of mitochondrial ROS formation (Figure β0). 

This might be due to the fact that both tunicamycin and thapsigargin led to severe ER stress 

as demonstrated by the β0-fold increase in gene expression of ATF4 and pre-apoptotic gene 

CHOP. This increase is much higher compared to our in vitro diabetic model where we 

observed a γ-fold upregulation of ER stress markers (Figure 19). On the other hand, it is 

possible that tunicamycin- and thapsigargin-induced ER stress cause mitochondrial 

dysfunction, oxidative stress and cell death in a MAO-independent manner. Indeed, it has 

been shown that ER stress can cause mitochondria to produce more ROS causing cell death 

via induction of mitochondrial permeability transition, induced upon entry of excessive 

amounts of Caβ+ into the mitochondrial matrix [1γγ]. 

Besides the functional link between mitochondria and ER, the sites of physical 

communication between these organelles, known as mitochondria associated membranes 

(MAMs), have recently earned considerable attention. Indeed, some studies proposed that 

MAMs are involved in the maintenance of lipid and calcium homeostasis, in the initiation of 

autophagy and mitochondrial division, and in sensing metabolic shifts inside the cell [βγ1-

βγ5]. One study has highlighted the role of MAMs in diabetes demonstrating that obesity 

drives an abnormal increase in MAMs formation in the liver, resulting in increased Caβ+ flux 

from the ER to mitochondria [βγ6]. Downregulation of PACS-β, a protein important for ER-

mitochondria tethering, prevented these changes [βγ6]. Moreover, it has been shown that ER 

stress led to a remarkable increase in MAMs both in vitro and in the liver of obese mice in 

vivo [βγβ, βγ6]. Mitofusin β, a molecular tether between ER and mitochondria, has been 

shown to play a role in ER-mitochondria calcium cross-talk in cardiomyocytes and to be one 

of the factors that regulate events orchestrated by mitochondrial calcium uptake, such as 

metabolism, opening of the mitochondrial permeability transition pore (MPTP), and 
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programmed cardiomyocyte death [βγ7]. In addition to that, recent studies have shown that 

ER-mitochondria tethering enables ER proteins to associate directly with proteins and lipids 

of the OMM. It is therefore tempting to hypothesize that MAO, localized at the OMM, might 

interact with some of the ER proteins and also play a role in ER-mitochondria tethering. A 

coherent understanding of the bidirectional communication existing between these two 

organelles will certainly aid in the development of specific therapeutic strategies to treat 

diseases associated with oxidative stress, UPR and inflammation such as obesity, diabetic 

cardiomyopathy and neurological disorders. 

Oxidative stress and mitochondrial dysfunction are widely accepted to play an 

important role in the development and progression of LV dysfunction in diabetic 

cardiomyopathy [γ7, γ9, βγ8]. Recent studies documented mitochondrial dysfunction in 

human diabetic hearts showing an increased mitochondrial oxidative stress and increased 

sensitivity to calcium-induced opening of the MPTP in atrial tissue of patients [γ7, 85]. Here 

we provide strong evidence that diastolic dysfunction occurring in STZ mice is completely 

prevented upon MAO inhibition. These findings are of major importance because of their 

clinical relevance. Diastolic dysfunction detected at the initial stages of diabetes falls into the 

category of HFpEF, a condition that occurs in approximately 50% of patients with heart 

failure. The mechanisms of this modality are poorly understood because of the limited 

availability of animal models with HFpEF. Although the role of MAO in TAC-induced heart 

failure has already been reported [117], current data strongly suggests that targeting MAO 

activity might be particularly interesting in diabetic patients with HFpEF. 

Mitochondrial ROS formation is believed to be the primary cause for LV diastolic 

dysfunction [198, βγ8]. In this regard, Dai et al have shown that specific inhibition of 

mitochondrial ROS formation by synthetic Szeto-Schiller peptide SS-γ1prevented LV 

diastolic dysfunction, whereas non-targeted ROS scavenging with N-acetyl cysteine (NAC) 

had no effect [βγ9]. A recent study emphasized that already in prediabetic conditions ROS 

levels are elevated in subsarcolemmal mitochondria, further indicating that mitochondrial 

ROS production is one the earliest events to trigger cardiac pathological changes well before 

major metabolic derangements occur [β40]. Within this scenario, we provide strong evidence 

that specific inhibition of MAO activity in T1D results in improved cardiac function. 

Nevertheless, it remains to be elucidated whether MAO inhibition affords protection also 

when inhibitors are administered after the onset of diastolic dysfunction.  
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It appears that increased diastolic stiffness in STZ mice is the result of MAO-induced 

cardiac fibrosis, one of the major features of diabetic cardiomyopathy. Several factors have 

been reported to contribute to cardiac fibrosis, including cytokines, growth factors, infiltration 

of inflammatory cells monocyte/macrophages and degranulation of mast cells. In our T1D 

model, we found that MAO activity triggers mast cell degranulation that might be 

contributing to cardiac fibrosis and thus diastolic dysfunction. Although several studies hint 

to the link between mast cell and oxidative stress in different pathological disorders [161, 

16γ, 164, β09, β41], up to date no study has identified the specific source of ROS responsible 

for mast cell degranulation in diabetic cardiomyopathy. Here, we report for the first time that 

MAO activity triggers mast cell degranulation in STZ-mice, thus providing a mechanistic link 

between these mitochondrial flavoenzymes, inflammation and fibrosis in diabetic 

cardiomyopathy. Nevertheless, it still remains to be elucidated whether it is MAO-generated 

ROS formation in cardiomyocytes or in mast cells themselves that is triggering this 

inflammatory response.  

Since oxidative stress is known to play a major role in the development of 

cardiovascular complications in diabetes, several therapies aimed at reducing ROS formation 

and enhancing antioxidant defense have been employed to improve cardiac dysfunction in 

rodents. In contrast, large-scale clinical trials using antioxidant therapies for the treatment of 

these pathological disorders have been ineffective [β4β, β4γ]. Collectively, these studies point 

towards a serious need to develop therapeutic strategies aimed at inhibiting specific sources 

of ROS in pathological conditions. We demonstrate that MAO contributes to increased ROS 

formation and ER stress in HG and IL-1ȕ treated cardiomyocytes in vitro and in T1D model 

in vivo. Moreover, we show that these enzymes further activate cardiac mast cells, leading to 

fibrosis and ultimately diastolic dysfunction. These results point to MAO inhibition as a 

potential therapy in diabetic cardiomyopathy. Moreover, as mentioned before, besides the 

generation of HβOβ these flavoenzymes also produce reactive aldehydes that, per se, are 

deleterious for the heart. Thus, therapy employing MAO inhibition in cardiac dysfunction 

will not only aim at reducing oxidative stress but also abolishing the detrimental effects of 

these reactive aldehydes.  
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