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Likelihood Asymptotics in Nonregular
Settings: A Review and Annotated
Bibliography with Emphasis on the
Likelihood Ratio
Alessandra R. Brazzale ∗ and Valentina Mameli †

Abstract. This paper reviews the most common situations where one
or more regularity conditions which underlie likelihood-based para-
metric inference fail. We identify three main classes of problems:
boundary problems, indeterminate parameter problems—which include
non-identifiable parameters and singular information matrices—and
change-point problems. The review focuses on the large-sample proper-
ties of the likelihood ratio statistic, though other approaches to hypoth-
esis testing and connections to estimation will be mentioned in passing.
We emphasize analytical solutions and mention software implementa-
tions where available. Some summary insights about the possible tools
to derivate the key results are given.

Key words and phrases: boundary point, change-point, finite mixture,
first order theory, identifiability, large-sample inference, singular infor-
mation.

1. INTRODUCTION

It is commonly believed that under the null hy-
pothesis the three classical tests of likelihood-based
inference—that is, those based on the Wald, score
and likelihood ratio statistics—are asymptotically
equivalent and, to the first order of approximation,
follow a chi-squared distribution. However, in order
to hold true this statement requires a number of
regularity conditions. These conditions, which are
typically of Cramér type (Cramér, 1946, §33.3), re-
quire, among others, differentiability of the under-
lying joint probability or density function up to a
suitable order and finiteness of the Fisher informa-

∗Alessandra R. Brazzale is Associate Professor of Statis-
tics, Department of Statistical Sciences, University of Padova,
Via Cesare Battisti 241, 35121 Padova, Italy (e-mail: alessan-
dra.brazzale@unipd.it; url: www.stat.unipd.it/˜brazzale).

†Valentina Mameli is tenure track Assistant Pro-
fessor at the Department of Economics and Statis-
tics, University of Udine, Via Tomadini 30/A, 33100
Udine, Italy (e-mail: valentina.mameli@uniud.it; url:
https://people.uniud.it/page/valentina.mameli).

tion matrix. Models which satisfy these requirements
are said to be ‘regular’ and cover a wide range of ap-
plications. However, there are many important cases
where one or more conditions break down. A classi-
cal example, which is traditionally used to demon-
strate the failure of parametric likelihood theory, is
Neyman and Scott’s (1948) paradox.

Example 1.1 (Growing number of parame-
ters). Let (X1, Y1), . . . , (Xn, Yn) denote n indepen-
dent pairs of mutually independent and normally
distributed random variables such that for each i =
1, . . . , n, Xi and Yi have mean µi and common vari-
ance σ2. The maximum likelihood estimator of σ2

is

σ̂2
n =

1

2n

n∑
i=1

{(Xi − µ̂i)2 + (Yi − µ̂i)2},

with µ̂i = (Xi + Yi)/2. Straightforward calculation
shows that, for n → ∞, σ̂2

n converges in probabil-
ity to σ2/2 instead of the true value σ2. The reason
is that only a finite number of observations, in fact
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Fig 1. Example 1.2: Translated exponential distribution. Val-
ues of the likelihood ratio W (3) observed in 10,000 exponen-
tial samples of size n = 50 generated with rate equal to 1 and
translated by θ0 = 3. Left: χ2

1 quantile plot. The diagonal dot-
ted line is the theoretical χ2

1 approximation. Right: histogram
and superimposed χ2

2 density (solid line).

two, is available for estimating the unknown sample
means µi. This violates a major requirement which
underlies the consistency of the maximum likelihood
estimator, namely that the uncertainty of all param-
eter estimates goes to zero.

Example 1.1 is an early formulation of an inciden-
tal parameters problem. Other examples of this type
are reviewed in Lancaster (2000), who also discusses
the relevance of the Neyman–Scott paradox in statis-
tics and economics. A recent contribution is Feng et
al. (2012). Non-regularity may also arise when the
parameter space is constrained and the null hypoth-
esis lies on its boundary, or when some of the pa-
rameters disappear under the null hypothesis. The
following simple example shows what may happen
when the support of the distribution depends on the
parameter θ so that the likelihood function cannot
be differentiated over the entire parameter space.

Example 1.2 (Translated exponential distribu-
tion). Let X1, . . . , Xn be an independent and iden-
tically distributed sample from an exponential dis-
tribution with rate equal to 1. Consider the trans-
lation Yi = Xi + θ, with θ > 0 unknown. Given
the minimum observed value Y(1), the likelihood ra-
tio statistic for testing the hypothesis that θ = θ0 is
W (θ0) = 2n(Y(1) − θ0). Straightforward calculation

proves that under the null hypothesis W (θ0) has a
χ2

2 distribution, not the classical χ2
1 limiting distribu-

tion. Furthermore, the maximum likelihood estima-
tor of θ is no longer asymptotically normal. Indeed,
it is easy to show that Y(1)− θ follows exactly an ex-
ponential distribution with rate n. The left panel of
Figure 1 shows the χ2

1 quantile plot of the likelihood
ratio statistic observed in 10,000 exponential sam-
ples of size n = 50 generated with rate equal to 1 and
translated by θ0 = 3. The finite-sample distribution
of W (3) is visibly far from the theoretical χ2

1 approx-
imation represented by the dotted diagonal line. The
right panel reports the empirical distribution of the
likelihood ratio statistics with superimposed the χ2

2

density (solid line).

These situations are not mere mathematical ar-
tifacts, but include many models of practical inter-
est, such as mixture distributions and change-point
problems, in genetics, reliability, econometrics, and
many other fields. Especially practitioners may be
less familiar with the resulting limiting distributions.
As will be shown in Section 3, the distribution of the
likelihood ratio statistic may converge to a mixture
of chi-squared distributions, such as when the true
value of the parameter belongs to the boundary of
its parameter space, with mixing proportions which
are awkward to determine. Or, its asymptotic be-
haviour may be characterised by the distribution of
the supremum of a squared truncated Gaussian pro-
cess, which is the common case for the finite mixture
models reviewed in Section 5.

Asymptotic theory is an essential part of statisti-
cal methodology. It provides first thing approximate
answers where exact ones are unavailable. Beyond
this, it serves to check if a proposed inferential so-
lution provides a sensible answer when the amount
of information in the data increases without limit.
Given the tremendous advances in computer age sta-
tistical inference (Efron and Hastie, 2016) one could
be tempted to by-pass the often rather demanding
algebraic derivations of asymptotic approximation.
Gaining insight in what happens to the limiting dis-
tribution of likelihood-based test statistics when one
or more regularity conditions fail is a central issue
to decide whether and to which extent to rely upon
simulation. The following simple example tries and
makes the point.
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LIKELIHOOD ASYMPTOTICS IN NONREGULAR SETTINGS 3

Example 1.3 (Testing for homogeneity in a
von Mises mixture). Suppose we observe a random
sample y1, . . . , yn from the mixture model

(1.1) (1− p)f(yi; 0, κ) + pf(yi;µ, κ),

where 0 ≤ p ≤ 1 is the mixing proportion. Fur-
thermore, f(yi;µ, κ) denotes the von Mises distri-
bution with mean direction |µ| ≤ π and concentra-
tion parameter κ ≥ 0. Fu et al. (2008) prove that
the asymptotic null distribution of the likelihood ra-
tio statistic for testing the hypothesis p = 0 is the
squared supremum of a truncated Gaussian process.
The quantiles of the process can in principle be ap-
proximated to desirable precision by simulation, this
way overcoming the algebraic difficulties of the ex-
act solution. However, the same authors also show
that if a suitable penalisation term is used, the dis-
tribution of the corresponding modified likelihood ra-
tio statistic converges to the simple χ2

1 distribution
for n→∞. This is wholly different from what hap-
pens in the Gaussian case. If the component den-
sities f(yi;µ, κ) in (1.1) represent normal distribu-
tions with unknown mean µ ∈ R and variance κ > 0,
then the distribution of the likelihood ratio statistic
for testing model homogeneity diverges to infinity
unless suitable constraints are imposed (Chen and
Chen, 2003). This is because normal mixtures with
unknown variance are not identifiable unlike the von
Mises mixture model (1.1); see Section 5.4. Trying
and simulating the limiting distribution would lead
to totally misleading results.

The purpose of this paper is to present the most
common situations where one or more regularity
conditions fail. A highly cited review of nonregular
problems is Smith (1989); see also the discussion pa-
per by Cheng and Traylor (1995). Further examples
can be found in Barndorff-Nielsen and Cox (1994,
§3.8), Davison (2003, §4.6) and Cox (2006, Chap-
ter 7). The majority of existing results consider the
failure of one condition at a time, but failure of two
assumptions simultaneously has also received atten-
tion. Indeed, there is a rich literature on this topic.
Since it is nearly impossible to cover all aspects of
the subject, here, we will focus on the large-sample
properties of likelihood-based parametric test statis-
tics derived under non-standard conditions, that is,
when the likelihood function is nonregular. Special

attention will be paid to the likelihood ratio and
its limiting distribution, although analogies with al-
ternative test statistics and/or nonparametric and
semiparametric models may be mentioned in pass-
ing. This is justified by the widespread use of Wilks’
statistic, and its chi-squared limiting distribution,
for hypothesis testing, model selection and other re-
lated uses. We furthermore restrict our attention
to the key results and the corresponding prototype
derivations; further contributions are mentioned in
the annotated bibliography.

The paper is organised as follows. First order
parametric inference based on the likelihood func-
tion of a regular model is reviewed in Section 2, to-
gether with the conditions upon which it is based.
However, when these are not fulfilled, deriving the
finite and/or asymptotic properties of the likelihood
ratio statistic can be very challenging. In the absence
of a unifying theory, most of the individual problems
have been treated on their own. After careful consid-
eration, we decided to group them into three broad
classes. The first considers the case where the param-
eter space is bounded and embraces, in particular,
testing for a value of the parameter which lies on its
boundary; see Section 3. Section 4 concerns mod-
els where one part of the parameter vanishes when
the remaining one is set to a particular value. The
best-studied indeterminate parameter problem are
finite mixture models. Given their widespread use in
statistical practice, and their closeness to boundary
problems, we will consider them separately in Sec-
tion 5. Change-point problems are the third broad
class of nonregular models, which we review in Sec-
tion 6. Most articles investigate the consequences of
the failure of one regularity condition at a time. Mix-
ture distributions and change-point problems de-
serve special attention as they represent situations
where two conditions fail simultaneously. Section 7
reviews cases which do not fit into the above three
broad model classes, but still fall under the big um-
brella of nonregular problems. These include, among
others, shape constrained inference, a genre of non-
parametric problem which leads to highly nonregu-
lar models.

Despite the many remarkable theoretical devel-
opments in likelihood-based asymptotic theory for
nonregular parametric models, one may wonder why
the corresponding results are little known especially
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4 A. R. BRAZZALE AND V. MAMELI

among practitioners. We believe there are at least
two reasons. The first is that the results are highly
scattered, in time and scope, which makes it difficult
to get the general picture. The second reason is that
the limiting distributions are often fairly complex in
their derivation and implementation. Section 8 re-
views the few software implementation we are aware
of.

The paper closes with the short summary discus-
sion of Section 9.

2. LIKELIHOOD ASYMPTOTICS

2.1 First order theory

2.1.1 General notation. Consider a parametric
statistical model with probability density or mass
function f(y; θ), where the parameter θ takes values
in a subset Θ ⊆ Rp, p ≥ 1, and y = (y1, . . . , yn)
are n observations from Y = (Y1, . . . , Yn). Through-
out the paper we will consider these an indepen-
dent and identically distributed random sample un-
less stated differently. Let L(θ) = L(θ; y) ∝ f(y; θ)
and l(θ) = logL(θ) denote the likelihood and the
log-likelihood functions, respectively. The maximum
likelihood estimate (MLE) θ̂ of θ is the value of θ
which maximises L(θ) or equivalently l(θ). Under
mild regularity conditions on the log-likelihood func-
tion to be discussed in Section 2.2, θ̂ solves the score
equation u(θ) = 0, where u(θ) = ∂l(θ)/∂θ is the
score function. We furthermore define the observed
information function j(θ) = −∂2l(θ)/∂θ∂θ> and the
expected or Fisher information i(θ) = E [j(θ;Y )],
where θ> denotes transposition of θ.

2.1.2 No nuisance parameter. The three classi-
cal likelihood-based statistics for testing θ = θ0 are
the

standardized MLE, (θ̂ − θ0)>j(θ̂)(θ̂ − θ0),

score statistic, u(θ0)>j(θ̂)−1u(θ0),

likelihood ratio W (θ0) = 2{l(θ̂)− l(θ0)},

where the observed information j(θ̂) is at times re-
placed by the Fisher information i(θ). These statis-
tics are also known under the names of Wald’s,
Rao’s and Wilks’ tests, respectively. If the paramet-
ric model is regular, the finite-sample null distribu-
tion of the above three statistics converges to a χ2

p

distribution to the order O(n−1) as n → ∞. For θ
scalar, inference may be based on the corresponding

signed versions, that is, on the signed Wald statis-
tic, (θ̂ − θ0)j(θ̂)1/2, score statistic, u(θ0)j(θ0)−1/2,
and likelihood root,

r(θ0) = sign(θ̂ − θ0)[2{l(θ̂)− l(θ0)}]1/2,

whose finite-sample distributions converge to the
standard normal distribution to the order O(n−1/2).

2.1.3 Nuisance parameters. Suppose now that
the parameter θ = (ψ, λ) ∈ Ψ × Λ is partitioned
into a p0-dimensional parameter of interest, ψ ∈
Ψ ⊆ Rp0 , and a vector of nuisance parameters
λ ∈ Λ ⊆ Rp−p0 of dimension p − p0. Large-sample
inference for ψ is commonly based on the profile log-
likelihood function

lp(ψ) = sup
λ∈Λ

l(ψ, λ),

which maximises the log-likelihood l(ψ, λ) with re-
spect to λ for fixed ψ. The profile likelihood ratio
statistic for testing ψ ∈ Ψ0 is

Wp(ψ0) = 2{sup
ψ∈Ψ

lp(ψ)− sup
ψ∈Ψ0

lp(ψ)},

where Ψ0 ⊂ Ψ is the parameter space specified under
the null hypothesis. If the null hypothesis is ψ = ψ0,
the finite-sample distribution ofWp(ψ0) converges to
the χ2

p0
distribution to the order O(n−1) for n→∞.

If there exists a closed form expression for the
constrained maximum likelihood estimate λ̂ψ of λ
for given ψ, the profile log-likelihood function may
be written as

(2.1) lp(ψ) = sup
λ∈Λ

l(ψ, λ) = l(ψ, λ̂ψ).

A typical situation where λ̂ψ is not available in
closed form is when the nuisance parameter λ van-
ishes under the null hypothesis, as will be addressed
in Section 4.1. If (2.1) holds, we may define the
profile Wald, score and likelihood ratio statistics
for testing ψ = ψ0 as in Section 2.1.2, but now
in terms of the profile log-likelihood lp(ψ), with
up(ψ) = ∂lp(ψ)/∂ψ and jp(ψ) = ∂lp(ψ)/∂ψ∂ψ>

being the profile score and profile observed infor-
mation functions. The asymptotic null distribution
of these statistics is a χ2

p0
distribution up to the

order O(n−1). If ψ is scalar, the distributions of
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LIKELIHOOD ASYMPTOTICS IN NONREGULAR SETTINGS 5

the corresponding signed versions, (ψ̂−ψ0)jp(ψ̂)1/2,
up(ψ0)jp(ψ0)−1/2, and

(2.2) rp(ψ0) = sign(ψ̂ − ψ0)[2{lp(ψ̂)− lp(ψ0)}]1/2,

may be approximated by standard normal distribu-
tions up to the order O(n−1/2).

2.2 Regularity conditions

The first step in the derivation of the large-sample
approximations and statistics of Sections 2.1 is typ-
ically Taylor series expansion of the log-likelihood
function l(θ), or quantities derived thereof, in θ̂
around θ. We illustrate this by considering the ex-
pansion to the orderOp(n

−1/2) of the likelihood ratio

W (θ) = 2{l(θ̂)− l(θ)} for the scalar parameter case.

Example 2.1 (Asymptotic expansion of likeli-
hood ratio). Let p = 1 and lm = lm(θ) =
dml(θ)/dθm be the derivative of order m = 2, 3, . . .
of l(θ), the log-likelihood function for θ in a regular
parametric model. Recall that u = u(θ) = dl(θ)/dθ
represents the score function, while i = i(θ) =
E[−l2(θ;Y )] is the Fisher information. Taylor se-
ries expansion of l(θ̂) around θ yields

l(θ̂)− l(θ) = (θ̂ − θ)u+
1

2
(θ̂ − θ)2l2

+
1

6
(θ̂ − θ)3l3 +

1

24
(θ̂ − θ)4l4 + · · · .(2.3)

Rewriting (2.3) using notation (A.3) and replacing
(θ̂ − θ) with expansion (A.5) yields, after suitable
rearrangement of the terms,

l(θ̂)− l(θ) =
1

2
i−1u2 +

1

6
i−2
(
i−1uν3 + 3H2

)
l2

+ Op(n
−1).(2.4)

Here, H2 = l2 − ν2, with νm = E[lm(θ;Y )], for
m = 2, 3. The leading term, i−1u2, in (2.4) con-
verges asymptotically to the χ2

1 distribution, while
the second addend is of order n−1/2. This leads to
the well known result for Wilks’ statistic. See Pace
and Salvan (1997, §9.4.4) for the details.

The derivation of Example 2.1 requires that the
model under consideration is regular. This implies
first of all that the log-likelihood function can be
differentiated to whatever order is required, but also

that the asymptotic order of expected values of log-
likelihood derivatives is proportional to the sample
size. Wald (1949)—who is generally acknowledged
for having provided the earliest proof of consistency
of the maximum likelihood estimator which is math-
ematically correct—furthermore emphasized the im-
portance of the compactness of the parameter space
Θ and that the maximum likelihood estimator be
unique. Indeed, the former condition was missing in
Cramér’s (1946) and Huzurbazar’s (1948) proofs.

The required regularity conditions may be formu-
lated in several ways; see e.g. Cox and Hinkley (1974,
p. 281), Barndorff-Nielsen and Cox (1994, §3.8), Az-
zalini (1996, §3.2.3), Severini (2000, §4.7), van der
Vaart (2000, Chap. 5), Davison (2003, §4.6), Hogg,
McKean and Craig (2019, §6.1, §6.2 and A.1). Here,
we will assume that the following five conditions on
the model function f(y; θ) hold.

Condition 1 All components of θ are identifiable.
That is, two model functions f(y; θ1) and
f(y; θ2) defined by any two different values θ1 6=
θ2 of θ are distinct almost surely.

Condition 2 The support of f(y; θ) does not depend
on θ.

Condition 3 The parameter space Θ is a compact
subset of Rp, for a fixed positive integer p, and
the true value θ0 of θ is an interior point of Θ.

Condition 4 The partial derivatives of the log-
likelihood function l(θ; y) with respect to θ up
to the order three exist in a neighbourhood of
the true parameter value θ0 almost surely. Fur-
thermore, in such a neighbourhood, n−1 times
the absolute value of the log-likelihood deriva-
tives of order three are bounded above by a
function of Y whose expectation is finite.

Condition 5 The first two Bartlett identities hold,
which imply that

E[u(θ;Y )] = 0, i(θ) = Var[u(θ;Y )].

Conditions 1–5 are relevant in many important
models of practical interest, and can fail in as many
ways. For instance, from the perspective of signifi-
cance testing, Condition 1 fails when under the null
hypothesis parameters defined for the whole model
become undefined and therefore inestimable. We al-
ready mentioned this situation when introducing the
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6 A. R. BRAZZALE AND V. MAMELI

profile log-likelihood function and will come back to
it in Section 4.1. Further examples are treated in
Sections 4.2 and 5. Condition 2 typically does not
hold in change-point problems, which will be treated
in Section 6. Failure of Condition 2 is furthermore
addressed in Hirano and Porter (2003) and Severini
(2004). Failure of Condition 3 characterises the first
and most extensively explored nonregular setting,
that is, boundary problems; see Section 3. The com-
pactness condition, in particular, can be omitted,
provided it is replaced by some other requirements;
see, for instance, Pfanzagl (2017, Page 119). This
will be also the case for a number of the large-sample
results derived for nonregular models; see, for in-
stance, Section 5. A prominent example where Con-
dition 4 is not satisfied, is the double exponential, or
Laplace, distribution, which arises in quantile regres-
sion. For a book-length review of this topic we refer
the Reader to Koenker et al. (2017). Condition 5 is
guaranteed if standard results on the interchanging
of integration and differentiation hold, Condition 2 is
satisfied, and the log-likelihood derivatives are con-
tinuous functions of θ. A typical situation where this
condition fails is when the data under analysis are
derived from a probability density which does not
belong to the model f(y; θ), a topic of much inves-
tigation in robustness (Huber and Ronchetti, 2009).
A remedy is provided by Godambe’s theory of esti-
mating equations (Godambe, 1991).

Conditions 4 and 5, as used by Cramér (1946),
Wald (1949) and others, imply the existence of at
least three derivatives of the log-likelihood func-
tion together with some uniform integrability re-
strictions. However, these conditions do not have
by themselves any direct statistical interpretation.
LeCam (1970) presents a different type of regular-
ity assumption—differentiability in quadratic mean
of the log-likelihood function—which involves only
one differentiation step and may be justified from
a statistical point of view. As shown in his 1970
paper, the regularity conditions of Cramér type im-
ply differentiability in quadratic mean, while the op-
posite does not hold true. This way, LeCam gives
rise to a radically different type of asymptotic infer-
ence called local asymptotics, which is based upon
the concept of a ‘contiguity neighbourhood’. Under
Conditions 1–5, this translates into a sequence of al-
ternative hypotheses of the form θn = θ0 + η/

√
n,

where η is any given real number. The properties
of the likelihood-based procedures are hence studied
in the Euclidean n−1/2–neighbourhood of the fixed
parameter θ0 defined by η. In particular, the log-
likelihood function is said to be ‘locally asymptoti-
cally quadratic’ if there exist two random sequences
Un(θ0) and In(θ0) which do not depend on η such
that

ln

(
θ0 +

η√
n

)
− ln(θ0) =

ηUn(θ0) − η2In(θ0)

2
+Rn(η, θ0).

Here, the sequence In(θ0) is positive and bounded in
probability away from zero, while the residual term
Rn(η, θ0) converges in probability to zero for n→∞.
Note how this definition mimics Taylor series expan-
sion in classical likelihood-based asymptotics, where
Un(θ0) and In(θ0) replace the score and expected
information functions.

In the remainder of the paper, we review the most
common situations where one or some of Condi-
tions 1–5 fail. We will also provide some summary
insight into the main prototype derivations of the
corresponding asymptotic results. The vast major-
ity of the proofs require conditions of Cramér type;
in some occasions, as for instance in Section 4.1,
LeCam’s local asymptotic theory will be used.

3. BOUNDARY PROBLEMS

Boundary problems represent the first and most
extensively explored nonregular setting. Further-
more, small-sample solutions seem to have been ad-
dressed only for this case. A boundary problem
arises when the value θ0 specified by the null hypoth-
esis, or parts of it, fall on the boundary of the param-
eter space. Informally, the methodological difficulties
in likelihood-based inference occur because the max-
imum likelihood estimate can only fall ‘on the side’
of θ0 that belongs to the parameter space Θ. This
implies that if the maximum occurs on the boundary,
the score function need not be zero and the distri-
butions of the related likelihood statistics will not
converge to the typical normal or chi-squared dis-
tributions. Because of the difficulties inherent the
derivation of the limiting distribution of the like-
lihood ratio statistic, especially practitioners tend
to ignore the boundary problem and to proceed as
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LIKELIHOOD ASYMPTOTICS IN NONREGULAR SETTINGS 7

if all parameters where interior points of Θ. This
is commonly called the näıve approach. An alter-
native approach is to suitably enlarge the parame-
ter space so as to guarantee that the likelihood ra-
tio maintains the common limiting distribution; see,
for instance, Feng and McCulloch (1992). The lit-
erature on boundary problems is very rich and in-
cludes, among others, solutions for random effects
and frailty models, and for times series analysis. The
following example gives a flavour of the statistical is-
sues.

Example 3.1 (Bivariate normal). Consider a
single observation y = (y1, y2) from the bivariate
normal random variable Y = (Y1, Y2) ∼ N2(θ, I2),
where θ = (θ1, θ2), with θ1 ≥ 0 and θ2 ≥ 0, and
I2 is the 2 × 2 identity matrix. Straightforward cal-
culation shows that the null distribution of the like-
lihood ratio statistic for θ0 = (0, 0) versus the al-
ternative hypothesis that at least one equality does
not hold, converges to a mixture of a point mass χ2

0

at 0 and two chi-squared distributions, χ2
1 and χ2

2

(DasGupta, 2008, Example 21.3). Figure 2 provides
a graphical representation of the problem. Because
of the boundedness of the parameter space, we have
that θ̂1 = max(y1, 0) and θ̂2 = max(y2, 0). The grey
shaded area is the parameter space into which the
MLE is bound to fall. However, the random obser-
vation Y = (Y1, Y2) can fall into any of the 4 quad-
rants of R2 with equal probability 1/4. When Y falls
into the first quadrant, that is, when y1, y2 > 0, the
likelihood ratio statistic is W (θ0) = Y 2

1 +Y 2
2 and fol-

lows the common χ2
2 distribution. However, if y1 > 0

and y2 < 0 or when y1 < 0 and y2 > 0, we have
that W (θ0) = Y 2

1 ∼ χ2
1 and W (θ0) = Y 2

2 ∼ χ2
1, re-

spectively. Lastly, when Y lies in the third quadrant,
W (θ0) = 0 and its distribution is a point mass in 0.
Summing up, we can informally write

(3.1) W (θ0) ∼ 1

4
χ2

0 +
1

2
χ2

1 +
1

4
χ2

2.

Distribution (3.1) is a special case of the so-called
chi-bar squared distribution (Kudô, 1963), denoted
by χ̄2(ω,N), with cumulative distribution function

Pr(χ̄2 ≤ c) =

N∑
ν=0

ωνPr(χ2
ν ≤ c),

which corresponds to a mixture of chi-squared dis-
tributions with degrees of freedom ν from 0 to N .

W(θ0) = Y2
2 ~ χ1

2

W(θ0) = Y1
2 ~ χ1

2W(θ0) = 0 ~ χ0
2

θ2

θ1

W(θ0) = Y1
2 +Y2

2 ~ χ2
2

θ0 = (0,0)

Fig 2. Example 3.1: Bivariate normal. The grey shaded area
represents the parameter space Θ. Under the null hypothesis
θ0 = (0, 0), the parameter space collapses with the origin. The
asymptotic distribution of the corresponding likelihood ratio
statistics is a mixture of χ2

0, χ2
1 and χ2

2 distributions with
weights (0.25, 0.5, 0.25).

In some cases, explicit and computationally fea-
sible formulae are available for the weights ω =
(ω0, . . . , ωN ). Extensive discussion on their compu-
tation and use, with special emphasis on inequal-
ity constrained testing, is given in Robertson et al.
(1988, Chapters 2 and 3), Wolak (1987), Shapiro
(1985, 1988) and Sun (1988).

3.1 General results

The research on boundary problems was initi-
ated by Chernoff (1954) who derives the asymp-
totic null distribution of the likelihood ratio statis-
tic for testing whether θ lies on one or the other
side of a smooth (p − 1)-dimensional surface in a
p-dimensional space when the true parameter value
lies on the surface. Using a geometrical argument,
Chernoff establishes that this distribution is equiva-
lent to the distribution of the likelihood ratio statis-
tic for testing suitable restrictions on the mean of
a multivariate normal distribution with covariance
matrix given by the inverse of the Fisher informa-
tion matrix using a single observation. In particular,
Chernoff proves that the limiting distribution is a
χ̄2(ω, 1) distribution, with ω = (0.5, 0.5), that is, a
mixture of a point mass at zero and a χ2

1, with equal
weights. This generalizes Wilks (1938) result when
the parameter space under the null hypothesis is not
a hyperplane.

In Chernoff (1954), the parameter spaces Θ0 and
Θ1, specified by the null and the alternative hy-
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8 A. R. BRAZZALE AND V. MAMELI

potheses, are assumed to have the same dimension.
Furthermore, the true parameter value falls on the
boundary of both, Θ0 and Θ1, while it is still an inte-
rior point of the global parameter space Θ = Θ0∪Θ1.
The no doubt cornerstone contribution which in-
spired many researchers and fuelled an enormous lit-
erature, is the highly-cited article by Self and Liang
(1987). Using geometrical arguments similar to those
of Chernoff (1954), Self and Liang (1987) study the
asymptotic null distribution of the likelihood ra-
tio statistic for testing the null hypothesis θ ∈ Θ0

against the alternative θ ∈ Θ1 = Θ \Θ0. This time,
the true parameter value θ0 no longer needs be an
interior point, but can fall onto the boundary of Θ.
The two sets Θ and Θ0 must be regular enough to
be approximated by two cones, CΘ and CΘ0 , with
vertex at θ0 (Chernoff, 1954, Definition 2). Under
this scenario and provided their Assumptions 1–4
hold—which translate into our Conditions 1–2 and
4–5, with likelihood derivatives taken from the ap-
propriate side—Self and Liang (1987, Theorem 3)
show that the distribution of the likelihood ratio
converges to the distribution of

sup
θ∈CΘ−θ0

{
−(Z̃ − θ)>i1(θ0)(Z̃ − θ)

}
−(3.2)

sup
θ∈CΘ0−θ0

{
−(Z̃ − θ)>i1(θ0)(Z̃ − θ)

}
.

Here, CΘ−θ0 and CΘ0−θ0 are the translations of the
cones CΘ and CΘ0 , such that their vertices are at
the origin, and Z̃ is a multivariate Gaussian vari-
able with mean 0 and covariance matrix given by
i1(θ0)−1, which is the Fisher information matrix for
a single observation. If we transform the random
variable Z̃ so that it follows a multivariate standard
Gaussian distribution Z, we can re-express Equa-
tion (3.2) as

inf
θ∈C̃0

||Z − θ||2 − inf
θ∈C̃
||Z − θ||2 =

||Z − PC̃0
(Z)||2 − ||Z − PC̃(Z)||2,(3.3)

where C̃ and C̃0 are the corresponding transforma-
tions of the cones CΘ−θ0 and CΘ0−θ0 and || · || is
the Euclidean norm. Finding the null distribution
requires to work out the two projections PC̃(Z) and

PC̃0
(Z) of Z onto the cones C̃ and C̃0. This must

be done on a case by case basis as shown by the
following revisitation of Example 3.1.

Example 3.2 (Bivariate normal revisited). In
Example 3.1 we faced a typical non-standard situa-
tion where both components of the parameter θ are
of interest and both lie on the boundary of the pa-
rameter space. Here, the Fisher information matrix
is the identity matrix which is why Z̃ = Z = Y
and the original two set Θ and Θ0 agree with the
approximating cones. That is, the grey shaded re-
gion [0,∞) × [0,∞) in Figure 2 represents the sets
Θ = CΘ = CΘ−θ0 = C̃, while the origin {0} corre-
sponds to the sets Θ0 = CΘ0 = CΘ0−θ0 = C̃0. The
derivation of the second term of (3.3) depends on
the projection of Z onto C̃, which is

PC̃(Z) =


Z = (Z1, Z2) if Z1, Z2 > 0

Z2 if Z1 < 0, Z1 > 0

0 if Z1, Z2 < 0

Z1 if Z1 > 0, Z2 < 0,

while PC̃0
(Z) = 0. As shown in Example 3.1, PC̃(Z)

takes on the four possible values with equal probabil-
ity 1/4. By simple algebra, we can prove that the
distribution of the likelihood ratio statistics is given
by the mixture of Equation (3.1).

A sketch of the derivation of Equation (3.2) is
given in Example A.1. The proof consists of two
steps. We first consider a quadratic Taylor series
expansion of the log-likelihood l(θ) around θ0, the
true value of the parameter. The asymptotic distri-
bution of the likelihood ratio statistic is then derived
as in Chernoff (1954) by approximating the sets Θ
and Θ0 using the cones CΘ and CΘ0 . Self and Liang
(1987) present a number of special cases in which
the representations (3.2) and (3.3) are used to de-
rive the asymptotic null distribution of the likeli-
hood ratio statistic. In most cases, this results in a
chi-bar squared distribution whose weights depend,
at times in a rather tricky way, on the partition of
the parameter space induced by the geometry of the
cones.

A further major step forward in likelihood asymp-
totics for boundary problems was marked by Kopy-
lev and Sinha (2011) and Sinha et al. (2012). Now,
the null distribution of the likelihood ratio statistic is
derived by using algebraic arguments. A first simple
case considers the scalar hypothesis θ1 = θ10 against
the alternative θ1 > θ10 on the first component of
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LIKELIHOOD ASYMPTOTICS IN NONREGULAR SETTINGS 9

the p-dimensional parameter θ under the assump-
tion that the remaining components of θ are interior
points. The corresponding asymptotic null distribu-
tion of the likelihood ratio statistic is a fifty-fifty
mixture of a χ2

0 and a χ2
1 distribution, in agreement

with Case 5 of Self and Liang (1987). From the tech-
nical point of view, the derivation of a closed form
expression for the limiting distribution of the likeli-
hood ratio becomes the more difficult the more nui-
sance parameter lie on the boundary of the parame-
ter space. In particular, the derivation of the limiting
distribution becomes awkward when there are more
than four boundary points and/or the Fisher infor-
mation matrix is not diagonal. Sinha et al. (2012)
furthermore show that when one or more nuisance
parameters are on the boundary, following the näıve
approach can result in inferences which are anti-
conservative. In general, the asymptotic distribution
turns out to be a chi-bar squared distribution with
weights that depend on the number of parameters of
interest and of nuisance parameters, and on where
these lie in Θ. However, limiting distributions other
than the χ̄2 distribution are found as well; see, for
instance, Theorem 2.1 of Sinha et al. (2012).

Susko (2013) proposes a data-dependent solution
to Self and Liang’s (1987) problem which avoids
the calculation of the mixing weights of the chi-
bar squared limit distribution and performs well in
terms of power and type I error provided all nuisance
parameters are interior points of Θ. In particular,
Susko (2013) shows that the likelihood ratio W con-
ditioned on the number of parameters ν which are
estimated to fall within the parameter space, con-
verges under the null hypothesis weakly to a simple
χ2
ν distribution with ν degrees of freedom. Further

recent alternatives, which avoid the calculation of
the mixing weights of the χ̄2 distribution and/or lead
to the classical χ2 limiting distribution, are men-
tioned in the annotated bibliography.

A concise review of the cases considered in Self
and Liang (1987), Kopylev and Sinha (2011) and
Sinha et al. (2012), with some interesting examples
and an account of the areas of interest in genetics
and biology, is given by Kopylev (2012). The follow-
ing sections treat three special cases, namely testing
for a zero variance component, constrained one-sided
tests and the few treatments of a nonregular prob-
lem in higher order asymptotics we are aware of. We

mention the mainstream contributions while further
related work can be found in the annotated bibliog-
raphy.

3.2 Null variance components

In linear and generalized linear mixed models a
boundary problem arises as soon as we want to as-
sess the significance of one or more variance com-
ponents. The two reference papers are Crainiceanu
and Ruppert (2004) and Stram and Lee (1994). Both
consider a linear mixed effects model and test for
a zero scalar variance component. However, Stram
and Lee (1994) assume that the data vector can be
partitioned into a large number of independent and
identically distributed sub-vectors, which needs not
hold for Crainiceanu and Ruppert (2004). The lim-
iting distributions are derived from the spectral de-
composition of the likelihood ratio statistic.

More precisely, assume the following model holds,

Y = Xβ + Zb+ ε,

where Y is a vector of observations of dimension n,
X is a n × p fixed effects design matrix and β is
a p-dimensional vector of fixed effects. In addition,
Z is a n × k random effects design matrix and b is
a k -dimensional vector of random effects which are
assumed to follow a multivariate Gaussian distribu-
tion with mean 0 and covariance matrix σ2

bΣ of order
k × k. The error term ε is assumed to be indepen-
dent of b and distributed as a normal random vector
with zero mean and covariance matrix σ2

εIn, where
In is the identity matrix. Suppose we are interested
in testing

H0 : βp+1−q = β0
p+1−q, . . . , βp = β0

p , σ2
b = 0

against

H1 : βp+1−q 6= β0
p+1−q, . . . , βp 6= β0

p , or σ2
b > 0

for some positive value of q ∈ {1, . . . , p}. Non-
regularity arises as under the null hypothesis σ2

b =
0 falls on the boundary of the parameter space.
Furthermore, the alternative hypothesis that σ2

b >
0 induces dependence among the observations Y .
Crainiceanu and Ruppert (2004, Theorem 1) show
that the finite-sample distribution of the likelihood
ratio statistic agrees with the distribution of

(3.4) n

(
1 +

∑q
s=1 u

2
s∑n−p

s=1 w
2
s

)
+ sup

λ≥0
fn(λ),
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10 A. R. BRAZZALE AND V. MAMELI

where us for s = 1, . . . , k and ws for s = 1, . . . , n −
p are independent standard normal variables, λ =
σ2
b/σ

2
ε , and

fn(λ) = n log

{
1 +

Nn(λ)

Dn(λ)

}
−

k∑
s=1

log (1 + λξs,n),

where

Nn(λ) =
k∑
s=1

λµs,n
1 + λµs,n

w2
s ,

and

Dn(λ) =
k∑
s=1

w2
s

1 + λµs,n
+

n−p∑
s=k+1

w2
s .

Here, µs,n and ξs,n are the k eigenvalues of the matri-

ces Σ
1
2ZTP0ZΣ

1
2 and Σ

1
2ZTZΣ

1
2 , respectively. The

matrix P0 = In−X(XTX)−1XT is the matrix which
projects onto the orthogonal complement to the sub-
space spanned by the columns of the design matrix
X. Theorem 2 of Crainiceanu and Ruppert (2004)
shows that the asymptotic null distribution of the
likelihood ratio statistic depends on the asymptotic
behaviour of the eigenvalues µs,n and ξs,n. The lim-
iting distribution, in general, differs from the chi-bar
squared distribution which often holds for indepen-
dent and identically distributed data.

Formula (3.4) represents the spectral decomposi-
tion of the likelihood ratio statistic. A similar re-
sult is also derived for the restricted likelihood ratio
(Crainiceanu and Ruppert, 2004, Formula 9). The
unquestioned advantage of these two results is that
they allow us to simulate the finite-sample null dis-
tribution of the two test statistics once the eigen-
values are calculated. Furthermore, this simulation
is more efficient than bootstrap resampling, as the
speed of the algorithm only depends on the num-
ber of random effects k, and not on the number
of observations n. Applications of Crainiceanu and
Ruppert’s (2004) results include testing for level-
or subject-specific effects in a balanced one-way
ANOVA, testing for polynomial regression versus a
general alternative described by P-splines and test-
ing for a fixed smoothing parameter in a P-spline
regression.

3.3 Constrained one-sided tests

Multistage dose-response models are a further ex-
ample of boundary problem. A K-stage model is

characterised by a dose-response function of the
form

g(d;β) = g(β0 + β1d+ β2d
2 + · · ·+ βKd

K),

where d is the tested dose and g(·) is a function
of interest such as, for instance, the probability of
developing a disease. The coefficients βk ≥ 0, for
k = 1, . . . ,K, are often constrained to be non-
negative so that the dose-response function will be
non-decreasing. There is no limit on the number of
stages K, though in practice this is usually speci-
fied to be no larger than the number of non-zero
doses. Testing whether βk = 0 results in a bound-
ary problem and requires the application of a so-
called constrained one-sided test. Apart from clin-
ical trials, constrained one-sided tests are common
in a number of other areas, where the constraints on
the parameter space are often natural such as testing
for over-dispersion, for the presence of clusters and
for homogeneity in stratified analyses. All these in-
stances amount to having the parameter value lying
on the boundary of the parameter space under the
null hypothesis. Despite their importance in statis-
tical practice, few contributions are available on the
asymptotic behaviour of the most commonly used
test statistics, and of the likelihood ratio in particu-
lar.

A first contribution which evaluates the asymp-
totic properties of constrained one-sided tests is
Andrews (2001), who establishes the limiting dis-
tributions of the Wald, score, quasi-likelihood and
rescaled quasi-likelihood ratio statistics under the
null and the alternative hypotheses. The results are
used to test for no conditional heteroscedasticity in
a GARCH(1,1) regression model and zero variances
in random coefficient models. Sen and Silvapulle
(2002) review refinements of likelihood-based infer-
ential procedures for a number of parametric, semi-
parametric, and nonparametric models when the pa-
rameters are subject to inequality constraints. Spe-
cial emphasis is placed on their applicability, valid-
ity, computational flexibility and efficiency. Again,
the chi-bar squared distribution plays a central role
in characterising the limiting null distribution of the
test statistics, while the corresponding proof requires
tools of convex analysis, such projections onto cones.
See Silvapulle and Sen (2005) for a book-length ac-
count of constrained statistical inference.
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LIKELIHOOD ASYMPTOTICS IN NONREGULAR SETTINGS 11

3.4 Small-sample results

In addition to Crainiceanu and Ruppert (2004)
we found two further contributions which explore
the higher order properties of likelihood-based test
statistics in a nonregular setting.

del Castillo and Lopez-Ratera (2006) consider
testing for a boundary point in a scalar exponen-
tial family. In particular, they consider the family
F of real valued random variables with probability
density function

(3.5) f(y; θ) = eθy−κ(θ)f(y), θ ∈ Θ ∈ R,

where Θ is the set of parameters for which the func-
tion κ(θ) < +∞. The family F is said to be the co-
niugate family of f(y), obtained from its cumulant
generator function κ(θ). If Θ is an open convex set,
model (3.5) is a regular exponential family. Other-
wise, if Θ includes some of its boundary points, F is
called a nonregular exponential model. del Castillo
and Lopez-Ratera (2006) characterise the asymp-
totic null distribution of the likelihood ratio for test-
ing the hypothesis θ = 0, where Θ = {c < θ ≤ 0},
when the variance of Y is finite. The resulting distri-
bution is a fifty-fifty mixture of a χ2

1 and a χ2
0, simi-

lar to the findings by Self and Liang (1987, Case 5)
where one component of the parameter vector lies on
the boundary of its parameter space. The approach
is illustrated for testing exponentiality in reliability
theory and survival analysis.

Sørensen (2008) examines the small-sample distri-
bution of the likelihood ratio statistic in the random
effects model which is often recommended for meta-
analyses, and in a related over-dispersion model. For
small sample sizes the distribution of the likelihood
ratio for the overall treatment effect is not χ2 dis-
tributed and depends on the true value of the het-
erogeneity parameter (or between-study variance) of
the model. Sørensen (2008) suggests a simulation-
based method to investigate how strong this depen-
dence is.

4. INDETERMINATE PARAMETER
PROBLEMS

An ‘indeterminate parameter’ problem occurs
when setting one of the components of the parame-
ter θ = (θ1, θ2) to a particular value, say θ1 = θ10,
leads to the disappearance of some or all compo-
nents of θ2. The model is no longer identifiable, as

all model functions f(y; θ) with θ1 = θ10 and arbi-
trary θ2 identify the same distribution. The following
simple example illustrates this point.

Example 4.1 (Loss of identifiability in jump re-
gression). Consider the model

Y = θ11 + θ121(X > θ2) + ε, ε ∼ f(ε),

where Y is a continuous response, X a correspond-
ing covariate and 1(X > θ2) represents the indicator
function which assumes value 1 if X > θ2 and zero
otherwise. Furthermore, θ1 = (θ11, θ12) is a real val-
ued vector of regression coefficients, while θ2 ∈ R
defines the point at which the jump occurs. Assume
that ε is a zero-mean error term with density func-
tion f(ε). The mean of the variable Y is θ11 for val-
ues of X less or equal to θ2 and is equal to θ11 + θ12

for values of X larger than θ2. Under the null hy-
pothesis of no jump, θ10 = (θ11, 0) with arbitrary
θ11, the parameter θ2 disappears and the model is no
longer identifiable. Arbitrary values of θ2 identify the
same distribution for the variable Y .

When the parameter which indexes the true dis-
tribution is not unique, the classical likelihood the-
ory of Section 2 no longer applies. Various difficulties
accompany the derivation of the asymptotic proper-
ties of likelihood-based statistics. For instance, the
maximum likelihood estimator may not converge to
any point in the parameter space specified by the
null hypothesis. Or, the Fisher information matrix
degenerates. Typically, the limiting distribution of
the likelihood ratio statistics will not be chi-squared.
Loss of identifiability occurs in areas as diverse as
econometrics, reliability theory and survival analy-
sis (Prakasa Rao, 1992), and has been the subject
of intensive research. Rothenberg (1971) studied the
conditions under which a general stochastic model
whose probability law is determined by a finite num-
ber of parameters is identifiable. Paulino and Pereira
(1994) present a systematic and unified description
of the aspects of the theory of identifiability.

In the remainder of the section we will consider
two special cases: non-identifiable parameters and
singular information matrix. We will report the main
research strains; related contributions can be looked
up in the annotated bibliography.
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4.1 Non-identifiable parameters

The general framework for deriving the asymp-
totic null distribution of the likelihood ratio statistic
was developed by Liu and Shao (2003). They address
the common hypothesis testing problem H0 : θ ∈ Θ0

against H1 : θ ∈ Θ \Θ0, where Θ0 = {θ ∈ Θ : Fθ =
F 0} with Fθ the distribution function indexed by
θ and F 0 the true distribution. The true distribu-
tion is hence unique and H0 is a simple null hypoth-
esis. However, the set Θ0 may contain more than
one value. When the true parameter value θ0 is not
unique, the classical quadratic approximation of the
likelihood ratio function in an Euclidean neighbour-
hood of θ0 no longer holds. Liu and Shao (2003) by-
pass this problem by establishing a general quadratic
approximation of the likelihood ratio function

lr(θ) =
n∑
i=1

log {λi(θ)} ,

this time in a so-called Hellinger neighbourhood
of the true model, which is valid with or without
loss of identifiability of the true distribution F 0.
Here, λi(θ) = λ(Yi; θ) denotes the Radon-Nikodym
derivative, λ(θ) = dFθ/dF

0, evaluated at Yi, for
i = 1, . . . , n. The Hellinger neighbourhood of F 0 is
defined as

Θε = {θ ∈ Θ | 0 < H(θ) ≤ ε},

where

H2(θ) =
1

2
EF 0

[{√
λi(θ)− 1

}2
]

is the squared Hellinger distance between Fθ and F 0.
Under suitable regularity conditions, which assure
Hellinger consistency of the maximum likelihood es-
timator despite loss of identifiability, the distribution
of the likelihood ratio statistic

W (H0) = 2 sup
θ∈Θ\Θ0

{lr(θ) ∨ 0},

with {a ∨ b} = max(a, b), converges to the distri-
bution of the square of a left-truncated centered
Gaussian process with uniformly continuous sam-
ple paths (Liu and Shao, 2003, Theorem 2.3). The
proof, which is detailed in Appendix A.2, involves
two steps. We first derive a generalized differentiable

quadratic in mean (GDQM) expansion of the likeli-
hood ratio function

lr(θ) = 2
√
nH(θ)νn(Si(θ))

− nH2(θ)
{

2 + Fn(S2
i (θ))

}
+ op(1),(4.1)

where Si(θ) is such that EF 0 [Si(θ)] = 0, Fn(·)
indicates the empirical distribution function and
νn(g) =

√
n(EFn − EF 0)[g] is a random process de-

fined for any integrable function g. Expansion of
lr(θ) is valid in a Hellinger neighborhood Θε of F 0

and is not unique. As lr(θ) can diverge to −∞ for
some θ ∈ Θε, it is not always easy to find a gen-
eral approximation with uniform residual terms on
Θε. We then have to maximise {lr(θ) ∨ 0} which
has a general quadratic expansion. This expansion
is then used to prove that the distribution of the like-
lihood ratio function converges to the distribution of
the supremum of a squared left-truncated centered
Gaussian process with uniformly continuous sample
paths. In principle, the distribution of the Gaussian
process can be approximated by simulation, since its
covariance kernel is known. The most crucial aspect,
however, is the derivation of the set which contains
the L2 limits of the generalized score function

Si(θ)√
1 + EF 0 [S2

i (θ)]/2

over which the supremum is to be taken. This needs
be worked out on a case by case basis.

Liu and Shao (2003, Section 3) also consider
square-integrable likelihood ratios, for which they
derive a quadratic approximation to the likelihood
ratio based on the Pearson-type L2 distance

EF 0

[
{lr(θ)− 1}2

]
using arguments similar to the ones contained in the
prototype proof of Appendix A.2. As as prominent
example, they work out the results for finite mixture
models whose component distributions belong to an
exponential family.

An alternative, and less general, contribution is
Ritz and Skovgaard (2005). These authors derive the
asymptotic distribution of the likelihood ratio and of
the related score statistic for a general curved expo-
nential family for which some nuisance parameters
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vanish under the null hypothesis. Their results are il-
lustrated using the multivariate normal model whose
covariance matrix can be written as

(4.2) (ϕ− ϕ0)Σ(ρ) + γ1Σ1 + · · ·+ γkΣk

where ϕ, ρ, γ1, . . . , γ1 are unknown variance parame-
ters and Σ(ρ),Σ1, . . . ,Σk are suitable matrices. The
null hypothesis ϕ = ϕ0 reduces the model to a ran-
dom coefficients model, while making the parame-
ter ρ non-identifiable. The results are derived with-
out the need to assume compactness of the param-
eter space, a condition which, as we will see in Sec-
tion 5, is generally required when some parameters
vanish under the null hypothesis. Again, the proof
evolves along two steps and uses argument similar
to those provided in Appendix A.3 which we will
discuss in Section 5. The likelihood ratio function is
first approximated by a quadratic expansion with re-
spect to the identifiable parameter. Under the null
hypothesis, this expansion converges to the square
of a Gaussian random process indexed by the non-
identifiable parameter ρ. The supremum of this pro-
cess with respect to ρ is then taken. The Gaussian
process has a covariance function that can be esti-
mated consistently, which allows us to simulate the
limiting process. The numerical investigation of Ritz
and Skovgaard (2005) shows that the limiting distri-
bution for the motivating example (4.2) lies between
a χ̄2(ω, 1) with ω = (0.5, 0.5) and a χ2

1 distribution.
The authors furthermore show that their approxima-
tion performs well also in small or moderate samples,
and remains stable over a wide range of parameter
values.

4.2 Singular information matrix

A further case of indeterminate parameter prob-
lem is when Fisher’s information matrix is singu-
lar at the true value θ0 of the parameter. Singu-
larity of the information matrix is linked to non-
identifiability as shown by the following example.

Example 4.2 (Singularity and non-identifiabil-
ity). Consider a normal random variable Y with
mean θq, for a given even integer q, and variance 1.
Globally, the parameter θ is identifiable for θ0 = 0,
although this value results to be a singular point for
the information function i(θ) = q2θ2(q−1). Moreover,
locally the parameter is identifiable for any θ0 6= 0

in an open neighbourhood of θ0 with non singular in-
formation function at that point. Remember that for
scalar θ, zero information implies a null score statis-
tic with probability 1, while for multidimensional θ,
a singular information matrix implies linear depen-
dence among the different components of the score
vector.

Singularity of i(θ) can lead to multiple maxima
of the log-likelihood function l(θ) in a neighbour-
hood of θ0 and to inconsistency of the maximum
likelihood estimator θ̂. Moreover, the limiting distri-
bution of the likelihood ratio statistic may not be
chi-squared. The, to our knowledge, earliest contri-
bution who addresses the problem of singular infor-
mation matrix is Silvey (1959). The author proposes
to modify the curvature of the quadratic approxima-
tion of the likelihood ratio by replacing the inverse
of the Fisher information matrix with a generalized
inverse matrix obtained by imposing suitable con-
straints on the model parameters. The cornerstone
contribution to the development of the theory of sin-
gular information matrices is Rotnitzky et al. (2000)
who derive the asymptotic null distribution of the
likelihood ratio statistic for testing the null hypoth-
esis H0 : θ = θ0 versus H1 : θ 6= θ0, when θ is
a p-dimensional parameter of an identifiable para-
metric model and the information matrix is singular
at θ0 and has rank p − 1. The theory is developed
only for independent and identically distributed ran-
dom variables, though the authors point out that
the same theory may straightforwardly be extended
to non-identically distributed observations. When
θ is scalar, the asymptotic properties of the maxi-
mum likelihood estimator and of the likelihood ratio
statistic depend on the integer m0, which represents
the order of the first partial derivative of the log-
likelihood function which does not vanish at θ = θ0;
see Theorems 1 and 2 of Rotnitzky et al. (2000). If
m0 is odd, the distribution of the likelihood ratio
converges under the null hypothesis to a χ2

1 distri-
bution, while for even m0 it converges to a χ̄2(ω, 1)
with ω = (0.5, 0.5). Extensions of these results when
the parameter θ is p-dimensional are also provided.
These are generally based on suitable reparametriza-
tions of the model which remove the specific causes
of the singularity, but are difficult to generalize as
they are ad-hoc solutions.
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14 A. R. BRAZZALE AND V. MAMELI

5. FINITE MIXTURE MODELS

Finite mixture models deserve special attention,
because of their widespread use in statistical prac-
tice, but also because of the methodological chal-
lenges posed by the derivation of their asymp-
totic properties. They probably represent the best-
studied indeterminate parameter problem, though
we may also treat them as a boundary case. In-
deed, testing a hypothesis such as model homogene-
ity against the alternative that the model is a finite
mixture of two or more components will most likely
lead to the failure of two regularity conditions. As
we shall see in Section 5.1, this occurs because while
under the null hypothesis the mixing proportions
fall on the boundary of their parameter space, some
of the parameters of the corresponding component
distributions become indeterminate. Under this sce-
nario, the asymptotic distribution of the likelihood
ratio statistic does not follow the commonly believed
chi-squared distribution, and its limiting distribu-
tion has for long been unknown.

The remainder of the section outlines the many
mainstream contributions for this class of models,
with special emphasis on hypothesis testing using
the likelihood ratio. Further related work is listed
in the annotated bibliography. General reference
for mixture distributions are Lindsay (1995) and
McLachlan and Peel (2000).

5.1 Testing for homogeneity

Consider the two-component mixture model

(5.1) (1− π)f1(y; θ1) + πf2(y; θ2),

where the probability density or mass functions
f1(y; θ1) and f2(y; θ2), with θ1 ∈ Θ1 ⊆ Rp1 and
θ2 ∈ Θ2 ⊆ Rp2 , represent the mixture components
and 0 ≤ π ≤ 1 is the mixing probability. The null
hypothesis of homogeneity can be written in differ-
ent ways. We may set π = 0, which corresponds to
H0 : f0 = f1(y; θ1), where f0 represents the true
unknown distribution, or alternatively, π = 1 and
H0 : f0 = f2(y; θ2). If the two components, f1(y; θ1)
and f2(y; θ2), are known, then the limiting distribu-
tion is a χ̄2(ω, 1) with ω = (0.5, 0.5) (Lindsay, 1995,
p. 75). Otherwise, for f1(y; θ) = f2(y; θ) a third pos-
sibility arises: in this case homogeneity assumes that
H0 : θ1 = θ2. Whatever choice is made, some model
parameters, that is, θ2 and θ1, respectively, in the

first two cases and π in the third, vanish under the
null hypothesis. This contradicts classical likelihood
theory, where the parameter which characterises the
true distribution is typically assumed to be a unique
point θ0 in the open subset Θ ⊆ Rp. As we have seen
in Section 3, the failure of Condition 3 generally im-
plies that the limiting distribution is truncated on
its left to account for the fact that the maximum
likelihood estimate can only fall on one side of the
true parameter value. The failure of Condition 1 in
addition implies that there is no value to which the
maximum likelihood estimator of the indeterminate
parameters can converge.

5.1.1 General results The first discussion of
asymptotic theory for testing homogeneity of
model (5.1) when all parameters are unknown was
provided by Ghosh and Sen (1985). As the two au-
thors point out, there is an additional major diffi-
culty in dealing with finite mixture models: though
the mixture itself may be identifiable, the parame-
ters π, θ1 and θ2 may not be. For instance, for the
simple mixture where f1(y; θ) = f2(y; θ) = f(y; θ),
the equality

(1− π)f(y; θ1) + πf(y; θ2)

= (1− π′)f(y; θ′1) + π′f(y; θ′2)

holds for π = π′, θ1 = θ′1, θ2 = θ′2, but also for
1 − π = π′, θ1 = θ′2, θ2 = θ′1. That is, if the al-
ternative hypothesis is true, there is a second set
of parameters which gives rise to the same distri-
bution. Furthermore, under the null hypothesis of
homogeneity the model is represented by the three
curves π = 1, π = 0 and θ1 = θ2. As illustrated
by Ghosh and Sen (1985), choosing an identifiable
parametrisation doesn’t bring any improvement as
the density is then no longer differentiable.

The first result derived by Ghosh and Sen (1985)
characterises the limiting distribution of the likeli-
hood ratio statistic for strongly identifiable contin-
uous mixtures. Write f(y; θ) = (1 − π)f1(y; θ1) +
πf2(y; θ2) with the convention that θ = (π, θ1, θ2).
Strong identifiability holds if f(y; θ) = f(y; θ′) im-
plies that π = π′, θ1 = θ′1 and θ2 = θ′2. Ghosh and
Sen (1985) furthermore assume that Θ2 is a closed
bounded interval of R, while Θ1 ⊆ Rp1 , p1 ≥ 1. The
distribution of the likelihood ratio statistic for test-
ing H0 : π = 0 then converges to the distribution of
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T 2I{T>0}, where T = supθ2{Z(θ2)} and Z(θ2) is a
zero-mean Gaussian process on Θ2 whose covariance
function depends on the true value of the parame-
ters under the null hypothesis (Ghosh and Sen, 1985,
Theorem 2.1). This results from proceeding in two
steps. We first approximate the log-likelihood func-
tion by a quadratic expansion with respect to π and
θ1 which, under the null hypothesis, converges to the
square of a Gaussian random process indexed by the
non-identifiable parameter θ2. The supremum of this
process with respect to θ2 is then taken. The sketch
of this proof is given in Appendix A.3

A similar result holds if the finite mixture is not
strongly identifiable, such as when f1(y; θ) = f2(y; θ)
in (5.1). In this case, a separation condition between
θ1 and θ2 of the form ||θ1− θ2|| ≥ ε for a fixed quan-
tity ε > 0 needs be imposed, so that H0 is described
by either π = 0 or π = 1 (Ghosh and Sen, 1985, §5).
The two authors furthermore restrict the parame-
ter space of π to [0, 0.5] and impose again that Θ1

be an open set containing the true value θ0
1 and Θ2

be a closed set such that Θ1 ∩ Θ2 = ∅. These addi-
tional conditions guarantee that the maximum like-
lihood estimate (π̂, θ̂1) will fall with high probability
into the n−1/2–neighbourhood of (0, θ0

1). The proof
outlined in Appendix A.3 still applies with the ex-
ception that now the non-identifiable parameter θ2

varies in a subset of Θ2 which depends on the given
ε. Ghosh and Sen (1985, §4) also discuss the link to
Bayesian testing and develop asymptotically locally
minimax tests for some special cases.

Removing the above separation condition without
imposing further constraints is challenging. Several
authors have addressed this issue. As we will see in
the following section, some require reparametriza-
tion of the model function, other penalise the log-
likelihood function or rely on simulation.

5.2 Alternative approaches

5.2.1 Reparametrization The first contribution
which, to our knowledge, uses ad hoc reparametriza-
tion in place of a separation condition between the
parameters θ1 and θ2 to derive the limiting dis-
tribution of the likelihood ratio statistic for test-
ing model homogeneity, is Chernoff and Lander
(1995). The two authors study several versions of
the two-component binomial mixture model, which
is typically used in linkage analysis. They heuris-

tically prove that the finite-sample null distribu-
tion of the likelihood ratio statistic again con-
verges to the supremum of the square of a left-
truncated zero-mean unit-variance Gaussian process
with well-behaved covariance function. The formal
proof is given in Lemdani and Pons (1997) for several
classical models. Later, Lemdani and Pons (1999)
study the limiting distribution of the likelihood ra-
tio statistic to test whether a known density f(y; θ0)
is contaminated by another density of the same
parametric family. In particular, the null hypothe-
sis corresponds to assuming f0 = f(y; θ0) while un-
der the alternative hypothesis the model becomes
(1 − π)f(y; θ0) + πf(y; θ). By reparametrizing to
µ = π||θ − θ0||, they express the null hypothesis
as H0 : µ = 0, that is, as a function of the single
parameter µ, and avoid any separation condition on
the parameters θ0 and θ. The likelihood ratio statis-
tic is again shown to converge to the distribution of
the supremum of a squared left-truncated Gaussian
process. The result is extended to the case where a
mixture of K0 known densities is contaminated by
additional K1 ones of the same family. We will come
back to this scenario in Section 5.3.

Testing for homogeneity of the two-component
mixture model (5.1) is furthermore considered in
Ciuperca (2002) who assumes that f1(y; θ) belongs
to an exponential family and f2(y; θ, τ) = f1(y−τ ; θ)
is a translation of the same by an unknown amount
τ ∈ R. Here, the limiting distribution of the likeli-
hood ratio statistic is shown to converge to a fifty-
fifty mixture of a point mass at zero and of a dis-
tribution which diverges in probability to +∞, and
this despite the fact that all parameters are assumed
to belong to a compact set. This shows that Condi-
tion 3 of Section 2.2 is necessary, but not sufficient.

Dacunha-Castelle and Gassiat (1997, 1999) in-
troduce a reparametrization of the model which
they call ‘locally conic’. Roughly speaking, the novel
parametrization is represented by two parameters,
α and β, in which the Fisher information is normal-
ized to be uniformly equal to one. The first param-
eter, α, represents the ‘distance’ to the true model
and is entirely identifiable under the null hypothe-
sis. It is the point around which now it is possible to
have an asymptotic expansions of the log-likelihood
function. The second parameter, β, represents the
‘direction’ of the perturbation of the model and in-
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cludes all non-identifiable parts. The key assumption
is that the closure of the set of derivatives of the log-
likelihood function with respect to α for any β at the
true value α0 is a Donsker class (van der Vaart and
Wellner, 1996). The unboundedness behaviour of the
likelihood ratio of Ciuperca (2002) is because their
model does not satisfy this latter condition.

5.2.2 Penalisation A rather different route is
taken in Chen et al. (2001). To overcome the two dif-
ficulties of asymptotic theory for mixture models—
the boundary problem and non-identifiability under
the null hypothesis—they suggest to penalise the
log-likelihood function

(5.2) l(π, θ; y) + c log{4π(1− π)},

where the degree of penalisation is controlled by the
constant term c. As the authors point out, the pe-
nalisation term can be justified from the Bayesian
perspective. It furthermore guarantees that the max-
imum likelihood estimate of the mixing proportion
0 < π̂ < 1 will not fall on the boundary of the param-
eter space and that the maximum likelihood estima-
tors of all parameters are consistent under the null
hypothesis π = 0. Provided Conditions 1–5 of their
paper hold, the distribution of the modified likeli-
hood ratio statistic derived from (5.2) converges to
a χ̄2(ω, 1) distribution with ω = (0.5, 0.5) instead
of the unquestioned supremum of a squared trun-
cated Gaussian random process. Numerical assess-
ment for Poisson and Gaussian mixtures reveals that
their proposal competes well with alternative solu-
tions especially with respect to power.

Chen et al. (2008) derive the asymptotic null dis-
tribution of the modified likelihood ratio test intro-
duced in Chen et al. (2001) and of a further modifi-
cation, called the iterative modified likelihood ratio
test, for testing model homogeneity against the al-
ternative that the model is a two-component von
Mises mixture with unknown mean directions with-
out and with nuisance parameters. A further exam-
ple of penalisation for von Mises mixtures is Fu et
al. (2008); see Example 1.3. Both papers outline how
to improve the accuracy of the asymptotic approxi-
mation in finite samples.

5.2.3 Simulation A third route to investigate the
asymptotic null distribution of the likelihood ratio
statistic for finite mixture models is by simulation.

Thode et al. (1988) consider testing the hypothe-
sis that the sample comes from a normal random
variable with unknown mean and unknown vari-
ance against the alternative that the sample comes
from the two-component Gaussian mixture (5.6)
with µ1 6= µ2 and common variance σ2

1 = σ2
2 = σ2.

All model parameters are assumed to be unknown.
Their extensive numerical investigation shows that
the distribution of the likelihood ratio statistic con-
verges very slowly to a limiting distribution, if any
exists, and is rather unstable even for sample sizes as
large as n = 1, 000. For very large sample sizes, the
empirical distributions rather closely agree with the
commonly assumed χ2

2, though this may be too lib-
eral for small to moderate n. This gives little support
to Hartigan’s (1977) conjecture that the asymptotic
distribution may lie between a χ2

1 and a χ2
2. An ex-

ample of application to a study of population genet-
ics is given, motivated by the fact that these stud-
ies are typically of small to moderate sample sizes,
which justifies the use of empirical approximations.
The distribution of the likelihood ratio under the
alternative hypothesis (5.6) is investigated numer-
ically in Mendell et al. (1991) for a wide range of
mixing proportions π. The authors conjecture that
the limiting distribution is a non-central χ2

2 distri-
bution.

Böhning et al. (1994) investigate numerically the
asymptotic properties of the likelihood ratio statistic
for testing homogeneity in the two-component mix-
ture model (5.1) when the component distributions
fk(y; θk), k = 1, 2 are binomial, Poisson, exponential
or Gaussian with known common variance. They es-
tablish that, for sufficiently large sample sizes, the
null distribution is well approximated by a χ̄2(ω, 1)
which remains stable across the possible range of
values for the parameters θ1 and θ2, but is model-
specific in the sense that the weights ω depend on the
model under consideration. Chen and Chen (2001b)
consider the same setting as Böhning et al. (1994),
though the component distributions are allowed to
belong to a generic parametric family. They show
that under suitable conditions which guarantee iden-
tifiability of the mixture and regularity of the com-
ponent distributions fk(y; θk), the limiting distri-
bution of the likelihood ratio is the distribution of
the squared supremum of a left-truncated standard
Gaussian process, whose autocorrelation function is
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explicitly presented; see Sections 2 and 3 of their
paper. Chen and Chen (2001b) recommend using
resampling to calculate the desired tail probabili-
ties. The procedure is illustrated for normal, bino-
mial and Poisson models.

Lo (2008) shows that the commonly used χ2 ap-
proximation for testing the null hypothesis of a ho-
moscedastic normal mixture against the alternative
that the data arise from a heteroscedastic model is
reasonable only for samples as large as n = 2, 000
and component distributions that are well separated
under the alternative. Furthermore, the restrictions
of Hathaway (1985) need be imposed to ensure that
the likelihood is bounded and to rule out spurious
maxima under the alternative. Otherwise, the au-
thor suggests use of parametric resampling.

5.3 Assessing the number of components

Consider now the general K-component mixture
model

(5.3)
K∑
k=1

πkfk(y; θk), K ≥ 2,

where fk(y; θk) are probability density or mass func-
tions indexed by θk ∈ Θk ⊆ Rpk and 0 ≤ πk ≤ 1,
k = 1, . . . ,K, with

∑K
k=1 πk = 1. Developing a for-

mal test for the null hypothesis H0 : K = K0 against
the alternative that the mixture includes K > K0

components is a difficult task. Many routes have
been taken, including Wald-type statistics derived
from moment or alternative estimators, adaptation
of model selection techniques and the use of sim-
ulation. For instance, using the findings of Vuong
(1989), who develop likelihood ratio tests for non-
nested models, Lo et al. (2001) claim that in the
Gaussian case the distribution of the likelihood ra-
tio statistic based on the Kullback-Leibler informa-
tion criterion converges under the null hypothesis to
a weighted sum of χ2

1 distributions. Jeffries (2003)
disproves this result based on the fact that it re-
quires conditions on the structure of the parameter
space that are generally not met when the null hy-
pothesis of a K0-component model holds. Oliveira-
Brochado and Martins (2005) give a partial review
of these techniques. In the remainder of the section,
we focus on the proper likelihood ratio test and its
asymptotic distribution.

Using the inequalities on likelihood ratios devel-
oped in Gassiat (2002), Azäıs et al. (2006) pro-
vide the asymptotic distribution of the likelihood
ratio statistic under the null hypothesis of a K0-
component model and under contiguous alternatives
for a general mixture of parametric populations for
a bounded parameter space. More precisely, if we
define K = [−K,K] and F = {fk, k ∈ K} is a para-
metric set of probability densities on R, they con-
sider testing

H0 : f0 = f0 against H1 : f0 : (1− π)f0 + πfk,

with k ∈ K and 0 ≤ π ≤ 1. In the particular case of
Gaussian components, they prove that if the param-
eter space is unbounded, the likelihood ratio statistic
cannot distinguish the null hypothesis from any con-
tiguous alternative. A by-product of their paper is
the characterisation of the asymptotic properties of
the likelihood ratio statistic for testing homogeneity
of the means in the two-component normal mean
mixture model of Section 5.4. Azäıs et al. (2009)
consider likelihood ratio testing homogeneity in the
general K-component model (5.3), with application
to Gaussian, Poisson and binomial distributions, and
testing for the number of components of a finite mix-
ture with or without a nuisance parameter. A num-
ber of conditions need be imposed to avoid diver-
gence of the limiting distribution of the likelihood
ratio test.

5.4 Gaussian mixtures

Theoretical results are particularly generous if the
two-component model is a normal mixture. Goffinet
et al. (1992) consider an i.i.d. sample from a d-
dimensional random variable with density function

(1− π)φd(y;µ1,Σ) + πφd(y;µ2,Σ),

with 0 ≤ π ≤ 1 and φd(y;µ,Σ) the d-dimensional
normal density with mean µ ∈ Rd and covariance
matrix Σ. They derive the asymptotic distribution
of the likelihood ratio statistic for testing the null
hypothesis of homogeneity of the means, that is,
H0 : µ1 = µ2, with known mixing proportion π.
Their Theorem 1 treats the univariate case, while
its bivariate extension is given in their Theorem 2.
For d = 1 the null distribution of the likelihood ra-
tio converges to a χ2

1 distribution if Σ is unknown
and π 6= 0.5. In all other scenarios, it converges to

imsart-sts ver. 2013/03/06 file: BrazzaleMameli_LikAsy4LRT_300421.tex date: April 30, 2021



18 A. R. BRAZZALE AND V. MAMELI

a χ̄2(ω, 1) distribution with ω = (0.5, 0.5). The con-
vergence rate depends on the mixing proportion π
and is particularly slow if π is close to 0.5.

If d = 2 the limiting distribution of the likelihood
ratio for known Σ is the distribution of

1

2
{sup (0, T )}2, T = Z +

√
W,

where Z is the standard normal and W is an inde-
pendent χ2

2 random variable. This corresponds to a
fifty-fifty mixture of a point mass at zero and the
squared sum of a standard normal plus the square
root of an independent χ2

2. No result is given for
d = 2 and Σ unknown.

Chen and Chen (2001a) consider the slightly dif-
ferent univariate setting

(5.4) (1− π)φ(y;µ1, 1) + πφ(y;µ2, 1),

where φ(y;µ, 1) is the univariate normal density with
unit variance and mean µ ∈ R. The mixing propor-
tion π is unknown and the two means lie in an inter-
val [−M,M ] for M finite. Chen and Chen (2001a)
consider two cases: where only µ2 is unknown and
µ1 = 0, or where both location parameters are un-
known. In both cases the asymptotic null distri-
bution of the likelihood ratio statistics for testing
homogeneity involves the distribution of the supre-
mum of a squared Gaussian random process. If both
means are unknown, π ≤ 0.5 to ensure identifiabil-
ity and we want to test µ1 = µ2 = 0, the limiting
distribution agrees with the distribution of

(5.5)
{

sup
|t|≤M

Z(t)
}2

+W,

where Z(t), t ∈ [−M,M ], is a Gaussian process and
W is an independent chi-squared random variable
with one degree of freedom. The Gaussian process
Z(t) has zero mean and covariance function (Chen
and Chen, 2001a, Theorem 3)

Cov{Z(s), Z(t)} =
est − 1− st√

(es2 − 1− s2)(et2 − 1− t2)
,

for st 6= 0, and Cov{Z(s), Z(t)} = 0 when st = 0.
If instead we want to test the composite hypothesis
µ1 = µ2 or the simple hypothesis µ2 = 0 with the
assumption that µ1 = 0, (5.5) stil holds but the
chi-squared term is absent and the expression of the

covariance is slightly different; see Chen and Chen
(2001a, Theorems 2 and 4).

As mentioned in Section 2.2, the compactness
of the parameter space is a necessary condition to
avoid that the distribution of the likelihood ratio
statistic diverges to infinity. This was already proved
by Hartigan (1985) and is an immediate implica-
tion of Theorem 2 by Chen and Chen (2001a) as
{sup|t|≤M Z(t)}2 tends in probability to infinity if
M →∞. For the latter proof, see Chernoff and Lan-
der (1995, Section 5.6 and Appendix D).

The generalization to the two-component mixture
model

(5.6) (1− π)φ(y;µ1, σ
2) + πφ(y;µ2, σ

2),

which now includes an unknown variance parameter
σ2 > 0, can be found in Chen and Chen (2003). They
prove that the asymptotic distribution of the likeli-
hood ratio for testing model homogeneity is the dis-
tribution of the sum of a χ2

2 variable and the supre-
mum of the square of a left-truncated Gaussian pro-
cess with zero mean and unit variance. Again, the
correlation structure of the process involved in the
limiting distribution is presented explicitly; see their
Theorem 2.

The proofs of the Theorems in Chen and Chen
(2001a, 2003) essentially are suitable adaptations
of the prototype derivation for finite mixture mod-
els reported in Appendix A.3. All passages are de-
tailed in the original contributions to which we refer
the interested Reader. As in most cases the asymp-
totic distribution of the likelihood ratio is related to
a Gaussian random field, the computation of per-
centile points becomes tricky or impossible. That is
why other tests or methods have been proposed. Re-
viewing all these would go beyond the scope of the
paper. Let us mention, here, the most fruitful re-
search strained initiated by Li et al. (2009) who pro-
pose an EM-test for homogeneity, which Chen and Li
(2009) decline in the case of a two-component Gaus-
sian mixture. A most recent treatment is Chauveau
et al. (2018).

6. CHANGE-POINT PROBLEMS

A change-point problem arises when we seek to
identify a possible change in the probability distri-
bution of a univariate or multivariate random se-
quence, in a series of time-dependent observations
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or in a sample of responses whose regime may sud-
denly change. A modification in the data generat-
ing process generally affects the support of the ran-
dom variable and/or implies that the log-likelihood
function is no longer differentiable with respect to
some values of the parameter. This typically leads
to the concurrent failure of Conditions 2 and 4 of
Section 2.2. Furthermore, setting one of the compo-
nents of the model to a particular value, can make
other components, or parts of it, disappear, as in
Example 4.1, which links change-point problems to
indeterminate parameter problems.

Change-point problems have been the subject of
intensive research owing to their widespread use
whenever the constancy over time of random events
is questioned. The theory has evolved over the past
five decades to the extent that summarizing all con-
tributions would fill in book-length accounts. A first
annotated bibliography of change-point problems is
Shaban (1980). Krishnaiah and Miao (1988) give an
overview of change-point estimation up to their time
of writing; Csörgö and Horváth (1997) focus their
review monograph on limit theorems for change-
point analysis. Khodadadi and Asgharian (2008) is
a more than 200 pages length annotated bibliog-
raphy of change-point problems in regression. Lee
(2010) summarizes the most recent literature and
gives a comprehensive bibliography for the five types
of change-point problems characterised by a shift in
the mean, a change in the variance, a switch in the
regression slope, a change in the hazard rate or a
change in the distribution. A recent book-length ac-
count of change-point problems with examples from
medicine, genetics and finance is Chen and Gupta
(2012). Niu et al. (2016) provide a selected overview
of multiple change point detection. The proposed
inferential solutions range from parametric to non-
parametric techniques and include frequentist and
Bayesian approaches. In the remainder of this sec-
tion we will again focus on the parametric likelihood
ratio statistic and its asymptotic distribution.

The most basic change-point problem tries and
identifies patterns in a random sequence. Among the
earliest contributions is Page (1957). Given n inde-
pendent observations y1, . . . , yn, listed in the order
they occurred, Page (1957) considers the problem of
verifying whether these were generated by a random
variable with distribution function F (y; θ) against

the alternative that only the first τ , 0 ≤ τ < n,
observations are generated from F (y; θ) while the
remaining n − τ come from F (y; θ′) with θ 6= θ′

and τ unknown. We will come back to this prob-
lem in Section 6.4. Generally speaking, two ques-
tions are of interest in change-point analysis: identi-
fying the unknown number of changes and estimat-
ing where these occur, together with further quan-
tities of interest such as the size of the change. As
highlighted by Chen and Gupta (2012), the major-
ity of reference models which have been proposed
for change-point detection assume normality of the
observations. These will be treated extensively in
Sections 6.1–6.3 with special emphasis on regression
type problems. In particular, Section 6.1 addresses
the issue of detecting possible shifts in the location
and/or the scale of the distribution. Sections 6.2
and 6.3 extend the treatment to linear regression
and piecewise linear models. Section 6.4 resumes
the original problem of Page (1957) and discusses
change-point detection in a random sequence of dis-
crete or continuous observations. Given the breadth
of the available solutions, each section contains a
selection of contributions which illustrate the main
currents of research. Further related work is listed
in the annotated bibliography.

6.1 Shifts in location and scale

The reference model for testing a change in the
mean value of a random variable can generally be
written as

(6.1) yi = ηi + εi, i = 1, . . . , n,

where the εi’s are independent zero-mean random
errors. Again, all observations are considered in the
order they appear, an assumption which will hold
for the whole section. The function ηi may change
K times,

ηi = µ1, 0 < i ≤ τ1,(6.2)

= µ2, τ1 < i ≤ τ2,
...

= µK+1, τK < i ≤ n,

where the change-points τk can only assume integer
values. Both the K+ 1 different mean values µk and
the K change-points τk are generally supposed to be
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unknown, although the very early contributions fo-
cus on the simpler setting where one or both pieces of
information are given. The pioneering paper by Page
(1955) assumes K = 1, a known mean value µ, but
unknown change-point τ . The proposed test statis-
tic records the largest difference between the partial
deviation D̄τ =

∑τ
i=1(Yi − µ), for τ = 1, . . . , n, and

its least value, that is,

max
0<τ≤n

(D̄τ − min
0≤i<τ

D̄i), where D̄0 = 0.

Large values support the hypothesis that the mean
has changed to µ′, with µ 6= µ′. Table 1 of Page
(1955) gives some critial values for the binomial case,
and is supplemented by the power calculations of
Table 2. The same setting is considered in Hink-
ley (1970) with the additional assumption that the
errors εi ∼ N(0, σ2) are centered normal variables
with constant variance σ2 > 0. Using results from
the theory on random walks, Hinkley (1970) deter-
mines the asymptotic distribution of the maximum
likelihood estimator of τ and of the likelihood ratio
statistic for testing the null hypothesis H0 : τ = τ0,
that is, that the change occurred at a given time
point τ0. The former distribution is tabulated in Ta-
ble 3.3 of the paper, while critical values of the latter
are given in Table 4.1 of the same. Numerical inves-
tigation shows that the validity of the asymptotic
approximations depends on how large the location
shift is.

Hawkins (1977) considers the same model than
Hinkley (1970) though this time the null hypothesis
is of no mean change, that is,

H0 : Yi ∼ N(µ, σ2), i = 1, . . . , n,

against the alternative that there exists a 0 < τ <
n at which the unknown mean switches from µ to
µ′ 6= µ. The variance σ2 is assumed to be known
and we set it to one without loss of generality. The
corresponding likelihood ratio statistic is a function
of

U2 = Vτ∗ = max
1≤τ<n

Vτ ,

where

Vτ = τ(Ȳτ − Ȳ )2 + (n− τ)(Ȳn−τ − Ȳ )2

with

(6.3) Ȳτ =
1

τ

τ∑
i=1

Yi, Ȳn−τ =
1

(n− τ)

n∑
i=τ+1

Yi.

To derive the exact null distribution of the likelihood
ratio statistic, Hawkins (1977) re-expresses Vτ as

Vτ = T 2
τ ,

where

Tτ =

√
n

τ(n− τ)

τ∑
i=1

(Yi − Ȳ )

has standard normal distribution. It follows that the
finite-sample distribution of

(6.4) U =
√
Vτ∗ = max

1≤τ<n
|Tτ |

agrees with the distribution of the maximum abso-
lute value attained by a Gaussian process in discrete
time having zero mean, unit variance and autocorre-
lation function given by Expression (3.2) of Hawkins
(1977). In particular, the null distribution of U has
density function

(6.5) fU (u) = 2φ(u)

n−1∑
τ=1

gτ (u)gn−τ (u),

where φ(u) is the density of the standard normal,
g1(u) = 1 for u ≥ 0 and gτ (u) is a recursive function
such that

gτ (u) = Pr(|Ti| < u, i = 1, . . . , τ − 1 | |Tτ | = u).

The sketch of the proof of (6.5) is given in Ap-
pendix A.4.

The finite-sample null distribution of the likeli-
hood ratio statistic for σ2 unknown is worked out in
Worsley (1979). The likelihood ratio statistic is now
expressed as a function of

(6.6) U = max
1≤τ<n

(n− 2)
1
2
|Tτ |
Sτ

,

where Sτ is the square root of

S2
τ =

τ∑
i=1

(Yi − Ȳτ )2 +

n∑
i=τ+1

(Yi − Ȳn−τ )2,

that is, of the within-group sum of squares of the
observations split at τ . Now, Tτ ∼ N(0, σ2) under
the null hypothesis of no change and S2

τ/σ
2 follows

a χ2-distribution with n − 2 degrees of freedom in-
dependently of Tτ . It follows that

(n− 2)
1
2
Tτ
Sτ
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distributes like a t distribution with n − 2 degrees
of freedom under H0. Tail probabilities for (6.6) are
calculated by numerical integration for sample sizes
n ≤ 10 and using simulation if 10 < n ≤ 50. An
approximation to the asymptotic null distribution of
(6.6) is provided using Bonferroni-type inequalities.
For large n, percentage points can be calculated also
by using Hawkins’s (1977) recursion rule.

To avoid the cumbersome calculation of the ex-
act distribution, Yao and Davis (1986) derive the
asymptotic null distribution of U using results from
the theory of Brownian processes. Equation (A.4) is
rewritten as

U = max
1≤τ<n

∣∣ τ√
n

(
Ȳτ − Ȳn

) ∣∣√
τ
n

(
1− τ

n

) .

Let {B(t); 0 ≤ t ≤ ∞} be a standard Brownian mo-
tion. Under H0 the process

{
τ(Ȳτ − µ)√

n
; 1 ≤ τ ≤ n

}

distributes like {B (τ/n) ; 1 ≤ τ ≤ n}. We can hence
rewrite U as

U = max
1≤t<n

∣∣B0(t)
∣∣√

t(1− t)
,

where B0(t) = B(t) − tB(1) is a Brownian bridge.
A suitably normalized version of U converges then
under H0 to the double exponential, or Gumbel,
distribution (Yao and Davis, 1986, Theorem 2.1).
The same result was derived independently by Irvine
(1986).

The theory developed so far has been generalized
to the multivariate case and/or to account for a pos-
sible change in the scale of the distribution; see Chen
and Gupta (2012, §§2.2–2.3 and 3.2–3.3) and the
selection of references given in the annotated bib-
liography. Nonparametric methods for change-point
analysis are discussed in Brodsky and Darkhovsky
(1993).

6.2 Change-point detection in regression

A further extension of Model (6.2) with respect
to location,

ηi = α1 + β1xi, 0 < i ≤ τ1,(6.7)

= α2 + β2xi, τ1 < i ≤ τ2,
...

= αK+1 + βK+1xi, τK < i ≤ n,

is used for change-point detection in simple linear re-
gression. The early contributions by Quandt (1958,
1960) derive the likelihood ratio statistic under the
null hypothesis of no switch against the alternative
that the model possibly obeys two separate regimes
under the assumption of independent and zero-mean
normal error terms εi. Under the alternative hypoth-
esis, the variance is furthermore allowed to switch
from σ2

1 to σ2
2 at instant τ , when the linear predic-

tor ηi undergoes a structural change. The likelihood
ratio statistic

(6.8) W = max
3≤τ≤n−3

W (τ),

with

W = −2 log

(
σ̂2τ

1 σ̂
2(n−τ)
2

σ̂2n

)
,

is a function of the least squares estimators σ̂2
1 and

σ̂2
2 of σ2

1 and σ2
2, respectively, computed using the

corresponding subsets of observations, and of the
MLE σ̂2 of the common variance σ2 = σ2

1 = σ2
2

based upon the entire sample. Quandt (1958) ini-
tially conjectured that the asymptotic distribution
of W may be χ2

4 under the null hypothesis of no
change. However, the numerical investigation he re-
ported in a later publication for the three sample
sizes n = 20, 40, 60 (Quandt, 1960, Table 3) revealed
that the limiting distribution depends on the num-
ber of observations n. Quandt (1960) furthermore
derives three alternative small-sample test statistics,
which he obtains again by splitting the observations
τ into two groups as done for the calculation of (6.8).

Change-point detection in simple linear regression
using the likelihood ratio is also the subject of Kim
and Siegmund (1989). These authors consider two
situations: where only the intercept is allowed to
change and where both, the intercept and the slope
change. The variance remains constant. Under the
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first scenario, we reject the null hypothesis of no
change for large values of maxτ |U(τ)|/σ̂, where σ̂2

is again the maximum likelihood estimator of the
common variance σ2 and

U(τ) =

(
nτ

n− τ

)1/2
 Ȳτ − α̂− β̂x̄τ√

1− τ
n−τ

(x̄τ−x̄)2

σ̂2
x

 .
Here, σ̂2

x is the sample variance of (x1, . . . , xn) and
(α̂, β̂) are the maximum likelihood estimators of
(α, β). A similar result is derived for the second sce-
nario. The null distribution of the likelihood ratio
statistics is shown to depend on the independent
variable x. Again, the Brownian Bridge process is
central to the derivation of the corresponding lim-
iting distributions as in Yao and Davis (1986). Ap-
proximations for the corresponding tail probabilities
are given by Kim and Siegmund (1989) under rea-
sonably general assumptions.

6.3 Piecewise linear models

The piecewise linear or multi-phase regression
model with K possibly a priori known change-points
is a further extension of model (6.2). Broken-line re-
gression is a particular case, where

ηi = α1 + β1xi, xi ≤ τ1,(6.9)

= α2 + β2xi, τ1 < xi ≤ τ2,
...

= αK+1 + βK+1xi, τK < xi ≤ n,

and, in analogy to Section 6.1, we assume that
x1 ≤ x2 ≤ · · · ≤ xn. Note that while in Model (6.7)
the changes were in time, that is, occurred as the
observed sequence yi moved from the earlier to its
later part, now the changes depend on the covari-
ate xi as it assumes values from the smallest to the
largest. The τk’s represent the x values at which the
changes occur, while the corresponding time points
are identified by the values ik such that xik ≤ τk <
xik+1. Piecewise linear regression is very popular in
a large number of disciplines which include environ-
mental sciences (Piegorsch and Bailer, 1997, Sec-
tion 2.2; Muggeo, 2008a), medical sciences (Smith
and Cook, 1980; Muggeo et al., 2014), epidemiology
(Ulm, 1991) and econometrics (Zeileis, 2006). The
first contributions date back to the early 60’s. A re-
view of likelihood ratio testing for piecewise linear

regression up to his time of writing is Bhattacharya
(1994). The same author treats also the time-varying
situation represented by model (6.7) and the simpler
situation of identifying a shift in location considered
in Section 6.1.

For a known change-point τ , Sprent (1961) uses
the likelihood ratio to test a number of hypotheses
on the relationship between the two straight lines
which form the broken-line regression model (6.9)
with K = 1. Successive work by Hinkley (1969,
1971) specifically focuses on making inference on

γ =
α1 − α2

β2 − β1
,

which identifies the x value at which the two straight
lines cross each other. In particular, Hinkley (1969)
focuses on testing whether γ = γ0 when the vari-
ance σ2 of the error term εi in model (6.1) is known.
He shows that the finite-sample distribution of the
likelihood ratio statistic

(6.10) W =
1

σ2

{
D2
i∗(γ̂)−D2

i0(γ0)
}
,

where xi0 ≤ γ0 < xi0+1 and xi∗ ≤ γ̂ < xi∗+1, con-
verges to a χ2

1 distribution. Here,

D2
i (γ) = S2

0 − S2
i (γ)

is the difference between the residual sum of squares
S2

0 for a single regression line and the residual sum of
squares S2

i (γ) for the two regression lines which are
constrained to meet at x = γ. The maximum likeli-
hood estimate γ̂ is the value of γ which maximises
D2
i (γ) over xi ≤ γ < xi+1 and i = 2, . . . , n− 2. Nu-

merical investigation suggests that the χ2
1 approx-

imation works well, especially in the upper tail of
the distribution, provided the sample size is suffi-
ciently large. For small n, instead, the finite-sample
distribution of the likelihood ratio has slightly heav-
ier tails. When σ2 is unknown, it is replaced in
(6.10) by the residual sum of squares S2

0 ; in this case
the limiting distribution is better approximated by
an F1,n−4 distribution. An interesting by-product is
that the finite-sample distribution of the likelihood
ratio statistic for testing β1 = β2 when σ2 is known
is very close to a chi-squared distribution with 3 de-
grees of freedom. The reasons are unknown. For sure,
the problem is ill-defined under the null hypothesis
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as reflected by the distribution of the maximum like-
lihood estimator of β = (β2−β1)/σ, which is clearly
non normal and heavily biased.

Hinkley (1971) deepens the investigation of (6.10)
by deriving the corresponding limiting distributions
for the two cases where: (i) there is no change in ηi
(α1 = α2 and β1 = β2), and (ii) the response y is
constant until the change-point τ (β1 = 0). On em-
pirical grounds, Hinkley (1971) suggests as limiting
distribution an F3,n−4 and an F1,n−4, respectively.
He furthermore develops confidence intervals for the
change-point τ and joint confidence regions for the
change-point and the model parameters. Lund and
Reeves (2002) revise Hinkley’s (1971) first distribu-
tional claim, that is, that the distribution of the
likelihood ratio converges to an F3,n−4 distribution
under the null hypothesis of no change. Their Ta-
ble 1 gives the critical values of (6.10), which re-
sult to be much larger than expected. An approxi-
mation for the 95% percentile is furthermore given
which holds for n ≥ 100. Lund and Reeves (2002)
conjecture that the asymptotic approximation of the
finite-sample distribution of (6.10) may involve the
Gumbel distribution, as the likelihood ratio statis-
tic seems to behave under the null hypothesis as the
maximum of a sequence of positively correlated F
distributions. However, the classic extreme value re-
sults would have to be adapted to account for the
rather strong dependence structure. Or, the limit-
ing distribution of the likelihood ratio (6.10) may
involve the distribution of the supremum of a Brow-
nian Bridge process.

A contribution related to Hinkley (1969) is Feder
(1975b) who studies the asymptotic distribution of
the likelihood ratio statistic in segmented regres-
sion, which are models where the analytical form
of ηi changes according to the values the covariate x
takes on. In particular, he proves that under suitable
identifiability conditions the limiting distributions of
Wilks and Chernoff still apply. However, if the model
is not identified and contains less segments than ini-
tially assumed, the likelihood ratio statistics is no
longer chi-squared. In case of the broken-line regres-
sion model considered so far, that is, with K = 1,
the limiting null distribution for testing equality of
the slopes is rather given by the maximum of a
large number of correlated χ2

1 and χ2
2 distributions,

where their number increases with the sample size.

The correlation structure furthermore depends on
the spacings of the observations yi and approaches
1 as n tends to infinity.

All results mentioned so far assume that the
model is continuous at the change-point τ . In-
deed, Hawkins (1980) points out that the asymp-
totic behaviour of the likelihood ratio statistic de-
pends strongly on whether this assumptions holds.
In case of model (6.9) the condition αk + βkτk =
αk+1 + βk+1τk needs be satisfied for every change-
point τk. Otherwise, the model is discontinuous. If
so, the distribution of the likelihood ratio for verify-
ing the presence of two segments diverges to infinity.

6.4 Changes in random sequences

Several authors applied the likelihood ratio statis-
tic to test for sudden changes in a random sequence.
Most results consider continuous probability mod-
els which belong to exponential families in the first
place. The only results we came across for discrete
outcomes consider the binomial and Poisson cases.
The asymptotic distribution of the likelihood ratio
statistic is generally found, as in Section 6.1, by split-
ting the observations before and after the change
point τ . The remainder of the section illustrates
some revealing examples where the test statistics can
be unbounded. Further related work is listed in the
annotated bibliography.

Worsley (1983) derives the exact null and alter-
native distributions of the likelihood ratio statistic
and of the cumulative sum (cumsum) statistic to
detect a possible change in the probability of se-
quence of independent binomial random variables.
These distributions are obtained by conditioning on
the total number of successes and using an iterative
procedure similar to the one developed by Hawkins
(1977). Numerical investigation indicates that the
likelihood ratio test is more powerful than the cum-
sum test if the change occurs at the beginning or
towards the end of the sequence, while it is slightly
less powerful if the change occurs in the middle of
the same. However, the likelihood ratio statistic is
not bounded in probability.

Worsley (1986) extends his previous results to test
for a change in the mean value of independent obser-
vations from an exponential family, with particular
emphasis on the exponential distribution. The exact
null and alternative distributions of the likelihood-
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based statistics are found, and their power is com-
pared with a test based on a linear trend statistic.
The likelihood ratio is a function of both, of the sam-
ple sum Ȳ =

∑n
i=1 Yi/n and of the partial sums, Ȳτ

and Ȳn−τ , given at (6.3). These represent the suf-
ficient statistics for the natural parameter θ which
indexes the exponential family under the null hy-
pothesis of no change and of the the natural param-
eters θ1 and θ2, which index the two distributions
under the hypothesis that a change occurred at τ .
An exact confidence region for the change-point τ is
also derived.

Worsley (1988) considers survival data, in partic-
ular testing for a change in the hazard function. The
likelihood ratio statistic is shown to be unbounded,
but the exact null distribution of a suitably modi-
fied likelihood ratio is provided. Modified likelihood
ratio statistics for the same setting are furthermore
considered by Henderson (1990). Recently, Robbins
et al. (2011, 2016) addressed the problem of change-
point detection in time series. The former considers
the mean-shift model of Section 6.1, while the latter
assumes the linear regression model of Section 6.2
and, in the supplementary material, the extension
to multi-phase regression of Section 6.3. A present-
day example of application is the identification of a
possible shift in mean temperature values (Reeves et
al., 2007).

Gombay and Horváth (1994) derive the limiting
distribution of the likelihood ratio type statistic for
testing whether there is a change in the parame-
ter θ which indexes a general distribution f(y; θ);
this can be seen as the continuation of Page (1957).
Given f(y; θ), the likelihood ratio statistic agrees
again with the absolute maximum of the U statistic

Uτ = max
1≤τ≤n−1

[
−2 log

{
supθ∈Θ0

∏n
i=1 f(yi; θ)

}
+2 log

{
supθ∈Θ1

∏τ
i=1 f(yi; θ)

∏n
i=τ+1 f(yi; θ)

}]
.

Using results of extreme value theory, the authors
prove that the limit distribution of Uτ , suitably cen-
tered and rescaled, converges to a Gumbel distribu-
tion under the null hypothesis of no change.

7. BEYOND PARAMETRIC INFERENCE

This section reviews cases of interest which do not
fit into the previously mentioned three broad model
classes, but still fall under the big umbrella of non-
standard problems. In particular we will focus on

shape constrained inference, a genre of nonparamet-
ric problem which leads to highly nonregular models.

As brought to our attention by an anonymous
Referee, the asymptotic theory of semiparametric
and nonparametric inference has interesting ana-
logues to the classical parametric likelihood theory
reviewed in Section 2. Indeed, the parameter space
of a semiparametric model is an infinite-dimensional
metric space. This makes the model non-standard
as we typically consider a real parameter of interest
in the presence of an infinitely large nuisance pa-
rameter. Despite this departure from regularity, the
likelihood ratio statistic still behaves as we would ex-
pect it. Murphy and van der Vaart (1997, 2000), for
instance, show that the corresponding limiting dis-
tribution is chi-squared also when we profile out the
infinite-dimensional nuisance parameter. The classi-
cal approximations of Section 2 also hold for the
asymptotic theory of empirical likelihood (Owen,
1990, 1991); see Chen and Van Keilegom (2009) for
a review. These results are quite remarkable given
that the underlying distributional assumptions are
much less strict.

An area of research which has received much at-
tention in the last decade is nonparametric infer-
ence under shape constraints (Samworth and Bod-
hisattva, 2018). Shape constraints originate as a nat-
ural modelling assumption and lead to highly non-
regular models. As highlighted by Groeneboom and
Jongbloed (2018), the probability/density functions
of many of the widely used parametric models satisfy
shape constraints. For example, the exponential den-
sity is decreasing, the Gaussian density is unimodal,
while the Gamma density can be both, depending
on whether its shape parameter is smaller or larger
than one. Estimation under shape constraints leads
to an M-estimation problem where the parameter
vector typically has the same length as the sample
size and is constrained to lie in a convex cone. Non-
regularity arises since the M-estimator typically falls
on the face of the cone. As for boundary problems,
convex geometry is an essential tool to treat shape
constrained problems.

The field of shape constraint problems originated
from ‘monotone’ estimation problems, where func-
tions are estimated under the condition that they
are monotone. The maximum likelihood estimator
converges typically at the rate n−1/3 if reasonable
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conditions hold, that is, at a slower pace than the
n−1/2 rate attained by regular problems. Moreover,
the MLE has a non-standard limiting distribution
known as Chernoff’s distribution (Groeneboom and
Wellner, 2001). A considerable body of work has
studied the asymptotic properties of the nonpara-
metric likelihood ratio statistic under monotonicity.
In particular, Banerjee and Wellner (2001) initiated
the research strain of testing whether a monotone
function ψ assumes the particular value ψ(t0) = ψ0

at a fixed point t0. An extension to regression is
given by Banerjee (2007), who assumes that the con-
ditional distribution p(y, θ(x)), of the response vari-
able Y given the covariate X = x, belongs to a regu-
lar parametric model, where the parameter θ, or part
of it, is specified by a monotone function θ(x) ∈ Θ
of x.

Other types of shape constraint problems have
emerged in the meantime which entail concavity or
convexity and uni-modality of the functions to be es-
timated; see the annotated bibliography. Many high-
dimensional problems fall in this framework, which
opens frontiers for research in nonregular settings;
see for example Bellec (2018). Most recently, Doss
and Wellner (2019) showed that the likelihood ra-
tio statistic is asymptotically pivotal if the density
is log-concave. The class of log-concave densities has
many attractive properties from a statistical view-
point; an account of the key aspects is given in Sam-
worth (2018). Non-standard limiting distributions
characterize shape constrained inferential problems.
Generally, the likelihood ratio statistic converges to
a limiting distribution which can be described by
a functional of a standard Brownian motion plus a
quadratic drift. In addition, the limiting distribution
is asymptotically pivotal, that is, it doesn’t depend
on the nuisance parameters, as happens for the com-
mon χ2 distribution of regular parametric problems.

8. COMPUTATIONAL ASPECTS AND
SOFTWARE

Deriving the asymptotic distribution of the like-
lihood ratio statistic under non standard conditions
is generally a cumbersome task. In some cases the
limiting distribution is well defined and usable, as
for instance when it boils down to a chi or chi-bar
squared distribution. Quite often, however, the ana-
lytical approximation is intractable, so as when we

have to determine the percentiles of a Gaussian ran-
dom field. This fact has motivated the development
of alternative test statistics whose null distribution
presents itself in a more manageable form; see, for in-
stance, the contributions mentioned in Section 5.2.2.
Or, we may rely upon simulation, as mentioned in
passing in Sections 3.2, 4.1, 5.2.3 and 6.1. A com-
promise between analytical approximation and sim-
ulation is the hybrid approach described in Brazzale
et al. (2007, Section 7.7) where parts of the analyti-
cal approximation are obtained by simulation. How-
ever, simulation becomes useless if the limiting dis-
tribution diverges to infinity; a non exhaustive list
of examples is provided in Section 6.4 and in para-
graphs 5.2–5.4 of the annotated bibliography. Sub-
stantive applications in which the approximations
have been found useful and details of how to imple-
ment the methods in standard computing packages
are generally missing.

Reviewing all software contributions which imple-
ment likelihood ratio based inference for nonregular
problems in a more or less formalized way is be-
yond the scope of this paper. In the following we
try and give a selected list of packages for the nu-
merical computing environment R (R Core Team,
2020). We will again group them into the three broad
classes reviewed in the previous Sections 3–6, that
is, boundary problems, mixture models and change
point problems.

Crainiceanu and Ruppert’s (2004) proposal,
which tests for a null variance component, is im-
plemented in the RLRsim package by Scheipl et al.
(2008). We furthermore mention the varTestnlme

package by Baey and Kuhn (2019) and the
lmeVarComp package by Zhang (2018). The first
agains tests for null variance components in linear
and non linear mixed effects model, while the sec-
ond implements the method proposed by Zhang et
al. (2016) for testing additivity in nonparametric re-
gression models.

An account of some early software implementa-
tions to handle mixture models can be found in
Haughton (1997), in the Appendix of McLachlan
and Peel (2000) and also in the Software section
of the recent review paper by McLachlan et al.
(2019). A most recent implementation for use in as-
trostatistics is the TOHM package by Algeri and van
Dyk (2020) which implements a computationally ef-
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ficient approximation of the likelihood ratio statistic
for a multimensional two-component finite-mixture
model. The package is also available for the Python
programming language. The code provided by Chau-
veau et al. (2018) for testing a two-component Gaus-
sian mixture versus the null hypothesis of homo-
geneity using the EM test is available through the
MixtureInf package by Li et al. (2016). Maximum
likelihood estimation in finite mixture models based
on the EM algorithm is furthermore addressed in
the mixR package by Yu (2018), which also consid-
ers different information criteria and bootstrap re-
sampling. The clustBootstrapLRT function of the
mclust package by Scrucca et al. (2016) also imple-
ments bootstrap inference for the likelihood ratio to
test the number of mixture components. A further
implementation of the likelihood ratio test for mix-
ture models is the mixtools package by Benaglia et
al. (2009). All R packages linked to finite mixture
models are listed on the CRAN Task View webpage
for Cluster Analysis & Finite Mixture Models1.

The changepoint package by Killick and Eckley
(2014) considers a variety of test statistics for de-
tecting change points among which the likelihood
ratio. The strucchange package by Zeileis et al.
(2002) provides methods for detecting changes in
linear regression models. We may furthermore men-
tion the segmented package by Muggeo (2008b) for
change point detection in piecewise linear models,
the bcp package by Erdman and Emerson (2007) for
Bayesian analysis of a single change in univariate
time series and the CPsurv package by Brazzale et
al. (2019) for nonparametric change point estimation
in survival data.

9. DISCUSSION

Non-regularity can arise in many different ways,
though all entail the failure of one, at times even
two, regularity conditions. Many problems can be
dealt with straightforwardly; other require sophis-
ticated tools including limit theorems and extreme
value theory for random fields. The wealth of contri-
butions, which has been produced during the last 70
years, testifies that the interest in this type of prob-
lems has not faded since they made their entrance
back in the early 50’s. Most solutions, however, are
freestanding and scattered in time and scope. We

1http://cran.r-project.org/web/views/Cluster.html

grouped them into boundary, indeterminate param-
eter and change-point problems, according to which
conditions fail and the type of asymptotic arguments
used.

The best-studied nonregular case are boundary
problems. Common examples of application are test-
ing for a zero variance component in mixed effect
models and constrained one-sided tests. The limiting
distribution of the likelihood ratio is generally a chi-
bar squared distribution with a number of compo-
nents and mixing weights that depend on the num-
ber of parameters which fall on the boundary, and
on the design matrices in regression problems. This
is also the only type of problem for which higher
order results are available.

Indeterminate parameter problems are far more
heterogenous. Apart from finite mixtures, the re-
maining cases can be put under the two umbrellas
of non-identifiable parameters and singular informa-
tion matrix. The methodological difficulties increase
as the limiting distributions depend on the para-
metric family and on the unknown parameters. If
θ is scalar and we want to test homogeneity against
a two-component mixture, the distribution of the
likelihood ratio converges to the distribution of the
supremum of a Gaussian process. For a larger num-
ber of mixture components and/or multidimensional
θ, this becomes the distribution of the supremum of
a Gaussian random field. In these cases, simulation-
based approaches are often needed to obtain the re-
quired tail probabilities. Moreover, constraints must
be imposed to guarantee identifiability of the mix-
ture parameters. As outlined by Garel (2007), these
may act on the parameter space, by bounding it or
imposing suitable separation conditions among the
parameters, or on the alternative hypotheses which
must be contiguous. A further possibility is to pe-
nalize the likelihood function so that the limiting
distribution of the corresponding modified likelihood
ratio statistic is chi-squared or well approximated by
a chi-bar squared distribution.

Change-point problems range from the simple sit-
uation of detecting an alteration in the regime of a
random sequence to identifying a structural break
in multiple linear regression with possibly correlated
errors. Although in the second case the change point
can assume any value, in the first situation it must
lie in a discrete set. The behaviour of the likelihood
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ratio heavily depends on whether the model is iden-
tifiable and/or the regression function is continuous.
In some situations the likelihood ratio statistic for
the unknown change-point is unbounded. Limit the-
orems for processes based on U -statistics and ex-
treme value theory for random processes play a cen-
tral role.

From the more practical point of view, use of
the asymptotic distribution of the likelihood ratio
statistic loses its appeal once it goes beyond the
common χ2 distribution. As a result, simulation-
based tests that circumvent the asymptotic theory
are often used. Indeed, simulation may nowadays be
used to establish the desired empirical distributions
of the estimators and to compute approximations
for p-values obtained from Wald-type statistics. For
the most intricate situations, the authors suggest to
use resampling-based techniques, such as paramet-
ric and nonparametric bootstrapping, to explore the
finite-sample properties of likelihood-based statis-
tics. Methodological difficulties, such as the possi-
bile divergence of the likelihood ratio statistic, and
prohibitive computational costs limit, however, this
possibility to specific applications.

The review has focused on frequentist hypothe-
sis testing using the likelihood ratio statistic. Maxi-
mum likelihood estimation for a class of nonregular
cases, which include the three-parameter Weibull,
the gamma, log-gamma and beta distributions, is
considered in Smith (1985). A significant litera-
ture has grown since then, parts of which culmi-
nated in the book-length account of techniques for
parameter estimation in non-standard settings by
Cheng (2017). Most of the difficulties encountered
in nonregular settings vanish if the model is anal-
ysed using Bayes’ rule, though one has always to
be cautious. Bayesian and nonparametric contribu-
tions were mentioned in passing throughout the pa-
per with suitable links to their frequentist counter-
parts.

APPENDIX A: APPENDIX

A.1 Asymptotic expansion of (θ̂ − θ)

Let p = 1 and l(θ) be the log-likelihood function
for a regular parametric model. Write lm = lm(θ) =
dml(θ)/dθm for the derivative of order m = 2, 3, . . .,
of l(θ), while u = u(θ) = dl(θ)/dθ represents the
score function. We start by expanding the likelihood

equation around θ to give

0 = u(θ̂) = u+ (θ̂ − θ)l2 +
1

2
(θ̂ − θ)2l3 +

+
1

6
(θ̂ − θ)3l4 + · · · ,

where θ̂ indicates the maximum likelihood estimate.
Reordered, this expression gives an asymptotic ex-
pansion for (θ̂ − θ) of the form

θ̂ − θ = j−1u+
1

2
j−1(θ̂ − θ)2l3 +

+
1

6
j−1(θ̂ − θ)4l4 + · · · ,(A.1)

where j−1 is the inverse of the observed information
j = −l2. Next, iteratively substitute in the right-
hand part of (A.1) θ̂ − θ with its expansion and re-
arrange terms; this leads to

θ̂ − θ = j−1u+
1

2
j−3u2l3 +

+
1

6
j−4(l4 + 3j−1l23)u3 + · · ·(A.2)

To reorder the terms in (A.2) according to their
asymptotic order, we need to introduce the general
notation

(A.3) Hm = lm − νm, νm = E[lm(θ;Y )],

m ≥ 2. The score function u(θ) and Hm are of order
n1/2 under repeated sampling, while νm is of order
n. We further write j = i{1− i−1(i−j)} and expand
j−1 as

j−1 = i−1 + i−2(i− j) +

+ i−3(i− j)2 + · · · ,(A.4)

where i = E[j(θ;Y )] is the expected information.
Now, inserting (A.4) into (A.2) and using notation
(A.3), we may rewrite the asymptotic expansion of
(θ̂ − θ) to obtain

θ̂ − θ = i−1u+ i−2H2u+

+
1

2
i−3u2v3 +Op(n

−3/2).(A.5)

See Pace and Salvan (1997, Chapter 9) and
Barndorff-Nielsen and Cox (1994, Chapter 5) for a
detailed treatment.
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A.2 Prototype demonstrations

Proof sketch A.1. Boundary problem (Self
and Liang, 1987, Theorem 3) Let y1, . . . , yn be n
independent observations on the random variable
Y , and let l(θ) denote the associated log-likelihood
function, where θ takes values in the parameter
space Θ, a subset of Rp. We want to test whether
the true value of θ lies in the subset of Θ denoted
by Θ0 versus the alternative that it falls in the com-
plement of Θ0 in Θ, denoted by Θ1. Let θ0 be the
true value of θ, which may fall on the boundary of
Θ. First, expand 2

{
l(θ)− l(θ0)

}
around θ0,

2
{
l(θ)− l(θ0)

}
= 2(θ − θ0)>u(θ0)

− (θ − θ0)>i(θ0)(θ − θ0)

+ op(||θ − θ0||3),

where u(θ) is the score function, i(θ) the Fisher
information matrix and || · || represents the Eu-
clidean norm. Rewrite this expansion as a func-
tion of the variable Z̃n = n−1i1(θ0)−1u(θ0), where
i(θ0) = ni1(θ0) and i1(θ0) is the Fisher information
matrix associated with a single observation. This
yields

2
{
l(θ)− l(θ0)

}
=

− {
√
nZ̃n −

√
n(θ − θ0)}>i1(θ0)

{
√
nZ̃n −

√
n(θ − θ0)}

+ u(θ0)>i(θ0)−1u(θ0)

+ op(||θ − θ0||3).

Consider now the likelihood ratio statistic

W = 2

{
sup
θ∈Θ

l(θ)− sup
θ∈Θ0

l(θ)

}
= sup

θ∈Θ

[
−{
√
nZ̃n −

√
n(θ − θ0)}>i1(θ0)

{
√
nZ̃n −

√
n(θ − θ0)}

]
− sup
θ∈Θ0

[
−{
√
nZ̃n −

√
n(θ − θ0)}>i1(θ0)

{
√
nZ̃n −

√
n(θ − θ0)}

]
+ op(||θ − θ0||3).

Approximate the two sets Θ and Θ0 by the cones
CΘ−θ0 and CΘ0−θ0 centered at θ0, respectively, and

rewrite the likelihood ratio statistic as

W = sup
θ∈CΘ−θ0

{
−(Z̃n − θ)>i1(θ0)(Z̃n − θ)

}
− sup
θ∈CΘ0−θ0

{
−(Z̃n − θ)>i1(θ0)(Z̃n − θ)

}
+ op(||θ||3).

Now,
√
nZ̃n converges in distribution to a multivari-

ate normal distribution with mean zero and covari-
ance matrix i1(θ0)−1. It follows that for all θ such
that θ− θ0 = Op(n

−1/2), the limiting distribution of
W becomes

sup
θ∈C̃

{
−(Z − θ)>(Z − θ)

}
−

sup
θ∈C̃0

{
−(Z − θ)>(Z − θ)

}
,

or equivalently as in Expression (3.3), where C̃ and
C̃0 are the corresponding transformations of the
cones CΘ−θ0 and CΘ0−θ0 , respectively, and Z is mul-
tivariate standard normal.

Proof sketch A.2. Non-identifiable param-
eter (Liu and Shao, 2003, Theorem 2.3) Let
Y1, . . . , Yn be n independent and identically dis-
tributed random observations from the true distri-
bution function F 0. Suppose that we want to test
H0 : θ ∈ Θ0 against H1 : θ ∈ Θ \ Θ0, where
Θ0 = {θ ∈ Θ : Fθ = F 0} with Fθ the distribution
indexed by θ. Let

lr(θ) =
n∑
i=1

log{λi(θ)}

be the log-likelihood ratio function, where λi(θ) =
λ(Yi; θ) denotes the Radon-Nikodym derivative,
λ(θ) = dFθ/dF

0, evaluated at Yi. Define the like-
lihood ratio statistic as

(A.6) W (H0) = 2 sup
θ∈Θ\Θ0

{lr(θ) ∨ 0},

where {a∨ b} = max(a, b). Assume that there exists
a trio {Si(θ), H(θ), Ri(θ)} which satisfies the gen-
eralized differentiable in quadratic mean expansion
(GDQM)

hi(θ) = H(θ)Si(θ)−H2(θ) +H2(θ)Ri(θ),
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with hi(θ) =
√
λi(θ) − 1. H(θ) is the Hellinger dis-

tance between Fθ and F 0 defined as

H2(θ) = EF 0

[{√
λi(θ)− 1

}2
]
/2

and Si(θ) and Ri(θ) are such that EF 0{Si(θ)} =
EF 0{Ri(θ)} = 0. Furthermore assume that

sup
θ∈Θc/

√
n

|νn (Si(θ)) | = Op(1)

and

sup
θ∈Θc/

√
n

|EFn [Ri(θ)] | = op(1),

for all c > 0, where Fn(·) indicates the empirical dis-
tribution function and νn(g) =

√
n(EFn −EF 0)[g] is

a random process defined for any integrable func-
tion g. Here, Θε = {θ ∈ Θ | 0 < H(θ) ≤ ε} de-
fines the Hellinger neighbourhood of F 0. Now, using
the GDQM expansion and a Taylor series expansion
of 2 log{1 + hi(θ)}, the log-likelihood ratio function
lr(θ) can be expressed as

lr(θ) = 2

n∑
i=1

log{1 + hi(θ)}

= 2
√
nH(θ)νn(Si(θ))

− nH2(θ)[2 + Fn(S2
i (θ))] + op(1),(A.7)

in Θc/
√
n for all c > 0. Under some general con-

ditions on the trio {Si(θ), H(θ), Ri(θ)} (Liu and
Shao, 2003, Theorem 2.2), the quadratic expansion
in (A.7) holds uniformly in θ ∈ Θε for some small
enough ε > 0. Direct maximization of (A.6) by√
nH(θ) allows us to approximate the likelihood ra-

tio statistic by the quadratic form

{νn(Si(θ)) ∨ 0}2

1 + EFn [S2
i (θ)]/2

≈ {νn(S∗i (θ)) ∨ 0}2

Let F be the se of all L2 limits of the standardized
score function

S∗i (θ) =
Si(θ)√

1 + EF 0 [S2
i (θ)]/2

as H(θ)→ 0. To complete the proof we assume there
exists a centered Gaussian process {GS : S ∈ F} on
the same probability space of the empirical process

νn with uniformly continuous sample paths and co-
variance kernel EF 0 [GS1GS2 ] = EF 0 [S1S2], for all
S1, S2 belonging to F . Using results from statistical
limit theory, it is possibile to prove the following two
inequalities

W (H0) ≤ sup
S∈F
{GS ∨ 0}2 + op(1),

W (H0) ≥ sup
S∈F
{GS ∨ 0}2 + op(1),

which imply that

lim
n→∞

W (H0) = sup
S∈F
{GS ∨ 0}2.

Proof sketch A.3. Finite mixture model
(Ghosh and Sen, 1985, Theorem 2.1) Let y1, . . . , yn
be a sample of n i.i.d. observations from the strongly
identifiable mixture model (5.1) and

l(θ) =

n∑
i=1

log {(1− π)f1(yi; θ1) + πf2(yi; θ2)}

be the corresponding log-likelihood function. Sup-
pose that H0 : π = 0 is true, so the true model
density is f1(y; θ0

1), where θ0
1 is the true value of θ1.

Unless differently stated, all functions and expecta-
tions will be evaluated under this assumption, that
is, for θ0 = (0, θ0

1, θ2), with arbitrary θ2. Let W (H0)
be the likelihood ratio statistic

W (H0) = 2{ sup
π∈[0,1]
θ1∈Θ1
θ2∈Θ2

l(θ)− sup
π=0
θ1∈Θ1
θ2∈Θ2

l(θ) }

= sup
θ2∈Θ2

2{ sup
π∈[0,1]
θ1∈Θ1

l(θ)− sup
π=0
θ1∈Θ1

l(θ)}.(A.8)

Expand l(θ) with respect to the first two components
of θ = (π, θ1, θ2) around π = 0 and θ1 = θ0

1. This
yields

(A.9) l(θ) = l1(θ0
1) +An(θ) + op(1),

where l1(θ1) =
∑n

i=1 log f1(yi; θ1) and

An(θ) = πlπ + (θ1 − θ0
1)>lθ1 +

1

2

{
π2lππ

+ 2π(θ1 − θ0
1)>lπθ1

+ (θ1 − θ0
1)>lθ1θ1(θ1 − θ0

1)
}
.
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Here, the two indexes π and θ1 denote differentiation
with respect to the corresponding parameter compo-
nents. As shown in Ghosh and Sen (1985), in virtue
of the Kuhn-Tucker-Lagrange theorem, the uncon-
strained supremum of An(θ) becomes

sup
π∈[0,1]
θ1∈Θ1

An(θ) =
1

2

{
u0(θ2), u>1

}
i(θ2)−1

{
u0(θ2), u>1

}>
if Zn(θ2) ≥ 0 and

sup
π∈[0,1]
θ1∈Θ1

An(θ) =
1

2
u>1 i

−1
11 u1

if Zn(θ2) < 0, where we define

Zn(θ2) =

{
u0(θ2)i00 + u1(θ2)>i01(θ2)

}
{i00(θ2)}1/2

.

In the previous three expressions, u0(θ2) = lπ(θ0),
u1 = lθ1(θ0), i represents the expected information
matrix with respect to π and θ1, ijk(θ2) denotes the
(jk)-th component of i, for j = 0, 1 and k = 0, 1,
while ijk(θ2) denotes the (jk)-th component of i−1.
Similarly, the constrained supremum of An(θ) is

sup
π=0
θ1∈Θ1

An(θ) =
1

2
u>1 i

−1
11 u1.

Using known results on the inversion of block matri-
ces, the likelihood ratio statistic (A.8) reduces to

W (H0) = sup
θ2∈Θ2

Z2
n(θ2) I{Zn≥0} + op(1).

To ensure the convergence of Zn(θ2) to the zero-
mean Gaussian processes Z(θ2), the set Θ2 needs
be bounded and a Lipschitz condition has to hold
for the u0 component of the score vector which, in
turn, implies tightness of u0. These conditions fur-
thermore guarantee that the remainder term in ex-
pansion (A.9) is op(1) over the two bounded sets of
π and θ1 and uniformly in θ2.

Proof sketch A.4. Shift in location for Gaus-
sian model (Hawkins, 1977, Theorem 1) Given n in-
dependent Gaussian observations, we want to test
whether

Yi ∼ N(µ, σ2), i = 1, . . . , n,

against the alternative that there exists a 0 < τ < n
at which the unknown mean µ switches to µ′ 6= µ.
The variance σ2 is assumed to be known; we set it
to one without loss of generality. Recall from Sec-
tion 6.1 that the likelihood ratio statistic can be re-
expressed as a function of

U = max
1≤τ<n

|Tτ |,

where

Tτ =

√
n

τ(n− τ)

τ∑
i=1

(Yi − Ȳ ).

The null distribution of U is given at (6.5). The proof
considers the following events

Aτ = {|Tτ | ∈ (u, u+ du)},

Bτ = {|Ti| < |Tτ |, ∀i ∈ (1, . . . , τ − 1)},

and

Cτ = {|Ti| < |Tτ |,∀i ∈ (τ + 1, . . . , n)}.

Define

FU (u+ du)− FU (u) = Pr
{
U ∈ (u, u+ du)

}
= Pr

(
n−1⋃
τ=1

[
{|Tτ | ∈ (u, u+ du)}∩

{|Tτ | > |Ti|, i 6= τ}
])

=

n−1∑
τ=1

Pr(Aτ ∩Bτ ∩ Cτ )

=

n−1∑
τ=1

Pr(Aτ )Pr(Bτ |Aτ )Pr(Cτ |Aτ ∩Bτ ).

Since Tτ ∼ N(0, 1), we have that

Pr(Aτ ) = 2φ(u) + o(du).

Moreover,

Pr(Bτ |Aτ ) = Pr(|Ti| < u,∀i ∈ (1, . . . , τ − 1) | |Tτ | = u)

= gτ (u) + o(du),

(A.10)

where g1(u) = 1 for u ≥ 0. Since the series
{T1, T2, . . . , Tn−1} is Markovian, {T1, T2, . . . , Tτ−1}
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and {Tτ+1, Tτ+2, . . . , Tn−1} are independent. It fol-
lows that the events Bτ and Cτ are independent
given Tτ = u, that is,

Pr(Cτ |Aτ ∩Bτ ) = P(Cτ |Aτ ).

According to the probability symmetry between Bτ
and Cτ (Chen and Gupta, 2012, §2.1.1), similar to
Pr(Bτ |Aτ ), it follows that

(A.11) Pr(Cτ |Aτ ) = gn−τ (u) + o(du).

Combining (A.10) and (A.11), we obtain

Pr{U ∈ (u, u+ du)} = 2φ(u)
n−1∑
τ=1

gτ (u)gn−τ (u)

+ o(du),

which corresponds to Expression (6.5).
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[§3.2] Extends Crainiceanu and Ruppert (2004) to gener-
alized linear mixed models with multiple variance compo-
nents. Exploits the link between random effects and penal-
ized regression to develop a simple simulation-free test for
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Davies, R. B. (1977). Hypothesis testing when a nuisance pa-
rameter is present only under the alternative. Biometrika,
64, 247–254.
[§4.1]. Investigates the construction of optimal likelihood-
based tests under loss of identifiability for a two-parameter
model when the test statistic follows a normal distribution.

Davies, R. B. (1987). Hypothesis testing when a nuisance pa-
rameter is present only under the alternative. Biometrika,
64, 33–43.
[§4.1]. Extends Davies (1977) to the case when the model
distribution is chi-squared.

Davies, R. B. (2002). Hypothesis testing when a nuisance pa-
rameter is present only under the alternative: Linear model
case. Biometrika, 89, 484–489.
[§4.1]. Extends Davies (1977) and Davies (1987) to the lin-
ear model with unknown error variance.

Fortunati, S., Gini, F., Greco, M., Farina, A.,
Graziano, A. and Giompapa, S. (2012). An identifiabil-
ity criterion in the presence of random nuisance parameters.
Proceedings of the 20th European Signal Processing Confer-
ence (EUSIPCO 2012). Bucharest, August 27–31, 2012.
[§4.1]. Extend Bowden’s (1973) result which connects pa-
rameter identifiability to non-singularity of the information
matrix to the nuisance parameter case.

Song, R., Kosorok, M. R. and Fine, J. P. (2009). On
asymptotically optimal tests under loss of identifiability
in semiparametrics models. The Annals of Statistics, 37,
2409–2444.
[§4.1]. Consider tests of hypothesis when the parameters
are not identifiable under the null hypothesis in the context
of semiparametric models.

Aitchison, J. and Silvey, S. D. (1960). Maximum likelihood
procedures and associated tests of significance. Journal of
the Royal Statistical Society, Series B (Methodological), 22,

154-171.
[§4.2] Address the problem of singular information matrix
when the null hypothesis is specified by constraints on the
parameters and the outcome of the test dictates whether it
is necessary to provide estimates of these parameters.

Barnabani, M. (2002). Wald-based approach with singular
information matrix. Workind Paper, Department of Statis-
tics “P. Fortunati”, University of Florence.
[§4.2] Proposes to maximise a suitably penalized log-
likelihood function which guarantees that the corresponding
estimator of the parameter is consistent and asymptotically
normal. Allows one to construct a Wald type test statis-
tic which has a limiting chi-squared distribution both under
null and alternative hypotheses.

El-Helbawy, A. T. and Hassan, T. (1994). On the Wald,
Lagrangian multiplier and likelihood ratio tests when the
information matrix is singular. Journal of the Italian Sta-
tistical Society, 1, 51–60.
[§4.2] Build upon Silvey (1959) and develop modified formu-
lae for the Wald, score and likelihood ratio statistics which,
under standard regularity conditions, asymptotically follow
a chi-squared distribution with degrees of freedom specified
by the number of constraints.

Jin, F. and Lee, L.-F. (2018). Lasso maximum likelihood
estimation of parametric models with singular information
matrices. Econometrics, 6, 8.
[§4.2] Propose to fit the parameters of models with singular
information matrix by adaptive lasso while allowing the
true parameter vector to lie on the boundary of the param-
eter space.

Liu, X., Pasarica, C. and Shao, Y. (2003). Testing homo-
geneity in gamma mixture models. Scandinavian Journal
of Statistics, 30, 227–239.
[§5.2] Characterise the asymptotic behaviour of the like-
lihood ratio for testing model homogeneity against a
two-component gamma mixture with known shape and un-
known rate parameters. Show that under the null hypothesis
the asymptotic distribution agrees with the distribution of
the square of Davies’s (1977) statistic. Further show that
if the unknown rate parameter belongs to an unbounded
set, the likelihood ratio diverges to infinity in probability at
rate O{log(logn)}, in accordance with Hartigan (1985).

Chen, J. and Kalbfleisch, J. D. (2005). Modified likeli-
hood ratio test in finite mixture models with a structural
parameter. Journal of Statistical Planning and Inference,
129, 93–107.
[§5.3] Study a modification of the likelihood ratio statistic
similar to that proposed by Chen et al. (2001) to verify the
hypothesis of a homogeneous model against the alternative
of a Gaussian mixture of two or more components with a
common and unknown variance. Show, in particular, that
the χ2

2 distribution represents a stochastic upper bound to
the limiting null distribution of the test statistic.

Kasahara, H. and Shimotsu, K. (2015). Testing the num-
ber of components in finite mixture models. Global COE
Hi-Stat Discussion Paper Series, gd12-259, Institute of
Economic Research, Hitotsubashi University.
[§5.3] Derive the asymptotic distribution of the likelihood
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ratio statistic for the simpler case of testing whether the
mixture contains K0 components or K0 + 1 components.
Propose in addition a likelihood-based procedure for gener-
ally identifying the number of components.

Garel, B. (2001). Likelihood ratio test for univariate Gaus-
sian mixture. Journal of Statistical Planning and Inference,
96, 325–350.
[§5.4] Discusses seven distinct cases of homogeneity test-
ing using the likelihood ratio for the general two-component
Gaussian mixture model (5.6) by imposing different restric-
tions on the means and the variances.

Lei, Q. L. and Qin, Y. S. (2009). A modified likelihood ratio
test for homogeneity in bivariate normal mixtures of two
samples. Journal of Systems Science and Complexity, 22,
460–468.
[§5.4] Extend Qin and Smith (2006) to the two-sample prob-
lem by using the modified likelihood statistic.

Liu, X. and Shao, Y. (2004). Asymptotics for likelihood ratio
test in a two-component normal mixture model. Journal of
Statistical Planning and Inference, 123, 61–81.
[§5.4] Show that the asymptotic distribution of the likelihood
ratio for model (5.6) is asymptotically equivalent to the dis-
tribution of the square of the supremum of the stochastic
process studied in Theorem 1 of Bickel and Chernoff (1993).
Further show that the likelihood ratio diverges to infinity in
probability at rate O{log(logn)} if the mean parameters are
unbounded, in accordance with Hartigan (1985) and Chen
and Chen (2001a, Theorem 2).

Polymenis, A. and Titterington, D. M. (1999). A note
on the distribution of the likelihood ratio statistic for nor-
mal mixture with known proportions. Journal of Statistical
Computation and Simulation, 64, 167–175.
[§5.4] Analyse empirically the d = 1 scenarios treated by
Goffinet et al. (1992) and give an heuristic explanation for
the slow convergence. Propose to refer to the χ̄2(ω̃, 1) dis-
tribution with suitably defined mixing proportions ω̃ instead
of the theoretical value ω = (0.5, 0.5) to improve the approx-
imation in finite samples.

Qin, Y. S. and Smith, B. (2004). Likelihood ratio test for
homogeneity in normal mixtures in the presence of a struc-
tural parameter. Statistica Sinica, 14, 1165–1177.
§5.4] Considers model (5.6) of Chen and Chen (2003) with
the restrictions on the mean parameters given by Chen
and Chen (2001a). Identifiability is guaranteed by setting
π ≤ 0.5. In addition the mixing proportion need to satisfy
min(π, 1− π) ≥ ε for some positive ε < 1/2. The likelihood
ratio asymptotically follows a fifty-fifty mixture of a χ2

1 and
a χ2

2 distribution under the hypothesis of homogeneity.
Qin, Y. S. and Smith, B. (2006). The likelihood ratio test

for homogeneity in bivariate normal mixtures. Journal of
Multivariate Analysis, 97, 474–491.
[§5.4] Generalize Qin and Smith (2004) to a bivariate
normal mixture model with known covariance matrix under
the condition min(π, 1 − π) ≥ ε for some positive ε < 1/2
(Theorem 1). In practice, the limiting distribution must be
found numerically, though an approximation is provided in
their Section 4.

Chen, J. and Gupta, A. K. (1997). Testing and locating vari-

ance change points with application to stock prices. Journal
of American Statistical Association, 92, 739–747.
[§6.1]. Test and locate multiple change-points in the vari-
ance of a series of independent normal observations with
known mean using the Schwarz information criterion.

Chen, J. and Gupta, A. K. (2004). Test and locate multi-
ple change-points in the variance of a series of independent
normal observations with known mean using the Schwarz
information criterion. Statistics, 38, 17–28.
[§6.1]. Generalize Chen and Gupta (1997) to the multivari-
ate case.

Hawkins, D. M. (1992). Detecting shifts in functions of
multivariate location and covariance parameters. Journal
of Statistical Planning and Inference, 33, 233–244.
[§6.1]. Generalizes his 1977 paper to study eight
procedures—which, however, do not include the likeli-
hood ratio—for monitoring possible shifts in the mean
vector or covariance matrix of an arbitrary multivariate
random variable.

Horváth, L. (1993). The maximum likelihood method for
testing changes in the parameters of normal observations.
The Annals of Statistics, 21, 671–680.
[§6.1] Derives the asymptotic distribution of the likelihood
ratio statistic for testing whether the mean and/or the vari-
ance of a sequence of normal observations changed over
time at an unknown point τ .

Inclàn, C. (1993). Detection of multiple changes of variance
using posterior odds. Journal of Business and Economic
Statistics, 11, 289–300.
[§6.1]. Detects a single possible change-point in the variance
of a sequence of independent Gaussian random variables
with known common mean using a Bayesian approach.

James, B., James, K. L. and Siegmund, D. (1987). Tests
for a change-point. Biometrika, 74, 71–83.
[§6.1]. Compare various test statistics for detecting mean
shifts in univariate normal distributions, which also include
the likelihood ratio.

James, B., James, K. L. and Siegmund, D. (1992). Asymp-
totic approximation for likelihood ratio test and confidence
regions for a change point in mean of a multivariate normal
distribution. Statistica Sinica, 2, 69–90.
[§6.1]. Compare various test statistics for detecting mean
shifts as in James et al. (1987), but this time for the mul-
tivariate case.

Sen, A. and Srivastava, M. S. (1975). Some one-sided tests
for change in level. Technometrics, 17, 61–64.
[§6.1]. Provide a Bayesian solution to the problem consid-
ered in Hawkins (1977).

Srivastava, M.S. and Worsley, K.J. (1986). Likelihood ra-
tio tests for a change in the multivariate mean. Journal of
the American Statistical Association, 81, 199–204.
[§6.1]. Consider change-point detection in location for the
multivariate normal distribution. The likelihood ratio statis-
tic is shown to be equivalent to the maximum of Hotteling’s
two sample statistic and that the same statistic can be used
to test for extra-multinomial variation in a contingency ta-
ble.

Tang, J. and Gupta, A. K.(1988). On testing homogeneity
of variances for Gaussian models. Journal of Statistical
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Computation and Simulation, 27(2), 155–173.
[§6.1]. Use Bartlett’s statistic to detect a single possible
change-point in the variance of a sequence of independent
Gaussian random variables with known common mean.

Andrews, D. W. K.(1993). Tests for parameter instability
and structural change with unknown change point. Econo-
metrica, 61, 821–856.
[§6.2]. Considers Wald, score and likelihood ratio type tests
based on the generalized method of moments to detect a pos-
sible structural change in multiple regression with unknown
change-point. Tables of critical values are provided. If the
change-point is fixed, the test statistics follow a chi-squared
distribution with p degrees of freedom.

Andrews, D. W. K., Lee, I. and Ploberger, W. (1996).
Optimal changepoint tests for normal linear regression.
Journal of Econometrics, 70, 9–38.
[§6.2]. Extend Andrews (1993) and determine a class of
finite-sample optimal tests for the existence of a single or
multiple changes at unknown time points in multiple linear
regression with normal errors and known variance. Exact
critical values are obtained straightforwardly on a case by
case basis using simulation. Simulation is furthermore used
to compare the power of the proposed test statistics.

Aue, A., Horváth, L., Hušková, M. and Kokoszka,
P. (2008). Testing for changes in polynomial regression.
Bernoulli, 14, 637–660.
[§6.2]. Test the null hypothesis of no change in the polyno-
mial regression parameters against the alternative of a break
at an unknown time point. Derive the extreme value distri-
bution of a maximum type test statistic which is asymptot-
ically equivalent to the likelihood ratio. The approximation
proves to work well even for small sample sizes. Previous
ground breaking work for likelihood ratio testing in polyno-
mial regression is reviewed in their Section 1.

Deutsch, J. (1992). Linear regression under two sepa-
rate regimes: An empirical distribution for Quandt’s log-
likelihood ratio. Applied Economics, 24, 123–127.
[§6.2]. Provides an empirical distribution for Quandt’s
(1960) statistic to verify the existence of a change point
when assessing the stability of regression relationships over
time.

Kelly, G. E. (2015). Approximations to the p-values of tests
for a change-point under non-standard conditions. Journal
of Statistical Computation and Simulation, 86, 1430–1449.
[§6.2]. Considers three variants of the likelihood-based
statistics studied by Andrews and Ploberger (1994) for the
general regression setting with time trend regressors. Criti-
cal values are obtained via simulation.

Kim, H.-J. (1994). Tests for a change-point in linear regres-
sion. In Change-point Problems. IMS Lecture Notes - Mono-
graph Series (edited by E. Carlstein, H.-G. Möller and D.
Siegmud), 23, pp. 170–176. IMS, Hayward.
[§6.2]. Extend Kim and Siegmund (1989) to multiple linear
regression.

Kim, H. J. and Cai, L. (1993). Robustness of the likelihood
ratio test for a change in simple linear regression. Journal
of the American Statistical Association, 88, 864–871.
[§6.2] Study the robustness of the likelihood ratio test in
simple linear regression.

Luo, X., Turnbull, B. W. and Clark, L. C. (1997).
Likelihood ratio tests for a changepoint with survival data.
Biometrika, 84, 555-565. [§6.2]. Derive the asymptotic
distribution of the likelihood ratio statistic to test for a
possible time-lag effect in covariates in the presence of
right-censored observations.

Feder, P. I. (1975a). On asymptotic distribution theory in
segmented regression problems – identified case. Annals of
Statistics, 3, 49–83.
[§6.3]. Puts the bases for Feder (1975b) by developing the
asymptotic distribution theory of least squares estimators
in broken line regression.

Knowles, M., Siegmund, D. and Zhang, H. P. (1991). Con-
fidence semilinear regression, Biometrika, 78 15–31.
[§6.3]. Provide confidence intervals and joint confidence re-
gions based on the likelihood ratio statistic for the change-
point in a broken-line regression model with K = 1.

Koul, H. L. and Qian, L. (2002). Asymptotics of maximum
likelihood estimator in a two-phase linear regression model.
Journal of Statistical Planning and Inference, 108, 99–119.
[§6.3]. Consider two-phase linear regression with arbitrary
error distribution and fixed jump in the linear predictor at
the true change-point τ . The maximum likelihood estimator
τ̂ is shown to be consistent and the finite-sample distribu-
tion of the standardized maximum likelihood estimator to
converge weakly to the distribution of a compound Poisson
process.

Robison, D. E. (1964). Estimates for the points of intersec-
tion of two polynomial regressions. Journal of the American
Statistical Association, 59, 214–224.rob
[§6.3]. Generalize Sprent (1961) to polynomial regression.

Siegmund, D. O. and Zhang, H. (1994). Confidence regions
in broken-line regression. In Change-point Problems. IMS
Lecture Notes - Monograph Series (edited by E. Carlstein,
H.-G. Möller and D. Siegmud), 23, pp. 292–316. IMS,
Hayward. int Problems.
[§6.3]. Provide as Knowles et al. (1991) confidence intervals
and joint confidence regions based on the likelihood ratio
statistic for the change-point in a broken-line regression
model with K = 1.

Haccou, P., Meelis, E. and van de Geer, S. (1987). The
likelihood ratio test for the change point problem for ex-
ponentially distributed random variables. Stochastic Pro-
cesses and their Applications, 27, 121–139.
[§6.4]. Show that under the null hypothesis of no change
in the rate parameter of an exponential distribution, the
distribution of the likelihood ratio statistic converges to an
extreme value distribution. The limiting distribution of the
likelihood ratio statistic is obtained by using the theory of
uniform quantile process.

Horváth, L. (1989). The limit distributions of the likelihood
ratio and cumulative sum tests for a change in binomial
probability. Journal of Multivariate Analysis, 31, 148–159.
[§6.4]. Derive limit theorems for the likelihood ratio for a
change in a sequence of binomial distributions.

Loader, C. R. (1992). A log-linear Model for a Poisson pro-
cess change point. The Annals of Statistics, 20, 1391–1411.
[§6.4]. Tests for the presence of a change point in a non-
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homogeneous Poisson process. Large deviation techniques
are used to approximate the significance level, and approxi-
mations for the power function are provided. A coal mining
accident data set is used to illustrate the methodology.

Sadooghi-Alvandi, S. M., Nematollahi, A. R. and
Habibi, R. (2011). Test procedures for change point in a
general class of distributions, Journal of Data Science, 9,
111–126.
[§6.4]. Consider change point detection for a general class of
distributions. Derive the exact and asymptotic null distribu-
tions of the quasi-Bayes and likelihood ratio statistics using
results from the theory of Brownian motion and bridge pro-
cesses. Compare the performance of the two test statistics.
Tabulate the significance levels and powers of the two pro-
cedures for a number of selected values of the parameters.

Siegmund, D. (1988). Confidence sets in change-point prob-
lems. International Statistical Review, 56, 31–48.
[§6.4]. Discusses several methods, based on the likelihood
ratio, for the construction of a confidence interval for the
change-point in a sequence of independent observations
from completely specified distributions. The results are gen-
eralised to the construction of confidence regions for the
change-point and the parameters which index the exponen-
tial family from which the independent observations are
drawn.

Visek, T. (2003). The likelihood ratio method for testing
changes in the parameters of double exponential observa-
tions. textitJournal of Statistical Planning and Inference,
113, 79–111.
[§6.4]. Constructs procedures for testing a change in the
distribution of a sequence of independent and identically
distributed random variables which follow a double expo-
nential law. The change can occur either in the location of
the distribution, in the scale or in both.

Banerjee, M. (2008). Estimating monotone, unimodal and
U-shaped failure rates using asymptotic pivots. Statistica
Sinica, 18(2), 467–492.
[§7]. Proposes a method, based on asymptotic pivots, for
constructing nonparametric confidence sets for a monotone
failure rate, and for unimodal or U-shaped hazards.

Groeneboom, P. and Jongbloed, G. (2015). Nonparamet-
ric confidence intervals for monotone functions. The Annals
of Statistics, 43(5), 2019–2054.
[§7]. Obtain confidence intervals for distribution functions
and monotone densities by inverting the acceptance region
of the nonparametric likelihood ratio test.

REFERENCES

The following section-wise list of references supplements the
work cited in the text in an attempt to provide a comprehensive
overview of the asymptotic properties of the likelihood ratio
statistic in nonregular problems.

Algeri, S. and van Dyk, D. A. (2020). Testing one hypoth-
esis multiple times: the multidimensional case. Journal of
Computational and Graphical Statistics, 29, 358–371.

Andrews, D. W. K. (2001). Testing when a parameter is on
the boundary of the maintained hypothesis. Econometrica,
69, 683–734.
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Fu, Y., Chen, J. and Li, P. (2008). Modified likelihood ratio
test for homogeneity in a mixture of von Mises distribu-
tions. Journal of Statistical Planning and Inference, 138,
667–681.

Garel, B. (2007). Recent asymptotic results in testing for
mixtures. Computational Statistics & Data analysis, 51,
5295–5304.
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Poincaré Probabilités et Statistiques, 6, 897–906.

Ghosh, J. K. and Sen, K. P. (1985). On the asymptotic
performance of the log likelihood ratio statistic for the mix-
ture model and related results. In Proceedings of the Berke-
ley Conference in Honor of Jerzy Neyman and Jack Kiefer
(edited by L. LeCam, R. A. Olshen and C.-S. Cheng), Vol.
II, pp. 789–806. Wadsworth Advanced Books & Software,
Monterey.

Godambe, V. P. (1991). Estimating Functions. Oxford Uni-
versity Press, Oxford.

Goffinet, B., Loisel, P. and Laurent, B. (1992). Testing
in normal mixture models when the proportions are known.
Biometrika, 79, 842–846.
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