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ABSTRACT 

Different steps forward have been made in the recent years to identify the molecular 

determinants in carcinogenesis and the evidence of a multistep process where cancer cells 

accumulate multiple and consecutive genetic alterations has been formulated. Recently, tumour 

progression has been recognized as the product of a complex crosstalk between tumour cells and 

their surrounding and supporting tissue, named tumour stroma. 

This stroma is known to influence the growth of cancer and it is composed by several types of 

cells, including endothelial cells of blood and lymphatic circulation, stromal fibroblasts and a 

variety of bone marrow-derived cells, such as macrophages, mast cells, neutrophils, lymphocytes 

and mesenchymal stem cells. The supportive microenvironment is generate and modulated by 

cancer cells through the production and activation of stroma growth factors including vascular 

endothelial growth factor (VEGF), platelet-derived growth factor (PDGF) and transforming growth 

factor-β (TGF-β). Concomitant with altered growth-factor expressions, induced by their autocrine 

and paracrine effect on the tumour and stromal cells, cancer cells are able to produce proteolytic 

enzymes, such as Matrix metalloproteinases (MMPs), which operate the remodelling of 

extracellular matrix (ECM) and basement membrane, thus activating cell-surface and ECM-bound 

growth factors. All these processes are described to contribute to the extensive crosstalk between 

the microenvironment and the cancer cells. 

Therefore, the microenvironment is implicated in the regulation of cell growth, determining 

angiogenesis, tumour invasion and metastasis, and impacting the outcome. Even if stromal cells 

are not malignant, their role in supporting cancer growth is vital to the survival of the tumour. For 

this purpose, cells of microenvironment have become an attractive target for therapeutic agents.  

The present project has been divided in different tasks to identify the molecular mechanisms 

implicated in cell migration, angiogenesis and tumour growth led by stroma cells and their 

crosstalk with cancer cells in different neoplasia in dog. Canine mammary tumour, cutaneous mast 

cell tumour, lymphoid leukaemia and lymphoma were selected for the study and gene expression 

profiling and proteomic analysis of different growth factors (VEGF-TGF-β-PDGF) and MMPs were 

analyzed in association with their possible prognostic and predictive role and crosstalk.  
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Several important results have obtained highlighting the background of the tumour progression 

and the role of microenvironment in veterinary oncology. Selected results are shown below: 

- MMP-2, MT1-MMP, MMP-9 were significantly involved in canine mammary tumour and a 

significant role of the stromal compartment was described;  

- MMP-9 and VEGF-A were associated with the histological tumour grade in cutaneous mast 

cell tumour; 

- MMP-9, MT1-MMP, TIMP-1 and VEGF were correlated in T-cell lymphoma and in dogs with 

higher stage; 

- A potential role of MT1-MMP and TIMP-2 in the pathogenesis of canine acute 

lymphoblastic leukaemia has been discovered; 

- In chronic lymphocytic leukaemia, residual normal leukocytes have shown a significative 

influence in the expression of MMP-9, MT1-MMP, VEGF and TIMPs; 

- Lymphoma and leukaemia in vitro model exhibited a significative discrepancy that 

enhanced the importance of microenvironment in vivo; 

- PDGF-B mRNA expression was identified in canine T-cell lymphoma and cutaneous 

lymphomas. A functional autocrine and/or paracrine loop of growth stimulation was 

proposed due to the co-expression of PDGFs and PDGFRs at different time point during 

disease.  

Therefore, the obtained results may significantly improve the understanding of cancerogenesis of 

the most frequent tumours in dogs. The summarized data here show a primary role for the 

microenvironment during carcinogenesis. Development of novel cancer therapies that target the 

process of metastasis formation, tumour growth and differentiation, by interfering with the ability 

of cancer cells to transmigrate into blood and lymph vessels and to invade the connective tissue, is 

widely expected in veterinary oncology. Further data are necessary to indicate that the use of 

chemopreventive agents to control the function and behaviour of cells in the microenvironment 

might be an important approach to the overall control of cancer. 
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RIASSUNTO 

Negli ultimi anni nell’ambito dell’oncologia, diversi studi hanno identificato diverse molecole 

target implicate nella cancerogenesi e sono stati evidenziati numerosi processi attraverso cui le 

cellule tumorali sono in grado di accumulare alterazioni genetiche. Recentemente, la progressione 

del tumore è stata riconosciuta come il prodotto di un complesso crosstalk tra le cellule tumorali e 

il tessuto circostante, chiamato stroma tumorale.  

Questo stroma è noto per influenzare la crescita del tumore ed è composto da diverse tipologie 

cellulari, che comprendono cellule endoteliali della circolazione sanguigna e linfatica, fibroblasti 

stromali ed una varietà di cellule derivate dal midollo osseo, come macrofagi, mastociti, neutrofili, 

linfociti e cellule staminali mesenchimali. Ulteriormente, il microambiente di supporto è generato 

e modulato da cellule tumorali attraverso la produzione e attivazione di fattori di crescita prodotti 

dallo stroma stesso, come Vascular Endothelial Growth Factor (VEGF), Platelet-Derived Growth 

Factor (PDGF) e Transforming Growth Factor-β (TGF). Concomitante all’alterata espressione di 

questi fattori e per il loro effetto autocrino e paracrino sulle cellule tumorali e su quelle stromali, 

le cellule neoplastiche iniziano a produrre enzimi proteolitici, come metalloproteasi di matrice 

(Matrix metalloproteinases - MMPs). Le MMPs operano il rimodellamento della matrice extra 

cellulare e della membrana basale, attivando così fattori di crescita legati alla superficie cellulare e 

alla matrice stessa. Tutti questi processi contribuiscono all’esteso crosstalk tra il microambiente e 

le cellule tumorali.  

Il microambiente quindi è implicato nella regolazione della crescita cellulare, determinando 

neoangiogenesi, invasione, metastasi tumorali e influenzando il risultato della terapia. Anche se le 

cellule stromali non sono considerabili fenotipicamente maligne, il loro ruolo nel sostenere la 

crescita della neoplasia è essenziale per la sopravvivenza del tumore. Con questo presupposto, le 

cellule del microambiente sono diventate un bersaglio attrattivo per diversi agenti terapeutici. 

Il progetto di ricerca è stato suddiviso in diverse fasi per identificare i meccanismi molecolari 

implicati nella migrazione cellulare, nell'angiogenesi e nella crescita neoplastica, da parte di cellule 

stromali e dal loro crosstalk con le cellule tumorali, in diverse neoplasie del cane. Per lo studio 

sono state selezionate le tipologie tumorali più frequenti nel cane: tumore mammario, 

mastocitoma cutaneo, leucemie linfoidi e linfoma, analizzando i profili di espressione genica e 
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proteica di diversi fattori di crescita (VEGF-TGF-β-PDGF) e delle MMPs, in associazione al loro 

crosstalk e ad un loro eventuale ruolo prognostico. 

Sono stati ottenuti importanti risultati evidenziando lo scenario della progressione tumorale e il 

ruolo del microambiente in oncologia veterinaria. E’ stato dimostrato che:  

- MMP-2, MT1-MMP, MMP-9 sono significativamente coinvolte nel tumore mammario ed è 

stato descritto un loro ruolo rilevante del compartimento stromale;  

- MMP-9 e VEGF-A sono associati al grado istologico nei mastocitomi cutanei; 

- MMP-9, MT1-MMP, TIMP-1 e VEGF sono correlate nel linfoma T e nei cani con linfoma con 

stadio clinico più alto; 

- MT1-MMP e TIMP-2 hanno un ruolo nella patogenesi nelle leucemie linfoblastiche acute; 

- Nella leucemia linfocitica cronica, i leucociti residui normali mostrano un'influenza 

significativa nell'espressione di MMP-9, MT1-MMP, VEGF e dei TIMPs; 

- Il linfoma e la leucemia nel modello in vitro mostrano una considerevole discrepanza per 

alcune MMPs e VEGF che avvalora l'importanza del microambiente in vivo; 

- L’espressione genica del PDGF-B è significativa nei linfomi T e nei linfomi cutanei. E’ stato 

inoltre proposto un loop funzionale autocrino e/o paracrino di stimolazione della crescita 

della neoplasia, dovuto alla co-espressione dei PDGFs e dei recettori in diversi tempi 

durante la malattia. 

I risultati ottenuti potrebbero migliorare significativamente la comprensione della cancerogenesi 

nei tumori più frequenti nel cane. I dati qui sintetizzati mostrano un ruolo primario del 

microambiente durante la carcinogenesi. Lo sviluppo di nuove terapie antitumorali che colpiscano 

il processo di formazione di metastasi, la crescita e la differenziazione della neoplasia, 

interferendo con la capacità delle cellule tumorali di trasmigrare nel sangue e nei vasi linfatici e di 

invadere il tessuto connettivo, sarà ampiamente perseguito in oncologia veterinaria nel prossimo 

futuro. Sono però necessari ulteriori studi per indicare se l'uso di agenti chemio-preventivi per 

controllare la funzione ed il comportamento delle cellule nel microambiente possa essere un 

importante approccio al controllo complessivo del cancro. 
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ABBREVIATIONS 

ALL = acute lymphoblastic leukaemia 

a.u. = arbitrary unit 

CD = cluster of differentiation 

CGI-119 = canine transmembrane BAX 

inhibitor motif containing 4 

CL = cutaneous lymphoma 

CLL = chronic lymphocytic leukaemia 

CP = crossing point 

DLBCL =diffuse large B-cell lymphoma 

ECM = extra-cellular matrix 

ELISA = enzyme-linked immunosorbent assay 

FNA = fine-needle aspirate 

GOLGA1 = golgin a 1 

GZ = gelatine zymography 

HG = high grade 

HIF = hypoxia-inducible factor 

hNHL = human non-Hodgkin’s lymphoma 

ICC = immunocytochemistry / chemical 

IHC = immunohistochemistry /chemical 

LG = low grade 

LL = lymphoblastic lymphoma 

MCT = mast cell tumour 

MMP = matrix metalloproteinase 

MT-MMP = membrane-type matrix 

metalloproteinase 

MZL = marginal zone lymphoma 

PDGF = platelet-derived growth factor 

PTCL = peripheral T-cell lymphoma 

qRT-PCR = quantitative real time polymerase 

chain reaction 

RECK = reversion- inducing cysteine-rich 

protein with Kazal motifs 

TGF-β = transforming growth factor beta 

TIMP = tissue inhibitor of metalloproteinase 

UPL = universal probe library 

VEGF = vascular endothelial growth factor 
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1. BACKGROUND 

Cancer is one of the causes of disease and mortality worldwide. The past two decades of 

biomedical research have collected an enormous amount of information on the molecular events 

that take place during carcinogenesis and tumour progression. The molecular mechanisms of the 

complex interplay between the tumour cells and the tumour microenvironment have been 

identified playing a pivotal role in this process (Gialeli et al. 2010). A variety of stromal cells in the 

surrounding environment are recruited to tumours, and these not only increase the growth of the 

primary cancer but also facilitate its metastatic dissemination to distant organs (Joyce and Pollard, 

2009) (Fig. 1). Through different mechanisms, the neoplastic cells are able to disseminate by 

lymphatic and blood circulation, and then create metastatic growth in distant organs. To spread 

within the tissues, tumour cells use migration mechanisms that are similar, if not identical, to 

those that occur during physiological processes such as embryonic morphogenesis, would healing 

and immune-cell recruitment (Friedl and Bröcker, 2000). 

Moreover, the cell body is modified in shape and stiffness during the migration to interact with the 

surrounding tissue structures. In vitro and in vivo observations have shown that tumour cells 

infiltrate neighbouring tissues in diverse patterns. They can disseminate in an “individual cell 

migration”, or expand in solid cell strands, sheets, files or clusters (called “collective migration”). 

Leukaemias, lymphomas and solid stromal tumours, such as sarcomas, usually disseminate via 

single cells; whereas epithelial tumours follow collective migration mechanisms. Such differences 

in cellular patterning reflect variations in the molecular repertoire used by a cancer cell to migrate 

(Friedl and Wolf, 2003). 
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Fig. 1. Primary tumour and microenvironment.  Cancer cells in primary tumours have a strict interaction 

with their supportive microenvironment. The environment is composed by some structural cells including 

endothelial cells of blood and lymphatic circulation, stromal fibroblasts and a variety of bone marrow-

derived cells, including macrophages, mast cells, neutrophils, lymphocytes and mesenchymal stem cells. 
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MECHANISMS OF TUMOUR-CELLS INVASION AND MIGRATION 

In vitro studies have led to the original observations that individual tumour cells are motile. These 

cells usually originate from the interstitial stroma or bone marrow. Alternatively, cells that arise 

from a multicellular compartment, such as epithelium, lose their cell contacts, detach and migrate 

as individual cells through the neighbouring connective tissue. Based on cell type, integrin 

involvement, cytoskeletal structure and protease production, single-cell migration can occur in 

different morphological variants (Thiery, 2002). These variants include: 

- Mesenchymal migration.  Mesenchymal movement is predominantly found in cells from 

connective-tissue tumours, such as fibrosarcoma, glioma and in epithelial cancers, the 

latter characterized by a progressive dedifferentiation. The cells following this type of 

cellular patterning have a fibroblast-like spindle-shaped morphology that is dependent on 

integrin-mediated adhesion dynamics and the presence of high traction forces on both cell 

poles.  

- Amoeboid migration. The characteristics of amoeboid movement have been established 

through studies of the single-cell amoeba, Dictyostelium discoideum. Dictyostelium is an 

elliptoid cell that translocates with morphological expansion and contraction; it has an 

extraordinary deformability and relatively low-affinity substrate binding that is integrin 

independent. In higher eukaryotes, signs of amoeboid movement are shown in leukocytes 

and some tumour cells. In lymphocytes and neutrophils, integrin-mediated adhesion is 

useful for cell migration within connective tissue, both in vitro and in vivo. T lymphocytes 

use protease-independent physical mechanisms to overcome matrix barriers. Furthermore 

an amoeboid dissemination characterizes the early detachment and metastatic spread 

from a small primary tumour, such as lymphomas and small-cell lung carcinomas. 

- Chain migration. Chain migration occurs in non-neoplastic neural crest cells, myoblasts, 

breast carcinoma and melanomas. These cells stream one after another in a strand-like 

fashion (Friedl and Wolf, 2003).  

Cancer cells generate a supportive microenvironment by producing stroma-modulating growth 

factors including the vascular endothelial growth factor (VEGF), platelet-derived growth factor 

(PDGF) and transforming growth factor-β (TGF-β). Similar to the processes of wound healing, these 

factors disrupt normal tissue homeostasis and act in a paracrine manner to induce stromal 

reactions such as angiogenesis and inflammatory response. Moreover, they can activate 
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surrounding stromal cells, such as fibroblasts, smooth-muscle cells and adipocytes, leading to the 

secretion of additional growth factors and proteases (Mueller and Fusenig, 2004). Concomitant 

with altered growth-factor expressions, often induced by their autocrine effect on the tumour 

cells, cancer cells initiate to produce proteolytic enzymes, such as Matrix metalloproteinases 

(MMPs) (Stetler-Stevenson and Yu, 2001).  MMPs operate the remodelling of ECM and basement 

membrane, exposing cryptic protein domains and generating specific new molecule fragments 

that can have promigratory as well as pro- and anti-angiogenic functions. Moreover these 

proteases activate cell-surface and ECM-bound growth factors, during ECM degradation, that 

contribute to the extensive crosstalk between the microenvironment and the cancer cells (Mueller 

and Fusenig, 2004) (Fig. 2). 

Therefore progression of tumour is a highly complex process in which several molecular events are 

required for tumour cells to achieve independent growth. Another such event is the enhancement 

of angiogenesis. Angiogenesis is the development of new blood vessels from existing ones, as 

opposed to vasculogenesis, which refers to the de novo formation of blood vessels (Levitovic et al., 

2006). It is necessary for persistent tumour growth, because the sprouting capillaries are conduits 

for gas exchange and nutrient supply. The process of angiogenesis is governed by a strict 

molecular interaction, and its modulation is dependent on angiogenic factors, cytokines, integrins 

and ECM components that surround the involved vessels (Yoon et al., 2003). These interactions 

concern cell-to-cell and cell-to-ECM. The induction and rate of angiogenesis depend on the 

balance of two functionally opposing groups of cytokines called angiogenic and angiostatic (or 

antiangiogenic) factors (“angiogenesis switch model’’) (Levitovic et al., 2006). 
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Fig. 2. Crosstalk between tumour cells and their reactive stromal cells. Tumour cells create a supportive 

microenvironment by secreting growth factors, proteases and their inhibitors, whose imbalance leads to 

the degradation of ECM, resulting in the release of growth factors, bound to the matrix, and of ECM 

molecular fragments. The secretion can act both in autocrine and paracrine manners to the stroma, 

inducing angiogenesis, invasion and proliferation of tumour cells. In addition to recruitment, proliferation 

and activation of stromal inflammatory cells and fibroblasts are activated, secreting further growth factors 

and proteases. This cycle permit to amplify these signals in the cascade that results in the establishment of 

an activated stroma that promotes malignant tumour growth. 
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1.1. MATRIX METALLOPROTEINASES 

 

Matrix metalloproteinases (MMPs) are extracellular matrix remodelling proteinases, which belong 

to a zinc-dependent family of endopeptidases. The MMP family consists of about 24 members that 

are characterized in humans, rodents, and amphibians. Initially, MMPs are classified according to 

their modular domain structure and ECM specificity. In particular, the gelatinases are a subgroup 

within the MMP family and include MMP-2 (gelatinase A or Mr 72,000 type IV collagenase) and 

MMP-9 (gelatinase B or Mr 92,000 type IV collagenase). They have been described in the tumour 

invasion and progression in different human tumours (Egeblad and Werb, 2002). In addition, 

MMPs cleave a lot of substrates, including an array of other proteinases, proteinase inhibitors, 

chemotactic molecules, latent growth factors, growth factor binding proteins, cell surface 

receptors, and cell-cell and cell-matrix adhesion molecules. Thereby they regulate cell behaviour in 

several ways. Therefore, MMPs influence diverse physiologic and pathologic processes. In normal 

physiology, MMPs are involved in embryonic development, wound repair, ovulation, bone 

remodelling, macrophage and neutrophil function. In pathologic conditions, such as rheumatoid 

arthritis, periodontal disease, osteoarthritis, gastric ulcer, arteriosclerosis and then tumour 

invasion, metastasis and angiogenesis in cancer, MMPs operate an excessive and considerable 

degradation of ECM (Yoon et al., 2003) (Fig. 3). 
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Fig. 3. Roles of MMPs in cancer progression. MMPs can modulate several phases of cancer progression, 

including tumour growth and survival, tumour invasion and metastasis at the distant sites and angiogenic 

switch. MMPs exert their proteolytic activity degrading the physical barriers and liberating growth factors, 

thereby facilitating all these phases.  
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1.1.1. REGULATION 

In the neoplastic process, the MMPs are regulated in a paracrine manner by growth factors and 

cytokines secreted both by tumour infiltrating inflammatory cells and tumour or stromal cells. This 

regulation is governed by the continuous crosstalk between tumour cells, stromal cells, and 

inflammatory cells during the invasion process. Most MMPs are secreted as latent precursors 

(zymogens) that are proteolytically activated in the extracellular space, with the exception of 

MMP-11 and Membrane type-1 Matrix Metalloproteinases (MT1-MMP or MMP-14), which are 

activated prior to secretion by Golgi-associated, furin-like proteases (Westermarck and Kahary, 

1999). Endogenous inhibitors tightly control MMP activity. The main inhibitor of MMPs is α2-

macroglobulin, an abundant plasma protein. In a similar way to α2-macroglobulin, 

thrombospondin-2 forms a complex with MMP-2 and facilitates endocytosis and clearance. By 

contrast, thrombospondin-1 binds to pro-MMP-2 and -9 and directly inhibits their activation. 

The most-studied endogenous MMP inhibitors are Tissue Inhibitors of MMPs (TIMPs) -1, -2, -3 and 

-4, which reversibly inhibit MMPs in a 1:1 stoichiometric fashion. They differ in tissue-specific 

expression and ability to inhibit various MMPs (Egeblad and Werb, 2002). Although TIMPs 

inactivate MMPs in vitro, the role of TIMPs in the regulation of MMP activity and cancer 

progression in vivo is unclear. Initial studies have shown decreased expression of TIMPs at the site 

of tumour invasion, but a positive correlation between TIMPs and MMPs expression and poor 

prognosis in malignant tumours has recently been shown. The contradictory roles of TIMPs may 

result from the bimodal function of TIMPs as inhibitors, but also as key players in the activation of 

MMPs. To exert their inhibiting or activating functions, TIMP-1 and TIMP-2 preferentially bind to 

MMP-9 or MMP-2, respectively (Westermarck and Kahary, 1999). 

In addition to TIMPs, the recently characterized RECK (reversion inducing cysteine-rich protein 

with Kazal motifs) protein, a novel plasma-membrane-anchored MMP inhibitor, has been 

described to regulate MMPs activity. RECK controls three members of the MMP family (MMP-2, 

MMP-9 and MT1-MMP) by various mechanisms, inhibiting the secretion or directly the catalytic 

activity (Takahashi et al., 1998). 

MMP gene expression is primarily regulated at the transcriptional level or through the modulation 

of mRNA stability in response to growth factors and cytokines. In fact, the promoter regions of 

inducible MMP genes (MMP-1, MMP-3, MMP-7, MMP-9, MMP-10, MMP-12, MMP-13) show 
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remarkable conservation of regulatory elements, and their expression is induced by growth 

factors, cytokines, and other environmental factors such as contact to ECM (Yoon et al., 2003).  

The pro-MMP-2 can be activated by several mechanisms that are dependent on stimulators and 

cell types. MMP-2 is activated at the cell surface through a unique multistep pathway that involves 

MT1-MMP and TIMP-2: TIMP-2 binds MMP-14 at its amino terminus and pro-MMP-2 at its 

carboxyl terminus, which allows an adjacent, non-inhibited MMP-14 to cleave the bound pro-

MMP-2 (Egeblad and Werb, 2002). 

1.1.2. TUMOUR CELL INVASION, MIGRATION AND PROGRESSION 

High expression levels of certain MMPs were correlated to the tumour invasion capacity in vivo. 

Because of their ECM-degrading activity, MMPs were initially thought to facilitate tumour cell 

metastasis by destroying the basement membrane and other components of ECM. MMPs also 

participate in cell-surface proteolysis, leading to the release of different growth regulators and the 

extracellular domains of proteins from the cell surface (Yoon et al., 2003). Moreover, MMPs act on 

the non-matrix substrates (e. g., chemokines, growth factors, growth factor receptors, adhesion 

molecules, and apoptotic mediators) that operate the rapid and critical cellular responses, which 

are required for tumour growth and progression (Westermarck and Kahary, 1999). 

Furthermore, during invasion, the localization of MMPs to specialized cell surface structures is 

essential for their ability to promote invasion. Specialized cell surface structures utilize 

transmembrane proteinases, including MT1-MMP, as well as secreted and activated MMPs at the 

site, such as MMP-2 and -9, to degrade a variety of ECM macromolecules and facilitate cell 

invasion (Gialeli et al,. 2011). 

1.1.3. IMMUNOLOGIC ESCAPE 

Once the tumour cell has entered the circulation, the immune system is responsible for the 

elimination of the circulating tumour cells. In order to be successful in the establishment of 

metastases, a tumour cell is able to adopt mechanisms of immune escape. MMPs help this process 

stimulating cancer cell-platelet interactions and inhibition of functions, as well as the proliferation 

of immune responsible cells, such as the T cell and natural killer cells (Westermarck and Kahary, 

1999). Moreover MMPs shed interleukin-2 receptor-a by the cell surface of T-lymphocytes, 

thereby suppressing their proliferation; then TGF-b, a significant suppressor of T-lymphocyte 

reaction against cancer cells, is released as a result of MMP activity (Gialeli et al., 2011).  
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1.1.4. ANGIOGENESIS 

MMPs are essential regulators during various phases of the angiogenic process, from the 

deposition and breakdown of the basement membrane of vascular structures, to the endothelial 

cell proliferation and migration (Westermarck and Kahary, 1999). The principal MMPs that 

participate in tumour angiogenesis are mainly MMP-2, -9 and MT1-MMP (Gialeli et al., 2011). In 

particular, besides its proteolytic degradation, MMP-9 can release angiogenic factors bound to 

ECM. While tumour cells may produce latent pro-MMPs, in most tumours, the stromal cells and 

vascular endothelial cells are the major source of pro-MMPs that are activated by distinct MMPs 

or other proteases (Moehler et al., 2003).  

1.1.5. TARGETED THERAPY IN HUMAN  

On the basis of the pivotal roles that MMPs play in several steps of cancer progression, the 

pharmaceutical industry has invested considerable effort over the past 20 years aiming to develop 

safe and effective agents targeting MMPs. In this regard, multiple Matrix Metalloproteinases 

Inhibitors (MMPIs) have been developed, in the attempt to control the synthesis, secretion, 

activation and enzymatic activity of MMPs. Several generations of synthetic MMPIs were tested in 

phase III clinical trials in humans, including peptidomimetics (like Marimastat in breast cancer), 

nonpeptidomimetics inhibitors and tetracycline derivatives (like Metastat, also called COL-3, in 

Kaposi’s sarcoma), which target MMPs in the extracellular space (Gialeli et al., 2011). In addition, 

various natural compounds, like Neovastat in breast and colorectal tumour, have been identified 

as inhibiting MMPs. Other strategies of MMP inhibition in development involve antisense and 

small interfering RNA (siRNA) technology. Antisense strategies are directed selectively against the 

mRNA of a specific MMP, resulting in decrease of RNA translation and downregulation of MMP 

synthesis (Mannello, 2006). However the road to clinical use of MMPIs has not been 

straightforward. Several reasons might explain the unfavourable clinical outcomes in some of the 

MMPI clinical trials in various cancer types. Firstly, adverse effects, including musculoskeletal 

syndrome, have limited the maximum-tolerated dose of the early generation of MMPIs, thereby 

limiting drug efficacy. Secondly, patients recruited in the trials are often at the most advanced and 

metastatic stage of cancer. In addition, the nonspecific nature of the inhibitors has a negative 

impact in their therapeutic efficacy, due to the wide range of MMPs and physiological events 

affected (Roy et al., 2009). Considering all of the above, one of the major challenges for the future 

is the development of inhibitors or monoclonal antibodies that bind to the active site of the 
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enzyme and are specific for certain MMPs, showing little or no cross-reaction with other MMPs 

(Gialeli et al., 2011).  

1.1.6. MMPs IN DOG  

Although evidence for the role of MMPs in tumours of domestic animals is sparse, the central role 

of MMP-2 and MMP-9 has been documented in many pathologies. The sequence homology 

between other species and human MMPs is high; therefore, the use of human standards to 

estimate the location and presence of canine MMPs appears reasonable. There is a 96% to 98% 

sequence homology among rat, mouse, and human MMP-2, whereas there is a 75% to 85% 

sequence homology among rat, mouse, rabbit, human, and bovine MMP-9. An experimental work 

to sequence canine MMP-2 has revealed high sequence homology with human, rat, and mouse 

sequences (Leibman et al., 2000). Furthermore Coughlan et al. (2000) have shown the N-terminal 

amino acid sequence of canine MMP-2 to have 87% homology with the human sequence.  

Increased MMP-2 and MMP-9 levels occur in the synovial fluid in canine rheumatoid arthritis 

(Coughlan et al., 1998) and increased MMP-2 levels in canine osteoarthritis (Coughlan et al., 1995), 

whereas increased pro–MMP-9 levels occur in the myocardium in canine dilated cardiomyopathy 

(Gilbert et al., 1997). Gelatinase activity was significantly elevated in fluids from eyes of dogs with 

keratoconjunctivitis (Arican et al., 1999). More recently MMP-2 and MMP-9 were detected in 

canine osteosarcoma (Loukopoulos et al., 2004), cutaneous mast cell tumours (Leibman et al., 

2000), mammary tumour (Santos et al., 2012), melanoma (Docampo et al., 2011), canine seminal 

plasma (Saengsoi et al., 2011), renal fibrosis (Aresu et al., 2011), myxomatous mitral valve disease 

(Ljungvall et al., 2011), visceral leishmaniasis (Marangoni et al., 2011), meningioma (Mandara et al. 

2009), hemangiosarcomas (Murakami et al., 2009) and lymphoma (Gentilini et al.,2005). 
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1.2. VASCULAR ENDOTHELIAL GROWTH FACTOR 

 

Vascular endothelial growth factor (VEGF) is usually considered an exclusive angiogenic growth 

factor. At least 6 VEGF types have been described: VEGF from A to E and placenta growth factor 

(PlGF). VEGF-A is the most common and most extensively studied isoform. VEGFs are glycosylated 

homodimers with sequence homology (20%) to A and B chains of PDGF and contain a core of 

cysteine residues. Three VEGF receptors—VEGRF-1 (flt-1), VEGFR-2 (KDR/flk-1), and VEGFR-3 (flt-

4)—have been described. They belong to a subfamily of tyrosine kinase receptors within the PDGF 

receptor class and are characterized by 7 extracellular immunoglobulin-like domains. They are 

expressed in endothelial cells from embryogenesis. All VEGF isoforms can bind to VEGFR-1 and 

VEGFR-2. VEGFR-1 and VEGFR-2 are localized to vascular and lymphatic endothelial cells in adult 

tissues. VEGFR-3 is present mostly in the lymphatic endothelium. However, VEGFR-2 is the main 

VEGF receptor in endothelial cells (Halper, 2010). 

1.2.1. REGULATION 

The activity of tyrosine kinase receptors is regulated by the availability of ligands. A particular 

feature of the VEGF-A ligand is the upregulation of its expression levels under hypoxic conditions. 

Hypoxia allows the stabilization of hypoxia-inducible factors (HIFs) that bind to specific promoter 

elements which are present in the promoter region of VEGF-A. Similarly, expression of VEGFR-1 is 

directly regulated by HIFs. VEGFR-2 is also upregulated during hypoxia, but the role of different 

HIFs in its regulation remains to be clarified. VEGFR-3 expression is upregulated in differentiating 

embryonic stem cells that are cultured in a hypoxic atmosphere. After the binding of ligands, the 

VEGFRs are able to form both homodimers and heterodimers. The signal-transduction properties 

of the VEGFR heterodimers compared with homodimers remain to be elucidated. Dimerization of 

receptors is accompanied by activation of the receptor-kinase activity that leads to the 

autophosphorylation of the receptors. Phosphorylated receptors recruit interacting proteins and 

induce the activation of signalling pathways that involve an array of second messengers (Olsson et 

al., 2006). Furthermore several growth factors, including TGF-β, PDGF, and inflammatory 

cytokines, such as IL-6, upregulate VEGF mRNA expression, suggesting that paracrine or autocrine 

release of such factors cooperates with local hypoxia in regulating VEGF release in the 

microenvironment (Ferrara et al., 2003). 
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1.2.2. ANGIOGENESIS AND CANCER 

As mentioned before, angiogenesis plays an important role not only in the tumour growth and its 

blood supply, but also in the tumour metastasis (Fig. 4). Vessels at the tumour periphery modify 

from normal nonproliferating host vessels to tumour vessels generated in response to VEGF, 

without some complicating influences such as tumour secreted proteases, necrosis, hypoxia, and 

increased interstitial pressure, present in the tumour core. During tumourigenesis, neoplastic 

lesions initially undergo an avascular growth phase, followed by a second event, that is 

characterized by the switch from the avascular to vascular phenotype, or “the angiogenic switch”. 

This initiates a cascade of events that results in the expansion of tumour volume and subsequent 

metastasis (Hoeben et al., 2004). Furthermore, according to this accepted hypothesis of 

angiogenic switch, the induction of angiogenesis and subsequent tumour progression is 

dependent on the balance of a multitude of angiogenesis activators or inhibitors in the tumour 

microenvironment. Important activators include VEGF, basic fibroblast growth factor (bFGF), 

PDGF, epidermal growth factor (EGF), granulocyte colony stimulating factor (G-CSF), interleukin-1, 

interleukin-6, interleukin-8, and tumour necrosis factor α (TNFα). Whereas multiple antiangiogenic 

molecules include cytokines such as interferon (IFN)-α and –γ, as well as several peptides 

generated by proteolytic cleavage of the basement membrane and the ECM operated by MMPs. 

Another antiangiogenic pathway is through the release of soluble VEGF receptor-1 (sVEGFR-1) 

(Moehler et al., 2003). Molecular regulations of the angiogenic switch that involve VEGF are 

several. These regulations include: 

- hypoxia-induced upregulation of VEGF; 

- upregulation of VEGF after oncogenic transformation (mutant Ras, c-myc, myb, v-scr, nox-

1); 

- tumour and vascular cell interactions through adhesion molecules (IL-6 and CD40) and 

paracrine stimulatory circuit; 

- remodelling ECM by MMPs and consequently release of angiogenic factors bound to ECM; 

- bone marrow derived endothelial precursor cells; 

- lymphangiogenesis with the expression of VEGF-C (Moehler et al., 2003). 
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Fig. 4: Role of VEGF in tumour angiogenesis. Tumour cells of primary tumour release VEGF that binds to its 

receptors into nearby tissues on the endothelial cells of pre-existing blood vessels, leading to their 

activation. Crosstalk between cancer cells and cells of microenvironment leads to the secretion and 

activation of various proteolytic enzymes, such as MMPs, which degrade the basement membrane and 

ECM, permitting deposition of new basement membrane by endothelial cells. Simultaneously other growth 

factors, such as PDGF, are secreted to attract supporting cells (stromal cells) to stabilize new vessels. 

Integrin molecules, such as αvβ3-integrin, help to pull the sprouting new blood vessels forward. 

 

1.2.3. TARGETED THERAPY IN HUMAN 

Most of the angiogenesis inhibitors that are currently used for the treatment of cancer achieve 

their effects by blocking VEGF. Inhibitors of VEGF not only stop angiogenesis and destroy part of 

the tumour vasculature through apoptosis, but they also normalize tumour vessels. Through rapid 

and robust effects on the tumour vasculature, angiogenesis inhibitors slow the growth of many 

primary tumours and metastasis. Angiogenesis inhibitors have been approved for a wide range of 
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cancer types, including hepatocellular carcinoma and renal cell carcinoma that respond poorly to 

other agents (Sennino  and McDonald, 2012). Bevacizumab, a function-blocking antibody to VEGF, 

is approved for use with chemotherapy to treat metastatic colorectal cancer, metastatic renal cell 

cancer, metastatic breast cancer and metastatic non-small-cell lung cancer; and as a single agent 

for recurrent glioblastoma and advanced ovarian cancer. Multiple other angiogenesis inhibitors 

that are approved for cancer therapy (such as sorafenib, sunitinib, axitinib, pazopanib and 

vandetanib) inhibit VEGF signalling by targeting receptor tyrosine kinases (Bhargava and Robinson, 

2011). Disease progression, as reflected by tumour growth and metastasis during treatment with 

inhibitors of VEGF signalling, is attributed to multiple mechanisms. Among them are compensatory 

actions of angiogenic growth factors that are not blocked by inhibitors of VEGF signalling, blood 

flow alterations owing to tumour-vessel normalization, presence of normal peritumoural blood 

vessels, exaggeration of intratumoural hypoxia, activation of pathways that favour epithelial–

mesenchymal transition (EMT), promotion of tumour invasiveness, suppression of immune 

surveillance, induction of tolerance and activation of cancer stem cells (Sennino and  McDonald, 

2012).  

1.2.4. VEGF IN DOG 

To date, little is known about VEGF and VEGFR expression in normal or pathological canine tissue. 

Scheidegger and colleagues (1999) demonstrated that canine and human VEGF are structurally 

almost identical, with the same biological and cell-binding properties, and that the canine VEGF 

receptors closely resemble their human counterparts. VEGF expression levels in dogs were 

investigated in mammary tumour (Santos et al., 2010), mast cell tumour (Rebuzzi et al., 2007), 

lymphoma (Zizzo et al., 2010), soft tissue sarcoma (Fernandes de Queiroz et al., 2012), congenital 

portosystemic shunt (Tivers et al., 2012), canine vascular tumour (Yonemaru et al., 2006), 

cutaneous fibrosarcoma (Al-Dissi et al., 2009), epithelial nasal tumour (Shiomitsu et al., 2009), 

osteosarcoma (Thamm et al., 2008), oral malignant melanoma (Taylor et al., 2007), cutaneous 

squamous cell carcinoma, trichoepithelioma (Al-Dissi et al., 2007) and primary intracranial 

neoplasms (Rossmeisl et al., 2007). 

 

 

 



Transforming Growth Factor beta Pag. 23 

1.3. TRANSFORMING GROWTH FACTOR BETA 

 

The transforming growth factor-β (TGF-β) superfamily of cytokines, which consists of TGFβs, 

activins, inhibins, bone morphogenetic proteins, anti-Müllerian hormone, as well as growth and 

differentiation factors, is conserved through evolution and found in all multicellular organisms. 

Three highly homologous isoforms of TGF-β exist in humans: TGF-β1, TGF-β2 and TGF-β3. They 

share a receptor complex and signal in similar ways but their expression levels vary depending on 

the tissue, and their functions are distinct. Proteolytic cleavage, interaction with integrins or pH 

changes in the local environment are known to activate latent TGF-β and free active TGF-β for 

binding to its receptors at the cell membrane (Shi et al., 2011). 

1.3.1. REGULATION 

Each TGF-β ligand is synthesized as a precursor, which forms a homodimer that interacts with its 

latency-associated peptide (LAP) and a latent TGF-β- binding protein (LTBP), forming a larger 

complex called the large latent complex (LLC). The TGF-β activation process involves the release of 

the LLC from the ECM, followed by further proteolysis of LAP to release active TGF-β to its 

receptors. MMP-2 and MMP-9 are known to cleave latent TGF-β. In addition to MMPs, 

thrombospondin 1 (THBS1) is known to activate latent TGF-β. Binding to the extracellular domains 

of type I and II receptors, TGF- β actives the intracellular serine/threonine kinase domains of the 

receptors, facilitating the phosphorylation and the subsequent propagation of signalling by SMAD-

dependent pathway (Akhurst and Hata, 2012). 

1.3.2. BIOLOGICAL ACTIONS 

TGF-β is involved in a range of biological processes both during embryogenesis and in adult tissue 

homeostasis. 

- Inhibition of cell proliferation. TGF-β strongly inhibits the growth of many cell types, 

including epithelial, endothelial, haematopoietic and immune cells; moreover it has pro-

apoptotic and differentiation-inducing actions on epithelial cells. Together, these actions 

result in the context of tumour suppression. In oncology, many tumours are characterized 

by TGF-β growth-inhibitory effects, but this depends on the tumour type and the stage of 

tumour progression. In fact TGF-β may provide potent tumour-suppressive or tumour-
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promoting functions directly on the tumour cell, presumably by mediating differential gene 

expression programmes (Heldin et al., 2009). 

- Induction of epithelial–mesenchymal transition (EMT) and the myofibroblast phenotype. 

TGF-β can induce mesenchymal transition of both epithelial and endothelial cells. This has 

consequences for disease progression in both cancer and fibrosis. EMT increases cellular 

migration and invasive properties, as cell migration requires loss of cell–cell contacts and 

acquisition of fibroblastic characteristics. In breast and skin cancer, tumour cell EMT 

contributes to cancer progression as cells consequently become more migratory and 

invasive, and they can ultimately transition to a myofibroblastic phenotype, which leads to 

increase ECM elaboration and tissue contraction process (Derynck and Miyazono, 2008). 

- Extracellular matrix regulation. As TGF-β is widely documented to increase collagen 

synthesis and deposition by fibroblasts, TGF-β has become a central therapeutic target for 

different types of fibrosis. TGF-β activity and the synthesis of ECM proteins are regulated 

by several genes known to be important in driving fibrosis; these genes are directly 

regulated by TGF-β–SMAD signalling pathways. There is a reciprocal regulation of TGF-β by 

the ECM: latent TGF-β, bound to ECM components, such as fibronectin and fibrillin, is 

inactive until physiological or pathological processes initiate its release (Akhurst and Hata, 

2012).  

- Immune-suppression and inflammation. TGF-β has potent growth-suppressing activity on 

most precursor cells of the immune system, particularly T and B cells. TGF-β is a potent 

suppressor of T cell proliferation and an inducer of B cell apoptosis. Additionally, the ligand 

can alter the course of immune cell differentiation. During tumour progression, excess 

TGF-β suppresses immune surveillance by attenuating the anti-tumour functions of CD8+ T 

cells, CD4+ T cells and dendritic cells (Flavell et al., 2010) (Fig. 5). 
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Fig. 5: TGFβ signalling on leukocytes. Transforming growth factor-β (TGF-β) signalling can affect leukocytes 

with positive or negative effects. NK, natural killer. 
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1.3.3. TARGETED THERAPY IN HUMAN 

TGF-β has a biphasic action during tumourigenesis, suppressing it at early stages but promoting 

late-stage tumour progression. This is a paradigm for the action of TGF-β during disease 

progression in general, including that of fibrosis, inflammation and cardiovascular disease, and it 

derived by the fact that the normal function of this ligand is in the regulation of homeostasis. 

Therefor the main goal in cancer therapy is to downmodulate excessive levels of TGF-β ligands. In 

mouse gene knockout studies, two major concerns in TGF-β drug development against cancer 

have been the inadvertent inhibition of the tumour-suppressing function of TGF-β signalling and 

the development of adverse side effects unrelated to cancer, such as widespread inflammation, 

autoimmunity or cardiovascular defects (Larsson et al., 2001). Until now most clinical trials in 

oncology regard breast cancer, followed by glioblastoma. TGF-β signalling inhibitors are generally 

safe and may be efficacious in several clinical applications, especially in desperate cases such as 

end-stage cancer (Akhurst and Hata, 2012). Another objective regards cancer ‘stem cells’, or 

tumour-initiating cells. Several groups have now reported, in vitro and in vivo, that TGF-β induced 

EMT can drive tumour cells towards a more ‘stem cell-like’ phenotype (capacity to self-renew and 

to initiate and persistently propagate the entire tumour). It is important to note that, in cancer, 

the outcome of reduced TGF-β signalling may be highly dependent on the innate genetic 

background of the individual, especially when considering tumour microenvironment effects, such 

as immune surveillance (Akhurst and Hata, 2012). 

1.3.4. TGF-β IN DOG 

Little is known about  TGF-β in canine tumours and one study shows that TGF-β activity was high in 

the tumour-bearing dogs (Itoh et al., 2009); another one gives a possible role of tumour 

suppressor for TGF-β in the development of hepatocellular carcinoma in dogs (Grabarević et al., 

2009) and Klopfleisch and his colleagues (2010) suggest that loss of TGF-β-3 may have growth-

stimulatory effects in late-stage tumours, and loss of its expression, together with reduced TGFβR-

3 expression, may be associated with increased proliferative activity of canine mammary tumour 

similar to findings in human breast cancer.  
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1.4. PLATELET-DERIVED GROWTH FACTOR 

 

Members of the platelet-derived growth factor (PDGF) family are major mitogens for connective 

tissue cells, glial cells, and certain other cell types. Structurally they are homodimers of related A-, 

B-,C-, and D-polypeptide chains, and an AB heterodimer. PDGF isoforms exert their cellular effects 

by binding to α- and β-tyrosine kinase receptors (Fig. 6). PDGF was originally purified from human 

platelets. Its isoforms stimulate proliferation, survival, chemotaxis, and differentiation of cells. 

They have important functions during embryogenesis and in the adult during wound healing and 

in the control of interstitial fluid pressure. Over-expression of PDGF has been linked to several 

pathological conditions, including tumours and other conditions involving an excess cell 

proliferation, such as fibrotic conditions and atherosclerosis (Heldin and Westermark, 1999). 

 

Fig. 6. The preferences of PDGF family members for PDGFRs. There are two receptor subunits that are 

homo- or hetero-dimerized. PDGF-BB is the universal ligand. PDGF-AB and PDGF-CC assemble and activate 

the PDGFR-αα and PDGFR-αβ. PDGF-DD activates the PDGFRββ, and under certain circumstances the 

PDGFRαβ. PDGF-AA is the most selective member of the PDGF family and activates PDGFR-αα exclusively. 
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1.4.1. REGULATION 

Ligand binding induces dimerization of the receptors; the α-receptor binds all PDGF chains except 

the D-chain, whereas the β-receptor binds the B- and D-chains. Thus, the different PDGF isoforms 

induce different homo- and heterodimeric complexes of α- and β-receptors. In the dimeric 

receptor complexes, receptors phosphorylate each other in trans positions on specific tyrosine 

residues; finally members of the STAT family of transcription factors bind to activate PDGF 

receptors (Heldin, 2012). 

1.4.2. PDGF AND CANCER 

PDGF is often over-expressed in neoplasia and contribute to the growth of certain tumour types as 

well as to cells of the microenvironment of solid tumours, such as pericytes and smooth muscle 

cells of vessels and of stromal fibroblasts. Certain tumour cells expressing PDGF receptors produce 

PDGF isoforms, which stimulate cell growth and survival in an autocrine manner (Heldin and 

Westermark, 1999). The levels of expression of PDGF ligands as well as receptors are higher in 

more malignant tumours, suggesting that autocrine and paracrine effects of PDGF increase with 

degree of malignancy. Gliomas are probably the tumour type in which PDGF autocrine 

mechanisms are most important: nearly 30% of human gliomas show over-activity of PDGF 

receptor signalling. PDGF has also been implicated in other tumour types: in fact co-expression of 

PDGF and PDGF receptors has been reported in an AIDS-related Kaposi’s sarcoma and in 

meningioma. Moreover, an autocrine PDGF-BB/PDGFR-β loop was found to mediate survival of 

large granular lymphocyte leukaemia of both T- and NK-cell origin (Yang et a., 2010). 

In addition to classical autocrine stimulation, there are examples of mutations in the genes for 

PDGFRs, which cause their activation and promote tumourigenesis. Thus, in chronic 

myelomonocytic leukaemia (CMML), the kinase domain of PDGFR-β is fused to different partners. 

Analogously, in patients with idiopathic hypereosinophilia and systemic mastocytosis, the kinase 

domain of the PDGFR-α is fused to FIP1L1. In addition to the juxtaposition of the kinase domains of 

the receptors, the loss of regulatory sequences in the juxtamembrane and transmembrane 

domains is important for the increased autophosphorylation and initiation of signalling pathways 

promoting cell growth and survival. A majority of gastrointestinal stromal tumours (GISTs) have 

activating point mutations in Kit, a tyrosine kinase receptor for stem cell factor, which is 

structurally similar to PDGFRs (Heldin, 2012).  
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Epithelial cells normally do not contain PDGFRs. However, epithelial tumours can undergo EMT, 

changing in phenotype and making the tumour cells more invasive. In conjunction with EMT, PDGF 

and its receptors are induced. Interestingly, the metastatic potential of mammary epithelial 

tumours was shown to be dependent on an autocrine PDGF/PDGFRs loop. There are examples of 

stromal cells, such as smooth muscle cells, endothelial cells, and macrophages, which both can 

express PDGFRs and produce PDGF. However, it is not clear whether normal cells express PDGFRs 

and synthesize PDGF at the same time (Heldin, 2012). 

1.4.3. TARGETED THERAPY IN HUMAN 

In the last decades, the research in the field of tumour angiogenesis led to the development of a 

class of agents providing an effective inhibition of neovessels formation, through the blockade of 

VEGF-related pathways. More recently, the identification of several non-VEGF factors, such as 

PDGF, involved in tumour angiogenesis, in association with tumour progression, have emphasized 

the need to develop agents targeting multiple pro-angiogenic pathways. Besides the successful 

development of anti-VEGF drugs, novel agents targeting alternative angiogenesis-related 

pathways are being tested. Although it seems that the potential clinical usefulness of these novel 

compounds have been not yet fully investigated, sunitinib, sorafenib, pazopanib and other 

multikinase inhibitors, used in first line for advanced renal cell carcinoma, have certainly displayed 

encouraging results (Sennino  and  McDonald, 2012). 

1.4.4. PDGF IN DOG 

In veterinary oncology, PDGF has been investigated only in spontaneous canine astrocytomas, 

where increased PDGFRα expression was observed (Higgins et al., 2010); in canine osteosarcoma 

(Maniscalco et al., 2012), spontaneous canine hemangiosarcoma and cutaneous hemangioma (Asa 

et al., 2012).  

 

 

 

 

 

 



Aim  Pag. 30 

2. AIM 

 

It is evident from the data presented in this background that primary tumours and their metastasis 

are complex interactions consisting of numerous cell types. In analysing tumours, the experiments 

are usually focused upon a single cell type or a single gene product within a cell. However, it is 

naive to think that individual cell types work in isolation within a complex system. Thus, a major 

area for advances in understanding the role of the microenvironment must incorporate a system 

biology approach in order to model these interactions and their evolution over time. Both 

individual and collective migration modes are presumably further regulated by heterologous 

interactions between tumour cells and reactive stromal cells of the tumour microenvironment. 

Cancer cells can alter their adjacent stroma to form a permissive and supportive environment for 

tumour angiogenesis, invasion and metastasis, and therefore tumour progression, producing a 

range of growth factors and proteases that modify this ‘reactive’ tumour stroma. 

A more comprehensive understanding of the molecular basis of diversity and adaptation of cell 

migration is therefore required to efficiently target cancer-cell motility and invasion. Little data 

exists for the biological and clinical role of growth factors and proteinases involved in tumour 

progression in domestic species. 

The aims of this present work are to define gene expression profiling and proteomic analysis of 

different growth factors (VEGF-TGF-β-PDGF) and matrix metalloproteinases. Their possible 

prognostic and predictive role, in association with their crosstalk, will be also analysed in four 

different canine tumours:  

- mammary tumour 

- cutaneous mast cell tumour 

- lymphoma 

- lymphoid leukaemia 

A better understanding of the tumour environment affecting cancer progression should provide 

new targets for the isolation and destruction of cancer cells via interference with the crosstalk 

established between cancer cells, host cells, and their surrounding extracellular matrix. 
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3. PHASE 1: Matrix metalloproteinases and their inhibitors in canine 

mammary tumours* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*
Adapted with the permission of “Biomed Central” from:  Aresu L, Giantin M, Morello E, Vascellari M, 

Castagnaro M, Lopparelli R, Zancanella V, Granato A, Garbisa S, Aricò A, Bradaschia A, Mutinelli F, Dacasto 

M. Matrix metalloproteinases and their inhibitors in canine mammary tumours. BMC Vet Res. 2011 Jul 

4;7:33. © 2011 BioMed Central Ltd. All rights reserved. 
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BACKGROUND 

Mammary neoplasia is one of the most common tumours in dogs, and malignant types occur in 

approximately half of canine mammary tumours. Invasion and metastasis are typical features of 

carcinomas (Karayannopoulou et al., 2005). The mRNA expression of MMP-2, MMP-9, TIMP-1, 

TIMP-2 and TIMP-3 has been extensively studied in vivo and in vitro in various human tumours 

(Stetler-Stevenson et al., 1989; Urbanski et al., 1992; Muller et al., 1993; Bhuvarahamurthy et al., 

2006). In veterinary medicine, mRNA expression of these genes has been used to study canine 

neoplasia (Takagi et al., 2005; Nakaichi et al.,2007) and other diseases (e.g., meningitis-arteritis, 

chronic valvular disease, and arthritis)(Muir et al., 2007; Aupperle et al., 2009; Schwartz et al., 

2010), but their expression in canine mammary tumours has not been specifically documented. 

Evaluation of the activities of TIMP-1, TIMP-2 and TIMP-3 in canine mammary tumour samples by 

reverse zymography has shown that low activity can be correlated with a malignant phenotype 

(Kawai et al., 2006). Membrane type 1 MMP (MT1-MMP) was the first MT-MMP to be identified as 

a major physiological activator of pro-MMP-2 in humans (Davies et al., 1993). Studies of canine 

mammary tumours suggest that pro-MMP-2 activation requires the formation of a ternary 

complex that consists of the C-terminal domain of pro-MMP-2, TIMP-2 and MT1-MMP (Papparella 

et al., 2002). The important role of another MMP family member, MMP-13, has been 

demonstrated in breast cancer and colorectal cancer (Chang et al., 2009; Huang et al., 2010). In 

veterinary medicine, reports of MMP-13 expression are only available for inflammatory and 

degenerative diseases (House et al., 2007; Disatian et al., 2008). After the sequencing of the entire 

dog genome, microarray technology has been used to characterize different canine mammary cell 

lines, progestin-induced canine mammary hyperplasia and spontaneous mammary tumours (Rao 

et al., 2008; Klopfleisch et al., 2010; Król et al., 2010), but, in literature, no targeted gene 

expression profiling studies are available for spontaneous canine mammary tumours. 

AIM 

The aim of the first study is to analyse MMP-2, MMP-9, MMP-13, MT1-MMP and TIMP-2 

expression at both the mRNA and protein levels in canine mammary tumours including simple 

adenomas and carcinomas. The enzymatic activities of MMP-2 and MMP-9 are quantified by 

gelatin-zymography of the same homogenized tumour tissues and plasma from selected patients. 

Gene expression is evaluated also for TIMP-1, TIMP-3 and RECK. Moreover, the stromal 

compartments in these tumours are specifically evaluated. 
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METHODS 

Tissue sampling 

Fresh tissue samples were obtained from 35 dogs that underwent surgery for mammary neoplasia. 

The dogs underwent surgery due to evident disease, and the explicit consent of the owner was 

obtained. Excised tumour lesions were immediately divided into aliquots and stored under diverse 

conditions for different analytical techniques. For RNA isolation, aliquots of approximately 100 mg 

were immersed in RNAlater® solution (Applied Biosystems, Foster City, CA) and stored at -20°C 

until use. For histological examination and immunohistochemistry, the tissue was formalin-fixed 

and paraffinembedded. For gelatin-zymography, aliquots of up to 100 mg were frozen at -20°C 

until use. 

Gene expression 

Total RNA was isolated from control mammary glands, which were obtained from pathogen-free 

adult Beagles generously provided by GlaxoSmithKline Manufacturer S.p.A. (Verona, Italy) that had 

been used for other experimental purposes and 35 pathological samples using TRIzol® (Invitrogen, 

Carlsbad, CA) according to the manufacturer’s instructions. The samples were purified with a 

classical phenol-chloroform extraction step. The total RNA concentration and quality were 

measured with a Nanodrop ND-1000 spectrophotometer (Nanodrop Technologies, Wilmington, 

DE) and by denaturing gel electrophoresis. First-strand cDNA was synthesized from total RNA using 

the High Capacity cDNA Transcription Kit according to the manufacturer’s protocol (Applied 

Biosystems, Foster City, CA). The generated cDNA was used as the template for quantitative real-

time RT-PCR (qRT-PCR) in a LightCycler 480 Instrument (Roche Diagnostics, Basel, Switzerland) 

using standard PCR conditions. The qRT-PCR reactions consisted of 1X LightCycler 480® Probe 

Master (Roche Diagnostics, Basel, Switzerland), 300 or 600 nM forward and reverse primers (the 

primer combination and final concentrations were optimized during assay setup), 100 nM human 

Universal Probe Library (UPL) probe (Roche Diagnostics) and 5 ng cDNA. The primers and human 

UPL probes shown in Table 1 were designed using the UPL Assay Design Centre web service. 

Calibration curves using a four-fold serial dilution of a cDNA pool revealed PCR efficiencies close to 

two and error values less than 0.2. Canine transmembrane BAX inhibitor motif containing 4 (CGI-

119) and Golgin a 1 (GOLGA1) were chosen as reference genes for the absence of pathological 

statedependent differences in mRNA expression (Rao et al., 2008). Their amplification efficiencies 

were approximately equal to that of the target genes; moreover, no statistically significant 

difference was observed in their expression profiles between healthy and pathological samples. 
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The ΔΔCt method (Livak and Schmittgen, 2001) was used for the relative quantification of mRNA. 

Relative quantification (RQ) values were ultimately expressed as the fold change, such as RQ 

sample/control group mean RQ ratio, assuming that the control mammary gland mean RQ was 

equal to 1. Statistical analysis of the gene expression data was performed using the Kruskal-Wallis 

test followed by Dunn’s post test. The correlation analysis of the target gene mRNA data was 

performed using a Spearman nonparametric test. In both analyses, GraphPad InStat 2.01 software 

(San Diego, California, USA) was used, and a p value < 0.05 was considered significant. Finally, 

Grubbs’ test was used to identify outliers. 

 

Table 1: Primer sequences and human UPL probes used for qRT-PCR amplification 

Genes 

  

Accession number 

 

Primer sequence (5’-3’) Human  

UPL probe 

MMP2 [GenBank:XM_535300.2] F: gggaccacggaagactatga 29 

     R: atagtggacatggcggtctc 

MMP9 [GenBank:NM_001003219.1] F: tgagaactaatctcactgacaagca 6 

     R: gctcggccacttgagtgta 

MMP13 [GenBank:XM_536598.2] F: ctcttcttctcgggaaacca 50 

     R: gcctggggtagtctttatcca 

MT1-MMP [GenBank:XM_843664.1] F: gatctgaatgggaatgacatctt 

76 

    R: gatggccgagggatcatt 

TIMP1 [GenBank:NM_001003182.1] F: cagggcctgtacctgtgc 112  

     R: cctgatgacgatttgggagt 

TIMP2 [GenBank:NM_001003082.1] F: atgagatcaagcagataaagatgttc 93 

     R: ggaggaaggagccgtgtag 



PHASE 1: MMPs and their inhibitors in canine mammary tumours  Pag. 35 

TIMP3 [GenBank:XM_538410.2] F: tgctgacaggccgcgt 14 

     R: gcagttacagcccaggtga 

RECK [GenBank:NM_001002985.1] F: aaggggtgtctgtctggagat 97 

     R: cccaatttgcaaccttgaac 

CGI-119 [GenBank:XM_531662.2] F: tctacaatctaagagagatttcagcaa 15  

     R: ttcctgacaagcacaaaatcc 

GOLGA-1 [GenBank:XM_537849.2] F: ggtggctcaggaagttcaga 149  

     R: tatacggctgctctcctggt 

 

Immunohistochemistry 

To analyse the expression of the MMP-2, MMP-9, MMP-13, MT1-MMP and TIMP-2 proteins by 

immunohistochemistry, contiguous 4 μm sections were cut from blocks of formalin-fixed, paraffin-

embedded tissue, and the sections were placed on charged slides. After deparaffinization, the 

primary antibody incubation step for all antibodies was performed by an automated system 

(Ventana Medical Systems, Tucson, AZ). The pertinent antibody details are summarized in Table 2. 

The remainder of the staining procedure included incubation with a biotinylated anti-mouse 

secondary antibody, the diaminobenzidine substrate and a haematoxylin counterstain was 

performed using the Ventana ES automated immunohistochemistry system. Negative control 

slides were incubated with isotype-matched immunoglobulin in parallel with each staining batch 

to confirm the specificity of the antibodies. For each antibody, cases were semi-quantified for each 

protein-stained area. The intensity and the percentage of immunoassayed tumour cells were 

analysed. Each slide was scanned with a 400 × power objective in ten fields per slide, and the fields 

were selected by searching for protein-stained areas. A section was considered negative or 

positive according to the absence or presence of cytoplasmic staining. An intensity score of 0 was 

given if no staining was detected, 1 if there was weak to moderate staining, 2 if moderate to 

strong staining was present, and 3 if strong staining was detected. A total score for each examined 

field was obtained by multiplying the intensity score by the percentage of immunoassayed cells. A 

final ratio was obtained after averaging the ten selected fields. An image analysis system that 



PHASE 1: MMPs and their inhibitors in canine mammary tumours  Pag. 36 

consisted of an Olympus BX51 microscope and software analysis (analySIS, Soft imaging system, 

Münster, Germany) was used. Furthermore, the immunoreactivity of each antibody was 

separately recorded for tumour and stromal cells in ten fields (400× power objective), and the final 

result was expressed as the average percentage from ten fields. For statistical analysis, dog 

tumours were subdivided into two groups: benign and malignant. Immunostaining score values for 

each protein were expressed as a median (range). The Mann-Whitney test was used to compare 

the immunostaining scores. Differences in percentages were calculated with the Chisquare test. 

The program SPSS 17.00 (SPSS Inc, Chicago, IL, USA) was used for all calculations.  

 

Table 2: Details of antibodies  

Antigen Source Clone Dilution Manufacturer 

MMP-9 Human MAB 3309 1:1000 Chemicon (Millipore)  

MMP-2 Human Ab-7 1:400 Neomarkers, Fremont, USA 

TIMP-2 Human MAB 3317 1:1000 Chemicon (Millipore) 

MMP-13 Human VIIIA2 1:100 Millipore Co., Billerica, USA 

MT1-MMP Human - 1:200 Millipore Co., Billerica, USA 

 

 

Zymography  

MMP-2 and MMP-9 activity was studied by zymography, which reveals the gelatinase activity of 

latent proenzymes (zymogens) and mature MMPs. The homogenized tissue was centrifuged at 

1500 rpm for 10 min, and the protein concentration of the supernatant was measured. The sample 

protein concentration was adjusted to 1 mg/ml, and 5 μl was diluted 1:1 in sample buffer; the final 

10 μl sample was subjected to electrophoresis on an 8% SDS-PAGE gel copolymerized with 0.1% 

gelatin. Following electrophoresis, the gel was incubated for 1 h at room temperature in a 2.5% 

Triton X-100 solution and then at 37°C for 16 h in 0.5 M Tris-HCl buffer, pH 7.4, with 10 mM CaCl2. 
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The gels were stained with 0.1% Coomassie Brilliant Blue R-250 and de-stained with 30% methanol 

and 10% acetic acid. Gelatinolytic activities were detected as unstained bands against the 

background of Coomassie- stained gelatin. Culture medium conditioned by A2058 melanoma cells 

was used as a control to identify the pro-MMP-9 gelatinolytic band, while conditioned media from 

HT1080 fibrosarcoma cells was used for the active forms of MMP-2 and MMP-9 and small 

amounts of the pro-MMP-2 (Davies et al., 1993). The amount of MMP-9 in 20 μl of the A2058 

melanoma cell-conditioned media was defined as 100 arbitrary units (a.u.). The MMP-2 activity in 

20 μl of HT1080 fibrosarcoma cell-conditioned media was defined as 100 a.u. The bands were 

quantified using an image analyser system that consisted of a GelDoc 2000 and Quantity One 

software (BioRad, Hercules, CA, USA). Peripheral blood samples were collected from 14 dogs 24 h 

before surgery. The plasma was obtained by blood sample centrifugation and stored at -20°C, and 

10 μl was used for analysis. The plasma concentrations of MMP-2 and MMP-9 were evaluated by 

gelatin-zymography. The gelatinolytic activity was defined as the arbitrary optical density value of 

the sample relative to the optical density value of the control plasma from healthy dogs. 

 

RESULTS 

This study included 35 dogs with a median age of 9.9 years. Of the 35 tumours, 13 were simple 

adenomas, and 22 were simple carcinomas, according to the WHO classification system for canine 

mammary tumours (Misdorp, 2002). 

Gene expression 

The mRNA expression of MMP-2, MMP-9, MMP-13, MT1-MMP, TIMP-1, TIMP-2, TIMP-3 and RECK 

in mammary tumours and healthy mammary glands was investigated using a qRT-PCR approach. 

The overall results are reported in Table 3. All of the target genes were expressed in the control 

and tumour samples, with the exception of MMP-13, which was weakly expressed or not amplified 

in approximately half of the tumour samples (16 of 35 dogs). No statistically significant differences 

were observed for MMPs and inhibitors, particularly between benign and malignant tumours. 

Spearman correlation analysis was performed to identify potential relationships between MMPs 

and their preferential inhibitors at the transcriptional level and between MMP-2 and its well-

known specific activator (MT1-MMP). Positive correlations were observed between MMP-2 and 

MT1-MMP (r = +0.52, p < 0.01), MMP-2 and TIMP-2 (r = +0.47, p < 0.01), MT1-MMP and TIMP-2 (r 

= +0.39, p < 0.05), and MMP-9 and TIMP-1 (r = +0.56, p < 0.001). 
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Table 3: MMPs and inhibitors mRNA expression in control mammary glands, benign and malignant 

mammary tumours 

Gene Control Benign Malignant 

MMP-2 1.00 ± 0.46 1.01 ± 0.18 0.76 ± 0.12 

MMP-9 1.00 ± 0.30 9.95 ± 4.40 7.23 ± 1.58 

MMP-13 1.00 ± 0.28 2.08 ± 0.70 1.27 ± 0.25 

MT1-MMP 1.00 ± 0.24 13.26 ± 6.09 2.82 ± 0.64 

TIMP-1 1.00 ± 0.17 4.96 ± 1.27 3.97 ± 0.66 

TIMP-2 1.00 ± 0.34 0.49 ± 0.09 0.60 ± 0.09 

TIMP-3 1.00 ± 0.35 4.16 ± 1.62 2.38 ± 0.65 

RECK 1.00 ± 0.52 3.41 ± 1.77 0.51 ± 0.10 

Data are expressed in –fold changes (arbitrary units) as mean ± SEM. Statistical analysis: Kruskal-Wallis test 

+ Dunn’s post test. 

 

Immunohistochemistry 

Immunohistochemical staining revealed that MMP-2 and MMP-9 were present in all of the 

tumours examined. The two MMPs were strongly localized in the cytoplasm of the tumour 

epithelial cells (Fig. 1a, b,c). There were significant differences in the immunohistochemical score 

values for these two markers in benign and malignant neoplasia (Table 4). An intense 

immunoreaction was especially evident for MMP-2 in carcinomas, while the difference in MMP-9 

immunolabelling in adenomas and carcinomas was lower. The MT1-MMP protein was detected in 

21 tumours, and its expression was higher in malignant tumours. Tissue leukocytes and plasma 

cells stained positive for MMP-2 and MMP-9 as well as for MT1-MMP, and it was considered a 

positive control. Immunohistochemical staining revealed that TIMP-2 and MMP-13 were more 

highly expressed in simple adenomas than in simple carcinomas (Fig. 1e, f). The magnitude of the 

immunohistochemical detection of MMP-2, MMP-9 and MT1-MMP varied in the fibroblasts of the 



PHASE 1: MMPs and their inhibitors in canine mammary tumours  Pag. 39 

stromal compartment. The staining intensity for MMP-2 and MT1-MMP was stronger in the 

fibroblasts closest to the epithelial tumour cells in the malignant tumours (Fig. 1d), while 

immunolabelled fibroblasts by the two proteins were scattered in the adenomas (Table 5). The 

percentage of fibroblasts that were positive for MMP-9 staining was lower than the percentage of 

those positive for MMP-2 in carcinomas. The percentage of TIMP-2- and MMP-13-positive 

fibroblasts was higher in adenomas than in carcinomas. The immunohistochemical data are 

summarized in Tables 4 and 5. 

 

Table 4: Immunostaining score values for MMPs and TIMP-2 expressed as median (range) in 

benign and malignant mammary tumours 

 Benign Malignant P 

MMP-2 58.5 (45.4-145.5) 179.4 (120.1-267.3) 0.002 

MMP-9 78 (26.8-189) 101.1 (34.3-213.9) 0.01 

MMP-13 84.2 (0-198.2) 45.3 (0-101.2) 0.005 

MT1-MMP 65.3 (0-230.2) 132.1 (34.2-221.2) 0.002 

TIMP-2 74.3 (21.2-201.2) 48.9 (0-136.6) n.s. 

n.s.= not significant 
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Table 5: Immunohistochemical score for epithelial tumour cells and fibroblasts expressed as 

average percentage from ten fields in benign and malignant mammary tumours 

 Benign (%) Malignant (%) P 

MMP-2    

Tumour cells 88.6 67.5 0.05 

Fibroblasts 11.4 32.5  

MMP-9    

Tumour cells 84.1 89.4 0.002 

Fibroblasts 15.9 10.6  

MMP-13    

Tumour cells 56.4 65.9 n.s. 

Fibroblasts 43.6 34.1  

MT1-MMP    

Tumour cells 80.3 55.8 0.001 

Fibroblasts 19.7 44.2  

TIMP-2    

Tumour cells 53.3 79.6 n.s. 

Fibroblasts 46.7 20.4  

n.s.= not significant 
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Fig. 1. Canine mammary tumours. (a) Epithelial tumour cells and stromal fibroblasts with intense MMP-2 

immunopositivity in a carcinoma. (b) Epithelial tumour cells with weak MMP-2 immunopositivity in an 

adenoma. (c) Epithelial tumour cells and fibroblasts strongly MMP-9-immunolabelled in a carcinoma. (d) 

Epithelial tumour cells and stromal fibroblasts with intense MT1-MMP immunopositivity in a carcinoma. (e) 

Moderate TIMP-2 immunostaining in epithelial tumour cells in an adenoma. (f) TIMP-2 antibody-negative 

epithelial tumour cells in a carcinoma. (Immunohistochemistry, 200×). 
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Zymography 

For each tumour sample, the active and inactive forms of MMP2 and MMP-9 were measured by 

their gelatinolytic activities (Fig. 2). The activities of MMP-2 and MMP- 9 were calculated in 

arbitrary units per 10 ng of protein. The pro-MMP-2 band was detected in all samples examined 

(adenoma and carcinoma). The activity of the carcinoma samples ranged between 16.7 and 59.9 

units, while the activity of the adenoma samples ranged between 3.5 and 15.7 units. Bands for the 

active form of MMP-2 were found in 94% of the carcinoma samples and 17% of the benign tumour 

samples. In the simple carcinomas, the MMP-2 activity ranged between 47.4 and 87.5 units. The 

pro-MMP-9 band was expressed in all samples examined by gelatin-zymography. The activity 

range of the carcinoma samples varied greatly (from 7.5 to 106.4 units), while the activity range of 

the twelve benign samples was between 20.5 and 41.2 units. Only eight carcinomas exhibited 

bands for the active form of MMP-9. The activity was similar among the samples, ranging from 

34.3 to 40.3 units. No bands were observed for the active form of MMP-9 in adenomas. The 

activities of both the pre- and activated forms of MMP-2 and MMP-9 were measured by gelatin-

zymography of the plasma of fourteen dogs with mammary tumours and three healthy control 

dogs. A representative gel is shown in Fig. 3. Regardless of the tumour type, the band for pro-

MMP-9 was significantly more evident in the plasma of dogs with tumours than in healthy dogs. 

The activated form of MMP-9 was not observed in healthy dogs but was present in all of the dogs 

with tumours. Pro-MMP-2 was detectable in the plasma of all dogs with tumours and also in 

control dogs with no difference in the level of expression, and the MMP-2 activated form was not 

detectable in either case. 
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Fig. 2. Zymographic assay of gelatinase activity in malignant (M) mammary neoplasia, in benign (B) 

mammary neoplasia and in the control (C). Bands corresponding to latent and active forms of MMP-9 and 

to latent and active forms of MMP-2 were observed in carcinomas (M), while bands corresponding to latent 

forms of MMP-9 and MMP-2 were observed in adenomas (B). HT1080 fibrosarcoma cells (C) were used as 

the control for pro-MMP-9, pro-MMP-2 and active form of MMP-2. 

 

 

 

Fig. 3. Zymographic assay of gelatinase activity in pre-surgery plasma samples. (M = malignant mammary 

neoplasia, B = benign mammary neoplasia, C = control, N = normal dog). Bands corresponding to pro-

MMP-2, pro-MMP-9 and active form of MMP-9 were observed in dogs with adenomas and carcinomas (B, 

M). Bands corresponding to pro-MMP-9 and pro-MMP-2 were observed in the control dog, and A2058 

melanoma cells (C) were used as the control for active MMP-9. 
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DISCUSSION 

In recent years, investigations of tumour growth have focused on the surrounding stroma in 

different tumours, considering important for cellular invasion, tumour growth and epithelial 

mesenchymal transformation (Bergamaschi et al., 2008; Zhang et al., 2009). The engagement of 

the neoplasia with a ‘reactive stroma’ provides structural and vascular support for tumour growth 

and also leads to tissue reorganization and invasiveness (Egeblad and Werb, 2002). MMPs play an 

important role in this mechanism by degrading the stromal connective tissue and basement 

membrane components. In addition, MMPs impact tumour cell behaviour in vivo because of their 

ability to cleave growth factors, cell adhesion molecules, and chemokines. The proteolytic activity 

of MMPs can be regulated at different levels, including gene expression, the conversion of the 

zymogen to the active enzyme, and by the presence of specific inhibitors. Among MMPs, MMP-2 

and MMP-9 have mainly been associated with malignant tumour progression and metastasis in 

both human and canine tumours (Papparella et al., 2002; Nakaichi et al., 2007; Vizoso et al., 2007). 

In this study, the mRNA and protein levels of MMP-2, MMP-9, MMP-13, MT1-MMP and TIMP-2 in 

benign and malignant mammary tumours were thoroughly analysed. TIMP-1, TIMP-3 and RECK 

mRNA expression was analysed focusing on the expression of different MMP proteins in stromal 

fibroblasts to identify a possible role in canine mammary tumours. MMP-2 mRNA was expressed 

in all pathological samples, but no statistically significant differences were observed between 

benign and malignant tumours. On the contrary, at the protein level, immunohistochemistry 

identified higher MMP-2 expression in carcinomas; gelatin-zymography confirmed differences in 

MMP-2 production between adenomas and carcinomas (p < 0.05, data not shown). In particular, 

significant bands were observed for both the inactive and active forms of MMP-2 in simple 

carcinomas, while simple adenomas were characterized by minimal bands that corresponded to 

pro-MMP-2, suggesting that this enzyme is important during the infiltration process. Pro-MMP-2 

may be converted to the active form during the infiltration process in malignancy; intense 

gelatinolytic activity has been described as necessary for malignant transformation (Tokuraku et 

al., 1995). These data are comparable to those from human studies. In human lung and gastric 

carcinomas, the MMP-2 activation ratio is enhanced; in canine tumour studies, higher MMP-2 and 

MMP-9 levels were observed in tumours than in inflammation, in malignant tumours than in 

benign tumours, in sarcomas than in carcinomas and in the advancing edge of canine malignancies 

than in the centre of canine tumours (Loukopoulos et al., 2003). In this study a band 

corresponding to active MMP-2 was observed in only two adenomas, and histological examination 
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of these two samples showed an intense stromal reaction close to the tumour. Activation of the 

zymogen form of MMP-2 is a cell surface event that is mediated by members of the membrane-

type subfamily of MMPs, and MT1-MMP is the first physiological activator of pro-MMP-2 (Lambert 

et al., 2004). In this study, the immunohistochemical data for MMP-2 and MT1-MMP were 

comparable for both adenomas and carcinomas. MT1-MMP was distributed similarly to MMP-2 in 

malignant tumours and was reduced in benign tumours. Despite the opposing results obtained for 

mRNA and protein expression in benign and malignant mammary tumours, a close relationship 

between MMP-2 and MT1-MMP was observed at the pre-transcriptional level. Interestingly, 

immunohistochemistry showed an intense reaction for the stromal fibroblast component, with a 

significant increase in MMP-2 (p = 0.05) and MT1-MMP (p = 0.001) expression in the fibroblasts 

associated with carcinoma. MT1-MMP expression generally correlates well with MMP-2 activation 

in various human cancers, suggesting that MT1-MMP plays an important role in cancer cell 

invasion (Guedez et al., 1998; Takagi et al., 2005). This presumably occurs through direct ECM 

cleavage by MT1- MMP and perhaps via MT1-MMP-mediated pro-MMP-2 activation. Both MMP-2 

and MT1-MMP have previously been detected by immunohistochemistry in canine mammary 

carcinomas (Papparella et al., 2002). However, the results obtained here were similar, suggesting 

that peritumour stromal cells may be a possible source of MMP-2 and MT1-MMP and promoters 

of invasion. Further studies in different tumours or in vitro are needed to support this hypothesis. 

qRT-PCR analysis revealed a high level of mRNA expression for MMP-9 in both benign and 

malignant mammary tumours. Epithelial cell immunoreactivity with the anti-MMP-9 antibody was 

observed in all tumours. MMP-9 positivity was higher in malignant tumours than in adenomas, 

confirming previous observations in human breast cancer (Del Casar et al., 2009) and canine 

mammary tumours (Hirayama eta l., 2002). Immunohistochemistry also revealed that the stromal 

fibroblasts had a minimal capacity to synthesize MMP-9. The enzyme activity was analysed by 

gelatin zymography; active MMP-9 form was not observed in any of the simple adenomas, and 

only eight carcinomas had a band for the active MMP-9 form, while all of the examined tumours 

had variable pro-MMP-9 gelatinolytic activity (p < 0.01 data not shown). The limited presence of 

the active form of MMP-9 may indicate a minor role for this gelatinase within the tumour, and it 

appears to be of little prognostic or pathogenetic value, as observed in canine tumours (Hirayama 

et al., 2002). TIMP-2 plays a double role, as both inhibitor and activator of MMP-2. Surprisingly, 

high TIMP-1 and TIMP-2 mRNA levels can predict adverse prognosis and be correlated with 

tumour aggressiveness in several different human cancers, including breast cancer (Ring et al., 
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1997; Vizoso et al., 2007). In the present study, neither the mRNA nor the protein levels of TIMP-2 

expression correlated with malignancy. MMP-13 was also evaluated. At the pretranscriptional 

level, it was expressed only in half of pathological samples, and immunohistochemistry revealed a 

higher level of expression in benign tumours than in malignant tumours. MMP-13 expression has 

previously been evaluated only in human tumours, for which MMP-13 involvement in tumour 

invasiveness was unclear (Freije et al., 1994). MMP-2 and MMP-9 plasma levels have been 

reported to be elevated in patients with various types of cancer. Plasma gelatinolytic activity in 

dogs was estimated by gelatin zymography in this work. Pro-MMP-9 and pro-MMP-2 were 

significantly concentrated in the plasma of all of the dogs, and bands for the latent forms were 

present in both animals with adenoma and animals with carcinoma. Moreover, the active form of 

MMP-9 was present in the plasma of all of the dogs with tumours with no differences in 

concentration between benign and malignant neoplasia. These data could indicate that the plasma 

levels of active MMP-9 are consistent with a proteinase activity that is due to the presence of an 

“ongoing disease,” and MMP-9 plasma levels may be a feasible method for detecting neoplastic 

growth in dogs in the future. TIMP-1, TIMP-3 and RECK mRNA expression were also evaluated and 

no statistically significant differences were observed among the groups. Contrasting results are 

reported in literature: microarray studies in dogs have shown that TIMP-1 and TIMP-3 are 

inhibited in progestin-induced canine hyperplasia relative to normal mammary glands (Rao et al., 

2009). Besides, a qRT-PCR study of RECK mRNA expression in various spontaneously developing 

canine tumours showed that expression levels were low in the majority of tumour tissues relative 

to normal tissues; however, in some neoplasia, RECK expression was higher than in the controls 

(Takagi et al., 2005). To exert its MMP inhibitory or activating role, TIMP-1 binds preferentially to 

MMP-9, and TIMP-2 binds to MMP-2 (Stetler-stevenson et al., 1989; Declerck et al., 1991). This 

relationship was confirmed in this study by the statistically significant correlations that were found 

between MMP-2 and TIMP-2, MMP-9 and TIMP-1 and MT1-MMP and TIMP-2 mRNA. The 

observed discrepancy between the mRNA and protein data has also been described by other 

studies (Caenazzo et al., 1998). Enzyme accumulation that is not accompanied by an increase in 

mRNA could be due to a feedback mechanism that shuts off mRNA expression after the secretion 

and/or binding of the protein. In addition, the samples used may not be representative (Caenazzo 

et al., 1998). Extracting and amplifying mRNA from cells obtained through the laser capture 

microdissection of the same formalin-fixed tissue that was used for immunohistochemistry might 

better clarify the mRNA/protein expression discrepancy observed in the present study. In 
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conclusion, the involvement of MMP-2, MT1-MMP, MMP-9 and various TIMPs was evaluated in 

canine mammary tumours, with an emphasis on the stromal compartment. The present work 

opens the possibility of developing new therapies and supports the use of the dog as an animal 

model in this field for studying the role of MMP-2 and MT1-MMP in the mechanism of cancer. 

MMPs may be target molecules of the switch mechanism that leads to the progression of 

carcinomas from adenomas. 
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4. PHASE 2: Expression of Matrix Metalloproteinases, Tissue Inhibitors of 

Metalloproteinases and Vascular Endothelial Growth Factor in Canine Mast 

Cell Tumours* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Adapted with the permission of “Elsevier” from: Giantin M, Aresu L, Benali S, Aricò A, Morello EM, 

Martano M, Vascellari M, Castagnaro M, Lopparelli RM, Zancanella V, Granato A, Mutinelli F, Dacasto M. 

Expression of matrix metalloproteinases, tissue inhibitors of metalloproteinases and vascular endothelial 

growth factor in canine mast cell tumours. J Comp Pathol. 2012 Nov;147(4):419-29. doi: 

10.1016/j.jcpa.2012.01.011. Epub 2012 Apr 19. © 2012 Elsevier Ltd. All rights reserved. 
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BACKGROUND 

Mast cell tumours (MCTs) are the most common cutaneous tumour of the dog (Thamm and Vail, 

2007) and are always considered potentially malignant, but their true metastatic potential is not 

entirely known (Welle et al., 2008). Currently, the prognostic significance of MCT is assigned 

through histological grading, but numerous studies have shown significant differences between 

well- and poorly-differentiated MCTs in terms of survival times and disease-free intervals. In 

particular, the prognosis for intermediate MCT (grade 2) is difficult to predict: the tumour might 

behave in a benign fashion or recur and metastasize. Well-differentiated tumours have a 

metastatic rate of <10%, intermediate tumours are considered low to moderate in metastatic 

potential and undifferentiated tumours have a much higher metastatic rate (55-96%; Welle et al., 

2008). Uncontrolled cellular proliferation plays a significant role in the progression of canine MCTs 

(Sakai et al., 2002; Scase et al., 2006; Webster et al., 2007; Gil da Costa et al., 2007). Despite these 

issues, information about ECM degradation and vascular angiogenesis in canine cutaneous MCT is 

sparse. MMPs have been evaluated only at the catalytic activity level through gelatin zymography 

(GZ) in samples from grade 2 and 3 tumours (Leibman et al., 2000) and VEGF has been detected at 

the protein level by immunohistochemistry (IHC) (Mederle et al., 2010) and by enzyme linked 

immunosorbent assay (ELISA) analysis (Patruno et al., 2009). 

AIM 

Thus, in order to better understand the role of ECM degradation and angiogenesis in canine MCTs 

of different histological grades, the aim of the present study is to evaluate the mRNA and protein 

expression of MMP-2, MMP-9, MT1- MMP, TIMP-2 and VEGF-A in MCTs subdivided by histological 

grade (Patnaik et al., 1984). The catalytic activities of both latent and active forms of MMP-2 and 

MMP-9 are also evaluated. 

 

METHODS 

Case Selection and Tissue Sampling 

Fresh tissue samples were obtained from 35 dogs that underwent surgery for MCT. The consent of 

the owners to use the tissues for research purposes was obtained. Only samples of suitable size 

and quality were included in the study. After excision of the entire tumour, multiple samples (50-
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100 mg) were collected from the central core of the mass. For total RNA isolation, aliquots were 

immersed in RNAlater® solution (Applied Biosystems, Foster City, California, USA) and stored at -

20°C until used. For GZ, aliquots were frozen at -20°C until used. The remaining tissue was 

formalin-fixed and paraffin wax-embedded for microscopical examination and IHC.  

Gene Expression  

Total RNA isolation, cDNA synthesis, primers, calibration curve data and the formulation of final 

value are reported in Phase 1. Canine VEGF-A (GenBank reference sequences: NM_001003175.2, 

NM_001110502.1 and NM_001110501.1) was amplified with 50-CGT GCC CAC TGA GGA GTT-30 

(forward primer, 300 nM final concentration) and 50- GCC TTG ATG AGG TTT GAT CC-30 (reverse 

primer, 300 nM) and human Universal Probe Library (UPL) probe number 9 (100 nM), while canine 

MMP-2, MMP-9, MT1-MMP, TIMP-2 and the reference genes transmembrane Bcl-2-associated X 

protein inhibitor motif containing 4 (CGI-119) and golgin A1 (GOLGA-1) were amplified with the 

primer pairs and UPL probes reported in Aresu et al. (2011).  

Immunohistochemistry 

The details of the immunohistochemal performance, the antibodies and the labelling valuation are 

described in Phase 1. Also a polyclonal rabbit antiserum specific for VEGF (Santa Cruz 

Biotechnology Inc., Santa Cruz, California, USA; diluted 1 in 200) was also used.  

Gelatin Zymography 

Gelatine zymography performance and the quantification of bands are reported in Phase 1. 

Statistical Analysis 

Statistical analysis of the gene expression and GZ data was performed using the non-parametric 

Kruskal-Wallis test followed by Dunn’s post test. The correlation between target gene mRNA data 

and between mRNA and protein activity results was performed using a Spearman non-parametric 

test. For all of these analyses, GraphPad InStat 2.01 software (San Diego, California, USA) was used 

and a p value < 0.05 was considered significant. To compare the IHC scores, differences in 

percentages were calculated with the Chi-square test. The SPSS 17.00 (SPSS Inc., Chicago, Illinois, 

USA) programme was used. 
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RESULTS 

Case Selection  

The study included samples from 35 MCTs from 35 dogs with a median age of 7.9 ± 2.7 years. Of 

the 35 tumours, seven were grade 1, 22 were grade 2 and six were grade 3. Male (14; three 

neutered) and female (17; two neutered) dogs were included in the study and in four cases the 

gender was not recorded. The following breeds were represented: crossbred (10), boxer (6), 

Labrador retriever (5), dogo Argentino (2), golden retriever (2), American Staffordshire bull terrier 

(1), dachshund (1), beagle (1), Boston terrier (1), cocker spaniel (1), Dalmatian (1), dogue de 

Bordeaux (1), rottweiler (1), English setter (1) and Siberian husky (1). 

Gene Expression 

All of the target genes were expressed in each MCT sample (Table 1). Between tumour grades, 

significant differences were found only for TIMP-2 where less TIMP-2 mRNA was found in grade 3 

compared with grade 2 tumours (p < 0.05). In contrast, there was a progressive, but not 

significant, increase in MMP-9 and VEGF-A expression with increasing histological grade. MMP-2 

and its specific activator (MT1-MMP) showed the same gene expression profile (r = +0.91, p < 

0.0001; Fig. 1). The MMP-2:TIMP-2 and MMP-9:TIMP-1 mRNA ratios were also determined. 

Progressive, but not significant, increases in both ratios were observed with increasing tumour 

grade (Fig. 2). 
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Table 1: MMP-2, MMP-9, MT1-MMP, TIMP-2 and VEGF-A mRNA expression 

 

mRNA expression (a.u.) 

  Grade 1 Grade 2 Grade 3 

MMP-2 2.54 ± 0.68 7.45 ± 3.50 2.03 ± 1.61 

MMP-9 0.62 ± 0.20 1.27 ± 0.39 5.66 ± 3.67 

MT1-MMP 1.19 ± 0.22 3.43 ± 1.42 1.40 ± 0.66 

TIMP-2 1.14 ± 0.29 1.69 ± 0.25 
c 

0.54 ± 0.21 

VEGF-A 0.86 ± 0.37 1.56 ± 0.42 1.92 ± 0.75 

Data are expressed as the mean ± standard error. 

a, b, c Significant differences between grade 1 and 2, grade 1 and 3 and grade 2 and 3, respectively 

(Kruskal-Wallis test followed by Dunn’s post test; c: p< 0.05). 

 

 

 

Fig. 1. Spearman correlation analysis between MMP-2 and MT1-MMP mRNA expression. 
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Fig. 2. (A) MMP-2:TIMP-2 and (B) MMP-9:TIMP-1 mRNA ratios in grade (G) 1, 2 and 3 MCTs. Data 

(mean± standard error) are expressed in a.u.. Statistical analysis: Kruskal-Wallis test followed by 

Dunn’s post test. 

 



PHASE 2: Expression of MMPs, TIMPs and VEGF in Canine Mast Cell Tumours  Pag. 54 

Immunohistochemistry  

MMP-2 and MMP-9 were present in all of the tumours examined (Table 2). Both molecules were 

localized to the cytoplasm of mast cells, while eosinophils appeared negative. MMP-9 expression 

was diffuse, while MMP-2 expression was multifocal (Fig. 3). Significant differences in the IHC 

scores were observed for MMP-9 between the three grades of MCT (p< 0.05). The most intense 

expression was in grade 3 MCTs (Fig. 4 and Fig. 5). The same behaviour was also observed for 

MMP-2, but this did not reach statistical significance (Fig. 3 and Fig. 5). MT1-MMP protein was 

observed in all tumours with cytoplasmic immunolabelling of few scattered neoplastic cells (data 

not shown). MT1-MMP expression increased with tumour grade without reaching statistical 

significance. In contrast, TIMP-2 expression was stronger in grade 1 than in grade 3 MCTs (p < 

0.01) (Fig. 6 and Fig. 5). Finally, VEGF-A expression was stronger in grade 3 than in grade 1 MCTs (p 

< 0.001; Fig. 7 and Fig. 5). Labelling was mainly of the cytoplasm of neoplastic cells, in particular 

those cells adjacent to blood vessels. 

 

Table 2: MMP-2, MMP-9, MT1-MMP, TIMP-2 and VEGF-A IHC 

IHC score 

  Grade 1 Grade 2 Grade 3 Significance 

MMP-2 34.1 ± 29.2 78.3 ± 39.1 159.0 ± 21.2 ns 

MMP-9  91.9 ± 10.3 187.2 ± 54.3 279.3 ± 23.2 P < 0.05 

MT1-MMP  45.3 ± 23.0 103.4 ± 25.2 183.3 ± 31.4 ns 

TIMP-2  182.4 ± 12.2 143.2 ± 17.8 97.3 ± 10.3 P < 0.01 

VEGF-A  106.6 ± 9.6 201.3 ± 15.5 291.3 ± 4.7 P < 0.001 

ns, not significant. 
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Fig. 3. Grade 3 MCT showing intense expression (multifocal to coalescing distribution) of MMP-2. IHC. X200. 
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Fig. 4. Grade 3 MCT showing intense and diffuse expression of MMP-9. IHC. X400. 
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Fig. 5. (a) MCT grade I showing negative labelling of neoplastic cells to MMP-2 (×400); (b) MCT grade II 

showing moderate and multifocal expression of MMP-2 (×200); (c) MCT grade I showing weak expression in 

rare neoplastic mast cells of MMP-9 (×400); (d) MCT grade II showing intense and diffuse expression of 

TIMP-2 (×200); (e) MCT grade III showing negative mast cells immunolabelled for TIMP-2 (×400); (f) MCT 

grade I showing negative mast cells immunolabelled for VEGFR-2 (×400); (g) MCT grade II showing 

immunohistochemical labelling of neoplastic cells for VEGF (×400); (h) MCT grade I showing scattered 

immunohistochemical labelling of neoplastic cells for VEGF antigen (×400). 
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Fig. 6. Grade 1 MCT showing intense and diffuse expression of TIMP-2. IHC. X200. 
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Fig. 7. Grade 3 MCT showing expression of VEGF antigen by tumour cells. IHC. X200. 
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Gelatin Zymography 

Active and inactive forms of MMP-9 and MMP-2 were measured by GZ (Fig. 8). The activities of 

MMP-9 and MMP-2 were calculated in a.u. per 10 ng of protein. The pro-MMP-9 band was 

present in all samples examined by GZ. The activity range in grade 1 tumours was 2.3 - 60.2 a.u., in 

grade 2 tumours 71.0 - 134.3 a.u. and in grade 3 MCTs 151.2 - 218.9 a.u. Thirty-four tumours 

exhibited bands for the active form of MMP-9. The activity ranged from 0 to 40.3 a.u. for grade 1, 

54.3 - 192.6 a.u. for grade 2 and 160.3 - 248.0 a.u. for grade 3 tumours. Pro- and active-MMP-9 

activities progressively increased from grade 1 to 3 MCTs. Both were higher in grade 3 than in 

grade 2 (p < 0.05), in grade 3 than in grade 1 (p < 0.001) and in grade 2 than in grade 1 tumours (p 

< 0.01; Fig. 7B). Furthermore, the activity of the MMP-9 latent form was significantly higher than 

the active form (p < 0.05) in grade 2 and 3 MCTs. Densitometric values of the active form of MMP-

9 were also correlated to MMP-9 mRNA expression (r = 0.37, p < 0.05). Bands for the latent and 

active forms of MMP-2 were found in 97% and 94% of MCTs, respectively. A progressive increase 

in MMP-2 gelatinolytic activity with histological grade was observed. The activity of pro-MMP-2 

was 0-31.4 a.u., 28.7-164.0 a.u. and 65.3-149.7 a.u. in grade 1, 2 and 3 tumours, respectively. The 

activity of MMP-2 was 0-23.9 a.u., 13.2-169.7 a.u. and 70.8-161.2 a.u. in grade 1, 2 and 3 MCTs, 

respectively. Significant differences were obtained for pro-MMP-2 in grade 1 versus grade 2 and in 

grade 1 versus grade 3 (p < 0.001) and for active-MMP-2 in grade 1 versus grade 2 (p < 0.01) and in 

grade 1 versus grade 3 (p < 0.001) (Fig. 8C). Pro-MMP-2 activity was significantly higher than 

active-MMP-2 only in grade 1 samples (p < 0.05). 
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Fig. 8. (A) Zymographic assay of gelatinase activity in grade 1, 2 and 3 MCTs and in HT1080 fibrosarcoma 

cells (CTRL). Bands corresponding to both latent (pro-) and active (act-) forms of MMP-9 and MMP-2 were 

observed in MCTs. HT1080 fibrosarcoma cells were used as the control for pro-MMP-9, pro-MMP-2 and 

act-MMP-2. (B and C) Densitometric analysis of the bands corresponding to latent and active forms 

ofMMP-9 (B) andMMP-2 (C) in grade 1, 2 and 3 MCTs. Integrated density values for each group (mean _ 

standard deviation) are expressed as a.u. as a percentage of the density recorded in CTRL (100 a.u.). a, b, c 

Significant differences between grade 1 and 2, grade 1 and 3 and grade 2 and 3, respectively (Kruskal-Wallis 

test followed by Dunn’s post test; c: p< 0.05; aa: p < 0.01; aaa, bbb: p < 0.001). 
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DISCUSSION 

Dogs are at risk for cutaneous MCT, which accounts for up to 21% of all skin tumours (Thamm and 

Vail, 2007). The diagnosis of MCT by cytology or histopathology is straightforward in the majority 

of cases, but forming an accurate prognosis is more challenging (Welle et al., 2008). The biological 

behaviour of MCT is highly variable, in particular for intermediate-grade tumours. Some 

intermediate-grade tumours have a benign behaviour, while others exhibit aggressive growth and 

a high frequency of local and distant recurrence (Welle et al., 2008). Degradation of the ECM and 

basement membrane components and angiogenesis act in a coordinated manner in the growth 

and progression of several human and animal tumours (Loukopoulos et al., 2003; Patruno et al., 

2009). These complex processes are mainly regulated by MMPs and their specific inhibitors (ECM 

and basement membrane degradation) and VEGF (angiogenesis). Few data are available on the 

roles of MMPs and VEGF-A in canine MCTs (Leibman et al., 2000; Loukopoulos et al., 2003; 

Patruno et al., 2009; Mederle et al., 2010). In veterinary oncology, this is the first study describing 

the expression of MMP-2, MMP-9, MT1-MMP, TIMP-2 and VEGF-A in canine MCTs using an 

integrated approach from mRNA to protein, by means of both qPCR and IHC. GZ was also 

performed to evaluate MMP-2 and MMP-9 gelatinolytic activity. MMP-2 and MMP-9 have been 

identified by GZ in 24 cases of canine MCT of histological grades 2 and 3 (Leibman et al., 2000) and 

in two cases of oral multifocal MCT by GZ and IHC (Loukopoulos et al., 2003). In those studies, 

normal tissue adjacent to the tumour was also considered. In the present study the activity of 

both latent and active forms of MMP-9 and MMP-2 was evaluated in grade 1, 2 and 3 MCTs and 

these data were compared with IHC and qPCR results. Both latent and active forms of MMP-9 and 

MMP-2 were found in almost all tumours and proenzyme activity was generally higher than the 

active form for both gelatinases. GZ showed a significant increase of the pro- and active forms of 

MMP-9 and MMP-2, correlated with histological grade, as previously observed by Leibman et al. 

(2000) in canine MCT and by Loukopoulos et al. (2003) in other tumour types. In general, the 

production of gelatinases is correlated with its biological behaviour: tumours produce more MMP-

9 and MMP-2 than non-neoplastic tissue and malignant tumours produce significantly more MMP 

than their benign counterparts (Loukopoulos et al., 2003). The grade dependent expression 

observed through zymography was confirmed at the mRNA and protein levels. Increased MMP-9 

mRNA expression was correlated with IHC score and with act-MMP-9 optical density by GZ. In 

contrast, MMP-2 expression was more variable: despite a grade-dependent increase in MMP-2 

activity. Multifocal distribution of the immunohistochemical expression was observed and there 
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were no significant differences between grades in terms of percentage labelled cells or intensity of 

labelling. Moreover, there was high variability at the gene expression level for MMP-2. The results 

obtained here for MMP-2 are in contrast with previously published data. The invasion and 

malignant potential of many canine solid tumours (e.g. lymphoma, mammary tumours and 

oronasal tumours) have been associated with increased expression of MMP-2 (Hirayama et al., 

2002; Papparella et al., 2002; Loukopoulos et al., 2003; Gentilini et al., 2005; Nakaichi et al., 2007; 

Aresu et al., 2011), while a minor role for MMP-9 in these tumours has been hypothesized 

because of its wide expression in normal cells, including macrophages and vascular smooth muscle 

cells (Nakaichi et al., 2007) or for the fact that the active form of MMP-9 was identified in only 

three cases among 51 tumours (Loukopoulos et al., 2003). In contrast, the results of the present 

study might suggest that MMP-9, rather than MMP-2, represents the key factor in ECM 

degradation by mast cells in canine MCTs and consequently in tumour aggressiveness and 

malignancy. MT1-MMP is one of the main activators of MMP-2. Mature active MT1-MMP is 

expressed on the cell surface, where it binds and activates pro-MMP-2 (Sato et al., 1994). 

Overexpression of MT1-MMP in tumour cells enhances human tumour growth and metastasis 

(Souliè et al., 2005). In veterinary oncology, MT1-MMP has been detected by IHC in canine 

mammary tumours, where its expression was observed in the cytoplasm of tumour and stromal 

cells (Papparella et al., 2002; Aresu et al., 2011). Both studies revealed increased expression of 

MT1-MMP in association with MMP-2 in canine mammary carcinomas and emphasised the 

contribution of stromal cells to the development of a pro-invasive micro-environment (Papparella 

et al., 2002; Aresu et al., 2011). In the present study, MT1-MMP mirrored MMP-2 behaviour at 

both the protein and mRNA levels. MMP-2 and MT1-MMP were both detected by IHC 

predominantly in the cytoplasm of tumour cells, and they showed multifocal distribution that 

increased in terms of percentage of labelled cells and intensity score with histological grade. At 

the gene expression level, MT1-MMP showed the same pattern of expression of MMP-2 and was 

positively correlated with MMP-2 expression. Thus, these results confirm the relationship between 

these two proteins in ECM degradation (Will et al., 1996). The gelatinolytic function of MMPs is 

also controlled by TIMPs. In particular, TIMP-2 has dual function of inhibition/activation of MMP-2 

(Lambert et al., 2004). No reports are available of the role of TIMP-2 in canine MCT; this has been 

investigated only in canine mammary tumours (Kawai et al., 2006; Aresu et al., 2011). In the 

present study IHC and qPCR showed the lowest level of TIMP-2 expression in undifferentiated 

MCTs, which appears to be consistent with the primary MMP inhibitory role played by TIMPs 
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(Lambert et al., 2004). Imbalances in the activities of MMPs and TIMPs are involved in tumour 

progression (Liotta et al., 1991). MMP-2 mRNA increases with respect to TIMP-2 in more 

aggressive tumours (Onisto et al., 1995; Caenazzo et al., 1998; Nagel et al., 2004; Nakaichi et al., 

2007); thus, the ratio of enzyme:inhibitor mRNA has been proposed as an early indicator of 

aggressiveness (Caenazzo et al., 1998; Nakaichi et al., 2007). In line with previous literature, a 

progressive increase in the MMP-2:TIMP-2 mRNA ratio according to tumour grade and malignancy 

was obtained here. To exert MMP-inhibiting or MMP-activating functions, TIMP-2 binds preferably 

to MMP-2, while TIMP-1 binds to MMP-9 (Stetler-Stevenson et al., 1989; DeClerck et al., 1991). 

Based on this evidence, the mRNA expression profile of TIMP-1 was examined here, but no 

statistically significant differences were obtained (data not shown). Nevertheless, the disturbed 

balance between MMPs and TIMPs in MCTs, as evidenced by the MMP-2:TIMP-2 mRNA ratio, was 

also confirmed by the MMP-9:TIMP-1 mRNA ratio, where in more aggressive MCTs (grade 3) an 

imbalance of about fourfold versus grade 1 was obtained. Thus, the MMP-2:TIMP-2 and MMP-

9:TIMP-1 mRNA ratios might be useful for predicting the behaviour of MCTs. Angiogenesis is 

crucial for the development of solid tumours and it is known that tumour-associated vessels can 

supply oxygen and nutrients to tumour cells for several millimetres (Uchida et al., 2008). VEGF is a 

major regulator of angiogenesis and a potential autocrine growth factor for neoplastic cells (Kutet 

al., 2007). Recently, VEGF-A distribution has been evaluated in normal canine tissues (Uchida et 

al., 2008) and in canine mammary tumours, meningiomas, lymphomas and MCTs (Wolfesberger et 

al., 2007, 2008; Qiu et al., 2008; Matiasek et al., 2009; Millanta et al., 2010; Mederle et al., 2010). 

Several studies have demonstrated significant correlations between tumour grade and angiogenic 

factors and/or microvessel density in canine mammary gland tumours, basal cell tumours and 

squamous cell carcinomas (Maiolino et al., 2000; Restucci et al., 2002). Furthermore, 

intratumoural microvessel density has been evaluated in canine MCT and associated with tumour 

recurrence and mortality (Preziosi et al., 2004). For the first time, VEGF-A was measured in MCT 

samples by means of IHC and, by qPCR in the present study. Both methods confirmed that 

neoplastic mast cells constitutively expressed VEGF-A at both the mRNA and protein levels, as 

described by Rebuzzi et al. (2007). Additionally, increasing VEGF-A mRNA and protein expression 

according to histological grade was observed. A similar association was described by Patruno et al. 

(2009). The results obtained here might form the basis for development of new therapeutic 

strategies for canine MCT. For example, the use of an antiangiogenic compound in association 

with other chemotherapeutic agents might be beneficial in the management of non-resectable 
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grade 2 and 3 MCTs. As an example, tyrosine kinase inhibitors with both anti-angiogenic and direct 

anti-neoplastic activities (inhibition of c-KIT tyrosine kinase activity) might be employed. In this 

respect, surprisingly, transcriptional data obtained here for VEGF-A in grade 1, 2 and 3 MCTs were 

significantly correlated with c-KIT mRNA levels (data not shown). In conclusion, the results of the 

present study have shown the involvement of MMP-9 and VEGF-A in the progression and 

malignancy of canine MCT. These markers may be new novel therapeutic targets, but future 

studies should collect clinical outcome data to further understand the potential prognostic roles of 

these markers. 
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5. PHASE 3 

5.1. SECTION 1: VEGF and MMP-9: biomarkers for canine 

lymphoma* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Adapted with the permission of “Blackwell” from: Aresu L, Aricò A, Comazzi S, Gelain ME, Riondato F, 

Mortarino M, Morello E, Stefanello D, Castagnaro M. VEGF and MMP-9: biomarkers for canine lymphoma. 

Vet Comp Oncol. 2012 Apr 10. doi: 10.1111/j.1476-5829.2012.00328.x. © 2012 Blackwell Publishing Ltd. All 

rights reserved. 
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BACKGROUND 

In human and veterinary oncology, one area of major promise is the identification of molecular 

markers, which may predict response to chemotherapy and tumour relapse, thereby offering 

predictive information. It has been reported that canine non-Hodgkin’s lymphoma (cNHL) shows 

overlapping features with human non-Hodgkin’s lymphoma (hNHL), allowing for the formulation 

of a comparative classification system and for the consideration of the dog as a possible 

spontaneous model for this tumour (Vail and MacEwen, 2000; Breen and Modiano, 2008). 

Cytokines play an important role in the pathogenesis of hNHL, and elevated plasma or tissue 

cytokine levels contribute to its progression (Pedersen et al, 2005; Labidi et al., 2009). Cytokines 

exert their effects on neoplastic and reactive cells, providing growth advantages for tumour cells in 

either an autocrine or a paracrine fashion (Sporn and Todaro, 1980).  Angiogenesis plays a critical 

role in the initial development of cancer as well as in the metastatic spread. Previous studies have 

shown that angiogenesis is increased in canine lymphoma, by highlighting the higher micro-vessel 

density in neoplastic lymph nodes compared with the normal lymph nodes (Wolfesberger et al., 

2008); however, the neovascularization was not correlated with VEGF immunoreactivity or overall 

survival time. Conversely, Gentilini et al. (2005) measured circulating VEGF, MMP-9 and MMP-2 in 

cNHL and found a longer disease-free interval in dogs with a low VEGF plasma level at admission; 

however, no differences in VEGF levels were noticed before and after treatment in eight dogs 

obtaining complete remission. When the included dogs were grouped according to some of the 

known prognostic factors, a significantly higher VEGF level was found in symptomatic dogs 

(substage b) compared with asymptomatic dogs (substage a). However, no attempt was made to 

evaluate the relationship between the level of angiogenic factors in cNHL and immunophenotype, 

cytological subtypes or grading. Moreover, activation of MMP-9 and MMP-2 was not evaluated. 

AIM 

By hypothesizing a relationship among cytokines and gelatinases, the aim of this work is the 

measurement of plasmatic pro-MMP-2, pro-MMP-9 and their activated forms, VEGF and TGF-β by 

gelatine zymography and an enzyme-linked immunosorbent assay, respectively, in a cohort of 

cNHL subdivided based on cytological classification and immunophenotype. Additionally, in a 

smaller group of dogs undergoing treatment, biomarkers levels at presentation will be correlated 

to clinical stage (to evaluate whether higher levels predicted a more advanced clinical stage), to 
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immunophenotype (B versus T) and to remission status at the end of chemotherapy (to evaluate 

whether variation in the angiogenic pathway may be related to remission status). 

 

METHODS 

Patients and samples 

Plasma was obtained from dogs with lymphoma at various clinical stages, and from breed-, age 

and gender-matched healthy control dogs presenting for periodical examination. An informed 

consent was obtained from all owners according to the regulations of each institutional animal 

care committee. Dogs underwent complete staging work-up, including physical examination, 

complete blood cell count, flow cytometric and cytological analysis of nodal fine-needle aspirate, 

peripheral blood and bone marrow aspirate, thoracic radiography and abdominal ultrasound. 

Briefly, flow cytometric immunophenotype was determined as previously reported on fine needle 

aspiration of lymph nodes, peripheral blood and bone marrow samples (Gelain et al., 2008). The 

following monoclonal antibodies were used: CD45-PEb (clone YKIX716.13, Serotec, Oxford, UK), 

CD3-FITC (clone CA17.2A12, Serotec, T cells), CD4-FITC (clone YKIX302.9, Serotec, T-helper and 

neutrophils), CD8-PE (clone YCATE55.9, Serotec, T-cytotoxic/suppressor), CD5 (clone YKIX322.3, T-

cell), CD21-PE (clone CA21D6 Serotec, mature B cells), CD34-PE (clone 1H6, Pharmingen, Becton 

Dickinson, San Jose, CA, USA, precursor cells), and CD79a (B-cells, clone HM57, Dako, Atlanta, GA, 

USA). Acquisition was performed with FACSCalibur (Becton Dickinson) and analysis was conducted 

by using a commercially available software (Cell Quest, Becton Dickinson). Lymphoma subtypes 

were classified based on the Kiel-updated cytological classification (Ponce et al., 2010). Plasma was 

processed by the Department of Veterinary Pathology, Hygiene and Health, University of Milan, 

and by the Department of Animal Pathology, University of Turin. At presentation, peripheral blood 

was sampled in sterile EDTA tubes, and the plasma obtained by centrifugation was put in 

separated polypropylene tubes and stored at −20°C. Each sample was centrifuged for 30 min at 

1000 rpm before assaying. Owners of dogs with lymphoma were offered to treat their animals 

with multidrug chemotherapy, consisting of doxorubicin, vincristine, cyclophosphamide, L-

asparaginase and prednisone (Simon et al., 2006). In these dogs, plasma was collected at three 

standard times (at diagnosis, halfway through the treatment and at the end of chemotherapy). 

The remission status of the treated dogs was recorded at each recheck examination. 
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MMPs analysis using gelatine zymography 

MMP-2 and MMP-9 activity was studied by zymography, a technique revealing the gelatinase 

activity of latent pro-enzymes (zymogens) and mature MMPs. A 1:10 dilution was made from 10 

μL of plasma into sample buffer, and 60 μL of the diluted sample was subjected to electrophoresis 

on an 8% SDS-PAGE gel co-polymerized with 0.1% gelatine. Other details about gelatine 

zymography are described in Phase 1.  

Measurements of cytokine levels 

Circulating VEGF and TGF-β levels were quantitatively analysed by an enzyme-linked 

immunosorbent assay (ELISA), using specific canine commercial kits (R&D Systems, Minneapolis, 

MN, USA) following manufacture instruction. Each sample was tested in duplicate. 

Spectrophotometer readings at 450nm (wavelength correction set to 570 nm) were performed 

using a Thermo Labsystems Multiskan Ascent Photometric plate reader (American Instrument 

Exchange, Haverhill, MA, USA). The lower limits of detection for VEGF and TGF-β1 are less than 

19.5 and 4.61 pg/mL, respectively. Samples were prepared with HCl/NaOH/HEPES-activation 

solution, as recommended by the manufacturer (R&D Systems), to activate latent TGF-β1 into the 

immunoreactive form, the only one detectable by the kit. 

Statistical analysis 

The data were expressed as the mean±SEM. Comparison among cytokines and MMPs levels in 

dogs with different lymphoma subtypes and healthy controls was calculated by Student’s t-test or 

analysis of variance (ANOVA). Differences in frequencies among all the cytokines were determined 

by χ2 analysis. Standard regression analysis, using Pearson and Spearman correlation coefficients, 

were used to determine the relationships between MMP, VEGF and TGF-β1 values. All tests were 

performed using NCSS 2000 software (Kaysville, UT, USA). Statistical significance was set at p<0.05. 

 

RESULTS 

Thirty-seven dogs with lymphoma and 10 healthy controls were evaluated. Among the lymphoma 

cases, 21 were of B-cell immunophenotype (19 high-grade, 1 low-grade and in 1 case no lymph 

node glass smear was available) and 16 of T-cell immunophenotype (9 high-grade and 7 low 

grade). The main B-cell subtype was centroblastic polymorphic (17 of 21), whereas in T-cell 
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lymphoma (including high- and low-grade) no predominant cytological subtype was detected. 

Thirty-four dogs underwent complete staging work-up: 20 lymphomas were of stages III–IV, 

whereas 14 of stage V. Twenty-nine of the 37 dogs were treated and received the same CHOP-

based chemotherapeutic protocol (Gelain et al., 2008). At the end of the 12 weeks of treatment, 

12 (41.4%) dogs were in complete remission, 3 (10.3%) obtained partial remission, 3 (10.3%) dogs 

had stable disease and 11 (38.0%) dogs experienced progressive disease. When considering 

immunophenotype and outcome, among the 18 treated dogs with B-cell lymphoma, 9 obtained 

complete remission, 2 partial remission, 2 stable disease and 5 experienced progressive disease. 

Among the 11 treated dogs with T-cell lymphoma, three obtained complete remission, one partial 

remission, one stable disease and six experienced progressive disease. 

Correlation between MMPs and cytokines profiles at admission and disease status, clinical stage 

and immunophenotype.  

The quantification of gelatinases through gel zymography showed similar values of pro-MMP-9 in 

tumour and control dogs (B-cell lymphomas = 93.1 ± 6.4 a.u.; T-cell lymphomas = 97.9 ± 9.4 a.u. 

and control dogs = 92.3 ± 2.5 a.u.). However, dogs with lymphoma showed a significantly higher 

catalytic activity of MMP-9 (p<0.01) compared with healthy controls (91.7 ± 4.8 a.u. versus 12.4 ± 

2.1 a.u., respectively; Table 1). When considering the cytokine levels and clinical stage, statistically 

significant higher expression of act-MMP-9 was found in stage V B-cell lymphomas (95.3 ± 3.4 a.u.) 

than in stage III/IV B-cell lymphomas (83.4 ± 4.7 a.u.; p<0.01). Higher expression of act-MMP-9 was 

found in stage V T-cell lymphomas (113.7 ± 3.2 a.u.) than in stage III/IV T-cell lymphomas (94.7 ± 

2.1 a.u.; p<0.05). When examining the immunophenotype, T-cell lymphomas presented a higher 

concentration of act-MMP-9 at the time of diagnosis (103.3 ± 2.9 a.u.) than B-cell lymphomas 

(89.2 ± 8.8 a.u.), and this was statistically significant (p<0.05). Neither lymphoma nor control dogs 

showed expression of act-MMP-2. Plasma levels of pro-MMP-2 were not significantly increased in 

lymphoma dogs (104.3 ± 10.2 a.u.) with respect to control dogs (98.2 ± 3.9 a.u.; Fig. 1; Table 1). 

Plasma VEGF levels in dogs with lymphoma were higher than that in controls (59.3 ± 14.3 pg/mL 

versus 40.1 ± 10.4 pg/mL, respectively; P<0.05), and this was statistically significant (P<0.05; Table 

1). Also, VEGF plasmatic levels were significantly higher (p<0.01) in stage V B-cell lymphomas (58.3 

± 4.5 pg/mL) than in stage III/IV B-cell lymphomas (49.1 ± 2.1 pg/mL), and in stage V T-cell 

lymphomas (78.1 ± 3.7 pg/mL) than in stage III/IV T-cell lymphomas (63.1 ± 4.5 pg/mL). In dogs 

with B-cell lymphoma, the mean VEGF value at diagnosis was lower when compared with dogs 
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with T-cell lymphoma (55.4 ± 21.3 pg/mL versus 67.4 ± 19.1 pg/mL, respectively). A positive 

correlation between concentrations of act-MMP-9 and VEGF plasma levels was found in all 

lymphoma dogs (r = 0.78, p<0.001). Concerning plasma TGF-β levels, the median values were 

similar between B- and T-cell lymphoma (11377.6 pg/mL and 10343.4 pg/mL, respectively). 

Although not statistically significant, the mean plasma TGF-β value in control healthy dogs 

(19185.5 pg/mL) was higher when compared with lymphoma dogs (Table 1). At the time of 

diagnosis, VEGF levels were significantly lower in low-grade (59.7 ± 3.3) compared with high-grade 

(76.4 ± 4.8) T-cell lymphomas (p<0.05). No such differences were observed for MMP-2, MMP-9 

and TGF-β. 

Correlation between MMPs analysis and cytokines profiles at admission and remission status at 

the end of chemotherapy.  

Plasma was obtained at admission in 29 dogs undergoing the same chemotherapeutic protocol. 

MMP and cytokines profiles did not differ between dogs obtaining remission (complete and 

partial) or experiencing progressive disease, thereby not being useful in predicting treatment 

response. 

MMPs analysis and cytokines profiles during chemotherapy and follow-up.  

Plasma was serially obtained from 13 dogs (10 B-cell and 3 T-cell lymphomas) undergoing 

chemotherapy. In these dogs, pro-MMP-9, pro-MMP-2 and act-MMP-2 levels did not change at 

the three standard times. However, act-MMP-9 was significantly decreased in all B-cell lymphoma 

dogs at the end of chemotherapy (38.1 ± 12.3 a.u.; p<0.01; Fig. 3). In contrast, no evident 

modifications of the quantitative activity of act-MMP-9 were observed in the T-cell lymphoma 

dogs (101.3 ± 10.0 a.u.; Fig. 2 and Fig. 3). In dogs undergoing chemotherapy, 8 of 9 cases of B-cell 

lymphoma showed decreased VEGF values at the end of treatment in the order of 19.47 pg/mL. 

The mean value of the reduction, excluding one case of anaplastic B-cell lymphoma that presented 

a rise of VEGF levels, was 20.7 pg/mL (p<0.05). In the three dogs with T-cell lymphoma undergoing 

treatment, the mean value of the rise of plasma VEGF was 15.6 pg/mL at the end of treatment. 
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Table 1. Baseline values of MMP-9 (pro and act), VEGF and TGF-β in controls, B-cell lymphomas 

and T-cell lymphomas (expressed as the mean ±SEM) 

 CONTROLS LYMPHOMA B LYMPHOMA T 

Pro-MMP9 (a.u.) 92.3 ± 2.5 93.1 ± 6.4 97.9 ± 9.4 

Act-MMP9 (a.u.) 12.4 ± 2.1 89.2 ± 8.8** 103.3 ± 2.9** 

VEGF (pg/ml) 40.1 ± 10.4 55.4 ± 21.4* 67.4 ± 19.1* 

TGF- β (pg/ml) 19185.5 ± 7843.4  11377.6 ± 3412.7   10343.4 ± 5430.9 

*p<0.05. **p <0.01 versus controls. 

 

 

 

Fig. 1. Representative MMP zymography from seven samples. Lanes 1, 2 and 3 are T-cell lymphomas. Lanes 

4, 5 and 6 are B-cell lymphomas. 
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Fig. 2. Representative MMP zymography from three dogs during chemotherapy. Lanes 1, 2 and 3: dog 6, B-

cell lymphoma, respectively, at time 2, time 1 and time 0. Lanes 4, 5 and 6: dog 17, B-cell lymphoma, 

respectively, at time 2, time 1 and time 0 in. Lane 7: T-cell lymphoma in dog 35. 

 

Fig. 3. Plasma concentrations of act-MMP-9 (mean values) in B- and T-cell lymphomas at the three standard 

times during the chemotherapy protocol. 
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DISCUSSION 

Cytokines act as important key regulators of the tumour microenvironment, by influencing survival 

and proliferation of neoplastic and vascular cells. In people with NHL, angiogenic factors are 

emerging as a powerful prognostic tool (Baly et al., 1993; Pedersen et al, 2005; Labidi et al., 2009). 

In literature, few studies are available in veterinary oncology on the role of VEGF and MMPs 

(Hirayama et al., 2002; Gentilini et al., 2005; Yonemaru et al., 2006; Zizzo et al., 2010; Aresu et al., 

2011) and the clinical impact of early and serial monitoring of these cytokines has not been 

extensively studied. Here, possible plasma biomarkers were identified having predictive relevance 

in canine lymphoma. Specifically, the results of present study show that VEGF and act-MMP-9 

levels were significantly higher (1) in dogs with lymphoma when compared with controls, (2) in T-

cell lymphomas compared with B-cell lymphoma at admission and that (3) VEGF was higher in 

high-grade compared with low grade T-cell lymphoma. MMP-9 and VEGF are two of the most 

potent factors involved in angiogenesis. It is well known that, in addition to its role in proteolytic 

degradation, MMP-9 can also release angiogenic factors that bind to ECM, such as VEGF. MMP-9 is 

also a functional component of the angiogenic switch during multistage carcinogenesis, as it 

increases the availability of angiogenesis inducers (Bergers et al., 2000; Moehler et al., 2003). In 

this study, a correlation between the levels of VEGF and act-MMP-9 and lymphoma 

immunophenotype was found; the explanation of which could rely on the more aggressive 

biological behaviour and rapid spread that characterize T-cell lymphoma. Indeed, it has been 

documented that canine T-cell lymphoma usually harbours a poor prognosis (Ponce et al., 2004): 

in the early stage, high-grade nodal lymphoma does not destroy tissue boundaries, thereby not 

showing an invasive growth pattern. However, as the tumour progresses, it may become locally 

invasive and tends to disseminate, as partially shown by predictive correlations exhibited in the 

present study between plasma levels of VEGF and MMP-9. However, it is a matter of fact that 

canine lymphoma encompasses a wide range of distinct entities showing different biologic 

behaviour; as a consequence, not all T-cell lymphomas carry the same prognosis (Ponce et al., 

2010). For this reason it was decided to group the cases based on their morphological aspect as 

well, and, interestingly, the low-grade T-cell lymphomas had a significant lower level of VEGF, 

being in accordance with results obtained in human medicine (Salven et al., 1997). On the basis of 

these findings it may be hypothesized that a different angiogenic pathway occurs in low- and high-

grade T-cell lymphomas. Because B-cell lymphomas were mainly of high-grade in the series 

considered in this study, it was not possible to discriminate the VEGF data. In hNHL, VEGF and 
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MMP-9 expressions correlate with: (1) subtype, (2) grade, (3) clinical course and (4) survival 

(Salven et al., 1997; Sakata et al., 2004). Patients with elevated VEGF and MMP-9 levels have a 

higher likelihood of recurrence or death than patients with low-angiogenic NHL. The role of VEGF 

and act-MMP9 in different stages of lymphoma (III–IV versus V) was analysed. Their levels were 

found to be different between lower and higher stages, thereby suggesting a possible role of 

cytokine levels to differentiate between advanced and early cancer. According to the results of the 

present, cytokines levels at presentation did not correlate to remission status obtained at the end 

of chemotherapy. The reason behind this finding may reside in the low number of treated cases or 

in distinct characteristics of the dog groups studied. It may be possible that group stratification 

according to clinical stage and immunophenotype will eventually lead to outcome correlation. 

Intriguingly, by serially determining cytokines level during and after chemotherapy, plasma VEGF 

and MMP-9 was recognized as a dynamic follow-up parameter in B-cell lymphoma. Indeed, both 

biomarkers decreased significantly from admission to the end of treatment in these dogs, thereby 

being in agreement with several human studies indicating that VEGF and MMP-9 might predict 

treatment response (Sakata et al., 2004; Pedersen et al, 2005; Labidi et al., 2009). At midterm 

plasma check, the biomarkers levels were not significantly different when compared with the 

levels obtained at admission (data not shown). As a consequence, it may be assumed that the 

most relevant changes in the production of these markers are reflected at the end of treatment, 

being attributable to the persistence of high circulating levels of VEGF and MMP-9 during 

chemotherapy. Conversely, in T-cell lymphomas, VEGF levels increased at the end of the 

treatment, whereas MMP-9 showed no changes. More data are needed to evaluate the plasma 

kinetics of these two biomarkers in dogs with lymphoma to predict a possible correlation between 

their synthesis and the responses to chemotherapy. On the other hand, the role of MMP-2 seems 

to be irrelevant in the lymphoma microenvironment. Pro-MMP-2 levels in dogs with lymphoma 

were not significantly increased, regardless of the immunophenotype. TGF-β showed lower 

plasma levels in lymphoma dogs compared with controls; however, there was a high individual 

variability at diagnosis. Furthermore, no correlation between plasma TGF-β levels and lymphoma 

immunophenotype was found, and there was no correlation at the three standard treatment 

times. It may be hypothesized that a reduction of TGF-β reflects the ability of the tumour cells to 

acquire resistance to the anti-proliferative signals of TGF-β. In NHL and other haematological 

malignancies, the aberrant expressions of receptors (types I, II and III) and mutations in TGF-β 

signalling cascade have been described, demonstrating that cancer cells frequently acquire 



PHASE 3 - SECTION 1: VEGF and MMP-9: biomarkers for canine lymphoma  Pag. 76 

resistance to the anti-proliferative signals of TGF-β (Dong and Blode, 2006). The same may hold 

true for dogs with lymphoma; however, additional studies with larger patient numbers are 

warranted to verify these observations. In conclusion, VEGF and act-MMP-9 levels were 

significantly higher in dogs with lymphoma compared with healthy controls. Furthermore, VEGF 

and act-MMP-9 levels were higher in T-cell lymphomas and in dogs with a more advanced disease, 

thereby providing a new tool that might help oncologists in predicting outcome. Future studies 

need to be conducted to highlight the potential role of anti-angiogenetic agents in the treatment 

of different subtypes of canine lymphoma. 
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5.2. SECTION 2: Matrix metalloproteinases and vascular endothelial 

growth factor expression in canine lymphoma§ 
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AIM 

The aim of the second study on the canine lymphoma was to assess the gene expression profiles 

of MMP-2, MMP-9, MT1-MMP, TIMP-1, TIMP-2, RECK and VEGF-A and the protein levels of MMP-

2, MMP-9 and VEGF-A in canine B and T-cell lymphoma. 

 

METHODS 

Caseload and classification 

Fine-needle aspirates (FNAs) of enlarged lymph nodes obtained from dogs with lymphoma were 

collected. Samples were sent by the referring veterinarians to the Department of Veterinary 

Pathology, Hygiene and Health at the University of Milan, and to the Department of Animal 

Pathology at the University of Turin for diagnostic purposes. The different  subtypes were 

described according to the updated Kiel classification (Fournel-Fleury et al., 1997) by considering 

pleomorphism; cell size; nuclear shape; chromatin density; mitotic index; the number, size and 

distribution of nucleoli; and the extension and basophilia of the cytoplasm. The 

immunophenotype was determined by means of flow cytometry with the use of the following 

monoclonal antibodies: CD45-PEb (clone YKIX716.13, Serotec, Oxford, UK, leukocytes), CD3-FITC 

(clone CA17.2A12, Serotec, T cells), CD4-FITC (clone YKIX302.9, Serotec, T-helper cells and 

neutrophils), CD8-PE (clone YCATE55.9, Serotec, T-cytotoxic/suppressors), CD5 (clone YKIX322.3, 

T-cells), CD21-PE (clone CA21D6 Serotec, mature B cells), CD34-PE (clone 1H6, Pharmingen, Becton 

Dickinson, San Jose, CA, precursor cells), and CD79a (clone HM57, Dako, Atlanta, GA, all stages of 

B-cells). Data acquisition was performed by using a FACSCalibur (Becton Dickinson), and the 

analysis was conducted with a commercially available software (Cell Quest, Becton Dickinson). The 

expression of specific lineage markers defined the lineages of lymphoma: CD3, CD5, CD4, and/or 

CD8 for T-cell lymphoma and CD21 and/or CD79a for B-cell lymphoma. A positive staining referred 

to the antigen expression in at least 20% of the gated cells. Samples being characterized by an 

ambiguous diagnosis, low cellularity or viability were excluded from the present study. Five 

healthy dogs matched according to age, breed, and gender with no relevant peripheral lymph 

node alterations served as controls. Informed consent was obtained from all owners according to 

the regulations of each institutional animal care committee. 
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Sampling procedure 

Two samples were obtained from each lymph node FNA for routine cytological exam and flow 

cytometry, and for immunocytochemical analysis and total RNA extraction. For flow cytometry, 

cells were suspended in 0.5 mL of RPMI 1640 medium (Sigma Aldrich, Munich, Germany) 

containing 5% foetal bovine serum (Sigma Aldrich) and 0.2% sodium azide (Sigma Aldrich) at room 

temperature. The remaining material was washed twice in the same medium, re-suspended in 

RNAlater
®
 solution (Life Technologies, Foster City, CA) and stored at −20°C for total RNA isolation. 

For total RNA isolation, at least 0.5 mL of each cell suspension containing of 2 × 10
6
 cell/mL of 

good viability was required. 

Quantitative real-time RT-PCR (qRT-PCR) 

The total RNA was isolated using the RNeasy Mini Kit (Qiagen, Milan, Italy); according to the 

manufacturer’s instructions. RNA was isolated from both cell pellets and RNAlater
®
 suspensions, as 

recommended by Dunmire et al. (2002). To avoid genomic DNA contamination, on-column DNase 

digestion with the RNase-Free DNase set was performed. cDNA synthesis, primers and the 

formulation of final value are reported in Phase 1. Primer pairs and human UPL probes for MMP-2, 

MMP-9, MT1-MMP, TIMP-1, TIMP-2, RECK and VEGF-A amplification were described previously 

(Aresu et al. 2011; Giantin et al. 2012). In the present study, VEGF-164, the VEGF-A splice variant 

markedly expressed in dogs and highly conserved among species (Usui et al., 2004) was also 

considered. Canine VEGF-164 was amplified using the primer pair 5′-CGT GCC CAC TGA GGA GTT-3′ 

(forward) and 5′-AAG GCC CAC AGG GAT TTT CT-3′ (reverse) and human UPL probe #9. Calibration 

curves using a 4-fold serial dilution of a cDNA pool revealed PCR efficiencies near two and error 

values < 0.2 (see Table 1). 
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Table 1. qRT-PCR assay parameters: primer concentration, efficiency, linearity and dynamic range. 

Genes Primer concentration (nM) Efficiency Error Dynamic range (Cp) 

CGI-119 F600/R300 1.902 0.00291 23.90 – 32.39 

MMP-2 F600/R600 2.002 0.03450 25.57 – 32.68 

MMP-9 F300/R300 1.998 0.05740 30.50 – 36.28 

MT1-MMP F600/R600 2.001 0.02890 24.64 – 31.68 

TIMP-1 F600/R300 2.000 0.03110 25.24 – 31.25 

TIMP-2 F300/R300 2.034 0.02890 24.50 – 31.38 

RECK F600/R300 2.010 0.06310 27.05 – 33.78 

VEGF-A F300/R300 2.028 0.01020 26.56 – 32.49 

VEGF-164 F300/R300 1.998 0.02690 28.54 – 35.19 

F, forward primer; R, reverse primer 

 

Immunocytochemical analysis 

The protein expression levels of MMP-2, MMP-9 and VEGF-A were evaluated by 

immunocytochemistry. The cellular suspension designated for immunocytochemical analysis was 

prepared by cytospin and fixed with acetone and methanol (Sigma Aldrich). After fixation, the 

primary antibody incubation step was performed by an automated system for all antibodies 

(Ventana Medical Systems). The antibodies used in this study were the following: anti-human 

MMP-9, Clone C-TERM (1:200; Millipore S.p.A, Milan, Italy); anti-human MMP-2, Clone Ab-7 

(1:100; Thermo Fisher Scientific Inc., Kalamazoo, Michigan, USA); and anti-human VEGF-A, Clone 

A-20 – sc:152 (1:200; Santa Cruz Biotechnology, Inc., Santa Cruz, California, USA). The details of 

the immunohistochemal performance and the labelling valuation are described in Phase 1.  
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Statistical analysis 

The statistical analysis of the gene expression results was performed using Mann–Whitney tests, 

whereas the immunocytochemistry data were analysed using the Kruskal-Wallis test followed by 

Dunn’s post-test. A non-parametric Spearman correlation analysis was used to determine the 

potential relationship between target genes. GraphPad Prism 5 software (San Diego, California, 

USA) was used for all statistical evaluations. Statistical significance was set at p<0.05. Finally, 

Grubbs’ test was used to identify potential outliers. 

 

RESULTS 

Clinical results 

Forty-seven dogs with lymphoma were enrolled. Based on cytological and flow cytometric 

evaluation, there were 26 B-cell lymphomas (22 high-grade, HG, and 4 low-grade, LG), and 21 T-

cell lymphomas (13 HG and 8 LG).  

qRT-PCR 

The gene expression results for healthy control lymph nodes, B-cell and T-cell lymphomas are 

summarised in Table 2. MMP-2 and TIMP-2 mRNA levels in the healthy control lymph nodes were 

significantly higher than in lymphomas. A significantly higher MMP-9 mRNA expression was 

observed in T-cell lymphomas compared to B-cell lymphomas and healthy controls. TIMP-1 

exhibited similar results to MMP-9: in particular, T-cell lymphomas exhibited significantly higher 

TIMP-1 mRNA expression than B-cell lymphomas and healthy controls. MT1-MMP displayed the 

opposite expression pattern of MMP-2 in T-cell lymphomas. Furthermore, significantly higher 

MT1-MMP expression was observed in T-cell lymphomas compared to B-cell lymphomas. MT1-

MMP mRNA levels were significantly higher in control lymph nodes than in B-cell lymphomas. 

When considering the tissue inhibitor RECK, statistically significant differences were observed 

between B-cell and T-cell lymphomas, and between T-cell lymphomas and healthy controls. B-cell 

and T-cell lymphomas had similar VEGF-A and VEGF-164 expression profile, moreover T-cell 

lymphomas showed significantly higher expression of VEGF-A with respect to controls. 

Interestingly, a higher MMP-9, MMP-2, MT1-MMP, VEGF-A, VEGF-164 and TIMP-1 mRNA 

expression was observed in HG T-cell lymphomas compared to LG T-cell lymphomas, although the 

differences were not statistically significant (Table 3). The same analysis was not performed in B-

cell lymphomas because of the low number of LG cases included in the study. The expression of 
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MMP-9, MT1-MMP, TIMP-1 and RECK was higher in HG T-cell lymphomas compared to HG B-cell 

lymphomas (p<0.05). Although not statistically significant, VEGF mRNA expression showed the 

same trend. Significant correlations between MMP-2 and TIMP-2 (p<0.001; Spearman r=0.82) and 

between MMP-9 and VEGF-A (p<0.01, Spearman r=0.67) were found in T-cell lymphomas. 

 

Table 2. MMP-9, MMP-2, MT1-MMP, TIMP-1, TIMP-2, VEGF-A, VEGF-164 and RECK mRNA 

expression in control lymph nodes, B-cell and T-cell lymphomas. 

Genes Control Lymph Nodes B-cell Lymphoma T-cell Lymphoma 

MMP-2 0.96 ± 0.23
a,b 

0.24 ± 0.28 0.16 ± 0.29 

TIMP-2 0.85 ± 0.34
a,b 

0.15 ± 0.20 0.16 ± 0.29 

MT1-MMP 0.61 ± 0.17
a,b 

0.11 ± 0.11
c 

0.94 ± 0.99 

MMP-9 0.13 ± 0.11
b 

0.12 ± 0.04
 c 

0.69 ± 0.11 

TIMP-1 0.15 ± 0.09
b 

0.16 ± 0.22
 c 

0.66 ± 0.75 

RECK 0.29 ± 0.12
b 

0.06 ± 0.12
c 

0.87 ± 1.12 

VEGF-A 0.37 ± 0.19
b 

0.71 ± 0.98 0.89 ± 1.37 

VEGF-164 0.57 ± 0.23 0.63 ± 0.92 0.90 ± 1.38 

Data are expressed as the mean ± standard error. 

a, b, c
 Significant differences between control lymph nodes and B-cell lymphoma, control lymph nodes and T-

cell lymphoma, B-cell lymphoma and T-cell lymphoma, respectively (Kruskal-Wallis test followed by Dunn’s 

post test; c: p < 0.05). 
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Table 3. MMP-9, MMP-2, MT1-MMP, TIMP-1, TIMP-2, VEGF-A, VEGF-164 and RECK mRNA 

expression in HG and LG T-cell lymphomas. 

Genes High grade Low grade 

MMP-2 0.18 ± 0.22 0.17 ± 0.20 

MMP-9 0.82 ± 0.15 0.12 ± 0.28  

MT1-MMP 1.01 ± 1.08 0.81 ± 0.86 

TIMP-1 1.07 ± 1.98 0.63 ± 0.92 

TIMP-2 0.15 ± 0.28  0.16 ± 0.32 

RECK 0.93 ± 1.26 1.67 ± 2.76 

VEGF-A 1.21 ± 1.65 0.35 ± 0.43 

VEGF-164 1.11 ± 0.92  0.39 ± 0.88 

Data are expressed as relative quantification values (mean ± SD) 
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Immunocytochemical analysis 

Immunocytochemical results are summarised in Table 4. The protein expression levels of MMP-9, 

MMP-2 and VEGF-A were significantly higher in T-cell lymphomas compared to B-cell lymphomas 

(Fig. 1, 2). A statistically significant difference between the healthy control FNAs and the 

lymphoma group (p<0.05) was also observed. Moreover, MMP-9 and VEGF protein expression was 

significantly correlated in B-cell lymphomas (p<0.0002; r=0.72) and T-cell lymphomas (p<0.006; 

r=0.69). 

 

Table 4. MMP-9, MMP-2 and VEGF-A protein expression in B-cell lymphoma and T-cell lymphoma. 

Target 

proteins 

Healthy control FNAs B-cell Lymphoma T-cell Lymphoma Significance 

MMP-9 0.57 ± 0.53 19.91 ± 28.99 68.13 ± 83.22 P<0.05 

MMP-2 0.14 ± 0.37 14.45 ± 22.50 15.64 ± 21.96 P<0.05 

VEGF-A 0.14 ± 0.37 6.4 ± 13.71 12.43 ± 17.88 P<0.05 

Data are expressed as immunostaining scores (mean ± SD) 
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Fig. 1. B-cell lymphoma. FNAs. (a) low number of positive immunoassayed lymphoid tumour cells for MMP-

2 antibody (arrow); (b) numerous positive immunoassayed lymphoid tumour cells for MMP-9 antibody 

(arrows); (c) plasma cells  and low percentage of immunoassayed lymphoid tumour cells for VEGF antibody 

(arrow). Immunocytochemistry, 400X. 
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Fig. 2. T-cell lymphoma. FNAs. intense and widespread positive immunoassayed lymphoid tumour cells for 

(a) MMP-2 antibody, (b) MMP-9 antibody and (c) VEGF antibody. Immunocytochemistry, 400X. 
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DISCUSSION 

In human haematologic malignancies, VEGF and different enzymes involved in ECM remodelling, 

including MMPs, are considered molecules for early diagnosis and prognostic assessment 

(Hayashibara et al., 2002; Pedersen et al., 2005; Buggins et al., 2011). The activation and 

inactivation of MMPs are regulated by TIMPs, which play a role in regulation of cell growth, and 

neovascularisation (Egeblad et al. 2002). In this study the expression of different MMPs, their 

regulators and VEGF, assessing mRNA and protein expression profiles, were analysed in canine 

lymphoma. Significantly higher MMP-9 mRNA and protein expression levels were observed in T-

cell lymphomas compared to B-cell lymphomas and healthy control lymph nodes, indicating that 

MMP-9 expression may be associated with tumour phenotype. Moreover, the difference was 

significantly higher in HG T-cell lymphomas compared with HG B-cell lymphomas. Biologically, T-

cells migrate across ECM barriers during the inflammatory process towards target tissues and the 

activation of MMP-9 causes the alteration of adjacent connective tissues and the degradation of 

collagen type IV. This result indicates that during tumour growth, neoplastic T-cells may increase 

the production of MMP-9, aimed at invading blood and other organs (Moehler et al., 2003). This 

data was confirmed by immunohistochemical results where T-cells expressed high amount of 

MMP-9 protein. Moreover, the gene and protein expression results for MMP-9 seem to confirm 

the prominent biologic behaviour of HG T-cell lymphoma characterized by invasion and metastatic 

spread, rendering this malignancy highly aggressive (Marconato et al., 2012). The highest levels of 

TIMP-1 were observed in T-cell lymphomas compared to B-cell lymphomas and controls. The 

highest levels were associated with HG T-cell lymphomas. This result supports the hypothesis that 

MMP-9 and TIMP-1 may act in concert in canine T-cell lymphoma. MMP-9 is frequently expressed 

and secreted with TIMP-1 by canine neoplastic cells (Aresu et al., 2011). These molecules are 

associated with a more aggressive clinical behaviour in human lymphomas, and they appear to 

exert their influence through two different mechanisms: MMP-9 causes ECM degradation, 

whereas TIMP-1 has an anti-apoptotic action (Kossakowska et al., 1991, and 1999). Furthermore, 

in human, increased TIMP-1 expression was observed in HG non-Hodgkin’s lymphomas and in 

advanced stage disease, leading the investigators to postulate that TIMP-1 may have lymphoid 

growth factor activity (Kossakowska et al., 1991). MMP-2 results were comparable to TIMP-2. 

Interestingly, in T-cell lymphomas, qRT-PCR analysis for MMP-2 revealed significant positive 

correlations with TIMP-2 and a negative correlation with MT1-MMP. By immunohistochemistry, 

neoplastic lymphocytes exhibited positive immunoreaction to MMP-2, confirming the protein 
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expression of this enzyme by neoplastic cells. Indeed, the MMP-2 antibody used in this work 

allows identifying both the inactive and active form of the enzyme. Gelatine zymography of T and 

B neoplastic cells was performed to investigate the activity of MMP-2 and MMP-9, but it was 

unable to detect any catalytic process. This discrepancy may be explained by the characteristics of 

the methodologies: immunocytochemistry shows the distribution and localisation of specific 

antigens within the cells, qRT-PCR can detect small quantities of transcripts in a relatively low 

number of cells, whereas gelatine zymography is sensitive to the number of cells preventing 

detection (Snoek-van Beurden and Von Der Hoff, 2005). Interestingly, higher MT1-MMP mRNA 

expression levels were observed in T-cell lymphomas compared to B-cell lymphomas and in HG T-

cell lymphomas with respect to the LG counterparts. This result supports the important role of 

MT1-MMP in tumour invasion and also to promote tumour angiogenesis, by degrading the fibrin 

matrix that surrounds newly formed vessels (Egeblad et al., 2002). In both T- and B-cell 

lymphomas, VEGF expression at the transcript and protein level was observed.  Tumour 

vascularisation is higher in lymphomas than in control lymph nodes and increases in HG T-cell 

lymphomas. VEGF is also present in lymphoma cells. Moreover, the mRNA and protein VEGF 

results were correlated with MMP-9 results in T-cell lymphomas. These data appear to be in 

accordance with the previous work of this project, where a close relationship between MMP-9 and 

VEGF plasmatic levels in canine lymphomas was reported (Aresu et al., 2012). The same results 

were observed in canine mast cell tumours, where release of VEGF by mast cells is correlated with 

higher MMP-9 production (Giantin et al., 2012). Indeed, the feedback regulation between MMP-9 

and VEGF is assumed to be implicated in the angiogenic switch.  In conclusion, the present data 

provides new information in the complex interaction of the migration/adhesion genes and canine 

lymphoma. Further efforts should be directed towards clarifying the detailed molecular 

mechanisms, including signal transduction and polymorphisms, which may lead to novel 

therapeutic strategies. The tumour vasculature is an attractive target for lymphoma therapy. The 

results from this study also indicate that differences between lymphoma subtypes must be taken 

into account in the selection of the most suitable dogs for trials with anti-angiogenic agents. 
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5.3. SECTION 3: Matrix metalloproteinases and vascular endothelial 

growth factor expression in canine leukaemias*§ 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Adapted with the permission of “Elsevier” from: Aricò A, Giantin M, Gelain M, Riondato F, Mortarino M, 

Comazzi S, Dacasto M, Castagnaro M, Aresu L. Vet J. 2012 Nov 7. pii: S1090-0233(12)00426-1. doi: 

10.1016/j.tvjl.2012.10.004. © 2012 Elsevier Ltd. All rights reserved. 

§
 Presented at the 2012 World Veterinary Cancer Congress, Paris, France, March 1-2-3, 2012.  



PHASE 3 - SECTION 3: MMPs and VEGF expression in canine leukaemias  Pag. 90 

BACKGROUND 

Acute lymphoblastic leukaemia (ALL) is an uncommon but devastating disease in dogs; it is 

frequently and rapidly fatal (Adam et al., 2009). Conversely, chronic lymphocytic leukaemia (CLL) is 

an indolent disease affecting middle-aged to elderly dogs, it is often diagnosed incidentally and 

characterised by an indolent behaviour (Comazzi et al., 2011). Although canine acute and chronic 

leukaemias show different clinical behaviour and outcome, leukaemic cells proliferate abnormally, 

replacing normal bone marrow tissue and contributing to invasion of the extra-cellular matrix 

(ECM) and resulting blood involvement (Adam et al. 2009).  

AIM 

To better understand the pathogenesis of canine leukaemia, the present study assessed the 

expression profiles of the MMP-2, MMP-9, MT1-MMP, TIMP-1, TIMP-2, RECK and VEGF-A genes 

and the protein levels of MMP-2, MMP-9 and VEGF-A in canine leukaemia. 

 

METHODS 

Caseload and classification 

Peripheral blood samples were collected in EDTA-containing tubes from dogs with haematopoietic 

neoplasia and sent for diagnostic purposes by the referring veterinarians to the Department of 

Veterinary Pathology, Hygiene and Health at the University of Milan and to the Department of 

Animal Pathology at the University of Turin. Each blood sample was analysed using the Sysmex XT-

2000iV (Sysmex Corporation, Kobe, Japan). Peripheral blood and bone marrow smears, when 

available, were stained with May–Grunwald–Giemsa (Merck KGaA, Frankfurt, Germany) and used 

to obtain leukocyte differential counts and morphologic evaluations of the blast cells. To 

determine the immunophenotype, flow cytometric analyses were performed on the peripheral 

blood samples after erythroid lysis in 2 mL of erythrocyte lysis buffer (9% ammonium chloride, 1% 

potassium bicarbonate, 0.037% ethylenediaminetetraacetic acid (Sigma Aldrich, Munich, 

Germany)). The cells were suspended in RPMI 1640 medium (Sigma Aldrich, Munich, Germany) 

containing 5% foetal bovine serum and 0.2% sodium azide to a final concentration of 1 × 10
4
 

cells/µL, and 50 µL of the cell suspensions was used in each tube for the labelling procedures. The 

details of antibodies are reported in Phase 3 – Section 2. Clinical, clinicopathological and 

immunophenotypic data were used to classify leukaemia samples as previously described (Gelain 

et al, 2010). In particular, AL was diagnosed by the presence of: moderate to severe anaemia 
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and/or thrombocytopaenia, leukocyte morphology suggestive of immature or blast cells, more 

than 20% of blast cells in the bone marrow, CD34 positivity, and either CD3, CD5, CD4, and CD8 

positivity for T-cell ALL, or CD21 and CD79a positivity for B-cell ALL. Samples were classified as 

acute undifferentiated leukaemia (AUL) when the atypical cells expressed only CD34 and CD45. CLL 

was diagnosed by the presence of: severe lymphocytosis, monomorphic population of mature 

lymphocytes, negative serologic titre for Ehrlichia, Leishmania or any other identifiable cause of 

lymphocytosis, and either CD3, CD5, CD4 and CD8 positivity for T-cell CLL, or CD21 and CD79a 

positivity for B-cell CLL. Six peripheral blood samples for immunocytochemical analysis and four 

peripheral blood samples for quantitative real-time RT-PCR from healthy dogs matched according 

to age, breed and gender were used as controls. All samples were obtained during an annual 

general health visit, and informed consent was obtained from all owners. 

Sampling procedure  

Peripheral blood samples collected in EDTA tubes were firstly submitted to erythroid lysis with 2 

mL of erythrocyte lysis buffer. A portion of the sample was used for routine flow cytometric and 

immunocytochemical analyses, whereas the remainder was placed in polypropylene tubes with 10 

parts of RNAlater
®
 solution (Life Technologies, Foster City, CA) for total RNA isolation.  At least 0.5 

mL of each cell suspension containing of 2 × 10
6
 cell/mL with good viability was required for total 

RNA isolation.  To obtain pure lymphocytes from healthy controls, EDTA blood from the four 

healthy dogs was pooled. After red blood cells (RBCs) lysis, lymphocytes were separated through 

granulocytes+monocytes depletion, using MACS separation system. Briefly, after staining with 

anti-CD11b (clone CA16.3E10, Serotec) and anti-NSA monoclonal (clone CADO48A, VMRD Inc., 

WA) antibodies (both IgG1 isotype), pelleted leukocytes were magnetically labelled with anti-IgG1 

microbeads and passed through MS columns placed in the magnetic field (MACS separator), thus 

collecting the CD11b-negative NSA-negative fraction. Removing the column from the separator, 

the magnetical retained (CD11b+NSA+) fraction was eluted in a separate tube. Subsequently, 

purity (98%) and recovery (99%) of lymphocytes were determined by flow cytometric analysis (BD 

Accuri C6) as percentage of CD11b-negative cells in the unlabelled fraction and percentage of 

CD11-positive cells in the labelled fraction, respectively. 

Quantitative real-time RT-PCR (qRT-PCR) 

Total RNA isolation, cDNA synthesis, primers, calibration curve data and the formulation of final 

value are reported in Phase 3 – Section 2.  
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Immunocytochemical analysis 

The details of the immunohistochemal performance, the antibodies and the labelling valuation are 

described in Phase 3 – Section 2.  

Statistical analysis 

The statistical analysis of the gene expression results was performed using the Mann–Whitney 

test, whereas the immunocytochemistry data were analysed using the Kruskal-Wallis test followed 

by Dunn’s posttest. A non-parametric Spearman correlation analysis was used to determine 

potential relationships among target genes and between target genes and percentage of 

neoplastic cells. GraphPad Prism 5 software (San Diego, California, USA) was used for all statistical 

evaluations. Statistical significance was set at p<0.05. Finally, Grubbs’ test was used to identify 

potential outliers. 

 

RESULTS 

Clinical results 

Peripheral blood samples were obtained from 23 dogs.  According to the haematological and flow 

cytometric diagnosis, 11 dogs were classified as AL: 2 T-cell (CD34+CD5+), 2 B-cell (CD34+CD79a+) 

and 7 acute undifferentiated leukaemias (CD34+). Eleven dogs were females and one male, with a 

median age of 8 years (range, 2-12 years). All of the dogs were anaemic, thrombocytopenic 

associated with leucocytosis.  Twelve dogs where classified as T-CLL: 8 CD8+, 1 CD4+, 1 CD21+ and 

2 CD4-CD8-). Ten dogs were males and 2 females, with a median age of 10 years (range, 5-13 

years). All of the dogs showed leucocytosis and six of them were anaemic. The median percentage 

values (range) of neoplastic cells in blood were 98.1 (72-100) for AL and 88.2 (72-96) for CLL. 

qRT-PCR 

The gene expression results are summarised in Table 1 and 2. In lymphocyte control pool the 

mRNA expression of target genes was generally very low: MMP-2 mRNA was undetectable (n.d.); 

MMP-9, TIMP-2 and RECK mRNAs were detectable but not quantifiable (n.q.); MT1-MMP, TIMP-1, 

VEGF-A and VEGF-164 mRNAs were detectable and quantifiable. All selected genes were 

successfully amplified in ALL and CLL groups, with the exception of MMP-2.  All the genes were 

more expressed in AL and CLL than control lymphocytes (MT1-MMP only for AL), except for TIMP-

1 that showed a lower level of gene expression in pathological samples  compared with control 

lymphocytes and MMP-2 that was never amplifiable.  Although not statistically significant, the 
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mRNA levels of MMP-9, TIMP-1, RECK and VEGF-A were higher in CLL compared to AL cases. 

Instead TIMP-2 and MT1-MMP mRNA levels were significantly higher in AL than CLL. In CLL, 

significant positive correlations were found between MMP-9 and VEGF mRNAs (p<0.01; Spearman 

r = 0.7545) and between MMP-9 and TIMP-1 mRNAs (p<0.05, Spearman r = 0.6182). Moreover,  

the gene expression results were correlated with the percentage of neoplastic cells in the AL and 

CLL blood samples. Negative correlations were found between the percentage of neoplastic cells 

for MMP-9 mRNA (p<0.01; 95% confidence interval-CI- "-0.9259 to -0.2760"; Spearman r = -

0.7426), for VEGF mRNA (p<0.05, 95% CI "-0.8761 to -0.01326"; r = -0.5954), for TIMP-1 mRNA 

(p<0.05, 95% CI "-0.8836 to -0.04644"; r = -0.6165) and for TIMP-2 mRNA (p<0.05, 95% CI "-0.8970 

to -0.1107"; r = -0.6550). Furthermore, the percentage of neoplastic cells was negatively 

correlated with MMP-9 mRNA (p<0.05; 95% CI "-0.9188 to -0.1530"; r = -0.7002). 

 

Table 1.  MMP-9, MMP-2, TIMP-2 and RECK mRNA expression in AL and CLL 

Target Genes ALL CLL p values 

MMP-9 0.20 ± 0.19 0.59 ± 0.64 0.1891 

MMP-2 n.d. n.d. - 

TIMP-2 5.28 ± 3.94 0.51 ± 0.60 0.0043 

RECK 0.11 ± 0.12 0.23 ± 0.19 0.1611 

Data are expressed as relative quantification values; arbitrary units (mean ± SD) 

n.d. = not detectable  

Control lymphocytes = not quantifiable 
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Table 2. MT1-MMP, TIMP-1, VEGF-A and VEGF-164 mRNA expression in AL and CLL 

Target Genes ALL CLL p values 

MT1-MMP 1.20 ± 0.91 0.36 ± 0.48 0.0316 

TIMP-1 0.39 ± 0.25 0.77 ± 0.72 0.2485 

VEGF-A 2.55 ± 3.17 3.19 ± 3.57 0.8777 

VEGF-164 4.10 ± 5.05 4.07 ± 4.75 0.7818 

Data are expressed as fold changes; arbitrary units (mean ± SD) 

Control lymphocytes = 1 

 

 

Immunocytochemical analysis 

Immunocytochemical data for MMP-9, MMP-2 and VEGF-A are summarised in Table 3. The scores 

for all of the assessed proteins were higher in CLL than in AL (Fig. 1, 2); a significant difference was 

observed between the control peripheral blood and the leukaemia blood samples (p<0.05). 

 

Table 3. Immunostaining score values for MMP-9, MMP-2 and VEGF-A expressed as the mean 

(range)  

 Control peripheral blood AL CLL p values 

MMP-9 0.66 ± 0.51 78.11 ± 64.48 104.1 ± 36.8 0.0009 

MMP-2 0.16 ± 0.40 56 ± 53.5 71.73 ± 35.51 0.0008 

VEGF-A 0.5 ± 0.54 21.33 ± 23.62 27.9 ± 15.62 0.0008 
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Fig. 1. ALL. Peripheral blood. (a) plasma cells and lymphoid leukaemia cells brown immunostained for 

MMP-2 (arrow); (b) lymphoid leukaemia cells intensely immunostained for MMP-9 (arrow); and (c) VEGF 

(arrow). Immunocytochemistry, (bar = 70 lm). 
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Fig. 2. CLL. Peripheral blood. lymphoid leukaemia cells intensely and diffusely brown immunostained for (a) 

MMP-2 (arrow), (b) MMP-9 (arrow), and (c) VEGF (arrow). Immunocytochemistry, (bar = 70 lm). 
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DISCUSSION 

Angiogenesis and invasion play an essential role in tumour growth both in solid and hematopoietic 

tumours in humans (Moehler et al., 2003). Invasion and dissemination of neoplastic cells are 

regulated by several compounds, in particular MMPs and TIMPs. VEGF has also an influence in this 

contest and in tumoural neoangiogenesis (Hayashibara et al., 2002, Pedersen et al., 2005, Buggins 

et al., 2011). In veterinary medicine, different works report the role of these molecules in solid 

tumours, but there are no data for haematological malignancies. The aim of this study was to 

investigate different MMPs, their regulators and VEGF in canine acute and chronic leukaemias by 

assessing their mRNA and protein expression profiles. By definition, AL is the uncontrolled 

proliferation or expansion of haematopoietic cells that are arrested in an early stage of 

development. The excessive egress from the bone marrow into the peripheral blood is followed by 

the infiltration and by the failure of other tissues and organs (Adam et al., 2009). On the contrary, 

CLL is an indolent disease characterised by the accumulation in the bone marrow of long-lived cells 

of low proliferative rate, leading to progressive peripheral lymphocytosis (Seelig et al., 2010). In 

the present study, AL and CLL showed high MMP-9, VEGF-A and VEGF-164 mRNA levels and a 

positive correlation between MMP-9 and VEGF and between TIMP-1 and MMP-9 was 

demonstrated in CLL. All the target genes were also screened in pure lymphocytes obtained from 

healthy control donors. MMP-9 mRNA was not quantifiable and the protein was not expressed in 

control lymphocytes; whereas higher MMP-9 transcript and protein levels were present in CLL 

compared to AL. Different authors reported that MMP-9 is necessary for cellular mobility, 

transendothelial migration and basement membrane invasion by neoplastic cells (Ries et al., 1999, 

Redondo-Munoz et al., 2008). This may be valid in dog where CLL is characterized by the 

accumulation in the peripheral blood of neoplastic lymphocytes, which progressively infiltrate the 

bone marrow and secondary lymphoid tissues. VEGF was highly expressed at the mRNA and 

protein level in both AL and CLL in respect to control lymphocytes; furthermore, the values for this 

protein were higher in CLL compared to AL. The hypothesis is that VEGF elevated levels in 

leukaemic cells could stimulate the growth of new blood vessels in the angiogenetic process and 

subsequently increase the permeability of endothelium and the cell motility through the vessels 

leading to the dissemination of cells into organs (Letilovic et al., 2006). Several studies have also 

indicated that VEGF may promote tumour proliferation (Hayashibara et al., 2002; Poyer et al., 

2009; Gehrke et al., 2011). Moreover, a significant positive correlation between VEGF and MMP-9 

mRNA levels was demonstrated in CLL samples. It is already known that MMP-9 and VEGF are two 
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of the most potent factors involved in angiogenesis through different mechanisms. This result 

provides evidence of the role of MMP-9 in the regulation of neovascularisation in a sort of vicious 

circle with VEGF. At first, VEGF can stimulate MMP-9 secretion acting as an autocrine factor and 

subsequently MMP-9 can release different angiogenic factors that bind to ECM, such as VEGF 

(Bergers et al., 2002; Moehler et al., 2003). In human medicine, both proteins are correlated with 

the substage of the disease and the risk of progression in CLL; follow-up data were not complete 

and survival analysis was not performed in this study (Letilovic et al., 2006). TIMP-1 transcript was 

expressed in both AL and CLL, and a significant positive correlation between MMP-9 and TIMP-1 

levels was demonstrated in CLL. MMP-9 is frequently found to be co-expressed with TIMP-1 in 

canine solid tumours; the same mechanism in CLL was confirmed (Aresu et al., 2011). TIMP-1 is 

also associated with a more aggressive clinical behaviour in human leukaemias, acting as an anti-

apoptotic and differentiation-promoting factor (Kossakowska et al., 1991; Kossakowska et al., 

1999; Scrideli et al., 2010). Interestingly, TIMP-2 mRNA expression was no quantifiable in control 

lymphocytes, whereas the data was 5-fold higher in AL than in CLL. According to literature, TIMP-2 

plays several roles in tumourigenesis, and is associated with an unfavourable prognosis and 

tumour progression (Egeblad et al., 2002). In canine AL samples, TIMP-2 was one of the most 

highly expressed genes and this might be concordant with the well-known erythroid-potentiating 

activity and the stimulation of leukaemic cells and fibroblasts growth of this protein (Stetler-

Stevenson et al., 1992; Hayakawa et al., 1994; Corcoran et Stetler-Stevenson, 1995). 

Unfortunately, no data for TIMP-2 protein were available in this work but the negative correlation 

with MMP-2 observed demonstrate that the biological role of natural inhibitor of MMP-2 

proteolytic activity is still active. MT1-MMP transcript was significantly different between AL and 

CLL. MT1-MMP is usually localised on the cell surface, where it regulates different members of the 

MMPs family, such as pro-MMP-2 and pro-MMP-13, creating a wider proteolytic repertoire on the 

cell surface. In particular, the MMP-2 activity is regulated by the formation of a ternary complex 

that consists of the C-terminal domain of pro-MMP-2, TIMP-2 and MT1-MMP.  The comparable 

results for TIMP-2 and MT1-MMP suggest the presence of this mechanism in AL. However, MT1-

MMP alone can also degrade various ECM macromolecules, including collagen, fibronectin and 

laminin (Egeblad et al., 2002). Hotary et al. (2003) reported that the expression of MT1-MMP is 

crucial for cancer cell growth in a 3D collagen-based matrix, suggesting that MT1-MMP has an 

important role in cancer invasion. CLL, AL and control lymphocytes showed an undetectable level 

of MMP-2 mRNA. MMP-2 expression is rarely observed in human ALL (Kuittinen et al., 2001; 
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Scrideli et al., 2010). Paradoxically, MMP-2 protein expression was identified in leukaemic cells by 

immunocytochemical analysis but not in lymphocytes in control blood. This discrepancy can be 

explained by the fact that MMP-2 protein activity is mainly regulated at the post-transcriptional 

level (Brown et al., 1990). In different solid tumours it has been demonstrated the catalytic activity 

of MMP-2 with insignificant expression of MMP-2 mRNA (Caenazzo et al., 1998; Aresu et al., 

2011). Interestingly, an inverse correlation between the percentage of neoplastic cells and the 

expression of all the genes was identified in CLL. Similar result was obtained for MMP-9 in AL. The 

residual population (i.e. neutrophils and monocytes) might influence the expression levels of 

MMP-9, MT1-MMP, VEGF and TIMPs, proportionally. It's already known that neutrophils and 

monocytes are able to express physiologically different MMPs, it remains still not fully understood 

the participation of these cells in the tumour microenvironment (Letilovic et al., 2006). In 

conclusion, significant relationships were demonstrated between MMP-9 and VEGF and between 

MMP-9 and TIMP-1 in CLL. MMP-9, TIMP-1 and VEGF were highly expressed in CLL and TIMP-2 and 

MT1-MMP in AL. In this study a first evidence of the potential role of these molecules was 

provided in pathogenesis of canine leukaemia. Further studies are needed to clarify the detailed 

molecular mechanisms involved in the signal transduction of MMP-2, MT1-MMP and their specific 

regulators/inhibitors. Moreover, MMP-9 and VEGF could be further investigated in plasma during 

haematological malignancies in dogs and correlated to the clinical data. Understanding their roles 

may help in designing new therapeutic strategies for canine leukaemias.  
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5.4. SECTION 4: Expression of Matrix Metalloproteinases, Tissue 

Inhibitors of Metalloproteinases and Vascular Endothelial 

Growth Factor in Canine Lymphohematopoietic malignancies 

cell lines 
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BACKGROUND 

Several studies in human lymphohematopoietic malignancies were performed in vitro to elucidate 

the possible involvement of growth factors and proteinases without the confounding influence of 

stromal and endothelial cells found in lymphoma tissue specimens. MMPs have been investigated 

in human cell lines of B and T-cell origin (Kossakowska et al., 1999; Stetler-Stevenson et al., 1997). 

More recently VEGF and its receptors were detected in human cell lines of cutaneous T-cell 

lymphoproliferative disorders (Pedersen et al., 2012) and in precursor B-cell acute lymphoblastic 

leukaemia cell line (El-Obeid et al., 2004). To date, little is known about these molecules in canine 

tumour cell lines: in vitro MMPs were detected in canine melanoma (Docampo et al., 2011), 

macrophage/monocytic tumour (Puff et al., 2009) and osteosarcoma (Loukopoulos et al., 2004), 

whereas VEGF and its receptors in canine mastocytoma (Rebuzzi et al., 2007). 

AIM 

The aim of this study is to consider the expression of various MMPs and their inhibitors, VEGF and 

VEGFR-2 at both the mRNA and protein levels in four different canine lymphohematopoietic 

malignancies cell lines. These analyses were performed to elucidate the possible involvement of 

these molecules without the confounding influence of microenvironment in the pathogenesis of 

canine lymphoid neoplasms. 

 

METHODS 

Cell lines 

Canine cell lines used in this study include: B-cell lymphoma cell line CLBL-1 (Rütgen et a., 2010),T-

cell lymphoma cell line OSW (Kisseberth et al., 2007), T-lymphoblastoid cell line CL-1 (Momoi et 

al., 1997) and B-cell leukaemia cell line GL-1 (Nakaichi et al., 1996) (Fig. 1). The cell culture 

conditions were described previously by Rütgen et al. (2010). 
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Fig. 1. Canine lymphohematopoietic malignancies cell lines. A) B-cell lymphoma cell line CLBL-1. B) T-cell 

lymphoma cell line OSW. C) T-lymphoblastoid cell line CL-1. D) B-cell leukaemia cell line GL-1. 

(Haematoxylin-Eosin - 400X)  

 

Sampling procedure 

The cells were harvested at the exponential growth phase, washed 3× in RPMI 1640 medium 

(Sigma Aldrich, Munich, Germany) with serum (as an internal control – conditioned medium 

presents slight amounts of MMPs) or serum-free, aliquoted at a concentration of 2 × 10
6
cells/mL 

and incubated for 24 hours at 37°C and 5% CO2. The cell-conditioned media (supernatants) were 

collected to perform gelatin zymography, whereas two samples were obtained from each cell 

pellet for immunocytochemical analysis and total RNA extraction. For both protein and mRNA 

expression, at least 0.5 mL of each cell suspension containing of 2 × 10
6
 cell/mL of good viability 

was required. 
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Quantitative real-time RT-PCR (qRT-PCR) 

The total RNA was isolated using the RNeasy Mini Kit (Qiagen, Hilden, Germany) according to the 

manufacturer’s instructions. To avoid genomic DNA contamination, on-column DNase digestion 

with the RNase-Free DNase set was performed. cDNA syntheses were done using 250 ng RNA and 

the QuantiTect Reverse Transcription Kit (Qiagen, Hilden, Germany) following the manufacturer’s 

protocol. Primers, calibration curve data and the formulation of final value are reported in Phase 3 

– Section 2.  

Immunocytochemical analysis 

The protein expression levels of MMP-2, MMP-9, MT1-MMP, TIMP-2, VEGF-A and VEGFR-2 were 

evaluated by immunocytochemistry. The details of the immunohistochemal performance are 

described in Phase 3 – Section 2. The pertinent antibody details are summarized in Table 1. The 

intensity and the index of immunoassayed tumour cells were assessed for each antibody. 

Antibodies labelling index was defined as the percentage of tumour cells displaying 

immunoreactivity in ten randomly selected fields at 400x magnification. An intensity score of 0 

was given when no staining was detected, a score of 1 denoted moderate staining and a score of 2 

represented strong staining. The total score for each examined field was obtained by multiplying 

the intensity score by the index. A final ratio was obtained after averaging the ten selected fields. 

The image analysis system included an Olympus BX51 microscope and a software analysis 

(analySIS, Soft imaging system, Münster, Germany). 
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Table 1: Details of antibodies 

Antigen Source Clone Dilution Manufacturer 

MMP-9 Human C-TERM 1:200 Millipore S.p.A, Milan, Italy 

MMP-2 Human Ab-7 1:100 Thermo Fisher Scientific Inc., Kalamazoo, 

Michigan, USA 

TIMP-2 Human MAB 3310 1:500 Chemicon (Millipore) 

MT1-MMP Human AB8221 1:200 Chemicon (Millipore) 

VEGF-A Human A-20 – sc:152 1:100 Santa Cruz Biotechnology, Inc., Santa Cruz, 

California, USA 

VEGFR-2 Human Flk-1 (A-3): sc-6251 1:50 Santa Cruz Biotechnology, Inc., Santa Cruz, 

California, USA 

 

MMPs analysis using gelatine zymography 

MMP-2 and MMP-9 activity was studied by zymography. A 1:4 dilution was made from 

supernatants of each cell line into sample buffer, and 60 μL of the diluted sample was subjected to 

electrophoresis on an 8% SDS-PAGE gel co-polymerized with 0.1% gelatine. Other details about 

gelatine zymography performance and the quantification of bands are reported in Phase 1. 
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RESULTS 

Gene expression 

The gene expression results for each cell line are summarised in Table 2. A higher MMP-9 mRNA 

expression was observed in OSW compared to the other cell lines; whereas MMP-2 was 

undetected in all cell lines. MT1-MMP and TIMP-1 expressions were observed in T-cell line (OSW), 

but no results were obtained in CLBL-1, CL-1 and GL-1. VEGF-A and VEGFR-2 transcripts were 

detected in all cell lines, but expression levels were higher in GL-1. Whereas B-cell leukaemia cell 

line (GL-1) presented higher TIMP-2 mRNA expression respect to CLBL-1, OSW and CL-1, which 

exhibited expression values close to 0. RECK was detected in the four cell lines, but T-cell line 

(OSW) presented a higher expression profiling. 

 

Table 2. MMP-9, MMP-2, MT1-MMP, TIMP-1, TIMP-2, VEGF-A, VEGF-164 and RECK mRNA 

expression in the four cell lines. 

CLBL-1 OSW CL-1 GL-1 

MMP-9 0,76 1128,35 0,05 0,03 

MMP-2 0,00 0,00 0,00 0,00 

MT1-MMP 0,04 4,11 0,01 0,00 

VEGF-A 4,87 1,42 3,11 9,42 

VEGF-164 7,99 3,18 4,68 20,53 

TIMP-1 0,72 2,38 0,00 0,72 

TIMP-2 0,00 0,82 0,00 28,54 

RECK 4,32 19,56 6,84 5,96 

Data are expressed as relative quantification values (mean ± SD) 
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Immunocytochemistry 

Immunocytochemical results are summarised in Table 3. The immunostaining scores for the target 

proteins were variable. CLBL-1 and OSW were positive immunostained for all markers (Fig. 2). 

 

Table 3. MMP-9, MMP-2, MT1-MMP, VEGF-A, VEGFR-2 and TIMP-2 protein expression in the four 

cell lines. 

CLBL-1 OSW CL-1 GL-1 

MMP-9 88 190 0 100 

MMP-2 44 0 0 90 

MT1-MMP 62 100 0 92 

VEGF-A 80 30 0 0 

VEGFR-2 68 90 92 0 

TIMP-2 46 198 100 198 

Data are expressed as immunostaining scores 
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Fig. 2. Immunostaining in four canine lymphohematopoietic malignancies cell lines. A) Intense MMP-2 

immunopositivity in CLBL-1. B) Moderate MT1-MMP immunopositivity in OSW. C) Intense MMP-9 

immunopositivity in OSW. D) Intense TIMP-2 immunopositivity in GL-1. E) Intense VEGF immunopositivity in 

CLBL-1. D) Intense VEGFR-2 immunopositivity in CL-1. (Immunohistochemistry, 400×). 
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Gelatin zymography 

Catalytic activities of both latent and mature form of MMP-2 and MMP-9 were undetected in all 

cell lines except for pro-MMP-9, which presented an identifiable band (Fig. 3). 

 

 

Fig. 3. Representative MMP zymography from canine Lymphohematopoietic malignancies cell lines, 

grown in the last 24 hours in medium with serum (as internal control) and serum-free. Lanes 1: positive 

control. Lane 2 and 3: CLBL-1 with serum and serum-free. Lanes 4 and 5: OSW with serum and serum-free. 

Lane 6 and 7: CL-1 with serum and serum-free. Lane 8 and 9: GL-1 with serum and serum-free. Lane 10: 

negative control. 

 

DISCUSSION 

Because the bone marrow and lymphatic organs are predominant sites of tumour accumulation in 

hematologic malignancies, it was initially believed that angiogenesis, in association with 

mechanisms of tumour invasion and growth, would not be as relevant in these disorders (‘‘liquid 

tumours’’) as it is in solid tumours. However many studies showed a relation between various 

hematologic malignancies and changes in the angiogenic profile (Letilovic et al. 2006). In this study 

different molecules in vitro were assessed, which are involved in the tumour invasion and 

angiogenesis to exclude the influence of microenvironment. The involvement of the MMPs and 

TIMPs in development of the metastatic phenotype in hematopoietic neoplasms both in vitro and 

in vivo is well established (Kossakowska et al., 1999; Stetler-Stevenson et al., 1997). The expression 

of MMP-9 using the sensitive zymogram technique didn’t show significative results for the four cell 
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lines in the present study. A considerable amount of the zymogram detection of pro-MMP-9 was 

only detected in the T-cells lymphoma (OSW), in association with its high mRNA and 

immunolabelling expression level. Biologically the role of this enzyme in normal lymphocyte is to 

permit the migration from the vascular compartment to sites of inflammation, contributing 

significantly to events associated with T-cell transmigration across the subendothelial basement 

membrane (Stetler-Stevenson et al., 1997). This process could be comparable to invasion of 

structures by lymphoma or leukemic cells, indicating that MMP-9 may play an important role 

correlated to the immunophenotype. Furthermore previous studies demonstrated that lymphoid 

cells in vitro, also using Matrigel (reconstituted basement membrane), may be induced to produce 

MMP-9 (Kossakowska et al., 1998). MMP-2 was not detected by RT-PCR and gelatin zymography, 

whereas the immunostaining expression was observed in B-cell lymphoma cell line (CLBL-1) and B-

cell leukaemia cell line (GL-1). This discrepancy between different methods, also observed in vivo, 

might be explained by the fact that MMP-2 protein activity is mainly regulated at the post-

transcriptional level (Brown et al., 1990). In different solid tumours it has been demonstrated the 

catalytic activity of MMP-2 with insignificant expression of MMP-2 mRNA (Caenazzo et al., 1998, 

Aresu et al., 2011). The same discrepancy was identified in CLBL-1 and GL-1 in regard to MMP-9 

results: lymphoid cells may produce MMPs upon interaction with basement membrane 

components, such as laminin, type IV collagen, or heparan sulfate proteoglycan, or in response to 

other tissue-specific interactions (eg, interaction with endothelial cells) that are not present under 

in vitro tissue culture conditions. Moreover the identification of the gelatinases mRNAs is, 

however, not synonymous with the presence of their enzymatic activity, as mRNA codes for the 

protein, which at first is present in the inactive latent form. The enzymatic activity of gelatinases is 

dependent on the activation of their latent forms (Kossakowska et al., 1998). High levels of TIMP-2 

RNA transcript and protein expression in B-cell leukaemia cell line (GL-1) were demonstrated, 

whereas TIMP-1 presented a similar trend with MMP-9, supporting the hypothesis that MMP-9 

and TIMP-1 may act in concert in canine T-cell lymphoma. Although the gelatinases may be 

expressed under different culture conditions, one would expect regulation of TIMP-1 and TIMP-2 

mirroring the one of MMP-9 and -2, due to the inhibitory action of the TIMPs. Therefore, the 

constitutive expression of the TIMPs without gelatinases suggests that they may have a growth 

factor activity (Kossakowska et al., 1991), similar to the demonstrated erytroid-potentiating 

activity (Stetler-Stevenson et al., 1997). 
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Interestingly MT1-MMP RNA transcript and protein reflected MMP-9 trend, with high values in 

OSW. Like MMP-9, MT1-MMP is known to have an important functional role in tumour invasion; it 

degrades ECM macromolecules, cytokines, and chemokines and stimulates the mobility and 

migration of neoplastic cells. MT1-MMP is also known to promote tumour angiogenesis, degrading 

the fibrin matrix that surrounds newly formed vessels (Egeblad et al., 2002). In regard to VEGF, the 

principal molecule and the isoform -164 were always expressed and presented similar trends with 

a higher mRNA expression level in GL-1 respect to the other cell lines. On the contrary in GL-1, 

VEGF-A protein expression was not observed. This could be explained by the fact that tumour 

growth in chronic lymphocytic leukaemia (CLL), as well as in other hematologic malignancies, is 

strongly influenced by angiogenesis, primarily through powerful cytokine interactions, both 

paracrine and autocrine. These interactions are found between at least three subsets of cells 

found in bone marrow: endothelial cells, nearby stromal cells and malignant CLL cells, which 

produce angiogenic factors such as VEGF, but only the first two could trigger the activation of 

these factors (Letilovic et al., 2006). In this study T-cell lines (OSW and CL-1) expressed higher 

levels of RECK mRNA than their B-cell counterparts (CLBL-1 and GL-1), as it was observed in vivo. It 

is hypothesised that RECK expression inversely correlates with that of MMPs due to its tumour-

suppressing activity (Noda et al., 2003). These results indicate that this simple direct relationship 

cannot hold true in the context of canine lymphomas. In humans, RECK down-regulation has been 

correlated with tumour progression and angiogenesis (Noda et al., 2003), but, in literature, no 

data have demonstrated the biologic behaviour of RECK in haematopoietic malignancies. In dogs, 

the mRNA expression levels of RECK in some tumour tissue samples were significantly lower than 

those in normal tissue samples (Takagi et al., 2005; Aresu et al., 2011). To my knowledge, this is 

the first study investigating MMPs and VEGF in canine hematopoietic cell lines by using transcript 

and protein analyses. The potential role of MMP-9, TIMP-1 and -2 in tumour invasion was 

confirmed. Moreover it was demonstrated that cancer cells in primary tumours have a strict 

interaction with their supportive microenvironment, which triggers the secretion of growth factors 

and proteases. This process allows amplifying activation the signals in the cascade that results in 

the establishment of an activated stroma that promotes malignant tumour growth. Further efforts 

should be directed towards new therapeutic approaches in the treatment of canine lymphoid 

malignancies focused on tumour microenvironment. 
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5.5. SECTION 5: Expression of Platelet-derived Growth Factor and its 

receptors in canine Lymphoma 
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BACKGROUND 

Platelet-derived growth factor (PDGF) and its receptors play a significant role in human 

hematopoietic malignancies. In Hodgkin’s lymphoma, it has been shown that the majority of Reed-

Sternberg cells express PDGFR-α and are dependent by PDGFR signalling, whereas normal B-cells 

or B-cells in NHL do not express PDGFR and do not rely on its signalling (Renne et al., 2005). 

Karabatsou et al. (2006) showed that primary central nervous system lymphomas express PDGFR-

α in the majority of investigated cases, whereas PDGF-A is expressed less frequently. A study on 

NHL showed PDGF-B level decrease after radiotherapy, with a possible predictive significance for 

response to treatment and recurrence (Ria et al., 2008), whereas Duşe et al. (2012) assessed 

PDGF-Rs protein expression in NHL. Interestingly, Ho et al. (2005) analysed the expression of PDGF 

in B-cell lineage, showing that abundant PDGF-A, rather than PDGF-B, was expressed in normal B 

cells. No difference was reported for the expression of PDGF-A and PDGF-B between patients with 

reactive lymphoid hyperplasia and B-cell chronic lymphocytic leukaemia (B-CLL) and B-cell 

lymphoma. Among the patients with B-CLL, the expression of PDGF-B was stronger than the 

expression of PDGF-A. They concluded that PDGF-A it is important in B cell differentiation and 

proliferation, considering its expression in all stages of B lymphocyte differentiation, whereas the 

expression of PDGF-B and PDGFR-β suggests that autocrine signalling of PDGF may be important in 

malignant transformation of B-CLL. At present time no data are available on the expression of 

PDGF and its receptors in canine hematopoietic malignancies. 

AIM  

To understand the possible correlation between the expression of PDGF-A and -B, in association 

with the expression of PDGFR-α and -β in canine lymphoma, their gene expression profiling will be 

defined in dogs with B-cell and T-cell lymphoma and with reactive hyperplasia, also focusing on 

possible prognostic and predictive role of these molecules. To combine and compare work in vitro 

and in vivo, PDGF-A, -B, PDGFR-α and -β mRNA expression was also assessed in four different 

canine lymphohaematopoietic tumour cell lines. 
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METHODS 

Cell lines 

Canine cell lines used in this study include: B-cell lymphoma cell line CLBL-1 (Rütgen et a., 2010),T-

cell lymphoma cell line OSW (Kisseberth et al., 2007), T-lymphoblastoid cell line CL-1 (Momoi et 

al., 1997) and B-cell leukaemia cell line GL-1 (Nakaichi et al., 1996) (Fig. 1). The cell culture 

conditions, sampling procedure and generated cDNA are described in Phase 3 – Section 4. 

Case Selection and Tissue Sampling 

Forty-two dogs underwent complete staging work-up, including physical examination, complete 

blood cell count, peripheral blood and bone marrow aspirate, thoracic radiography and abdominal 

ultrasound. Flow cytometric and cytological analysis of nodal or cutaneous fine-needle aspirate 

were described previously by Aresu et al. (2012). Furthermore histological examination and 

immunohistochemistry of nodal or cutaneous biopsy were assessed. Fresh tissue samples were 

also obtained and excised tumour lesions were immediately divided into aliquots and stored under 

diverse conditions for different analytical techniques. The dogs underwent surgery due to evident 

disease, and the explicit consent of the owner was obtained. Five control lymph nodes were 

obtained from pathogen-free adult dogs, with consent of owners. For histological examination and 

immunohistochemistry, the tissue was formalin-fixed and paraffin embedded. For RNA isolation, 

aliquots of approximately 100 mg were immersed in RNAlater® solution (Applied Biosystems, 

Foster City, CA) and stored at -20°C until use. Owners of dogs with lymphoma were offered to 

treat their animals with multidrug chemotherapy, consisting of doxorubicin, vincristine, 

cyclophosphamide, L-asparaginase and prednisone (Simon et al., 2006). In these dogs, fresh 

tissues were collected at three time points (at diagnosis, at the end of treatment and at relapse).  

Histological and immunohistochemical examination 

Samples were fixed in 4% buffered formalin, embedded in paraffin and cut at 3-μm sections. For 

histological examination, slides were stained with haematoxylin and eosin. An antibody panel for 

diagnosis of lymphoid neoplasms was evaluated by immunohistochemistry. The primary antibody 

incubation step was performed by an automated system for all antibodies (Ventana Medical 

Systems). A monoclonal Mouse Anti-Human CD3 (Clone F7.2.38, Dako, Atlanta, GA, USA, T cells; 

diluted 1 in 100), a monoclonal Mouse Anti-Human CD5 (Clone CD5/54/F6, Dako, T cells; diluted 1 

in 100),  a monoclonal Mouse Anti-Human CD79αcy (Clone HM57, Dako, all stages of B-cells; 
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diluted 1 in 100), a CD20 Epitope Specific Rabbit Antibody (RB-9013-P, Thermo Fisher Scientific Inc, 

Cheshire WA7 1TA, UK, mature B cells; diluted 1 in 800) were used. The Ventana ES automated 

immunohistochemistry system was used for the remainder of the staining procedure, including 

the incubation with a biotinylated anti-mouse secondary antibody, the diaminobenzidine 

substrate and a haematoxylin counterstain. Negative control slides were incubated with isotype-

matched immunoglobulin in parallel with each staining batch to confirm the specificity of the 

antibodies. The image analysis system included an Olympus BX51 microscope. Samples were 

classified based on WHO Classification of tumours of domestic animals (Valli et al., 2002). 

Quantitative real-time RT-PCR (qRT-PCR) 

Total RNA isolation and the formulation of final value are reported in Phase 1. First-strand cDNA 

was synthesised from 300 ng of total RNA using Superscript II (Invitrogen, Life Technologies, 

Carlsbad, CA) according to the manufacturer’s protocol. The generated cDNA was used as the 

template for quantitative real-time RT-PCR (qRT-PCR) in a LightCycler 480 Instrument (Roche 

Diagnostics, Basel, Switzerland) using standard PCR conditions. The qRT-PCR reactions consisted of 

5 µl of Platinum SYBR Green qPCR SuperMix-UDG (Invitrogen, Life Technologies, Carlsbad, CA), 0,3 

µl of forward and reverse primers (10 µM) (the primer combination and final concentrations were 

optimized during assay setup) and 2,5 µl of diluted (1 to X) cDNA. The primers, shown in Table 1, 

were designed using Primer Express 2.0 (Applied Biosystem, Life Technologies, Carlsbad, CA). 

Calibration curves using a 7-fold serial dilution of a cDNA pool revealed PCR efficiencies near two 

and error values < 0.2. Canine transmembrane BAX inhibitor motif containing 4 (CGI-119) was 

chosen as reference gene for the absence of pathological state dependent differences in mRNA 

expression, as reported in Aricò et al. (2012).  
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Table 1: Primer sequences used for qRT-PCR amplification 

Genes Accession Numer Primer Sequence (5’-3’) 

PDGF-A NM_001190172.1 F: TTTGGAAGCAAGTCTGAGAGCC 

R: TGGCCTCCTCAATGCTTCTT 

PDGF-B NM_001003383.1 F: CCGAGTTGGACCTGAATTTG 

R: GTCTTGCACTCAGCGATCAT 

PDGFR-α AY525124.2 F: TTTCCCTTGGCGGCACAC 

R: GTCAGGCTTGGCCATCCG 

PDGFR-β NM_001003382.1 F: CACGCCTCTGACGAGATTTATG 

R: CTCGAGAAGCAGCACCAGCT 

 

Statistical analysis 

The statistical analysis of the gene expression results was performed using the Mann–Whitney 

test. A non-parametric Spearman correlation analysis was used to determine potential 

relationships among target genes. A non-parametric paired t test data (Wilcoxon signed rank test) 

was used to identify differences in gene expression between the samples collected in the three 

time points. GraphPad Prism 5 software (San Diego, California, USA) was used for all statistical 

evaluations. Statistical significance was set at p<0.05. Finally, Grubbs’ test was used to identify 

potential outliers. 

 

RESULTS 

Clinical results 

Thirty-three dogs with lymphoma and 9 with reactive hyperplasia were enrolled. In Table 2 

lymphoma subtypes are reported, based on cytological and flow cytometric, and histological and 

immunostochemical evaluation. At the end of treatment 4 dogs were in relapse (2 B-cell 

lymphomas and 2 T-cell lymphomas), whereas 9 dogs were in remission status (8 B-cell 

lymphomas and one T-cell lymphoma). Two out of 8 B-cell lymphoma in remission status 

experienced a relapse during the course of the study. 

 



PHASE 3 - SECTION 5: Expression of PDGF and its receptors in canine Lymphoma Pag. 116 

Table 2: Classification of lymphoid tumours 

Immunophenotype Subtype Number 

B-cell Diffuse Large B-cell Lymphoma (DLBCL) 19 

Marginal zone Lymphoma (MZL) 2 

Follicular Lymphoma (FL) 1 

T-cell Peripheral T-cell Lymphoma (PTCL) 5 

Cutaneous Lymphoma (CL) 3 

Lymphoblastic Lymphoma (LL) 3 

 

qRT-PCR 

The gene expression results for healthy control lymph nodes, reactive hyperplasia, B-cell and T-cell 

lymphomas and cell lines are summarised in Table 3. PDGF-A, PDGFR-α  and PDGFR-β mRNA 

levels in the healthy control lymph nodes were significantly higher than in lymphomas. A 

significantly higher PDGF-B mRNA expression was observed in T-cell lymphomas compared to B-

cell lymphomas. PDGF-B mRNA expression was significantly higher in cutaneous lymphomas 

respect to control lymph nodes. Interestingly PDGF-A, PDGFR-α and PDGFR-β mRNA levels in the 

healthy control lymph nodes, reactive hyperplasia and lymphoma in remission status (2,12 ± 0,91; 

2,9 ± 1,7; 1,81 ± 0,84 respectively) were similar; PDGF-B transcript amount was similar in reactive 

hyperplasias and lymphomas in remission status (1,83 ± 0,93), but lower in control lymph nodes. 

mRNA levels of all genes in cell lines were not quantifiable or very low, with the exception of 

PDGF-A and PDGFR-α mRNA expression in OSW and PDGF-A mRNA levels in GL-1. Comparing 

results at diagnosis and at the end of treatment in B-cell lymphomas, significant correlations were 

found between PDGFR-β and both PDGF isoforms at diagnosis, whereas in second time point 

between PDGF-A and PDGFR- α (Table 4). In Table 5 mRNA expression of all genes are reported in 

Diffuse Large b-cell Lymphoma (DLBCL) cases at relapse and after the end of treatment. Similar 

values at diagnosis and relapse were found whereas expression levels were higher but not 

significant at the end of chemotherapy. With a paired t test (Fig. 1) it was evident a significant 

expression trend (p < 0.05) of the 8 DLBCL cases of both PDGF isoforms and their receptors at the 

diagnosis and at the end of therapy, being higher mRNA levels at the second time point. 
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Table 3:  PDGF-A, PDGF-B, PDGFR-α and PDGFR-β mRNA expression in reactive hyperplasia, B-cell 

and T-cell lymphoma 

  PDGF-A PDGF-B PDGFR-α PDGFR-β 

B-cell lymphoma 0,84 ± 0,45 0,55 ± 0,36 0,78 ± 0,49 0,47 ± 0,34 

DLBCL 0,83 ± 0,41 0,56 ± 0,36 0,75 ± 0,46 0,44 ± 0,26 

nodal subtype 0,91 ± 0,76 0,52 ± 0,43 0,97 ± 0,77 0,67 ± 0,73 

T-cell lymphoma 0,79 ± 0,48 2,26 ± 1,96
c 

0,67 ± 0,36 0,68 ± 0,35 

PTCL 0,69 ± 0,34 2,13 ± 2,25 0,66 ± 0,48 0,52 ± 0,38 

CL 1,2 ± 0,6 3,48 ± 1,61
d 

0,9 ± 0,22 1,08 ± 0,11 

LL 0,56 ± 0,48 1,26 ± 1,63 0,47 ± 0,13 0,56 ± 0,14 

reative hyperplasia 1,95 ± 1,13 2,01 ± 1,36 2,29 ± 1,54 1,55 ± 0,85 

control 1,93 ± 0,73
ab 

0,91 ± 0,51 3,52 ± 0,71
ab 

1,35 ± 0,50
ab 

CLBL-1  n.q. n.q. 5,01E-03 n.q. 

OSW 2,22 3,54E-03 3,46 1,05E-03 

CL-1 0,55 n.q. n.q. n.q. 

GL-1 1,54 n.q. 9,48E-03 3,26E-02 

Data are expressed as the mean ± standard error 

n.q. = not quantifiable 

a, b, c, d
 Significant differences between control lymph nodes and B-cell lymphomas, control lymph nodes and 

T-cell lymphoma,s B-cell lymphomas and T-cell lymphomas, cutaneous lymphomas and control lymph 

nodes, respectively (Mann–Whitney test, P < 0.05). 

 

Table 4:  Correlation between different genes in B-cell lymphoma 

  PDGFR-α PDGFR-β 

PDGF-A at end of treatment  

r=0,76 p<0,036 

at diagnosis  

r=0,58 p<0,0041 

PDGF-B / at diagnosis  

r=0,63 p<0,0014 
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Table 5:  PDGF-A, PDGF-B, PDGFR-α and PDGFR-β mRNA expression in two DLBCL cases in relapse 

after treatment  

PDGF-A 

 
diagnosis end of treatment relapse 

case 1 0,96 1,37 0,41 

case 2 0,96 1,37 0,73 

PDGF-B 

 
diagnosis end of treatment relapse 

case 1 0,55 3,50 0,51 

case 2 0,30 1,99 0,35 

PDGFR-α 

 
diagnosis end of treatment relapse 

case 1 0,44 2,23 0,49 

case 2 0,45 5,20 0,74 

PDGFR-β 

 
diagnosis end of treatment relapse 

case 1 0,20 1,57 0,23 

case 2 0,12 2,80 0,28 
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Fig. 1. Paired t test in two time point. Graphs showing the expression trend of PDGF and its receptors at 

the diagnosis (T0) and at the end of treatment (T1) in 8 cases of DLBCL. 
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DISCUSSION 

Several works have clarified the possible involvement of PDGF in human hematopoietic 

malignancies (Ho et al., 2005; Renne et al., 2005; Karabatsou et al., 2006; Ria et al., 2008), 

supporting the existence of an autocrine loop and the notion that it contributes to the 

uncontrollable growth of some malignant cells. Moreover, overexpression of PDGF and its 

receptors seems to be relevant in the pathogenesis of NHL (Karabatsou et al. 2006; Ria et al., 

2008; Duşe et al., 2012). Considering no data available at present about PDGF and PDGFRs 

expression in canine lymphoma, in the present study gene expression profiling of these molecules 

was assessed. The results obtained show that PDGF-A, PDGFR-α and PDGFR-β mRNA levels in the 

healthy control lymph nodes were significantly higher than in lymphoma-affected dogs. In human 

it is well documented that PDGFRs are poorly expressed in hematopoietic cells (Toffalini and 

Demoulin, 2010). Moreover PDGF-A, rather than PDGF-B, is expressed in normal B cell and there 

are no difference in the expression of PDGF-A and PDGF-B between patients with reactive 

lymphoid hyperplasia and patients with B-cell lymphoma (Ho et al., 2005).  Interestingly, in the 

present study, in T-cell lymphoma PDGF-B was significantly higher respect to B-cell counterpart: in 

particular cutaneous lymphoma subtype showed the most considerable mRNA expression levels. 

From the literature, cell lines corresponding to the advanced stage of a cutaneous T-cell 

lymphoma showed enhanced expression of PDGF; in addition, post-thymic T-cell malignancies, 

derived from activated T-cells, may produce and secrete growth factor, like PDGF (Su and Kadin, 

1989). Moreover an autocrine PDGF-BB/PDGF b-receptor loop was found to mediate survival of 

large granular lymphocyte leukaemia of both T- and NK-cell origin (Yang et al., 2010). The present 

data showed that canine T-cell lymphomas, in particular cutaneous subtype, may represent a new 

and important source of PDGF-B and that PDGF-B signalling could also be important in the 

pathogenesis of this neoplasia, contributing to its aggressive growth characteristics and different 

clinicopathologic behaviours. Considering the findings obtained in cell lines, PDGF-A and PDGFR-α 

expression in OSW (T-cell lymphoma cell line) and PDGF-A expression in GL-1 (B-cell leukaemia cell 

line) were the only highlighted. Therefore T-cell line showed the expression of a different isoform 

of PDGF (PDGF-A) and the interaction with its specific receptor. To explain this opposite trend in T-

cell lymphoma line respect to vivo model, it is important to note that different isoforms of PDGF 

give different cellular effects and responses, which is explained by their different interactions with 

α- and β-receptors (Heldin et al., 1998). Studies on PDGF in human hematopoietic cell lines are 

few and showed expression of PDGF-B and PDGFR-β in B-cell chronic lymphocytic leukaemia, 
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suggesting that autocrine signalling of PDGF may be important in the malignant transformation of 

this neoplasia (Ho et al., 2005), whereas PDGF-A was evident in pre-B acute lymphocytic 

leukaemia cell lines (Tsai et al., 1994). Comparing gene expression results at diagnosis and at the 

end of treatment in B-cell lymphoma, significant correlations were found between PDGFR-β and 

both PDGF isoforms A and B at diagnosis, whereas at the end of chemotherapy between PDGF-A 

and PDGFR-α. The two PDGF receptor types mediate similar, but not identical, cellular responses. 

After activation, both receptors stimulate cell proliferation and rearrangement of actin filaments. 

The β-receptor mediates a potent chemotactic response. Moreover, PDGF protects cells against 

conventional and programmed death (Heldin et al., 1998). Therefore it is possible that this 

different combination between PDGF isoforms and receptors leads to several cellular effects and 

responses which are unique during the disease. Further investigations are needed to deeply assess 

the ligand-induced activation of receptors and PDGF signalling in dogs. Interestingly a significant 

expression trend (p < 0.05) of all molecules investigated at the diagnosis and at the end of therapy 

was showed in DLBCL which experienced a remission status, with higher expression at the end of 

treatment. This finding confirms in B-cell lymphomas the low expression of PDGF and its receptors, 

whereas in remission status, in which lymph node tissue goes to a hyperplastic or atrophic 

condition, PDGF mRNA transcript amount increases. This biological behaviour can explain the 

similar gene expression profiling of all molecules in the healthy control lymph nodes, reactive 

hyperplasia and B-cell lymphoma in remission status, then the two DLBCL dogs in relapse at the 

end of treatment. In conclusion, PDGF-B is probably involved in the pathogenesis of canine T-cell 

lymphoma, in particular of cutaneous subtype, and the co-expression of PDGFs and PDGFRs in 

different time point during disease suggests a functional autocrine and/or paracrine loop of 

growth stimulation, which gives different cellular effects and responses. Further investigations are 

needed to deeply assess the role of PDGF and its receptors in canine lymphoma, especially 

considering protein analysis, which will be the further step. This evaluation is thought to identify 

the cellular type expressing these molecules (tumour cells and/or stromal cells), the intensity and 

the percentage of immunoassayed cells, to compare with gene expression findings. PDGF-B may 

represent new therapeutic target in canine T-cell lymphoma, but future studies should collect 

more clinical outcome data to further understand a potential prognostic role of this molecule. 

 

 



General Conclusions and Future Perspectives Pag. 122 

6. GENERAL CONCLUSIONS AND FUTURE PERSPECTIVES 

There is abundant evidence that crosstalk between tumour cells and their reactive stromal cells 

contributes to, or is even required for, tumour formation and progression. Tumour cells create a 

supportive microenvironment by secreting growth factors, proteases and their inhibitors, whose 

imbalance leads to the degradation of ECM, resulting in the release of growth factors, bound to 

the matrix, and of ECM molecular fragments. The secretion can act both in autocrine and 

paracrine manners to the stroma, inducing angiogenesis, invasion and proliferation of tumour 

cells. In addition to recruitment, proliferation and activation of stromal inflammatory cells and 

fibroblasts are activated, secreting further growth factors and proteases. This cycle permits to 

amplify these signals in the cascade resulting in the establishment of an activated stroma that 

promotes malignant tumour growth. Advantages to targeting the stroma include the fact that 

these cells are not genetically unstable as cancer cells, and are therefore less likely to develop drug 

resistance. Several exciting success stories have already been presented in the clinical targeting of 

tumour stroma (Mueller and Fusenig, 2004). It is important to note that “Normalization” of the 

stromal environment should be able to slow or even reverse tumour progression. “Normalize” 

microenvironment consists in a phenotypic reversion of a malignant and invasive to a non-invasive 

pre-malignant tumour phenotype. Blocking angiogenesis is considers one possible approach, in 

which the activated stromal compartment of malignant neoplasm is normalized, blood vessels 

acquire an intact basement membrane, and fibroblast activation is downregulated. As a 

consequence of the downregulation of MMPs or other proteases and reduced ECM turnover in the 

stroma, an intact basement-membrane zone is re-established and stromal collagen is reformed. As 

a result of this normalized stromal compartment, the malignant and invasive growth of tumour 

reverts to a pre-malignant dysplastic phenotype (Skobe et al., 1997). However, there are also 

some disappointments in targeting the stroma for cancer therapy in human, as reported in the 

results on clinical testing of MMP inhibitors: no efficacy in patients suffering from advanced stages 

of cancer; severe intolerable side effects and worsening the prognosis for the patient. To 

overcome these problems, in human oncology, the development of more specific inhibitors is now 

underway (Mueller and Fusenig, 2004). 

This research project has brought out several important results, which upgrade the background on 

the tumour progression and the role of microenvironment in veterinary oncology. These findings 

are: 
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- the involvement of MMP-2, MT1-MMP, MMP-9 in canine mammary tumours, with an 

emphasis on the stromal compartment;  

- the role of MMP-9 and VEGF-A in the progression and malignancy of canine cutaneous 

mast cell tumours; 

- MMP-9, MT1-MMP, TIMP-1 and VEGF influence in T-cell lymphomas and in dogs with a 

more advanced disease, highlighting the correlation with phenotype and grading; 

- the potential role of MT1-MMP and TIMP-2 in the pathogenesis of canine acute 

lymphoblastic leukaemia; 

- the influence of residual normal leukocytes in the expression of MMP-9, MT1-MMP, VEGF 

and TIMPs in chronic lymphocytic leukaemia ; 

- the observed discrepancy between in vivo and in vitro model in lymphoma and leukaemia 

to highlight the importance of microenvironment; 

- the possible interaction of PDGF-B in canine T-cell lymphoma, in particular in cutaneous 

subtypes, and the suggested functional autocrine and/or paracrine loop of growth 

stimulation confirmed by the co-expression of PDGFs and PDGFRs at different time point 

during disease. 

In the last years, the tumour vasculature has also become an attractive target for therapy in 

veterinary oncology. Therefore, the future in canine targeted therapy in mammary tumour, mast 

cell tumour, lymphoid leukaemia and lymphoma, will consider combination of drugs that target 

different aspects of the activated stroma with cytotoxic therapies that are directed against 

neoplastic cells. 
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