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SUMMARY	
 

 

 

The research activity here reported spans different areas of the nanocomposite material 

science, giving a contribution toward the advancement in its state of the art.  

The study of the effects of the filler distribution on the mechanical properties of 

nanomodified polymers is a major research topic which is carried out. Different 

computational and theoretical approaches have been developed, considering statistics, 

finite element analyses and micromechanics.  

Several nanomodified epoxy resins have been manufactured along with glass fibre 

reinforced laminates with nanomodified matrix. The effects of the nanomodification on 

the mechanical properties of these composites have been studied, in order to validate 

predictive models and supply technical data to material designers. 

The results obtained so far highlight the importance, in this class of materials, of the study 

of interactions at the nanoscale between the nanoreinforcement and the matrix.  

The thesis is articulated in an introduction, followed by two sections, dedicated to the 

experimental activity and the modelling one, and by an appendix. 

The introduction presents a brief overview on nanocomposites giving a primer to a reader 

devoid of prior experience with this class of materials.  

The experimental activity section is constituted by four chapters. The first one contains 

the results of mechanical tests performed on a nanoparticle reinforced epoxy, alongside 

an analysis on the processing parameters employed in the composite preparation. The 

enhancement in the nanocomposite fracture toughness is compared with a theoretical 

model, showing a satisfactory agreement. The second chapter reports the study of the 

effect of the testing temperature on the fracture toughness of the same material. The 

analysis highlights the fundamental importance of the processing parameters and of the 

testing temperature on the nanomodification effects. The third chapter considers a 

different aspect of the nanomodification: a nanoplatelet reinforced epoxy is used to 

prepare notched specimens and the strength analysis of the notched component is carried 

out. The fourth chapter reports the research activity performed on the study of the matrix 

nanomodification of glass fibre reinforced laminates. The effects on the matrix dominated 



vi 
 

mechanical properties and the feasibility in the production of a laminate with antibacterial 

bulk properties are analysed. 

The modelling section is constituted by three chapters. The first one contains a 

comparison between two approaches for the estimation of the elastic properties of a 

nanocomposite material, considering explicitly the presence of an interphase surrounding 

the nanoreinforcements. The first approach implements a two-step micromechanical 

model, while the second one is based on a finite element analysis. The second chapter 

reports the research activity carried out on the generation of representative volume 

elements of nanoparticle reinforced materials. A statistically based algorithm is 

implemented to minimize the volume element size while retaining its representativeness. 

The study of the interphase extent and of the overall elastic modulus, through finite 

element analyses, is reported. The third chapter extends these considerations to the 

generation of volume elements for nanoplatelet reinforced materials. The random 

sequential absorption approach is implemented and its hidden effects on the filler 

distribution highlighted. A new version of the algorithm is proposed to remove these 

unwanted behaviours. 

The appendix section is dedicated to the implementation activity of approaches which 

have not been completed yet. The results obtained on the use of molecular dynamics in 

the simulation of polymers and nanomodified polymers are reported. While a detailed 

procedure for the simulation of epoxy resins is listed, the approach for the study of 

nanoplatelet-epoxy interactions is still in progress. 
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SOMMARIO	
 

 

 

L'attività di ricerca riportata nella presente tesi riguarda diverse aree della scienza dei 

materiali nanocompositi e mira a dare un contributo nell'avanzamento del suo stato 

dell'arte. 

Uno degli ambiti principali di indagine è stato inerente allo studio degli effetti della 

distribuzione dei rinforzi sulle proprietà meccaniche esibite dai polimeri nanomodificati. 

Diversi approcci, computazionali e teorici, sono stati sviluppati, sfruttando considerazioni 

statistiche, l'analisi agli elementi finiti e la modellazione micromeccanica. 

E' stata eseguita la nanomodificazione di diverse resine epossidiche e la produzione di 

laminati in fibra di vetro con matrici nanomodificate. Sono quindi stati studiati gli effetti 

della nanomodificazione sulle proprietà meccaniche di questi compositi, al fine di 

validare modelli previsionali e fornire dati ai progettisti di materiali. 

I risultati finora conseguiti evidenziano l'importanza che, in questa classe di materiali, 

ricopre lo studio delle interazioni alla nanoscala che si sviluppano tra i nanorinforzi e la 

matrice. 

La tesi è articolata in una introduzione, seguita da due sezioni dedicate all'attività 

sperimentale e alla modellazione, e da una appendice a concludere. 

La sezione inerente l'attività sperimentale è costituita da quattro capitoli. Il primo 

contiene i risultati dei test sperimentali eseguiti su resine epossidiche nanomodificate,  

volti ad indagarne le proprietà meccaniche includendo  l'effetto dei parametri di processo. 

E' inoltre riportato il confronto tra l'incremento della tenacità a frattura misurato 

sperimentalmente e le previsioni di un modello teorico, evidenziando una soddisfacente 

congruenza dei risultati. Il secondo capitolo riporta lo studio degli effetti della 

temperatura sulla tenacità a frattura dello stesso materiale. Tale analisi rimarca la 

fondamentale importanza dei parametri di processo e della temperatura di prova sugli 

effetti della nanomodificazione. Il terzo capitolo considera un diverso aspetto della 

nanomodificazione, ovvero la resistenza di campioni intagliati, prodotti con resine 

epossidiche rinforzate con nanoplatelets. Il quarto capitolo riporta l'attività di ricerca 

portata avanti sull'impiego di matrici nanomodificate in laminati rinforzati in fibra di 
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vetro. Oggetto di analisi sono le proprietà meccaniche dipendenti dalla matrice e la 

possibilità di produrre laminati con proprietà antibatteriche. 

La sezione inerente l'attività di modellazione è invece costituita da tre capitoli. Il primo 

contiene un confronto tra due approcci volti alla stima delle proprietà elastiche di un 

materiale nanocomposito, considerando in modo esplicito la presenza di una interfase che 

circonda i nanorinforzi. Il primo degli approcci implementati è un modello 

micromeccanico in due passi, mentre il secondo è basato su una analisi agli elementi 

finiti. Il secondo capitolo riporta l'attività di ricerca inerente la creazione di volumi 

rappresentativi di materiali rinforzati da nanoparticelle. Tale studio si basa sull'impiego di 

un algoritmo in grado di considerare aspetti statistici volti alla riduzione della dimensione 

del volume di controllo, pur mantenendone la rappresentatività. Sono quindi riportate le 

analisi sull'estensione dell'interfase e sulle proprietà elastiche globali del composito, 

valutate tramite analisi agli elementi finiti. Il terzo capitolo estende i concetti esposti nel 

precedente per la generazione di volumi rappresentativi di materiali rinforzati con 

nanoplatelets. Un approccio basato sull'algoritmo di random sequential absorption è stato 

implementato, evidenziando gli effetti che questo comporta sulla distribuzione dei 

rinforzi. E' stata quindi proposta una nuova versione di questo algoritmo, capace di 

rimuovere queste conseguenze indesiderate. 

L'appendice è dedicata all'esposizione dell'attività svolta nell'implementazione di approcci 

che però non sono ancora stati completati. In essa sono riportati i risultati finora 

conseguiti sull'uso della dinamica molecolare nella simulazione di polimeri e 

nanocompositi. In particolare è elencata una procedura dettagliata  per la simulazione di 

resine epossidiche, e la prima parte di un approccio per lo studio di resine epossidiche 

rinforzate con nanoclay. 
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 INTRODUCTION
 

 

This introduction contains a brief overview on the main characteristics of polymer 
nanocomposites, and it is intended as a primer for the reader. More information can be 
found in the several reviews [1-4] and books[5-7] available in the literature, as well as in 
the introduction of each of the following chapters. 
 

1. WHAT IS A POLYMER NANOCOMPOSITE? 

Literally, polymer nanocomposites indicate those composites having polymer matrixes 

reinforced by fillers with at least one sub-micrometer dimension [2]. These nano-fillers 

display a surface-over-volume ratio which is orders of magnitude higher than in the case 

of micro-fillers, giving rise to the so called "nano-effect" [3]. Due to molecular 

interactions between the nanoreinforcement and the polymer matrix, an interphase zone 

of thickness comparable to the filler size is developed [8]. This interphase is constituted 

by polymer chains affected by thermo-chemic-mechanical interactions with the 

nanoreinforcement and it displays properties different from those of the filler and the 

matrix [8], thus giving rise to a distinctive phase within the material (see Figure 1). The 

reduction of the filler size to the nanoscale also modifies the mechanical properties 

displayed by the same filler (e.g. increase the material strength), thus affecting the 

properties of the whole composite [5]. 

 

Figure 1. Representation of the material phases developed within nanocomposites. 
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2. WHY ARE POLYMER NANOCOMPOSITES IMPORTANT? 

Polymers are a fundamental class of materials in the 21st century manufacturing 

technology [9]. They show peculiar processability properties as well as functional ones, 

offering effective and efficient design solutions otherwise impossible with other materials 

[10]. However, their use is hampered by their relative modest mechanical properties: for 

instance high-performance epoxy resins have mechanical properties which are 1-2 order 

of magnitude lower than steels. To solve this issue several types of reinforcements have 

been used, such as Carbon fibres, obtaining composite materials which display 

outstanding mechanical properties [11] and give the possibility of tailoring materials for 

specific applications [11]. 

In this scenario nanoreinforcements offer the possibility to further engineer these 

composites, giving new functional properties or enhanced mechanical ones to their 

matrices, and thus to the whole composites [12]. 

Nanocomposites can also be used on their own, such is the case of the nanoclay 

reinforced polymers used to produce films with enhanced mechanical [13] and gas-barrier 

properties [14]. Or they can be used to obtain materials with flame-retardant ones, 

increasing the safety of vehicles and buildings [15]. Another possibility they offer is the 

production of polymers which display bulk antibacterial properties, thus avoiding the 

need of coatings [16], or electrically conductive polymers which can be used, for 

example, in damage sensing solutions [17]. 

In general, polymer nanocomposites offer an endless amount of possibilities in the 

engineering of polymer matrixes, resulting in a fundamental tool for the material 

designer. 

3. NANOREINFORCEMENT PROPERTIES AND CHARACTERISTICS 

In terms of the nanoreinforcement geometries, three categories can be defined, as a 

function of the number of sub-micrometer dimensions they possess [4]: 

1. With one dimension there are "nanoplatelets", such as Montmorillonite nanoclays, 

which have thickness of the order of 100nm, while the width and the length range 

up to more than 100m (see Figure 2a). 

2. With two dimensions there are "nanofibres" and "nanotubes", such as the Carbon 

Nano-Tubes (CNTs), which are cylindrical tubes with a diameter in the order of 

101nm and a length which can be more than 102m. 
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3. With all three dimensions in the nanoscale there are "nanoparticles", such as silica 

nanoparticles which can have a diameter in the order of 101nm (see Figure 2b). 

Regardless of the nanoreinforcement geometry, one fundamental characteristic which 

they must possess is a sufficient compatibility with the polymer: usually the matrix is 

hydrophobic while the nanofiller hydrophilic, thus resulting in a segregated material 

morphology, with micrometer-size clusters of nanoreinforcements [18]. Clearly this 

behaviour is unwanted because all the benefits due to the nanomodification are lost. Two 

approaches are then implemented to avoid this behaviour: 

1. The nanoreinforcement surface is modified with a surfactant, capable of binding 

the filler and the matrix [18]. This procedure is common, but it may affect some of 

the nanoreinforcement properties. 

2. The processing of the material includes high-energy dispersing solutions (e.g. 

shear-mixing [19] or sonication [20]) capable of breaking nanofiller clusters and 

disperse them within the matrix. 

In terms of nanoreinforcement prices, they range from few euro per kilogram (such is the 

case of  Montmorillonite nanoclays) up to hundreds of euro per gram (such is the case of 

high quality single-wall CNTs), as a function of the nanoreinforcement availability and 

quality. In fact, the material cost is one of the major issues concerning the employment of 

nanocomposites in mass-productions [21]. 

One final remark is about health hazards. It is still unclear what the consequences of 

prolonged expositions to nanocomposites or nanoreinforcements could be. In the case of 

CNTs, their capability to penetrate deeply in the lungs and produce a toxic response, time 

and dose-dependent, has been proved [22]. The same is true for nanoclays [23], which 

penetrate the lung cell membrane and accumulate within. However the lacking of 

standardized testing procedures does not help in having a clear picture [22]. 
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(a) 

 

(b) 

Figure 2. (a) SEM image of a Montmorillonite nanoclay cluster: clay edges appear as clear lines. (b) SEM 
image of a silica nanoparticle reinforced epoxy: the white points are the filler. 

 

 



5 
 

4. MODELLING AND OPTIMIZATION OF THE MECHANICAL 
PROPERTIES OF POLYMER NANOCOMPOSITES 

Considering the concepts reported above, it should be clear that the employment of 

nanocomposite materials involves a  remarkable complexity. The number of parameters 

which must be taken into account, and the boundless number of polymer-

nanoreinforcement combinations can only be handled through a methodical approach. 

Whichever aspect of the nanocomposite science and technology a researcher is working 

on, an overall comprehension of the cross-relationships with the other aspects and in their 

advancements is fundamental. No modelling effort will truly be successful without 

considering the processing limitations, which result in the actual nanocomposite filler 

morphology, or the properties of  the interphase due to polymer-filler interactions. No 

processing procedure can be optimized without considering the chemical compatibility 

between the composite constituents or the optimal morphology which the models 

demand. It is from the understanding of this complexity that the author of this PhD thesis 

resolved to perform his research activities on different aspects of the nanocomposite 

science and technology, from the production of nanomodified epoxy resins and the testing 

of their mechanical properties, to their employment as matrixes in glass fibre reinforced 

laminates, from the proposal of models able to take into account the nanocomposite filler 

morphology, to the use of molecular dynamic simulations to study the polymer-filler 

interactions at the nanoscale. All these efforts are reported in the following chapters, in a 

journal-like structure, each chapter organized as a stand-alone article, with its 

introduction and bibliography. 
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1 Mechanical	behaviour	of	epoxy/silica	
nanocomposites:	experiments	and	modelling

	

 

KEYWORDS:  A. Nano-structures; B. Fracture toughness; C. Mechanical properties; D. 

Analytical modelling; 

	

ABSTRACT 
In the present chapter the mechanical behaviour of an epoxy/silica nanocomposite system 
is analysed, discussing the results from tensile and fracture tests. 
Moreover a study on the effect of the curing cycle on the mechanical properties of 
nanocomposites is carried out, considering two different curing conditions. Results 
indicate that the curing cycle has a significant effect on the overall mechanical behaviour 
of the nanocomposite. Indeed, while nanomodification always enhances the fracture 
toughness of the epoxy resin, the strength and the notch strength are shown either to 
increase or to decrease, depending on the specimen curing process. 
Fracture properties are compared to theoretical predictions based on a multiscale and 
multimechanism model recently developed by the research group, showing a satisfactory 
agreement. 

 

1. INTRODUCTION 

The possibility to obtain outstanding improvements of mechanical properties at low 

nanofiller contents has arisen significant interest in the use of nano-modified epoxy resins 

from the scientific community. Among the different types of nanofillers many authors 

focused their attention on the use of nanoparticles to strengthen and toughen polymer 

resins.  

Chen et al. [1] investigated the mechanical properties of epoxy resins filled with 12-nm 

spherical silica nanoparticles dispersed with minimal aggregation and obtained, for filler 

contents lower than 10%, substantial improvements of the tensile modulus and the 

fracture toughness.  Similar results were obtained by Ma et al. [2] on two epoxy systems 

loaded with silica nanoparticles. 

The nanoparticle size effect was studied experimentally by Liang and Pearson [3] and 

Dittanet et al. [4] who agree that the Young’s modulus and the fracture toughness of 

epoxy resins can be significantly improved by nanomodification, the effect of particle 

size being almost negligible. In agreement with previous findings by Hsieh et al. [5], 
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Dittanet et al. [4] noted the presence of nanoparticle debonding, matrix void growth, and 

shear banding on the surfaces of fractured specimens.  

Different from the above mentioned works where a clear size effect was absent, 

Zamanian et al. [6] showed that the mechanical properties of an epoxy resin were largely 

improved by the addition of silica nanoparticles with different size, the better 

improvements being obtained with the smaller nanoparticles. 

Liu et al. [7] carried out a study on the effects of silica and rubber nano-particles on the 

fracture toughness behaviour of an epoxy polymer by analyzing the results from mode I 

fracture toughness tests of binary silica/epoxy, binary rubber/epoxy and ternary 

silica/rubber/epoxy nanocomposites with different particle weight fractions. The major 

conclusion drawn by the authors is that the GIc of the epoxy resin is  significantly 

increased by incorporating either rubber or silica nano-particles, but hybrid 

nanocomposites do not display any synergistic effect.  

In the present chapter the mechanical behaviour of an epoxy/silica nanocomposite system 

is analysed, discussing the results from tension and fracture tests. Moreover a study on the 

effect of the curing process on the mechanical properties of nanocomposites is carried out 

considering two different curing cycles: 

A. Curing at room temperature for 72 hours. 

B. Curing at room temperature for 72 hours and post-curing in an oven at 60°C for 

15 hours. 

In both cases, it is found that nanomodification significantly enhances the fracture 

toughness of the epoxy resin.  

As far as the strength and the notch strength are concerned, a significant effect of the 

curing process is noted. In more details, nanomodification results in an increase of the 

strength and the notch strength for specimens post-cured in oven; instead a decrease of 

those properties is noted when specimens are cured at room temperature only.  

Eventually, the experimental results from fracture tests are compared to the theoretical 

predictions based on a multiscale and multimechanism model recently developed by the 

present authors.  

 

 

 

 



13 
 

 

(a) 

 (b) 

 

 

(c) 

Figure 1. Dog-Bone (DB) specimens (a), Compact Tension (CT) specimens (b) and Double Edge Notch 
Tension (DENT) specimens  (c) used in the tests. 
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2. MATERIALS AND SPECIMENS EMPLOYED IN THE 
EXPERIMENTAL ANALYSIS 

A DGEBA-based epoxy resin from ELANTAS ITALIA was used (EC157 with W152LR 

hardener) as the matrix for the nanocomposites investigated. 

Nanopox F400 from Evonik was used for nanomodification. It is a masterbatch of 40%wt 

of silica nanoparticles, with an average diameter of about 20nm and a maximum diameter 

of 50nm, dispersed in a DGEBA epoxy resin. The following nanofiller weight fractions 

have been used: 1, 3, 5 and 8%wt. 

Dog-Bone (DB) specimens, Double Edge Notch Tension (DENT) specimens as well as 

Compact Tension (CT) specimens have been manufactured according to the following 

steps: 

1. Preparation of the masterbatch. As suggested by the supplier the masterbatch was 

heated for 15 minutes at 50°C to reduce its viscosity. 

2. Mixing of the composite components. The masterbatch was then added to the resin 

and shear mixing was carried out with a DISPERMAT TU shear blender from 

VMA-Getzmann with a 70mm diameter blade (1200rpm for 5 minutes). 

Afterwards the blend was sonicated through a HIELSCHER UP 200S sonicator 

using a 40mm diameter sonotrode for 15 minutes (amplitude 160W and duty cycle 

1). Eventually the hardener was added and shear mixing at 350rpm for 5 minutes 

was carried out. 

3. Degassing and moulding of the blend. During the shear mixing process, a large 

amount of air was trapped into the matrix thus requiring a careful degassing 

process. To this end, a low-vacuum pump was used to induce a very low pressure 

in the resin pot, promoting bubbles explosion. After half an hour of degassing the 

nanomodified resin was slowly poured into silicone rubber moulds. 

4. Post-curing of the specimens. All specimens were cured at room temperature for 3 

days. Subsequently, once de-moulded, half of the specimens were post-cured in an 

oven at 60°C for 15 hours.  

5. Finishing. Finally specimens were lapped. Moreover CT specimens were pre-

cracked by manual tapping with a razor blade, obtaining artificial short cracks. 10 

mm long cracks (half the specimen width, according to [9]) were finally obtained 

by applying some zero-to-tension fatigue cycles. 
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3. EXPERIMENTAL TESTING AND RESULTS 

3.1 Tensile tests 

Tensile tests on Dog-Bone (DB) specimens were carried out with the aim to determine the 

failure stress, σR, the elastic modulus, E and the strain to failure, εR of the neat epoxy and 

nanomodified resins. The specimen geometry, shown in Figure 1a, complies with the ISO 

527-2 suggestions [10].  A MTS809 servo-hydraulic machine equipped by a 25kN load 

cell has been used, with crosshead speed equal to 2mm/min and a MTS 632.29F-30 

extensometer was used for accurate strain measurements. For each material configuration, 

at least three specimens were tested. In all the tests performed failure took place in the 

gauge length of the specimens. 

The effect of the weight content of silica particles upon the nanocomposite tensile 

properties is shown in Figures 2-4. In particular the values of the Young’s modulus, E, are 

shown in Figure 2. A modulus of 3.5GPa was measured for the Non-Post-Cured (NPC) 

specimens made of unmodified epoxy resin and a maximum modulus of 3.85GPa was 

measured for the NPC  epoxy polymer with 8%wt of particles, with an increase of about 

10% compared to that of the unmodified epoxy resin. Generally speaking 

nanomodification results in a moderate monotonic increase of the longitudinal elastic 

modulus with an almost  negligible effect  of the post curing process.  

The results for the tensile strength and strain to failure are shown in Figures 3 and 4. 

Different from before, in this case it is evident that Post-Cured (PC) and Non-Post-Cured 

(NPC) specimens exhibit a different mechanical behaviour. As far as NPC specimens are 

concerned, nanomodification has a detrimental effect: nanocomposite strength is indeed 

continuously decreased from about 70MPa (neat resin) to about 50MPa (8%wt 

nanoparticle) with a 30%  reduction of σR. The trend for the strain to failure is similar, 

which is reasonable considering that the elastic modulus is about constant and the 

behaviour linear elastic. This negative effect is not present on the results from PC 

specimens. It seems that the nanomodification hinder the reticulation process of the resin, 

affecting the resistance of the material, but the post-curing compensates this behaviour 

and allows a complete curing. Unfortunately the authors do not have the facilities to 

perform a quantitative analysis on the nanocomposite curing and to verify this hypothesis. 

Instead, a qualitative analysis has been performed, immerging the specimens for 24 hour 

in Acetone solvent: NPC specimens displayed an extensive damaging, which increased 

proportionally to the amount of nanoreinforcements they contained, while PC specimens 
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resulted unaffected, regardless the filler volume fraction.  A similar approach has been 

used in [8], where the authors used MEK instead of Acetone to test the curing of an 

epoxy-Al2O3 nanocomposite. Pictures of the specimens removed from the Acetone are 

reported in Figure 5, confirming that nanomodification without post-curing affects 

negatively the material curing. 

 

Figure 2. Results of tensile tests on neat and nanomodified DB specimens. Elastic modulus E. 
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Figure 3. Results of tensile tests on neat and nanomodified DB specimens. Tensile strength, R. 

 

 

Figure 4. Results of tensile tests on neat and nanomodified DB specimens. Strain to failure, R. 

 

 

(a) 

 

(b) 

Figure 5. Tested Dog-Bone specimens after immersion for 24h in Acetone. (a) NPC specimens with 8%wt 
nanosilica particles. (b) PC specimens with the same filler loading. 
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3.2 Mode I fracture tests 

Fracture tests have been carried out on Compact Tension specimens (Figure 1b) 

according to the ASTM D5045-99 suggestions [9]. A MTS858 servo-hydraulic machine 

equipped with a 2.5kN load cell has been used. At least three values for each material 

have been used. 

Mode I fracture toughness has been computed by the following expression [9]: 
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where Pcr is the critical load, B, a and W are defined in Figure 1b, and f(a/W) can be 
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A summary of all experimental data from CT tests, expressed in terms of KIc according to 

Eq. (1), is shown in Figure 6. It is evident that nanomodified specimens, independently 

whether PC or NPC, exhibit a fracture toughness higher than that of the pure resin. 

In more details, it can be noted that, as far as NPC specimens are concerned, the addition 

of nanosilica particles initially increases the nanocomposite fracture toughness, up to a 

maximum value (for 5 %wt) of 1.19MPa∙m0.5, 35% higher than the neat resin. Increasing 

again the nanosilica content, the trend reverses and KIc decreases.  

Differently, PC specimens exhibit a monotonic amelioration of the KIc, up to a maximum 

value (for 8%wt of silica nanoparticles) of  1.26MPa∙m0.5, about 60% higher than that of 

the PC specimens made of neat resin. 

The different trend of fracture toughness data, passing from  5%wt to 8%wt, exhibited by 

NPC and PC specimens might be attributed to competing effects between the fracture 

toughness enhancement, due to the increasing amount of filler, and the reduction in the 

polymer reticulation, due to a reduced mobility of the polymer chains. PC specimens take 

advantage from the post-curing process and compensate the chain mobility reduction with 

an higher curing temperature. 
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Figure 6. Results of mode I fracture tests on neat and nanomodified CT specimens.  

 

3.3 Tests on notched specimens 

Tensile tests on DENT specimens (Figure 1c) were carried out with the aim to determine 

the failure stress, σt, of notched components. A MTS809 servo-hydraulic machine 

equipped by a 25kN load cell has been used, with crosshead speed equal to 2mm/min. For 

each material configuration, at least three specimens were tested. In all the performed 

tests failure took place in the net area of the specimen. 

The effect of the weight content of silica nanoparticles upon the strength of notched 

specimens is shown in Figure 7; results are reported in terms of the maximum notch stress 

to failure, t, the stress concentration factor on the net area being Ktn=1.86 [11]. It is 

evident that the results are consistent with those obtained from Dog-Bone specimens (see 

section 3.1): as far as NPC specimens are concerned, nanomodification has a detrimental 

effect, whereas this negative effect is not present on the results from PC specimens. 

 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

0% 1% 3% 5% 8% 

Fr
ac

tu
re

 to
ug

th
ne

ss
, K

Ic
[M

Pa
 m

0.
5 ]

Filler weight fraction

NPC specimens

PC specimens



20 
 

 

Figure 7. Results of tensile tests on neat and nanomodified DENT specimens in terms of the maximum notch 
stress to failure, t. 

 

3.4 Some remarks on the experimental results 
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post-cured DB samples, as well as DENT specimens, were found to be characterised by a 

strength comparable or slightly higher than that of the neat resin (see Figures 4,7).  

This result is extremely important; indeed, for notch root radii large enough, the brittle 

failure of notched nanomodified specimens is a strength-controlled phenomenon [13]. 

Accordingly, it might happen that nanomodification, while enhancing the polymer 

fracture toughness, might have a detrimental effect on the strength of notched 

components, so that particular care should be used when using nanomodified resins for 

structural applications in the presence of notches or holes [13] − this concept is dealt with 

in third chapter. This is not the case of PC specimens analysed in this work, for which 

nanomodification allowed to improve the polymer fracture toughness without penalizing 

its strength and notch sensitivity. 

As a major conclusion it can be stated that in the epoxy/silica nanocomposite system 

studied in this work, silica nanoparticles effectively act as strengthening agent only in the 

case of PC specimens, for which an increased curing time probably allows to increase the 

degree of cross-linking of the polymer.  

This result disagrees with those reported in the literature for MWNT/epoxy 

nanocomposites [14-16] where  the effect of the reinforcement was more evident for a 

less cured resin. In the case of CNTs, however, the same papers report how the 

nanomodification does not affect the strain to failure, which can reasonably motivate the 

different behaviour. 

4. MORPHOLOGICAL ANALYSES 

The fracture surfaces of PC nanomodified resins were analysed by using Field Emission 

Gun Scanning Electron Microscope (FEG-SEM, Quanta FEG 250 FEI) at an accelerating 

voltage of about 5kV. Prior to SEM observation, the fracture surfaces were gold-sputtered 

for about 10s. 

FEG-SEM micrographs of the fracture surfaces of a 5%wt nanomodified CT specimen 

are shown in Figures 8, where a very satisfactory degree of dispersion and distribution of 

the nanofillers can be noted. The mean diameter of the particles was found to be 

approximately 25nm, very close to the data provided by the supplier (20nm).  

It is also evident that the fracture surface is very rough, documenting the presence of 

damage evolution and energy dissipation, probably due to nanoparticle debonding and 

nanovoid deformation taking place during crack propagation. This corroborates the idea 
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5. MODELLING STUDIES 

The fracture toughness assessment of nanoparticle reinforced polymers was recently 

tackled in Refs. [17-19] considering the following material system at the nanoscale (see 

Figure 9): 

1. a spherical nanoparticle of  radius r0; 

2. a surrounding interphase of external radius a, thickness t and uniform properties; 

3. a volume of matrix, much larger than the interphase and the nanoparticle.  

This system accounts for molecular interactions at the nanoscale through the size and 

elastic properties of the interphase layer [17-19] which is supposed to be homogeneous 

and isotropic.  

 

 

Figure 9. Description of the multiscale system for the assessment of the fracture toughness of nanoparticle 
filled polymers [18]. 

A cracked nanocomposite is considered at the macro-scale (see again Figure 9). At this 

larger scale, it is assumed that the crack stress fields give rise to a process zone containing 

all the sites of nanoscale damage and energy dissipation, resulting, in turn, in the 

enhanced  fracture toughness of the nanocomposite material. 
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where GIm is the unloaded polymer toughness, fp0 is the filler volume fraction while 

parameters i quantify the energy dissipation caused by each damaging mechanisms, 

namely, nanoparticle debonding (i = db), plastic yielding of nanovoids (i = p) and shear 

banding (i=SB) [17-19]: 
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In Eq. (4) Eo and are the elastic properties of the nanocomposite, cr is the critical 

debonding stress [20]: 
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Ch is the reciprocal of the hydrostatic part of the global stress concentration tensor, 

estimable as [20]: 
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where Em and m are the elastic modulus and Poisson’s ratio of the matrix, Km, Ka and Kp 

the bulk moduli of the matrix, the interphase and the nanoparticle, Gm and Ga are the 

shear elastic moduli of the matrix and the interphase, ma G/G  and ma G/K3 . 

Instead, in Eq. (5) and Eq. (6) Ym and Ya are the yield stress of the matrix and the 

interphase, μ  is a dimensionless pressure coefficient, yca is the interphase yielding stress 

under compression, whereas function quantifies the energy produced at the nanoscale 

and ISB accounts  for the stress concentration around nanoparticles [19]: 
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where ymτ and yaτ are the shear yielding stress of the matrix and of the interphase,  fmγ and 

faγ  the shear fracture strains, parameters p,k,j are functions of the Poisson’s ratio [19], 

Hh=1/Ch and HvM is the deviatoric component of the global stress concentration tensor 

which can be evaluated either numerically or analytically [19, 21]. 

It is evident that in order to apply Eq. (3) the properties and size of the interphase need to 

be determined. As discussed in [17], the elastic properties and the thickness of the 

interphase can be computed by means of Molecular Dynamics (MD) analyses [22,23], or, 

alternatively determined a posteriori by fitting the experimental values for the elastic 

properties of the nanocomposite by a multi-phase micromechanical model.  

In this paper the last mentioned approach has been adopted, and  the two-step analytical 

model based on the Hashin-Shtrikman solution developed by the authors [24] has been 

used − more information about this model are reported in chapter 6. In Ref. [24] the three-

phase nanocomposite material showed in Figure 8 has been considered, and each particle 

and the surrounding interphase have been changed for an “Equivalent Homogeneous 

Particle (EHP)” of total radius a=r0+t with bulk and shear elastic moduli, K' and G', given 

by: 
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where  30 a/r is the volume fraction of the nanoparticle within the EHP. As a second step, 

the elastic properties of the nanocomposite, Ko and Go, can be assessed as: 
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where  300p r/af is the volume fraction of the EHPs [23]. Finally the modulus of 

elasticity in tension of the nanocomposite is )GK3/(GK9E ooooo  . Using Eqs. (12-

15) in combination with the experimental data for the elastic modulus given in Section 3, 

the resulting best fitting values have been found to be =1.3 and  t=4 nm, respectively 

(see Figure 10). For the sake of simplicity, instead, the plastic properties of the interphase 

zone have been supposed to equate those of the matrix according to [17]. 

Moreover, the following properties have been used into Eqs. (5,6,9): ym = 88MPa, ycm =  

120MPa, fm = fa = 0.75, = 0.2, as taken from Ref. [5] where a similar epoxy resin was 

analysed. 

Figures 11 and 12 show a comparison between the fracture toughness predicted by Eq. (3) 

and  experimental results. It is evident that the agreement is extremely satisfactory for PC 

specimens which exhibit a monotonic amelioration of the fracture toughness (Figure 11). 

For NPC specimens the agreement is satisfactory up to the maximum value of the 

normalised fracture toughness (Figure 12). 
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Figure 10. Estimation of the interphase thickness and elastic properties by best fitting of experimental data 
through Eqs. (12-15). 

 

Figure 11. Comparison between Eq. (3) (solid line) and the experimental data from PC CT specimens.  
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Figure 12. Comparison between Eq. (3) (solid line) and the experimental data from NPC CT specimens.  

6. CONCLUSION 

In the present paper the mechanical behaviour of an epoxy/silica nanocomposite system 

has been analysed, taking advantage of the results from tension and fracture tests carried 

out on DB, DENT and CT specimens made of DGEBA epoxy resin and Nanopox F400.  

Moreover a study on the effect of curing on the mechanical properties of nanocomposites 

has been carried out, considering two different processes: 

A. Curing at room temperature for 72 hours (NPC specimens). 

B. Curing at room temperature for 72 hours and post-curing in an oven at 60°C for 

15 hours (PC specimens). 

The results indicate that the curing process can alter the mechanical behaviour of 

silica/epoxy nanocomposites,  PC and NPC specimens being characterised by different 

properties. In particular, even if all nanomodified specimens exhibit a fracture toughness 

higher than that of the pure resins, the highest value of KIc was obtained with 8%wt 

loaded post-cured samples. Moreover, PC specimens exhibited a monotonic amelioration 

of KIc, whereas NPC specimens are characterized by an initial improvement of the 

fracture toughness for low contents, followed by a reversed trend for weight fractions 

higher than 5%.   
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The curing cycle highly affects the nanocomposite tensile strength as well. While indeed 

for NPC specimens nanomodification is found to have a detrimental effect on R, post-

cured DB samples, as well as DENT specimens, were found to be characterised by a 

strength comparable or slightly higher than that of the neat resin. 

Eventually, the mode I fracture toughness evaluated from CT tests has been compared to 

the theoretical predictions based on a multiscale and multimechanism model recently 

developed by the present authors, showing a satisfactory agreement. 
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2 
The	effect	of	the	testing	temperature	on	the	
fracture	toughness	in	a	nanosilica	modified	

epoxy	resin
 

KEYWORDS:  A. Temperature; B. Fracture toughness; C. Processing parameters; D. 

Epoxy resin; E. Nanocomposites; 

 

ABSTRACT  

In this chapter the fracture toughness of an epoxy system is evaluated at different testing 
temperatures. In particular neat and nanosilica reinforced epoxy resins have been 
manufactured, with and without post-curing, and compact tension specimens have been 
prepared and tested. The results show the importance of the post-curing treatment of the 
epoxy resin on its fracture toughness, and suggest the capability of nanoparticles to 
smooth the variation of this mechanical property due to the different testing temperature. 
 

1. INTRODUCTION 

The employment of nanoreinforcements to enhance the mechanical properties of 

polymers is a growing research field, fuelled by new discoveries and outstanding results. 

Focussing on epoxies, many authors reported significant increases of the elastic modulus, 

strength and fracture toughness [1-4] through the addition of few point percent in weight 

of nanoreinforcements in the polymer matrix. 

However one parameter is often disregarded in these analyses: the testing temperature. 

From one side this, is due to the need of expensive equipment to enable testing 

temperature control, from the other, this parameter does not seem so important when 

dealing with the effects of nanomodification relative to the neat matrix. In truth, many 

authors highlighted a significant influence of this parameter on the fracture toughness of 

neat and nanomodified epoxy resins [5-8].  

In 1971 Lange and Radford [5] analysed the fracture energy of a DGEBA reinforced with 

alumina microparticles at room temperature and at about -200°C. They measured an 

increase of about 2 times of the elastic modulus and GIc at low temperature with respect 

to room temperature, for the neat epoxy. 

Kim et al. [6] studied the properties of epoxy resins at low temperature, as well. In 

particular they used a modified bisphenol-A epoxy adhesive nanoreinforced with carbon 
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black and montmorillonite clay, performing tests from -150°C up to room temperature. 

Their results for the neat resin agree with those of Lange and Radford, showing a 

substantial increase of KIc at lower temperatures as well as an increase of the elastic 

modulus and strength. Considering the effects of nanomodification, they showed that 

nanoreinforcements reduce the fracture toughness at low temperature, while they enhance 

the same property at room temperature. Studying SEM images they concluded that at low 

temperatures the intermolecular forces within the epoxy polymer networks are more 

dominant than the nanoreinforcement toughening effect. As a consequence they 

highlighted the need of considering the working temperature when deciding if 

nanoparticles are to be used for a particular application.  

Zhang et al. [7] considered the effect of nanomodification of an epoxy resin at room 

temperature and at 80°C. In particular they employed a DGEBF resin reinforced with 

nanosilica and performed DMTA, DSC and CT fracture tests. They reported a reduction 

of the elastic and strength properties at 80°C with respect to room temperature, regardless 

of the filler fraction. Considering the fracture toughness, the neat epoxy showed a 

reduction at higher temperature, but nanomodification managed to transform this 

reduction in an increase proportionately to the amount of nanofiller. They reported an 

unstable stick-slick crack propagation at both test temperatures and, considering the 

connection between this phenomenon and the crack tip blunting, they concluded that high 

temperatures and low strain rates should favourite this ductile failure mechanism. Taking 

into account the nanomodification, they reported an increase of this phenomenon, which 

implies an increase of crack tip deformations due to nanoparticles. 

Han and Cho [8] studied the fracture toughness of reinforced epoxy composites from 

room temperature up to 175°C, considering a byphenil epoxy resin reinforced with silica 

micro and nano particles. They derived the strain energy release rates from the elastic 

properties evaluated by means of DMA tests and the data from testing SENB specimens. 

Considering only the neat and nanomodified epoxies, they reported an increase in the 

fracture toughness, GIc, for both cases up to a certain temperature, followed by a drastic 

reduction. They attributed this increase to an improved molecular mobility of the polymer 

chains, followed by the yielding of the epoxy resin. Moreover they highlighted how, at 

room temperature, the addition of nanosilica resulted in an increase of the GIc, while at 

higher temperatures it reduced the peak of GIc improvement shown by the neat epoxy. 

In the present chapter the results of fracture tests performed on a nanosilica modified 

epoxy resin are reported. Three testing temperatures are considered (-20°C, 20°C and 
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40°C) for testing CT specimens of unreinforced and reinforced epoxy resin. Weight 

fraction of 1%, 3% and 5% have been used. Post-curing in oven is performed on half of 

the specimens to test the effect of this treatment. The results suggest the capability of 

nanoparticles to smooth the variation of fracture toughness due to the different testing 

temperature, but more analyses will be required to support this thesis. 

2. MATERIALS AND SPECIMENS EMPLOYED IN THE 
EXPERIMENTAL ANALYSIS 

In this analysis, a DGEBA-based epoxy resin from ELANTAS ITALIA is employed 

(EC157 with W152LR hardener). The main mechanical properties of the epoxy system, 

as reported in the datasheet from the supplier, are summarized in Table 1. 

 

E [GPa] R [MPa] R [%]  [mPas] 

3.2 – 3.6 67 – 75 6.0 – 8.0 150 – 250 

Table 1. Properties of the neat epoxy resin (EC157+W152LR): E, elastic modulus, r, ultimate tensile 
strength, r, fracture strain, and , viscosity at 25°C. 

In addition, a masterbatch of 40%wt of silica nanoparticles in a DGEBA-based epoxy 

resin from EVONIK is used (Nanopox F400). This masterbatch is diluted in EC157 at 

different weight fractions and a part of W152LR is used to balance the equivalent epoxy 

weight of the masterbatch. The silica nanoparticles have an average diameter of about 

20nm and a maximum diameter of 50nm, as from the datasheet.  

Compact Tension (CT) specimens have been manufactured according to the following 

steps: 

1. Preparation of the resin. The masterbatch is heated for 15 minutes in an oven, at 

60°C. This is performed in order to reduce its viscosity (which is about 

60,000mPas at 25°C) as suggested by the supplier. 

2. Mixing of the composite components. The masterbatch is added to the resin and 

they are mixed by means of shear mixing. The shear mixing is carried out with a 

DISPERMAT TU shear blender from VMA-Getzmann (Figure 1a), at about 

3500rpm for 5 minutes. Then, the blend is sonicated using a HIELSCHER UP 

200S sonicator (Figure 1b), set at amplitude 1 and duty cycle 1, for 10 minutes, in 

order to improve particle dispersion. After the sonication, an intermediate 

degassing has been performed at 60°C, to remove as much air trapped within the 
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thermocouple inserted in a hole drilled on the specimens (see Figure 2) and each 

specimen has been kept at testing temperature for 2 minutes before performing the test. 

Pre-cracking of the specimens has been performed tapping a razor blade in the notches 

and 4 values for each material have been obtained. 

 

Figure 2. Geometries of the specimens used in testing neat and nanomodified resin.  
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The experimental results in term of KIc have been computed applying Eq.(2) and have 

been reported in Figure 3 and 4. In Figure 5 a comparison among representative force-

displacement curves obtained testing CT specimens is reported. While the curve peak 

value depends on the crack length and specimen width, the shape is a function of the 

failure mechanisms which take place. 
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Figure 3. Composite fracture toughness as a function of the testing temperature and filler weight fraction in 
case of PC specimens. 

 

 

Figure 4. Composite fracture toughness as a function of the testing temperature and filler weight fraction in 
case of RT specimens. 
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Figure 5. Typical force-displacement curves from CT tests in case of neat epoxy and 5%wt reinforced 
epoxy, both PC and RT.Only the shape of the curve is to be considered, the peak value depends on the 

specimen geometry. 
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4. RESULTS AND DISCUSSION 

4.1 General trend of the fracture toughness of epoxy resins 

The results highlight that the nanomodification induces only a marginal effect on the 

overall fracture toughness, being the property of the neat epoxy the dominant term. 

Therefore in order to interpret the results of the experimental tests, it is necessary to 

understand the general trend of the fracture toughness of the neat epoxy resin as a 

function of the temperature. To this end the papers reported in the introduction [5-8] 

allow to plot a qualitative graph of this property from cryogenic to high temperatures, as 

reported in Figure 6. It is possible to identify 3 zones: a low temperature zone, a room 

temperature zone and a high temperature zone: 

 

Figure 6. General trend of the fracture toughness in epoxy resins as a function of the temperature. 
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widely studied by several authors [10-12]. This zone is the easiest to analyse, 

because it does not require temperature control equipment, and at the same time it 

is the most important, because the majority of the applications works in this 

condition. 

3. In the High Temperature Zone (HTZ) epoxy resins exhibit a toughening followed 

by a steep decrease of the fracture toughness. The toughening seems related to an 
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enhanced plasticity, which is a consequence of the higher mobility of the polymer 

chains. However, too high temperatures affect negatively the fracture toughness. 

 

4.2 Effect of the curing treatment on the neat epoxy 

Considering the experimental results, the different curing of the neat epoxy generates 

significant differences in the resin behaviour: 

1. PC specimens exhibit the same KIc at -20°C and at 20°C, followed by an increase 

of about 100% at 40°C, regardless of nanomodification. Considering Figure 5, 

general trends for -20°C and 20°C are similar, with stepped crack propagation 

(in particular at 20°C stick-slip crack propagation is developed). Differently, at 

40°C, the material loses its crack-arrest capability but earns an increase in KIc 

thanks to an enhanced elongation at failure.  

2. RT specimens exhibit a well different behaviour: at -20°C KIc is at maximum, 

with a progressive decrease while the temperature rises. Again in the neat epoxy 

at -20°C and at 20°C stick-slip crack propagations are developed, but at 40°C the 

curve is significantly different: the material shows a reduction in the linear 

elastic elongation followed by yielding.  

These differences between RT and PC specimens could be explained considering the 

effect of the curing on the epoxy resin. Post-curing results in a double effect: it reduces 

the amount of un-reticulated resin and, at the same time, it allows the polymer chains to 

move and reach a lower entropic state.  

It seems reasonable that at -20°C the behaviour of PC and RT specimens is different: RT 

specimens are "more glassy", because the polymer chains have not had the possibility to 

set and, therefore, they have a reduced mobility compared to that of PC specimens. It 

seems likely that PC specimens need a far lower temperature to reach the same state of 

RT specimens and, as a consequence, PC specimens at -20°C belong to the RTZ, while 

RT specimens at -20°C belong to the LTZ. 

At the same time, at 40°C the differences in behaviour between PC and RT specimens 

could be explained in this way: RT specimens have a greater amount of un-reticulated 

epoxy groups, therefore higher temperatures allows a greater plastic flow with respect to 

PC specimens. However this plastic flow is paid with a reduced amount of cross-links in 

the polymer and this affects significantly the resin: while PC specimens are able to gain 

advantages by this plastic flow, RT specimens are not. Therefore PC specimens at 40°C 
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belong to the first part of the HTZ of Figure 6, while RT specimens do not develop the 

enhancement in fracture toughness and belong to the HTZ at higher temperatures. 

4.3 Effect of the nanomodification 

In the following section, the effect of the nanomodification is considered separately for 

LTZ, RTZ, HTZ and considers the results reported in Figures 3, 4 and 5: 

1. LTZ. According to [6] nanomodification at very low testing temperature should 

reduce the fracture toughness of the epoxy, but it should also be considered that 

in the analysis carried out the testing temperature is relative high (-20°C) 

compared to the cryogenic one. Following the assumption that only RT 

specimens at -20°C belong to this zone (as explained in section 4.2) the effects 

of nanomodification seem lost: the fracture toughness is not affected by the 

addition of nanoreinforcements. 

2. RTZ. In this zone the nanomodification of the epoxy resin improves the fracture 

toughness in accordance with behaviours widely reported in the literature [10-

12] and in the previous chapter. The general trend consists in an improvement 

proportional to the amount of nanoreinforcement, with a stick-slip crack 

propagation. RT 5%wt reinforced specimens show a decrease in the fracture 

toughness, with respect to the other filler weight fractions; this trend agrees with 

the observations reported in the literature [13] and in the previous chapter and 

may be due to clustering of reinforcements and lower reticulation. 

3. HTZ. In this zone the effect of nanomodification differs for PC and RT 

specimens. In the former ones it shows a reduction in fracture toughness with 

respect to neat epoxy resin, but the specimens exhibit the same fracture 

behaviour in Figure 5. In the latter ones nanomodification improves the resin 

fracture toughness, modifying the fracture behaviour: differently from the 

evident plasticity in the case of neat-epoxy, 5%wt RT specimens show stick-slip 

crack propagation, which is more similar to the behaviour in the RTZ and shows 

a similar value for KIc. The effects of nanomodification in the HTZ agree with 

those reported in [8], but for PC specimens differ from those in [7], where 

nanomodification enhances the nanocomposite fracture toughness. 

Trying to infer a general trend, considering also the results reported in [6] and [8], it 

seems that nanomodification smoothes the variations of KIc in case of different testing 

temperatures. Moreover the RTZ is the zone with the lower value of KIc (not considering 
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higher temperatures in the HTZ, where the resin loses its structural properties) and in that 

zone nanomodification improves the polymer fracture toughness. From these 

considerations it is possible to plot the graph reported in Figure 7.  

 

Figure 7. General trend of the fracture toughness in nanomodified epoxy resins as a function of the 
temperature. 

A final remark on the differences between the presented results and [7]: these differences 

could reasonably be ascribed to the differences in the chemical nature between the two 

nanocomposite systems. More data needs to be collected in this regard. 

CONCLUSIONS 

In this chapter the fracture toughness of an epoxy system has been evaluated at different 

testing temperatures, above and below room temperature. In particular neat and nanosilica 

reinforced epoxy resins have been manufactured, with and without post-curing, and 

compact tension specimens have been prepared and tested. The results highlight a 

competitive effect of the nanomodification on KIc when compared to the effect of the 

testing temperature. Moreover the results show the importance of the epoxy resin post-

curing treatment on its fracture toughness, and suggest the capability of silica 

nanoparticles to smooth the variation of this mechanical property due to the different 

testing temperature. However the latter observation needs more evidences supporting it. 
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3 Notch	effect	in	clay‐modified	epoxy:	a	new	
perspective	on	nanocomposite	properties

	

 

KEYWORDS:  A. Nanocomposites; B. Nanoclay; C. Notch effect; D. Mixed Mode; 

	

ABSTRACT 

In this chapter an experimental investigation of the notch effect on clay-modified epoxy 
resins is carried out, discussing the results from Single Edge Notch Bending (SENB) tests 
and Double Edge Notch Tension (DENT) tests on notched components. 
It is found that when the notch root radius is greater than a limit value, which depends on 
the clay content, the brittle failure of notched nanomodified specimens is controlled by 
the material strength. Under this circumstances nanomodification, while enhancing the 
polymer fracture toughness, might have a detrimental effect on the strength of notched 
components. This study brings to light a new feature of nanomodification according to 
which particular care should be used when using nanomodified resins for structural 
applications in the presence of notches or holes. 

 

1. INTRODUCTION 

Nanocomposites are new multifunctional materials endowed with exceptionally improved 

mechanical and physical properties at very low filler concentrations [1-3]. This 

behaviour, often regarded as the “nano-effect”, is acknowledged to be due to the 

molecular structure of the material. Indeed, in the presence of nanofiller reinforced 

polymers the specific surface is extremely large, and this makes surface properties the 

dominant factor, providing unique properties with widespread applications in many 

industrial sectors.  

Moreover, as the reinforcement size is comparable with that of polymeric chains, 

molecular interactions with the matrix produce an interphase “layer” with properties 

potentially different from those of the constituents. In the recent literature it has been 

demonstrated that the properties of the interphase might significantly affect the overall 

mechanical properties of the nanocomposite, depending also on the filler size and 

geometry [4-7]. 
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Nanoclays are layered silicates of which the platelets are micro-sized in area, about 1 nm 

thick and disposed in stacks called tactoids. Once dispersed in the polymeric matrix three 

typical nanoclay morphologies are possible, namely, exfoliated, intercalated and phase 

separated.  

Experimental results from the literature reveal that nanoclays are suitable to improve the 

tensile elastic modulus, the fracture toughness of polymeric systems [8-10] and the 

fatigue threshold [11-12], while conflicting results have been reported with reference to 

the strength of nanoclay reinforced resins, which has been proven either to increase [13–

14] or to decrease [12,14–16], depending on the investigated system.  

In the perspective to use nanomodified polymers as toughened matrixes in ternary, fiber 

reinforced, nanocomposites the fracture toughness is acknowledged to be the most 

important mechanical property to be improved [11, 12, 17-21]. This explains the great 

efforts dedicated by several researchers to study the fracture toughness of binary 

nanocomposites (polymer matrix plus nanofillers) [13, 22-25]. All the above mentioned 

works are referred to the pure mode I fracture toughness of nanofilled polymers. Only 

very recently, inspired by the argument that in practice the stress state ahead of a crack is 

often of the mixed type, the attention has been moved also onto the mixed mode fracture 

behaviour of cracked nanoclay/epoxy specimens [26] and nanotubes/epoxy specimens 

[27]. In particular Zappalorto et al. [26] found that nanomodified specimens exhibit a 

higher fracture toughness, independently of the loading mode, but ranging from pure 

mode I to pure mode II improvements are less pronounced.  

Despite the fact that geometrical variations unavoidably exist in engineering components, 

in the best of the authors' knowledge the effects of notches on the mechanical behaviour 

of clay-modified epoxy resins have been completely ignored in the previous literature. 

With the aim to fill this gap, in this study the brittle notch fracture behavior of an epoxy 

resin filled with montmorillonite nanoclays is analysed. To this end, different kind of 

specimens have been manufactured and tested:  

1. Double Edge Notch Tension (DENT) specimens  with 4mm radius semicircular 

notches; 

2. Single Edge Notch Bending (SENB) specimens with U-notches characterised by 

three different values for the notch root radius (0.5, 1 and 2mm). 

The effect of nanoclay content on the strength of notched component is discussed in 

detail. In particular, for the material systems and geometries investigated in this work, 



47 
 

nanomodification is found to have a detrimental effect on the strength of notched 

components. This behaviour is due to the fact that for notch root radii greater than a limit 

value, which depends on the clay content, the brittle failure of notched nanomodified 

specimens is a strength- controlled phenomenon. In all these cases the disadvantageous 

role played by nanoclay addition on the strength of polymeric resins [12,14–16] is 

transferred to the notch effect on nanomodified specimens. 

This important result makes it evident a new feature of nanocomposites: even if the 

fracture toughness of nanofilled polymers is generally higher with respect to that of the 

neat resin, particular care should be taken when using binary nanomodified resins for 

structural applications in the presence of notches or holes. 

A summary of all the experimental results is eventually presented in terms of both the 

maximum principal stress at the notch edge and the generalised stress intensity factors.  

 

2. MATERIALS AND SPECIMENS USED IN THE EXPERIMENTAL 
ANALYSIS 

In this study, a DGEBA-based epoxy resin (EC157 with W152LR hardener) from 

ELANTAS-Camattini (Italy) is chosen as polymer matrix. The mechanical properties of 

the epoxy system, as specified by the supplier, are summarized in Table 1.  

 

E [GPa] R [MPa] R [%]  [mPas] 

3.2 – 3.6 67 – 75 6.0 – 8.0 150 – 250 

Table 1. Properties of the neat epoxy resin (EC157+W152LR): E, elastic modulus, r, ultimate tensile 
strength, r, fracture strain, and , viscosity at 25°C. 

In addition, a montmorillonite clay, Cloisite 30B® from Southern Clay Products, is used 

as nanosized reinforcement, considering different weight fractions. 30B nanoclays are 

characterised by 1 nm thick lamellae, lateral dimensions from 70 to 150 nm and average 

d-spacing of about 18,5 Å. 

Different kind of specimens have been manufactured and tested: 

1. Double Edge Notch Tension (DENT) specimens  with 4 mm radius semicircular 

notches (Figure 1a); 

2. Single Edge Notch Bending (SENB) specimens with U-notches. In this case the 

notch depth is equal to 10 mm and three different values for the notch root radius 

have been used: 0.5, 1 and 2 mm (Figure 1b). 
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In the best of authors’ knowledge there is no standard available for fracture tests on 

notched components. Accordingly, as far as tests on SENB specimens are concerned, the 

same specimen size and geometry suggested for mode I fracture tests [29] have been 

used. 

 
The specimens were manufactured according to the following steps:  

1. Dispersion of the filler within the resin. Nanoclays were dispersed within the 

polymer resin through shear mixing followed by sonication. The shear mixing 

process was carried out with a DISPERMAT TU shear blender from VMA-

Getzmann, at an average rate of 2000 rpm for about 1 hour. The sonication 

process, instead, was performed using a HIELSCHER UP 200s Sonicator, set on 

140W (70% of the maximum power) and a duty cycle of 50%, for 10 minutes. 

After sonication, the hardener was added and the obtained blend was mixed at low 

rate (1000 rpm) for further 5 minutes. 

2. Degassing and moulding of the obtained blend. As a major drawback of the shear 

mixing process, a large amount of air is trapped into the matrix. Thus, in order to 

prevent bubbles in the specimens, a careful degassing process was carried out. To 

this end, a low-vacuum pump was used to induce a very low pressure in the resin 

pot, promoting bubbles explosion. 1 hour of degassing process was enough to 

obtain a clear and translucent nanomodified resin which was later slowly poured 

into silicone rubber moulds. The different stages of the degassing process are 

shown in Figure 2. 

3. Milling and surface polishing. Once de-moulded, the specimens were milled to 

cut out the upper surface, where some inclusions and voids due to the pouring 

process could have been present, and polished up to the final thickness. 
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Figure 1. (a) Double Edge Notch Tension (DENT) specimens and (b) Single Edge Notch Bending (SENB) 
used in the tests 

 

  

  

Figure 2. Degassing process of the nanomodified resin (5wt% of nanoclay). (a) Nanomodified resin at low 
pressure as just poured into the pot; (b) after 10 minutes under vacuum; (c) after 25 minutes and (d) after 

35 minutes. At the end of the process, the mixture is devoid of any bubble. 

(a) (b)

(c)

=0.5, 1, 2mm 

88 mm 

(b) 

a=
10

 m
m

 

B = 10 mm

W
=

20
m

m
 

 =4mm 

150 mm 

W
=

20
m

m
 

a=
12

 m
m

 
(a) 

B = 9 mm



50 
 

 

The morphology of the systems analyzed in this work has been investigated using 

Scanning Electron Microscopy, in order to identify the presence of nanofiller 

agglomerates.  As an example, Figure 3 shows some SEM images for 3 wt% loaded 

resins. The filler presents a satisfactory distribution within the matrix but some traces of 

clay agglomeration are evident, the size of the largest agglomerates among those detected 

being about 15 mm. A similar morphology was found in Ref. [12]; in that case an 

increase of about 35% of the mode fracture toughness was found. 

 

 

Figure 3. Morphology of 3%wt clay-loaded resins. Scanning electron micrographs at different 
magnifications.  

3. EXPERIMENTAL EQUIPMENT AND TESTS 

All tests described in the following have been carried out by using a MTS 858 servo-

hydraulic machine, equipped with a 2.5/25 kN load cell. 

3.1 Double Edge Notch Tension tests 

Tensile tests on DENT specimens made of neat epoxy and nanomodified resins were 

carried out, by using a crosshead speed equal to 2 mm/min. For each material 

configuration, five specimens were tested. 

It is worth mentioning here that the theoretical stress concentration factor referred to the 

net area for the DENT specimens used in the present analysis is equal to 1.866 [28]. 

 

 2000x 1000x 
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3.2 Single Edge Notch Bending tests 

As far as SENB tests are concerned, different loading conditions have been applied, 

resulting in different stress states ahead of the notch tip, from pure mode I (completely 

symmetric stress state) to pure mode II (completely skew-symmetric stress state). 

The experimental tests have been carried out using a crosshead speed equal to 10 

mm/min, as suggested in [29-30] for cracked components. For every loading condition 

and every filler weight fraction three specimens were tested. 

The testing device consisted of two steel plates, 18 mm thick, one fixed on the load cell, 

the other attached to a vertical moving ram. One or two pin supports could be mounted on 

each plate. 

Three different kind of loading conditions have been analysed; 

1. Symmetric Three-Point Bending tests (S3PB) which result in a purely symmetric 

stress state close to the notch tip (pure mode I loading conditions); 

2. Non-Symmetric Three-Point Bending tests (NS3PB) which result in a mixed 

(symmetric plus skew-symmetric) stress state close to the notch tip; 

3. Non-Symmetric  Four-Point Bending tests (NS4PB) which result in a purely 

skew-symmetric stress state close to the notch tip (pure mode II loading 

conditions). 

Some pictures of the loading system are shown in Figures 4 while schematics of the 

loading conditions are reported in Figure 5. 

The maximum principal stress at the notch edge of SENB specimens can be evaluated as: 

n,nmax,p K            
for S3PB and NS3PB (1a)

n,nmax,p K    for  NS4PB (1b)

where n,n and n,n are the maximum nominal stresses on the net section, evaluated 

according to the beam theory: 

2nn
)aW(B

M6


    

)aW(B

Q

2

3
nn 
   (2a-b) 

In Eqs. (2a) and (2b) M and Q are the bending moment and the shear force evaluated on 

the notch bisector resulting from static equilibrium equations: 
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Stress concentration coefficients K to be used in Eq. (1a,b) have been evaluated by means 

of finite element analyses and are listed in Table 2.  

 

 

 

(a) 

 

(b) 

 

(c) 
 

(d) 

Figure 4. Loading configurations for DENT tests (a), Symmetric three Point Bending (S3PB) tests (b), non-
Symmetric three Point Bending (NS3PB) tests (c) and non-Symmetric four Point Bending (NS4PB) tests (d) 

 

 

 

 

 

 [mm] S3PB NS3PB NS4PB 

0.5 3.436 4.265 6.062 

1 2.518 3.165 4.626 

2 1.903 2.433 3.696 

Table 2. Values of stress concentration coefficient K for SENB specimens. 
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Figure 5. Schematic of (a) the Symmetric three Point Bending (S3PB), (b) Non-symmetric three Point 
Bending (NS3PB) and (c) of the non-Symmetric four Point 
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EXPERIMENTAL RESULTS 

Brittle failure assessments of cracked and blunt notched components are usually based on 

fracture toughness or strength criteria, respectively. In the former case, according to the 

Fracture Mechanics approach, the stress intensity factors at the crack tip are compared to 

the fracture toughness of the material. In the latter case, according to classical Notch 

Theory, the stresses computed in the stress concentration regions are compared to the 

static strength properties of the material. 

In the presence of a blunt notch, namely a notch with a finite value of the root radius , 

the singularity of the linear elastic crack stress fields disappears. Notwithstanding this, the 

Linear Elastic Fracture Mechanics approach continues to be valid up to a critical value of 

 which varies from material to material according to the following expression [31]: 

2

t

IcK4
* 











 

(4) 

For notch root radii greater than the limit value *, the notch sensitivity is full and the 

strength of the notched components is controlled by the elastic peak stress value at the 

notch edge. 

A gradual transition between a Fracture Mechanics-based approach and the peek stress-

based approach can be obtained by using local parameters (see, among the others [32-

34]). 

While discussing the influence of the root radius of crack-like notches on the static 

fracture load of brittle components, Kullmer and Richard [35] found a relationship similar 

to that provided by Atzori and Lazzarin [31] for *,  where 4.5 substitutes 4.0. 

KIc and t to be used in Eq. (4) are the mode I fracture toughness and the critical tensile 

strength of the material, respectively. While the value of KIc can be unambiguously 

determined according to the  ASTM-D5045-99 standard [29-30], particular attention 

should be paid to the choice of critical material tensile strength.  In the literature, indeed, 

it is suggested to estimate t on the basis of the strength of notched components [34, 36, 

37]. In particular, Seweryn [36] suggested that σt should be determined as “the maximum 

normal stress existing at the edge at the moment preceding the cracking” and, to this end, 

recommended to use tensile specimens with semicircular notches [37]. Thus, according 

[34, 36, 37], in the present work σt has been measured evaluating the stress at failure 

occurring at the tip of DENT specimens. A summary of the obtained t values for the neat 

and nanomodified epoxy resins is shown in Figure 6. It is evident that, even if 30B clay-
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modified epoxy resins exhibit an enhanced fracture toughness [12, 26],  nanomodification 

has a detrimental effect on the critical material tensile strength. In more details, t is 

decreased from about 151 MPa (neat resin) to about 105.7 MPa (5% wt nanoclay) with a 

reduction of about 30%. This decrease approximately equates that detected, for the same 

material systems, on the tensile strength as measured from tensile tests on Dog Bone 

specimens [12, 26].   

The limit values for the notch root radius, *, for the neat resin and the clay-modified 

resin evaluated by Eq. (4) are listed in Table 3. In all cases * is smaller than 0.5 mm, 

namely the smallest value of the notch root radius used in the present analysis, thus 

indicating that all the specimens analyzed in the present work are characterized by a full 

notch sensitivity. 

Accordingly, all experimental data from SENB and DENT specimens with the same 

nanoclay weight content have been summarised in terms of the maximum principal stress 

evaluated at the notch edge. The summaries are shown in Figures 7-10 where it is evident 

that data coming from specimens made of the same material but characterized by 

different values of the notch root radius and different loading conditions fall within the 

same narrow scatter band. The scatter bands have been drawn by using for each material 

configuration the mean values of t ±2 standard deviations. 

Thus, for all the notched specimens investigated in this work, nanomodification has a 

detrimental effect on brittle failure, being it a strength-controlled phenomenon (for 

all cases). Under these conditions, the disadvantageous role played by nanoclay addition 

on the strength of polymeric resins [12,14-16] is directly transferred to the notch effect on 

nanomodified specimens. Accordingly, in the engineering practice, particular care should 

be taken when using binary nanomodified resins for structural applications in the 

presence of notches or holes. 

 

Clay content %wt KIc
 [MPa m0.5] [26] t [MPa] a0 [mm] * [mm] 

0 1.001 ± 0.024 151.0 ± 3.9 0.013991 0.0559 

1 1.489 ± 0.036 137.9 ± 2.33 0.037153 0.1486 

3 1.306 ± 0.01 110.8 ± 0.85 0.044274 0.1770 

5 1.188 ± 0.034 106.7 ± 2.62 0.039511 0.1580 

Table 3. Fracture toughness, tensile properties and limit notch root radius of neat epoxy and nanomodified 
polymers. 
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Figure 6. Critical tensile stress, t, of the neat and nanomodified epoxy resins (results from DENT tests). 
Errors bars: +/- 2 standard deviations. 

 

Figure 7. Experimental data from SENB and DENT specimens calculated in terms of the maximum 
principal stress on the notch edge. Neat resin. Scatter band: mean value +/- 2 standard deviations. 
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Figure 8. Experimental data from SENB and DENT specimens calculated in terms of the maximum 
principal stress on the notch edge. 1%wt nanoclay. Scatter band: mean value +/- 2 standard deviations. 

 

Figure 9. Experimental data from SENB and DENT specimens calculated in terms of the maximum 
principal stress on the notch edge. 3%wt nanoclay. Scatter band: mean value +/- 2 standard deviations. 
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Figure 10. Experimental data from SENB and DENT specimens calculated in terms of the maximum 
principal stress on the notch edge. 5%wt nanoclay. Scatter band: mean value +/- 2 standard deviations. 

 

EXPERIMENTAL DATA IN TERMS OF APPARENT FRACTURE 
TOUGHNESS  

In this section, the experimental results from SENB specimens already discussed in the 

previous paragraph will be presented in terms "apparent fracture toughness" by using the 

concept of "Generalised Stress Intensity Factor" (GSIF). 

The Stress Intensity Factors (SIFs) quantify the intensities of the asymptotic linear elastic 

stress distributions of cracks and are mathematically defined as [38, 39]: 

  r0rII0rI r2limKr2limK  (5) 

When the tip radius is different from zero, the crack becomes a U-notch and the near-the-

tip stress field diverges from the singular sharp-crack solution. In this case, Eq. (5) should 

be modified to account for the stress redistribution caused by the presence of a finite 

value of the notch root radius [40, 41]: 
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(7) 

KI and KII are commonly regarded as Generalised Stress Intensity Factors (GSIFs). In 

Eqs. (6) and (7), r is the distance from the centre of the curvature radius (see Figure 11),  

is the notch root radius and and rare stress components along the notch bisector line, 

to be determined from finite element analyses. It is worth noting that the units of measure 

of KI and  KII remains MPa m0.5, as for the crack case. Accordingly, unlike the 

theoretical stress concentration factor Kt, the scale effect is fully accounted for by the 

GSIFs: notched components simply scaled in geometrical proportion have the same Kt 

value, but different GSIF values. 

The concept of generalized stress intensity factors, coupled with the cohesive zone model, 

has been used by Gómez et al. [42] to build a master curve for estimating fracture loads in 

deep rounded notched components. A generalised equivalent stress intensity fracture, 

obtained as a generalisation of Glinka’s NSIF [43] for mode I simply replacing tip by the 

maximum elastic stress at the notch edge, was later used by Gomez et al. [44] to 

summarise fracture tests from U-notched specimens made of PMMA. 

A failure criterion based on the mode I and II GSIFs has also been proposed by 

Ayatollahi and Torabi and applied to summarize a large number of experimental data 

from Brazilian disc specimens made of PMMA [45] and polycrystalline graphite [46]. 

The definition or the use of a brittle fracture criterion based on the GSIFs being out of 

scope of the present research work, in this section GSIFs are used with the only aim to 

enforce the conclusions drawn in the previous section about the influence of 

nanomodification on the notch effect on clay-modified epoxy resins. To this end, KI and 

KIIhave been evaluated from FE analyses for all SENB specimens and loading 

conditions considered in the present work, and the experimental results, reconverted in 

terms of "apparent fracture toughness"  have been summarised in KI- KIIdiagrams 

(Figures 12-14). It is evident that nanomodified specimens exhibit a lower apparent  

fracture toughness independently of the notch root radius. Moreover, differently to what 

happened for cracked components where ranging from pure mode I to pure mode II less 

pronounced improvements of the fracture toughness has been found [26], no evident 

effect of the loading mode can be noted here. 
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Figure 11. U shaped notch and polar coordinate system to be used in Eq. (6) and Eq. (7).  

 

 

 

Figure 12. Apparent fracture toughness of neat and nanomodified specimens under various loading 
conditions. SENB specimens with mm
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Figure 13. Apparent fracture toughness of neat and nanomodified specimens under various loading 
conditions. SENB specimens with mm



 

Figure 14. Apparent fracture toughness of neat and nanomodified specimens under various loading 
conditions. SENB specimens with mm
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CONCLUSION 

In the present work the effects of nanoclay addition on the brittle notch fracture behavior 

of an epoxy resin have been studied. Different kind of notched specimens have been 

manufactured and tested: 

1. Double Edge Notch Tension (DENT) specimens  with 4mm radius semicircular 

notches; 

2. Single Edge Notch Bending (SENB) specimens with U-notches. In this case the 

notch depth is equal to 10 mm and three different values for the notch root radius 

have been used: 0.5, 1 and 2mm. 

The experimental results clearly indicate that for notch root radii greater than a limit 

value, which depends on the clay content, the brittle failure of notched nanomodified 

components is a strength-controlled phenomenon.  

All the results from specimens with the same clay content but with different values of the 

notch root radius (from 0.5mm to 4mm) were found to be characterized by the same 

critical value of the maximum principal stress, t. Comparing the average critical values 

of t allowed us to conclude that for the material systems and geometries investigated in 

this work, nanomodification has a detrimental effect on the strength of notched 

components. A final summary of the experimental results in terms of generalised 

(apparent) fracture toughness revealed that this behaviour is not influenced either by the 

notch root radius or the loading mode. 

As a major conclusion of the present work, it can be stated that, even if nanoclays are 

suitable to improve the fracture toughness of polymeric systems, the same amelioration is 

not necessarily transferred to notched parts. Accordingly, in the engineering practice, 

particular care should be taken when using binary nanomodified resins for structural 

applications in the presence of notches or holes. 
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4 
Advanced	multifunctional	polymer	

nanocomposites	with	enhanced	mechanical	
and	anti‐microbial	properties	

	

 

KEYWORDS:  A. Multifunctional nanocomposites; B. Epoxy resin; C. Antimicrobial 

activity; D. Reinforced laminates; 

 
ABSTRACT  
The main goal of the present chapter is to investigate the possibility to obtain 
multifunctional binary and ternary polymer nanocomposites with enhanced mechanical 
and anti-microbial properties. To this end a DGEBA-based epoxy resin is loaded using 
Montmorillonite clays and later used as matrix for glass fibre reinforced laminates. Both 
binary and ternary nanomodified specimens are manufactured and subjected to 
mechanical testing. An accurate analysis of the effect of nanomodification on the 
biological activity is carried out as well. 
 

1. INTRODUCTION 

The most recent advancements in polymer and composite science and technology allow 

the design of materials and structures at the nanometer scale, resulting in exciting 

accomplishments in the development of multi-functional materials with enhanced 

physical and mechanical properties for several fields of application [1-3].  

Thanks to the complex physical interactions among constituents occurring at the atomic 

level, nanomodified polymers are provided with exceptionally enhanced properties even 

at low filler concentrations, making polymer nanocomposites a unique vector for 

functional properties. 

Within this context, clay based nanocomposites are very promising new materials from 

the perspective of achieving high performances at a relative low cost. Nanoclays are 

silicate platelets with about 1nm of thickness and disposed in tactoids; commonly, a 

hybrid exfoliated and intercalated structure represents a trade-off between the capacity of 

obtaining the desired property enhancements and manufacturing complexity [4-11]. A 

complete exfoliation is, indeed, complicated to be obtained since it requires the separation 

of the platelets from the primary tactoids.  
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Due to their very high aspect ratio, nanoclay platelets are suitable to improve the tensile 

elastic modulus of polymeric systems [4-6], the matrix fracture toughness [11, 12] and, in 

principle, the strength, even if conflicting results have been reported [7–11]. 

As far as the possibility to transfer the improvements obtainable in  the mechanical 

properties of binary nanocomposites to ternary fibre reinforced nanocomposites is 

concerned, the results reported up to now in the literature do not show a unique trend. 

Encouraging results were obtained by Becker et al. [13], who documented improvements 

in crack opening fracture toughness with low levels of clay addition and by Quaresimin 

and Varley [14], who reported “selective” improvements in the mode II toughness 

properties of carbon/clay-modified epoxy laminates. Differently, the investigations 

carried out by Timmerman et al. [15] and Quaresimin et al. [11] showed only limited 

improvements in the mechanical properties of clay modified composites compared to 

those produced with unmodified resins.  

When using adequate surfactants, polymer loading through montmorillonite (MMT) 

nanoclays also offers exceptional improvements of anti-microbial properties [16-18], 

assisting in the achievement of self-decontaminating surfaces which are highly desirable 

for many fields of application, such as  composite parts in the medical field (external 

prostheses or sterilised equipments and tables).  

Quaternary ammonium compounds (QACs) have great antibacterial activity thanks to the 

positive charge of the amine which is attracted and interact with the negatively charged 

cell surfaces of bacteria [17, 18]. The concept of polymeric spacer is commonly used 

when describing QACs activity: more precisely, the agent is supposed to adsorb and 

penetrate into the bacterial cell thanks to a sufficiently long alkyl chain which should 

allow it to reach gradually the cytoplasmic membrane and kill the bacteria by 

destabilizing and destroying the phospholipid bilayer. 

An alternative mechanism proposed to explain the antimicrobial activity of these 

compounds is known as the contact-killing via the phospholipid sponge effect which 

consist of an absorption and removal of such negative molecules from cell membranes 

thus leading bacteria to death [19-22].  

This concept is reconsidered in this work, where the preliminary results of a project 

aimed at designing, manufacturing and testing advanced multifunctional polymer 

nanocomposites with enhanced mechanical and anti-microbial properties are presented. In 

more details, binary and ternary nanocomposite specimens are manufactured using a 

DGEBA-resin reinforced with octadecylamine surface-modified montmorillonite (MMT). 
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By one side, this particular functionalisation is proved to be very effective in terms of 

anti-microbial properties. On the other side clay-loading assists in the improvement of the 

polymer toughness. Eventually, the capability of translating the improved resin properties 

to the fibre reinforced composite is studied as well. 

2. MATERIALS AND SPECIMENS MANUFACTURING 

In this work, a diglycidyl ether of bisphenol A (DGEBA, Elan-tech EC157) epoxy with 

the mixture of cycloapliphatic amines Elan-TechW 152LR (supplied by Elantas) was 

used as polymer matrix. Nanomer I.30E (montmorillonite clay with 25-30%wt 

octadecylamine surfactant, supplied by Sigma-Aldrich) and a 350g/m2 balanced twill of 

glass fibres supplied by G.Angeloni were used as nanofiller and microsize reinforcement, 

respectively.  

The presence of amine groups with carbon chains on clay surfaces ensures compatibility 

between the epoxy resin and the nanoreinforcement and, at the same time, add amine 

groups in excess with respect to the stoichiometric ratio, giving a contribution to the 

development of anti-microbial properties. Indeed, Kubo et al. [17] reported how amine 

groups are capable to modify the ph of the material and might affect antibacterial 

activities. 

Dog-Bone (DB) specimens and Compact Tension (CT) specimens were manufactured 

with the nanomodified epoxy resin (Figure 1a-b), while Double Cantilever Beam (DCB) 

specimens as well as Inter-Laminar Shear Strength (ILSS) specimens were obtained from 

the laminates.  

The above mentioned samples were manufactured according to the following steps:  

1. Nanoclays were dispersed in the DGEBA resin by means of shear mixing and 

sonication. The shear mixing was carried out with a DISPERMAT TU shear 

blender from VMA-GETZMANN with a 70mm diameter blade (about 1800rpm 

for 40 minutes). Then, the blend was sonicated with a HIELSCHER UP 200s 

sonicator using a 40mm diameter sonotrode (amplitude 160W and duty cycle 1) 

for 10 minutes, in order to improve the clay dispersion. After the sonication, the 

hardener was added and a further shear mixing at 300rpm for 5 minutes was 

performed.  

2. Degassing was carried out for removing the air trapped within the blend as a 

consequence of the shear mixing. To this end a low vacuum pump was used to 
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reach a low pressure within the resin pot and, at the same time, mechanical 

shaking of the blend was performed. After 30 minutes the composite was poured 

in silicone moulds to manufacture binary nanocomposite samples.  

3. Differently, glass fibre reinforced laminates were produced by means of room 

temperature vacuum infusion of the nanomodified resin into a vacuum bag where 

16 layers of glass fibre ply were layered. An Aluminium film 15m thick was 

used to create the pre-crack for the DCB specimens.  

4. After 3 days of curing at room temperature, demoulding of the specimens was 

carried out. Finally, the specimens were polished and for ct specimens manual 

tapping was carried out. Filler weight fractions of 1% and 3% have been used to 

modify the polymer resin. 

(a) 

 (b) 

Figure 1. (a) A Dog-Bone (DB) specimen and  (b) a Compact Tension (CT) specimen used in the 
mechanical tests. 
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3. BINARY NANOCOMPOSITES  

3.1 Morphological and chemical characterization 

A chemical characterization of the samples made of nanomodified polymer was carried 

out through FTIR spectroscopy using a thermo electron Nicolet Nexus 5700 with smart 

performer single-bounce ATR accessory. Results shown in Figure 2 make it evident that 

the characteristic peaks of montmorillonite were too low to be identified (-OH stretching 

mode of Al-OH or Si-OH at 3626 cm-1 and the band associate with the bending in plane 

vibration of the -OH from water at 1634cm-1).  

Moreover, high magnification TEM images showed a partially intercalated structure for 

the nanoclay (Figure 3). 

 

 

Figure 2. FTIR spectrum in ATR of a sample of epoxy resin containing 3%wt of clay loading. 
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Figure 3. TEM micrograph for a nanocomposite containing 3%wt of clay loading. 

 

3.2. Tensile tests and results 

Tensile tests on DB specimens were carried out with the aim to determine the failure 

stress, σR, the elastic modulus, E, and the strain to failure, εR, of neat and nanomodified 

epoxy resins.  

A MTS809 servo-hydraulic machine equipped by a 2.5kN load cell was used, with 

crosshead speed equal to 2mm/min. Accurate strain measurements were obtained by 

using a MTS 632.29F-30 extensometer. The specimen geometry  is shown in Figure 1a 

and complies with the ISO 527-2 suggestions [23]. Three specimens were tested for each 

clay content, failure taking place in the gauge length of the specimens.  

The effect of the weight content of nanoclay on the nanocomposite tensile properties is 

shown in Figure 5 in terms of average values. In particular a modulus of 3.2 GPa was 

measured for the unmodified epoxy resin and a maximum modulus of 3.3 GPa was 

measured, for the epoxy polymer with 3%wt of nanoclay, with negligible increase with 

respect to the unmodified epoxy resin.  

Figure 4 makes it also evident that the nanocomposite strength and strain to failure are 

monotonously decreased while increasing clay loading, in agreement with results reported 

by other authors [11,12]. 
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Figure 4. Effect of the nanomodification of the epoxy resin evaluated from tensile tests. 

3.3 Mode I Fracture Tests 

In agreement with the ASTM D5045-99 suggestions [24], fracture tests were carried out 

on CT specimens of which the geometry is shown in Figure 1b. After demoulding, 

specimens were pre-cracked by manual tapping, obtaining artificial short cracks. Then 

10mm long cracks (double the specimen width) were obtained by applying some zero-to-

tension fatigue cycles.  

Samples were tested using a MTS858 servo-hydraulic machine equipped with a 2.5kN 

load cell  and experimental results were re-arranged according to the following expression 

to compute the Mode I fracture toughness [24]: 
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Three values of KIc have been obtained for each material configuration and results, in 

terms of average values, are reported in Figure 5.  

Different from tensile properties, the mode I fracture toughness of the epoxy resin has 

been enhanced by nanomodification: the KIc of 0.96MPa∙m0.5 of the neat-epoxy is 

increased to 1.23MPa∙m0.5 (about +30%) with a filler weight fraction of 3% of nanoclay. 

The improvement is even more significant when considering the already high toughness 

of the neat resin.  

 

Figure 5. Effect of the nanomodification of the epoxy resin evaluated from CT tests. 

 

3.4 Morphological analysis of the fracture surfaces 

A morphological analysis of the fracture surfaces of nanomodified CT specimens with 

3wt% of clay content was carried out by means of a Quanta400 FEI scanning electron 

microscope and are shown in Figure 6. It is evident that nanoclays developed a 

micrometric clustered structure, with agglomerates up to a size of some m. Moreover, a 

significant roughness is evident on the fracture surface, caused by pronounced crack 

deflections and cluster ruptures. Such a kind of fracture surface is typical of intercalated 

platelets [11, 12]. 
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Figure 6. SEM images of the fracture surface of CT specimens with 3wt% of clay content. 

 

3.4. Evaluation of the biological activity 

Besides the improvements in polymer toughness, polymer loading through MMT 

nanoclays also offers great potential in terms of anti-microbial properties [16-18], thus 

assisting in the achievement of self-decontaminating surfaces. 

In the present work, the antibacterial activity was evaluated against E.coli ATCC 8739 

and S.Aureus ATCC 6538P selected as examples of gram-negative and gram-positive 

bacteria, respectively. Bacteria and culture media were provided by VWR International 

PBI SrL. 

Initially, the Minimum Inhibitory Concentration (MIC) of Nanomer I.30E was 

determined  by a broth dilution method, as recommended in [25].  To this end, Nanomer 

I.30E was diluted in Tryptic Soy Broth (TSB) gradually and the bacteria was added to 

achieve a bacterial concentration of 1-2x105UFC/mL. MIC was read after 24h of 

incubation at 37°C by comparing the turbidity with respect to standard samples of MMT. 

MIC was determined in the range 62.5-125.0ppm only for S.Aureus, but not clearly for 

2000X 4000X 

8000X 30000X 
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E.Coli. Thus a different procedure was carried out improving the direct contact between 

Nanomer I.30E and cells. 

Bacterial suspensions containing 5x106CFU/mL were distributed on 20mL plate count 

Agar (PCA) in Petri capsules and water suspensions (20L) containing different amounts 

of Nanomer I.30E (in the range 46-100000ppm) were added. The results are reported in 

Table 1 where it can be observed that for E.Coli MIC value was in the range 1563-

3125ppm and for  S. Aureus in the range 91-181ppm, indicating a significantly higher 

antimicrobial activity against S.Aureus as previously reported for ammonium quaternary 

salts bearing long aliphatic chains [22]. 

Subsequently, the antibacterial activity of the surfaces of nanomodified specimens was 

evaluated using unbroken CT specimens (see Figure 1b). The tested samples (4cm2) were 

submitted for 24 h to a sterilizing UV irradiation, coated (25L/cm2) with 100L of 

bacteria in a Tryptic Soy Broth suspension (1:500) containing 106-107 cells and incubated 

24h at 37°C. The bacteria were recovered by adding 10mL of soybean casein digest with 

lecithin and polysorbate neutralizer broth (SCDLP: 17.0g of casein peptone, 3.0g of 

soybean peptone, 5.0 of sodium chloride, 2.5g of sodium hydrogen phosphate, 2.5g of D-

glucose, 1.0g of lecitine and 7.0g of Tween 80 in 1000mL of deionized water) according 

to the ISO 22196 suggestions [26]. The viable bacteria were enumerated by performing 

successive 10-fold serial dilutions in phosphate buffered physiological saline (34g/l di 

KH2PO4 diluted 1:800 in physiological solution) of the 10mL suspension recovered from 

the test specimen. Samples of 1mL of each dilution were put into sterilized Petri dishes, 

together with 15mL of a plate count agar. The suspensions were gently swirled to 

disperse the bacteria and incubated at 35°C for 40h. All the platings were performed in 

duplicate. After incubation, the number of colonies of each dilution was counted and the 

mean values of the counts below 300 UFC/mL were reported. The data have been 

compared with reference samples. 

The antimicrobial activity of the nanocomposite containing different amounts of clay was 

established by comparing the initial number of UFC of E.coli and S. Aureus to the final 

number of bacterial colonies after contact. The antibacterial activity was very high (Table 

2), in particular against S.Aureus, and it was shown to be dependent from the clay 

amount; in the case of 3%wt of clay addition the killing percentage is close to 88%. 

Representative photographs of the test discs on the agar plates are shown in Figure 7, 
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where the antimicrobial activity of samples with different clay content is compared as 

well. 

 

MMTNH4+ [mg/L] ESCHERICHIA COLI 
STRAPHILOCOCCUS 

AUREUS 

100.000   

50.000   

25.000   

12.500   

6.250   

3.125   

1563 +  

782 +  

361 +  

181 +  

91 + + 

46 + + 

Table 1. MIC of Nanomer I.30E against E.Coli and S. Aureus, where “” stands for inhibited growth while 
“+” means non-inhibited growth. 

 

 

 E.Coli S.Aureus 

Filler %wt UFC/25µL % Kill UFC/25µL % Kill 

Base resin 8.5 x106 - 1.4 x106 - 

1% 7.5 x106 11.8 2.5 x105 82.1 

3% 4.3 x105 94.9 1.7 x105 87.9 

Table 2. Antimicrobial activity of specimens made of neat resin and nanomodified polymer.  
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tests all specimens  failed by delamination. The results, reported in Figure 10, show that 

the interlaminar shear strength exhibits a slight  reduction with the increase of the 

nanoclay content.   

 

Figure 8. R-curves obtained from the DCB tests. 

 

 

Figure 9. Initiation values of the R-curves from DCB tests. 
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Figure 10. Laminate interlaminar shear strength obtained from ILSS tests. 

4.2. Evaluation of the biological activity 

As for binary nanocomposites, the antibacterial activity of nanomodified laminates was 

evaluated against E.coli ATCC 8739 and S.Aureus, ATCC 6538P. To this end the same 

standardized procedure presented in section 3.4 was followed, in agreement with the ISO 

22196 suggestions [26]. In this case, the 4cm2 tested samples were directly cut from DBC 

specimens. 

Quantitative results are reported in Table 3 and representative photographs of test discs 

on the agar plates are shown in Figure 11 where the antimicrobial activity of samples with 

different clay content is presented.  

Comparing Tables 2 and 3 it can be noted that the antimicrobial activity is higher in the 

case of nanomodified laminates with respect to nanomodified polymers, the killing 

percentage rising up to 97%. 

 

 E.Coli S.Aureus 

Filler %wt UFC/25µL % Kill UFC/25µL % Kill 

Base resin 1.9 x107 - 2.8 x107 - 

1% 7.6 x106 60.0 3.5 x106 87.5 

3% 6.1 x105 96.8 1.7 x106 94.0 

Table 3. Antimicrobial activity of neat and nanomodified laminates.  
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              (1)               (2)                 (3)                (1)            (2)            (3) 

(a) (b) 

Figure 11. Images of agar-plates from antimicrobial tests on neat and nanomodified laminates. (a) against 
S.Aureus and (b) against E.coli. (1) neat polymer; (2) 1%wt of I30E; (3) 3%wt of I30E. 

 

5. CONCLUSIONS 

In this work the possibility to obtain binary and ternary polymer nanocomposites with 

enhanced mechanical and anti-microbial properties was investigated. To this end a 

DGEBA-based epoxy resin was loaded using montmorillonite clays and later used as 

matrix for glass reinforced laminates. Both binary and ternary nanomodified specimens 

were manufactured and subjected to mechanical testing. Moreover an accurate analysis of 

the effect of nanomodification on the biological activity was carried out. 

The relevant results can be summarised as follows:  

1. As far as binary nanocomposites are concerned, modification of the polymer resin 

with Nanomer I.30E enhanced the polymer fracture toughness (+30%). At the 

same time a considerably increase of the antimicrobial activity against E.coli 

ATCC 8739 and S.Aureus ATCC 6538P was obtained, with killing percentage 

close to 88%. 

2. Moving to ternary nanocomposites, results indicated that nanomodification is less 

effective in terms of mechanical properties, nanomodified laminates exhibiting 

only a slightly improved, or almost comparable, interlaminar fracture toughness, 

with respect to the base ones.  Differently, the antimicrobial activity is 

considerably enhanced, with a killing percentage of 94%. In particular the 

antimicrobial property of the ternary nanocomposite with respect to E.Coli results 

of the same order of magnitude of the binary one. 
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Further analyses need be carried out, introducing the post-curing treatment in the 

specimen manufacturing. 
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 5 
Influence	of	interphase	and	filler	distribution	

on	the	elastic	properties	of	nanoparticle	
filled	polymers

	

 

KEYWORDS:  A. Nanoparticles; B. Nanocomposites; C. Interphase; D. Elastic 

properties 

 

ABSTRACT 
The assessment of nanocomposite mechanical properties is a challenging task. Their 
hierarchical structure, spanning from nano to macro length-scales, urges to account for 
the characteristic phenomena of each length-scale and to bridge their effects from the 
smaller scale to the macroscale. 
In the present chapter two different approaches for the estimation of the elastic modulus 
of a nanoparticle filled polymer are proposed and compared. Both models account for the 
emergence of an interphase layer embedding the nanoparticle, with mechanical 
properties different from those of the matrix.  
 

1. INTRODUCTION 

One of the most interesting features characterizing nanocomposite material is that they 

offer outstanding improvements of mechanical and physical properties at very low filler 

concentrations, thus assisting in the achievement of high-level performances across 

various engineering applications. 

In nanomodified polymers, as the filler size is decreased to the nanoscale, intra- and 

supra-molecular interactions lead to the emergence of an interphase zone whose 

properties differ from those of both constituents and whose thickness may be comparable 

to the particle size. Sevostianov and Kachanov [1] showed that the effect of such 

interphase on the overall mechanical properties can be substantial, depending on the ratio 

of the interphase thickness to the particle size and the variability of the properties across 

the interface thickness. 

Moreover other complexities which may arise in the material configuration, such as 

macromolecular chain entanglement or imperfect bonding, can be accounted for through 

the “apparent” elastic properties of the interphase. 
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In this chapter two different approaches for the estimation of the elastic modulus of a 

nanoparticle filled polymer are analyzed and compared. Both of them account for the 

emergence of an interphase layer embedding the nanoparticle, with mechanical properties 

different from those of the matrix.  

The first method makes use of Hashin and Shtrikman’s micromechanical solution [2] 

within a two step-analysis and provides an analytical estimation of the elastic modulus of 

the nanocomposites, explicitly accounting for the size and properties of the interphase.  

The second approach makes a combined use of the Voronoi cell concept and of the finite 

element method. This approach, initially proposed by Davy and Guild [3] for 

microparticle reinforced polymers, is based on the construction of a FE axisymmetrical 

cell of which the size depends on the nanoparticle radius and on the filler volume fraction 

and provides a numerical estimation of the global stiffness of the studied system.   

Relevant results are discussed and compare with the aim to shown the influence of all the 

involved parameters. 

2. A NANOSTRUCTURAL MODEL BASED ON HASHIN AND 
SHTRIKMAN’S SOLUTION 

By using variational principles in the linear theory of elasticity, Hashin and Shtrikman [2] 

provided the upper and lower bounds for the effective elastic moduli, K* and G*, of an 

isotropic composite material comprising a matrix (m) and a filler (p): 
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fp is the filler volume fraction and subscripts m and p refers to the matrix and the filler, 

respectively. 

Eqs. (1) can be easily extended to account for the presence of a spherical interphase layer 

embedding the nanoparticle, with elastic properties different from those of the matrix, by 

using a two-step analysis. 

Under the hypothesis of isolated particles, namely low volume fractions, and perfectly 

bonded surface (Figure 1a), each particle and the surrounding interphase material can be 
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changed for an “equivalent homogeneous spherical particle (EHP)” of radius a=r0+t, 

being r0 the radius of the original nanoparticles and t the interphase thickness (Figure 1b).  

 

Figure 1. Conversion of the three-phase nanocomposite into an equivalent two-phase material. 

Then, as a first step, the elastic properties of the EHP, K' and G', can be thought of as the 

lower bound of the effective elastic moduli of a two phase material constituted by the 

interphase and the nanoparticle only, which can be estimated according to Eqs. (1): 
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(3) 

As a second step, the elastic properties of the nanocomposite, KC and GC, can be assessed 

through the lower bound of the effective elastic moduli of the two phase material 

constituted by the matrix and the EHP: 
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Finally the modulus of elasticity in tension of the nanocomposite, EC, can be determined 

as: 

(b) (a) 
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It is worth mentioning here that a “two-step” analysis using Hashin’s solution has also 

been proposed by Dorigato et al. [4] with the aim to take into account agglomeration 

effects arising in nanocomposites. However in the first step of their analysis, Dorigato et 

al. [4] suggested to use the upper bound Eq. (1) instead of the lower one, as proposed in 

the present work. 

3 A FE APPROACH BASED ON THE VORONOI CELL 

The Voronoi cell approximation was developed by Davy and Guild [3] with the aim to 

determine the stiffening effects due to spherical particles within a matrix using finite 

element analysis, under the hypothesis of homogeneous Poisson process of particles, with 

a further correction to account for the non-overlapping of particles. The Voronoi cell 

surrounding each particle is defined as the set of points belonging to the space which is 

regarded as the domain of the distribution, characterized by being closer to the center of 

the particle belonging to that cell than to every other center of particle in the material [3] 

(Figure 2a). Generally speaking, this cell can be much irregular; in order to overcome this 

Davy and Guild [3] proposed to reshape it into a cylinder with the same volume. This 

approximation is consistent with the nature of the stress state around a spherical particle 

under uniaxial loading [5, 6]. The size of the equivalent cylinder is defined by the 

following averaged radius  (Figure 2b): 

03

p

r
f3

2
R   (7) 

Where r0 is the radius of the spherical filler and fp the volume fraction. 
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Figure 2. (a) Schematic representation of Voronoi's cells surrounding particles in a 2D space. (b)The 
equivalent Voronoi's cell proposed by Davy and Guild [5]. 

 

The method proposed by Davy and Guild is modified here to account for an interphase 

layer embedding the nanoparticle, with elastic properties different from those of the 

matrix (see Figure 3a). Such a region is assumed to be homogeneous, with uniform elastic 

properties. By doing so, the outer interphase radius, t+r0, should always be lower than R , 

so that the following condition on the on the interphase thickness holds : 
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The equivalent Voronoi cell can be used within a finite element analysis with the aim to 

determine the elastic modulus of the nanocomposite by simply evaluating the global 

stiffness of the cell. The polar symmetry of the analyzed system allows one to use axi-

symmetric plane elements for the finite element analysis. With reference to Figure 3b, 

symmetric boundary conditions can be used, along AB, further reducing the complexity of 

the analysis. An example of the mesh used in the FE models is shown in Figure 3c.  

The boundary conditions applied to the cell are shown in Figure 3 and can be summarized 

as follows: 

1. all nodes along BC are constrained to the same displacement ux; 

2. all nodes along DC are constrained to the same displacement uy; 

3. a constant stress   is finally applied along DC. 

Accordingly, the averaged stiffness of the FE cell can be calculated as follows: 

1
R

E






 (9) 

where   is the uy displacement of the nodes along DC. 

(a) (b) 

R

R2
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In addition a statistical correction, (Ecorr) related to particle dispersion, can be introduced. 

The elastic modulus of the nanocomposite can be finally estimated according to the 

following expression: 
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The second order differential term in Eqs. (10 a-b), 
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where E1 and E2 are the averaged Young modulus associated to cells of radius R1 and R2: 
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Being  the step size (convenient values of  are listed in Table 1). 

The coefficient of variation, CV, accounting for particle statistical distribution can be 

calculated as follows: 
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where k can be obtained from the following equation: 
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fP  CV fP  CV 
0.02 8 0.705579 0.1 1 0.4652 
0.04 6 0.632405 0.2 0.6 0.27647 
0.06 4 0.569664 0.3 0.4 0.14935 
0.08 2 0.514471 0.4 0.2 0.061194 

Table 1.Values for CV and, as a function of fP, to be used in Eq. (10) and Eq. (11).  
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Figure 3. (a) The equivalent Voronoi cell proposed to account for an interphase layer. (b) Geometry and 
boundary conditions of the axis-symmetric cell used in the FE calculations. (c) Example of the mesh used in 

the FE analyses. 

5. RESULTS AND DISCUSSION 

The aim of this section is to compare the results which can be obtained with the model 

proposed. 

Figure 4 shows the values of the normalized elastic modulus, Ec/ Em, where Em is the 

Young modulus of the polymer matrix, versus the nanoparticle radius. The effect of the 

interphase thickness and of the nanoparticle size is evident. For a given value of t, the 

smaller the particle size the higher the overall elastic modulus. Conversely, as the 

nanoparticle size increases, the overall elastic modulus asymptotically decreases. This 

effect is due to the reduced influence of the interphase for larger nanoparticles. It is also 

evident that beyond particle radii greater that about 70nm, independently of the interphase 

thickness, the nanocomposite elastic modulus tends towards the same constant value. 

Differently, Figure 5 shows the effect of the elastic properties of the interphase on the 

normalised elastic modulus of the nanocomposite. It is evident that as the interphase 

elastic stiffness increases the nanocomposite elastic modulus increases, while  for softer 

interphases  the nanocomposite stiffness is lower than that of the matrix.  

Figures 4 and 5 also show that the results obtained by using the two analyzed method are 

in good agreement as far as conditions given by Eq. (6) and Eq. (8) are guaranteed. 
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Figure 4. Effect of the particle radius and of the interphase thickness on the normalized nanocomposite 
elastic modulus. Comparison between  Eq. (5) and Eq. (10a).  

 

 

 

Figure 5. Effect of the particle radius and of the Ei/Em ratio on the normalized nanocomposite elastic 
modulus. Comparison between  Eq. (5) and Eq. (10a). 

 

Finally Figure 6 shows the normalized elastic modulus of the nanocomposite versus the 

nanofiller volume fraction for different interphase thickness. It is evident that, for a given 
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value of fp, the thicker the interphase layer, the higher the overall elastic modulus. 

Moreover, it is evident that both methods predict an elastic modulus monotonically 

increasing as a function of the nanoparticle volume fraction. This trend disagrees with the 

behaviour of “stiffness leveling” exhibited by the experimental data which is universally 

acknowledged to be due to aggregation effects arising at higher volume fractions and 

which are, by hypothesis, neglected by the models proposed in the previous sections. 

 

 

 

Figure 6. Effect of the filler volume fraction  and of the interphase thickness on the normalized 
nanocomposite elastic modulus. Comparison between Eq. (5) and Eq. (10a). 

 

6. CONCLUSIONS 

In this work two different approaches for the estimation of the elastic modulus of a 

nanoparticle filled polymer are analyzed and compared. Both the proposed models 

account for the emergence of an interphase layer embedding the nanoparticle, with 

mechanical properties different from those of the matrix. It has been shown that both 

models are able to seize the effect of the interphase thickness and elastic properties. 

Moreover the models are able to account for the nanoparticle size, the smaller the particle 

radius the higher the overall elastic modulus.  
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6 
An	efficient	RVE	formulation	for	the	analysis	

of	the	elastic	properties	of	spherical	
nanoparticle	reinforced	polymers

	

 

KEYWORDS:  A. RVE; B. Nanocomposites; C. Interphase; D. Elastic properties; 

 
ABSTRACT 
Based on the use of Ripley function, a new algorithm for the generation of three-
dimensional Representative Volume Elements (RVEs), easy to be meshed and imported in 
a FE code, is developed. The presence of an interphase zone, surrounding the nanofiller, 
of different mechanical properties with respect to the polymer matrix is accounted for. 
The basic features and potentialities of the tool are discussed by referring to a Complete 
Spatial Random Distribution. Moreover the effect of the material morphology on the 
overall interphase amount and on the elastic properties of polymer/nanoparticle 
nanocomposites are analysed.  
Eventually, a computational analysis is carried out to study the effects of the interphase 
thickness and properties on the elastic properties of nanocomposites. 
 

1. INTRODUCTION 

Nanomodification, meant as the addition of nanofillers to polymer matrices, has recently 

emerged as an extremely promising technology to manufacture multi-functional materials 

through the designing of structures at the nanoscale. Surely, the most appealing feature of 

nanocomposite materials, when compared to more conventional micro-sized filler 

reinforced polymers, is that they offer outstanding improvements of physical and 

mechanical properties at very low concentrations. This assists in the achievement of high-

level performances across various engineering applications and makes the use of 

nanomodified fibre–reinforced composites a smart solution.  

Among the different types of nanofillers,  the use of spherical nanoparticles allows to 

strengthen and toughen polymer resins as shown in some recent papers [1-5].  

The mechanical properties of epoxy resins filled with spherical silica nanoparticles was 

investigated by Chen et al. [1] and Ma et al. [2] who obtained substantial improvements 

of the tensile modulus and the fracture toughness. Within this context, the nanoparticle 

size effect was analysed  by Liang and Pearson [3] and Dittanet et al. [4] who found 

significant improvements of the Young’s modulus and the fracture toughness, almost 

independently of the particle size.  Different from the above mentioned works where a 
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clear size effect was absent, Zamanian et al. [5] showed that the mechanical properties of 

an epoxy resin were largely improved by the addition of silica nanoparticles with 

different size, the better improvements being obtained with the smaller nanoparticles. 

However the understanding of the relation between the nanostructure and the overall 

mechanical behaviour of nanocomposites is essential in the development and design of 

such materials.  

It is widely acknowledged that in nanocomposite materials the molecular structure of the 

polymer matrix is significantly altered at the particle/matrix interface, giving rise to an 

interphase zone comparable in size with that of the nanoparticle. This perturbed region, 

characterised by physical and mechanical properties different from those of the 

constituents, is created by interactions between components at the atomistic level and 

allows to explain the properties and the mechanisms exhibited at the upper scales. With 

the aim to account for molecular aspects into continuum-based methods, some authors 

have recently included into micromechanics tools the presence of an interphase with 

peculiar size and properties, thus accounting for nanofillers/polymer molecular 

interactions implicitly (see [6-18] and references reported therein). This new class of 

modeling tools, which allows one to simulate these features on length and time scales 

currently inaccessible by discrete numerical methods (such as Molecular Dynamics, MD) 

have been classified as "nanostructural models" [19]. However most of them still keep on 

being based on the concept of Eshelby dilute solution or Mori Tanaka theorem, being, in 

this way, unable to accurately seize the effect of the actual material morphology as well 

as filler-to-filler mechanical interactions. This is the reason why, with concern to the 

prediction of the mechanical response of nanofilled polymers, further efforts have been 

devoted in the recent literature to develop numerical approaches able to include non-

regular filler distribution and agglomeration effects.  

Within this topic, worth of mention is the work by Peng et al. [20] where a 

computational-analytical model, accounting for particle clustering effects, has been 

presented. A program code was used by the authors for the automatic generation of two-

dimensional multiparticle unit cells on the basis of  the "grid method" algorithm. 

Differently, Mortazavi et al. [21], carried out a bulk of three-dimensional Finite Element 

Analyses to investigate the interphase effects on the elastic modulus and thermal 

conductivity of polymers loaded with randomly oriented or unidirectional nanofillers. 

These authors studied the combined effects of fillers geometry and volume fraction, 
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interphase thickness and properties, using  the hard-core method to avoid intersection or 

contact between nanoparticles.  

3D periodic Finite Element (FE) simulations were carried out also by Pahlavanpour et al. 

[22] on  polymer clay nanocomposites; the effect of the interphase was taken into account 

in a two-step homogenization approach and a simplified procedure to guide the definition 

of the RVE was presented. The same authors also developed a one- and two-step 

homogenization models for predicting the stiffness of Polymer–Clay Nanocomposites 

(PCN) with aligned particles, of which the results were compared to 3D FE analyses 

where the PCN layered microstructure was explicitly simulated [23]. Approaches based 

on the FE method have been employed also to understand  the effect of filler 

characteristics on the mechanical properties of CNT reinforced polymers (see for 

example, Bhuiyan et al. [24] and Joshi and Upadhyay [25]), while Marcadon et al. [26] 

carried out a comparison between Molecular Dynamics and micromechanical approaches 

to analyse the particle size effect on the mechanical behaviour of polymer 

nanocomposites.  

In the present work, a new computational approach for the analysis of polymer-spherical 

particle nanocomposites is developed.  

Making use of Ripley function, an efficient procedure for the generation of three-

dimensional unit cell models, easy to be meshed and imported in a FE code, is developed.  

Particular attention is paid to the interphase zone surrounding the nanoparticles, which, 

due to inter and supra-molecular interactions, might be characterised by mechanical and 

physical properties different from those of the constituents. The basic features and 

potentialities of the tool are discussed by referring to a Complete Spatial Random 

Distribution (CSRD).  Moreover the developed tool is used to analyse the effect of the 

material structure on the overall interphase volume fraction and on the elastic properties 

of the nanocomposite, by comparing the results from the generated RVEs to those 

obtained by a regular distribution. Eventually, the solid models created  are used in 

combination with a FE code in order to carry out  a computational study on the effects of 

the  interphase thickness and properties on the overall elastic properties of the 

nanocomposite. 
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2. INTRODUCTORY REMARKS 

Nanocomposite materials are characterised by a hierarchical structure, which includes the 

nano, the micro and the macro length-scales. A successful prediction of the mechanical 

properties of these materials thus requires models able to account for the phenomena 

peculiar of each length-scale and to bridge their effects from the nanoscale to the 

macroscale. 

Within the classical Continuum Mechanics theory, the macroscale is commonly ragarded 

as an amount of material over which all the mechanical quantities are averaged values 

[27], representative of the overall material behaviour. This definition inherently contains 

the concept of a material point. However, moving from the macroscale to the microscale, 

the concept of "material point" is substituted by the Representative Volume Element 

(RVE), to be thought of as sufficiently small to be regarded, mathematically, as an 

infinitesimal volume of the macroscale. At the same time it has to be, by definition, large 

enough to be statistically representative of the properties of the material system, being it 

built with the real material microconstituents and microstructures. Defining a Volume 

Element (VE) as a volume containing a certain number of reinforcements, the RVE is a 

VE for which increasing the number of represented heterogeneities does not alter the 

computed effective properties.  

Besides the macro and the micro length scales, when dealing with nanocomposites, the 

nano length scale is relevant as well and represents a single unit cell of those 

compounding the micro-scale system, thus accounting for the material morphology at the 

nanoscale. 

Different from traditional microsized composites, it has to be considered that in nanoscale 

materials the surface effects become significant [28], due to the high surface/volume ratio 

and, for this reason, the amount of interphase volume might represent a large part of the 

matrix.  

Experimental observations [29-32] and Molecular Dynamics simulations [33-37] allow to 

state that the mechanical properties of the interphase zone surrounding a nano-

reinforcement are different from those of the polymer matrix and the nanofiller. Very 

recently, the present authors [17-18, 38-40] have proven that such properties highly affect 

the mechanical behaviour of nanocomposites. Unfortunately, even if some hypotheses 

have been made [20], the data available so far in the literature about the interphase zone 
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3.  FORMULATION OF RVES WITH A PRESCRIBED 
DISTRIBUTION OF SPHERICAL NANOPARTICLES: THEORETICAL 
ASPECTS 

In this section a new procedure to create RVEs with a random distribution of spherical 

nanoparticles is briefly presented and discussed. The material is regarded as undamaged 

and composed by three homogeneous phases (spherical particles, polymer matrix and 

interphase zone). 

Particles are constrained to have inter-centre distances greater than the sum of their radii, 

thus preventing particle merging in the FE modelling. However, close enough particles 

are allowed to share their interphase (see Figure 2). This allows the model to calculate the 

effective amount of interphase developed in the RVE, as a function of the interphase 

thickness, the filler volume fraction and the particle distribution. 

 

Figure 2. Schematic of non-overlapping particles sharing the interphase zone. 

 

The developed numerical approach is based on an algorithm which generates particles 

distributed within the polymer matrix according to a prescribed distribution.  

The developed approach requires as inputs the number of particles to be included in the 

RVE, np, the nanoparticle radius r0, the interphase thickness, t, and filler volume fraction, 

fp. These input data suffice to define a spatial domain containing all the particle centres, 

being it defined as a cube with edge length C:  

03

p

p r
f

n

3

4
C   (1) 

The Cartesian coordinates of each particle centre are initially created using a random 

number generator, which produces values in the domain ]r0+t; C-(r0+t)[, so that all 

particles are fully contained within the RVE. This choice has been made in order to 

guarantee an easier meshing process. Indeed in a 3D model the intersection between a 

particle and a face of the RVE would create a sharp angle which represents a critical zone 

particle interphase 

shared 
interphase 
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to be meshed, especially in a three-dimensional model where this critical zone is 

developed along a curved edge.  

For each newly generated triad of coordinates, the algorithm automatically verifies that its 

distance from all other previously defined centres is greater than 2r0, in order to avoid 

overlapping particles; if this condition is not verified, the triad is rejected and new 

coordinates are generated. This process is iterated until the number of created centres 

equates np.  

The next step of the algorithm consists is determining the Ripley function for the obtained 

distribution. The Ripley function, K(h) which is a powerful statistical evaluator, able to 

investigate the presence of repulsion or aggregation between events at several length-

scale, considering the distance between each event from each other [41-42].   

 being the intensity of the distribution, function K is defined as [42]: 

K(h) = ∙ h, h≥0     (2a)

where h is the average number of extra events within distance h of an arbitrary event. 

In the engineering practice, K can be estimated according to the following expression 

[42]:  

 
 

ji and 0hwith           
n

hPP
ˆhK̂

p pn

1i

n

1j p

ji1 


 
 

  (2b)

where: 

- h is the variable representing the distance of analysis. 

- Pi are  the coordinates of the np particle centres. 

- ||Pi-Pj|| is the distance between the centres of two particles (i and j), calculated 

considering spatial periodicity of particle positions within the RVE. This 

allows, according to Cressie [42] to inherently compute K(h) including 

corrections for edge effects. 

- I is a step function equal to 1, if the argument is true, or 0 if it is false. 

- ̂  is the estimation of the distribution intensity given by the number of 

particles within the RVE divided by the volume of the RVE, assuming the 

stationarity of the process [42]. 

The K(h) for the obtained pattern of nanoparticles, which should represent an "hard core 

process", allows to evaluate the following parameter: 
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(3) 

where )h(KOB is the K(h) for the target (desired) distribution.  

Function PZ allows to check whether, within a spatial interval, the given nanoparticle 

pattern is representative, within a given tolerance, of the desired distribution (PZ=1). If 

this condition is verified, the obtained distribution is accepted.  

If not, the distribution is further modified and forced to respect such a condition by 

applying iteratively to each particle the following formula: 
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
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
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 




 (4) 

Eq. (4) defines the movement of a particle, by superimposing the interaction vectors, iju


 

between j-th  particle and the surrounding ones. Each of these vectors, iju


, can be 

decomposed into the following terms: 

1.  qPPI ji 
 
is a step function, equating 1 whenever the distance between particle 

centres, ,PP ji   is lower than q, 0 otherwise. Accordingly it gives a cut-off for the 

particle-to-particle interactions, by defining an interaction radius, q (see Figure 

3a). Optimum values for q depend on the target function;  

2. the term 
k

ji PPF  is a scalar quantity giving the intensity of the interaction 

vector through an appropriate scale factor F and the distance between particles, 

ji PP   raised to the k-th power. Parameters F and k are scalar quantities to be 

appropriately chosen depending on the target function (considering that the 

smaller the value of F, the smoother the evolution of the system is); 

3. The term jiji PPPP  defines the direction of the interaction vector, being the 

unit vector linking the centres of the considered particles (see Figure 3b). This 

term transforms the scalar term 
k

ji PPF  into a vector; 
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4. Finally, the summation defines the sum of the interacting vectors for each particle 

and allows to evaluate the final displacement of the particle,

 

ju


 (see Figure 3c). 

The constraint i≠j means that particle self interactions are not considered.  

 

  
(a)       (b)         (c) 

Figure 3. Graphical explanation of  Eq. (4). (a) Definition of an interactive radius of length q around the j-
th particle centre (j=1); (b) Definition of the unit vectors linking the j-th particle with the interacting 
particles. (c) Determination of  the displacement vector iu


 to be applied to the j-th particle centre. 

This algorithm is applied iteratively to each particle of the RVE until PZ=1 within a given 

tolerance. Values of F, k and q are chosen, within reason, in order to guarantee the desired 

degree of accuracy and might essentially depends on the target distribution.  

The virtual distribution so obtained can be easily converted into a solid model using a 

commercial solid modeller (see, for example, Figure 4).  

A flow chart of the complete developed algorithm is shown in Figure 5. It is also worth 

mentioning here that a similar approach has been used by Rintoul and Torquato [43], who 

used the Radial Distribution Function to reconstruct bi-dimensional particle distributions.  

 

Figure 4. Example of the solid model with a complete random distribution of particles.  
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Figure 5. Flow chart of the developed algorithm.  
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4. ANALYSIS OF NANOPARTICLE REINFORCED POLYMERS: 
RESULTS AND DISCUSSION 

4.1 Preliminary  remarks 

In order to successfully apply the developed algorithm to nanocomposites, it has be 

accounted for that the mechanical properties of polymer/spherical particle  

nanocomposites, especially the fracture toughness and the strength, might strongly 

depend on the filler morphology which, in turn, is influenced by several factors, such as 

the chemical nature of the constituents and the manufacturing processes employed. 

Unfortunately, as far as the authors are aware, in the literature there are no sound 

relationships correlating manufacturing parameters and chemical/physical properties of 

constituents to material morphology.  

Accordingly, in order to explore the features and the efficacy of the developed algorithm, 

in this work we have chosen the Complete Spatial Random Distribution (CSRD) as a 

reference distribution, even if, in principle, the developed algorithm should allow to 

"reproduce" a convenient filler distribution by simply changing the reference value for the 

K(h) function.  

The CSRD has the capability "to characterize the absence of structure in the data and it 

could be used as null hypothesis in a statistical test to look for spatial structure in the 

distribution" [42] and is characterized by 3h
3

4
hK )( . Accordingly, in the subsequent 

analysis the evaluator PZ will be computed as: 

 
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(5) 

As far as Eq. (4) is concerned, the optimum value for q, F and k for a CSRD were found 

to be 5, 1 and 1, respectively. Moreover, an acceptance tolerance of 10% has been used 

for Pz. This value offered a reasonably computational cost to gain convergence (usually a 

hundred of iterations).  

An example of application of the algorithm is shown in Figure 6, where the statistical 

analysis of two different particle centre distributions is presented. In particular:  

1. the first one is simply obtained by using the random number generator, without 

any correction by Eq. (4): such a kind of distribution will be named here 

"unmodified" (black line). 
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2. the second one is instead obtained by applying iteratively Eq. (4) to each particle 

of the previous distribution: such a kind of distribution will be name here 

"modified" (red line). 

The dotted lines identify the tolerance used with respect to the CSRD condition. It is 

evident that the modification of the distribution according to Eq. (4) allows to better 

match, within a given strict tolerance, the CRSD hypothesis. In addition, Figure 6 shows 

five unmodified distributions, with np = 10, 20, 30, 60 and 100 where PZ is out of a 

prescribed tolerance. It is evident that increasing the number of particles, np, the 

distribution tends, slowly, toward a CSRD condition. 

 

Figure 6. Example of analysis through Ripley function and comparison between a modified and an 
unmodified distribution.  

4.2 Effect of the filler distribution on the interphase volume fraction 

One of the basic assumption of the present analysis is the absence of overlapping 

particles. However, it might happen that some non-overlapping particles are so close to 

share part of the interphase (see Figure 7). Accordingly, it is expected that, in the 

presence of a complete random distribution, the actual interphase volume fraction, fi, is 

lower than that associated to a regular distribution (cubic array of non-overlapping 

particles). These quantities can be determined as in Eqs. (6), the latter representing the 

regular distribution:  
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Since it has been proven that the interphase properties highly affect the mechanical 

properties of nanocomposites [17-18, 38-40], the correct estimation of the overall amount 

of interphase within the material becomes essential. Under the hypothesis that the 

interphase thickness is, approximately, an inherent characteristic of the analysed system 

(filler type and polymer matrix), the RVE generator developed in the present work has 

been used to create several distributions with the aim to determine the overall interphase 

volume fraction, fi within the VEs, given by Eq. (6a) and to compare them with the 

results given by Eq. (6b).  

 

Figure 7. Example of analysis through Ripley function of five unmodified distributions.  

To this end a nanocomposite material with fp=0.05 and 0.1, r0=10nm and t=10nm has 

been considered, and VEs with np=10, 20, 30 and 60 have been generated. For each value 

of np 5 different VEs have been built, and results are provided in terms of mean values 

and standard deviations in Figure 9. It is evident that the nanoparticle distribution affects 

the interphase volume fraction, a CSR distribution resulting in a strong reduction of fi 

(about 20% for fp=0.05, up to 45% when fp=0.1). Figure 8 gives a more comprehensive 

overview of this effect;  the interphase reduction is shown to increase, as expected, while 
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increasing the interphase thickness t and the nanoparticle volume fraction. At the same 

time, Figures 9 make it also evident the efficiency of the developed algorithm: indeed, as 

far as the modified distributions are concerned, the results in terms of fi are almost 

independent of the number of particles. Unmodified distributions are characterised, 

instead, by higher standard deviations and require a lot more particles to obtain a 

stabilized mean value. This result agrees with those shown in Figures 6 and 7, where 

distributions have been analyzed through Ripley function. 

 

 

Figure 8. Interphase volume fraction for modified CSRs distribution versus the nanoparticle volume 
fraction and the interphase size. 
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(a) 

 

 

(b) 

Figure 9. Interphase volume fraction versus the number of particles of the VEs. Comparison between 
regular distribution, unmodified and modified CSR distributions. fp=5% (a), fp=10% (b) 
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These boundary conditions result in a zero normal average stress in the i direction, thus 

allowing to determine the longitudinal elastic modulus in the k direction, without 

stiffening caused by transversal constraints  and do not give rise to edge effects, 

symmetry conditions being applied to the RVE edges.  For each VE three analyses have 

been carried out (with k = x, y, z) so that the elastic moduli in the x, y and z direction 

have been determined.  

It is worth mentioning here that the proposed boundary conditions differs from the more 

conventional periodic boundary conditions, of which the implementation often hampers 

the possibility to use automatic/free meshing, requiring a correspondence between nodes 

on the opposite faces of the RVE. Accordingly, in order to avoid the need of an 

"intelligent" meshing of RVEs, which might be particularly time consuming for 3D 

domains, in this work we have adopted the set of boundary conditions explained above.  

Results of FE analyses are shown in Figure 11. It has to be noted that, for the studied 

system, the elastic modulus of the nanocomposite is only slightly affected by the particle 

distribution. This is clear comparing the results from CSRD distributions to those related 

to the regular distribution, the difference being within 10%. Another proof can be given 

by comparing Figure 7 and Figure 11, where it is evident that the differences in the 

interphase content between modified and unmodified distributions have a very limited 

effect on the value of the elastic modulus. This effect is particularly emphasised by the 

fact that, in the results shown in Figure 11, the interphase is only moderately stiffer than 

the matrix (Ei = 2Em). However it has also to be mentioned that other mechanical 

properties, such as the fracture toughness, can be largely affected by the interphase 

content, and limited variation in fi can produce substantial changes in GIC (see for 

example [38-40]). 
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Figure 11. Normalized elastic modulus. Comparison between unmodified and modified CSR distributions.  

 

4.3. Effect of the interphase thickness and elastic properties 

The RVEs with r0 = 10nm and np = 10 used in the previous sections have been employed 

to study the effect of the interphase elastic properties and size on the overall elastic 

properties of the nanocomposite.  In particular, the effect of the interphase to matrix 

elastic properties ratio, Ei/Em, for a constant interphase thickness t = 5nm, is shown in 

Figure 12, considering different volume fractions. It is evident that when the interphase is 

softer than the matrix (Ei/Em = 0.5), the reinforcement due to the addition of nanofillers is 

almost cancelled by the low interphase properties. On the other hand, a stiffer interphase 

(Ei/Em > 1) results in a more pronounced increase for the nanocomposite elastic modulus.  

Figure 13 shows the effect of the interphase thickness, Ei/Em being constant and equal to 

2;  results clearly indicate that the increase of the interphase thickness gives an enhanced 

stiffening effect.  

These results, which agree with those recently discussed by other authors (see [17-18, 20-

21] and references reported therein), clearly prove  the importance of the interphase 

properties and size for the correct assessment of the mechanical properties of 

polymer/nanoparticle nanocomposites.   

It is finally worth mentioning that the deviation from linearity exhibited by the 

nanocomposite elastic properties, as evident from Figures 12 and 13, is due to the 

stiffening effect of the interphase. 
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Figure 12. Nanocomposite normalized elastic modulus, Ec/Em, versus the nanoparticle volume fraction 
(CSRD). Different Ei/Em ratios. The data point are averaged values. 

 

 

 

Figure 13. Nanocomposite normalized elastic modulus, Ec/Em, versus the nanoparticle volume fraction and 
the interphase size (CSRD). The data point are averaged values. 
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5. CONCLUSIONS 

Based on the use of Ripley function, in this work a new algorithm for the generation of 

three-dimensional Representative Volume Elements (RVEs) has been presented. The 

presence of an interphase zone, surrounding the nanofiller, of different mechanical 

properties with respect to the matrix has been accounted for. The basic features and 

potentialities of the tool are discussed by referring to a Complete Spatial Random 

Distribution (CSRD). It is found that the developed approach is extremely efficient, by a 

computational point of view, the results in terms of the actual interphase volume fraction 

and nanocomposite elastic properties being almost independent of the number of particles 

used in the RVE. The developed numerical procedure has then been used to prove the 

substantial effect of the material structure on the overall interphase amount and the elastic 

properties of polymer/nanoparticle nanocomposites. 
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7 
Study	of	the	Random	Sequential	Absorption	
algorithm	in	the	generation	of	nanoplatelet	

Volume	Elements		

	

 

KEYWORDS:  A. RSA algorithm; B. Statistical analysis; C. Nanoplatelets; 

 

ABSTRACT 
In this chapter, the study of the Random Sequential Absorption (RSA) algorithm in the 
generation of nanoplatelet Volume Elements (VEs) has been carried out. The effect of the 
algorithm input parameters on the reinforcement distribution is studied through the 
implementation of statistical tools, showing that the platelet distribution is systematically 
affected by these parameters. The consequence is that the parametric study of the VE 
input parameters may be biased by hidden differences in the filler distribution. Finally, 
the same statistical tools used in the analysis are implemented in a modified RSA 
algorithm to overcome this issue. 
 

1. INTRODUCTION 

In the past decades polymer nanocomposites surprised the scientific community with 

outstanding improvements of polymer functional [1, 2] and mechanical [3, 4] properties. 

Nowadays thousands of scientific publications per year testify the huge interest in this 

research area.  

Many materials have been created and tested using several type of nanoreinforcements, 

which can be classified as a function of their geometry: spherical (e.g. alumina 

nanoparticles), rod-like (e.g. CNTs) and platelet-like (e.g. nanoclays). Focussing on 

nanoplatelets, many authors showed their capability in increasing the matrix tensile 

properties [5], fracture toughness [6], barrier [7] and antibacterial properties [8]. However 

the same authors presented also the complexity involved in processing these materials and 

the need of better understanding their behaviour in order to employ them effectively [9]. 

Several research papers have been published on computational modelling of nanoplatelet 

reinforced composites [10-13] in an attempt to shed light on the mechanisms involved 

within these materials. 

Ma et al. [10] propose a FE simulation on nanoclay-epoxy nanocomposites to study their 

impact behaviour. In particular they implement a Random Sequential Absorption (RSA) 
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algorithm to create 2D Volume Elements (VEs) of the material and to perform damaging 

analyses taking into account the reinforcement-matrix traction-separation law.  

Hbaieb et al. [11] model the stiffness of polymer/clay nanocomposites. They create 2D 

and 3D VEs with aligned and randomly oriented platelets, through a RSA algorithm, and 

perform a comparison with the Mori-Tanaka model. 

Dai and Mishnaevsky [12] study the damaging evolution in nanoclay reinforced epoxy. 

They create 2D and 3D VEs of aligned or randomly oriented platelets, obtained with a 

RSA algorithm, and perform XFEM simulations of the initiation and propagation of the 

damage. 

What emerges from the analysis of the literature is that the RSA algorithm is the most 

common approach in nanoplatelet VE generation. This is reasonably due to the easiness 

of its implementation added  to the soundness of its statistical base. However, when 

dealing with nanoplatelets, the randomness inherently possessed by the RSA algorithm is 

biased. In fact this emerges in [13], where Cricrì et al. study the prediction of the stiffness 

constants of a nanocomposite, using a periodic 3D-FEM model. After obtaining statistical 

parameters of the reinforcement orientation through TEM analyses of the material, they 

implement a RSA algorithm able to take into account those parameters in the construction 

of 3D models. In their analyses, they highlight the link between the VE size (in terms of 

number of platelets) an the possibility for it to display isotropic structural characteristics. 

In doing so, they remark the connection existing between the input parameters for the VE 

generation and the reinforcement distribution resulting from the RSA algorithm. 

In the following work, three statistical indexes are defined to study the platelet 

distribution within VEs. Then a RSA algorithm is implemented to generate VEs of 

different aspect ratios, filler volume fraction and number of platelets, proving the 

existence of a systematic effect of the input parameters on these VEs. Finally a way to 

overcome this issue when using RSA approaches is proposed. 

2. STATISTICAL TOOLS 

2.1. Analysis of the platelet orientation distribution 

The platelet distribution is defined in terms of centre positions and platelet orientations. 

Considering that in this study hexagonal platelets have been used, the platelet shape 

results in a quasi-transversal-isotropic behaviour, allowing the use of the sole unit vector 

orthogonal to the platelet plane, n


, as orientation descriptor. This parameter is studied 

within the frame of the statistical analysis of axial data through the definition of an 
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orientation matrix [T] [14]. Expressing, for each platelet i, n


 as  iiii zyxn ,,


, [T] is 

evaluated as: 
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Solving the eigenproblem associated to [T] it is possible to obtain 3 eigenvalues and 3 

eigenvectors which give information about the preferred orientation of in


within the VE. 

Eigenvalues have been defined as v1, v2, v3 with v1≥ v2≥v3.  

To evaluate the effects of the input parameters on the VE filler configuration, it seems 

reasonable to assume an isotropic distribution of platelet orientations as a reference. If the 

eigenvalues are equal, the distribution is uniform (which means isotropic), therefore in 

this paper the ratio v3/v1 has been assumed as an index of anisotropy: a value of one 

means uniform distribution, while decreasing values identify a higher anisotropy. The 

second eigenvalue is not considered in the following analysis for brevity. 

Alongside the analysis by means of eigenvalues, a qualitative analysis of the distribution 

was carried out by means of a graphical representation of  in


. Each unit vector can be 

plotted as a point on a sphere of radius 1, assuming a common origin for each vector. 

Considering that in the case of platelets only the axis is of consequence (i.e. ii nn


 ) all 

data have been reformulated with negative z coordinate: in this way all the points belong 

only to the lower hemisphere, which simplifies the plotting. The representation 

implemented is a Wulff stereographic projection [14] which is an equal-angle projection 

obtained projecting each point on the middle plane of the sphere (i.e. the plane which 

connects the lower and the upper hemisphere) not through rays parallel to the sphere axis, 

as in the case of orthographic projections, but with rays linking the points with the pole in 

the positive hemisphere. This projection results in a view akin to watching the lower 

hemisphere as a physical object in the real world. 

2.2.Analysis of the platelet centre distribution 

In order to study the particle centre distribution, Ripley function, K, has been employed 

[15] and the comparison between the VE K-function and the K-function of a Complete 

Spatial Random Distribution (CSRD), which is assumed as reference distribution, has 

been performed through the function Pz [16].  

 being the intensity of the distribution, function K is defined as [17]: 
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K(h) = ∙ h, h≥0     (2a)

where h is the average number of extra events within distance h of an arbitrary event. 

In the engineering practice, K can be estimated according to the following expression 

[17]:  
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where: 

- h is the variable representing the distance of analysis. 

- Pi are  the coordinates of the np platelet centres. 

- ||Pi-Pj|| is the distance between the centres of two platelets (i and j), calculated 

considering spatial periodicity of reinforcement positions within the VE. This 

allows, according to Cressie [17], to inherently compute K(h) including 

corrections for edge effects. 

- I is a step function equal to 1, if the argument is true, or 0 if it is false. 

- ̂  is the estimation of the distribution intensity given by the number of platelets 

within the VE divided by the volume of the VE, assuming the stationarity of the 

process [17]. 

In case of CSRD in a tridimensional space, Ripley function assumes a value of 

3h
3

4
hK )(  [17].  

Function PZ allows a comparison between K functions and it is expressed as:
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In this case KOB(h) is 3h
3
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hK )( , thus the final expression of PZ is: 
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3. RVE-GENERATOR ALGORITHM 

The generation of a VE is based on a software which implements a Random Sequential 

Absorption (RSA) approach. The RSA method is based on the definition of a domain in 

which platelets are generated sequentially with random coordinates and orientation, and 

each time a new platelet is created a check is performed to verify that no platelet-

overlapping with already generated platelets is detected. If it is so, the platelet is retained 

("absorbed") in the VE; otherwise it is discarded. The algorithm is iterated until the 

desired amount of platelets are placed in the VE. Considering that the domain is defined 

as an input, for each newly placed platelet the filler volume fraction, fv, increases. In the 

case of the VEs developed in this study, the domain is a cube of edge length C with 

periodicity between opposite faces. In this way a platelet may cross a face and the amount 

of filler within the VE is not affected. This geometric periodicity is mandatory in the VE 

generation, because the placement of high aspect ratio reinforcements would otherwise 

require a significantly bigger domain.  

The developed algorithm is able to manage platelets of several shapes, but in the present 

analysis only hexagonal platelets have been considered: this geometry seems a good 

compromise between the most used shapes in the literature (i.e. square and circle). In 

addition, platelets are constrained to have the same size and are generated independently, 

both in terms of centres coordinates and orientation: this means that no intercalation is 

enforced "ab initio". Finally, it seems convenient for the reader to point out that the 

software has been developed within the Object Oriented and Multi-threading paradigms, 

which enabled to manage the complexity of the routines involved in the checking of 

platelet-overlapping and to contain the time required to the software to carry out the VE 

generation. 

The obtained VE is post-processed to obtain the orientation matrix [T] and the 

eigenvalues. Moreover a routine imports the VE within a CAD software , which allows a 

visual inspection of the VE. The overall procedure is reported in Figure 1. 
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Figure 1. Diagram of the overall procedure in RVE generation an analysis 

 

4. ANALYSIS AND RESULTS 

Three statistical indicators have been obtained for each VE: 

1. An index of average isotropy of platelet orientation, evaluated as v3/v1, which 

highlights the presence of a preferable orientation within the VE. 

2. An index of local anisotropy which is evaluated again as v3/v1, but as a function 

of the distance from a platelet centre. This index is calculated for each platelet of 

the VE and than averaged. 

3. An index of the distribution of the platelet centres, Pz. This index is evaluated as 

a function of the distance from the platelet centre. 

These indicators have been employed to study the effects of the algorithm input 

parameters on the platelet distribution within the VE. These input parameters are: 

1. The filler volume fraction, fv, calculated as the ratio between platelets overall 

volume and the volume of the domain (C3). 

2. The platelet aspect ratio, AR, evaluated as the ratio between the diameter of the 

circle circumscribed the platelet and the its thickness. 

3. The number of particles within the VE, np.  

INPUT: nP, fV, C, platelet shape 

For each particle 

Assign a coordinate 
within ]0; C ] 

Evaluate [T] and v1, v2, v3 

Evaluate K(h) 

 Overlapping particles? 
Y

es
 

Generate VE representations 
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It must be point out that, due to the way in which the algorithm generates new platelets, 

each time a new one is retained, fv rises. Taking advantage on this, the VE realizations at 

different fv are obtained from the same VE saving its data history at steps of fv = 0.5%. 

4.1. Global isotropy 

In Figure 2 the effect of the aspect ratio on the overall VE isotropy has been studied. The 

analysis has been carried out at AR = 50 and 100 up to fv = 3%, and at AR = 200 up to 

only fv = 1.5% due to the high computational cost required to generate the VE. For the 

same reason while AR = 50, 100 and 200 have a scatter band representing the standard 

deviation on v3/v1 of 3 different realizations, a single VE at AR = 1000 fv = 0.5% has 

been generated. np at fv = 3% is 60. Considering fv = 0.5% wide scatter bands can be seen. 

This seems reasonable due to the low number of platelets placed in each VE (np = 10), 

thus resulting in a low statistical representativeness of the single VE. The global trends 

highlights that, for the same np and fv, higher is the aspect ratio lower is v3/v1. This is 

particularly visible at fv = 3% where a relatively small difference in AR results in a 

significant difference in the isotropy index. 

 

 

Figure 2. Effect of the aspect ratio (AR) on the overall VE isotropy. 

To gain a better understanding of this difference, the reader is encouraged to see Figure 3 

where the distributions are reported with Wulff projections. 
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(a) (b) (c) 

Figure 3. Wulff projections of some VEs considered in Figure 2: (a) AR = 50, fv = 3%, (b) AR = 100, fv = 
3%, (c) AR = 1000, fv = 0.5%. 

A comparison between Figure 3-a and Figure 3-b shows quite clearly that the distribution 

of platelet orientations is different for different ARs: while Figure 3-a seems qualitatively 

homogeneous, it is not the case of Figure 3-b, where the distribution seems bi-modal. 

Figure 3-c instead shows a distribution which is significantly polarized. 

In Figure 4 the orthogonal projection of the solid model plotted in Figure 3-b is reported, 

as an attempt to give the better comprehension of the egenvalue values as possible. The 

existence of a favourite orientation is clear: while in the front view it is possible to see 

through the VE, in the other directions it is not. Moreover it must be considered that the 

eigenvalues are linked to the directions of the eigenvectors which do not coincide with the 

projection coordinate system, therefore the projections on x, y and z directions attenuates 

the perceived anisotropy effect. 

Front Right side Top 

Figure 4. 3 orthogonal projections of the solid model of Figure 3-b VE. 
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The global isotropy index has also been used to study the effect of the number of particles 

on the VE platelet distribution. The results of the analysis are reported in Figure 5 for 

VEs of different size but with the same aspect ratio (AR = 50). 

 

Figure 5.  Effect of the VE size on the overall VE isotropy, with AR = 50. In the legend np is  reported for 
each series at fv = 3%. 

The analysis has been carried out with AR = 50 to reduce the computational resources 

required to perform the analysis. Again the scatter band is relative to 3 simulation runs for 

each series, beside the case np = 600 where only one realization has been performed.  

The increasing in np results in an overall higher isotropy and in the reduction of the scatter 

bands. Considering that the increase in np results in a higher statistical representativeness, 

the reduction of the scatter bands is reasonable. Differently, the increase in the v3/v1 ratio 

suggests the existence of a "scale-effect" in the VE: bigger is the VE, higher is the 

isotropy index. This can be explained by an averaging process of local anisotropies: one 

platelet affects the way in which the algorithm puts new platelets around itself (i.e. nearer 

is the new platelet to the older one, more parallel they must be), however if the initial VE 

is sufficiently big the initial platelets are not affected from each other and if they have a 

globally isotropic distribution the local effects on following placed platelets are 

compensated. This hypothesis can be verified through the study of the second statistical 

indicator, which allows the study of local anisotropies. 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.5 1 1.5 2 2.5 3

v 3
/v

1

Filler volume fraction[%]

AR50
AR50+
AR50++

nb: increasing fv[%] means increasing np. np = 60
np = 300
np = 600



130 
 

4.2. Local isotropy 

Using the second statistical indicator, the study of the local anisotropy in the platelet 

distribution has been carried out. The results of this analysis are reported in Figure 6 and 

7, for a fv of 3% and 0.5% respectively. All series are averaged values of the second 

statistical indicator considering 3 VE realizations, beside the one with black dots which is 

only one VE realization, due to the high computational cost. The distance of analysis 

spans from zero up to the VE edge length: this introduce an aliasing effects for distances 

greater than half VE edge length but gives a perception of the size of the VE in 

comparison with the platelet size. 

All curves show the same shape:  

1. From 0 to about half platelet width the value of v3/v1 is about 0. This means that 

locally there is a preferred orientation. 

2. From half platelet width to about half VE edge length there is a steady increase 

in v3/v1, which means that farther from the platelet centre there is the "averaging 

process of local anisotropies" explained before. 

3. From about half VE edge length up to the full edge length the value of the 

second statistical indicator is stable, reasonably due to the inclusion in the 

analysis of platelet aliases. These stable values agree with the values of the first 

statistical indicator previously reported in Figure 2 and 5, as it is expected. 

 



131 
 

 

Figure. 6. Second statistical indicator trend with different VE input parameters. The distance from the 
platelet centre is normalized against the width of the platelet. 

 

 

Figure 7. Second statistical indicator trend with different VE input parameters. 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7

v 3
/v

1

Normalized distance from the platelet centre

AR100
AR50
AR50+
AR50++

fv = 3%

AR = 100, np = 60
AR = 50, np = 60
AR = 50, np = 300
AR = 50, np = 600

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7

v 3
/v

1

Normalized distance from the platelet centre

AR200
AR100
AR50
AR50+
AR50++

fv = 0.5%

AR = 200, np = 10
AR = 100, np = 10
AR = 50, np = 10
AR = 50, np = 50
AR = 50, np = 100



132 
 

4.3. Platelet centre distribution 

Finally the distribution of the platelet centres has been considered using function PZ. In 

Figure 8 the values of PZ within 3 VEs, obtained with the parameters reported in the 

figure, are plotted. 

 

Figure 8. Trend of the function PZ calculated at different AR. 

The data show a generalized regularization at short distances, which means that few 

particles are actually stacked. This is also an indicator of platelet exfoliation, which 

agrees with the way in which the algorithm operates (i.e. generating platelets 

independently). Increasing the AR it seems that more intercalation takes place, 

considering that the distribution is more alike a random one. This is reasonably due to the 

correlation existing among the input parameters and the way in which the RSA algorithm 

operates.  

In Figure 9 the same analysis of Figure 8 has been performed, but with fv = 0.5%. In this 

case more dispersion is observed in the data, but again it is clear that at short range there 

is regularization in the distribution of platelet centres. 
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Figure 9. Trend of the function PZ calculated at different AR. 

 

5. DISCUSSION OF THE RESULTS 

The analysis reported above highlighted the strong influence of the input parameters on 

the platelet distribution: differences of the aspect ratio, the number of platelets or the VE 

size resulted in different configurations for the reinforcement distribution. The most 

important consequence is that the properties displayed by VEs obtained with different 

input parameters may hide the effect of a different reinforcement distribution. The origin 

of these systemic differences may be due a combination of factors, such as the sequential 

nature of the algorithm, for which every new platelet depends on every other already 

generated, and the finite size of the VE, which affects the distribution of platelets of high 

AR. However, the same statistical tools which allow the analysis of the filler 

configuration may offer a solution to remove the effect of the input parameters: the RSA 

algorithm can be modified to perform the statistical analysis at run-time and new 

constraints can be defined on this analysis. In particular, it is possible to reject platelets 

which result in values of PZ or v3/v1 ratios outside a prescribed tolerance − K(h)OB 

becomes an input of the algorithm, as well as the target value for  v3/v1. This new 

algorithm is reported in Figure 10.  
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Figure 10. Diagram of the modified RSA algorithm. 

 

This new approach results in two relevant advantages: 

1. It is possible to generate VEs which display a consistent reinforcement 

distribution, thus solving the dependency on the input parameters; 

2. It is possible to define a target distribution through experimental or theoretical 

analyses and use this modified RSA algorithm to reproduce this particular 

reinforcement configuration. 
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The proposed approach has been implemented in order to verify its feasibility. 3 VEs 

have been generated with AR = 50 and np = 60 at fv = 3% and their global index of 

anisotropy is reported in Figure 11, where a comparison with the output of the standard 

algorithm for 3 AR = 50, np = 60 at fv = 3% distributions and 3 AR = 50, np = 300 at fv = 

3% ones is reported. In this case an acceptance threshold of v3/v1 > 0.5 has been set. 

 

Figure 11. Effect of the aspect ratio (AR) on the overall VE isotropy. In yellow is the series obtained from 
the modified RSA algorithm. 

This simple constraint allows the generation of VEs with a value of v3/v1 more similar to 

the one displayed by bigger VEs obtained with the classical algorithm. Moreover the new 

series of VEs displays a stabilized index of anisotropy even at fv = 0.5%, differently from 

the older one. 

However, the specific way in which the constraints on the platelet distribution are 

enforced depends heavily on the target VE parameters: when there are few platelets the 

statistical indexes needs to be relaxed or shifted. For instance, when there are just 2 

platelets v3 is 0, by definition, and a constraint may be enforced on v2/v1, instead. Another 

example regards the obtaining of high v3/v1 indexes with high AR: higher is the AR, more 

difficult is to place platelets which satisfy that constraint, and within a small VE it may be 

geometrically impossible. 
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6. CONCLUSIONS 

In this chapter, the study of the Random Sequential Absorption algorithm in the 

generation of nanoplatelet volume elements has been carried out. The effect of the 

algorithm input parameters on the reinforcement distribution is studied through the 

implementation of statistical tools, showing that the platelet distribution is systematically 

affected by these parameters. The consequence is that the parametric study of the VE 

input parameters may be biased by hidden differences in the filler distribution. Finally, 

the same statistical tools used in the analysis are implemented in a modified RSA 

algorithm to remove the effects of the input parameters on the filler morphology. 
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A1 Molecular	dynamics	simulation	of	nanoscale	
interactions	in	epoxy	nanocomposites	
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properties; 

 

ABSTRACT 
In the following chapter the research activity carry out to develop a framework for the 
analysis of nanoscale interactions in epoxy nanocomposite materials is reported. The 
steps needed to analyse the elastic properties of epoxy resins are explained, using 
LAMMPS as molecular dynamics simulation software. Then it follows the explanation of 
the procedure which is being developed by the author to generate volume elements of 
epoxy-nanoclay nanocomposites and the difficulties found.  

1. INTRODUCTION 

The research activity on polymer nanocomposite materials started at the beginning of '90s 

and in about 25 years it grew relentlessly up to thousands of publications per year. This 

growth has been fostered by the stunning properties displayed by these materials, both in 

terms of functional properties and mechanical ones  [1-3]. In order to handle their 

properties, multiscale approaches have been developed and the need of tackling 

interactions at the nanoscale and beyond emerged [4, 5]. In terms of nanoscale simulation 

tools, FEA fails to cope with the atomic scale, where continuum mechanics hypotheses 

prove to be unrealistic. Thus, different simulation techniques are employed, such as 

Molecular Dynamics (MD) simulations, where atoms interacts through the integration of 

Newton's law associated to an interacting potential [6].  

In 2005 Odegard et al. [7] carried out MD simulations on a nanosilica reinforced 

polymer; the results, in terms of predicted elastic properties, highlighted how in 

nanocomposite materials the stunning surface over volume ratio induces the generation of 

an interphase between the nanoreinforcement and the matrix, with a size comparable to 

the filler dimension. The overall extension of this interphase with respect to other phases 

depends on the absolute size of the reinforcement, thus resulting in size effects within the 

material. Its mechanical properties are a function of the chemical and mechanical 

interactions between the nanoreinforcement and the matrix and, as such, depend heavily 

on the surfactant used to compatibilize the organic polymer with the inorganic 
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reinforcement. In order to incorporate the interphase in continuum-based 

micromechanics, Odegard et al. resolved to consider an effective interphase, 

characterized by homogeneous properties and constant thickness, hence setting the 

foundation for a hierarchical multiscale approach. 

Since then, many researchers used the concept of an effective interphase, both in 

analytical and computational models: Wang et al. [8], for instance, developed a FE 

method to perform a parametric study on the effects of particle size, distribution and 

interphase properties in the overall elastic properties of a nanomodified polymer; another 

example can be found in [4] where the authors developed a multi-scale and multi-

mechanism approach for the assessment of the fracture toughness of polymer 

nanocomposites. 

Regardless of the approach used - analytical or computational, hierarchical or concurrent 

- when modelling nanocomposite materials, researchers have to tackle the issue of the 

interphase property determination. The most common approach, to this end, consists in 

MD simulations. 

Yang et al. [9] resolved to employ MD simulations to obtain the elastic properties of the 

interface between the reinforcement and the matrix and used them in a micromechanical 

model. Song et al. [10] modelled the tensile properties of a nanoclay-reinforced epoxy in 

a FE code using cohesive elements to model the interphase, and employing MD 

simulations to obtain the required traction-separation law. Scocchi et al. [5] resolved to a 

more intensive approach, developing a multi-scale model which ranges from the 

quantum/atomistic simulation up to the FE analysis, for polymer-clay nanocomposites. 

While the multiscale approach has imposed itself as the main path in studying 

nanocomposite materials, the research activity at the nanoscale is still in progress. In 

terms of computational tools, no software for nanocomposite simulations is able to offer 

an efficacy analogue to that of a commercial FE code in simulating microcomposites. The 

sheer amount of new Force Fields (FF) and FF parameters that are produced every year, 

along with new algorithms to better model chemical behaviours, requires a continuous 

update of the software and foster the development of in-house scripts aimed to solve very 

specific issues that relentlessly emerge. For instance, LAMMPS [11], which is an open-

source MD code, had about 30 different releases due to major feature additions from 2004 

to 2014 and 12 patches to fix bugs just during May 2014. The direct consequence of this 

proliferation of alternatives is that it is difficult to compare researches carried out with 
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just few years of difference, and the rate of obsolescence of their scientific value is 

dismantling. 

Another common issue lies in the validation of simulation results: MD simulations are the 

most common approach to determine interphase properties because there are not other 

viable alternatives. Experimental testing at this length-scale is still pioneering, hence the 

validation is performed comparing the material bulk properties, obtained from 

experimental tests, with the output of the whole multiscale model or the predicted 

properties from Representative Volume Elements (RVEs) simulated directly in MD [12]. 

Considering several papers from the literature, it seems a common practice to assume the 

morphology of the interphase and look just for its mechanical properties. In [10], for 

instance, the authors consider perfectly round and flat clays and perfectly aligned 

reinforcements within stacks, as well as an interphase of uniform thickness over the 

external flat surfaces of each stack: the actual morphology of the interphase is disregarded 

and this unavoidably affects the validity of the analysis at the microscale. Even if MD 

simulations are performed to infer the traction-separation law between the polymer and 

the clay, edge-effects are not considered, while it is common engineering knowledge that 

points of stress concentration are likely to be critical in material behaviour. In [13] the 

authors carried out a parametric investigation on the effect of the interphase on thermal 

and elastic properties of polymer nanocomposites with FE analyses: they considered the 

interphase as a "homogeneous and isotropic covering layer of the outer surface of fillers 

with a distinct thickness" and created RVEs with random distributions of reinforcements.  

They assumed the morphology of the interphase and no comments are reported about that. 

This is true even in [14], where both numerical and analytical models are presented to 

study the stiffness of polymer-clay nanocomposites with oriented particles: in this case 

the authors used clays of rectangular shape with a constant thickness interphase lying on 

the top and bottom faces.  

The considerations reported above highlight some weak spots of the mainstream research 

approach: 

1. MD tools are still being developed, hence it is not possible to retrieve, in the 

literature, consolidated methods to infer material properties at the nanoscale. 

2. Validation of results from MD simulations is an issue, both if MD is used to 

analyse interphase properties - due to the lack of experimental testing means - or if 
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MD is used to simulate whole nanocomposite RVEs - due to the computational 

cost. 

3. In multiscale modelling the actual morphology of nanoreinforcements and 

interphase is commonly disregarded at the microscale both in computational and 

in analytical approaches. 

According to the points reported above, a promising research approach would be to use 

MD in the simulation of whole RVEs of nanocomposite materials, using the results not 

just to predict the mechanical properties of the material, but also to refine 

micromechanical tools. Experimental validation of the model developed seems 

mandatory, not only to validate the tool itself, but the correct prediction of mechanical 

properties for a specific material system would also, reasonably, protect research results 

from the above mentioned obsolescence. 

2. OBJECTIVES 

The goal of the research activity is to study the shape and mechanical properties of the 

interphase around nanoclays. In particular: 

1. Odegard approach [7] based on the density profile will be used to define the 

extension of an effective interphase around exfoliated clays. Particular care will 

be used to define the characteristic of the material along the edge of the clay, 

where the reduction in the surface density of cations unavoidably reduce the 

local density of the surfactant itself, and therefore affects the material properties. 

2. Obtain a traction-separation curve for the mode I failure in the nancomposite and 

obtain the elastic properties of the effective interpahse. 

3. POLYMER SIMULATION 

In this section, the detailed procedure developed to simulate the elastic properties of an 

epoxy resin is listed. The software used and the actions performed to prepare the files are 

carefully reported. The goal is to give to the reader all the details which are usually 

skipped in published papers, but which are fundamental to perform the simulations. 

3.1 Preparation of the Force Field. 

OPLS-All Atom Force Field [15] has been implemented to simulate the evolution of the 

polymer until the end of the polymerization step. First of all, the basic file of the Force 

Field (FF), named oplsaa.prm, has been edited removing all the entries relative to un-used 
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chemical species: obviously the choice of the atom types affect the simulation, and care 

must be taken. This is performed to reduce the computational resources required in the 

following operation. 

By means of the script oplsaa_moltemplate.py (included in LAMMPS tools) the edited 

.prm file is transformed into a .lt file for further processing (command: ./ 

oplsaa_moltemplate.py filename.prm). 

3.2 Generation of the monomer molecules. 

Avogadro modeller [16] has been used to generate the epoxy monomer, DGEBA, and the 

hardener monomer, DEDTA. The molecules are in a pre-reacted configuration: the epoxy 

molecule shows the epoxy rings already opened, by means of a H-atom addition to the O-

atom, as well as in the hardener H-atoms have been removed from the N-atoms (see 

Figure 1-2). This modelling approach has been used by [17] to ease the reticulation 

process: in fact, the molecules are already in a reactive configuration, and the opening of 

the epoxy rings itself does not need to be simulated. The monomer files have been saved 

with .xyz extension. 

 

(a)     (b)  

Figure 1. (a) Stable DEDTA molecule. (b) DEDTA molecule with active polymerization sites. Colour map: 
dark gray : C-atom; light gray : H-atom; blue : N-atom. 
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(a)  (b) 

 

Figure 2. (a) Stable DGEBA molecule. (b) DGEBA molecule with opened epoxy rings. Colour map: dark 
gray : C-atom; light gray : H-atom; red : O-atom. 

 

3.3 Generation of LAMMPS input files. 

The next step consists in the generation of the topology file for the MD software. In this 

phase a stoichiometric amount of monomers is distributed within a cubic space and a file 

ready-to-be-read by the MD software is generated. To this end the files obtained at step 

3.1 and 3.2 are further processed  according to the following steps: 

1. Use Packmol [18] to distribute a stoichiometric amount of monomers within the 

RVE box. In the Packmol input file set packmol.xyz as the output file. In order 

to successfully generate the RVE with small computational resources set the size 

of the box very big (which means to obtain a density in the order of 0.01 g/cm3): 

the density will be corrected in the following steps. 

2. Using Visual Molecular Dynamics [19] software with the plug-in topotools, the 

.xyz files are processed in an intermediary file. Commands: 

 terminal : vmd 

 in VMD : File → New Molecule... →  Browse... →  file.xyz →  Load 

 Menù : Extension →  Tk Console 

 Tk Console : topo writelammpsdata outputFile full 
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3. The script ltemplify.py, available in ../LAMMPS/tools/moltemplate/src 

directory, is used next. Command: 

 ./ltemplify.py  -name  moleculeName  file.in  outputFile  >  output.lt (note: 

 in this case file.in is an empty file) 

4. It is now necessary to modify output.lt in the following way: 

 Add import "oplsaa.lt" as a first row of the file. 

 Remove or comment the mass section. 

 Find the expression moleculeName{ and substitute it with moleculeName 

inherits OPLSAA {. 

 In Data Atoms section modify the expressions @atom:type with the atom 

type from OPLSAA. This task requires some efforts and a conjoint use of 

the modeller Avogadro is suggested.  

 Find Data Bonds and rewrite it as Data Bond List. 

 In the same section, remove the expression @bond:type from each row. 

5. Finally Moltemplate has been used to generate LAMMPS input files. After the 

preparation of the input file system.lt as per Moltemplate manual, issue the 

command: ./moltemplate.sh -xyz packmol.xyz system.lt. 

3.4 Pre-relaxation of the polymeric system 

Before executing the routine to reticulate the polymer, the density of the system is 

increased to about 1g/cm3 in a NPT ensemble, performing a run of 300ps with a timestep 

of 1fs at 300K and 100atm. The system is made of 512 DGEBA and 256 DEDTA 

molecules: the relative high number of monomers (which results in about 33,000 atoms) 

is used in accordance with the observations of [20] which highlights how the simulation 

of polymer mechanical properties requires a number of atoms of this order. The evolution 

of the system is plotted in Figure 3. 
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Figure 3. Density evolution as a function of the simulation time during the pre-relaxation of the polymeric 
systems. Simulation parameters are reported in the figure. 

3.5 Polymerization 

The polymerization of the system is performed following the approach reported in [17]: 

bonds are created between N-atoms of DEDTA molecules and terminal C-atoms of 

DGEBA molecules by means of fix bond/create of LAMMPS. In more details, within a 

NPT ensemble at 300K and 1atm, fix bond/create looks for reactive couples of atoms less 

than 4 Å afar and creates up to 2 bonds for each Nitrogen. After 100ps with timesteps of 

0.1fs a curing of 78.5% is reached (see Figure 4). The timestep is reduced with respect of 

step 3.4 in order to smooth the atom displacements induced by the sudden generation of 

bonds. The overall density remains consistently at 1g/cm3 regardless the different 

pressure in the ensemble: this behaviour is a consequence of the reticulation taking place. 
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Figure 4. Reticulation within the polymeric system as a function of the simulation time 

A useful remark is that in order to perform the reticulation just between the C and N 

atoms that are supposed to bind, a fictitious atom type for the C atoms has been used.  

 

3.6 Change of Force Field 

In order to simulate the damaging evolution within the polymer, the approach developed 

by Odegard et al. has been implemented [17]: OPLSAA is exchanged with a reactive 

Force Field, REAX [21], using the parameters of Liu et al. [22]. The system is allowed to 

relax in a NPT ensemble at 300K and 1atm, for an overall time of 50ps with timesteps of 

0.5fs. During the simulation a charge equilibration is performed with fix qeq/reax of 

LAMMPS [23]. At the end of the simulation the density of the polymer is of about 1.18 

g/cm3, in agreement with experimental evaluations of the density of this kind of material 

[24]. 

Figure 5 reports the evolution of the system with and without qEq. The trends highlight 

the importance of studying the correct parametrization for the FF, in order to obtain 

meaningful results. 
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Figure 5. Evolution of the system at FF change (from OPLSAA to REAX): in red, with suppressed charge 
equilibration, in black, with activated charge equilibration at step 40,000. 

 

3.7 Traction tests 

A first attempt to perform the traction test was structured in this way: the command 

replicate 3 1 1 was used to replicate the RVE in X-direction 2 times. Then atoms in the 

first and the last block were put into two groups and fix move linear x.x NULL NULL 

was used to simulate a uniaxial traction. The ensemble was fix NPH.  

Two issues have been identified: 

1. It was not possible to remove the atoms in excess (e.g. keeping just a fraction of 

RVE in each "grip site", as in Figure 6) without changing the box size, because 

the evaluation of the stress did not work properly. Not removing these atoms 

results in a heavy computational cost. 

2. It is not possible to use replicate with a not-reactive FF: in fact the software is 

currently unable to manage the un-wrapping of a continuous molecule which 

loops through RVE faces. As a consequence the command must be used before 

reticulating the polymer, therefore increasing the computational cost and altering 

the periodicity of the RVE. 
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Figure 6. Representation of the system before traction in the first attempt tryed. Part of the atoms that are 

"frozen" by fix move have been removed to enhance the computational efficiency. 

The alternative current approach consists in using the commands: 

 fix 1 all nvt temp 300.0  300.0  100.0 

 fix  2 all deform 1 x vel 0.0001 remap v 

which result in an uni-axial strain in X-direction. "remap v" does not-remap atom 

positions and therefore impedes the re-distribution of the stress to "not-structural" atoms 

(e.g. H atoms), avoiding fictitious load transfers. To move from the stress evaluated in 

uni-axial strain to the elastic properties, basic theory of elasticity concepts can be used. 

In Figures 7-8, results from traction tests performed with OPLSAA FF and REAX FF are 

reported.  

 

Figure. 7. Results of the traction test performed on the polymer with REAX FF. Stress values have been 
averaged every 1,500 timesteps. 
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Figure 8. Results of the traction test performed on the polymer with OPLS FF. Stress values have been 
averaged every 1,500 timesteps. 

 

Considering the longitudinal modulus averaged at 2%±0.5% strain, REAX results in 

about 7.6±0.2GPa, while OPLSAA in 5.1±0.2GPa: these results are consistent with each 

other, if the difference in the density of the polymer is taken into account.   

Considering the generalized Hooke's law,   kkjjiiii E

1
  ,under the hypothesis 

of isotropy it is possible to evaluate the average elastic modulus, E, and the Poisson's 

coefficient, . Doing so, REAX predicts and elastic modulus of 3.6±0.1GPa and a 

Poisson's coefficient of 0.36, while OPLSAA predicts 1.6±0.1GPa and 0.42 respectively.  

It seems useful to point out how the evaluation of the elastic modulus is sensitive to the 

data range used in the computation: if all data points of Figure 7 are used to evaluate 

average stresses in x, y and z directions, the predicted elastic modulus is about 5.1GPa 

and  is about 0.34.1 

                                                 

1 values used in the computation of the elastic properties 
 Sx [MPa] Sy [MPa] Sz [MPa] 
Averaged at 2% 147 97.4 65.8 
Averaged in 0%-2.55% 101 61.2 37.8 
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While results from REAX FF are reasonable if compared with experimental testing of 

epoxy resins (E≈3GPa)[24], [17], using a similar model but with a NPT ensemble and a 

strain rate on the order of 1.E8s-1, evaluated an elastic modulus of about 5GPa and 

justified it considering the expected increase in elastic modulus due to the high strain rate.  

An initial attempt to run the simulations of OPLSAA and REAX with a strain rate 

reduced by one order of magnitude suggests that OPLSAA predicts a constant 

longitudinal modulus, while REAX predicts one about 15% higher. Further analyses are 

required. 

Further possible researches:  

 study the effect of the strain rate; 

 study the strength of the material with REAX FF; 

 study the effect of the polymerization ratio; 

 study the effect of the temperature; 

 modify the polymer adding additives actually presents in commercial products; 

 add nanoreinforcements. 

4. NANOCOMPOSITE SIMULATION 

Preliminary remarks 

The following part of the chapter is relative to a procedure to create a volume element of 

a nanoclay reinforced epoxy resin to be used within LAMMPS. This procedure is not 

completed yet, but to report the difficulties found and the solutions identified so far seems 

nonetheless worthy of few pages of this PhD thesis. 

Nanoclay and surfactant material models 

The Montmorillonite  (MMT) model has been retrieved in the literature along with a 

dedicated FF developed by the research group of prof. H. Heinz [25]. PCFF Interface 

Force Field has been used with the model of a MMT with formula 

K0.533[Si4O8][Al1.467Mg0.533O2(OH)2], CEC=143 mmol/100g. Interface FF is meant to be 

an extension of common harmonic class-2 FFs (e.g PCFF), retaining their functional form 

but extending their capability of modelling organic/inorganic interfaces. Simulations 

carried out with this FF have been compared with experimental data showing a more than 

satisfactory agreement [25].  

The surface of the MMT has been functionalise with an organic surfactant, in order to 

improve the compatibility with the polymer. To this end molecules of Stearylamine 
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(C18H39N, see Figure 9) have been used: this kind of surfactant is commercially available 

from the same supplier of the MMT (Nanocor) and results with this compound are 

available in the literature both in terms of MD simulations (e.g. [26]) and experimental 

data (see Chapter 1). 

 

Figure 9. Representation of the Stearylamine model used in the simulation. Colour map: blue : N-atom; 
dark-gray : C-atom; light-gray : H-atom. 

 

A FIRST ATTEMPT 

Here follows the description of a failed attempt. It is reported to save others the time to 

try and implement it. The explanation of the issues found is reported after the description 

of the procedure 

Creation of the input for LAMMPS.  

The website of prof H. Heinz offers not only the FF and material models, but also a 

detailed description on how to generate LAMMPS input file. However, a different 

approach has been used here to allow the use of REAX FF for the surfactant. The tool 

msi2lmp_gcc32.exe, which is available in the referenced website, has been used to 

convert the model in a LAMMPS file. Separately, the model of the surfactant is created 

with Avogadro modeller  and converted to a LAMMPS input file. Then, a dedicated C++ 

software has been prepared to deploy the desired amount of surfactant molecules within 

the simulation box of the MMT, retaining the LAMMPS input file format. Finally, a 

working simulation with hybrid potentials is set, using REAX FF with Liu parameters 

[22] for the surfactant and Interface FF for the clay. Pay attention that bonds, angles, 

dihedrals and impropers due to the former FF must be removed and non overlapped to the 

interactions of REAX. 

It must be pointed out that the amount of surfactant that is able to stick to the clay 

unavoidably affect the mechanical properties of the system, affecting the compatibility 

between polymer and reinforcement. 



155 
 

The N-atoms of the surfactants are moved by means of the LAMMPS fix drag command 

over a cation in order to bind them to the MMT. 

Issues 

Some problems emerged employing the former approach: 

 It appears reasonable to me that the former approach with a hybrid FF 

PCFF/REAX in which the surfactant is hold in place with a fix, results in an 

irrelevant presence of the MMT: in other words, the MMT model would be used 

only to define the position of the surfactant, missing the long range interactions.2  

 The MMT model requires an interaction with the polymer, otherwise they don't 

see each other (e.g. it is the same as to try and model a contact interaction in FEA 

without contact elements: there is interpenetration). The hybrid parametrization 

needs to be carefully designed. 

 Another problem is that the organic molecules have to be imported with OPLS in 

order to carry out the polymerization, and then the change in FF takes place. 

Moreover, fix bond/create does not work yet with class2 FF (date: 08-08-2014)3. 

SECOND ATTEMPT 

To overcome the troubles reported in the section above, a different approach has been 

carried out: MMT, surfactant and monomers are all modelled in PCFF.  

4.1. Creation of a running simulation of the MMT 

The website of prof. H. Heinz offers not only the FF and material models, but also a 

detailed description on how to generate LAMMPS input file. However, just the first step 

has been carried out here, the modeller to create the organic molecules was not available 

.pdf and .pdb files. Instead, the tool msi2lmp_gcc32.exe, which is available in the 

referenced website, has been used to convert the MMT model 

(mont0_533_K_15_single_layer) in a LAMMPS file 

(mont0_533_K_15_single_layer.lammps05). Beware that the number of impropers is 

wrong (i.e. 525684) because, somehow, the tool generate many "virtual" impropers 

around atom type 1; they should be corrected (in this case, the removal of the wrong 

                                                 
2 It is not straightforward to maintain electrostatic interactions with REAX (to keep the charge in the 
protonated N, for instance) and to obtain reasonable material behaviour(keep the charge→no qEq→see 
Figure 5). 
3 A work-around has been reported below, at point 6.Reticulation. 
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impropers results in 1860 impropers for the model). The input file needs the definition of 

interaction styles for the simulation: 

    units real 

    atom_style full 

    bond_style  class2 

    angle_style  class2 

    dihedral_style  class2 

    improper_style  class2 

    pair_style lj/class2/coul/long 20.0 

    kspace_style pppm 0.00014 

Pay attention to the definition of pair_style: without coul/long, the model does not 

consider electrostatic interactions, but these interaction are the core of the MMT 

interaction with the surfactant and with the K cations. 

4.2. Creation of the organic compound 

Three organic species are considered in the simulation: the surfactant, the epoxy 

monomer and the hardener (i.e. Stearylamine, DGEBA and DEDTA). For these materials 

OPLS models can be obtained as described in the simulation of the polymer section, 

while the conversion to PCFF is described below. It is strongly suggested to check if it is 

possible to retrieve online a tool for the change of FF, which was not available when this 

procedure took place. 

1. Creation of the polymer compound. With Packmol, it is possible to create a RVE 

of the organic compound, setting its boundaries to fill the space available in the 

MMT pre-constructed cell. In the available MMT RVE-cell, the space occupied 

by MMT atoms is just a fraction of the overall space, with atoms places at lower 

z coordinates: constraining Packmol to use the empty space simplifies the 

following operation of merging the composite phases.  

2. Identification of atom types. It is necessary to link the atom type of the data file 

to a corresponding atom in PCFF. After identifying a molecule with its ID, it is 

possible to plot its atoms, for instance in a 2D Excel plot, and then identify the 

kind of molecule (e.g. DGEBA) and for each atom type its atomic specie and 

                                                 
4 This configuration requires periodic boundary conditions. If non periodic BCs are needed, pair_style must 
be changed to lj/class2/coul/cut without kspace_style (therefore loosing the computation of long range 
interactions). 
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specific function (e.g. C in aromatic ring) 5 . A check could be performed 

comparing the parameters reported for pair coefficients in the data file and in 

OPLS. 

3. Reformulation of the FF coefficient file according to the new FF. The following 

part requires the development of a script to be performed in a reasonable amount 

of time: using the data file, in which atoms, bonds, dihedrals and impropers are 

reported, the coefficient file is constructed ex-novo from PCFF. If the molecules 

involved in the simulation remain the same, reasonably the file does not need 

updates; this is not true if new molecule types are used. 

At the end of this procedure a new file with the coefficients for the data file is created. 

Parameter styles are the same as the one reported in step 1. 

4.3. Creation of the simulation cell 

The organic and the inorganic materials are joined by simply adding their definition files, 

using the MMT files as a base and adding the organic informaton. Using Packmol to 

generate polymer coordinates which do not overlap to the MMT ones, this task is trivial. 

In system.data the overall indexes in the header section must be updated as well as atom, 

bond, dihedral and improper organic IDs.6 

4.4. Surface modification of the clay 

From here on the procedure is still a work-in-progress 

Before proceeding with the simulation, the surfactant has to be bound to the MMT. The 

following description assumes a RVE composed of 1 clay platelet, 4 surfactant molecules, 

30 DGEBAs and 15 DEDTAs.  

The first operation consists in the deletion of 4 K-cations:  

 #remove 4 cations from the MMT (atom type 15), two per face 

 group   K2remove id 601 602 603 605 

 delete_atoms  group K2remove 

                                                 
5 Note: it is possible that 1 OPLS atom type finds its equivalence in different PCFF atom types (e.g. the N 
in DEDTA and the N in Stearylamine are well different in PCFF, but they may not differ in the OPLS  
model). If such is the case, care must be taken in the following operations, and a manual fix of the final file 
will be required. 
6 I suggest to use Excel to perform the task of updating atom IDs. Pay attention to update also the atom IDs 
within bond, angle, dihedral and improper definitions. 
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This will allow to the protonated amine of the surfactant to substitute the missing cations 

and equilibrate the MMT. In this way the correct (electrostatic) interaction between 

surfactant and MMT is modelled. 

Then the surfactant molecules are moved toward the MMT: 

 #attract surfactant toward the MMT 

 group   Np type 29 

 fix   moveNp Np drag NULL NULL 4.5 1000.0  6.0 

This allows to move the surfactant charged head in the interaction radius defined by pair 

style lj/class2/coul/long. The position of the MMT has to be fixed in space, to allow fix 

drag to move the surfactant in the correct area: 

 #I have to fix the position of the MMT 

 group   SiAtoms type 2 3 

 fix    blockMMT SiAtoms move linear NULL NULL 0.0  

Finally, the simulation is run according to: 

 #a limit has been used to help with surfactant dragging 

 fix   1 all nve/limit 0.1 

 

 

Figure 10. Representation of the clay with surfactant molecules attached to the surface. Colour map: light-
gray : H-atom; dark-gray : C-atom; red : O-atom; middle-gray : Al/Mg-atom; violet : K-atom; blue : N-

atom. 
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4.5. Compression 

The NPT ensemble does not seem capable of performing the compression of the system 

up to the required density. A work-around could be to calculate the dimension of the RVE 

(without the space occupied by the MMT) with the correct density and then proceed with 

compression according to an approach similar to: 

#deform the whole simulation box, in a uni-axial strain approach 

 fix   0 all nve/limit 0.1 

 fix   1 all langevin 300.0 300.0 100.0 1587 

 fix   2 all deform 1 z vel -0.001 remap v 

performing the required amount of timesteps. 

4.6. Reticulation 

Reticulation requires some efforts, because the current version of LAMMPS (08-08-

2014) invoke an error when a class 2 FF is used with fix bond/create, even if the bond 

created is harmonic instead of class 2. To solve the issue hybrid bond style is 

implemented as: 

 bond_style   hybrid harmonic class2 

which requires a redefinition of the input file according to the hybrid approach: 

 bond_coeff  1  class2 2.0433  430 0 0 

Then, the file fix_bond_create.cpp needs to be edited, commenting the rows from 241 to 

245, and LAMMPS needs to be recompiled. In this way the check on the employment of 

class 2 FF is not performed, and it is up to the user the selection of a correct FF. A new 

bond type is then defined in the input file, retrieving the needed parameters from PCFF in 

the quadratic bond section: 

 bond_coeff  88 harmonic 356.5988      1.4700     

As a next step, fix bond/create is employed as in the case of the simple polymer: 

 fix    1 all bond/create 2  26 28 4.0 88 iparam 2 26 jparam 1  28 

Finally, the simulation can be run according to: 

 timestep  0.1 

 fix   2 all nve/limit 0.1 

and reticulation process can be followed with: 

 thermo_style   custom step f_1[1] f_1[2] bonds 
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